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Abstract

This thesis mainly concerns the dispersive property of Schrödinger equations with

certain potentials, and some of their consequences.

We denote the evolution generated by the Hamiltonian H(t) = −∆ + V (x, t) as

U(t).

First, we consider the charge transfer models in Rn with n ≥ 3. In this case, the

potential V (x, t) is a sum of several individual real-valued potentials, each moving

with constant velocities. Our results are motivated by considering the asymptotic

stability of noninteracting multisoliton states. For suitable initial data ψ0, we obtain

‖U(t)ψ0‖Lp < C(n, p)t−n( 1
2
− 1

p
)‖ψ0‖Lq , p−1 + q−1 = 1, 2 ≤ p ≤ +∞. (0.0.1)

Second, we derive the same estimate as (0.0.1) for the derivatives of U(t)ψ0 and

prove the asymptotic completeness for charge transfer models in the Sobolev space

Hκ(Rn).

Another kind of potential we consider is the spatially periodic case. In this case,

the Hamiltonian H(x) is called a Hill’s operator. Generally, its spectrum is union of

infinitely many intervals (bands). To get started, we focus on one class of finite band

potentials, i.e., the Lamé operators. We derive a dispersive estimate with a decay

rate t−
1
3 .
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Chapter 1

Background

The well-known free Schrödinger equation is of the form

1

i
∂tψ(t, x) = −∆ψ(t, x), (1.0.1)

where the space variable x ∈ Rn and the time variable t ∈ R. It is well-known that

‖ψ(t, ·)‖L2(Rn) = ‖ψ(0, ·)‖L2(Rn) for any t ∈ R and the solution that satisfies the initial

condition ψ(0, x) = ψ0(x) is given by the following:

ψ(t, x) = Cnt
−n

2

∫

Rn

ei
|x−y|2

4t ψ0(y)dy. (1.0.2)

This implies the L1 → L∞ estimate

‖ψ(t, ·)‖L∞(Rn) ≤ Cnt−
n
2 ‖ψ0‖L1(Rn). (1.0.3)

By interpolation, we derive the dispersive estimate

‖ψ(t, ·)‖Lp(Rn) ≤ Cnt
−n( 1

2
− 1

p
)‖ψ0‖Lq(Rn)

1

p
+

1

q
= 1 2 ≤ p ≤ +∞. (1.0.4)

The constant Cn depends on the dimension n and may vary from line to line.

Many efforts have been made to obtain an analog of (1.0.4) for Schrödinger equations

with a potential
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1

i
∂tψ(t, x) = −∆ψ(t, x) + V (x)ψ(t, x), (1.0.5)

where V (x) is a time-independent and real-valued function defined on Rn. Write

H = −∆+V (x). For n ≥ 3 and small V , we employ a perturbative argument. When

V is large, H may have bound states (eigenfunctions). It is well-known that bound

states can arise for arbitrarily small potentials in dimensions n = 1, 2 (see Theorem

XIII.11 in Reed and Simon [30]). Denote Pc(H) as the projection onto the continuous

part of the spectrum of self-adjoint operator H. The estimate should take the form

‖eitHPc(H)ψ0‖Lp(Rn) ≤ Cn,pt
−n( 1

2
− 1

p
)‖ψ0‖Lq(Rn)

1

p
+

1

q
= 1 2 ≤ p ≤ +∞. (1.0.6)

1.1 Schrödinger operators in dimension n ≥ 3

In dimension n = 3, Kato [24] showed that −∆ + V is unitarily equivalent to −∆,

provided that ‖V ‖Roll < 1
4π

, where

‖V ‖2
Roll =

∫

R6

V (x)V (y)

|x− y|2 dxdy.

Similar results are known for unitary equivalence for d ≥ 4. For large V in dimension

n = 3, Rauch [28] and Jensen and Kato [22] obtained weighted L2 estimates,

‖weitHwf‖L2 ≤ C|t|− 3
2‖f‖L2 , (1.1.1)

where w(x) = e−ρ〈x〉 with some ρ > 0 and V exponentially decaying (Rauch) or

w(x) = 〈x〉−σ with some σ > 0 and V decaying at a power rate (Jensen, Kato). We

denote 〈x〉 = (1 + |x|2) 1
2 . In addition, they assume that zero energy is neither an

eigenvalue nor a resonance, i.e.,

lim sup
λ→0

‖w(H − (λ± i0))−1w‖L2→L2 < ∞. (1.1.2)
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Journeé, Soffer and Sogge [23] proved (1.0.6) for dimension n ≥ 3 under suitable

power decay and regularity condition on V and under the assumption (1.1.2). Specif-

ically, in dimension n = 3, they assume that |V | < C〈x〉−7−ε and V̂ ∈ L1(R3). These

requirements were later relaxed by Yajima [40],[41] and [42]. Yajima also proved the

Lp boundedness of the wave operators in 1 ≤ p ≤ ∞. A different approach intro-

duced by Rodnianski, Schlag [29] and by Goldberg, Schlag [16], leads to even weaker

conditions on V . Finally, Goldberg [15] obtains (1.0.6) in dimension n = 3 under the

assumption that (1.1.2) and |V (x)| ≤ C〈x〉−2−ε. For more details and references, see

Schlag’s survey [33].

For a general time-dependent potential V (t, x), it is not clear how to introduce

an analog of bound states and the spectral projection. In the case of small poten-

tials, Rodnianski, Schlag treat the potential as a perturbation [29]. The case of large

time-dependent potentials is still under investigation. In this thesis, we will con-

sider one class of time-dependent potential, namely, the charge transfer model. The

charge transfer model has been devised to describe the motion of a light particle in

a collision between heavy ones. In this model, only the light particle is subject to

quantum dynamics, while the heavy ones follow assigned classical trajectories, which

are asymptotically inertial (see Graf [17]). This leads to the Hamiltonian

H(t) = −1

2
4+

m∑
j=1

Vj(x− ~vjt). (1.1.3)

The charge transfer model has been extensively studied in the literature in con-

nection with the question of asymptotic completeness, which is first established by

Yajima [43]. Later, Graf [17] obtains a new proof containing a crucial argument show-

ing that the energy associated with a solution of (1.1.4) remains bounded in time.

Similar results are also obtained by Wüller [38] and Zielinski [44].

The charge transfer model also arises in the study of asymptotic stability of non-

interacting multi-soliton states. This refers to solving an NLS

i∂tψ +
1

2
4ψ + β(|ψ|2)ψ = 0
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in Rn, n ≥ 3 with initial data ψ0 =
∑m

j=1 wj(0, ·) + R0, where wj are special standing

wave solutions called solitons and R0 is a small perturbation. In [32], Rodnianski,

Schlag and Soffer show that if the solitons are sufficiently separated at time t = 0,

and if R0 is sufficiently small in a suitable norm, then the solution ψ evolves like a

sum of solitons with time-dependent parameters approaching a limit, plus a radiation

term that goes to zero in L∞(R3). This leads to the problem of establishing dispersive

estimates for the linear problem, which is closely related to the charge transfer model

(see [31] and [32]):

1

i
∂tψ = −1

2
4ψ +

m∑
j=1

Vj(· − ~vjt)ψ. (1.1.4)

In [31] a weak version of the dispersive estimate for (1.1.4) is derived. Motivated

by their approach, we will obtain a dispersive estimate for (1.1.4) in Chapter 2.

Furthermore, we derive a W κ,p′ → W κ,p estimate for the solution of (1.1.4). As an

application, we will obtain the asymptotic completeness in Hκ(Rn).

1.2 Dispersive estimates for Schrödinger operators

in dimension n = 1, 2

In dimension n = 1, 2, even a small potential may produce bound states, thus we

cannot treat the potential as a perturbation. The dispersive estimates (1.0.6) in

dimension n = 1 with a spatially decaying potential were first obtained by Weder [37]

and Artbazar, Yajima [3]. These authors express the resolvent via the Jost solutions,

namely, for =z > 0

(−∂2
x + V − z2)−1(x, y) =

f+(x, z)f−(y, z)

W (z)
, x > y

and symmetrically if x < y. Here f± are the Jost solutions defined as solutions of

−f ′′±(·, z) + V f±(·, z) = z2f±(·, z)
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with the asymptotics

f+(x, z) ∼ eixz as x →∞
f−(x, z) ∼ e−ixz as x → −∞,

and W (z) is the Wronskian of f+(·, z), f−(·, z). In this case, we say zero energy is a

resonance if and only if W (0) = 0. Note that the free case V = 0 has a resonance

at zero energy. Later, Goldberg and Schlag [16] proved (1.0.6) with a slightly less

restrictive condition on V . They assumed 〈x〉V (x) ∈ L1(R) and the zero energy is

not a resonance. Note that in term of pointwise decay, this is in agreement with the

〈x〉−2 threshold. If zero is a resonance, they proved the same estimate assuming that

〈x〉2V (x) ∈ L1(R).

The dispersive estimates in dimension n = 2 were established by Schlag [34].

One crucial ingredient of the arguments is an asymptotic expansion of the resolvent

around zero energy from Jensen and Nenciu [21]. In odd dimensions, the free resolvent

(−∆− z2)−1 is analytic for all z 6= 0. When =z > 0,

(−∆ + V − z2)−1 = z−2A−2 + z−1A−1 + A0 + zA1 + O(z2) as z → 0 (1.2.1)

where the O-term is understood in the operator norm on a suitable weighted L2-

space. The free resolvent (−∆ − z2)−1 is analytic for all z 6= 0. In even dimensions

the Riemann surface of the free resolvent is that of the logarithm. Thus, (3.3.11)

needs to include powers of log z in even dimensions.

In Chapter 3, we will study the dispersive property of Schrödinger operators with

a periodic potentials on the real line. When V (x) is periodic real function defined on

R1, the spectrum of the Schrödinger operator −(d2/dx2) + V (x) acting on L2(R1) is

a union of intervals carrying a purely absolutely continuous spectrum. The absence

of a point spectrum and a singular spectrum suggests the dispersion of the solution.
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We will illustrate this dispersive phenomenon for a special analytic potential, whose

spectrum is a union of two intervals (bands); namely, all gaps but one are degenerate.

It is known that a one-gap potential V (x) must be an elliptic function ([19]). With

such a potential, we have

y′′(x)− 2℘(x + ω3)y(x) = −Ey(x), (1.2.2)

where ℘(z) is the Weierstrass elliptic function with periods 2ω1, 2ω3, satisfying the

following differential equations:

℘′(a)2 = 4℘3(a)− g2℘(a)− g3, (1.2.3)

℘′′(a) = 6℘2(a)− g2

2
, (1.2.4)

where g2, g3 are the invariants of ℘(z) defined by (3.5.1). Known as Lamé’s equation,

(1.2.2) arises from the theory of the potential of an ellipsoid ([39],[11]). We assume

ω1 = ω > 0, ω3 = iω′ and ω′ > 0 to guarantee that ℘(x+ω3) is real-valued for x ∈ R.

If we choose the potential in (1.2.2) to be n(n + 1)℘, instead of 2℘ (n is any positive

integer), then the spectrum of Lamé’s equation consists of n + 1 bands ([27]).

In Chapter 3, we give a dispersive estimate similar to (1.0.4) for the following

equation:

1

i
∂tψ(x, t) = − d2

dx2
ψ(x, t) + 2℘(x + ω3)ψ(x, t),

ψ(x, 0) = ψ0(x).



7

Chapter 2

Charge Transfer Models

In Section 2.1, we give our main results about the charge transfer models, and some

necessary definitions. In Section 2.2, we present some lemma that are useful for prov-

ing our results. In Section 2.3, we prove the dispersive estimate for the charge transfer

models. In Section 2.4, the dispersive estimates for the derivatives of the evolutions

of the charge transfer models are proved by further investigating the argument in Sec-

tion 2.3. In Section 2.5, we prove that the Sobolev norms of the evolution of charge

transfer models remain bounded. In Section 2.6, the existence of the wave operator

and the asymptotic completeness for the charge transfer models are established.

2.1 Definitions and main results

Definition 2.1.1. By a charge transfer model we mean a Schrödinger equation

1
i
∂tψ − 1

2
4ψ +

∑m
κ=1 Vκ(x− ~vκt)ψ = 0 (2.1.1)

ψ|t=0 = ψ0, x ∈ Rn,

where ~vκ are distinct vectors in Rn, n ≥ 3, and the real potentials Vκ are such that

for every 1 ≤ κ ≤ m,

1. Vκ is time independent and has compact support (or fast decay), Vκ,∇Vκ ∈ L∞;
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2. 0 is neither an eigenvalue nor a resonance of the operators

Hκ = −1

2
4+ Vκ(x).

Recall that ψ is a resonance if it is a distributional solution of the equation Hκψ =

0, which belongs to the space L2(〈x〉−σdx) for any σ > 1
2
, but not for σ = 0.

The conditions in the above definition are always assumed when we prove and

apply the dispersive estimates, i.e., Theorem 2.1.3 and Theorem 2.1.4. The conditions

are not optimal, but for convenience. This definition is standard (see [17], [42]). The

Schrödinger group e−itHκ is known to satisfy the decay estimates (see Journé, Soffer,

Sogge [23], and Yajima [41])

‖e−itHκPc(Hκ)ψ0‖L∞ . |t|−n
2 ‖ψ0‖L1 (2.1.2)

for n ≥ 3 under various conditions on the potential. Here Pc(Hκ) is the spectral

projection onto the continuous spectrum of Hκ and . denotes bounds involving mul-

tiplicative constants independent of ψ0 and t. For n = 3, [16] proved (2.1.2) under

the assumption that |Vκ(x)| ≤ C(1 + |x|)−β, for some β > 3. For n > 3, (2.1.2) holds

([23]) under the additional assumption: F(Vκ) ∈ L1. Yajima [41] proved (2.1.2) with

slightly weaker conditions than [23]. In this chapter we shall assume that F(Vκ) ∈ L1

to guarantee the estimate (2.1.2), except in Section 2.5.

To establish similar dispersive estimates for time-dependent Schrödinger equations

is more involved. Heuristically, we can’t project away the bounded states as they are

moving in different directions. Rodnianski and Schlag [29] proved dispersive estimates

for small time-dependent potentials. In this paper, we will focus on the charge transfer

model.

An indispensable tool in the study of the charge transfer model is the Galilean

transforms

g~v,y(t) = e−i
|~v|2
2

te−ix·~vei(y+t~v)·~p, (2.1.3)

cf. [17], where ~p = −i~∇. Under g~v,y(t), the Schrödinger equation transforms as
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follows:

g~v,y(t)e
it4

2 = eit4
2 g~v,y(0) (2.1.4)

and moreover, with H = −1
2
4+ V ,

ψ(t) := g~v,y(t)
−1e−itH g~v,y(0)φ0, , g~v,y(t)

−1 = e−iy·~v g−~v,−y(t) (2.1.5)

solves

1
i
∂tψ − 1

2
4ψ + V (· − t~v − y)ψ = 0 (2.1.6)

ψ|t=0 = φ0.

Since in our case y = 0 always, we set g~v(t) := g~v,0(t). Note that the transforma-

tions g~v,y(t) are isometries on all Lp spaces and g ~e1(t)
−1 = g− ~e1(t) because of (2.1.5).

In the following, we shall assume that the number of potentials is m = 2 and that

the velocities are ~v1 = 0, ~v2 = (1, 0, . . . , 0) = ~e1. The arguments generalize easily to

m ≥ 3.

We now introduce the appropriate analog to project away bounded states for the

problem

1

i
∂tψ − 1

2
4ψ + V1ψ + V2(· − t~e1)ψ = 0 (2.1.7)

ψ|t=0 = ψ0

with compactly supported potentials V1, V2. Let u1, . . . , um and w1, . . . , w` be the

normalized bound states of H1 and H2 corresponding to the negative eigenvalues

λ1, . . . , λm and µ1, . . . , µ`, respectively (recall that we are assuming that 0 is not an

eigenvalue). We denote by Pb(H1) and Pb(H2) the corresponding projections onto the

bound states of H1 and H2, respectively, and let Pc(Hκ) = Id − Pb(Hκ), κ = 1, 2.
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The projections Pb(H1,2) have the form

Pb(H1) =
m∑

i=1

〈·, ui〉ui, Pb(H2) =
∑̀
j=1

〈·, wj〉wj.

We introduce the following orthogonality condition in the context of the charge trans-

fer Hamiltonian:

Definition 2.1.2. Let U(t)ψ0 = ψ(t, x) be the solutions of (2.1.7). We say that ψ0

(or also ψ(t, ·)) is asymptotically orthogonal to the bound states of H1 and H2 if

‖Pb(H1)U(t)ψ0‖L2 + ‖Pb(H2, t)U(t)ψ0‖L2 → 0 as t → +∞. (2.1.8)

Here

Pb(H2, t) := g ~−e1
(t)Pb(H2) g ~e1(t) (2.1.9)

for all times t.

Remark 2.1.1. From Corollary 2.2.3, ‖U(t)ψ0‖Lp ≤ Ct‖ψ0‖Lp′ , we know that U(t)ψ0 ∈
Lp is well-defined for ψ0 ∈ Lp′. As the bound states ui, wj are exponentially decaying

at infinity, Definition 2.1.2 makes sense for any initial data ψ0 ∈ Lp′ for p′ ∈ [1, 2].

Remark 2.1.2. Clearly, Pb(H2, t) is again an orthogonal projection for every t. It

gives the projection onto the bound states of H2 that have been translated to the po-

sition of the potential V2(· − t~e1). Equivalently, one can think of it as translating the

solution of (2.1.7) from that position to the origin, projecting onto the bound states

of H2, and then translating back.

Remark 2.1.3. From Proposition 3.1 of [31], the decay rate of (2.1.8) is actually

exponential. More precisely, the following holds:

‖Pb(H1)U(t)ψ0‖L2 + ‖Pb(H2, t)U(t)ψ0‖L2 . e−αt‖ψ0‖L2 , (2.1.10)

for some α > 0.
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Remark 2.1.4. It is clear that all ψ0 that satisfy (2.1.8) form a closed subspace. This

subspace coincides with the space of scattering states for the charge transfer problem.

The latter is well-defined by Graf’s asymptotic completeness result [17].

We can only expect the dispersive estimate for (2.1.7) for the initial data satis-

fying Definition 2.1.2, just as we have to project away the bound states for (2.1.2).

Rodnianski, Schlag, Soffer [31] established the following estimate:

‖U(t)ψ0‖L2+L∞ . 〈t〉−n
2 ‖ψ0‖L1∩L2 (2.1.11)

with initial data ψ0 ∈ L1 ∩ L2 satisfying (2.1.8), where U(t) is the evolution of the

charge transfer model and 〈t〉 = (1+t2)
1
2 . By definition, ‖f‖L2+L∞ := inff=h+g(‖h‖L2+

‖g‖L∞) and ‖f‖L1∩L2 = ‖f‖L1 + ‖f‖L2 . (2.1.11) has an important application to the

asymptotic stability and asymptotic completeness for the small perturbation of non-

colliding solitons for NLS ([32]).

[31] decomposes the evolution into different channels according to each potential.

Every channel splits into a large velocity part and a low velocity part. For the large

velocity part, Kato’s smoothing estimate was employed; for the low velocity part, a

propagation estimate was used. In this paper, we will combine the methods from [23]

and [31] and obtain the following:

Theorem 2.1.3. Consider the charge transfer model as in Definition 2.1.1 with two

potentials, cf. (2.1.7). Assume V̂1, V̂2 ∈ L1(Rn). Let U(t) denote the propagator of

(2.1.7). Then for any initial data ψ0 ∈ L1, which is asymptotically orthogonal to

the bound states of H1 and H2 in the sense of Definition 2.1.2, one has the decay

estimates

‖U(t)ψ0‖L∞ . |t|−n
2 ‖ψ0‖L1 . (2.1.12)

An analogous statement holds for any number of potentials, i.e., with arbitrary m

in (2.1.1).

Inspection of the argument in the following sections shows that it applies, say, to

exponentially decaying potentials. But sufficiently fast power decay at infinity is also
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allowed. We shall prove (3.3.1) by means of a bootstrap argument. More precisely,

we prove that the bootstrap assumption

‖U(t)ψ0‖L∞ ≤ C0|t|−n
2 ‖ψ0‖L1 for all 0 ≤ t ≤ T (2.1.13)

implies that

‖U(t)ψ0‖L∞ ≤ C0

2
|t|−n

2 ‖ψ0‖L1 for all 0 ≤ t ≤ T. (2.1.14)

Here T is any given fixed large constant and (2.1.13) holds for C0 some sufficiently

large constant because of Corollary 2.2.3. C0 may depend on T in the beginning.

The above implication (2.1.13) =⇒ (2.1.14) holds as long as C0 is larger than some

universal constant independent of the time T . Thus iterating (2.1.13) =⇒ (2.1.14)

then yields a constant that does not depend on T . The theorem follows by letting

T → +∞.

As the L2 norm of U(t)ψ0 remains constant, by interpolation, the following holds:

‖U(t)ψ0‖Lp . Cp|t|−n( 1
2
− 1

p
)‖ψ0‖Lp′ p ≥ 2,

1

p
+

1

p′
= 1. (2.1.15)

Our next theorem is about the decay estimates of ∂αU(t)ψ0, where α = (α1, · · · , αn)

is an n-tuple of nonnegative integers and ∂α = ∂α

∂x
α1
1 ···∂xαn

n
. We write |α| = α1+· · ·+αn.

Theorem 2.1.4. Let U(t) denote the propagator of the equation (2.1.7). Assume

(2.1.2) holds for H1 and H2. Let Vj ∈ Cκ+1
0 where κ is a positive integer and j = 1, 2.

Moreover, assume that for ∀|β| ≤ κ and j = 1, 2, ∂̂βVj ∈ L1(Rn). Then for any

initial data ψ0 ∈ W κ,p′, which is asymptotically orthogonal to the bound states of

Hj (j = 1, 2) in the sense of Definition 2.1.2, one has the decay estimates

‖U(t)ψ0‖W κ,p . |t|−n( 1
2
− 1

p
)‖ψ0‖W κ,p′ , (2.1.16)

where 2 ≤ p < ∞ and 1
p

+ 1
p′ = 1.

Remark 2.1.5. It suffices to prove Theorem 2.1.4 for p > 2n
n−2

, because interpolating

with Theorem 2.1.5, which holds under the assumption of Theorem 2.1.4, we derive
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Theorem 2.1.4 for any p ∈ [2, +∞]. p > 2n
n−2

guarantees that
∫∞
1
|t|−n( 1

2
− 1

p
) < ∞. We

need to exclude the case p = ∞, since part of our proof relies on singular integrals

and we do not know whether or not (2.1.16) holds for p = ∞.

The second part of this paper is motivated by Graf [17]. Graf proved energy

boundedness for U(t, s) by a geometric method, where U(t, s) is the solution operator

corresponding to the time-dependent Schrödinger equation

1

i
∂tψ − 4

2
ψ +

m∑
j=1

Vj(x− ~vjt)ψ = 0, (2.1.17)

ψ|t=s = ψ0,

i.e., ψ(t, ·) = U(t, s)ψ0. Graf proved that ‖U(t, s)ψ0‖H1 is bounded as t →∞ provided

that the initial data ψ0 ∈ H1(Rn), n ≥ 1. For the higher degree Sobolev norms, J.

Bourgain [6] proved the following for the general time-dependent Hamiltonian H(t):

Suppose the time-dependent potential V (x, t) is bounded, real, and supt∈R |V (x, t)|
is compactly supported. Moreover, for any n-tuple α

sup
t∈R

‖Dα
xV (t)‖∞ < Cα.

Then for ∀ε > 0 and κ > 0,

‖U(t, 0)ψ0‖Hκ ≤ Cε,κ|t|ε‖ψ0‖Hκ for all t. (2.1.18)

An example ([6]) is given to show that we cannot remove the |t|ε growth for

general time-dependent potentials. In this paper, it is shown that (2.1.18) does hold

with ε = 0 for the case of the charge transfer Hamiltonian. More precisely, in Section

4, the time-boundedness of ‖U(t, s)ψ0‖Hκ for charge transfer models is established by

the same geometric method as in [17] for any real number κ. We write dxe as the

least integer no less than x. The precise statement is as follows:

Theorem 2.1.5. Let U(t, s) be the evolution operator for (2.1.17), and let κ ∈ R
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and the dimension n ≥ 1. Furthermore, suppose Vj ∈ C
d|κ|e
0 (Rn), (j = 1, 2, · · · , m),

i.e., Vj has derivatives up to degree d|κ|e, which are all continuous and compactly

supported. Then for ∀t, s ∈ R

‖U(t, s)ψ0‖Hκ ≤ Cκ‖ψ0‖Hκ ,

where Cκ depends on κ and the potentials Vj.

