
Four-Wave Mixing and Phase Conjugation 

in Photorefractive Crystals

Thesis by 

Jeffrey Owen White

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California
1984

(Submitted May 11, 1984)



-11 -

ACKNOWLEDGEMENTS

First and foremost it is a pleasure to acknowledge the guidance, and supervi­sion of my advisor, Prof. Amnon Yariv. What a privilege it has been to work in the dynamic environment fostered in his group. My colleagues and I thank him for originating the work in this area, suggesting problems to work on, and especially for providing a laboratory where we had the freedom to explore.Thanks are also due to my colleagues Dr. Mark Cronin-Golomb and Prof. Baruch Fischer who provided the enthusiasm, criticism, encouragement, and intuition which are essential ingredients in graduate work. I am looking forward to the day when we can collaborate on the next project.With the hope of reciprocating some day, I acknowledge helpful conversations with such people as Profs. William Bridges, Lambertus Hesselink, Dmetri Psaltis, Thomas Caughy, Bengt Fornberg, Bill Kath, and Thad Vreeland.Desmond Armstrong, Larry Begay, Edith Huang, and Albert Chang have won my eternal respect and gratitude for their willingness to make other people's prob­lems their problems. The technical assistance of Desmond Armstrong and Larry Begay with experimental apparatus was invaluable. Edith Huang and Albert Chang are computer programming consultants extraordinaire.Constant encourage and perspective have come from my family in New Jersey and friends in California.



Ill

ABSTRACT

This thesis is an experimental and theoretical investigation of nonlinear optics in photorefractive crystals, and applications thereof. Coherent light is used to induce nonlinear, optical frequency polarizations proportional to the cube of the total optical field within these materials. Equivalently, dynamic holography is per­formed wherein the incident light simultaneously writes, reads and erases index of refraction gratings.The first part of this thesis is a description of the physics of the photorefrac­tive effect in such crystals as BilgSiO20, LiNbO3, KTaO3, and BaTiO3. Previous microscopic rate equation models are extended to include the dynamics of a second photorefractive center with the aim of explaining several discrepancies with experimental data.The second part reviews the coupled wave theory of fixed gratings and dynamic gratings formed in photorefractive media. Coupled nonlinear ordinary differential equations describe the interaction between two optical waves; which is caused by the grating that they create. The analysis is extended to the reflection geometry and the ring resonator geometry. The coupling constant is measured in the reflection geometry. Holographic gain is combined with mirror feedback to demonstrate a unidirectional ring oscillator, wherein a optically pumped pho­torefractive crystal functions as a directional gain element.The third part extends the analysis to the holographic formulation of four-wave mixing, wherein four waves and up to four gratings exist in the crystal. The equa­tions are solved in the single grating approximation. The object of much of the analysis is to calculate the reflectivity of a four-wave mixing photorefractive phase conjugate mirror. The invention of a passive self-pumped phase conjugatemirror is described.



- IV -The last part describes three applications of four-wave mixing. We demon­strate the compensation of intracavity laser distortions by replacing an ordinary mirror in a laser with a passive phase conjugate mirror. We propose and demon- strate a phase conjugate window for one-way transmission of an information bear­ing optical field through a thin phase distortion. Finally, the multiplicative pro­perties of four-wave mixing are combined with the transforming properties of lenses to construct a coherent optical processor capable of convolving and corre­lating three input fields containing arbitrary spatial phase and amplitude informa­tion.
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1. INTRODUCTION

1.1 Phase conjugate waves and mirrorsThe phase conjugate replica of a monochromatic electromagnetic field is a field, with the same frequency, whose wavefronts, i.e., surfaces of constant phase, take the same shape throughout space, but propagate in the opposite direction at every point. A wave travelling essentially in the positive z direction is denoted by E1(r,t) = A1(r)eif"t^kz) + A*(r)e'i(ut∙-kz) (l)where the complex amplitude A1(r) can describe any spatial amplitude or phase information impressed upon E1. Mathematically, its phase conjugate is obtained by complex conjugating the spatial partEpc(r,t) = A∙(r)ei(ut + kz> + A1(r)e'i(ut + kz) (2)or changing t -> -t, hence the identification of phase conjugation with "timereversal”.That such a phase conjugate wave can exist is proved by showing that it satisfies the same wave equation that the original wave satisfies. The scalar wave equation obeyed by (l) is ∂A1V2A1 + [ωaμε(r) - k2]A1-i2k-—=0 (3)U itwhere μ is the uniform magnetic permeability and ε is the dielectric constant. The validity of the corresponding equation for (2) 0A,∙VξAj + [w⅛ε(r) - k2]A1, + i2k = 0
follows directly by taking the complex conjugate of (3), provided that ε(r) has no imaginary part representing loss or gain.*
* In the event that ε(r) has an imaginary part that is uniform in space, the proof follows directly 

from factoring out a uniform attenuation from Aj.



- s -

A phase conjugate mirror (PCM) is a device which generates the phase conju­gate of an incident wavefront. If we assume that a PCM is located at the plane z = z0, then the above arguments hold for all z<z0∙ In a stable two mirror laser cavity, the counterpropagating fields are phase conjugates of each other, so both mirrors are acting as phase conjugate mirrors. However, a true PCM willgenerate the phase conjugate replica of an incident wavefront possessing arbi-∖trary spatial variation of amplitude, phase, and polarization.Much of the interest in phase conjugate waves is due to their distortion correcting capability. Figure 1 illustrates the canonical correction scenario where an undistorted wave passes through a region of nonuniform index of refraction, the distorted wave is incident upon a PCM, and the phase conjugate wave returns through the distortion and emerges unscathed. The distortion in the figure could represent modal dispersion in a fiber, atmospheric turbulence, thermal blooming, imperfect optics, etc.
1.2 Phase conjugate mirrors via linear opticsThe first implementations of PCM’s were arrays of corner cube reflectors. They are technically only pseudo-conjugators because of their effect on the polarization properties of the incident wave and because of the piecewise nature of the reflection. The fidelity of the reflected wave is limited by the size of the individual corner cubes and the flipping of each picture element upon reflection from a corner cube. Technological advancements in micromachining and repli­cating optics have made available square foot sized arrays with 47,000 corner cubes per square inch [l].The next realizations were via Coherent Optical Adaptive Techniques. These systems have achieved compensation for aberrated wavefronts with the use of electro-optic devices, acoustic devices, or deformable "rubber" mirrors. The latter are thin metallic reflectors supported by arrays of piezoelectric actuators.
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Figure 1.1. Typical geometry depicting the ability of phase conjugation to correct for a general spatially dependent phase aberration. A plane wave (l) incident from the left encounters a region of nonun­iform dielectric constant. The distorted wavefront (2) is incident upon a PCM, giving rise to (3), which re-traverses the same region. The wave (4) which emerges has the initial planar wavefronts.
The actuators are driven by wavefront error sensors. Such devices are currently in use in lasers, to correct for intracavity distortions, in communica­tions and in astronomy, to image through the atmosphere [2].Kogelnik pointed out that conventional holographic techniques could be used for imaging through stationary distortions. One need only 1) create a hologram of the distorted object wave and 2) illuminate it with a reconstructing wave counterpropagating to the reference wave. This generates a phase conjugate wave which will retrace the path of the object wave through the distortion and converge to a real image [3].
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1.3 Phase conjugate mirrors via nonlinear opticsThe development of real-time holography, in which holograms are written by interfering two beams in nonlinear media instead of on photographic film, elim­inated the time consuming stage of developing the film. The writing and reading (with a third beam) of the transient holograms were considered to be simultane­ous but physically distinct, i.e., noninteracting [4-6].∖A concurrent development was the discovery that stimulated backscattering (Brillouin, Raman, or Rayleigh) could produce phase conjugate waves. In stimu­lated Brillouin scattering, an optical wave incident upon a material medium stimulates a forward going acoustical phonon wave whose w’avefronts match the optical wavefront. The pressure wave perturbs the index of refraction, retroreflecting up to B0% of the optical wave. In stimulated Raman scattering, a forward going optical phonon wave is generated, and in stimulated Rayleigh scattering, a forward going roton is generated [9-11].One feature of these stimulated scattering processes is that the frequency of the phase conjugate wave is lower than that of the incident wave by an amount equal to the phonon frequency. Another feature is the existence of intensity thresholds below which there is no gain for the stimulated wave, hence no reflectivity.The study of all-optical parametric processes in nonlinear media led directly to the current activity in the field. An essential ingredient has been the applica­tion of the concepts and techniques of nonlinear optics, including coupled wave theory and Feynman diagrams [12]. One scheme, called three wave mixing (3WM), involves a second order nonlinearity and three optical fields. In this pro­cess, difference frequency generation takes place, wherein the incident, signal wave at frequency ω and a pump wave at 2ω induce a nonlinear polarization in the medium which radiates a phase conjugate wave at ω [13,14]. The angular
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bandwidth of the incident wave is restricted due to phase matching constraints, and the nonlinear medium must lack inversion symmetry in order to possess the second order optical susceptibility, but amplified reflection is possible and there exists no intensity threshold. Another scheme involves a third order susceptibil­ity and four optical fields. The incident wave at ω and two counterpropagating waves at ω induce a third order nonlinear polarization in the medium [15]. Thepolarization radiates a fourth, phase conjugate wave at ω, hence the name∖degenerate four-wave mixing (D4WM).Nonlinear optical implementations of PCM’s have several advantages:i. The response time is limited only by the nonlinear medium itself. The pro­cessing of different parts of the incident wave takes place in parallel.ii. The resolution in the near field is limited by the density of the atomic or molecular species participating in the interaction, or the wavelength of the incident light.iii. The possibility of gain exists as part of the phase conjugation process itself.iv. Wavefront error sensors are not necessary.
and several disadvantages:

i. Many types of nonlinear media are not available in large sizes of good optical quality. The size of a PCM will limit its resolution in the far field of a distor­tion.ii. In 3WM and 4WM, the pump beams have to be coherent with respect to the signal wave, to a degree determined by the response time of the medium.Four-wave mixing has become the most important nonlinear optical technique for generating phase conjugate waves because the interaction is automatically phase matched for components of the incident wave at any angle, a third order susceptibility is not forbidden in any material on symmetry grounds, and an
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amplified reflection is possible [15-19]. Apart from phase conjugation, 4WM has become a tool for spectroscopy [20, Chap. 6], narrow bandpass filtering [21], converting incoherent to coherent images [22], and image processing [23]. It has been proposed for use in laser fusion [24], generating two photon coherent states [25], temporal signal processing [26], and optical computing [20, Chap. 14].Many types of nonlinear media have been used as the mixing medium includ­ing two-level systems, dyes, semiconductors, radiatively cooled vapors, plasmas, liquid crystals, photorefractive crystals, and aerosols. The photorefractive media are particularly suitable for use with low power continuous wave lasers because of their extraordinary sensitivity, and also because they respond to light continuously throughout the visible spectrum. This is why they were used exclusively in the work described in this thesis.Several review articles have discussed both theoretical and experimental aspects of phase conjugation, its applications, and the nonlinear media used to date [20,27-29].
1.4 Outline of thesisChapter 2 familiarizes the reader with the photorefractive effect and presents a generalization of existing models designed to address two discrepancies between experimental data and some existing models.Chapter 3 briefly review's the coupled wave theory of fixed, thick holograms, and the coupled wave theory of two wave mixing (2WM) in nonlocal, nonlinear media. Two new geometries are examined: energy coupling in the reflection geometry, and a unidirectional ring resonator. Experimental results are presented.Chapter 4 presents the holographic formulation of four-wave mixing as an
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extension of the two-wave mixing formulation in the previous chapter. In this formulation, four plane waves interfere within the medium to write four different gratings. The differences between this formulation and previous formulations of 4WM are emphasized. The resulting coupled wave equations are solved in several approximations including undepleted pump waves, and negligible absorption. The analysis is restricted to cases where only one grating (out of a possible four gratings) is present in the medium. Experimental data supporting the analysis are presented. Oscillation in a new four-wave mixing geometry is considered, which leads to the invention of the self-pumped phase conjugate mirror.Chapter 5 describes three applications of phase conjugation and four-wave mixing to aberration compensation and image processing. The first application is to correcting intracavity distortions in lasers. This is demonstrated by replac­ing the end mirror of a commercial argon ion laser with a self-pumped phase conjugate mirror. The second application is to one-way field transmission through inhomogeneous media. We demonstrate the operation of a phase conju­gate window which permits the transmission of amplitude and phase information through a thin phase distortion. The third application is a real-time optical pro­cessor which performs spatial convolution and correlation of three input objectfields.
References for Chapter 11. Reflexite Corp., 199 Whiting St., New Britain Conn. 060512. D.L. Fried, guest ed., Special issue on Adaptive Optics, J. Opt. Soc. of Am. 67,(1977).3. H. Kogelnik, Bell Syst. Tech. J. 44, 2451 (1965).4. H. Boersch, H. Eichler, Z. Angew. Phys. 22, 37B (1967).5. H.J. Gerritsen1 Appl. Phys. Lett, 10, 239 (1967).
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2. THE PHOTOREFRACTIVE EFFECT

2.1 IntroductionStudy of the photorefractive effect began with the discovery of optical damage in LiNbOg and LiTaO3 [l]. Ashkin et. al. noticed that the index of refraction of their crystals was changed by exposure to light, both coherent and incoherent. Visible and ultraviolet wavelengths produced the effect, but not infrared. If the illumination was nonuniform, the optical homogeneity suffered and it was feared that such sensitivity would make LiNbOa less useful as a nonlinear medium. The damage remained when the light was removed, yet the effect was reversible, in contrast to the catastrophic damage that occurs at much higher intensities.Chen, LaMacchia and Fraser soon realized the opportunities that were there and demonstrated that holograms could be written, stored and erased in LiNbO3 [2,3]. In conventional holography the interference pattern between an object beam and a reference beam falls on photographic film, recording the amplitude and phase of the object beam. The spatial variation of intensity is mapped into a spatial variation of silver concentration ( or absorption constant ) when the film is developed. In real-time holography, the interference pattern fills the crystal, and changes its index as the exposure takes place.The utility of LiNbO3 for frequency doubling was threatened, but the formal equivalence between holography and four wave mixing [4] indicated that a new type of medium was available for nonlinear optics of a different kind. Large non- linearities became obtainable not only at low powers, but over the entire visible spectrum as well. A speed-sensitivity tradeoff is observed, however, because the degree of response depends on the energy deposited in the crystal, rather than the intensity, as is the case for most nonlinear materials. Charge carriers must migrate from regions of high intensity to low intensity, so the response can never be as fast as that arising from the disturbance of atomic orbitals, or rotation of molecules, etc. Response times in the nanoseconds require MW∕cm2 intensities



