
A Theory of Permutation Polynomials Using Compositiond Attractors 

Thesis by 

Daniel Abram Ashlock 

In Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, California 

1990 

(Submitted May 7 ,  1990) 



@ 1990 

Daniel Abram Ashlock 

All rights Reserved 



Acknowledgments 

Warm thanks go t o  my friend and colleague Jack Lutz who accidentally shoved me 

toward this thesis with his question, "Aren't the first two congruent t o  the third mod 

two?" Thanks go t o  James Cummings who read this work in its early stages and with 

whom I had many stimulating discussions. I must credit Heeralal Janwa with providing 

me with many useful references. 

My committee deserves thanks for their investment of time, both in sitting on my 

committee and in training me in mathematics. I want especially t o  thank Michael 

Aschbacher, who read the work in progress and corrected my many blunders in group 

theory, Dinakar Ramakrishnan, who suggested many topics for future application of my 

work, and Richard Wilson, my advisor, who has supervised my work for the last four 

years and has taught me much delightful and beautiful comhinatorics. 

I must also thank my wife, Wendy, who has been substantially inconvenienced by my 

graduate studies and nonetheless provided love and support,  and my father, Peter 

Dunning Ashlock, who died while I was working on this thesis. More than any other 

person he trained me in the  philosophy and methods of science and gave me my 

direction through life. 



iv 

Table of Contents 

Copyright 

Acknowledgments 

Table of Contents 

List of Tables 

List of Examples 

Introduction and Summary 

Chapter  

I. Definitions and Basic Results. 

$0. Introduction and Summary. 

1 Equivalence Results. 

$2.  Lifting and Decomposition Lemmas. 

$3. Properties of Compositional Attractors.  

11. Results for Finite Fields and the  Integers. 

$0. Introduction and Summary. 

$1. Compositional Attractors of GF(pn)[x]. 

$2. T h e  Order of Finite Permutation Polynomial 

Groups with Finite Field Coefficents. 

$3. Compositional Attractors of Z[x]. 

111. T h e  Groups PPZn(Zn) and PPZn(Zmim). 

$0. Introduction and Summary. 

$ 1  Singmaster's Result. 

52. A Basis for t he  Ideal 1 2 .  

$3. T h e  Group PPZn(Zn). 

$4. Computation of the  Ideal I 
zmim 

z n  ' 

$5. Membership and Enumeration of the Group 

.. 
11 

... 
111 

iv 

vi 

vii 



IV. Applications and Topics for Future Work. 

$0. Introduction and Summary. 

1 T h e  Permutation Polynomials of the  p-adic 

Integers. 

$2. Permutation Polynomials of Abelian Group 

Algebras over Finite Fields. 

93. Questions for Further  Study. 

Appendices 

A Explicit Examples of Polynomial Groups. 

T h e  Group Sym(GF(5)) Realized as Polynomials. 

T h e  Stabilizer of 0 in PP(Z9) 

B Tables of special functions. 

C Certain Permutation Polynomial Groups. 



List of Tables 

Table 3.1, Values of ~ ( n )  41 

Table 3.2, Order of PPm(Zn) 71 

The Symmetric Group on GF(5) as Cycle and Polynomials 80 

Values of r (n)  83 

Values for em(n) 84 



List of Examples 

Example 1.1, Permutation Polynomials of a Finite Field 7 

Example 1.2, A Homomorphism of Polynomial Groups 15 

Example 2.1, Compositional Attractors of a Subfield 20 

Example 2.2, Compositional Attractors for Matrices over GF(q)  20 

Lemma 2.1, T h e  Compositional Attractor of a Polynomial 
Modular Algebra 20 

Example 2.3, An Irreducible of Z ,[XI tha t  Factors Modulo p 33 
P 

Example 2.4, A Family of Compositional Attractors of Z[x] 34 

Example 3.1, Generators for f I2 ,  II2* 43 

Example 3.2, Computation of a Least Degree Common 
Multiple 58 

Example 4.1, The  GF(2)-Permutation Polynmials of GF(2)[C3] 76 

Appendix A, Example 4.2, T h e  number of GF(3)-Permutation 
Polynomials of GF(3)[C6] 77 

T h e  GF(5)-permutation polynomials of GF(5) as cycles and 
polynomials of least possible degree 80 



Introduction and Summary 

In this work I will develop a theory of permutation polynomials with coefficents over 

finite commutative rings. The  general situation will be that  we have a finite ring R and 

a ring S, both with 1, with S commutative, and with a scalar multiplication of elements 

of R by elements of S, so that  for each r in R ls.r = r and with the scalar 

multiplication being R bilinear. When all these conditions hold, I will call R an S- 

algebra. A permutation polynomial will be a polynomial of S[x] with the property that  

t he  function r + f f r )  is a bijection, or  permutation, of R. 

Presented here, as far as  I know for the first time, is t he  idea tha t  compositional 

at t ractors  are integral t o  t he  study of permutation polynomials. A compositional 

attractor is an ideal I in a polynomial ring S[x] with the  added property tha t  

There are several reasons that  compositional attractors are important. 

First of all, a compositional at t ractor  of Six] is exactly a n  ideal comprised of the 

polynomials tha t  are zero everywhere on some S-algebra, i.e., i t  is the kernal of the 

representation of S[x] as a ring of functions over R. This means tha t  they capture the 

equivalence relation associating polynomials tha t  give the same permutation. Such a 

ideal, zero everywhere on an S-algebra, is called the compositional attractor associated 

with an S-algebra. 

Second, polynomial composition modulo an ideal forms a monoid if and only if that  

ideal is a compositional attractor. One consequence of this is tha t  the polynomials with 

the identity polynomial f(x) = x  in their composition sequence modulo a compositional 



at tractor  form a group under composition. 

Third, two S-algebras with the same associated compositional attractors in S[x] 

necessarily have identical permutation polynomials in S[x]. Since it is often easier to 

compute a compositional at t ractor  associated with an algebra than t o  compute the 

permutation polynomials directly, this gives a powerful tool for locating and 

enumerating the permutation polynomials of certain S-algebras. 

Fourth, if J <I - S[x] is a compositional attractor, then S[x]/J is an S-algebra with 

associated compositional at t ractor  J. This fact gives a canonical domain in which t o  

perform computations. This fact, while quite easy t o  prove, is of great utility in 

classifying the permutation polynomial groups when S is taken t o  be a finite field. 

In addition, taken together with the  third point, this fourth fact has a wonderful 

consequence. In a rather nice paper, "Polynomials Over a Ring Tha t  Permute the 

Matrices Over Tha t  Ring,"[lO] Brawley spends not inconsequential effort doing matrix 

arithmetic t o  prove a theorem tha t  characterizes scalar permutation polynomials of 

matrices. I t  turns out  tha t  in specific instances a n  alternate p r w f  is possible in which 

one first computes t he  associated compositional at t ractor  for the matrix ring and then 

does the  computations in the corresponding canonical algebra, which is commutative. 

This thesis is presented in four chapters. The  first chapter develops, in abstract,  the 

properties of compositional attractors mentioned above, along with a few other 

straightforward properties. The  set of compositional attractors of a polynomial ring is, 

for example, closed under intersection and multiplication of ideals. 



T h e  second chapter focuses on the cases when S is a finite field or  the integers. In the  

first section I classify the compositional attractors of Fix] for any finite field F. In the 

second section I compute the size of the permutation polynomial groups tha t  arise 

modulo these compositional attractors. The  work in the second section is essentially a 

generalization, with new terminology, of a paper, "Permutations with Coefficients in a 

Subfield,"[S] by L. Carlitz and D. R. Hayes, which treats t he  case where R is a field and 

S is a subfield R. In the third section I give a few useful lemmas about the 

compositional at t ractors  of Z[x] and present an example. 

The  third chapter explores the situation when S is the integers or  the integers modulo 

n and R is taken t o  be either the integers modulo n o r  matrices over t he  integers modulo 

n. In t he  first section I present a new proof, based on the  difference operator Af(x) = 

f(x+l)-f(x) of Singmaster's forrnnla[4] for the number of polynomial functions from H, 

t o  itself. In the second section I give a new proof, also with the difference operator, of 

Niven and Warren's[G] basis theorem for the compositional at t ractor  in Z,[x] associated 

with 2,. In the  third section I count the 2,-permutation polynomials of Z,, give the 

isomorphism type of t he  group for cube-free integers n, and give some information about 

t he  isomorphism type of the group for all n. 

In t he  fourth section I compute a basis for the compositional at t ractor  of Z,[x] 

associated with the  matrices over 2, and use the basis t o  count the number of Z,- 

polynomial functions from Zmim t o  itself. In the fifth section I reprove Brawtey's[lO] 

characterization of Zn-permutation polynomials of t he  matrices over Z, and go  on t o  

enumerate t he  group of such polynomials for each n. 



In the  fourth chapter I skip lightly over easy consequences of the  material developed 

in  the  first three chapters and give topics for future research. In Section one I compute 

exactly the  membership of the  p-adic permutation polynomials of the  p-adic integers. I n  

Section two I compute the  compositional at t ractors  of F[x] associated with F[G] and 

count the  groups of F-permutation polynomials of FIG] where F is a finite field, G is an 

abelian group, and F[G] is the  group algebra of F over G. As one might expect, the  case 

where t he  characteristic of F divides the  order of G is the  hard one, but not too hard. 

In Section three I define multivariate compositionat at t ractors  and give a list of topics 

for future consideration. 

I more or  less stumbled into this thesis topic accidentally. In the  summer of 1986 I 

was trying t o  find some algebraic structure in the  rules for generating cellular automata.  

This  is a relatively futile pursuit, but  in t he  process I discovered a number of properties 

of functions from Zn t o  2,. I also reproduced Singmaster's results from[4]. A t  this point 

Heeralal J anwa  arrived a t  Caltech for a two-year stint. While I was trying t o  explain to  

him what I was working on he said, 'This sounds very much like permutation 

polynomials." 

This  gave me an  application for the  material I had developed on functions over 2,. In 

particular, t he  difference operator Akf(x) = f(x+k)-f(x) leads t o  nice slick proofs of 

some known results, contained in the  first two sections of Chapter  three. I spent a great 

deal of computer time computing the  membership and structure of groups of 

permutation polynomials over 2,. In the  end I had the  membership, size, and some 

structural information about  the  groups in question, but  not enough material for a 



thesis. My advisor, Richard Wilson, suggested tha t  I generalize t o  the matrix case 

Now the matrix case is severely resistant t o  computer scans. The  problem of 

computing a least degree monic polynomial zero everywhere on  two-by-two matrices 

over Z4 is about the limit of what you can do  on a personal computer unless you prove 

some theorems. In addition, many of the nice proofs in t he  non-matrix case depend 

heavily on the commutativity of Z,. At  this point I uncovered the material by Brawley, 

Carlitz, Levine, and others [S], [lo], [ll]. Their theorems were often theorems that  

would be true if matrices commuted. In other words, they would have two, essentially 

identical, theorems for commutative and noncommutative rings with substantially 

different proofs. At this point, inspired by [9], I decided t o  leave the  matrix case alone 

and t o  t ry computing permutation polynomials over finite commutative rings. The  first 

step in this process was computing the ideal of polynomials zero everywhere on the ring. 

I used a computer t o  find this ideal for a large number of examples, particularly for 

group algebras over finite fields, which are easy t o  implement on a computer. At this 

point I noticed tha t  many different algebras can have the same zeroing ideals and,  more 

importantly, tha t  when they do, they also have the  same permutation polynomials. I 

set  out  t o  prove this and in the process was forced into considering the  notion of 

compositional attractors. 

After a few months in which I roughed out  the material presented in Chapter two, I 

realized tha t  compositional attractors solved my problem with the matrix case. The  

theory of compositional attractors gave me a way t o  construct a commutative algebra 

with the exact same compositional at t ractor  and hence permutation polynomials as any 

given noncommutative algebra. Developing this idea put the thesis in more or  less its 

current form. 



-1 
Definitions and Basic Results 

$0 Introduction and Summary. 

Throughout this chapter S will be a commutative ring with 1, and R will be a finite S- 

algebra with 1. By 1: I will denote the set 

( f ( x ) c ~ [ ~ ]  : VrcR, f(r) = 0). 

T h a t  1: is an ideal of S[X] is elementary; I sometimes call i t  t he  S-zeroing ideal of R. 

F(R,  R )  denotes the set of functions from R t o  itself, which I will treat as both a 

monoid under functional composition and an algebra under the usual extension of the 

addition and mnltiplication on R and scalar multiplication by S. I denote by 6; : S[X] -r 

F(R, R )  the  evaluation map; i.e., f(x) b (r b f(r)). Note tha t  E: is both a monoid and 

an algebra homomorphism. The  kernel of r: as a monoid homomorphism is x+f(x) : { 
f(x)c1:). As an algebra homomorphism c: has kernel I:. I will denote by FS(R), the 

S-polynomial functions on R, the image of r:, which is both a submonoid and subalgehra 

of F(R, R). I will denote by PPS(R),  the S-permutation polynomials on R, the subset of 

Fs(R) tha t  are invertible (bijective) members of the monoid FS(R). Notice that  

PPS(R) is a submonoid of Fs(R) but is not a subalgebra of Fs(R). Notice also that  the 

choice of invertible elements makes PPS(R) a group under composition. Finally, if U is 

a ring of functions call a n  ideal I of U a compositional attractor if for all f c I  and for all 

gcU,  we have fog  c I, where o denotes functional composition. 

As motivation for these definitions, I would like t o  give an overview of the use I will 

pu t  them t o  and illustrate it with a basic example. Having fixed R and S, the first 

problem is t o  compute the membership of 1: and produce, if possible, a nice set of 

generators for it. Once we have 1; it is easy t o  enumerate FS(R) and t o  find, as a side 

effect, its structure as an S-module. Using results from this chapter, I can often go on 



t o  compute the membership of PPS(R) and subsequently enumerate PPS(R).  Finally, 

where possible, I will determine the isomorphism type of the group PPs(R). For 

example, if we choose R = GF(q),  the field with q elements, and choose S = R ,  then we 

see immediately from the theory of finite fields, tha t  

Example 1.1. 

(i) 12 = <xq-x>, 

(ii) /FS(R)I = qq, 

(iii) F,(R) can he given the structure of a q-dimensional vector space over S, 

(iv) / P P ~ ( R ) I  = q! 

(v)  PPs(R) G Sym(R), the group of all permutations of R. 

These particular results, while both easy and elementary, are central t o  the theory of 

permutation polynomials over a finite commutative ring. The  theory of Jacobson 

radicals tells us tha t  a finite commutative ring modulo its radical is a direct product of 

finite fields. In this section we observe tha t  for any finite S-algebra R, we may find a 

commutative S-algebra R', so tha t  PPS(R) G PP~(R ' )  and tha t  a direct product 

decomposition of S often induces a direct product decomposition of PPS(R). Taken 

together these results make the above example broadly applicable. 

O n  the  other hand, when R has a nontrivial Jacobson radical, many interesting things 

happen tha t  prevent t he  permutation polynomial groups in question from being merely 

direct products of symmetric groups. In this instance the utility of t he  above results 

follow from the observation tha t  the natural homomorphism of R modulo its Jacobson 

radical onto  a n  S-algebra with semisimple ring structure induces a group homomorphism 

of the corresponding permutation polynomial groups. 



'$1 Equivalence Results. 

In this section I will prove several lemmas tha t  allow me t o  export calculation done 

for one choice of R and S t o  others. 

Lemma 1.1. For a polynomial f(x) E S[x], let f(")(x) denote composition of f(x) with 

itself n times. Then: 

(i) PPs(R) = {f(x)ef: : 3 n  f(")(x) E x (mod IR , or  equivalently 
s ) >  

(ii) PPS(R)  Z {f(x) E s[x]/I: : 3 n  P")(x) E x), as a group under composition mod 

1:. 