Remark 2.1.6. By interpolation, it clearly suffices to consider the case where κ is an

integer. By duality, it suffices to prove the case where κ is a positive integer. Indeed,

assuming κ < 0, due to the fact that U(t, s) is unitary on L2(Rn), we have

‖U(t, s)ψ0‖Hκ = sup
‖φ‖H−κ=1

〈U(t, s)ψ0, φ〉L2

= sup
‖φ‖H−κ=1

〈ψ0, U(s, t)φ〉L2 ≤ C−κ‖ψ0‖Hκ .

No assumption is made on the spectra of the subsystems Hj. The assumption of

compact support of Vj is for convenience only and the proof works for sufficiently

fast polynomial decay at infinity without essential change ([17]). Suppose all as-

sumptions of both Theorem 2.1.4 and Theorem 2.1.5 hold; then by interpolation, the

estimate (2.1.16) holds for 2 ≤ p < ∞.

Remark 2.1.7. It follows from Duhamel’s formula and Gronwall’s inequality, that

‖U(t, s)ψ0‖Hκ ≤ C(I)‖ψ0‖Hκ t, s ∈ I, (2.1.19)

for any compact interval I. Therefore, it suffices to prove Theorem 2.1.5 when |t| or

|s| is large.

As an important consequence, we apply Theorem 2.1.4 and Theorem 2.1.5 to

obtain the following asymptotic completeness for the charge transfer model in the Hκ

sense:

Theorem 2.1.6. Let u1, . . . , um and w1, . . . , w` be the eigenfunctions of H1 = −4
2

+

V1(x) and H2 = −4
2

+ V2(x), respectively, corresponding to the negative eigenvalues
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λ1, · · · , λm and µ1, · · · , µ`. Assume that Vj ∈ Cn+2κ+2
0 (Rn), (n ≥ 3, j = 1, 2), and

that 0 is neither an eigenvalue nor a resonance of H1, H2, where κ is a nonnegative

integer. Then for any initial data ψ0 ∈ Hκ, the solution U(t)ψ0 of the charge transfer

problem (2.1.7) can be written in the form

U(t)ψ0 =
m∑

r=1

Are
−iλrtur +

∑̀

k=1

Bke
−iµkt g−~e1(t)wk + e−it4

2 φ0 +R(t),

for some choice of the constants Ar, Bk and the function φ0 ∈ Hκ. The remainder

term R(t) satisfies the estimate

‖R(t)‖Hκ −→ 0, as t →∞.

Remark 2.1.8. The above theorem holds for m potentials. We are not aiming to

give the optimal regularity condition on the potentials. The theorem is equivalent to

claiming that Hκ(Rn) is the sum of the ranges of the wave operators Ω−
l , (l = 0, 1, 2)

defined in Section 6.1. [17] proved that the ranges of the wave operators are orthogonal

to each other in the L2 sense. Therefore, Hκ(Rn) again is a direct sum of Ω−
l (Hκ).

2.2 Preparation

In this section, we present some lemma that are indispensable for the proof of the

above theorems. The first ingredient of our proof is the notion of cancellation. In

this section, U(t) will denote the evolution operator of (2.1.7) or (2.1.1). It is clear

from their proofs that the following lemmas also hold for the general time-dependent

Hamiltonian H0 + V (t).

Lemma 2.2.1.

sup
−∞<t<∞

‖eit∆V e−it∆‖p→p ≤ ‖V̂ ‖1, (2.2.1)

where p ∈ [1,∞] and ‖ · ‖p→p means the operator norm from Lp to Lp.

For the proof of the lemma, notice that equation (2.1.4) implies [eit∆eiζxe−it∆f ](x) =

g−ζ(2t)f(x) = e−it|ζ|2eixζf(x− 2ζt).



16

Lemma 2.2.2. Suppose t, s ∈ R, then we have the following:

sup
r∈R

‖e−i(t−s)H0V (r)U(s)‖1→∞ < |t|−n
2 CMeM |s|, (2.2.2)

where M = maxr∈R ‖V̂ (r)‖1 < ∞.

Proof. Let’s write Ψ(t, s) := supr∈R ‖e−i(t−s)H0V (r)U(s)‖1→∞. Without loss of gener-

ality, we suppose that s > 0. By Duhamel’s formula,

e−i(t−s)H0V (r)U(s) = e−i(t−s)H0V (r){e−isH0 − i

∫ s

0

e−i(s−τ)H0V (τ)U(τ)dτ},

it follows that

‖e−i(t−s)H0V (r)U(s)‖1→∞

≤ ‖e−i(t−s)H0V (r)e−isH0‖1→∞ +

∫ s

0

‖e−i(t−s)H0V (r)e−i(s−τ)H0V (τ)U(τ)‖1→∞dτ

≤ C‖V̂ (r)‖1|t|−n
2 + ‖V̂ (r)‖1

∫ s

0

‖e−i(t−τ)H0V (τ)U(τ)‖1→∞dτ

≤ CM |t|−n
2 + M

∫ s

0

Ψ(t, τ)dτ.

Taking the supremum over r, we get Ψ(t, s) ≤ CM |t|−n
2 + M

∫ s

0
Ψ(t, τ)dτ . By Gron-

wall’s inequality,

Ψ(t, s) ≤ CM |t|−n
2 eMs.

Note that the lemma still holds with other constants C and M on the right-hand

side if we replace V (r) with Vj(r) or replace U(s) with another evolution, say e−isHj .

Another observation is that the lemma can be generalized to the following by the

same proof:

sup
r∈R

‖e−i(t−s)H0V (r)U(s)ψ0‖p . |t|−γMeMs‖ψ0‖p′ (2.2.3)
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where γ = n(1
2
− 1

p
) and 2 ≤ p ≤ ∞, 1

p
+ 1

p′ = 1. This will be useful in Section 4.

Corollary 2.2.3. Suppose U(t) is the evolution operator of (2.1.7) or (2.1.1). As-

sume t > 0, then

‖U(t)‖p′→p . t−n( 1
2
− 1

p
)eMt 1

p
+

1

p′
= 1, 2 ≤ p ≤ ∞ (2.2.4)

Proof. By Duhamel’s formula, U(t) = e−itH0 − i
∫ t

0
e−i(t−τ)H0V (τ)U(τ)dτ . Write γ =

n(1
2
− 1

p
), then by Lemma 2.2.2, we have

‖U(t)‖p′→p ≤ Ct−γ +

∫ t

0

Ψ(t, τ)dτ ≤ Ct−γ +

∫ t

0

Ct−γMeMτdτ ≤ Ct−γeMt.

From the corollary, the bootstrap assumption (2.1.13) holds for any time T if we take

C0 = CeMT .

Lemma 2.2.4. Suppose m ≥ 1 and ε > 0. If u1, u2, . . . , um are either all positive or

all negative, satisfying |∑m
j=1 uj| > ε, then there exists a constant C = C(m, ε) such

that

‖
m−1∏
j=1

(eiujH0V (sj))e
iumH0‖1→∞ ≤ CMm−1

m∏
j=1

〈uj〉−n
2 (2.2.5)

‖
m−1∏
j=1

(eiujH0V (sj))U(um)‖1→∞ ≤ CMm−1

m∏
j=1

〈uj〉−n
2 eMum (2.2.6)

where sj is any real number and M = sups∈R(‖V (s)‖1 + ‖V̂ (s)‖1).

Proof. The first inequality is from [23]. Assume that u1, u2, . . . , um are all positive

without loss of generality. We apply the dispersive estimate for eiujH0 repeatedly

and the left-hand side is dominated by CMm−1
∏m

j=1 u
−n

2
j , which is dominated by the

right-hand side up to a constant, provided each uj > ε. If some uj ≤ ε, it is inefficient



18

to use a dispersive estimate for eiujH0 . Instead, we apply the cancellation lemma 2.2.1

and obtain

eiujH0V (sj)e
iuj+1H0 =

∫
eiujH0eixζe−iujH0V̂ (sj)(ζ) dζei(uj+1+uj)H0 ,

where eiujH0eixζe−iujH0 is the Galilean transform g−ζ(−uj) according to (2.1.4). If

again uj +uj+1 < ε, we can repeat this procedure until uj−l + · · ·+uj + · · ·+uj+k > ε

which always happens because |∑m
j=1 uj| > ε. Then we apply the dispersive estimate

to obtain the inequality.

We sketch the proof of the second equation. When m = 1, it is just (2.2.4)

provided that um > ε. When m = 2, if u1 > ε
2

and u2 > ε
2
,

‖(eiu1H0V (s1))U(u2)‖1→∞ . |u1|−n
2 ‖V (s1)U(u2)‖1→1

. |u1|−n
2 ‖U(u2)‖1→∞

. |u1|−n
2 |u2|−n

2 eMu2 . 〈u1〉−n
2 〈u2〉−n

2 eMu2

If u1 ≤ ε
2

or u2 ≤ ε
2
, we apply Lemma 2.2.2

‖eiu1H0V (s1)U(u2)‖1→∞ . (|u1|+ |u2|)−n
2 eMu2 . 〈u1〉−n

2 〈u2〉−n
2 eMu2

The case where m > 2 follows exactly as the first inequality using Lemma 2.2.1.

Next we list a variant of Kato’s 1
2
-smoothing estimate. It appears in [31]. We give

the proof for completeness.

Lemma 2.2.5. Let H = −1
2
4+ V , ‖V ‖∞ < ∞. Then for all T, R, M ≥ 1,

sup
BR

∫ T

0

‖F (|~p| ≥ M)e−itHf‖L2(BR) dt ≤ C(n, V )
TR

M
1
2

‖f‖L2 . (2.2.7)

Here the supremum ranges over all balls BR of radius R ≥ 1 and C(n, V ) is a constant

that depends only on ‖V ‖∞ and the dimension n.
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Proof. We first prove the following estimate, which will then imply the lemma. Let

ψ(t) = e−itHψ0 with H = −1
2
4+ V , ‖V ‖∞ < ∞. Then for all T > 0 and 0 < α,

sup
x0∈Rn

∫ T

0

∫

Rn

|∇〈∇〉− 1
2 ψ(x, t)|2

(1 + |x− x0|α)
1
α

+1
dxdt ≤ Cα,n T (1 + ‖V ‖∞)‖ψ0‖2

2. (2.2.8)

The multiplier ∇〈∇〉− 1
2 corresponds to the symbol ξ〈ξ〉− 1

2 = ξ(1 + |ξ|2)− 1
4 . It suffices

to prove this with x0 = 0 fixed. The proof is based on taking the commutator of H

with m := w(x)x · ∇
〈∇〉 , where

w(x) = (1 + |x|α)−
1
α , α > 0.

One has, with ψ = ψ(t) for simplicity,

d

dt
〈mψ,ψ〉 = −i〈[m, H]ψ, ψ〉

∫ T

0

〈−[m,H]ψ(t), ψ(t)〉 dt = i〈mψ(0), ψ(0)〉 − i〈mψ(T ), ψ(T )〉
〈−[m, H]ψ, ψ〉

=−〈[m,V ]ψ, ψ〉+
〈
∂`(w(x) xj)

∂j

〈∇〉ψ, ∂`ψ
〉

+
1

2

〈
4(w(x) xj)

∂j

〈∇〉ψ, ψ
〉
(2.2.9)

=

∫

Rn

w|∇〈∇〉− 1
2 ψ|2 dx +

∫

Rn

(∂`w)(x)xj∂j〈∇〉− 1
2 ψ ∂`〈∇〉− 1

2 ψ̄ dx (2.2.10)

−
〈
[〈∇〉 1

2 , w]
∇
〈∇〉ψ,∇〈∇〉− 1

2 ψ
〉
−

〈
[〈∇〉 1

2 , (∂`w)(x)xj]
∂j

〈∇〉ψ, ∂`〈∇〉− 1
2 ψ

〉
(2.2.11)

+
1

2

〈
4(w(x) xj)

∂j

〈∇〉ψ, ψ
〉
− 〈[m,V ]ψ, ψ〉. (2.2.12)

One now checks easily that the two terms in (2.2.10) satisfy

∫

Rn

w(x)|〈∇〉− 1
2∇ψ(t, x)|2 dx +

∫

Rn

(∂`w)(x)xj〈∇〉− 1
2 ∂jψ(t, x) 〈∇〉− 1

2 ∂`ψ̄(t, x) dx

≥
∫

Rn

w(x)

1 + |x|α |〈∇〉
− 1

2∇ψ(t, x)|2 dx =

∫

Rn

|〈∇〉− 1
2∇ψ(t, x)|2

(1 + |x|α)
1
α

+1
dx. (2.2.13)

Notice that (2.2.13) is precisely the space integral in the desired lower bound

from (2.2.8).
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There are several ways to bound the commutators A1 := [〈∇〉 1
2 , w] and A2 :=

[〈∇〉 1
2 , (∂`w)(x)xj]. For example, one can use the Kato square root formula as in [23].

Alternatively, one can invoke the standard composition formula from ΨDO calculus.

This gives A1 = T{〈∇〉 12 ,w}+Ra1 where {〈∇〉 1
2 , w} is the Poisson bracket of the symbols

〈∇〉 1
2 and w. Moreover, T{〈∇〉 12 ,w} is an associated ΨDO operator and Ra1 another

ΨDO operator with symbol a1 ∈ S−
3
2 . A similar expression holds for A2. One checks

that |{〈∇〉 1
2 , w}(ξ, x)| . |∇w(x)| for all x, ξ. Therefore, the two terms in (2.2.11)

both satisfy

∣∣∣
〈
Ai

∇
〈∇〉ψ(t),∇〈∇〉− 1

2 ψ(t)
〉∣∣∣ . ‖ψ(t)‖2

∥∥∥ 〈∇〉
− 1

2∇ψ(t)

(1 + |x|α)
1
α

+1

∥∥∥
2
+ ‖ψ(t)‖2‖Rai

∇〈∇〉− 1
2 ψ(t)‖2

≤ C‖ψ(t)‖2
2 +

1

4

∥∥∥ 〈∇〉
− 1

2∇ψ(t)

(1 + |x|α)
1
α

+1

∥∥∥
2

2
. (2.2.14)

Finally, the two terms in (2.2.12) are bounded by

(1 + ‖V ‖∞)‖ψ(t)‖2
2 ≤ (1 + ‖V ‖∞)‖ψ0‖2

2. (2.2.15)

In the above estimate we have used the boundedness of the multipliers m and4(w(x) xj)
∂j

〈∇〉

on L2. Integrating (2.2.13), (2.2.14), and (2.2.15) in time, inserting the resulting

bounds into (2.2.9), and finally using

|〈mψ(0), ψ(0)〉|+ |〈mψ(T ), ψ(T )〉| ≤ 2‖ψ0‖2
2,

one obtains (2.2.8). To pass from (2.2.8) to (2.2.7), let χR be a smooth cutoff to the

ball BR, so that χ̂R has compact support in a ball of size ∼ R−1. Then, by (2.2.8)
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with α = 1

∫ T

0

‖F (|~p| ≥ M)e−itHψ0‖2
L2(BR) dt ≤

∫ T

0

‖χRF (|~p| ≥ M)e−itHψ0‖2
L2 dt

.
∫ T

0

‖F (|~p| ≥ M)χRe−itHψ0‖2
L2 dt +

∫ T

0

‖[χR, F (|~p| ≥ M)]‖2
2→2‖e−itHψ0‖2

L2 dt

. M−1

∫ T

0

‖∇〈∇〉− 1
2 F (|~p| ≥ M)χRe−itHψ0‖2

L2 dt + T (MR)−2‖ψ0‖2
L2

. M−1

∫ T

0

‖F (|~p| ≥ M)χR∇〈∇〉− 1
2 e−itHψ0‖2

L2 dt

+ M−1

∫ T

0

‖[∇〈∇〉− 1
2 , χR]‖2

2→2‖e−itHψ0‖2
L2 + T (MR)−2‖ψ0‖2

2

. M−1R2

∫ T

0

∫

Rn

|∇〈∇〉− 1
2 e−itHψ0|2

(1 + |x|)2
dx dt + TM−1R−1‖ψ0‖2

L2

≤ C(n, V ) TM−1R2 ‖ψ0‖2
L2 .

The lemma follows.

2.3 Proof of the decay estimates

Theorem 2.1.3 will be proven in this section by a bootstrap argument. By Corol-

lary 2.2.3, we can assume that t is large enough in Theorem 2.1.3. More precisely,

t will be bigger than any constant appearing in our estimate, except the bootstrap

constant C0 in (2.3.1). By assumption, H1, H2 can only admit finitely many negative

eigenvalues. Let α > 0 satisfy: −α is bigger than any eigenvalue of H1, H2. For tech-

nical reasons, we will assume that the initial data ψ belong to L1 ∩ L2 and employ

the following bootstrap argument:

Specifically, we will show that

‖U(t)ψ0‖L∞ ≤ C0|t|−n
2 (‖ψ0‖L1 + e−

αT
2 ‖ψ0‖L2) for all 0 ≤ t ≤ T, (2.3.1)

implies that

‖U(t)ψ0‖L∞ ≤ C0

2
|t|−n

2 (‖ψ0‖L1 + e−
αT
2 ‖ψ0‖L2) for all 0 ≤ t ≤ T, (2.3.2)
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provided that C0

2
remains larger than some constant that does not depend on T . The

logic here is that for arbitrary but fixed T , the assumption (2.3.1) can be made to hold

for some C0 depending on T , because of Corollary 2.2.3. Iterating the implication

(2.3.1) =⇒ (2.3.2) then yields a constant that does not depend on T . So we can let

T → +∞ to eliminate ‖ψ0‖L2 on the right-hand side. Since L1 ∩ L2 is dense in L1

and U(t) is a linear operator, we get the dispersive estimate (3.3.1) for any initial

data ψ0 ∈ L1. To simplify the notation, we write ‖ψ0‖L1 + e−
αT
2 ‖ψ0‖L2 as |||ψ0|||(T ) or

|||ψ0|||.
We proceed by expanding U(t) via Duhamel’s formula with respect to the free

evolution H0:

U(t)φ0 = e−itH0φ0 − i

∫ t

0

e−i(t−s)H0V (s)U(s)ψ0 ds (2.3.3)

= e−itH0ψ0 − i

∫ t

0

e−i(t−s)H0V (s)e−isH0ψ0 ds

−
∫ t

0

∫ s

0

e−i(t−s)H0V (s)e−i(s−τ)H0V (τ)U(τ)ψ0 dτds. (2.3.4)

Note that ‖e−itH0ψ0‖∞ . |t|−n
2 ‖ψ0‖1. For the second term in (2.3.4), we divide

the integration interval (0, t) into three pieces and handle them by means of the

cancellation lemma. Firstly,

‖
∫ 1

0

e−i(t−s)H0V (s)e−isH0ψ0 ds‖∞ . |t|−n
2 sup

s
‖eisH0V (s)e−isH0‖1→1‖ψ0‖1 . |t|−n

2 ‖ψ0‖1.

Similarly, we have

‖
∫ t

t−1

e−i(t−s)H0V (s)e−isH0ψ0 ds‖∞ . |t|−n
2 sup

s
‖eisH0V (s)e−isH0‖1→1‖ψ0‖1 . |t|−n

2 ‖ψ0‖1.

The third piece is



23

‖
∫ t−1

1

e−i(t−s)H0V (s)e−isH0ψ0 ds‖∞ .
∫ t−1

1

|t−s|−n
2 sup

s
‖V (s)‖1|s|−n

2 ds‖ψ0‖1 . |t|−n
2 ‖ψ0‖1,

where we observed that

∫ t−1

1

|t− s|−n
2 |s|−n

2 ds . t−
n
2 given n ≥ 3. (2.3.5)

The third term in (2.3.4) is

∫ t

0

ds

∫ s

0

dτ e−i(t−s)H0V (s)e−i(s−τ)H0V (τ)U(τ)ψ0. (2.3.6)

We will decompose the domain of integration
∫ t

0
ds

∫ s

0
dτ into several pieces and

treat each piece separately. We fix A > 0 as a large constant and ε > 0 as a small

constant. Write min{s, A} = s ∧ A. Then Lemma 2.2.4 and (2.3.5) implies that

‖
∫ t

0

ds

∫ s∧A

0

dτ e−i(t−s)H0V (s)e−i(s−τ)H0V (τ)U(τ) dτds‖1→∞

.
∫ t

0

ds

∫ s∧A

0

dτ 〈t− s〉−n
2 〈s− τ〉−n

2 〈τ〉−n
2 eAM

. t−
n
2 .

By ‖ ·‖1→∞, we mean the operator norm from L1 to L∞. However, when we apply

the bootstrap assumption, ‖ψ0‖L1 has to be modified to ‖ψ0‖L1+e−
αT
2 ‖ψ0‖L2 := |||ψ0|||.

An application of Lemma 2.2.1 and the bootstrap assumption show that

‖
∫ t

t−ε

ds

∫ s

t−ε

dτ e−i(t−s)H0V (s)e−i(s−τ)H0V (τ)U(τ) dτdsψ0‖∞

.
∫ t

t−ε

ds

∫ s

t−ε

dτ ‖e−i(t−s)H0V (s)e−i(s−τ)H0‖1→∞‖V (τ)U(τ)ψ0‖1 dτds

.
∫ t

t−ε

dτ

∫ t

τ

ds|t− τ |−n
2 max

τ∈(t−ε,t)
‖U(τ)ψ0‖∞.

If n = 3, then the above is dominated by
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.
∫ t

t−ε

dτ |t− τ |− 1
2 C0t

−n
2 |||ψ0||| .

√
εC0t

−n
2 |||ψ0|||.

Taking ε small enough, the above term can be dominated by 1
100

C0t
−n

2 |||ψ0|||. When

n > 3, we need to expand U(t) further to remove the singularity of |t− τ |−n
2 at τ = t,

(see [23] Section 2 for details). The following is another piece of (2.3.6):

‖
∫ t−A

A

∫ s

A

e−i(t−s)H0V (s)e−i(s−τ)H0V (τ)U(τ)ψ0 dτds‖∞

.
∫ t−A

A

ds

∫ s

A

dτ〈t− s〉−n
2 〈s− τ〉−n

2 ‖V (τ)U(τ)ψ0‖1

.
∫ t−A

A

ds

∫ s

A

dτ〈t− s〉−n
2 〈s− τ〉−n

2 C0τ
−n

2 |||ψ0|||

. C0|||ψ0|||
∫ t−A

A

ds〈t− s〉−n
2 〈s〉−n

2

. C0|||ψ0|||t−n
2 κA ≤ 1

100
C0|||ψ0|||t−n

2 ,

where κA <
∫ +∞

A
ds〈s〉−n

2 → 0 as A → ∞. Lemma 2.2.4 and the bootstrap assump-

tion are applied in turn in the above. The last line of above inequality holds provided

that A is large enough. By Corollary 2.2.3, we can assume t >> A. Similarly, the

following piece in (2.3.6) also requires that A is large:

‖
∫ t

t−A

∫ s−A

A

e−i(t−s)H0V (s)e−i(s−τ)H0V (τ)U(τ)ψ0 dτds‖∞

.
∫ t

t−A

ds

∫ s−A

A

dτ〈t− s〉−n
2 〈s− τ〉−n

2 ‖U(τ)ψ0‖∞ ≤ 1

100
C0|||ψ0|||t−n

2 .

So what remains in (2.3.6) is

m∑
j=1

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ e−i(t−s)H0V (s)e−i(s−τ)H0Vj(· − τ~vj)U(τ)ψ0. (2.3.7)
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For the term containing Vj in (2.3.7), U(τ) will be expanded with respect to Hj

by Duhamel’s formula. Abusing the notation, we will write V1(· − τ~v1) as V1(τ). In

the following, we only deal with the term containing V1, which will be decomposed

into two parts by U(τ) = Pb(H1, τ)U(τ) + Pc(H1, τ)U(τ).

2.3.1 Bound states

Proposition 2.3.1. Let ψ(t, x) = (U(t)ψ0)(x) be a solution of (2.1.7), which is

asymptotically orthogonal to the bound states of Hj, j = 1, 2 in the sense of Defini-

tion 2.1.2. Provided the bootstrap assumption (2.3.1), we have for any t ∈ (0, T )

‖Pb(H1, t)U(t)ψ0‖∞ . C0e
−αt

4 t−
n
2 (‖ψ0‖L1 + e−

αT
2 ‖ψ0‖L2), (2.3.8)

where C0 is the constant in the bootstrap assumption.

Proof. Let Ũ(t) := g ~e1(t)U(t) and φ(t) = Ũ(t)ψ0. Then φ(t) solves

1
i
∂tφ− 1

2
4φ + V (·+ t~v1)φ = 0, (2.3.9)

φ|t=0(x) = ( g ~e1(0)ψ0)(x).