-li­
ts].In addition to becoming a new medium for performing nonlinear optics, the photorefractive effect has also become a diagnostic tool. For example, the elec­tron and hole contributions to the photoconductivity in LiNbO3 has been deter­mined holographically [6], Phase and amplitude gratings, created by means other than the photorefractive effect, have been used to measure spatial diffusion rates of electronic excitation in impurity doped solids [7,8], exciton diffusion lengths [9], and energy transport in molecular crystals [10],The long dark storage times were promising for optical memories except that erasure occurs during readout. A method was discovered whereby the holograms could be fixed if they were recorded at about 200° C and then cooled to room tem­perature [ll]. Using this technique, 500 holograms were stored in a 1 cm thick crystal of LiNbO3.Fe. The diffraction efficiency of each hologram was =⅛2.5%, and the estimated lifetime of 105 years is suitable for archival storage.
2.2 Basic mechanismThe first explanation of this effect was due to Chen and Amodei [12,13], Their hypothesis was that charges within the crystal migrated under the influence of the light, creating a space charge field and hence an index change via the electro-optic effect. The charges were thought to occupy states within the energy gap, i.e. they were localized or trapped there until excited into the conduction band. They envisioned electrons migrating from intensity maxima to minima, via the conduction band, leaving behind positively ioni2ed donors, i,e. trapped holes. The charge separation would produce a space charge field having the same spatial dependence as the pattern of light intensity exposing the crystal (see Fig. 2.l).The use of photorefractive crystals as holographic storage media depends on the ability to hold a space charge long after exposure. Because the crystal is an insulator in the dark, when the light is turned off, all the electrons must leave the conduction band. The space charge is lost if they all return to ionized sites of the



- 12 -

Figure 2.1. The photorefractive mechanism. Two laser beams intersect, forming an interference pattern. Charges are optically excited from traps within the energy gap to the conduction band. Charges return to the traps via collisional recombination, The excitation is preferential in the regions of high intensity, and the trapping is random so there is a net migration of charge from the intensity maxima to the minima. The electric field associated with the space charge density creates a periodic index variation via the electrooptic effect.
original type, i.e. if all the electrons recombine with trapped holes. Space charge storage is only possible if a population of holes in the donor sites exists in the dark: nocturnal holes. This requires the presence of alternative sites for the elec­trons to reside. One cannot simply add more of the positively charged empty donor sites and preserve crystal neutrality, so the additional ingredient is a second type of trap which is neutral when unoccupied.
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2.3 Photorefractive materialsIn the broadest sense, photorefractive materials could include any material in which light could produce an index change. Index gratings in ruby have been pro­duced by using an optical interference pattern to generate a spatially varying excitation of the Cr3+ ion [16], Gratings have been written in semiconductors by exciting a spatially varying population of electrons in the conduction band [17], Absorption gratings have been produced by bleaching dyes [18]. In CS2 and liquid crystals, polarized light causes the molecules to line up, thus changing the index from ordinary to extraordinary or vice versa [19,20].The term photorefractive effect is used most commonly today with reference to the combination of a photoinduced space charge field and the electro-optic effect. Only in photoconducting, non-centrosymmetric, crystalline, electrical insulators has this been observed to date, and amongst them only in ferroelectrics and the paraelectric sillenites, bismuth silicon oxide (Bi12SiO20, BSO) and bismuth ger­manium oxide (Bi12GeO20, BGO).The energy band diagram of BSD is shown in Fig 2.2. The main source of extrin­sic absorption is attributed to Si vacancies, each in a unit cell which is neutral when the vacancy is occupied by an electron. The other operative state in the energy gap is known only to be a source of photoluminescence in a unit cell which is neutral when the center is unoccupied [14].BaTiO3, KNbO3, LiNbO3, LiTaO3, Sr1.xBaxNb2O6, and Ba2NaNb5O15 are the oxygen octahedra ferroelectrics in which the photorefractive effect has been observed. Since the electro-optic coefficients are linearly related to the spontaneous polari­zation [21-23], proximity to the phase transition can enhance the electro-optic effect. As an alternative to heating or cooling KNbO3, the transition temperature can be lowered by combining it with KTaO3. The nonlinearities of Sr1-xBaxNb2Q6 and Ba2NaNb5O15 can be composition controlled as well [27].Multiple valence transition metals are commonly added because they can
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Figure 2.2. Energy band diagram of bismuth silicon oxide (after Ref. 14,59).
activate the photorefractive effect by serving as donors and acceptors of elec­trons. Γe is the most common dopant. The mismatch between the host and a dopant of lower valence can be compensated by oxygen vacancies. Likewise, the valence of the dopant can be changed. The photorefractive sensitivity is corre­lated with the Fe2+∕ Fe3+ ratio, which can be controlled by oxidation and reduc­tion. For example, removing one 0 atom frees two electrons which then convert two Fe3+ ions to Fe2+ ions. The energy level diagram for KNbOg is shown in Fig. 2.3.
2.4 Survey of experimental workThe photorefractive effect has been explored in many ways. One method is to write a grating with two beams, and monitor its diffraction efficiency with a third, probe beam. If the energy of the probe beam photons is insufficient to excite free electrons, then it will perform a nondestructive readout. The diffracted intensity can be related to the index change (see §3.2), which is the product of the electro­optic coefficient and the electric field. If the probe beam has the same wavelength, and is counterpropagating to one of the writing beams, then the
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Figure 2.3. Oxygen pπ valence band, niobium dε conduction band and Fe2+ donor and Fe3+ acceptor levels of KNbOg after Ref. 61.
diffracted beam is the phase conjugate of the other writing beam. The phase con­jugate reflectivity is then a measure of the space charge field.The writing beams themselves can be used to monitor the grating amplitude. During writing, the diffracted component of each writing beam is hard to measure because it is coincident with the undiffracted component of the other beam. If one beam is turned off at any instant, then the diffracted component of the other can be measured as the grating decays. The coupling between the two writing beams is a measure of the grating amplitude and phase, and is manifested as a transfer of power and/or phase between them.Table 1 summarizes much of the experimental work done to date. The quanti­ties measured are the diffraction efficiency, η, the phase conjugate reflectivity, R, the two beam coupling constant, Γ, (as defined in §3.3), the index change, (5n, and the response time, τ. The variables under experimental control are the external, applied field, Eo, the wavelength, λ, of the writing beam, and the incident intensity
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TABLE 1. Experimental Studies of the Photorefractive EffectCrystal λ Λ Io m=I1∕ Io Eo Qty meas’d Ref.nm μm W/cm2 kV/cmBGO 604 4.4 >33 0.41,0.14 5-19 0<R<1.5% 29514.5 .3-,67 ? 0.94 0 .002<R<,01% 30BSD 514.5 1.05-3 50μ-2m 0-6 .01<η<6.25% 31»/ 1.5 5m 0.1-1.0 6 .01 <η<2% 31

u II tl 0.14,1.0 II 0<R<0,2% 32
it 0.5-9 10m ? 0-6 0<R<0.2% 33632.θ 3 l-20m 0.18 11.3 τ 34BaTiOa 488.0 ? .002-12 ? 0 V 34
II II 0.1-16 ? 0 τ 34
II 0.5-10 ? ? 0 77 34514.5 0.4-4.2 .01-.17 ? 0 τ 35
" 2.61 9 9 0-4 77 35KNbOa 488.0 1.5-10 1 rul 0-7 3<η<10% 3611 II " 11 11 .2<Γ<2cm^~1 36
ιι 2 II 0.01-100 ? .025<77<.6% 36
it II II '∙ 11 .75<Γ<2cm~1 36
ιι 1,6 .001-1 1 Γ∖

U lO-4<η<lO-3 36
11 II II ' " .3<Γ<lcκr1 36
II 2.2 .01-300 0 ,004<τ<4sec 37592 2.6 >0.1 0.16,0.47 2-13 0<R<10% 28LiNbOa 350.7 2.5 9 0.46 -15-15 0<0n<10-4 3811 II H II n 10~4<(5n<10~3 38441.6 .35-6.5 10m 2 0 .06<77<30% 39
II II ,l-20m II II 8<77<i2% 39
tι 11 ? 0.03-0.75 0 0<η<30% 39
II .6 .1-20 0,31 0 6<Γ<8cm~1 40
u II ? 0.02-0.58 0 4<Γ<10eιrΓ1 40
II .35-7 ? 0.31 ? l<Γ<12cm~1 32SBN 514.5 1.9 100m 0.94 0 3<Γ<llcrrT1 62
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variation, I = Io + I1cos(2πx∕ Λ). The fringe spacing is denoted by Λ, and the modulation index of the intensity variation is m ≡ I1∕ Io∙The major observation has been that the amplitude of the space charge field, E1, is proportional to the modulation index of the intensity variation which creates it [31], hence the diffraction efficiency exhibits a quadratic dependence on m (Fig. 2.4),

Figure 2.4. Square root of diffraction efficiency η versus fringe modulation m.Incident power 5 mW∕cm2. Readout with a HeNe probe beam. From Ref. 31.
The absolute intensity dependence of E1 has been measured over a wide range of intensities [30,33-40], The grating amplitude has been found to increase with writing intensity until a gradual saturation. The saturation occurs at 600μW∕cms in BSO (Fig. 2.5), and over 100W∕ cm2 in heavily doped KNbO3 (Fig. 2.6),Ei has a linear dependence on external, applied field, Eo, in several materials over a range of several kV∕cm. [28,30,32,35,36,38]. The reflectivity of a phase
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Figure 2.5. Square root of steady state diffraction efficiency in BSO crystals vs.applied field for different light intensities; full lines, fringe spacing Λ = l/zm; dashed line, Λ = 3μm. From Ref. 30.
conjugate mirror was seen to have a quadratic dependence on Eo, for fringe spac­ings greater than 3μm [32].The dependence of E1 upon fringe spacing, A, has also been measured over a range from 0.5 to 10μ,m. It is best studied with zero applied field. In that case, the grating magnitude is proportional to 1∕Λ. In BSO, an Eo = 2kV∕cm was found to yield a phase conjugate reflectivity independent of Λ, i.e, a flat modulation transfer function (MTF) for 1 <Λ< 10μ,m [32].The time dependence of grating formation has been studied less thoroughly. Most data have been interpreted in terms of a single time constant, although recent work has shown more than one time constant in BSO [52-54]. An inverse
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Figure 2.6. Steady state diffraction efficiency and refractive index modulation vs. laser intensity in KNbO3:Fe at 488.0 nm. From Ref. 37.
relationship between intensity and response time has been observed over wide ranges in BSO, BaTiO3, and KNbO3:Fe. At low light levels, the departure from reciprocity appears to be due to the dark conductivity dominating the photocon­ductivity [37]. Oscillatory writing and erase behavior has been seen in LiNbO3 and BSO [31,33].
2.5 Microscopic rate equation model of the photorefractive effectThe discussion in this section is intended to provide a theoretical basis for the mathematical form, used throughout this thesis, to represent the index change of photorefractive crystals in response to light. The model of the photorefractive effect presented here is a generalization of previous rate equation models, designed to address two discrepancies with experimental data. A model with a
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statistical mechanics approach is discussed in the next section.Much theoretical effort has been devoted to understanding the data presented in §2.4 [43-5l]. The Kukhtarev model [39] agrees well with some measurements made on BSO in steady state, above the saturation intensity [32], There are two regimes in which discrepancies are present:i. Transient measurements disclose the existence of multiple time constants [52-54], while the Kukhtarev model predicts only one.ii. Steady state measurements of the space charge field disclose a dependence on absolute intensity below 600μ,W∕cm2 (Fig. 2.5), which is also not expected from the Kukhtarev model. The particular value of 600μW7cms is an anomaly because the relation between conductivity and intensity, in BSO, is linear except below 20nW∕cm2 (where the thermal excitation into the conduction band becomes comparable to the optical excitation) and above lkW∕cms (where the population of the conduction band becomes comparable to the concentration of absorption centers and saturation occurs.)The intensity saturation at 600μ,W∕ cm2 has been attributed to a complete filling of the less numerous of the two types of traps in BSO, the luminescent centers [30]. According to this explanation, below Isat the space charge has con­tributions from both types of sites, and above lsat there is a contribution only from the partially full site. All models of the photorefractive effect to date, in BSO as well as other materials, have considered just one photoactive species (see Ref. 55). The second site is taken to be completely occupied and therefore not partici­pating. The generalization to two photoactive species followed from the hypothesis that i) the second time constant and ii) the intensity saturation could be due to the presence of a second site with different dynamics.In BSO, the silicon vacancy sites are called donors and the luminescent centersare called acceptors.* The concentration Nd includes all sites within the donor
* This terminology can be confusing, especially because the (unoccupied) acceptor states are located 

closer to the conduction band than the valence band, and the donor states are closer to the valence
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band, and we assume that a single absorption cross-section adequately describes 

the distribution of slightly different sites. We separate Nd into those sites that are 

occupied by an electron, Nβ(r,t) and those that are ionized N⅛(r,t), such that 

Nd = Nβ + N£. We separate the acceptor concentration Na into those sites that are 

occupied by an electron, N⅛(r,t) and those that are not N^(r,t), such that 

Na = Na + (Fig. 2.7). The ionization and deionization of the donors is governed 

by the rate equation

9Ntf
-gp=aDI(ND-Ni)-7DnW (!)

where o⅛ is the absortion cross-section divided by the photon energy. The recom­

bination coefficient, γΰ, is the cross-section for collisional recombination times 

the rms thermal velocity of the conduction band electrons.** We assume that the 

absorption is not limited by availability of states in the conduction band, so that 

the transition rate is proportional only to the donor concentration. We also limit 

our consideration to linear recombination.†

The ionization and deionization of the acceptors is governed by the rate equa-

band, in contrast to the situation in doped semiconductors. The terminology for photorefractive 
crystals arises from a scenario in which every lattice site is neutral initially. Studies of the 
structure of the defects in BSO indicate that, in this configuration, the Si vacancies are occupied by 
an electron and the luminescent centers are empty. If charge exchange is to take place, the 
transfer must be from Si vacancies to luminescent centers, hence the donor/acceptor terminology. 
However, it is not known whether photorefractive crystals ever assume a form in which every unit 
cell is neutral. One could just as well ask, "If the crystal is illuminated, allowing the electrons to 
redistribute, where is an electron most likely to reside?” Based solely on the overwhelming 
numbers of Si vacancies, one might expect the average electron to reside there, so perhaps in this 
situation it would be appropriate to call them the acceptors. This suggests a third test on which to 
base the terminology: if there were an equal number of Si vacancies and luminescent centers in an 
illuminated crystal, in which trap would the average electron spend the most time? The answer to 
this question is also not known, but if it were we would be justified in calling that trap the acceptor. 
We prefer to say that that trap is more electronegative, to borrow a term from chemistry. One must 
remember that trap occupancy is probabilistic and the equilibrium is dynamic with both types of 
traps accepting and donating electrons to and from the conduction band, through photoexcitation 
and recombination.

♦* If we wanted to extend the model to light levels below 20nW∕cmz, we could add a term to include 
thermal ionization. The presence of a spatially uniform thermal excitation appears as an effective 
decrease in the spatial variation of light [56]. The presence of a spatially varying thermal excitation 
could conceivably contribute to the photorefractive effect, if the thermal conductivity of the crystal 
were such that localized heating could be maintained.

