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Hungarian Goulash

This basic food of the Hungarian cattle-herder (i.e., “gulyás” in Hungarian) begins by saying that
its proper name is “pörkölt” (meaning, braised) in Hungarian. Mix in some sour cream before
serving, and you may call it “paprikás” instead. This, highlights an important point: goulash is

a quintessential paprika dish—so better have the best grinds of that powder when preparing it.
Gopd paprika is bright red (even orangy) and is very fragrant. Then, there’s also “gulyás leves”

(i.e., goulash soup), which uses the same base for a soup version with many additional vegetables
(almost to the point of too healthy for the average heart-clogged Hungarian) and flour dumplings

(“csipetke”).
As the nomenclature suggests, it is normally made from beef (i.e., “gulya”), especially from the

unique gray-colored variety that is (or used to be) native to the plains of Hungary but one, which

is now on the brink of extinction (I must admit, I never had the pleasure of tasting one of those...).
However, almost any dark meat (e.g., pork, lamb, mutton, deer, boar – but hell-no chicken!), or not-

quite-meat (e.g., rooster fries, tripe) works. The trick is always to cook it long enough (so that it falls
apart under a gentle bite), and add substantial amounts of pork lard (or less-tasty but more heart-

friendly vegetable oil) and red wine. Most importnantly, it really should be cooked outdoors in a
cauldron hanging over an open fire. Of course, it can be prepared on the stove top also, but don’t

expect the divine outcome when you allow yourself such profanity. Anyway, here’s my (slightly
nontraditional) recipe:

Ingredients. (for 6-8 servings)

4 lb beef (marbled), lamb, deer or else, cubed in &1 in pieces (even mixed).
Make it tough, it just becomes better. (Avoid clean cuts by all means!)

4 Tsp. pork lard (or oil if you must...)
slices of bacon diced (optional)

2 medium yellow onion, finely chopped.
4-6 tsp. paprika (make sure to mix in some of the spicy kind!)

1/2 bottle red wine
2-3 Hungarian or Anaheim peppers (optional) cut in 1/2 in cicles
1-2 ripe tomato (optional) cut in wedges

chillies (red, green, or yellow, fresh or dry)
1/2 lb mushrooms, preferably wild, diced (optional)

3-4 bay leafs (laurel)
1 sprig of rosemary (optional)
1 cinnammon stick (optional)

salt to taste
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Preparation. Sauté the onions in the lard over medium-low heat (with the bacon for extra good-
ness), so that it just sizzles, until the onions start to turn golden (about 15-20 minutes). Mix in

peppers and chillies and stir in the paprika quickly (it will become bitter if you burn it—and you
better start over), and cool it (and yourself!) off with a glass of red wine. With the relief that comes
with successful completion of this step, all troubles are now behind! Add the meat, and turn the

heat to medium-high. Stir until the meat is browned on all sides (i.e., braised). Add mushrooms,
and cook until its juices are evaporated. Add salt, spices, and tomatoes. Simmer for at least 2 hours

uncovered. Whenever the liquid is about to disappear under the meat, add more wine. At some
point, the fat will come on top in a marbled layer—that is a good sign. It is finally done, when the

meat falls apart from a gentle squeeze against the cauldron side.
Serve with boiled potatoes or spätzle (for which gnocchi makes a good substitute), and pickles.
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Abstract

New 350µm data constrain accurately the thermal far-infrared spectral energy distributions (SEDs)

for 12 distant submillimeter selected galaxies (SMGs). The results confirm that the linear radio to
far-infrared correlation, established for local infrared galaxies, holds out to high redshifts (z ∼ 1–

3). The low correlation constant q ' 2.14 is more indicative of star formation than AGN-fueled
dust heating. The sample exhibits an apparent luminosity–temperature relation (LFIR ∝ T 2.89

d ),

possibly owing to selection effects. As a result, photometric redshifts in the radio or far-infrared
may not be viable, but expressions may relate the observed quantities for current flux and volume
limited SMG samples. These suggest that SED estimation may be possible, for objects similarly

selected, based on a single radio or far-infrared flux measurement.
The detection of these faint objects ('10 mJy at 350µm) from the ground is complicated by a

bright ('103 Jy) and highly variable ('10 Jy RMS in 10 minutes of integration) atmosphere with a
1/f2 noise spectrum and by instrumental 1/f noise. To reach optimum sensitivities, a careful anal-

ysis of the data is required, and well-chosen observing strategies are helpful. The principal tech-
niques that aid the extraction of weak signals from colored noise are presented. Close to optimal

analysis is implemented effectively by the CRUSH software. Both the computing and storage re-
quirement of the implementation scales linearly with the size of the data set, making this approach
superior to the computationally expensive alternatives for handling the very large data volumes

expected from future instruments.
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Chapter 1

Introduction

1.1 From Dust to Star Formation in the Distant Universe

Today’s technological capabilities allow us to study the universe via nearly the full electromagnetic
spectrum. The wavebands of astronomical interest are determined either by the physical processes

that they probe, or by their reach into the distant universe. To study large volumes of space, it is
best to look in a part of the spectrum where most energy is radiated.

Galaxies emit much or most of their light at far-infrared wavelengths (λ ' 30µm–1 mm), with

their spectral energy distributions (SEDs) typically peaking in the neighborhood of 100µm (fig. 1.1).
A mostly unresolved milieu of distant galaxies thus give rise to the Cosmic Infrared Background

(CIB, fig. 1.2). Thus, the wavebands of the submillimeter1 and far-infrared offer an optimal window
to study galaxy formation into the depths of the universe.

The shape of the CIB spectrum is consistent with cold ('10–100K) thermal of gray- or black-
body radiation. Only free charges (i.e., plasma) and solids can produce such thermal continuum,
since free neutral atoms and molecules absorb and emit light in narrow bands at specific energies

only. The ionized plasma of the interstellar or intergalactic medium is much too hot (thousands
to millions of kelvin) to explain the observed cool galactic continua. Therefore, solid objects must

be responsible for radiating this dominant thermal component. And because it is the surface area,
not the volume, of solids which gives rise to bulk the thermal radiation, the light we detect in the

submillimeter or far-infrared comes mainly from great numbers of rather small particles, instead of
large bodies (e.g., planets and asteroids). These particles, also known as the interstellar dust-grains,

have typical sizes ranging between 1 nm and 1µm. Thus, it is fair to say, that the study of thermal
far-infrared is mainly concerned with the physical properties of dust.

Stars produce dust when they shed their metal-rich outer envelopes during the final stages of

their life cycle, either as planetary nebulæ or as supernovæ. Dust also plays an important role
in the formation of new stars by efficiently radiating large amounts of energy, thus enabling the

1The submillimeter band refers to the part of far-infrared spectrum with λ ∼ 100 µm–1 mm.
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Figure 1.1 The spectral energy distribution of a dusty galaxy. Arp220 is a local universe example
of what we think distant dusty galaxies may be like. This local starburst emits most of its energy
at far-infrared wavelengths via warm dust (characteristically 37 K). This figure was obtained from
the NASA/IPAC Extragalactic Database (NED).

gravitational collapse of molecular clouds to form young stellar cores. In this way, the quantities of
dust trace both the formation and the death of stars, while dust luminosities and temperatures are

fueled by the energetics of the active stellar populations whose light dust absorbs and re-emits in
the far-infrared.

Since massive (&8M�) stars are far more energetic than their smaller-sized counterparts (e.g,

the Sun), they tend to dominate the heating of dust in their environments (cf. Salpeter 1955 IMF
and L-M relation from Kuiper 1938; Schaller et al. 1992; Baraffe et al. 1998; Henry & McCarthy 1993;

Henry et al. 1999). Massive stars are also short lived (∼107 yr), and the dust luminosities they fuel
persist only as long as new stars are forming at the same rate as old ones die. As such, far-infrared

luminosities provide an indirect measure of the present rate of high-mass star formation. Therefore,
far-infrared astronomy is also the study of star formation, and its history, by reaching into the depth
of a younger universe.

Chapter 2 presents a star-formation study for the most distant population of submillimeter-
selected galaxies (SMGs). New data, acquired at 350µm wavelengths from the SHARC-2 bolome-

ter array (Dowell et al. 2003) at the Caltech Submillimeter Observatory (CSO), were critical in con-
straining accurately the thermal SEDs of these far-away galaxies. The derived dust properties pro-

vide valuable insight into the star-formation characteristics of these elusive objects, which often
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Figure 1.2 The cosmic energy density spectrum. The dominant Cosmic Microwave Background
(CMB), with its 2.7 K Planck blackbody spectrum, carries a snapshot of the universe from the re-
combination era before galaxies were formed. In contrast, a field of distant galaxies contribute to
the Cosmic Infrared (CIB) and Cosmic Optical (COB) Backgrounds, indicating that these wave-
lengths are optimal for the study of galaxy evolution. Galaxies, like Arp220 (fig. 1.1) at redshifts
z ∼ 3, could explain the observed CIB. Figure from Hasinger (2000).
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lie hidden at optical wavelengths. Additionally, the new results help confirm an important rela-
tionship between radio and far-infrared luminosities, well studied locally, but not at the greater

distances of SMGs where its impact could be most profound. The new data could hint at the ex-
citing possibility of providing reasonable SED estimates for flux- and volume-limited radio and
far-infrared galaxy samples based on photometry at the single wavelength of detection.

1.2 New Techniques for Observing and Analysis

Detecting faint and distant objects at submillimeter wavelengths is not an easy task. This is espe-
cially true, when attempted from ground-based telescope facilities (e.g., the CSO), because our own

atmosphere is many orders of magnitude brighter than the signals sought from the galaxies of great
distance. The variability of the atmospheric flux alone, over the time scales of a few hours integra-

tion, is typically thousands of times greater than the feeble '20 mJy fluxes of the typical SMG at
350µm wavelength. That these detections are, nevertheless, possible, owes to creative techniques
for the collection and analysis of submillimeter data.

The traditional time-tested approach has been to switch (chop) rapidly between a “source” and
a nearby patch of “blank” sky. With the same detectors observing both source and sky, the differ-

ence of the two signals provide viable source fluxes (Emerson 1988, 1995). When done sufficiently
fast, such that the changing of the atmospheric flux can be neglected (at 350µm this typically re-

quires switching back-and-forth several times a second), sensitive photometry becomes possible.
However, the signal differencing involved comes at a price of losing sensitivity to many types of

source structures, and that image reconstructions require a fair amount of guessing (via maximum-
entropy deconvolution, see Emerson 1995; Jenness et al. 2000a,b). Nonetheless, for instruments
with but a single, or a just few, detectors chopping can mean the only viable way of collecting data.

Recent progress in detector technology heralded the arrival of new larger format, 2-dimensional,
bolometer arrays with significantly increased detectors counts, and longer time-scale stabilities.

The SHARC-2 instrument with its 384 detectors, arranged in a 32× 12 format, replaced a 24 pixel
predecessor in January 2003, and is currently the largest submillimeter array in operation. Even

bigger arrays are already in production and expected in the near future (e.g., SCUBA-2 with ca.
2 × 5000 pixels, see Audley et al. 2004). These large arrays can measure the sky (and sources) si-

multaneously at many different positions, at all times. As such, it is reasonable to ask whether the
old favorite technique of chopping and differencing could now yield to new, and superior, models
of observing and data analysis.

With the SHARC-2 array we have pursued a novel approach of measuring total-power detector
signals, while the array is scanned across the targeted area of sky with recurring, cross-linked, 2-

dimensional patterns. Data is then analyzed with the CRUSH software package, developed by the
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Figure 1.3 The SHARC-2 detector array.

author as a novel approach to data reduction. The faint submillimeter galaxies of Chapter 2 provide
ample testimony to the success of this approach, as do a number of other papers2 whose scientific

results benefited from the new techniques.
Chapters 3 and 4 introduce both the observing and data reduction techniques, which go hand

in hand for a successdul experiment. They are discussed in general terms, such that the techniques
and their conclusions can be adapted to a wide variety of weak-signal experiments with adverse

noise conditions.
The first of the two chapters focuses on the general principles of analyzing weak signals in

the presence of non-Gaussian noise. It also introduces the concepts and challenges that specific

implementations face and must meet. The discussion covers many of the often overlooked details.
which prove critical in low signal-to-noise experiments, such as appropriate weighting and filtering

of the data, and the necessity of accurately characterizing signal gains. This chapter also offers a
quantitative treatment on how data can be observed and analyzed optimally with the least loss of

information possible.
Chapter 4 introduces a particular implementation, that of CRUSH for the analysis of SHARC-

2 data. The method analyzes data in the time domain through an iterated sequence of statistical
estimators. A great advantage of the approach is that its computation cost grows linearly with
the size of the data, in sharp contrast with other established methods based on the inversion of

large matrices or Fourier transforms. The method approaches maximally optimal analysis in the
presence of 1/f type noise (and especially 1/f 2 Brownian noise), the greatest malady affecting

typical ground-based submillimeter data and CMB experiments. It may even be better than its
2e.g., Houde et al. (2004); Marsh et al. (2005); Khan et al. (2005,a); Andrews & Williams (2005); Chen et al. (2005);

Borys et al. (2006); Beelen et al. (2006); Laurent et al. (2006) and Greve et al. (2006, in preparation).
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expensive alternatives, whose actual effects on weak signals can often remain mysteriously buried
under their mathematical complexities and subtleties.

Finally, the specifics relating to the astronomical application are presented in Appendix B, while
further information is available on the SHARC-2 web-page.3
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Chapter 2

SHARC-2 350 µm Observations of
Distant Submillimeter-Selected
Galaxies

The text in this chapter is reproduced in part with permission from:
Kovács, A., Chapman S. C., Dowell, C. D., Blain A. W., Ivison R. J., Smail I, & Phillips, T. G. 2006,
ApJ, in press
c© 2006 American Astronomical Society

2.1 Introduction

Ever since the first submillimeter-selected galaxy (SMG) samples debuted from SCUBA 850µm
surveys (Smail et al. 1997; Barger et al. 1998; Hughes et al. 1998; Eales et al. 1999), the nature of the

SMG population has been the focus of attention for the galaxy formation community, because the
850µm selection is expected to pick similar sources almost independently of redshift (z ∼ 1–8), due

to a negative K-correction that essentially compensates for the loss of flux from increasing distance.
This allows unbiased, luminosity-selected studies of galaxy formation. The hunger for information
on these sources spurred a flurry of follow-up studies at all wavelengths, long and short. Since then

many of these sources have been identified at optical, UV (Borys et al. 2003; Chapman et al. 2003;
Webb et al. 2003) and radio wavelengths (Smail et al. 2000; Ivison et al. 2002), providing accurate

positions which allowed optical redshift measurements (Chapman et al. 2003, 2005). As a result
we now know that these massive galaxies, with redshifts distributed around a median z of 2.3,

are enshrouded with such quantities of dust that they often lie hidden at optical wavelengths, and
therefore constitute a distinct population from the galaxies selected by optical surveys.

More recently, longer wavelength submillimeter surveys, at 1100µm and at 1200µm (Laurent et al.
2005; Greve et al. 2004), added to the pool of available information. However, the close proximity
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of the SCUBA, Bolocam and MAMBO wavelengths on the Rayleigh-Jeans side of the SED does not
allow for an effective constraint on the thermal far-infrared spectral energy distributions (SEDs) at

the relevant redshifts. Nor do the latest results from the Spitzer Space Telescope provide powerful
constraints, since at the shorter mid-infrared wavelengths the emission is dominated by polyaro-
matic hydrocarbons (PAHs) and a minority population of hot dust. For these reasons, the best

estimates of the characteristic temperatures and the integrated luminosities, to date, have relied
on the assumption that the local radio to far-infrared correlation (Helou et al. 1985; Condon 1992;

Yun et al. 2001) can be extended into the distant universe. There are hints that this may be appro-
priate (Garrett 2002; Appleton et al. 2004), but the assumption has remained largely unchecked.

Shorter wavelength submillimeter measurements, sampling near the rest frame peak of the
emission, are thus essential to provide firm constraints to the far-infrared SED. Here, we present
results at 350µm, using the second generation Submillimeter High Angular Resolution Camera

(SHARC-2; Dowell et al. 2003) at the Caltech Submillimeter Observatory (CSO). From these we
derive the first direct measures of dust temperatures and far-infrared luminosities for a sample

of SMGs, testing the radio to far-infared correlation. We also attempt to constrain dust emission
properties, and investigate the implications of our findings for the viability of photometric red-

shifts based on far-infrared and radio measurements. Finally, we present a range of useful scaling
relations that may apply to the SMG population.

2.2 SHARC-2 350 µm Observations

We conducted follow-up observations of SCUBA 850µm detected sources with radio identifications
and optical redshifts (Chapman et al. 2003, 2005). Seven of the of 15 targets were hand picked based
on their predicted bright 350µm fluxes (S350 µm > 45 mJy from Chapman et al. 2005), while the

remaining were selected at random to partially compensate for any selection bias.
The observations were carried out during 8 separate observing runs between November 2002

and April 2005, in excellent weather (τ225GHz < 0.06), reaching 1σ depths of 5–9 mJy in 2–4 hours
of integration in 14 small fields (' 2.5 × 1 arcmin2) around the targeted sources. Our scanning

strategy was to modulate the telescope pointing with a small amplitude (15–20 arcsec) nonconnect-
ing Lissajous pattern within the limits of reasonable telescope acceleration (with typical periods of

10–20 seconds). This pattern was chosen to provide fast, 2-dimensional, recurring but nonclosed,
patterns with crossing paths—all of which are essential to allow the separation of the superposed
source, atmospheric and instrumental signals. For the observations since February 2003, we have

taken advantage of the CSO’s Dish Surface Optimization System (Leong 2005) to improve beam
shapes and efficiencies, and hence sensitivities, at all elevations.

Pointing corrections were retroactively applied to the observations by a careful fit to the point-
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Figure 2.1 SHARC-2 350µm thumbnail images of the SMGs observed (sources 1−15 in Tables 2.1–
2.3) shown in reading order (left to right, top to bottom). Images are 30”×30” regions centered
on the radio positions, and displayed on the same flux scale for comparison. The 12.4′′ FWHM
effective beams of the optimally filtered (convolved) images are also indicated. Sources 3, 9 and 10
are not detected.
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ing data taken during each run. Additionally, our preliminary source identifications revealed a
small, albeit significant ('3 arcsec) systematic pointing shift in the negative RA direction. All maps

were re-aligned accordingly. The reconstructed pointing is accurate to 3.5” rms, in good agreement
with CSO specifications.

The data were processed using the CRUSH1 software package, developed at Caltech (see Chap-

ter 4), which models total power detector signals using an iterated sequence of maximum likeli-
hood estimators. The FWHM point-spread function of the final maps (fig. 2.1) are approximately

12” after optimal filtering to search for beam-sized ('9”) features in order to yield maximal signal-
to-noise ratios on point sources. This degradation of the image resolution by around

√
2, from the

nominal instrumental beam width of 8.5”, is because the fitting for beam sized features is equiva-
lent to convolving the image with the slightly wider effective beam of around 9”, which accounts
for the smearing of the nominal beam by pointing and focus variations on the long integrations.

Calibration was performed primarily against planets and asteroids, when available, or using
stable galactic continuum sources and Arp220.2 Trends in aperture efficiency, especially with ele-

vation, were estimated and were taken into account when calibrating our science targets. The sys-
tematic flux filtering effect of the aggressive reduction parameters used in CRUSH to subtract noise

signals and reach maximal image depths, was carefully estimated for the case of point sources, and
the appropriate corrections were applied to the images. The final calibration is expected with high

confidence to be more accurate than 15%, with systematic effects anticipated to be less.
The maps produced by CRUSH reveal Gaussian noise profiles with an anticipated tail at posi-

tive fluxes. Hence, in searching for 350µm counterparts around the published radio positions, we

calculate detection thresholds based on the effective number of beams Nbeam ≈ 1 + A/Abeam (see
Appendix A) inside a detection area A in the smoothed image. A detection confidence C ≈ 1 is

reached at the significance level SNR at which,

1− C ≈ Nbeam√
2π

∫ ∞

SNR

e−
1

2
x2

dx. (2.1)

As for the appropriate search radius, the probability that the peak of the smoothed image falls
at some radius away from the true position is essentially the likelihood that the smoothed noise

level at that radius is sufficient to make up for the deficit in the underlying signal. Therefore, for
the case of Gaussian noise profiles, we expect the detection to lie inside of a 2σ noise peak, and
therefore within a maximal radius given by the condition SNR = 2/[1− exp(−r2max/2σ

2
beam)] for a

Gaussian beam profile with σbeam spread at an underlying signal-to-noise ratio of SNR. To this we
must add the appropriate pointing tolerance (at 2σ level) in quadrature, arriving at an expression

1http://www.submm.caltech.edu/∼sharc/crush.
2http://www.submm.caltech.edu/∼sharc/analysis/calibration.htm.

http://www.submm.caltech.edu/~sharc/crush
http://www.submm.caltech.edu/~sharc/analysis/calibration.htm
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for the detection radius around the actual position as a function of detection significance, that is,

r2max = 4σ2
pointing − 2σ2

beam ln

(
1− 2

SNR

)
. (2.2)

Note, that this expression simplifies to rmax → 2σbeam/
√
SNR for the case of SNR � 1 and negli-

gible σpointing.
The combination of SNR = 2.30 and rmax = 10.4′′ simultaneously satisfy both constraints

(eqs. [2.1] and [2.2]) at C = 95% confidence level for a 9”FWHM effective beam and σpointing =

3.5′′ pointing rms. Potential candidates thus identified are subsequently verified to lie within the
expected distance from their respective radio positions. The resulting identifications are summa-

rized in Table 2.1. When counterparts were not found, the peak measurement values inside the
search area are reported.

The sources, collectively, are much smaller than the SHARC-2 beam (i.e., d � 9′′), as neither (i)
fitting larger (12′′) beams or (ii) the filtering of extended structures produce systematically different

fluxes for the sample as a whole. Source extents typically .30 kpc are therefore implied. While
the partial resolution of a few objects cannot be excluded, the peak fluxes of the optimally filtered

images are expected to be generally accurate measures of the total integrated flux for the objects
concerned.

2.3 Spectral Energy Distributions of SMGs

We fitted the SHARC-2 350µm and SCUBA 850µm fluxes, combined with Bolocam 1100µm (Laurent et al.

2005) and MAMBO 1200µm (Greve et al. 2004) data when available, with single temperature, op-
tically thin grey-body models of the form S(ν, T ) ∝ κ(ν)B(ν, T ), where κ(ν) ∝ νβ is an approx-

imation for the full emissivity term (1 − exp[(ν/ν0)
β ]) for νobs � ν0. Alternative SED models in-

corporating the full optical depth, or a distribution of temperatures and power-law Wien tails did

not provide better description the data. Specifically, the flattening of the Rayleigh-Jeans slope due
to optical depths approaching unity is not detectable with the '10% uncertain relative calibration
of the bands, while the Wien side of the spectra is not sampled by the observations. More complex

SED models, e.g., the two temperature model used by Dunne & Eales (2001), were not considered,
since these require greater number of parameters than can be determined from the few, often just

two, photometric data points available for the typical SMG.
SED models, whether incorporating an emissivity slope, full optical depth or multiple temper-

ature components, are simple parametrizations of complex underlying spectral distributions, pro-
duced by a range of dust properties inside the targeted galaxies. Therefore, T and β of the model

describe not the physical temperature and emissivity of every single dust grain, but provide an
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Table 2.1. Summary of Observations

Offset J2000a S(350 µm) S(850 µm) S(1100 µm) S(1200 µm) S(1.4 GHz)
ID Name (arcsec) z (mJy) (mJy) (mJy) (mJy) (µJy)

1 SMM J030227.73+000653.5 +1.0,+0.8 1.408 42.2 ± 9.8 4.4 ± 1.3 · · · · · · 217 ± 9
2 SMM J105207.49+571904.0 -1.0,+3.7 2.689 38.0 ± 7.2 6.2 ± 1.6 · · · (0.4 ± 0.8) 277.8 ± 11.9
3 b SMM J105227.77+572218.2 · · · 1.956 (11.3 ± 6.7) 7.0 ± 2.1 5.1±1.3 b 3.1 ± 0.7 40.4 ± 9.4 f

4 b SMM J105230.73+572209.5 +3.3,-1.8 2.611 41.0 ± 6.8 11.0 ± 2.6 5.1±1.3 b 2.9 ± 0.7 86.3 ± 15.4 f

5 SMM J105238.30+572435.8 +1.4,+2.5 3.036 40.5 ± 6.5 10.9 ± 2.4 4.8 ± 1.3 4.8 ± 0.6 61.0 ± 22.0 f

6 SMM J123600.15+621047.2 -1.4,+2.0 1.994 22.3 ± 6.3 7.9 ± 2.4 · · · · · · 131 ± 10.6
7 SMM J123606.85+621021.4 +6.7,+3.5 2.509 35.1 ± 6.9 11.6 ± 3.5 · · · · · · 74.4 ± 4.1
8 SMM J131201.17+424208.1 · · · 3.405 21.1 ± 7.7 6.2 ± 1.2 · · · · · · 49.1 ± 6.0
9 SMM J131212.69+424422.5 +2.2,-4.2 2.805 (3.7 ± 4.4) 5.6 ± 1.9 · · · · · · 102.6 ± 7.4
10 SMM J131225.73+423941.4 · · · 1.554 (14.7 ± 7.4) 4.1 ± 1.3 · · · · · · 752.5 ± 4.2
11 SMM J163631.47+405546.9 -1.3,-4.0 2.283 38.3 ± 5.5 6.3 ± 1.9 · · · (1.1 ± 0.7) 99 ± 23
12 SMM J163650.43+405737.5 -1.0,-1.7 2.378 33.0 ± 5.6 8.2 ± 1.7 · · · 3.1 ± 0.7 221 ± 16
13 SMM J163658.19+410523.8 +1.1,-1.2 2.454 45.2 ± 5.3 10.7 ± 2.0 · · · 3.4 ± 1.1 92 ± 16
14 SMM J163704.34+410530.3 -1.8,-4.4 0.840 21.0 ± 4.7 11.2 ± 1.6 · · · (0.8 ± 1.1) 45 ± 16
15 SMM J163706.51+405313.8 -2.3,+2.4 2.374 36.1 ± 7.7 11.2 ± 2.9 · · · 4.2 ± 1.1 74 ± 23
(16) SMM J163639.01+405635.9 · · · 1.495 · · · 5.1 ± 1.4 · · · 3.4 ± 0.7 159 ± 27
(17)e SMM J105201.25+572445.7 · · · 2.148 24.1 ± 5.5 9.9 ± 2.2 4.4 ± 1.3 3.4 ± 0.6 72.1 ± 10.2
(18) SMM J105158.02+571800.2 · · · 2.239 · · · 7.7 ± 1.7 · · · 2.9 ± 0.7 98.1 ± 11.6
(19)d,e SMM J105200.22+572420.2 · · · 0.689 15.5 ± 5.5 5.1 ± 1.3 4.0 ± 1.3 2.4 ± 0.6 57.4 ± 13.2
(20)e SMM J105227.58+572512.4 · · · 2.142 44.0 ± 16.0 4.5 ± 1.3 4.1 ± 1.3 2.8 ± 0.5 39.2 ± 11.4 f

(21)c SMM J105155.47+572312.7 · · · 2.686 · · · 5.7 ± 1.7 · · · 3.3 ± 0.8 46.3 ± 10.2

Note. — MAMBO 1200 µm fluxes are from Greve et al. (2004), upper limits (bracketed fluxes) are from T. Greve (priv. comm.),
Bolocam 1100 µm fluxes are from Laurent et al. (2006), 850µm SCUBA and 1.4 GHz fluxes are taken from Chapman et al. (2005).
Biggs & Ivison (2006) provide alternative radio fluxes for many of the objects listed here. The bracketed IDs indicate sources that have
not been observed by the authors within the context of this paper, but archived data is used in the analysis.

aSHARC-2 detection offsets are with respect to the published radio positions.
bBoth of these sources are likely contributors to the observed 1100 µm flux. The Bolocam data are ignored in the analysis.
cChapman et al. (2005): “These SMGs have double radio identifications, both confirmed to lie at the same redshift.”
dChapman et al. (2005): “These SMGs have double radio identifications, one lying at the tabulated redshift and a second lying at z <

0.5.” The higher redshift source is assumed to be the dominant contributor.
eSHARC-2 350 µm fluxes from Laurent et al. (2006).
fThe alternative radio fluxes from Biggs & Ivison (2006) are significantly different from or more accurate than the values listed here.
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Figure 2.2 The characteristic dust temperature Td and effective emissivity index β are highly cor-
related parameters of the SED fit for the typical SMG, even when three photometric data points
allow simultaneous fitting of both Td and β (source 13 from Table 2.2, shown with solid 1,2 and
3σ contours). However, by assuming β = 1.5, we can accurately constrain luminosities (dotted
contours) and temperatures, which are listed in Tables 2.2 and 2.3. The derived properties may be
scaled to other β values of the reader’s preference using the relations of eq. (2.3) (thick solid line).
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Figure 2.3 Optically thin grey-body SED models were fitted (solid lines) to the various available
observed fluxes, and are transformed to the rest frames of the galaxies for comparison. Fits using
(Laurent et al. 2006) data also shown (dotted lines). All the spectra peak in the neighbourhood of
the redshifted 350µm point, providing testimony of the pivotal importance of the SHARC-2 data
point in constraining these models. The SEDs shown represent our best fit to the data for sources
detected by SHARC-2, use an emissivity index β = 1.5, and incorporate radio fluxes via the far-
infrared to radio correlation with qL = 2.14 with an assumed 0.12 dex dispersion.
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effective characterization of dust emission in a galaxy as a whole. In this sense, the characteristic β
values, expected in the range 1−2, reflect both the underlying grain emissivities, and a distribution

of physical temperatures within the observed objects.
Simultaneous fitting of T and β requires at least three photometric data points (while many

SMGs have only two), and even when permitted these are highly correlated parameters of the fit

for the typical SMG (fig. 2.2). Therefore, we initially assume β = 1.5 for the SED fit, as it provides
good characterization of actively star-forming environments, both in accurately modeled galactic

clouds (Dupac et al. 2003) and galaxies of the local universe (Dunne & Eales 2001), and is broadly
consistent with laboratory measurements on carbite and silicate grains (Agladze et al. 1996). The

properties, thus derived, may be scaled to the β values of the reader’s choosing, via the deduced
spectral indices ε and λ listed in the Tables 2.2 and 2.3 as,

Td ∝ β−ε, LFIR ∝ β−λ, Md ∝ βε(4+β)−λ. (2.3)

We included 15% calibration uncertainty in addition to the published statistical uncertainties
for all submillimeter data. Nevertheless the luminosities are constrained accurately because the

SHARC-2 350µm measurement falls near the emission peak for all of these sources (fig. 2.3).
Flux boosting or Eddington bias (Coppin et al. 2005), in the case of less significant detections,

where the selection is in the submillimeter, induce a small bias in the derived SEDs. As the bias will
not apply to follow-up measurements, and because the exact quantification of the Eddington bias

is nontrivial, requiring a priori knowledge of the underlying source distributions, we left fluxes
uncorrected for its effects.