Then ‖Pb(H1, t)U(t)ψ0‖∞ = ‖Pb(H1)Ũ(t)φ0‖∞ so without loss of generality, we

can assume that ~v1 is the zero vector. Suppose that the bound states of H1 are

u1, u2, . . . , ul and we decompose

U(t)ψ0 =
l∑

i=1

ai(t)ui + ψ1(t, x) (2.3.10)

with respect to H1 so that Pc(H1)ψ1 = ψ1 and Pb(H1)ψ1 = 0. By the asymptotic

orthogonality assumption,

l∑
i=1

|ai(t)|2 → 0 as t →∞.
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Substituting (2.3.10) into (2.1.7) yields

1

i
∂tψ1 − 1

2
4ψ1 + V1ψ1 + V2(· − t~e1)ψ1+

+
l∑

j=1

[
1

i
ȧj(t)uj − 1

2
4ujaj(t) + V1 ujaj(t) + V2(· − t~e1)ujaj(t)

]
= 0. (2.3.11)

Since Pc(H1)ψ1 = ψ1, we have

(−1

2
4+ V1)ψ1 = H1ψ1 = Pc(H1)H1ψ1, ∂tψ1 = Pc(H1)∂tψ1.

In particular,

Pb(H1)

(
1

i
∂tψ1 − 1

2
4ψ1 + V1ψ1

)
= 0.

Thus, taking an inner product of the equation (2.3.11) with uκ and using the fact

that 〈uκ, uj〉 = δjκ as well as the identity

−1

2
4uj + V1uj = λjuj,

we obtain the ODE

1

i
ȧκ(t) + λκaκ(t) + 〈V2(· − t~e1)ψ1, uκ〉+

m∑
j=1

aj(t)〈V2(· − t~e1)uj, uκ〉 = 0

for each aκ with the condition that

aκ(t) → 0 as t → +∞.

Recall that uκ is an eigenfunction of H1 = −1
2
4 + V1 with eigenvalue λκ < 0. It

is well-known (e.g., Agmon [1]) that such eigenfunctions are exponentially localized,

i.e.,

∫

Rn

e2α|x| |uκ(x)|2 dx ≤ C = C(V1, n) < ∞ for some positive α. (2.3.12)
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Therefore, the assumption that V2 has compact support implies

‖V2(· − t~e1)uκ‖2 . e−αt for all t ≥ 0. (2.3.13)

The implicit constant in (2.3.13) depends on the size of the support of V2 and ‖V2‖L∞ .

By the bootstrap assumption, fκ(t) := 〈V2(· − t~e1)ψ1, uκ〉 satisfies

|fκ(t)| . ‖ψ1‖∞‖V2(· − t~e1)uκ‖1 . e−αt‖ψ1‖∞
. e−αt‖(Id− Pb(H1))U(t)ψ0‖∞

. e−αtt−
n
2 C0(‖ψ0‖L1 + e−

αT
2 ‖ψ0‖L2) + e−αt

l∑
i=1

|ai(t)| ‖ui‖∞, (2.3.14)

where t ∈ (0, T ). Notice that (2.3.14) fails for t > T because the bootstrap assumption

only applies to 0 < t < T . Instead, we have the following for t > T :

|fκ(t)| < ‖V2(· − t~e1)uκ‖2‖ψ1‖2 . e−αt‖ψ0‖2. (2.3.15)

In view of (2.3.1), aκ solves the equation

1
i
ȧκ(t) + λκaκ(t) +

∑m
j=1 aj(t)Cjκ(t) + fκ(t) = 0, (2.3.16)

aκ(∞) = 0,

where Cjκ(t) = Cκj(t) = 〈V2(· − t~e1)uj, uκ〉. By (2.3.13), maxj,κ |Cjκ(t)| . e−αt.

Solving (2.3.16) explicitly, we obtain

~a(t) = ie−i
∫ t
0 B(s) ds

∫ ∞

t

ei
∫ s
0 B(τ) dτ ~f(s) ds,

where Bjκ(t) = λjδjκ + Cjκ(t).
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By (2.3.14), (2.3.15) and the unitarity of ei
∫ s
0 B(τ) dτ , we conclude that

|~a(t)| ≤
∫ T

t

+

∫ ∞

T

|~f(s)| ds

.
∫ T

t

e−αss−
n
2 C0ds|||ψ0|||+

∫ T

t

e−αs

l∑
j=1

|aj(s)|‖ui‖∞ds +

∫ ∞

T

e−αsds‖ψ0‖L2 .

Choose a large constant t0 > 0 such that for all t1 > t0, the following holds:

∫ T

t1

e−αs

l∑
j=1

|aj(s)|‖ui‖∞ds ≤ 1

2
sup

t1<t<T
|~a(t)|, (2.3.17)

then

sup
t1<t<T

|~a(t)| . e−αt1t
−n

2
1 C0|||ψ0|||+ e−αT‖ψ0‖L2 . e−

αt1
4 t

−n
2

1 C0|||ψ0|||.

Remark 2.3.1. In the above proof, if we change (2.3.14) into the following:

|fκ(t)| . ‖ψ1(t)‖p‖V2(· − t~e1)uκ‖p′ . e−αt‖ψ1(t)‖p

. e−αt‖ (Id− Pb(H1))U(t)ψ0‖p

. e−αtt−γC0(‖ψ0‖p′ + e−
αT
2 ‖ψ0‖L2) + e−αt

l∑
i=1

|ai(t)| ‖ui‖p,

where γ = n(1
2
− 1

p
) > 1, and follow the same arguments, we see that for large t,

‖Pb(H1, t)U(t)ψ0‖p . t−γC0e
−αT

4 (‖ψ0‖p′ + e−
αT
2 ‖ψ0‖L2).

If the potential V1 is smooth enough, it is known (e.g., [1]) that the bound state

uj of H1 is differentiable. Moreover, its derivatives decay exponentially at infinity.

Thus,

‖∂Pb(H1, t)U(t)ψ0‖p ≤
l∑

i=1

|ai(t)|‖∂ui‖p . t−γC0e
−αT

4 (‖ψ0‖p′ + e−
αT
2 ‖ψ0‖L2).

(2.3.18)
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In addition, the above claims hold with H1 replaced by Hj, j = 2, · · · ,m. These

results will be used to prove Theorem 2.1.4 in Section 4. ¤

With Proposition 2.3.1, the Pb(H1, τ)U(τ) part of (2.3.7) can be estimated by the

following:

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ‖e−i(t−s)H0V (s)e−i(s−τ)H0V1(τ)Pb(H1, τ)U(τ)ψ0‖∞

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ〈t− s〉−n
2 〈s− τ〉−n

2 ‖V1(τ)Pb(H1, τ)U(τ)ψ0‖1

.A2 sup
τ∈(t−2A,t)

‖Pb(H1, τ)U(τ)ψ0‖∞

<
C0

100
t−

n
2 (‖ψ0‖L1 + e−

αT
2 ‖ψ0‖L2).

For the Pc(H1, τ)U(τ) part of (2.3.7), we need to apply Duhamel’s formula again

and expand (2.3.7) further with respect to H1. We assume that ~v1 = 0 and m = 2 to

simplify our notation. Specifically, we plug the following

Pc(H1, τ)U(τ) = Pc(H1)U(τ) = Pc(H1)e
−iτH1 − iPc(H1)

∫ τ

0

e−i(τ−r)H1V2(r)U(r) dr

into (2.3.7). For the term containing Pc(H1)e
−iτH1 , we apply the dispersive decay for

Pc(H1)e
−iτH1 :

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ‖e−i(t−s)H0V (s)e−i(s−τ)H0V1(τ)Pc(H1)e
−iτH1ψ0‖∞

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ〈t− s〉−n/2〈s− τ〉−n/2〈τ〉−n/2‖ψ0‖1 . t−n/2‖ψ0‖1.

The second term is

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ

0

dr e−i(t−s)H0V (s)e−i(s−τ)H0V1(τ)Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0.

(2.3.19)

Now take a small constant δ > 0 and a large constant A1 > 0 to be specified later.
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We decompose the integral
∫ τ

0
dr in (2.3.19) as follows:

∫ τ

0

dr =

∫ δ

0

dr +

∫ A1

δ

dr +

∫ τ−A1

A1

dr +

∫ τ−δ

τ−A1

dr +

∫ τ

τ−δ

dr. (2.3.20)

To simplify the notation, we will write A1 as A. Our goal is to estimate each term

in (2.3.20). The second term of (2.3.20) is estimated as follows:

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ A

δ

dr‖e−i(t−s)H0V (s)e−i(s−τ)H0V1(τ)Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0‖∞

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ A

δ

dr〈t− s〉−n/2〈s− τ〉−n/2〈τ − r〉−n/2〈r〉−n/2erM‖ψ0‖1

. t−n/2‖ψ0‖1.

The implicit constant above depends on A, δ.

The third term of (2.3.20) is estimated as follows:

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−A

A

dr‖e−i(t−s)H0V (s)e−i(s−τ)H0V1(τ)Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0‖∞

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−A

A

dr〈t− s〉−n/2〈s− τ〉−n/2〈τ − r〉−n/2‖U(r)ψ0‖∞

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−A

A

dr〈t− s〉−n/2〈s− τ〉−n/2〈τ − r〉−n/2〈r〉−n/2C0|||ψ0|||

. t−n/2C0κA|||ψ0||| ≤ 1

100
C0t

−n/2|||ψ0|||,

where κA → 0 as A →∞. So the above inequality holds for large enough A.
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For the fourth term in (2.3.20), we have

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ

τ−δ

dr‖e−i(t−s)H0V (s)e−i(s−τ)H0V1(τ)e−i(τ−r)H1Pc(H1)V2(r)U(r)ψ0‖∞

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ

τ−A

dr〈t− s〉−n/2〈s− τ〉−n/2‖V1(τ)Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0‖1

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ

τ−A

dr〈t− s〉−n/2〈s− τ〉−n/2‖U(r)ψ0‖∞

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ

τ−δ

dr〈t− s〉−n/2〈s− τ〉−n/2〈r〉−n/2C0|||ψ0|||

. t−n/2C0κδ|||ψ0||| ≤ 1

100
C0t

−n/2|||ψ0|||,

where κδ → 0 as δ → 0. So the above inequality holds for δ small enough.

For the
∫ δ

0
dr part of (2.3.20), we expand

e−i(τ−r)H1 = e−i(τ−r)H0 − i

∫ τ−r

0

e−i(τ−r−β)H1V1e
−iβH0 dβ.

Here we put H0 after H1 in the integral because we want H0 to appear immediately

before U(r) and apply Lemma 2.2.4. Substitute this expansion into the
∫ δ

0
dr part of

(2.3.20) and we get two terms. The first one is

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ δ

0

dre−i(t−s)H0V (s)e−i(s−τ)H0V1(τ)Pc(H1)e
−i(τ−r)H0V2(r)U(r)ψ0.

(2.3.21)

Notice that Pc(H1) = Id−Pb(H1), and because ‖Pb(H1)‖p→p is bounded, ‖Pc(H1)‖p→p

is bounded as well. Therefore the L∞ norm of (2.3.21) is estimated as follows:

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ δ

0

dr〈t− s〉−n/2〈s− τ〉−n/2〈τ〉−n/2eMr‖ψ0‖1 . t−n/2‖ψ0‖1.

The second term of the
∫ δ

0
dr part of (2.3.20) after substitution is
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∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ δ

0

dr e−i(t−s)H0V (s)e−i(s−τ)H0V1(τ)

Pc(H1)

∫ τ−r

0

e−i(τ−r−β)H1V1e
−iβH0 dβ V2(r)U(r)ψ0. (2.3.22)

Decompose
∫ τ−r

0
dβ so we can rewrite (2.3.22)= J1 +J2 +J3, where J1, J2, and J3

correspond to
∫ δ

0
dβ,

∫ τ−r−1

δ
dβ, and

∫ τ−r

τ−r−1
dβ, respectively.

We proceed to estimate J1 as follows:

∫ δ

0

dr

∫ δ

0

dβ ‖Pc(H1)e
−i(τ−r−β)H1V1e

−iβH0V2(r)U(r)ψ0‖∞

.
∫ δ

0

dr

∫ δ

0

dβ 〈τ − r − β〉−n/2‖e−iβH0V2(r)U(r)ψ0‖∞

. 〈τ〉−n/2

∫ δ

0

dr

∫ δ

0

dβ(β + r)−n/2eMr‖ψ0‖1.

In the above expression, when n = 3,
∫ δ

0
dr

∫ δ

0
dβ(β + r)−n/2eMr is integrable.

When n > 3, we need to further expand e−i(τ−r−β)H1 to remove the singularity of

(β + r)−n/2 at β + r = 0. In either case, we can conclude that ‖J1‖∞ . t−n/2‖ψ0‖1.

For J2, our estimate is the following:

∫ δ

0

dr

∫ τ−r−1

δ

dβ‖Pc(H1)e
−i(τ−r−β)H1V1e

−iβH0V2(r)U(r)ψ0‖∞

.
∫ δ

0

dr

∫ τ−r−1

δ

dβ〈τ − r − β〉−n/2‖V1e
−iβH0V2(r)U(r)ψ0‖1

.
∫ δ

0

dr

∫ τ−r−1

δ

dβ〈τ − r − β〉−n/2‖e−iβH0V2(r)U(r)ψ0‖∞

.
∫ δ

0

dr

∫ τ−r−1

δ

dβ〈τ − r − β〉−n/2(β + r)−n/2eMr‖ψ0‖1

.
∫ δ

0

dr

∫ τ−r−1

δ

dβ〈τ − r − β〉−n/2〈β + r〉−n/2‖ψ0‖1

. τ−n/2‖ψ0‖1.
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The implicit constant above depends on δ and is independent of t and ψ0. Plugging

the above estimate into J1, we derive that ‖J2‖∞ . t−n/2‖ψ0‖1.

To estimate J3, we notice that

‖
∫ τ−r

τ−r−1

dβV1(τ)Pc(H1)e
−i(τ−r−β)H1V1e

−iβH0V2(r)U(r)ψ0‖1

≤
∫ τ−r

τ−r−1

dβ‖V1(τ)‖2‖Pc(H1)e
−i(τ−r−β)H1‖2→2‖V1e

−iβH0V2(r)U(r)ψ0‖2

.
∫ τ−r

τ−r−1

dβ‖V1‖2‖e−iβH0V2(r)U(r)ψ0‖∞

.
∫ τ−r

τ−r−1

dβ|β|−n
2 eMr‖ψ0‖1.

Observe that r is small and β ' τ . Plugging the above estimate into J3, we derive

that ‖J3‖∞ . t−
n
2 ‖ψ0‖1. Thus, we finish the estimate of the

∫ δ

0
dr part of (2.3.20).

2.3.2 Low and high velocity estimates

So far we have estimated four parts of (2.3.20). This subsection is devoted to deriving

the estimate of the
∫ τ−δ

τ−A
dr part of (2.3.20), which will be decomposed as follows:

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A

dre−i(t−s)H0V (s)e−i(s−τ)H0V1Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0

=

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A

dre−i(t−s)H0V (s)e−i(s−τ)H0·

V1Pc(H1)e
−i(τ−r)H1(F (|~p| ≥ N) + F (|~p| ≤ N))V2(r)U(r)ψ0

= Jhigh + Jlow.

F (|~p| ≤ N) and F (|~p| ≥ N) denote smooth projections onto the frequencies |~p| ≤ N

and |~p| ≥ N , respectively. For the low velocity part Jlow, firstly, (t− s) + (s− τ) ≥ ε

and Lemma 2.2.4 imply
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‖ei(t−s)H0V (s)ei(s−τ)H0‖1→∞ . 〈t− s〉−n
2 〈s− τ〉−n

2 . (2.3.23)

Secondly, we need the following proposition from [31]:

Proposition 2.3.2. Let χ1(t, x) be a smooth cut of the ball B(0, δt) with respect to

x, where δ is a small constant only depending on ~e1 and B(0, δt) is a ball centered at

0 with radius δt. Let A,M be large positive constants and A,M << t. Then

sup
|t−s|≤A

‖χ1(t, ·)e−i(t−s)H1Pc(H1)F (|~p| ≤ M)V2(· − s~e1)‖L2→L2 ≤ AM

δt
.

The idea behind Proposition 2.3.2 can be explained as the following:

The support of V2(· − s~e1) is contained in B(s~e1, R). Here R is the size of the

support of V2. The operator e−i(t−s)H1Pc(H1)F (|~p| ≤ M) can “propagate” B(s~e1, R)

into B(0, tδ) only if (t − s)M ≥ dist(B(s~e1, R), B(0, tδ)) according to the classical

picture. However if |t−s| < A, tA,M ¿ t, then (τ−r)M ¿ dist(B(r~e1, R), B(0, τδ)).

This proposition appears in [31]. We give a proof here for completeness.

Proof. The proof is a commutator argument. Let χ1 = χ(t, x). Firstly, we claim that

‖[χ1, Pc(H1)]‖L2→L2 . e−δαt. (2.3.24)

Clearly,

[χ1, Pc(H1)] = [χ1, I − Pb(H1)] = −[χ1, Pb(H1)].

Recall that u1, . . . , um are the exponentially decaying eigenvalues of H1. Therefore,

[χ1, Pb(H1)]f =
m∑

i=1

(χ1ui〈f, ui〉 − ui〈fχ1, ui〉)

=
m∑

i=1

((−1 + χ1)ui〈f, ui〉 − ui〈f, (χ1 − 1)ui〉) .
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In of the support of χ1 − 1 we have that

‖(1− χ1)ui‖2 . e−αδt

and thus

‖[χ1, Pb(H1)]f‖L2 ≤ e−αδt‖f‖L2 ,

as desired. Secondly, we claim that

‖[χ1, e
−i(t−s)H1 ]F (|~p| ≤ M)‖L2→L2 . AM

δt
. (2.3.25)

We write

[χ1, e
−i(t−s)H1 ] = e−i(t−s)H1(ei(t−s)H1χ1e

−i(t−s)H1 − χ1)

and

ei(t−s)H1χ1 e−i(t−s)H1 − χ1 = i

∫ t−s

0

eiτH1 [H1, χ1]e
−iτH1 dτ

= i

∫ t−s

0

eiτH1(−∇χ1∇− 1

2
4χ1)e

−iτH1 dτ.

Observe now that

|∇χ1(t, x)| . 1

δt
, |4χ1(t, x)| . 1

(δt)2
.

Therefore,

‖[χ1, e
−(t−s)H1 ]F (|~p| ≤ M)‖L2→L2

. |t− s|
(
‖∇χ1∇e−iτH1F (|~p| ≤ M)‖L2→L2 + ‖∆χ1e

−iτH1F (|~p| ≤ M)‖L2→L2

)

. A

δt
‖∇e−iτH1F (|~p| ≤ M)‖L2→L2 +

A

(δt)2
‖e−iτH1F (|~p| ≤ M)‖L2→L2 .

Since the potential V1 is bounded it is standard that

sup
τ
‖∇e−iτH1f‖L2 . ‖∇f‖L2 + ‖f‖L2 . (2.3.26)
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Indeed,

sup
τ
‖4e−iτH1f‖L2 ≤ sup

τ
‖e−iτH1H1f‖L2 + sup

τ
‖V1e

−iτH1f‖L2 . ‖∇2f‖L2 + ‖f‖L2 ,

and (2.3.26) follows by interpolation with L2. Therefore,

‖∇e−iτH1F (|~p| ≤ M)‖L2→L2 ≤ M.

Combining terms we obtain the bound

‖[χ1, e
−i(t−s)H1 ]F (|~p| ≤ M)‖L2→L2 . AM

δt
+

A

(δt)2
≤ 2

AM

δt

since M << t, which is (2.3.25). Finally, we invoke one more standard fact, namely

‖[χ1, F (|~p| ≤ M)]‖L2→L2 . M−1 ‖∇χ1‖∞ . 1

δMt
. (2.3.27)

To see this, write F (|~p| ≤ M)f = [η̂(ξ/M)f̂(ξ)]∨ with some smooth bump function η.

Hence the kernel K of [χ1, F (|~p| ≤ M)] is

K(x, y) = Mnη(M(x− y))(χ1(x)− χ1(y)),

and (2.3.29) follows from Schur’s test. One concludes from estimates (2.3.24), (2.3.25),

(2.3.29) that

∥∥∥χ1(t, ·)e−i(t−s)H1Pc(H1)F (|~p| ≤ M)V2(· − s~e1)

− e−i(t−s)H1Pc(H1)F (|~p| ≤ M)χ1(t, ·)V2(· − s~e1)
∥∥∥

L→L2
. AM

δt
.

It remains to be seen that χ1(t, ·)V2(· − s~e1) = 0 since the supports of χ1(t, ·) and

V2(· − s~e1) are disjoint.

To apply Proposition 2.3.2 to Jlow, note that χτV1 = V1. Let χ2 be a smooth

cut of the support of V2 and f be any function in L∞(Rn). Then it follows from
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Proposition 2.3.2 that

‖V1Pc(H1)e
−i(τ−r)H1F (|~p| ≤ N)V2(r)f‖1

= ‖V1χτPc(H1)e
−i(τ−r)H1F (|~p| ≤ N)V2(r)χ2(· − r~v2)f‖1

≤ ‖V1‖2‖χτPc(H1)e
−i(τ−r)H1F (|~p| ≤ N)V2(r)‖2→2‖χ2‖2‖f‖∞

. ANM2

δt
‖f‖∞.

Combining the above estimate with (2.3.23) and noting A,M, N ¿ t, we conclude

‖Jlow‖∞ .
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A

dr〈t− s〉−n/2〈s− τ〉−n/2ANM2

δt
‖U(r)ψ0‖∞

≤ C0

100
t−n/2|||ψ0|||.

From the above estimate for Jlow, it is worth remarking that the purpose of the

multiple expansions by Duhamel’s formula is to prepare a cushion (the potentials V1

and V2) to apply the L2 → L2 estimate (Prop 2.3.2) between the L1 → L∞ estimates.

For the high velocity part Jhigh, we shall further expand U(r) with respect to H0,

followed by a commutator argument. By Duhamel’s formula

U(r) = e−irH0 − i

∫ r

0

e−i(r−α)H0V (α)U(α) dα,

we write Jhigh = Jhigh,1 − iJhigh,2, where

Jhigh,1 =

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A

dr e−i(t−s)H0V (s)e−i(s−τ)H0V1Pc(H1)e
−i(τ−r)H1·

· F (|~p| ≥ N)V2(r)e
−irH0ψ0,
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and

Jhigh,2 =

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A

dr e−i(t−s)H0V (s)e−i(s−τ)H0V1Pc(H1)e
−i(τ−r)H1·

· F (|~p| ≥ N)V2(r)

∫ r

0

e−i(r−α)H0V (α)U(α)ψ0 dα.

The decay of Jhigh,1 will come easily from e−irH0 . Indeed, we apply Lemma 2.2.4 to

e−i(t−s)H0V (s)e−i(s−τ)H0 as in (2.3.23) and notice that

‖Pc(H1)e
−i(τ−r)H1F (|~p| ≥ N)‖L2→L2 ≤ 1. (2.3.28)

Then it is clear that ‖Jhigh,1‖∞ is dominated by

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−η

τ−A

dr〈t− s〉−n/2〈s− τ〉−n/2〈r〉−n/2‖ψ0‖1 . t−n/2‖ψ0‖1.

Jhigh,2 will be decomposed into three parts J1
high,2, J

2
high,2, and J3

high,2, corresponding

to
∫ B

0
dα,

∫ r−B

B
dα, and

∫ r

r−B
dα, respectively, where B > 0 is a large constant to be

specified.

For J1
high,2, the decay comes from e−i(r−α)H0 . Indeed, it follows from Lemma 2.2.2

and 0 < α < B that

‖e−i(r−α)H0V (α)U(α)‖1→∞ . r−n/2eMα . 〈r〉−n/2.

Hence, it follows from (2.3.23), (2.3.28), and the above inequality that ‖J1
high,2‖∞

is dominated by

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A

dr〈t− s〉−n/2〈s− τ〉−n/2〈r〉−n/2‖ψ0‖1 . 〈t〉−n/2‖ψ0‖1.

J2
high,2 will be estimated by an application of the bootstrap assumption, and the

smallness comes from choosing B to be sufficiently large. Indeed, it follows from

(2.3.23), (2.3.28), Lemma 2.2.4 and the bootstrap assumption that
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‖J2
high,2‖∞ .

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A

dr〈t− s〉−n/2〈s− τ〉−n/2·

·
∫ r−B

B

〈r − α〉−n/2〈α〉−n/2dα C0|||ψ0|||

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A

dr〈t− s〉−n/2〈s− τ〉−n/2〈r〉−n/2κBC0|||ψ0|||

≤ 1

100
C0t

−n/2|||ψ0|||.