† If the conductivity were due to holes, we would consider transitions from the valence band to the 
empty donors. The equations would take an identical form,

= αβ'I(No — Nfi) — 7D,hNfi ,

where now cd’ and 7d' refer to transitions between the donors and the valence band, and h is the 
concentration of holes in the valence band.
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conduction band η

valence band

Figure 2.7. Electron trap concentrations and migration paths in BSO. All the 
symbols are defined in the text. The horizontal widths of the bands 
are proportional to the log of the concentrations in the special case
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tion

ÖNJ?-^-=αΑΐ(ΝΑ-Ν£)-7ΑηΝ£ (2)

The current in the conduction band consists of a drift component due to an elec­

tric field , and a diffusion component:

J = μenK + ⅛T∕zVn (3)

where μ is the electron mobility, e is the electronic charge, kB is Boltzman's con­

stant, and T is the temperature.‡ The charge and current are related by the con­

tinuity equation

‡ The pyroelectric effect and the bulk photovoltaic effect can contribute to the current in some 
ferroelectrics. The latter has given rise to an open circuit saturation field of 10sV∕ cm in Fe doped 
L1NbO3 [57], but none has been observed in BSO. ^
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V∙J = -∣f = -e^(N⅛-Ni-n) (4)

Since the crystal as a whole is neutral, we require that the spatial average of the charge density be 0, i.e,,

(p) = <N£ - Na - n> = 0
The charge and the quasi-static electric field are related by Poisson's equationβ e(Ni-Nχ-n)V E = e-= ----- ------ - 5)ε εwhere ε is the dc dielectric constant.The experimental geometry is shown in Fig. 2.1. The z direction is normal to the crystal face and the x direction is parallel to the face and perpendicular to the fringes. The simplest hologram is a grating formed by the interference of two plane waves I(x) = Io + I1eikx + I1°e^lkx (6)We are interested in volume holograms but first we consider a slab dz of pho- torefractive crystal thin enough so that the intensity throughout is equal to that at the entrance face, i.e. known throughout. Later, in Chapters 3 and 4, we will consider the effect of the crystal on the light. We are able to separate the prob­lem in this manner when the variations of the unknown quantities (I, N⅛, N£, n, E) are sufficiently different in the directions along and across the fringes.Since our main interest is volume holograms, in which scattering is confined to Bragg angles, we only consider the fundamental spatial Fourier component in the unknowns N,J, N⅛, n, and E.* Therefore, we take
♦ In actuality, the crystal response includes spatial harmonic generation. However, the two writing 

(and reading) beams are at Bragg incidence only for a grating with wavevector ±k=⅛-⅛. 0ur 
result for the fundamental component differs by little from the result obtained after solving for all 
the components [39]. Higher components are easily observed in our laboratory by adjusting the 
angle of incidence of the reading beam. They have been put to good use in image processing as well 
[56]. Their presence doesn’t seem to affect the fundamental grating, for low modulation index 
m= I Ii I ∕ Io, even though the space charge to write higher harmonics must be drawn from the same 
pool.
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N^(x,t) = A0(t) + A1(t)efltx + A*(t)e~ikx (7a)NjJ(x,t) = D0(t) + D1(t)elkx + Dj(t)e^^ikx (7b)n(x,t) = n0(t) + ∏ι(t)ea≈ + n1s(t)e~ikκ (7c)E(x,t) = E0(t) + Eι(t)efltx + E*(t)e~ikx (7d)where the direct (as opposed to alternating) components are spatial averages, i.e., A0(t) =(N^(x,t)), etc. We have implicitly assumed here that the density of holes (Ac and Do) is sufficient to resolve the intensity fringes. The only quantity that is known a priori is the direct part of the static electric field, Eo, which can be sup­plied externally.
S.5.1 Steady state behavior. Substituting (6) and (7) into Eqns. 1-5, we obtain, in steady state, seven algebraic equations in seven unknowns. In the small signal approximation, we assume a low modulation index on I, N^, N⅛, and n, so thatI1A* « I0A0 , n1A* « n0A0 , etc.
In this limit, the direct quantities are related by_ ⅞ (Ng) _ n0 , .

<W> 7d <Nd÷> " IoThus, γ∕a can be viewed as a measure of the electronegativity of a trap. For a fixed ratio n0∕ Io, as 7a∕ aA increases, <Na>∕(N^> must increase. That is, as the electronegativity of acceptors increases, the probability of acceptor states being occupied increases.In terms of the intensity and material parameters only, the steady state value of Do is given by the cubic equation
r, tλ x- , 7ddo0≈ana ^d!o(nd-do)0 = Do - Na +--------7-z —r--------- - -------------- - -------7aO⅛(Nd - Do) + 7doaD0 7dD0 (10)This equation, and the equation for Ao, determine the participation of the two sites. The steady state electric field containing the contributions of the charge densities A1, D1, and n1, is given by
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(11)_ 1ι En(E0 + iEf)1" 1I0 Eo+ 1(Ef+ En + Eκ)This is the field which modulates the index of refraction through the electrooptic effect. The form of (11) motivates the expression for the index of refraction which is used in the remaining chapters (see §3.3). The characteristic fields are defined as follows:

Np-Dq Na-A0
en≡ed-⅛-^÷ea∙ a cNr Nλ e Aq εk Ed≡

eD0εk
Ef ≡ kβTk r _ etl° En~ εk

ea ≡

Ea, for example, is the maximum space charge field that could be created with the acceptor sites (Fig. 2.8). Aside from a factor of 2π, it corresponds to the field created by a complete charge separation, to a distance equal to one fringe spac­ing·
A0(or Do)

N4(oγNd)

Figure 2.8. The occupation of the acceptors (and donors) varies periodically, creating a space charge grating.
Ef is the diffusion field, in the sense that diffusion alone will create a space charge
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field equal in magnitude (not phase) to that created by an external field Ef, in the absence of diffusion.There is implicit intensity dependence in n0, Ao, and Do, hence also in En, E⅛, andEd, so the intensity dependence of the entire expression (11) appears to be quite complicated.* The intensity dependence is typically less complicated, as shown in §2.5.3.In view of the way the donors and acceptors contribute to the field in a like fashion, the more general model cannot be excluded on the basis of the data [32] which supports the Kukhtarev model [39].
2.5.2 Transient behavior. The first step in the temporal development of holo­graphic recording is for the incident light to excite a population of electrons from both types of traps into the conduction band. We can expect a sudden change in the direct and alternating components of the concentrations of all three species. The electrons in the conduction band ferry charge to and from the acceptor and donor sites, gradually shifting charge from the regions of high intensity to the regions of low intensity, perhaps over many cycles of excitation and recombina­tion. So, we also expect comparatively slow time dependence in A1 and D1. It is these charges, not n1 that constitute the major part of the space charge density in steady state. As the electrons in the conduction band begin to see the field due to the trapped charge, we expect to see more slow changes in n1 as well.**We will consider a step function illumination, with turn-on at t=0. The time dependent solution requires a second approximation in addition to the small sig­nal approximation. In many situations, the photocurrent has a risetime much shorter than the hologram writing time. The large difference in the time scales allows us to simplify the problem by taking n0 to be its steady state value for theentire duration of space charge buildup. This is done at the cost of accurate
* Ii Eo were supplied by a current source, as opposed to a voltage source, an even more complicated 

intensity dependence could be easily obtained through the photoconductivity.
♦♦ This feedback is considered to be important in the latter stages of hologram formation [41,46], but 

can be neglected in the initial stages [47,59]. Mathematically, this would mean the space charge 
contribution to the electric field in Eqn. 3 could be dropped.
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knowledge about the field during times comparable to the risetime of n0. No time dependence on this time scale may be extracted from the equations that follow from this approximation.The steady state value of n0 depends on Ac and Do which are also taken to have their steady state values, but for a different reason. They are assumed to have reached their equilibrium ratio as a result of prior illumination, either coherent or incoherent. Indeed, a special procedure would be required to bring the ratio of Ao to Do out of equilibrium. Equation (9) is exact for I1 = 0, so the relative values of Ao and Do are independent of Io, Their absolute values have only a very small intensity dependence through Eqn. 10.The rate equations for the three populations become three simultaneous linear ordinary differential equations.A1 = aÄ[l1(NA-A0)-I0A1]-7A[n1Ac + n0A1] (12)
Di = <⅛[M⅝ - Do) - ⅛Dι] -7D[niD0 + n0D1]

Aj + D1 - hi = -μe en0ε (Di + A1 - ni) + ikn1E0 + kβTμk2n1
which may be solved by the Laplace transform technique. At this point we can identify some characteristic rates.‡

≡ αA⅛ + 7aγlo
ftA^pNAAo l'a ≡ 7a⅞ (Na-A0) 0a1≈
o⅛⅛Nd

I'D ≡ ¾⅛ + 7dγ⅛ = —5------ I'd ≡ 7dD01⅜ Δ(Nd-D0) ≡ α0I1

‡ The characteristic rates and fields are related, for example, by
e N⅛~Aq _ e ⅛ A _ 1 VaVg

A Na εk Ii ι⅛ μk va
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μn0e = μkEnε ⅛Tμk2
Vf ≡ ---- ------ = μkEf ue ≡ μkE0

v⅛ is the ratio of the photogenerated conductivity to the dielectric constant which constitutes the inverse of the RC time constant for the material at the given level of illumination. In terms of these rates, the transform of the electric field is given by

where vs ≡ vk + ue + + v& + ι∕n + u1 — mE
ι∕j2 ≡ (ι⅛ - ΐμΕ)(ι/Α + i∕d) + uai∕d + i/ai/D + i/Ai/d + i∕π(i∕a + ι∕a + i∕d + ι∕d)
⅝3 ≡ ⅛D + ¼1 I'D + l'A1'd) + ⅛⅛⅛ ~ ^e)

vi and i√e always appear in the combination ι√f - ii/E ≡ vg. It is clear from the left side of (13) that consideration of a second photoactive species has generalized the transient behavior to that of multiple time constants.
2,5.3 Application to bismuth silicon oxide. Eqn, 9 is relevant to hypothesis (ii). Since n0∕ Io is independent of Io from 20nW∕cm2 to lkW∕cm2, the ratio (Na)∕(N^) must be constant. Before even computing the values of or Na, we can conclude that they are independent of Io, within this region, because their sum is fixed (see text preceding Eqn. 1). Thus, no change in the occupancy of the acceptors is indi­cated at 600μ,W∕cm2, according to this model.Measurements that have been made on BSO [14] allow one to deduce that

Na = lθ10cm 3 Nc = 1019cm 3
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ÖD - 2× 10~lgcmghι∕ 0.5 cm3J 7d = 2×10-" cm3
sec 7a = 8×10~n cm3sec

Using a hypothetical value of aA = 2 ——, which gives equal electronegativities, weobtain trap occupations which are very nearly independent of Io:Ac - 10l3cm~3 Do = 1016c∏r3
Thus 99.9% the acceptors are filled and 99.9% of the donors remain filled with electrons. Choosing a value of Io = 0.1W∕cms, we obtainn0 = 5× 1013cm~3
Given a dielectric constant of ε = 56ε0, and experimental parameters of Λ = lμm, T = 300αK, the characteristic fields take on the values:

En - 5 kVcm Ea cm Ed = 5 kVcm
Ei = 1 kV 6 — cm Er 2.5 Vcm

It is then apparent that E1 has a simpler intensity dependence than shown by (ll). Since Do « Nd, Ao « Na, and also n0 « Na for intensities « lkW∕ cm3, we haveen - E nd-p0⅜ + ea Na-A0Na ≈ Ed + Ea - ~k^(Do + Ao) - + n°) eNAεkD
which is a material constant independent of intensity. So, the major steady state intensity dependence of the space charge field, and hence the index of refraction variation, is seen to be E1 « I1∕ Io, in agreement with experimental results [3l].Concerning the assumption that n0 reaches its steady state value much faster than E1, we note that the risetime of the photocurrent in BSO is 0.4 msec [14], and hologram formation at 0.1 W∕cm3 takes approximately 10 msec [33,60] Using the aforementioned experimental and hypothetical parameters, and the additional
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information that μ = 0,03 cms∕Vsec, we obtain

i∕a = 200 Hz ι∕a = B00Hz vn = 4.8 kH
i∕d = 50 Hz vd = 0,2MHz ι∕f = 3 MHz
vz = 3 MHz u1 = 40 kHz v0 = 5 kHz

The existence of three time constants is evident from (13), but experimentally two dominant time constants have been observed. In view of the large values of μd and 
vs, possibly i∕e, and measurements of hologram risetimes on the order of 10 msec [33,60], we expect the cubic term to be much less than the quadratic term [55], In this case, there will be two dominant time constants, and the solution will be given by

n. ε τ, _ izg(^dA + vaΔ) __t_ _ _t_'1 + A+ e τ+ + A- e τ'e u03where
(14)

1 ∕ vι
α±ξ±2-(“7=√V√- + 1) and4ι∕2ιv 1 _ Hι⅛V^ι4~4i∕gu03 

τi ~ 2 v2 (15)
Using the above parameters, we obtainA+ =10 A- = -11 τ+ = 4.8msec τ- = 5.3msec
The ratio —A+∕ A- = τ^∕ τ. is plotted versus fringe spacing for several values of the unknown α⅛ in Fig. 2.9. Two time constant behavior should be observed when two conditions are met: 1) A+ and A- are comparable in size, and 2) τ+ and τ- are not. The conclusion concerning hypothesis (i) is that the second photoactive species is a possible source of the multiple time constant behavior, for a range of values for α⅛ and A. At Λ= lμm, one can see that a) as α⅛ decreases (the acceptor states fill with electrons), τ+ approaches τ. and the multiple time constant behavior disap­pears; b) as cxa increases (the acceptor states become more empty), ∣A+∣ becomes
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Figure 2.9. Ratios τ+∕ τ. and A+∕ A- as a function of the grating period A. The parameters used are given in the text, Several hypothetical values of ka are used.
much less that ∣A-∣, and the multiple time constant behavior disappears again. Experimental work is currently in progress to check the variation of the two time constants with applied field, and grating spacing.In the event of full traps, Ao = O, Do = Na+π0 = Na, and the time dependence simplifies to:

- uD + t7d ÷ tzn ÷ t7f ~ ⅛÷ ⅛(^,n + - ^e)
2.6 Statistical mechanics model of the photorefractive effectIn the previous section we saw how the rate equation model was stated and how

*zD W+ ^k +En + Ef - iE0En + En + Ef - iE0 (16)



- 32 -

two approximations were necessary to obtain a solution. An alternative model has been developed by others, which incorporates the same approximations from the beginning, and, not surprisingly, arrives at the same steady state result [35], The purpose of this section is to introduce the statistical mechanics model, and com­pare it with the rate equation model.Recall thati. Much of the analysis in the literature treats just one photoactive species.ii. Another approximation that is commonly made is to ignore the contribution of the conduction band electrons to the space charge field, i.e. ignore their direct contribution but maintain their indirect contribution of allowing a redistribution of trapped charges to take place, in the absence of any tunnel­ling·iii. The average concentrations of all species are frequently assumed to reach their steady state values in the early stages of hologram formation.Accordingly, the hopping model permits a fixed concentration of charges, Nt> to occupy a much larger concentration of identical sites, Ns, in any of a large number of permutations [35]. Charges reside only in the states within the energy gap, not in the conduction band. In the dark, each charge is immobilized at a site, but when exposed to light it becomes mobile.Under uniform illumination, the relative probability of two sites m and n being occupied is given by statistical mechanics:fi(lPn Ç^m)wΓ = exp~ ⅛-"
where T is the lattice temperaure, and q is the charge of the carrier, φτi is the quasi static potential at site n due to externally applied fields, to intrinsic chemi­cal potentials e.g. the bulk photovoltaic effect, and includes the space charge field itself under conditions of non-uniform illumination. This steady state form is
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contrived by choosing the following form for the hopping rate, from site m to n, proportional to

exp-
¾ ( ⅞⅛tn)2k0T (17)

A spatially varying light intensity causes a rearrangement of this distribution if the tendency to hop from site m is proportional to lm. Thus changes in the occu­pancy of site n depend on the rate of hopping into n from all other sites m and the rate of hopping out of n into any other site:*dWndt = -∑Dm
m

WnInexp q⅞g∏m 2 k0T qjgmn2k0T (18)
As before, variables W and φ are taken to have the formWn = Wo + W1eikxn + W*e_ikXn

Pn = 5⅝ + ξ¾eikxa + Pi’e ik*a
Substituting these expressions into (18), using Poisson's equation, and using the characteristic fields defined in §2.5.1, yields the following:!

