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Abstract

In this thesis we present two new advancements in verified scientific computing using interval

analysis:

1. The Corner Taylor Form (CTF) interval extension. The CTF is the first interval ex-
tension for multivariate polynomials that guarantees smaller excess width than the natural
extension on any input interval, large or small. To help with the proofs we introduce the
concept ofPosynomial Decomposition (PDUsing PD we develop simple and elegant
proofs showing the CTF is isotonic and has quadratic or better (local) inclusion conver-
gence order. We provide methods for computing the exact local order of convergence as
well as the magnitude of excess width reduction the CTF produces over the natural exten-

sion.

2. The Remainder Interval Newton (RIN) method. RIN methods use first order Taylor
Models (instead of the mean value theorem) to linearize (systems of) equations. We show
that this linearization has many advantages which make RIN methods significantly more
efficient than conventional Interval Newton (IN). In particular, for single multivariate equa-
tions, we show that RIN requires only order of the square root as many solution regions
as IN does for the same problem. Therefore, RIN realizes same order savings in both time

and memory for a significant overall improvement.

We also present a novel application of the two contributions to computer grajibéesn

Tracing Implicit Surfaces.
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Chapter 1

Introduction and Motivation

Over the last decade we have observed an increasing trend towards replacing costly real-life
tests and experiments with computer simulations. From automobile crash tests to spacecraft
trajectory planning to DOE’s Advanced Simulation and Computing project (formerly known
as ASCI) decisions that strategically affect our day to day lives are made based on the results
of computer simulations. This emerging trend prompts the need for reliable and efficient self-
verified computing methods that can guarantee prediction of results one hundred percent.

Traditional numerical computing uses IEEE floating point arithmetic (IEEE 754 standard).
This floating point standard is widely supported in hardware; highly optimized math libraries
(such as Intel's Performance Libraries) are readily available. Unfortunately, floating point pro-
cedures are not sufficient to guarantee correct results in all cases, as is demonstrated by a classic
example by Rump, which we briefly review in the next section. Rump provides a simple ratio-
nal expression designed so that evaluation using floating point fails to produce the correct result
even when the number of digits of precision is doubled, and doubled again. This simple example
shows that no algorithm using floating point alone can be relied on to make strategic decisions
without risk.

Interval analysiswas formally introduced by R. E. Moore in the 1960’s, see [Moore 1962,
Moore 1966]. It provides a natural framework for self-verified humerical computing with its
ability to correctly and automatically account for errors from many sources, including rounding
errors due to limited precision of the floating point representation of real numbers, approximation

errors due to algebraic manipulation of formulas, and measurement error in the initial data.



2
1.1 Benefits of Interval Computations

Although not new, interval analysis has not found the widespread acceptance its creators had
hoped for. The common belief is that there are faster, more straightforward methods that can
account for rounding and other types of errors. For example, it is common practice to compute
results independently in both single and double precision floating point and compare the digits
of the two results. If the significant digits agree up to a certain precision then the matching
digits are considered correct. However, it is relatively easy to design examples where the above
method breaks. One such case is the classic example by Rump who, in 1988, published an
expression for which numerical evaluation with floating point arithmetic gave erroneous and
misleading results. When evaluating Rump’s expression with increasing numbers of digits the
results seemed stable as they agreed in their first few significant digits. However, as it turns out,
all the digits were incorrect and, although the computed answer was relatively far from zero, it
failed to even capture the correct sign. Rump’s example is not reproducible on modern IEEE
754 computers. Fortunately, the following expression due to Walster and Loh, reproduced from
[Hansen and Walster 2003], produces a similar outcome, this time using IEEE 754 floating point
arithmetic:

X

f(x,y) = (33375—x2)y? + x*(11x%y? — 121y* — 2) + 5.5/ + >

Forx= 77,617 andy = 33,096 one would obtain the following results:

32 bits: f(x,y) = 1.172604
64 bits: f(x,y) = 1.1726039400531786
128 bits: f(x,y) = 1.172603940053178618588349045201838

In spite of their agreement in the first digits all three results are wrong. The correct answer is:

f(x,y) = —0.827396059946.



3
Evaluation using even the simplest form of interval analysis (natural extension) produces a wide
interval that contains the correct value above. While not directly providing a better (point) an-
swer, interval evaluation alerts us to the numerical instability of the expression and suggests that
higher-accuracy methods need to be employed if the correct answer is to be computed.
Several real world examples of disasters caused by numerical instability of floating point are

documented by Douglas N. Arnold on his website at:

http://www.ima.umn.edu/ ~arnold/disasters/ |

as well as in[[Hansen and Walster 2003]. All these disasters could have been easily avoided if
interval analysis were used for validation.

Another common complaint is that interval methods are too slow to be useful in practice.
While it is true that computing with intervals is inherently slower than computing with floating
point numbers we have to make certain that we are comparing apples with apples. Often times,
interval methods are the only ones capable of reliably solving the problem at hand. This is
the case, for example, when solving general nonlinear global optimization problems. Another
example is the computation of global solution sets of underdetermined systems of nonlinear
equations. In such cases there is no competing floating point method—interval analysis is the
fastest method available.

In the cases where a competing (non error bounding) floating point method does exist, meth-
ods using interval analysis will naturally be slower. The slowdown factor depends on many
factors and varies greatly. Properly optimized interval algorithms are generally no more than one
order of magnitude slower than their float counterparts. This is often a reasonable price to pay
for the guaranteed error bounds produced by interval analysis. As interest in intervals grows so
will the degree of refinement of implementation and the gap will continue to narrow.

Interval researchers have long argued that Moore's Law (computer performance doubles
every 18 months) will make interval analysis practical. However, absolute speed is not always
the correct benchmark. Rather, it is the speed differential between interval and floating point

methods that keeps potential users away. Recent evidence seems to suggest we are already at
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the limits of Moore’s Law and we cannot count on CPU speeds doubling every 18 months. As a
result, the intrinsic efficiency of the algorithms used becomes increasingly more important.

Use of the classic natural extension coupled with simple spatial subdivision is slow and
produces unusable results for all but the simplest of problems, as can be seen in the examples
in chaptef 4. Such meager performance can be enough to convince people that all of interval
analysis is inefficient and should be avoided. Fortunately, this is not the case with state of the art
methods such as higher order interval extensions (Centered and Taylor Forms, Bernstein Forms,
Taylor Models, etc.) coupled with quadratically convergent Interval Newton—very sharp bounds
can be computed in reasonably fast times at the expense of rather complicated implementation
costs.

The methods introduced in this thesis further improve the efficiency of interval methods.
Corner Taylor Forms are the first interval extensions to guarantee smaller excess width than
the natural extension when evaluated on large intervals while preserving the quadratic conver-
gence properties of the Taylor Form. Remainder Interval Newton improves over classic Interval
Newton with a special subdivision algorithm that extends its applicability to non-square systems

while helping improve efficiency by a factor of the square root (fewer steps).

1.2 Thesis Overview

In this section we give a structural overview of the thesis.

The thesis has two parts. The first part is comprised of chggters[2 and 3. Its main objective
is to provide an easy to read overview of the previous state of the art in interval analysis and to
provide some of the motivation for the contributions we present in the second part of the thesis.
Therefore, we have omitted all the proofs and instead concentrated on the relationships between
the many concepts we discuss.

Chaptef R reviews the most basic concepts of interval analysis. We purposely leave out the
more advanced methods which will be discussed later in the thesis. The chapter begins with
a short overview of notation in sectipn R.1; some new notation is introduced here. Intervals

and interval arithmetic are defined in sectjon| 2.2 followed by a discussion of interval valued
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functions and natural interval extensions in secfioh 2.3. Next we take a look at various solution
methods that use interval analysis. Secfion 2.4 reviews the basic divide and conquer algorithm
for solving nonlinear systems of equations. Finally, sedtioh 2.5 presents a simple branch and
bound algorithm for solving general nonlinear optimization problems.

Chaptel B extends the concepts introduced in the previous chapter and presents the most
important state of the art methods in use in interval analysis today. We begin with a discussion
of Taylor Forms and Taylor Modes in sectipn|3.1. In secfiiof 3.2 we review some of the higher
order types of inclusion functions such as the Centered (Slope) Form and the Bernstein Form.
Finally, section 3.3 discusses some of the most important variants of Interval Newton for solving
systems of nonlinear equations.

Part two of this thesis details our contributions to the state of the art. We give proofs of all
the new results as well as some new, more elegant, proofs of results that are already known.

In chaptef # we introduce our first contribution, @@erner Taylor Forminterval extension.

The Corner Taylor Form is a special case of the more general Taylor Form interval extension. The
majority of the previous research on inclusion functions was concerned primarily with achieving
minimal excess width on small input intervals. Unfortunately, the resulting inclusion functions
often had worse excess width than the natural extension on larger input intervals. Many times the
excess width was so large as to render the results useless. In contrast, the Corner Taylor Form’s
excess width is guaranteed to always be smaller than the excess width of the corresponding
natural extension, for all input intervals, large or small. The Corner Taylor Form has equal
excess width to the natural extension if and only if the natural extension has zero excess width.
Proofs of these properties for Corner Taylor Forms with interval valued coefficients are detailed
in sectiorj 4.B. For the special case of Corner Taylor Forms with real valued coefficients we prove
some extended properties in sectjon| 4.9. Here we develop a constructive proof and a closed
form polynomial expression for the magnitude of the reduction in the excess width as a function
of the width of the input interval. These formulas can be used in practice to estimate when
the Corner Taylor Form would yield significant benefits—if the benefit is not large enough one

could use the less accurate but more efficient natural extension. In addition, the Corner Taylor
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Form has many of the desirable properties of the more general Taylor Form interval extension.
In sectior{ 4.82 we prove isotonicity (the interval analytic equivalent monotonicity). Finally, in
section 4.9.2 we develop a novel proof showing the excess width of the Corner Taylor Form
has at least quadratic order of convergence or better. In particular, we show how to compute
the order of convergence in closed form as a function of the expression of the polynomial and
the input interval under investigation. These formulas can be used once again to make real-time
decisions about which inclusion functions to use. The proofs are facilitated by a new, surprisingly
simple and powerful tool calleBosynomial Decompositio®osynomial Decomposition (PD) is
described in sectidn 4.5. The chapter concludes with several simple examples.

Chapte[ b details the second contribution of this thesis. We present a new method for solving
systems of nonlinear equations called Bemainder Interval Newtomethod (RIN for short).
In place of the commonly used mean value theorem, RIN employs a first order Taylor expansion
with interval remainder terms (a.k.a. first order Taylor Models) to linearize the system of equa-
tions, see sectidn 5.1.1. Another important component of the RIN method for underdetermined
systems is a new subdivision method designed to maximize the benefits of the linearization
process, see sectipn 5]1.3. This subdivision scheme allows efficient pruning of regions where
solutions are known not to exist. It also provides the option to enclose the solution set with
solution-aligned polyhedral regions thereby producing a significant reduction in the number of
regions needed to cover a (non point) set of solutions. The new subdivision method further im-
proves the convergence order of the RIN method by a factor of the square root of the original
number of steps. In practice we observe several orders of magnitude reduction in the total num-
ber of steps as well as the number of solution regions returned, see gection 5.5. In[sefction 5.2
we discuss the RIN algorithm for solving square systems of nonlinear equations, with examples
shown in section 55.

We conclude the thesis with an application of the two contributions to a problem in computer
graphics: rendering of implicit surfaces, see ch&pter 6. We are particularly interested in robustly
rendering “difficult” implicit surfaces, with very high curvature and fine hair like features which

would be impossible to render using other methods.



Chapter 2

Review of Interval Analysis

In this chapter we review some of the fundamental definitions and properties of interval analysis
that will be used throughout this thesis.

For more in depth discussion of topics related to interval analysis we refer the reader to
the books by Moore [Moore 1979], Alefeld and Hertzberger [Alefeld and Herzbergel 1983],
Hansen|[[Hansen 1992] and more recently with Walster [Hansen and Walstér 2003], Neumaier

[Neumaier 1990], and Jaulin et &l. [Jaulin et al. 2001].

2.1 A Note About Notation

In this thesis we introduce a new system of notation for interval quantities which we feel is
clearer and more convenient than other notation systems currently found in the interval analysis
literature. The reason for introducing new notation is our desire for a system that interferes
as little as possible with currede factomathematical notation yet is simple, uncluttered and
clearly identifies any interval quantities present in formulas.

We looked for notation that can be easily employed in handwritten text, thus ruling out the
use of typographical enhancements—such as bold letters representing intervals—that have been
previously proposed.

The most commonly used interval notation dates back to Moore and the early days of interval
analysis. It uses capitalized letters to represent interval quantities isea real, whileX is

an interval. Unfortunately, this notation interferes with usual matrix and set notation. It can
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cause a lot of confusion in formulas where both intervals and matrices (or sets) are present
simultaneously.

Another system identifies interval quantities by enclosing them in square brackeisisi.e.

a real andx] is an interval. While this notation avoids confusion with matrix and set notation
and is handwriting friendly, we feel it adds unnecessary bulk to formulas and can be confused
for “just” parentheses.

After many experiments we came to the solution of using simultaneous overbars and under-
bars to represent interval quantities. This notation is consistent with the current use of overbars
and underbars to respectively represent the upper and lower bounds of intervals. Since an inter-
val is composed of both its upper and lower bounds, it was only natural to visually merge the

two into the symbolic representation of the interval.

2.1.1 Interval Notation

In this thesis, real numbers are denoted by lowercase letters, @.g.c R. The set of all closed
real intervals is denoted BYR. Members ofiR are denoted by lowercase letters with over and
underbars, e.gx = [Xo,X1], @, U € IR. For emphasis, vectors are denoted by bold letters, e.g.
X, a,u € R" are vectors of reals, an®, a, U € IR" are vectors of intervals. The components
of a vector are marked with subscripts, exg. y j. Matrices are denoted with capital letters as
usual, while interval matrices have over and underbars:B™" B < IR™",

Real valued functions are denoted with small caps, €.), g(td), h: R" — R, while
interval valued functions have over and underbars, .) or g (), h : IR" — IR. Inclusion
functions are denoted by calligraphic caps operating on the original functionJéfg( x).

In generalJ (f) is a generic inclusion function of. Specific types of inclusion functions are

denoted with special characters, suciNgd ) for the natural extension df.



In summary:
Real scalar: X,
Scalar interval (older notation¥, [x], X): X,
Real vector: X,
Vector interval: X,
i-th component of real vector: Xi,
i-th component of interval vector: Xi,
Real matrix: M,
Interval matrix: M,
(i,j)-th component of real matrix: Mij,
(i,j)-th component of interval matrix: Mij,
Real valued function: f(x),
Interval valued function: (%,
Generic inclusion function of: J(f),

Generic inclusion function of (evaluated orx): J(f)(Xx),
Natural extension of: N(f),

Natural extension of (evaluated orx): N(f)(x).
More types of inclusion functions and interval extensions are discussed in the following chapters.

To keep the list above short we will introduce their notations at the time of their first appearance

in the text.
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2.1.2 Other Notation

In the following chapters we need to clearly distinguish not only between different functions but
also between different expressions of the same function. For the sake of clarity we have chosen a
somewhat verbose notation which uses common English names for the expressions in question.

A generic expression of a functidnwill be denoted by:

Generic expressiorExpressiorf).

Note that the expression is itself a function. Evaluation of the expression at axpeintitten:

Evaluation of a generic expressidaxpressiorf) (X).

When a function has a natural (or canonical) expression we denote it by:

Natural (canonic) expressioMatural(f) (X).

As an example, we list the names of some common expressions of polynomials (in evaluation

form) below:
Horner factoring: Horner(f) (x),

Taylor expansion: Taylor(f,c)(x),
MacLaurin expansion: ~ MacLaurin(f) (x),
Horner-Taylor expansion: Horner-Taylor(f,c)(x),
Bernstein expansion: Bernsteir(f) (x),

Chebyshev expansion:  Chebyshe(f) (x).
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To facilitate writing expressions of multivariate functions we use the following notation:

Multi-index: i € N,
n
Vector factorial: i! = |_| iK!,
k=1
. . . n A 13
Vector binomial coefficients: = rL ,
i k= ik
. n .
Vector power: X! = rlx{(k,
k=
() ai1+...+in
Vector partial derivative: D(x) = ————p(X).
P PY (x) 6'1x1...a'”xnp )

2.2 Intervals and Interval Arithmetic

A real valued interval represents the closed set of real numbers contained between a lower bound

x and an upper bound:

Interval: X =[x, X] ={x| x <x< X}.

Intervals withx = X are calledhin, point or degenerate interva)svhile intervals withx < X
are calledhick or proper intervals

If 0 < x the interval is called @ositive interval and we writex > 0. Conversely, ifx <0
we call the interval megative intervaland writeX < 0. Positive or negative intervals are the two
types ofsign coherent intervaldf x =0 or X = 0 we call the interval @aero-bound intervalA
zero-bound positive interval is calledzaro-positive interval Similarly, a zero-bound negative

interval is called aero-negative interval

Positive interval: X > 0iff x >0,
Negative interval: X <0iff X <0,

Zero-positive interval: X > 0iff x =0,

X
I

Zero-negative interval: X <0 iff
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A metric (distance function) ofiR can be defined as follows:
Metric (distance): X, y) =sup(] x =y [,| x =y |).

It is straightforward to verify that the above operator satisfies all the requirements of a metric.

Therefore, one can define convergent series of intervals in the usual fashion:
Convergent sequence: lifx;) = X iff lim q(X;,x) =0.
|—00 | —00

Some common unary operators on a real intefvare defined as follows:

Midpoint: m(x) = X Z X ,
0, if0oex
Corner: ax) = x , if x>0
X , ifx<0
Width: W(X) = X-—X,
Radius: ragx) = . ; X ;
Absolute Value: IX| = {lyl| x <y<x},
Mignitude: mig(X) = min|Xx|,
Magnitude: magx) = max| X|,
-1 , ifx<0
Sign: sgnx) = 0, ifx<0<x ,
+1 , if x>0

Interior: int(x) = (x,X).
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If Sis a set of real numbers we denote its one-dimensional convex h{jlEdly Obviously:

Interval Hull:  [[S]] = [inf(S),sup(9)],

is a closed interval.