In the above inequality, B is chosen to be sufficiently large, because κB =
∫∞

B
〈α〉−n/2dα →

0 when B →∞.

The decay of J3
high,2 can only come from U(α). As usual we need to generate

the smallness 1
100

for the bootstrap assumption. Here the smallness 1
100

comes from

the high velocity and a commutator argument. Write F (|~p| ≥ N)V2(r) = [F (|~p| ≥
N), V2(r)] + V2(r)F (|~p| ≥ N) and correspondingly, we decompose J3

high,2 = J3,1
high,2 +

J3,2
high,2. That is to say J3,1

high,2 and J3,2
high,2 are just J3

high,2 with F (|~p| ≥ N)V2(r) replaced

by [F (|~p| ≥ N), V2(r)] and V2(r)F (|~p| ≥ N).

Specifically, the smallness 1
100

for J3,1
high,2 comes from the following standard fact,

namely

‖[F (|~p| ≤ N), V2]‖L2→L2 . N−1 ‖∇V2‖∞. (2.3.29)

To see this, write F (|~p| ≤ N)f = [η̂(ξ/N)f̂(ξ)]∨ with some smooth bump func-

tion η. Hence the kernel K of [F (|~p| ≤ N), V2] is

K(x, y) = Nnη(N(x− y))(V2(y)− V2(x)),

and (2.3.29) follows from Schur’s test and supx ‖K(x, ·)‖L1 = supy ‖K(·, y)‖L1 .
N−1 ‖∇V2‖∞.

It follows from (2.3.23), ‖Pc(H1)e
−i(τ−r)H1‖2→2 ≤ 1, (2.3.29) and the bootstrap

assumption that
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‖J3,1
high,2‖∞

.
∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A

dr(〈t− s〉〈s− τ〉)−n/2‖V1‖2‖∇V2‖∞
N

·

·
∫ r

r−B

‖e−i(r−α)H0V (α)U(α)ψ0‖2dα

. 1

N
sup

t−3A−B<α<t
‖U(t)ψ0‖∞ . C0

N
t−n/2|||ψ0||| ≤ C0

100
t−n/2|||ψ0|||,

where 1
N

is chosen sufficiently small to dominate the implicit constant in “ . ” which

only depends on n, V,~v2 and ε, δ, A, B.

The smallness for J3,2
high,2 comes from the following version of Kato’s 1

2
-smoothing

estimate:

‖
∫ α+B

α

χ2(· − r~v2)F (|~p| ≥ N)e−i(r−α)H0 dr‖2→2 . BR√
N

, (2.3.30)

where χ2(·) is a smooth cut around the support of V2 and R is radius of the support

of χ2. The implicit constant only depends on n, V2. We refer to Section 3.5 in [31]

for its proof and further references.

Now observe that the region of integration
∫ τ−δ

τ−A
dr

∫ r−B

r
dα is contained in that of

∫ τ−δ

τ−A−B
dα

∫ α+B

α
dr and ‖Pc(H1)e

−i(τ−r)H1‖2→2 ≤ 1. It follows from (2.3.23), (2.3.30),

and the above observation that

‖J3,2
high,2‖∞ .

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A−B

dα〈t− s〉−n/2〈s− τ〉−n/2 BR√
N
‖U(α)ψ0‖∞

. C0

100
t−n/2|||ψ0|||,

where 1√
N

is chosen to be sufficiently small to dominate the implicit constant, which

only depends on n, V,~v2 and ε, δ, A,B. Therefore, we conclude that (2.3.1) implies

(2.3.2), from which Theorem 2.1.3 follows.
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2.4 Decay estimates of the derivatives of U(t)

In this section we prove Theorem 2.1.4 by induction on κ by following the same

scheme as the proof of Theorem 2.1.3. The first step is to set up the cancellation

lemma for ∂U(t)ψ0.

Lemma 2.4.1. Let κ be a nonnegative integer. Assume that

sup
0≤β≤κ

sup
r∈R

‖∂̂βV (r)‖L1 < M.

Let α be a nonnegative integer n-tuple with |α| = κ. Suppose U(t) is the evolution

operator of (2.1.7) as before. Then

sup
r∈R

‖e−i(t−s)H0V (r)∂αU(s)ψ0‖p < |t|−γMe(κ+1)Ms‖ψ0‖W κ,p′ , (2.4.1)

where γ = n(1
2
− 1

p
) and 2 ≤ p < ∞, 1

p
+ 1

p′ = 1.

Proof. Write the left-hand side of (2.4.1):= Ψ(t, s). When κ = 0, (2.4.1) is just

the inequality (2.2.3). Note that the inequality (2.2.3) holds with V replaced by its

derivative ∂βV , as long as ∂̂βV lies in L1(Rn). Assume κ = 1 and apply Duhamel’s

formula:

‖e−i(t−s)H0V (r)∂U(s)ψ0‖p

≤ ‖e−i(t−s)H0V (r)∂e−isH0ψ0‖p +

∫ s

0

‖e−i(t−s)H0V (r)e−i(s−τ)H0∂V (τ)U(τ)ψ0‖pdτ

≤ C‖V̂ (r)‖1t
−γ‖∂ψ0‖p′ + ‖V̂ (r)‖1

∫ s

0

‖e−i(t−τ)H0(∂V )(τ)U(τ)ψ0‖pdτ

+ ‖V̂ (r)‖1

∫ s

0

‖e−i(t−τ)H0V (τ)∂U(τ)ψ0‖pdτ

≤ CMt−γ‖ψ0‖W 1,p′ + M

∫ s

0

t−γeτMdτ‖ψ0‖p′ + M

∫ s

0

Ψ(t, τ)dτ

≤ CMt−γesM‖ψ0‖W 1,p′ + M

∫ s

0

Ψ(t, τ)dτ.

Taking supremum over r, we get Ψ(t, s) ≤ CMt−γesM‖ψ0‖W 1,p′ +M
∫ s

0
Ψ(t, τ)dτ . By
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Gronwall’s inequality, Ψ(t, s) ≤ CMt−γe2Ms.

For κ > 1, the above argument goes through by induction, provided that the

Fourier transforms of the derivatives up to degree κ of V (r) are uniformly bounded

in L1(Rn).

The following is an analog of Corollary 2.2.3:

Corollary 2.4.2. With the same notations and assumptions as in Lemma 2.4.1, we

have

‖U(t)ψ0‖W κ,p . t−γe(1+κ)Mt‖ψ0‖W κ,p′ . (2.4.2)

Proof. By Duhamel’s formula, Lemma 2.4.1, and the fact that ∂ commutes with

e−itH0 , we have the following estimate:

‖∂αU(t)ψ0‖p . ‖e−itH0∂αψ0‖p + Σβ≤α

∫ t

0

‖e−i(t−τ)H0(∂βV )(τ)∂α−βU(τ)ψ0‖pdτ

. t−γ‖ψ0‖W κ,p′ + Σβ≤α

∫ t

0

t−γe(|β|+1)Mτdτ‖ψ0‖W κ,p′

≤ Ct−γe(κ+1)Mt‖ψ0‖W κ,p′ .

Similarly, the following lemma generalizes Lemma 2.2.4:

Lemma 2.4.3. Let α be an n-tuple with |α| = κ and U(t) be the evolution operator

of (2.1.7). For each m ≥ 1 and ε > 0, u1, u2, . . . , um are all in either R+ or R−,

satisfying |∑m
j=1 uj| > ε, then there exists constant C = C(m, ε, κ, p) such that

‖
m−1∏
j=1

(eiujH0V (sj))∂
αU(um)ψ0‖p ≤ CMm−1

m∏
j=1

〈uj〉−γe(κ+1)Mum‖ψ0‖W κ,p′ , (2.4.3)

where sj is any real number, 2n
n−2

< p < ∞, 1
p

+ 1
p′ = 1 and

M = Σ0≤β≤α sup
s∈R

(‖∂βV (s)‖1 + ‖∂̂βV (s)‖1).
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Using Lemma 2.4.1 and Corollary 2.4.2, the proof of Lemma 2.4.3 is exactly the

same as that of Lemma 2.2.4.

We only prove Theorem 2.1.4 for the case κ = 1, 2. The case κ > 2 can be proven

by induction. Specifically, we prove the following implication:

For any fixed sufficiently large time T ,

‖U(t)ψ0‖W κ,p ≤ C0|t|−γ(‖ψ0‖W κ,p′ + e−
αT
2 ‖ψ0‖L2) for 0 ≤ t ≤ T, κ = 1, 2 (2.4.4)

implies that

‖U(t)ψ0‖W κ,p ≤ C0

2
|t|−γ(‖ψ0‖W κ,p′ + e−

αT
2 ‖ψ0‖L2) for 0 ≤ t ≤ T, κ = 1, 2 (2.4.5)

provided that C0

2
remains larger than some constant that does not depend on T . The

assumption (2.4.4) can be made to hold for some C0 depending on T , because of

Corollary 2.4.2. Letting T → +∞ to eliminate ‖ψ0‖L2 , Theorem 2.1.4 follows from

the iteration of the above implication.

We will first prove (2.4.5) for κ = 1. For technical reasons (see (2.4.15)), we need

the above bootstrap assumption (2.4.4) for κ + 2. To simplify the notation, we write

∂α = ∂ and

‖ψ0‖W 1,p′ + e−
αT
2 ‖ψ0‖L2 := |||ψ0|||(1,p′).

With these cancellation lemmas for ∂U(t)ψ0, the proof of Theorem 2.1.4 follows

the scheme of that of Theorem 2.1.3. The difference is that now we need to commute

∂x with operators such as eitH0 , V and eitH1 to apply the cancellation lemma and the

bootstrap assumption.

We proceed by expanding U(t) with Duhamel’s formula:
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∂U(t)ψ0 = ∂e−itH0ψ0 − i

∫ t

0

∂e−i(t−s)H0V (s)U(s)ψ0 ds

= ∂e−itH0ψ0 − i

∫ t

0

e−i(t−s)H0(∂V )(s)U(s)ψ0 ds

− i

∫ t

0

e−i(t−s)H0V (s)∂U(s)ψ0 ds. (2.4.6)

Notice that [∂, V ] = (∂V )· is a multiplication operator, which can be viewed as

another potential and Theorem 2.1.3 can be applied to the second term of (2.4.6).

This idea has appeared in the proof of Lemma 2.4.1. Specifically, it follows from the

proof of Theorem 2.1.3 and an interpolation with the L2 conservation of U(t) that

‖
∫ t

0

e−i(t−s)H0V (s)U(s)ψ0 ds‖p . t−γ‖ψ0‖p′ .

By assumption, ∂Vj satisfies the regularity and smoothness conditions for Vj in

Theorem 2.1.3, and we conclude that

‖
∫ t

0

e−i(t−s)H0(∂V )(s)U(s)ψ0 ds‖p . t−γ‖ψ0‖p′ .

We expand the last term of (2.4.6) by Duhamel’s formula just as in Section 2.3

and perform the same decomposition. With the cancellation lemma for ∂U(t) and

Remark 2.3.1, the last term (2.4.6) is reduced to the following:

2∑
j=1

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ e−i(t−s)H0V (s)e−i(s−τ)H0Vj(· − τ~vj)∂Pc(H1, τ)U(τ)ψ0. (2.4.7)

Before we proceed, we observe that our assumptions guarantee

‖Pc(H1)e
−itH1ψ0‖Lq ≤ Cq |t|−γ‖ψ0‖Lq′ . (2.4.8)
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This implies that

‖H1Pc(H1)e
−itH1ψ0‖Lq = ‖Pc(H1)e

−itH1H1ψ0‖Lq

≤ Cq |t|−γ‖H1ψ0‖Lq′ ≤ Cq |t|−γ‖ψ0‖W 2,q′ .

As V1 ∈ L∞(Rn) and double Riesz transforms are bounded on Lq(Rn) 1 < q <

+∞, the above inequality in the case of 1 < q < +∞, implies that

‖Pc(H1)e
−itH1ψ0‖W 2,q . |t|−γ‖ψ0‖W 2,q′ . (2.4.9)

Interpolating between (2.4.8) and (2.4.9) (Theorem 6.4.5 [5]), we conclude that

‖Pc(H1)e
−itH1ψ0‖W 1,q ≤ Cq |t|−γ‖ψ0‖W 1,q′ , (2.4.10)

where 2 ≤ q < ∞, 1
q
+ 1

q′ = 1 and γ = n(1
2
− 1

q
). Because double Riesz transforms are

unbounded on L∞(Rn), we exclude p = ∞ in Theorem 2.1.4.

We write Pc(H1)U(τ) = Pc(H1)e
−iτH1 − iPc(H1)

∫ τ

0
e−i(τ−r)H1V2(r)U(r) dr and

(2.4.7) is broken into two terms.

It follows from (2.4.10), among other things, that the first term of (2.4.7), which

contains Pc(H1)e
−iτH1 , is dominated by |t|−γ‖ψ0‖W 1,p .

The second term of (2.4.7) is decomposed as follows:

∫ τ

0

dr =

∫ δ

0

dr +

∫ A

δ

dr +

∫ τ−A

A

dr +

∫ τ−δ

τ−A

dr +

∫ τ

τ−δ

dr. (2.4.11)

We estimate each term in (2.4.11) with similar methods as those for (2.3.20). Be-

cause of (2.4.10), the terms containing
∫ A

δ
dr and

∫ τ−A

A
dr in (2.4.11) can be estimated

exactly as there is no derivative before P (H1), and we omit the details here. Again

by (2.4.10) with q = 2, the term containing
∫ τ

τ−δ
dr in (2.4.11) is estimated as follows:
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∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ

τ−δ

dr‖e−i(t−s)H0V (s)e−i(s−τ)H0V1(τ)∂e−i(τ−r)H1Pc(H1)V2(r)U(r)ψ0‖p

. sup
t−2A<τ<t

∫ τ

τ−δ

dr‖∂Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0‖2

. sup
t−2A<τ<t

∫ τ

τ−δ

dr‖V2(r)U(r)ψ0‖W1,2

. sup
t−2A<τ<t

∫ τ

τ−δ

dr‖U(r)ψ0‖W1,p

. t−γC0δ|||ψ0|||(1,p′) ≤ C0

100
t−γ|||ψ0|||(1,p′).

Here δ > 0 is chosen sufficiently small.

The
∫ δ

0
dr term in (2.4.11) is expanded by Duhamel’s formula:

e−i(τ−r)H1 = e−i(τ−r)H0 − i

∫ τ−r

0

e−i(τ−r−β)H1V1e
−iβH0 dβ.

Plugging the above expression into the
∫ δ

0
dr term, we get two terms. The first

one containing e−i(τ−r)H0 is

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ δ

0

dre−i(t−s)H0V (s)e−i(s−τ)H0V1(τ)∂Pc(H1)e
−i(τ−r)H0V2(r)U(r)ψ0.

(2.4.12)

Since Pc(H1) = Id − Pb(H1) and Pb(H1) is a bounded operator from Lp to Lp,

Pc(H1) is bounded from Lp to Lp. It follows from Lemma 2.4.1, 0 < r < δ, and the

Leibnitz rule that

‖H1Pc(H1)e
−i(τ−r)H0V2(r)U(r)ψ0‖p = ‖Pc(H1)H1e

−i(τ−r)H0V2(r)U(r)ψ0‖p

≤ C‖H1e
−i(τ−r)H0V2(r)U(r)ψ0‖p

≤ C‖V1‖∞‖e−i(τ−r)H0V2(r)U(r)ψ0‖p + ‖e−i(τ−r)H0∆V2(r)U(r)ψ0‖p

≤ Cτ−γ‖ψ0‖W 2,p′ .
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Since H1 = H0 + V1 and V1 is bounded, we see that

‖∆Pc(H1)e
−i(τ−r)H0V2(r)U(r)ψ0‖p ≤ Cτ−γ‖ψ0‖W 2,p′ .

Because the double Riesz transforms are bounded on Lp(Rn) 1 < p < ∞, it follows

that

‖Pc(H1)e
−i(τ−r)H0V2(r)U(r)ψ0‖W 2,p ≤ Cτ−γ‖ψ0‖W 2,p′ .

Therefore, by complex interpolation, we see that

‖Pc(H1)e
−i(τ−r)H0V2(r)U(r)ψ0‖W 1,p ≤ Cτ−γ‖ψ0‖W 1,p′ , (2.4.13)

which implies that ‖(2.4.12)‖W 1,p . t−γ‖ψ0‖W 1,p′ .

For the term containing
∫ δ

0
dr

∫ τ−r

0
dβ , we perform the exact same decomposition

as in (2.3.22) and each step there goes through provided (2.4.10) and (2.4.13).

The term containing
∫ τ−δ

τ−A
dr in (2.4.11) is

∫ t

t−A

ds

∫ s∧(t−ε)

s−A

dτ

∫ τ−δ

τ−A

dr ‖e−i(t−s)H0V (s)e−i(s−τ)H0V1∂Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0‖p.

(2.4.14)

The proof of Theorem 2.1.3 showed that ∀ε > 0, the following holds:

‖V1Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0‖∞ < εC0t

−n
2 ‖ψ0‖1,

given t sufficiently large. Going through the proof, we see that the same argument

also shows

‖V1Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0‖p < εC0t

−γ‖ψ0‖p′ .

Furthermore, the above inequality holds if V1 or V2 is replaced by its derivative.

Another observation is that, given our new cancellation lemma for ∂U(r)ψ0,

‖V1Pc(H1)e
−i(τ−r)H1V2(r)∂

βU(r)ψ0‖p < εC0t
−γ|||ψ0|||(|β|,p′).
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Indeed, to prove the above inequality, we decompose the left-hand side into a high

velocity part and a low velocity part. Each part generates the small constant ε for the

same reason as in Section 3.3. The same argument with the bootstrap assumption

(2.4.4) implies

‖V1H1Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0‖p

= ‖V1Pc(H1)e
−i(τ−r)H1H1V2(r)U(r)ψ0‖p . εC0t

−γ|||ψ0|||(2,p′). (2.4.15)

It follows from the above inequality and an elementary calculation that

‖V1Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0‖W 2,p . εC0t

−γ|‖ψ0|‖(2,p′). (2.4.16)

Hence, by complex interpolation, for ∀ ε > 0,

‖V1Pc(H1)e
−i(τ−r)H1V2(r)U(r)ψ0‖W 1,p . εC0t

−γ|‖ψ0|‖(1,p′), (2.4.17)

given t sufficiently large. This implies that ‖(2.4.14)‖W 1,p can be estimated by

1
100

C0t
−γ|||ψ0|||1,p′ .

Therefore, we have proven (2.4.5) for κ = 1. The same procedure also proves

(2.4.5) for κ = 2. Thus, we finish the bootstrap argument and conclude that

‖U(t)ψ0‖W κ,p . ‖ψ0‖W (κ,p′) ,

by letting T →∞. The proof for κ > 2 is similar by induction. Thus, we have proven

Theorem 2.1.4.

2.5 Boundedness of the Sobolev norm of U(t, s)ψ0

The goal of this section is to prove Theorem 2.1.5 when κ is a positive integer. The

intuition comes from the case κ = 1 ([17]). To bound the kinetic energy (the H1

norm), we look at the observable K(t) = 1
2
(p− x

t
)2 +

∑m
l=1 Vl(t). 〈K(t)〉 will decrease

if the particle is far away from any potential, since the observable (p− x
t
)2 decreases
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like t−2 for the free motion (the pseudo-conformal identity). If the particle is close to

the center of potential Vl, then x
t
≈ ~vl and 〈K(t)〉 ≈ 〈1

2
(p− ~vl)

2 + Vl(x− ~vlt)〉, which

clearly is the total energy of this one potential stationary subsystem up to a Galilean

transform. To carry this boundedness from 〈K(t)〉 to 〈p2〉, we need to replace the

vector field x
t

by ν(x, t), such that ν(x, t) is uniformly bounded and is equal to ~vl in

an increasingly large neighborhood of x = ~vlt.

Rigorously, consider a smooth, uniformly bounded vector field

ν(x, t) : Rn × (−∞,−T ] ∪ [T, +∞) → Rn

and let

K0(t) =
1

2
(p− ν(x, t))2 +

m∑

l=1

Vl(t),

where T is a large positive constant, p = (p1, · · · , pn), and pj = −i ∂
∂xj

. Note p2 = H0

and 1
2
(p− ν(x, t))2 is a well-defined self-adjoint positive operator.

In [17], Graf constructed ν(x, t) and proved ‖U(t, s)ψ0‖H1 is bounded as t → ∞
by bounding d

dt
〈K0(t)〉 from above by a time-integrable function, where 〈K0(t)〉 =

(U(t, s)ψ0, K0(t)U(t, s)ψ0)L2 . We write (f, g) as the inner product of f, g in the

L2(R) sense.

To prove Theorem 2.1.5, we need to define the proper analog of K0(t) suitable

to the Hκ norm of U(t, s)ψ0 to match the intuition given by the classical system.

Fortunately the following observable works:

K(t) =
m∑

l=1

(
1

2
(p− ν(x, t))2 + Vl(t))

κ − (m− 1)(
1

2
(p− ν(x, t))2)κ.

Notice that K(t) = K0(t) if κ = 1. Because ν(x, t) and its derivatives are bounded

uniformly in space-time and Vj ∈ Cκ
0 (Rn), we have the following, writing 〈K(t, s)〉 =

(U(t, s)ψ0, K(t)U(t, s)ψ0):

‖U(t, s)ψ0‖2
Hκ . 〈K(t, s)〉+ ‖U(t, s)ψ0‖2

Hκ−1 ; 〈K(t, s)〉 . ‖U(t, s)ψ0‖2
Hκ .
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By induction on κ, it suffices to show 〈K(t, s)〉 is bounded uniformly in t and s.

Expand K(t) as a polynomial of (1
2
(p − ν(x, t))2. Though (1

2
(p − ν(x, t))2 and

Vl(t) do not commute with each other, viewing K(t) as a differential operator, the

term of highest degree is ((1
2
(p − ν(x, t))2)κ, which is positive, self-adjoint. The

other terms in K(t) are of degree no bigger than 2κ − 2 with bounded and smooth

enough coefficients. Correspondingly, 〈K(t, s)〉 breaks into two parts. The part

(U(t, s)ψ0, (
1
2
(p − ν(x, t))2)κU(t, s)ψ0) is always nonnegative. The other part con-

taining the low degree terms can be dominated by ‖U(t, s)ψ0‖2
Hκ−1 . By the induction

hypothesis, it follows that 〈K(t, s)〉 is bounded from below. To bound 〈K(t, s)〉 from

above, it suffices to show that for t > T ,

d

dt
〈K(t, s)〉 ≤ t−(1+δ)C(〈K(t, s)〉+ ‖U(t, s)ψ0‖2

Hκ−1). (2.5.1)

For t < −T , the opposite of the above inequality should hold:

d

dt
〈K(t, s)〉 ≥ t−(1+δ)C(〈K(t, s)〉+ ‖U(t, s)ψ0‖2

Hκ−1). (2.5.2)

First let’s consider t > T , integrating (2.5.1),

〈K(t2, s)〉 − 〈K(t1, s)〉 ≤ C

∫ t2

t1

t−(1+δ)〈K(t, s)〉dt + C sup
t,s∈R

‖U(t, s)ψ0‖2
Hκ−1 .

Choosing T > 0 large enough such that C
∫∞

T
t−1−δdt < 1

2
, then

〈K(t2, s)〉 ≤ 〈K(t1, s)〉+ C sup
t,s∈R

‖U(t, s)ψ0‖2
Hκ−1 +

1

2
max

t1<t<t2
〈K(t, s)〉.

By (2.1.19), maxt1<t<t2〈K(t, s)〉 < ∞. This implies that

max
t1<t<t2

〈K(t, s)〉 ≤ 2〈K(t1, s)〉+ C‖ψ0‖2
Hκ−1 .

Letting t2 → +∞ and t1 = T , it follows that maxt>T 〈K(t, s)〉 < C〈K(T, s)〉 +

C‖ψ0‖2
Hκ−1 . Hence 〈K(t, s)〉 ≤ CT‖ψ0‖Hκ for t > T and s ∈ [−T, T ]. For t < −T ,



51

we integrate (2.5.2) to bound 〈K(t, s)〉 from above and Theorem 2.1.5 follows in this

case by the same argument given that (2.5.2) holds.