Proof: 

Suppose for f(x)rS[x] tha t  3 n  hn) (x)  E x (mod I:). Then since c: is a monoid 

homomorphism, it follows tha t  the  n-fold composition of f(x)c: with itself is the  identity 

function on R. This  requires f(x)r: itself t o  be a bijective function; hence PPS(R)  1 

{f(x)cf: : 3n f(")(x) z x (mod I:)). Suppose instead tha t  f(x)c: E PPs(R). Then since 

f(x)c$ is a bijection of a finite set,  we see t ha t  for some n the  n-fold composition of 

f(x)c: with itself is the  identity function. T h e  identity function in F,(R) is clearly 

n) X+I$ hence x is among the  preimages of P")(x) under c: and we see f( (x) E x (mod 

1 This  shows tha t  PPS(R)  E {f(x)e: : 3 n  P")(x) x (mod I:)). Thus  we have (i). 

To see t h a t  (ii) is a restatement of (i), notice t ha t  c: has kernel 1: as a ring 

homomorphism. 0 

I 
Lemma 1.2. Suppose for R, R', both S-algebras, we have tha t  12 = 1 2 .  Then PPS(R)  

E PP,(R'). 

Proof: 

From Lemma 1.1 (ii) we see 



P P ~ ( R )  z {f(x) c s [ x ~ / I ~  : 3n f(")(x) = x . 
I 

1 
Since 12 = 15  , we see 

{f(x) c S [ X I / I ~  : 3n f(")(x) i x) = { ~ ( x )  E S[XJ/I$ : 3n f(")(x) , x}, 

and applying Lemma 1.1 (ii) again we see 

I 
{f(x) E S [ X I / I ~  : 3n f(")(x) = x) 2 P P ~ ( R / ) ;  

hence PP,(R) E PP,(R'). 0 

The next result is somewhat more substantial and completes the tools t o  make good 

on my boast in Section 0 to  reduce the problem of computing arbitrary finite S-algebras 

t o  the commutative case. 

Theorem 1.1. Let R be an S-algebra, let J be a compositional attractor of Six], and let 

T = S[X]/I:. Then 

(i) 1; is a compositional attractor of S[x]. 

(ii) A = S[x]/J is an S-algebra with 12 = J .  

(iii) PPS(R) E PPS(T). 

Proof: 

Let f(x)eIg and let g(x) ES[X]. By definition feg is the zero function on R. Since c g  

is a monoid homomorphism, it follows that (fog)€: = (fc2)o(grg) = 0 o (gc;) = 0. 

This means (fog) E ker(c2) viewed as an algebra homomorphism; hence (fog) E 12, and 

we see tha t  12 is a compositional attractor. 

Notice that  the scalar multiplication of S on A is induced by the scalar multiplication 

of S on S[x]. Now suppose f(x) E 12. Then Vg(x)+J e S[x]/J; we see from the 

definition of 12 that  f(g(x)+J) = 0. If we expand f(g(x)+J), we see that  this implies 



tha t  f(g(x)) e J .  Specialize g(x) t o  x and note f(x) c J ;  hence 12 C J. Now, recalling 

the definition of compositional at t ractor ,  we see for f(x) c J and any g(x) E S[x], that  

f(g(x)) e J ;  hence f(g(x)+J) = 0 in A, and thus 3 C 1;. Combining the two previous 

inclusions, we see 1; = J. 

Finally, set J = I;, so A = T Then (ii) tells us tha t  1; = I:. Then by Lemma 1.2 

we see tha t  PPs(R) S PPs(T). 

Notice tha t  while my primary reason for proving this theorem is t o  allow calculations 

for a noncommutative R t o  take place in the commutative domain s[x]/I;, this theorem 

potentially allows me t o  use other special properties of S[x] besides commutativity. 

Additionally, part  (iii) makes it meaningful t o  speak of the permutation polynomials 

t ha t  arise modulo a compositional attractor, a s  in Lemma 1.1. I will conclude this 

section with the following corollary, which ilustrates the breadth of Theorem 1.1. 

Corollary 1.1. An ideal J of S[x] is a compositional at t ractor  iff there exists R, an S- 

algebra, so tha t  J = I;. 

Proof: 

(*) Set R = S[x]/J and apply Theorem 1 (ii). 

(+) Theorem 1 (i). 



92 Lifting and Decomposition Lemmas. 

In this section I will give a lemma that allows the computation of the permutation 

polynomials of R from the permutation polynomials of R modulo its Jacobson Radical. 

For R with nontrivial direct product decomposition, I will give a sufficient condition to 

induce a direct product decomposition of PPS(R). 

Lemma 1.3 (Lifting Lemma). Let J be a nontrivial nilpotent ideal of R and set A = 

R/J.  Then for f(x) e S[X] we have that f(x)rz e PPS(R) iff f(x)r$ E PPs(A) and for 

each aeA, for each element j E J\(O), j.f'(a) has the same degree of nilpotency as j. 

Proof: 

First I claim that  for any f(x)~S[x],  f(x)c; is a function that  preserves equivalence 

classes (mod I) for any ideal I of R. T o  see this, let PER,  ~ E I  and compute f(r+j)-f(r) 

= j.i'(x)+j2.$f"(x)+.. . E I. With this claim we can now prove the lemma. 

(j) Since f(x)r: is 1:l on R, the claim forces f(x)r$ to  be 1:l on A; hence f ( x ) r $  E 

PPS(A). Suppose there exist j E J\{O), a c A so that  j.f'(a) has a higher degee of 

nilpotency than j. Well, then a = r+J.  Set o = f(r+j)-f(r) = j.f'(r). Then 

f(x)#PPS(R/<o>). Since f(x)c! is 1:1 on R, the claim forces f(x)rR'<s"' to  be 1:1, a 

contradiction, and the right implication is finished. 

(e) Suppose for r, s E R that  f(r) = f(s). Then from the claim we see that  r = s (mod 

J). From this we see there exists some j E J so that  s = r+j. So f(r)-f(r+j) = 0, 

which a simple computation shows is equivalent t o  the statement, 

Since, by hypothesis, j.f'(r) has the same degree of nilpotency as j, it follows that  

j.i'(r) + -(j2.$i"( r)+...) , 



unless j=0. From this we see that  r = s; hence f(x)c: c PPS(R). 

Lemma 1.4. (Decomposition Lemma). Suppose that  R = R1@R2 is a direct product 

decomposition of R. Then 

R R 
(i) If I : and 1: are relatively prime ideals in S[x], then 

PPs(R1) PPs(R1) @ PPs(R2), 

R R 
(ii) 1: = I :n I 2, and 

(iii) both (i) and (ii) may be applied inductively t o  arbitrary finite direct products. 

Proof: 

R R 
(i) Since I: and 1: are relatively prime, we see that  the Chinese Remainder 

Theorem gives us an S-algebra isomorphism 

R R 
A: S[X]/I 2 @ S[x]/I ; -+ s [ x ] / I ~ .  

R R 
Notice that  (x+I  :, x+I s 2 ) ~  = x+1$; hence the characterization of permutation 

polynomials given in Lemma 1.1 (ii) and the fact that  the polynomial composition 

involved is a combination of addition and multiplication of the sort preserved by A, tell 

us that  X is a bijection of PP,(Rx) C3 PPs(R2) = PPs(R) that  preserves the group 

operation. 

(ii) Clearly a polynomial in S[x] is zero everywhere on R when and only when it is 

zero everywhere on R1 and R2. 

(iii) Follows by induction. 



$3 Properties of Compositional Attractors. 

Compositional attractors are central t o  the study of permutation polynomials over 

finite rings. As we saw in Section 1 many different S-algebras can have the same 

permutation polynomials exactly a s  they share the same S-zeroing ideal. In this section 

I will develop a few properties of compositional attractors. 

Notice tha t  any ideal of S injected in the natural fashion into SIX] is a compositional 

at t ractor  of S[x], with the corresponding group of permutation polynomials, as in 

Lemma 1.1, being the trivial group {x). Such a compositionql at t ractor  is called trivial; 

all others are called nontrivial. 

As we saw in the comments subsequent t o  Theorem 1, each compositional at t ractor  I 

of SIX] has a permutation polynomial group attached to it, acting on the elements of 

S[x]/I. I will introduce the shorthand Gs(I) := PPs(S[x]/I) for this group. 

Lemma 1.5. Suppose tha t  I, J are compositional attractors of S[x]. Then IflJ and I.J, 

their intersection and product, are also compositional attractors. 

Proof: Elementary calculation. 

Lemma 1.6. Suppose tha t  I is a compositional at t ractor  of S[x] and tha t  n : S + T is a 

ring homomorphism with i : S[x] -r T[x] being the natural extension of rr t o  

polynomials. Then i i  is a compositional at t ractor  of T. 

Proof: 

Polynomial composition is a combination of multiplication and addition of ring 

elements by one another o r  by powers of t he  variable, all operations preserved by iT, 



hence r preserves composition of polynomials. O 

Lemma 1.6 raises the  natural question: Is there any connection between the  groups of 

permutation polynomials GS(I) and GT(17)  ? T h e  answer is yes, as demonstrated in 

the  following lemma, which implies the existence of a functor from the  category of S- 

algebras t o  the  catgory of groups. 

Lemma 1.7. Let S, T ,  x ,  ii, be as above and set R = S[x]/I and A = T[x]/ITi. Then 

there is a well-defined map  p: Fs(R) - FT(A) induced by ii tha t  agrees with T so  as t o  

make f ( x ) ~ r $  = f ( x ) ~ ; ~  and which has the  additional property t ha t  w = pl ~ ~ ( 1 )  is a 

group homomorphism of G,(I) with G,(A). 

Proof: 

A Since I is a compositional at t ractor ,  Theorom 1 (ii) tells us t ha t  ker(c2)ii = ker(cT). 

This  is sufficient t o  show tha t  p exists. Since p agrees with ?i and 7 preserves 

polynomial composition, we see tha t  p is a monoid homomorphism of FS(R) into FT(A). 

A monoid homomorphism necessarily induces a group homomorphism on the  groups of 

invertible elements; hence w exists a s  specified. 

Example 1.2. 

Let S = Z 2, T = Zp, and let r be the  natural map with kernel <p> .  If we take I 
P 

- z 2 - , then Lemma 1.7 tells us there is a group homomorphism u : P P Z  (Z 2 )  - 
I 5 2  p2 

z 2 z P PPZp(Zp) given by f(x)+lZP + f(x)+IZ . In plainer language, a polynomial over Z 
p2 P P 

tha t  permutes Z 2 ,  is (mod p) a polynomial over Zp tha t  permutes Zp. 
P 



Results for Finite Fields and the Integers. 

§O Introduction and Summary. 

In this chapter I will discuss results where the coefficient ring is the integers. I refer 

t o  such compositional attractors and permutation polynomials as scalar. In some cases I 

will give generalizations of results when such generalization is without cost. For 

example, the results on  prime finite fields, which I require for the integer case, can be 

done for all finite fields just as easily. Every finite ring with 1 clearly forms a 2-algebra 

and hence has scalar polynomial functions and scalar permutation polynomials. 

In Section 1 I will give a classification of all compositional attractors of GF(pn)[x], p 

prime, as well as several examples of attractors tied t o  specific GF(pn)-atgebras. In 

Section 2 I will use the classification of compositional attractors t o  give a complete list of 

orders of permutation polynomial groups with coefficients in GF(pn). In Section 3 I will 

address the question of compositional attractors of Z[x] in terms of compositional 

at t ractors  of Z .[XI. 
P 



$1 Compositional Attractors of GF(P")[x]. 

In this section F = GF(pn),  and let q = pn. Since F[x] is a principal ideal domain the 

search for compositional attractors in F[x] is reduced t o  the problem of finding 

polynomials f(x) with the property f(x) I f(g(x)) for at1 g(x) rF[x]. This property has 

modest application t o  factorization theory. One question of interest, for example, is to 

determine when a composition of irreducible polynomials is itself irreducible. As we will 

see this section tells us tha t  there are many instances when the  composition of 

irreducibles is not irreducible. 

Theorem 2.1. A polynomial f(x)&F[x] generates a compositional at t ractor  iff it is a 

product of least common multiples of polynomials of the form ( x '*- x). 

Proof: 

(e) Notice tha t  if Q = G F ( ~ ~ ) ,  then (xqk- x) generates 1:; hence by Lemma 1.5 all 

polynomials of t he  given form generate compositional attractors, as intersecting ideals is 

equivalent t o  taking the least common multiple of their generators, and multiplying 

ideals is the same as multiplying their generators. 

(+) Let I = <c(x)> be a compositional at t ractor  of F[x], set A = F[x]/I, and 

suppose tha t  f(x)&F[x] is irreducible so that  f"(x) is the minimal polynomial of some 

a & A .  Recall tha t  F[x] is a unique factorization domain. I claim tha t  for any irreducible 

g(x)&F[x] with degree dividing the degree of f(x), there exists aome P r A  so tha t  gn(x) is 

t he  minimal polynomial of 8. To see this, notice tha t  if J = J(A) is the Jacobson 

radical of A, then A/J is a direct product of finite fields of characteristic p. 

Since f"(a) = 0, it follows tha t  f (a )  r J. Now, since f(x) is irreducible it must be the 

minimal polynomial of an element of one component of the direct product; if not, f(x) 

would be the product of the minimal polynomials of elements in two different 



components and hence would not he irreducible. Let F he the component of the direct 

product A / J  in which an element for which f(x) is the  minimal polynomial lies. Then 

for any irreducible g(x) with degree dividing the degree of f(x), we know from the theory 

of finite fields that  there is some y+J  6 F for which g(x)  is the minimal polynomial. A 

quick calculation shows tha t  the set g(y+J)  is all of J. Since f(o) has nilpotency n, it 

therefore follows tha t  for some choice of jcJ, g(y+j)  haa nilpotency n ;  hence P = y + j  

has minimal polynomial gn(x). 

Since I = I:, it follows tha t  the minimal polynomials of all elements of A divide c(x). 
k 

Recalling tha t  xq - x is the product of all irreducibles of degree dividing k, once each, 

we see tha t  the claim shows tha t  c(x) must have the specified form, as the irreducibles 

of smaller degree in the divisor lattice occur, as divisors of c(x), a t  least as often as those 

of larger degree, and as irreducibles of the same degree are forced t o  occur the same 

number of times. 

Corollary 2.1. Suppose fix) generates a compositional at t ractor  of F[x]. Then the 

following hold: 

(i) All irreducible divisors of f(x) having the  same degree have the same multiplicity. 

(ii) If f(x) has a n  irreducible divisor of degree d and multiplicity m, then all irreducible 

divisors of f(x) having a degree dividing d have a multiplicity equaling o r  surpassing m. 

Proof: 

Elementary computations show this t o  be simply a restatement of the preceding 

theorem. 



T h e  following corollaries demonstrate a use for Theorem 2.1 outside the domain of 

permutation polynomials. 

Corollary 2.2. Suppose tha t  f(x)cF[x] is an irreducihle of prime degree r. Then if 

g(x)cF[x] is a polynomial of degree less than r, there must exist another irreducible 

h(x)cF[x] of degree q so tha t  

f(x) I h(g(x)). 

Proof: 

(xqr- x) generates a compositionai attractor. Its divisors a re  exactly the irreducibles 

qr of degree r and 1. From Theorem 2.1 we see tha t  this means (x - x) ( ( g ( ~ ) ~ ~ -  g(x)). 

Since g(x) has degree less than r, the composition of g(x) with one of the linear factors 

of (xqr-  x) cannot produce a multiple of f(x); hence the composition of g(x) with some 

h(x) of degree r must have done so. C! 

One conclusion this corollary leads t o  is tha t  for any irreducible of degree n, for each 

prime r>n ,  we find tha t  there exists at least one irreducible h(x) of degree r so tha t  

h(g(x)) is not irreducible. 

Corollary 2.3. Suppose f(x) is an irreducible of F[x] of degree n. Then there exists some 

g(x) # x of degree less than n so tha t  f(x) I f(g(x)). 

Proof: 

9 For any g(x) # x, Theorem 2.1 implies xq-x I (&x)) -g(x). If we set h(x) = 
'4 
w, then Theorem 2.1 implies t ha t  there exists g(x) so tha t  h(x) 1 h(g(x)). Since 

f(x) 

h(x).f(x) I h(g(x)).f(g(x)), we may conclude tha t  f(x) I f(g(x)). From this we see that  

f(x)lf(a.f(x)+g(x)); hence we may take g(x) t o  have degree less than tha t  of f(x), 



without loss. 

Now I will give examples of compositional at t ractors  tied t o  various F-algebras. The 

first is taken from [9] and is the basic compositional at t ractor  from which the  others are 

built. 

k 
Q Example 2.1. If Q = G F ( ~ ~ )  then <xq - x >  = I F .  

My second example is taken from [ l l ] .  

m 
qL  Example 2.2. If R = Fmxm then we see 1; = <IT ( x  - x)>. 

