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ABSTRACT

This thesis is an experimental and theoretical investigation of nonlinear optics
in photorefractive crystals, and applications thereof. Coherent light is used to
induce nonlinear, optical frequency polarizations proportional to the cube of the
total optical field within these materials. Equivalently, dynamic holography is per-
formed wherein the incident light simultaneously writes, reads and erases index of

refraction gratings.

The first part of this thesis is a description of the physics of the photorefrac-
tive effect in such crystals as Bi;»Si0z;, LiNbOg, KTaOs, and BaTiOg. Previous
microscopic rate equation models are extended to include the dynamics of a
second photorefractive center with the aim of explaining several discrepancies

with experimental data.

The second part reviews the coupled wave theory of fixed gratings and dynamic
gratings formed in photorefractive media. Coupled nonlinear ordinary differential
equations describe the interaction between two optical waves; which is caused by
the grating that they create. The analysis is extended to the reflection geometry
and the ring resonator geometry. The coupling constant is measured in the
reflection geometry. Holographic gain is combined with mirror feedback to
demonstrate a unidirectional ring oscillator, wherein a optically pumped pho-

torefractive crystal functions as a directional gain element.

The third part extends the analysis to the holographic formulation of four-wave
mixing, wherein four waves and up to four gratings exist in the crystal. The equa-
tions are solved in the single grating approximation. The object of much of the
analysis is to calculate the reflectivity of a four-wave mixing photorefractive
phase conjugate mirror. The invention of a passive self-pumped phase conjugate

mirror is described.
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The last part describes three applications of four-wave mixing. We demon-
strate the compensation of intracavity laser distortions by replacing an ordinary
mirror in a laser with a passive phase conjugate mirror. We propose |and demon-
strate a phase conjugate window for one-way transmission of an information bear-
ing optical fleld through a thin phase distortion. Finally, the multiplicative pro-
perties of four-wave mixing are combined with the transforming properties of
lenses to construct a coherent optical processor capable of convolving and corre-
lating three input fields containing arbitrary spatial phase and amplitude informa-

tion.
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1. INTRODUCTION
1.1 Phase conjugate waves and mirrors

The phase conjugate replica of a monochromatic electromagnetic field is a
field, with the same frequency, whose wavefronts, i.e., surfaces of constant
phase, take the same shape throughout space, but propagate in the opposite
direction at every point. A wave travelling essentially in the positive z direction

is denoted by
Ei(r,t) = A, (r)e!®t-k) + Aj(r)e7i(et ko) (1)

where the complex amplitude A;(r) can describe any spatial amplitude or phase
information impressed upon E;. Mathematically, its phase conjugate is obtained

by complex conjugating the spatial part
Epo(r.t) = Af(r)ei(et +k0) + 4, (r)eitet + ko (2)

or changing t » -t, hence the identification of phase conjugation with "time

reversal”.

That such a phase conjugate wave can exist is proved by showing that it
satisfies the same wave equation that the original wave satisfies. The scalar

wave equation obeyed by (1) is

dA
VA, + [w2ue(r) - k?]A, -12k-a—zl-=o (3)

where u is the uniform magnetic permeability and £ is the dielectric constant.
The validity of the corresponding equation for (2)

BA;]
VRAT + [wPue(r) - k2]A] +i2k azl =0

follows directly by taking the complex conjugate of (3), provided that e(r) has no

imaginary part representing loss or gain.*

® In the event that £(r) has an imaginary part that is uniform in space, the proof follows directly
from factoring out a uniform attenuation from Aj.



-2 -

A phase conjugate mirror (PCM) is a device which generates the phase conju-
gate of an incident wavefront. If we assume that a PCM is located at the plane
Z=2p, then the above arguments hold for all z<z,. In a stable two mirror laser
cavity, the counterpropagating fields are phase conjugates of each other, so
both mirrors are acting as phase conjugate mirrors. However, a true PCM will
generate the phase conjugate replica of an incident wavefront possessing arbi-

trary spatial variation of amplitude, phase, and polarization.

Much of the interest in phase conjugate waves is due to their distortion
correcting capability. Figure 1 illustrates the canonical correction scenario
where an undistorted wave passes through a region of nonuniform index of
refraction, the distorted wave is incident upon a PCM, and the phase conjugate
wave returns through the distortion and emerges unscathed. The distortion in
the figure could represent modal dispersion in a fiber, atmospheric turbulence,

thermal blooming, imperfect optics, etc.
1.2 Phase conjugate mirrors via linear optics

The first implementations of PCM's were arrays of corner cube reflectors.
They are technically only pseudo-conjugators because of their effect on the
polarization properties of the incident wave and because of the piecewise nature
of the reflection. The fidelity of the reflected wave is limited by the size of the
individual corner cubes and the flipping of each picture element upon reflection
from a corner cube. Technological advancements in micromachining and repli-
cating optics have made available square foot sized arrays with 47,000 corner

cubes per square inch [1].

The next realizations were via Coherent Optical Adaptive Techniques. These
systems have achieved compensation for aberrated wavefronts with the use of
electro-optic devices, acoustic devices, or deformable "rubber” mirrors. The

latter are thin metallic reflectors supported by arrays of piezoelectric actuators.
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Figure 1.1. Typical geometry depicting the ability of phase conjugation to
correct for a general spatially dependent phase aberration. A
plane wave (1) incident from the left encounters a region of nonun-
iform dielectric constant. The distorted wavefront (2) is incident
upon a PCM, giving rise to (3), which re-traverses the same region.
The wave (4) which emerges has the initial planar wavefronts.

The actuators are driven by wavefront error sensors. Such devices are
currently in use in lasers, to correct for intracavity distortions, in communica-

tions and in astronomy, to image through the atmosphere [R].

Kogelnik pointed out that conventional holographic techniques could be used
for imaging through stationary distortions. One need only 1) create a hologram
of the distorted object wave and R2) illuminate it with a reconstructing wave
counterpropagating to the reference wave. This generates a phase conjugate
wave which will retrace the path of the object wave through the distortion and

converge to a real image [3].
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1.3 Phase conjugate mirrors via nonlinear optics

The development of real-time holography, in which holograms are written by
interfering two beams in nonlinear media instead of on photographic film, elim-
inated the time consuming stage of developing the film. The writing and reading
(with a third beam) of the transient holograms were considered to be simultane-

ous but physically distinct, i.e., noninteracting [4-8].

N\

A concurrent development was the discovery that stimulated backscattering
(Brillouin, Raman, or Rayleigh) could produce phase conjugate waves. In stimu-
lated Brillouin scattering, an optical wave incident upon a material medium
stimulates a forward going acoustical phonon wave whose wavefronts match the
optical wavefront. The pressure wave perturbs the index of refraction,
retroreflecting up to B0% of the optical wave. In stimulated Raman scattering, a
forward going optical phonon wave is generated, and in stimulated Rayleigh

scattering, a forward going roton is generated [9-11].

One feature of these stimulated scattering processes is that the frequency of
the phase conjugate wave is lower than that of the incident wave by an amount
equal to the phonon frequency. Another feature is the existence of intensity
thresholds below which there is no gain for the stimulated wave, hence no

reflectivity.

The study of all-optical parametric processes in nonlinear media led directly
to the current activity in the field. An essential ingredient has been the applica-
tion of the concepts and techniques of nonlinear optics, including coupled wave
theory and Feynman diagrams [12]. One scheme, called three wave mixing
(3WM), involves a second order nonlinearity and three optical fields. In this pro-
cess, difference frequency generation takes place, wherein the incident, signal
wave at frequency w and a pump wave at 2w induce a nonlinear polarization in

the medium which radiates a phase conjugate wave at w [13,14]. The angular
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bandwidth of the incident wave is restricted due to phase matching constraints,
and the nonlinear medium must lack inversion symmetry in order to possess the
second order optical susceptibility, but amplified reflection is possible and there
exists no intensity threshold. Another scheme involves a third order susceptibil-
ity and four optical fields. The incident wave at w and two counterpropagating
waves at w induce a third order nonlinear polarization in the medium [15]. The
polarization radiates a fourth, phase conjugate wave at w, hence the name

N

degenerate four-wave mixing (D4WM).
Nonlinear optical implementations of PCM's have several advantages:

i. The response time is limited only by the nonlinear medium itself. The pro-

cessing of different parts of the incident wave takes place in parallel.

ii. The resolution in the near field is limited by the density of the atomic or
molecular species participating in the interaction, or the wavelength of the

incident light.
iii. The possibility of gain exists as part of the phase conjugation process itself.

iv. Wavefront error sensors are not necessary.
and several disadvantages:

i. Many types of nonlinear media are not available in large sizes of good optical
quality. The size of a PCM will limit its resolution in the far field of a distor-

tion.

ii. In 3WM and 4WM, the pump beams have to be coherent with respect to the

signal wave, to a degree determined by the response time of the medium.

Four-wave mixing has become the most important nonlinear optical technique
for generating phase conjugate waves because the interaction is automatically
phase matched for components of the incident wave at any angle, a third order

susceptibility is not forbidden in any material on symmetry grounds, and an
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amplified reflection is possible [15-19]. Apart from phase conjugation, 4WM has
become a tool for spectroscopy [20, Chap. 8], narrow bandpass filtering [21],
converting incoherent to coherent images [22], and image processing [23]. It
has been proposed for use in laser fusion [24], generating two photon coherent
states [25], temporal signal processing [26], and optical computing [20, Chap.

14].

Many types of nonlinear media have been used as the mixing medium includ-
ing two-level sy\stems, dyes, semiconductors, radiatively cooled vapors, plasmas,
liquid crystals, photorefractive crystals, and aerosols. The photorefractive
media are particularly suitable for use with low power continuous wave lasers
because of their extraordinary sensitivity, and also because they respond to
light continuously throughout the visible spectrum. This is why they were used

exclusively in the work described in this thesis.