E1 -iDI0(k0l7 E1 (E0 — i(Ef + En)) En ~ i γ (Ec -iEf) (19)
where D is the adjustable nearest neighbor hopping parameter in the theory. The steady state field amplitude and the time constant are:I1 EN(E0 + iEf) = k0T(Ns)az31'' 1I0 Eo +i(Ei + En) T DI0εk(-En — Ef + iE0)The steady state field agrees well with the rate equation model (ll). The equivalent of En does not appear because holes in the valence band are ignored. * †
* Factors of 1-W could be added to account for the probability of the final state being unoccupied. The 

experimental results are actually consistent with leaving out those terms, because the probability is 
very close to 1. This is equivalent to having (Nd—Do)∕Nd=1 in §2.5. The experimental results are 
also consistent with ignoring all hops except between nearest neighbors.

† Now, Ej =----- - —, and En = —because the charge carriers in BaTiOg are holes.
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The parameter D is unknown, so one cannot compare expression (20) for the time constant with the rate equation result (16) except to say that one could solve for D in terms of the characteristic fields by equating the two results.
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3. TWO-WAVE MIXING

3.1 IntroductionIn the previous chapter, the grating formation in photorefractive crystals was explained in terms of nonlinear ordinary differential equations which describe the coupling between the light and the mobile charges within the crystal. A spa­tially varying intensity was found to cause a redistribution of charge which modulates the index of refraction through the electro-optic effect. The various plane wave components of the incident light are subsequently coupled by the self-induced diffraction. In this chapter, the propagation of light within these crystals is determined by a set of nonlinear ordinary differential equations which describe this coupling.In the analysis of the previous chapter, the intensity was assumed to be known, i.e. equal to the incident intensity, within the thin slice of material that was considered. When the grating thickness is comparable to a fringe spacing, the transmitted field is given simply by the incident field times a multiplicative amplitude to be transmitted, t, (Fig. 3.la), The diffracting waves are solutions of the wave equation in a region of simple, uniform, index.If, within the grating, either the exponential absorption constant or the index of refraction is given a sinusoidal modulation, then many diffracted orders appear in accordance with the many Fourier components (Fig. 3.lb). The z com­ponents of the wavevectors need not obey a sum rule, although they may, given the proper angle of incidence (Fig. 3.1c,d). The lack of phase matching in the z direction isn't important because the medium is infinitesimally thin in the z direction. The angle of the incident beam is equally unimportant; within the paraxial approximation, t is independent of the incident angle.When the wave interaction and diffraction are thus confined to different regions in space, the analysis is quite simple. The diffraction efficiency of thin
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(a) (b)

Figure 3.1. Diffraction from thin and thick gratings.a) Thin amplitude grating.b) Thin phase or absorption grating.c) Phase matching for a thin amplitude grating.d) Phase matching for a thin phase or absorption grating.e) Zero and first order Bragg diffraction within a thick grating.f) Second order Bragg diffraction.
gratings is limited, however, hence the interest in thick gratings.In a sample of finite (as opposed to infinitesimal) thickness, the nonlinear
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interaction and the diffraction occur simultaneously, within the same volume. The wave equation must be solved in a region of periodic index variation. The analysis in this chapter is restricted to plane waves in steady state. It is an extension of the coupled wave analysis of thick, fixed hologram gratings, which will be briefly described first.
3.2 Coupled wave theory of fixed, thick hologram gratingsIn this section, the diffraction of plane waves by thick, fixed, i.e. non-erasable gratings is described [l]. Such gratings can be produced in photographic emul­sions, dichromated gelatin [2], photopolymer materials [3], and photorefractive crystals that have been fixed after recording [4]. In contrast to thin gratings, for diffraction to occur, the incident beam must be close to Bragg incidence, and only one diffracted beam is radiated (Fig. 3.le). The transfer of energy into a diffracted component is cumulative in z only if the diffracted wavevector equals the incident plus the grating vector. Another way of looking at this is that multi­ple reflections only interfere constructively in certain directions. One can observe higher order reflections, but each order requires illumination at a different angle (Fig. 3.If).Propagation inside volume gratings is well described by coupled wave equa­tions derived from the scalar wave equation. As in Chapter two, a grating with only one sinusoidal component is considered. The surfaces of constant index are planes, perhaps tilted with respect to the crystal surface.∏ι ,f . ∏ι ,f .n = n0 + -ζ-e~^τ + f> + —- e1⅛r + &
The optical electric field consists of two fields incident at the Bragg angle whose wavevectors are given by k1 — k2 - g.
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E(r) = A1(z)e~fltl'r + A2(z)efll3r

The Aj are the complex amplitudes representing the envelope of the optical field. The z dependence of the amplitudes is due to the linear absorption and the cou­pling caused by the grating. The above expressions are inserted into the scalar wave equation and the terms with equal exponentials are collected in separate equations. The amplitudes are assumed to obey the slowly varying envelope approximation, i.e. their second order spatial derivative is neglected in com­parison to the optical wavevector times the first derivative. Then, the second order differential equation reduces to the two first order equations:dA, a πn1cosθ1 -3— = — — A1 — i—— e~w A21 dz 2 1 λ i
cosθp dA2dz πn, • el<i Ao_2

where θi is the angle between the z axis and lq. Separating the amplitudes into amagnitude and phase with the definition Ai ≡ e-1*i, the equations for theintensities can be found.
cosθ dik 1 dz 2πn1 ∕----= —αl1 + —— V I,I2 sin(⅞J1-⅛⅛-⅞j)
cosθp dz -αls λ2πn1 ,∖∕l1I2 sk⅜1-⅞>2-<p)

(la)
(lb)Note that the phases of A1 and A2 appear in the equations, so that at any point in space, if the interference pattern and the grating are out of phase so that—⅞j3-≠0, the intensities are coupled. This is similar to the case of an elec­tromagnetic field and an oscillating dipole moment, where a temporal phase shift between the two accompanies energy exchange. When the grating is illuminated by a single beam, a complete transfer of energy to the other beam is considered a diffraction efficiency of one. In general the diffraction efficiency is defined to
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V ≡
cosθ2 I2(i)cosθj I1(0)

Notice that if ∣cosθ2∣<∣cosθ1∣, then I2(Z) can be greater than I1(0), where li = ∣Aj∣2 is proportional to the power per unit area perpendicular to ki. Of course for a lossless, passive grating, the flux in the z direction must be conserved (see (4) ). To calculate the diffraction efficiency of a transmission grating, the boundary conditions are I1(0) specified, and I2(0)=0. πn, d
This formula is commonly used to interpret the experimental data described in §2.4.
3.3 Coupled wave theory of dynamic gratingsTo extend the analysis to the dynamic case where the grating is written by the very waves that are coupled by it [5], we will derive equations coupling the complex amplitudes of two linearly polarized plane waves

E = e1 A1(z) e *1 r + e2 A2(z) e ⅛ r
which interfere inside the medium to produce an intensity distribution

where I+ ≡ I1 + I2. We restrict the discussion to waves whose polarization vectors do not change in space, i.e., they are individually eigenpolarizations of the medium, and they are either perpendicular or parallel to the grating planes so
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that the coupling does not alter the polarization of either wave. The form for the index is inspired by the expression for the time averaged intensity.n = n0 + n1e-* e~i⅛-⅛>∙r + ∏1e* ∆l^ei⅛-⅛>ri+ 1+
n0 is the index of the material accompanied by any uniform electro-optic effect. The amplitude of the grating is proportional to the fringe visibility, or modulation index of the intensity distribution, 2A1Aa∕I+. n1 is the material response to a unity modulation index, and is given by the amplitude of the space charge field and an effective electro-optic coefficient. For example,

nje'i'c = -irefl En(Eq + iEf)Eo + i(Ef + En + En) el'e2 (2)93 represents an intrinsic spatial phase shift between the grating and the interference pattern. Substituting these expressions into the scalar wave equa­tion and using the slowly varying envelope approximation yields the following equations: dA1cosθ, —— 1 dz πn, -e-ifβ A-ι AaAa I+
cosθa dAadz πn. .ei(β a*a2a1

i+

The factor of i multiplying the coupling term represents a 90° phase shift upon reflection within a medium possessing a periodic index variation. The intensities and phases of the two beams are coupled according to the intrinsic phase of the grating.
dl1cosθ1 dT = -odl 2πn1—-— sin⅞s Λ Ii⅛ι÷ ⅜ιcosθ, —:---dz πni IaΙTctwi7 (3)
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cosθ2 diidz 2πn1 I1I2 -αl2 + ——sinçu -y— cosθ2 ⅛8dz πn1 I1— c°si,-

Note that the intensities do not depend on the phase of the optical field, in con­trast to Eqns. (l), but depend only on φ, the intrinsic spatial phase shift. The energy balance for the system is the same as that for a fixed grating:cosθ1 + I2 cosθ2 + α(I1 + I2) = 0 (4)which shows that, in the absence of a, it is the energy flow in the z direction thatis conserved.The case of a transmission hologram (Fig. 3.2) with symmetric angles of incidence i.e., Ql - —θ2, can be solved by the change of variablesJ1 = I1eαr J2 = I2eαr J+ ≡ J1 + J2
where the path length is denoted by r = z∕ cosθ1.

r -Ji

Figure 3.2. Two-wave mixing in the transmission geometry.
Noting that J+ is now constant with respect to r, the two equations for J1 and J2
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may be decoupled. dJ1"dr^ ∙2Γ J1 Js J1 (J+ — J1) J +

⅜½-= 2r⅛⅛-= 2r<liJ⅜dr J+ J+
πn1where Γ= —-—siujs. These equations can now be integrated directly and theresult expressed in terms of the original variables

I1 = I1(0)e~αr Iι(0) + ⅛(0) I1(0) + l2(0)esrr (5 a)
I2 I2(0)e^"r I1(O) + ⅛(0) I1(0)e^~2rr +I2(0) (5b)

For large, positive (negative) Γ, the sum of the intensities of both beams appears in I2 (I1), aside from the linear absorption.
3.4 Oscillation in two-wave mixingGain through two beam coupling in transmission was first observed in 1972 [6]. In our laboratory, it has been combined with feedback to produce oscillation in a unidirectional ring resonator [7]. In the configuration of Fig. 3.3, the pump I1 is supplied externally, but la is not. Scattered light passing through the crystal in many directions is amplified at the expense of I1. Scattered light heading in the proper direction is fed back, by the mirrors, into the crystal to be amplified again. In this way, an infinitesimally weak initial beam can build up to a intensity Ig, comparable to I1. The boundary condition appropriate for a ring resonator is I2(0) = (1 — S)Ig(O where S is the loss due transmitting mirrors, Fresnel reflections from crystal surfaces, etc. Using (3), one can solve for the ratio of oscillating power to pump power



- 46 -

Figure 3.3. Two-wave mixing in the ring resonator geometry.
⅛(0) _ 1 - 5 - efc-3r)i I1(0) ^ eal - (1 - S)

where I - d∕ cosθ1. The oscillation condition is217 > al — log(l — S)
independent of pump power. In support of this conclusion, we checked for a pumping threshold. Oscillation was observed to build up for a pump intensity of 15mW∕cm2, setting an upper limit for the threshold. The time to reach steady state was approximately eight minutes. At an input intensity of 1.5W∕cm2, the time to reach steady state was 8 sec. The "steady state" was characterized by large fluctuations in intensity which made it impossible to quantitatively confirm that the ratio of oscillation to pump intensity was independent of pump intensity. These fluctuation may be due to a mismatch between the longitudinal and transverse modes of the pump laser cavity and the ring cavity. The spectra from the laser and the ring oscillator both had multiple longitudinal modes.
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The oscillation was unidirectional, indicating that the Γ coupling the counter­propagating beam to the pump beam was below threshold. Whether it is possible for two counterpropagating beams to be pumped by the same third beam depends on the relative orientation of the crystal through the electro-optic coefficient. The index change in photorefractive crystals depends on the electro-optic coefficient through (2).The effective electro-optic coefficient is given byrβfl = ⅜(⅛gk) ⅝∕ (g ng∏λ) (6)where εij is the dielectric tensor of the material, g = k1-k2 is the grating vector, 

gk is the component of g in the k direction, g = ∣g∣, and nλ is the index of refrac­tion (either ordinary or extraordinary) appropriate for the polarization of the mixing beams.For crystals of the point group 4mm, such as SBN and BaTiO3, the nonzero electrooptic coefficients and their conventional contracted notations are J"zzz = ^-33∣ )"xxz ^"yyz = ^"i3∣ and Γy2y — rxzx = r42. Equation (6) reduces to
a + β

rse = r13sιn--—
for mixing beams of ordinary polarization and

reff = n^r33sinαsin∕5 + 2n∣n^r42coss + n⅛r13cosαcosjS 1
neng -sina + β 2 a + β 2

for mixing beams of extraordinary polarization, a and β are the angles of the pump beams and oscillation beam(s) with respect to the optic axis of the crystal as shown in Fig. 3.4.In BaTiO3 the large electrooptic coefficient is r42 = 6 2 0pm∕V [9]. To observe the largest effects it is necessary to use extraordinary polarization and to orient the crystal so that the grating vector is not parallel to any of the crystal axes.
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∕