Before we proceed to proving (2.5.1) and (2.5.2), let’s specify some properties of

the vector field ν(x, t). It is convenient to describe ν(x, t) in the rescaled coordinates

y = x
t
. Let u0 = 2 max1≤l≤m |~vl|. When |y| > u0, ν(x, t) = u0

y
|y| . When y ∈ Bl,

we specify ν(x, t) = ~vl, where Bl is a fixed ball centered at ~vl. We suppose that

Bl (l = 1, · · · ,m) lie in the big ball B0 centered at the origin with radius u0 and that

they are disjoint from each other. When y ∈ B0 − ∪m
l=1Bl, we specify ν(x, t) = y. To

make the vector field smooth, we modify and smooth the vector field in the scale of

|t|1−γ, where γ is a small positive number. In the rescaled coordinates y, the scale is

|t|−γ. Specifically, consider

ω(s, α) = s ϕ(
u0 − s

α
) + u0(1− ϕ(

u0 − s

α
)),

where ϕ ∈ C∞(R) with ϕ′ ≥ 0 and

ϕ(x) = 0 for x ≤ 0 ϕ(x) = 1 for x > 1.

Then writing y = x
t
, we define

ω(0)(x, t) = ω(|y|, |t|−γ)
y

|y| and ω(`)(x, t) = −(y − ~v`)ϕ(2− |t|δ|y − ~v`|),

where ` = 1, 2, · · · ,m. Finally, ν(x, t) :=
∑m

`=0 ω(`)

The properties of the vector field ν(x, t) that concern us are as follows:

1. ν is bounded in space time. The k-th space derivatives of ν uniformly decay as

|t|−k(1−γ) as t →∞.

2. (νi,j)n×n as a matrix is symmetric and positive semidefinite when t > 0, negative

semidefinite when t < 0, where νi is the i-th component of vector ν and the

indices following a comma stand for partial derivatives in space. As νk,j = νj,k,

pk − νk and pj − νj commute with each other, i.e., [pk − νk, pj − νj] = 0.
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3. ‖νi,jνj + ∂νi

∂t
‖∞ ≤ C|t|−(1+δ). We make the choice 1+δ = min{1+γ, 2−2γ} > 1.

Summation over double indices is understood.

These properties can be shown by a direct calculation ([17]). Now we are going

to prove (2.5.1) and (2.5.2) and proceed by observing that

i
∂

∂t
U(t, s)ψ0 = H(t)U(t, s)ψ0 and (2.5.3)

− i
∂

∂s
U(t, s)ψ0 = U(t, s)H(s)ψ0. (2.5.4)

It follows from the above that d
dt
〈K(t, s)〉 = (U(t, s)ψ0, (i[H(t), K(t)]+∂K

∂t
)U(t, s)ψ0).

A straightforward calculation shows that

∂K

∂t
=

m∑

l=1

κ−1∑

k=0

(
1

2
(p− ν(x, t))2 + Vl(t))

k d

dt
(
1

2
(p− ν)2 + Vl(t))(

1

2
(p− ν)2 + Vl(t))

κ−1−k

− (m− 1)
κ−1∑

k=0

(
1

2
(p− ν)2)k d

dt

1

2
(p− ν(x, t))2(

1

2
(p− ν)2)κ−1−k := J1 + J2,

and the commutator

[H(t), K(t)] = [
1

2
p2 +

m∑

l=1

Vl(t),
m∑

l=1

(
1

2
(p− ν)2 + Vl(t))

κ − (m− 1)(
1

2
(p− ν)2)κ]

=
m∑

l=1

κ−1∑

k=0

(
1

2
(p− ν)2 + Vl(t))

k[
1

2
p2,

1

2
(p− ν)2 + Vl(t)](

1

2
(p− ν)2 + Vl(t))

κ−1−k

− (m− 1)
κ−1∑

k=0

(
1

2
(p− ν)2)k[

1

2
p2,

1

2
(p− ν)2](

1

2
(p− ν)2)κ−1−k

+
m∑

l,j=1

κ−1∑

k=0

(
1

2
(p− ν)2 + Vl(t))

k[Vj(t),
1

2
(p− ν)2 + Vl(t)](

1

2
(p− ν)2 + Vl(t))

κ−1−k

− (m− 1)
m∑

j=1

κ−1∑

k=0

(
1

2
(p− ν)2)k[Vj(t),

1

2
(p− ν)2](

1

2
(p− ν)2)κ−1−k := J3 + J4 + J5 + J6.
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First, let’s consider

J1 + iJ3 + iJ5 =
m∑

l=1

κ−1∑

k=0

(
1

2
(p− ν)2 + Vl(t))

kM1(
1

2
(p− ν)2 + Vl(t))

κ−1−k, (2.5.5)

where M1 = i[1
2
p2 +

∑m
j=1 Vj(t),

1
2
(p − ν)2 + Vl(t)] + d

dt
(1

2
(p − ν)2 + Vl(t)). Another

elementary calculation gives the following:

M1 = i[
∑

j 6=l

Vj,
1

2
(p− ν)2 + Vl] + A− 1

2
pi(νi,jνj +

∂νi

∂t
)− 1

2
(νi,jνj +

∂νi

∂t
)pi

+ νi(νi,jνj +
∂νi

∂t
) +

1

4
νi,ijj + (ν − ~vl) · ∇Vl, (2.5.6)

where A = −(pi − νi)
νi,j+νj,i

2
(pj − νj) is a symmetric, semidefinite negative operator

when t > 0 and a semidefinite positive operator when t < 0. It follows from the

properties of νx,t that

‖νi,jνj +
∂νi

∂t
‖∞ ≤ C|t|−(1+δ), ‖νi,ijj‖∞ ≤ C|t|−1−δ (2.5.7)

and that the L∞ norm of derivatives of these terms decay even faster because each

space derivative gains a factor |t|δ−1. Moreover,
∑m

l=1(ν− ~vl) ·∇Vl vanishes as |t| > T

is sufficiently large, since ν − ~vl vanishes on an increasing neighborhood of x = t~vl,

which will eventually contain the support of ∇Vl.

Plugging the expression of M1 into expression (2.5.5), we claim that the decaying

terms listed in equation (2.5.7) only produce time integrable term. We calculate the

term containing 1
2
pi(νi,jνj + ∂νi

∂t
) as an example to illustrate this point:

|(U(t, s)ψ0, (
1

2
(p− ν)2 + Vl(t))

k 1

2
pi(νi,jνj +

∂νi

∂t
)(

1

2
(p− ν)2 + Vl(t))

κ−1−kU(t, s)ψ0)|

= |(1
2
pi(

1

2
(p− ν)2 + Vl(t))

kU(t, s)ψ0, (νi,jνj +
∂νi

∂t
)(

1

2
(p− ν)2 + Vl(t))

κ−1−kU(t, s)ψ0)|.
(2.5.8)
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If 2k + 1 = κ or 2k + 2 = κ, (2.5.8) can be dominated by

C|t|−1−δ‖pi(
1

2
(p− ν)2 + Vl(t))

kU(t, s)ψ0‖L2‖(1
2
(p− ν)2 + Vl(t))

κ−1−kU(t, s)ψ0‖L2

≤ C|t|−1−δ‖U(t, s)ψ0‖2
Hκ

≤ C|t|−1−δ(〈K(t, s)〉+ ‖U(t, s)ψ0‖2
Hκ−1).

If κ 6= 2k + 1 or 2k + 2, first consider 2k + 2 < κ and κ = 2d + 1, an odd integer.

We need to commute νi,jνj + ∂νi

∂t
with (1

2
(p− ν)2 + Vl)

d−k. Specifically, we claim that

(
1

2
(p− ν)2 + Vl(t))

d−k(νi,jνj +
∂νi

∂t
)
pi

2
(
1

2
(p− ν)2 + Vl(t))

k

is an differential operator of degree 2d + 1, whose coefficients are of magnitude t−1−δ.

This is clear because νi,jνj + ∂νi

∂t
and its derivatives decay at least as |t|−1−δ. Hence,

(2.5.8) is dominated by C|t|−1−δ(〈K(t, s)〉 + ‖U(t, s)ψ0‖2
Hκ−1). In the case that 2k +

2 < κ and κ = 2d or 2k + 1 > κ, (2.5.8) is dominated by C|t|−1−δ(〈K(t, s)〉 +

‖U(t, s)ψ0‖2
Hκ−1) for the same reason.

Therefore, it remains to estimate the following in expression (2.5.5) :

m∑

l=1

κ−1∑

k=0

(
1

2
(p−ν)2+Vl(t))

k(i[
∑

j 6=l

Vj,
1

2
(p−ν)2+Vl]+A)(

1

2
(p−ν)2+Vl(t))

κ−1−k. (2.5.9)

Observe that for given time t, ν(x, t) is a constant vector on a ball centered at t~vl

with radius growing linearly in |t| approximately. So, as long as |t| is large, ν(x, t)

will be constant on the support of Vl(t). This implies that νj,i, νi,j both vanish on the

support of Vl(t). Hence it follows from A = −(pi − νi)
νi,j+νj,i

2
(pj − νj) that AVl = 0

and Vl A = 0. Moreover, for j 6= l, Vj(t), Vl(t) have disjoint supports given that t is

large. So the expression (2.5.9) is reduced to the following:
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m∑

l=1

κ−1∑

k=0

(
1

2
(p− ν)2)k(i[

∑

j 6=l

Vj,
1

2
(p− ν)2] + A)(

1

2
(p− ν)2)κ−1−k (2.5.10)

=
κ−1∑

k=0

(
1

2
(p− ν)2)k(mA + (m− 1)i[

∑
j

Vj,
1

2
(p− ν)2])(

1

2
(p− ν)2)κ−1−k (2.5.11)

Secondly, we consider J2 + iJ4 + iJ6, which equals

−(m−1)
κ−1∑

k=0

(
1

2
(p−ν)2)k(i[

1

2
p2 +

m∑
j=1

Vj(t),
1

2
(p−ν)2]+

d

dt

1

2
(p−ν)2)(

1

2
(p−ν)2)κ−1−k.

(2.5.12)

Setting all potentials Vl = 0 in (2.5.6), we see that

i[
1

2
p2,

1

2
(p− ν)2] +

d

dt

1

2
(p− ν)2 = A + time integrable terms,

where the time-integrable terms are equal to

A− 1

2
pi(νi,jνj +

∂νi

∂t
)− 1

2
(νi,jνj +

∂νi

∂t
)pi + νi(νi,jνj +

∂νi

∂t
) +

1

4
νi,ijj

and can be estimated exactly as those in J1 + iJ3 + iJ5. We are left to estimate in

J2 + iJ4 + iJ6:

−(m− 1)
κ−1∑

k=0

(
1

2
(p− ν)2)k(A + i[

m∑
j=1

Vj(t),
1

2
(p− ν)2])(

1

2
(p− ν)2)κ−1−k (2.5.13)

Now adding (2.5.11) and (2.5.13) together, we see that 〈i[H(t), K(t)] + ∂K
∂t
〉 is

simplified as some time-integrable terms plus the following:

κ−1∑

k=0

(
1

2
(p− ν)2)kA(

1

2
(p− ν)2)κ−1−k, (2.5.14)

which is a differential operator of degree 2κ.
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First we observe that [pk − νk, pj − νj] = 0 and (pk − νk)
νi,j+νj,i

2
=

νi,j+νj,i

2
(pk −

νk) +
νi,jk+νj,ik

2
. Second, νi,jk + νj,ik and its derivatives decay at least as fast as |t|−1−δ

when t →∞ and thus is integrable in time. Hence if we commute A with (p− ν)2 or

pj − νj, the commutator is time-integrable.

If κ = 2d + 1, an odd integer, then

(
1

2
(p−ν)2)kA(

1

2
(p−ν)2)κ−1−k = (

1

2
(p−ν)2)dA(

1

2
(p−ν)2)d+time-integrable terms.

The first summand is negative (positive) definite when t > 0 (t < 0).

If κ = 2d, an even integer, then (1
2
(p−ν)2)kA(1

2
(p−ν)2)κ−1−k = (1

2
(p−ν)2)h−1 1

2
(pj−

νj)A(pj − νj)(
1
2
(p− ν)2)h−1 + time-integrable terms. Again the first summand is

negative (positive) definite if t > 0 (t < 0).

Hence, we have written d
dt
〈K(t, s)〉 as a sum of a negative (positive if t < 0) term

and other time-integrable terms. More precisely, the time-integrable terms decay at

least as fast as |t|−1−δ. Therefore, we have proven (2.5.1) for t > T and (2.5.2) for

t < −T .

Finally, we deal with the case where |t| < T, s > T by time reversal. Write r = s−t

and Ũ(r, s) = U(s−r, s), H̃(r) = H(s−r). Then we have i∂rŨ(r, s) = −H̃(r)Ũ(r, s).

Define the corresponding observable:

K̃(r) =
m∑

l=1

(
1

2
(p + ν(x, s− r))2 + Vl(x− s~vl + ~vlr))

κ − (m− 1)(
1

2
(p + ν(x, s− r))2)κ.

It can be shown that Ũ(r, s) is a bounded operator from Hκ to itself by the same

argument with U(t, s) replaced by Ũ(r, s). The case of |t| < T, s < −T is similar.

2.6 Asymptotic completeness in Sobolev spaces

Recall that we are considering (2.1.7). V1 is stationary (we denote its velocity as

~e0 = 0) and V2 is moving with velocity ~e1. There are two approaches to prove The-
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orem 2.1.6. Graf ([17]) proved the asymptotic completeness for the charge transfer

model in the L2 sense by proving a RAGE theorem. Our first option to prove The-

orem 2.1.6 is to generalize Graf’s idea. We find that this approach works, provided

that each individual subsystem (i.e., p2 + Vl) is asymptotically complete in the Hκ

sense. However, the only direct way to prove this fact, as we know, is by the dis-

persive estimate. The advantage of this approach is that it requires less restrictive

conditions on the potentials and the spectrum of the individual subsystem, given that

nontrivial fact. Our second option to prove Theorem 2.1.6 is to apply the dispersive

estimate (Theorem 2.1.4) directly. To illustrate both of these ideas, the following

proof is somehow a combination of these two options. Specifically, we follow [17] to

prove the existence of the wave operators and then apply Theorem 2.1.4 to prove

Theorem 2.1.6.

2.6.1 Existence of wave operators

The well-known wave operators are defined as follows:

Ω−
0 (s) = s− lim

t→+∞
U(s, t)e−i(t−s)H0 ,

Ω−
1 (s) = s− lim

t→+∞
U(s, t)e−i(t−s)H1Pb(H1),

Ω−
2 (s) = s− lim

t→+∞
U(s, t) g−~e1(t)e

−i(t−s)H2Pb(H2) g~e1(s).

Theorem 2.6.1. Under the assumption of Theorem 2.1.5, the above wave operators

exist in the space Hκ. More precisely, for l = 0, 1, 2 and ∀ψ0 ∈ Hκ, the limits converge

in the Hκ sense and Ω−
l (s)ψ0 lies in Hκ(Rn).

Remark 2.6.1. The above theorem can be proven by Cook’s method together with

Theorem 2.1.4 and Theorem 2.1.5 if we are willing to impose more regularity on the

potentials and the spectrum condition. The following proof originated in [17], which,

we believe, requires the least conditions on the system.
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We present some preliminary facts before proceeding:

Lemma 2.6.2. Let g ∈ C∞
0 (Rn) and ν > 0. Suppose

1. g(p) = 0 for |p| ≥ ν and fix α > 1. Then for R > 0, t > 0 and any N > 0,

‖F (|x| > α(R + νt))e−i p2

2
tg(p)F (|x| < R)ψ‖Hκ ≤ CN,κ(R + νt)−N‖ψ‖L2 .

2. g(p) = 0 for |p| ≤ ν and ν0 > 0, 0 < α < 1. Then for t > 0 and any N > 0,

‖F (|x| < α(ν − ν0)t)e
−i p2

2
tg(p)F (|x| < ν0t)ψ‖Hκ ≤ CN,κt

−N‖ψ‖L2 .

These estimates are fairly common for κ = 0 and may be proven by the stationary

phase methods (e.g., [10], Lemma (6.3)). For the case κ ≥ 1, the above lemma follows

from a commutator argument and the fact that the derivative on the left-hand side

can be absorbed into g(p) because g ∈ C∞
0 (Rn). The next lemma represents to some

extent the counterpart of Lemma 2.6.2 for Hl = H0 + Vl.

Lemma 2.6.3. Let g ∈ C∞
0 (R) and v > 0. Suppose g(e) = 0 for e ≥ v2/2 and fix

α > 1. Then for l = 1, 2, R > 0 and t ≥ 0, we have

‖F (|x| > α(R + vt))e−iHltg(Hl)F (|x| < R)ψ(x)‖Hκ ≤ CN,κ(R + vt)−ε‖ψ‖L2 . (2.6.1)

When κ = 0, the lemma is just Lemma 4.2 of [17]. For κ ≥ 1, the left-hand side

of (2.6.1) is dominated up to a constant by

‖(Hl + M)
κ
2 e−iHltg(Hl)F (|x| < R)ψ(x)‖L2(|x|>α(R+vt)),

where M is chosen so large that Hl + M is a positive operator. If we define g̃(Hl) =

(Hl + M)
κ
2 g(Hl), then g̃ ∈ C∞

0 (R). The above is of the form κ = 0 and the lemma

follows from the case κ = 0.
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Lemma 2.6.4. 1. Let 0 < v0 < v and g ∈ C∞
0 (Rn) with g(p) = 0 for {|p| <

v}⋃{|p− ~e1| < v}. Then for any s ∈ R,

lim
t1→+∞

sup
t2>t1

‖(U(t2, t1)−e−iH0(t2−t1))e−iH0(t1−s)g(p)
1∏

l=0

F (|x−~els| < v0(t1−s))‖L2→Hκ = 0.

2. Let v0, v > 0 with v0 + v < |~e1| and g ∈ C∞
0 (R) with g(p) = 0 for p > v2/2.

Then

lim
t1→+∞

sup
t2>t1

‖(U(t2, t1)− e−iH1(t2−t1))g(H1)F (|x| < v0t1)‖L2→Hκ = 0.

For κ = 0, the lemma was proven in [17]. We will follow the approach there to

prove the case κ > 0.

Proof. Part (1): Take α < α1 < 1 and let f ∈ C∞
0 (Rn) with f(y) = 0 if |y−~el| > α(v−

v0) for both l = 0, 1. Since αt < α1(t − s), we have |f(x/t)| ≤ |f(x/t)|∑1
l=0 F (|x −

~elt| < α1(v − v0)(t− s)) for large enough t.

‖f(
x

t
)e−iH0(t−s)g(p)

1∏

l=0

F (|x− ~els| < v0(t− s))‖L2→Hκ

.
∑

|β|<κ

1∑

l=0

‖∂βf‖∞‖F (|x− ~elt| < α1(v − v0)(t− s))

e−iH0(t−s)gβ(p)F (|x− ~els| < v0(t− s))‖L2→L2 (2.6.2)

≤ C
∑

|β|<κ

1∑

l=0

‖F (|x| < α1(v − v0)(t− s))e−iH0(t−s)gβ(p + ~el)F (|x| < v0(t− s))‖

≤ C(t− s)−N ,

where gβ(p) =
∑

|β+γ|=κ pγg(p). The above inequality follows by commuting the

derivative through f(x/t), by applying a Galilean transform to the second expression,

and by Lemma 2.6.2. By (2.6.2) and Theorem 2.1.5, it suffices to show that
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sup
t2>t1

∥∥(U(t2, t1)(1− f(x/t1))− (1− f(x/t2))e
−iH0(t2−t1))e−iH0(t1−s)g(p)·

·
1∏

l=0

F (|x− ~els| < v0(t1 − s))
∥∥

L2→Hκ → 0. (2.6.3)

Substituting

(U(t2, t1)(1−f(x/t1))−(1−f(x/t2))e
−iH0(t2−t1)) =

∫ t2

t1

d

dt
(U(t2, t)(1−f(x/t))e−iH0(t−t1))dt

into (2.6.3), it follows from Theorem 2.1.5 that the left-hand side of (2.6.3) is domi-

nated by

∫ +∞

t1

∥∥[iH(t)(1− f(x/t))− i(1− f(x/t))H0 − ∂

∂t
f(x/t)]e−iH0(t−s)g(p)·

·
1∏

l=0

F (|x− ~els| < v0(t1 − s))
∥∥

L2→Hκdt.

The expression within the square brackets consists of (1)− (3), which are estimated

as follows:

1. Suppose t is sufficiently large, then Vl(t)(1−f(x/t)) = 0, because Vl is compactly

supported, where we take f(y) = 1 for |y − ~el| < α(v − v0)/2;

2. H0f(x/t)− f(x/t)H0 = −1
2
t−2(4f)(x/t)− it−1(∇f)(x/t)p; and

3. ∂
∂t

f(x/t) = −t−1(x/t)(∇f)(x/t)

are treated using (2.6.2).

Part (2): Choose α > 1 and v1 with α(v + v0) < v1 < |e1| and let f ∈ C∞
0 (Rn)

with f(y) = 1 for |y| < α(v + v0) and f(y) = 0 for |y| > v1. We first claim that

lim
t1→+∞

sup
t>t1

‖(1− f(x/t))e−iH1(t−t1))g(H1)F (|x| < v0t1)‖L2→Hκ = 0. (2.6.4)
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Since 1− f(x/t) is supported in |x| > α(v + v0)t > α(v0t1 + v(t− t1)), it follows

from Lemma 2.6.3 that

‖F (|x| > α(v0t1+v(t−t1))e
−iHl(t−t1)g(Hl)F (|x| < v0t1)‖L2→Hκ ≤ CN,κ(v0t1+v(t−t1))

−ε.

(2.6.5)

Now by Theorem 2.1.5 and

(U(t2, t1)f(x/t1)− f(x/t2)e
−iH1(t2−t1)) =

∫ t2

t1

d

dt
(U(t2, t)f(x/t)e−iH1(t−t1))dt,

it suffices to estimate that

sup
t2>t1

‖(U(t2, t1)f(x/t1)− f(x/t2)e
−iH1(t2−t1))g(H1)F (|x| < v0t1)‖L2→Hκ

≤
∫ +∞

t1

dt ‖[iH(t)f(x/t)− if(x/t)H1 +
∂

∂t
f(x/t)]e−iH1(t−t1)g(H1)F (|x| < v0t1)‖L2→Hκ .

As in Part (1), a discussion of terms (a)-(d) in the square brackets now follows:

(a) V1(x)f(x/t)− f(x/t)V1(x) = 0.

(b) V2(x− e1t)f(x/t) = 0 if t is large enough because V2 is compactly supported

and f(y) = 0 for |y| > v1 and |e1| > v1.

(c) [H0, f(x/t)] = 1
2
t−24f(x/t)− ip

t
∇f(x/t). Since V1 ∈ Cκ

0 , we can take M large

enough so that the corresponding term can be dominated by

‖(M + H1)
κ
2 (

1

2
t−24f(x/t)− ip

t
∇f(x/t))e−iH1(t−t1)g(H1)F (|x| < v0t1)‖L2→L2 .

Commute (M +H1)
κ
2 through (1

2
t−24f(x/t)+ 1

t
∇f(x/t)∇) and the commutators

generated will decay at least as fast as t−2, hence they are time-integrable. Note that

‖(p2 + 1)σg(H1)‖L2→L2 < Cσ. The only term that does not decay as fast as t−2 is
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‖(M + H1)
−1(

ip

t
∇f(x/t))e−iH1(t−t1)(M + H1)

κ
2
+1g(H1)F (|x| < v0t1)‖L2→L2 ,

which is integrable, due to the fact that (M + H1)
−1p is a bounded operator from L2

to L2 and due to (2.6.5) (with g(H1) replaced by (M +H1)
κ
2
+1g(H1)), and due to the

support property of ∇f(x/t).

(d) ∂
∂t

f(x/t) = −x
t
f(x/t)t−1, which can be treated as part (c), using (2.6.5) with

f(x) replaced by xf(x).

Proof of Theorem 2.6.1. Since U(s, t)e−i(t−s)H0 and U(s, t)e−i(t−s)H1 are uniformly bounded

operators from Hκ to Hκ, it suffices to prove the existence of the strong limits Ω−
0 (s)

and Ω−
1 (s) on a dense set D:

D = {g(p)f(x)ψ : g ∈ C∞
0 (Rn\{0, e1}), f ∈ C∞

0 (Rn), ψ ∈ L2(Rn)}.

g(p) satisfies the hypothesis of Lemma 2.6.4 Part (1), with a suitable v > 0. Take

0 < v0 < v and note that

2∏

l=1

F (|x− ~el| < v0(t1 − s))f(x) = f(x)

for t1 big enough. For t2 > t1 , it follows from Theorem 2.1.5 that

‖(U(s, t1)e
−iH0(t1−s) − U(s, t2)e

−iH0(t2−s))g(p)f(x)ψ‖Hκ

.‖(U(t2, t1)− e−iH0(t2−t1))e−iH0(t1−s)g(p)
1∏

l=0

F (|x− ~els| < v0(t1 − s))‖L2→Hκ‖f(x)ψ‖L2 .