L = l  

For my third example, which is my own and hence is s tated as a lemma, I will use a 

type  of F-algebra fundamental t o  the  analysis of those permutation polynomial groups 

associated with compositional at t ractors  of F[x]. 

Lemma 2.1. Suppose t ha t  f(x) = fl(x)e1.f2(x)e2.....fk(x)ek is a factorization of f(x) E 

F[x] into powers of distinct irreducibtes. Then if A = F[x]/<f(x)> we see t ha t  

Proof: 

Notice t ha t  since the  various fi(x)'s a re  relatively prime t o  one another, the  Chinese 

Remainder Theorem tells us t ha t  



From this we can see tha t  the generator of 1: must be a common multiple of the 

A. ei 
generators of the I; i = 1. ..m, where Ai = F[x]/<Fi(x)  >. Since the least common 

multiple of all these generators is in I:, it follows tha t  it must be the generator. It 

A. 
remains t o  show tha t  1; is generated by 

To see this, apply Theorem 2.1. Certainly there exists a n  element in Ai; it is in fact 

t he  coset of x, t h a t  has as i ts  minimal polynomial. This  forces the putative 

generator t o  divide the actual generator. It is easy t o  see t ha t  the Jacobson radical 

J(Ai) of Ai has generator fi(x); hence the maximum degree of nilpotency of a n  element of 

deg(fi(x)) 
J (Ai)  is ei. Since Ai /J (Ai)  E GF(q ) we see tha t  all minimal polynomials of 

elements of Ai are powers of irreducibles of degree dividing the degree of fi(x). From the 

maximal degree of nilpotency argument, we see tha t  the power of an irreducible in a 

minimal polynomial need not exceed ei; hence the actual generator divides the putative 

generator, forcing them t o  be one and the  same. O 



$2 T h e  Order of Finite Permutation Polynomial Groups with Finite Field Coefficients. 

In this section F = GF(pn),  and let q = pn. At this point I a m  ready t o  tackle the 

problem of enumerating the permutation polynomial group associated with each 

compositional at t ractor  of F[x]. Lemma 1.2 makes this equivalent t o  computing the 

order of every finite group of permutation polynomials with coefficients in F. The  first 

s tep is t o  solve the problem for F-algebras tha t  are direct products of finite fields. At 

this point I would like t o  recall the Artin-Wedderburn structure theorem for Rings. 

Theorem (Artin-Wedderburn). 

For a ring R the  maximal nilpotent ideal J ( R )  of the ring is called its Jacobson 

Radical. The  factor ring R / J ( R )  is a semisimple ring. In the case we are dealing with, 

R both finite and commutative, R / J ( R )  is the direct product of finite fields. 

T h e  second step is t o  employ Lemma 1.3 t o  lift this result t o  all F-algebras of the 

form F[x]/ <f(x)>,  a t  which point t he  title of the section is satisfied. 

Unlike other permutation polynomial groups, enumeration of the permutation 

polynomials of a finite F-algebra comprising a direct product of finite field is best done 

by computing the  isomorphism type of the group. This process is a simple modification 

of work presented in [9]. Lemma 2.2(i) is entirely as presented in [9] except for a 

change of terminology, and is included for completeness and consistency. 

Lemma 2.2. Let Q = G F ( ~ ~ ) .  Then 

(i) PPF(Q) is the centralizer in PPQ(Q) of the Frobenius automorphism a: x xq. 

(ii) PPF(Q)  acts on all suhfields of Q containing F. 



(iii) PPF(Q) acts on the sets Qd = { q t Q  : q has a minimal polynomial of degree d). 

(iv) PPF(Q)  is the internal direct product of its representation on the Qd's. 

Proof: 

(i) Suppose that  f ( x ) + l z  t PPF(Q). Then (f(x))' = (xfixi>g = xfiq~q.i  = 

~ f ~ x ~ " =  f(xq), SO all members of PPF(Q)  centralize o. On the other hand, suppose 

tha t  f (X)+ lz  centralizes r. Since 12 = <xqk- x>.  there is some unique 

representative, take it t o  be f(x), with degree<qk of f(x)+12. Then f(x)' = f(xq). If 

k 
9 -1 

we set y = xq, we see tha t  this equality can be reformulated as g(y)  = C (fi-fiu)yi = 
i = l  

0 for all y in Q. Since g(y) has degree less than qk,  it follows tha t  fi = fiu for all i, 

placing f(x) squarely in PPF(Q).  

(ii) This follows directly from the fact tha t  all subfields of Q contain F. 

(iii) This follows directly from the fact tha t  the partition of Q into the Qd's is induced 

by the subsets of Q tha t  are subfields containing F. 

(iv) Let Gd be the representation of PPF(Q)  on Qg. This notion is well defined by 

(iii). Notice tha t  t he  characteristic function x d k, is in FF(Q). To see this, simply 
Qd' 

t ake  f(x) t o  be xqk- x divided by each irreducible of degree d in F[xJ. Since d k, f(x) 

E F[x]. T h e  resulting function is zero off Qd and equal t o  the product of all elements of 

Q-Qd on Qd; hence x is a scalar multiple of f(x). Since f(x) E F[x], this scalar is in 
9 d  

F; hence f(x)<Z = xQd. 

Once we have xQddF[x] we see tha t  for f(x)+1:cPPF(Q), g(x) = 

x.(1 -,yQd)+f(x).xQ is exactly the Qd-component of the permutation associated with 
d 



f(x) on Qd and identity off Qd. Therefore, each element of PPF(Q)  has unique internal 

decomposition into a product of elements from each Gd, giving the specified internal 

direct product. 0 

T h e  following lemma also appears with different language in [9]. As we will see 

subsequently, it has application t o  all F-algebras tha t  are direct products of finite fields, 

not just extension fields. 

Lemma 2.3. Let Gd be the representation of PPs(Q) on Qd = {q&Q : q has minimal 

polynomial of degree d). Then Gd S Cd wr Sn(d), where ~ ( d )  is t he  number of 

irreducibles of degree d in F[x], and wr denotes the wreath product. 

Proof: 

Since we know tha t  PPq(Q) contains all permutations of Q,  we see from Lemma 2.2 

tha t  Gd  is t he  centralizer in Sym(Qd) of t he  Frobenius automorphism a: x xq. From 

the theory of finite fields, we know tha t  t he  action of t he  Frobinius automorphism on Qd 

is the cyclic permutation of the x(d) sets of d roots of each irreducible of degree d in 

F[x]. T h e  centalizer then clearly contains each individual cyclic action induced by a on 

the  roota of some irreducible of degree d. A simple calculation shows tha t  any 

permutation centralizing u must normalize the group generated by these cycles; hence 

Gd  has a normal subgroup N comprising the direct product of a (d )  cyclic groups of 

order d. 

Note tha t  Gd must contain any  permutations tha t  swap sets of roots in a fashion 

consistent with the  cyclic actions of u upon them. A simple calculation shows that  these 



together with the members of N comprise all permutations tha t  commute with u. If (al  

a2 . . . ad) and (b l  b2 . . . hd) are respectively the cyclic actions on two sets of roots, then 

(al  bl)(a2 b2) . . . (ad hd) is an involution in Gd. Clearly, the set of ail such involutious 

generates a symmetric group on the sets of roots of irreducibles tha t  form an S 
r(d)-  

complement t o  N in Gdr  making Gd the semidirect product of N by S 
~ ( d ) '  

Notice that  

t he  stabilizer of a set of roots in this symmetric action centralizes those roots; hence Gd 

is a wreath product as specified in 131, page 33. O 

Theorem 2.2. Let A be an F-algebra that  is a direct product of finite fields 

Then: 

(i) PPF(A)  CZ Cd wr and 
d l ki 

where ~ ( d )  denotes the number of irreducibles of degree d over F. 

Proof: 

(i) Let Ad = { ~ E A  : a has an irreducible minimal polynomial of degree d). Notice 

k. 
t ha t  PPF(A) must act  on  sets of the form AdnGF(q '); hence the action of PPF(A)  is 

completely determined by its action on the  Ad's. By examining the finite field F = 

G F ( ~ ~ ~ ~ ( ~ ~ )  ), we see tha t  as in 2.2(iv), xA d E FF(A) and tha t  PPF(A) is therefore a 

direct product of its repreaentations on the Ad's. i claim further tha t  t he  action of 

k. 
PPF(A) on  Ad is completely determined by its action on any Qd = A,,n GF(q  ') where 

d / ki. To see this, notice tha t  all such intersections are  simply the  set of all elements in 

t he  field extension G F ( ~ ~ )  of F tha t  had minimal polynomials of degree d over F. 

Clearly, a polynomial permutes the set product of several such sets iff it permutes some 



one of them; hence the claim is true. With the claim we see, however, that  the 

representation of PPF(A) on Ad is isomorphic t o  the representation of P P ~ ( G F ( ~ * ) )  on 

Qd, as in Lemma 2.3; hence the components of the direct product of (i) above have the 

specified form. 

(ii) T h e  enumeration follows directly from the isomorphism type of t he  group. 

Corollary 2.4. Suppose tha t  f(x) E F[x] is a square free with irreducible divisors fl(x), 

f2(x), ..., fm(x) of degree dl, d2, ..., dm, and set A = F[x]/f(x). Then 

(i) PPF(A) 2 II C, wr and 
s 1 some d i  

(ii) I P P ~ ( A ) ~  = n sF's).*(s)! 
5 1 some di 

di 
(iii) 1; = < L . C . M ( X ~  - x)>.  

Proof: 

(i) Notice tha t  the Chinese Remainder Theorem tells us tha t  

Apply Theorem 2.2 and we have (i). 

(ii) Follows from (i) by elementary counting. 

(iii) Note tha t  t he  putative generator of 1; is the  least common multiple of the 

minimal polynomials of all elements of A. Since all members of 1: are common multiples 

of all minimal polynomials of elements of A, this suffices t o  make it t he  generator of 1:. 

0 

With Corollary 2.4 in hand, we are ready t o  compute the  order of PPF(A), where A is 



Fix] modulo any polynomial. T o  do  this we will employ the lifting Lemma 1.3 from 

Chapter 1. 

em . Theorem 2.3. Suppose tha t  f(x) = fl(x)e1.f2(x)e2 .,. .fm(x) ts a factorization of f(x) 

into powers of distinct irreducibles of degree dl ,  d2, ..., dm, respectively, and let rd = 

max{ei : d deg(fi(x))). Then if A = F[x]/<f(x)>, S = {s : s divides some di}, T = 

{ teS  : r t > l )  we have 

Prwf: 

As I will demonstrate, the three factors in the formula above are, respectively, the 

number of polynomial permutations of A modulo its Jacobson Radical, the number of F- 

polynomial functions on A tha t  are also permutations of A modulo its Jacobson radical, 

and the fraction of those functions that  are actually permutations of A. T o  see tha t  the 

first two factors are correct is easy. If J (A)  is t he  Jacobson Radical of A and s(x) = 

fl(x).f2(x). ... .fm(x), we see first tha t  J (A)  = <s(x)>;  hence A/J(A)  ie isomorphic to 

an algebra of t he  form described in Corollary 2.4, and we have the  first factor. 

If we take  t(x)  t o  be the product of all irreducibles in Fix] with degrees in S, then we 

see from Lemma 2.1 tha t  I = <t(x)>.  All the F-polynomial functions on A that  

give permutations of A / J (A)  are then of the form 

f(x)+t(x).r(x), f ( x ) + ~ ~ / : ( ~ )  t P P ~ ( A / J ( A ) ) ,  (*I 

for some polynomial r(x) and further all such functions have a unique representative 

modulo the  generator, g(x), of 1: (which, recall, is ket(r$)). A quick calculation shows 

tha t  t he  exponent of q in the second term is exactly degree(g)-degree(t) and hence 

gives tha t  maximum degree of I, so the second term is correct as there are q possible 

choices for each coefficient of r. 



The  third term follows from the Chinese Remainder Theorem and the lifting lemma. 

Indeed, lemma 1.3 tells us tha t  a polynomial permutes A iff it permutes A/J(A),  and 

tha t  the evaluation of its formal derivative a t  any point cannot, by multiplication, 

increase the degree of nilpotency of any element of J(A). A moment's thought will 

convince one tha t  J (A)  = <t(x)>.  From this we see tha t  the second condition of the 

lifting lemma is equivalent t o  the formal derivative a t  each point being divisible by no 

irreducible whose degree is in T .  Apply this t o  (*) and we see tha t  for each a ( x ) ~ A ,  we 

want 

f)(a)+t(a).r'(a)+tl(a)r(a) 

to be divisible by no irreducible of degree d for which rd > 1. Notice that  Corollary 1 

implies that  t (x)  is a compositional attractor; hence t (a )  is divisible by all such and the 

condition we wish t o  satisfy is exactly 

f (a )+t l (a ) . r (a )  f b(a) 

simultaneously for all irreducibles h(x) with degrees in T. However, this is equivalent to 

insisting tha t  f)(x)+tl(x).r(x) not be a multiple of h(x). From the  factorization of t(x), 

t he  product rule for derivatives makes it obvious tha t  t'ix) is relatively prime t o  h(x) 

and  the condition becomes tha t  r(x) not assume some one value modulo h(x). This 

means t h a t  exactly the fraction of all polynomials modulo h(x) are 
deg(h(x)) ( I - *  ) 

acceptable. Since the various irreducihles with degrees in T are all relatively prime. the 

Chinese Remainder Theorem tells us t ha t  t he  fraction of polynomials acceptable modulo 

all possible irreducibles is simply the product of the fraction acceptable modulo each 

irreducible; hence the  third term is correct. O 

Corollary 2.5. T h e  formula given in Theorem 2.3 may be simplified t o  



Proof: 

Routine computation. 



$3 Compositional Attractors of Z[x]. 

In this section we will develop some information about compositional attractors of the 

integers, setting the stage for Chapter three. Throughout the section p will he a prime, 

n will be a positive integer, and Z ,, will denote the ring Z / i p n > .  Lemma 1.4 implies 
P 

tha t  the compositional attractors of Z[x] are built ou t  of the compositional attractors of 

Z ,[XI for various integers n and primes p. Recall that  Z ,[XI ( m > l )  is not a CFD or 
P P 

PID; hence the computations in this section will be both messy and farther from the 

main stream. I can't just say Ufrorn the theory of finite fields we see..." anymore. I will 

begin the section with a useful lemma that  quantifies in some sense the degree t o  which 

Zpm[x] fails t o  be a PID. 

Lemma 2.4. Suppose tha t  I is an ideal of Z ,[XI, p prime so that  t he  factor module F = 
P 

Z ,[x]/I is finite. Then 
P 

I = <fl(x), pe2.f2(x), ..., pek.fk(x)>, 

so tha t  

(i) 0 = e l<e2<. . .<ek=m,  

(ii) = fk(x) ! fk-l(x) I ... I fl(x), 

(iii) each fi(x) is monic, and 

(iv) t he  generating set with its kth element deleted is a basis for I. 

Proof: 

Let G = {gl(x), g2(x), ...) be any generating set of I ordered so tha t  t he  p-part of 

the generators is nondecreasing and all possible p-parts of members of I are represented. 

Let G i  = {geG : g has p-part pi}. Now for two polynomials with the  same p-part, a 

greatest degree common divisor is a linear combination of those two  polynomials with 

the  coefficients being monic polynomials; simply compute the  gcd of their primitive parts 



(mod p)  t o  obtain such coefficients. From this we deduce tha t  there exists some g;(x) 

with p-part pi tha t  is a common divisor of all elements of Gi (mod pi+'). Thus {g;(x) : i 

= 1, ..., m) is a generating set of G. 

For G(x), q ( x ) ,  i<j, we compute a replacement for q ( x )  so tha t  the primitive part of 

the replacement for q ( x )  is a divisor of the primitive part of &(x). This is done by 
. . 

computing the  quanti ty gcd(pJ-'&(x), g;(x)) as a linear combination with monic 

coefficients exactly as in the previous paragraph, and using this gcd as the replacement. 

From this we see some finite number of operations reduces the generating set t o  a new 

set {gi*(x) : i = l ,  ..., m) which has the divisibility property on primitive parts of 

generators tha t  we want for (ii). In addition the reduction step did not change the p- 

par t  of the ith generator. Since F is finite we see tha t  the generator with the largest p- 

part  is exactly gm*(x) = pm. Since F is finite we see that  G contains primitive 

polynomials, hence gl*(x) is primitive. Next we must transform the generating set {gi*} 

into a generating set {gi(x)} so as t o  make each %(x) a power of p times a monic 

polynomial, all without destroying the divisibility property. 