Several review articles have discussed both theoretical and experimental
aspects of phase conjugation, its applications, and the nonlinear media used to

date [20,27-29].

1.4 Outline of thesis

Chapter 2 familiarizes the reader with the photorefractive effect and presents
a generalization of existing models designed to address two discrepancies

between experimental data and some existing models.

Chapter 3 briefly reviews the coupled wave theory of fixed, thick holograms,
and the coupled wave theory of two wave mixing (2WM) in nonlocal, nonlinear
media. Two new geometries are examined: energy coupling in the reflection
geometry, and a unidirectional ring resonator. Experimental results are

presented.

Chapter 4 presents the holographic formulation of four-wave mixing as an
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extension of the two-wave mixing formulation in the previous chapter. In this
formulation, four plane waves interfere within the medium to write four different
gratings. The differences between this formulation and previous formulations of
4WM are emphasized. The resulting coupled wave equations are solved in several
approximations including undepleted pump waves, and negligible absorption.
The analysis is restricted to cases where only one grating (out of a possible four
gratings) is present in the medium. Experimental data supporting the analysis
are presented. Oscillation in a new four-wave mixing geometry is considered,

which leads to the invention of the self-pumped phase conjugate mirror.

Chapter 5 describes three applications of phase conjugation and four-wave
mixing to aberration compensation and image processing. The first application
is to correcting intracavity distortions in lasers. This is demonstrated by replac-
ing the end mirror of a commercial argon ion laser with a self-pumped phase
conjugate mirror. The second application is to one-way field transmission
through inhomogeneous media. We demonstrate the operation of a phase conju-
gate window which permits the transmission of amplitude and phase information
through a thin phase distortion. The third application is a real-time optical pro-
cessor which performs spatial convolution and correlation of three input object

fields.
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2. THE PHOTOREFRACTIVE EFFECT
2.1 Introduction

Study of the photorefractive effect began with the discovery of optical damage
in LiNbOg and LiTaOg [1]. Ashkin et. al. noticed that the index of refraction of
their crystals was changed by exposure to light, both coherent and incoherent.
Visible and ultraviolet wavelengths produced the effect, but not infrared. If the
illumination was nonuniform, the optical homogeneity suffered and it was feared
that such sensitivity would make LiNbOg less useful as a nonlinear medium. The
damage remained when the light was removed, yet the effect was reversible, in

contrast to the catastrophic damage that occurs at much higher intensities.

Chen, LaMacchia and Fraser soon realized the opportunities that were there
and demonstrated that holograms could be written, stored and erased in LiNbOg
[2,3]. In conventional holography the interference pattern between an object
beam and a reference beam falls on photographic film, recording the amplitude
and phase of the object beam. The spatial variation of intensity is mapped into a
spatial variation of silver concentration { or absorption constant ) when the film is
developed. In real-time holography, the interference pattern fills the crystal, and

changes its index as the exposure takes place.

The utility of LiNbOjs for frequency doubling was threatened, but the formal
equivalence between holography and four wave mixing [4] indicated that a new
type of medium was available for nonlinear optics of a different kind. Large non-
linearities became obtainable not only at low powers, but over the entire visible
spectrum as well. A speed-sensitivity tradeoff is observed, however, because the
degree of response depends on the energy deposited in the crystal, rather than
the intensity, as is the case for most nonlinear materials. Charge carriers must
migrate from regions of high intensity to low intensity, so the response can never
be as fast as that arising from the disturbance of atomic orbitals, or rotation of

molecules, etc. Response times in the nanoseconds require MW/cm? intensities
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(5]

In addition to becoming a new medium for performing nonlinear optics, the
photorefractive effect has also become a diagnostic tool. For example, the elec-
tron and hole contributions to the photoconductivity in LiNbO3 has been deter-
mined holographically [6]. Phase and amplitude gratings, created by means other
than the photorefractive effect, have been used to measure spatial diffusion rates
of electronic excitation in impurity doped solids [7,8], exciton diffusion lengths

[9], and energy transport in molecular crystals [10].

The long dark storage times were promising for optical memories except that
erasure occurs during readout. A method was discovered whereby the holograms
could be fixed if they were recorded at about 200° C and then cooled to room tem-
perature [11]. Using this technique, 500 holograms were stored in a 1 cm thick
crystal of LiNbOg:Fe. The diffiraction efficiency of each hologram was ~2.5%, and

the estimated lifetime of 10° years is suitable for archival storage.
2.2 Basic mechanism

The first explanation of this effect was due to Chen and Amodei [12,13]. Their
hypothesis was that charges within the crystal migrated under the influence of
the light, creating a space charge field and hence an index change via the
electro-optic effect. The charges were thought to occupy states within the energy
gap, i.e. they were localized or trapped there until excited into the conduction
band. They envisioned electrons migrating from intensity maxima to minima, via
the conduction band, leaving behind positively ionized donors, i.e. trapped holes.
The charge separation would produce a space charge field having the same spatial

dependence as the pattern of light intensity exposing the crystal (see Fig. 2.1).

The use of photorefractive crystals as holographic storage media depends on
the ability to hold a space charge long after exposure. Because the crystal is an
insulator in the dark, when the light is turned off, all the electrons must leave the

conduction band. The space charge is lost if they all return to ionized sites of the
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Figure 2.1. The photorefractive mechanism. Two laser beams intersect, forming
an interference pattern. Charges are optically excited from traps
within the energy gap to the conduction band. Charges return to the
traps via collisional recombination. The excitation is preferential in
the regions of high intensity, and the trapping is random so there is
a net migration of charge from the intensity maxima to the minima.
The electric field associated with the space charge density creates a

periodic index variation via the electrooptic effect.

original type, i.e. if all the electrons recombine with trapped holes. Space charge
storage is only possible if a population of holes in the donor sites exists in the
dark: nocturnal holes. This requires the presence of alternative sites for the elec-
trons to reside. One cannot simply add more of the positively charged empty

donor sites and preserve crystal neutrality, so the additional ingredient is a

second type of trap which is neutral when unoccupied.
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2.3 Photorefractive materials

In the broadest sense, photorefractive materials could include any material in
which light could produce an index change. Index gratings in ruby have been pro-
duced by using an optical interference pattern to generate a spatially varying
excitation of the Cr3* ion [16]. Gratings have been written in semiconductors by
exciting a spatially varying population of electrons in the conduction band [17].
Absorption gratings have been produced by bleaching dyes [18]. In CS; and liquid
crystals, polarized light causes the molecules to line up, thus changing the index

from ordinary to extraordinary or vice versa [19,20].

The term photorefractive effect is used most commonly today with reference to
the combination of a photoinduced space charge field and the electro-optic effect.
Only in photoconducting, non-centrosymmetric, crystalline, electrical insulators
has this been observed to date, and amongst them only in ferroelectrics and the
paraelectric sillenites, bismuth silicon oxide (Bi;3SiOzq. BSO) and bismuth ger-

manium oxide (Bi,2Ge0zq, BGO).

The energy band diagram of BSO is shown in Fig 2.2. The main source of extrin-
sic absorption is attributed to Si vacancies, each in a unit cell which is neutral
when the vacancy is occupied by an electron. The other operative state in the
energy gap is known only to be a source of photoluminescence in a unit cell which

is neutral when the center is unoccupied [14].

BaTiOg, KNbOg, LiNbOg, LiTaOg, Sr,.yBayNb,0Og, and Ba,NaNbs0,5 are the oxygen
octahedra ferroelectrics in which the photorefractive effect has been observed.
Since the electro-optic coefficients are linearly related to the spontaneous polari-
zation [21-R23], proximity to the phase transition can enhance the electro-optic
effect. As an alternative to heating or cooling KNbOg, the transition temperature
can be lowered by combining it with KTaO3. The nonlinearities of Sr, ;Ba,Nby0Og

and Ba;NaNbs0,5 can be composition controlled as well [27].

Multiple valence transition metals are commonly added because they can
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Figure 2.2. Energy band diagram of bismuth silicon oxide (after Ref. 14,59).

activate the photorefractive effect by serving as donors and acceptors of elec-
trons. Fe is the most common dopant. The mismatch between the host and a
dopant of lower valence can be compensated by oxygen vacancies. Likewise, the
valence of the dopant can be changed. The photorefractive sensitivity is corre-
lated with the Fe?*/ Fe3* ratio, which can be controlled by oxidation and reduc-
tion. For example, removing one O atom frees two electrons which then convert

two Fe3* ions to Fe?* ions. The energy level diagram for KNbOj is shown in Fig. 2.3.
2.4 Survey of experimental work

The photorefractive effect has been explored in many ways. One method is to
write a grating with two beams, and monitor its diffraction efficiency with a third,
probe beam. If the energy of the probe beam photons is insufficient to excite free
electrons, then it will perform a nondestructive readout. The diffracted intensity
can be related to the index change (see §3.2), which is the product of the electro-
optic coefficient and the electric field. 1f the probe beam has the same

wavelength, and is counterpropagating to one of the writing beams, then the
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Figure 2.3. Oxygen pr valence band, niobium de conduction band and Fe?* donor
and Fe3* acceptor levels of KNbOg after Ref. 61.

diffracted beam is the phase conjugate of the other writing beam. The phase con-

jugate reflectivity is then a measure of the space charge field.

The writing beams themselves can be used to monitor the grating amplitude.
During writing, the diffracted component of each writing beam is hard to measure
because it is coincident with the undiffracted component of the other beam. If
one beam is turned off at any instant, then the diffracted component of the other
can be measured as the grating decays. The coupling between the two writing
beams is a measure of the grating amplitude and phase, and is manifested as a

transfer of power and/or phase between them.