Hence Lemma 2.6.4 implies that U(s, t)e−iH0(t−s)g(p)f(x)ψ is Cauchy sequence in

Hκ(Rn) as t → +∞, which is equivalent to the existence of Ω−
0 (s) .

We will only show the existence of Ω−
1 (s). The existence of Ω−

2 (s) follows from

the same argument up to a Galilean transform ([17]). Since the eigenfunctions of
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H1 span the range of Pb(H1), it suffices to prove convergence on the eigenfunctions

ψ : H1ψ = Eψ. Due to our assumptions on the potentials, the positive eigenvalues

are excluded. Thus for any v > 0, we can find a suitable g as in Lemma 2.6.4 part

(2) with g(H1)P (H1) = P (H1). More precisely, we take v, v0 > 0 with v + v0 < |e1|.
For t2 ≥ t1,

‖(U(s, t1)e
−iH1(t1−s)P (H1)− U(s, t2)e

−iH1(t2−s))ψ‖Hκ

=‖U(s, t2)(U(t2, t1)− e−iH1(t2−t1))e−iH1(t1−s)g(H1)(F (|x| < v0t1) + F (|x| > v0t1))ψ‖Hκ

.‖(U(t2, t1)− e−iH1(t2−t1))e−iH1(t1−s)g(H1)F (|x| < v0t1)‖L2→Hκ‖ψ‖L2 + ‖F (|x| > v0t1)ψ‖Hκ ,

since U(s, t), H1(s) and g(H1) are bounded operators on Hκ(Rn) with a uniform

bound.

Lemma 2.6.4 part (2) and the fact that ‖F (|x| > v0t1)ψ‖Hκ → 0 when t1 → +∞
imply that U(s, t)e−iH1(t−s)P (H1)ψ is a Cauchy sequence in Hκ.

2.6.2 Asymptotic completeness

In this section we will apply theorems 2.1.4 and 2.1.5 to prove Theorem 2.1.6. For

the case κ = 0, we refer the reader to [31].

Proof of Theorem 2.1.6. First let us assume that ψ0 ∈ W κ,2 ∩ W κ,p′ for some

1 < p′ < 2n
2+n

. Decompose

ψ(t) := U(t)ψ0 = Pb(H1)U(t)ψ0 + Pb(H2, t)U(t)ψ0 + R(t).

By construction, we clearly have

Pb(H2, t)U(t)ψ0 + R(t) ∈ Ran(Pc(H1)), (2.6.6)

Pb(H1)U(t)ψ0 + R(t) ∈ Ran(Pc(H2, t)).

We further write

Pb(H1)U(t)ψ0 =
m∑

r=1

e−iλrtar(t)ur(x)
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for some choice of unknown functions ar(t). Due to the smoothness of the potentials,

ur belongs to Hκ(Rn). It follows from (3.0.3) that, similar to (2.3.1),

ȧr + i 〈V2(· − t~e1)ψ(t), ur〉 = 0 for all 1 ≤ r ≤ m.

The exponential localization of ur implies that |〈V2(· − t~e1)ψ(t), ur〉| . e−αt. There-

fore, ar(t) has a limit, writing limt→+∞ ar(t) = Ar, and

∥∥∥Pb(H1)U(t)ψ0 −
m∑

r=1

Are
−iλrtur

∥∥∥
Hκ
→ 0, t → +∞. (2.6.7)

We next define the functions vr = lim
t→+∞

U(t)−1e−iλrtur. The existence of vr and vr ∈
Hκ is guaranteed by Theorem 2.6.1. By Theorem 2.1.5, we have

∥∥∥U(t)
( m∑

r=1

Arvr

)−
m∑

r=1

Are
−iλrtur

∥∥∥
Hκ
→ 0, t → +∞. (2.6.8)

We then infer from (2.6.7) that

∥∥∥U(t)
( m∑

r=1

Arvr

)− Pb(H1)U(t)ψ0

∥∥∥
Hκ
→ 0, t → +∞. (2.6.9)

The above arguments apply to Pb(H2, t)U(t)ψ0 in a similar fashion. More precisely,

we write

U(t)ψ0 = Pb(H2, t)U(t)ψ0 + Γ(t) = g−~e1(t)Pb(H2) g~e1(t)U(t)ψ0 + Γ(t).

Therefore,

g~e1(t)U(t)ψ0 = Pb(H2) g~e1(t)U(t)ψ0 + g~e1(t)Γ(t). (2.6.10)

Recall that the function ψ̃(t) = g~e1(t)U(t)ψ0 is a solution of the problem

1

i
∂tψ̃ − 4

2
ψ̃ + V2(x)ψ̃ + V1(x + t~e1)ψ̃ = 0, ψ̃|t=0 = g~e1(0)ψ0. (2.6.11)

According to (2.6.10), ψ̃(t) = Pb(H2)ψ̃(t) + Γ1(t), where Γ1(t) = g~e1(0)Γ(t). In
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particular,

Γ1(t) ∈ Ran(Pc(H2)).

Decompose

Pb(H2)ψ̃(t) =
∑̀
s=1

bs(t)e
−iµstws

for some choice of unknown functions bs(t). Again, due to the smoothness of the

potentials, ws ∈ Hκ(Rn). After substituting the decomposition in (2.6.11) we obtain

the equation

ḃs(t) + i 〈V1(·+ t~e1)ψ̃, ws〉 = 0 for all 1 ≤ s ≤ `.

Using exponential localization of ws we conclude the existence of the limit bs(t) → Bs

as t → +∞. Thus ‖Pb(H2)ψ̃(t) −∑`
s=1 Bse

−iµstws‖Hκ → 0, t → ∞. Equivalently,

after applying g−~e1(t), we have

∥∥∥Pb(H2, t)U(t)ψ0 −
∑̀
s=1

Bse
−iµjt g−~e1(t)ws

∥∥∥
Hκ
→ 0. (2.6.12)

Now Theorem 2.6.1 allows us to define

ωs := Ω−
2 ws = s− lim

t→+∞
U(t)−1 g−~e1(t)e

−itH2Pb(H2)ws ∈ Hκ.

Moreover,

∥∥∥U(t)
( ∑̀

s=1

Bsωs

)−
∑̀
s=1

Bse
−iµst g−~e1(t)ws

∥∥∥
Hκ
→ 0, t → +∞. (2.6.13)

It then follows from (2.6.12) that

‖Pb(H2, t)U(t)ψ0 − U(t)
( ∑̀

s=1

Bsωs

)‖Hκ → 0, t → +∞. (2.6.14)
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We now define the function

φ := ψ0 −
m∑

r=1

Arvr −
∑̀
s=1

Bsωs, (2.6.15)

which will lead to the initial data φ0 for the free channel. We have that

Pb(H1)U(t)φ = Pb(H1)U(t)ψ0 − Pb(H1)U(t)
( m∑

r=1

Arvr

)− Pb(H1)U(t)
( ∑̀

s=1

Bsωs

)
.

It follows from (2.6.9) and the identity P 2
b (H1) = Pb(H1) that

∥∥∥Pb(H1)U(t)ψ0 − Pb(H1)U(t)
( m∑

r=1

Arvr

)∥∥∥
Hκ
→ 0 as t → +∞. (2.6.16)

Furthermore,

Pb(H1)
∑̀
s=1

Bse
−iµst g−~e1(t)wj =

m∑
r=1

∑̀
s=1

Bse
−iµst〈 g−~e1(t)wj, ur〉ur → 0 (2.6.17)

in the Hκ sense as t → +∞, due to the exponential localization of the eigenfunc-

tions ur. We infer from (2.6.16), (2.6.13), and (2.6.17) that ‖Pb(H1)U(t)φ‖Hκ → 0.

Similarly, ‖Pb(H2, t)U(t)φ‖Hκ → 0. Thus, U(t)φ is asymptotically orthogonal to the

bound states of H1 and H2. Vj ∈ Cn+2κ+2
0 implies that (1 + |ξ|)κ+1+n

2 V̂j(ξ) ∈ L2(Rn).

So (1 + |ξ|)κV̂j(ξ) ∈ L1(Rn). Therefore, according to Theorem 2.1.4, U(t)φ satisfies

the estimate

‖U(t)φ‖W κ,p . |t|−n( 1
2
− 1

p
)‖φ‖W κ,p′ , (2.6.18)

where 2n
n−2

< p < +∞. In order to be able to apply the estimate (2.6.18), one

needs to verify that φ ∈ W κ,p′ . By assumption, ψ0 ∈ W κ,p′ . Thus it remains to

check vr ∈ W κ,p′ , r = 1, · · · ,m and ωs ∈ W κ,p′ , s = 1, · · · , `, which is guaranteed

by Lemma 2.6.5 below. Assuming this lemma for the moment, we now consider the



67

expression

e−it4
2 U(t)φ = φ− i

∫ t

0

e−is4
2 (V1(x) + V2(x− s~e1)) U(s)φ ds.

Writing 2p
p−2

= r, we have the following estimate:

∫ +∞

t

‖e−is4
2 (V1(x) + V2(x− s~e1)) U(s)φ‖Hκds

. (‖V1‖W κ,r + ‖V2‖W κ,r)

∫ +∞

t

‖U(s)φ‖W κ,pds

.
∫ +∞

t

|s|−n( 1
2
− 1

p
)‖φ‖W κ,p′ (‖V1‖W κ,r + ‖V2‖W κ,r) → 0, as t → +∞.

Here we note that −n(1
2
− 1

p
) < −1. This allows us to show the existence of the limit

φ0 := lim
t→∞

eit4
2 U(t)φ ∈ Hκ.

It follows that

‖U(t)φ− e−it4
2 φ0‖Hκ → 0, t → +∞. (2.6.19)

Combining (2.6.8), (2.6.13), (2.6.15), and (2.6.19) we infer that

∥∥∥U(t)ψ0−
m∑

r=1

Are
−iλrtur−

∑̀
s=1

Bse
−iµst g−~e1(t)ws− e−it4

2 φ0

∥∥∥
Hκ
→ 0, as t → +∞,

as claimed. Because W κ,2 ∩ W κ,p′ is dense in W κ,2, for any ψ0 ∈ W κ,2, there is a

sequence ψl ∈ W κ,2 ∩W κ,p′ converging to ψ0 in the W κ,2 norm. Then for each ψl, we

have the following decomposition:

U(t)ψl =
m∑

r=1

Al
re
−iλrtur +

∑̀

k=1

Bl
ke
−iµkt g−~e1(t)wk + e−it4

2 φl +Rl(t).

It follows from Theorem 2.1.5 that ψl =
∑m

r=1 Al
rΩ

−
1 ur +

∑`
k=1 Bl

kΩ
−
2 wk + Ω−

0 φl.

Since the ranges of Ω−
0,1,2 are orthogonal to each other in L2(Rn) ([17]), the fact

that ψl converges as l → +∞, implies that each component in the above equation
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converges. Hence, liml→+∞ Al
r = A0

r, liml→+∞ Bl
k = B0

k. These imply that Ω−
0 φl

converges in Hκ, since all other terms in the above identity converge in Hκ. Write

liml→+∞ Ω−
0 φl = f0 ∈ Hκ.

By the asymptotic completeness theorem for L2 ([17]), there are φ0 ∈ L2 such

that the following holds:

ψ0 =
m∑

r=1

A0
rΩ

−
1 ur +

∑̀

k=1

B0
kΩ

−
2 wk + Ω−

0 φ0

in the L2 sense. This implies that f0 = Ω−
0 φ0.

Then by the definition of the wave operator, U(0, t)e−itH0φ0− f0 → 0 as t → +∞
in L2(Rn). Since U(t, 0) and eitH0 are uniformly bounded operators on Hκ(Rn) and

L2(Rn), we see that φ0 = lim
t→+∞

eitH0U(t, 0)f0 in L2(Rn). We claim that this implies

φ0 ∈ Hκ(Rn). It suffices to prove the following:

Assume gn is a sequence in Hκ(Rn) and ‖gn‖Hκ < 1. Moreover, gn converges to g

in the L2 norm. Then g lies in Hκ(Rn).

To see this, note that on Fourier side, Hκ(Rn) is just a weighted L2(Rn) space.

More precisely, ‖ĝn−ĝ‖L2(Rn) → 0 implies that for the ball BR with radius R, centered

at the origin,

‖(1 + |ξ|2)κ
2 (ĝn(ξ)− ĝ(ξ))‖L2(BR) → 0 as n → +∞.

This implies that ‖(1 + |ξ|2)κ
2 ĝ(ξ)‖L2(BR) is uniformly bounded by sup ‖gn‖Hκ ≤ 1.

Let R → +∞, we see that ‖g‖Hκ ≤ 1.

Now it is clear that the following decomposition holds in the space Hκ for any

ψ0 ∈ Hκ:

ψ0 =
m∑

r=1

A0
rΩ

−
1 ur +

∑̀

k=1

B0
kΩ

−
2 wk + Ω−

0 φ0.

To complete the proof of Theorem 2.1.6, it remains to prove the following lemma:

Lemma 2.6.5. Assume that the potentials V1(x), V2 ∈ Cn+2κ+2
0 (Rn). Let U(t) be the

evolution operator of (2.1.7) and Ω−
1,2 the wave operators corresponding to U(t), as
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defined at the beginning of this section. Then for ∀f ∈ L2(Rn), Ω−
1,2f lies in W κ,p′,

where 1 < p′ < 2n
n+2

.

Proof. The proof is essentially contained in [31] Section 4. For the reader’s conve-

nience, we present the details here. Without loss of generality we only consider the

wave operator Ω−
1 . For an arbitrary L2 function f

Ω−
1 f =

m∑
r=1

fr lim
t→+∞

U(t)−1e−itH1ur,

where Pb(H1)f =
∑m

r=1 frur for some constants fr. It follows from Duhamel’s formula

that

U(t)−1e−itH1ur =ur + i

∫ t

0

U(s)−1V2(· − s~e1)e
−isH1ur ds

=ur + i

∫ t

0

U(s)−1V2(· − s~e1)e
−iλrsur ds, (2.6.20)

since ur is an eigenfunction of H1 corresponding to an eigenvalue λr. The function

ur is exponentially localized in L2 together with its n + 2 derivatives 1

∑

0≤|γ|≤n+2

∫

Rn

e2α|x||∂γ
xur(x)|2 dx ≤ C

for some positive constant α appearing in (2.3.12). This implies that the function

Gr(s, x) := e−iλrsV2(x− s~e1)ur(x)

has the property that for any k ≥ 0 and multi-index γ, 0 ≤ |γ| ≤ n + 2

‖〈x〉k∂γ
xGr(s, ·)‖L2

x
≤ c(r, |γ|, k)〈s〉−3j0−2−κ.

1The localization of higher derivatives of ur follows from the localization of ur stated in (2.3.12)
and the equation −4

2 ur + V1(x)ur = λrur with potential V1(x), which is bounded together with all
its derivatives of order ≤ (n + 2).
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By Hölder’s inequality, we have, writing q = 2p′
2−p′ ,

‖∂γ
xU(−s)G(s, x)‖Lp′ ≤ ‖〈x〉−j0‖Lq‖〈x〉j0∂γ

xU(−s)G(s, x)‖L2 . (2.6.21)

Take j0 = [2−p′
2p′ n] + 1 > n

q
, then ‖〈x〉−j0‖Lq < +∞.

To prove the desired conclusion, it would then suffice to show that for any |γ| = κ,

there exists a positive constant k such that for any function g(x)

‖〈x〉j∂γU(t)g‖L2 . 〈t〉3j0+κ
∑

|β|≤j0+κ

‖〈x〉k∂β
xg‖L2 , ∀t ≥ 0. (2.6.22)

We note that the estimates of the type (2.6.22) for problems with time-independent

potentials are well-known. They have been proved in the paper by Hunziker [18]. In

the time-dependent case the argument is essentially the same. More precisely, define

the functions

Φj,|γ|(t) :=

j∑

j′=0

|γ|∑

|γ′|=0

‖〈x〉j′∂γ′
x U(t)g‖L2

for any index j ≥ 0 and any multi-index γ. Using equation (2.1.7) we obtain

d

dt
‖〈x〉j∂γ

xU(t)g‖2
L2 = i(−1)|γ|〈[4

2
− V (t, x), ∂γ

x〈x〉2j∂γ
x

]
U(t)g, U(t)g〉.

Computing the commutator we obtain the recurrence relation

Φj,|γ|(t) .Φj,|γ|(0) + 〈t〉2
∑

|γ′|≤2|γ|

∥∥∥〈x〉〈t〉 ∂
γ′
x V

∥∥∥
L∞t,x

sup
0≤τ≤t

Φj−1,|γ|+1(τ) ≤

C(V )

( j−1∑

k=0

〈t〉2kΦj−k,|γ|+k(0) + 〈t〉2jΦ0,|γ|+j(τ)

)
,

where C(V ) is a constant depending on

∑

|γ′|≤2(|γ|+j−1)

∥∥∥〈x〉〈t〉 ∂
γ′
x V

∥∥∥
L∞t,x

. (2.6.23)

In addition, differentiating the equation (2.1.7) |γ| + j times with respect to x and
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using the standard L2 estimate, we have

Φ0,|γ|+j(τ) ≤ C(V )(1 + |τ ||γ|+j)Φ0,|γ|+j(0).

Therefore,

Φj,|γ|(t) ≤ C(V )(1 + |t|)3j+|γ|Φj,|γ|+j(0).

Now setting j = j0 and |γ| = κ we obtain the desired estimate (2.6.22) with k = j0.

Observe that the assumption V1, V2 ∈ Cn+2κ+2
0 (Rn) controls the constant C(V ) in

(2.6.23) for the potential V (t, x) = V1(x) + V2(x− t~e1).
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Chapter 3

Schrödinger Operators with Lamé
Potentials on R

Even though the dispersive properties of Schrödinger operators have been extensively

studied for potentials vanishing at infinity, they are little known in the case that the

potential is periodic in space. Assuming V (x) = V (x + 2ω), − d2

dx2 + V (x) is called

Hill’s operator. The spectrum of Hill’s operator is purely continuous and a union of

infinitely many intervals (bands), generically. A potential V (x) is called a finite band

potential if the spectrum of − d2

dx2 + V (x) is a union of finitely many intervals, one

of which is a half axis. One example of finite band potentials is the so-called Lamé

potential. The corresponding − d2

dx2 + V (x) is called a Lamé operator. The Laḿe

operator has a rich history (see [39]) and the properties of its eigenfunctions are still

of interest for current research. In this chapter, we explore the dispersive property of

Schrödinger operator with a Lamé potential.

We assume that ψ0 ∈ L1(R) and denote U(t)ψ0 as the solution of the following

problem

1

i
∂tψ(x, t) = − d2

dx2
ψ(x, t) + 2℘(x + ω3)ψ(x, t), (3.0.1)

ψ(x, 0) = ψ0(x).

Theorem 3.0.6. Generically, for almost all ω, ω′ ∈ R, there exists a constant C > 0

such that for t > 1
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‖U(t)ψ0‖L∞(R) < C t−
1
3‖ψ0‖L1(R). (3.0.2)

Moreover, for all nonzero ω, ω′ ∈ R, there exists a constant C > 0 such that for t > 1

‖U(t)ψ0‖L∞(R) < C t−
1
4‖ψ0‖L1(R). (3.0.3)

(3.0.2) is optimal in the sense that for any nonzero ω, ω′ ∈ R, there exist constants

c > 0 and T > 0, depending only on ω, ω′ such that for t > T

sup
ψ0:‖ψ0‖L1(R)=1

‖U(t)ψ0‖L∞(R) > c t−
1
3 . (3.0.4)

We require t > 1 to be large only to exclude t → 0. The decay rates t−
1
3 and

t−
1
4 are different from t−

1
2 in (1.0.4) because phase function is nonquadratic, which

is a natural outcome of the periodic potential. The decay factor t−
1
3 as t → ∞ has

appeared in the analysis of the Modified KdV equation ([8]), where the nonlinear

phase of the main term is cubic. In our case, the analytic phase function, roughly

speaking, satisfies a cubic relation up to a change of variables. This cubic relation

comes from the differential equations satisfied by the Weierstrass ℘ function. We

denote P (x) to be the real-coefficient cubic polynomial

2x3 +
6ζ(ω)

ω
x2 +

g2

2
x + g3 − g2ζ(ω)

2ω
. (3.0.5)

We shall prove (3.0.2) under the assumption that

P (x) has no double root in (−∞, ℘(ω3)]. (3.0.6)

If (3.0.6) does not hold, then we shall prove (3.0.3). In this case, by Lemma 3.1.2,

P (x) has no root of degree 3. Our proof implies that (3.0.3) is optimal in the sense

stated in Theorem 3.0.6. However, we are unable to give an explicit example such

that P (x) does have a double root in (−∞, ℘(ω3)].

Finally, we prove that assumption (3.0.6) holds for almost all ω, ω′ ∈ R.
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3.1 Preliminaries

Eigenfunctions of (1.2.2) are expressed in terms of the Weierstrass σ-function and

ζ-function ([25], [14]) as follows:

fa(x) =
σ(x + iω′ + a)

σ(x + iω′)
e−ζ(a)x−ζ(iω′)a, (3.1.1)

where the energy

E = −℘(a).

(3.1.1) can be verified by noticing that ([39])

f ′a(x) = (ζ(x + ω3 + a)− ζ(x + ω3)− ζ(a))fa(x), (3.1.2)

and

(ζ(x + y)− ζ(x)− ζ(y))2 = ℘(x + y) + ℘(x) + ℘(y).

Some basic properties of Weierstrass functions are listed in the appendix. fa is

periodic when a is one of the half periods ω1, ω2 = ω1 + ω3 or ω3. f−a and fa are the

two Floquet-type solutions of (1.2.2). We write

fa(x) = ma(x)eik(a)x,

where

ma(x) =
σ(x + iω′ + a)

σ(x + iω′)
e−aζ(iω′)−a x

ω
ζ(ω) (3.1.3)

is periodic with period 2ω. Denote

Σ = [−℘(ω1),−℘(ω2)] ∪ [−℘(ω3), +∞),
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and the quasimomentum

k(a) = iω−1(ωζ(a)− aζ(ω))

is real-valued for E ∈ Σ. fa is bounded when E ∈ Σ and is unbounded otherwise,

which implies that Σ is the spectrum of (1.2.2) ([27]).

It is known that U(t) is an integral operator with kernel

K(t, x, x′) =

∫

Σ

eitEPa.c.(E, x, x′)dE.

Namely,

ψ(x, t) =

∫

Σ

∫

R
eitEPa.c.(E, x, x′)ψ0(x

′)dx′dE.

The absolutely continuous spectral projection is

Pa.c.(E, x, x′) =
1

2πi
[(H − (E + i0))−1(x, x′)− (H − (E − i0))−1(x, x′)],

and by definition

(H − (E ± i0))−1 = lim
ε→0+

(H − (E ± iε))−1,

which can be expressed by fa and f−a. Hence, we obtain for x > x′

K(t, x, x′) =

∫

Σ

eitE(f−a(x
′)fa(x) + f−a(x)fa(x

′))
dE

W (E)

=

∫

Σ

eitE(eik(a)(x−x′)m−a(x
′)ma(x) + e−ik(a)(x−x′)m−a(x)ma(x

′))
dE

W (E)
,

(3.1.4)

where W (E) = W (a) = W (fa, f−a) = faf
′
−a− f ′af−a, called the Wronskian of fa, f−a,

is independent of x.

Because the spectral projection Pa.c. is self-adjoint, Pa.c.(E, x, x′) = Pa.c.(E, x′, x).
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Therefore, when x < x′

K(t, x, x′) =

∫

Σ

eitE(f−a(x
′)fa(x) + f−a(x)fa(x

′))
dE

W (E)
. (3.1.5)

The proof of (3.0.2) and (3.0.3) shall be reduced to proving that

sup
x,x′

|K(t, x, x′)| < Ct−
1
3 and Ct−

1
4 .

It follows from (3.1.2) that

W (fa, f−a) = fa(x)f−a(x)(ζ(x + ω3 − a) + 2ζ(a)− ζ(x + ω3 + a)).

Since W (fa, f−a) is independent of x, we set x = 0 and obtain

W (fa, f−a) = fa(0)f−a(0)(ζ(ω3 − a) + 2ζ(a)− ζ(ω3 + a)).