Certainly pm = g,*(x) is already gi(x) ( the  transformation of gmf(x)  is t o  leave it 

alone). Suppose tha t  t he  leading coefficient of gi* does not have p-part pi. Then it is a 

multiple of the p-part of &+l(x), and as deg(gi+l) 5 deg(gi*(x)), we may subtract a 

multiple of gi+l(x) and obtain a replacement for gi"(x) with leading coefficent tha t  has 

p-part pi. Having done this we may then multiply by a well chosen unit (mod pm) and 

obtain &(x) with leading coefficient exactly Inductively, we obtain the  desired gi(x), 

i = 1, ..., m. Since the reduction simply made each &(x) some combination of {gj* : 

j>i) we see tha t  the divisibility property is preserved. 

A t  this point we must eliminate redundant members of the generating set. If the 

primitive part  of &(x) divides the primitive part of &i+l(x), then g,+'(x) is a multiple of 



gi(x); throw it out.  Let fi(x) be the i f h  survivor of this elimination process on the gi(x). 

A t  this point we see tha t  we have satisfied (i)-(iii). It remains t o  prove (iv). 

e. 
Let hi(x) = p '.ii(x) and assume tha t  the generating set is not a basis. Then for some 

1 < j 5 k, hj(x) is a linear combination of the other generators. Let 

(high degree) r(x) = Cci (x ) .h i (x ) ,  and 
1 <J 

(high content) S(X) = Cci(x) .h i (x) ,  
1>J 

such tha t  h,(x) = r(x)+s(x). Notice tha t  fj(x) divides hi(x). By the divisibility property 

it also divides r(x); hence i t  must divide s(x). Also by the divisibility property, the p- 

part  of s(x) is a proper multiple of the p-part of h j (x )  This means that  pC.hj(x) divides 

s(x) for some integer c 1 1. Let A be the companion matrix of hhl(x) over pm. Now, 

notice that  A satisfies r(x). This means tha t  h,(A) = s(A). On the  other hand, A is 

not a r w t  of h,(x), so we have tha t  s(A) is a proper multiple of gi(kj), a contradiction, 

so the given generating set is minimal, and we are done. 

One consequence of this lemma is a statement about the form of compositional 

at t ractors  over Z 
P"' 

Corollary 2.6. Suppose t ha t  J is a compositional at t ractor  of Z ,,[XI. Then J has a 
P 

basis 

{fl(x), pF2.f2(x). ... r ~ ~ ~ . f ~ ( x ) l ~  

so tha t  

(i) 0 = el<e2<...<ek=m, 

(ii) 1 = fk(x) / fk-l(x) I .. . I fi(x), all generate compositional at t ractors  (mod p) 



(iii) and each fi(x) is monic. 

Proof: 

If we apply Lemma 2.4 to J ,  we obtain all of the above except the claim that  each of 

the fi(x) is a compositional attractor. Let g ( x ) ~ Z  .[xi have invertible leading coefficient. 
P 

Since J is a compositional at t ractor  itself, we see for each i that  

By considering the  powers of p and using the  basis and divisibility properties, we see 

tha t  cj(x) = 0 for j < i. Thus  we see tha t  

so fi(g(x)) cj(x).fj(x) (mod p), and fi(x) is a compositional at t ractor  (mod p). 0 

Corollary 2.6 tells us a form tha t  all compositional attractors of Z .[XI must have. 
P 

T h e  next s tep is t o  further tighten our  understanding of which parameters of the form 

actually yield a compositional attractor. 

Lemma 2.5. Let J be a compositional at t ractor  of Z ,,[XI, "t A = Z .[x]/J, let B = 
P P 

A/(p), and take (f(x)) = I '. Then if 
ZP 

3 = (f,(x), pe2.f2(x), ..., pek.fk(x)) 

is a basis of t he  sort  described in Lemma 2.4 and ~ ~ ( x )  is an irreducible power divisor of 

f(x), then rk(x) divides each fi(x), i<k ,  (mod p). 

Proof: 

Since B is a Zp-algebra, i t  follows tha t  f(x) is the  least comman multiple of the 

minimal polynomials of all elements of B. If kk(x) divides f(x), then there is a n  element 

k o+(p)  E B which has minimal polynomial g(x) divisible by L (x). If rK(x), and hence 



e. 
g(x), fails t o  divide some fi(x) (mod p), then p '.fi(a) f 0 (mod pn). This, however, 

violates a property bestowed on J by Theorem 1.1 (ii), giving a contradiction. I3 

At this point I want t o  highlight an obnoxious feature of arithmetic in Z ,[XI. If a 
P 

polynomial in Z ,[XI is congruent t o  a polynomial tha t  can be factored (mod p), it need 
P 

not be itself reducible when n> l .  

Example 2.3. An irreducible polynomial of Z .[XI tha t  factors modulo p. 
P 

(i) p=2, n=2, f(x) = x2+2, f(0) = 2, f(1) = 3, f(2) = 2, f(3) = 3; hence f(x) is 

irreducible in Z4[x], yet f(x) X.X (mod 2). 

This situation is not irretrievable, however, as shown by the following lemma. 

Lemma 2.6. If f(x) E Z .[XI is irreducible, then it is congruent modulo p t o  a power of 
P 

an irreducible element of Zp[x]. 

Proof: 

If f(x) is not congruent t o  a power of an irreducible (modulo p) then is has a 

factorization, f(x) = a(x).b(x) (mod p) into relatively prime factors; this follows from 

the  prime factor theorem for UFDs. In order t o  prove the Lemma I will now construct a 

factorization for any  f(x) over Z . not congruent t o  a power of a prime (mod p). 
P 

Suppose tha t  a(x), b(x) E. Z .[XI are  relatively prime modulo p so tha t  
P 

f(x) = a(x).b(x)+p.q(x). 

Examine the product with undetermined coefficients c!(x): 
J 

(a(x)+p .c:(x)+p2.c:(x)+p 3 .cl(c)+ 3 . ~ . ) . ( ~ ( x ) + P . c ~ ( x ) + P ~ . c ~ ( x ) + ~ ~ . c ~ ( x )  ...), 



which when expanded becomes 

a(x).b(x) + p.(ci(x).b(x)+c:(x).a(x)) + p2.(c:(x).c:(x)+c:(x).a(x)+c?(x).b(x)) 

+ p 3 . ( c ~ ( x ) . c ~ ( x ) + c ~ ( x ) ~ c ~ ( x ) + c ~ ( x ) ~ a ( x ) + c ~ ( x ) ~ b ( x ) ) +  .... 

The  fact tha t  a(x) and b(x) are relatively prime (mod p) allows us t o  apply the 

Euclidean algorithm and obtain values for <(x) and cA(x), up  t o  congruence (mod p ) ,  

so, examining the  above expression, we see tha t  we may obtain any possible value for 

the product (mod pi) without disturbing its value (mod pi-f). W e  may in particular 

choose the coefficents so as t o  obtain f(x) from the product, hence the lemma is true. 0 

I want t o  conclude this section with an example of compositional attractors of Z[x]. 

T h e  entire thrust of Chapter 3 is t o  develop two examples of compositional attractors of 

Z, those associated with Zn and with the mxm matrices over Zn. 

Example 2.4 . Suppose tha t  f(x)+(p) is the generator of a compositional at t ractor  of 

Zp[x]. Then 

is certainly a compositional at t ractor  of Z[x]. T o  see this simply note tha t  

f(g(x)) = r(x).f(x)+p.a(x) 

by hypothesis, which yields the identity 

k 
f(g(x))k = (r(x).f(x)+p.a(x))k = r ( ~ ) ~ f ( x ) ~ p ~ - ~ a ( x ) ~ ~ " ' ,  

m=O 
and apply the identity t o  each basis element. 

Example 2.4 is in fact simply an application of Lemma 1.5 t o  the compositional 

at t ractor  generated by f(x) and p. 



IChapterI 
T h e  Groups PPZn(Zn)  and PPZn(Zmim).  

$0 Introduction and Summary. 

In Section 1, I will give a new proof of David Singmaster's result[4], tha t  there are 

exactly 

functions from Zn t o  itself t ha t  can be represented as polynomials in Zn[x], which is 

shorter than  the  original and matches the  notation used in the  rest of this paper. In 

Section 2, I will give a new form of the  computation of a basis of 1'" In Section 3 I will 
Z '  

compute exactly which polynomials over Zn are  permutation polynomials, and I will give 

t he  size of PPZn(Zn). In addition, I will give some information about  the  isomorphism 

type  of PPZ,(Zn), establishing the  isomorphism type exactly for n = 1, 2. In Section 4 

z n  I will compute a basis for the  compositional at t ractor  IZmxm. In Section 5 I will 
n 

compute the  membership and order of the  group P P Z  (Znmxm). 
n 

A tool I have found tha t  leads t o  shorter proof about  polynomials (mod n) is the 

difference operator A, defined on any ring of polynomials over a commutative ring with 

1, t o  be 

For an  original t reatment  of t he  difference operator, see [I]. A more modern 

introduction t o  A is in [2]. 



Z I will call a polynomial f(x)eZ[x] n-ish if it is a member of I ;. Such polynomials are 

t he  preimages under the  natural homomorphism ~ : Z [ x ] - r Z ~ ( x ]  of t he  residue polynomials 

of Zn. Residue polynomials of a ring a re  those polynomials having all elements of the 

ring ar, their roots (51. 

Throughout this chapter  I will use falling factorial notation, 

In order to avoid confusion with the use of parentheses in s tandard exponents, an  

exponent will denote a falling factorial only if it is completely enclosed in parentheses. 

T h e  falling factorials a r e  preferable t o  the powers of x as a basis for t he  polynomials in 

some situations because of identities like the  following [2]. First, 

and using (3.1) for a polynomial f(x) = a. + alx(') + ... + amx(m), it follows tha t  



$1 Singmasters Result. 

In this section I will re-prove D. Singmaster's 1974 result [4] tha t  the number of 

functions from Zn t o  itself tha t  can be represented as polynomials is 

I later use this result t o  compute IPP(Zn)I. 

Proposition 3.1. 

If f(x)cZ[x] is n-ish of degree k, then divides the content of f(x). 

Proof: 

The  content of a polynomial is defined t o  be the greatest common divisor of its 

coefficients when the polynomial is written with respect t o  the s tandard basis, the 

powers of x. Notice tha t  the gcd of the coefficients does not change if t he  polynomial is 

rewritten in the descending factorial basis. Assume then tha t  f(x) is n-ish of degree k 

and  tha t  

I t  is trivial to ~ e e  tha t  A preserves n-ishness, so n divides Amf(0), which means by (3.2) 

t ha t  n / a,m!. From this, we see tha t  *) 1 a,. Each m is less than o r  equal t o  k,  so 

n - I ---"-- for each rn; hence -...!I- I a, for each m. As a result A divides the 
(n,k!) (n,m!) (n,k!) (n,k!) 

content of f(x). 



A polynomial p(x)&Z[X] induces the function f, where 

f(x mod n) = p(x) mod n 

from Zn t o  itself. This notion is well defined because members of Z[X] preserve 

congruence (mod n). 

Theorem 3.1. (D.  Singmaster, 1974). 

T h e  number of functions from Zn t o  itself that  can be represented as polynomials is 

Proof: 

To prove the formula I will produce a system of representatives for the equivalence 

classes of polynomials in Z[X] tha t  induce the same function over Zn and then compute 

its size. 

I claim tha t  t he  polynomials of the form -.&.- lk) are  n-ish. For any integer a, a lk) 
(n,k!lx 

is a product of k consecutive integers. An elementary result of number theory is tha t  k! 

divides the product of k consecutive integers so we see tha t  k!lalk) and hence n 1 

lk) for each integer a. This proves the  claim. oa 
From the  claim one can see tha t  if a polynomial induces a function on Zn, then that  

same function is induced by a polynomial a. + alx + ... + a,lx"-l with its coefficients 

in t he  range 0 5 ak < 1 One simply subtracts proper integral multiples of n-ish (n,k!). 

polynomials supplied by the claim, starting with those of highest degree and working 

down. Since we are bringing the coefficients into the correct range in descending degree 

order, the later corrections will not disrupt the earlier ones. Further, since n-ish 

polynomiale induce the  zero function, subtracting multiples of them does not affect the 

function induced. 



Now let f(x) and g(x) be polynomials with their coefficients in the range specified 

above, and let p(x) = f(x) - g(x). Then if d = deg(p), one sees tha t  the leading 

coefficient of p(x) is strictly bounded in absolute value by -2- This means tha t  -A- 
(n,d!). (n ,d!)  

1 cont(p). Applying Proposition 3.1 we see tha t  p(x) is not n-ish. 

This means tha t  the set of all polynomials with coefficients in the specified range form 

the desired system of representatives. Counting the number of choices for each 

coefficient yields the desired formula. 



$2 A Basis for the  Ideal I z n  
Z '  

Throughout this section I will use the  notation I, for I Z .  Zn I will s ta r t  with a n  

interesting property of ~ ( n ) ,  defined t o  be the  least k for which n/k!; i.e., 

n(n) = min{k : n / k!), 

after which I will produce a slightly different version of t he  Niven and Warren (61 

basis for t he  residue polynomials of Zn, which basis is also a minimal generating set for 

I,. Information about  the  function ~ ( n )  is necessary t o  produce this basis, and it is also 

useful for t he  calculations in Section three. Some form of ~ ( n )  appears in 141, [5], and 

[6]. In [5] Kempner refers t o  K as p, and my definition and use a r e  closer t o  his than to  

any  other. I d o  not use the  symbol p so  as t o  avoid confusion with the  Mobius function, 

which pops up repeatedly in the  generalization of this work t o  the  matrix case. In [6] 

Niven and Warren refer t o  a closely related function t(k), which is in some sense an  

inverse of ~ ( n )  for prime powers. In [4] Singmaster uses the  notation n(m) in place of 

~ ( n )  and then drops t he  argument and merely refers to the  function as n. 

A quick pencil-and-paper method of computing ~ ( n )  for prime powers and a number 

of valuable special cases of ~ ( n )  appears on page 243 of [5]. As I will show below, 

knowing the  value of ~ ( n )  a t  prime powers rapidly gives one the  value of ~ ( n )  for all n. 

Proposition 3.2. (A. J. Kempner 1921) 

For n > 2, ~ ( n )  = m a x { ~ ( q )  : q a prime power divisor of n). 

Proof: 

Assume tha t  n 2 2, and let d = max{n(q) : q a prime power divisor of n}. Then for 



each prime power divisor q of n, q /d !  and hence n/d!. On the other hand since for some 

divisor q of n, ~ ( q )  = d, it follows that  x(n)>d,  so ~ ( n )  = d. 

Notice tha t  ~ ( 1 )  = 0 and that  n(p) = p for p prime. Table 3.1 gives some 

provocative values of ~ ( n ) .  

Table 3.1 
Values of n(n) 

n n(n) n ~ ( n )  

32 8 8192 16 

64 8 16384 16 

128 8 32768 16 

256 10 65536 18 

512 12 

1024 12 

2048 14 

4096 16 

Now, instead of a basis for the Ideal of residue polynomials in Zn[x], as in [6], I will 

produce a basis for t he  ideal In in 21x1, which is a preimage under the natural map from 

Z[x] t o  Z,[x] of Niven and Warren's basis. My proof produces the basis immediately for 

all n instead of producing i t  first for prime powers and then constructing a basis for 

general n from the  prime power bases. 

Define: 



Theorem 3.2. Let In denote the  ideal of n-ish polynomials in Z[x]. Then 

and further. this basis is minimal. 

Let J, = ( : k i n  In the  proof of Theorem 3.1, we saw tha t  each 
n k )  

generator of Jn  was n-ish; hence JnCIn .  Let f(x) be a member of In with degree m, say. 