F⅛ure 3.4. Two-wave mixing geometry showing the pump beam (solid), the oscil­lation beam(s) (dashed), and the c axis of the crystal.
In SBN, r33 is large (= 10 9 m∕V) so that extraordinary polarization must be used, although the grating vector can be parallel to the optic axis.If we only consider the r42 term in BaTiO3, when two waves intersect, the^ne with the k closest to the c axis gets amplified at the expense of the other, via the grating formed between them. Given an acute angle between the pump beam and the c axis, the pump will amplify one member of a pair of counterpropagating beams and attenuate the other member (Fig. 3.5a). Given an obtuse angle between the pump beam and the c axis, the pump will amplify each of two counter-propagating beams individually (Fig. 3.5b). Howrever, a two-beam cou­pling analysis cannot predict the gain when all three beams are present because each beam will interact with the superposition of two or three different gratings. We have not been able to observe in our laboratory a bidirectional ring oscillator pumped by a single beam.
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ία) (b)

Figure 3.5, Diagram showing amplification and attenuation through two beam coupling. The pump wave is I1 and the optic axis is denoted by c. Signal waves heading in directions spanned by the dotted region of the circle will be amplified. Signal waves heading in directions spanned by the dashed region of the circle will be attenuated. In (a) and (b), the angle between the pump wave and the c axis is acute and obtuse, respectively.
3.5 Reflection gratingsUp to this point, only transmission gratings have been discussed. Both reflection and transmission gratings are described by the same differential equa­tions (3), but the boundary conditions differ (see Fig. 3.6). In the former case, the two incident waves are specified at the same interface, and both values are sought at the opposite interface, i.e. they have the same entrance face and the same exit face. In the latter case, the incident waves are specified at opposite faces. In practice, reflection gratings are written by beams that are more nearly counterpropagating, and transmission gratings are written by beams that are more nearly copropagating. Very short period transmission gratings, and very long period reflection gratings can be written, but as the beams approach graz­ing incidence, a hologram of finite extent will intercept less and less of the beam.
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Figure 3.8. Two-wave mixing in the reflection geometry.
A special case of the reflection geometry is where the beams are counterpro­pagating. It is important to understand the coupling between counterpropagat­ing beams because they are one constituent of the four-wave mixing implemen­tation of phase conjugate mirrors.The key to solving the two-point boundary value problem can be derived from (3) -⅛r(I1Ia) = 2ΓI1Ig
independent of the absorption constant, a. The path length is denoted by r = z∕ cosθj. The intensities at the two faces are therefore related byI1(QIg(OI1(0)I3(0) (Όin which all the intensity dependence is explicit. Γ should only depend on the grating vector and the crystal orientation.
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Before solving the reflection grating problem, an experimental test of equa­tion (7) will be described. The experimental apparatus is shown in Fig. 3.7.

Figure 3.7. Experimental configuration for two-beam coupling in the reflection geometry.C: crystal BS: beamsplitterD: detector PBS: polarizing beamsplitterGP: glan prism λ/2: half-wave plate
The two input and two output intensities are measured by the four detectors, which are monitored by a minicomputer. The half-wave plate - polarizing beam­splitter combination serves as a no loss beamsplitter with a transmission/reflection ratio that can be varied by simply rotating the half-wave plate. The sum of the two input intensities was held constant and the coupling constant Γ was calculated as the ratio was varied. The results are shown in Fig. 3.8, in which Γ changes by only a factor of two while the ratio of the two input intensities changes by six orders of magnitude. Eqn. 7 inspires a change of vari­ables which is helpful in solving for the output intensities in the reflection
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Figure 3.B. The two-beam coupling constant vs. the ratio of the intensities of the two input beams.
geometry J1=I1e~rr J3 = I2e^~rr
Now, J1J3 is constant with respect to r, allowing the equations for J1, and J3 to be decoupled and integrated. Using this change of variables in (3), we obtain
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d⅞dr (Γ+α)Jg — 2Γ Jι⅛J1 + Jg (Γ+cx) Jg - 2 Γ Jι(θ)Jg(O)>h(θ) ⅞(O)-----Γ----- +⅞
In terms of the original variables, the variation of I1 and Ig with r is given by [10]:

e—(Γ+∙α)r
i-(Γ-a)r =

(Γ—α)I1s(0) - (Γ+α)Iι(0)Ig(0) ]r^I1eΓr(Γ—a)I1se2rr - (Γ+a)Il(0)Ig(0) I1(O) (8a)
(Γ+a)I2s(0) — (Γ—ot)I1(0)Ig(0) (Γ+a)I2sesrr — (Γ-a)I1(0)Ig(0) Γ÷et IgθΓr⅛(o) (8b)

Ig(0) is still an unknown which must be solved for by evaluating (8b) at r = Z.Input/output curves for this amplifier are shown in Fig. 3.9, for the case 
a = 0. They are obtained by numerical solutions of (8). The donor, or pump, beam is fixed in intensity and the signal beam is varied from zero to twice the intensity of the donor beam. These curves show the changes in both output intensities as the intensity of the one input is varied.In the limit α → 0, one can show, from (8), that

Iι(O = I1(0) Iι(0) + IgG) I1(0) + Ig(Z)e2π
Ig(0) = I2(Z) I1(O) + ⅛(O I1(0)e-2ri +Ig(0)

which are identical to (5a) and (5b) under the interchange Ig(0) → I3(Z). Therefore an amplifier with « = 0 and a transmission geometry will have the same operat­ing curves, and the design of an amplifier should be concerned with maximizing Γ and need not be prejudiced in favor of either geometry.
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Figure 3.9. Diagram showing the operation of a two-beam coupling amplifier.The intensities of the two output beams are plotted vs. the intensity of one of the two input beams. The dashed line is the amplified beam and the solid line is the attenuated beam. The intensity of the second input beam is fixed at 5 (arbitrary units).
Experimental data demonstrating qualitative agreement with this analysis are shown in Fig. 3.10. The data were taken with the apparatus shown in Fig. 3.7. One should not expect Figs. 3.10a and 3.10b to be identical because the coupling constants for the cases are different. A quantitative comparison between Figs. 3.9 and 3.10 has not been attempted because the analysis has neglected Fresnel reflections at the crystal surfaces.
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A difference between the two amplifier geometries appears for a non-zero a, and this is shown in Fig. 3.11. This figure shows that if two beams are sent through a photorefractive crystal in the reflection geometry, the combined intensity of the two beams which emerge is larger than if the same two beams
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Figure 3.11. Diagram showing the operation of two-beam coupling amplifiers, in the transmission and reflection geometries, with absorption present. The value of the donor beams is 5, and Γi = l. The output intensities of the acceptor beams are plotted vs. their input inten­sities.
are sent through in the transmission geometry, (Same coupling strength and absorption constant in both cases.)
3.6 Coupling between waves inside a ring resonatorThe power flow, from one wave to another, in two-wave mixing suggests the use of an electro-optic crystal as a uni-directional element inside a ring laser cavity (Fig. 3.12). The preferred one-directional power flow could enhance the
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clockwise oscillation at the expense of the counter-clockwise oscillation, if the two counter-propagating waves were coupled with a reflection grating.

Figure 3.12. A ring laser containing a gaim medium and an optical diode, or uni­directional element.
A bi-directional ring laser has standing wave nodes which prevent complete utili­zation of the inversion inside the gain medium [11,12], Increased mode stability and a four-fold increase in power output results from eliminating the oscillation in one direction, hence the interest in optical diodes. Currently, Faraday rota­tors are combined with Brewster windows to provide a 1% difference in round trip loss between the competing directions. This difference in loss combined with the competition for the gain is sufficient to keep the oscillation in one directionbelow threshold.The holographic coupling only exists when both beams are present, so the best one could hope for would be a situation where one direction was dominant
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and only a small amount of power remained in the other direction to maintain the coupling. Unfortunately, for gain media that do not possess any directional­ity in their own right, a steady state solution does not exist. For example, for gain media characterized by
7o

where Isat is the saturation intensity, the intensities within the gain medium obey the relation ⅛(I1⅛) = 0 or I1(0)I2(0) =I1(Z)Ig(Z)
which is incompatible with Eqn. 5.A brief experimental investigation was performed with a ring dye laser and a poled single crystal of SBN. We were unable to get either the clockwise or counter-clockwise waves to go below threshold. The intensities of both beams had periodic fluctuations on a millisecond time scale. This corresponded closely to the response time of the photorefractive effect at the intensity level within the cavity.
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4. FOUR-WAVE MIXING

4.1 IntroductionThe holographic formulation of four-wave mixing (4WM) is an extension of the two-wave mixing formulation presented in the previous chapter. We continue to consider the same third-order nonlinearity, but now four waves are present in the medium. Four-wave mixing has a commensurate increase in versatility over two-wave mixing, and, in particular, is the most important nonlinear technique for generating phase conjugate wavefronts.The differences between photorefractive media and other nonlinear media will be further explored in this chapter, especially with regard to their impact on four-wave mixing. Experimental results supporting our analysis will be presented.
4.2 Holographic formulation of four-wave mixingThe four-wave mixing implementation of a phase conjugate mirror consists of a medium possessing a third order susceptibility pumped by two counter­propagating beams. By convention, A1 and A2 are taken to be the counterpro­pagating pump beams (Fig. 4. la). A4 is the incident signal, object, or probe beam and A3 is the phase conjugate wave. In the plane wave approximation, we calcu­late the reflectivity for only one plane wave component of the object beam, i.e., the analysis includes only two pairs of counterpropagating plane waves. A1(0), Ag(Z), and A4(0) are the known, inputs (Fig. 4.la). A3 is not input, i,e., A3(i) = 0, but it is generated within the medium. The unknown, outputs are A1(Z), Aξ(0), A3(0), and A4(Z) . Let the electric field amplitude associated with the jth beam beEj(r,t) = Aj(r)ei⅛r^^ ul) + c.c.
where c.c. stands for complex conjugate. The four beams write four distinct gratings labelled with Roman numerals I-ΓV (Fig. 4.1c).



- 61 -

Figure 4.1. Geometry of four-wave mixing in a nonlinear or holographic medium,A1 and A2 are the counterpropagating pump beams.A4 and A3 are the incident and phase conjugate beams, respectively. k1 through k4 are the optical wavevectors.⅛ through kjy are the grating vectors.
n1e1,fll A1Α4+A2A3 flcr.r n∏e1*π A1A3+AzA4 ifa.rn = n0 + — ---- ---- -------- e^ + c.c. + —-----------j------- e2 + c.c.

where I+ = ∑Ii∙j=J
+ ⅛^A^λγ+cc + ¾v≤lA^oitrv∙rI÷ I+ + c.c.
The grating vectors are determined by the wavevectors of the
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incident beams.

kt≡k4-kι=l⅛-kg k∏≡k1-kg=k4-k2 ⅛1≡k1-k⅛ ⅛v≡k⅛-k3

The complex amplitudes of each of the index gratings are in general different, 
·♦*'depending upon the polarization state of the light and the magnitude and direc­tion of the grating vector in conjunction with the properties of the medium 

( reff∙ Eχ, Ef, En, etc.) and applied fields, as outlined in Chapter 2.Substituting this form for the index into the Helmholtz wave equation, 
(Vs + ω2με)E = 0, and using the slowly varying envelope approximation (§3.2), we arrive at the following coupled wave equations: [l]dAj . π∩ι _j?ii A1A^ + A2A3 j πn∏ iwπ A1A3 + A2A4cos©—:— = —1 ——e dz λ ιt -⅛-i-e lt (la)√f⅛.

. 7rnIΠ j0m A1A2 α -1-e1^-^—A2- g-A1
dA2 . πnι iseι a*A4 ÷ a2A3 . .*n∏ A*A3 + AgA^dz λ I+ a λ I+ 4 (lb)

+ 1-. πn!∏ -ifsm A1βAi -A, + è-AL· ιγ 2 ^2
dA3 . πnι ~⅛τ A1A4 + A2A3 πn∏ A1A3 + A2A4 cos© ——=1—:—e n---------------- Ap+l—:—e ™-------:-------- A,dz λ I+ λ I+ 1 (lc)

TΓ n.jy i A«a A4 of + i-γ1e 1^-^A4 + f-A3
COS©'

dA⅜dz . πnι ⅛τ aia⅜ + A2A3 t , πn∏ i^ττ A1A3 + A2A4 * ^1 λ 6 I+ Al 1 λ 6 L· As (Id)
λ
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Here d is the angle of incidence of each wave and a is the the absorption con­stant. This formulation differs from previous formulations of four-wave miying [2] in several respects:i. The complex part of the coupling coefficients represents a spatial phase shift (between a grating and the interference pattern that generates it), rather than the more common temporal phase shift (between an optical frequency electric field and the response of an atomic dipole moment, for example.) The four beams propagate in different directions in space, but the same direction in time. Accordingly, any temporal phase shift will have the same sign for all beams, while any spatial phase shift will be positive with respect to two beams, and negative with respect the other two,ii. The normalizing factor in the denominator (I+) is peculiar to the pho- torefractive effect. Nonlinearities higher than third order are clearly present in the response of photorefractive media.iii. Missing from here are terms, e.g., A1A*Aι, which give rise to self focusing in some media, but are not holographic in origin. For a plane wave Aυ A*A1 is constant in the plane perpendicular to k1, and contains no grating fringes. Also, in some media possessing a true third order susceptibility, waves with perpendicular polarizations can interact, whereas in the holographic formu­lation, only terms representing waves that interfere are included in the expression for the index.
4.3 Single grating, undepleted pumps approximationHaving generated all the terms in Eqns. 1, it was found that only a small number of terms are needed to describe BaTiOa in many situations. In the single grating approximation, we assume that, out of a possible four index gratings, only one is present. There are several reasons why the other gratings may beabsent.
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i. If beams two and four are incoherent with respect to each other, or have orthogonal polarizations, then the time averaged AgA4 terms vanish, and do not represent a static interference pattern.ii. If two waves do interfere, but the period of the interference pattern is shorter than the mean distance between traps, then it will not produce a space charge field. The spatial frequency response of the medium can thus limit grating formation.iii. Even if two waves do produce a space charge field, if the field is in a direction for which the effective electro-optic coefficient vanishes, then it will not pro­duce an index grating.In the undepleted pumps approximation, we assume that the two pump beams are unaffected by the nonlinear interaction. This is typically true when the pump beams are much more intense than the other beams. This is a safe assumption in media with local response, but in photorefractive media one has to be aware of the possible energy exchange between the pump beams themselves as discussed in §3.5.