The corresponding vector operators are defined component wise. For example, the vector
corner operator is:

Vector Corner: (c(X)), = C(Xy)-

We do not define the sign of an interval vector.

The usual unary and binary arithmetic operations are defined as follows:

Negation: -X = [-x,—x],

Addition: X+y = [X+Y,X+VY],
Subtraction:  X-y = [x-Y,X-Y],
Multiplication: Xy = [[xy,Xy,xy,xV]],
Division: § = ”?,?,;;” .

Note that for the above definition of division to wosk must not contain zero. It is possible to
extend the definition of division to include cases where zero is a membgey@tamples can be
found in the literature.
We also define:
[x" x"], if nis odd orX is positive

Positive Integral Power: X" = ,
|x|", if nis even

: 1
Negative Integral Power: x " = <0

We departed slightly from the usual practice of treating positive integral powers as repeated
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multiplications in favor of the above definition. The above integral power operator avoids the

excess width introduced by repeated multiplication, as illustrated in the following example:
[_27 3]2 = [O, 9] = {y: X | Xe [_2? 3]}7
[—2,3][-2,3] = [-6,9 = {y=xX|X1,% €[-23]}

Note that the power operator (top) returns the exact range of values while the same expression
evaluated through repeated multiplication (bottom) can suffer from significant overestimation.
The overestimation is due to the fact that interval multiplication as defined above assumes there
is no correlation between the two factors being multiplied together.

Interval addition and multiplication exhibit the following algebraic propeﬁ]es:

Commutativity: X+y = YV+X, Xy = VX,
Associativity: (X+y)+z2 = X+(y+2), (Xy)z = X(Y2),
Neutral Element: 6x = X, 1.Xx = X

Unfortunately, multiplication of intervals is not distributive over addition as it is with real

numbers. A subdistributive law holds:

Subdistributivity: X (y +2) C

I
<
+
IXI
INI

IThese properties do not hold in the presence of rounding error.
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It is useful to identify the special cases where distributivity does hold:

X(y+2z)=xy=+xzif x = x (thin factor),

X(y+2)=xy+xzif y>0andz >0 (non-negative terms),
X(y+2)=xy+xzif y<0andz <0 (non-positive terms),
X(y—2)=xy-xzif y>0andz <0 (non-negative terms variation),
Distributivity
X(y—2)=xy—-xzif y <0andz > 0 (non-positive terms variation),
holds: B B B

>0,y=0andz =0

I
—~
I

H_

INJI

~—
Il

I

<
H_

I
INJI

=

I

(positive factor, zero-straddling terms),

X(y+z)=xy+xzif x<0,y=0andz=0

(negative factor, zero-straddling terms).

The proofs are straightforward and can be found in most texts on interval analysis, such as

[Neumaier 1990].

2.3 Inclusion Functions and Interval Extensions

In this section we review some of the concepts associated with interval valued functions and their

use for computing bounds for the range of real valued functions over interval domains.

2.3.1 Interval Valued Functions and the Range Inclusion Function

An interval valued function is a mapping from a &b the intervaldR:

Interval valued function:f : S— IR.
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An example of an interval valued function on the reals isflbating point bound functian
FP-bounds:FP : R — IR, FP (X) = [X,,X"],

wherex, is the largest floating point number smaller than or equal, @®ndx* is the smallest
floating point number greater than or equakto

Another example of an interval valued function, this time on intervals, isahge inclusion
functionassociated with a continuous real valued functfonR — R and denoted byR (f) :

IR — TR:
Range (continuous case}:(f) (x) = {y| (y= f(x))A(xe X)}.

The range can be defined for discontinuous functions as well, using the interval hull of the range

set, as follows:
Range (discontinuous cas&®(f) (x) = H {yl(y=fX))A(xe X)} H )

An interval valued function isontinuousf for any convergent sequenc¢&;) (or (x) if the

domain isR) the sequence of interva{sf (;)) (or { f (x;))) converges as well.

2.3.2 Inclusion of the Range of Real Valued Functions

Using the range inclusion function defined in the previous section it is straightforward to design
algorithms for solving many important problems, such global nonlinear optimization. Unfortu-
nately, the range inclusion function is often not computable.

It turns out that computing a superset of the range inclusion function is usually sufficient,
provided it has certain characteristics. We call these types of interval valued furiotitusson
functions As the name suggests, the value of an inclusion function over some interivathe

domain is an interval in the codomain that includes the range of the function over the iterval

Inclusion function:J (f) (X) 2 R(f)(X) forvX C D,
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or, equivalently:
Inclusion Propertyf (x) € J(f)(X) forVX C D andvx € X,

whereD is the domain off. An important class of inclusion functions are thelusion isotone

inclusion functions which satisfy the following property:
Inclusion Isotonicity:J (f)(X) CJ(f)(y) forvx €y CD.

With the above definitions many different classes of inclusion functions can be defined for
any given functionf, the range being the “tightest” and most useful, while the inclusion function
that always returns—co, o] is the “widest” but also not useful at all. We define a metric, called

excess widthfor measuring how close a given inclusion function is to the range:
Excess widthAW (3 (f)) (X)) =w (T (f) (X)) —w(R(f)(X)).

Obviously, the excess width is a non-negative real valued function with interval arguments; the
smaller the excess width is over some interxakhe better the inclusion function over is.
Another measure of overestimation is #wess width ratiowhich gives information about the

excess width relative to the size of the arguments:
Excess width ratioAWR (7 (f)) (X ) =

Yet another measure for overestimation of the range igxiesess width range ratjavhich gives

information about the excess width relative to the size of the range itself:
Excess width range ratiddWRR(J (f)) (X ) =

It is often useful to know the behavior of the overestimation of an inclusion function when

evaluated on a sequence of intervals converging to a point. Of course, we prefer inclusion func-
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tions whose excess width goes to zero in this case and in fact some authors require this property
in the definition of the inclusion function. If this is the case, we defineitlckision orderof
an inclusion function to be the order of convergence of the excess width when evaluated on a
sequence of intervals convergent to a point:

Inclusion order:O <U(f)> = O(AW(J(f))(XQ)

Xi—X

2.3.3 Interval Extensions

We come to the question of obtaining an expression of an inclusion function from some given
expression of a functiofi. If the expression of is formed from compositions of the four basic
arithmetic operationg+, —, x,+} and integer powers, this turns out to be easy: replace all
occurrences of real variables with interval variablesx; and all the real operations with the
corresponding interval operations and what you get is the expression of an inclusion function.
This is the statement of tfandamental theorem of interval analysiBhe process of obtaining

the expression of an inclusion function from the expression of the original function is called
interval extensionsee [[Moore 1979]. Given some expression we write the interval extension

simply as an evaluation with interval coefficients:

Interval extensionExpressiorif) ( X) is the interval extension d&xpressionf) (x).

The above definitions cover interval extensions of rational functions. However, interval ex-
tensions can be generalized to include other types of primitives. First, we define some composi-

tion rules:

Function composition 1Expressiori f ) (Expressiorig) (X)) is an inclusion function of og.

If r is a rational function and is a function for which an inclusion functidh(f) is known we
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can obtain an inclusion function ob f andf or as follows:

Function composition 2: Expressiortr) (J(g) (X)) is an inclusion function of o g,

Function composition 3: J(g) (Expressiortr) (X)) is an inclusion function ofor.

We can summarize the composition rules above into the following rule:
Function compositiond () (J(g) (X)) is an inclusion function of o g.

The proofs are straightforward. Note that the composition rules also allow the computation of
inclusion functions of algorithmically (recursively) defined functions.

Inclusion functions for many elementary functions can be easily defined and are detailed in
the literature. These include square, cubic and higher roots, trigopnometric and inverse trigono-
metric functions, logarithms and exponentials, etc. Thus, using the composition rules, inclusion
functions for a large variety of complicated functions can be easily obtained.

Most functions have a standard expression—an expression that is most often used. The
inclusion functions generated from these expressions are cadkedal inclusion functionsor
natural extensionsFor example, given a multivariate polynomial the natural extensidﬂis

defined as:
Natural extension for polynomiald¥ (p) (X ) = MacLaurin(p) (X ).
The natural extension of cO&— 1)(x— 3)) is:
N (cos((x—1)(x—3))) (X) = cos(X?—4X +3).

In general, inclusion functions obtained through interval extension from different expressions
of the same functiorf arenot the sameeven when evaluated with infinite precision. This is

unlike the real case where different expressions evaluate to the same vdlpe.obne of the

2other authors choose to define the natural extension of polynomid®aer(p) (X ). This definition yields
tighter inclusion functions when powers are treated as repeated multiplication, see E]wapter 3.
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main interests of interval analysis is in finding expressions of functions that generate “better”

inclusion functions, see chaptéis 3 afd 4.

2.4 Inclusion of the Solution Set of Nonlinear Systems of Equations

In this section we review some basic algorithms for robustly computing roots of nonlinear equa-
tions of the form:

f(x)=0 (2.1)

using interval analysis. We purposely postpone any discussion of Interval Newton until €hapter 3,
so only basic divide and conquer type algorithms are presented here.
First we formalize the problem and the requirements on the solutions. The bold fage of

f(x) = 0 meand is a vector valued function:
f:R" — RM
Let Sbe the set of all the roots of equation (2.1) inside some dordainR":
S={xe d |f(x)=0}.

We are interested in finding a finite interval coveringfA finite interval covering is a finite
set of interval vectorsS; = { §i} with disjoint interiors such that:

1. SC S, i.e. givenvx € Sthendi, s € S; andx € §;j,

2. int(si)Nint(sj) =0for Vi, j,(i # j),

3. Vi,w(S) <eg witheeR.

The intervalss; are called solution intervals. The first rule above ensures that we do not miss
any solutions. The second rule ensures that intervals do not cover the same area twice. Finally,

the last rule is a weak measure of the accuracy of the interval covering with resggect to
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Note however, that there might Iseiperfluous solution intervala S that contain no so-
lutions. We mark superfluous solution intervals 8y and their subset bysg C S,. Solution
intervals that contain at least one solution are cgtlegber solution intervalgand are marked by
§°. Theproper solution coverings denoted bySg C Se.
We could impose an additional rule that prevents such superfluous solution intervals from

ever appearing in the finite interval covering:
4. Vi, 5iNS#0.

However, interval coverings that satisfy these stronger requirements are not as easily computable.
Therefore, we only require the first three rules here. In practice, the number of superfluous
solution intervals (at some fixed value gfis directly related to the accuracy of the inclusion
function used to generate them.

The quality of a finite interval coverings defined as the ratio between the total area of the

proper solution intervals and the total area of all the intervals in the covering:

a(s)

The quality is a real number between 0 and 1, with 0 being the worst and 1 being the best.

Quality of a finite interval coveringQ< SE> =

From now on we will drop the explicit use of the term “finite” and simply write “interval

covering” instead.

2.4.1 A Basic Divide and Conquer Algorithm

The simplest algorithm that can compute finite interval coverings like the one specified in the
previous section is of the divide and conquer type and is shown in figure 2.1. The algorithm
works by adaptively subdividing the domain and eliminating intervals that are guaranteed not to
contain any solutions.

The subdivision step can be implemented in several different ways. The intervals can be
bisected into equal halves along one of its dimensions. This dimension can be chosen to minimize

function variation, or simply be the longest edge. Bisection can also be biased to produce unequal
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SimpleSolve (

in f: function whose solutions we are seeking

in d: domain interval

in € maximum size of a solution interval

out Sg: [empty] interval covering of the solutions of fin d
)
{

createstack [empty] stack of subintervals to be examined,;
put d onstack
while ( stackis not empty ) do
{
pop X from stack
/[ estimate the range of f on
compute y =IJ(f) (X);
if (0ey)
/I there could be solutions in
{
if (W(X)<eg)
append X to Sg;
else
{
Subdivide (in X, out X1, out X2 );
put X1 onstack
put X, onstack
¥
¥
¥

return; // search is exhausted

X

IXI

}

Figure 2.1: A simple divide and conquer algorithm for solving nonlinear systems of equations
using interval analysis. The values between square brackets listed next to variable declarations
represent initial values. Using a FIFO queue instead of the LIFO stack usually increases storage
requirements.

intervals. Multisection is also an option; for example, one could bisect each dimension resulting
in 2" new subintervals at each step.

Any inclusion functionJ (f) can be used to bound the range. If the inclusion function used
has nonzero excess width the algorithm may not eliminate all such regions and will return an

interval covering that contains a certain amount of superfluous solution intervals. The larger the
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Figure 2.2: Plot of an interval covering produced by the divide and conquer algorithm in fig-
ure, using the natural inclusion function ang 2. The interval covering contains 12,407
solution intervals and has a quality factor of onl@®71. The algorithm performed a total of
29,105 iterations which took 84.281 seconds (Mathematica 5, P4-2.2GHz). The time/quality
cost is 1,474.858 seconds. Compare this with figure 2.3.
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Figure 2.3: Plot of an interval covering produced by the divide and conquer algorithm in fig-
ure, using a Midpoint Taylor Form inclusion function anet 2-4. The interval covering
contains 788 solution intervals and has a quality factor.8997. The algorithm performed a to-

tal of 4,951 iterations which took 63.016 seconds (Mathematica 5, P4-2.2GHz). The time/quality
cost is 70.038 seconds. Compare this with figuré 2.2.
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excess width of the inclusion function is, the worse the quality of the interval covering will be
and more superfluous solution intervals will be produced.

In addition, the total running time of the algorithm depends on the amount of excess width
as well since large amounts of extra time can be spent processing and subdividing superfluous
intervals.

This can be best seen by comparing figurg 2.2 and figufe 2.3. The result in[figure 2.2 is
computed using the natural extension and has a quality factor of aby D, much too low to
be of any practical use. The result in figlire]2.2 is computed using the Midpoint Taylor Form
interval extension, see sectjon 3]2.2. It has a much better quality factd83870

Although running times are similar, a meaningful comparison of the two approaches could
not be made without considering the quality of the interval covering produced. We propose a

new measure called thiéme/Quality cost

time
Q(s:)

The Time/Quality cost of the interval covering in figlre]2.2 is 1,474.858 seconds, while that of

Time/Quality cost: TQCo4tS;) =

the interval covering in figure 2.3 is 70.038 seconds.

Within this framework one quickly discovers that naive use of natural extensions routinely
produces interval coverings of very bad quality, so bad that they are virtually useless. Cases like
these are often responsible for the poor reputation interval analysis still has to date. They show
how important it is to use inclusion functions with the smallest excess width available.

In chapter§ 4 and 5, we make extensive use of the sensitivity of the divide and conquer (and
derived algorithms) to the type of inclusion function used to illustrate and measure the qualitative

differences between several different types of inclusion functions.
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2.5 Inclusion of the Solution Set of Nonlinear Optimization Prob-

lems

One of the main appeals of interval analysis is its ability to solve very general nonlinear opti-
mization problems which would be impossible to solve using most other methods. The basic
interval algorithm for optimization is due to Moore and Skelboe and is sketched inffiglire 2.4.
Like we did in the previous section we first formalize the class of problems we are trying to
solve. Letf : R" — R™ be a multivariate vector valued function aBthe the set of all the global

minima off inside the domaird c R™:
S={xed|vye d.f(x) <f(x)}.

Once again, we are interested in finding a finite interval covering§ a$ defined in sec-
tion[2.4. Superfluous and proper solution intervals as well as the quality of an interval covering
are defined as before. The same considerations about the relationship between the inclusion
function used and the quality of the interval covering and the execution efficiency apply to the

Moore-Skelboe algorithm.

2.5.1 The Moore-Skelboe Optimization Algorithm

The pseudocode of the constrained optimization algorithm is shown in figure 2.4. The algorithm
maintains a dynamic estimate of the upper bound to the global (constrained or unconstrained)
minimum value of the function. The upper bound is used to eliminate regions that cannot contain
a global minimum as well as regions that were previously thought to contain a global minimum
but eventually become obsolete. This latest process is done ButigeObsoleteMinimarou-
tine.

For unconstrained minimization the routiSatisfiesConstraintsalways returns “true”. For
constrained minimization problems, the routine returns “true” if there is at least one point inside
X where all constrains are satisfied or “false” otherwise. Writing such a routine for all types of

constraints is not easy. Fortunately such routines can be designed for many interesting problems.
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MooreSkelboeOptimize (

in f: function whose minima we are seeking

in d: domain interval

in € maximum size of a solution interval

out S¢: [empty] interval covering of the minima of f over d
)
{

createstack [empty] stack of subintervals to be examined,;

real supMin [ o] current estimate of the upper bound of main(f);

put d onstack
while ( stackis not empty ) do
{
pop X from stack
/I estimate the range of f on X
computey =7 (f)(X);
if ((supMin> y ) and SatisfiesConstraints(
/I there could be a global minimum in
{
/I update global minimum
setsupMin= min(supMin y);
/I eliminate solution intervals i
PurgeObsoleteMinima( in supMin infout Sg );
if (w(x)<eg)
append X to Sg;
else

{

IXI
SN—
~—

X

with inf(J(f) (5i)) > supMin

Subdivide (in X, out X1, out X2 );
put X1 on stack
put X, onstack
}
}
}

return; // search is exhausted

}

Figure 2.4: A simple branch and bound nonlinear optimization algorithm using interval analy-
sis, after Moore and Skelboe. The subroutines used in the algorithm are briefly described in
sectio 2.5.11.
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2.6 Inclusion of the Solution Set of Systems of Differential and In-

tegral Equations using Interval Picard Iterations

In this section, we very briefly describe the interval version of Picard’s algorithm for computing
Taylor form enclosures for the solution of certain differential and/or integral equations. For more
detail refer to[[Berz and Hofétter 1993].