By the addition formula for Weierstrass functions ([2], §15)

ζ(u + v)− ζ(u− v)− 2ζ(v) = − ℘′(v)

℘(u)− ℘(v)
,

we have

W (E) =
σ(iω′ + a)σ(iω′ − a)

σ2(iω′)
℘′(a)

℘(iω′)− ℘(a)
. (3.1.6)

Hence,

dE

W (E)
= −σ2(iω′)(℘(iω′)− ℘(a))

σ(iω′ + a)σ(iω′ − a)
da. (3.1.7)

Remark 3.1.1. Because ℘′(iω′) = 0 and zeroes of σ are the lattice points {n12ω1 +

n22ω3 : n1, n2 ∈ Z}, all of which are of degree 1, it follows that ℘(iω′)−℘(a)
σ(iω′+a)σ(iω′−a)

is

bounded and smooth when a → iω′.

Also, it is clear that ℘(iω′)−℘(a)
σ(iω′+a)σ(iω′−a)

= O(a−2) when a → 0, and that ℘(iω′)−℘(a)
σ(iω′+a)σ(iω′−a)
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and its ∂a-derivatives are bounded on [ω1, ω2], where [ω1, ω2] denotes the set

{λω1 + (1− λ)ω2 : λ ∈ [0, 1]}.

By (3.1.3), ma, m−a, and their ∂a-derivatives are bounded uniformly for a ∈
[ω1, ω2] ∪ [0, ω3], x ∈ R.

Since Σ is a union of two intervals, we shall decompose the integral of K(t, x, x′)

into two parts. Namely,

K(t, x, x′) = K1(t, x, x′) + K2(t, x, x′),

where

K1(t, x, x′) =

∫ −℘(ω2)

−℘(ω1)

eitEPa.c.(E, x, x′)dE,

K2(t, x, x′) =

∫ +∞

−℘(ω3)

eitEPa.c.(E, x, x′)dE.

Before we proceed to analyze K1(t, x, x′) and K2(t, x, x′), we prove two technical

lemmas.

Lemma 3.1.1. Let F (x) be a real-valued and smooth function on (a, b),

1. Suppose |F ′(x)| ≥ ε, |F ′′(x)| ≤ M for all x ∈ (a, b), then

∣∣∣
∫ b

a

e−itF (x)ψ(x)dx
∣∣∣ ≤ c ε−1 |t|−1

[
|ψ(b)|+

∫ b

a

(|ψ′(x)|+ |ψ(x)|)dx
]
,

where c depends on M .

2. Suppose k ≥ 2, k ∈ Z, and |F (k)(x)| ≥ ε for all x ∈ (a, b), then

∣∣∣
∫ b

a

e−itF (x)ψ(x)dx
∣∣∣ ≤ c ε−

1
k |t|− 1

k

[
|ψ(b)|+

∫ b

a

|ψ′(x)|dx
]
,

where c depends on k.
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The first part of Lemma 3.1.1 follows from integration by parts. The second part

is proved in [36] (p.334).

Lemma 3.1.2. Let ej = ℘(ωj), j = 1, 2, 3. Then P (x) has a unique simple root in

[e2, e1], and P (ej), j = 1, 2, 3, are nonzero. Also P (x) has no root of degree 3 in R.

Moreover, − ζ(ω)
ω
∈ (e3, e2).

Proof. P (x) = 0 if and only if 4x3 − g2x− g3 = (6x2 − g2

2
)(x + ζ(ω)

ω
). Denote p1(x) =

4x3 − g2x− g3 and p2(x) = (6x2 − g2

2
)(x + ζ(ω)

ω
). We shall examine the roots of p1(x)

and p2(x) on the real line.

It follows from (3.5.2) that p1(x) = 4(x − e1)(x − e2)(x − e3), where ej = ℘(ωj),

j = 1, 2, 3. Because there is no quadratic term in p1(x), e1 + e2 + e3 = 0. Since

e3 < e2 < e1, we have e3 < 0 < e1.

Observe that ℘′′(ω1) > 0, ℘′′(ω2) < 0 and ℘′′(ω3) > 0, and by Eq (1.2.4), we

obtain

℘(ω2)
2 <

g2

12
< min{℘(ω1)

2, ℘(ω3)
2}.

Now we shall prove ζ(ω)
ω

∈ (−e2,−e3). Indeed, let y1(x,E) and y2(x,E) be the

solutions of (1.2.2), which satisfy

y1(0, E) = y′2(0, E) = 1, y′1(0, E) = y2(0, E) = 0.

And we introduce the discriminant ∆(E) = y1(2ω, E) + y′2(2ω, E).

Recall a and E are related by E = −℘(a), and as E → +∞ on the real line,

a → 0 on the positive imaginary axis. Therefore iζ(a) and k(a) go to +∞ on the real

line when E → +∞.

By Lemma 2.1 of [12], ∆(E) = 2 cos k(a) and k(E) = k(a(E)) is the conformal

map from the upper half plane to a slit quarter plane Ω = {<z > 0,=z > 0}\T , with

the slit T = { π
2ω

+ iy : 0 < y ≤ h}, where h is some positive real number. Moreover,

k(−e1) = 0 and k(−e2) = k(−e3) = π
2ω

.

Denote Q0 to be the preimage of the tip π
2ω

+ ih of the slit T under the map k(E).
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Then −℘(ω2) < Q0 < −℘(ω3), and k(E) sends [−℘(ω2), Q0] to [ π
2ω

, π
2ω

+ ih], and

[Q0,−℘(ω3)] to [ π
2ω

+ ih, π
2ω

], respectively. Thus when E ∈ (−℘(ω2), Q0),
1
i
∂Ek(E) ≥

0. We observe that

∂Ek(E) =
1

−℘′(a)
∂ak(a) =

i

℘′(a)

(ζ(ω)

ω
+ ℘(a)

)
,

which implies that

℘(a) + ζ(ω)/ω

℘′(a)
≥ 0.

Since ℘′(a) > 0 when a ∈ (ω3, ω2), we conclude that E = −℘(a) ≤ ζ(ω)/ω for

any E ∈ (−℘(ω2), Q0). Hence, Q0 ≤ ζ(ω)/ω. On the other hand, 1
i
∂Ek(E) ≤ 0

when E ∈ (Q0,−℘(ω3)). Following a similar argument, Q0 ≥ ζ(ω)/ω. Therefore

ζ(ω)/ω = Q0 ∈ (−℘(ω2),−℘(ω3)).

In fact, k(E) maps E = ζ(ω)
ω

to the tip π
2ω

+ ih of the slit T and ∆(E) reaches its

minimum at E = ζ(ω)
ω

.

The three roots of p2(x) are ±√
g2

12
and − ζ(ω)

ω
. From the above analysis, we

have that
√

g2

12
∈ (e2, e1) and −√

g2

12
,− ζ(ω)

ω
∈ (e3, e2), which implies p2(e1) > 0 and

p2(e2) < 0. Hence P (x) has either one or three zeroes in (e2, e1) and clearly P (ej),

j = 1, 2, 3, are nonzero.

To verify that P (x) has no root of degree 3, we consider

P ′(x) = 6x2 + 12
ζ(ω)

ω
x +

g2

2
.

The minimum of P ′(x) is reached at x = − ζ(ω)
ω
∈ (e3, e2) and is equal to g2

2
−6( ζ(ω)

ω
)2.

Notice that − ζ(ω)
ω

< e2 <
√

g2

12
always holds.

If − ζ(ω)
ω

> −√
g2

12
, then P ′(x) > 0 holds for all x ∈ R. P (x) has no root of degree

greater or equal to 2.

If − ζ(ω)
ω

= −√
g2

12
, then P ′(x) has a double root − ζ(ω)

ω
∈ (e3, e2). Since P (x) has

a root in (e2, e1), we conclude that P (x) has no root of degree 3.

If − ζ(ω)
ω

< −√
g2

12
, then P ′(x) has no double root. Hence P (x) has no root of
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degree 3 on the whole real line.

If P (x) has three zeroes in (e2, e1), then P ′(x) has two roots in (e2, e1), which is

impossible because − ζ(ω)
ω

< e2. Therefore, P (x) has unique simple root in (e2, e1).

3.2 Analysis of K1(t, x, x′)

We first consider K1(t, x, x′). We proceed by making the following observation:

Lemma 3.2.1. Let b = 2ω2 − a for a ∈ [ω1, ω2]. Write W (a) = W (fa, f−a). Then

for x, x′ ∈ R

fa(x
′)f−a(x)

W (a)
= −fb(x)f−b(x

′)
W (b)

. (3.2.1)

Proof. It is clear that ℘(a) = ℘(b) and ℘′(a) = −℘′(b). We prove (3.2.1) by direct

calculation. By definition,

fa(x
′)f−a(x) =

σ(x′ + ω3 + a)σ(x + ω3 − a)

σ(x + ω3)σ(x′ + ω3)
eζ(a)(x−x′).

By (3.5.4) and (3.5.5), this equals

σ(x′ + ω3 − b)σ(x + ω3 + b)

σ(x + ω3)σ(x′ + ω3)
eζ(b)(x′−x)e4η3(ω3−b) = fb(x)f−b(x

′)e4η3(ω3−b).

Also by (3.1.6) and (3.5.5),

W (a) =
σ(iω′ − b)σ(iω′ + b) exp (4η3(ω3 − b))

σ2(iω′)
−℘′(b)

℘(ω3)− ℘(b)
= −W (b)e4η3(ω3−b).

Combining them, (3.2.1) follows.
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It follows from Lemma 3.2.1 that

∫ ω2

ω1

e−it℘(a)fa(x
′)f−a(x)

W (a)
d℘(a) =

∫ ω2+iω′

ω2

e−it℘(b)fb(x)f−b(x
′)

W (b)
d℘(b).

Hence we have that for x > x′

K1(t, x, x′) =

∫ −℘(ω2)

−℘(ω1)

eitE(f−a(x
′)fa(x) + f−a(x)fa(x

′))
dE

W (E)

=

∫ ω1+i2ω′

ω1

e−it℘(a)fa(x)f−a(x
′)

W (a)
d(−℘(a))

=

∫ ω1+i2ω′

ω1

e−it℘(a)+i(x−x′)k(a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
. (3.2.2)

Note k(a) is real-valued and by (3.1.5), we have that for x < x′

K1(t, x, x′) =

∫ ω1+i2ω′

ω1

e−it℘(a)+i(x−x′)k(a)ma(x
′)m−a(x)

−℘′(a)da

W (a)
.

To simplify notation, we set τ = x−x′
t
∈ R and

Fτ (a) = ℘(a)− iτ(ζ(a)− a

ω
ζ(ω)).

Moreover, we write

K1(t, x, x′) =

∫ ω1+i2ω′

ω1

e−itFτ (a)ϕ(a, x, x′)da, (3.2.3)

where ϕ(a, x, x′) = ma(x)m−a(x
′)−℘′(a)

W (a)
when x > x′, and ϕ(a, x, x′) = ϕ(a, x′, x)

when x < x′. Without losing clarity, ϕ(a, x, x′) will be written simply as ϕ(a).

By Remark 3.1.1, ϕ(a, x, x′) and its ∂a-derivatives are bounded uniformly for a ∈
[ω1, ω2] and x, x′ ∈ R. To apply Lemma 3.1.1 to (3.2.3), we analyze the ∂a-derivatives

of Fτ (a). Our plan is to decompose the integral in (3.2.3) into several regions and on

each region, Lemma 3.1.1 for some exponent k will be applied. We observe that



82

∂aFτ (a) = ℘′(a) + τi(ζ(ω)/ω + ℘(a)), (3.2.4)

∂2
aFτ (a) = ℘′′(a) + τi℘′(a), (3.2.5)

∂3
aFτ (a) = ∂3

a℘(a) + τi℘′′(a). (3.2.6)

Let

c1 = min{ζ(ω)/ω + ℘(a) : a ∈ [ω1, ω1 + 2iω′]}.

Then c1 = ζ(ω)/ω + ℘(ω2) and by Lemma 3.1.2, c1 > 0. Also we denote

M1 = 1 + max{|℘′(a)|, |℘′′(a)|, ζ(ω)/ω + ℘(a) : a ∈ [ω1, ω1 + 2iω′]}. (3.2.7)

When |τ | > 2M1

c1
, we have for a ∈ [ω1, ω1 + 2iω′]

|∂aFτ (a)| > |τ |c1 −M1 >
1

2
|τ |c1,

and

|∂2
aFτ (a)| < M1(|τ |+ 1).

Integrating by parts and recalling ϕ(a) and its derivatives are uniformly bounded,

we obtain

|K1(t, x, x′)| = 1

t

∣∣∣
∫ ω1+i2ω′

ω1

ϕ(a)

∂aFτ (a)
d e−itFτ (a)

∣∣∣

≤4ω′‖ϕ(a)‖L∞[ω1,ω2]

tτc1

+
1

t

∣∣∣
∫ ω1+i2ω′

ω1

e−itFτ (a)
( ϕ′(a)

F ′
τ (a)

− ϕ(a)F ′′
τ (a)

(F ′
τ (a))2

)
da

∣∣∣ (3.2.8)

≤Ct−1.
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We now estimate K1(t, x, x′) when |τ | ≤ 2M1

c1
. Suppose both (3.2.4) and (3.2.5)

vanish for a = a0 ∈ [ω1, ω2] and τ = τ0 ∈ [−2M1

c1
, 2M1

c1
]. Then

℘′(a0)
2 = ℘′′(a0)(

ζ(ω)

ω
+ ℘(a0)).

By (1.2.3) and (1.2.4), this is equivalent to

2℘(a0)
3 +

6ζ(ω)

ω
℘(a0)

2 +
g2

2
℘(a0) + g3 − g2ζ(ω)

2ω
= 0.

Thus ℘(a0) is the simple root of P (x) in [℘(ω2), ℘(ω1)] and ℘′(a0) 6= 0 by Lemma 3.1.2.

Observe that (3.2.4) and (3.2.5) also vanish when (a, τ) = (2ω2 − a0,−τ0). The

analysis of (2ω2− a0,−τ0) is the same as that of (a0, τ0) and we will focus on (a0, τ0).

Also, we observe that ∂3
aFτ (a) vanishes at (a0, τ0) if and only if

det


 ℘′(a0)

ζ(ω)
ω

+ ℘(a0)

∂3
a℘(a0) ℘′′(a0)


 = 0;

namely,

∂a det


℘′(a) ζ(ω)

ω
+ ℘(a)

℘′′(a) ℘′(a)




a=a0

= 0.

Since ℘′(a0) 6= 0, that ∂3
aFτ0(a0) = 0 is equivalent to the fact that ℘(a0) is a double

root of P (x). By Lemma 3.1.2, P (x) has no double root in [℘(ω2), ℘(ω1)]. Hence,

∂3
aFτ0(a0) 6= 0 and there exists ε > 0 such that

min{Σ3
j=1|∂j

aFτ (a)| : a ∈ [ω1, ω1 + 2iω′], τ ∈ [−2M1/c1, 2M1/c1]} > ε > 0.

Let χ3(a, τ) be a smooth function defined on [ω1, ω1 + 2iω′] × [−2M1

c1
, 2M1

c1
] such

that 0 ≤ χ3 ≤ 1, χ3(a, τ) = 1 when |∂aFτ (a)|+ |∂2
aFτ (a)| ≤ 1

3
ε, and χ3(a, τ) = 0 when

|∂aFτ (a)|+ |∂2
aFτ (a)| ≥ 2

3
ε. Similarly, let χ2(a, τ) to be a smooth function defined on

[ω1, ω1 +2iω′]× [−2M1

c1
, 2M1

c1
], such that 0 ≤ χ2 ≤ 1, χ2(a, τ) = 1 when |∂2

aFτ (a)| ≥ 1
6
ε,
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and χ2(a, τ) = 0 when |∂2
aFτ (a)| ≤ 1

9
ε.

On the support of χ3, |∂3
aFτ (a)| ≥ 1

3
ε. It follows from Lemma 3.1.1 that

∣∣∣
∫ ω1+i2ω′

ω1

e−itFτ (a)χ3(a, τ)ϕ(a)da
∣∣∣ ≤ C3(τ)t−

1
3 . (3.2.9)

On the support of χ2(1− χ3), |∂2
aFτ (a)| ≥ 1

9
ε. And similarly

∣∣∣
∫ ω1+i2ω′

ω1

e−itFτ (a)χ2(a, τ)(1− χ3(a, τ))ϕ(a)da
∣∣∣ ≤ C2(τ)t−

1
2 . (3.2.10)

On the support of (1−χ2)(1−χ3), |∂2
aFτ (a)| ≤ 1

6
ε and |∂aFτ (a)| ≥ 1

6
ε. Lemma 3.1.1

yields

∣∣∣
∫ ω1+i2ω′

ω1

e−itFτ (a)(1− χ2(a, τ))(1− χ3(a, τ))ϕ(a)da
∣∣∣ ≤ C1(τ)t−1. (3.2.11)

Note that Cj(τ), j = 1, 2, 3, are continuous functions of τ ∈ [−2M1/c1, 2M1/c1]. Let

C = Σ3
j=1 max{Cj(τ) : τ ∈ [−2M1/c1, 2M1/c1]}.

Then |K1(t, x, x′)| ≤ Ct−
1
3 for large t, because

χ3 + χ2(1− χ3) + (1− χ2)(1− χ3) = 1.

Consequently, we have proven that for large t

sup
x,x′

∣∣K1(t, x, x′)
∣∣ < Ct−

1
3 , (3.2.12)

where C only depends on ω, ω′.
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3.3 Analysis of K2(t, x, x′)

We now consider K2(t, x, x′). Let b = 2ω3 − a for a ∈ (0, ω3), and the proof of

Lemma 3.2.1 gives

fa(x
′)f−a(x)

W (a)
= −fb(x)f−b(x

′)
W (b)

.

Then for x > x′

K2(t, x, x′) =

∫ +∞

−℘(ω3)

eitE(f−a(x
′)fa(x) + f−a(x)fa(x

′))
dE

W (E)

=

∫ +∞

−℘(ω3)

e−it℘(a)fa(x)f−a(x
′)

W (a)
d(−℘(a))

=

∫ i2ω′

0

e−itFτ (a)ma(x)m−a(x
′)
−℘′(a)

W (a)
da,

where τ = x−x′
t

. For x < x′, K2(t, x, x′) can be written in a similar form. Therefore

K2(t, x, x′) =

∫ i2ω′

0

e−itFτ (a)ϕ(a, x, x′)da,

where ϕ(a, x, x′) was defined in the previous section.

Step 1. The analysis of the nonlinear phase in K2(t, x, x′) is similar to that of

K1(t, x, x′). However, by Remark 3.1.1, ϕ(a, x, x′) in K2(t, x, x′) is unbounded when

a → 0 and a → 2iω′, contrary to the case of K1(t, x, x′). Our strategy then is to

change variables to remove this singularity.

Define λ2 = ℘(ω3) − ℘(a) such that λ > 0 when a ∈ (0, ω3) and λ < 0 when

a ∈ (ω3, 2ω3). Then the map a → λ is one-to-one, onto and analytic from (0, 2ω3) to

R. Note that λ(2iω′ − a) = −λ(a) and the behavior of λ(a) as a → 2iω′ is the same

as that when a → 0.

We claim that ∂a
∂λ

= 2λ
−℘′(a)

is never zero when a ∈ (0, 2ω3). In fact, the claim is

obvious for a 6= ω3. When a = ω3, by L’Hôpital’s rule,
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∂a

∂λ
(0) = lim

λ→0

2λ

−℘′(a)
= lim

λ→0

2

−℘′′(a) ∂a
∂λ

,

which implies that

∣∣∣∂a

∂λ
(0)

∣∣∣ =

√
2

℘′′(ω3)
> 0.

Observe that when λ → ±∞, λϕ(λ) = λ3 · O(1) and | − ℘′(a)| = |λ|3 + O(λ2).

Hence, λϕ(λ)
−℘′(a)

and its λ-derivatives are bounded uniformly for x, x′, λ ∈ R.

After changing the variables, we obtain

∫ i2ω′

0

e−itFτ (a)ϕ(a)da =

∫

R
e−itFτ (λ)ϕ(λ)

∂a

∂λ
dλ, (3.3.1)

where Fτ (λ) = Fτ (a(λ)) and ϕ(λ) = ϕ(a(λ)).

We will decompose (3.3.1) into different integral regions and estimate them sepa-

rately. Define χ(·) to be a smooth function supported in (−2, 2) such that χ(x) = 1

when x ∈ [−1, 1], and let M be a large number to be specified.

Step 2. We claim that

∣∣∣
∫

R
e−itFτ (λ)ϕ(λ)

2λ

−℘′(a)
χ(λ/M)dλ

∣∣∣ < CM t−
1
4 or CM t−

1
3 , (3.3.2)

depending on whether P (x) has a double root in (−∞, ℘(ω3)] or not.

The proof of (3.3.2) will follow the lines of the proof of (3.2.12). Recall that the

map λ → a is one-to-one from R onto (0, 2ω3), and satisfies λ2 = ℘(ω3)−℘(a). Also,

we observe that

∂λFτ (λ) =
∂a

∂λ
(℘′(a) + τi(ζ(ω)/ω + ℘(a))), (3.3.3)

∂2
λFτ (λ) =

∂2a

∂λ2
(℘′(a) + τi(ζ(ω)/ω + ℘(a))) +

(∂a

∂λ

)2

(℘′′(a) + τi℘′(a)). (3.3.4)
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By Lemma 3.1.2,

inf{|ζ(ω)/ω + ℘(a)| : a ∈ (0, ω3)} = |ζ(ω)/ω + ℘(ω3)| = c2 > 0.

Denote

M2 = max{|℘′(a)|+ |℘′′(a)|+ |ζ(ω)/ω + ℘(a)| : λ(a) ∈ [−2M, 2M ]}.

Since ∂a
∂λ

is smooth and never zero, there exist c3 and M3 such that 0 < c3 < | ∂a
∂λ
| <

√
M3 for all λ ∈ [−2M, 2M ]. Moreover, suppose | ∂2a

∂λ2 | < M3 for λ ∈ [−2M, 2M ].

Then for λ ∈ [−2M, 2M ] and |τ | ≥ 2M2/c2

|∂λFτ (λ)| > 1

2
c2c3|τ |, |∂2

λFτ (λ)| < 2M3M2(1 + |τ |).

Integrating by parts, an argument similar to (3.2.8) shows that for |τ | ≥ 2M2/c2,

∣∣∣
∫

R
e−itFτ (λ)ϕ(λ)

2λ

−℘′(a)
χ(λ/M)dλ

∣∣∣ < CM t−1.

To prove (3.3.2) for |τ | ≤ 2M2/c2, we first suppose that P (x) has no double root

in (−∞, ℘(ω3)]. Since ∂Fτ (λ)
∂λ

= ∂a
∂λ

∂Fτ (a)
∂a

and ∂a
∂λ
6= 0 for a ∈ (0, 2ω3), it follows from

(3.3.3) and (3.3.4) that ∂Fτ (λ)
∂λ

and ∂2Fτ (λ)
∂λ2 vanish at (λ0, τ0) if and only if (3.2.4) and

(3.2.5) vanish at (a0, τ0), where λ2
0 = ℘(ω3) − ℘(a0). Therefore, the fact that P (x)

has no double root implies that there exists ε such that

min
{ 3∑

j=1

|∂j
λFτ (λ)| : |λ| ≤ 2λ|τ | < 2M2/c2

}
> ε > 0.

Just as in the case of K1(t, x, x′), we define χ2(λ, τ), χ3(λ, τ) on [−2M, 2M ] ×
[−2M2/c2, 2M2/c2]. Namely, χ2(λ, τ) = 1 when |∂2

λFτ (λ)| > 1
6
ε, and χ2(λ, τ) = 0

when |∂2
λFτ (λ)| < 1

9
ε. χ3(λ, τ) = 1 when |∂λFτ (λ)|+ |∂2

λFτ (λ)| < 1
3
ε, and χ3(λ, τ) = 0

when |∂λFτ (λ)|+ |∂2
λFτ (λ)| > 2

3
ε.
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Decompose the integral in (3.3.2) according to

1 = χ3 + χ2(1− χ3) + (1− χ2)(1− χ3).

The same arguments as those in (3.2.9), (3.2.10), and (3.2.11) yield for |τ | ≤ 2M2/c2,

∣∣∣
∫

R
e−itFτ (λ)ϕ(λ)

2λ

−℘′(a)
χ(λ/M)dλ

∣∣∣ < CM t−
1
3 .

In the case that P (x) has a double root ℘(a0) ∈ (−∞, ℘(ω3)], there is τ0 ∈ R,

such that ∂j
λFτ (λ), j = 1, 2, 3, vanish at (λ0, τ0), where λ2

0 = ℘(ω3)− ℘(a0). The fact

that P (x) has no root of degree 3 implies that ∂4
λFτ0(λ0) 6= 0. Therefore, there exists

ε such that

min
{ 4∑

j=1

|∂j
λFτ (λ)| : λ ∈ [−2M, 2M ], τ ∈ [−2M2/c2, 2M2/c2]

}
> 2ε > 0.