This  is because the If k is the  largest member of An less than m, then --&..- = - 
(n,m!) (n,k!)' 

members of An are  exactly all those integers a for which a! contains a divisor of n that  

(a- l )!  does not. Now, proposition 1 says t ha t  / cont(f), so  1 I cont(f). As a (n,m!) (n,k!) 

result there is a multiple of ~ . x ( ~ )  of degree m with the same leading coefficient a s  
(n,k!) 

f(x). Subtracting this multiple gives us a new member f ( x )  of In having lower degree 

than  f(x) but  congruent t o  f(x) (mod Jn) .  By induction on degree, it fottows tha t  ail 

members of In a re  congruent (mod J n )  t o  0 o r  zeroth degree members of In, which are 

exactly t he  multiples of n. Since n = -.A- 
(n,~!) '" 

(O) is a generator of Jn ,  it follows tha t  

I n C J n ,  and all t ha t  remains is t o  show tha t  the  basis is minimal. 

Notice t h a t  t he  form of the  generators given in Theorem 3.2 has a very nice property. 

T h e  contents of the  various generators and their primitive parts a re  both totally and 

strictly ordered by divisibility, with the two orderings running in opposite directions. 

(ki) 
Star t  by ordering An = {kl > k2 > ... > kn} and let gi(x) = 1 . x  . Assume 

(n,ki) 

t he  generating set is not a basis. Then for some jcAn,  gj is a linear combination of the 

other  generators. Let 

r(x) = Cci(x) .g i (x) ,  and 
C'J 



(k,) 
such that  gj(x) = r(x)+s(x). Notice that x divides g,(x). By the divisibility property 

above, it also divides r(x): hence it must divide s(x). Also by the divisibility property, 

the content of s(x) is a proper multiple of the content of gj(x). This means that c.gj(xj 

divides s(x) for some integer c > 2. Now, notice that  kj is a root of r(x). This means 

that  gj(k,) = s(k,). On the other hand, kj is not a root of gj(x), so we have that  s(kj) is 

a proper multiple of g,(k,), a contradiction, so the given generating set is minimal, and 

we are done. 0 

Example 3.1. Generators for I12. 1128. 

(I12)The divisors of 12 are 1, 2, 3, 4, 6, 12. Consulting Table 3.1 we find that  ~ ( d )  for 

each of these divisors is 0, 2, 3, 4, 3, and 4, respectively, so An = { O ,  2, 3, 4). Applying 

Theorem 3.2, we get that  

112 = (12, 6 ~ ' ~ ) ~  2 ~ ' ~ ) ~  x ( ~ ) ) ,  

and hence that  Z[x]/I12 2 Z12 x ZI2 x Z6 x Z2, M an abelian group. 

(Il2*) The divisors of 128 are 1, 2, 4, 8, 16, 32, 64, and 128. Consulting Table 3.1 we 

find that  ~ ( d )  for each of these divisors is 0, 2, 4, 4, 6, 8, 8, and 8, respectively, so An = 

{0, 2, 4, 6, 8). Applying Theorem 3.2 we get that  

'128 = ( 128, 6 4 ~ ( ~ ) ,  16x(~) ,  x")), 

and hence that  Z[x]/IlZ8 E Z128 x ZlZ8 x Z64 x Z64~Z16 x Z16 x Z8 x Z8, M an abelian 

group. 



53 T h e  group PPZ,(Zn). 

In the  name of legibility, I will refer t o  PPZ,(Z,) as PP(Z,) throughout this section. 

and I will continue t o  use the  notation In for 1'" T h e  first s tep in computing PP(Z,) is Z '  

t o  reduce the problem of finding the  isomorphism type and generators for general n to 

t he  same problem for prime powers. I will then produce a surjective homomorphism 

r :PP(Z  .)-+PP(Z and establish a necessary and sufficient condition for a 
P P 

polynomial over Z . t o  be a permutation polynomial. 
P 

Henceforth when I refer t o  a permutation polynomial I will actually mean the  

equivalence class of all permutation polynomials tha t  induce the  same permutation. 

Recall t ha t  the  residue polynomials of Zn[x] a re  those members of Zn[x] having each 

element of Zn as roots; they induce the  zero function. T h e  equivalence class of a given 

permutation polynomial f(x) over Zn is thus the  set of sums of f(x) with any  residue 

polynomial 151. This convention simplifies matters  substantially, as it allows us t o  treat 

composition of polynomials as the  composition of the  permutations they induce. 

Lemma 3.1. If n =q1.q2. ... .qm is a factorization of n into powers of distinct primes, 

then 

Proof: 

Let n: Zn[x] -+ Zqi[x] be the  ring isomorphism given by the  Chinese Remainder 

Theorem. Suppose t ha t  (gl, g2, ..., g,) is an m-tuple of permutation polynomials in 



~ z ~ ~ [ x ] .  Then by applying the Chinese Remainder Theorem pointwise t o  the functions 

induced on the Zails by the gi's, we get a 1:l function on 2,. This function is, however. 

the function induced on Z, by the preimage of (gl, gZ, ..., g,) under n. Now suppose 

tha t  f(x)rZ,[x] induces a 1:l function on 2,. Then the natural projection of this 

function onto the product of functions on the Z 's must yield 1:l functions, or  we have 
"i 

a contradiction of the Chinese Remainder Theorem; hence the polynomial components of 

f i  must be permutation polynomials. This shows tha t  PP(Z,)n = n p p ( Z a i ) .  It 

remains t o  show tha t  a preserves group structure. 

Recall tha t  our  group operation is composition of polynomials. A polynomial 

composition is a string of ring additions and multiplications, nothing more, and  both 

these operations are preserved by i, a ring isomorphism. It follows that  n preserves our 

group operation, and hence tha t  T restricted t o  PP(Z,) is a group homomorphism. 

Since i is an isomorphism of finite rings, it preserves the  size of a set and hence is a 

group isomorphism when restricted t o  PP(Z,). 

T h e  next lemma is trivial but has great utility. 

Lemma 3.2. 

If rn 5 n and f(x)€PP(Z ,), then f(x) acts on the congruence classes of Z , modulo 
P P 

the  ideal generated by pm. 

Proof: 

Routine. 



Lemma 3.3. 

Fix n 2 2. Let n: Z[X]/I + Z[X]/I be the natural map. Then the map p that  n 
P" P 

induces on PP(Z ,) is a group homomorphism onto  PP(Z 
P P 

Proof: 

Since I C I the natural map n exists. Let fcPP(Z ,,). We know tha t  i induces 
p n -  p P 

a 1:l function on Z 
P"' 

Lemma 3.2 tells us tha t  f induces a well-defined function on 

Z as well, and it is easy to see tha t  this function must also be 1:l. Since ker ( r )  = 
P 

I ., we know tha t  the function induced by f on Z is equal t o  the function induced by 
P P 

fn on Z This means that  i n  induces a 1:l function on Z and hence tha t  
P P 

tmage(p) C PP(Z .-I). 
P 

Since 5 is a ring homomorphism it preserves addition and multiplication. From this 

we see tha t  it must preserve polynomial composition, which is just a combination of 

additions and multiplications. This means tha t  p preserves polynomial composition, and 

hence is a group homomorphism, as specified. U 

T h e  next lemma is a special case of Lemma 1.3. I give a difference theoretic proof, 

more in t he  spirit of this chapter, rather than refer t o  Lemma 1.3. 

Lemma 3.4. 

Let n 2 2. Then f(x) c Z[x] induces a permutation on  Z iff f ( x )  has no roots (mod 
P" 

p), and f(x) induces a permutation on Zp,,-l. 

To prove this lemma, I need t o  define the  q-difference operator and make a claim 

about  it. T h e  q-difference operator Aq, which has the same domain as A, is defined by 



I claim tha t  if n is 2 o r  more, then for f(x) in Z .[XI we have t ha t  A n - l f ( ~ )  = 
P P 

pn-l.f'(x) (mod pn). A routine calculation shows this t o  be so. Now, t he  proof of 

Lemma 3.4. 

(J) Suppose t ha t  f(x) induces a permutation on Z Lemma 3.2 tells us t ha t  if 
P"' 

a ~ b + p n "  then f ( a ) r f ( b )  (mod pn-I). Since t he  function induced by f(x) is injective, it 

follows t h a t  f(b)-f(a) is a nonzero multiple of pn-l. Since f(b)- f(a) = ( A  n_lf)(a) we 
P 

see t ha t  A n_lf(x) is everywhere nonzero. By the  claim this is equivalent to f'(x) having 
P 

no roots (mod p). As in t h e  proof of Lemma 3.3, the  fact t ha t  f induces a 1:l function 

on Z . is sufficient for it t o  induce a 1:l function on Z 
P P 

(e) Suppose t ha t  f(x) induces a permutation on Z and t ha t  f '(x) has no  roots 
P 

(mod p). Since f induces a 1:l function on Z it suffices t o  show tha t  f induces a 1:l 
P 

function on each equivalence class of Z (mod p"'). Let A = {a, a+pn-I ,  ..., a+(p-  
P" 

l)pn-'1 be one such equivalence class. 

Since f '(x) has  no  roots (mod p), t he  claim tells us t ha t  A n-lf(x) has no roots (mod 
P 

pn). On t h e  other  hand, two  applications of t he  claim show us t ha t  n-lf(x) = 0 
P 

(mod $). From this we can deduce t ha t  for h, b+pn' l~ A, f(b)-f(b+pn-l) = k.pn-l 

for some kfO (mod p )  t ha t  doesn't depend on t he  choice of b. This  in tu rn  shows tha t  f 

induces a 1:l function on A since 

A {f(a), f(a)+k.pn", ..., f(a)+(p-l).k.pn'lf, 

which a re  all distinct values (mod pn), as k is simply generating t h e  additive group of 

Zp. 0 



Corollary 3.1. 

Let f(x) E Z[x]. If f(x)+I E PP(Z then f(x)+l . E PP(Z .) for all n > 2 .  
P P P P 

Proof: 

If f(x)+I is a permutation polynomial, it follows that  it induces a 1:1 function on 
P 

Z A simple computation shows tha t  a pn-l-ish polynomial has a p-ish derivative; 
P 

hence for n>2, ( f ( ~ ) + ~ ( x ) ) '  = ?(x) (mod p) for any pn-l-ish polynomial g. By Lemma 

3.4, fJ(x) has no roots (mod p) and hence neither does (f+g)'. Since g(x) is a residue 

polynomial over Zpn-l, it follows that  f(x)+g(x) still induces a 1:l function on Z n-l,  so 
P 

by Lemma 3.4, f(x)+g(x) is a permutation polynomial over Z for any pn-l-ish 
P" 

polynomial g(x). 0 

Notice tha t  the corollary says for f E Z[x] and n > 2 if f(x)+I . is in PP(Z ) then 
P P 

f(x)+I , is in PP(Z ,) for any m>n.  With the  aid of Lemma 3.4 and Corollary 3.1 it 
P P 

is now possible t o  prove that  p is a surjective group homomorphism. 



Lemma 3.5. 

p : PP(Zp,) -+ PP(Z is surjective. 
P 

P rwf :  

First deal with the case 1123. Let f(x)+I be a permutation polynomial in 
P 

PP(Z and let g(x) = f(x)+I ,. Then by Corollary 3.1, g(x)€PP(Z ,). From the 
P P P 

definition of p we see that  g(x)p = f(x); hence p is surjective. 

Now take the  case n=2. If we take some f(x)+Ip .s PP(Zp) and  let 

g(x) = xfP).( l+f ' (x))+f(x)+l  2,  
P 

I claim tha t  g(x)  is a preimage of f(x) under p. A routine calculation with the product 

rule from [2] shows that  g ' ( x ) ~ p - l  (mod p); hence g1 has no roots (mod p). From (3.2) 

and the fact tha t  A preserves p-ishness, it follows tha t  x(") is p-ish. From this it follows 

tha t  g(x)  = f(x) (mod p) and hence tha t  g(x) induces a 1:l function on Z since f 
P 

does. This means that  g(x) satisfies the conditions of Lemma 3.4 and we may deduce 

tha t  g ( x ) t P P ( Z  2). O n  the other hand, since x(') is a n  element of Ip, it follows that  gp  
P 

= f, from the definition of p. 0 

Now we have the tools t o  obtain results on the isomorphism type of PP(Z ,). The 
P 

main task of this section is producing the isomorphism type and generators of ker(p). 

For n > 3  i t  turns out  tha t  ker(p) is an elementary abelian p-group. A t  the end of the 

section I will give a formula for PP(Z ,) . I P I 

As we saw in Example 1.1 all permutations of Zp are  induced by polynomials in Zp[x]. 

This follows directly from the fact tha t  all functions from Zp t o  Zp can be realized as 

members of Zp[x]. Another way to see this is the following remark. 



Remark 3.1 

Let F be the finite field of order q. Then for each nonzero a&F, the polynomial f,(xj 
4 

= ~ + x a ~ ~ ~ - ~  is a permutation polynomial inducing the transposition (0 a )  on F. As a 
k r 2  

varies through all of F, this gives us a set of transpositions tha t  generate Sym(F). In 

particular, this means 

PP(Zp) = Sp, 

t he  symmetric group on p letters. 

Now I want t o  produce the kernel of p in the case where p : PP(Z 2) + PP(Zp). It 
P 

turns out  that  t he  kernal of p is isomorphic to the direct product, p times, of the group 

of affine functions over Zp, {ax+b : a, b E Zp, a # 0). 

Lemma 3.6. 

If p: PP(Z  2 )  + PP(Zp) then lker(p)l = [p.(p-1)] '. 
P 

Proof: 

T h e  definition of p shows tha t  the elements of ker(p) are of the form x+f(x), where 

fpf f(x) is pish.  Theorem 3.2 tells us tha t  Ip has a minimal generating set  {p, x } and 

tha t  I hk5 a minimal generating set {p2, p.x('), x ( ~ ~ ) ] .  From this we can see that  a 
P 

set  of representatives for ker(p) is the set of all permutation polynomials over Z of the 
P 

form 

with the degrees and coefficients of r and s in the range 0 t o  p-1. 

Now (+) clearly induces a 1:l function on Zp, t he  identity. By Lemma 3.4 we need 

only compute how many choices of r and s give (*) a rootless derivative (mod p). If we 



compute the  derivative of ( t ) ,  we get 

s ' ( x ) ~ ~ ( ~ ) + s ( ~ ) ~ [ x ( ~ ) ] ' + p . r ' ( x ) + ~ .  

Removing those terms tha t  are p-ish, we see t ha t  ( t )  is a permutation polynomial if 

s(x).[x(P)]' + 1 # 0. 

A simple calculation shows tha t  [x'~)]' ZE (-1) (mod p), so  we need only have tha t  s(x) 

# 1 (mod p )  for all x. A trivial counting argument shows tha t  there a re  (p-1)' such 

functions on Zp. Since all functions from Zp t o  Zp are  induced by polynomials in Zp[x] 

P of degree less than  p, we see tha t  there a re  (p-1) choices for s. T h e  choice of r is 

P completely free among the  p polynomials tha t  can be substituted for r in ( t ) ;  hence 

P P there a re  (p-1) .p  permutation polynomials in ker(p). 0 

Lemma 3.7. 

T h e  characteristic function , Y ( ~ )  of t he  ideal (p)  generated by p in Z , is a polynomial 
P 

function. 

Proof: 

Notice t h a t  (p )  is exactly the  set of nonunits of Z Let U be the  units of Z ,, and 
P"' P 

f(x) = (x - u). 
u & U  

Then for each u&U, f(u) = 0. If a is a nonunit, then f(a) is the  product of all the 

elements of U. This  means t ha t  the  value o f f  is a constant unit y on all of (p). Simply 

setting xCp)(x) = y - l f ( ~ )  gives us t he  characteristic function of (p)  as a polynomial. 0 

Theorem 3.3. 

Let H be the  group of affine functions from Zp t o  Zp. Then PP(Z 2) Z H wr Sp. 
P 

Proof: 



Claim 1 : Let (a .x+b)  c H. Then 

L: (a .x+h) /-t ~ ( ~ , ( x ) . ( a . x +  b . p ) + ( l - ~ ( ~ ) ( x ) ) . x  

is an injective group homomorphism of H into PP(Z 2) tha t  moves (p) and fixes 
P 

Zp-(p). 

Proof: 

By Lemma 3.7, (a.x+b)L is a polynomial. Routine computation then proves the 

claim. Now, conjugating HL by (x+a)  gives us a copy of H tha t  moves a+(p)  and fixes 

the rest of Zp. This yields p copies of H tha t  move mutually disjoint subsets of Z 2; 
P 

hence we have a p-fold direct product of H inside ker(p), call i t  K. By Lemma 3.6, order 

considerations force K t o  be all of ker(p). 