Interval Picard iteration is not the only method for solving ODEs using interval analysis.

Other methods—such as interval versions of Euler's method—have been studied.

2.6.1 Definitions

Norm: || f(t) —g(t) [|=max [f(t) —g(t)]
Lipschitz condition: A function f (t) satisfies a Lipschitz condition da, b] if there is a positive

real numbeL[fa’b] such that for alty,t; € [a,b]:
(1)~ f(62)] < L7t

Cauchy remainder: If f(t) can be expanded in an Taylor series then there &xisfto,t] such
that:
() = Seotdt0)t—to)
3104 % (to) (t —to)' + g gy Gt (B (1)L
The expression:

1 dn+1f

CR(f,tO,n) - WW

(E)(t—to)"*t,

is called then™™ order Cauchy remainder dfattg.
Interval Lagrange remainder: &; is not usually computable in closed form. However, the

following is always true:

n+1
ILR(f,to,n) = iy Gt ([to, 1)) (t —to)™ 2,

f(t) € $7o 291 (to)(t —to)! + ILR(, to, ).
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The expressiofLR( f,to,n) is called then! order interval Lagrange remainder bitto.

2.6.2 Interval Picard Iteration

Consider the following type of differential equation:

y =F(y).

which can be rewritten in integral form as:

y=yito) + | Fy(0)dx

to

We further assume th#t is a polynomial and therefore Lipschitz everywhere (bounded deriv-
ative) and that we can produce an initial polynomial enclosgrdor y over the interval
[to,to+1/LE], i.e.

y(t) € yo(t), vt € [to,to+ 1/Lg].

The Picard iteration step

%Hm:wwﬁgaﬁmmx

defines successively better polynomial enclosureg (oe. it is a contraction around the solution
y of the differential equation). The integration step can be performed symbolically since all

functions involved are polynomials.
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The proof that the above Picard iteration step is a contraction is as follows:

[V O =Y®) | = max|ys,(t) —y(t)]
= max |y(to) + fi; F (ya(x))dx—y(to) — fit F(y(x))dX
max | fig [F (Ya(%)) = F (y(x))] d
mat fi, [F (Y3()) — F (y(X)| dx
max fi, Lr [¥i(%) —y(X)| dx
max [(t —to)Lr |Y;(X) — Y(X)]]
(to+1/Lr —to)Lr max [yn(X) — y(x)|
= max [yp(X) — Y(X)|
[ Ya(¥) —y(X) || -

IN AN A

IN

If F is not a polynomial, but it can be expanded in a Taylor series then we use the following

method. Lef! be thenth degree Taylor series with interval Lagrange remaindé,afe.
F(x) € Ff(x) = n EOLF( )(x—Xo)' + ILR(F, %o, )
n —i;”d)d-xO X0 X0, ).
Then the Picard iteration step is as follows:

Vo) =)+ | i (0)dx

2.6.3 An Example

Let us look at an example of Picard iteration that could be used to solve the differential equation:
Y =y2,y(0)=1
Letys = [1,2]. F(x) = x> andF’(x) = 2x. The Lipschitz constant d¥ on the interval[l, 2] is:

Lr = maxF([1,2]) = max[1,4]) = 4.
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Therefore, we can expect a Picard iteration to be a contraction for valuem dhe interval

[0,1/4]. The first two such Picard iterations are as follows:

y;(t) = 1+ [5]1,2]%dx
= 1+[1,4],

y5(t) = 1+ [5(1+[1,2)x)%dx
= 14+x+[1,4%x+[1/3,16/3).
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Chapter 3

Related Previous Work

In this chapter we review some important state of the art interval algorithms. We begin our dis-
cussion with a short review of the concepts of Taylor Forms and Taylor Models, see $edtion 3.1.
Next, in Sectiofi 3]2 we review the most important methods for the robust inclusion of the range
of multivariate functions. Finally, in Sectign 3.3 we review some of the state of the art Interval

Newton methods for the inclusion of the global set of solutions of nonlinear systems of equations.

3.1 Taylor Forms and Taylor Models

We begin our review with a discussion of Taylor Forms because they are the principal tool used
to convert nonlinear functions into polynomials, for which all the later methods are developed in
the following sections.

Through the following arguments(x) is a generic real-valued multivariate nonlinear func-
tion while p(x) andq(x) are real-valued multivariate polynomialg. (x) and g (x) are interval-

valued multivariate polynomials, i.e. they are polynomials with at least one interval coefficient.

Definition 3.1.1 (Taylor Form). Aninterval-valued polynomiap (x) is a Taylor Form of f(x)

over the interval boxd if for Vx € d we have:
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In other words, a Taylor Form is an interval-valued polynomial that bounds the values of the
function f at every point in some given regioth. For example, a Taylor Form a@bsx) over

the entire real line is:

2" " 24 720

If all the coefficients of the Taylor Fornp (x) are real except for the constant term which
is an interval we have &aylor Model For example, a Taylor Model @fogx) over the interval
xe[-1,1]is:

719 721] 1, 1
cogx) € [720, 720} - 5X +ﬂx4.
Taylor Models are the sum of a polynomial and an interval callednteval remainder

bound We write:

f(x)epX)+T,

whereT is the interval remainder bound.
Taylor Forms and Taylor Models of analytic functions can be obtained from their Taylor

expansions, hence the names. For example, for a one dimensional fuh¢tiowe obtain the

)]
dn+1f

wherec € d andJ (W) (d) is an inclusion function of the n+1st derivative bevaluated

n" Taylor Form over the intervat :

[oX

_ A\l n+1
f (x) € Taylor™ (f,c) (x) + (?nf)l)! [U <:>@+I> (

on d. The corresponding Taylor Model can be obtained by replacing the real vaxiafle the

)|

interval d in the (x— ¢)™?* term:

—~
[k

H _ ~\n+1 n+1
f (x) € Taylor="> (f,c) (x) + (?n:l))! [3 (3)@;)

The interval remainder is:

-2 ()

foX

)]
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The power of the Taylor Model approximation is that the width of the interval remainder

term decreases with order n+1:
—\n+1
W ( d )TH“
W(r)y=0(—-——1.
(r) < (n+1)!
Thus, Taylor Models can be an efficient way of converting nonlinear functions to polynomials
for which interval extensions with higher orders of convergence that the natural extension are

presented in Sectign 3.2. We explain some important points about interval extensions and Taylor

Models next.

3.1.1 Taylor Form Interval Extensions

It is important to note that Taylor Forms as defined in the previous section are not inclusion
functions because they are defined dérand not ovefR". However, inclusion functions can
be easily generated from a Taylor Form through interval extension. We call this process the
Taylor Form interval extension

For example, a Taylor Form interval extensiorcof(x) over the entire real line is:

[_lv 1]
720

1
< A2 L oa <6
R(cog(X) €1-5 X"+ X x°.

NI =

Similarly, a Taylor Model interval extension obgx) over the intervalx C [—1,1] is:

1

o4
X
24~

719 721} 1,
X"+

R(cog(x) € [7207720 3
The differences between a Taylor Form (Model) and a Taylor Form (Model) interval exten-
sion are often not made clear in the literature. For example, it is often stated that Taylor Models
have inclusion orders of arbitrary high orders. In general this is only true for point wise eval-
uation as was shown at the end of the previous section. In order for a Taylor Model interval
extension to be an inclusion function of orde# 1 one would need to be able to compute the

range of the polynomial part with inclusion order greater than or equaitta. In general, this
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is not possible (without a priori knowledge about the nature of the function or running global
optimization) even for univariate polynomials.

A Taylor Model interval extension is of the form:
R(f)(X) eI (Taylor™ (f,c)) (d)+T,
and the inclusion order is equal to the inclusion ordet @Faylor<N> (f,c)).

3.1.2 Taylor Form Chronology

Taylor Forms date as far back as the original texts by Moore, See [Mooré 1962,
Moore 1966, [ Moore 1979]. Univariate Taylor forms were studies under the name
ultra arithmetic or functoid by Kaucher, Miranker, Rivlin, Epstein and others in
the 1980s, see | [Epsteinetal. 1981, Epsteinetal.[1982, Kaucher and Miranker 1983a,
Kaucher and Miranker 19834, Kaucher and Miranker 1984a, Miranker 1983]. The multi-
variate case was studied in depth by Eckmann et al.| see [Eckmann et al. 1986], and by Kaucher
in [Kaucher and Miranker 1984b]. The methods were used extensively in various computer
assisted proofs. A comprehensive comparison of Taylor Forms interval extensions and other
types of inclusion functions can be found in Stahl’s thelsis [Stahl|1996]. For a more detailed
chronology on Taylor Forms and related topics we refer the reader to the paper by Neumaier
[Neumaier 2002].

Taylor Models were introduced by Berz et al. as a means of bounding the solutions of
differential algebraic equations, sée [Berz and Hutst 1998]. Berz and his collaborators have

written many papers on the subject. A complete repository is available on the web at:
http://bt.pa.msu.edu/pub/

More recently, Taylor Model interval extensions using Bernstein expansions were studied by

Nataraj and Kotecha, see [Nataraj and Kotecha 2002].


http://bt.pa.msu.edu/pub/
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3.2 Methods for the Robust Inclusion of the Range of Multivariate

Functions

In this section we review some of the most important types of interval extensions to date. In light
of our discussion of Taylor Models as a way to treat all analytic functions as polynomials we will
restrict our presentation to bounding the range of the latter.

3.2.1 Horner Forms

In its pure form, the Horner Form interval extension for polynomials is only an enhancement of
the natural extensidh.

The Horner Form of a univariate polynomial is:
P(X) = ag+ X1 (A +X2(ag + X3(... + X (ax + X*+1a.1)))),
and the Horner Form interval extension is:
R(P)(X) CH(P)(X) =0+ X" (@ + X(a2+ X3(.. + X'¥(a+ X ayi1)))).

The Horner Form achieves two things:

1. It provides an efficient way of evaluating both the polynomial and the inclusion function

(in fact, Horner Forms are the cheapest interval extensions to compute and evaluate), and
2. It generates somewhat tighter bounds than the natural extension.

The narrower bounds produced are due to the subdistributivity of interval multiplication. Note
however, that subdistributivity does not apply if powers of intervals are computed dectly.
When powers are computed directly, power series evaluation may produce tighter bounds than

the Horner scheme—more research is needed to determine exactly when this happens. For ex-

1Remainder: in this thesis we call the interval extension of the power series expression of a polynomial (MacLaurin
form) the natural extension. Some authors call the Horner Form interval extension the natural extension.
2|nstead of using repeated multiplication.
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ample, Horner evaluation of + 3x on the interval—1,1] produces the range-4,4] while the

natural extension with powers evaluated directly produces the tighter fa3g4):

(1,1 ([-1,1]+3) =[-1,1] - [2,4] = [-4,4]

[-1,1]°+3[-1,1] = [0,1] +[-3,3] = [-3,4]

Things are slightly more complicated in the multivariate case, as there are many different
ways in which Horner Forms that can be computed. In general, one would choose an ordering of
the variables and write Horner Forms with respect to each variable successively until the whole
expression is suitably factored. The author is not aware of any publications that provide an

optimal ordering of variables.

3.2.1.1 Summary of Properties

The Horner Form interval extension has the following properties (for proofs and added details

we refer the reader to Section 3.1 of V. Stahl’s thesis [Stahl]1996]):

e Inclusion Order: O(w(d)). The Horner Form interval extension has excess width that
decreases linearly with the width of the input interval. Therefore, the Horner form has the

same inclusion order as the natural extension.
¢ Inclusion Monotonicity: The Horner Form interval extension is isotonic.

 Non-Overestimation: The Horner Form interval extension has zero overestinfatidren
all the intermediate intervals arising during its evaluation do not straddle zero. This is
equivalent to the condition that the natural extension has no overestimation, see Sec-

tion[2.3.3.

The Horner Form can be trivially extended to arbitrary Taylor Forms:

p(X) = ap+ (X—C)'*(ay+ (Xx—¢)"2(az+ (x—¢)3(... + (x— ) (ax + (X — ) k1, 1)))).

3Zero excess width.
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Once again, many different Horner Forms exist in the multivariate case. We will call the
combination of a Taylor Form with the Horner evaluation the Horner-Taylor Form. The Horner-
Taylor Form can be used to enhance many of the interval extensions presented in the following

chapters with the same benefits listed above (when direct power computations are not used).

3.2.2 Centered and Mean Value Forms

The Centered Form is the simplest of the quadratically convergent interval extensions. Centered
Forms have been studied extensively since the beginning of interval analysis. The initial idea

was published by Mooré [Moore 1966]. The Centered Form of a univariate funtcisn

f(X) =f (C)+gC(X7C) (X_C)a

wherec is called thecenter The Centered Form interval extension is:

R(H) (%) CC(F) (%) = f(c)+I(ge) (%,€) (X —©),

whereJ (gc) is any inclusion function ofic, and the center is usually a point inside the interval
X. The most common choice of center is the midpoin&ofThus, the Centered Form interval
extension may require the computation of a new expressigpfof every input intervaix . The
multivariate case is similar.

Hansen developed the Centered Form for polynomials_in [Hansen 1969]. Explicit expres-
sions forg proved difficult to obtain for functions other than polynomials. Centered Forms for
rational functions of the fornp/q were discussed by Ratschek/in [Ratschek 1980]. Even in this
relatively simple case the computation of an expressian oéquires all partial derivatives qf
andq up to their respective degrees, which made the Centered Form computationally expensive.
Expandingf into a suitable Taylor Model and computing the Centered Form of the polynomial
term is a simpler but less accurate solution.

A closely related interval extension is tMean Value FormThe mean value interval exten-
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sion is nothing else than the interval extension of the well-known mean value theorem:

F(x)="f(c)+ 1 (&) (x—c),

whereg is some number betwearandc. While the exact value df cannot be easily computed,

an inclusion function is:

R(F) (%) SM(F)(%) =T (c)+I(f') (X) (X —c).

Although the similarity with Centered Forms is apparent, the Mean Value Form does not fit
the definition of the Centered Form given above. Krawczyk and Nickel were the first to de-
velop a general theory that covered both Moore’s Centered Form and the Mean Value Form in
[Krawczyk and Nickel 1981]. Their paper also gave a proof of the quadratic inclusion order of
the generalized Centered Form.

The excess width of the Mean Value Form can in general be reduced if one uses slope func-

tions instead of derivatives. Slope function are defined as:

Slope functionge (x) = f(x))(—:;(c)’

and the Slope Form has the following expression:

Another improvement, due to Baumann, see [Baumann|1988], Bittemtered (Baumann)
Form. Baumann showed how to compute two centgrandc* such that the intersection of the

two corresponding Centered Forms produce the smallest bound for the range.

3.2.2.1 Summary of Properties

We summarize the properties of the Centered Form interval extension below (for proofs and

added details we refer the reader to Sections 3.1 and 3.2 of V. Stahl's thesis [Stahl 1996]):
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e Inclusion Order: O ((W(ﬂ))z) Centered Form interval extensions have excess width
that decreases quadratically with respect to the width of the input interval. In general,
Centered Forms produce better range inclusions than the natural extension for narrow input

intervals. On wider intervals the natural extension is usually better.
e Inclusion Monotonicity: The Centered Form interval extension is isotonic.

¢ Non-Overestimation: If the center is not on the boundary of the interf¥athe Centered

Form always overestimates the range.

3.2.3 Taylor Forms Revisited

Another way to look at Taylor Forms is as a generalization of the Centered Form. If the interval
extension ofy; (see the previous section for the definitionggf is itself a Centered Form then

one obtains the second order Horner-Taylor Form interval extension:
R(F) (%) C f(c)+(g(c)+I(h)(X,c) (X —))(X —c).

Taylor Forms of any order can be obtained by recursion—although we should remember that the

inclusion order will stay quadratic.

3.2.4 Bernstein Forms

The Bernstein Form inclusion function is the interval extension of the expansion of a function
with respect to the (non-orthogonal) basis of Bernstein polynomials. The connections with the
theory of Bezier splines are well known.

Thej-th multivariateBernstein polynomiabf multi-ordern is defined as:

ny\ . .
j-th Bernstein polynomial of degree B ) (x) = X (1—x)k,
j

wherex € R™andj,n € N such thatj; < nj, Vi <m.



42

3.2.4.1 Bernstein Forms for Polynomials

Every multivariate polynomiap : R™ — R of multi-degreen can be written as a linear combi-

nation of the Bernstein polynomials of ordeand greater:
Bernstein expansion of ordar p(x) = %bm)B(j’n) (X).

If pis of the form:
n .
p(x) =73 ax,
2,

then the coefficients of the Bernstein expansion can be computed with the following formula:

a

M-

j-th Bernstein coefficient (of degreg: bj; ) =

Because the Bernstein basis is not orthogonal, Bernstein coefficients of a polynomial of
degreen with respect to a Bernstein basis of higher order are usually not equal to zero. This is an
important property and is related to the procesdegjree elevatiorwhereby the coefficients of
a Bernstein expansion of higher order can be computed directly from the coefficients of a lower
order expansion.

is enclosed between the

It is well known that the range gf on the unit interval box0, 1)™

smallest and largest values of the Bernstein coefficients. Thus, we can defdertiséein Form

interval extension of ordar as follows:
Bernstein Form3 (p) ([0, 1]m) = min(b(j_n)), m.ax(b(j’n)) .
j ’ j

To compute the range over an arbitrary inter¥athe polynomial must first be composed
with the appropriate affine translation and scaling that mapsito [0, 1], before computing

the Bernstein expansion. This is equivalent to computing Taylor coefficients with an additional
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scaling of the variable. Therefore, the Bernstein Form is more expensive to compute than the
Taylor Form; the added cost is that of scaling the Taylor coefficients plus the computation of the
Bernstein coefficients minus the cost of evaluating the range of the polynomial in Taylor Form.
As we mentioned before, a polynomial of degreean be exactly represented by a Bernstein

expansion of ordem or larger. In general, Bernstein expansions of larger orders produce tighter
inclusion functions. Since the coefficients of the higher order expansion can be computed rela-
tively inexpensively through degree elevation, one could try to dynamically improve enclosures

this way.