Table 1 summarizes much of the experimental work done to date. The quanti-
ties measured are the diffraction efficiency, 7, the phase conjugate refiectivity, R,
the two beam coupling constant, I', (as defined in §3.3), the index change, én, and
the response time, 7. The variables under experimental control are the external,

applied field, Eg, the wavelength, A, of the writing beam, and the incident intensity
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TABLE 1. Experimental Studies of the Photorefractive Effect

Crystal A A Ig m=1,/ Ig Eq Qty meas'd Ref.
nm m _W/cm? kV/cm

BGO 804 4.4 >33 0.41,0.14 5-19 0<R<1.5% 29
514.5 .3-.87 ? 0.94 0 .00R<R<.01% 30

BSO 514.5 | 1.05-3 | 50u-2m ~1 0-8 .01<n<B.R5% 31
! 1.5 om 0.1-1.0 6 01<n<R% 31

! " . 0.14,1.0 " 0<R<0.2% 32

! 0.5-9 10m ? 0-6 0<R<0.2% 33

632.8 3 1-20m 0.18 11.3 T 34

BaTiOg | 488.0 ? .002-12 ? 0 n 34
! ! 0.1-18 ? 0 T 34

g 0.5-10 ? ? 0 b 34

514.5 | 0.4-4.2 01-.17 ? 0 T 35

" 2.61 ? ? 0-4 n 35

KNbO4 488.0 | 1.5-10 1 ~1 0-7 3<n<10% 36
! ! ! " " 2<I'<2em™! 36

! 2 ! 0.01-100 ? .0R5<n<.8% 36

! ! ! " ! 16<'<em™! 36

! 1.6 .001-1 1 ) 0%<n<107? 36

! " i ! 3<I<lem™! 36

N 2.2 01-300 ~1 0 .004<T<4sec 37

592 2.6 >0.1 0.16,0.47 2-13 0<R<10% 28

LiNbO5 | 350.7 2.5 ? 0.486 -15-15 0<én<10~% 38
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variation, 1 =15 + I;cos(Rmx/ A). The fringe spacing is denoted by A, and the

modulation index of the intensity variation is m =1,/ I,.

The major observation has been that the amplitude of the space charge field,
E,, is proportional to the modulation index of the intensity variation which
creates it [31], hence the diffraction efficiency exhibits a quadratic dependence

on m (Fig. 2.4).
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Figure 2.4. Square root of diffraction efficiency 7 versus fringe modulation m.
Incident power 5 mW/cm? Readout with a HeNe probe beam. From
Ref. 31.

The absolute intensity dependence of E, has been measured over a wide range
of intensities [30,33-40]. The grating amplitude has been found to increase with
writing intensity until a gradual saturation. The saturation occurs at 600uW/ cm?

in BSO (Fig. 2.5), and over 100W/ cm? in heavily doped KNbOg (Fig. 2.8).

E, has a linear dependence on external, applied field, Ey, in several materials

over a range of several kV/cm. [28,30,32,35,36,38]. The reflectivity of a phase
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Figure 2.5. Square root of steady state diffraction efficiency in BSO crystals vs.
applied field for different light intensities; full lines, fringe spacing
A = 1um; dashed line, A = 3um. From Ref. 30.

conjugate mirror was seen to have a quadratic dependence on Eg, for fringe spac-

ings greater than 3um [32].

The dependence of E; upon fringe spacing, A, has also been measured over a
range from 0.5 to 10um. It is best studied with zero applied field. In that case, the
grating magnitude is proportional to 1/A. In BSO, an E; = 2kV/cm was found to
yield a phase conjugate reflectivity independent of A, ie. a flat modulation

transfer function (MTF) for 1 <A<10um [32].

The time dependence of grating formation has been studied less thoroughly.
Most data have been interpreted in terms of a single time constant, although

recent work has shown more than one time constant in BSO [52-54]. An inverse
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Figure 2.6. Steady state diffraction efficiency and refractive index modulation vs.
laser intensity in KNbOg:Fe at 488.0 nm. From Ref. 37.

relationship between intensity and response time has been observed over wide
ranges in BSO, BaTiOz, and KNbOj:Fe. At low light levels, the departure from
reciprocity appears to be due to the dark conductivity dominating the photocon-

ductivity [37]. Oscillatory writing and erase behavior has been seen in LiNbOg and
BSO [31,33].

2.5 Microscopic rate equation model of the photorefractive effect

The discussion in this section is intended to provide a theoretical basis for the
mathematical form, used throughout this thesis, to represent the index change of
photorefractive crystals in response to light. The model of the photorefractive
effect presented here is a generalization of previous rate equation models,

designed to address two discrepancies with experimental data. A model with a
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statistical mechanics approach is discussed in the next section.

Much theoretical effort has been devoted to understanding the data presented
in §2.4 [43-51]. The Kukhtarev model [39] agrees well with some measurements
made on BSO in steady state, above the saturation intensity [32]. There are two

regimes in which discrepancies are present:

i. Transient measurements disclose the existence of multiple time constants

[62-54], while the Kukhtarev model predicts only one.

ii. Steady state measurements of the space charge field disclose a dependence on
absolute intensity below 600uW/ cm? (Fig. 2.5), which is also not expected from
the Kukhtarev model. The particular value of SOO;LW/cmZ iIs an anomaly
because the relation between conductivity and intensity, in BSO, is linear
except below 20nW/cm? (where the thermal excitation into the conduction
band becomes comparable to the optical excitation) and above 1kW/cm?
(where the population of the conduction band becomes comparable to the

concentration of absorption centers and saturation occurs.)

The intensity saturation at 800uW/cm? has been attributed to a complete
filling of the less numerous of the two types of traps in BSO, the luminescent
centers [30]. According to this explanation, below I, the space charge has con-
tributions from both types of sites, and above Ig,, there is a contribution only from
the partially full site. All models of the photorefractive effect to date, in BSO as
well as other materials, have considered just one photoactive species (see Ref.
55). The second site is taken to be completely occupied and therefore not partici-
pating. The generalization to two photoactive species followed from the
hypothesis that i) the second time constant and ii) the intensity saturation could

be due to the presence of a second site with different dynamics.

In BSO, the silicon vacancy sites are called donors and the luminescent centers

are called acceptors.* The concentration Np includes all sites within the donor

* This terminology can be confusing, especially because the (unoccupied) acceptor states are located
closer to the conduction band than the valence band, and the donor states are closer to the valence
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band, and we assume that a single absorption cross-section adequately describes
the distribution of slightly different sites. We separate Np into those sites that are
occupied by an electron, N§(r,t) and those that are ionized Nj(r,t), such that
Np = N§ + N§. We separate the acceptor concentration N, into those sites that are
occupied by an electron, Nj(r,t) and those that are not Nf(r.t), such that
Nj = N; + N§ (Fig. 2.7). The ionization and deionization of the donors is governed

by the rate equation

ON
B = apl(Np — Ng) - 70N (1)

where ap is the absortion cross-section divided by the photon energy. The recom-
bination coefficient, vp, is the cross-section for collisional recombination times
the rms thermal velocity of the conduction band electrons.** We assume that the
absorption is not limited by availability of states in the conduc'tion band, so that
the transition rate is proportional only to the donor concentration. We also limit

our consideration to linear recombination.j

The ionization and deionization of the acceptors is governed by the rate equa-

band, in contrast to the situation in doped semiconductors. The terminology for photorefractive
crystals arises from a scenario in which every lattice site is neutral initially. Studies of the
structure of the defects in BSO indicate that, in this configuration, the Si vacancies are occupied by
an electron and the luminescent centers are empty. If charge exchange is to teke place, the
transfer must be from Si vacancies to luminescent centers, hence the donor/acceptor terminology.
However, it is not known whether photorefractive crystals ever assume a form in which every unit
cell is neutral. One could just as well ask, "If the crystal is illuminated, allowing the electrons to
redistribute, where is an electron most likely to reside?” Based solely on the overwhelming
numbers of Si vacancies, one might expect the average electron to reside there, so perhaps in this
situation it would be appropriate to call them the acceptors. This suggests a third test on which to
base the terminology: if there were an equal number of Si vacancies and luminescent centers in an
lluminated crystal, in which trap would the average electron spend the most time? The answer to
this question is also not known, but if it were we would be justified in calling that trap the acceptor.
We prefer to say that that trap is more electronegative, to borrow a term from chemistry. One must
remember that trap occupancy is probabilistic and the equilibrium is dynamic with both types of
traps accepting and donating electrons to and from the conduction band, through photoexzcitation
and recombination.

°° If we wanted to extend the model to light levels below 20nW/cm?, we could add a term to include
thermal ionization. The presence of a spatially uniform thermal excitation appears as an effective
decrease in the spatial variation of light [56]. The presence of a spatially varying thermal excitation
could conceivably contribute to the photorefractive eflect, if the thermal conductivity of the crystal
were such that localized heating could be maintained.