For the first time we are able to use multiband photometry to determine accurately the char-
acteristic dust temperatures and far-infrared luminosities for the SMG population. Luminosities
(Tables 2.2 and 2.3) are calculated analytically from the fitted grey body model S(ν, T ), following

(De Breuck et al. 2003),

LFIR = 4πD2
L Γ(4 + β) ζ(4 + β)

[
kT

hν

]4+β (
ehν/kT − 1

)
ν S(ν, T ), (2.4)

where luminosity distances (DL) were obtained3 for a Λ-CDM cosmology withH0 = 65 km s−1 Mpc−1,
ΩM = 0.3 and ΩΛ = 0.7. The above expression provides the correct SED integral as long as the tran-

sition from the optically thin grey-body approximation to optically thick black body is above the
emission peak where the contribution to the total luminosity is negligible. If power law Wien tails,
with spectral slopes of −α (Blain et al. 2003), are assumed instead, the luminosities can be scaled

by a constant ηβ(α), which is around 1.5 for an Arp220 type template with α = 2. More generally,
in the range of α ∼ 1.1–4.0 and β ∼ 0–3, the values of η are well approximated (with an rms of 5%

3http://www.astro.ucla.edu/∼wright/CosmoCalc.html.

http://www.astro.ucla.edu/~wright/CosmoCalc.html
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or 0.02 dex) by the empirical formula,

ηβ(α) ≈ (1.44 + 0.07 β)(α − 1.09)−0.42.

Similar corrections may be derived for the case of increasing optical depth, with η as a function of
hν0/kT .

Illuminated dust masses (Tab. 2.3) were also estimated from the SED model S(ν, T ), using

(De Breuck et al. 2003),
Md =

S(ν, T )D2
L

(1 + z)κd(νrest)B(νrest, Td)
.

Here, the normalization for the absorption efficiency was assumed to be κ850 µm = 0.15 m2 kg−1,
representing the extrapolated average 125µm value of 2.64±0.29 m2 kg−1 (Dunne et al. 2003) from
various models by assuming β of 1.5. In comparison to the gas masses derived from CO measure-

ments (Greve et al. 2005; Tacconi et al. 2006)4, we find an average gas-to-dust ratio of 54+14
−11[κ850 µm/0.15 m2 kg−1],

resembling the ratios seen in nuclear regions of local galaxies by Seaquist et al. (2004), who assume

a κdXCO product comparable to ours. The individual measurements indicate an intrinsic spread
of '40% around the mean value. The low ratios may be interpreted as an indication for the rela-

tive prevalence of dust in SMGs over the local population which typically exhibit Milky Way like
gas-to-dust ratios around 120 (Stevens et al. 2005) or, alternatively, that absorption in SMGs is more
efficient with κ850 µm ≈ 0.33 m2 kg−1.

Our estimates of the dust temperatures, and hence luminosities, are systematically lower, than
those anticipated based on the 850µm and 1.4 GHz fluxes alone by Chapman et al. (2005), who

overestimate these quantities by 13% and a factor of '2 respectively, when assuming the local far-
infrared to radio correlation. This discrepancy can be fully reconciled if a different constant of

correlation is assumed for SMGs (see Section 2.4).
We confirm that the SMG population is dominated by extremely luminous (several times 1012 L�)

systems with '109M� of heated dust, and characteristic 35 K dust temperatures typical to actively
star forming ULIRGs. As anticipated, these objects resemble the nearby archetypal ULIRG, Arp220
(with Td ≈ 37 K, similarly obtained), except that they are about 7 times more luminous on aver-

age.

2.3.1 Cold, Quiescent SMGs?

In addition, there appear to a be several cooler (Td . 25 K), less luminous (1011–1012 L�) objects,
albeit with comparable dust masses (few times 109M�) present in the population (sources 14 and

4The CO fluxes from Tacconi et al. (2006) were converted into gas masses using the conversion factor XCO of
0.8 M� (K km s−1pc2)−1 in Solomon et al. (1997) appropriate for ULIRGs (Downes & Solomon 1998). The results are there-
fore consistent with Greve et al. (2005).
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Table 2.2. Far-Infrared Properties of SMGs from SHARC-2
Data

Td logLFIR

ID (K) (L�) qL ε λ

1 43.3± 18.7 12.83± 0.64 2.39± 0.64 1.36 2.94
2 66.8± 26.1 13.49± 0.57 2.31± 0.57 1.61 3.69
3 21.3± 3.8 11.95± 0.24 1.91± 0.26 0.50 0.21
4 40.1± 5.8 12.98± 0.19 2.33± 0.21 0.84 1.06
5 39.1± 4.2 13.03± 0.14 2.39± 0.21 0.69 0.66
6 25.7± 4.7 12.28± 0.18 1.71± 0.18 0.52 0.35
7 31.0± 5.3 12.73± 0.15 2.19± 0.15 0.54 0.39
8 40.9± 8.2 12.85± 0.25 2.20± 0.26 0.57 0.46
9 21.1± 6.3 11.95± 0.29 1.16± 0.29 0.31 0.04

10 24.3± 6.8 11.88± 0.35 0.79± 0.35 0.59 0.50
11 53.4± 16.2 13.18± 0.42 2.61± 0.43 1.38 2.88
12 34.5± 4.5 12.72± 0.17 1.75± 0.17 0.73 0.77
13 37.3± 5.0 12.93± 0.16 2.31± 0.18 0.77 0.91
14 16.8± 2.3 11.38± 0.15 2.13± 0.22 0.65 0.53
15 31.5± 4.2 12.71± 0.16 2.23± 0.21 0.65 0.57

(17) 27.4± 3.0 12.41± 0.15 2.02± 0.16 0.61 0.44
(19) 14.2± 2.2 10.97± 0.21 1.82± 0.23 0.58 0.41
(20) 40.6± 12.3 12.87± 0.48 2.76± 0.50 0.99 1.61

Note. — A summary of the derived far-infrared proper-
ties of the observed SMGs. All quantities were derived using
an optically thin approximation with β = 1.5. Temperatures
and luminosities may be scaled to other β values using the
relations of eq. (2.3), and the corresponding indeces ε and λ
listed in here. The qL values derived from the radio data of
Biggs & Ivison (2006) tend to be higher than these by 0.06 on
average.
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19, and possibly 3, 9 and 10 in Tables 2.2 and 2.3). While these resemble the Milky Way in temper-
atures, and hence probably in star formation densities, they are tens of times more luminous than

the Galaxy.
This combination of extreme dust masses yet surprisingly low relative star formation rates,

indicated by the lesser dust heating, allude to possibly incorrect low redshift identifications. Should

these galaxies lie at the higher, more typical redshifts of the SMG population, their temperatures
and luminosities would closely resemble those of the hotter population. However, while lensing of

distant SMGs by massive foreground galaxies at the measured redshifts, is conceivable (Blain et al.
1999a; Chapman et al. 2002), these should be rare, and unlikely to account for all cold SMGs.

Alternatively, these seemingly normal type galaxies could, potentially, be remnants to the more
remote, hotter population of SMGs, once the short lived starbursting activity subsides. Dust could
persist and remain detectable in the more proximate universe, provided that radiation from the

rapidly growing black holes (Borys et al. 2005; Alexander et al. 2005a) does not disperse dust en-
tirely, e.g., dusty QSOs of Benford et al. (1999) and Beelen et al. (2006), or if the dust can later re-

assemble to form large disk galaxies, like source 14 which is consistent with the large spiral disk
galaxy seen in HST images (Almaini et al. 2006; Borys et al. 2006), or the cold dust mergers sug-

gested by the chain of 16 µm emission seen for source 19. This connection between the hot and
cold SMGs is further hinted at by the apparent trend of dust temperatures increasing with redshift

(fig. 2.4) even without the low redshift data. We, therefore, find the existence of massive cold SMGs
plausible.

2.4 The Far-IR/Radio Correlation at High Redshifts

One of the most valuable uses of the new measurements is to test the local far-infrared to radio

correlation at the redshifts of SMGs (z ∼ 1–3). The simple extension of the correlation into the
distant universe was suggested by earlier studies based on a combination of 1.4 GHz radio with

ISO 15µm (Garrett 2002) and Spitzer 24µm and 70µm observations (Appleton et al. 2004), both of
which take advantage of SED template fitting to extrapolate fluxes into the far-infrared regime.

More recently, Beelen et al. (2006) hints at the validity of the correlation in the case of a handful of
distant (z ∼ 2− 6) quasars with SEDs well constrained directly from far-infrared measurements.

A quantitative treatment of the correlation (Helou et al. 1985), has been formulated in terms of
IRAS 60µm and 100µm fluxes, expressed in the rest frame as,

q = log

(
FIR

3.75× 1012 W m−2

)
− log

(
S1.4GHz

W m−2 Hz−1

)
, (2.5)

where the far-infrared parameter FIR = 1.26× 10−14(2.58S60µm + S100 µm) W m−2 and the fluxes
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Figure 2.4 Median dust temperatures vs. redshift. Data is binned for this paper (squares), for the
Chapman et al. (2005) sample (dots) with temperatures estimates incorporating the radio data, and
for dusty quasars (triangles). 1σ error bars were estimated from the scatter inside the bins and
the uncertainties of dust temperatures where available (thick bars). Dispersion within bins are also
shown (thin bars), while dotted error bars indicate measurement error for single datum inside a bin.
Td of 35 ± 3 K may be applicable for z ∼ 1.5–3.5 which, if true, can provide photometric redshifts
in that range. However, observing frame temperatures of around 10 K appear to fit the SMG data
somewhat better than constant Td in the rest frame. This similarity of the SEDs in the observing
frame may owe to selection effects.
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S60 µm and S100 µm are in Jy. The quantity essentially estimates the flux in a wide band centered at
80µm, and is a good tracer of the far-infrared luminosity for temperatures in the range of 20–80 K

and emissivity indices β ∼ 0–2 (Helou et al. 1988).
Perhaps, a better measure of the correlation is obtained by directly comparing luminosities.

Therefore, we propose to use,

qL = log

(
LFIR

4.52 THz · L1.4GHz

)
. (2.6)

Here the normalization frequency 4.52 THz has been derived for the adopted grey-body model5

such that qL → q for T = 40 K and β = 1.5, thus approximating the original definition of q while
extending its usefulness beyond the original restrictions in temperature and emissivity. Radio lu-

minosities, in turn, are calculated as,

L1.4GHz = 4πD2
LS1.4GHz(1 + z)α−1, (2.7)

which includes a bandwidth compression by (1 + z)−1 and a K-correction (1 + z)α to rest frame
1.4 GHz. We assume a synchrotron power law of S ∝ ν−α, with the spectral index α for which a
typical value of 0.7 (Condon 1992) of nonthermal radio sources, is assumed for the calculations.6

We confirm that the far-infrared to radio correlation appears to hold throughout the redshift
range of z ∼ 1–3 (figs. 2.5 and 2.6), with the notable exceptions of sources 9 and 10, which likely

host radio loud AGNs7. The detections reveal q ≈ 2.07± 0.09 and qL = 2.12± 0.07 with intrinsic
spreads estimated at σq ≈ 0.21 and σqL

≈ 0.12 around the respective mean values. The alternative

radio fluxes of Biggs & Ivison (2006) provide q values that are higher by 0.06 on average and scatter
slightly more with σq ≈ 0.30 and σqL

≈ 0.23. The reduced dispersion in qL vs. q and the somewhat

peculiar case of the two cold lower redshift objects (14 and 19), whose derived dust temperature of
only 16 K fall outside the range where FIR traces luminosity (eq. [2.5]), highlight the practicality
of the luminosity-based measure qL vs. the original IRAS-based one. The derived mean values

are significantly less than the locally observed median values of 2.75 ± 0.03 for local spirals and
starbusts galaxies from the IRAS Faint Catalog (Condon & Broderick 1991), 2.34 ± 0.01 for radio

identified, flux limited (S60 µm > 2 Jy) IRAS sources (Yun et al. 2001) or '2.3 for a range of normal
galaxies (Condon 1992) that include spirals and irregulars, E/S0 types, IRAS and radio selected

samples. The corresponding local scatters are also larger with σq = 0.14, σq = 0.33 and σq . 0.2

respectively.
5If SEDs include power-law Wien tails instead, the normalizing frequency should be appropriately scaled by ηβ(α).

Similar adjustements to the normalization can be derived for any other SED model, hence the shape of the particular SED
model used has no effect on the correlation parameter qL otherwise.

6The assumption of the radio spectral index α is not critical. Indeces different by δα may produce a small bias in q on the
order of δq ≈ 0.5δα in the redshift range of z ∼ 1–3 of SMGs, with an undetectable the redshift dependence as δq � σq .

7Source 9 has been characterised as AGN by Chapman et al. (2005).



21

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 23  23.5  24  24.5  25  25.5  26

lo
g 

(L
FI

R 
/ L

su
n)

log (L1.4GHz / [W Hz-1])

Figure 2.5 The radio to far-infrared correlation for SMGs. Galaxies observed by the authors shown
with squares, data from Laurent et al. (2006) with dots. 2σ upper limits are indicated when ap-
propriate (arrows). Far-infrared luminosities were calculated exclusively based on the available
submillimeter measurements, with β = 1.5. The best fit model (solid line) reveals no deviation
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shown (dotted lines).
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Moreover, we find the relationship to be linear, within measurement uncertainty, over nearly
three decades of luminosities of the observed SMGs, with a best fit FIR to radio luminosity in-

dex, d logLFIR/d logL1.4GHz, of 1.02 ± 0.12. Nonetheless, small levels of nonlinearity, like those
discussed by Fitt et al. (1988); Cox et al. (1988); Devereux & Eales (1989) and Condon et al. (1991)
remain possible.

The low q values, the tightness of the correlation, the observed linearity, and the typically warm
dust temperatures, all point to dust heating that is dominated by high mass (>8M�) stars. In the

two component model of Yun et al. (2001), short lived (<107 yr) high mass stars fuel the ’hot’ ther-
mal component that is strongly coupled to the nonthermal radio via Type II supernovae, whereas

the ’cold’ component heated by a different population of lower mass stars is expected to produce
a different correlation with a weaker coupling. They estimate q1 = 2.3 and q2 > 4 respectively for
the components. As most galaxies contain both components, intermediate q values are typically

observed. The low qs that characterize SMGs are, therefore, indicative of the predominance of high
mass star formation in the dust heating. Moreover, the SMG result forces the revision of the ’hot’

component correlation to q1 . 2.1, or lower still (by about 0.16), if steeper radio spectral slopes of
α ' 1 are assumed for these very luminous objects (Yun et al. 2001).

The presence of radio-quiet AGNs would contribute to the total far-infrared emission, biasing
towards higher qs. Radio-loud AGNs, on the other hand would produce low q values, albeit to

wildly varying extent, which should manifest as an increased spread in the correlation. The tight-
ness of the observed correlation, therefore, confirms that radio loud AGNs are rare, while the low
q values, otherwise observed, indicate that the AGN contribution to the far-infared luminosity is

small when compared to heating from star formation-activity in SMGs. This is consistent with
Alexander et al. (2005a,b), who used ultradeep Chandra X-ray data to find that the AGNs, present

in at least 75% of SMGs, contribute little to the total bolometric luminosity of their hosts. Dust
heating, therefore, is assumed to be star formation dominated.

Last but not least, the low q values observed may partially arise from selection bias as our initial
sample would miss SMGs with low radio fluxes, i.e., sources with higher q values, in the secondary

selection required for redshift identification. However, faint radio sources with undetectable sub-
millimeter counterparts, representing a hypothetised hot extension to the SMG population, may
be more typical (Chapman et al. 2004; Blain et al. 2004), and thus selection bias could be reversed,

missing the low q values instead.

2.5 Dust Emissivity Index

It is possible to further constrain the dust properties, e.g., by measuring the effective emissivity

index β. In principle, this may be attempted on an individual basis, since several galaxies have



23

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

q

Redshift

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3  3.5  4
q L

Redshift
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MAMBO (Greve et al. 2004) and/or Bolocam (Laurent et al. 2005) detections at longer wavelengths,
providing justification for a 3-parameter fit. In practice, however, such an approach is unlikely to

yield robust quantities for individual galaxies (see fig. 2.2) owing to the proximity of the observed
bands and the modest significance of the detections. Therefore, we aimed to fit a single emissivity
slope β for the entire sample hoping to provide a better constrained, ensemble averaged, dust

emissivity index. Moreover, we extend our sample to Chapman et al. (2005) SMGs with multiband
submillimeter data which were not observed in this paper. MAMBO associations (Greve et al. 2004)

and the 350µm follow-up of Bolocam and candidates (Laurent et al. 2006) provide 5 extra sources.
We analyze separately the data consisting of detections only, and that including measurement

peaks inside the search area for nondetections. While the first set may appear more robust, it could
be more susceptible to selection biases due to the rigorous detection requirement. The larger set,
containing upper limits, is thus likely to be less biased of the two, and could provide a better

characterisation of the whole SMG population.
We have used a modified, nested, version of the downhill simplex method (Press et al. 1986) to

perform the fit, yielding β = 2.42 ± 0.71, a value that is too uncertain to distinguish between the
expected values in the range of 1− 2. However, the demonstrated validity of the linear far-infrared

to radio correlation for the SMG sample, allows us to incorporate the radio fluxes to constrain the
total integrated far-infrared luminosities, and improve the quality of the fit. Here we assumed

0.12 dex as the intrinsic spread in qL, producing the expected model deviation with χ̂2 → 1, and
consistent with the scatter observed for local spirals and starbursts (Condon et al. 1991).

To avoid radio loud objects biasing our analysis, we ignored sources 9 and 10 due to their a

priori low qL values. At the same time, we utilized a modified χ deviation definition to allow some
of the sources to become “radio loud” in the fit, i.e. to significantly deviate from the correlation in

the lower qL direction. Specifically, when the derived qL value for a source is more than 2σ below
the average qL of the fit, we use a relaxed deviation with σ′

qL
= 2, more characteristic of radio

loud objects, while keeping χ2 continuous over the entire parameter space. The fraction of normal
sources falsely identified as “radio loud” by this method is expected to be around 2%, and therefore

the effects of mischaracterizations are expected to remain limited.
With the local median q value of 2.34 we obtain β = 0.81 ± 0.19 for the detections and β =

1.00± 0.19 when all the available information is used in the analysis. Both these results imply an

emissivity index significantly less than the usually quoted values around 1.5. The interpretation,
however, relies entirely upon the assumption that the local radio–far-infrared correlation holds

unaltered for higher redshifts.
For a more rigorous treatment, we obtained confidence contours for the likely combinations of

both β and qL (fig. 2.7), hence avoiding a priori assumptions on both of these quantities. The smaller
set, with detection requirement imposed, favours somewhat lower β values, in combination with
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Table 2.3. Properties of SMGs Incorporating Radio Data

Td logLFIR logMd

ID (K) (L�) (M�) ε λ

1 37.2± 3.8 12.60± 0.12 8.64± 0.17 0.82 1.09
2 60.3± 6.1 13.34± 0.12 8.22± 0.16 0.86 1.15
3 23.5± 2.5 12.10± 0.15 9.24± 0.17 0.72 0.82
4 37.1± 3.4 12.86± 0.11 8.91± 0.14 0.77 0.89
5 36.8± 3.3 12.94± 0.12 9.01± 0.12 0.67 0.65
6 38.6± 7.0 12.66± 0.13 8.61± 0.33 0.94 1.29
7 30.3± 3.9 12.71± 0.09 9.24± 0.25 0.68 0.78
8 39.8± 4.5 12.81± 0.12 8.69± 0.19 0.71 0.93
9a 21.1± 6.3 11.95± 0.29 9.36± 0.48 0.31 0.04

10a 24.3± 6.8 11.88± 0.35 8.93± 0.37 0.59 0.50
11 41.5± 4.4 12.82± 0.13 8.60± 0.16 0.80 0.99
12 43.2± 4.7 13.01± 0.10 9.69± 0.17 0.96 1.40
13 34.8± 3.2 12.84± 0.10 9.04± 0.14 0.73 0.83
14 16.8± 1.9 11.38± 0.14 9.32± 0.19 0.72 0.74
15 30.7± 3.2 12.68± 0.12 9.18± 0.16 0.70 0.75

(17) 28.6± 2.3 12.47± 0.12 9.14± 0.13 0.75 0.85
(19) 16.4± 1.7 11.17± 0.13 9.17± 0.16 0.81 1.02
(20) 28.6± 3.5 12.31± 0.17 8.98± 0.15 0.76 1.02

Note. — Quantities are derived similarly to Table 2.2, ex-
cept that the radio data are also incorporated with qL =
2.14. The estimate of the dust masses additionally assumes
κd(850µm) = 0.15 m2 kg−1 for the dust absorbtion efficiency.

aThese SMGs are identified as being radio loud. Therefore,
the radio data are not used in constraining the far-infrared
SEDs.
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Figure 2.7 Likelihood contours (at 68%, 90% and 95% confidence) for the dust emissivity β and the
radio to far-infrared correlation constant qL, using only the available detections (dashed curves)
and all information, including nondetections (solid curves). The best fit locii of both fits are indi-
cated by crosses. The more inclusive set is expected to be a more reliable indicator of SMG prop-
erties, as it is less affected by the selection biases that are introduced by requiring detections in all
bands. A similar fit to Arp220 is also indicated (black dot).

’normal’ qL, with the best fit located at the respective values of 0.95 and 2.27, whereas the more
inclusive data set tends towards emissivity indices in line with expectations, but with qL decidedly

below the mean in the local universe. The best fit values of the extended set are at β = 1.63 and
qL = 2.10.

Accordingly, we assumed β = 1.5 and used the corresponding qL = 2.14 (from fig. 2.7) to

calculate most likely estimates of the far-infrared emission properties, which are listed in Table 2.3.
Systematic biases in the cross-calibration, between the SHARC-2 and the longer wavelength

data points, would introduce bias into the estimated emissivity index. Fortunately, with expected
10% relative calibration error, the resulting bias is only δβ ' 0.08, and our conclusions on the dust

emissivity are nearly unaffected.
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2.6 Photometric Redshifts

Obtaining accurate redshifts for distant SMGs has relied on optical measurements, guided by ra-
dio or optical associations (Chapman et al. 2003, 2005). This approach has been very successful,
providing accurate redshifts for nearly a hundred SMGs to date, but it is unlikely to be practical

for compiling much larger samples. Moreover, the identifications involving radio or optical coun-
terparts could introduce selection biases into the samples. For both reasons a ‘holy grail’ of large

submillimeter surveys has been to obtain redshifts directly from the radio, sub-mm and mid- to
far-infrared (e.g.,Spitzer) if possible.

The simplest types of redshift estimators, such as Carilli & Yun (1999, 2000a,b), Wiklind (2003)
and Laurent et al. (2006), assume that all SMGs have intrinsically similar rest-frame temperatures.
In essence, redshifts are calculated as (1 + z) ≈ Td/Tobs (Blain 1999) for SEDs characterized by Tobs

in the observing frame and an assumed representative dust temperature Td for all objects. The
methods only differ on how Tobs is estimated from the various available flux data. Only indepen-

dent, and accurate, measurements of actual dust temperatures for SMGs with known redshifts, can
test the validity of this approach. We offer this test for the first time.

A glance at Tables 2.2 and 2.3 reveals that dust temperatures are distributed around 35 K,
with some 80% of the data between 25 and 45 K. The same conclusion is suggested by the larger

Chapman et al. (2005) sample, with the dust temperatures estimated from the SCUBA 850µm and
radio data using the appropriate far-infrared to radio correlation as discussed above. This majority
population of SMGs is consistent, within measurement uncertainty, with a single representative

temperature of 34.6± 1.4 K in the rest frame, with an estimated 3 K intrinsic dispersion around the
mean, lending some credibility to photometric redshifts derived as,

(1 + z) ≈ 34.6± 3.0 K

Tobs

[
1.5

β

]0.71

,

in the redshift the range of z ∼ 1.5−3.5. However, the observations suggest that these photometric
redshift indicators could be wholly inappropriate for as many as 20% of all SMGs, unless some

of these outliers have incorrect redshifts. Curiously, the very low qL values measured for sources
14 and 19 hint at ’hot’-type galaxies (Yun et al. 2001), in apparent contradiction with the cool dust

temperatures that are implicated at their low redshifts. This mismatch would be reconciled if the
temperatures were typical at the photometric z values of 2.96+0.51

−0.43 and 1.95+0.33
−0.28 respectively.

While quasars (Benford et al. 1999; Beelen et al. 2006) too can be characterised by rest-frame

SED templates, with Td ≈ 48 ± 8 K8 more or less uniformly across z ∼ 2 − 7, they are typically
hotter than SMGs, perhaps due to additional dust heating by an AGN. However, quasars, selected

from larger volumes than SMGs, could provide the rare extension of the SMG population into ever
8Temperatures from Beelen et al. (2006) were adjusted for β = 1.5 for consistency.
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more extreme luminosities and hotter dust temperatures. If true, the different temperatures that
characterize quasars vs. the bulk of SMGs, invalidates the single representative temperature as-

sumption for all SMGs, already under fire from a minority population of cold SMGs, and therefore
may oppose rather than support the applicability of temperature-based photometric redshifts.

Alternatively, the entire SMGs sample, including those low redshift data points, is better fit by

temperature evolution of Td ∝ (1 + z), producing similar temperatures in the observed frame
(Tobs ' 10 K), with an average deviation of |χ̂| = 1.40 vs. |χ̂| = 2.67 produced by the representative

rest frame temperature model when assuming a 10% intrinsic scatter in Td. Hence, the temperature
range that fits most SMGs could arise from the similar fractional dispersion of the redshift distribu-

tion, i.e., objects selected near the median redshift of 2.3 tend to have temperatures of about 35 K.
As such, temperature-based photometric redshifts may not provide additional information beyond
a reflection of the median z of the sample.

A similarity of SEDs in the observed frame, yielding a nearly constant Tobs and thus Td ∼
(1+ z), could arise simply from selection effects that result from the minimum flux requirement for

detections (fig. 2.8), and the small dynamic range (of a factor' 3) of flux densities that characterize
current SMG samples. As such, selection effects alone could render far-infrared and radio based

photometric redshift indicators wholly unsuitable for unbiased flux and volume limited samples
of SMGs.

2.6.1 Luminosity-Temperature Relation

An alternative, luminosity based approach exploits the hypothetical relationship between dust tem-
peratures and the luminosities that they fuel, to derive photometric redshifts by comparing the rest

frame relationship to observed temperature indicators and fluxes. Like other scaling relations that
characterize galaxies, the L − T relationship would, presumably, be a genuine property of galax-

ies, reflecting the physics of galactic structure and dynamics. While the idea has been drafted by
Yun & Carilli (2002), Blain et al. (2003) and Aretxaga et al. (2005), the particular implementation of
such a method was left awaiting the determination of the actual form of such an L− T relation.

We find, that the far-infrared luminosity is well approximated by a power law of the form,

LFIR = L0T
γ
d × (1 + z)µ, (2.8)

for some exponents γ and µ. The expression incorporates the possibility of explicit redshift evolu-
tion, approximated by the term (1 + z)µ chosen for convenience. This independent redshift term

is expected to absorb selection effects, and allow the determination of the underlying temperature
dependence.

The possible combinations of LFIR and Td pairs are correlated (fig. 2.8), which adds difficulty
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Figure 2.8 Luminosity–temperature (L–T ) relation. 1σ likelihood contours for grey-body models fitted to submillimeter data (this paper with
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0.5,1,2,3 and 4. (a) The observed relation is evidently biased by selection. (b) A bias- and evolution-free version shows the same relation after the
observed redshift evolution (including selection bias) has been accounted for, effectively ’moving’ luminosities into the present era. The case of the
nearby Arp220 clearly supports the case of explixit redshift evolution of the L–T relationship.
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to constraining the underlying relationship. With this warning in mind, our best estimates of the
exponents are γ = 2.76 ± 0.29 and µ = 1.74 ± 0.38 for all data points and γ = 2.61 ± 0.30 with

µ = 1.25 ± 0.48 excluding the lower redshift points. The corresponding normalizations, L0, are
3.4 × 107L� (±0.33 dex) and 1.1 × 108L� (±0.45 dex) respectively. The fits were obtained via a
two variable linear regression of the logarithms with error bars (Table 2.3) on both the logL and

logT values. As most galaxies lie in a narrow temperature and luminosity range, we point out
that the derived temperature exponents are constrained by relatively few points, some or all of

which could be peculiar, and therefore the true uncertainty of γ and µ are likely underestimated.
Nonetheless, these scaling models successfully apply to the quasars of Benford et al. (1999) and

Beelen et al. (2006), and the local ULIRGs Arp220 and Mrk231. If we consolidate our estimates
with the inclusion of these onjects, we obtain γ = 2.82±0.29, µ = 1.59±0.18 and L0 = 3.6×107L�

(±0.46 dex). This relationship, derived for SMGs, quasars and ULIRGs, could hint at a possible

connection among these types of objects, however, it may not apply to the less active galaxies of
the local universe (fig. 2.8).

Assuming the exponents and scaling are properly determined, we may attempt to derive a
photometric redshift indicator by comparing the expressions for the far-infrared luminosity from

equations (2.4) and (2.8) and from the definitions (2.6) and (2.7). In order to facilitate the derivation
of analytic solutions, we approximate the luminosity distance by DL ≈ D0 (1 + z)δ, the effect of

which is to simplify all redshift dependence to powers of (1 + z). This simplification is reasonable
for the study of SMGs (leading to an rms δz/z of ' 6%) in the redshift range of 0.5 − 4 with
D0 = 1.63 Gpc and δ = 2.07± 0.03. We find that the far-infrared luminosity is then proportional to

S1.4 GHz (1 + z)2δ+1−α ∝ T γ
obs (1 + z)γ+µ ∝ SνT

4+β
obs

ehν/kT − 1
(1 + z)2δ. (2.9)

Substituting the quantities assumed or determined so far, we find that all three expressions

possess similar dependences on (1+z), with exponents of 4.44±0.12, 4.41±0.34 and 4.14±0.06 re-
spectively. As the exponents are indistinguishable within the measurement uncertainties involved,

we conclude that, in the redshift range of z ∼ 0.5–4 of the approximation, it is very unlikely that
a meaningful measure of redshift can be deduced in this way; bad news for luminosity-based

photometric-redshift estimation. While it may simply be an unfortunate coincidence, it is more
likely that the inability to determine redshifts in this manner is, once again, the product of the
sample selection yielding candidates with similar observed SEDs. With these being nearly indisti-

gushable in the observing frame, photometric redshifts of any kind remain elusive.
We can, nevertheless, derive a true luminosity based photometric redshift indicator in the low

redshift limit z � 1, where the luminosity distance takes the asymptotic form DL → cz/H0. In this
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limit,

z ≈ 1 Gpc
H0

c

( L0T
γ
d

L1Gpc

)1/2

,

where L1Gpc, the luminosity as it were if the galaxy were at a distance of 1 Gpc. While this is

irrelevant to the SMG sample, it provides a useful expression for the study of the L–T relation in
the nearby (z � 1) universe, when values of z are already known.