Now, I will produce a complement t o  K in PP(Z 2) tha t  is isomorphic t o  PP(Zp). 
P 

Let R = {O, 1, . .., p-1) be a set of coset representatives for Z (mod p). 
P 

Claim 2 : For a E PP(Zp) there is some a *  E PP(Z 2), so tha t  = a and for a, b E 
P 

R such that  a8 = b, we have ( a + ~ . ~ ) a *  = b+c.p. 

Proof: 

Let a be any preimage of 8 under p and transform a into a *  as follows. W e  know 

tha t  a(a+c.p)  - a (a )  = al(a).cp where we saw in the  proof of Lemma 3.4 tha t  ul(x).p 

is constant (mod p2) on a+(p).  This means tha t  a(a+c.p) = b + k.p + cp.al(a). In 

claim 1 we showed there was a permutation tha t  fixed all points not in b+(p) and which 

had the property tha t  b + k.p + cp.al(a)) (h+cp). Apply this permutation t o  a ( 
and repeat the process for each member of R. The  permutation you obtain in t he  end 

has the  properties specified for a* .  

Using the  claim it is easy t o  see tha t  the set {a* : Z?cPP(Zp)} is a copy of PP(Zp) 



inside PP(Z *) that  has trivial intersection with K; thus PP(Z *) is the semidirect 
P P 

product of K by PP(Zp). It remains to  show that the copy of PP(Zp) acts on K in the 

fashion necessary for a wreath product. T o  see this, let Ha be a copy of H acting on 

a+(p)  and let it E PP(Zp) take a to  b. Then H,"* = H,, by a simple computation, 

which is exactly what we need (31. Since PP(Zp) Z Sp, we have 

PP(Z 2) Z H wr Sp. 0 
P 

Lemma 3.8. 

For n 2 3 ,  ker(p) = {x + f(x) : i(x) E I 
P 

Proof: 

Certainly ker(p) C {x + f(x) : f(x) E 1 Let f(x) E I A simple computation 
P P 

shows that  f '(x) is p-ish; hence ( f (x)+x) 'z l  (mod p). Since f(x)+x induces identity on 

Z Lemma 3.4 tells us that f(x)+x is a permutation polynomial. 
P 

Lemma 3.9. 

Let n>3. Then ker(p) is an elementary abeiian p-group of order u(n) where v gives 

the size of a set of representative of I mod I 
P P"' 

Proof: 

Let d [ x ]  -r Z[x]/I ,, be the natural map. Notice that  the additive group G of I 
P P 

is abelian and that  for each frG, p.f = 0; hence G is an elementary abelian p-group. 

Let 8: G -r ker(p) be defined by f@ t-, f(x)+x. I claim that  6 is an isomorphism. By 

Lemma 3.8 8 is a bijection of G with ker(p), so I need only check that  8 preserves the 

group operation. Let f ,  g E G, with f(x) = zfi.xi. Then 

(fe)o(ge) = c fi.(x+g(x)Y + g(x) + X, 

= f'(x).g(x) + f(x) + g(x) + x, 



= f(x) + g(x) + x, (recall f ( x )  is p-ish) 

= (f+g)e. 

T h e  fact that  ff is an isomorphism gives ker(p) t he  desired size. 0 

Corollary 3.2. 

Let n > 3  and let {qi(x) : L E I )  be the image under r of of t he  minimal generating set of 

I given in Theorem 2, with the generator of highest degree removed if i ts  image 
P 

under n is 0. Then 

forms a minimal set of generators for ker(p). 

Proof: 

{xkq i (x )  : i E I O<k<p } is clearly a minimal generating set for the additive group 

of I and 0 is an isomorphism. 0 
P 

Lemma 3.10. 

For the function u, defined in Lemma 3.9, u(n) = p Kipn' for each n>3. 

Proof: 

By looking a t  representatives of I mod I we see that  the following recursion 
P P"' 

holds: 

Check tha t  4 8 )  = 4 and K ( ~ ~ )  = 3p for all odd p. Then the recursion telescopes, 

giving the  desired formula. O 

Theorem 3.4. Size of PP(Z ,). 
P 



( i )  IPP(Zp)/ = p!. 

n- 1 
C k b k )  

P k=3 (iii) for n > 3 PP(Z , ) I  = p!.[p.(p-1)) . p  I P 

Proof: 

( i )  follows from a remark. (ii) follows from ( i )  and Lemma 3.6. (iii) follows from (ii) 

and Lemma 3.10. 



$4 Computation of the ideal 1 z m y  
zn  ' 

zm;m zmxm 
In this section I will abbreviate 1 and 1 2 by the more wieldy notation I?. 

z n  

with the meaning of the abbreviation being implied by context. A basis for one of these 

ideals differs from the other only by the addition o r  subtraction of pn. I will call a 

polynomial in Zn[x] m-matrix n-ish if it is a member of the ideal 1:. My goal in this 

chapter is t o  create a basis for I 5 n d  as a consequence, compute the number of scalar 
P 

polynomial functions from Zmim t o  itself. For the case n prime, see[ll], and refer also 

t o  Example 2.2. 

The  first step is t o  reduce the problem for general n t o  prime powers, which is done 

exactly the way you would think. 

Lemma 3.11. Suppose that  n = plel .p2eZ. ... .pkek is rs factorization of n into powers 

of distinct primes. Then 

Proof: 

Follows from the Chinese Remainder Theorem decomposition 

zm;m & Zmxm 
ei i = l  

and Lemma 1.4 (ii). 

Recall[ll] tha t  for p prime, 

m 1 

1; = (11 (xP - x)), o r  
r = l  

if we let A' = {f(x) E Zp[x] : f(x) an irreducible of degree L ) ,  then 



These characterizations both come from noting tha t  every polynomial of degree rn has a 

companion matrix in Zmxm, and taking the least common multiple of all such P 

polynomials t o  obtain a generator for I F .  It is possible t o  extend a weakened version of 

this technique t o  Z . and t o  obtain generators for Im  
P P"' 

Lemma 3.12. Im is exactly the ideal of polynomials having each polynomial, of degree 
P" 

m or  less, congruent modulo p t o  a power of an irreducible of Zp[x], as a divisor. 

Proof: 

Lemma 2.6 says tha t  being divisible by any polynomial of degree 5 m is equivalent t o  

the putative condition for membership in I m  It is easy t o  see tha t  being divisible by 
P"' 

any polynomial in Z .[XI of degree m o r  less is equivalent t o  being divisible by all monic 
P 

polynomials of degree exactly m. Now let f(x)&Z ,, be a monic polynomial of degree m 
P 

and let A be the companion matrix of f(x). T h e  ones tha t  appear above the diagonal of 

A ensure tha t  A satisfies no polynomial relation of degree less than m. By applying the 

division algorithm we see tha t  this forces each member of 1% t o  be divisible by f(x). On 
P 

the other hand, polynomials divisible by all polynomiais of degree 5 m are certainly 

satisfied by each mxm matrix over Z 0 
P"' 

Lemma 3.12 reduces the problem of finding 1% t o  one of computing least common 
P 

multiples in Z ,,[XI. Unfortunately the usual definition of the leirst common multiple 
P 

with its intimations of uniqueness doesn't apply here. As it turns out  we may be 

satisfied with least degree common multiples. First notice tha t  the problem may (must) 

be done separately, one irreducible at a time. I will follow the rough outlines of the 

technique used t o  compute In in the first two sections of this chapter. 



Lemma 3.13. If f(x) I L ( x ) ~  (mod p) for an irreducible L ( x ) E Z ~ [ X ]  of degree d,  then the 

degree of a monic common multiple of all members of Z congruent t o  f(x) mod p 
P" 

equals or  exceeds 

and the  proof constructs a common multiple attaining the  bound. 

Proof: 

This formula should be reminiscent of t he  one for the power of a prime dividing a 

factorial. When d = l  it is exactly a comparison based on that  formula. Now notice tha t  

the degree of f(x) is exactly d.k. Each polynomial in Z ,, congruent t o  f(x) (mod p) 
P 

differs from each other such polynomial by a multiple of p (by definition). Generalizing 

this one sees tha t  exactly the fraction 

of these polynomiais differs from f(x) by a multiple of p'. This is because each of the 

deg(f) coefficents, those other than the first, must all differ from the  corresponding 

coefficient of f(x) by a multiple of pJ. This is the key t o  constructing a polynomial tha t  

at tains t he  bound. Simply multiply sets of polynomials congruent t o  f(x) (mod p) that  

complete equivalence classes (mod p), (mod p2), ... as often aa possible. This ensures 

t ha t  you will arrive a t  a set of polynomials so tha t  as many as possible differ from each 

possible divisor by the  highest possible power of p. One then sees this process gives the 

s tated bound. 0 

Example 3.2 . Compute a least degree common multiple g(x) of all monic polynomials in 

Z3-Jx] congruent t o  x2+x+1 (mod 2). 



The  set of all such polynomials is of the form 

D = {x2+(2k+1)x+(2m+l) : O <  k,m 515). 

Lemma 3.13 tells us tha t  we should be able t o  d o  the job with an 8 th  degree polynomial. 

It should be the product of four members of D tha t  sweep out  an equivalence class (mod 

4). So take 

With Lemma 3.13 in hand we can compute the degree of a least degree of a monic m- 

matrix pn-ish polynomial. 

Corollary 3.3. Let ~ ( d )  denote the number of irreducibles of degree d in Zp[x]. Then 

is exactly the  least degree of a monic m-matrix p"-ish polynomial. 

Proof: 

Lemma 3.12 tells us tha t  we want every polynomial of degree 5 m congruent (mod p) 

t o  a power of a n  irreducible of Zp[x] as a divisor of our putative m-matrix pn-ish 

polynomial. This polynomial would then be the  product, over t he  set of possible 

irreducibles, of least degree common multiples of all monic polynomials congruent (mod 

p) t o  t he  highest power of the irreducible of degree not exceeding m. T h e  sum and n(d) 

cover t he  set of possible irreducibles, and by Lemma 3.13, ~ ( d ,  is the degree of 

the required least degree common multiple; hence the stated degree is correct. 0 

In the case of Z,, the factorial function handily captured the maximal degree of n -  

ishness one could expect from a polynomial. For the matrix case we need an analogous 



function. 

Corollary 3.4. Let 

p prime 

then if gfx)  is monic of degree d,  then it is a t  best, in the sense of division, m-matrix 

%,(d)-ish. 

Proof: 

T h e  Chinese Remainder Theorem allows us t o  find polynomiats simultaneously 

congruent t o  any  choice of polynomials modulo the assorted prime divisors of a given 

integer. The  powers of the primes in the above formula are, by Corollary 3.3, exactly 

the  best one could hope for, given the degree of the polynomial, hence the corollary is 

true. 

A t  this point I want t o  extend K,(~") t o  nonprime powers. Recalling Proposition 3.2, 

it is no surprise tha t  I will lake 

k k n,(p ) : p a prime powet divisor of m (3.4) 

Corollary 3.5 If g(x) is monic and rn-matrix n-ish, then its degree equals or  exceeds 

s,(n); further, a g(x) with degree exactly n,(n) can always be found. 

Proof: 

T h a t  this degree is necessary follows from the definition of ~ ~ ( n )  and  Corollary 3.3. 

Tha t  it is sufficient follows from the Chinese Remainder Theorem. Tha t  the polynomial 

desired exists is a consequence of the constructive nature of Coroilary 3.3. 0 



Corollary 3.6. ~ ~ ( n )  = ~ ( n ) .  

Proof: 

Routine computation. 0 

A t  this point I want t o  take a detour off the  road Leading t o  the  computation of 

generators for I m  and take time out  t o  perform the  obvious generalization of 
P" 

Singmaster's result from Section 1. 

Lemma 3.14. If q(x) is m-matrix n-ish of degree d,  then n divides the  content 
(a ,  a d d ) )  

of d x ) .  

Proof: 

Suppose t ha t  the  lemma fails for some q(x). Then from (3.4) we deduce tha t  for 

some prime power divisor pk of n t ha t  d < ~ , ( ~ ~ ) .  Let e = max{i : d > ~ , ( ~ ~ ) } .  Now if 

for each such prime it was t rue t ha t  pk-e divided the  content of q(x),  then the  lemma 

would hold, so  assume without loss t ha t  pk'e fails t o  divide the  content of q(x). Then 

j for some j < k-e, we see t ha t  q(x) = p .s(x), where s(x) has some coefficient t ha t  is 

invertible (mod p"). Iterating the  reduction of s(x) by appropriate members of I:, the 
P 

generators given in Corollary 2.6, and multiplying by well-chosen powers of x, we may 

produce a new polynomial H(x) so  tha t  pJ.8(x) is still m-matric pk-ish of degree less than 

or  equal to d ,  but  t he  leading coefficient of H(x) is invertible modulo pk. By multiplying 

by an  appropriate unit of Z and reducing mod pk, we find tha t  we have a new 
P 

polynomial pJ.s*(x) t ha t  is monic, m-matrix pk-ish, and of degree d or  less. From this 

we deduce tha t  q(x)  must be m-matrix pk-j-ish, but  since j < k-e, we have a 



contradiction of Corollary 3.3. D 

Theorem 3.5 The number of scalar polynomial functions from Zm:m t o  itself is 

Proof: 

Corollary 3.5 and Lemma 3.14 imply that  we may construct polynomials of degree d 

of the form 

sd(x) = . f d ( ~ )  
(n. %m(d)) 

with fd monic so tha t  the set S = sd(x) : d = l .  2, 3, .. . IS a generating set of IF. If { 1.  
we suppose tha t  this is not so, then there exists some f(x) that  is m-matrix n-ish that  

has a nontrivial remainder r(x) when reduced modulo (S). This remainder must 

necessarily violate Lemma 3.14; hence no such f(x) exists. T h e  set of nontrivial 

remainders modulo (S) is then a set of representatives of the distinct Zn-polynomial 

functions of Zmim. These nontrivial remainders can be taken t o  he polynomials with 

the  coefficient of xd in the range O< c < n 
(n* %m(d))' 

This together with the fact that  

ODm(nm(n)) is a multiple of n shows the formula t o  be correct. 

W e  are  now ready t o  produce a basis for IF. This will be done in a manner 

analogous to Theorem 3.2. First we need t o  define 

A: = {nm(d) : d ( n), 

and let q,(x; k) denote some monic m-matrix $,(k)-ish polynomial of degree k. We 

see from Corollaries 3.3 and3.4  tha t  such polynomials exist. 

Theorem 3.6 



is a basis for 1: in Z[x]. 

Proof: 

Let J m  - n 
- ( (n, ~ m ( k ) )  .qm(x; k) : kch',!,'). Then the choice of the scalar factor 

ensures that J',?,'C I T .  Let f(x) be an element of 1: and assume by way of contradiction 

that f(x) / J g .  If the degree and content of f(x) simultaneously exceed those of one of 

the generators of J F ,  we may take the remainder of f(x) divided by that generator, 

obtaining a member of I T  that  fails t o  exceed the degree and content. Since the 

contents of the generators are ordered by divisibility in the reverse order of degree of the 

generators, we may in fact obtain a member of I t  from f(x), simulaneously exceeding or 

equaling the degree and content of no generator of J?. This resulting polynomial 

would, however, contradict Lemma 3.14, hence J: = IT .  It remains to show that the 

generating set is minimal. 

From Lemma 3.13 and the Chinese Remainder Theorem we see that we may assume 

without logs of generality that  for kl, k2 E AT, kl<k2 qm(x; kl) I qm(x; kZ). Now 

order A& = {kl>k2>...>kC) and set gi(x) = n .q,(x; ki), the various 
(ny $m(ki)) 

generators. If the  generating set given is not a basis, then for some i, gi(x) must be a 

linear combination with polynomial coefficients of the others. Let 



so that  gi(x) = r(x)+s(x). Since the contents of the generators are ordered by 

divisibility in the reverse of their degrees, it follows tha t  n divides s(x) and 
(n. 3m(ki)) 

hence r(x). Likewise, since the primitive parts of the generators divide one another it 

follows tha t  q(x; ki) divides r(x). Since gi(x) is a scalar multiple of q(x; ki), we may 

conclude tha t  q(x; ki) divides s(x). Finally, since A: captures exactly the  point when 

the  content of an m-matrix n-ish polynomial must change to compensate for its degree, 

the divisibility ordering of the contents of the assorted generators is strict. From this 

we may deduce tha t  t he  content of s(x) is a proper multiple of the content of gi(x). 