3.2.4.2 Bernstein Forms for Other Types of Functions

Bernstein inclusion functions for functions other than polynomials can be generated by first
approximating the function with a Taylor Model or another equivalent polynomial expansion
with interval, and then computing the Bernstein form of the approximation. The mapping to the
interval[0, 1] can be done concurrently with the computation of the approximating polynomial.

The classic Bernstein approximation of a functibis defined as:

n .
Bernstein approximatiorB, (f,x) = j;f (:}) B(jn (X)-

The above approximation can be used to define a Bernstein Form provided that bounds for
| f(x) — B (f,x) | can be computed. However, this type of Bernstein approximations converge
too slowly to be efficient in practice. Taylor, Chebyshev or minimax approximations should
generate better results.

Of course, higher order Bernstein expansions produce better inclusion functions than lower
order ones, at the expense of more computation. One has to first decide the degree of the approx-

imation polynomial then the order of the Bernstein Form of the polynomial.

3.2.4.3 Short Chronology

The idea of using Bernstein expansions to bound the range of functions dates back to

[Rivlin 1970]. The first generalization to intervals other th@nl] was given by Rokne in
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[Rokne 1977]. Rokne went on to publish several papers on the subject, among which we mention

[Rokne 1978] and [Rokne 19B1]. The multivariate case was studied by Garloff in [Garloff 1985].

3.2.4.4 Summary of Properties

We summarize the properties of the Bernstein Form interval extension below (for proofs and

added details we refer the reader to Section 3.4 of V. Stahls thesis [Stahl 1996]):

e Inclusion Order: O ((W (d ))2> The excess width of the Bernstein Form interval exten-

sion decreases quadratically with the width of the input interval.
e Inclusion Monotonicity: The Bernstein Form interval extension is isotonic.

e Non-Overestimation: The Bernstein Form interval extension gives the exact range iff

min; (b ny) € {b(on),bBinny} @and max(b n)) € {bon);bnp)}-

3.3 Interval Newton Methods for the Inclusion of the Roots of Non-

linear Systems of Equations

In this section we discuss improvements of the basic divide and conquer algorithm for the inclu-
sion of the roots of nonlinear systems presented in Sectipn 2.4. The methods we discuss here are
versions of Interval Newton—an extension of the familiar Newton’s method to equations with
interval coefficients.

Interval Newton methods are based on the availability dinéerval Newton operator

Interval Newton operatointervalNewtonOperatafx ) C X.

The Interval Newton operator is a contraction.

The pseudocode of a generic Interval Newton algorithm is shown in Higyre 3.1G&ier-
icNewtonContraction procedure uses Interval Newton operators to shrink candidate intervals
as much as possible before performing any subdivision. Several possible implementations are

discussed in the next sections.
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IntervalNewtonSolve (
inf: function whose solutions we are seeking
in d: domain interval
in € maximum size of a solution interval
iny. Interval Newton contraction coefficient
out S¢: [empty] interval covering of the solutions of fin

[oX

)
{

createstack [empty] stack of subintervals to be examined,;
put d onstack
while ( stackis not empty ) do
{
pop X from stack
/I estimate the range of f on
computey =J(f) (X);
if (0ey)
/I there could be solutions in
{
set X = GenericNewtonContraction (inf, in X, in g, iny);
it (X #0)
{
if (w(X)<eg)
append X to Sg;
else
{
Subdivide (in X, out X1, out X2);
put X, onstack
put X, onstack
¥
¥
¥
}

return; // search is exhausted

IXI

IXI

}

Figure 3.1: The generic Interval Newton algorithm for solving nonlinear systems of equations.
The values between square brackets listed next to variable declarations represent initial values.




46

3.3.1 Linear Interval Equations

Interval Newton operators are derived from linearizations of the (system of) equations. Reminis-

cent of the Centered Form, the original nonlinear equafior}s 2.1 can be linearized as follows:

fx)=0 <
f(c)+g:.(X)(x—¢c)=0 <
ge (x) (x—c¢) = —f(c),

wheregc (x) is a slope function of (x):

f(x) —f(c)

Slope functiongg (x) = C

By bounding the slope functiog (X) over X one obtains a linear interval equation:

where G = J(g¢) (X). All the solutions of the nonlinear equatipn 2.1 are included in the
solution set of the above linear interval equation.
The Mean Value Form can also be used to linearize the system in much the same way. The

interval matrix G ¢ is replaced by the interval hull of the set of Jacobian matricef$»f over

IXI

{f(x) =0} & {f'(§) (x—c) = —f(c)},

resulting in the linear interval equation below:

whereJ = J(f') (X ). For obvious reasons, the solution set of the linear interval equation above
also includes all the solutions of the original equation.

We reduced the problem of finding an interval covering of the nonlinear equiation 2.1 to that
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of finding a covering of a linear interval equation of the form:

12>
T

(x) = (3.2)

Following common practice we replaced the real vector on the right hand side of the above

equation with the interval valued vectbr.

3.3.2 The Interval Newton Operator

IntervalNewtonContraction (

in f: function whose solutions we are seeking
in X: initial bounds of solution
in €: maximum size of a solution interval
iny: Interval Newton contraction coefficient
)
{

bool continue= true;
while (continug do

{
setA =J(f')(X);
setx*=xnN(m(x)- A(m(X)));
if (W(X*)>yw(X)) // not enough improvement
setcontinue= false
if (X*=0) // no solutions in X
setcontinue= false
setX = X7,
}

return X; // search is exhausted

}

Figure 3.2: A recursive Interval Newton contraction algorithm for solving nonlinear systems
of equations. This function replaces the gen&t@mwvtonContraction in the Interval Newton
algorithm in Figure 3]1.

We now describe the original Interval Newton operator, due to Hanserl, see [Hansen 1978].

First we need to define some concepts related to interval matrices.
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A square interval matriXA is calledregular if it does not contain any singular matrices:
Regular interval matrixA: VA€ A, detA) # 0.

Theinverse of a regular interval matriyA is defined as the interval hull of the set of inverses of

the real matrices contained inside it:
Inverse of regular interval matrixA ' = [[A™*|VAc A ]].
We are now ready to define threterval Newton operatofor the linear interval equatign 3.1:
Interval Newton operatoiNewtonOperatofX ) = X N (A~*Db).

The Interval Newton operator has two very important properties:

1. If NewtonOperatofX ) C int( X ) then there is aniquesolution insidex , and

2. If NewtonOperatof X ) = 0 then there are no solutions inside

In the case of a nonlinear equatibfx) = 0 and a mean value linearization, the Interval
Newton operator becomes:

NewtonOperatofX ) = x N (m(x)—J(f') x " (m(x))).

A recursive algorithm using the Interval Newton operator is shown in F[gufe 3.2. This algorithm
replaces the generidewtonContraction function in the Newton solver shown in Figure[3.1.
3.3.3 Preconditioning

Assume the square interval matri contains at least one nonsingular ma#ixif we multiply

both sides df 3]1 ba~* we obtain the equivalent linear interval equation below:

13>
><-)€
I

b*, (3.2)
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whereweseA* =A"1A andb*=A"1b. If A from the original equation is relatively narrow
then A* is likely to be a narrow interval around the identity, meaning the diagonal entries will be
narrow intervals around one, while the rest of the entries will be narrow intervals close to zero.

This can simplify the computation of the solution seff of 3.1 as shown in the next two sections.

3.3.4 The Krawczyk Operator

The Krawczyk operator was introduced by Krawczyk|in [Krawczyk and Neumaieri 1984]. We
describe the main idea below.
Consider the preconditioned linear interval equafion 3.2. If wesattlboth sides of the

equation we get:

If the preconditioned interval matri@ * is sufficiently close to the identity matrix the fixed point

equation above is also a contraction. Thus,Khewczyk operatois:

13>l

=) X).

Krawczyk operatorKrawczykOperatofX ) = X N (b* — (

X

The Krawczyk operator shares the same properties as the interval Newton operator listed in
Sectior] 3.3 In addition, when the uniqueness conditions are satisfied, the Krawczyk operator
converges quadratically to the solution.

In the case of a nonlinear equatibfx) = 0 and a mean value linearization, the Krawczyk

operator becomes:

KrawczykOperatofx) = XN (m(X)—C*f(m(x))—(C*A—I)X), where
(

3>
I
Q

—
—

—
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KrawczykContraction (

bool continue= true;
while (continug do
{
setA =J(f')(X);
setC=m(A);

setcontinue= false

if (X*=0) // no solutions in X
setcontinue= false
setx = X¥,

} —

return X; // search is exhausted

}

in f: function whose solutions we are seeking
in X: initial bounds of solution
in €: maximum size of a solution interval
iny: Interval Newton contraction coefficient
)
{

setx* = xXN(m(X)-CH(m(x)) - (CTA-I)X);
if (W(X*)>yw(X)) // not enough improvement

Figure 3.3: A recursive Krawczyk contraction algorithm for solving nonlinear systems of equa-
tions. This function replaces the genelewtonContraction in the Interval Newton algorithm

in Figure[3.1.

A recursive algorithm using the Krawczyk operator is shown in Figurg 3.2. This algorithm

replaces the generiewtonContraction function in the Newton solver shown in Figure[3.1.

3.3.5 The Hansen-Sengupta Algorithm

Another method for solving the preconditioned linear interval equdtion 3.2 uses an interval

version of Gauss-Seidel iteration. The method was introduced by Hansen and Sengupta in

[Hansen and Sengupta 1981].

Theinterval Gauss-Seidel operat@ defined as follows:

Gauss-Seidel operatoBaussSeidelOperatox ,i) = Xin | m(X ) —



51

HansenSenguptaContraction (
in f: function whose solutions we are seeking
in X: initial bounds of solution
in € maximum size of a solution interval
iny: Interval Newton contraction coefficient

)
{

bool continue=true;
while (continug do

{

(7]
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if (W(X*)>yw(X)) // not enough improvement
setcontinue= false
if (X*=0) // no solutions in X
setcontinue= false
setX = X%
}

return X; // search is exhausted

}

Figure 3.4: A recursive Hansen-Sengupta contraction algorithm for solving nonlinear systems
of equations. This function replaces the gen&@wntonContraction in the Interval Newton
algorithm in Figur¢ 3]1.

The Gauss-Seidel operator takes in an interval vegt@nd an index and returns an interval
representing the updaté& component ofx .

The algorithm for the Hansen-Sengupta contraction is shown in Higdre 3.4. The Gauss-Seidel
iteration is performed inside the “for” loop. Note that the results of each Gauss-Seidel step are

immediately used in all subsequent computations.
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3.3.6 Linear Tightening

Linear tightening was introduced by V. Stahl and is described in detail in his Ph.D. thesis, see
[Stahl 1996]. It is similar to the Hansen-Sengupta method without preconditioning, i.e. it per-

forms Gauss-Seidel on the linear interval equation without preconditioning it. This idea is some-
what similar to the ideas we present in Chapier 5, however the linearizations used are different.

In his thesis, Stahl reports that significant speedups can be achieved using tightening.
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Chapter 4

Corner Taylor Form Inclusion
Functions

4.1 Introduction

In this chapter we present the first contribution of the thesis:Ciiner Taylor form inclusion
function. The main benefit of the Corner Taylor Form is that it always produces bounds that are
tighter than those produced by the natural extension. To date, the Corner Taylor Form is the only
guadratically convergent inclusion function with this property.

In this and subsequent chapters we ignore the effects of roundoff errors and assume that
all operations on reals are exact. Of course, roundoff errors will affect the results we present
to a small degree. However, this effect only becomes significant when interval arguments of
expressions are very narrow.

The chapter begins with a discussion of sign coherent intervals and posynomial decomposi-

tions.

4.2 Sign-Coherent Intervals

Sign coherent intervals were introduced in Sedfion 2.2.4f @ the interval is called aositive
interval, and we writex > 0 or X € IR,. Conversely, ifx < 0 we call the interval aegative
interval, and writeX <0 or X € IR_. If x =0 or X = 0 we say the interval is aero-bound

interval. A zero-bound positive interval is calledzero-positive interval Similarly, a zero-
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bound negative interval is calledzaro-negative intervalPositive and zero-positive intervals are
callednon-negative intervaJaand we writex > 0 or X € IR" , while negative and zero-negative
intervals are callethon-positive intervalsand we writex < 0 or X € IR* . Non-negative and
non-positive intervals are the two types si§n coherent intervals An interval that has both
positive and negative values is calledexo-straddling interval

In summary:

Positive interval:

I

>0iff x >0,
Negative interval: X <0iff X <0,
Zero-positive interval: X >0iff x =0,
Zero-negative interval: X <O0iff X =0,

Zero-straddling interval: x<0iff X >0andx <O0.

It is well known that, in general, interval multiplication is not distributive with respect to
addition. However, there are cases when distributivity does hold. As we are going to use these

cases during the course of our proofs, we review them here:

X (y+2z)=xy=£Xxzif x = x (thin factor),
X(y+2)=xy+xzif y>0andz >0 (non-negative terms),
X(y+2)=xy+xzif y<0andz <0 (non-positive terms),
X(y—2z)=xy-xzif y>0andz <0 (non-negative terms variation),
Distributivity
X(y—2)=xy-xzif y <0andz >0 (non-positive terms variation),
holds: - - -

I
—
<

H_

INI

~
Il

X

<
H_
X
N
=

X

>0,y=0andz=0

(positive factor, zero-straddling terms),

if

1>
—~
<<
H_
IN
~—
Il
I
<<
H_
I
IN
I

<0,y=0andz=0

(negative factor, zero-straddling terms).
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4.3 Sign-Coherent Interval Decomposition

Any interval X can be decomposed into the difference of two non-negative interxalsand

X, as follows:

X N IRy, if X N IR, is not empty

{ [0,0], otherwise

Non-negative part: X,

» —x N IR,, if —x N IR, is not empty
Non-positive part:

\><\

, otherwise

SC decomposition: X

x
I
I<I
&
|
I<I
o)

We call the above thsign-coherent (SC) decompositidh X is a zero-straddling interval then its
SC decomposition will consist of two zero-positive intervalsxlfloes not contain zero the SC

decomposition will be comprised of one positive interval and the zero interval. For example, let

X =[-3,7]. Thenx . =[0,7], X, =1[0,3]. If y = [3,7],theny®: y =1[3,7], andyq: [0,0].

SC decompositions of intervals have the following useful properties:

Proposition 4.3.1. Let X be a sign-coherent interval and I§t be any interval. Then:

1L (=X)=(=X)o—(=X)o = X5 — Xg,

2. If y is a zero-straddling interval then:

1
<
Il
I
<
P
<
Il
1
<
|
P
I

If 'y is not zero-straddling then eithgr_ or y _ is the zero interval0, 0] and the result
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follows trivially.
L]

4.4 Posynomials

Posynomials are polynomials with non-negative coefficients:
n .
Posynomialip(x) = 3 ax', & > 0.
=0

We extend this notion to include posynomials with interval-valued coefficients.

Definition 4.4.1. A multivariate interval posynomiap is a multivariate polynomial with all

non-negative interval coefficients:

ko]

x)=Y ax, a; e IR
% i i € IRY

The following proposition lists a few important properties of interval posynomials and, by
extension, of real posynomials as well:
Proposition 4.4.1. Let p (x) be a multivariate posynomial with interval coefficients. Then:
1) Non-Negativity: p (x) € IR", for anyx € Ri".

2) Partial Derivatives: The vector partial derivativep (k) (x) is a posynomial for any integer

vectork.

3) Strict Monotonicity: If x andy are two non-negative real vectors such that y; for all

integers i, and there exists an integer j such thak y; then:

px) < ply),and

pPX < Py
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4) Range Inclusion Function: The range of a posynomig (x) over an intervalx > 01is:

5) Taylor Form Inclusion Function: For any non-negative interval vectot, and any real
vectorc such thatd < ¢; < x; for all i, the Taylor Form inclusion function at is exactly

equal (ignoring roundoff errors) to the range of the posynonpal

IXI

Taylor(p,c)(X)=R(P)(X).

ol

Proofs are straightforward and follow directly from the definitions.
It is important to remember that the properties of posynomials listed above will not hold if

they are evaluated outside & ".

4.5 The Posynomial Decomposition of a Polynomial

The posynomial decomposition is a surprisingly powerful tool for the analysis of various inclu-
sion properties of Taylor Forms. We make use of it extensively in the proofs of the theorems that
follow in the next sections.

Let p (x) be a multivariate polynomial with interval coefficients, anddéie the expansion

point for the exact Taylor Form expansion below:

Taylor(p,c) E c).

1€l

We restrict the values ofsuch thatx—c) € Ri", i.e. x; > ¢; for all i. We define thé>-posynomial
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and theN-posynomiabf the Taylor FormTaylor(p,c) (x) as follows:

P-posynomial: Taylor, (P ) c) (x) = z

N-posynomial: Taylors (P,c)(x) = > iilr(x—c) ,
iel
p0(c)nR* £0

where(p® (), and(p 0 (c)), are the non-negative and non-positive parts of the SC decom-
position of p ) (c) respectively.

We will also use the following shorthand notation:
P-posynomial: Pgc(Xx) = Taylor, (P,c)(x)
N-posynomial: Pec(x) = Taylor, (P,c)(X).
Furthermore, it = O we write:

P-posynomial: P (x) = MacLaurin, (P)(x)

N-posynomial: P (x) MacLaurins (P) (x),

where the posynomialslacLaurin; ( p) (x) andMacLaurin; ( p) (x) are defined the natural
way.
With the above definitions, the interval polynomiglcan be written as the difference of the

P and N-posynomials ifx —c). This is called thgposynomial decompositiaf p atc:
Posynomial decompositiorp (X) = Pgjc(X) — Pojc(X).