Define smooth function χ4(λ, τ) : [−2M, 2M ]× [−2M2/c2, 2M2/c2] → [0, 1], such

that χ4 = 1 when Σ3
j=1|∂j

λFτ (λ)| ≤ ε, and χ4 = 0 when Σ3
j=1|∂j

λFτ (λ)| ≥ 3
2
ε. Hence

on the support of χ4, |∂4
λFτ (λ)| ≥ 1

2
ε. It follows from Lemma 3.1.1 that

∣∣∣
∫

R
e−itFτ (λ)ϕ(λ)

2λ

−℘′(a)
χ(λ/M)χ4(λ, τ)dλ

∣∣∣ < C4(τ)t−
1
4 .

We decompose the integral in (3.3.2) by using

χ4 + (1− χ4)χ3 + χ2(1− χ3)(1− χ4) + (1− χ2)(1− χ3)(1− χ4) = 1.

The analysis of the terms containing (1 − χ4)χ3, χ2(1 − χ3)(1 − χ4), and (1 −
χ2)(1−χ3)(1−χ4) is similar to (3.2.9), (3.2.10), and (3.2.11) respectively. Therefore,

under the assumption that P (x) has a double root in (−∞, ℘(ω3)], we have proven

that
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∣∣∣
∫

R
e−itFτ (λ)ϕ(λ)

2λ

−℘′(a)
χ(λ/M)dλ

∣∣∣ < CM t−
1
4 .

Step 3. It now remains to estimate

∫

R
e−itFτ (λ)ϕ(λ)

2λ

−℘′(a)
(1− χ(λ/M))dλ,

which by definition equals

lim
N→+∞

∫

R
e−itFτ (λ)ϕ(λ)

2λ

−℘′(a)
(χ(λ/N)− χ(λ/M))dλ. (3.3.5)

Since (3.3.5) are not integrable on the support of 1 − χ(λ/M), Lemma 3.1.1 cannot

be applied to (3.3.5) directly. We shall explore the oscillation of the phase e−itFτ (λ)

and perform integration by parts to bound (3.3.5), which requires us to exclude the

zeroes of ∂λFτ (λ).

By definition, ℘(a) = a−2 + 1
20

g2a
2 + O(a4), and ℘(a) = ℘(iω′)− λ2, hence

λ(a) =
i

a
+ α1a + O(a3) as a → 0, a ∈ (0, ω3),

which is an meromorphic function of a. It follows that ζ(a) = −iλ + O(λ−1) as

a → 0, a ∈ (0, ω3). Consequently

Fτ (λ) = −λ2 − τλ + ℘(iω′) + O(
τ

λ
), λ → ±∞; (3.3.6)

∂λFτ (λ) = −2λ− τ + O(τλ−2), λ → ±∞; (3.3.7)

∂2
λFτ (λ) = −2 + O(τλ−3), λ → ±∞. (3.3.8)

We require M large enough such that

M > 1 + max
{
|λ0| : ∂Fτ (λ)

∂λ
,
∂2Fτ (λ)

∂λ2
both vanish at (τ0, λ0)

}
.

Therefore, if |λ| > M , ∂Fτ (λ)
∂λ

and ∂2Fτ (λ)
∂λ2 cannot vanish at the same (τ, λ).
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When |λ| > M and |λ + τ
2
| > 1, we claim that

|∂λFτ (λ)| > |λ +
τ

2
| − 1

2
. (3.3.9)

In fact, by (3.3.7)

|∂λFτ (λ)| > 2|λ +
τ

2
| −O(τλ−2).

We choose M large enough such that O(τλ−2) < |τ |
100|λ| . If |λ+ τ

2
| > |τ |

100
, (3.3.9) clearly

holds. If |λ + τ
2
| ≤ |τ |

100
, then |τ |

100|λ| < 1
2

and (3.3.9) also follows.

When (− τ
2
− 1,− τ

2
+ 1) is not contained in (−M, M), by (3.3.8), |∂2

λFτ (λ)| > 1

for λ ∈ (− τ
2
− 2,− τ

2
+ 2) as long as M is large enough. By Lemma 3.1.1, we have

∫

R
e−itFτ (λ)ϕ(λ)

2λ

−℘′(a)
χ(λ + τ/2)dλ < Ct−

1
2 ,

where χ(x) = 1 when |x| < 1, and χ(x) = 0 when |x| > 2.

To estimate (3.3.5), we first consider the case when |τ |
10

> M and estimate

∫

R
e−itFτ (λ) 2λϕ(λ)

−℘′(a)
(χ(10λ/|τ |)− χ(λ/M))dλ,

which equals

1

it

∫

R
e−itFτ (λ) d

dλ

(2λϕ(λ)

−℘′(a)

χ(10λ/|τ |)− χ(λ/M)

∂λF (λ)

)
dλ. (3.3.10)

It follows from (3.3.7) that on the support of χ(10λ/|τ |)− χ(λ/M)

|∂λFτ (λ)| > |τ | − 2|λ| −O(τλ−2) > |τ |/2,

and

|∂2
λFτ (λ)| < |τ |/4,

as long as M is large enough. Hence

|∂λ(∂λFτ (λ))−1| < 1

|τ | . (3.3.11)
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Since (χ(10λ/|τ |) − χ(λ/M)), 2λϕ(λ)
−℘′(a)

and their λ-derivatives are uniformly bounded,

we have

∣∣∣ d

dλ

(2λϕ(λ)

−℘′(a)

χ(10λ/|τ |)− χ(λ/M)

∂λF (λ)

)∣∣∣ <
C

|τ | ,

from which it follows that |(3.3.10)| < Ct−1.

To complete the estimate on (3.3.5) when |τ |/10 > M , it remains to bound

∫

R
e−itFτ (λ)ϕ(λ)

2λ

−℘′(a)
(χ(λ/N)− χ(10λ/|τ |)− χ(λ + τ/2))dλ.

Integrating by parts, this equals

2

it

∫

R
e−itFτ (λ) d

dλ

( λϕ(λ)

−℘′(a)

(χ(λ/N)− χ(10λ/τ)− χ(λ + τ/2))

∂λFτ (λ)

)
dλ := J1 + J2,

where

J1 =
2

it

∫

R
e−itFτ (λ) (χ(λ/N)− χ(10λ/|τ |)− χ(λ + τ/2))

∂λFτ (λ)

d

dλ

λϕ(λ)

−℘′(a)
dλ,

and

J2 =
2

it

∫

R
e−itFτ (λ) λϕ(λ)

−℘′(a)

d

dλ

(χ(λ/N)− χ(10λ/|τ |)− χ(λ + τ/2))

∂λFτ (λ)
dλ.

In J2,

∂λ(χ(λ/N)− χ(10λ/|τ |)− χ(λ + τ/2)) =
1

N
χ′(λ/N)− 10

|τ |χ
′(10λ/|τ |)− χ′(λ + τ/2).

(3.3.12)

On the support of (3.3.12), we have |λ+τ/2| > 1 and |λ| > M . Thus |(∂λFτ (λ))−1| <
C by (3.3.9). Consequently,
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∣∣∣ 2

it

∫

R
e−itFτ (λ) λϕ(λ)

−℘′(a)∂λFτ (λ)

( 1

N
χ′(λ/N)− 10

|τ |χ
′(10λ/|τ |)−χ′(λ+τ/2)

)
dλ

∣∣∣ < Ct−1.

On the support of χ(λ/N) − χ(10λ/|τ |) − χ(λ + τ/2) we have |λ| > |τ/10|. It

follows from (3.3.8) that |∂2
λFτ (λ)| < 3. Combining it with (3.3.9), we obtain

∂λ(∂λFτ (λ))−1 < C(λ +
τ

2
)−2,

which is integrable. Therefore

∣∣∣ 2

it

∫

R
e−itFτ (λ) λϕ(λ)

−℘′(a)

(
∂λ

1

∂λFτ (λ)

)
(χ(λ/N)− χ(10λ/|τ |)− χ(λ + τ/2))dλ

∣∣∣ < Ct−1.

This completes the estimate on J2.

As for J1, integrating by parts again, we obtain

J1 = − 4

t2

∫

R
e−itFτ (λ) d

dλ

((χ(λ/N)− χ(10λ/|τ |)− χ(λ + τ/2))

(∂λFτ (λ))2

d

dλ

λϕ(λ)

−℘′(a)

)
dλ.

Applying Leibnitz’s rule, we are left with three terms. Two terms come from d
dλ

hitting

χ(λ/N)− χ(10λ/|τ |)− χ(λ + τ/2) and (∂λFτ (λ))−2, and the analysis is analogous to

that of J2. When d
dλ

hits d
dλ

λϕ(λ)
−℘′(a)

, we obtain the third term:

− 4

t2

∫

R
e−itFτ (λ)χ(λ/N)− χ(10λ/|τ |)− χ(λ + τ/2)

(∂λFτ (λ))2

d2

dλ2

λϕ(λ)

−℘′(a)
dλ.

Because |(∂λFτ (λ))2| > |λ+τ/2|2/4 on the support of χ(λ/N)−χ(10λ/|τ |)−χ(λ+τ/2)

and d2

dλ2

λϕ(λ)
−℘′(a)

is uniformly bounded, the above term is dominated by Ct−2, where the

constant C is independent of N .

This completes the estimate of (3.3.5) when |τ |/10 > M . The analysis is similar

and even simpler when |τ |/10 ≤ M . Therefore, when P (x) has no double root in

(−∞, ℘(ω3)], we have
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sup
x,x′

|K2(t, x, x′)| < Ct−
1
3 .

The decay factor t−
1
3 is replaced by t−

1
4 when P (x) has a double root in (−∞, ℘(ω3)].

2

Combining the estimates on K1(t, x, x′) and K2(t, x, x′), we have proven (3.0.2)

under the assumption (3.0.6). We have also proven (3.0.3) for all nonzero ω, ω′ ∈ R.

It remains to prove that (3.0.6) holds for almost all ω, ω′ ∈ R.

Suppose P (x) has a double root x0 ∈ (−∞, ℘(ω3)]. Then x0 is a root of P ′(x).

Recall that

P ′(x) = 6x2 +
12ζ(ω)

ω
x +

g2

2
,

with its roots

r+, r− = −ζ(ω)

ω
±

√(ζ(ω)

ω

)2

− g2

12
.

That P (x) has a double root in (−∞, ℘(ω3)] implies that (ζ(ω)/ω)2 − g2/12 > 0

and P (r−) = 0. By (3.5.1), g2 and g3 are real analytic for ω, ω′ ∈ R+. By (3.5.3), ζ(ω)

is also real analytic for ω, ω′ ∈ R+. Therefore, r+, r− are analytic when ω, ω′ ∈ R+,

with branches at
(

ζ(ω)
ω

)2

− g2

12
= 0. To prove (3.0.6) for almost all ω, ω′ ∈ R+, it

suffices to show that P (r−) is nonzero at one point. This can be done by direct

numerical calculation.

For example, take ω = 5.5 and ω′ = 2. Then we have

g2 = 0.507343, g3 = −0.0695438,

r+, r− = 0.0628169± 0.195787i,

P (r+), P (r−) = −0.0386656± 0.0300201i.

This indicates that P (r−) is nonzero for almost all ω, ω′ ∈ R. Therefore, (3.0.6)
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holds for almost all ω, ω′ ∈ R.

3.4 Optimality of the decay factor

So far we have proven the first part of Theorem 3.0.6. To verify (3.0.4), we first

reduce it to showing that there exist constants c > 0 and T > 0 such that for t > T

‖K(t, x, x′)‖L∞ > c t−
1
3 . (3.4.1)

Accepting (3.4.1) temporarily, we obtain that for any given large t, there exist

(x0, x
′
0) such that x0 6= x′0 and |K(t, x0, x

′
0)| > ct−

1
3 . Without loss of generality,

suppose that

<(K(t, x0, x
′
0)) >

c

2
t−

1
3 .

As K(t, x, x′) is smooth away from x = x′, there exists δ > 0 such that for any

(x, x′) ∈ (x0 − δ, x0 + δ)× (x′0 − δ, x′0 + δ)

<(K(t, x, x′)) >
c

4
t−

1
3 .

Take the initial data ψ0(x
′) = 1

2δ
χ(x′0−δ,x′0+δ)(x

′). Then ‖ψ0‖L1 = 1 and for any

x ∈ (x0 − δ, x0 + δ)

|ψ(t, x)| =
∣∣∣
∫

K(t, x, x′)ψ0(x
′)dx′

∣∣∣ >
c

4
t−

1
3 .

To prove (3.4.1), we need the following lemma (Prop. 3, Chap. 8 [36]):

Lemma 3.4.1. Suppose k ≥ 2, and

φ(x0) = φ′(x0) = · · · = φ(k−1)(x0) = 0,

while φ(k)(x0) 6= 0. If ψ is supported on a sufficiently small neighborhood of x0 and

ψ(x0) 6= 0, then
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∫

R
eiλφ(x)ψ(x)dx = akψ(x0)(φ

(k)(x0))
− 1

k λ−
1
k + O(λ−

1
k
−1),

where ak 6= 0 only depends on k. The implicit constant in O(λ−
1
k
−1) depends on only

finitely many derivatives of φ and ψ at x0.

By Lemma 3.1.2, P (a) has a unique simple root in (℘(ω2), ℘(ω1)), thus we can

choose a0 ∈ (ω1, ω2) and a corresponding τ0 such that both ∂aFτ (a) and ∂2
aFτ (a)

vanish at (a0, τ0).

First, we denote I = [0, i2ω′] ∪ [ω1, ω1 + i2ω′] and assume that for any a ∈ I,

a 6= a0, at least one of ∂aFτ0(a) and ∂2
aFτ0(a) does not vanish. Then we take δ > 0

small enough such that for a /∈ (a0 − δ, a0 + δ) ⊂ I, |∂aFτ0(a)|+ |∂2
aFτ0(a)| is greater

than some positive constant.

Given any large t, take (x, x′) such that x−x′
t

= τ0 and

K(t, x, x′) =
( ∫ i2ω′

0

+

∫ ω1+i2ω′

ω1

)
e−itFτ0 (a)ma(x)m−a(x

′)
−℘′(a)da

W (a)
.

The
∫ i2ω′

0
-term is bounded by C t−

1
2 using an argument analogous to that in Section

4, because |∂aFτ0(a)|+ |∂2
aFτ0(a)| is uniformly greater than some positive constant for

a ∈ (0, i2ω′).

We decompose the
∫ ω1+i2ω′

ω1
-term as follows

∫ ω1+i2ω′

ω1

e−itFτ0 (a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
:= J3 + J4,

where

J3 =

∫ ω1+i2ω′

ω1

e−itFτ0 (a)ρ(a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
,

and

J4 =

∫ ω1+i2ω′

ω1

e−itFτ0 (a)ρ̃(a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
.

Here ρ(a) is a smooth cutoff function supported on (a0−δ, a0+δ) and ρ̃(a) = 1−ρ(a).

Under our assumption, |J4| < C t−
1
2 , following the same reasoning as that in
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Section 3.

Considering J3, the phase function Fτ0(a) satisfies ∂aFτ0(a0) = ∂2
aFτ0(a0) = 0 and

∂3
aFτ0(a0) 6= 0. ma(x) and m−a(x

′) do not vanish when a ∈ (ω1, ω2) by (3.1.3). −℘′(a)
W (a)

is nonzero when a ∈ (ω1, ω2). Therefore ma0(x)m−a0(x
′)−℘′(a0)

W (a0)
is nonzero.

Since ρ(a) is supported in a sufficiently small neighborhood of a0, by Lemma 3.4.1,

there exist c1 > 0 and T > 0 such that for t > T

|J3| > c1t
− 1

3 ,

where c1 is independent of t.

Combining these estimates, we have |K(t, x, x′)| > c1t
− 1

3 − 2Ct−
1
2 > c1/2 t−

1
3 for

any (x, x′) satisfying (x− x′)/t = τ0 , which implies (3.4.1).

Second, suppose there are other a1, a2 ∈ I such that a1, a2, a0 are distinct and

∂aFτ0(a), ∂2
aFτ0(a) both vanish at a = a1, a2. Then P (x) vanishes at ℘(aj), j = 0, 1, 2.

Since a0 ∈ (ω1, ω2), we have that −i℘′(a0) > 0 and ζ(ω)/ω + ℘(a0) > 0 by

Lemma 3.1.2. Thus τ0 < 0 by (3.2.4). Similar analysis shows that when a ∈ (ω2, ω2 +

iω′) ∪ (iω′, 2iω′), ∂aFτ0(a) 6= 0. Therefore, a1, a2 ∈ (0, iω′).

Thus ℘(aj), j = 0, 1, 2, are distinct and are the three roots of P (x). This implies

that there is no other a ∈ I such that ∂aFτ0(a) = ∂2
aFτ0(a) = 0.

We again set δ > 0 small enough such that for a /∈ ⋃3
j=0(aj − δ, aj + δ) ⊂ I,

|∂aFτ0(a)| + |∂2
aFτ0(a)| is uniformly greater than some positive constant. Given any

large t, take (x, x′) such that x−x′
t

= τ0. The earlier argument implies that

K(t, x, x′) =
2∑

j=0

∫

I

e−itFτ0 (a)ρj(a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
+ O(t−

1
2 ),

where ρj(a) = 1 when |a− aj| < δ and ρj(a) = 0 when |a− aj| > 2δ.

By Lemma 3.4.1,

K(t, x, x′) = a3t
− 1

3

2∑
j=0

(F (3)
τ0

(ai))
− 1

3 maj
(x)m−aj

(x′)
−℘′(aj)

W (aj)
+ O(t−

1
2 ).

Recall that x and x′ are related by (x − x′)/t = τ0. maj
(x)m−aj

(x′), j = 0, 1, 2, are
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linearly independent as functions of x ∈ R and their nontrivial linear combination is

a nonzero function. Therefore, there exist x0 and x′0, satisfying (x0 − x′0)/t = τ0 and

K(t, x0, x
′
0) = c t−

1
3 + O(t−

1
2 ),

where c is nonzero. Thus there exists some T such that for t > T

|K(t, x0, x
′
0)| >

c

2
t−

1
3 .

Finally, suppose that a1 = a2 in the second case, which is equivalent to ℘(a1)

being a double root of P (x) in (−∞, ℘(ω3)). Similarly, we have for t > T

K(t, x, x′) =
1∑

j=0

∫

I

e−itFτ0 (a)ρj(a)ma(x)m−a(x
′)
−℘′(a)da

W (a)
+ O(t−

1
2 )

= a3t
− 1

3 (F (3)
τ0

(a0))
− 1

3 ma0(x)m−a0(x
′)
−℘′(a0)

W (a0)
+

a4t
− 1

4 (F (4)
τ1

(a1))
− 1

4 ma1(x)m−a1(x
′)
−℘′(a1)

W (a1)
+ O(t−

1
2 ).

Therefore, there exists (x0, x
′
0) such that |K(t, x, x′)| > c t−

1
4 > c t−

1
3 . This completes

the proof of (3.4.1).

Our proof also gives the optimality of (3.0.3) in the case that P (x) has a double

root in (−∞, ℘(ω3)].

By the proof of Lemma 3.1.2, we have the following corollary:

Corollary 3.4.2. Suppose that (ζ(ω)/ω)2 ≤ g2/12. Then for t > 1,

‖U(t)ψ0‖L∞ < Ct−
1
3‖ψ0‖L1(R).

Set ω = 1; it follows from (3.5.1) and (3.5.3) that g2

12
− (ζ(ω)/ω)2, as a function of

ω′ > 0, is analytic and ω′ = 0 is its essential singular point. Numerical experiment

indicates that g2/12 − (ζ(ω)/ω)2 ≈ 0.966104 when ω = 1 and ω′ > 5. When ω = 1

and ω′ → 0+, g2/12− (ζ(ω)/ω)2 assumes each real number infinitely many times.
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3.5 Appendix: Elements of Weierstrass functions

Here we list some elementary properties of Weierstrass functions ([39], [7], [2], [13]). A

doubly-periodic function that is meromorphic is called an elliptic function. Suppose

that 2ω1 and 2ω3 are two periods of an elliptic function f(z) and =(ω3/ω1) 6= 0.

Join in succession the points 0, 2ω1, 2ω1 +2ω3, 2ω3, 0 and we obtain a parallelogram.

If there is no point ω inside or on the boundary of this parallelogram (the vertices

excepted) such that f(z + ω) = f(z) for all values of z, this parallelogram is called a

fundamental period-parallelogram for an elliptic function with periods 2ω1 and 2ω3.

As a set, we assume this parallelogram only includes one of four vertices and two

edges adjacent to it. In this way, the z-plane can be covered with the translations

of this parallelogram without any overlap. It can be shown that for any c ∈ C, the

number of roots (counting multiplicity) of the equation

f(z) = c

that lie in the fundamental period-parallelogram do not depend on c. This number

is called the order of the elliptic function f(z) and it equals the number of poles of f

inside a fundamental period-parallelogram.

Given ω1, ω3 ∈ C with =(ω3/ω1) 6= 0, the Weierstrass elliptic function is defined

as

℘(z) =
1

z2
+

∑

(m,n) 6=(0,0)

{
(z − 2mω1 − 2nω3)

−2 − (2mω1 + 2nω3)
−2

}
.

The summation extends over all integer values of m and n, simultaneous zero values

of m and n excepted. ℘(z) is doubly-periodic, namely

℘(z) = ℘(z + 2ω1) = ℘(z + 2ω3).

℘(z) is an elliptic function of order 2, with poles Ωm,n = 2mω1 + 2nω3. Each pole

Ωm,n is of degree 2. ℘(z) is an even function, ℘(z) = ℘(−z). The Laurent’s expansion

of ℘(z) at z = 0 is written as
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℘(z) = z−2 +
1

20
g2z

2 +
1

28
g3z

4 + O(z6),

where g2, g3 are the constants in (1.2.3) and (1.2.4). Explicitly, we have

g2 = 60
∑

(m, n)6=(0,0)

Ω−4
m,n, g3 = 140

∑

(m, n)6=(0,0)

Ω−6
m,n. (3.5.1)

Here g2 and g3 are called the invariants of ℘ and they uniquely characterize ℘.

Since ℘′ is odd and elliptic of order 3, it has three zeroes in its fundamental period-

parallelogram. It is clear that these zeroes are the half periods ω1, ω2 = ω1 + ω3, and

ω3. Denote ej = ℘(ωj), j = 1, 2, 3. The fact that ℘(z) is of order 2 implies that

e1, e2, e3 are distinct and that ℘′′ does not vanish at ωj, j = 1, 2, 3. Furthermore,

(1.2.3) implies that e1, e2, e3 are the roots of the cubic polynomial

4x3 − g2x− g3 = 0. (3.5.2)

The function ζ(z) is defined by the equation

d

dz
ζ(z) = −℘(z),

coupled with the condition limz→0(ζ(z)− z−1) = 0. ζ(z) may also be represented as

ζ(z) =
1

z
+

∑

(m, n)6=(0,0)

{ 1

z − 2mω1 − 2nω3

+
1

2mω1 + 2nω3

+
z

(2mω1 + 2nω3)2

}
. (3.5.3)

ζ(z) is an odd meromorphic function of z over the whole complex plane except at the

simple poles Ωm,n. The residue at each pole is 1.

Write ζ(ω1) = η1 and ζ(ω3) = η3; then

η1ω3 − η3ω1 =
1

2
πi.

ζ(z) is not doubly-periodic; however, it satisfies the following equations:
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ζ(z + 2ω1) = ζ(z) + 2η1, ζ(z + 2ω3) = ζ(z) + 2η3. (3.5.4)

Next we define σ(z) by the equation

d

dz
log σ(z) = ζ(z),

coupled with the condition limz→0 σ(z)/z = 1. σ(z) is an odd entire function with

simple zeroes at Ωm,n. Just like ζ(z), σ(z) satisfies

σ(z + 2ω1) = −σ(z)e2η1(z+ω1), σ(z + 2ω3) = −σ(z)e2η1(z+ω3). (3.5.5)

If we assume that ω1 = ω, ω3 = iω′ and ω, ω′ ∈ R, then by symmetry ℘(z)

is real-valued when <z ∈ {0, ω1} or =z ∈ {0, iω3}. ζ(z) is real-valued on the real

line and is pure imaginary when <z = 0. Let D to be the rectangle with vertices

0, ω, ω + iω′, and iω′. Then ℘(z) sends D to the upper half plane conformally. As

z moves clockwise on the boundary of D both starting and ending at 0, ℘(z) varies

from −∞ to ∞. This implies that ℘(iω′) < ℘(ω + iω′) < ℘(ω).
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