Comparing the L–T relationship (eq. [2.8]) with the expression for the integrated far-infrared
luminosity (eq. [2.4]) we infer that Md ∝ T

−(4+β−γ)
d (1 + z)µ, i.e., at any given redshift Td ∝

M
1/(4+β−γ)
d , that is Td ∝ M−0.38±0.04

d , which is expected to be free of selection bias. The dust

heating is predominantly fueled by the luminosity of massive (>8M�) stars, and so we find that
the number of high-mass stars NHM ∝ T γ

d , assuming that the high-mass IMF and stellar con-

tent of all SMGs is similar. We may estimate the high-mass star-formation efficiency in SMGs by
ηHM ∝ NHM/Md ∝M−γ/(4+β−γ)

d , i.e., ηHM ∝M−1.10±0.13
d .

Surprisingly, this implies that more dusty galaxies produce, and thus contain, fewer massive
stars relative to dust mass. Perhaps, this is due to more dusty environments favoring lower mass

star formation. This conclusion is consistent with the evolution of q from lower values in SMGs
to higher values in nearby dusty disk galaxies (Yun et al. 2001), and the dominance of high-mass
stars in SMGs giving way to more radio-quiet low-mass stars heating dust in the local universe

(Blain et al. 1999b; Baugh et al. 2005).

2.7 Scaling Relations

After cancelling the nearly identical redshift terms appearing in the luminosity scaling relations

(eq. [2.9]), we obtain a useful set of expressions interrelating the observed quantities, S1.4GHz, Sν

and Tobs in the far infrared. For distant SMGs, in the redshift range z ∼ 0.5–4, we find,

S1.4GHz ∝ T γ
obs,

Sν ∝ T
γ−(4+β)
obs

(
ehν/kT − 1

)
.

The appropriate constants of proportionality are easily derived from the relevant expressions (eqs.

[2.4], [2.7], [2.6] and [2.8]) applied at the median redshift of the sample. Figure 2.9 testifies to the
predictive power of these relations. Excluding the radio-loud points, which clearly lie away from

the far-infrared to radio correlation, the model is consistent with observations within the measure-
ment uncertainties. We emphasize, that these relations are not fitted to the data, but rather a direct

consequence of the radio to far-infrared correlation, and the deduced L − T relation.9 Therefore,
9A pure L–T relation without the evolution term yields a poor model of the observed relations which therefore directly

support the inclusion of the explicit redshift evolution in eq. (2.8).
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Figure 2.9 Relations between observed quantities. (a) Radio and far-infrared fluxes, (b) radio fluxes, and (c) far-infrared fluxes vs. observed
temperatures. Results from this paper are plotted as squares with upper limits indicated as appropriate (arrows), Laurent et al. (2006) data is shown
as dots. The model deriving from the radio-FIR correlation and the observed L–T relation is also shown (solid curve). The data shows excellent
agreement with predictions within the measurement uncertainties involved. A single radio or submillimeter measurement may, therefore, suffice
to predict the other quantities. As such, these relationship can offer a useful tool for all radio or submm surveys.



33

the excellent agreement with data is remarkable.

2.8 Conclusions

New 350µm data leads to the first direct measures of the characteristic dust temperatures and far-

infrared luminosities of SMGs, and the following valuable conclusions.

1. The linear radio to far-infared correlation remains valid out to the redshifts of z ∼ 1 − 3 for
SMGs, with the exception of rare radio-loud objects. The power-law index in the correlation

is 1.02± 0.12, and tighter than observed locally, with an intrinsic dispersion of only 0.12dex.

2. Either the far–infrared–radio correlation constant q is lower than locally measured (qL ≈
2.14 ± 0.07), or the effective dust emissivity index is less, with β → 1 consistent with ob-

servations. The lower q value indicates dust heating dominated by high-mass stars, and that
any AGN contribution is minor in comparison.

3. Compared with low-redshift galaxies, SMGs are characterized either by low gas-to-dust ra-
tios, around 54+14

−11 [κ850 µm/0.15 m2 kg−1], indicating dust-rich environments, or by efficient

dust absorption of κ850 µm & 0.33m2 kg−1.

4. Far-infrared and radio based photometric redshifts might be appropriate for up to 80% of
SMGs in the redshift range of of z ∼ 1.5 − 3.5, with a rest frame temperature assumption of

34.6± 3.0 K [1.5/β]0.71. However, photometric redshift indicators may not be appropriate for
an unbiased SMG sample, as existing selection effects tend to favor measuring SEDs that are
similar in the observed frame.

5. We deduce an L − T relationship which we argue to be a property of star-forming galaxies.

When recast as mass scaling, we find, that ISM heating scales inversely with the quantity
of dust in the galaxies, i.e., the galaxies with more dust are less active, possibly due to the

formation of more low-mass stars being favoured in dustier environments.

6. From the observed L− T relation, possibly biased by selection, and the radio to far-infrared

correlation, we derive scaling relations among the observed quantities S1.4GHz, Sν in the sub-
millimeter or far-infrared, and the observing frame dust temperature Tobs, applicable to the

redshift range of z ∼ 0.5 − 4. A determination of one of these quantities may sufficiently
characterise the observed far-infrared properties of SMGs.
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Chapter 3

Fundamentals of Weak-Signal
Observing and Analysis for
NonGaussian Noise

3.1 Introduction

Noise is something the experimental scientist will always have to live with, at least to a degree.
It is the understanding of how noise limits a particular measurement that is critical to producing

optimal results.
This is most important when structured (i.e., colored or nonstationary) noise dominates the ex-

periment, and signal-to-noise ratios of the individual measurements (i.e., digitized samples) are ex-
tremely low (S/N � 1). Unfortunately, many familiar techniques of data analysis (e.g., Press et al.
1986) and data collection strategies presume appreciable signal-to-noise ratios (S/N & 1) in the

measurements, and can fail spectacularly when applied to time-series signals, which are buried
deep beneath a complex structure of noise. Therefore, we aim to provide a comprehensive frame-

work for the optimal treatment of data with low (S/N < 1) and extremely low (S/N � 1) signal-
to-noise conditions. As such, the discussion is directly relevant to the subject of ground-based

submillimeter astronomy, which is often characterized by signal-to-noise ratios as low as 10−4 in
individual time samples (taken at 36 ms intervals for SHARC-2)1 due to the overwhelming nature

of a bright and highly variable atmosphere at these wavelengths. While submillimeter astronomy
provides the motivation for this discussion, the realm of possible applications goes beyond, with
implications for many weak-signal experiments. Therefore, the discussion presented henceforth

is offered in full generality (nonetheless, often using examples from submillimeter astronomy as
illustration), while the specifics of astronomical application are discussed separately (Appendix B).

When dealing with weak signals, special attention must be afforded not only to analysis tech-
1The second generation Submillimeter High Angular Resolution Camera (Dowell et al. 2003).
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niques but also to data collection strategies. These go hand-in-hand to provide the critical ob-
servational results sought under specific noise conditions. Whereas every measurement, taken

at any time, in any configuration, is equally valuable with white noise, that is no longer assured
when excess noise, such as narrow band noise, 1/fα type noise, or transient noise, is additionally
present in an experiment. Strategies that distribute repeated measurements along temporal, spatial

or other configuration coordinates (e.g., frequency), will provide improved isolation of the critical
signals from excess noise interference (c.f. Emerson 1995; Tegmark 1997; Comito & Schilke 2002;

Dupac & Tauber 2005). Thus, some of optimization of observing strategies is evidently necessary
for constructing data streams that are ideally suited for the analysis methods presented.

3.2 Signals, Measurements, and Observing Strategies

Experiments are designed to probe underlying source structures Su, which is projected into the
space spanned by the detectors. This space can be parametrized by some appropriate coordinate
vectors ~ξ (e.g., a projected flux distribution on the sky, parametrized by its right-ascension α and

declination δ). Therefore, the underlying source can be considered a function Su(~ξ), which may
also be represented, or as approximated, by a finite number of discrete model parameters Si (e.g.,

pixels in a model map of the emission).
The underlying source signal Su(~ξ) is observed through detectors which occupy a volume in

the sampled space (e.g., a detector pixel area projected to the sky, an instrument beam or the band-
width of a spectrometer channel). Thus, measurements by the detector will represent the integrated

source signals inside that detector volume. In other words, the structure Sobs(~ξ) is related to Su(~ξ)

via a convolution (eq. [3.14]) with the detector response R(~ξ) as,

Sobs(~ξ) = Su(~ξ)⊗R(~ξ). (3.1)

The underlying signal often has a naturally limiting resolution (such as a telescope beam), and
if the width of the detector response is sufficiently small in comparison (R(~ξ) → δ(~ξ)) the above

simplifies to Sobs(~ξ) → Su(~ξ), i.e., the measured source structure will closely resemble the under-
lying structure of the source. Otherwise, the underlying structures may be estimated through an

appropriate deconvolution (e.g., Clark 1980; Narayan & Nityananda 1986), although this may not
be well defined or trivial, especially in the presence of noise.

The typical experimental apparatus is equipped with a number of detectors, distributed along
physical coordinates ~x. Each detector produces a continuous signal, which is sampled and digitized
to produce the discrete time-series data. Accordingly, the data are parametrized either by a coor-

dinate variable in the configuration space of the experiment which includes the time coordinate t
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(we shall use x = {t, ~x} from here on), or by discrete indeces that identify a measurement time and
a detector channel for every sample in the time-series data (t and c, or simply a measurement serial

number k henceforth).
Dk ≡ D(xk). (3.2)

Therefore,D may be used without parametrization to refer to both the signalsD(x) and the discrete

measurements Dk.
The detector signals S, corresponding to the observed source structures Sobs(~ξ) are, unfortu-

nately, corrupted by the presence of noise N in the experiment, yielding observed signals:

D = S +N. (3.3)

In an effort to reduce measurement uncertainties, the source may be observed repeatedly, often

through altered experimental configurations (e.g., by detectors scanning across a flux distribution)
to produce a time series of source signals S(x). S(x) is generated from the source structure by the

mapping functionM, as S(x) =M(Sobs(~ξ)), or in the alternative notation

S(x) =M◦ Sobs(~ξ). (3.4)

HereM fully encapsulates the observing strategy (see Section 3.6).

3.2.1 A Data Reduction Challenge

For a noiseless signal, the observed source structure Sobs(~ξ) can be recreated from the time-series
data S(x), within boundaries of data coverage, by the an appropriate ’inversion’ of eq. (3.4). Thus
for a mathematically perfect signal without noise, one can express the source structures Sobs(~ξ)

from the time-series source signal S(x) via the reverse mapping function A (as in ’analysis’) of the
signals as Sobs(~ξ) = A(S(x)), or

Sobs(~ξ) = A ◦ S(x). (3.5)

For the reverse mapping to reproduce the same structure Sobs(~ξ) from the noiseless time-series, A
applied on top ofMmust produce the identity map 1,

A ◦M = 1. (3.6)

The trouble is thatA, is generally not determined uniquely by the above, especially when source

components (e.g., map pixel) are mapped multiple times into the time stream in the effort to inte-
grate down on noise. In other words, the dimension of the data vector is typically much larger

then the number of discrete source components sought from them (i.e., dimS � dimSobs, hence it
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is a data reduction). The inversion problem, overdetermined by the data, yields a family of reverse
mapping solutions, all of which are equally plausible for a noiseless mathematical signals. In the

presence of noise, however, some solutions are more accurate, and thus the challenge is to identify
which one this may be.

Clearly, the simple reverse mapping of the noisy signals (eq. [3.3]),

A ◦D(x) −→ Sobs(~ξ) +A ◦N(x), (3.7)

produces a model of the source that is corrupted by the noise re-mapped from the time stream as

Nobs(~ξ) = A◦N(x). There are established ways for finding suitable reverse mappingsA (especially
if theM is linear) that provide critical extrema to the inversion problem (e.g., maximum-likelihood

or maximum-entropy estimates). When these satisfy eq. (3.6) exactly, the solution is lossless, since
the source structure are recovered completely (along with the re-mapped noise, of course). How-

ever, for weak signals this may not be good enough.
When the level of the noise pollution is comparable or greater than the expected level of source

components,
〈
|Nobs(~ξi)|

〉
& E(|Sobs(~ξi)|), the observer is forced to explore ways of reducing noise

further such that the scientific objective of the experiment can be met. This may be achieved, in
part, by improving the observing patterns M to such that A ◦ N(x) is minimized. Additionally,

instead of seeking exact (i.e., lossless) solutions to the inversion problem (eq. [3.5]), one may try
find approximate answers, which recover the source structures mostly, alas not perfectly. By allow-

ing for an imperfect (i.e., lossy) source reconstructions, the noise pollution of the estimate may be
substantially reduced.

This is the essence of filtering. While the filtering may be absorbed completely into the reverse
mapping (A → A′), it generally convenient to separate it explicitly, thus leaving A in its lossless
form. Then,A then operates on a filtered time streamS ′(x) = F(S(x)) (e.g., Tegmark 1997). Further

filtering is possible on the resulting source estimate Ŝfiltered(~ξ) also i.e., Ŝ′
filtered(~ξ) = F ′(Ŝobs(~ξ)).

With filtering both prior and after inversion, the lossy estimate can be expressed most generally as,

F ′ ◦ A ◦ F ◦D(x) −→ Ŝ′
filtered(~ξ) + F ′ ◦ A ◦ F ◦N(x). (3.8)

When optimized, the noise thus remapped, i.e.,

Nfiltered(~ξ) = F ′ ◦ A ◦ F ◦N(x), (3.9)

can be substantially reduced compared to that in eq. (3.5), while the reconstituted filtered source

structures are adequately preserved at the same time, i.e., Ŝ′
filtered(~ξ) ≈ Sobs(~ξ). Alternatively, the
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lossy inversion A′ is composed of the lossless (exact) inversion A and the filters F and F ′ as,

A′ = F ′ ◦ A ◦ F . (3.10)

Therefore, the challenge of weak signal data reduction can be summarized: to recover source
structures Sobs(~ξ), or even better, the underlying structure Su(~ξ), as faithfully as possible, and with
as little noise pollution as possible, given the noisy data D(x).

3.2.2 Representations of Data

Time-series data may be transformed into other representations via invertible transformations.

Such alternative representations of the time series are often convenient and insightful and may
highlight different aspects of the data set that manifest in the time stream alone. Equivalent rep-

resentations of data must all contain an equal number of independent components, which is the
number of independent measurements in the time series.

A particularly useful set of transformations for the subject of signal processing and data analysis

is that provided by Fourier transformations (e.g., Press et al. 1986), defined for complex functions
of coordinate vectors by the transform pairs,

Ã(f) ∝
∫
e−2πif ·xA(x) dx,

A(x) ∝
∫
e+2πif ·xÃ(f) df .

(3.11)

Since the integrals are over the volume of space, dx and df here (and throughout the discussion)
denote volume elements (not line segments!). In a convenient shorthand notation we shall mark

Fourier transformed quantities with a tilde on top (e.g., Ã) and use thick arrows to indicate trans-
form pairs as,

A(x)⇐⇒ Ã(f). (3.12)

The transformations can also be expressed as summations over a discrete set of coordinates and
frequencies in an equispaced grid of samples, providing analogous Discrete Fourier Transforms

(DFTs, see Press et al. 1986) or Fast Fourier Transforms (FFTs, see Cooley & Tukey 1965; Frigo & Johnson
2005), which are better suited for digitized data. The forward and backward transforms are essen-

tially symmetric, apart from a phase inversion (i.e., complex conjugate transform) between the
directions, and therefore the direction of the transform is generally irrelevant when considering the

transformation properties.
The principal importance of Fourier transforms in the field of signal processing is because sig-

nals are often generated in dynamical systems with sinusoidal solutions. Fourier representations
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also offer a convenient way of describing most forms of stationary noise (see Section 3.3.3) that
commonly distort the physical measurement process.

There are various conventions for the normalizations of the transforms (Press et al. 1986), which
is why this was left implicit in expressing these only as proportionalities. However, for the case of
signal processing, a a noteworthy choice is when the transformed function Ã(f) is used for estimat-

ing the power spectrum density (PSD) of A as |Ã(f)|2 → P (f). In a related practical normalization
for discrete transforms, the frequency components Ãf are the effective amplitudes for the sinusoids

into which the time-series data is decomposed.
The spectral parameter f is a frequency vector whose components carry units of [fj ] = 1/[xj ].

While the above transform represents transformation along all configuration coordinates, one may
selectively transform the data for subspaces (parametrized by xT ) also while leaving the conjugate
subspace (parametrized by x⊥) in the untransformed representation. Then, transforming the time

series A(xT ,x⊥) into Ã(fT ,x⊥) is done by substituting xT and fT in eqs. [3.11] in place of x and f

respectively.

Fourier transforms are accompanied by a number of handy theorems. Of these, we will make
much use of the convolution theorem (Press et al. 1986),

A ·B ⇐⇒ Ã⊗ B̃, (3.13)

where the convolution A⊗B is defined in integral form as,

A⊗B =

∫
A(x′)B(x− x′) dx′, (3.14)

a corollary of which is that the autocorrelation of A(x) transforms into the power spectrum P (f),

i.e.,
R(x) = A(x)⊗A∗(−x) ⇐⇒ P (f) = |Ã(f)|2. (3.15)

Parseval’s theorem (Press et al. 1986) is equally pivotal, relating the integrated signal powers in

the configuration and Fourier domains as,

∫
|A(x)|2 dx ∝

∫
|A(f)|2 df (3.16)

or,
∑

k

|Ak|2 ∝
∑

f

|Af |2, (3.17)

both in terms of the integrated functions, or as sums over the discrete time-series and spectral

components. The constants of proportionality depend on the particular normalization, and on the



43

transforming subspace. Let us note, that the term ’signal power’ always denotes |A|2, independent
of what physical units the signal A might have. As such, the signal power may, or may not, be

related to the physical power carried by the signals.
Additionally, Fourier transforms of signals are characterized by an uncertainty principle i.e., an

inequality relating the localization of signals in the two domains. This may expressed in terms of

the the signal spreads (standard deviations) σx and σf calculated according to,

σ2
x =

〈
(x− 〈x〉)2

〉
, (3.18)

as if the |A(x)| were a probability density function (after the appropriate normalization) along the
chosen x direction in the configuration and spectral domains respectively. More explicitly the signal

spread can be calculated in terms of the amplitudes as,

σ2
x(A) =

∫
x2|A(x)| dx∫
|A(x)| dx −

(∫
x |A(x)| dx∫
|A(x)| dx

)2

. (3.19)

Equivalently, the same may be expressed for discrete data Ai with appropriate sums replacing the

integrals. The uncertainty principle then requires that,

σx σf ≥
1

2π
, (3.20)

with equality holding for structures with Gaussian shapes only. Alternatively, one can express the
uncertainty principle in terms of the full-width half-maxima (FWHMs) ∆x and ∆f along the chosen

direction in both domains, by observing that the FWHM ≈ 2.35σ for Gaussians and tend to be
larger for arbitrary shapes. Thus arriving at an approximate inequality between the configuration

and spectral signal full-width half-maxima as

∆x∆f & 1. (3.21)

Note, that the uncertainty principle of quantum mechanics is but a manifestation of the more
general uncertainty principle relating to Fourier transforms. The wave functions expressed in terms
of conjugate pairs of variables (such as x and px or t and E) are Fourier transform pairs in the

Schrödinger representation (e.g., ψ(x) and φ(p) are the Fourier transforms of each another).

3.2.3 Fourier Transforms of Noise

Fourier transforms provide a practical representation of noise. When one considers the Fourier
transform of an independent (i.e., uncorrelated) complex stationary random variable X(x), with a
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projection into an independent real stationary random variable Xr = Re(X),

X̃(f) ∝
∫
e−2πif ·xX(x) dx =

∫
X ′

f (x) dx, (3.22)

it becomes clear that the transform is effectively an integral over another independent complex
random variable X ′

f with identical properties to X , because the transforming exponential term is
just a phase rotation. When expressed this way, the integral in terms ofX ′

f no longer has an explicit

frequency dependence, other than each frequency corresponding to an integral of a different but
identical looking random variable. Therefore, one concludes that the transforms of independent

noise should have no direct functional dependence on f , other than random fluctuations around the
zero mean. The transforms of independent stationary noise yield a flat (invariant) power spectrum

with
〈
|X̃(f)|2

〉
= σ2

f , with independent (uncorrelated) frequency components. The simplest way to
summarize this is to state that independent white noise transforms into independent white noise.

Noise that is independent but not stationary can be composed from white noise nw via multi-
plication by a profile π(x), which according to the convolution theorem (eq. [3.13]) will transform
as,

π(x)nw(x)⇐⇒ π̃(f) ⊗ n′
w(f). (3.23)

It follows that independent noise has a flat (invariant) noise spectrum, but with correlated com-
ponents (via π̃). A corollary of this, by reversal of the configuration and spectral coordinates, is that

noise with a spectral profile but independent spectral components will result in stationary noise
with correlated samples. In summary,

invariant⇐⇒ independent.

For noise, the term ’stationary’ is used more often to describe noise that is translation invariant
(i.e. uniform) in time, and more generally along other configuration space parametrizations, while

’transient’ provides the conjugate to that to describe noise whose properties vary in configuration
space. Therefore, considering separately the forward and backward transforms and the negated

noise transform relations, we can explicitly spell out how the various noise properties in configu-
ration space transform into spectral properties, and vice versa, as,

stationary ⇐⇒ independent

transient ⇐⇒ correlated

independent ⇐⇒ uniform

correlated ⇐⇒ structured.

These pairs of (configuration and spectral) properties, which characterize the Fourier transforma-
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tions of noise, are useful connections to bear in mind.

3.3 Noise Weighting

Due to the nature of the data reduction problem, the inverse mapping A (in eqs. [3.5] and [3.8])

must combine several measurements Dk for coming up with every single source structure compo-
nent Si = Sobs(~ξi). The combining of data may be done brute force via global optimization, e.g.,
by maximizing the likelihood of the estimate provided by A. However, such maximum-likelihood

estimates are usually derived from the minimization of χ2 (eq. [3.36]) and are not applicable to
colored noise (see Section 3.3.2). Such brute force approaches also fail to highlight the more gen-

eral statistical principles which guide how repeated measurements ought to be recombined into
single estimates (e.g., Si). The linear inversion problem using the normal-equations approach (see

Press et al. 1986) does, in fact, produce weighted averages, which are approached from a more
general perspective below. Identifying proper noise weights, either explicitly, or implicitly though
global optimization, is a natural step in obtaining optimal reverse maps for source reconstructions.

Measurements can be combined to provide the statistical descriptions of data. When a quantity
A is expressed from the measurements Dk i.e., A = f(D), the effective noise level of A can be

calculated according to the rules of error propagation,

σ2
A = (∂DA)T ·CD · (∂DA), (3.24)

where ∂DA is the vector composed of the partial derivatives of ∂A/∂Dk, and C is the covariance
matrix,

[CD]k,l = E [(Dk − 〈D〉)(Dl − 〈D〉)] , (3.25)

whose entries are the expected covariance of the zero mean measurements.
Consider then, forming weighted averages from a set of multiply observations of a quantity X ,

〈X〉 =
∑

i wiXi∑
i wi

. (3.26)

Here, Xi are point estimates of X , i.e., E(Xi) = X , and may be composed of the raw data Dk

by some functions Xi = fi(D). Thus, the normalization of the weighted average by
∑

i Xi is
necessary to force the expectation value of the weighted average E(〈X〉) to be the underlying value
X . According to the rules of error propagation, the error in 〈X〉 is then calculated as,

σ2
〈X〉 =

wT ·CX ·w
(
∑

i wi)
2 =

∑
i

∑
j wiwj [CX ]i,j

(
∑

i wi)
2 . (3.27)
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With Xi deriving from Dk, the covariance matrix CX is expressed from CD by application of the
chain rule,

CX = (∂IX)T ·CD · (∂IX). (3.28)

An optimal set of weights can be derived for weighted means, by requiring that the resulting
uncertainty of 〈X〉 is minimized such that ∂σ2

〈X〉/∂wi = 0. The minimization condition yields a

matrix equation, which can be expressed in component notation as the set of equations

∑

j

wj [CX ]i,j = Λ2, (3.29)

for every value of i, with Λ = σ〈X〉

∑
i wi being a constant of choice that can be adjusted to arbitrary

positive values by the appropriate scaling of weights. Thus, optimal weights for Xi are provided
from the inverse covariance matrix C−1 as,

wi ∝
∑

j

[C−1
X ]i,j . (3.30)

A practical set of noise weights are obtained by converting this to an equality.

3.3.1 Weighted Fourier Transforms

Consider the Fourier transform pairs of eq. (3.11) as an application for noise weights. The trans-
form pairs resemble weighted means (esp. when considering discrete transforms) with exp(−2πix ·
f)A(x) taking the place of X in eq. (3.26) for a transforming quantity A(x). Therefore, the spectral
density estimates, which are normally provided by the direct Fourier transforms under uniform
noise, ought to be replaced by the weighted transform of the form,

Ãw(f) ∝
∫
wA(x)e−2πif ·xA(x) dx, (3.31)

for providing the most accurate (also most likely when noise is independent, see Section 3.3.2) PSD

estimate under nonuniform noise conditions (e.g., when detectors have different noise levels or if
noise is transient).

Recalling the convolution theorem, one can also express the weighted transform in terms of the
unweighted transform Ã(f) (eq. [3.13]), and a convolving window function W (f), itself the Fourier

transform of the weights w(x) as,

Ãw(f) = W (f)⊗ Ã(f). (3.32)

The weighted transforms is simply the convolved version of the unweighted transform. As Ãw
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is the estimate of the underlying spectrum with the least error possible, in practice this translates
to variable noise conditions effectively limiting the resolution at which one is able to recover the

underlying signal spectrum.
With localized in the spectral domains, weighted transforms should be used in producing spec-

tral estimates that are faithful to the underlying signals. If the simpler, unweighted, transforms of

eqs. (3.11) are used instead, features will end up unnecessarily scattered or smeared, resulting in
an imperfect spectral estimate.

3.3.2 Independent (Uncorrelated) Noise

When noise is independent among samples, i.e.,Ci,j = 0 for j 6= i, the covariance matrix has entries
Ci,i = σ2

i only. The inversion for optimal weights is readily provided as,

w(Xi) =
1

σ2(Xi)
, (3.33)

and the expression for the uncertainty of the weighted mean values (derived according to eq. [3.26])

becomes simply,
σ2
〈X〉 =

1∑
k w(Xk)

. (3.34)

It ought to be emphasized that 1/σ2 noise weights are applicable if and only if samples are truly

independent (i.e., uncorrelated).

3.3.2.1 Gaussian Noise and χ2

Arguably, the most common form of independent noise encountered by experimentalists is Gaus-
sian. It is white (i.e., has a flat spectrum) and characterized by the normal probability density

distribution p(x), expressed in terms of a single complex variable x as,

p(x) =
1

σ
√

2π
exp

(
−|x|

2

2σ2

)
. (3.35)

The universal occurrence of Gaussian noise owes to the Central Limit Theorem, which observes that
the compound distributions of a large number of random variables tend to produce normal distri-
butions. Because microscopic fluctuations add up to produce macroscopic noise properties, Gaus-

sian noise is omnipresent in nature.
When noise is Gaussian, the most probable underlying value µX producing the observed set of

repeated measurements Xk is the one which minimizes the noise normalized square deviation (cf.
Section 4.3.1),

χ2 =
∑

k

∣∣∣∣
Xk − µX

σX,k

∣∣∣∣
2

. (3.36)
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While χ2 is normally expressed in terms of the noise variances in this way, it may also be written
in terms of the noise weights as,

χ2
w =

∑

k

wX,k|Xk − µX |2. (3.37)

since these two definitions are equivalent for all types of independent noise (cf.w = 1/σ2). Interest-
ingly, he weighted mean of eq. (3.26) provides the µX value that minimizes χ2, and thus yields the

maximum-likelihood estimate for the underlying value when noise is Gaussian (see Section 4.3.1).
The method of χ2 minimization is commonly used in data analysis, even outside Gaussian

noise. However, χ2 minimizing estimates are guaranteed to be most likely only when Gaussian

noise. More generally, the maximum-likelihood property may arise for independent noise also,
for a sufficiently large number (N � 1) of samples, owing to the Central Limit Theorem. When

noise is correlated among samples, the definitions of eqs. (3.36) and (3.37) are no longer equivalent.
Then, the χ2 minimization may be performed using either of these, although we suggest that the

weighted χ2
w of eq. (3.37) provides a more natural extension of the arithmetic sum-of-squares devi-

ation measure for weighted data. There is no truly compelling argument for this choice which is
a matter of personal preference. However, let us re-emphasize that χ2 minimization does not, in

general, lead to maximum-likelihood estimates for correlated noise.

3.3.3 Stationary Noise

Stationary noise is translation invariant (uniform) in the configuration space, but not necessarily
independent among samples. As a result all measurements from the same stationary noise process

must carry equal weights. The translation invariance allows the approximation of the covariance
matrixCD from the data themselves, since the entries ofC can depend only on the separation vector
∆ = |x′ − x| of measurements not explicit positions of those (c.f. circulant matrices in Tegmark

1997).

CD(∆) ≈ 〈D0(x)D0(x−∆) 〉

≈ Nk RI(∆).
(3.38)

Approximately correct weights may be estimated, when sufficient data was taken for providing an
accurate representation of the covariances. As the relevant terms are effectively expressed by the

autocorrelation R(∆) (cf. eq. [3.15]) of the zero mean signal D0 = D− 〈D〉, it can also be estimated
from the back transform of the PSD estimate, P ′

D(f) = |D̃0(f)|2 owing to the convolution theorem
(eq. [3.13]). Therefore,

Ĉ(∆)⇐⇒ |π(f)|2.
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A sufficient and complete description of stationary noise is thus provided by its spectral profile
π̃(f) alone.