If pis a polynomial with real coefficients then the P-posynomial is comprised of the terms
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with positive coefficients while the N-posynomial is comprised of all the terms with negative
coefficients in absolute value. For example, let us consider the following bivariate polynomial

and its Taylor Form at the poirf,, —1)T:

Taylor(p,(1,-1)7) (x) = 3(x1—1)%(Xa+1)?— (X —1)(x2+1) +3
= [3(X1 — 1)2(X2 + 1)2 + 3] — [(Xl — 1) (Xz + 1)] .

Then the P-posynomial ig(8; — 1)?(x2 + 1)? + 3 and the N-posynomial i&; — 1) (X2 + 1):

Poja -1 (¥) = 30u-1)20e+1)*+3
Poja-1T (X) = (x1—1)(x2+1).

4.6 Taylor Form Excess Width is Due to One Interval Minus Oper-

ation

In this section we use the posynomial decomposition to show that the excess width of any nat-
ural or Taylor Form interval extension—ignoring roundoff errors—is due to one interval minus

operation.

Proposition 4.6.1. Let Taylor( P ,c) be a Taylor Form of the interval polynomiad, and let X
be an interval vector such tha —c > 0. Let‘I(p,c) be the interval extension of the Taylor

Form above. Then:

T(P.c)(X)=Peac(X)— Pec(X),

and:

W(T (D) (X)) =W (Pae(X))+W(Pee(X)),

The proof is a simple application of the posynomial decomposition.
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4.7 Reduction to the Non-Negative Quadrant

The rest of the chapter uses posynomial decompositions to analyze the inclusion properties of
natural and Taylor Form interval extensions of polynomials. For simplicity, all arguments are
restricted to non-negative intervals. In this section we show that all other cases can be reduced
to the non-negative quadrant without loss of generality.

First we prove that the range over a zero-straddling interval vectmosmputed by the natural
extension of a polynomigb is equal to the union of the ranges computed by the same natural

extension over the sign-coherent interval vectorsand— X .

Proposition 4.7.1. Let p be a multivariate polynomial with interval coefficients arRd= X o —

X - be a zero-straddling interval vector. Then:

EE (Zax'@> (i;ai(—xeﬁ).

M

Al
=]

Proof:

For anya,b > 0 and positive integét the following holds:
[—a,b = ([~a0/u[ob)*
= [-a,0 ulo,b*.

Also, for any intervalsx, y, and z the following is true:

—~
I
-
I
_l_
IN
Il
>
_|_
IN
-
—~
<
+
INJ
~—

—~
I
(-
<
SN—
INI
I
—~
I
INI
SN~—
(-
—~
<
INI
~—



61

Therefore, if Oc X for all integersk:

\_QJ\
\><\_
Il
)
—~
[XI
&
C
|
X
O
~—

i<n i<n

Finally we show that the range enclosure computed over an interval v&cwith mixed
sign-coherent components is the same as the range enclosure of a properly transformed Taylor

Form over the non-negative interval vectar|.

Proposition 4.7.2. Let p be a multivariate polynomial with interval coefficients, axdbe

a component-wise sign coherent interval vector. Let J be the set of indices of non-negative

components ofX, i.e. Xjey € IRY, and Xj¢3 € IR*. We construct a new interval vector

B Xk, ifked,
Y=
— Xk, ifk¢J.

y =|X]|, ie.

Let g be a polynomial such that:

gy =px,
where:
Xk, ifk € J,
Yk =
—Xk, ifk ¢ J.
Then:
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The proof is straightforward.

4.8 Corner Taylor Forms With Interval Coefficients

In this section we introduce the Corner Taylor Form inclusion funcﬁ@r@,p ) , for a multivariate
polynomial p with interval coefficients. We prove that the Corner Taylor Form has less excess
width than the corresponding natural extension and that it is inclusion isotonic.

Let p : R" — IR be a multivariate polynomial with interval coefficients, with expression:

ieJCnn

We define theCorner Taylor Forminclusion functionTe (p) (X ) to be the interval extension of

the Taylor expansion op at the cornexo = c( X ) of the interval vectorx :

4.8.1 The Corner Taylor Form Always Has Less Excess Width Than the Natural

Extension

Next, we prove the main result of this section.

Theorem 4.8.1.Let p : R" — IR be a multivariate polynomial with interval coefficients, and

X € IR" be an interval vector. Then

Proof:
Assume that the interval vectar is non-negative, i.ex € IR". The other cases are reduced to

this one by virtue of the results in Sectjon}4.7.
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The productsx' are non-negative intervals, for any multi-index vedtar J. By applying
Propositiorj 4.3]1 term by term and using the associativity of interval addition we can write the

following derivation:

N(p)(X) = MacLaurin(p)(X)

The above expression is the posynomial decompositiop :of
Pe(x) = Maclauring (p)(x) = X,

Pe(x) = Maclaurins (p)(x) = Ei@Xi-

The coefficientsp gQ (x)and Pg) (x) in the expression above are strictly positive (properties

derivatives of interval posynomials). Distributivity doesn’t hold even though- x )i is non-
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25

R(p.[1,2])
| 7(0)

px)=x3-23x2+022x+4

Figure 4.1: The range of the polynomip(x) on the intervall,2] is R(p) ([1,2]). The exact
value of the range on an interval can be difficult to compute.

negative. Using subdistributivity we conclude:

IXI
|
=| =
/N
ko
&=
~
[
N—
—
[
|
[
~—
|
o
0=
—
[
N~—
—
[
|
[
~—
N————

N(p)(x)

I
=l
/N
ol
&=
>
S~—
|
o
o=
—~
[
N
—
[XI
|
>
—

Equality holds if and only if one of the posynomiajs; or P is identically zero.[]

4.8.2 Isotonicity of the Corner Taylor Form

Next we prove that the Corner Taylor Form is interval isotonic.
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Rp.[1.2))

p(x)

P(x) = pe(¥) - Po)
| 2 Pe(x) = MacLauring(p,x) = x3 +0.22x + 4
Pox) = MacLauring(p,x) = 2.3 x?

Figure 4.2: The natural extensid¥i(p) greatly overestimates the range. Proposi.6.1
proves that the width of the computed bound is equal to the sum of widths of the ranggs of
andps, the P and N-posynomials of the MacLaurin formpmpf

Theorem 4.8.2. Let P (x) be a multivariate polynomial with interval coefficients, and et

y be two nested sign-coherent interval vectors. Then:

Te(P)(

I

)CTe(P)(Y)-

<

Proof:

Case 1 Assume thafy is a non-negative interval vector such that:
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25

N@.1.2)
f10
T (p.[1.2]) s
Tpe(®)
R(p.[1,2]) N
LE p(x)

p(x) = Tpg(x) - Tpg ()
25 Tpg) = Taylorg(p,1.x) = (x- 1)3 + 0.7 (x - 1)2 + 2.92
Tpg(x) = Taylorg(p,1,x) = 1.38 (x- 1)

Figure 4.3: The Corner Taylor Forni¢ (p), produces improved bounds as shown in Theo-
rem[4.9.1. The width of the Corner Taylor Form is equal to the sum of the widths of the ranges of
T p,, andT p., the P and N-posynomials of the Taylor Formpdk) expanded ax = 1. Note that

Tp, andT p, have smaller ranges than the P and N-posynomalsand p-, of the MacLau-

rin form (see figur¢ 4]2). Therefore, the Corner Taylor Form inclusion funciie(y) ([1,2]),
produces bounds with significantly less excess width when compared to the natural inclusion

functionN (p) ([1,2)).

The posynomial decomposition of the Corner Taylor Form evaluated on the interval yecor

).

<

Te(P) (¥) =Taylor: (P, y) (¥) —Taylor (p. y) (
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25 | y
N@.1.2)

1 10

4'5 TpA(x)
T pl1.2]) s Tpa012D)
R(p.[1.2]) ]
| P(x)
l‘l 1.‘4 1‘_6 1‘.8 ‘z .
Tpa(x) = Taylorp(p,1,x) =
25 =2.3(x-])2+3'22(x_1)+2'3

Figure 4.4: The magnitude of the improvemen®™(p)) —w (¢ (p)) can be computed in closed
form. It is twice the width of the range of the posynoniiaylora (p, 1) (X).

Because posynomials are strictly monotonic we can write:
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and this case is proved.
Case 2.Assume once again that is non-negative an& > y so thatx is a proper subset
of y. We make the substitutidn= x — y and define the equivalent polynomigl(t) = p (x).

Then:
Te (

) (

IXI

) = Te(a)(x-y)

ko

= T(P)(Y).

and Case 2 is proved. All the other cases reduce to the two cases above.

4.9 Corner Taylor Forms With Real Coefficients

In this section we restrict our attention to Corner Taylor Forms with real coefficients. For this
case we prove some important extended properties.

The first property allows us measure how much tighter the bounds computed by the Corner
Taylor Form are when respect to those computed using natural extensions.

The second provides an algorithm for computing the local inclusion order of a Corner Taylor
Form as a function of the input interval. This local inclusion order can vary for a given polyno-
mial across its range. It is at least quadratic and can be as high at the degree of the polynomial.
In some cases the Corner Taylor Form evaluates the range exactly (up to rounding error). We
show how these cases are easily detected.

Of course, all the theorems for Corner Taylor Forms with interval coefficients apply to this

case as well.
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4.9.1 The Magnitude of the Improvement Over Natural Extensions

Consider a multivariate polynomial: R" — R with real coefficients, whose expression is given
by:
p(X) = Z ax', a e R.
ieJCnn

TheCorner Taylor Forminclusion functionJ; (p) (X ) is defined as:

Je(p) (X) = Taylor(p,c(X)) (X). (4.1)

We now prove a stronger version of Theoriem 4.8.1:

Theorem 4.9.1. Let X € IR" be a vector of sign-coherent intervals. Then there exists a multi-

variate posynomial with positive real-valued coefficients:

Pajc(x) (x)

such that

Proof:
Assume thatx € IR is a vector of non-negative intervals so théxc = x. The rest of the
cases are reduced to this one.

The posynomial decomposition of the MacLaurin formpas:

MacLaurin(p) (X) = ps(X)—ps(X).
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The corresponding interval evaluation rules are:

N(p)(X) = p=(X)—pa(X)
= Taylor(ps, X) (X) —Taylor(ps, X) (X).

where the properties of posynomials were used to derive the last two steps, see Prdposition 4.4.1.

A similar derivation applied to the Corner Taylor Formpyields the following:

Taylor(p, x)(x) = Taylor, (p, X)(x) —Taylor, (p, X) (X),
Te(p)(X) = Taylorg (p, x)(X)—Taylors (p, X) (X).

Let:
th(x) = Taylor(ps, X)(X)—Taylors (p, X ) (X),

G(x) = Taylor(ps, X)(x) —Taylors (p, X ) (X).
We show thaty; andg, are equal posynomials.

Consider thath coefficient ofg;:

a = i(DQ(x)—MX(
(

= %(pé?(

X

) —max
1 . (i)
= 5 mm(pGa (X), ps (X)>~

Similarly theith coefficient ofq, is:
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Thereforea; = by > 0. We define the posynomigh x (X) = g1 (X) = g2 (x). Then:

Taylor(ps, X) (X) = pax (X)+Taylor (p, x) (X)
Taylor(ps, X) (X) = pajx (X)+Taylors (p, x) ().
Finally:
N(p)(x) = Taylor(ps,c(X))(X)—Taylor(ps,c(X))(X)

= pajx (X)+Taylors (p,c(X)) (X)
— (Pajx (X)+Taylors (p,c(X)) (X))

= r-Tc(p)(

X

)"’pAM(X)_pA\x(X)

X

= Te(P)(X)+[-1L1pax (X),

and the theorem is proved.]

Theorel provides a closed form expression for the posyngayigk):

min (p! (¢), p!' (<))

Pajc (x) = Z
ieNn

It follows directly from Theoren 4.9]1 that the magnitude of the reduction in excess width
of the Corner Taylor Form over the natural extension, wieis a non-negative interval vector,

is given by:

W(N(p) (X)) =W(Tc(p) (X)) = 2W(pag(x)(X))-

The above expression could be used in algorithms, such as root finding or optimization, to

decide when the extra cost of evaluating the Corner Taylor Form is worth it or not.
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4.9.2 Convergence Properties

Next we investigate the convergence properties of the excess width of Corner Taylor Forms with

real coefficients.

Theorem 4.9.2. Let p(x) be a multivariate polynomial. The excess width of the Corner Taylor

FormT.(p) (X ) has quadratic order or better when the width®fgoes to zero.

Proof:
Once again we prove the result for the case IRY" so that ¢ X) = X .

We begin by noticing that the excess width of an inclusion funciigp) has two compo-
nents, the upper excess width and the lower excess width, each of which is the minimum of the
difference between all possible values of the functidy) and the upper and lower bounds of
J(p) respectively, as follows:

AW(I(p)(x)) =  min{p(y)—inf(J(p)(X))}

yE X

+min{sup(J(p) (X)) —p(y)}-

yex
Consider the upper excess width of the Corner Taylor Form:
min  {p(y) —inf(Tc(p) (X))}
= min{ (Pojx (¥) = Pepx () = (e (%) = Py (X)) }
= min{ (o) x (¥) = Pajx (X)) = (Pojx (V) = Pejx (X)) }-

Since the minimum of the above expression is taken over all valugg df , its value has to be

smaller than or equal to the value of the expression at any particular values. We choose two such



valuesy = x andy = X:
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W(p@\x(X))

By definition, the terms of the posynomigls | x andp.x are mutually exclusive, i.e. only

one of them has nonzero coefficient of multi-indext herefore, the lowest degree term of one

of these two posynomials must be of quadratic (or higher) degree, so the upper excess width of

the Corner Taylor Form

must also have quadratic (or higher) order of convergence as well. The

fact that the posynomials.| x andp_y are expressed in terms 0k — x )—an interval vector

containing zero—implies that the convergence rate depends only on the width of the interval

vector X and is independent of its magnitude.

The proof for the lower excess width follows along the same lines.
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4.10 Examples and Results

Consider the polynomigh(x) and the following expressions associated with it:

MacLaurin(p) (X) = x%>—X,
Taylor(p,1.5)(x) = (x—1.5)242(x—1.5)+0.75,
Taylor(p,1) (x) = (x—1)24+(x—1).

It is easy to check that the range pbver the intervall, 2] is:

R(p) ([172]) = [0? 2} .

The interval extensions corresponding to each of the above expressions produce the different
results when evaluated over the same interval. The natural extension, corresponding to the first

expression above, evaluates as follows:

N(p)([1,2]) = MacLaurin(p)([1,2])
= [1) 2]2 - [1’ 2]
= [1,4-[1,2

= [-13
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The Midpoint Taylor Form, corresponding to the second expression above, evaluates as follows:

Tm(p)([1,2])) = Taylor(p,1.5)([1,2])
= ([1,2]-15)2+2([1,2] - 1,5)+0.75
= [-0.5,0.5°+2[-0.5,0.5/+0.75
= [0,0.25+[-1,1]+0.75
= [-0.2572]

Finally, the Corner Taylor Form, corresponding to the third expression above, evaluates as fol-

lows:
Te(p)([1,2]) = Taylor(p,1)([1,2])

= (1L2-1%+(12 -1
= [0,2)%+][0,1]
= [0,1]+10,1]

= [0,2]

In this example, the Midpoint Taylor Form produced slightly worse bounds that the corre-
sponding Corner Taylor Form. Both inclusion functions produced significantly better bounds
than those produced by the natural extension. However, this is not a consistent behavior. While
the Corner Taylor Form is guaranteed to always have less excess width than the natural exten-

sion, the same is not true of the Midpoint Taylor Form. To illustrate this behavior consider the
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fourth order polynomiatj(x) and the following expressions:
MacLaurin(g) (x) =  x*—x3— 12 —4x+16
Taylor(q,0.1)(x) =  (x—0.1)*—0.6(x—0.1)3—12.24(x— 0.1)?
—6.426(x—0.1) + 154791
Taylor(gq,10.1)(x) =  (x—10.1)*+39.4(x—10.1)®>+56976(x — 10.1)?
+3568774(x—10.1) + 81272191

The range ofy on the interval0.1,20.1] is:

R(g)([0.1,201]) = [-50.1944150191

Evaluation of the associated inclusion functions on the same interval produces the following

results:
N(g)([0.1,201]) = MaclLaurin(q)([0.1,20.1]) = [-130331,163240
Tm(q) (0.1,201]) = Taylor(q,10.1)([0.1,20.1]) = [—669605,150191
T:(9)([0.1,201]) = Taylor(q,0.1)([0.1,201]) = [-980904,160015%

Comparing the widths of the ranges computed by the various inclusion functions we see that

the Corner Taylor Form returns the tightest bounds:

w(R(q)([0.1,20.1]))

w([-50194415019]) = 150241
w(N(q)([0.1,201])) = w([-130331,163240) = 176273
W(Tm(q) ([0.1,201])) = w([-669605,150191) = 217151

W(T:(q)([0.1,201))) = w([-980904,160015) = 169825



Notice that in this case the Midpoint Taylor Form produced bounds that are significantly
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worse than both the Corner Taylor Form and the natural extension.

Evaluation on the intervdb, 15] returns similar results. The relevant expressions are:

Taylor(g,5)(x) = (x—5)*—19(x—5)%—123x—5)?>—301(x—5)+196

Taylor(g,10)(x) = (x—10)*+39(x — 10)%+558x — 10)?+ 3456 x — 10) + 7776

R(9)([5,19)

and the computed bounds are:

N(a) ([5,19))
Tm(a) ([5,19))

Te(9)([5,19)

w(R(q)([5,19))
w(N(q)([5,19)))
W (Tm(q) (5,19)))

w(Te(a) ([5,19))

If the above evaluations were performed as part of a root searching algorithm we notice that
only the Corner Taylor Form correctly shows that no roots &€ in the interval[5, 15|, while

the midpoint form and the natural extension require additional subdivisions to reach to the same

conclusion.