Thus  for some constant C>2,  there are a(x) and b(x) so tha t  

6i(x) = n 
(n, %(ki)) 

q ( x ;  k i + l ) + C  q(x; ki).b(x). 
(n. 3m(ki)) 

(*) 

Now since the degree of q(x; ki+l) is strictly greater than q(x; ki), it follows tha t  the 

companion matrix A of q(x; kitl) satisfies q(x; ki+l) but not q(x; ki). Specialize (+) 

a t  A, expand gi(x) and see tha t  we obtain the identity, 

Since integral matrices have integral determinants and the left side of the above 

expression is not zero, this is impossible; hence gI(x) is not a linear combination of the 

other generators. El 



55. Membership and Enumeration of the Group PPZn(ZmEm). 

In this section I will apply the techniques and tools of the first two chapters to 

delineating and enumerating the Zn-permutation polynomials of the matrices over hn. 

In [8] 3. V. Brawley computes the order of PPm(GF(q))  and hence by specialization, 

PPm(Zp). T h e  only material on the isomorphism type of PPm(Zp),  of which I am 

aware, appears in [8] and [S], and no at tempt is made t o  compute the structure of the 

group. As part  of the proof of his formula for the order of PP,(GF(q)), Brawley gives 

an effective but tedious construction for members of the group; i.e., he can produce the 

polynomial associated with a given permutation of matrices if one exists, and I see no 

way of improving his technique. No test for membership in PPm(Zp) exists for 

arbitrary polynomials. In fact, the problem of determining membership other than by 

direct testing is the subject of ongoing research in the case m = l  (see [i], Chapter 7). 

I wilt denote by pn the group homomorphism from PPm(Z .) t o  PPm(Z  
P P 

induced by the  (mod p) homomorphism as described in Lemma 1.7. As always the 

Chinese Remainder Theorem allows us t o  restrict our  investigation of PPm(Zn)  t o  Z 
P" 

in t he  following fashion. 

If n = 91.42. ... .qr is a factorization of n into powers of distinct primes, then the 

Chinese Remainder Theorem implies 

I will continue t o  use the notation I F  for the ideal of m-matrix n-ish polynomials in 

Z[x] or  Zn[x]. By a(n)  I will denote the number of irreducible polynomials of degree n in 



The  computation of PPm(Z ,) breaks into three parts: n = l ,  n=2, and 1123. The  I P I 
case n = l  is done by Brawley in [lo] but is also a consequence of Example 2.2 and 

Corollary 2.5. For completeness I will restate Brawley's result here. 

Now, for the remaining cases we will need t o  ascertain what t he  specialization of the 

lifting lemma is in t he  matrix case. This lemma is a consequence of Theorem 3, page 98, 

of [lo]. My proof is much simpler than the one given in [lo] as it avoids tensor products 

and ugly matrix arithmetic. This is a result of applying Theorem 1.1. 

Lemma 3.15 A polynomial f(x)&PPm(Z .) iff f(x)&PP,(Z and f ( x )  is root-free 
P P 

(mod p) on ZmGm. 

Proof: 

Set A = Z .[x]/Im and B = Z n-l[x]/t 
P"' 

Then Theorem 1.1 tells us that  
P P P 

f(x)&PPm(Zpn) iff f(x)&PPZ (A) and f(x)€PP,(Z iff f (x)cPPZ (B), so the 
P" P pn - l  

problem is reduced to finding when a member P P Z  (B) lifts t o  a member of 
pn-l  

P P Z  "(A). Now since I m  C I El, we see tha t  B is A modulo the nilpotent ideal J = 
P P" - P 

IpFl  taken modulo Im This means tha t  we may apply Lemma 1.3. The  question 
P"' 

then becomes, when can ft(x), by multiplication, increase the degree of nilpotency of 

some element of A? I claim tha t  this happens exactly when f ( x )  is divisible (mod p) by 



any irreducible in 9, the set of all irreducibles of degree 1, 2, ..., m. Notice that  

nilpotent elements of A are exactly the cosets of polynomials simultaneously divisible 

(mod p) by all members of 3. By examining the  definition of K,(~"), it is easy t o  see 

tha t  t he  generators of I;, k > 2 are in fact divisible (mod p)  by the square of each 
P 

irreducible in 9; hence there exist elements of A whose degree of nilpotency can be 

increased by multiplicatiou by any polynomial congruent (mod p)  t o  a multiple of a 

member of 3. 

By the same token, multiplication by a polynomial congruent (mod p) t o  a multiple of 

a member of 9 is the only muftiplication capable of increasing the nilpotency of a 

member of .I; hence f '(x) must simply avoid having divisors (mod p)  in 9. The  fact that  

minimal polynomials of matrices in Zmim are exactly products of members of 9 means 

tha t  this condition on f ( x )  is exactly equivalent t o  being root-free on Zmbm. 0 

With the correct version of the iifting lemma in hand, we have a test for membership 

in PPm(Z .). W e  may now proceed t o  the enumeration for 1122. 
P 

Theorem 3.7. T h e  homomorphism pn is surjective, and the size of ker(pn) is given by 

(n=2) Set q = [y]+1, then 

2p.(pm-1)/(,l) m 
IKer(p2)I = P (I -$)r(d), and 

d=q 



Proof: 

In the course of this proof I will compute the number of preimages under p,  of an 

arbitrary element a (x )  of PPm(Z Tha t  the number of preimages is independent of 
P 

the choice of t he  element suffices t o  show tha t  p, is surjective. Let L(x) be the 

generator of I F  given in Example 2.2. Recall t ha t  p, is the restriction t o  permutation 

polynomials of the natural map K : Zpn[x]/Ip", * Zpn-l[~]/I given in Lemma 1.7. In 
P 

the case (n=2) this means tha t  preimages of u(x) are all of the form 

with r(x) and s(x) having degree less than the degree of L(x) and coefficients in the 

range 0 5  c <p. This follows from the fact, given by Theorem 3.6 and routine 

computation, t ha t  

2 Im, = ( L ( x ) ~ ,  p.L(x), P ), 
P 

as ideals of Z[x]. 

Wha t  remains then is t o  compute how many choices of r(x) and s(x) actually yield a 

permutation polynomial under t he  auspices of Lemma 3.15. This amounts t o  checking 

when a!+(x)' is root-free on Zm:m, or  equivalently, when a:(x)' has no irreducible 

divisors of degree 1, 2, ..., m. Computing the derivative, we obtain 

Any multiple of p is m-matrix p-ish as is L(x) by construction; hence the terms 



involving p and L(x) are zero everywhere on Zmim. What  we need then is for the 

remaining terms t o  be everywhere nonzero. Thus  

a(x) '+r(x) . l l (x)  

must have no irreducible divisors of degree < m. This, however, is a type of 

computation we have done before, in the proof of Theorem 2.3. There are p deg(L(x)) 

candidates for r(x) and, since ~ ' ( x )  is constructively root-free on Zmim, r(x) must avoid 

a single value modulo each irreducible of degree 5 m that  can divide al(x). 

Happily, a f ( x )  cannot have irreducible divisors (mod p) of degree 5 [TI. Since L(x) is 

divisible by the square of such irreducibles and since a (x )  is forced by Theorem 1.1 and 

Lemma 1.1 t o  be a Zp-permutation polynomial of A = Zp[x]/(L(x)), we see Lemma 1.3 

and the existence of the nilpotent ideal of A generated by the  coset of the maximal 

square-free divisor of L(x) force of (x)  t o  be root-free modulo such irreducibles. This 

leaves us with the irreducibles of degree [:]+I o r  more. 

T h e  Chinese Ftemainder Theorem tells us tha t  t he  constraints satisfied for each 

irreducible are independent; thus the fraction of viable candidates is the product of 

viable candidates modulo each irreducible. So of the possible choices for r(x), exactly 

the  fraction 

of t he  possible choices allow the  satisfaction of Lemma 3.15. There are also p Deg(L(x)) 

choices for s(x) all of which allow the satisfaction of Lemma 3.15; hence the total 

number of preimages of a ( x )  under p2 is 



Recall tha t  

m k 
L(x) = n (XP - X), 

k= l  

pk-l 
SO Deg(L(x)) = p.- p-1 ' 

Plugging this into (+) gives the  stated result for n=2.  

Now we turn t o  the case 023. Notice, as in Lemma 3.10 for nl, tha t  the formula 

given in 3.8 for lker(pn)l is exactly the size of a set of representatives of I: modulo I 
P P 

or, in other words, exactly Iker(?f)I. This means tha t  every possible preimage of a Z 
P 

permutation polynomial of Z"',","? under t must be a Z ,-permutation polynomial of 
P 

Zmxm for each n>3. By Lemma 3.15 this is equivalent t o  all possible preimages having 
P" ' 

a root-free formal derivative on Zmim, which, by an application of Lemma 3.15 with 

n=2, must he so. Thus  all preimages of permutation polynomials under t are in fact 

permutation polynomials themselves, and the formula given for n > 3  is correct. Cl 

Corollary 3.7. Let f(x)eZ[x]. If f(x)+Im E PPm(Zpn), 1122, then f(x)+(Ipmk) E 
P" 

PPm(Z k )  for all k = 1, 2, .... 
P 

Proof: 

This  is simply a restatement of a portion of the final paragraph of the preceding 

proof. 

Now I will wrap up  the  chapter by bringing together the assorted information on the 

size of PPm(Zp.). Notice tha t  each of the formulas given below simply build on the 

previous one. 



Corollary 3.8 If q = [Y]+l ,  then the size of PP,(Z ,) is 
P 

Im/21 
(i) fl k"'k)x(k)!.n ((pk-l).(p k.f[m/kl-2) 

k= 1 k = l  

(ii) fi k.(Im/kl-21 
k= 1 

P 2~."m-1)fi"',fI and 
k=q 

(iii) fi k.(Im/kI-Z) 
k=1 k=1 

P 
k=3 

Proof: 

Follows from (3.6), (3.7), and (3.8). 0 

In order t o  give a sense of concreteness t o  the above formulas, I will give, on the 

following page, the actual numbers involved for small values of the parameters. 

Appendix B contains the values of the special functions used. See also Appendix C. 



Table 3.2 
Order of PP,(Z,). 



pE$Gi-] 
Applications and Topics for Future Work. 

$0 Introduction and Summary. 

This  chapter is a potpourri of results related t o  the  main results of my thesis and a 

few applications of results, particularly Lemma 1.2. In Section 1 I will compute the 

permutation polynomials of the p-adic integers with p-adic coefficients. In Section 2% I 

will compute the  compositional at t ractors  associated with the  group algebras of finite 

fields over finite abelian groups. In Section 3 I will define multidimensional 

compositional at t ractors  and give a list of topics for additional consideration. 



$1 T h e  Permutation Polynomials of the p-adic Integers. 

In this section Zp will denote the p-adic integers and Z/n  will denote the integers 

modulo n. The  p-adic integers are the set of all series {ak : k > l )  so tha t  

ak E Z /pk ,  and (4.1) 

ak+,Eak (mod pk). 

They are given the structure of a ring by 

{ak}+{bk} = {ak+bk), and 

Denote by nm the natural projection homomorphism from Zp t o  ZIPm given by {ak) 

a,. Let n z  be the extension of nm t o  polynomials. With these definitions we may 

characterize the p-adic permutation polynomials of the p-adic integers. 

Theorem 4.1. Let s = 2 / p 2 ,  R = Zp. Then f (x ) tPPR(R)  iff f(x)n; c PPS(S). 

Proof: 

(a) Suppose tha t  f(x) c PPR(R).  Then the function r t, f(r) is 1:1 on R and hence s 

t, f(x)z;(s) is 1:l on S = Rnz Thus  f(x)n; t PPS(S). 

(e) Suppose tha t  f(x)n; c PPS(S). Then Corollary 3.1 says tha t  f(x)a;c 

PPRnm(Rnm) for all m 2 2. Assume then by way of contradiction tha t  for r, s c R, r 

# s but tha t  f(r) = f(s). Since r # s, there is some m so tha t  V 1 2 m, m, # sn,,  but 

for each such 1, f(r)n, = f(s)n,, which contradicts the information yielded by Corollary 

3.1. 0 





I = r, so g(x)  has the specified form when k = 0. 

Consider the case k>O. Notice tha t  if H is a subgroup of G, then F[H] is a subalgebra 

of R. From this we may deduce tha t  

lF['"l F C - F  I ~ .  (4.3) 

P From this we may deduce tha t  g(x) is in fact a multiple of f(x), as a generates a 

subgroup of G of order s; hence R has a snbalgebra of the type treated in the case k=O, 

whose F-zeroing polynomials are generated by f(x). From the theory of finite fields we 

know tha t  each irreducible divisor of f(x) ha4 multiplicity 1, so from Corollary 2.1  we 

deduce tha t  g(x) is in fact a power of f(x). Finally, a computation shows tha t  1.0 fails 
k 

P -1 k 
t o  satisfy f(x) ; hence f(x)' I g(x). O 

Corollary 4.1. Let G = Cnlx  Cn2x Cn, be a direct product decomposition of a finite 

abelian group into cyclic groups of order nl, n2, ..., ne, let ni = si.pki where p 1 si, let r i  

be the order of q mod si, and set R = F[G]. Then 

Proof: 

Notice tha t  R is the direct product of Cnl, Cn2, ..., Cnc, apply Thwrem 4.2 t o  each 

component of t he  direct product, and apply Lemma 1.4 (iii), recalling tha t  in F[x] the 

generator of the intersection of ideals is t he  least common multiple of t he  generators of 

the ideals. 

Corollary 4.2. Assume the hypotheses of Corollary 4.1 and let kl = k2 = ... = k, = 0. 

Then 



( i )  PPF(R) n Cs ST(,), and 
s 1 some ri 

(ii) I P P ~ ( R ) /  = n s"(s).n(s)! 
s / some r. 

I 

Proof: 

Use Corollary 4.1 t o  obtain 1:. Lemma 1.2 then says that Corollary 2.4 may be 

applied t o  obtain the formulas given. 

Corollary 4.3. Assume the hypotheses of Corollary 4.1, let S be the set of all divisors of 

any ri,  let T be those members of S dividing an ri for which ki>O, and let 

d, = maxi:' : s 1 ri}. 

Then 

Proof: 

Use Corollary 4.1 t o  compute 1; , and use Lemma 1.2 t o  allow you t o  apply Theorem 

2.3. 

Example 4.1. Let F = GF(2), G = C3, the cyclic group of order 3, and set R = F[G]. 

Then Theorem 4.2 says that  

IF = <x4-x>, and 

Corollary 4.2 says that 

PPF(R) C2x C2, 

the Klein-4 group. In fact, 

PPF(R) = {x, x + l ,  x2, and x2+l}. 



Exampie 4.2 . Let F = GF(3). G = Cb. and set R = FIG]. Then Theorem 4.2 says 

that 

9 3 - < x  - x  >, and F - 

Corollary 4.3 says that 

4 /PPF(R)I = 1296 = 6 . 



$3 Questions for further study. 

Multivariate Compositional Attractors. 

A question I a m  asked virtually every time I mention compositional at t ractors  is 

"What happens when you use more variables?" My answer typically has been that  

things get messy, so  I haven't checked. T h e  question, however, is a good one and in this 

section I will extend the  definition of compositional at t ractors  t o  multivariable 

polynomial rings. 

A multivariate compositional attractor of the  polynomial ring S[xl, x2, ..., xn] is an 

ideal I with t he  additional property t ha t  for f c I and for gl ,  gZ, ..., g, we have tha t  

f(gl, g2, ... 1 gn) E 1. 

Compositional Attractors of the Integers. 

Something on my wish list is a classification of the  compositional at t ractors  of Z[x]. 

T h e  techniques used to compute the  compositional at t ractors  for matrices over Z, 

generalize t o  Zn algebras t ha t  have the  property t ha t  every possible monic polynomial, 

up  t o  some fixed degree, is a least degree monie polynomial satisfied by some member of 

t he  algebra. Algebras t ha t  d o  not have this property exist. To see this, notice tha t  

Corollary 2.6 suggests a means of constructing them. Lacking some additional insight, I 

d o  not at present have the  tools to classify such compositional attractors.  

Public Key Cryptosystems. 