Many types of noise that affect physical measurements are stationary in nature. Otherwise, they
may be slowly varying—in which case small enough subsets of the data can still be treated indi-
vidually as stationary bits. Or, the noise may affect only a fraction of the time-stream data (e.g.,

electronic glitches, chirps, cosmic rays or someone accidentally jolting the measurement appara-
tus), and the affected measurements may be discarded without jeopardizing the effectiveness of

the experiment. Therefore, even when noise is not quite stationary, often it can still be treated as
such after the necessary precautions are taken. In this way, the assumption of stationary noise, in

discussing data analysis, can be made without loss of generality.
When noise is stationary along some but not all of the coordinate directions, the above can be

extended by considering a split of the coordinates x into a the subspace with stationary noise xS

and its orthogonal counterpart x⊥ (c.f. subspace Fourier transforms of Section 3.2.2). Then,

C
(
{xS ,x⊥}, {x′

S,x
′
⊥}

)
→ C

(
∆S ,x⊥,x

′
⊥

)
, (3.39)

and the estimation involves the cross-correlation between various stationary signals located at x⊥

and x′
⊥ respectively, i.e.,

CD

(
∆S ,x⊥,x

′
⊥)}

)
≈ 〈D0(xS ,x⊥)D0(xS −∆,x⊥) 〉 , (3.40)

which can be estimated also using the product spectra from selective Fourier transforms along xS ,

of the stationary signals at x⊥ and x′
⊥,

ĈD(∆S ,x⊥,x
′
⊥) ⇐⇒ D̃∗

0(fS ,x⊥)× D̃0(fS ,x
′
⊥). (3.41)

3.3.3.1 1/f Type Noise

The PSD profile P (f) gives the name to 1/f noise, which is used more generally to describe noise

with spectral power profiles |π̃(f)|2 ∝ 1/fα for various positive values of α. The occurrence of
1/f -type noise is most typical in the time direction of data, but examples of spatial 1/f noise are

also known.
When α = 2 the noise is Brownian or red. It is produced in random walk processes (i.e., Brown-

ian motion) while the redness is in reference to the heavy distribution of power towards the lower
(redder) frequencies. The spectrum of atmospheric variations in radio or submillimeter astronomy
is an example of Brownian noise (Bester et al. 1992). The profile corresponding to α = 1 belongs to

the canonical 1/f noise. Also referred to as pink noise (because its spectral distribution is intermedi-
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ate between that of white noise and red noise) or flicker noise, it is a common property of electronic
devices (e.g., bulk resistors). Other values of α also arise in nature, and may be attributed to clus-

tering (e.g., α ' 2.9 in galactic cirrus in Gautier et al. 1992; Miville-Deschenes et al. 2002, α ' 1.6

for APM galaxies in Padilla & Baugh 2003, or α ' 0.83 for the CIB in Miville-Deschenes et al. 2002)
or may arise from a distribution of feature sizes (e.g., spatial Kolgomorov spectrum of eddies in

atmospheric turbulence with α = 5/3, see Bester et al. 1992).
The trouble with 1/f -type noise is that deviations grow in configuration space (i.e., the time

series), along the affected coordinate direction x. To find out how rapidly this happens consider N
consecutive integrated samples of data taken at intervals ∆ in the affected direction. These explore

a frequency range from the lowest nonzero frequency component 1/N∆ to the Nyquist cutoff at
1/2∆, after the constant component is used for the mean subtraction allowing for covariance matrix
estimation. By Parseval’s theorem one can then relate the expected variances of the data in both

configuration and spectral domains as (after the necessary normalization involving N ),

σ2 ∝
∫ 1/(2∆)

1/(N∆)

P (f) df. (3.42)

Deriving arithmetic averages for the samples one finds that the variances σ2 = [CI ]i,i grow for
sufficiently large number of samples N � 1 as,

σ2 ∝





N1−α for α < 1

√
ln(N) for α = 1

Nα−1 for α > 1

. (3.43)

Variances cannot grow indefinitely in the physical world. Common sense requires that 1/f -type
power spectra plateau at the very low frequencies (f < fc) causing a leveling in the variances

for data spans N > 1/fc∆. However, the underestimation of relevant covariance terms should be
expected for smaller data spans, resulting in higher than fair weights for data under 1/f conditions.

Therefore, it is better to filter (Section 3.4) 1/f noise rather than just attempt weighting it.
The variances of averages is σ2/(N − 1). Thus, 1/f noise integrates down with averaging only

for α < 2. When α is 2 (Brownian noise), the effective noise variance remains constant no mat-

ter how many samples are combined to form averages. Single measurements carry just as much
Brownian noise as the average from any number of consecutive samples.

In practice, the structure of noise tends to be complex, with various types of stationary noise
overlaid on white noise. Thus, when Brownian noise and white noise are simultaneously present,

the latter will integrate down whereas the Brownian component stays invariant as data is averaged.
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Figure 3.1 The spatial and temporal atmospheric spectrum at 350µm. The averaged spectrum from a 10 minute integration is shown for a single
SHARC-2 detector (left). The signal exhibits both 1/f 2 and 1/f behaviors as well as a narrow band pickup aliased around 13.4 Hz. After the
effective removal of the 1/f 2 common atmospheric noise component and instrumental noise terms, the spatial-temporal spectrum of the atmosphere
is estimated using the entire SHARC-2 detector array (shown to the right). The 350µm sky exhibits 1/f like behavior along both the spatial and
temporal spectral axes.
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This causes the experimentalist to reach a noise floor once the 1/f component becomes dominant.
Such noise floors are not uncommon to experiments (e.g., heterodyne spectrometers), and will

impose practical sensitivity limits unless noise weighting is accompanied by appropriate filtering
(see Section 3.4) in the analysis of data. Even when 1/f noise is less harmful, it will take a tow
on the integration times necessary to reach deeper in the data once the 1/f component becomes

dominant.

3.3.3.2 Weighting Composite Spectra of Stationary Bits

The above example of Brownian noise demonstrates that weighting alone does not always han-
dle stationary noise in a satisfactory manner. At least, not when it is applied in the configuration

(time-series) domain of the data. However, as it was already hinted earlier for the case of slowly
varying noise properties, the time series can normally be split (sometimes arbitrarily) into smaller
stationary chunks. When such a division of data can be done such that the source spectra are

stackable (e.g., via linear transformations, see Section 3.6.6.1), it becomes possible to consider an
averaged source spectrum, constructed from the stacked components much the same way as time

series averages. As each of the stacking spectra measures the same spectral components indepen-
dently, it implies that 1/σ2 noise weights can be used for combining components into statistically

meaningful, maximum-likelihood averages.
For a stacking set of spectra, indexed by m, each with frequency components indexed by f ,

i.e., for a set of measured spectral components D̃m,f = S̃f + Ñm,f , we can construct the weighted
spectral source estimate,

〈
S̃f

〉
as,

〈
S̃f

〉
=

∑
m D̃m,f σ̃

−2
m,f∑

m σ̃−2
m,f

, (3.44)

where σ̃m,f is the standard deviation of the spectral noise component Ñm,f . The resulting spectral

source estimate can be then transformed into the time-series source estimate 〈Sk〉 by the appropriate
backward Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT).

3.3.4 Flagging Data

Before concluding the discussion on weighting, one ought to discuss noise that is approximately

stationary but with the occasional transient flukes that may occur in any experiment. Often such
outlier data may be simply discarded, without a negative impact (e.g., induced bias) on the re-
maining data set. Most data analysis approaches should run consistency checks on data and flag

measurements which do not pass. The successive analysis ought to ignore the flagged measure-
ment. The method of weighting offers an obvious and practical way for discarding questionable
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data, simply by assigning zero weights (wk = 0) to the flagged measurements Ik . This way, all the
statistical estimates involving weights (e.g., summations used in averages and propagates noise

estimates) remain valid, such that no further treatment of discarded data is necessary. The use of
zero weighting can thus be extended as a generic tool for flagging.

3.4 Filtering (Noise Isolation)

Filtering provides a complement approach to weighting, by discarding noisy bits of data, when

these are not critical to the measurement, or simply deemed unreliable. Filtering is especially effec-
tive for treating excess noise which is localized in a representation of the data (i.e., affecting only

a few components therein) but, nevertheless, ’pollutes’ (cf. eq. [3.7]) much or all of the measure-
ments in the time series. By downsizing or discarding the problem components one can, at times,

dramatically reduce noise in the time series, at the minimal cost of axing the corresponding source
components along the way. Often, the loss of information from filtering is generously compensated
by reduced levels of background noise. However, it is a for the observer to decide what trade-off

between conservation of the source signals (i.e., completeness) and lower noise levels is desirable
or acceptable. Such a trade-off is unavoidable when filtering overlapping signals and noise, and

therefore one is presented with the unattractive dilemma between,

more complete but noisier more filtering−−−−−−−−→ cleaner but more incomplete

signal reconstructions (cf. eqs. [3.5] and [3.8]).
Spectral filtering presents a particularly effective way for dealing with stationary noise, such

as 1/f noise or narrow band resonance (e.g., 50 Hz or 60 Hz pickup from the electric power grid).

The following discussion primarily addresses filtering in the spectral domains provided by the
appropriate Fourier transformations. Nevertheless, one can easily generalize and apply the same

arguments (and results) to other representations of the data.
Multiplicative spectral filtering is performed via a filter pass function Φ(f) as,

D̃filtered(f) = Φ(f)D̃(f). (3.45)

Comparing the above to the convolution theorem (eq. [3.13]), the filter can also be expressed in the

configuration space, as an equivalent convolution filter φ(x), itself the backward Fourier transform
of Φ(f), i.e.,

Dfiltered(x) = φ(x) ⊗D(x). (3.46)

Whereas Φ may take all values, in principle, including complex numbers, practical noise filters are
real valued in the range of 0–1, thus preserving, reducing or discarding spectral amplitudes, but
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never altering their phase, or enhancing them beyond the measured levels. These then correspond
to configuration space convolution filters which are symmetric in the coordinates (i.e., depend only

on the separation of samples but not on their relative order).
Since the measured signal D can be decomposed explicitly as a sum of the filtered and rejected

signals, D = Dfiltered + Drejected, one can equivalently characterize a filter response by its re-

jection signal spectrum D̃rejected(f) = ρ(f)D̃(f) where ρ(f) = 1 − Φ(f), or alternatively by the
time-series rejection function ρ̃(x) = δ(x)−φ(x) calculated as the Fourier transform of ρ(f) and ap-

plied by convolution. Since the ultimate goal of filtering is the rejection of noise, the rejected signal
Drejected ≈ N should represent an approximate model of the noise signals, while the signal passed

by the filter, Dfiltered ≈ S provides a cleaner (albeit incomplete) model of the source signal. The
method of filtering, therefore provides a de facto separation of noise from the source, by assigning
signals either as source or as noise (or as some statistical combination of both).

3.4.1 Filters vs. Weights

There is something puzzling about filters at first. In the discussion above, filters were described as
operating in the spectral domains much the same way as weights were used in the configuration
space,

Φ(f)←→ w(x). (3.47)

Consider, as an example the weighted Fourier transform and the filtering in the two representa-
tions. Both of these can be be expressed in either domain with help from the convolution theorem

(eq. [3.13]), which is expressed for weighting and filtering respectively as,

w(x)A(x) ⇐⇒ W (f)⊗ Ã(f),

φ(x) ⊗A(x)⇐⇒ Φ(f)Ã(f).
(3.48)

Clearly, these are fully symmetric operations. Yet, we have previously proclaimed that weights

can be used to provide accurate and unbiased (i.e., complete) statistical estimates from the data
whereas filters are typically associated with information loss (i.e., incomplete). The different be-

haviors seem to contradict the underlying symmetry, unless the asymmetry arises from the data
(the quantity A) themselves. This is, in fact, the critical detail which decides definitively the respec-
tive domains of weighting vs. filtering.

Weights provide unbiased estimates because they are used for combining repeated measurements
of the same source structure (i.e., components) in configuration space, whereas filters operate on

components (i.e., structures) independently (cf. independent noise) by simply throwing away the less
valuable parts. It is therefore, the asymmetric nature of the data (the quantity A above), redundant

in one domain but not necessarily in the other, which is responsible for the very different effect that
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filters and weights have.
In light of the above, it makes sense to generally refer to the configuration space as the domain of

choice in which repeated measurements are (statistically) combined (e.g., averaged by a weighted
mean) into providing the critical experimental results, while the spectral domain is consequently
refers to the conjugate Fourier space. However, for simplicity we will continue to assume that

the time-series is the configuration domain (especially since we already used these interchange-
ably). This can be done without loss of generality, as the raw data may always be appropriately

transformed into the convenient configuration space representation thus providing an alternative
time-stream description.

Weights are primarily useful in the configuration space while multiplicative filters are more typ-
ical in the spectral domains. This is exactly how these were introduced in the first place. However,
when redundancies simultaneously exists in both domains (all the better!), weighting can be used

in both (cf. spectral weighting in Section 3.3.3.2). Multiplicative filters also may be used in both
domains, and the discarding of unreliable measurements (see Section 3.3.4) serves as an example

of configuration space filters.
It was argued that filtering is ideally performed on the weighted Fourier transforms of the

time-series data for providing the best estimate of the underlying signal spectrum. On the other
hand, weights ought to be derived from the filtered time streams, such that the best statistical

estimates of the source structure can be made. Thus, effective filtering requires weights while
effective weighting requires filtering first—presenting a chicken-and-egg problem if both are to be
determined in the analysis.

However, imagine starting with only a very crude set of weights (e.g., uniform weights) to
perform suboptimal filtering of the data. Even crude filtering tends to result in cleaner time streams,

which then can provide better noise weights, and in turn better filters. In a leap of faith, it is not
hard to imagine that after iterating the weighting–filtering cycle a number of times, both weights

and filters will converge close enough to a self-consistent and optimal pairing, that these may be
accepted as practically final. An iterative data reduction approach may be unavoidable when noise

weights are not determined externally (e.g., by separate noise characterization of the instrument).

3.4.2 Noise Whitening

Encouraged by the resemblance between weights and filters (eq. [3.48]), it is natural to extend

this connection, by constructing noise filters which have the look and feel of noise weights. Since
stationary noise, we argued, leads to independent (uncorrelated) spectral components, it should

not be surprising to suggests noise filters as Φ(f) ∝ 1/σ2(f). Such filters are noise-whitening filters,
since its application converts a stationary noise spectrum into a white noise spectrum. Under the

practical normalization (which leaves the white noise component unfiltered), the noise-whitening
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filter takes the form,
Φ(f) =

σ2

|Ñ(f)|2
=

σ2

σ2 + |Ñx(f)|2
, (3.49)

expressed in terms of the total noise N(f), or the excess noise Nx(f), and the RMS spectral white
noise level σ. Noise whitening is an attractive choice because it converts correlated noise into a

time series with independent samples (see Section 3.2.3). With whitened noise, simple 1/σ2 noise
weights (see Section 3.3.2) can be used for the various statistical estimates deriving from the filtered

data. This is useful, especially when repeated observations of the same source component are
distributed in the time series such that the covariance matrix may be difficult to estimate.

Another practical attribute of noise whitening, especially when compared to optimal filtering
(see below), is that the required filter function is uniquely determined by the noise profile alone
(which needs to be known, guessed or otherwise assumed by the observer), but is entirely inde-

pendent of the shapes and sizes of source signals.
Because of its independence on the source signals, and because it greatly simplifies the task of

providing reliable statistics on the data, the noise whitening filter is one of the most useful filters
for the treatment of signals under stationary noise (e.g., Tegmark 1997).

3.4.3 Optimal Filters

For a more rigorous approach, a different class of practical filters seek to optimize the filtered signal
according to chosen criteria. While the Wiener filter (below) is often referred to as the optimal filter,

it is ’optimal’ only under the particular criterion (i.e., providing least squares deviation from the
underlying signal) that is used in its derivation. If one considers different criteria different ’optimal’

filters result. Some of these may be better suited for low signal-to-noise conditions than others, from
an observer’s point of view.

3.4.3.1 The Wiener Filter

The Wiener filter (Press et al. 1986) provides the least-squares estimate to the underlying source
by minimizing the integrated squared deviation between the filtered-deconvolved data and the

underlying source signal as,

∫
[φ(x) ⊗Du(x) − Su(x)]2dx ∝

∫ |Φ(f)D̃(f) − S̃(f)|2

|R̃(f)|2
df , (3.50)

The above makes use of Parseval’s theorem (eq. [3.17]) to express the integrated (or summed) least

squares in terms of the spectral Fourier components. Using that stationary noise signals are uncor-
related among components, and also to any other signal components (e.g., source), the above can
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Figure 3.2 A weak-signal spectrum and some practical filters. The spectrum of a weak Gaussian
source signal (solid red) in the presence of noise (dashed blue) with 1/f 2, white and narrow-band
components, is shown (top left), with peak signal-to-white-noise ratio of 0.1. Various practical
spectral filter responses are plotted for this signal configuration (top right). Also shown are the
effect of these filter on the source (bottom left) and the noise (bottom right) spectra. The Wiener
filter (long dashes) is clearly not optimal in this low signal-to-noise regime. Noise whitening and
modified Wiener filtering offer more optimal alternatives for weak signals.
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be further manipulated to yield,

∫ |S̃(f)|2{1− Φ(f)}2 + Φ(f)2|Ñ(f)|2

|R̃(f)|2
df , (3.51)

for filter functions Φ(f) which are real. The minimizing condition with respect to the filter compo-
nent Φ(f) provides the Wiener filter as,

Φ(f) =
|S̃(f)|2

|S̃(f)|2 + |Ñ(f)|2
. (3.52)

Thus, Wiener filters will closely preserve source components (Φ ≈ 1) whenever |S̃(f)| � |Ñ(f)|,
while effectively discard (Φ� 1) components that are noise dominated i.e., when |S̃(f)| � |Ñ(f)|.

This exposes an important weakness of Wiener filtering, when applied to data with low signal-
to-noise ratios in the time stream as in the signal spectra. When signal-to-noise ratios are low (i.e.,

S/N � 1), Wiener filters flatten drastically the source signals in a bid to reduce noise amplitudes
to the expected source signal level.

3.4.3.2 Optimal Low Signal-to-Noise Filters

The shortcoming of Wiener filters, therefore, is the direct consequence of the least squares condition
that the filter is derived from. The changing of that condition is necessary to come up with different

and otherwise ’optimal’ filters, which are better tailored for low signal-to-noise data streams.
In the search for alternative optimal filters, let us reexamine, therefore, the objectives of optimal

filtering. The primary goal should be the more or less accurate preservation of source signals,
no matter how deeply buried under noise they may be in the time series. This is achieved by
minimizing the square deviation between the underlying and filtered-deconvolved (but noiseless!)

source signals i.e., by the minimization in the spectral domain (cf. Parseval’s theorem) of,

∫ |S̃(f)|2|1− Φ(f)|2

R̃2(f)
df . (3.53)

Secondly, filtering should also be effective at ridding the data stream of excess noise, much like

it does in the case of Wiener filters. As such we would like to minimize the integrated filtered noise
power, expressed in the spectral domain as,

∫
|Φ(f)|2|Ñ(f)|2df . (3.54)

The combined goal of filtering is to reduce noise while leaving the source signals intact, as
much as possible, in the process. As such, one ought to minimize a linear combination of the
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two expressions (in a Lagrangian construct), such that the relative weight of one condition with
respect to the other can be adjusted according to preference. To really make these two conditions

comparable, nevertheless, it is advisable to minimize the deconvolved-filtered noise, instead of
the observed-filtered noise, since the first condition has been formulated in terms of deconvolved
signals already. This modification remains faithful to the principle of noise reduction. Therefore,

we would like to find the optimal filter function Φ(f) which provides the minimum of

∫ |S̃(f)|2|1− Φ(f)|2

R̃2(f)
df + λ2

∫ |Φ(f)|2|Ñ(f)|2

R̃2(f)
df . (3.55)

Here, the positive definite λ2 parameters (which thus retains the signs of both components the same

such that they are simultaneously minimized), determines the relative importance assigned to the
two conditions. Note, that λ = 1 reproduces the least-squares condition leading to the Wiener filter

(eq. [3.51]), making the Wiener filter a welcome entry in the expanded family of optimal filters thus
derived. In general the simultaneous minimization of noise and model deviation, with respect to
the filter component Φ(f), yields optimal filters:

Φ(f) =
|S̃(f)|2

|S̃(f)|2 + λ2|Ñ(f)|2
. (3.56)

These were used by Walden (1988) without detailed justification. As λ = 1 reproduces the
Wiener filter (an optimal filter for appreciable signal-to-noise ratios |S|2/|N |2 � 1), and smaller λ

values will provide ’optimal’ filters for the low signal-to-noise (. 1) regime, typical λ values should
lie in the range 0–1. Greater λ > 1 values can be meaningful also, for these provide filters which
reject noise more aggressively than the Wiener filter would. Such heavy filtering may, at times, be

desirable even when signal-to-noise ratios are generously high. Note, that this extended family of
optimal filters will have well-behaved filter components strictly in the range of 0 ≤ Φ ≤ 1.

While the choice of a λ value is a reflection of the observer’s preference as to how much filtering
is desirable, useful values should provide filter functions near unity for most critical source compo-

nents such that the filtered source signal remains representative of the underlying source signal (c.f.
the first criterion). For noise that is mostly white, i.e., a flat spectrum characterized by the standard
deviation σ2

f , with localized spectral features in excess of the white level, λ value on the order of

λ .

〈
|S̃(f)|

〉

σf
=

〈
|S(x)|

〉

σx
, (3.57)

will be typically useful. Once again recalling Parseval’s theorem, this can also be expressed in terms

of the time-series white noise level σ2
x.

It is interesting to note, that equality in the above expression i.e., when λ = 〈|S(x)|〉 /σx, optimal
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Figure 3.3 The effect of filtering on the time-series signals. Corresponding to the spectra of fig. 3.2, here the time series is shown (left), composed
of a marginally resolved Gaussian source (solid red), and the 1/f 2 dominated noise (blue dashes). Also shown are the effects of noise whitening
(middle), and an optimal weak-signal filter with λ2 = 0.01. Clearly, multiple observing of the source is still necessary for noise to integrate down for
the signal to become detectable. Noise whitening is practical for filtering data prior to inversion, as it allows simple 1/σ2 weighting for combining
measurements. At the same time, optimal filtering is, perhaps, better suited for filtering of the source image postinversion, resulting in a clean
looking signal reconstruction.
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filtering asymptotically approaches the noise whitening filter (see Section 3.4.2) for those compo-
nent where noise greatly exceeds the white noise level i.e., |Ñ(f)|2 � σ2

f , and the source spectra

is flat (|S̃(f)| ≈ const.). This connection between optimal and noise whitening filters means, that
noise whitening provides a nearly optimal way for reducing excess noise, which is especially useful
when one does not wish to assume an underlying source spectrum (perhaps because it is not known

a-priori), necessary for optimal filter design. As such, it reaffirms the method of noise whitening as
a crude way of quasi-optimal filtering for the most generic purposes.

3.4.4 Incorporating Prior Knowledge

As long as the excess noise dominates only a fraction of the source components, filtering can be
an attractive and rewarding choice for obtaining cleaner, even if less complete, signals. The source

components sacrificed in the process, may be partially or fully reconstituted by imposing con-
straints deriving from prior assumptions on the source structure. Examples of such corrections are

offered by the CLEAN algorithm (Clark 1980) or maximum-entropy methods (Narayan & Nityananda
1986) used in radio astronomy for filling in the unsampled parts of the u–v plane in interferometric

data.
At times, less sophisticated corrections will suffice. As an example, consider the integrated

signal power
∫
|S(x)|2dx (of certain source features), often being the object of the experiment. One

needs only to recall Parseval’s theorem (eq. [3.17]), to recognize that the effect of filtering on the
integrated signal power is,

∫
|S̃filtered(x)|2 dx ∝

∫
|Φ(f)S̃(f)|2 df . (3.58)

The reduction (or change) in the integrated signal power is thus well characterized when the source

distribution S̃(f), or equivalently S(x), is priorly known, or can be reasonably guessed from the
filtered spectrum itself (e.g., the astronomer often expects sources unresolved by the telescope, all

of which therefore produce closely beam-sized images). If all components of the filtered source
model are scaled by the correction factor,

Q =

∫
|S̃exp(f)|2 df∫
|Φ(f)S̃exp(f)|2 df

=

∫
|Sexp(x)|2 dx∫

|φ(x) ⊗ Sexp(x)|2 dx , (3.59)

then the peaks of the corrected source structures Q · Sfiltered will be accurately represented as long
as these are indeed resemblant of their expected profiles Sexp.
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Figure 3.4 Source filtering and corrections. A close-up of the source signals, discussed in Fig-
ures 3.2 and 3.3. The different filters each have predictable effect on structures with known shapes.
Thus, one can simply scale the filtered image by a correction factor (eq. 3.59), calculated for the
expected source shapes, to recover peak signals strengths postfiltering.
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3.5 Gain Knowledge

Noise filtering and noise weighting provide the essential tools of a successful data reduction ap-
proach. For these to be effective, further understanding of the measurement process and the signal
pathways is required. Specifically, the typical experimental apparatus has several signal stages at

every one of which interfering noise may be superposed on top the propagated source signals,
producing the final noisy output at the readout stage.

D = gSS + g1N1 + · · ·+ gmNm. (3.60)

Here, the indeces (1–m) refer to the gain stages, while each quantity may be additionally indexed

by measurement serials or may be thought of as continuous functions in configuration space, true
to the convention of Section 3.2. Thus, g1 andN1 are shorthands that stand for the underlying noise

contributions [N1]k to the measurements Dk from the first gain stage with an effective [g1]k gain.
Alternatively, the gain function g1(x) affects the mapping of noise signal N1(x) into the output
signal D(x). The stage S, for the source signal, is one of the stages that are indexed 1–m.

3.5.1 Gain Accuracy Requirement

Suppose that the noise signals Ni, were known independently, such that these may be completely

removed from the data stream—in effect creating an ideal signal D′ with source only. However,
when the noise is subtracted with a set of gains different by δgi from the true values gi, then a noise
residual from Ni will remain in the ’cleaned’ data D′ i.e.,

D′ = gSS +

m∑

i=1

δgiNi. (3.61)

The residual noise pollution is negligible, only if the gains gi are accurate to δgi as given by
|gS | 〈|S|〉 � |δgi| 〈|Ni|〉, leading to a relative gain accuracy requirement that is expressed as,

∣∣∣∣
δgi

gS

∣∣∣∣�
〈|S|〉
〈|Ni|〉

. (3.62)

To appreciate what this pertains to in practice, let us illustrate the importance of characterizing

signal (and noise) gains. As is the case in submillimeter astronomy, atmospheric noise (sky noise)
can dominate signals from faint sources (e.g., distant galaxies) by several orders of magnitude.
At 350µm wavelength, sky variations in the few hours of observing required to detect galaxies at

the 10 mJy level are typically on the order of 100 Jy. With signal-to-noise ratios of '10−4 in the time
stream, the relevant gains to atmospheric signals need to be known a to minimum of 4–5 significant

figures, such that sky noise can be removed from the observed source effectively!
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In this breakdown of the signals (eq. [3.60]), every term is a gain-signal product. Therefore, the
terms are reproduced identically if gains are scaled by a constant factor while the corresponding

noise signals are rescaled by its inverse. As a result of this degeneracy, the absolute scaling of gains
is generally not important (unless one is interested in also learning the physical noise level), rather
it is the relative scale-free structure gains that have critical impact.

3.5.2 Gains and Filters

In the discussion of filtering, we noted that the rejected signal Irejected can be treated as an ap-

proximate model of the noise. This makes the above argument, based on the knowledge of noise
signals, directly relevant for the application of noise filters. As a result, filters require accurate gain
knowledge (in line with eq. [3.62]) to perform effectively.

Because the filtering of stationary noise sources is most easily undertaken in an appropriate
Fourier representation (see Section 3.4), it is necessary to investigate the effect of gains on the re-

quired transformations. According to the convolution theorem (eq. [3.13]), the Fourier transform
of the data stream (eq. [3.11]), can be expressed as,

D̃ = g̃S ⊗ S̃ + g̃1 ⊗ Ñ1 + · · ·+ g̃m ⊗ Ñm, (3.63)

i.e., by convolution of the underlying signal (and noise) spectra with the transformed gain func-

tions. In other words, noise signals, which may have tightly clustered spectral profiles at the signal
stage of origin, tend to get spread out in the direct spectral representation of the readout signals.
The spreading can be avoided, one noise component at a time.

Consider the gain corrected measurementsDi, which express what the signalD would look like
if it were measured at the ith gain stage i.e.,

Di =
D

gi
=
gS

gi
S +

g1
gi
N1 + · · ·+Ni + · · ·+ gm

gi
Nm. (3.64)

Accordingly, the Fourier transform of this gain corrected signalDi will decompose into components

as,
D̃i = g̃S,i ⊗ S̃ + g̃1,i ⊗ Ñ1 + · · ·+ Ñi + · · ·+ g̃m,i ⊗ Ñm, (3.65)

where gk,i = gk/gi. The noise produced at the ith stage, is left undisturbed. Thus, this representa-

tion suited ideally for effective filtering by an appropriate Φ (see Section 3.4). However, the other
noise signals, and the source signal, are left convoluted in this representation. Appropriate filtering

at one gain stage will result in imperfect filtering at the other stages.
What becomes painfully clear from this, is that every noise signals needs to be filtered in the

spectral representation, which is appropriate for the gains affecting that specific noise source. In
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practice, this means, that if Fourier transforms are used for the filtering, as many forward and
backward transformations pairs (and corresponding filters) are necessary, as many different gain

stages with excess noise are effectively present under the constraint of eq. (3.62). (Gains that are
less different than the accuracy requirement, can be treated as practically identical.)

3.5.2.1 Filtering Order

In this way, when several gain stages are present, one needs to think about a sequence of filters
(one for every relevant gain stage), instead of just a single pass of filtering. These filters must be

applied one at a time to avoid unnecessary interference. The issue then becomes, what order, if any,
among the filters is best. An answer may be provided by comparing the expression of the signals

at a particular gain stage (eq. [3.64]), with eq. (3.60), and considering the residuals of improperly
applied gains (eq. [3.61]). While filtering at one gain stage, the untreated (as yet) and overlapping
noise signals remaining at other stages can be treated as if these were source signals. Thus, the

choice for the remaining noise signals is likewise between insensitive completeness, or incomplete
sensitivity (see Section 3.4).

Therefore, if (and only if) accurate (mostly complete and sensitive) recovery of the noise signals
itself is critical to the experiment (e.g., submillimeter wavelength sky noise may be used to estimate

small variations in atmospheric extinction, see Appendix B), it is best to filter the most dominant
signals first. In this way, cross-pollution of noise signals (i.e., filter rejects) is minimized relative to

the scale of the recovered noise amplitudes (or power).

3.5.3 Gains and Noise Weights

The incorporation of gain knowledge in providing weights appropriate to each of the signal stages

is quite a bit simpler if the effective residual noise is can be treated as if white. The corresponding
1/σ2 weights of the gain transformed signals (Di ∼ R/g) relate to the weights derived for the

readout signal D as,
w(R/gi) = |gi|2w(R). (3.66)

As a result, weights from any signal stage can be easily converted into weights at any other stage,

where statistical descriptions (e.g., means or variances) may thus be derived (see Section 3.3).
Therefore, as a convention, we suggest that unqualified weights are derived at the readout i.e.,
w is synonymous to w(R), whereas weights relevant to other signal stages are accordingly labeled.
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3.6 Data Collection Strategies

Data collection (observing) strategies refer to the way the source distribution Sobs(~ξ), in the space
spanned by the detectors, is translated into the time series of source signals S(x). The observing
patterns is captured by the mappingM in eq. (3.4).

S(x) =M◦ Sobs(~ξ). (3.67)

Designing good observing strategies is often more art than science. The goal here is to turn this

around and provide prominence to a scientific approach although, in the end, some intuition may
be necessary in identifying optimal configurations. The best patterns provide data which allows

the high fidelity modeling of the source with optimal sensitivity, while at the same time are able to
withstand unforeseen adversities of the measurement process. Moreover, actual patterns must be

physically realizable to be of practical use. These criteria each impose constraints independently
and are, therefore, examined in objective detail below.