1 [ the conductivity were due to holes, we would consider transitions from the valence band to the
empty donors. The equations would take an identical form,
aN,
—a8—=aD’I(ND—NB)—m'hNB ,
where now ap’ and 9p’ refer to transitions between the donors and the valence band, and h is the
concentration of holes in the valence band.
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Figure 2.7. Electron trap concentrations and migration paths in BSO. All the
symbols are defined in the text. The horizontal widths of the bands
are proportional to the log of the concentrations in the special case
Xp _ Qp
no omw’

tion

O al(Ny = N§) - 7anNp @)

The current in the conduction band consists of a drift component due to an elec-

tric field , and a diffusion component:
J=penEkE + kgTuVn (3)

where u is the electron mobility, e is the electronic charge, kg is Boltzman's con-
stant, and T is the temperature.f The charge and current are related by the con-

tinuity equation

$ The pyroelectric eflect and the bulk photovoltaic effect can contribute to the current in some
ferroelectrics. The latter has given rise to an open circuit saturation field of 10°V/ cm in Fe doped
LiNbO3 {57], but none has been observed in BSO. *
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via=-2L = e 2 (Nf—N;—n) (4)

Since the crystal as a whole is neutral, we require that the spatial average of the

charge density be 0, i.e.,

(p) =(Ng—Ni—n) =0

The charge and the quasi-static electric field are related by Poisson's equation

N - N; —
V-E=p—=e( B A—n) (5)
£ £

where ¢ is the dc dielectric constant.

The experimental geometry is shown in Fig. 2.1. The z direction is normal to
the crystal face and the x direction is parallel to the face and perpendicular to
the fringes. The simplest hologram is a grating formed by the interference of two

plane waves
I(x) =1g + I, e** + [Je-ikx (6)

We are interested in volume holograms but first we consider a slab dz of pho-
torefractive crystal thin enough so that the intensity throughout is equal to that
at the entrance face, i.e. known throughout. Later, in Chapters 3 and 4, we will
consider the effect of the crystal on the light. We are able to separate the prob-
lem in this manner when the variations of the unknown quantities (I, N§, N{, n, E)

are sufficiently different in the directions along and across the fringes.

Since our main interest is volume holograms, in which scattering is confined to
Bragg angles, we only consider the fundamental spatial Fourier component in the

unknowns N, N§, n, and E.* Therefore, we take

® In actuality, the crystal response includes spatial harmonic generation. However, the two writing
(and reading) beams are at Bragg incidence only for a grating with wavevector +k=kj—ks. Our
result for the fundamental component differs by little from the result obtained after solving for all
the components [38]. Higher components are easily observed in our laboratory by adjusting the
angle of incidence of the reading beam. They have been put to good use in image processing as well
[58]. Their presence doesn't seem to affect the fundamental grating, for low modulation index
m=|I;|/ Ip, even though the space charge to write higher harmonics must be drawn from the same
pool. -
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NE(x,t) = Ag(t) + Aj(t) el + Aj(t)e k= (7a)
N (x.,t) = Dg(t) + Dy (t)elk=® + Dj(t)e~ikx (7b)
n(x,t) = ng(t) + n,(t)e® + nj(t)e k= (7c)
E(x,t) = Eo(t) + E,(t)el® + Ej(t) e ix (7d)

where the direct (as opposed to alternating) components are spatial averages, i.e.,
Ag(t) = <N£(X.t)>, etc. We have implicitly assumed here that the density of holes
(Ag and Dy) is sufficient to resolve the intensity fringes. The only quantity that is
known a prio7i is the direct part of the static electric field, Eg, which can be sup-

plied externally.

2.5.1 Steady state behavior. Substituting (6) and (7) into Eqns. 1-5, we obtain, in
steady state, seven algebraic equations in seven unknowns. In the small signal

approximation, we assume a low modulation index on I, N§, N3, and n, so that

IIAI << IoAQ , n,AI << nvo , etc.

In this limit, the direct quantities are related by

2aNa) _ap(NB) ng (9)
AN m (NBY T o

Thus, y/a can be viewed as a measure of the electronegativity of a trap. For a
fixed ratio ng/ Ij, as 75/ o, increases, <N,;>/ <N2> must increase. That is, as the
electronegativity of acceptors increases, the probability of acceptor states being

occupied increases.

In terms of the intensity and material parameters only, the steady state value

of Dg is given by the cubic equation

7pDoaaNy B aplo (Np — Do)
Yaep(Np — Do) + ypaxa Dy 7pDo

0=D0’—NA+ (10)

This equation, and the equation for A; determine the participation of the two
sites. The steady state electric field containing the contributions of the charge

densities A;, D,, and n,, is given by
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1, En(E + i)
'To Bo + 1(By + E,, + Ey)

E, = (11)

This is the field which modulates the index of refraction through the electrooptic
effect. The form of (11) motivates the expression for the index of refraction which

is used in the remaining chapters (see §3.3). The characteristic fields are defined

as follows:
_ ND_DO NA—AQ _ er _ eDD
EN = Ep Np + E, N, EA = K Ep = ek
_ kBTk E = €Ng
1= e n T ek

E,, for example, is the maximum space charge field that could be created with the
acceptor sites (Fig. 2.8). Aside from a factor of 2, it corresponds to the field

created by a complete charge separation, to a distance equal to one fringe spac-

AO(Or Do) I /\ /\ ﬂ\\

ing.

N, (or ND)

> ¥

Figure 2.B. The occupation of the acceptors (and donors) varies periodically,
creating a space charge grating.

E; is the diffusion field, in the sense that diffusion alone will create a space charge
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field equal in magnitude (not phase) to that created by an external field E;, in the

absence of diffusion.

There is implicit intensity dependence in ng, Ap, and Dy, hence also in E,, E,, and
Ep. so the intensity dependence of the entire expression (11) appears to be quite
complicated.* The intensity dependence is typically less complicated, as shown in

§2.5.3.

In view of the way the donors and acceptors contribute to the field in a like
fashion, the more general model cannot be excluded on the basis of the data [32]

which supports the Kukhtarev model [39].

2.6.2 Transient behawior. The first step in the temporal development of holo-
graphic recording is for the incident light to excite a population of electrons from
both types of traps into the conduction band. We can expect a sudden change in
the direct and alternating components of the concentrations of all three species.
The electrons in the conduction band ferry charge to and from the acceptor and
donor sites, gradually shifting charge from the regions of high intensity to the
regions of low intensity, perhaps over many cycles of excitation and recombina-
tion. So, we also expect comparatively slow time dependence in A; and D,;. It is
these charges, not n; that constitute the major part of the space charge density
in steady state. As the electrons in the conduction band begin to see the field due

to the trapped charge, we expect to see more slow changes in n,; as well. **

We will consider a step function illumination, with turn-on at t=0. The time
dependent solution requires a second approximation in addition to the small sig-
nal approximation. In many situations, the photocurrent has a risetime much
shorter than the hologram writing time. The large difference in the time scales
allows us to simplify the problem by taking ng to be its steady state value for the

entire duration of space charge buildup. This is done at the cost of accurate

¢ 1 Ep were supplied by a current source, as opposed to a voltage source, an even more complicated
intensity dependence could be easily obtained through the photoconductivity.

¢* This feedback is considered to be important in the latter stages of hologram formation [41,46], but
can be neglected in the initial stages [47,59]. Mathematically, this would mean the space charge
contribution to the electric field in Eqn. 3 could be dropped.
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knowledge about the field during times comparable to the risetime of ny. No time
dependence on this time scale may be extracted from the equations that follow

from this approximation.

The steady state value of nyg depends on Ay and Dy which are also taken to have
their steady state values, but for a different reason. They are assumed to have
reached their equilibrium ratio as a result of prior illumination, either coherent
or incoherent. Indeed, a special procedure would be required to bring the ratio of
Ag to Dg out of equilibrium. Equation (9) is exact for I, = 0, so the relative values
of Ay and Dy are independent of I;. Their absolute values have only a very small

intensity dependence through Eqn. 10.

The rate equations for the three populations become three simultaneous linear

ordinary differential equations.
Ay = oaT (Ny = Ag) = oAy | = 74l A + noA\| (12)

. T 1
D, = O‘D'lll (Np —Dg) — IoD1J - 7D{D1Dc + nODl]

€ng

Al + ]')1 - I.ll = "‘/.Le T(Dl + Al - nl) + iknlEo + kBT/.Lkznl

which may be solved by the Laplace transform technique. At this point we can

identify some characteristic rates.§

apalgNy A

vp = oplp + 7anp = Ay Va = 7al0 N —Ag) ol
aplgNp A

vp = aplp + ypng = Dy va = 7pDo WNp—Dg) ~ apl,

t The characteristic rates and fields are related, for example, by
g, Naho _ e o A _ 1 Vavn
A Na gk Iy va  pk wva
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Munge kT puk?
s~ HkE, vp= o = kkE Vg = ukEp

Vp =

v, is the ratio of the photogenerated conductivity to the dielectric constant which
constitutes the inverse of the RC time constant for the material at the given level

of illumination. In terms of these rates, the transform of the electric field is given

by

(594 ves? 0,25 407k SB,(5) = (42(0)+ DIva(s+up) (D, (0)+ Dvg(s i) (19)

o E
+ 1k;—E1 (0) {sz+s(uA+ua+uD+vd)+vAVD+VauD+VAud

I

where vy = vy + v, +vp+ g+ vy + v —ivg

vi2 = (vy—ivg) (va + vp) + Vplbp + Valp + Vpg + v (va + v, + vp + 1)
ve® = vn(Valp + Valp + Valg) + vavp(vy — ivg)

v; and vg always appear in the combination vy — ivg = vg. 1t is clear from the left
side of (13) that consideration of a second photoactive species has generalized

the transient behavior to that of multiple time constants.