4.3.1 Transmission grating If the transmission grating is dominant, we have from (l) dAdr 2 (2a)
d⅛g
dr (2b)dAg α A1A⅜ + ApAs

-dΓ= Σa3+7---- (2c)
(2d)7ΓΠ.Ιn iiI —iawhere y ≡ i——e 1, and r = z∕cosιλ The first two equations are immediately Λ
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intégrable.
A1 =A1(O)e e

A A Γ(Γ_ί)
⅜ - A2(Z)e I+(r) = Iι(O)e-"r + lz(l)ea^-l>

To uncouple the remaining two equations we make use of the relationd '(AjAg — A2A4) — 0 or A1Ag — A2A4 = c (3)drThe equation for A3 then can be writtendAs z α,ι cγA1 a 1 +r')dr,^dr^ = 2^^)a3----- i7^^ °r As = C7Ai(0)7-------------------I÷(r')
using the boundary condition A3(i) = 0. To solve for c, the expression for A3 can be inserted into Eqn. 3 and evaluated at r = 0.

c = A2(Z)Al(0)e 2tr e(τ + α)r'Hr<
The phase conjugate amplitude reflectivity is given byf e~h + 0ιhr~r,)dr,A3(0) .................. -S-L i W)

p = τττ- = 7A1(0)A2(i)e 2 --------—- x ,------
A⅜(0) r e3, + “)r dr,

In Fig. 4.2, the phase conjugate intensity reflectivity is plotted versus the pump ratio, p. The pump ratio is defined according to the function of the two pump beams with respect to the probe wave, A4, i.e., p is the ratio of the intensity of the pump which reads out the grating written by A4, to the intensity of the pump which writes the grating with A4. From Eqns. 2c & 2d, we can see that pump 1 writes a grating with A4, and pump 2 reads out the grating, therefore, for the transmission grating, p ≡ I2(i)∕ l1(0). The reflectivity is plotted for γl = ±3 and several values of a = α∕ 7. We see that the effect of increasing linear absorption
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>

Figurc 4.2. Phase conjugate intensity reflectivity of the transmission grating in the undepleted pumps approximation vs. the pump ratio I2(i)∕ Iι(O) The coupling strength is yl = ±3 and the reflectivity is shown for various values of the normalized linear absorption a = a∕y.

is primarily to decrease the reflectivity, with the greater decrease being for negative yl.The dependence of phase conjugate reflectivity on the pump ratio is a man­ifestation of the same phase shift which produced the directionality in two-wave mixing. Fig. 4.3 shows how the optimum pump ratio varies with 501. Media with local response (⅞5j = 0) display an optimum pump ratio of unity. A measurement
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Figure 4.3. Phase conjugate reflectivity in the undepleted pumps approximation 
for coupling strength γl = —3.627 and various phase angles, φ, Mir­
rorless self-oscillation occurs here for φ - π∕6 and p = 6.13.

of phase conjugate reflectivity vs. pump ratio has been made using the experi­

mental apparatus shown in Fig. 4.4. The half-wave plate ∕ polarizing beam­

splitter combination forms a lossless beamsplitter with a transmission/reflection 

ratio that can be varied simply by rotating the half-wave plate. An experimental 

curve of reflectivity vs. pump ratio is shown in Fig. 4.5, The nonlinear medium is 

a poled, 4×4×7mms single crystal of BaTiOg. All three input beams at 514.5 nm 

are supplied by the same argon ion laser. Their total intensity is 27.5W∕cms.
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Figure 4.4. Experimental configuration for measuring reflectivity as a function of pump ratio. phase conjugateC: crystal D: detector P: polarizer GP: Gian prism
BS: beamsplitterPBS: polarizing beamsplitter λ/2: half-wave plate VA: variable attenuator

The fringe spacing is 1.9μm.The expression for the reflectivity can be simplified when a = 0.
e~'>'l - 1 + pR = p (4)

R is invariant under the interchange p → 1 ∕p and yl → — yl, meaning that probe beams travelling in opposite directions to each other, incident upon opposite
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Figure 4.5. Experimental curve of phase conjugate reflectivity vs. pump ratio.
faces of a photorefractive PCM, will experience the same reflectivity.The condition for an infinite reflectivity isIm(-γi) = ±π, ±3π, ■ ■ ∙ and Re(-yl} - lnp
Of course, pump depletion occurs long before infinite reflectivities. While this condition cannot be satisfied for φx = τs∕ 2, reflectivities exceeding 100% are within reach of finite coupling strengths at all phase angles. The phase angle can be controlled by applying an electric field to the crystal, and also by detuning
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the pump and probe beams. In the latter case the finite response time of the photorefractive effect causes the grating to lag behind the moving fringes. This departure from a ninety degree phase shift can restore the possibility of infinite reflectivity or self oscillation [3].As the signal intensities approach the intensities of the pumps, we must expect pump depletion. Even if no signal is supplied, a PCM with gain can pro­duce oscillation when provided with positive feedback such as in a mirror reso­nator. In this case, pump depletion determines the steady state oscillation strength. The theoretical approach to this problem is the subject of §4.4 .
4.3.3 Reflection grating If the reflection grating is dominant, we have from (1)dAι _ _ o_ dr 2 Al

d⅛ dr
dAsdr - 2“a ' ' I+α , A,*A3 + A2A^

-----Δ - 4- -v------ -----------------------

dA^dr a i » , ai⅜ + ⅛a4
' 2"a* + 7---- Ü------

where the definition of the coupling constant for the reflection grating, m⅛ ,7 = i—:—e to, is analogous to that for the transmission grating. In the absence Λof absorption, we see that the equations are the same as (2) under the inter­change of A1 and Az. This is in accordance with the exchange of their functions, because now beam 2 writes a grating with the incident beam, and beam 1 reads it out. Thus Eqn. 4 also applies to the reflection grating case, when a = 0, if p is changed to p = I1(0)∕ I2(Z) in accordance with its definition in §4.3.1.
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4.4 Pump depletion in the single grating approximationThe influence of pump depletion on four-wave mixing has been analyzed previ­ously using a Lagrangian method [4,5,6], The analysis applied to four co linear waves inside a medium with a local response. Another method has been used to solve a very general class of nonlinear parametric processes including 4WM [7], However, it has not been applied to nonlocal nonlinear susceptibilities, such as are present in photorefractive media. The method for treating nonlocal media presented in this section is not restricted to a colinear geometry, but is res­tricted to a symmetrical geometry where all waves have the same angle of incidence [8],As a starting point, we allow for the r dependence of beams one and two but do not consider the effect of more than a single grating on the interactions of the four beams, and restrict ourselves to the case where αZ<<l. The equations now under examination are intermediate in complexity between Eqns. 1 and Eqns. 2.
4.4.1 Transmission grating When only nj is present, Eqns, 1 take the formdA1 A1⅛ + A2A3 t

dAg*
dr

dA3dr
d⅛dr

A1 Aj + A^A3 t -7-------∣-------- a31+
A j A4 + A2 A3 7-------ï-------- Ag
Aj A4 + A2A3 t7------ i-------- A11+

We are chiefly interested in calculating phase conjugate reflectivities so it is enough to solve for the ratios A3∕ A‡ and A1∕A2. The differential equations for
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(5)
the ratios can be decoupled with the use of the relationsAjAg + A3A4 — and A1Ag — A2A4 = gThe flux conservation equations are retained from the two-wave mixing case (3.4). f+ = I1 + I4 f_ = I3 + I3 f = f+ — f_ (6)The fluxes are known, i.e., they are given by the boundary conditions. Substitut­ing the above constants into the differential equations for A34 ≡ A3∕ A^, and Ajg ≡ A1∕ Agl we obtain tιA3⅜

dr
7_I+ ∣-f(A34)-f-(A34)g

l^Al2
dr

.JLI+ ^ + f(A12)-^(A1g)≈
which can be integrated directly, because 1+ is a constant with respect to r.—c*A34)j — f — "×^f2 + ] c ∣2 — c*A34)0 — f + "s,∕f2+1 c ∣2 Vf2+∣c∣2^A---------------------_____--------------------- — = e +-c*A34){ -f + V f2+∣c∣2 — c*A34)0 —f - √f2+∣c∣2
and a corresponding equation for A12 obtained by replacing f > -f, and 7 → -7. We now invoke consistency between the completed integrations and Eqns. (5) which allowed the problem to be separated. Making the substitutions

A34)o ~ P A34)t - 0 A12)c Iι(0)
Aiξ)i --p∙l4(0) 2Iz(i)

we obtain a pair of transcendental equations which can be solved for ∣c)2, and R = ∣p∣s. The three input intensities appear only in the two combina­it)tions p = Ig(i)∕ I1(0) and q = I1(0) + Ig(Z) . As the probe ratio, q, increases, we
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expect to see more pump depletion. A contour plot of R vs. p and q , for yl = —3, is shown in Fig. 4.6.

F⅛ure 4.6. Contour plot of phase conjugate reflectivity for yl = —3 as a function of the pump ratio I2(i)∕ I1(0) and the probe ratio I4(0)∕ [I1(0) + I2(i)]∙ The transmission grating is operative.
The figure suggests that R remains finite as p → ∞. A plot of R vs. ∖yl ∣ is shown in Fig. 4.7. The phase shift between the grating and the interference fringes is 5°.
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Figure 4.7. Reflectivity of a photorefractive PCM vs. coupling strength magni­tude ∖yl ∣. The transmission grating is operative. The phase shift between the grating and the interference fringes is 5°.
The intensities of the two pumping beams are equal (p = l) and the probe inten­sity is 20% of the total pumping intensity (q = 0.2). The top of the graph corresponds to the reflectivity that would result if all the power of beam 2 were transferred to beam 3. This is the maximum reflectivity consistent with the con­servation laws (5). The peaks in the curve correspond to the poles in the



- 75 -
reflectivity of a PCM with no pump depletion and no phase shift between the grat­ing and the interference fringes.
4.4.3 Reflection grating When the reflection grating is dominant, Eqns. (l) take the form dA^dr A∙ιAg + A3A4

a3∙7

dA2 Ai A3 + A2A4-dΓ=7—î;—a*
d⅛dr A1A3 + AgA4 7------ î-------- A1
dAldr AÎAg + A2⅛ ., 7------ î-------- Ag1+

πnπ _j„where y ≡ i —-—e nt. The reflection grating can be solved in the same manner asthe transmission grating by decoupling the differential equations for the beam ratios with relations analogous to Eqns. (5) and (6).A1A^ — AgA3 ≡ — and A1A2 — A3A4 ≡ —
l13 ι1-⅛ f = f 13 ÷ f.i42f42 ≡ I4 - ⅛

We now have dA34dr 2LI+ I + I(A3,) - ⅞-(A≈4)2 (7a)
dA12
dr

ilI4 2^ + f (Aιa)--- g-(Aιa)2 (7b)
where the flux f is no longer known. I+ is no longer a constant with respect to r, but is coupled to the grating term ≡ A*A3 + A2A^.
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dr 21 (? + 7‘) dL-dr

This system is easy to solve, since g is not coupled to I+.g(r) = g(0)e7r I+2(r) - I+3(0) = ∣g(r)∣2 - ∣g(0)∣2where g(0) is unknown. Eqns. 7 can then be integrated (β)

-d*A34)t +f-√fg + ∣d[a -d‰)0 + f + √f2 + jd∣2 -d*A34)i + f + √f2 + ∣d∣2 —d*A34)0 + f - √f2 + ∣d∣2
ι√O -ι+(-°≈) ι+(O + ι+(-°°) I+(0) +1+(-∞)I+(0) - I+(-∞) 7Vfg + ∣d[gW)i+(-~)

where I42(-∞) is given by Eqn. (6). The equation for Alg is obtained with the sub­stitution A34 → A1g, and 7 → —y* . The unknowns are f, p = A34)o, ∣d∣2, I+(0), and I+(t)∙ With the addition of three more equations, we can solve for R = ∣p∣2.I+(0) + f = 2(I1(0) +I4(0))
I4(Z)-f = 2Ig(i)

I+2(f) - I+2(0) e2yi _ 1 I4(0)Iι(O) p∣2(I1(0) + I4(0))2 + -^-+ ^-±Xd(i1(Q) + l4(0))
The third equation is obtained by substituting p, d, etc., into expression (8) for g.A slightly different method can be used to solve both the transmission grating and the reflection grating. It makes use of the solutions for I+(r) and g(r) obtained above. When y ε R we can make use of the change of variables

du = -2-e7rdr or e∣go∣uw f+ ∣g0∣e^+ √ [g0[geg7r + ι+g(-κ,)∣go I + V ∣g0∣2 +1+2(-°°)
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to transform the system of equations (6). is an abbreviation for g(0), i.e., gr ≡ g(r). Note that u has the same sign as γ. g0

d A1  7 ' 0 g*(r) A1∙dr Ag I÷(r) g(r) 0 A3
d fA√  7 ’ 0 g*(r)] [A4]dr A3 I÷(r) g(r) 0 A2

d Af 0 9 'tSo A1'du A3, go 0 a3∕
d A4' '0 » ¼go 'A4du a2 go 0 A3

The solutions, in terms of the unknown g0, are given by:
Aι A1(0)e !goSL+A3(Z) go

lg°l rlfin∣U 1A3 2coshJg0∣L e u go∣gol
A1(0)elg°ll'-A3G)≠η- 1
_______________________ 'go∣ p-∣g∏lu 12cosh∣g0∣L “ -go- ∣gol

(9a)

A4As A4(0)e 1s°1l+As(0-γ^γ ______________________ L≈ξL e leo Iu2cosh∣g0∣L 1go∣gol (9b)
A4(0)e's°'L—Ag(i)-Λ-j- ____________________ ∣g°' e-∣β01u2eosh∣g0∣L 1-go∣gol

where L = u(Z). When A3(Z) = 0, the phase conjugate reflectivity is given by
R = a3(0)A4(0) 8 = Iι(0) l4(0) tanh2 ∣g0∣L (10)

To solve for ∣g0∣L, we return to equation (7) for g, used to separate the problem, and evaluate g at r = 0 and r = Z using Eqns. (9).
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= -(I1(0) + I4(O)) ]j^∣-tanh ∣g0∣L + a8(Q⅛(o)cosh∣g0∣L
⅞-e^ = I2(Z)⅛tanh∣g0jL + <- lêol Aa(Q⅛(0)cosh∣g0∣L

Solving the above equations for g0 and taking the magnitude yields two equations in ]g0∣ and ∣g0∣L. Eliminating ∣g0∣, we obtain:√Ia(Z)I4(0)(l ⅛ e-^0 = √(p + 1)q(1 ± e-γt) I1(0) + I2(Z)e^i + I4(0) p + e~^ + (p + l)q (n)