These concerns are not new in the field of ground based astronomy. Tweaks were suggested to

the simple position-switched observations used at submillimeter wavelengths early on (Emerson
1995), also in scanning modes (Emerson 1988). Chopped observations were perfected also for the

SCUBA2 instrument (Johnstone et al. 2000). More recently, Cosmic Microwave Background (CMB)
experiments, have called on new patterns to improve sensitivities (e.g., Dupac & Tauber 2005).

These are also directly relevant to present day submillimeter astronomy. A good discussion of
CMB mapping strategies is offered by Tegmark (1997), who introduced a quantitative compari-
son of various strategies based on an effective sensitivity measure (the ’figure of merit’) under 1/f

noise.

3.6.1 Fidelity

It was shown (in Section 3.4) that filtering for excess noise, used in the bid to provide optimal sensi-
tivities for weak signals, can affect the source signals adversely, leaving one with incomplete source

reconstructions. Observing strategies can help, with providing better isolation of the signal com-
ponents (in the filter domains of the data) from the regions which are affected by excess noise. In
this way, the desire for improved source completeness is analogous to arranging the source compo-

nents such that they are measured with optimum sensitivities (cf. the dilemma of filtering between
completeness and noise). This is a reflection of better strategies yielding data where both more

sensitive and more complete signal reconstructions are possible. Therefore, refer to discussion on
sensitivity (further below). Nonetheless, there is another, sampling related, aspect to consider here.

2Submillimeter Common User Bolometer Array.
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3.6.1.1 Spacing of the Samples

When the source distribution Sobs(~ξ), as measured by the detectors (eq. [3.1]), is sampled at reg-

ular intervals (spacings) of ∆s, the highest frequency component measured will be the Nyquist
frequency at fN = 1/2∆s. Signal components at frequencies higher than the Nyquist frequency, are

aliased into the sampled spectral range. To avoid aliasing signals, it is best to choose observing pat-
terns, which sample the source structures S(~ξ) at intervals that are sufficiently small, such that the

signal components above the cutoff frequency can be neglected. As a rule of thumb, the sampling
interval should be chosen such that the Nyquist frequency fN is over ∼ 2 σf (I), or equivalently,

fN & ∆I(f), leading to an approximate condition of,

∆s .
1

2
∆Sobs(~ξ), (3.68)

in terms of the typical widths (∆) of the measured source signals Sobs(~ξ) in the physical space
spanned by the detectors. Therefore, in designing observing patterns, one should sample the ob-
served space at intervals of, or finer than, half the typical size of the (Gaussian) features which are

to be accurately measured. That is the Nyquist sampling condition (Nyquist 1928; Shannon 1949;
Press et al. 1986).

3.6.2 Sensitivity

Without qualification, which (if any) of the signal components are deemed more important for the
measurement, it is desirable to maximize signal-to-noise ratios in all source components at once.

Therefore, the average signal-to-noise ratio of source components (in the convenient representa-
tion of noise) presents itself as a generalized sensitivity measure. When noise components are

independent (i.e., stationary noise) the average signal-to-noise ratio is identical to the averaged χ2

(eq. [3.36]). Therefore, one ought to maximize the average, or equivalently the total χ2, for which

the weighted definition of χ2 (eq. [3.37]) is suggested here i.e., χ2 =
∑

i wi|Si|2.
Clearly, optimal sensitivities are reached, when source signals occupy the least noisy compo-

nents, while conveniently all distributions of the signal power among components with identical
noise levels (and weights) provide equal levels of sensitivity, leaving substantial freedom for the
accommodation of other critical considerations in optimizing the signal distribution of observing

strategies.
The problem with using just χ2 is that it changes as the relative noise and signal levels are varied,

even if their structures represent equivalent configurations. If to be applied as an absolute sensitiv-
ity measure, useful for comparing different strategies under similar (but not necessarily identical)
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signal and noise conditions, and additional normalization is required. Consider, therefore,

ηS = Ni

∑
i wipi∑
i wi

= Ni 〈pi〉 , (3.69)

in terms of the number of components Ni and the realized power fraction pi,

pi =
|Si|2{∑ |S|2

}
max

, (3.70)

which expresses the measured component power in relation to the maximum potentially realizable
signal power by any strategy (or representation), thus providing a pattern independent normal-
ization. For stationary sources, this can be calculated effectively as the total observable integrated

signal power in the detector space, multiplied by the number of time samples Nt in the data and
appropriately scaled (cf. Parseval’s theorem, eq. [3.17]) to the given signal representation. Simply

stated, the utmost that can be expected from any data collection strategy is to represent in the data
all the observable signals at all times. Thus,

{∑
|S|2

}
max
∝ Nt

∫ ∣∣S(~ξ)
∣∣2d~ξ. (3.71)

Once again, d~ξ represents a volume element for the integration. Because, the normalization of pi is
such that it is ≤1, ηS is also restricted to the range of 0–1. As such, it is appropriate to think of it as

a sensitivity efficiency measure.

3.6.3 Robustness

An observing strategy (pattern) is robust if the chance of unforeseen circumstances rendering the

data unusable is kept at a minimum. Under anticipating the unexpected, any signal component is
equally likely to become fragile or incapacitated by freak of nature. Data is more robust if the results

are less dependent on each and every signal components. This suggests that entropy should serve
as a measure as to how widely signals are distributed in the domain of a representation. Arguing
that the realized fraction pi of the highest attainable aggregate source signal power (defined in

eq. 3.70), carried by a component i (in some representation of the data) is analogous to the imagined
probability that the source signal power ends up in that component, the familiar form of entropy

from statistical mechanics is directly suggested i.e., H ∝ −∑
pi ln pi.

Unfortunately, the maximum values of entropy reachable depend on the number of compo-

nents in the representation, and therefore, on the volume of the data set, making it unsuitable for
comparing collection strategies with different scopes. A normalization is required. Comparison to

the entropy Hu arising from uniform valued components (i.e., each with pu = 1/Ni), provides a
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relative, volume-independent, standard of the robustness of signal power distribution.
Because the various components Si, and hence pi, can carry uneven levels of noise a better

measure ought to be provided by converting the summations involved into noise weighted ones,
arriving at the noise weighted relative pattern entropy (or pattern entropy efficiency), expressed
as,

ηR =
H

Hu
= − 1

lnNi

∑
wipi ln pi∑

wi
. (3.72)

Here wi are noise weights calculated from the variances σ2
i for the components Si. This makes per-

fect sense, as the less noisy components, with the heavier weights, contribute more to the weighted

relative entropy than those noisier components with the same signal power. It follows, that the
highest levels of entropy efficiency are reached when signals are uniformly distributed among com-

ponents with comparable noise, alas with preference for more power in the sensitive components
than in noisier ones. As both a wider signal scope, and better noise avoidance, result in increased

levels of relative entropy, it is ideal for providing an objective evaluation of robustness under the
prerequisite of noise isolation.

Note, that the fraction on the right provides the weighted average entropy 〈H〉 (cf. eq. [3.26])
for a signal component, and thus the relative entropy is but a ’volume normalized’ average entropy
contribution per component, or

ηR =
〈H〉
lnNi

. (3.73)

When the expected noise is uniform, ηR provides a robustness measure that is restricted the
range of 0 − 1. However, when noise is uneven, the optimal weighted entropy levels will exceed

that from uniform distributions (i.e., Hu), thus values of ηR > 1 become possible.
Ideally, the source is present in the detector signals at all times because there is little point to

collecting data unless it contains the information on the source itself. If the source presence is
structured (e.g., can be described as a smooth function of the configuration coordinates x), some

form of the uncertainty principle (eqs. [3.20], [3.21]) will be applicable to it, relating the volumes it
can occupy in the spectral representation. Nonetheless, observing patterns which distribute source

signals in a randomly can span both domains uniformly (see Section 3.2.3). Therefore, the most ro-
bust observing patterns will be those that are either entirely randomized (see also Comito & Schilke
2002), or have a random appearance (i.e., quasi-random).

3.6.4 Feasibility

Strictly speaking, it is possible to identify the absolute best i.e., maximally optimal, distribution

of the source signals, for the desired combination of fidelity, sensitivity and robustness. One can
always find, in a mathematical sense, the observing pattern(s) which distribute signals in such

an ideal way among the components of a representation, by cleverly arranging the samples in
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configuration space. In theory, there is always an optimal pattern. Detectors, however, are subject
to physical constraints of movement (e.g., detectors can be shifted along smooth trajectories, in

space, or other domains, while arrays often lack the freedom if individualized detector movement
and can be translated only as a whole), imposing limits as to what patterns can be implemented.
Often, the mathematical optimum cannot be realized physically.

Instead, one is typically left with an approach based on trial and error. Useful observing pat-
terns, within the physical limits of the experiment, may be suggested from guiding principles (e.g.,

cross-linking requirement or scanning speed limits). These can be compared objectively using the
various criteria (or combination thereof) described above. In this way, a ’best’ observing strategy

can always be identified from a pool of suggested ideas. How close can such a strategy come to the
(unknown) realizable optimum is a matter limited by imagination only.

Here are some of the guiding principles that may aid finding good data collection strategies. The

more robust patterns are generally successful under most noise conditions. As a general principle,
higher pattern entropies are achieved with observing strategies that move the source signal rapidly

across a wide range of detector channels in all available directions. The faster the movement, and
the more uniformly the source is distributed across the detector channels, the better source recon-

struction is typically achieved (c.f. Weferling et al. 2002). Patterns which are less predictable (more
random) tend to yield higher entropies (c.f. Comito & Schilke 2002). It should also be plainly ob-

vious, that when noise is not uniform in the configuration space of detectors (e.g., some detectors,
or some periods of observing are noisier than others) then it is best to avoid sampling the source
signal in the noisiest configurations (e.g., by bad pixels or in bad weather).

3.6.5 Balanced Strategies

Observing patterns can be optimized for best sensitivities or the highest level of robustness (with

some built-in regard for sensitivities also). In practice, however, the observer should be able to si-
multaneously maximize both, with some adjustable level of importance assigned to each condition.
Therefore, consider a Lagrangian construct L, composed of the robustness and sensitivity measures

as,
L = ηR + ληS , (3.74)

where λ is a positive scalar expressing the relative importance of providing sensitivity vs. robust-
ness. Examining the suggested expressions in eq. (3.73) and eq. (3.69) for both components, one can
equivalently express the very same goal, in a simplified, albeit unnormalized, form as

L =
∑

i

wipi(Λ− ln pi), (3.75)
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for some positive Λ value which is related to λ appearing in the expression before. Observing
strategies which maximize L, subject to feasibility constraints, will yield the desired combination

of sensitivity and robustness.

3.6.6 Stationary and Metastationary Noise and Patterns

Because stationary noise calls for a spectral description, the above measures of observing patterns

are best evaluated in Fourier domains. Often though, noise or the observing patterns are nonsta-
tionary. Then data may be subdivided into smaller bits, each of which is approximately stationary

in nature (hence the meta-stationary terminology). The full observing patternM is then the com-
bined set of the sub-patternsMm i.e.,

M = {Mm : m = 1...Nm}. (3.76)

Accordingly, instead of a single spectrum, one has to consider a set of Nm spectra in total, together
which provide the full spectral representation of the data. Summation over all components i, there-

fore, translates to summing over all frequency channels f of all spectra m as,

∑

i

Xi −→
∑

m

∑

f

Xm
f . (3.77)

Such subdivision is often natural, as data is not always taken in a single contiguous integration,
rather it is sometimes composed from several disjoint observations that can span days, months or
years—noise conditions and instrumental configurations during which can change, not mentioning

the particulars of the observing strategies that may be used at different times. In this sense, the con-
cept of a single spectrum adequately describing an entire dataset is already unrealistic. When the

nonstationary aspects of an observation arise at time scales shorter than the typical contiguous ob-
servation block, the ’scissoring’ of the data into shorter observing bits becomes somewhat arbitrary.

Nonetheless, it should never be too strange to regard any observation as a set of shorter integra-
tions. However, if such sub-divisions are allowed, one should make certain that sub-dividing of

stationary patterns (into smaller bits) will leave the pattern characterization (e.g., the sensitivity
and robustness measures) uniquely determined. This is veryfied for the ηS and ηR sensitivity and
robustness measures derived above.

3.6.6.1 Transforming Patterns and Anisotropic Noise

A specific case of nonstationary observing patterns is a set of observing patterns M̃m whose source

spectra can be transformed into one another via invertible linear transformations, or equivalently
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into some particular pattern M̃ by the appropriate set of invertible linear transformations Tm as,

M̃m = Tm · M̃. (3.78)

Then, S̃ = T̃−1
m · S̃m, i.e. the source spectra from the various bits can be stacked once all spectral bits

are transformed with T−1
m . In this way, the spectral bits behave like repeated measurements and,

therefore, the combining of the spectral bits, using noise weights, into a statistical spectral estimate
is appropriate (see Section 3.3.3.2).

〈
S̃f

〉
=

∑
m

[
T̃−1

m ·wmS̃m

]
f∑

m

[
T̃−1

m ·wm

]
f

. (3.79)

(Here, the summation over the frequency components of T−1
m were left implicit.) Consequently, the

noise properties of the combined spectra follow from the noise structure of its components, and can
be expressed by the transformed sum of weights as,

w =
∑

m

T̃−1
m ·wm. (3.80)

I.e., when the noise of a transformed component is independent among the various spectral bits

(true for noise that is independent over the time scales between the observing bits), then the uncer-
tainty of the stacked spectrum is expressed as 1/wf i.e.,

σ2

〈eSf 〉 =
1

∑
m

[
T̃−1

m ·wm

]
f

. (3.81)

This result is particularly useful when the observing patterns, which are geometric transforms

of one another. These can be amplitude scalings, a scaling of the scanning speeds or rotation of
the pattern along the physical spatial coordinates of a multidimensional detector, many of which
are easily implemented in an experiment. The most obvious application of the above result is

when noise is anisotropic i.e., it has spatial orientation. This condition may, therefore, apply to
multi-dimensional detector arrays (e.g., SHARC-2). Then, signal-to-noise ratios can be improved

for those high noise (low weight) spectral components that can be transformed (e.g., rotated) into
low noise (high weight) components, and vice versa.

3.7 Conclusions

We showed data collection strategies may be optimized to provide better isolation of source signals
from noise. The best strategies simultaneously provide nearly optimal sensitivities and robustness
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against unforeseen disturbances in the measurement process. Since stationary noise is characteris-
tic to many experiments, strategies are compared by the spectral distributions of the source signals

that they provide. We provide normalized measures of both sensitivity (ηS in eq. [3.69]) and ro-
bustness (ηR in eq. [3.73]) which can be combined to serve as objective comparison in evaluating
the usefulness of possible strategies under the anticipated noise conditions.

When either the noise or the observing pattern is only meta-stationary i.e., can be approximated
by a set of stationary bits, one needs to consider a set of spectra instead of just a single spectrum. If

noise is anisotropic (i.e., directional), data analysis can benefit from the reconfiguration of observing
patterns, such that the directional noise affects different source components each time.

Once a successful observing strategy is identified, the data has to be carefully analyzed, using
gain knowledge, noise weighting and filtering, such that the weak signals are reconstructed from
the data to the desired combination of achievable fidelity and completeness. The critical aspects of

low signal-to-noise data analysis are:

1. Accurate knowledge of signal and noise gains is required, according to,

∣∣∣∣
δgi

gS

∣∣∣∣�
〈|S|〉
〈|Ni|〉

. (3.82)

When multiple distinct gain stages are present under the above condition, analysis must be

performed sequentially, in at least as many steps as there are distinct noise associated gain
stages, in order to provide the most effective noise isolation. If knowledge of the rejected

noise components is also critical, additional attention must be given to filtering order, with
the more dominant noise sources filtered first as a general principle.

2. Sufficient separation of noise and source signals is achieved through filtering. Low signal-
to-noise optimal filters are derived from simultaneously requiring the preservation of source

signals while effectively reducing the noise levels by application of the filter, yielding a family
of modified Wiener filters of the form,

Φ(f) =
|S̃(f)|2

|S̃(f)|2 + λ2|Ñ(f)|2
. (3.83)

In comparison, noise whitening has the advantage of rendering noise residuals independent
in the time stream, allowing simple 1/σ2 type noise weights in that domain (facilitating the

inversion step), and of not requiring prior knowledge of the source structure in its design.
Moreover, noise whitening is nearly optimal (under specific λ parameters), for the spectral

components with the highest levels of excess noise (|Nf | � σw). Thus, noise-whitening is
practical for the prefiltering step, while more optimal filters may be used postinversion (cf.

eq. 3.8).
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3. Noise weights, estimated from the time-stream covariance matrix, are useful in performing
the statistical inversion step. When noise is Gaussian, or more generally independent, the

noise-weighted averages will minimize χ2 and will provide maximum-likelihood estimates
of underlying quantities. Covariance matrices may be estimated from the data themselves in
the presence of stationary noise.

When noise properties of the experiment are not provided externally to the data (e.g., by sep-
arate noise measurements) but have to be determined from therein, some number of iterations of

the weighting–filtering cycle may be required to arrive at optimal weights and filtering.
In conclusion, in the observing, as in the analysis of data, it is the understanding of limiting

noise which provides the key to a successful experiment.
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Chapter 4

CRUSH: A Linearly Scalable
Implementation of Weak Signal
Analysis via a Sequence of Estimators

4.1 Introduction

The preceding chapter showed that weak signals can be observed optimally in the presence of
nonGaussian noise, then analyzed through a combination of noise weights, filters, and accurate

gain knowledge using both the time-series and spectral representations of data. The focus of the
discussion here is to demonstrate how a particular implementation—analysis of the signals in the

time domain alone, through a sequence of statistical estimators,—can provide quasi-optimal data
analysis in presence of 1/f noise (and possibly other colored noise sources).

This approach has been implemented in the CRUSH1 software (by the author) for reduction of

total-power data from the SHARC-22 bolometer array at the Caltech Submillimeter Observatory
(CSO), providing maps with a sensitivities, clarity and detail that has been almost unprecedented

in the field submillimeter astronomy with the simpler, more rudimentary approaches that were
used previously (e.g., the differencing of signals from position-switched observations, see Emerson

1988, 1995; Johnstone et al. 2000).
As such, this chapter is also a summary of the mathematical basis of CRUSH providing a gen-

eral understanding of the effect of various configurations from a mathematical point of view. The
discussion is offered in generality with application to other similar data analysis challenges, some
of which may be in unrelated fields. For this reason, the specifics relating to an astronomical imple-

mentations are discussed separately, in the Appendix B, while more information on the SHARC-2
specifics can be found online.3

1Comprehensive Reduction Utility for SHARC-2.
2The second generation of Submillimeter High Angular Resolution Camera (Dowell et al. 2003).
3http://www.submm.caltech.edu/∼sharc/crush.

http://www.submm.caltech.edu/~sharc/crush


76

Since the method’s computation cost and storage requirements scale linearly(!) with data size, it
is a strong candidate for providing data analysis for future large bolometer arrays (e.g., SCUBA-2;

Audley et al. 2004; Jenness et al. 2004; Gibb et al. 2005). The approach is also presents a fast and
effective alternative to existing map-making methods for Cosmic Microwave Background (CMB)
experiments (e.g., Tegmark 1997a,b; Ferreira & Jaffe 2000; Dupac & Giard 2002).

4.1.1 Time-Domain Analysis

There are several advantages to performing the analysis of data in the time domain vs. in spec-

tral representations. Unlike the integral Fourier transform for continuous signals, Discrete Fourier
Transforms (DFTs) and especially fast Fourier Transforms (FFTs), used for obtaining spectral rep-
resentations of discrete data, are restricted for particular sample arrangements. Whereas DFTs

are generally calculable for samples on a regular grid (i.e., regularly spaced detectors and time
samples), these can be extremely slow and computationally very costly (the number of necessary

operations increase as O(N 2) in terms of the number of samples N ). Fast Fourier transforms offer
computationally more feasible alternative (with operations & O(N log2N)) for large data sets, but

can be performed exactly only when data has very particular element counts in every direction of
a (rectangular) grid. Most commonly this requires powers of 2 for traditional FFTs, although other

prime factorizations can be used also. However, performance will drop as the factors involved
become larger. Techniques such as re-griding and zero-padding can be used to mold any data into
the required shapes and sizes, making the transforms more easily computed. However, such ap-

proaches represent an extrapolation from the actual measurements. Thus the resulting transforms
become estimates not exact representations of data. In case of weak signal analysis, this could mean

imperfect filtering resulting from the inexactitude of the resulting spectral estimates.
The other trouble is that even when FFTs are exact (because of a ’fortunate’ number of detectors

and their arrangement as well as the appropriate number of time samples), these can still take too
long to compute. Even with the fastest (powers of 2) FFTs, the computation time requirement grows
as O(log2N) relative to the needs of linear processing with O(N) operations. As such there will

always exist a limiting data size, no matter what amount of computer power is conjured up for the
task, where FFTs become forbidding, whereas other (linear) analysis may remain feasible.4

4.2 Compound Signals and Models

Suppose, that the observed signal D is composed of several contributing ’komponents’ Km (with
indeces m = 1...M ), which may also include excess noise, the source signals (as one among the

4Consider that observations of distant galaxies with the SHARC-2 bolometer camera with its 32×12 pixels, typically have
108 elements. Similar data from SCUBA-2 would be a thousand times larger with up to 1011 elements due it is larger pixel
count and the anticipated higher sampling rate (Audley et al. 2004).
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Kms) and noise n. The time stream is the superposition of these i.e.,

Dk =
∑

m

Km,k + nk. (4.1)

Here each of the components signals Km may be parameterized by Am,j . When the the total signal
is the superposition of the various bits that eachAm,j produce, the mapping of parameters for each

signal component is described by a set of linear transformationsMm, expressed in vector notation
as,

Km =Mm ·Am, (4.2)

in terms of the component signal vector Km, and the parameter vector Am.
From this point of view, the source signal with its particular mapping that is provided by the

observing strategy, is just one among the many signal components simultaneously present in the
data stream (cf. eq. [4.1]). In principle, excess noise, such as 1/f noise, can also be parametrized by
the appropriate set of spectral components (e.g., the rejected componentsAi ∼ ρf D̃f of an ’optimal’

filter, see Section 4.4), which are mapped into the time stream by the relevant Fourier transforms.
The parametrization of noise prior to source signal estimation is, therefore, an equivalent approach

to that of noise filtering.

noise modeling ≡ noise filtering

Alternatively, for simplicity of notation, consider the composite parameter vector A, glued to-

gether from all the component signal parameters Am (including the source parameters) and ex-
pressed in the (transposed) row-vector form as,

AT = (AT
1 |AT

2 |...|AT
M ). (4.3)

The corresponding composite mapping matrixM is assembled accordingly fromMm as,

M = (M1|M2|...|MM ). (4.4)

The aggregated parameter vector A and the matrix M encapsulating its mapping into the time

stream, allow dropping the m signal component indeces, and write the mapping of all parameters
(eqs. [4.1] and [4.2] combined) with unparameterized noise n in the short-hand form,

D =M·A + n, (4.5)

From the data Dk, one may try to estimate the underlying parameters Am,i for the component
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signals by a mirrored set of model parameters Âm,i,

Mm =Mm · Âm. (4.6)

The goal of the data analysis is to identify a best fitting set of model components Âm,i which yield
signal models such that Mm → Km. The aggregate signal model M is formed from the superposi-
tion of the components Mm,

Mk =
∑

m

Mm,k, (4.7)

for the measurement data D. The above two equations can be combined like before in short as,

M =M· Â + n. (4.8)

At times, more than a single combination of parameters can provide the same ’best’ solution.

This reflects a potential inherent degeneracy among the model parameters. While the parametriza-
tion usually arises from physical considerations of the possible signal components (eq. [4.2]), it is
possible that different combinations of these can produce identical signal structures in the time

stream. This is especially true when data was not observed in an optimal pattern.
With a composite signal model at hand, it makes sense to define the model residuals as the

difference between the observed data and the model,

R = D−M. (4.9)

Data analysis is effective when the total number Ni of parameters is far fewer than the number
of measurements Nk from which they are derived. I.e., the dimension of the aggregate parameter

vector A ought to be but a small fraction of the dimension of the data D. In this way, the analysis
that characterizes a large data set by relatively few parameters, is a reduction of the data.

4.2.1 Pipeline Reduction

In the linear pipeline reduction scheme presented here, the model parameters Am
i are estimated

independently from the residuals, one at a time, in a predetermined order of choice. Since each suc-

cessive parameter estimate is derives from the residuals left behind by the preceding estimates, any
degeneracies among the model parameters are naturally resolved with overlapping signal powers

assigned to the first estimated parameter within the degenerate set. This means, that from the per-
spective of a particular model (e.g., the source), all those models whose estimation precede it act as
filters, whereas those that follow in the pipeline will not impact on its solution.

Thus an intuitive way to think of the single parameter estimators that these treats the residuals
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R at every turn as if they contained but a single signal component Km. The corresponding model
residuals are already filtered by all the preceding component estimates, affecting the completeness

to which Km may be determined. At the same time, the yet unmodeled signals are treated as
if these were mere noise affecting mainly the accuracy of the resulting estimate of Km but no so
much its underlying form. Often, this latter assumption is granted by an inherent separation of the

component signals (e.g., source signal isolation by a cleverly designed observing strategy), but it is
also reasonable when the signal components with dominant signal power are estimated first, such

that the remaining signal components amount to a small perturbation on that estimate (cf. eq. [3.7]).
A natural modeling order of the signal components is often suggested by the relative signals

strengths of these, with the stronger signals typically preceding the weaker ones in the estimation.
However, in determining the optimal filtering (modeling) order, further considerations between
completeness and sensitivity (cf. Section 3.4) of every model estimate must play a role. As such, the

final word on ordering of model components is that of the observer, who must determine that based
on the required level of filtering that the models should impose on one another (see Section 4.4).

In this way, the filtering of the source model is clearly the most critical, although other models
may additionally be sensitive in the reduction (see Appendix ch:guide on absolute gains and direct

line-of-sight transmissivities).
Convergence is achieved as even a rudimentary and noisy estimate of a signal component is

better than none at all. By removing these crude models from the time stream one is left with
cleaner residuals which, in turn, yield better estimates for the other signal components. The cleaner
residuals additionally allow for improved weighting of the data, which then allows the further

refinement of the signal models etc., creating a virtuous estimator cycle. Thus, an iterated pipeline
can converge to a solution, where the residuals approach the noise limit (i.e., R → n), exactly as

was suggested for any weighting-filtering cycle for a general reduction scheme in Chapter 3.
In this way, the reduction pipeline most generally refers to a certain order of sequential param-

eter estimates, in which each model parameter Ai can be estimated several times,

Âµ1
→ Âµ2

→ Âµ3
→ ... where µl ∈ {1...Ni}. (4.10)

Each new attempt at the estimation of a given parameterAi yields a new parameter model genera-
tion n denoted as Â(n)

i , derived through the incremental refinements from the residuals (the hat is
used to distinguish estimators Âi from the underlying parameters Â). I.e.,

{R, Â(n)
i } −→ Â

(n+1)
i = Â

(n)
i + δÂ

(n+1)
i . (4.11)

The 0th generation models parameters A(0)
i thus represent the a-priori signal models (if these are

independently available), which can be left blank i.e., zero models such that A(0)
i = 0. In effect,
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this is equivalent to applying the direct matrix inversion method via the normal equations (see
Section 4.7.1) to each signal component separately, in sequence, yielding incremental refinements

as,
δÂm u [MT

mMm]−1MT
m ·R. (4.12)

A more detailed proof of how the iterated solutions ’improve’ is offered in Section 4.4, where the

filtering properties of time-series modeling are also discussed, especially in relation to 1/f noise.
The idea of signal components being modeled sequentially as opposed to being modeled all at

once (e.g., matrix inversion method or singular value decomposition, see Section 4.7), should not

come as a surprise. In Chapter 3 we showed that proper filtering of signals, emanating from various
different gain stages, are best performed in spectral domain and in turns to avoid unnecessary over-

filtering. That alone leads a sequence of filters, more or less equivalently to signal components here.

4.3 Statistical Estimators

When constructing an estimator Âi for an underlying parameter Ai, clearly, the estimate should be

representative of the underlying quantity, notwithstanding some noise. I.e.,

Âi −→ Ai. (4.13)

Beyond that, the estimate that is best depends on the qualities it is required to have. A number
of different statistical estimators can be derived from the critical optimization condition that they
are to fulfill. E.g., one may seek estimates which represent the most probable values given the

data—these are maximum-likelihood estimates. Or, one may require that it is least dependent on
uncharacterized or poorly measured quantities (e.g., maximum-entropy estimates), or not be biased

by occasional interference from other sources, such as electronic glitches (robust estimates). Here
we discuss these few instances, but many other types of ’optimal’ estimates may be constructed

from optimization of other properties.

4.3.1 Maximum Likelihood Estimators

The goal of maximum-likelihood modeling is to find the model set M (i.e., the set of model pa-

rameters Ai) which represents the most likely configuration of the underlying signals giving rise
to the observed data set D. When noise is independent among the samples the probability p(I |M)

that the observed data set D resulted from the underlying processes modeled by M is calculated as
the product of the (independent) probabilities that measurement Dk arose from a model value Mk,
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over all the relevant data points i.e.,

p(D |M) =
∏

i

p(Dk |Mk). (4.14)

Furthermore, when the underlying noise distribution is Gaussian, this likelihood is expressed (cf.

eq. [3.35]) as,

p(D |M) =
∏

k

e
−

|Dk−Mk|2

2σ2
i = exp

{
−1

2

∑

k

wk |Dk −Mk|2
}

= e−
1

2
χ2

, (4.15)

where χ2 is defined, in the usual way, according to (eq. [3.36]) as,

χ2 =
∑

k

wk|Dk −Mk|2

=
∑

k

wk

∣∣∣Dk −
∑

i

MikAi

∣∣∣
2

.

(4.16)

The extremum producing condition on the probability is given by,

∂p(D |M)

∂Ai
= 0 −→ ∂χ2

∂Ai
= 0. (4.17)

I.e., maximizing the model likelihood, under Gaussian noise, is equivalent to minimizing the χ2

deviation of the data from the model. Focusing on a single model parameter Ai, the maximum-
likelihood condition leads to,

Â
(n+1)
i = Â

(n)
i +

∑
k wkM∗

ik Rk∑
k wk |Mik |2

. (4.18)

HereM∗
ik is the complex conjugate of the appropriate matrix component Mik. Observe, that the

typical parameter Ai has limited scope on the data, in the sense that it affects significantly only a
small fraction of the entire data set. Thus most components of the matrix column Mi thus tend

to be zero. Therefore, from a computational perspective, it is impractical to perform the matrix
multiplication in full when the transformation can be equally well described by the rangeRi of Ai,
meaning the set of k indices for which Mik 6= 0, and by the corresponding set of nonzero signal

gains gik =Mik. In this way the the matrix multiplication can be written as,

∑

k

MikRk =
∑

k∈Ri

gikRk. −→
∑

Ri

giR (4.19)

To simplify notation, here and throughout, the summation indices k are dropped entirely whenever
these appear all terms and are sufficiently implied by the summation range Ri alone. In this more
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practical notation, the incremental maximum-likelihood model is then calculated as,

δÂi =

∑
Ri
w g∗i R∑

Ri
w |gi|2

. (4.20)

now explicitly in terms of the data range of the parameterAi and the corresponding signal gains gik

replacing the mapping matrix according to eq. (4.19). The uncertainty σ2
i in the model parameter

A is obtained from Âi ± σi at which the increase in χ2 is unity i.e., ∆χ2 = 1, and is accordingly

estimated as,
σ̂2

i =
1∑

Ri
w |gi|2

. (4.21)

Note, that the maximum-likelihood estimate and its variance are identical to the weighted averages
of Chapter 3 (eqs. [3.26] and [3.27]).