2.56.3 Application to bismuth silicon oxide. Eqn. 9 is relevant to hypothesis (ii).
Since ng/ Iy is independent of I from 20nW/cm? to 1kW/cm?®, the ratio (N7 (N
must be constant. Before even computing the values of N§ or N3, we can conclude
that they are independent of I, within this region, because their sum is fixed (see
text preceding Eqn. 1). Thus, no change in the occupancy of the acceptors is indi-

cated at 600uW/cm?, according to this model.
Measurements that have been made on BSO [14] allow one to deduce that

N, = 106cm™3 Np = 10'%cm3
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_ 2x1071%cm? _ cm? _ _y; cmS _ _1p cmd
D~ hv =0575 7o = BX107H oo 7a = 8107 g

: , cm?
Using a hypothetical value of ay = 2 ——

T which gives equal electronegativities, we

obtain trap occupations which are very nearly independent of I:

Ap = 108¢m™8 Dg = 10'8cm™3

Thus 99.9% the acceptors are filled and 99.9% of the donors remain filled with

electrons. Choosing a value of I = 0.1W/ cm?, we obtain

ng = 5x10%cm3

Given a dielectric constant of ¢ = 56y, and experimental parameters of A = lum,

T = 300°K, the characteristic fields take on the values:

_ - kv _ .V __ kv
EN=5Cm Er=5Cm Ep=5m
E =165 E =25——
em cm

It is then apparent that E, has a simpler intensity dependence than shown by (11).

Since Dy << Np, Ag << N,, and also ny << N, for intensities << 1kW/ cm?, we have

ND—DQ NA'_AQ e e eNA
+ Ep N, AEp +Ey= ;k“(Do'*Ao)* '&(NA*‘HO) P

which is a material constant independent of intensity. So, the major steady state
intensity dependence of the space charge field, and hence the index of refraction

variation, is seen to be E; x I,/ I, in agreement with experimental results [31].

Concerning the assumption that ng reaches its steady state value much faster
than E;, we note that the risetime of the photocurrent in BSO is 0.4 msec [14], and
hologram formation at 0.1 W/cm? takes approximately 10 msec [33,60] Using the

aforementioned experimental and hypothetical parameters, and the additional
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information that x4 = 0.03 cm?/Vsec, we obtain

v, = 200Hz v, = BOOHz vn, = 4.8kH
vp = 50Hz vq = 0.2MHz vy = 3MHz
v, = 3MHz v; = 40kHz vo = 5kHz

The existence of three time constants is evident from (13), but experimentally two
dominant time constants have been observed. In view of the large values of v4 and
vy, possibly vg, and measurements of hologram risetimes on the order of 10 msec
[33,60], we expect the cubic term to be much less than the quadratic term [55].

In this case, there will be two dominant time constants, and the solution will be

given by
£ ve(vpA + 1v,A) - -
ik —E;(t) = 1+A,e *+Ae © (14)
e Vos
where
1 Vlz —_ 1 Vlzﬂ:\/Ul4—4U2V03
AiEj:E( 1) and P 50 (15)
\/v14—4u21/03 * 2
Using the above parameters, we obtain
A, =10 A =-11 T, = 4.Bmsec 7- = 5.3msec

The ratio —A,/ A-=7,/ 7- is plotted versus fringe spacing for several values of the
unknown a, in Fig. 2.9. Two time constant behavior should be observed when two
conditions are met: 1) A, and A- are comparable in size, and 2) 7, and 7- are not.
The conclusion concerning hypothesis (i) is that the second photoactive species is
a possible source of the multiple time constant behavior, for a range of values for
oy and A. At A=1um, one can see that a) as a4 decreases (the acceptor states fill
with electrons), 7, approaches 7- and the multiple time constant behavior disap-

pears; b) as a, increases (the acceptor states become more empty), |A,| becomes
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Figure 2.9. Ratios 7,/ 7- and A,/ A- as a function of the grating period A. The
g
parameters used are given in the text. Several hypothetical values
of oy are used.

much less that |A-|, and the multiple time constant behavior disappears again.
Experimental work is currently in progress to check the variation of the two time

constants with applied field, and grating spacing.

In the event of full traps, Ag=0, Dy = Ny+ng = N,, and the time dependence

simplifies to:

VD Vd
_ vptuvgtug +u—ivg _Lﬁk—+ﬁ—i{-+E“+Ef 1Eg (18)
- I/nl/d'*'I/D(l/n-i-Vf—il/E) Vp Ey + Ep + E; — iE,

2.6 Statistical mechanics model of the photorefractive effect

In the previous section we saw how the rate equation model was stated and how
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two approximations were necessary to obtain a solution. An alternative model has
been developed by others, which incorporates the same approximations from the
beginning, and, not surprisingly, arrives at the same steady state result [35]. The
purpose of this section is to introduce the statistical mechanics model, and com-

pare it with the rate equation model.
Recall that
i. Much of the analysis in the literature treats just one photoactive species.

ii. Another approximation that is commonly made is to ignore the contribution of
the conduction band electrons to the space charge field, i.e. ignore their
direct contribution but maintain their indirect contribution of allowing a
redistribution of trapped charges to take place, in the absence of any tunnel-

ling.

iii. The average concentrations of all species are frequently assumed to reach

their steady state values in the early stages of hologram formation.

Accordingly, the hopping model permits a fizred concentration of charges, N¢, to
occupy a much larger concentration of identical sites, Ng, in any of a large
number of permutations [35]. Charges reside only in the states within the energy
gap, not in the conduction band. In the dark, each charge is immobilized at a site,

but when exposed to light it becomes mobile.

Under uniform illumination, the relative probability of two sites m and n being

occupied is given by statistical mechanics:

=

m = ex q(Wn_¢m)
W, PTT

where T is the lattice temperaure, and q is the charge of the carrier. ¢, is the
quasi static potential at site n due to externally applied fields, to intrinsic chemi-
cal potentials e.g. the bulk photovoltaic effect, and includes the space charge

field itself under conditions of non-uniform illumination. This steady state form is
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contrived by choosing the following form for the hopping rate, from site m to n,

proportional to

9(¢nm)
exp 2kpT (17)

A spatially varying light intensity causes a rearrangement of this distribution if
the tendency to hop from site m is proportional to 1,,. Thus changes in the occu-
pancy of site n depend on the rate of hopping into n from all other sites m and the

rate of hopping out of n into any other site:*

dw, q®nm 9 @mn

[
= - rZn:DmP’\(nInexp kT Whnlnexp ks (18)

As before, variables W and ¢ are taken to have the form

W, =W, + W, 4 We

ikx o —ikx
Pn=¢o t g1 "tpe T2
Substituting these expressions into (1B), using Poisson's equation, and using the

characteristic fields defined in §2.5.1, yields the following:f

(Eo — i(E; + Ey)) _ill_(
En Ip

E, = —iDIy(ko1)3 E, Eq — iE;) (19)

where D is the adjustable nearest neighbor hopping parameter in the theory. The

steady state field amplitude and the time constant are:

E 1, En(Eg + iEy) _ kpT(Ng)?/3
() =i Ip Bg +i(E; + Ey) T~ Dlgek(—Ey — E; + iEq)

(0)

The steady state field agrees well with the rate equation model (11). The

equivalent of E, does not appear because holes in the valence band are ignored.

* Factors of 1-W could be added to account for the probability of the final state being unoccupied. The
experimenteal results are actually consistent with leaving out those terms, because the probability is
very close to 1. This is equivalent to having (Np—Dgp)/ Np=1 in §2.5. The experimental results are
also consistent with ignoring all hops except between nearest neighbors.

1 Now, Ef =~ ksTk e—:li—c. because the charge carriersin BaTiOs are holes.

, and Ey =—
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The parameter D is unknown, so one cannot compare expression (20) for the
time constant with the rate equation result (16) except to say that one could

solve for D in terms of the characteristic fields by equating the two results.
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3. TWO-WAVE MIXING
3.1 Introduction

In the previous chapter, the grating formation in photorefractive crystals was
explained in terms of nonlinear ordinary differential equations which describe
the coupling between the light and the mobile charges within th¢ crystal. A spa-
tially varying intensity was found to cause a redistribution of charge which
modulates the index of refraction through the electro-optic effect. The various
plane wave components of the incident light are subsequently coupled by the
self-induced diffraction. In this chapter, the propagation of light within these
crystals is determined by a set of nonlinear ordinary differential equations which

describe this coupling.

In the analysis of the previous chapter, the intensity was assumed to be
known, i.e. equal to the incident intensity, within the thin slice of material that
was considered. When the grating thickness is comparable to a fringe spacing,
the transmitted field is given simply by the incident field times a multiplicative
amplitude to be transmitted, t, (Fig. 3.1a). The diffracting waves are solutions of

the wave equation in a region of simple, uniform, index.

1f, within the grating, either the exponential absorption constant or the index
of refraction is given a sinusoidal modulation, then many diffracted orders
appear in accordance with the many Fourier components (Fig. 3.1b). The z com-
ponents of the wavevectors need not obey a sum rule, although they may, given
the proper angle of incidence (Fig. 3.1c,d). The lack of phase matching in the z
direction isn't important because the medium is infinitesimally thin in the z
direction. The angle of the incident beam is equally unimportant; within the

paraxial approximation, t is independent of the incident angle.

When the wave interaction and diffraction are thus confined to different

regions in space, the analysis is quite simple. The diffraction efficiency of thin
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Figure 3.1. Diffraction from thin and thick gratings.
a) Thin amplitude grating.
b) Thin phase or absorption grating.
c¢) Phase matching for a thin amplitude grating.
d) Phase matching for a thin phase or absorption grating.
e) Zero and first order Bragg diffraction within a thick grating.
f) Second order Bragg diffraction.

gratings is limited, however, hence the interest in thick gratings.