T h e  second topic I would like t o  s tudy is the  computational complexity of 

decomposing long period permutation polynomials into short period permutation 



polynomials. If the computational complexity of this process is high then the material 

from the first three sections of Chapter 3 may be used t o  construct a public key 

cryptosystem. One  would design the permutation polynomial separately mod each p, 

p2, p3, etc. dividing n t o  obtain a long period permutation without any short cycles in 

k its cycle decomposition. Locally, that  is modulo each p , one would invert the 

polynomial and then compose the  inverses to obtain the secret decoding key. 

In conjunction with this it would be nice t o  see if the number of nonzero coefficients 

of a permutation polynomial of Zn can be controlled "locally." For permutation 

polynomials over finite fields locating permutation polynomials with few nonzero 

coefficients is difficult[?]. 

Compositional Attractors of Nonabelian Group Rings. 

One  of the nice things about t he  theory of compositional attractors presented herein is 

t ha t  it lets computations on  nonabelian algebras take place in equivalent abelian 

settings. It would be nice, then, t o  be able t o  find which compositional attractors go 

with the various nonabelian group algebras. 

Factorization Theorems. 

O n e  of the consequences of t he  material presented in Chapter 2 is a iarge number of 

global factorization properties of composed polynomials over finite fields. It would be 

nice t o  see if any additional juice could be squeezed out  of this. 



Explicit Examples of Polynomial Groups 

Permutation 

0 
(2 3) 

( 1  2) 

( 1  4) 

(0 2) 

(0 4) 

(1 3)(2 4) 

(0 1 x 3  4) 

(0 1)(2 4) 

(0 2)(1 3) 

(0 3)(2 4) 

(0 3)(1 4) 

(0 4)(1 2) 

(2 3 4) 

( 1  2 3) 

(1 3 2) 

(1 42 )  

(0 1 2) 

(0 1 4 )  

(0 2 3) 

(0 3 1) 

(0 3 4) 

(0 4 2) 

The Group Sym(GF(5)) Realized as Polynomials. 

Polynomial 

X 

X 
3 

x3+3x2+3x 

4x3 

4x3+3x2+2x+2 

x3+4x2+2x+4 

3x3 

2x3+3x2+4x+1 

4x+1 

3x3+4x2+4x+2 

3x3+x2+4x+3 

3x3+2x2+x+3 

2x3+2x2+4x+4 

3x3+4x2+4x 

3x3+3x2+x 

3x3+x2+4x 

2x3+3x2+4x 

3x3+2x2+x+1 

3x3+x2t4x+1 

2x3+3x2+4x+2 

2x"4x2+x+3 

3x3+3 

2x3+4 

Permutation 

(3 4)  

(2 4) 

( 1  3) 

(0 1) 

(0 3) 

( 1  2)(3 4) 

(1  4)(2 3) 

(0 1)(2 3) 

(0 2)(3 4) 

(0 2)(1 4) 

(0 3 x 1  2) 

(0 4)(2 3) 

(0 4)(1 3) 

(2 4 3) 

(1 2 4) 

(1 3 4) 

(1 43 )  

(0 1 3 )  

(0 2 1) 

(0 2 4) 

(0 3 2) 

(0 4 1) 

(0 4 3) 

Polynomial 

x3+2x2 t 3 x  

4x3+4x2+3x 

4x3+x2+3x 

x3+x2+2x+1 

4x3+2x2+2x+3 

zx3 
4x 

2x3+x2+x+1 

4x+2 

3x3+3x2+x+2 

4x+3 

2x3+4x2+x+4 

4x+4 

3x3+2x2+x 

2x3+4x2+x 

2x3+2x2+4x 

2x3+x2tx 

zx3+1 

3x3 t 2  

2x3+x2+x+2 

2x3+2x2+4x+3 

3x3+4x2+4x+4 

3x3+3x2+x+4 



Permutation 

(0 1)(2 3 4) 

(0 1 2)(3 4) 

(0  14)(2 3) 

(0 2)(1 3 4) 

(0 2)(1 4 3) 

(0 3 1 x 2  4) 

(0 3)(1 2 4) 

(0 3)(1 4 2) 

(0 4 3)(1 2) 

(0 4 2)(1 3) 

(1  2 3 4) 

( 1 3 4 2 )  

(1 4 3 2) 

(0 1 2 3) 

(0 1 3 2) 

(0 1 4 2) 

(0 2 3 1) 

(0 2 3 4) 

(0 2 1 3) 

(0 3 2  1) 

(0 3 4 2) 

(0 3 1 2) 

(0 4 2 1) 

(0 4 3 2) 

(0 4 1 2) 

Permutation 

(0 1)(2 4 3) 

(0 1 3 x 2  4) 

(0 2 1)(3 4) 

(0 2 4 x 1  3) 

(0 2 3 x 1  4) 

(0 3 4)(1 2) 

(0 3 2 x 1  4) 

(0 4 1)(2 3) 

(0 4 x 1  2 3) 

(0  4 x 1  3 2) 

(1  2 4  3) 

(1  3 2 4) 

(1 4 2 3) 

(0 1 2 4) 

(0 1 3 4) 

(0 1 4 3) 

(0 2 4 1) 

(0 2 4 3) 

(0 2 1 4) 

(0 3 4 1) 

(0 3 2 4) 

(0 3 1 4) 

(0 4 3 1) 

(0 4 2 3) 

(0 4 1 3) 

Polynomial 

4x3+3x2+2x+ 1 

x3+4x2+2x+1 

4x3+2x2+2x+2 

x3+2x2+3x+2 

x3+3x2+3x+2 

4x3+3x2+2x+3 

x3+2x2+3x+3 

4x3+4x2+3x+4 

4x3+2x2+2x+4 

4x3+4 

2x 

4x3+2x2+2x 

4x3+3x2+2x 

~ 3 + 1  

x3+3x2+3x+1 



Permutation 

(0 1 2 3 4) 

(0 1 3 4 2) 

(0 1 4 3 2) 

(0 2 3 4 1) 

(0 2 1 3 4) 

(0 2 1 4 3) 

(0 3 4 2 1) 

(0 3 4 1 2) 

(0 3 1 4 2) 

(0 4 3 2 1) 

(0 4 3 1 2) 

(0 4 1 3 2) 

Polynomial 

x + l  

2x3+4x2+x+1 

3x3+1 

3x3+x2+4x+2 

3x3+2x2+x+2 

2x3+4xZ+x+2 

3x3+3x2+x+3 

2x3+x2+x+3 

x+3 

x+4 

3x3+x2+4x+4 

2x3+3x2+4x+4 

Permutation 

(0 1 2 4 3) 

(0 1 3 2 4) 

(0 1 4 2 3) 

(0 2 4 3 1) 

(0 2 4 1 3) 

(0 2 3 1 4) 

(0 3 2 4 1) 

(0 3 1 2 4) 

(0 3 2 1 4) 

(0 4 2 3 1) 

(0 4 1 2 3) 

(0 4 2 1 3) 

Polynomial 

3x3+4x2+4x+1 

3x3+3x2+x+1 

2x3+2x2+4x+1 

2x3+2x2+4x+2 

x+2 

2 ~ ~ + 2  

2x3+3 

2x3+3x2+4x+3 

3x3+4x2+4x+3 

3x3+2x2+x+4 

3x3+4 

2x3+x2+x+4 



Permutation 

identity 

(2 8) 

(1 4) 

(4 7) 

( 1  4)(5 8) 

(2 8 x 4  7) 

(2 8)(3 6) 

(4 7)(5 8) 

(3 6)(5 8) 

(2 5 x 4  7) 

(1 7)(5 8) 

(3 6)(4 7) 

( 1  4)(3 6)(5 8) 

(2 8)(3 6)(4 7 )  

(1 8)(2 7)(4 5) 

( 1  5)(2 4)(7 8) 

(3 6)(4 7)(5 8) 

( 1  8)(2 4)(5 7) 

The Stabilizer of 0 in PP(Z9). 

Polynomial Permutation Polynomial 

X (1  7) x5+x4+2x3+2x2+x 

x5+2x4+2x3+4x2+x (5 8) x5+2x4+2x3+x2+4x 

x5+x4+2x3+5x2+4x (2 5) x5+2x4+2x3+7x2+7x 

x5+x4+2x3+8x2+7x (3 6) x5+x3+8x 

2x5+x3+x ( 1  7)(2 5) 2x5+x3+3x2+x 

2x5+x3+6x2+x (1 7)(3 6) 2x5+x4+2x2+2x 

2x5+2x4+4x2+2x (1 7)(2 8) h 5 +x 3 +4x 

2x5+x3+3x2+4x ( 1  4)(2 5) 2x5+x3+6x2+4x 

zx5+2x4+x2+5x (1 4)(3 6) 2x5+x4+sx2+5x 

2x5+x3+7x (1 4)(2 8) 2x5+x3+3x2+7x 

2x5+x3+6x2+7x (2 5)(3 6) 2x5+2x4+7x2+8x 

2x5+x4+8x2+8x (1 2)(4 5)(7 8) x3+x 

zX3+zx ( 1  0 1 2  5)(3 6) 2x3+3x2+2x 



Permutation Polynomial Permutation Polynomial 

(1 7 4)(2 5)(3 6) 2x5+ 2x4+x2+2x (2 5 8)(3 6)(4 7) 2x5+x4+5x2+2x 

( 1  4 7)(3 6)(5 8) 2x5+2x4+7x2+2x ( 1  4)(2 8 5)(3 6) 2x5+x4+8x2+2x 

(2 8 5)(3 6)(4 7) 2x5+x4+2x2+5x (1 4 7)(2 5)(3 6) 2x5+2x4+4x2+5x 

(1 7 4)(2 8)(3 6) 2x5+2x4+7x2+5x ( 1  7)(2 5 8)(3 6) 2x5+x4+8x2+5x 

(1 4 7)(2 8)(3 6) 2x5+2x4+x2+8x (1  4)(2 5 8)(3 6) 2x5+x4+2x2+8x 

(1 7 4)(3 6)(5 8) 2x5+2x4+4x2+8x (1 7)(2 8 5)(3 6) 2x5+x4+5x2+8x 

(1 4 7)(2 5 8) 3x2+x (1 7 4)(2 8 5) 6xZ+x 

(1 4 7)(2 8 5) 4x (1 7 4)(2 5 8) 7x 

(1 4 7)(2 8 5)(3 6) x5+x3+2x (1 7 4)(2 5 8)(3 6) x5+x3+5x 

( 1  4 7)(2 5 8)(3 6) x5+x3+3x2+8x ( 1  7 4)(2 8 5)(3 6) x5+x3+6x2+8x 

( 1  5 4 8)(2 7) x5+2x4+x2+x (1  5 7 8)(2 4) x5+x4+2x2+x 

(1 8 4 2)(5 7) x5+2x4+4x2+x ( 1  8 4 5)(2 7) x5+x4+5x2+x 

(1 2 4 5)(7 8) x5+2x4+7x2+x (1  2)(4 8 7 5) x5+x4+8x2+x 

( 1  8 7 5)(2 4) x5+2x4+x2+4x (1 8 7 2)(4 5) x5+x4+2x2+4x 

(1 2 7 8)(4 5) x5+2x4+4x2+4x ( 1  2 4 8)(5 7) x5+x4+5x2+4x 

(1 5 7 2)(4 8) x5+2x4+7x2+4x (1 5)(2 7 8 4) x5+x4+8x2+4x 

( 1  2)(4 5 7 8) x5+2x4+x2+7x ( 1  2 7 5)(4 8) x5+x4+2x2+7x 

(1 5)(2 4 8 7) x5+2x4+4X2+7x (1 5 4 2)(7 8) x5+x4+5x2+7x 

(1 8)(2 7 5 4) x5+2x4+7x2+7x ( 1  8)(2 4 5 7) x5+x4+8x2+7x 

(1 8 7 5)(2 4)(3 6) 2x5+2x4+x3+x2+2x (1  8 7 2)(3 6)(4 5) 2x5+x4+x3+2x2+2x 

(1 2 7 8)(3 6)(4 5) 2x5+2x4+x3+4x2+2x (1 2 4 8)(3 6)(5 7) 2x5+x4+x3+5x2+2x 

(1 5 7 2)(3 6)(4 8) ~ X ~ + Z X ~ + X ~ + ~ X ~ + Z X  ( 1  5)(2 7 8 4)(3 6) 2x5+x4+x3+8x2+2x 

( 1  2)(3 6)(4 5 7 8) 2x5+2x4+x3+x2+5x ( 1  2 7 5)(3 6)(4 8) h5+x4+x3+2x2+5x 

(1 5)(2 4 8 7)(3 6) 2x5+2x4+ x3+ 4x2+ 5x (1 5 4 2)(3 6)(7 8) 2x5+x4+x3+ 5x2+5x 

(1 8)(2 7 5 4)(3 6) 2xS+2x4+x3+7x2+5x (1  8)(2 4 5 7)(3 6) 2x5+x4+x3+8x2+5x 

(1 5 4 8)(2 7)(3 6) 2x5+2x4+x3+x2+8x ( 1  5 7 8)(2 4)(3 6) 2x5+x4+x3+2x2+8x 

(1 8 4 2)(3 6)(5 7) h5+2x4+x3+4x2+8x (1 8 4 5)(2 7)(3 6) 2x5+x4+x3+5x2+8x 

(1 2 4 5)(3 6)(7 8) 2x5+2x4+x3+7x2+8x (1 2)(3 6)(4 8 7 5) 2x5+x4+x3+8x2+8x 



Permutation 

( 1 5 7 8 4 2 )  

( 1 8 7 2 4 5 )  

( 1 2 7 5 4 8 )  

( 1 2 4 5 7 8 )  

( 1 2 7 8 4 5 )  

( 1 5 4 8 7 2 )  

(1 2 4 8 7 5)(3 6) 

(1 8 7 5 4 2)(3 6) 

(1 2 4 5 7 8)(3 6) 

(1 8 7 2 4 5)(3 6) 

( 1  2 7 5 4 8)(3 6) 

( 1  5 7 2 4 8)(3 6) 

Polynomial 

2x5+2x3+x 

2x5+2x3+3x2+x 

2x5+2x3+6x2+x 

x3+6x2+4x 

x3+3x2+7x 

x3+6x2+7x 

2X 

x5+2x3+3x2+2x 

x5+2x3+6x2+2x 

3x2+5x 

Permutation 

( 1 5 7 2 4 8 )  

( 1 8 4 2 7 5 )  

( 1 8 7 5 4 2 )  

( 1 2 4 8 7 5 )  

( 1 5 4 2 7 8 )  

( 1 8 4 5 7 2 )  

( 1  5 4 2 7 8)(3 6) 

(1 8 4 5 7 2)(3 6) 

( 1  5 7 8 4 2)(3 6) 

(1  2 7 8 4 5)(3 6) 

(1 5 4 8 7 2)(3 6) 

(1  8 4 2 7 5)(3 6) 

Polynomial 

x3+3x2+x 

x3+6x2+x 

x3+3x2+4x 

2x5+2x3+7x 

2x5+2x3+3x2+7x 

2x5+2x3+6x2+7x 

3x2+2x 

6x2+2x 

5x 

x5+2x3+3x2+5x 

x5+2x3+6x2+5x 

x5+2x3+6x2+8x 



/ Appendix B1 

Tables of special functions. 

The function x(d) is used to denote the number of irreducibles of degree d in GF(q). 

There is a well known formula for ~ ( d ) ,  

where ~ ( k )  is the Mbbius function. A table of values for small values is given below. 



Table 3.1 gives several values for ~ ( n ) ,  the least degree of an n-ish rnonic polynomial 

in Z[x]. Below, values are given for nm(n), the least degree of an m-matrix n-ish 

polynomial. 



/ Appendix C ] 

Certain Permutation Polynomial Groups 

In this appendix I want t o  include some information about  particular groups of 

permutation polynomials tha t  I have uncovered. Since the  members of PPZ,(Z,) are 

polynomials of Zn, they preserve equivalence classes mod each divisor of n. If n = pk is 

a prime power, this means t ha t  they live inside a group isomorphic t o  Sp wr Sp  wr . . .  

wr Sp, the  k-fold wreath product of the  symmetric group on p letters. This pins down 

the  structure of G = PPZ8(Z8). Theorem 3.4 says t ha t  t he  size of G is 128, exactly the 

size of Z2 wr Z2 wr Z2, which itself contains a copy of G. 

Table 3.2 tells us t ha t  PPZ(Z2) has size four. Pencil-and-paper examination of its 

action on the  matrices reveals t ha t  it has the  structure of a Klein 4 group. This fact 

was known t o  Brawley[8]. 
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