The Gaussian noise assumption is reasonable for many physical processes. The maximum-
likelihood property is further applicable for many instances of independent (i.e., white) noise also,
due to the Central Limit Theorem (see Section 3.3.2.1) which observes that compound noise distribu-

tions tend to be normal. More generally, arbitrary stationary noise can be whitened (i.e., made inde-
pendent among samples) by the appropriate filtering (cf. noise whitening filters, see Section 3.4.2).

In this light, true maximum-likelihood estimates can be derived for a wide variety of data in combi-
nation with noise whitening filters. Otherwise, the estimators will simply represent χ2 minimizing

values, which are not necessarily linked to most probable models for the general case.

4.3.2 Maximum Entropy Estimators

Instead of maximizing the probability that the data was produced by a given model, one may seek

models that are the least dependent on the missing information. This may be desirable at time
to correct for the filtered source components. It is achieved by models with maximal entropy. A

definition of entropy used for astronomical images is from (Narayan & Nityananda 1986),

H = −
∑

i

Ai ln
Ai

Ti e
, (4.22)

where A is the signal model and T is an a-priori model target. Note, that while this has the famil-

iar form of entropy from statistical mechanics, the entropy here is not a physical quantity, rather it
serves as a constraint requiring signals to be smooth around the target model. Clearly, the definition

is well behaved only for positive (or negative) definite target and signal models. An enforcement
of positivity (e.g., by an appropriate offset, clipping of nonphysical negatives or converting a bidi-
rectional signal X to its norm A ∼ |X |2 etc.) should, therefore, precede the maximum-entropy

estimation.
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The divergence at zero targets is rectified, while the requirement thatH be differentiable at zero
is provided, if a small positive constant is is added to both terms, which we designate to be σi,

the characteristic uncertainty of the model parameter Ai, for convenience. Furthermore,H is made
dimensionless by the normalization of the fluxes, outside the logarithm, by σi. Therefore, propose
to use

H = −
∑

i

(
1 +

Ai

σA

) {
ln

(
σi +Ai

σi + Ti

)
− 1

}
(4.23)

as the model entropy. This expression yields a smooth H → 0 for signal and target models both
near zero (Ai, Ti � σi), and will asymptotically retain a scaled version of the original definition
(eq. [4.22]) for significant positive (or negative) signal levels (Ai, Ti � σi) and uniform noise con-

ditions (σi = σj for all i, j). The, somewhat arbitrary, modification in the way we define entropy is
allowed since the image entropy has no strict physical interpretation, leaving the exact definition

relatively free for choosing.
Entropy is typically maximized subject to the constraint that χ2 is also near its minimum, i.e.

that the model is also reasonably probable (see eq. 4.17). This is achieved by minimizing,

X = χ2 − 2λH (4.24)

for some value of λ. Note, that H and thus λ are both defined to be dimensionless. The minimiza-
tion condition ∂X/∂Ai → 0 leads to,

δAMEM
i = δAML

i − λσA ln

(
σAi

+Ai

σAi
+ Ti

)
. (4.25)

I.e., maximum entropy method (MEM) incremental solution is a modification of the maximum-
likelihood (ML) estimator. In the iterated scheme presented, convergent algebraic solutions are

facilitated if the right-hand side is evaluated using the data model from the previous iteration.
Here, we observe, that λ = 0 retains the maximum-likelihood solution (discussed above), while

the larger λ values assign increasing prominence to the maximum-entropy condition relative to the
χ2 minimizing one. In the limit of A − T � T,A i.e., solutions that are close to the a-priori target,

the incremental solution is approximated by,

δAMEM
i ≈ δAML

i − λσA
Ai − Ti

σAi
+ Ti

, (4.26)

which, in the low signal-to-noise limit, simplifies to

δAMEM
i ≈ δAML

i + λ (Ti −Ai). (4.27)

In this limit, therefore, λ = 1 will essentially reproduce the preset target signal Ai → Ti, as conver-
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gence (δAML → 0) is achieved. As useful solutions tend to lie between the target model T and the
maximum likelihood solution AML, for all signal levels, λ values between 0 and ' 1 are typically

useful for obtaining practical maximum-likelihood solutions.
In the high signal-to-noise limit, where targets and signals have the same sign, and solutions

are also close to the target (see above) we find the approximation,

δAMEM
i ≈ δAML

i +
λ

SNR
(Ti −Ai). (4.28)

That is, the highly significant signals of the solution will approach the maximum likelihood (χ2

minimizing) limit, while the weak signals will be closer to the a-priori model.
Typical target models can be uniform value models (Ti = const.), which will attempt equaliza-

tion of the fluxes among all model parameters, with zero value models (Ti = 0) serving a special
case. Alternatively target models can be constructed as a low-resolution versions (e.g., by smooth-

ing) of the maximum-likelihood solution, if the target is to be less predetermined.
Since maximum-entropy estimators are obtained as a correction to maximum likelihood ones,

the uncertainties can be estimated the same way as they were for maximum-likelihood estimators

(eq. [4.21]).

4.3.3 Robust Estimators

Maximum-likelihood estimators, and hence also maximum-entropy estimators to a certain degree,
are most strongly affected by data that lie far from the distribution mean. Occasional glitches, or
noise spikes, may occur in any data stream (e.g., cosmic rays, static discharges), and can produce

strong biases in these estimates. Nor does the tail clipping of the distributions, at which mea-
surements are expected to be rare, will offer comfortable relief, since no matter how naturally rare

extreme values may be, they should be included in truly unbiased estimates. The clipping of any
naturally occurring noise tails will also lead to a bias in the those statistical estimates. In this sense,

neither maximum-likelihood or maximum-entropy estimators are robust.
There are ways of characterizing distributions in more robust ways. Using medians instead

of averages is an example of a robust estimation, as medians are much less affected either by the
presence or absence of outliers, no matter how far from the true distribution mean they may lie.
For symmetric distributions, medians, not averages, will provide the more reliable estimates of the

underlying distribution mean. However, in what way should medians be calculated for weighted
data i.e., one in which measurements may have wildly different uncertainties, such that they pro-

vide the truest possible estimate of the underlying distribution?
The median value is effectively defined, for uniform noise data, as the value above which lies

half of the data and below which is the other half. In an ordered set of the data, the median is
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simply the middle point for a odd number of samples, and it is defined to be the arithmetic mean
of the middle two measurements for even number of data.

This can be translated to weighted data by equalizing the left and right weight integrals around
the median value. That is, identifying the ith value Xi, for which

Xj<Xi∑

k

wj ≈
Xj>Xi∑

j

wj , (4.29)

or, in terms of the sorted values Xβ ≥ Xα for β ≥ α (with the Greek letter indeces belonging to
sorted sets), the median value is Xµ is given by the index µ for which,

µ−1∑

α=1

wα ≈
NX∑

α=µ+1

wα, (4.30)

Under approximate equality, we mean that the median is the weighted measurement with index

µ, for which the left and right sums are the closest. While there are several examples of equivalent
definitions in literature, one may go a step further in refinement, by approximating the sorted

values Xα by a monotonous function f of the integrated weights W of the sorted set, such that,

Xα → X(Wα)→ f(W ). (4.31)

where, Wα =
∑

β<α wβ + 1/2wα is the integrated weights assigned to data that is lesser or equal to

Xα. The median value is then identified by the condition,

∫ Wmed

0

dW f(W ) =

∫ Wmax

Wmed

dW f(W ) (4.32)

A simple choice for f(W ) is one for which f(Wα) = Xα, and is connected by linear segments in

between. Then, if the median lies between the sorted values Xα and Xα+1, the weighted median is
given by,

X̂med =

(∑
β<α+1wβ −

∑
β>α+1wβ

wα + wα+1

)
Xα +

(∑
β>α wβ −

∑
β<αwβ

wα + wα+1

)
Xα+1. (4.33)

When estimating a parameter Ai, the X should be replaced by the single point estimator of Ai

from the residual Rk. Assuming the residuals are a good (if noisy) representation of the signals
resulting from Ai i.e., Rk ≈Mi,kAi this is produced by Xj → Rk/gi,k for k ∈ Ri, and therefore the

corresponding weights wj → wk|gi,k|2 should be used in concert.
As for estimating the uncertainty in the median value, let us point out that for the case of mea-

surements characterized by symmetric probability distributions and no spurious outliers, both me-
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dians and averages are equivalent estimators of the distribution mean, and therefore, these should
come with identical properties for the same data set. Hence, using eq. (4.21) for the uncertainties is

reasonably justified.

4.4 Filtering Properties

The modeling of noise through estimators, like those described above, effectively represents a time-
domain filter, as the parametrized noise components are removed from the time stream. The critical

question that remains is how such filtering compares to the spectral filters which were described
earlier in Chapter 3.

Consider the somewhat special, albeit common, case when the successive parameters Am,j of a
noise signal component Km map into the time stream via regularly spaced blocks which are closely

resemble one another (i.e., the matrix columns Mm,i ∼ Mm,j but offset on a regular grid). More
specifically, in the spirit of describing the mapping of parameters Am,j via their data range Rm,j

and the corresponding nonzero mapping matrix elements or gains, consider Rm,j which are all

just shifted versions of the representative range Rm, laid out in an grid with regular ∆m offsets in
configuration space i.e.,

xl∈Rm,j
= xk∈Rm

+ (j − 1)∆m (4.34)

Then, the regular spacing of the representative range Rm is analogous to moving data windows
Wm of the same ’shape,’

Wm(x) ∼Wm,k ∝





1 if k ∈ Rm

0 otherwise.

(4.35)

The incremental maximum-likelihood estimators of eq. (4.18) invoke the (discrete) gain inverted
weighted convolution (eq. [3.14]) of the residual signal with the window function Wm(x). In fact,

the incremental estimators δÂm,j can be identified as regular samples at intervals of ∆m of the
convolved product, i.e.,

δÂm,j ∝
(Wm ⊗R)l

gi,l
(4.36)

for data indeces l which satisfy the constraint of eq. (4.34) in terms of j.
Since the modeled noise components are also the rejected noise components, it follows that

ρ̃(x) ∝Wm(x) and thus directly related toRm, while comparison to eq. (4.19) yields the configura-
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tion space convolution coefficients ρ̃k of the rejection as,

ρ̃m,k =





1

N(Rm)
if k ∈ Rm

0 otherwise.

(4.37)

where N(Rm) is the number of data elements in the representative range Rm. The spectral fil-

ter components ρf are simply the direct (unweighted) Fourier transform of ρ̃k which are applied
multiplicatively to the weighted transform of (R/g).

While the above argument is somewhat abstract, it provides a very useful result. The shifted
time windows such as those described above, can be used for parameterizing stationary noise.
By reversal of the above argument, any spectral rejection function ρ(f), and therefore filter pass

function Φ(f), can be realized by assigning an appropriate representative range Rm and gains to
the modeled parameters Ai ∼ ρ(f). The mapping M of the parameters is constructed by pasting

those gains at regularly offset locations among the matrix columns. In this way, the time-domain
estimators can always provide the desired filtering of the data.

Most importantly, when a set of parametersAm,j are estimated from nonoverlapping data win-
dows (or parameter ranges Rm,j) the resulting estimates are both independent and their computa-

tion costs grow linearly with data size. As such, it is desirable to choose parametrization of every
signal component Km such that its components Am,j can be estimated from distinct data regions
Rm,j ∼ Rm for the various indeces j.

Rm,i ∩ Rm,j = δi,jRm,i (4.38)

Then, the independent component parameters Am,j can be derived uniquely, through O(Nk) oper-

ations, and in arbitrary order (for the index j), as long as in a single block covering the entire set
of these i.e., the full parameter vector Am is estimated in a single go. Because such estimates of

Am by its independent individual components are both unique and optimal (most probable, most
disordered or least affected by spurious measurements—depending on the type of estimator used)

these estimates must be equivalent estimates to those provided by the submatrix inversion methods
via normal equations i.e.,

Âm u [MT
mMm]−1MT

m ·R. (4.39)

for one signal component at a time (not to be confused with the full matrix inversion via the com-
positeM!). As such, the two are effectively interchangeable pictures of the pipeline reduction.

Since each of the different components Km tends to affect all measurements, but via different

shifted windows Rm, the various parameters Am,j and An,i of the separate component signals
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Km and Kn are generally not independent. Thus, the ordering among the estimation of the full
parameter vectors Am and An will matter. As such the data reduction is just a sequence of the

parameter vector estimates for the signal components, where every parameter vector Am may be
estimated and re-estimated a number of times, until the desired ’optimal’ filtering of the source
signals (S = Am for some m) is achieved.

Aµ1
→ Aµ2

→ · · · → (Aµp
= S) (4.40)

While, much of the above was based on the go-between argument for spectral filters and time

domain estimates which was derived for the maximum-likelihood estimators, it is possible to gen-
eralize the argument to all other types of equivalent estimators.

4.4.1 Filter Evolution and Convergence

The above description of filtering is applicable only when each parameter is derived only once in
the analysis. When modeling (i.e., filtering) is iterated instead, there maybe nontrivial interactions

among the parameters, which alter the effective filtering properties with each new model set A
generation. Consider the simple scenario, when the signal is composed of only two components,

the source S, and excess stationary noise N which here includes white noise term n from eq. (4.5)
i.e.,

I =M· Sobs + N. (4.41)

The mapping of N is simply via the backward Fourier transform of the relevant independent
components Ñf , leaving only the source mapping (i.e., observing pattern) written out explicitly via

M. Suppose that the correct weights and accurate gain knowledge are also granted, and that both
Sobs and the parameters of N are estimated from respective sets of nonoverlapping data windows

such that all parameters of Sobs are estimated together (in any order) and so are the components of
N.

In constructing the source estimator, one ought to consider what that estimator should be were

the residual signal is the source structure Sobs alone. The signal is then inverted for the source
structure using the reverse mapping A (eq. [3.5]),

Ŝobs u A ·R, (4.42)

which is an equivalent representation of what the time sequence of source estimators from nonover-

lapping data windows would achieve, and also generally applicable to all methods of data reduc-
tion under linear mapping (e.g., matrix inversion via normal equations or SVD, see Section 4.7). A

mapping can be expressed equivalently from the residual signal spectrum R̃ instead of the time-
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series residuals, by M̃ which takes source structures directly into the Fourier representation of
the measured signals. Clearly, this requires that the columns of M̃ be the Fourier transforms of

the corresponding columns of M. Consequently, there is also such a Ã for the reverse mapping
from Fourier space, with rows being the Fourier transforms of those of A. As such, an equivalent

expression of approximate equivalence above, but for Fourier spectra, is written as,

Ŝobs u Ã · R̃. (4.43)

In a similar line of arguing, were the residual are entirely stationary noise i.e., its spectrum is that
of the noise components R̃f = Ni. The trivial inversion for the (spectral) noise parameters N̂i u R̃f

is suggested. However, for the case when both noise and source signals are simultaneously present

in the spectrum, one clearly does not wish to assign all data as noise (that would be plain silly!),
as such a totalistic noise estimator would tend to suggest. Instead, one should like to characterize

the relevant noise signals by just a few components (e.g., those with excess noise levels), such
that nearly all degrees of freedom are retained. In general, the dataset should be much larger

than the number of model parameters that are derived from it i.e., Nk � NA. For stationary
noise, it makes sense to use the discrete rejection components ρf of the spectral filter. These are

provided by the appropriate nonoverlapping time series windows for the sequence of estimators.
This argues for the effective description of excess noise estimation in Fourier space, via the spectral
parametrization,

N̂ u ρ · Ĩ. (4.44)

Here the total effective number of noise model parameters is
∑

f |ρf | � Nk i.e., ρf ≈ 0 for most
spectral channels f .

Alternating the estimators for source structure and noise components for the case composite
signals, one can summarize the solutions for the nth iteration as an incremental adjustment to the

prior model generation through re-estimation from the up-to-date model residuals,

S
(n)
obs = S

(n−1)
obs + Ã · R̃

Ñ(n) = ρ ·
(
Ñ(n−1) + R̃

)
,

(4.45)

where the bracketed indeces (n) are used to mark model generation in the iterated scheme (with
redundant estimator symboling via hats or “est” subscripts now dropped). The residuals R need

to be recalculated between the two sets to correspond to the difference between the measurements
and the modeled signals as,

R = I−M · S(m)
obs −N(n) (4.46)

for the current generations of source and noise models i.e., S(m)
obs and N(n) respectively.
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Let the initial models be N(0),S
(0)
obs = 0, i.e., make no prior assumptions on the structures

present. Clearly, if such assumptions, or educated guesses, can be made, the following discussion
remains valid, except that Sobs and N are then interpreted as the respective differences between the

actual source and spectral noise components and their assumed forms.
With the two interrelated estimators at hand, the choice remains on which one to evaluate first.

Accordingly, we discuss both possibilities. The results can be extended to arbitrary orderings of
various stationary noise estimates some of which precede while others follow the source estimation.
The interaction of each of these with the source model is provided by the relative placement of that

and the source estimation in the analysis pipeline, while the interaction among the various noise
estimates is generally inconsequential to the solution.

4.4.1.1 Source Estimation First

When source estimation, precedes the estimation of noise signals, one immediately arrives to the

stable solution at the first evaluation of the estimators i.e.,

S
(n)
obs = Sobs +A ·N

Ñ(n) = ρ · (1− M̃Ã) · Ñ.
(4.47)

Further iterations are not necessary as these produce identical solutions. As expected, the source

estimate will be unfiltered (i.e., complete), but will carry the footprint of all the noise from the raw
data. This is effectively the the naı̈ve map reconstruction method resulting from the simple reverse

mapping of the raw data (cf. eq. [3.5]), and is generally not suitable for weak signals, although it
may be of use when the source signalM· Sobs is dominant relative to N .

In a strict sense, the second step of noise estimation is unnecessary, unless one desires to retain

(filtered) knowledge of these (e.g., for gain estimation, see Section 4.6.1), or wishes to continue to
clean-up the time stream (e.g., for better re-estimation of weights, see Section 4.5).

For simplicity of interpretation, consider the special case whenM is both stochastic and ergodic
(cf. robust observing strategies of Section 3.6.3), such that any source component Si is randomly

mapped into the time streams, hence also into all spectral channels Ĩf , then all derivatives of M,
including M̃, A, Ã, etc. will also be stochastic and ergodic. The matrices A and Ã then effectively

map the time series and spectral noise components into random map noise. Provided that the
mapping M̃ conserves signal power (which one should hope!) we can write

A ·N  
Nk

NS
n(N), (4.48)

where n(N) is a Gaussian noise vector with the same integrated noise power as N (i.e.
∑

i |ni|2 =
∑

i |Ni|2). Therefore, for stochastic, ergodic mapping we can approximate the solutions of the iter-
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ated scheme as,

S
(n)
obs  Sobs +

Nk

NS
n(N) (4.49a)

Ñ(n)  ρ · Ñ− ñ(N) (4.49b)

Here, the equivalent spectral noise ñ(N) is the appropriate Fourier transform of n(N).

4.4.1.2 Noise Estimation First

When noise is dominant, its estimation ought to precede the source, to provide a level of filter-
ing which allows more sensitive, although less complete reconstruction of the source structures

(see Section 3.4). Therefore, the more interesting case is when noise modeling precedes the source
estimation. Here the solutions can be most easily expressed in terms of the actual source signal
spectrum S̃ = M̃ · Sobs as,

M̃ · S(n)
obs = (1− ρn)M̃ · Sobs + M̃Ã(1− ρn) · Ñ

Ñ(n) = ρ · Ñ− M̃Ã(ρ− ρn) · Ñ + ρnM̃ · Sobs.
(4.50)

As anticipated, the source signal spectrum is now filtered via the effective spectral filter function
on the signals,

Φ(n) = 1− ρn (4.51)

The noise that makes its way into the source signals is filtered similarly with the same Φ. Corre-
spondingly, the noise model is also messier than before, with extra noise spawned from the rejected

source signals, and an effective redistribution of noise flux from the back-and-forth mapping cycle.
A clearer picture can be provided for stochastic, ergodic mapping when solutions can be sim-

plified to,

S
(n)
obs  φ

(n)
M ⊗ Sobs +

Nk

NS
n
(
[1− ρn] ·N

)
(4.52a)

Ñ(n)  ρ · Ñ− ñ
(
[ρ− ρn] · Ñ

)
+ ρn · NS

Nk
ñ′(Sobs). (4.52b)

Some immediate conclusions can be drawn either from either the exact or the approximate
expressions. For a large number of iterations, the respective source and noise components will

converge to (i) those of the naı̈ve solution when the corresponding ρf < 1, whereas (ii) spectral
components with ρf = 1 will be filtered completely, retaining all corresponding spectral component

flux in the noise model. In this way, the convergent limit is either the full preservation or the total
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rejection of spectral signal components.

S̃
(∞)
f −→





S̃f + Ñf if |ρf | < 1

0 if ρf = 1

(4.53)

However, final convergence is not necessarily what one should be looking for here. Instead,
observe that the effective filtering (eq. [4.51]) can be adjusted to varying levels through proceeding
with either fewer or more iterations, or choosing different estimator windows. The most aggres-

sive filtering is provided at the very first round of (source) estimation, while the effective filtering
becoming less the longer one iterates (and more successive source generations are derived). Grad-

ually, increasing levels of noise will make the way into the source estimate, as the filtering becomes
more and more relaxed.

4.4.1.3 Meta-Stationary Noise and Transforming Observing Patterns

So far, we have presented a complete assessment of the filtering properties in the iterated scheme
for the case of stationary noise and source. Now, consider the case when noise (or equivalently the

mapping pattern) is stationary in subsets of the data, which provide the meta-stationary full data.
Then, the signal Km for each stationary subset m is

Im =Mm · Sobs + Nm. (4.54)

Each data subset can now have the appropriate source S
(n)
obs,m and noise estimators Ñ

(n)
m according

to eqs. (4.45). However, while the noise estimates are mutually independent from set to set (and
also component to component!), the observed source structure is the same for all subsets. Therefore,

averaging of the source estimates is clearly suggested, in combining the Nm individuals Sobs,m into
a single source estimate. For simplicity, let one use a simple arithmetic average here with

Ŝobs =
1

Nm

∑

m

Ŝobs,m. (4.55)

Furthermore, let us consider the case of transforming observing patterns (Section 3.6.6.1) such

that through an appropriate linear transformation all spectral source mappings M̃m can be re-
placed by the same M̃ i.e., the source spectra are stackable in the transformed signals (primed
quantities) as,

I′m =M· Sobs + N′
m. (4.56)
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In this particular case, the set of (m+ 1) relevant incremental estimators are expressed by,

S
(n)
obs = S

(n−1)
obs + Ã · µ(R̃′)

Ñ(n) = ρ′
m ·

(
Ñ′(n−1)

m + R̃′
m

)
,

(4.57)

where µ(R̃) is the arithmetic mean of the stacking residual spectra.
Clearly, the more interesting scenario is that when filtering of the source is provided by the

preceding estimates of the noise, leading to convergent solutions, for the source structure, in the
limit of a large number of iterations,

M· S(n)
obs =

[
1− µ(ρ′)n

]
M̃ · Sobs + M̃Ã

[
1− µ(ρ′)n−1

]
·
〈
Ñ′

〉
(4.58)

in terms of the effective average noise
〈
Ñ

〉
whose spectral spectral components are,

〈
Ñ ′

f

〉
=

∑
m(1− ρ′m,f )Ñ ′

m,f∑
m(1− ρ′m,f )

=

∑
m Φ′

m,fN
′
m,f∑

m Φ′
m,f

. (4.59)

These are the weighted average noise component from the transformed stationary bits, under the
effective spectral weighting function,

w(f) = Φ′(f) (4.60)

provided by the spectral filter–pass function for the transformed, stacking, spectra. Thus, in the
limit of a large number of iterations, only the the weighted average noise is mapped into the source,

which, in the stochastic–ergodic limit can be simply approximated as,

S
(n→∞)
obs  S̃obs + Ã · n

(
[1− µ(ρ′)n] ·

〈
Ñ′

〉)
. (4.61)

The interpretation of the above result is a rather important one for the case when anisotropic
noise is present in the experimental setup. What eq. (4.58) signifies, is that noise anisotropies can be

effectively dealt with in an iterated pipeline reduction by a reconfiguration of observing patterns
which superpose the anisotropic noise components over different parts of the source spectrum (i.e.,

transforming patters, see Section 3.6.6.1). The analysis pipeline of estimators, achieves the optimal
weighting of the spectra (Section 3.3.3.2) to provide a statistical average, in which every spectral
component is recovered to the best accuracy possible. That is, if the filtering is noise whitening

(Section 3.4.2), since these will act as proper 1/σ2 noise weights for the independent noise compo-
nents (Section 3.3.2). Then, the resulting average spectral estimate is also a maximum-likelihood

one (Section 4.3.1). This holds approximately even for the family of ’optimal’ weak signal filters
(Section 3.4.3.2) also, since these are not all that different from noise whitening ones under the
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typically useful choices for the filter parameter λ.
In the example of SHARC-2, which has unfortunate 1/f -type noise source along the rows of

detectors, affecting all 32 pixels in each of the 12 detector rows, this means that this imperfection
of the instrument electronics can be treated by providing adequate rotation of the detector array
relative to the source structures observed. Such a rotation is normally granted by the rotation of

the field itself (for Cassegrain focus mount) or by the elevation change (for Nasmyth mount) for
sources observed over long periods (&1 hour) of time around or near transit.

When noise is isotropic, the effect is less dramatic, but still results in the parts of data observed
though the better mapping patterns to contribute more to the recovery of those source signal com-

ponents which were less well covered by the other parts of the data.

4.4.2 1/f -Type noise

Consider estimating stationary noise from consecutive blocks of sample along a single data dimen-

sion. (Estimators for such contiguous data ranges are most easily implemented from a computa-
tional perspective!) This is analogous to applying a convolving rejection function in the time series

of the form,

ρ̃(x) =





1
a if − a

2 < x ≤ a
2

0 otherwise,

(4.62)

where a is the width of the characteristic data range R along the x direction. The corresponding
spectral rejection function, given by the appropriately normalized Fourier transform of ρ̃(x) is:

ρ(f) =
sin(πaf)

πaf
. (4.63)

According to eq. (4.51), the effective filter pass function Φ(n) after n iterations becomes,

Φ(n)(f) = 1−
[
sin(πaf)

πaf

]n

. (4.64)

Two properties of this a filter that are worth noting (Fig. 4.2). Firstly, the initial rejection ’side-
lobes’ quickly disappear after a few iterations, yielding close to perfect spectral pass for frequencies

f & 1/a. At the same time, the filter behavior at the low (f � 1/a) frequencies can be approximated
by its Taylor expansion,

Φ(f) ≈ n

6
(πaf)2 +O

(
[πaf ]4

)
. (4.65)
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Figure 4.1 Iterated filtering of 1/f2 noise via boxcar data windows. The window sizes are set using
eq. (4.67) as (a) an equality, or (b) one half, and (c) one quarter that size. Top graphs show the
effective filter pass functions Φ(f), initially (red solid), after two (blue dashed) and three (purple
dotted) iterations, and the noise perfect whitening filter (thick black curves) for comparison. The
filtering quickly approaches its asymptotic form after three iterations. The bottom graphs indicate
the residual noise power levels as a result of the filter action. While (a) approaches the noise-
whitening limit at the very low (f � fc) frequencies, it leaves behind noise excesses due to the
imperfect nature of the boxcar filter approximation. The excess can be trimmed by using smaller
windows, at the expense of some overfiltering at the very low frequencies.
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Figure 4.2 Iterated filtering of 1/f noise via boxcar data windows. Clearly, setting window sizes like
in Fig. 4.1 for 1/f2 noise, leaves more residual excess in comparison. However, the smaller window
sizes treat 1/f behavior acceptably, even though the power spectrum here falls slower than 1/f 2.
Somewhat unfortunately, the overfiltering at the very low frequencies is no longer avoidable.
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In summary,

Φ(f) ≈





n
6 (πaf)2 f � 1

a

1 f & 1
a .

(4.66)

Comparing this to the optimal weak signal, or noise whitening, filters of Chapter 3, one can

observe that estimating noise signals from consecutive blocks of data is approximately optimal
for filtering Brownian (1/f2) noise, especially once the higher frequency behavior is smoothed

out after a few iterations. As such the approach is optimally suited for ground based astronomy,
where atmospheric variations exhibit such a red noise spectrum (Bester et al. 1992). For a Brownian
spectrum with P (f) = (fc/f)2σ2 (here fc is the ’1/f knee’ where the spectral behavior blends into

the white noise level with P (f)→ σ2), the optimal window sizes a can be calculated as,

a ≤
√

6

n

σ

πfc
, (4.67)

for the appropriate noise whitening filters, or

a ≤
√

6

λn

〈|S|〉
πfc

, (4.68)

for optimal weak signal filters, in terms of the expected low frequency (f � 1/a) source signal

amplitudes 〈|S|〉 and the adjustable filter parameter λ. By setting smaller window sizes a, more ag-
gressive low frequency filtering is achieved. Similar filter properties can be produced with different

numbers n of iterations, by adjusting a such that the product na2 is kept invariant.
More generally, the filtering properties of noise estimators derived from contiguous data blocks

with range a (analogous to the boxcar rejection windows) are useful for filtering a variety of 1/fα

type noise. However, when α < 2 i.e., the spectrum is not Brownian, these time-domain estimators

tend to overfilter the signals at the low frequencies when compared to the appropriate optimal or
noise whitening filters for nonBrownian 1/f noise types.

4.4.3 Additional Filtering

Filtering from data ranges, other than those analogous to boxcar windows, can provide similarly
tuned filtering for different types of excess noise. For stationary noise we argued for using data

ranges offset on a regular grid (reflecting that noise properties do not evolve in time). If the de-
rived parameters are to be independent, these ranges need to be kept separated in the data. As a
consequence of these two practical constraints, filtering for stationary noise via time domain esti-

mators is typically associated with periodic data blocks. If blocks, like the one above, are offset at
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regular spacings of Na along the x direction, then muted–periodic rejection functions of the form,

ρ(f) ≈ sin(πaf)

πaf
×

{
∑

m

δ(mNπfa)

}
(4.69)

are produced, i.e. the rejection function will be a periodic comb function with a characteristic

envelope.
At times, such filter designs may prove too restrictive or simply not good enough. Then, the

linear time-domain filtering provided by the described sequence of estimators has to yield to ap-
propriate Fourier filters. While these are inevitably slower, they may remain feasible, especially
when the filtering can be performed on small subsets of data (with n � Nk elements), along cer-

tain coordinates only, typically requiring O(Nk logn) operations for the full processing. However,
note that notwithstanding whether filtering is performed via time-domain estimators or Fourier

transforms, the effective evolution of the filtering properties (Section [4.4.1]) due to iterating in the
analysis applies just the same.