[196,44506,

MacLaurin(q) ([5,15])
Taylor(q, 10) ([5,15])

Taylor(q,5) ([5,19])

w ([196,44508)
w (|—549450196)
w ([—1437944508)

w ([196,44508)

[~5494 50196
(1437944506

[196,44506

44310
55690
58885

44310
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The same results are obtained with multivariate polynomials as illustrated beloW: (kef)

be the following fifth order MacLaurin power series:

f*(x,y) = MacLaurin“>°> (cos Xsin 3y + sin &cos 3 — cos Xcos 3+ sinXsin ) .

The polynomialf* has the following MacLaurin expression:

MacLaurin(f*) (x,y) = — 1 + 3 x + 2 x
— 45 x3 - 0666 x* 4+ 2025 x°
+ 3y + 6 xy — 6 x¥

- 9 Xy + 2 Xy 4+ 405 xy

+ 45 ¥ — 6 x¥ - 9 xi?
+ 9 Xy + 3 Xy — 405 x¥
— 45 ¥ - 4 x + 9 X
+ 6 XXy - 3 X - 27 X5

- 3375y + 2 xy¥ 4+ 675 x¥
— 3 3yt — 225 X 4+ 135 X3y
+ 2025 y° + 08 xy° — 405 x3°

— 12 X3y + 135 x% 4+ 054 X3
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If we evaluate the associated inclusion functions on the inté2val x [2,4] we get:

N(f*)([2,4],[2,4) = MacLaurin(f*)([2,4],[2,4]) = [-63648004,1.377x 10°|
Tm(f9)([2,4],[2,4) = Taylor(f*,3)([2,4],[2,4]) = [-364056494616
To(F)(12,4],12,4) = Taylor(f*,2)([2,4],[2,4]) = [184493718598

wW(N(f*)(12,4],12,4))) = w([-63648004,1.377x1F]) = 2.014x 10
W(Tm(F)([2,4],12,4])) = w ([—364056494616) — 858673

w(Tc(F*)([2,4],[2,4])) = w ([184.493 718598) = 718414

The comparative efficiency of the three inclusion functions is illustrated by the solution sets
computed with a binary search algorithm. Note that the algorithm converges very slowly when
the natural inclusion function is used, see fiure 4.5. The Corner Taylor Form inclusion function
allows the algorithm to discard fairly large regions early in the search process, seq figure 4.7,

even when compared to the similarly converging Midpoint Taylor Form, see figyre 4.6.
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Figure 4.5: Regions in gray indicate possible roots of the fifth order Taylor multinomial
MacLaurin=>°> (cos Xsin 3y + sin xcos 3/ — cos Xcos 3/ +sinXsin2y) = 0 computed using

the natural inclusion function. The search process converges very slowly due to the large excess
width of the natural inclusion function, retaining many superfluous solution regions. The quality
factor is only 0.0571.
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Figure 4.6: Roots of the same multinomial as in figuré 4.5 computed using the Midpoint Taylor
Form inclusion function. The search process converges quickly once the size of the regions fall
under a certain threshold. There is still a fair amount of work being done to eliminate regions
where there are no roots as shown, for example, in the upper right corner. Several subdivisions
are needed before the region can be declared root free. The quality factor is 0.8997. Compare

with figure[4.7.
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Figure 4.7: Roots of the same multinomial as in figlire$ 4.5 arjd 4.6 computed using the Corner
Taylor Form inclusion functionJ¢(f). Notice that the Corner Taylor Form is more accurate
than the Midpoint Taylor Form for large input regions. The region in the upper right corner is
declared root free very early in the subdivision process. The quality factor is 0.8821. Compare

with figure[4.6.
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Figure 4.8: Plot of the solution regions produced by divide and conquer with Midpoint Taylor
Forms on larger domains. The domain[is100,100°. The algorithm found 4,950 solution
regions in 36,899 iterations which took 514.765 seconds (Mathematica 5 time). Note that there
is a considerable amount of work being done away from the solutions. Compare witH figure 4.9.
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Figure 4.9: Plot of the solution regions produced by divide and conquer with Corner Taylor
Forms on larger domains. The domain[is100,100°. The algorithm found 5,008 solution
regions in 26,115 iterations which took 319.266 seconds (Mathematica 5 time). Away from
where solutions are the algorithm eliminates regions at the maximum speed possible with binary
subdivision. Compare with figufe 4.8.
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Figure 4.10: Plot of the solution regions produced by divide and conquer with Midpoint Taylor
Forms on larger domains for a different function. The domain-g0, 20]2. The algorithm
finished in 1,099 iterations which took 5.016 seconds (Mathematica 5 time). Compare with

figure[4.1].
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Figure 4.11: Plot of the solution regions produced by divide and conquer with Midpoint Tay-
lor Forms on larger domains for a different function. The domainr-20, 20]2. The algorithm
finished in 543 iterations which took 2.531 seconds (Mathematica 5 time). Compare with fig-

ure[4.10.
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Figure 4.12: Plot of the solution regions produced by divide and conquer with Midpoint Taylor
Forms on even larger domains. The domain is increasge-200Q2000°. The algorithm
finished in 4,503 iterations which took 21.093 seconds (Mathematica 5 time). Compare with

figure[4.T3.
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Figure 4.13: Plot of the solution regions produced by divide and conquer with Midpoint Taylor
Forms on even larger domains. The domain is increaséd 26000 200G%. The algorithm fin-

ished in 827 iterations which took 3.875 seconds (Mathematica 5 time). Once again we observe
the fastest possible convergence of binary subdivision. Compare with[figufe 4.12.
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Chapter 5

Remainder Interval Newton Methods

In this chapter we develop the second contribution of the thesifRéneainder Interval Newton
method for nonlinear equations (RIN). We show that RIN methods are more effective in isolat-
ing solution regions than conventional Interval Newton methods (IN). For single equations RIN
requires order of the square root as many steps as IN. For square systems, RIN is able to isolate
solutions much faster than conventional IN does and is therefore more efficient overall.

Although RIN algorithms have slightly different forms for solving single equations and

square systems, they follow the general outline below:

1. Selection: Pick the next candidate region from the list of regions to be investigated for

solutions,
2. Linearization: Linearize the function over the candidate region,

3. Solve Linearized Problem (Crop): Yield a smaller, “cropped” region that is a tighter
enclosure for the solution set. If the cropped region is the empty set there are no solutions

anywhere inside our candidate region thus we skip to step 6,

4. Test: If the cropped region satisfies the termination criteria then add it to the solution set

and skip to step 6,

5. Subdivide: (optional) If required, subdivide the cropped candidate region and add the

subregions to the list of regions to be investigated for solutions,

6. Repeat Until Search Is Exhausted.
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The above generalized algorithm is similar to other Interval Newton algorithms based on
subdivision and cropping. The differences show up in the way RIN performs linearization and
subdivision. Unlike conventional Interval Newton, RIN linearization produces systems of linear
equations with real coefficients which can be solved with simple interval versions of any of the
conventional methods: matrix inversion, Gauss elimination, Gauss-Seidel, etc. In contrast, IN
requires finding solutions of linear equations/systems with interval coefficients which are slower
to converge in the large.

Furthermore, RIN subdivision methods take advantage of the special linearization to produce
solution aligned subdivisiorend improve efficiency. Finally, the linearizations themselves con-
form to non-point solution regions much better than axis aligned boxes. This allows RIN to cover
the solution set with much fewer solution regions. The combination of all these optimizations
yields speed-ups of the order of the square root—both in the number of steps as well as in the
number of solution regions returned which means a smaller memory footprint—when compared

to conventional IN and divide and conquer search methods.

5.1 The RIN Algorithm for Roots of Multivariate Nonlinear Equa-

tions

Let us begin by investigating the problem of finding all the zeroes of a multivariate nonlinear
equation:

f(x) =0, (5.1)

wheref : d CR" — R. The RIN algorithm for solving this type of problem is shown in fig-
ure[5.].

The algorithm performs depth firstsearch of the domainl and locates all solution subre-
gions. If only one solution is needed the algorithm can be terminated as soon as the first solution
region is located.

We chose the following termination criterion: a candidate region is declared a solution region

if the range off over the candidate region contains zero and:
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RINSolveEquation (
in f: function whose solutions we are seeking
in d: domain interval
in & maximum size of a solution interval
in €¢: maximum width of the linearized solution
out S¢: [empty] interval covering of the solutions of f in

feX

)
{

createstack [empty] stack of subintervals to be examined,;
put d onstack
while ( stackis not empty ) do
{
pop X from stack
/I linearize f on X
/I T --- interval remainder
RINLinearizeEquation (in f,in X, c, outdf (c), out T );
/I estimate the range of f on X
computey =J(f)(X);
if (0evy)
/I there could be solutions in

{

X

RINCroquuatlon(m Df in T, c,infout X );

if( (X)<g&oOr ——— ]Df <€f>
append X to Se;
else
{
RINSubdivideEquation (in Of (c), in T, in X, out subdivisionList);
foreach X in subdivisionList
{
RINCropEquation (in Of (c), in ,in/out X;);
if ( Xiis notempty)
put X; on stack
}

}
}
}

return; // search is exhausted

}

Figure 5.1: The Remainder Interval Newton algorithm for solving a single nonlinear equation.
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1. The width of the candidate region is less than a used specified threshotd

2. The width of the solution set linearization inside the candidate interval is less than another

user specified threshod.

The second criterion will become clear after we define the linearization process in the next sec-

tion.

5.1.1 Linearization

We linearize equatiop 5.1 by computing a first order Taylor expansion with interval Lagrange
remainder—hence the name Remainder Interval Newton. This type of Taylor expansions are
known as first order Taylor Models, cf. Befz [Berz and Haftr 1998].

If fisasin equatio@, X is a sub-interval vector of the interval domadh andc is a real

vector in X, the following derivation holds for at € X:

(0 = (©+Y S ©@-a)+Y Y
(5.2)

whereH f (€) is the Hessian of evaluated af € [[x,c]] C X. We lineariz¢ 52 by replacing
andx with the interval vectorx :
f(x)ef(c)+(x—c)-0f (C)+(X —cHF(X)(X —0) . (5.3)

If we reorganiz¢ 5]3 by moving the constant tefift) at the end we get:

f(x) € (x—0)-0f () + (X —oHF (X)(X —¢)" +f(c),

and the short form of the interval linearization is:

f(x)eLi(X)=(x—c)-Of(c)+T.
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RINLinearizeEquation (

in f: function to be linearized
in X: interval over which to linearize f
in c: linearization point (inside X)
out Of (c): gradient of f
out r: remainder interval
)
{
/[ compute the linear Taylor Model approximation of f:

computedf (c) atce X;
compute T = (X —C)Hf (X) (X —c)" + f (c);
return Of (c), T;

}

Figure 5.2: The Remainder Interval Newton linearization algorithm for solving a single nonlinear
equation.

Let S be the solution set of the linear equation:
Lf (X) = 0, (5.4)

over the intervalx € d. The solution se§_is comprised of all points between the lines implic-

itly defined by the following equations:

Li(x) = (x—c)-Of(c)+r = 0

Li(x) = (x—c)-Of(c)+1 = 0.

An example for a two dimensional functidn: R? — R is shown in figuré 5]3.
It is easy to see that the solution $k0f equatiorf 5.]1 is always a subset of any solution set
S of the type defined above. Therefore, an interval covering of the solutich $ealso a valid

covering forS,
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X

Figure 5.3: An example of a solution set of the linearized equétign 5.4. The red curve repre-
sents the actual solution of equat[on|5.1 inside the interval vectofhe grayed are§_is the
linearized solution.

5.1.2 Cropping

The solution se§_ of the linearized equatidn 5.4 can intersect the intefah several ways,
some of which are shown in figure 5.4.

Cropping—also referred to as (linear) tightening—is the process of computing the interval
convex hull of the solutioi§_ of the linearized equatign .4 over an inter¥al As we saw in the
previous section, cropping does not lose any of the solutions of the original nonlinear equation.

A nice property of the RIN linearization is the fact that cropping can be done in closed form
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S = [S1] = empty

[S;]

[ ]
[ ]

[S;]

[S;]

[
[

[
[

Figure 5.4: Several ways in which the linearized solutrcan intersect an intervat . [[S_]]
is the interval convex hull of the intersection.
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RINCropEquation (

in Of (c): gradient of the function whose solutions
we are seeking

in T: remainder interval

inc: linearization point (inside X)

infout X: interval to be cropped

)
{

/I solve the linear equation:
/I Of(c)-x+1=0
/I over the interval X.

computeR (L) (X) = T +(X —¢)-Of (c);
foreach componentx; of X
_ of =
R(Lf)(x)@af)q(C)(X. Gi)
ComputeXi:Xiﬁ Ci— af )
ax ©
return X;
}

Figure 5.5: The Remainder Interval Newton cropping algorithm for solving a single nonlinear
equation.

and independently in each dimension using the following formulas:

= of -
T +i;a—)q((ck)(>,<k—ck)

of
aTq(Ci)

[S]i=xin]|c-

i=1.n

Efficient component-wise evaluation of the cropping formulas can be done usirigvree

interval minusoperation. Let the range &f (x) be:

R(Lt)(X)=TF+(X —c)-Of(c).
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Then the cropping formula becomes:

R(Le) (X)o7 (ci) (X —¢i)
[S]i=xin|c—

aT(i ( i=1.n
which no longer requires computing the sum for each component. We introduce some simplify-
ing notation:

R(“)(X){@,i} = R(Lf)(X)GZ)z(Ci)(Xi -G,

R(LO)(R)poryy = R<Lf><x>e§,z<ci><xi—ci>ejxfj(c»(x,——cj).

With the above notation, the cropping formula is:

R(LH)(X) o
of ’
aT(i(Ci) i=1.n

[Sli=xin|c-

The next theorem proves that the order in which the components of the intervgl &ull
are computed is irrelevant and the same result (excluding any roundoff errors) is produced for all

permutations.

Theorem 5.1.1.Let f: R" — R be twice differentiable over the interval vectar. For any

arbitrary pair of indices j j < n, i # j, define the cropped intervalg; and X as:

R(Le) (K)o R(Lt) (X)),
2t = 5,0 | 6 - 2L Biei ;)f(){@"} 1= %N c,-f—( ;)f(){&’”
aTq(Ci) aT(j(Cj)

Furthermore, definex ™ as:




100
Xi* is different fromX; in that it is cropped using the croppexi; in place of the originalX ;.

Then:

1>
I
1>

Proof:

The following chain of derivations holds:

i R(L$)(X)m

M enxi—c) = Pey|x,—en| -2 Een

OXj 0X; )
an !

of of  R(Le) (X))
= (an(Cj)(Xj—Cj))ﬂ —an(Cj)( ;)f(xc);”
6Xj )

—

= <§):j(cj>(xj —Cj)> N <_:R(Lf)(X){@,j}>

If we use the above to rewrite the fraction in the expressioRr;dfwe can derive the follow-
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ing:
= of
R(Lf)(l){e,i,jﬁ'&(cj)(xj—CJ)
of -
67xi(ci)
R(Lf)(x){eu}JF((gX]:(CJ)(Xj—Cj)>ﬂ(—fR(Lf)(X){aj})>
- af
Tm(c')
= of _ _ -
(R<Lf><x>{@.,}+ax<cJ><x,-—c,->)n(R(Ln<x>{@,i,,-}eﬂuLf)(x){@,j})
- of
67xi(c')
R(L1) (%) (- 5y @) (x,-0)
- of
aTq('>
R(Lt) (X))o ~
B TETEV
aXi(Ci)
Then, X;* is equal to:
Xi* = XN|¢ R(L:a)f(X){@I}ﬂ(Ci Xi)
aT(i(Ci)
_ xin CI_SQ(L(;)f(X‘){@.} nx,
?(c.)
= x;,

which proves our theorend. ]

Thus, the RIN cropping formula computes the interval hulBSpfexactly—up to roundoff
errors. Note that the cropping operation is usually much cheaper than the computation of a new

linearization. We will make use of this fact in our subdivision strategy, which is described in the
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next section.

5.1.3 Subdivision

Although cropping can sometimes reduce the size of the interval significantly, often times the
reduction is small, and sometimes there is no reduction at all. The bottom two examples in
figure[5.4 illustrate this case. We notice, however, that the area of the linearized s§utson
usually much smaller than the area of the interval, such as in the bottom left example in the same
figure. The bottom right example occurs only whens large and the remainder is large as well.

As the size of the interval decreases through subdivision the remainder decreases with quadratic

order and becomes very small very quickly, see setion|5.1.4.

RINSubdivideEquation (
in Of (c): gradient of the function whose solutions
we are seeking
in remainder interval
in interval to be cropped
out subdivisidigtisdf subintervals of

X 1=
X

)
{

/I subdivide X with the gradient of f
. . . f
compute indexi corresponding tomax <xi a— (c)) :

computesubdivSize= M;

of
ax © -
L W (X :
computenumSubdivisions Max (2, subdivSiz; ;

subdivide X into numSubdivisionsubintervals alongith dimension
add the subintervals tosubdivisionList
return subdivisionList

}

Figure 5.6: The Remainder Interval Newton subdivision algorithm for solving a single nonlinear
equation.

The subdivision algorithm shown in figure b.6 allows us to crop away much of the area of

the interval hull[[ §_]] outside of the linearized solutidh . The key steps are as follows:
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1. Subdivision Axis Selection:Choose thé!" coordinate axis to subdivide along.