Combining (10) and (l 1), we have an explicit expression for the reflectivity of the reflection grating as a function of the pump and probe ratios. As the probe ratio q → 0, we expect the reflectivity to reduce to the solution obtained, in §4.3, with the undepleted pumps approximation. Of the two solutions above, only the one with the minus sign reduces to the proper answer. A contour plot of this solu­tion, for yl = —3, is shown in Fig. 4.8. Associated with each proper solution is an improper solution, obtained with the minus sign in (11), and shown by the fine solid lines in Fig. 4.8.
4.5 Oscillation in four-wave mixingOscillation in four-wave mixing was predicted in 1977 [2] and first observed in 1979 [9], A PCM alone can oscillate if the reflectivity, R, of the mirror is infinite. A phase conjugate resonator (PCR), i.e., a PCM, normal mirror pair, can oscillate if R is sufficient to overcome the losses (Fig. 4.9a). A loaded PCR, i.e., a PCR con­taining an auxiliary source of gain, can oscillate if the combined gain is sufficient to overcome the losses. The first observation of oscillation was in the last category. The PCM was a CS2 cell pumped by a Q-switched ruby laser. The auxili­ary gain was also a flash lamp pumped ruby rod. Subsequently, continuous wave oscillators have been constructed with a single domain crystal of BaTiO3 pumped with 514.5 nm light from an argon ion laser [10], strontium barium niobate
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Figure 4.8. Contour plot of phase conjugate reflectivity for yl = —3 as a function of the pump ratio I1(0)∕ I2(i) and the probe ratio I4(0)∕ [Iι(0) + Ig(i)]∙ The reflection grating is operative.
pumped with 488.0 nm light [ll]l and with a Na vapor cell pumped with a resonant wavelength from a tunable dye laser [12].Much of the interest in PCR's is due to their unique stability and frequency spectrum. The standard stability analysis uses the ABCD matrix technique to
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Figure 4.9. Sketch of a typical allowed PCR Gaussian mode for the degenerate case and demanding self-consistent field solutions for one (a) and two (b) round trips.
trace the evolution of the characteristics (spot size and wavefront curvature) of a Gaussian beam as it traverses a resonator. If the stability criterion is that the characteristics exactly repeat after one roundtrip, then the matrix analysis indi­cates that, at the normal mirror, the radii of curvature of the Gaussian beam and the mirror must be equal. Thus, both concave and convex normal mirrors are stable, independent of cavity length (Fig. 4.9a). Another unique feature is the existence of modes that repeat only after two round trips (Fig. 4.9b), for which there are no criteria for stability, i.e., any wavefront will repeat after two
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round trips [9].
4.6 Self-pumped phase conjugate mirrorOscillation has been observed in several configurations other than PCR's [13,15], of which perhaps the most interesting is shown in Fig. 4.10.
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Figure 4.10. Self-pumped phase conjugate mirror geometry. The incident wave is shown by a solid line and the oscillation beams which it induces are dashed. The oscillation beams then serve as counterpropagat­ing pumps and phase conjugate the incident wave.
The gain is provided by the two-beam coupling discussed in Chapter 3. The pump beam is the single beam incident upon the photorefractive crystal, which is situated within a Fabry-Perot resonator. The oscillation which builds up is shown by the dotted line. To the extent that the oscillating beams are phase conjugates of each other, they will act as the pump waves A1 and A2 of Fig. 4.1, and generate the phase conjugate of A4. One would not necessarily expect the oscillation beams to be phase conjugates of each other, in view of the
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inhomogeneous gain provided by an incident beam with any spatial information. However, a phase conjugate wave has been observed propagating backward rela­tive to A4. An imaging experiment has demonstrated the phase conjugation of a field containing pictorial information [14]. This configuration is called a self- 
pumped phase conjugate mirror because the oscillation beams do not have to be supplied externally [13,14], Reflectivities greater than one are impossible in steady state, but reflectivities approaching one are theoretically possible and 30% has been observed. The alignment of the Fabry-Perot cavity is critical, but the alignment of the cavity relative to the incident wave is not. The acceptance angle has been measured to be 20° on either side of the crystal.The single grating analysis of §4,4 can be applied to the PPCM [14]. The boun­dary conditions are no longer I1(0) and Ig(i), but are the reflectivities of the mir­rors, M1 and Mg. Mi = Iιg(0) Mg = 1/ Il2(i)
The cavity is assumed to be in resonance. M1 and Mg can be generalized to include other losses, e.g., Fresnel reflections from the crystal surfaces, but not absorption losses within the crystal. A contour plot of R vs. M1 and Mg is shown in Fig. 4.11. It is apparent that R can be multivalued and is insensitive to M1 in the region of small M1 and large Mg. This corresponds to the region of Fig. 4.6, where R is insensitive to p, since as M1 -» 0, p → ∞. The following section describes an experiment which proves that R remains finite even when M1 = 0.
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Figure 4.11. Contour plots of the reflectivity of the passive phase conjugate mirror. The coupling strength yl = —3. Some of the contours at low M1 and high Mg have been redrawn as an insert.
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5. APPLICATIONS

5.1 IntroductionThe applications that are currently envisioned for four-wave mixing and phase conjugation may be outlined as follows:I. Spatial domain applicationsA. Aberration compensationB. Spatial information processingC. InterferometryII. Temporal and frequency domain applicationsA. Frequency filteringB. Temporal signal processingIII. Nonlinear spectroscopy
4WM has also been proposed for generating two-photon coherent states, which could be a fourth category.In this chapter, three applications to aberration compensation and spatial information processing are described.
5.2 Laser with dynamic holographic intracavity distortion correctionPhase conjugate resonators employing PCM's make use of both the spatial and frequency characteristics of 4WM (see §4.5). Distortions in laser resonators with normal mirrors commonly arise because of defects in laser rods, turbulence in gaseous gain media, imperfect optics, thermal effects, and nonlinear effects. By using the passive (self-pumped) phase conjugate mirror (PPCM) described in §4.6 as one mirror of a laser, we were able to demonstrate its distortion correcting capability [l]. The possibility of using real-time holography to compensate for intracavity distortions had been proposed [2].
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The main optical component of the new laser is the PPCM, a phase conjugate mirror whose pumping beams are generated via optical interactions in the non­linear medium. The experimental arrangement is shown schematically in Fig. 5.1. The laser gain medium is that of a Spectra Physics Model 171 argon ion laser. The distortion is simulated with a piece of etched glass.
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Figure 5.1. Laser with a passive phase conjugate mirror.C: crystal BS: beamsplitterD: distortion M1-M4∕ mirrorsa. Starting configuration. Oscillation is obtained in the Mg - BS cavity.b. Operating configuration. The crystal is pumped as a phase con­jugate mirror by the beams shown dashed in the M1 — Mz cavity.c. Alternative starting configuration. If the distortion is not too severe, the laser will start without BS.d. One mirror in the PPCM removed.
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Fig. 5.1a shows the starting arrangement. Lasing is initially induced at the high gain line, 488 nm, between mirror Mj and beamsplitter BS. Light transmitted through the beamsplitter pumps the crystal C which is placed in the M3-M4 reso­nator. Gain through two-beam coupling (see Chapter 3) causes an oscillation to build up in the resonator. Reflecting mirror Mg can be used to assist in the buildup. With oscillation established, the beamsplitter and the retroreflecting mirror M2 are removed, as in Fig. 5.lb. The starting procedure described above is required since the coherence of the flourescence is insufficient to allow the formation of the required refractive index grating in the crystal. Once the grat­ing is established, the configuration of Fig. 5.1b corresponds to an equilibrium state, and the grating in the crystal is continuously maintained by the very beams which it couples together.According to the theory of the PPCM, there is a certain two-beam coupling strength, in the crystal, above which it is possible to maintain oscillation between the crystal and M3 even in the absence of mirror M4 (see Fig. 4.11). We were able to demonstrate such oscillation in our resonator. Fig. 5.1c depicts the starting arrangement. Once oscillation involving mirror M3 was established, the beamsplitter and Mg were removed and the laser continued to oscillate, as in Fig. 5.Id, In this configuration, the crystal looks much like a distortion correction element to be inserted into an existing laser cavity without replacing either mir­ror.The distortion correcting capability of the laser is apparent from the pictures of the output shown in Fig. 5.2. The photographs in Fig. 5.2 were taken lm from the output mirror M1. Inserting the etched glass into the normal laser cavity destroyed the mode and lowered the output power from 2W to lmWl at 38A tube current. Replacing the normal mirror with a PPCM restored the mode shape and boosted the power output back to 500mW. The distortion correction indicates that each of the oscillations - one in the Mj/crystal arm and the other in the
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Figure 5.2. Experimental comparison of the mode quality of a laser with and without distortion correction by a PPCM,a. Output of normal laser with distortion inside the cavity.b. Output with one mirror replaced with PPCM.
Ms/crystal arm - is composed of two oppositely traveling waves which are phase conjugates of each other (Fig. 5.Id). This mode of oscillation may not be the
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only allowed stable configuration but in the presence of spatial filters such as the plasma bore tube, it is the minimum diffraction loss configuration and thus the one surviving in a laser oscillator.The amount of light lost from the PCM is small. At a 24A tube current, the beam extending straight through the crystal from the discharge tube had an intensity of 6 mW. The beam extending straight through the crystal from M3 had an intensity of 16mW. These are to be compared with an intensity of 600mW in the M1/crystal cavity.The pump beams in a PPCM are not independent of each other or of the input beam, in contrast to an ordinary PCM. This loss of independence means that the half-axial, c∕4L longitudinal modes of an ideal PCR are not observed. (L stands for the mirror spacing.) The frequency spectrum of the original laser was multi-mode, with the c∕2L mode spacing of an ordinary resonator.In other laboratories, several self-pumped mirrors have been developed, sub­sequent to our work, all of which make use of the photorefractive effect. One version makes use of total internal reflection from crystal faces to replace the external Fabry-Perot cavity [3]. Another version has been used as the end mir­ror on a Cu vapor laser, wherein the spontaneous emission from the laser is sufficient to initiate operation [4].
5.3 One-way image transmission through inhomogeneous mediaAberration compensation can be performed before a distorted image is received (predetection) or after (postdetection). In the latter category, iterative techniques have been proposed for restoring linearly degraded images [5], res­toring finite energy optical objects from limited spatial and spectral information [6], and optically implementing Gerschberg-type algorithms for reconstructing an object from the modulus of its Fourier transform [7] and image extrapolation [B]. Coherent optical processors for solving the above restoration problems and
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processors designed to solve differential and integral equations [9,10] rely on mirrors to send a wavefront on multiple passes through some kind of filter. It has been proposed that PCM's should find use here because of their wavefront reversal properties and because the possibility of reflection with gain should breathe new life into systems which in the past were deemed impractical because of reflection losses [11].An example in the predetection category is a scheme for transmitting a laser beam from point A to point B through a distorting medium, say the atmosphere [12]∙

Figure 5.3. Scheme for transmitting a laser beam from point A to point B through a distorting medium.
A beam will normally spread due to the finite size of the aperture at A. If diffraction were the only factor present, the size of the beam at B would be diffraction limited, and could be made smaller only through the use of a waveguide. Other factors make the diffraction limit difficult to achieve. The beam can be distorted by atmospheric turbulence, or, if the beam is intense enough, it will also encounter, or create, distortions such as thermal blooming.
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To solve the latter two sources of degradation, we may first transmit a beacon or probe beam from B to A, so that it acquires or measures the total distortion in transit (Fig, 5.3). Next the phase conjugate is generated at A. Upon reversing its path, the phase conjugate wave should arrive at B with the same phase and amplitude distribution as the originally transmitted wave. To correct for non­

linear stationary, lossless distortions, the PCM must have a reflectivity of unity [13].The finite size (resolution) of the PCM will limit the severity of the distortions in the far field (near field) which can be corrected. Such imaging by phase con­jugation requires that the picture field pass twice through the distortion which is a major disadvantage in the large number of practical situations where the pic­torial information is to be transmitted in a single direction only.A holographic scheme for dealing with this situation has been proposed and demonstrated [14], It requires the presence of a reference wave originating on the same side of the distortion as the object. If both waves propagate through essentially the same path, on the receiving side the distortions can be removed in the recording process by mixing the two distorted waves. Conventional or real-time holography provides such a mixing operation. The reconstruction takes place at the receiving station when the hologram is illuminated with an undistorted reference to obtain an aberration free image.For situations where the object and reference are located on opposite sides of an aberrating path, a new scheme for one way image transmission has been pro­posed and demonstrated in our laboratory [15,16]. It does not involve wavefront reversal per se but it does utilize 4WM. The technique is limited to purely phase distortions characterized by a multiplicative complex amplitude to be transmit­ted t = e1*(χ∙y∖ If the distortion and its conjugate, t‘ = e~1^xΑ were in contact, the combination of the two would be homogeneous, i,e. tt* = 1, independent of x and y. Our technique consists of creating the conjugate distortion in real-time
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within a nonlinear medium (NLM) and imaging the NLM and the distortion together with a lens (Fig. 5.4).
d0 * ≤ d†!
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Figure 5.4. Technique for one-way field transmission through a thin phase dis­tortion.
The conjugate distortion is created by nonlinear mixing of a distorted and an undistorted reference wave. The undistorted reference originates on the same side of the distortion as the object. The distorted reference originates on the opposite side of the distortion, and propagates through the distortion and the lens. Both references are incident upon the NLM and a phase hologram is formed which is a conjugate replica of the distortion. The object wave Eg is then able to pass unaberrated through the hologram-lens-distortion combination.The technique of one-way image transmission can be understood in more detail by a) propagating each of the three fields from their respective starting planes to the NLM, b) obtaining the third-order nonlinear polarization, Pnl, in the medium, and c) calculating the field, radiated by Pnl, which propagates back through the distortion. The undistorted reference wave E1 is a spherical wave originating at a point source of amplitude A1 situated at rp
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E1(xi,z) = A e⅛∣rp-r1∣iλ∣rp-ri aφltι⅝w⅜)liλ(dp + z) (1)
I x∙ I≡ A1(z)expik(dp + z + )

Here ri is a vector which spans the NLM, xi=(xi,yi) is the transverse part of ri, and z is the longitudinal part. The above approximation, called the Fresnel approxi­mation, is valid when
Z3 » ξ^∣xP - xi∣⅛ιax

The spatial information to be transmitted f(xt) is recorded in a transparency and illuminated by a plane wave A2. The field, E(r0), radiated by an extended source, E(r1), specified over an aperture Σ, is given by the Rayleigh-Sommerfeld diffraction formula (see Fig, 5.5).