In a sample of finite (as opposed to infinitesimal) thickness, the nonlinear
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interaction and the diffraction occur simultaneously, within the same volume.
The wave equation must be solved in a region of periodic index variation. The
analysis in this chapter is restricted to plane waves in steady state. It is an
extension of the coupled wave analysis of thick, fixed hologram gratings, which

will be briefly described first.
3.2 Coupled wave theory of fixed, thick hologram gratings

In this section, the diffraction of plane waves by thick, fixed, 7.e. non-erasable
gratings is described [1]. Such gratings can be produced in photographic emul-
sions, dichromated gelatin [R], photopolymer materials [3], and photorefractive
crystals that have been fixed after recording [4]. In contrast to thin gratings,
for diffraction to occur, the incident beam must be close to Bragg incidence, and
only one diffracted beam is radiated (Fig. 3.1e). The transfer of energy into a
diffiracted component is cumulative in z only if the diffiracted wavevector equals
the incident plus the grating vector. Another way of looking at this is that multi-
ple reflections only interfere constructively in certain directions. One can
observe higher order reflections, but each order requires illumination at a

different angle (Fig. 3.1f).

Propagation inside volume gratings is well described by coupled wave equa-
tions derived from the scalar wave equation. As in Chapter two, a grating with
only one sinusoidal component is considered. The surfaces of constant index are

planes, perhaps tilted with respect to the crystal surface.

n n
n=ng+ ~2—le_i(g'r* ?) + —2—1-—ef(g'l'+ )

The optical electric field consists of two fields incident at the Bragg angle whose

wavevectors are given by k) — k, = g.
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E(r) = Ay (z)e M7 + Ay(z)e HeT

The A; are the complex amplitudes representing the envelope of the optical field.
The z dependence of the amplitudes is due to the linear absorption and the cou-
pling caused by the grating. The above expressions are inserted into the scalar
wave equation and the terms with equal exponentials are collected in separate
equations. The amplitudes are assumed to obey the slowly varying envelope
approximation, i.e. their second order spatial derivative is neglected in com-
parison to the optical wavevector times the first derivative. Then, the second

order differential equation reduces to the two first order equations:

dA, o TRy .
cos06, Z -z Ay —i e’ WA,

dAg o mhn .
Ccos6; Py Ap —1 L ely A,

where §; is the angle between the z axis and k;. Separating the amplitudes into a

magnitude and phase with the definition A; = \/I—ie_i“i. the equations for the

intensities can be found.

dl 2mn —

c0s6, —- = —al, + — 2L \/1,1, sin(p,—pa—¢) (12)
dz A
dl 2mn —

cos6p -a—zz— =—alp - — : \/1112 sin(g;—ga—¢) (1b)

Note that the phases of A; and A, appear in the equations, so that at any point in
space, if the interference pattern and the grating are out of phase so that
p1—¢2—¢ #0, the intensities are coupled. This is similar to the case of an elec-
tromagnetic field and an oscillating dipole moment, where a temporal phase shift
between the two accompanies energy exchange. When the grating is illuminated
by a single beam, a complete transfer of energy to the other beam is considered

a diffraction efficiency of one. In general the diffraction efficiency is defined to
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be:

COSGZ Iz(l)

1,(0)

'f]E

cose,;

Notice that if |cos8,|<|cos8,], then I;(I) can be greater than 1,(0), where I; = |A;|2
is proportional to the power per unit area perpendicular to k;. Of course for a
lossless, passive grating, the flux in the z direction must be conserved (éee (4)).
To calculate the diffraction efficiency of a transmission grating, the boundary

conditions are 1,(0) specified, and 15(0)=0.

1 1

— —ad(cosal+cossa) ] Trnld
n=e sin —_——
)\\/coselcoseg

This formula is commonly used to interpret the experimental data described in

§2.4.
3.3 Coupled wave theory of dynamic gratings

To extend the analysis to the dynamic case where the grating is written by
the very waves that are coupled by it [5], we will derive equations coupling the

complex amplitudes of two linearly polarized plane waves

E=€ Aj(z) e 7T + & Ag(z) e @7

which interfere inside the medium to produce an intensity distribution

L=EE= A2+ |A]2 + 8,6 A AJe TRIT L 2 .3 Ara,/lukelT

-~ Al Aé —i — K A;AZ 3 — .
= I+ 1+ 61'62 ‘_I— e l(kl kz)l' + 31'32 1 el(kl kz) r
+ +

where I, =1, + I,. We restrict the discussion to waves whose polarization vectors
do not change in space, i.e., they are individually eigenpolarizations of the

medium, and they are either perpendicular or parallel to the grating planes so
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that the coupling does not alter the polarization of either wave. The form for the
index is inspired by the expression for the time averaged intensity.

A fe e ik —ke)T o n,ei A}Az ellkn—ke) T

+ +

n=ng+n;e’’®

ng is the index of the material accompanied by any uniform electro-optic effect.
The amplitude of the grating is proportional to the fringe visibility, or modulation
index of the intensity distribution, 2A;A;/1,. n, is the material response to a
unity modulation index, and is given by the amplitude of the space charge field

and an effective electro-optic coefficient. For example,

EN (EO + lEf)

el E Ty i(Ey + B, + Ey) L% ()

n;e’¥ =

¢ represents an intrinsic spatial phase shift between the grating and the
interference pattern. Substituting these expressions into the scalar wave equa-

tion and using the slowly varying envelope approximation yields the following

equations:
dA; = « oy AlAsA,
cos8,; e —EA‘ -l I,
dA, mn; . AJAsA

The factor of i multiplying the coupling term represents a 80° phase shift upon
reflection within a medium possessing a periodic index variation. The intensities
and phases of the two beams are coupled according to the intrinsic phase of the
grating.

dl, 2mn; I 1, de, mn, 1o
Ccos6, Fry =—-al, — x Sing 7 cos6,; a3z -
+ +
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d], _2mn; L1 des mn, I
cos6y W - —aly + —x sing cosHy dz - N ocese T
+ +

Note that the intensities do not depend on the phase of the optical field, in con-
trast to Eqns. (1), but depend only on ¢, the intrinsic spatial phase shift. The

energy balance for the system is the same as that for a fixed grating:

%[Il cose, + I, cosey| + afl; +13) =0 (4)

which shows that, in the absence of a, it is the energy flow in the z direction that

is conserved.

The case of a transmission hologram (Fig. 3.2) with symmetric angles of

incidence i.e., 8; = —8,, can be solved by the change of variables

Jy =1er Jo = Ipedr Joe=d+ 1,

where the path length is denoted by r = z/ cos8,.

I \
L

r=4

Figure 3.2. Two-wave mixing in the transmission geometry.

Noting that J, is now constant with respect to r, the two equations for J, and J,



- 45 -

may be decoupled.

dJ Jid J(J,=d

1 =_21—‘ 192 - — F 1( + ])
dr Jdy Js
dJz dydz (Jy = J2)Jz
dr Jy Jy

mn,
where ['=

x sing. These equations can now be integrated directly and the

result expressed in terms of the original variables

[,(0) + 1;(0)
1,(0) + 15(0) e?Tr

I, = 1,(0)eer (5a)

1,(0) + Ix(0)
1,(0)e™2Ir +1,(0)

I, = I;(0)e™or (5b)

For large, positive (negative) I', the sum of the intensities of both beams

appears in I, (I;), aside from the linear absorption.
3.4 Oscillation in two-wave mixing

Gain through two beam coupling in transmission was first observed in 1972
[6]. In our laboratory, it has been combined with feedback to produce oscillation
in a unidirectional ring resonator [7]. In the configuration of Fig. 3.3, the pump
1, is supplied externally, but I; is not. Scattered light passing through the crystal
in many directions is amplified at the expense of 1,. Scattered light heading in
the proper direction is fed back, by the mirrors, into the crystal to be amplified
again. In this way, an infinitesimally weak initial beam can build up to a intensity
I, comparable to I;. The boundary condition appropriate for a ring resonator is
1,(0) = (1 —8)I5(!) where S is the loss due transmitting mirrors, Fresnel
reflections from crystal surfaces, etc. Using (3), one can solve for the ratio of

oscillating power to pump power
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Figure 3.3. Two-wave mixing in the ring resonator geometry.

I2(0) 1 —S - ela—2m
1,(0)  eal~(1-73)

where ! = d/ cos®;. The oscillation condition is

RTl >al —log(1 —8)

independent of pump power. In support of this conclusion, we checked for a
pumping threshold. Oscillation was observed to build up for a pump intensity of
15mW/ cm?, setting an upper limit for the threshold. The time to reach steady
state was approximately eight minutes. At an input intensity of 1.5W/cm?, the

"

time to reach steady state was 8 sec. The "steady state” was characterized by
large fluctuations in intensity which made it impossible to quantitatively confirm
that the ratio of oscillation to pump intensity was independent of pump intensity.
These fluctuation may be due to a mismatch between the longitudinal and

transverse modes of the pump laser cavity and the ring cavity. The spectra from

the laser and the ring oscillator both had multiple longitudinal modes.
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The oscillation was unidirectional, indicating that the I" coupling the counter-
propagating beam to the pump beam was below threshold. Whether it is possible
for two counterpropagating beams to be pumped by the same third beam
depends on the relative orientation of the crystal through the electro-optic
coefficient. The index change in photorefractive crystals depends on the

electro-optic coefficient through (2).
The effective electro-optic coefficient is given by
Tem = £5i(rix8) &5/ (gnfny) (6)
where ¢; is the dielectric tensor of the material, g=k,;—k; is the grating vector,
gx is the component of g in the k direction, g=|g|, and n, is the index of refrac-

tion (either ordinary or extraordinary) appropriate for the polarization of the

mixing beams.