Stationary noise, which uniformly present in the time domain, is not the only trouble affecting
most data. When noise is localized to particular regions of the time stream unreliable measurements

ought to be flagged (in an example of multiplicative time-series filter). In general, whenever a
detector channel or an exposure of the detectors become suspect (based on objective criteria!), it is
best to discard these altogether (e.g., by assigning zero weights, see Section 3.3.4).

4.5 Weight Estimation

Approximately correct weights can always be estimated from the covariance estimates as was
demonstrated in Section 3.3.3. However, such an approach is expensive because the calculation of

the autocorrelation requires O(N 2) operations when performed directly. Even with FFTs this only
reduces to O(N log2N) operations, and that is not even mentioning the inversion of the N ×N full

covariance matrix!
As such, some shortcutting in the weight calculation may be often desired or even unavoidable.

Fortunately, we have shown that optimal filtering of weak signals tends to produce data with white,

or nearly white noise residuals. This means, that the final noise weights of the data reduction have
a tendency to approach simple 1/σ2 weights of independent noise, which can be estimated rather

easily and requiring O(N) computations only.
Weights can be calculated at any time in the white noise assumption. However these will only

be approximately proper weights once sufficient modeling (hence filtering!) of the data has already
been achieved i.e., when the white noise assumption is nearly correct. As such, it is better to delay

weight estimation in the pipeline till after the dominant signals have been modeled (even if only
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coarsely).

4.5.1 Weighting in Configuration Space

In the white noise limit, the expected level of the integrated residual variances in a subset R of the

data is simply related to the underlying white noise RMS σ as,

E
(∑

R

|D −M |2
)

= σ2Ndf (R), (4.70)

where Ndf (R), is the degrees of freedom in the subset R of the data given the extent of modeling

already undertaken. The noise variances σ2
k are easily estimated from this as,

σ̂2
R =

∑
R |D −M |2
Ndf (R)

=

∑
R |R|2

Ndf (R)
. (4.71)

If the noise of the time-series data σt,c can be separated in detector and time only noise terms as
σt,c = χt · σc, then the weights will separate accordingly as,

wt,c = wt · wc =
1

χ2
t

· 1

σ2
c

. (4.72)

I.e., the time and detector weights are respectively given by (in a specific normalization) as,

wt =
1

χ2
t

, and wc =
1

σ2
c

. (4.73)

Clearly, the same effective data weight wt,c can be produced by infinitely many combinations of wt

and wc. To restrict oneself to a single pair of weights wc and wt from the family of possible pairings,
consider the χt–σc pair for which

〈
χ2

t

〉
= 1 (4.74)

is satisfied inside a large subset R0 of measurements Dt,c. A restriction on R0 is that the χt–σc

noise separation must remain a valid approximation in its full data range. In practice, this typically
means a data block of a not too long contiguous integration (e.g., a.10 minute scan by the SHARC-

2 array).
Under the above normalization, χt are dimensionless whereas σc carry the dimension of the

signal and are meaningful as the characteristic RMS noise level for detector channel c over the rel-
evant time span (R0) of the measurements. Then the set of interrelated noise estimators, restricted
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inside the subset R0, are obtained as,

σ̂2
c =

1

Ndf (Rc)

∑

t∈Tc

|R/χ̂t|2 (4.75a)

χ̂2
R =

1

Ndf (R)

∑

t,∀c∈R

|R/σ̂c|2 (4.75b)

where Rc ⊂ R0 is a subset of measurements Dt,c for a selected detector channel c, and χ̂t = χ̂R

for t ∈ R. The subset of data used in determining χ̂t and hence wt i.e., R ⊂ R0 should contain all
samplesDt,c which are measured in a time interval over which noise is assumed entirely stationary.

The two expressions (in eq. [4.75]) are interrelated in a nonlinear fashion. Thus, instead of

aiming for algebraic solutions, the convergence to self-consistent set of χt and σc values can be
achieved through iterations. The determination of separable weights, therefore, adds to the list of

reasons for data analysis in an iterated environment. A practical starting condition is to assume all
χt = 1 (i.e., initial assumption of time-stationary noise) and begin with the estimation of detector

weights wc via σ̂2
c .

4.5.2 Spectral Weight Estimation

One should note that intermediate weights in the weighting–filtering cycle are inconsequential, as

long as convergence to the correct final values is granted. In fact, the sooner one can guess the final
set of noise weights, the faster the weighting–filtering cycle can converge. Because final weights are

calculable under the white noise assumption (provided an optimal level of filtering), these can be
estimated early on form the white noise regions of the signal spectrum rather than the time-series

signals.
This is possible, owing to Parseval’s theorem (eq. [3.17]). Comparing it to eq. (4.75a) used for

weight estimation, it is clear that,

E
(∑

f∈ eR

|R̃f |2
)
∝ σ2Ndf (R). (4.76)

Under the appropriate normalization corresponding to the Fourier transform used for obtaining

the spectral representation. When transforming white noise, all spectral components are white
noise too, and thus,

σ̂2 ∝ Nf

Ndf (R0)

〈
|R̃f |2

〉
. (4.77)

When noise is structured the spectral white noise level
〈
|Rf |2

〉
can be estimated from the ap-
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propriate spectral components of the white noise regions (R̃w ⊂ R̃) of the spectrum as,

〈
|Rf |2

〉
≈ 1

N(R̃w)

∑

f∈ eRw

|Rf |2. (4.78)

Combining the above expressions thus provides,

σ̂2 ∝ Nf

Ndf (R0)N(R̃w)

∑

f∈ eRw

|Rf |2, (4.79)

under the same proportionality constant as eq. (4.76) above.
This method is primarily useful for obtaining better detector weights wc under stationary noise,

by weighted Fourier transforming the residuals Rt,c ∈ R0 along the time direction only, i.e., using
the temporal spectral estimate of the detector time streams for the detector channel weight estimate.

In this way eq (4.75a) above can be effectively replaced by eq. (4.79) to expedite the convergence in
the weighting–filtering cycle of the analysis.

4.5.3 Robust Weight Estimation

As an alternative of spectral weighting, which requires Fourier transforms, typically along the
time direction of the data, one may use robust weight estimation, by deriving weight based on

the median, not the weighted mean, square deviation. For a normalized probability distribution
p(x) of a random variable x, the median square deviation value x2

med is provided by the condition
p(x2) = 1/2. For the Gaussian distribution (eq. [3.35]) this is found numerically to be at,

x2
med ≈ 0.454937 σ2

x. (4.80)

By inverting the above expression, we can estimate the variance of zero-mean, quasi-Gaussian

distributions in a robust way, using the median square deviation for the estimate. This is primarily
useful for noise distributions that are mostly Gaussian, but exhibit nonGaussian tails at higher

deviations (e.g., from localized structures). More generally median weighting can be used when
excess noise corrupts only a fraction of the time-stream data i.e., for detector weighting (wc) under

short bursts of transient noise.

4.5.4 Fractional Degrees of Freedom

The counting of the degrees of freedom for any particular subset of the data, used in the weight

estimation (see above), requires some careful thought. When the accounting is not done correctly,
some of the data will be over- or under-weighted in some systematic fashion. Even small initial
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deviations from fair weights can grow with iterations, providing unrealistic solutions where only a
fraction of the data carry nonzero weights, while others becoming zero-weighted. For this reason,

the accurate measuring of the degrees of freedom associated to any subset of the data is absolutely
critical.

For linear estimators, we can write the incremental model solution as a linear combination of

the observed point estimators,

δÂi =
∑

Ri

fi δÂ =
∑

Ri

fi (R/gi), (4.81)

where δÂk = Rk/Gk is a point estimator of A for a single datum, providing a point estimator of Ai.

Comparing the above to the expression for the maximum-likelihood estimator (eq. [4.18]), one can
immediately identify the coefficients as,

fi,k =
wk|gi,k|2∑
Ri
w|gi|2

. (4.82)

The coefficients fi,k, are readily interpreted as the fractional contribution of the measurement Dk

to the derivation of the model parameter Ai, which as a result obey the condition,

∑

Ri

fi = 1. (4.83)

This fractional dependence of the parameter Ai on the measurement Dk is useful for calculating
the effective number of parameters i.e., the lost degrees of freedom, for any subset R of the data

(not only the subset Ri used for deriving Ai), simply by summing fi,k within the set defined by
R, as NM (R) =

∑
R f i

k. In this way, the total degrees of freedom remaining on an arbitrary data
subset R after the estimation of model parameters Ai is consequently calculated as,

Ndf (R) = N(R)−
∑

R

∑

i

fi, (4.84)

where N(R) is the number of measurement with nonzero weights inside the data subset R. While
seemingly innocent, it must be reemphasized that the accurate accounting of the degrees of free-

dom in this way is ultimately crucial for the stability of the weighting-filtering cycle of any data
reduction approach.
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4.6 Gains and Nonlinear Detector Response

Thus far we have made the implicit assumption of linear detector response i.e., that the observed
signals D are produced by the the linear (matrix) transformation D =M·A. However, most mea-
surement apparatus has nonlinearities in their response to underlying signals. Often, the deviations

from linearity are small enough to be negligible, whereas at times these may be significant. Devi-
ations from linearity become critical for weak signal analysis when the effective variation of gains

δg = ∂M/∂AiAi exceed the the gain accuracy requirement (eq. [3.62]). Fortunately, the estimators
may be tweaked to account for the nonlinear detector response.

When detector response is not linear, gains are typically loading dependent (apart from the typ-
ical variation along measurement coordinates) i.e., can be expressed as a function of the ’noiseless’
underlying total power signal Dk via the functions Gi,k(Dk) replacing the matrix elementsMi,k in

the mapping of parameters Ai which are written as,

Dk =
∑

i

Gi,k(Dk)Ai. (4.85)

Since Dk are essentially the measured data Dk, this conveniently means that gains are well

determined as long as the functionals G(D) are known accurately, such that the estimation of Ai

can proceed without hindrance. However, owing to the nonzero ∂Gi,k/∂Ai terms, the χ2 mini-

mizing condition ∂χ2/∂Ai is slightly modified, compared to the maximum-likelihood estimators
of Section 4.3.1, leading to a an appropriately altered eq. (4.18) for expressing the the incremental

maximum-likelihood estimators as,

δA
(n)
i =

∑
Ri
w g∗i (D)R∑

Ri
w |gi(D)| |Gi(D)| . (4.86)

Here, gi,k(Dk) = ∂Dk/∂Ai is, by definition, the momentary small-signal gain affecting the way
small incremental changes to Ai are mapped into the time stream. After a simple manipulation,

this small-signal gain is found to be,

gi,k(Dk) =
Gi,k(Dk)

1−G′
i,k(Dk)Ai

, (4.87)

in terms of G′
i,k = ∂Gi,k∂D. In this way, the gi,k assume knowledge of Ai for estimating Ai. This

circularity can be approached by iterated solutions where g(0)
i,k = Gi,k is assumed initially to obtain

a first estimate of Ai and prior Ai values are then used for calculating increasingly accurate gi,k

values according to eq. (4.87). Similarly to eq. (4.21), the uncertainty of Âi is provided for nonlinear

response by,
σ̂2

i =
1∑

Ri
w |gi(D)| |Gi(D)| , (4.88)
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and the fractional dependence of Âi on the measurement Dk is calculable, in simplified form using
the above result as,

fi,k = wk |gi,k(Dk)| |G∗
i,k(Dk)| σ̂2

i , (4.89)

which is useful for estimating the degrees of freedom for arbitrary data subsets according to eq. (4.84).
For robust estimators, the point estimates Âi,k of Ai are simply expressed from eq. (4.86) as,

Âi,k =
Rk

Gi,k(Dk)
. (4.90)

With these slight modifications, all prior discussion holds true for the case of nonlinear detector

responses.

4.6.1 Gain Estimation

In Chapter 3 we demonstrated the critical role of accurate gain knowledge for effective filtering

of dominant noise. At times, gains can be determined accurately (according to the criterion of
eq. [3.62]) by calibration procedures which are external to the scientific measurement. This is more

likely the case when gains are stable and detector responses are sufficiently linear. However, com-
plex nonlinearities or variations to the effective gains from measurement to measurement (e.g.,
slight changes in the bath temperature for bolometers, or changes due to the wear and tear of the

apparatus) can make such external gain characterizations either inaccurate or impractical. There-
fore, it is sometimes desirable that the relevant gains are estimated from the data themselves.

Suppose, that the functional form of the gains are known to the desired accuracy (at least in
the signal range of the data), but not the various scalings constants gµ each of which apply to the

mapping of parameters inside the corresponding domain Dµ i.e.,

Gi,k(D) = gµ γi,k(Dk) for Ai ∈ Dµ, (4.91)

for k ∈ Rj , with γi,k(D) well known but the coefficients gµ not determined accurately. The func-
tions γi,k(D) are measure the relative coupling of the parameter Ai to the different measurements
Dk, and may be derived from theoretical considerations, or else sufficiently characterized by an

external calibration procedure. Then, accurate gain knowledge requires the determination the co-
efficients gµ to the desired precision.

It is possible to derive a maximum-likelihood estimate from the condition ∂χ2/∂gµ = 0 yielding
incremental solutions for the gain coefficients as,

δĝµ =

∑
Rµ

wΥ∗
µR∑

Rµ
w |Υµ|2

, (4.92)
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with corresponding gain uncertainties of

σ̂2
µ =

1∑
Rµ

w |Υµ|2
, (4.93)

and the fractional dependence of the gain constants on the measurements, used for the correct

estimation of the degrees of freedom on arbitrary subsets of the data as,

fµ,k = σ̂2
µwk |Υµ,k|2. (4.94)

Each of the above are expressed using,

Υµ,k =
∑

Dµ

γi,k(Dk)Âi,k, (4.95)

where Υk is the unscaled compound template signal from the parameters Ai inside the gain coef-
ficient domain Dµ for which ĝµ is the best-fit scaling given the measurements Dk. The data ranges

Rµ are defined in the usual way to indicate the subset of data affected by the gain constant gµ, and
is thus the union of the ranges Ri for those parameters Ai ∈ Dµ.

Clearly, when both the gain coefficients gµ and parameters Ai in Dµ are fitted to the data, all

combinations that yield the same gµAi product provide equally good solutions i.e., gain fitting
does not provide absolute gain constants only relative ones. As such, it is advisable to enforce

a practical normalization of the derived gain coefficients, such that the estimated parameters Ai

are physically meaningful. This is especially true for the source signals since the objective of the

experiment is the faithful determination of these. Thus, it is recommended that gain constants are
renormalized after every round of gain fitting to provide,

〈ĝk〉 = G0, (4.96)

where G0 is the absolute average gain of the source signals, which is to be determined by an ap-

propriate calibration measurement (e.g., by observing source of known ’brightness’) or otherwise
(e.g by incorporating ancillary data like a measurement of the optical depth τ for ground-based
submillimeter astronomy). As such, it is clear that when the initial signal parametersA(0)i are zero

valued, a practical starting point for data reduction without prior assumptions, some initial gain
constants need to be assumed. These initial gains ought to be subject to the same normalization

condition as above. Therefore, unless further information is available, a practical starting point
could be where all initial gain coefficients are equal with g(0)

µ = G0, and the parameters necessary

for the determination of the gµ values are estimated before the estimation of gµ themselves.
Given the imperfect modeling (i.e., also filtering) of data that result from inaccurate gains (Sec-
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tion 3.5.2), it is clear that one should estimate gains for the dominant model components as soon
as those are determined and not proceed to the modeling of the weaker signals until the gain so-

lutions achieve the desired precision (cf. Section 3.5.2.1). In this way, embedded sub-cycles of gain
estimation, with the corresponding re-derivation of the dependent parameters, may be necessary
within the iterative pipeline that is established otherwise.

The fitting of gains (via coefficients) also presents an important subtlety. As prior parameter
models were estimated from the old set of gains, the derivation of new gains implicitly alter the

shape of these models too, which no longer represent the ’best’ estimates of the data following
gain estimation. This is not necessarily a problem in an iterated reduction scheme, where newer

and improved parameter models are derived with the successive iterations. However, with the
effective change gain dependent models, one has to pay attention to always recalculate residuals
R = I −M to reflect the change of gains. A glance at eq. (4.91) reveals that this can be done by

adjusting the residuals as
δRk = −

∑

µ

δĝµ

∑

Dµ

γi,k(D)Ai, (4.97)

after the incremental estimates of the renormalized gain coefficients δĝµ are derived.
Last but not least, one ought to mention that the fitting of gain constants renders the data re-

duction problem fundamentally nonlinear in nature, as both components of the products gµAi are
fitted (thus it is now a quadratic problem in effect). As such, gain estimation comes with the usual

caveats of nonlinear modeling of data. These can mean undesired convergence to local minima,
or narrow ’valleys’ in parameter space which are not easily explored etc. To obtain the optimal
solutions despite these difficulties, the user of the data reduction has to be careful, and at times

creative, in identifying a closely ideal configuration of the data-reduction pipeline.

4.7 Comparison to Alternative Methods

By now we have demonstrated that time-series analysis through a pipeline of estimators, can be

effective at reducing data optimally in the presence of 1/f -type noise (esp. Brownian noise). How-
ever, to do justice to other established models of data reduction it is fair to provide a comparison

between those and the sequential estimator method discussed here. We shall use the the methods
of matrix inversion through normal equations and that of Singular Value Decomposition (SVD) as
the standards of comparison.

4.7.1 Direct Matrix Inversion

A common approach to data analysis is to directly invert the mapping of parameters under noise

(eq. [4.5]), expressing the parameter vector A from the data D after ignoring the noise term, via the
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normal equations (Press et al. 1986) as,

Â = [MTM]−1MT ·D. (4.98)

Unfortunately, that is often easier said than done. One problem is that the set of parameters
that intuitively arise, e.g., from physical considerations, in eq. (4.1) can be degenerate, in the sense
that different combinations of model parameters may produce identical signal signatures. When

such degeneracies exist, the matrix MTM is singular and, therefore, not directly invertible. Al-
though the degeneracies involved maybe removed by explicit incorporation of appropriate con-

straints (which reduce the effective number of fitted parameters), such constraints can be tedious
or nontrivial to formulate, especially when complex observing strategies are used in producing the

data set. Also, the sheer size of the matrix operations involved, most generally requiring N 2
k oper-

ations (although some shortcutting may be possible at times), can make this approach unattractive

for large data sets. The required calculation can be significantly less intensive when the matrices
mainly contain zero components (e.g., can be reduced as block diagonal).

Aside from the practicalities of inverting large and complex matrices, the method raises addi-

tional concerns, even when otherwise feasible. Compare this approach to the general framework
of weak signal data reduction presented in Chapter 3. To incorporate noise weights, the matrix

multiplication can be appropriately converted to noise weighted sums. These essentially repro-
duce the χ2 minimizing normal equations (Press et al. 1986). What is less clear is how the matrix

inversion relates to thee ’optimal’ filtering of the data. Filtering, may be performed externally, (e.g.,
by prewhitening) but arises also from the constraints which are used to remove the degeneracies

and make the matrix inversion possible. As these constraints themselves can be complex, so will
be the filtering properties that they procure.

4.7.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is a more widely applied method of data reduction, directly
suitable for degenerate data models. SVDs identify a single (approximate) solution to the matrix

equation (eq. [4.5]) from a the family of possible (approximate) solutions, by picking one which of-
fers a minimal χ2 deviation (or another extremum). As such SVDs invariably yield solutions to the
χ2 minimizing problem, although these may not be entirely unique. In fact, linear combinations

of ’solution vectors’ with identical eigenvalues provide equally good solutions themselves (for a
better, more detailed discussion of SVDs refer to Press et al. 1986). This should be expected when

identical signal structures can be produced via different degenerate parameter sets, linear combi-
nations of which have identical signal signatures also. In other words, from a space of equally

plausible solutions, each with identical χ2 values, SVD identifies but a single one, leaving one
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wondering about the propriety of this choice.
It should be plainly obvious that no mathematical approach, hence not the SVD either, should

be able to magically resolve the inherent degeneracies of the problem. While in case of the direct
matrix inversion, via the normal equations, the filtering properties are determined explicitly by
constraints supplied, no such external constraining is needed for the SVD approach. Therefore, the

filtering properties of SVD are more difficult to determine, and may even be arbitrary, since the
solutions are not always exactly unique. It is only via further physical constraining that this value

can become fully meaningful.
SVD approaches, therefore, do not get around the complexity of the filtering problem presented

by the direct matrix inversion approach. At the same time, SVDs are computationally even more
expensive.

Last but not least, neither the SVD nor the direct matrix inversion is directly suited for solving

nonlinear parametrization. Although this may be overcome by an iterated scheme with converging
estimates, the costly approximate solutions provided at every turn are not that different from the

estimates that result from the inexpensive linear pipeline approach.

4.8 Conclusions

We demonstrated that closely optimal analysis of data with 1/f -type noise (especially Brownian

noise) can be achieved through a sequence of statistical estimators which are derived for every
model parameter, one at a time. The type of estimators used can be chosen to provide the desired

statistical properties. The modeling of noise signals is an equivalent approach to the spectral fil-
tering discussed in Chapter 3. When optimally configured, the method easily achieves 1/f 2 noise
whitening, and converges to properly weighted spectra when a set of intertransforming observing

patterns allow for a ’stacking’ of these. Optimal pipeline configurations are achieved through:

• Careful choice of noise parametrization, with respective data ranges. 1/f noise is best parametrized

from regularly spaced, nonoverlapping, blocks of time-series data.

• Optimal ordering of the parameter estimators.

• Identifying an optimal number of iterations for each of the various signal component models.

A handful of iterations is usually adequate for reaching optimal solutions.

• Estimation of quasi-proper statistical noise weights, with pivotal importance assigned to the
proper accounting of the degrees of freedom for arbitrary data subsets.

• Estimation of gain constants to the prescribed accuracy, and recalculating the residuals when

gains are adjusted.
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• Additional Filtering via FFT or otherwise, if desired, and the discarding of unreliable data.

Iterating is necessary partially to reach a self-consistent weights and filters (see Chapter 3), but

also to mold effective filtering properties, arrive at accurate gain parameters or deal with equivalent
nonlinearities, and to identify and flag unreliable data. The initial filtering properties provided by
the relevant noise estimators evolve through the iterations. As the source model is re-derived

multiple times, the degenerate noise signals gradually make their way back into the source model.
Thus, excessive iterating is generally counterproductive.

The weighting (including flagging) and gain estimation steps can be inserted in between the
derivation of signal component parameter vectors. Granted, some insertion points are better jus-

tified than others. Typically, one should delay the estimation of weaker signal components until a
accurate set of gains and weight are derived from the modeling of more dominant signals.

In its most optimal form, the method’s computation costs grows linearly with the data size,
placing it at a great advantage of alternative approaches, such as matrix inversion via normal equa-
tions or Singular Value Decomposition, or even simple Fourier transform-based analysis. At the

same time its filtering properties are well-characterized and easily tracked, is sharp contrast to the
matrix methods which leave these obscured under their relative mathematical complexity.

The faint galaxies of Chapter 2, and a variety of SHARC-2 papers whose scientific results also
benefited from the CRUSH data reduction, provide proof of the effectiveness of this approach. The

method also provides a viable form of data reduction for the very large data sets expected from
future bolometer arrays, and the analysis weak signals under 1/f noise interference in general.
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Appendix A

Note on the Effective Number of
Beams Inside an Aperture

The effective number of beams Nbeam inside some aperture a(x) can be counted by the number of
independent Fourier components necessary to parametrize the aperture under some limiting beam

resolution. Thus, the underlying flux distribution f(x) is convolved by the beam response β(x),
normalized such that

∫
dxβ(x) = 1, and windowed by the aperture a(x) with the image inside

the aperture expressed as fa(x) = f(x) ⊗ β(x) · a(x) i.e., Fa(ωx) = F (ωx) · B(ωx) ⊗ A(ωx) in the
Fourier domain, under tranformation with e−iω·x. Hence, for white noise, 〈|F (ωx)|〉 = B(ωx) ⊗
A(ωx), where the spectral resolution is given by A(ωx). The number of independent spectral noise
components is then expressed as,

Ncomp = Nbeam =

∫
dωx |A(ωx)⊗B(ωx)|2∫

dωx |A(ωx)|2 (A.1)

For quasi-Gaussian beams and pillbox apertures the productA⊗B will also be nearly Gaussian,

owing to the central limit theorem, with a widened spread σ2
A⊗B ≈ σ2

A + σ2
B , under the implicit

Gaussian approximation to A(ωx) with an equivalent σA spread. Therefore, the above can be ap-
proximated as,

Nbeam ≈
σ2

A + σ2
B

σ2
A

≈ 1 +
σ2

a

σ2
β

(A.2)

Recalling the uncertainty principle for Gaussian Fourier transforms σa(x)σA(ωx) = 1, and ob-
serving that the variances relate to the areal integrals as A = 2πσ2 for both pillbox apertures and

Gaussian shapes, the number of independent beams are expressed, in terms of the areas as,

Nbeam ≈ 1 +
A

Abeam
(A.3)

The above result is intuitively justified, as at least a single beam (spectral components) is always
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necessary to describe the image in an aperture, no matter how small, and for large apertures one
should expect the number of beams to grow linearly with the aperture asN ∼ A/Abeam. The results

will approximately remain valid for generic apertures as long as its deviation from a pillbox shape
is not too extreme, e.g. for apertures that are contiguous and not too elongated, and for beams that
are reasonably approximated by Gaussian shapes.
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Appendix B

CRUSH: A Practical Guide

B.1 CRUSH for SHARC-2

The aim of this appendix is to provide a practical guide of incorporating the data reduction prin-
ciples of CRUSH (Chapters 3 and 4) into an effective implementation. This is done through the

example of the SHARC-2 reduction.
SHARC-2 has 384 semiconductor bolometer detectors arranged in a 32× 12 format with closely

packed 4.85′′ square pixels.1 The AC-biased, demodulated and amplified, detector signals are sam-

pled at every 36 ms to provide the time-stream data. Thus the data cube is 3-dimensional, with x

and y coordinates describing the detector columns and rows respectively, and a time axis t. Data is

taken normally in 2–10 minute integrations.2 Multiple scans on a single target are generally isolated
in time, and can be distributed over days, even years.

Scans. Because data is generally not a contiguous block of sample, or because noise properties

may be slowly varying over long integrations, division into smaller chunks is often practical for
creating smaller data blocks for which the stationary noise assumption holds (see Section 3.3.3).
The CRUSH analysis approach is mainly optimal for the analysis of data with stationary, and espe-

cially 1/f -type noise (Section 3.3.3.1). For SHARC-2, the noise properties of individual scans (2–10
minutes typically) are reasonably described as stationary.

The full data set can be a collection of (possibly noncontiguous) scans (see fig. B.1). Accordingly,
models (noise components, gain and weight estimates, detector flags etc.) ought to be calculated

separately for each scan. The source model is the exception to that, since the same source signals
are present in all scans that observed the same target. Thus a single source model is used with a

collection of scans.
1The effective pixels are slightly rectangular with 4.89′′ × 4.82′′ on the Cassegrain mount and 4.49′′ × 4.74′′ on the

Nasmyth mount. For consistency, all fluxes in CRUSH are scaled to the effective Cassegrain values when referred to the
input.

2Shorter integrations of 2-3 minutes are used for pointing and calibration, while 10 minute scans are typically used for
science targets.
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Figure B.1 The full data cube typically consists of a collection of scans, which may have been taken
at different times. Even when data is taken in a single long contiguous block, a division into smaller,
stationary blocks may be practical. SHARC-2 scans are typically 2 − 10 minutes long. Analysis is
performed for each scan separately, except for the source model which is estimated from the full
data cube.

The separation of modeling into scans (or other practical stationary subdivisions) is useful from
a computational perspective also. Each scan may be processed separately, in parallel, for the most

part, providing a way to process even extremely large datasets with a cluster of computers. These
computers need to work in unison only for the appropriate derivation of the source model, whereas
they may process data independently otherwise.

Slicing. The constraints of nonoverlapping parameter ranges for the independence of the param-

eter estimates (Section 4.4), and the contiguous data blocks (i.e., boxcar windows) that are effective
for the treatment of 1/f -type noise signals via CRUSH (Section 4.4.2), in practice mean that each

scan (or analogous contiguous stationary blocks of data) of Nx × Ny × Nt samples3 is sliced into
smaller cubes of sizes nx × ny × nt samples for the estimation of stationary (i.e., uniform) noise

components. The slices provide characteristic regions Rm (Section 4.4) for the various component
signals m (Section 4.2) in that scan. The incremental parameters that are derived from the Rm,j

are simply low-resolution representations of the scan residuals at the time of the estimation. A

schematic illustration of the data slicing used for the various SHARC-2 models is shown in Fig-
ure B.3.

The combination of ranges Ri and corresponding gains gi,tc for a parameter Ai provide its
3for SHARC-2 Nx = 32 and Ny = 12.
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Figure B.2 Slicing of scan data for deriving parameter estimates. The practical constraints on how
to parametrize noise and other signal components (Section 4.2) such that these are independent
(Section 4.4) for a given component signal Km, and are effective for 1/f -type noise filtering (Sec-
tion 4.4.2), is fulfilled if data is sliced into smaller cubes. Statistical estimates for the jth cube provide
a signal parameter Am,j , which is the effective value of Km within that region. Thus, parametriza-
tion of 1/f -type noise signals happens via low-resolution snapshots of the residuals.

mappingM into the time stream (Section 4.3.1). Thus, each model parameter affects only the slice
of data from which it derives. The slicing of data determines the 1/f -filtering properties of the
resulting estimates (see Section 4.4.2).

Apart from noise signals, similar slicing is practical for other models also. Detector gains and
weights, DC levels, and time weights can be estimated from similar cubical slices (see Sections 4.6

and 4.5. Because each scan comes with a separate set of models (except source), the slicing affects
similarly all scans of a data set.

A summary of the SHARC-2 models is provided in Table B.1, indicating the typical slicing (i.e.,
parameter ranges R) used for each, as well as the relevant gains and other properties. The various

model components shown in the table, are discussed in further detail further below.

Modeling. The jth parameter of the mth signal component Km (see Section 4.2) i.e., Am,j , is de-
rived from the jth block with shape and size Rm (i.e., Rm, j) via any viable statistical estimator of
choice (see Section 4.3 for possible statistical estimators). Accordingly, the estimation process of

all models Am is fully described by its mapping Mm, or equivalently by the slicing into cubical
regions Rm,j and corresponding gains gm,j,tc

Ordering. The ordering of component models is an important aspect of configuring effective

pipelines. The following considerations need to be taken into account for determining an optimal
pipeline order.

1. Modeling of bright signals generally precedes that of the fainter ones (see Section 3.5.2.1 and
also 4.5).
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Figure B.3 Slicing Example for SHARC-2 scan data. Schematic examples of the different data slicings which are used in the SHARC-2 reduction.
The symbols correspond to pipeline elements, which are summarized in Table tab:SHARC2-pipeline. The slicing determines the effectiveness of
1/f -type filters, while the ordering of estimator vectors in the pipeline (see Section 4.4 on filtering in CRUSH) determines which act as filters on the
source model (or one another) and which do not.
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2. Accurate gain knowledge is typically needed for a sufficient removal of bright signals. Thus,
it is recommended that faint signal modeling is delayed until the desired gain convergence is

achieved (see Section 3.5.1).