Figure 5.5. Diffraction of a plane wave by an aperture Σ. The field at the aper­ture is treated as an extended source, spanned by r1. The field at 
r0 can be calculated with the Rayleigh-Sommerfeld diffraction for­mula.
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τπ, S fπ∕ ∖ expik∣r0-r1∣ E(r0) = ^E(r1) -;λ|Γο——d⅛, (2)

Applying the Fresnel approximation again we obtain
exp ik

E(r0) = ∕E(r1) 
∑

∣Xo-XιΓ 
Z° 2l+2(z0-z1)iλ(z0-z1) (3)

Thus, within the NLM, the field E2 is given by
Eg(xi,z) = ∕A2f(xt) expik dt-z +

∣χt-χi∣2

2(dt-z)iλ(dt-z) 'd2xt (4)

The z dependence of the denominator can be dropped, providing the NLM is thin enough such that within it, z « dt.The distorted reference wave is obtained by illuminating the distortion with a111beacon, plane wave A4. If d0, di, and f satisfy the lens law, —+ —= τ. then the d0 di fdistortion is imaged into the NLM. The imaging properties of lenses can be derived by using Fresnel diffraction to describe the propagation between the object plane and the image plane. Propagation through the lens is described by a multiplicative transmission function
t(s) = expik(n∆ — ∣s∣2∕ 2f) (5)where n is the index of refraction of the lens, Δ is the on-axis thickness, and s is a vector in the plane of the lens. The field in the neighborhood of the image plane, Ei(xj,z), is related to the field at the object plane, E0(x0), by

Ei(xi,z) = --⅛o(-xi-^-) expikdi £+■ 2di (6)-'1+f>
where ξ- do+n∆ + di, We have assumed that the lens has infinite transverse extent, i.e., no aperture, and that the z dimension of the NLM is thin enough sothat
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exp ikz2di2 s-xi 2
∙ι f max (Ό= 1

If the distortion is characterized by a random phase ς0(xo), then, according to (6), the distorted reference will be of the form
E4(xi,z) = — -^-A4exp dolξi(-Xi-) expik ∣xi∣2 d0⅛H1+ι) (β)

Here we have used a Born type approximation, having assumed that the non­linear interaction is weak enough so that the three input fields are unaffected, 
i.e., known everywhere. In reality, the three input fields are coupled, in the manner described in Chapter 4, to each other and to new waves generated withinthe NLM.In NLM possessing a third-order susceptibility, a polarization is induced which is proportional to the cube of the total field. The particular term ofinterest is Pnl = √⅜1E^ (9)which radiates a field, propagating backward relative to E4, of the same fre­quency. The field E(r0) radiated by such a polarization is given by a Green's function solution

E(r0) = 7Γ√Pnl(it)
expik[r0-r1∣ ∣r0~r1∣ d3rj (10)

The similarity between (2) and (10) indicates that, by applying the Fresnel approximation to (10), we can show that the field radiated by Pnl is a∙lso imaged by the lens, in analogy to (6)
tzr2 di 4π2 d∙e3(xo) = - J Pnl(^~×o ~p,z)expik—1/2 do e+z+⅛Γ<1 + ⅛> dz (ID



- 96 -
_ 4^√3)Δi⅛^leχpik(dp + dt+^-^-)e ^,∕f(xt)expikdu-o l d* lxt+x03-________u-Q2dt -d3xt

where we have substituted (l), (4), and (B) into (9), and used an approximation similar to (7).We see that the field incident upon the distortion from the right has been pre-multiplied by the complex conjugate of the distortion transmission function, so that the transmitted field will contain no trace of the distortion. If dp→∞, ι.e., the undistorted reference is a plane wave, then the field which is transmitted through the distortion will be an inverted version of (4), the original object field, Eg, as it was incident upon the NLM. The combination of distortion, lens, and NLM thus behaves like a homogeneous medium for fields incident from the right. Eg may be amplified for sufficiently strong fields A1, and Ag, and may be rescaled by di∕ do.In practice, the angular separation between the two reference beams forms a carrier spatial frequency, within the hologram, which is then modulated with the information about the distortion.The object used in the experiment was a transparency containing the letters ,'CALTECH,', shown in Fig. 5.6a. The distortion is a piece of ground glass. The object and distortion are both illuminated in transmission. The nonlinear medium is a poled 7×4.5×4mms single crystal of BaTiO3. All three waves incident upon the crystal are provided by the same argon ion laser operating at 514.5nm.An attempt to photograph the object through the ground glass is shown in Fig. 5.6b. The wavefront is obliterated by the random phase distortion. Fig. 5.6c is an image of the object field transmitted through the phase conjugate window, showing almost complete reconstruction. Fig. 5.6d is an image of the object field transmitted through the crystal alone, showing that the residual aberrations are
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a) b)

c) d)

Figure 5.6. Experimental results for one-way field transmission obtained with 
the configuration of Fig. 5.4.

a. The object to be transmitted.
b. An attempt to photograph the object through the distortion 

without any compensation, showing the severity of the distor­
tion.

c. A photograph of the field transmitted through the phase conju­
gate window.

d. A photograph of the field transmitted through the phase conju­
gate window without the ground glass distortion, i.e., transmit­
ted through the crystal alone.

due to inhomogeneities within the crystal itself.
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5.4 Spatial convolution and correlation via four-wave mixingCoherent and incoherent optical processors have been used for pattern recognition, guidance systems, image deblurring, edge enhancement, and syn­thetic aperturing. The special type of nonlinearity present in the photorefrac- tive effect can be used to advantage in edge enhancement [17,IB], The utility of gratings for optical processing has been demonstrated [19]. For example, a grating placed in the filter plane of a coherent optical processor can translate, add, and subtract input pattern functions. Multiple gratings can also be used to obtain first- or higher-order derivatives of intensity distributions, and restore smeared or multiply exposed images [19].The concept can be generalized beyond gratings in the filter plane to the pro­duction of more complicated Van der Lugt filters [20], In the Van der Lugt tech­nique, a filter with impulse response h(x,y) is first synthesized by exposing film to the interference pattern of a plane reference wave, R, and the Fourier transform, H = Λ)hj (Fig. 5.7a). H is obtained in the back focal plane of a lens when h is in the front focal plane (see (13) below). The film is developed to pro­duce a transparency with an amplitude transmittance proportional to the inten­sity incident during exposure

t⅛,y≈) « ⅛) = ∣R!≈ + + +
The developed film is then reinserted into the filter plane, and the object u(x,y) to be processed is inserted into the input plane in place of h (Fig. 5.7b). Now the field U is incident upon the filter and one component of the field leaving the transform plane is proportional to the product HU. Propagating through the second lens gives h*u at the output plane, by the convolution theorem, where * denotes convolution.A nonlinear medium can be substituted for the film, allowing for rapid
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F⅛ure 5.7. The Van der Lugt technique.a. Constructing the Van der Lugt or matched filter.b. Convolving and correlating an input pattern function with the impulse response of the Van der Lugt filter.
modification of the filter. Some caution must be exercised when making such a substitution. Strictly speaking, for an object in the front focal plane of a lens, the exact Fourier transform only exists at one plane in space, the back focal plane. Depending on the confocal parameter of the system, a good or bad approximation to the transform may exist in some noninfinitesimal region about the focal plane [20]. This puts a limit on the thickness, t, of both volume filters and film emulsions,
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t<2f2λ∕r2ιax , (12)where rmax is the spatial extent of the largest input field, and f is the focal lengthof the lens.Also, filters made from photographic film are unaffected by light after the developing process, whereas photorefractive materials remain sensitive to light in the absence of some fixing process [21]. Biréfringent and optically active non­linear media introduce more complications that can turn out to be useful for improving performance [22]. Finally, we know that volume gratings have ampli­tude transmittances that depend strongly on the wavelength and angle of illumi­nation [23]. So, the synthesis of a dynamic volume filter must be done keeping the intensity, direction, wavelength, and polarization of the readout beam in
mind.For real-time operation of the processor, h and u must be present con­currently. Since they can no longer both be on axis, the filter cannot be read from the same angle at which it was written. For thin nonlinear filters, this is not a problem since the amplitude transmittace does not depend strongly on the angle of illumination. However, the diffraction efficiency will be limited due to the thinness of the filter, and , if a thin saturable absorber is used as the non­linear medium, the requisite writing intensity may have to be provided by a Q- switched laser [19].So, we need to write the filters (gratings) in thick media, subject to the above thickness constraint, but wish to avoid the concomitant angular dependence, particularly on the polar angle relative to the average grating vector.One approach is to illuminate at the same polar angle, but a different azimu­thal angle about the grating vector [24]. This introduces an astigmatic aberra­tion into the filter output, but satisfactory results were obtained in a system which writes absorption gratings in cryptocyanine dye with MW∕cm2 intensities.
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Another approach is to use different wavelengths so that the two input beams can be superimposed. Convolution and correlation can be generated in this way by sum and difference frequency mixing in KDP [25,26], No reference is needed, but the use of multiple wavelengths (first, second, and third harmonics of Nd:YAG) introduces spatial scaling which may be objectionable. Dispersion in the medium may require precise alignment in order to achieve phase matching.Another system illuminated both input objects with the 488 nm wavelength from an argon laser, and used a 632.8nm HeNe beam for the reference [27]. In contrast to the Van der Lugt sequence, here two transformed input fields inter­fere to write a complicated index pattern in a photorefractive medium. Readout is performed by the reference beam, which is almost superimposed with one of the inputs, but misaligned slightly so as to be incident at the Bragg angle, The photorefractive material was BSO, which is less sensitive to red than blue, so the reference beam provides a nearly nondestructive readout.A solution involving 4WM, which requires only one wavelength, has been pro­posed and demonstrated in our laboratory [28,29]. In the grating picture, it corresponds to illumination at the Bragg angle, but in the reverse direction. Again the nonlinear medium is placed in the common focal plane of a two lens system as shown in Fig, 5,8. Let us examine its operation in the nonlinear optics picture, and let all three input fields contain arbitrary amplitude and phase information. The input complex amplitudes u1(x,y), u2(x,y), and u4(x,y), in the outer focal planes are Fourier transformed by propagating to the common focal plane. The transformed fields U1, U2, and U4 induce nonlinear polarizations in the medium. The polarization
p = √3)u1u2^

radiates an output field that propagates essentially backward relative to beam four, returning through lens L. The convolution theorem says that the
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Figure 5.8. Four-wave mixing configuration for performing spatial convolution and correlation of images.
transform of the product U1U2 is the convolution of the transforms u1*u2. Accordingly, it can be shown that the output field, when evaluated at the plane located a distance f in front of lens L, is of the form

u3 « u1(x) *u2(x) *U4(x)

The performance of this processor can be understood in more detail by a) pro­pagating each of the three input fields to the NLM, b) obtaining the third-order nonlinear polarization Pnl in the medium, and c) evaluating the field radiated by Pnl, at the output plane of the processor.The derivations of the Fourier transforming and imaging (see §5.3) properties of lenses are very similar. Using Fresnel diffraction (3), and the thin lens transmission function (5), one can show that the field, Eb, in the neighborhood of
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the back focal plane of a lens, is related to the field, u1 in the front focal plane by„ , V expik(n∆ + z) „ Eb(x,z) = ....κ ------ >-F u(x)exp ik 2f-z 2f f (f→-) k λf '
where stands for the two dimensional Fourier transform, and f=(fx,fy).When the transverse spatial extent, rmax, of u(x), and the z dimension of the NLM are small enough so that ∣Sf-z∣ ≪2f2∕⅛ax then

Eb(x,z) = —-------⅛(-) (12)where U(f) ~ F^u(x)}. Therefore, within the NLM, the three input fields are given by E1(x,z)
Es(x,z) =

E4(x,z)
expik(n∆ + z) ττ , x λ iλf Ul(xrexpik(n∆ + 4f-z) ττ i x -ι iλf u^λrexpik(n∆ + z) τ z x iλf λf}

(14a)
(14b)
(14c)In a NLM possessing a third-order nonlinear optical susceptibility, a polarization is induced which is proportional to the cube of the total optical field. The partic­ular term of interest is Pnl = √⅜1E2E^ (15)which radiates a field, propagating backwards relative to E4, of the same fre­quency. The field, at an observation point r0, induced by this polarization, is given by the Green’s function solution (10). Applying the Fresnel approximation to this solution, we can show that the field radiated by this polarization is also transformed by propagating through a lens, in analogy to (13).

2f + Zq∕ 2

E3(x,0) = ∕
2f-z0∕2

expik(n∆ + z)iλf i4π2
Pnl(x.z) dz <'-⅞∙>F
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Sf + Zg∕ 2

This result for the output of the processor can be simplified with the convolution theorem [20] which states that the transform of the product equals the convolu­tion of the transforms, i.e.,

F]GH] =g*h

Therefore

where we have used the definition of correlation g®h ≡ g(x)*h*(-x).Two-image processing is performed by simulating a <5 function for the third input, i,e, focusing the third beam at its input plane to give a collimated beam at the transform plane. The interaction is exactly phase matched only when U1 and U2 are counterpropagating. If, say, U2 is a plane wave, then phase matching (Bragg condition along with conservation of photon energy) will put a constraint on the angular spread, <5,d, of U1, which is known to be ~Λ∕t for a grating of period Λ and thickness t [23]. The angular spread of U1 at the transform plane is related to the spatial extent d of u1 at the front focal plane by <5d = d∕f. So, the size of u1 is limited to d < Λf∕ t. The average fringe spacing depends on the dis­tance between u1 and u4, which we assume to be d, as follows: Λ = λ∕ 2sinθ = λf∕ 2d. So, for this system, the input object size is limited tod < f√2λ∕ t (16)This constraint is seen to be the same as the above constraint (12) on filterthickness.



- 105 -

This operation was demonstrated with the experimental arrangement shown in Fig. 5.9.

Figure 5.9. Experimental apparatus for performing spatial convolution and correlation of images.
The nonlinear medium was a 10×10×3mm3 crystal of BSO. The application of a transverse (J to z) 5 to 7kV∕cm dc electric field enhances the hologram formed between beams 1 and 4. The lenses had focal lengths of 30 cm, restricting the size of the input objects to 3mm by (16). The coherence length of the laser must be longer than the greatest optical path length difference, <5, between the beams.
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The continuous wave argon laser with a power output of 1.6W at 514.5nm was initially polarized perpendicular to the plane of the figure. Typical experimental results are shown in Fig. 5.10. The first three columns show the input fields u1, ug, and u4. The fourth column shows the photograph at the output plane. Rows (a) to (d) illustrate correlation, and row (e) illustrates convolution. The max­imum resolution in row (c) was 28 lines∕mm, compared to a theoretical max­imum of 33 lines∕mm determined by the transverse extent of the crystal in the transform plane. The output in row (d) clearly demonstrates pattern recogni­tion.The operation of the processor was also tested with purely phase objects. For inputs one and four, we used thin lenses having amplitude transmittances like (5), If two such lenses are correlated, the x and y dependence of the field in the output plane should be equivalent to that of a plane wave which has just passed through a lens having focal length equal to the difference in the input focal lengths.
u1<8>u4 ~ —ιπk<Γ-Γ> r1 ι4 ■exp —ik ∣x[22 f1-f4

We determined the general curvature of the output wave by simply looking for a focus at a distance f1-f4 behind the output plane. Table 5.1 summarizes the measurement results, which agree well with the prediction.
The versatility of this processor allows all three inputs to be time varying, but we measured the hologram writing time to be 30 msec so that rapidly changing input fields will cause the output to decrease. Another practical problem is that the range of input light intensities is limited by the saturation effect in BSO (see §2.4). The combination of sensitivity to both the amplitude and phase of the input fields indicates that the correlation processor might be useful for applica-
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Figure 5.10. Output of the processor shown In Fig. 5.9.

tions such as screening tissue samples for cancer cells.
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TABLE 5.1. Correlation of phase objects/(cm)Lens at input Lens at input Outputwavefront Radius of curvature (cm)plane 1 plane 433.3 50.0 diverging33.3 -9.5 converging 41.433.3 -50.5 converging 81.033,3 20.0 converging 13.2
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