For crystals of the point group 4mm, such as SBN and BaTiOg, the nonzero
electrooptic coefficients and their conventional contracted notations are

T2z = 33, Fxxz = Iyyy = F13, @Nd Iypy = Iypy = Iyp. Equation (6) reduces to

+B
2

_ o«
Feg = I'1gSin

for mixing beams of ordinary polarization and

o+ B 4 1 . oa+tf
> +n°r13cosacosﬁn 7sin 5

res = |Ddrggsinasing + 2nfn2r,pcos? -
e*to

for mixing beams of extraordinary polarization. o and g are the angles of the

pump beams and oscillation beam(s) with respect to the optic axis of the crystal
as shown in Fig. 3.4.
In BaTiOs the large electrooptic coefficient is ryz = 820pm/V [9]. To observe

the largest effects it is necessary to use extraordinary polarization and to orient

the crystal so that the grating vector is not parallel to any of the crystal axes.
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Figure 3.4. Two-wave mixing geometry showing the pump beam (solid), the oscil-
lation beam(s) (dashed), and the c axis of the crystal.

In SBN, rgg is large (= 107 m/V) so that extraordinary polarization must be used,

although the grating vector can be parallel to the optic axis.

If we only consider the ry, term in BaTiOg, when two waves intersect, the one
with the k closest to the ¢ axis gets amplified at the expense of the other, vié the
grating formed between them. Given an acute angle between the pump beam and
the c axis, the pump will amplify one member of a pair of counterpropagating
beams and attenuate the other member (Fig. 3.5a). Given an obtuse angle
between the pump beam and the c axis, the pump will amplify each of two
counter-propagating beams individually (Fig. 3.5b). However, a two-beam cou-
pling analysis cannot predict the gain when all three beams are present because
each beam will interact with the superposition of two or three different gratings.
We have not been able to observe in our laboratory a bidirectional ring oscillator

pumped by a single beam.
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Figure 3.5. Diagram showing amplification and attenuation through two beam
coupling. The pump wave is I, and the optic axis is denoted by c.
Signal waves heading in directions spanned by the dotted region of
the circle will be amplified. Signal waves heading in directions
spanned by the dashed region of the circle will be attenuated. In
(a) and (b), the angle between the pump wave and the c axis is
acute and obtuse, respectively.

3.5 Refiection gratings

Up to this point, only transmission gratings have been discussed. Both
reflection and transmission gratings are described by the same differential equa-
tions (3), but the boundary conditions differ (see Fig. 3.6). In the former case,
the two incident waves are specified at the same interface, and both values are
sought at the opposite interface, i.e. they have the same entrance face and the
same exit face. In the latter case, the incident waves are specified at opposite
faces. In practice, reflection gratings are written by beams that are more nearly
counterpropagating, and transmission gratings are written by beams that are
more nearly copropagating. Very short period transmission gratings, and very
long period reflection gratings can be written, but as the beams approach graz-

ing incidence, a hologram of finite extent will intercept less and less of the beam.
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r=0O r=4

Figure 3.6. Two-wave mixing in the reflection geometry.

A special case of the reflection geometry is where the beams are counterpro-
pagating. It is important to understand the coupling between counterpropagat-
ing beams because they are one constituent of the four-wave mixing implemen-

tation of phase conjugate mirrors.

The key to solving the two-point boundary value problem can be derived from
(3)

d
‘a?(lllz) =RI'LhI,
independent of the absorption constant, «. The path length is denoted by

= z/ cos®,. The intensities at the two faces are therefore related by

LG _ o

LOLO) - © ()

in which all the intensity dependence is explicit. I' should only depend on the

grating vector and the crystal orientation.
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Before solving the reflection grating problem, an experimental test of equa-

tion (7) will be described. The experimental apparatus is shown in Fig. 3.7.

D BS PBS—%

A )

| mns

/| 6P

Figure 3.7. Experimental configuration for two-beam coupling in the reflection

geometry.

C: crystal BS: beamsplitter

D: detector PBS: polarizing beamsplitter
GP: glan prism A /2: half-wave plate

The two input and two output intensities are measured by the four detectors,
which are moﬁitored by a minicomputer. The half-wave plate - polarizing beam-
splitter combination serves as a no loss beamsplitter with a
transmission/reflection ratio that can be varied by simply rotating the half-wave
plate. The sum of the two input intensities was held constant and the coupling
constant I' was calculated as the ratio was varied. The results are shown in Fig.
3.8, in which I' changes by only a factor of two while the ratio of the two input
intensities changes by six orders of magnitude. Eqn. 7 inspires a change of vari-

ables which is helpful in solving for the output intensities in the reflection
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Figure 3.8B. The two-beam coupling constant vs. the ratio of the intensities of
the two input beams.

geometry

J, =1eTr Iy = IpeTr

Now, J;J; is constant with respect to r, allowing the equations for J,, and J, to be

decoupled and integrated. Using this change of variables in (3), we obtain
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dJ; Jyda 11(0)J5(0)
E e e el 77

1t 7,

3,0z J1(0)J2(0)

Ve o r4o)d, —2T
ar - (T+e)dz =205

T - Tredde = BT ey .

Ja 2

In terms of the original variables, the variation of I; and I; with r is given by [10]:

“rape | (T001L2(0) = (T+) L, (@) 1x(0) |F Lyel o)
C T m12e — (v, (00 | 1,(0) a
ey = | (T+0)1:%(0) — (M=) 14(0) 1x(0) Iers ol o
T T TR — (o)L, (0)1(0) | L(0)

I5(0) is still an unknown which must be solved for by evaluating {Bb) at r=L.

Input/output curves for this amplifier are shown in Fig. 3.9, for the case
o = 0. They are obtained by numerical solutions of (8). The donor, or pump,
beam is fixed in intensity and the signal beam is varied from zero to twice the
intensity of the donor beam. These curves show the changes in both output

intensities as the intensity of the one input is varied.

In the limit a » 0, one can show, from (B), that

L(0) + 1)
1,(0) + Ip(t) e

L) = 1,(0)

1,(0) + (1)
,(0)e 2 + 1,(0)

I(0) = 1(2)

which are identical to (5a) and (5b) under the interchange 15(0) - I;(l). Therefore
an amplifier with a = 0 and a transmission geometry will have the same operat-
ing curves, and the design of an amplifier should be concerned with maximizing I"

and need not be prejudiced in favor of either geometry.
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VAR
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Figure 3.9. Diagram showing the operation of a two-beam coupling amplifier.
The intensities of the two output beams are plotted vs. the intensity
of one of the two input beams. The dashed line is the amplified
beam and the solid line is the attenuated beam. The intensity of
the second input beam is fixed at 5 (arbitrary units).

Experimental data demonstrating qualitative agreement with this analysis are
shown in Fig. 3.10. The data were taken with the apparatus shown in Fig. 3.7.
One should not expect Figs. 3.10a and 3.10b to be identical because the coupling
constants for the cases are different. A quantitative comparison between Figs.
3.9 and 3.10 has not been attempted because the analysis has neglected Fresnel

reflections at the crystal surfaces.
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Figure 3.10. Experimental values for the output intensities of an amplifier with
the (a) transmission geometry (b) reflection geometry.

A difference between the two amplifier geometries appears for a non-zero «,
and this is shown in Fig. 3.11. This figure shows that if two beams are sent
through a photorefractive crystal in the reflection geometry, the combined

intensity of the two beams which emerge is larger than if the same two beams
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Figure 3.11. Diagram showing the operation of two-beam coupling amplifiers, in
the transmission and reflection geometries, with absorption
present. The value of the donor beams is 5, and Il =1. The output
intensities of the acceptor beams are plotted vs. their input inten-

sities.

are sent through in the transmission geometry. (Same coupling strength and

absorption constant in both cases.)
3.6 Coupling between waves inside a ring resonator

The power flow, from one wave to another, in two-wave mixing suggests the
use of an electro-optic crystal as a uni-directional element inside a ring laser

cavity (Fig. 3.12). The preferred one-directional power flow could enhance the
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clockwise oscillation at the expense of the counter-clockwise oscillation, if the

two counter-propagating waves were coupled with a reflection grating.

gain medium

AN .
S

opficdl diode

Figure 3.12. A ring laser containing a gaim medium and an optical diode, or uni-
directional element.

A bi-directional ring laser has standing wave nodes which prevent complete utili-
zation of the inversion inside the gain medium [11,12]. Increased mode stability
and a four-fold increase in power output results from eliminating the oscillation
in one direction, hence the interest in optical diodes. Currently, Faraday rota-
tors are combined with Brewster windows to provide a 1% difference in round trip
loss between the competing directions. This difference in loss combined with the
competition for the gain is sufficient to keep the oscillation in one direction

below threshold.

The holographic coupling only exists when both beams are present, so the

best one could hope for would be a situation where one direction was dominant
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and only a small amount of power remained in the other direction to maintain
the coupling. Unfortunately, for gain media that do not possess any directional-
ity in their own right, a sfeady stafe solution does not exist. For example, for
gain media characterized by

Y= ——
1+I

Isat

where Ig,, is the saturation intensity, the intensities within the gain medium obey

the relation

S0L=0  or  LOLO = LOLE)

which is incompatible with Eqn. 5.

A brief experimental investigation was performed with a ring dye laser and a
poled single crystal of SBN. We were unable to get either the clockwise or
counter-clockwise waves to go below threshold. The intensities of both beams
had periodic fluctuations on a millisecond time scale. This corresponded closely
to the response time of the photorefractive effect at the intensity level within

the cavity.
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4. FOUR-WAVE MIXING
4.1 Introduction

The holographic formulation of four-wave mixing (4WM) is an extension of the
two-wave mixing formulation presented in the previous chapter. We continue to
consider the same third-order nonlinearity, but now four waves are present in
the medium. Four-wave mixing has a commensurate increase in versatility over
two-wave mixing, and, in particular, is the most important nonlinear technique

for generating phase conjugate wavefronts.