2. Subdivision: Subdivide[[ §_]] into n subintervals along thid" component.

3. Crop Each Subdivision: Each subinterval is cropped using the same linearization.
4. Return the List of Subintervals.

There are many different ways to choose the subdivision axis and the number of subdivisions,
depending on the desired characteristics of the final interval covering of the solution. If we desire
a covering with the smallest number of intervals then the following criteria for selection produce

good results:

e Subdivision Axis Selection:k is the coordinate axis closest to perpendicular to the gra-
dient of f. This particular choice ensures the maximum reduction of the remainder in the

following linearization step. Thus corresponds to the maximum

max( 2 (©)).

e Subdivision: The number of subdivisions is chosen such that the size of the subintervals

produced is almost equal to but less than the size of the linearized sdutiong thek!"

n= max<2,w(xi) of (c)> :

w(r) ox

coordinate axis:

wheren has to be at least two.

The subdivision process is illustrated graphically in fiqure $.1.3. The top left image shows a
typical configuration. The top right image shows the subintervals generated after the subdivision
step. The bottom left image shows the cropped subintervals. Finally, the bottom right image
shows the cropped subintervals and the newly recomputed linearizations. Note the accelerated
convergence.

Most interval root finding algorithms employ termination criteria based on the size of the

subdivided boxes. RIN methods can use the same criteria. However, they can also use the width
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B

X3

X

X

The RIN subdivision processTop left image:a typical configuration.Top right image: the
subintervals generated after the subdivision st&pttom left imagethe cropped subintervals.

Bottom right imagethe cropped subintervals and the newly recomputed linearizations. Note the
accelerated convergence.

of the linearized solutior§. as a termination criterion, since the polygon representing it can

easily be computed in closed form.
A simple analysis shows that the number of rectangular boxes of widéeded to tile a

curve of lengthl is of order O (L). The same curve requires only ordgro(&';) linearized
solution regions of widtle. The same reduction in order occurs in more than two dimensions.

The examples shown in sectipbn}5.5 confirm that significant savings do occur in practice.

5.1.4 Convergence of the RIN Algorithm

In this section we show that the width of the cropped and subdivided intervals decreases with

guadratic order of convergence.
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The RIN remainder of a functiof over an interval vectok was defined as:
T =(X-0Hf(X)(X—¢) +f(c)

Thus, the width of the remainder is:

and the order is:

The width of the remainder is quadratic with respect to the width of the interval regiofhe
subdivision algorithm produces intervals of width proportional to the width of the remainder, thus
the size of the subdivided intervals; is also quadratic with respect to the size of the original
interval X . Therefore, the RIN algorithm has quadratic order of convergence to the solution set

S

5.2 The RIN Algorithm for Roots of Square Systems of Nonlinear

Equations
We now consider the problem of finding all the zeroes of a square nonlinear system of the form:
f(x) =0, (5.5)

wheref : d C R" — R". The RIN algorithm for solving this type of problem is shown in fig-
ure[5.T.
5.2.1 Linearization

Each equation of the system is linearized using the methods presented in the previous sections.

Of course, the collection of gradients is the Jacobiaf) ahd the interval remainder is now a
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RINSolveSquareSystem (

in f: vector of functions whose solutions we are seeking

in d: domain interval

in € maximum size of a solution interval

inJ(-): interval extension operator

out S¢: [empty] interval covering of the solutions of fin d
)
{

createstack [ {d}] stack of subintervals to be examined;
while ( stackis not empty ) do
{

pop X from stack

setshrunk= True

while (' shrunk) do

{ Il Ji(c) - Jacobian of f evaluated at c

/I T - interval remainder

RINLinearizeSystem (inf, in X, ¢, outJs(c),out r ); // linearize f
computey =(;J(fi) (X); // estimate the ranges of fi on X
if (Oe y )
{ /I there could be solutions in X

if (w(X)<e)

append X to S¢; // found a solution
else
{

RINCropSquareSystem (inJs(c), in T, ¢, infout X, infout shrunk);

if ( shrunk== False)

{
RINTightenSystem (inJ:(c), in T, c, infout X ); // optional
BinarySubdivide (in X, out X1, out X»);
put X1 onstack
put X, onstack

¥

}
}
¥
¥

return; // search is exhausted

}

Figure 5.7. The Remainder Interval Newton algorithm for solving square systems of nonlinear
equations.
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RINLinearizeSystem (

in f: functions to be linearized
in X: interval over which to linearize f
inc: linearization point (inside X)
inJ(-): interval extension operator
out J;(c): Jacobian of f evaluated at c
outr: vector of remainder intervals
)
{
foreach component f of f
{
/I compute the linear Taylor Model approximation of fi:

computefi (c) atc e X;
computer; =7 ((x —C)Hf; (x) (x — c)T> (X)+fi(c);

}

return Js(c), T;

}

Figure 5.8: The Remainder Interval Newton linearization algorithm for solving square systems
of nonlinear equations.

vector of intervals witm components:

f(X) eLi(X)=Ji(c)-(x—C)+T.

Note that the Jacobian is a real valued matrix.The pseudocode for the linearization algorithm
is shown in figuré 5]8.

As before, the solution s&of the original systern 5|5 is a subset of the solutiorSsetf the
linearization defined above. Therefore, an interval covering of the solutidh $&etlso a valid

covering forS.

5.2.2 Cropping

Let A= Js(c). Then, the cropping formulas are:
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RINCropSquareSystem (

in Js (c): Jacobian of f evaluated at c

in T: remainder interval

inc: linearization point (inside X)

infout X: interval to be cropped

infout shrunktrue if X shrunk, i.e. isolated a solution
)
{

/I solve the linear system:

N Jic)-(x—c)T=-1"

/l over the interval X.
setA=Ji(c); /I matrix of the system
compute x*=c—ALl.rT;
computeshrunk= (X* C X);
setX = XN X~

return X, shrunk

}

Figure 5.9: The Remainder Interval Newton cropping algorithm for solving square systems of
nonlinear equations.

and:

*

[s]]=

X

N

X

If X* C X then there is at most one solutionfoihside X, a property similar to conventional

Interval Newton. The cropping algorithm is shown in figureg 5.9.

5.2.3 Tightening

Tightening is an optional step. We found tightening to be a worthwhile optimization (both for
RIN and conventional IN) as it often reduces running time by a significant percentage, see sec-
tion[5.5.
The RIN tightening algorithm is shown in figure 5/10. It is nothing more than successive
cropping of each individual equation in the system by the algorithm discussed in secti¢n 5.1.2.
Of course, if the cropping method presented in the previous section is successful at reducing

the size ofX there is no need to perform tightening.
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RINTightenSystem (

in Js (c): Jacobian of f evaluated at c
inr: remainder interval
inc: linearization point (inside X)
infout X: interval to be cropped

)

{

/Il solve the linear system:
I Jic)-(x—¢)T=-1"
/I over the interval X.
foreach component f of f
RINCropEquation (in Of; (c), in T;, ¢, infout X 1) );
return X;

}

Figure 5.10: The Remainder Interval Newton tightening algorithm for solving square systems of
nonlinear equations.

5.3 RIN vs. Martin Berz’'s Inversion

Martin Berz proposed a method that computes a Taylor Model of high degree of the inverse
of a square system, see [Berz and Hoefkens 2001]. This inverse can then be evaluated at O to
obtain an inclusion of the solution set of the original system. However, Taylor Model inversion

is limited to square systems while RIN is not. Of course, the system must be invertible in over
the region considered, so solutions must first be isolated by some other means. lIsolating the
solutions is probably the difficult part of solving systems in the first place.

In addition, RIN is much easier to implement and use and has lower costs per iteration.

5.4 RIN vs. Makino and Berz's LDB

The Linearly Dominated BoundefLDB) was proposed by Makino and Berz as a method for
computing tight inclusion functions over a given interval, see [Makino and BerZz 2003]. The
method is in effect performing a simplified optimization procedure to isolate the maxima and
minima of the function in a given interval.

Some of the cropping formulas used by RIN are similar to formulas used by LDB. How-
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ever, LDB has not been described as a method for isolating zeroes of functions, but only as a
method for improving upper and lower bound estimates of the range. Moreover, RIN provides
a special subdivision method that is vital in ensuring quadratic convergence in the presence of
non-point solutions. Without this subdivision method convergence is much slower as shown by
the following illustrations.
LDB is useful when very accurate bounds on a fixed interval are needed. Its usefulness

diminishes when the bounds are only used as part of a root solving or optimization algorithm.

5.5 Examples and Performance

In this section we give some examples and compare the performance of RIN with other state of

the art methods, particularly conventional Interval Newton.

5.5.1 Polynomial Equations

We evaluate the Remainder Interval Newton method on the following bivariate function:
f(x,y) = cosX(sin2y+cos3/) + cosX(sin3y—cosJ).

For simplicity of implementation, we replacédvith its 5th order bivariate Taylor expansion
f* around the pointl,1) whose expression was given in sec.lO.

The solution set of the equatioft (x,y) = O restricted to the intervgl-1t 10 x [—T0 17 IS
shown in figuré 5.711.

We compared the performance of seven solution algorithms:

1. Divide and Conquer with Natural Extensions: The most basic interval solution method

using binary subdivision and naive interval evaluations.

2. Divide and Conquer with Taylor Form Interval Extensions: Binary subdivision with

Taylor Forms (centered form) interval evaluation for the range.
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3. Divide and Conquer with Corner Form Interval Extensions: Same as above but using

Corner Taylor Forms.

4. Interval Newton with Taylor Form Interval Extensions: Binary subdivision with Inter-

val Newton cropping and Taylor Form range evaluation.

5. Remainder Interval Newton with Binary Subdivision: RIN with Corner Forms and

binary subdivision - the subdivision scheme described in selction 5.1.3 was not used.

6. RIN with Special Subdivision: Uses the subdivision scheme described in se¢tion]5.1.3.

All solutions are axis aligned boxes.

7. RIN with Non-Box Solutions: Same as above but solutions are polygons representing the

linearized solution regions.

Graphs for the number of iterations required (see figure] 5.12), the CPU time required (see fig-
ure[5.13B), and the number of solution regions produced (see figuie 5.14), are shown.

Finally, plots of the solution regions computed by algorithms 1, 2, 3, 4, and 7 are shown in

figured 5.1p through 5.23.

5.5.2 Polynomial Systems

To evaluate the performance of the RIN method for square systems we use the system of poly-

{ pxy) = 0
qxy) = 0
where p(x,y) = (X + 2.5)(x+ 1.5)(x+ 0.5)(x — 0.5)(x — 1.5)(x — 2.5)(y + 2.5)(y + 1.5)(y +

0.5)(y—0.5)(y—1.5)(y—2.5) andq(x,y) = (X+ 3)(x+ 2)(x+ 1)(X)(x— 1)(x— 2)(x — 3)(y +
3)(y+2)(y+ 1)) (y—1)(y-2)(y-3).

We compare the performance of four solution algorithms:

nomial equations below:

1. Interval Newton: Interval Newton without tightening. Uses Taylor Forms for range eval-

uation.
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2. Interval Newton with Tightening: Interval Newton with tightening and Taylor Forms for

range evaluation.

3. Remainder Interval Newton: RIN without tightening. Uses Taylor Forms for range

evaluation.

4. Remainder Interval Newton with Tightening: RIN with tightening and Taylor Forms

for range evaluation.

Plots of the solution regions computed by each method are shown in flgures 5.24 through
[5.27. Note that RIN with tightening is the fastest method.
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-316 ]
-3 -2 -1 0 1 2 3

Figure 5.11: The solution set of the 5th order bivariate Taylor expansion around the point

(1,1) of the functionf(x,y) = cos X(sin2y+ cos %) + cos X(sin3y — cos ) inside the inter-

val [-1, 1] x [—17]. The curves are computed with RIN and are composed of 3,541 linearized

solution regions of width at most2°.
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1T

Figure 5.15: Plot of the solution regions produced by Divide and Conquer with Naive Natural
Extension. The solution box width is less tharf 2The algorithm found 12,407 solution regions

in 29,105 iterations which took 84.281 seconds (Mathematica 5 time). Note that it would have
taken considerably more time to produce the same level of solution separation that was possible
using the more advanced methods shown on the following pages.
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Figure 5.16: Plot of the solution regions produced by Divide and Conquer with Midpoint Taylor
Forms. The solution box width is less than*2 The algorithm found 788 solution regions in
4,951 iterations which took 63.016 seconds (Mathematica 5 time).
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Figure 5.17: Plot of the solution regions produced by Divide and Conquer with Corner Taylor
Forms. The solution box width is less than*2 The algorithm found 807 solution regions in
4,841 iterations which took 61.312 seconds (Mathematica 5 time).
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Figure 5.18: Plot of the solution regions produced by the Interval Newton method with Midpoint
Taylor Forms. The solution box width is less than®2 The algorithm found 1,557 solution
regions in 5,067 iterations which took 67.656 seconds (Mathematica 5 time).
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Figure 5.19: Plot of the solution regions produced by the RIN method with Midpoint Taylor
Forms and binary subdivision (not using our special subdivision). The linearized solution width
is less than 2°. The algorithm found 947 solution regions in 3,039 iterations which took 69.64
seconds (Mathematica 5 time).
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Figure 5.20: Plot of the solution regions produced by the RIN method with Midpoint Taylor
Forms and RIN subdivision. The linearized solution width is less th&n Phe algorithm found
588 solution regions in 2,382 iterations which took 43.328 seconds (Mathematica 5 time).
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Figure 5.21: Plot of the solution regions produced by the RIN method with Midpoint Taylor
Forms, RIN subdivision, and non-box solutions. The linearized solution width is less tRan 2
The algorithm found 353 solution regions in 1,836 iterations which took 26.469 seconds (Math-
ematica 5 time).
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Figure 5.22: Plot of the solution regions produced by the RIN method with Corner Taylor Forms,
RIN subdivision, and non-box solutions. The linearized solution width is less thariThe al-
gorithm found 605 solution regions in 2,982 iterations which took 39.469 seconds (Mathematica
5 time).
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Figure 5.23: Plot of the solution regions produced by the RIN method with Corner and Midpoint
Taylor Forms (switch from CTF to MTF when intervals have width less than 1), RIN subdivision,
and non-box solutions. The linearized solution width is less th&n Phe algorithm found 353
solution regions in 1,704 iterations which took 25.197 seconds (Mathematica 5 time).
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Figure 5.24: Interval Newton without tightening. Solutions of the system of polynomial§ 5.5.2
over[—rt,njz. Solution interval width is less tharm2. The algorithm found 96 solution regions
in 1,939 iterations which took 72.8 seconds (Mathematica 5, P4@3.06GHz.)
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Figure 5.25: Interval Newton with tightening. Solutions of the system of polynofnialg 5.5.2 over
[—m, 182, Solution interval width is less tharr2. The algorithm found 96 solution regions in
1,651 iterations which took 63.5 seconds (Mathematica 5, P4@3.06GHz.)
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Figure 5.26: Remainder Interval Newton without tightening. Solutions of the system of poly-
nomial ove[—Tt, T[]Z. Solution interval width is less tharr2. The algorithm found 96
solution regions in 1,403 iterations which took 46.3 seconds (Mathematica 5, P4@3.06GHz.)
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Figure 5.27: Remainder Interval Newton with tightening. Solutions of the system of polynomi-
als 5.5.]2 ove[—n,n]z. Solution interval width is less tharm2. The algorithm found 96 solution
regions in 1,027 iterations which took 34.6 seconds (Mathematica 5, P4@3.06GHz.)
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over [—2m,2r§%. Solution interval width is less than 2. The algorithm found 96 solution
regions in 4,067 iterations which took 157.125 seconds (Mathematica 5, P4@3.06GHz.)
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Figure 5.29: Interval Newton with tightening. Solutions of the system of polynofnialg 5.5.2 over
[—2m, 21'@2. Solution interval width is less tharm2. The algorithm found 96 solution regions in
3,331 iterations which took 129.75 seconds (Mathematica 5, P4@3.06GHz.)
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Figure 5.30: Remainder Interval Newton without tightening. Solutions of the system of polyno-
mials ovef—2m, 2m%. Solution interval width is less tham2. The algorithm found 96
solution regions in 2,787 iterations which took 95.687 seconds (Mathematica 5, P4A@3.06GHz.)
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Figure 5.31: Remainder Interval Newton with tightening. Solutions of the system of polyno-
mials ovef—2r, 2m%. Solution interval width is less tham2. The algorithm found 96
solution regions in 2,099 iterations which took 71.891 seconds (Mathematica 5, P4A@3.06GHz.)
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Chapter 6

An Application: Beam Tracing for
Implicit Surfaces

In this chapter we present an application of the methods introduced in the previous chapters to a

computer graphics problem: reliable beam tracing of implicit surfaces.

6.1 Introduction

Over the past 20 years, ray tracing has become a popular computer graphics rendering method
with many desirable characteristics. The ray tracing framework allows the creation of images
with multiple light sources, hard and soft shadows, reflections, refractions and other important
optical effects.

The ray tracing approach is based on the principles of geometric optics. It reduces to the
problem of intersecting straight lines, or rays, with each of the objects in the scene.

Typically, several such rays are traced from the eye through each pixel on the screen. The
first intersection point with an object in the scene is recorded. Rays connecting this intersection
point with each of the light sources are traced to determine if the point is lit or is shadowed by
other objects in the scene. The light intensity at the intersection point is then computed using one
of several lighting models. Reflected and refracted child rays can be generated from this point
and traced recursively, with their contributions added to the final result. The approach produces
attractive images.

Like any method, however, ray tracing has its limitations. One source of problems is that ray
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Figure 6.1: Rendering of a complex implicit model with thin, hair like featuiieg,the whole
scene.Bottom,detail views of one of the thin features of the surfateft, ray traced images,
above, antialiased and below, not antialiased; the rays sometimes miss the hair like features
causing them and their shadows to appear discontinuRight, beam traced images; the thin
features and the shadows they cast are always continuous and free of pixel dropouts.
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tracing creates a point-sampling of an image function. We do not trace all of the mathematically
possible rays (an infinite number) that go through the eye and reach the image plane, but only
select a small finite subset to represent the image.