3. Priorly estimated components impose filtering on the later component estimates (see Sec-

tion 4.4.1 and also 4.2).

4. It may not be necessary to model the very faint signals when these are insignificant in compar-
ison to the source signals. Exception can be made if cleaner residuals are desired nonetheless

(see Section 4.4.1.2).

To satisfy constraints, some pipeline elements may be delayed until later iterations before estima-

tion is attempted. Consider, as an example a typical pipeline (fig. B.5) that was used for a '20 Jy
point source in good weather (τ ≈ 1). For models and conditioning pipeline elements (e.g., consis-

tency tests) that are associated with faint signals, an upper limit to χ2 (see Section B.4) may be used
as a condition before solutions are to be attempted.

Iterations. Once an optimal pipeline order has been established, one must determine how long

to keep iterating. Here, the considerations are:

1. Achieve sufficient convergence on gains (Section 3.5), weights (Section 3.4.1) and data flag-

ging.

2. Reach a desired level of source filtering via the models whose estimation has preceded the
first source estimate (see Section 4.4.1.2). Most filtering is provided at the first source model

generation. Subsequent iterations may produce more optimal filtering, although at more
relaxed levels the further one iterates.

Generally, only a handful of iterations are necessary to reach optimal solutions. For SHARC-2 data,
5–12 iterations, with 3–5 source model generations, are typically used.

B.2 SHARC-2 Pipeline Elements

A summary of the SHARC-2 pipeline elements (except source) is shown in Table B.1. A detailed
discussion of each of the component follows below.

B.2.1 Signal Models

Pixel Offsets. The DC component of the (total power) detector signals. In SHARC-2 this consists
of a part subtracted in hardware via DACs, and a residual which needs to be ’measured’ in the
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Table B.1. Summary of SHARC-2 Pipeline Elements

characteristicR typ. ext.
Component Name Symbol nx ny nt gain flux α int. condition

Pixel Offsets O 1 1 Nt 1 100 Jy · · · none
Correlated Noise C 32 12 1 G(Dk) 10 Jy 2 &2’
Pixel Weights wc 1 1 Nt · · · · · · · · · · · · χ̂2

r < 2
De-spiking σ 1 1 1 · · · · · · · · · · · · χ̂2

r < 2
Pixel Gains gc 1 1 Nt · · · · · · · · · · · · C modeled.
Time Weights wt 32 12 10-100 · · · · · · · · · · · ·
Sky Polynomials (order n) P (n) 32 12 1-10 gcΓc 0.1 Jy 1 &1’
Row Bias Drifts R 32 1 10-30 gcΓc 0.02 Jy 1 directional
Detector Drifts ∆ 1 1 300-1000 1 <0.01 Jy 1 nt∆tv
Spectral Test Σ 1 1 nf = 1, 2, 4, ...Nf · · · ... · · · · · · χ̂2

r < 2
Temporal Test T 1 1 2, 4, 8...nt(∆) · · · ... · · · · · · χ̂2

r < 1.2
Block Correlations B 4-8 4-6 1-10 gcΓc <0.01 Jy ? nx × ny

Acceleration Response a 1 1 Nt gcΓc <0.01 Jy · · · bias? χ̂2
r < 1.2

Chop Residual c 1 1 Nt gcΓc <0.01 Jy · · · bias? χ̂2
r < 1.2

Note. — Summary of SHARC-2 Models. The various pipeline elements (except for the source model) that are used in the
reduction of SHARC-2 data are listed. Each of these are estimated for each scan separately in the data set. Nonsignal model
names (e.g., weighting, gain estimation and consistency checks) appear italicized. The cubical blocks of nx × ny × nt provide
the typical characteristic data ranges R used for the model parameters in the SHARC-2 reduction. These together with the
signal gains provide the mapping M of the modeled signal parameters into the time stream. Also shown are the typical
equivalent 350µm fluxes of the modeled signals per SHARC-2 pixel, and the power index α for the characteristic 1/fα type
noise power spectra. The last two columns indicate whether the models impose filtering of the source when precede that in
the pipeline, and the typical conditions used for evaluating whether the particular modeling should be attempted in a given
iteration.
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reduction software. The hardware subtracted part with '10 mV is equivalent to '104 Jy signals,
while the residual DC signal is typically on the order of 100 Jy per detector pixel. The model O thus

is a single DC value per pixel for every scan.
The DC offsets are a function of the loading power Pload and the bias voltage Vbias. Thus,

Oc = fc(Pload, Vbias), (B.1)

with a different appropriate functions fc for every detector channel c. The DC levels can be used
to provide a direct measure of the detector loading when fc are invertible under the bias used. It

is thus possible to provide direct line-of-sight measures of the atmospheric optical depth τ , once fc

are adequately characterized. CRUSH has this capability for SHARC-2 350µm operation in good

weather, i.e. τ . 1 under the standard detector biasing of operation.

Correlated Noise. Most of the atmospheric variation is correlated among the full SHARC-2 de-
tector array, and exhibits a 1/f 2 Brownian spectrum. Therefore, the correlated component C is

modeled for each 36 ms SHARC-2 across all the detectors. Since the signal is dominant, with typi-
cal RMS of 10 mJy min−1/2, it is important to use accurate loading dependent signal gains G(Dk).

Sky Polynomials. One way for modeling higher order atmospheric structures (cf. fig. B.3) is to
fit 2-dimensional polynomials P every so often to the entire array. Typically 1st or 2nd order poly-

nomials are useful. When the modeling of spacial-temporal atmospheric structures precedes the
source, it will cause the source model to be filtered as far as these polynomials are able to describe

brief exposures of the source in the time stream.

Row Bias Drifts. The detectors of SHARC-2 are biased at a constant voltage, with all detectors
of a row supplied with the same bias. Because the detector bias is related to the DC level, small

bias fluctuations can result in signal artifacts. With DC offsets typically on the 104 Jy equivalent flux
scale, bias fluctuation on the order of 10 ppm can cause electronic noise signals on the 100 mJy level.
These exhibit a canonical 1/f , or pink noise, spectrum typical to electronic noise. Modeling row

bias drifts R requires determining one bias offset per detector row at regular intervals. When the
modeling of these bias drifts precedes the modeling of the source, total filtering of the source struc-

tures in the direction perpendicular to the rows results. However, because this is an anisotropic
noise source, the filtering can be avoided entirely by rotation of the field or the detectors relative to

one another (see Sections 3.6.6.1 and 4.4.1.3), in a single coherent reduction of the dataset.

Detector Drifts. Unfortunately, the SHARC-2 detectors themselves are not stable over time scales
of &30 s. For reaching the sensitivity limit of the instrument, it may be necessary to model (i.e.,
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filter) the 1/f component. This is implemented by estimating a drift value ∆ every so often (.30 s)
to each pixel. When preceding the source modeling, this will filter all source structures that are

larger than the distance swept by the scanning detectors in the time scale of the estimates. Note,
that consequently, sensitive scan patterns should loop around within this limiting time scale.

Block Correlations. An alternative to polynomial fitting, and truer to the CRUSH approach,
higher order atmospheric structures are modeled trough low resolution estimates of the scan data

(cf B in fig. B.3). Individual parameter estimates are derived for a block of adjacent detectors (e.g.,
8 × 6 pixels are typically used), averaged over some small number of 36 ms samples. Because the

modeling has to be performed on very short timescales to be effective, the detector movement is
typically negligible and the source filtering is mainly imposed by the estimator block size in the

slicing (see Section 4.4.2) when modeling precedes that of the source. For 8 pixel blocks, spacial
components (e.g., Fourier components) larger than about 15 pixels (i.e.,&1’) will end up completely
filtered.

Acceleration Response. The SHARC-2 time stream is suspected to contain signals related to tele-

scope acceleration. One reason maybe that semiconductor bolometers are susceptible to micro-
phonics. More significantly perhaps, the surface of large submillimeter telescopes (e.g., the CSO)

could wobble when accelerated in pursuing a scanning pattern. With the wobbling the illumina-
tion dΩc (see below in Pixel Gains of the detectors is expected to change systematically. Assuming

the change is anisotropic i.e., dependent on the magnitude but not the direction of telescope accel-
eration a, the illumination dΩc of detector c can be approximated locally by a quadratic form as,

dΩc(a) = dΩ0,c − ωca
2, (B.2)

around the optimal static values dΩ0, c, which are known either from measurements or theoretical

calculations (e.g., optical modeling). Given that changes in the illumination modulate the optical
loading Pload of the detectors, which is otherwise nearly constant throughout the typical SHARC-2
scan, such variations result in effective component signals (see Section 4.2) as,

Ktc ≈ ω′
c a

2
t . (B.3)

Thus, the coefficients ω′
c can be estimated (Section 4.3) for each detector from its full time-series

signal. When these estimates precede the source modeling some interference with the source struc-
tures is expected but may be difficult to characterize. However, because acceleration changes the

detector illumination one-sidedly, some sort of a bias may result in the source model, when that
follows the acceleration-related terms in the pipeline.
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Chop Residuals. If a chopping secondary is used instead of, or in addition to, a scanning pri-
mary, similar changes in the illumination (as above) are to be expected. Thus, for a well-tuned and

symmetric secondary mirror, such that the static position is optimal, the illumination is a function
of the deviation dθ from the optimal position and thus,

dΩc(dθ) = dΩ0,c − κcdθ
2 (B.4)

leading to time-series (component) signal artifacts from chopping which are,

Ktc ≈ κ′c dθ2t (B.5)

Thus, the constant κ′c can be estimated in for every detector using all samples from a scan. Similar
biases may result as for the Acceleration Response above.

When the optics is not symmetric it may be necessary to include a linear term too, leading to
signal artifacts of

Ktc ≈ λc dθt + κ′c dθ
2
t (B.6)

This is the more applicable case for SHARC-2, owing to the astigmatic secondary mirror of the CSO.
In fact, for small chopper excursions, the quadratic term is assumed to be negligible in comparison

to the linear one. Either or both relevant coefficients can be estimated (Section 4.3) for each detector
for the duration of a scan.

B.2.2 Supplementary Models

Pixel Gains. The full loading dependent SHARC-2 detector gains for extended input signals (e.g.,
atmospheric loading, the Moon, or some extended GMC) can be expressed in terms of the illumi-

nation of the detector dΩc i.e., the integrated solid angle covered by the detector or its beam, the
loading functional form Γ(Dtc), and the scaling constant gc, as

Gc(Dtc) = gc dΩc Γc(Dtc) (B.7)

With the strong correlated atmospheric background affecting all detectors simultaneously, the esti-

mation of the scaling constant gc becomes possible from the correlated parameters Ci, via the gain
coupling γi,tc,

γi,tc = δi,t dΩc Γc(Dtc) (B.8)

substituted in eqs. (4.92)-(4.95). The delta function simply associates a correlated parameter Ci

with a single exposure at time sample t, which is its natural connection (see Correlated Noise above).

Section 4.6.1 offers more detail on gain estimation.
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When the illumination of detectors is approximately uniform (dΩc ≈ dΩc′), and the loading
variations during the scans are small (δΓc(Dk)/Γc � 1), then the actual signal gains are crudely

approximated using the mean loading term Γc and the scaling constants gc as

G ≈ gcΓc. (B.9)

For SHARC-2 350µm data this approximation is typically accurate to 2–3 significant figures under

the typical atmospheric loading (emissivity) variations of <1% in a 10 minute scan. Thus, the ap-
proximate gains can be used for the adequate subtraction of the weaker (.1 Jy) signals, even when

recovering the faintest ('10 mJy) targets. Because the electronic gains for all detectors channels are
effectively the same (within the 2–3 digit accuracy) all gains can be refered to the input, and thus

the use of gcΓc are generally adequate for all weak signals (see see Section 3.5.2).
When the loading dependence G(Dtc) is well characterized, it provides an absolute gain cali-

bration. The fitting of gain constants is useful only for relative fine-tuning of the detector gains (see
Section 4.6.1). CRUSH provides the built-in gain calibration for SHARC-2 350µm data based on
the DC offsets (which typically trump all other signals i.e., Dtc ≈ Oc). However, the final calibra-

tion of the source image has further gain dependence on the atmospheric optical depth τ and the
beam efficiency η (see Section B.3). Thus, without accurate characterization of these extra terms, the

built-in gain calibration is no substitute for frequent calibrating against objects with known 350µm
fluxes.

Pixel Weights. Pixel weights are used for characterizing the final noise properties of the resid-

uals under the time variant vs. detector noise separation assumption (see Section 4.5.1). Because
effective reductions result in filtering that is approximately noise whitening, the weights can be cal-
culated under the white noise assumption, with transient properties absorbed into the time weight

terms (see below). A few iterations over the more dominant signals are typically necessary to ar-
rive at a consistent set of weights and signal models (cf. weighting–filtering cycle in Section 3.4.1).

The estimation of weights should generally wait until the dominant signals are removed from the
weighting domains, whether temporal or spectral (see Section 4.5), so that the white noise assump-

tion is approximately correct.

Time Weights. Time weights are a complement to detector weights (above), and are meant to deal
with transient noise features in the data steam. Thus similar considerations apply. Time weighting

is described in Section 4.5.1.
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B.2.3 Consistency Checks & Flagging

A critical aspect in the reduction of weak signals is to be able to identify data (e.g., detector chan-

nels) which are unreliable. In the SHARC-2 reduction a number of tests serve this purpose. These
tests are inserted into the pipeline and provide flagging (Section 3.3.4) of questionable detectors or

time samples. Tests are used both for flagging and unflagging of suspected detector channels, de-
pending whether they pass or fail the test at every round. Thus the iterations may evaluate models

over different sets of detectors. It is generally best to arrive to a stable set of active detectors and
data points before proceeding to the critical faint source signals (esp. in deep mode reductions).

Residual Spikes. The simplest test is to search for far outliers in the data which are inconsistent

with the measured white noise properties (see weighting in Section 4.5) of the signals. For example,
under the Gaussian noise 5σ outliers are expected only in every couple of million data points only.
Farther outliers should be even more rare. Thus, a relatively more frequent occurrence of residual

farther-lying data may indicate a detector with unusual behavior. Accordingly, the first few extreme
outliers are flagged point-for-point in the SHARC-2 reduction, but once these exceed a critical user-

defined fraction of the detector data, the entire detector channel is flagged.

Temporal Test. Similar to the search for spikes, but instead of looking at individual data points
the test is performed on averages derived from data blocks of varying sizes. Performed for each

detector separately, the these blocks involve varying numbers of time samples for a given detector
channel. Thus, the test is effective for identifying transient features (of all sizes) in the detector
time-streams. As the CRUSH reduction filters low frequency components heavily (see filtering,

Section 4.4.2) it makes sense to try window sizes between 2 samples and the window size used for
the detector drifts, because these will filter low frequency noise on the shorter times scales and all

spacial scales. The data blocks in this test may overlap to preference. Detectors which fail the test
are flagged (see Section 3.3.4).

Spectral Test. Very much like the Temporal Test but operating on the spectral domain obtained by

the Fourier transforms of the detector signals along the time direction. The spectral window sizes
can vary between 1 frequency channel to Nf/2.

B.3 The Source Model

As mentioned the source model alone ties a set of scans together, and is thus derived from the entire
data cube (with all scans). Otherwise all other modeling and testing is performed separately for
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each scan. The mapping of the time series (tc indeces) into map pixels (with xy indeces) is via,

Mxy
tc = δxy

tc gtc. (B.10)

The Kronecker delta expresses that data points are uniquely associated with map pixels (for sim-
plicity!). With coinciding data and map indeces, the data is mapped with an appropriate gain gtc

into the source map Sxy. This gain is related to the atmospheric gains G(Dtc) (see Correlated Noise)

but with the extra terms for atmospheric extinction (via the time variable optical depth τt) and for
detector beam efficiency ηc,

gtc = ηc e
−τt G(Dtc). (B.11)

Just like G(Dtc) can be replaced simply by gcΓc for fain signals, the same can be done when the
source signals are small relative to the variation of sky (C) in magnitude, leading to faint source

gains of,
gtc = ηc e

−τt gcΓc. (B.12)

With the mapping (data ranges via the delta functions, and gains) defined, the source estimation

proceeds as usual, using a statistical estimator of choice, such as a maximum-likelihood estimate
(Section 4.3.1), maximum-entropy estimate (Section 4.3.2) or robust median estimate (Section 4.3.3).

However, since the sensitive and accurate recovery of the source signal is the objective of the ex-
periment, it plays a more special role in the pipeline than the other signal (and noise) components.

Specifically, some manipulation of the source image may be desirable beyond the pure statistical es-
timation, to make it more “physical” to the observer. Some of the useful postprocessing operations

are:

• Leveling, since the constant source term is irrecoverable due to 1/f -type noise interference.

• Noise re-estimation, because uncertainties are calculated (according to eq. [4.21]) with weights
in the white noise assumption, which may not characterize the resulting image.

• Smoothing and filtering to improve appearance and/or detection significance of the images.

• Masking, to concentrate on the recovery of selected image regions only.

• Clipping, especially to discard insensitive parts of the image.

Some of these operations are presented in further detail below. Note, that calibration of the
source fluxes is strongly dependent on the gain terms provided by the optical depth τ and the

beam efficiency in the field over the detector ηc, which are not determined from the data otherwise.
Of the two terms, the estimation of τ may be possible from the data, either entirely, or differentially

around an otherwise determined mean value τ (Section B.3.1). The beam efficiency, on the other
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hand, needs to be measured externally (e.g., by frequent observation of calibrator sources with
known 350µm fluxes!). The variations of the focus quality, affecting the main beam efficiency of

the telescope, is likely the strongest contributor to the blind calibration uncertainty of SHARC-2
images. With the SHARC-2 focus models after April 2005, blind calibrations of '15%(!) seems
possible, provided a reasonable guess at τ is supplied.

Leveling. Strictly speaking images recover not absolute fluxes but rather a relative distribution

of those. Flux measurements are possible via comparison of different image region relative to
one another. Specifically, by identifying a part of the image as “blank sky” source fluxes can be

deduced by comparing flux levels relative to that patch. However, provided that most SHARC-2
images contain mostly blank sky, its level can be estimated reasonably via a robust estimate, such as

a weighted median of the image pixel fluxes (Section 4.3.3). This way, the resulting image fluxes are
generally accurate measures of the absolute source brightness. CRUSH levels the derived images
in this way for SHARC-2 data. However, this convenient built-in leveling feature should not serve

as a substitute to sound judgment by the astronomer.

Noise re-estimation. Noise estimates on the image pixels are calculated statistically from the
time-stream noise properties (eq. [4.21]), by assuming that the residual noise is well characterized

as Gaussian. As such, these are only guiding numbers for images which may have more complex
noise structures. When the image noise is uniform in nature, and variations are caused only be-

cause of the varying coverage of the different image pixels, the white noise estimates may be scaled
by an appropriate constant to provide reliable image noise estimates. The scaling constant can be

determined, as an example, from the median χ2 deviation (see Section 4.5.3). CRUSH offers this
possibility for SHARC-2 images.

If noise adjustments are done scan-by-scan (on the partial maps yielded by every scan), based

on a median or average χ2
n for scan n, it makes sense to adjust the weights used in constructing the

source image as,

wtc −→
wc wt〈
χ2

n

〉 . (B.13)

Smoothing and Filtering Smoothing is a convolution by a beam-shape B(x)

S′(x) = S(x)⊗ β(x), (B.14)

where β(x) is the integral normalized beam,

β(x) =
B(x)∫
dx′ B(x′)

. (B.15)
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The normalization is intended to preserve integrated fluxes.
Since B(x′) represents the response to a point source at an offset of x′, B(x′), it is to be treated

as a gain term. As such, the weighted convolution becomes,

S′(xi) =

∑
j w(xi − xj)β(xj)S(xi − xj)∑

j w(xi − xj)β(xj )
, (B.16)

according to to weighted averages replacing arithmetic ones (see Section 3.3). Interestingly, under

the integral normalization of eq. (B.15), the normalized beam response β(x′) behaves more like a
weight than as a gain term, as the particular form of the denominator reveals. In this light, the error
on the smoothed image is,

σ2
S(xi) =

1∑
j w(xi − xj)β(xj)

. (B.17)

The exact same results are obtained if one fits beam features of shape β(x′) to the unsmoothed

source map S(x) by minimizing the weighted χ2 model deviation i.e., producing maximum-likelihood
estimates (see Section 4.3.1 on maximum-likelihood estimates). Therefore, images S ′(x), smoothed

by an effective beam β(x′), represent the most probable distribution of sources which are of under-
lying shape βx′ and, therefore, smoothing readily provides a way for point source extraction for

images characterized by noise that is independent from map pixel to map pixel (and less strictly
map beam to map beam).

Smoothing by Gaussians that are not beam-sized can be used more generally for filtering un-
wanted high frequency image noise. Varying beam sizes produce quasi-optimal filtering (see Sec-
tion 3.4.3.2 on optimal weak signal filters) of the images. The wider the Gaussian shape used for

smoothing the heavier is the filtering of the higher spatial frequencies. Apart from granting more
certain fluxes, smoothing can greatly improve the appearance of SHARC-2 images (see fig. B.4).

Smoothing can also be used for high-pass spatial filtering of images (i.e., discarding extended
structures), by subtracting a smoothed image from the original. For example, if one wishes to

filter away spatial structures &1’ from SHARC-2 maps, it can be achieved by subtracting an image
smoothed by 1′ from the original. CRUSH offers both smoothing and high-pass spatial filtering of
SHARC-2 images.

Clipping Clipping of underexposed, or otherwise noisy, image pixels may be useful both for im-

proving image appearance, and to discard image pixels that carry unreliable flux measurements.
Flux clipping (e.g., the clipping of negative fluxes, or clipping at arbitrary flux levels) can also be

useful to provide images which are physically more justified (even if statistically not at all!). Clip-
ping of the negative image fluxes is additionally useful for producing the positive images required

for maximum-likelihood estimation (see Section 4.3.2).
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Figure B.4 Smoothing and Filtering of Images (3C345 from scan 10715). The top image is the
maximum-likelihood source map, on a 1.6” grid, smoothed by a 6” FWHM Gaussian (middle),
and filtered additionally for spatial scales over 30” (bottom). A small (' 1’ diameter) circular dip,
resulting from the filtering, may be picked out by the careful eye.
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B.3.1 Optical Depth

The measurement of the optical depth is critical for the flux calibration of SHARC-2 images. It was

shown that DC offsets are loading dependent. The loading power can be broken down into an
optical loading component and all else (excess) as,

Pload = Poptical + Pexcess, (B.18)

where the optical loading is dependent on the detector illumination dΩc and the apparent sky

brightness, which can be approximated by a gray- or blackbody (via a temperature T and an emis-
sivity index β), and the optical thickness τ as,

Poptical ∝ dΩc

(
1− e−τ

)
T 4+β

amb . (B.19)

Under the assumption that the optical depth comes from atmospheric layers close to the ground (as

expected for water vapor), the temperature can be approximated by the ambient value Tamb. Thus,
if Pexcess is characterized, the DC offsets can be used to provide a direct measure of τ . Comparing
to eq. B.1,

e−τ ∝ f−1
c (Oc, Vbias), (B.20)

for individual detectors. Better measures of the optical depth result from combining the mea-
surements of all useful detector pixels into an appropriately formulated weighted average (see

Section 3.3). The constants of proportionality come from an external calibration process, e.g., via
comparison to independent measurements of the optical depth. This has been done for SHARC-2,

and the τ values derived from the DC levels are in generally good agreement with the SHARC-2
in-band optical depth measures inferred from the 225 GHz radiometer- or the 350µm tipper data.

Differential Optical Depth Variations Even if external measures of the optical depth are avail-

able and utilized, the optical depth may vary significantly over the duration of integrations (see
atmospheric variations). Thus, a differential momentary adjustment is possible around the mean τ

value determined otherwise.
Consider the breakdown of τ into its mean value τ over the period of the scan, and the differ-

ential variation deltaτ around it,

τt = τ + δτt. (B.21)

Then,
δε̂t =

〈
Gc(Dct)

∂εt

∂Oc

〉
Ct, (B.22)

assuming that Ct is a zero-mean signal over the period of a scan. Here, the emissivity ε of the
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atmosphere is,
ε = 1− e−τ (B.23)

A solid measure of the differential emissivity variation is obtained by the appropriate weighted

averaging (Section 3.3) of the values provided by the individual detectors.

B.4 χ
2 Estimation

When weighting is appropriately performed using only the white-noise dominated regions of the

data (e.g., by spectral weighting of stationary noise), then a true estimate of the chi2 becomes pos-
sible. The arithmetic definition of the reduced chi2 i.e., χ2

rNdf =
∑

k |R/σ|2, can be translated to
weighted data (see Section 3.3),

χ̂2
r =

Nk

Ndf

∑
k w|R|2∑

k w
(B.24)

Deviations from the expected E(χ2
r) = 1 are indicative of the level of excess noise remaining un-

filtered in the data stream. Optimally configured reduction pipelines should produce χ̂2
r ≈ 1 i.e.,

residuals that exhibit uniform white noise (see Section 4.4.1). Larger χ̂2
r values are indicative of

insufficient noise filtering while too low χ̂2
r values reveal overfiltering as compared to optimally fil-

tered data. Accordingly, appropriate adjustments should be made to model parameters (e.g., time-
and spacial resolutions) and pipeline configurations (e.g., ordering, iterations and specific model

activations). See Section 4.4 for a detailed discussion of the filtering properties of iterated reduction
pipelines.

The χ̂2
r measure may be additionally useful for providing an objective criterion for evaluating

whether certain pipeline elements are ready for estimation, or should be delayed until later itera-
tions. See Table B.1 for typical conditions used in the reduction of SHARC-2 data.

B.5 SHARC-2 Example Pipelines

Example 1: Default Pipeline. The following pipeline is typically used for the default reduction
of SHARC-2 data. Each iteration consists of the sequence (cf. 4.40),

O C wc σ gc T wt c P R S Σ ∆ B a. (B.25)

The source S is inserted based on a preliminary assessment of its brightness. Every element of

the sequence may be skipped over in the particular iteration. What elements are activated and
when may be guided by conditions, such as a maximum χ̂2 requirement. Thus, for the particular

reduction of Pallas (scan 22813), a 23 Jy point source, the following model sequence was used.
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< 10 mJy

7 Jy

20 mJy

(5) Detector Drifts

(6) Spectral Outliers

(3) Source

(5) Row Bias Drifts

(5) Sky Gradients

(6) Time Weights
(1) Detector Gains
(1) Detector Weights

(1) Correlated Sky

(1) Residual DC Offsets

70 mJy

10 Jy

100 Jy

Pallas (23 Jy)

Figure B.5 Modeling example of a SHARC-2 scan (Pallas). The series of images on the left show
the signal models projected back onto the SHARC-2 array for a single 36 ms SHARC-2 exposure of
Pallas (frame 256 of scan 22813), resulting from a typical reduction (Example 1). The images are not
shown on the same color scale. Instead, their typical equivalent RMS fluxes are indicated to the left.
For the source flux the apparent peak flux is shown for comparison, as observed with atmospheric
extinction. The iteration in which the models are first derived are shown in brackets. In this case no
real filtering of the source is imposed by the other models, which are delayed in the pipeline until
after the source model extraction.
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Iteration 1-2: O C wc gc

Iteration 3-4: O C wc gc S

Iteration 5: O C wc gc P (1) R S Σ ∆

Iteration 6-8: O C wc gc wt P (1) R S Σ ∆

Final: S
As filtering of the source (S) is provided by those signals models only which precede it in the un-

folded pipeline (Section 4.4.1.2), in this particular case only O and C impose filtering of the source
map, leaving most of its extended structures unperturbed. Particularly, the spatially more sensitive

models P and R have been delayed until 2 source generations have been obtained, such that these
do not filter spacial source structures. A faithful, although possibly too noisy, a source reconstruc-

tion is achieved thus. The spacial sky structure was modeled through a 1st order polynomial P (1)

i.e., as gradients across the array. The reduction resulted in a final χ̂2 of 1.385. The source image is

smoothed by a Gaussian with 4” FWHM.

Example 2: Compact Sources. The same sequence is used as above, but this time allowing for
spacial filtering of the source image. Specifically, P and R now precede the first source estimate,

leading to the unfolded pipeline as,
Iteration 1-2: O C wc gc

Iteration 3-4: O C wc gc P (1) R S

Iteration 5: O C wc gc T wt P (1) R S Σ a ∆

Iteration 6-8: O C wc σ gc T wt P (1) R S Σ a∆

Final: S
This time, a final χ̂2 of 1.081 was reached. The spacial filtering of the source is apparent, but

point source peak fluxes can be correctly estimated from scaling the final image by Q = 1.20 (see
Section 3.4.4 on corrections). The source image is smoothed by a 6” FWHM Gaussian.

Example 3: Deep Fields. At times, the remapped noise from the time-stream is still too high for

the scientific results to show. Then, even more aggressive filtering may be necessary. The following
pipeline is used typically for deep field point sources (in this case a 10 minute scan in the Lockman

Hole):
Iteration 1-2: O C wc gc

Iteration 3: O C wc gc P (2) R ∆ Σ

Iteration 4: O C wc gc T P (2) wt R ∆ Σ a

Iteration 5-9: O C wc σ gc T P (2) wt R ∆ Σ a

Iteration 10-12: O C wc σ gc T P (2) wt R ∆ Σ a S

Here a a second order polynomial P (2) is used for the sky structure, and all models present

filtering of the source, which is solved only in the last three iterations to minimize filter evolution.
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Still additional filtering is possible via B a higher resolution sky model than P (2), or by using a
higher order polynomial. The final χ̂2 was 1.050 in this case. The filtered peak fluxes are recovered

for point sources by scaling the final image with Q = 1.29 (see Section 3.4.4 on corrections). The
source image is smoothed by the beam (8.5” FWHM Gaussian), and thus represent maximum-
likelihood beam fits to the data.
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Pallas

Example 2Example 1

Figure B.6 Example reductions of the asteroid Pallas (a 23 Jy point source from scan 22813). The
heavier filtering via the modeling of the row bias drifts preceding the source is apparent in the
dark ’trench’ around the source in the direction of the SHARC-2 rows. Such filtering is effortlessly
avoided by CRUSH when significant field rotation is present in the coherently reduced data set
(see Section 4.4.1.3). The differing map sizes owe to different sets of pixels being flagged in the two
example reductions.
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Example 1

3C345 

Example 2

Example 3

Figure B.7 Example reductions of 3C345 (a ' 0.8 Jy point source, from scan 10715). As more fil-
tering is imposed by the various signal models preceding the source, the flatter backgrounds are
achieved. At the same time, the with heavier smoothing applied (from top to bottom), the peak
fluxes decrease, although the integrated flux measures stay the same. The differing map sizes owe
to different sets of pixels being flagged in the example reductions. The deep reduction (Example 3,
bottom) has 4 columns on each side of the array clipped explicitly for producing cleaner images.
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