The differences between photorefractive media and other nonlinear media will
be further explored in this chapter, especially with regard to their impact on
four-wave mixing. Experimental results supporting our analysis will be

presented.
4.2 Holographic formulation of four-wave mixing

The four-wave mixing implementation of a phase conjugate mirror consists of
a medium possessing a third order susceptibility pumped by two counter-
propagating beams. By convention, A, and A; are taken to be the counterpro-
pagating pump beams (Fig. 4.1a). A, is the incident signal, object, or probe beam
and Ag is the phase conjugate wave. In the plane wave approximation, we calcu-
late the reflectivity for only one plane wave component of the object beam, i.e.,
the analysis includes only two pairs of counterpropagating plane waves. A;(0),
Ap(l), and A4(0) are the known, inputs (Fig. 4.1a). Ag is not input, i.e., Ag(l) = 0,
but it is generated within the medium. The unknown, outputs are A;(l), Az(0),

Ag(0), and A4 (¢) . Let the electric field amplitude associated with the jth beam be

Ej(r.t) = A(r) e®T=e 4 oo

where c.c. stands for complex conjugate. The four beams write four distinct

gratings labelled with Roman numerals I-IV (Fig. 4.1c).
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Y

Figure 4.1. Geometry of four-wave mixing in a nonlinear or holographic
medium.
A, and A; are the counterpropagating pump beams.
A, and Aj are the incident and phase conjugate beams, respectively.
k, through k, are the optical wavevectors.
k; through kyy are the grating vectors.
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where I, = EIJ-. The grating vectors are determined by the wavevectors of the
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incident beams.

=k -k =k -k kp =k -k =lg -k ky =k — ke ky =k — kg

The complex amplitudes of each of the index gratings are in general different,
depending upon the polarization state of the light and the magnitude and direc-
tion of the grating vector in conjunction with the properties of the medium

( rem En, By, Ep, etc.) and applied fields, as outlined in Chapter 2.

Substituting this form for the index into the Helmholtz wave equation,
(V®+w2ue)E = 0, and using the slowly varying envelope approximation (§3.2), we

arrive at the following coupled wave equations: [1]

dA oy _, AJA5 + AZA g 4, AjAg + Az
COSG 1 - _.1 I e ]¢I 1A4 2 3 A4 _ 1 H elwn 1 3 2A4 As
1 X e I+ Ag ) Al

dAd, o ATAy + AgAg AL S AjAg + AgAg

%078 TN I, s ¥17Y L (1b)
AR g A;Az -3
+1 N e I* Al + 5 A2
dA, ny .. A s + AJA Tng AfAx + A AL
oS8 — = | ——¢ ¥ 1 23A2+i [ o —ieg 178 2A4A1
v ’ N . = (1c)
Ty AsA a
+ v @
1= 1, Ay + SAs
mnp o, ATA; + ApAJ mng . AAg + Ag
o088 — = —j — el 12 e ! 0 jep 2178 2 Az
* " . 4 e (1d)
i Z_T_D_I\L igry AI;A‘l o

TN e T AT A
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Here ¥ is the angle of incidence of each wave and a is the the absorption con-

stant. This formulation differs from previous formulations of four-wave mixing

[2] in several respects:

L.

ii.

iii.

The complex part of the coupling coefficients represents a spatial phase shift
(between a grating and the interference pattern that generates it), rather
than the more common temporal phase shift (between an optical frequency
electric field and the response of an atomic dipole moment, for example.)
The four beams propagate in different directions in space, but the same
direction in time. Accordingly, any temporal phase shift will have the same
sign for all beams, while any spatial phase shift will be positive with respect

to two beams, and negative with respect the other two.

The normalizing factor in the denominator (I,) is peculiar to the pho-
torefractive effect. Nonlinearities higher than third order are clearly

present in the response of photorefractive media.

Missing from here are terms, e.g., A|AJA,, which give rise to self focusing in
some media, but are not holographic in origin. For a plane wave A;, AJA, is
constant in the plane perpendicular to k;, and contains no grating fringes.
Also, in some media possessing a true third order susceptibility, waves with
perpendicular polarizations can interact, whereas in the holographic formu-
lation, only terms representing waves that interfere are included in the

expression for the index.

4.3 Single grating, undepleted pumps approximation

Having generated all the terms in Eqns. 1, it was found that only a small

number of terms are needed to describe BaTiOg in many situations. In the single

grating approximation, we assume that, out of a possible four index gratings,

only one is present. There are several reasons why the other gratings may be

absent.
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I. If beams two and four are incoherent with respect to each other, or have
orthogonal polarizations, then the time averaged AjA, terms vanish, and do

not represent a static interference pattern.

ii. If two waves do interfere, but the period of the interference pattern is
shorter than the mean distance between traps, then it will not produce a
space charge field. The spatial frequency response of the medium can thus

limit grating formation.

iii. Even if two waves do produce a space charge field, if the field is in a direction
for which the effective electro-optic coefficient vanishes, then it will not pro-

duce an index grating.

In the undepleted pumps approximation, we assume that the two pump beams
are unaffected by the nonlinear interaction. This is typically true when the
pump beams are much more intense than the other beams. This is a safe
assumption in media with local response, but in photorefractive media one has to
be aware of the possible energy exchange between the pump beams themselves

as discussed in §3.5.

4.3.1 Transmission grating If the transmission grating is dominant, we have

from (1)
-ddi?}- = —%AI (Ra)
%A;i= o (2b)
%—A""; = SAg + 755%5‘5—%% (2¢)
(ff = —ZAL+ 75‘—-‘5“{—‘6‘2—’53-!&; (2d)

oy . : .
where y = i——)\—l—e ¥l and r = z/cos®. The first two equations are immediately
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integrable.

)

- -
A=A (0)e B Ap = Ag(1)eZ " 1,(r) = 1,(0)e~oT + I5(1)eatr1)
1

To uncouple the remaining two equations we make use of the relation
d .. o _ . o _
3 (ATAg - A2A0) = 0 or AjAg— A =c (3)

The equation for Az then can be written

dAs « cyYA, y

e~y +a){r—r)dgp
T SO P or Ag=ceyA0) [
r

I (r)

dr

using the boundary condition Az(l) = 0. To solve for c, the expression for Az can
be inserted into Eqn. 3 and evaluated at r = 0.

2,

A (1)Aj(0)e 2

Lol ra)r gy

711(0){ I+(r’) -1

I}

The phase conjugate amplitude reflectivity is given by

}e—(y +a)r-r)gp
0

_ Ag(0) _ ~§-L Li(r)
P = R0 = 7A1(0)Ax(D)e o arar

711(0){ .0

In Fig. 4.2, the phase conjugate intensity reflectivity is plotted versus the pump
ratio, p. The pump ratio is defined according to the function of the two pump
beams with respect to the probe wave, A4, i.e., p is the ratio of the intensity of
the pump which reads out the grating written by A;, to the intensity of the pump
which writes the grating with A;. From Eqns. 2¢c & 2d, we can see that pump 1
writes a grating with A;, and pump 2 reads out the grating, therefore, for the
transmission grating, p = 15(l)/ 1,(0). The reflectivity is plotted for vl = +3 and

several values of & = o/ 7. We see that the effect of increasing linear absorption
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Figure 4.2. Phase conjugate intensity reflectivity of the transmission grating in
the undepleted pumps approximation vs. the pump ratio I(2)/ I,(0)
The coupling strength is 9 = +3 and the reflectivity is shown for
various values of the normalized linear absorption @ = a/ 7.

is primarily to decrease the reflectivity, with the greater decrease being for

negative yl.

The dependence of phase conjugate reflectivity on the pump ratio is a man-
ifestation of the same phase shift which produced the directionality in two-wave
mixing. Fig. 4.3 shows how the optimum pump ratio varies with ¢;. Media with

local response (¢; = 0) display an optimum pump ratio of unity. A measurement
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Figure 4.3. Phase conjugate reflectivity in the undepleted pumps approximation
for coupling strength 91 = —3.627 and various phase angles, ¢. Mir-
rorless self-oscillation occurs here for ¢ = 7/6 and p = 6.13.

of phase conjugate reflectivity vs. pump ratio has been made using the experi-
mental apparatus shown in Fig. 4.4. The half-wave plate / polarizing beam-
splitter combination forms a lossless beamsplitter with a transmission/reflection
ratio that can be varied simply by rotating the half-wave plate. An experimental
curve of reflectivity vs. pump ratio is shown in Fig. 4.5. The nonlinear medium is
a poled, 4x4x7mm?® single crystal of BaTiOg. All three input beams at 514.5 nm

are supplied by the same argon ion laser. Their total intensity is 27.5W/cm?.
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- [\)|>’

Figure 4.4. Experimental configuration for measuring phase conjugate
reflectivity as a function of pump ratio.

C: crystal BS: beamsplitter

D: detector PBS: polarizing beamsplitter
P. polarizer A/2: half-wave plate

GP: Glan prism VA: variable attenuator

The fringe spacing is 1.9um.

The expression for the reflectivity can be simplified when o = 0.

2
et —1
e +p

R=p (4)

R is invariant under the interchange p » 1/p and y{ » —yl, meaning that probe

beams travelling in opposite directions to each other, incident upon opposite
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Figure 4.5. Experimental curve of phase conjugate reflectivity vs. pump ratio.

faces of a photorefractive PCM, will experience the same reflectivity.
The condition for an infinite reflectivity is

Im(—yl) = +7, +37, - -+ and Re(—yl) = Inp

Of course, pump depletion occurs long before infinite reflectivities. While this
condition cannot be satisfied for ¢; = 7/ 2, reflectivities exceeding 100% are
within reach of finite coupling strengths at all phase angles. The phase angle can

be controlled by applying an electric field to the crystal, and also by detuning
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the pump and probe beams. In the latter case the finite response time of the
photorefractive effect causes the grating to lag beh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>