When the scenes contain objects with very thin features, thinner than the spacing between
the rays we chose to sample, it is likely that we will miss some of the thin features. This is a well
known limitation of any point sampling process. The resulting images will exhibit pixel dropouts,
resulting in unpleasant visual artifacts, see figur¢ 6.1. This effect does not fully anti-alias away,
and the artifacts can be even more unpleasant if they occur in the frames of an animation, causing
pixels to randomly flicker and distract the viewer.

The problem is made worse when the numerical methods used are not guaranteed to find the
correct ray-object intersections.

To overcome some of these limitations, researchers have developed an approach which re-
places the infinitely thin rays with thicker regions calleeamg[Heckbert and Hanrahan 1984,
Amanatides 1984]). Because the set of beams covers the image plane completely with no gaps,
beam tracing avoids most of the sampling problems mentioned above. The geometric optics
algorithm that uses beams has a very similar structure to the ray tracing algorithms.

We extend the original beam tracing approach and present a guaranteed interval method for
intersecting beams with nonlinear implicit surfaces. By tracing beams instead of rays we cover
the whole set of rays that go through the image plane and replace the sampling process with
an averaging process. Beam tracing guarantees that the rendered images will be free of pixel
dropouts, independently of the complexity of the scene.

In our current implementation, the intervals am@variate with intervals just for the single
variable of the ray parametewhich measures the distance from the eye.

Any of the previous interval root finding methods, such as conventional interval analysis,
Interval Newton, centered forms, or affine arithmetic, can be used to perform beam tracing. The
choice of method determines the overall efficiency of the beam tracer. Therefore, we use the RIN
method with Corner Taylor Forms.

The RIN methods described here can also be used to perform basic ray tracing showing im-
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proved performance over conventional interval methods and state of the art ray tracing algorithms
for implicit surfaces, such as the well known LG-method.
An example of a particularly complex (very fine features) object rendered with our algorithm
is shown in figur¢ 6]1. For comparison, ray tracing the same image with the LG-method would

have taken almost two years; our algorithm took less than six hours.

6.2 Previous Work

Beam tracingfor polygonal objects was introduced by Heckbert and Hanrahan in 1984,
see|[Heckbert and Hanrahan 1984]. Simultaneously, Amanatides introduced a similar technique
calledcone tracing see [Amanatides 1984]. Our algorithm extends these to intersect beams with
any differentiable implicit surfaces.

We are not aware of any previous implementations of beam tracing for implicit surfaces.
Beam tracing for polygonal models has been a subject of investigation by other researchers;
see[[Shinya et al. 1987, Watt 1990].

There are many algorithms for ray tracing implicit surfaces. We summarize a few that are
most closely related to this work.

The algorithms are classified into two categories with respect to their ability to converge
to the correct solution. The first category is comprised of algorithms that do not provide any
guarantees, such as ray marching and straight applications of Newton-like methdds, $ee 6.2.2.
The second category is comprised of algorithms that guarantee the correct finite-precision ray
surface intersection values, including the LG-method, interval analysis and affine analysis based

methods, sphere tracing, and interpolatory methodg, seé 6.2.3.

6.2.1 Review: Ray/Implicit Surface Intersection in One Variable

Implicit surfaces are defined as the set of points in 3D where a scalar-valued fuhctighree

variables takes on the value zero.
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Mathematically, the surface is expressed as:

f:RE-R, f(x)=0 (6.1)

A ray in three dimensions can be expressed in its parametric form

r:R—R3 r(t)=(p—cit+c. (6.2)

wherec is the 3D location vector of the camera apds the 3D location vector of the pixel
in world coordinates. The problem of determining intersection points between theaag
the implicit surfacef(x) = 0 reduces to that of “plugging” the ray equation into the implicit
equation, and solving for the smallest non-negative valudalwdt maked be zero.

In other words, we are finding the smallest root of the univariate equation

(for)(t) = f((p—C)t+¢) =0 (63)

that is closest ta and beyona.
Very often these equations are nonlinear and do not have a closed form solution. A finite-
precision numerical solution must be used in this case. It is important to be sure that the numer-

ical solution method can always find the correct roots, within a satisfactory error tolerance.

6.2.2 Methods that Do Not Guarantee Solutions

The simplest method,Ray Marching was introduced by Tuy and Tuy in 1984,

see [Tuy and Tuy 1984]. It evaluates the implicit function at points along the ray, for succes-
sive values ot. The surface is detected when a change of sign occurs in eqliatjon 6.3. Ray
marching is very general, only requiring a method for evaluating the value of the equaiion 6.3,
the generating function at points in space, but may miss the first intersection or the whole surface
entirely if the distance between the sampling points is too big. Reducing this distance improves

accuracy at the cost of severely increasing the running time.
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Another simple approach is to uskewton’s methotb find a root of equation 6.3. However,
the convergence of Newton’s method is notoriously dependent on the choice of starting point and
it may converge to any of the solutions of equafior} 6.3 and not be able to locate the one we seek,
or it may even diverge. There are other more stable relatives of Newton’s method, seghlas
falsi, but they require special initial conditions that are not easily achievable. (The LG-method

provides the correct setting in which regula falsi can be used reliably.)

6.2.3 Methods that Guarantee Solutions Along a Ray

These are methods that reliably compute the solutions of the ray/surface equations. Note how-
ever, that this guarantee, even though desirable, does not prevent pixel dropouts from occurring
in the rendered images. Dropped pixels can still occur because the guarantee only applies to
the ray/surface intersection. If the ray “misses” the surface then the corresponding pixel will be
colored with the background color. In the case of surfaces with fine detail, the rays can miss or
hit in an inconsistent manner thus creating visually disturbing aliasing artifacts.

The first method that guarantees ray/surface intersections was described by Kalra and Barr
in 1989, [Kalra and Barr 1989], and is know as th@-method It is still one of the standard
algorithms for directly rendering implicit surfaces.

The LG-method is an interval analytic method in disguise. It requires the computation of
guaranteed upper Lipschitz bounds: L, the upper bound of the Lipschitz conskaim afegion,
and G, the upper bound of the Lipschitz constant of the gradieRtinfa region. The L and G
constants are used to robustly bound the function variation in those regions. The method uses
binary subdivision to isolate the regions where only one solution is guaranteed to exist, followed
by regula falsi to converge to that unique solution. The main problem with the LG-method is its
lack of automatic generation of expressions for L and G — the user is required to provide the
expressions of L and G for every primitive.

Interval analysiswas first used to ray trace implicit surfaces by Mitchell in 1990,
see [[Mitchell 1990]. The method is similar to the LG-method, but it uses inclusion functions

to bound the range of the ray/object functions without requiring the L and G constants. These
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early applications of interval analysis suffered from the use of non-optimal inclusion functions
which slowed down convergence considerably.

Affine arithmetichas been proposed as a replacement to conventional interval analysis,
see [[Stolfi and de Figueiredo 1997]. Applications to ray tracing implicit surfaces were shown
in [de Cusatis Jr. et al. 1999]. The reported improvements over conventional interval methods
have not been uniform — recent investigations show that affine arithmetic is a special case of the
centered form.

We show that the combination of CTF inclusion functions and RIN solution methods can
significantly improve the performance of interval based ray tracers, especially when rendering
“difficult” surfaces.

Sphere tracingis a variant of the ray marching algorithm, see [Hart et al. 1989,
Hart and DeFanti 1991, Hart 1993b]. It uses a signed distance function to the implicit surface
to guarantee that the steps taken along the ray are always small enough not to penetrate the
surface. Like the LG-method, this guarantee is achieved through the computation of Lipschitz
bounds. It can be used with any surface for which the user can provide a signed distance function
and the normal, including fractals and some surfaces without continuous derivatives.

Closed form solutions to equatipn p.3 are desirable but usually unavailable. One approach is
to approximate the functiof or with a simpler functior{F or)* for which closed form solutions
exist. One such method has been introduced by Sherstyuk in 1998, see [Sherstyuk 1998]. The
method uses interpolatory approximation with Hermite polynomials of 3rd degree and closed
form solutions to achieve speedup. The accuracy of the rendered images can be somewhat limited
by the accuracy of this approximation. Error can be reduced by increasing the number of Hermite
patches used by the approximation, but no automatic method is provided. The algorithm achieves
an approximate speedup factor of 3 when compared to the LG-method. Extending this algorithm

to beam tracing requires the ability to compute with 4D Hermite approximations.
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6.2.4 Methods that Guarantee Solutions Inside a Pixel

To completely and reliably eliminate all pixel dropout problems one needs to search for surface
intersections for the set of all possible rays defined within the span of a pixel. This requirement
can be accomplished through the use of beam tracing. Beam tracing for implicit surfaces has not
been explored to date. In this paper we present a beam tracing method based on higher order
interval analysis.

Although all variants of interval methods can be converted to perform beam tracing, the con-
ventional methods may be unbearably slow. Higher order interval analysis is orders of magnitude

faster than binary search based methods, and makes the approach much more tractable.

6.3 Beam Tracing Implicit Surfaces

6.3.1 Beams

Conventional rays are directed 3D lines defined by two points: the camera position (ray-origin)

¢, and the pixel position (ray-intercep)
r:R—R3rt)=(p—ct+c (6.4)

Beamsare generalized bundles of rays defined by two 3D intervals: A 3D interval for the

camera position (beam-origirg, and a 3D interval for the pixel position (beam-intercept)
b:IR—IR3 b(t)=(p—c)t+c (6.5)

Beams are classified in several categori€amera beam&ave the origin in the camera
location and the intercept on the image plagkadow beantsave the origin at a light source and
the intercept at a previously computed beam-surface interse&eaftected and refracted beams
have their origins at a beam-surface intersection and their intercepts are computed according to
the rules of geometrical optics as a function of the surface normals at the origin and the direction

interval of the incoming beam.
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6.3.2 Beam-Surface Intersection

The beam casting equation is a generalization of the ray casting equation 6.3:

(9(f)ob) () =I(f)((P—C)t+c)=0. (6.6)

The beam parametéris restricted to an interval that depends on the beam type. For cam-
era beams, the interval usedfis= [1,«], while shadow beams use an intenfak [0, 1], and
reflected and refracted beams use the intetval [0, oo].

The RIN root finding algorithm described in the previous section is used to locate the “first”
root ts of the beam casting equatin .6. fif is empty, no solutions exist. Otherwise the

beam-surface intersection region is computed by the equation:

ISZE(fS):EIS+(1_iS)§- (6.7)

Beams are rotated into the frame of the object prior to computing the intersection to keep the
expressions simple.
6.3.3 Computing the Illlumination

The range of normal@ s to the surface in the regions is computed by dividing the range of the

gradientg s by the norm of the average gradientfoivithin T s, using the following formulas:

go=9(0f)(Ts) 6.8)
_ Os

s= — 6.9
M= im(ge ] (6.9)

Note that not all the vector elementsirg are of unit length since it is impossible to represent a
set of unit length vectors by simple intervals (boxes) in Euclidean space.

The illumination is computed in the form of interval values for each of the R, G, B compo-
nents using interval versions of any of the standard illumination models and the interval vector

ns. The contributions of all the beams in the tree are added and the average values are assigned
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to the corresponding pixels.

6.3.4 Generating Reflected/Refracted Beams

Outgoing reflected/refracted beams are produced by plugging in the range of the normals at the
beam-surface intersection region into the interval form of the classic formulas of geometrical
optics. The resulting beams can be very wide if the range of the normals is big. In this case the
range of the normal is subdivided into a number of smaller intenzéslsand several outgoing
beams are generated.

In cases where the user is not concerned with guaranteed reflections the outgoing beams can
be narrowed or even be completely replaced with rays. We have opted for this optimization in
our implementation, using beams for the camera and shadow rays, and conventional rays for the
reflected rays. The reflected rays are computed with respect to the midpoint of the intersection

region, m T ), and the average normal(m ).

6.3.5 Making Beam Tracing Work

There are a number of issues that should be considered when implementing our algorithm.
Rotations, a very common operation in all ray tracing algorithms, should only be applied
once to expressions and objects that are defined using intervals. The reason for this is that each

application of a rotation matrix to a higher (2 or more) dimensional interval can increase its size,
sometimes by up to 100 percent, see figuré¢ 6.2. If a series of transformations need to be applied
to such a higher dimensional interval it is imperative that the transformations be first composed
together and the resultant applied only once. Some increase in size is unavoidable, for example
when rotating the beams into the frame of the objects, thus artificially widening the beams. This
effect is visible in the final images, as shadows are sometimes thicker than one might expect, see
figure[6.] bottom right. Such artifacts can be reduced by subdividing the beams appropriately, at
the expense of increased computation.

It is important to use high quality inclusion functions - such as Taylor Forms - not only to

speed up convergence but also to ensure the quality of the rendered images is high. As shown in
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Figure 6.2: Applying multiple rotation transformations to a region can artificially increase its
size. This artifact is known as therapping effect

the previous chapters, too much excess width can produce solution sets with bad quality factors.
When ray tracing a surface we pick only one of the solution boxes found along a ray; due to the
omnipresent excess width, a single infinite precision solution may be covered by some number of
adjacent boxes. How far the chosen box is from the exact solution depends on the quality factor,
which in turn depends on the local amount of excess width. Therefore, use of inclusion functions
with non-optimal excess width can result in the surfaces and their shadows becoming visibly
distorted. In fact, use of the natural extension often produces images that are unrecognizable.
Finally, it is well known that interval arithmetic is correct and guaranteed only when the
appropriate rounding modes are used in its implementation. The IEEE floating point standards

guarantee that the floating point units on most current microprocessors implement the correct
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rounding modes. These should always be used if any guaranteed results are to be expected.
Frequently switching rounding modes, however, can be an expensive operation. There are tech-
nigues for computing the correct upper and lower bounds without ever changing rounding modes.
In fact, when the fastest rendering time is desired, one may drop the use of directed rounding
altogether. Of course, in doing so one loses the absolute guaranteed nature of interval analysis

— however, the probability of pixel dropouts occurring in the rendered images is still very low.

6.4 Results and Conclusions

We implemented the beam tracing algorithm and the LG method in the same ray tracing program.
This approach lets us compare the beam performance to the LG-method for computing beam-

surface and ray-surface intersections.

Figure 6.3: Rendering of a blobby flake. The model is comprised of 91 blended elliptic blobby
primitives. Left, Gaussian blobbiefRight, polynomial blobbies.

For thin objects, the beams produced significantly improved results. Not only were pixel
dropouts eliminated when we rendered with beams, as shown in figdre 6.1, but the much-
improved rate of convergence of the second order interval solver caused our algorithm to beat the
rendering time of the LG-method by many orders of magnitude. This is expected to take place
whenever rendering models with thin features and high curvature, such as the one shown in fig-
ure[6.4. The model is comprised of 76 blended elliptic Gaussian blobbies, 4 implicit planes, and

3 point light sources. Our method was able to ray trace the model in less than 20 hours, and beam
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trace it in less than 50 hours, at a resolution of 2,880 by 1,944 with one ray/beam per pixel. We
were not patient enough to render the same image using the LG-method, and rightly so, since we
estimated it would have taken approximately 6 years to complete. We have done this estimation
by rendering an 18 by 12 image of the model, which took 36 minutes, and multiplying by the
ratio in resolutions (to simulate a 2,880 by 1,944 image). Ray tracing the same 18 by 12 image
with our algorithm took less than a second.

For models with larger features and lower curvature, such as those shown irf figure 6.4, the
savings were not as significant. Times with beams were roughly equivalent to those of the LG-
method. This is true because for those types of models the LG-method is able to find intervals
that contain only one solution very quickly, at which point it switches to the regula falsi solver
which has quadratic convergence. However, the beam tracing program is more robust near the
boundaries and silhouette edges of the objects and is still much faster than conventional interval

analysis.
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These results are encouraging and we envision applications of the method to render
geometrically-modeled hair and other highly curved surfaces. The absence of pixel dropouts

will be especially useful when making animations of these models.

6.5 Future Work

Replacing the current univariate interval solver with a multivariate version should improve both
efficiency and quality by enabling adaptive spatial and temporal antialiasing. The multivariate
framework could also be used to render caustics and simulate various wave phenomena, such as

wavelength dependent scattering.
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Chapter 7

Conclusion

Interval analysis is not as inefficient as some believe it to be. However, as the examples in this

thesis show, efficient interval analysis requires consistent use of the most sophisticated methods

available.

In this thesis we presented two new advancements in verified scientific computing using

interval analysis that offer considerably improved efficiency:

1. The Corner Taylor Form (CTF) interval extension. We introduced the CTF, the first in-

terval extension for multivariate polynomials that guarantees smaller excess width than the
natural extension on any input interval, large or small, and has quadratic or better inclusion
order. To help with the proofs we introduced the concefagynomial Decomposition

(PD). Using PD we developed simple and elegant proofs showing the CTF is isotonic
and has quadratic or better (local) inclusion convergence order. We also developed closed
form methods for computing the exact local order of convergence as well as the magni-
tude of excess width reduction the CTF produces over the natural extension. We presented

practical examples and compared the CRF with other inclusion function types.

. The Remainder Interval Newton (RIN) method. We also introduced the RIN method,
which uses first order Taylor Models (instead of the Mean Value Theorem) to linearize
nonlinear equations and systems. We showed that this linearization has many advantages,
making RIN significantly more efficient than conventional Interval Newton (IN). In par-

ticular, for single multivariate equations, we introduced a new subdivision method based
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on the RIN linearization. For this case, we showed that RIN requires only order of the
square root as many solution regions as IN does. For square systems, we showed that RIN
is able to isolate solutions faster than IN. For both types of problems, we presented exam-
ples where RIN methods realized savings in both time and memory for a sizable overall

improvement.

As an application to computer graphics, we presented a novel algorithBefom Tracing
Implicit SurfacesWe showed that beam tracing eliminates some of the shortcoming of conven-
tional ray tracing, particularly the problem dfoppedpixels due to its inherent sampling nature.

We also showed that use of RIN can reduce running times significantly, both in the beam tracing

and the conventional ray tracing settings.
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