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Abstract

The studies presented herein are on three distinct topics in astrophysics. I first present

an investigation of the possibility of ash ejection during X-ray bursts, then a study

of stellar dynamics at the Galactic center, and finally I examine weak gravitational

lensing by dark matter concentrations.

I. We solve the time-dependent entropy equation that describes the evolution of

the vertical extent of the convective region of a neutron star atmosphere during a Type

I X-ray burst. The convective region is well-mixed with ashes of nuclear burning due

to the short turbulent mixing timescale, and its extent determines the rise time of the

burst light curve. We show that the maximum vertical extent of the convective region

during photospheric radius expansion (PRE) bursts can be sufficiently great that: (1)

some ashes of burning are ejected by the radiation-driven wind during the PRE phase

and, (2) some ashes of burning are exposed at the neutron star surface following the

PRE phase. We calculate the expected column density of ashes in hydrogen-like

states and determine the equivalent widths of the resulting photoionization edges.

We find that the edges should be detectable with current high spectral resolution

X-ray telescopes. A detection would probe the nuclear burning processes of a burst

and might enable a measurement of the gravitational redshift of the neutron star.

II. We discuss physical experiments achievable via the monitoring of stellar dy-

namics near the massive black hole at the Galactic center with a diffraction-limited,

next-generation, extremely large telescope (ELT). We use the Markov Chain Monte

Carlo method to evaluate the constraints that the monitoring of these orbits will place

on the matter content within the dynamical sphere of influence of the black hole. We

compare these future constraints with the constraints obtained with the current data.
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We also describe how the monitoring of stellar proper motions can be used to probe

directly the masses of isolated stellar remnants near the MBH. We derive expressions

for the rate at which perturbations from remnants deflect stellar orbits, and describe

how the remnant masses can be extracted from the monitoring data.

III. We calculate the abundance of dark-matter concentrations that are sufficiently

overdense to produce a detectable weak-gravitational-lensing signal. Most of these

overdensities are virialized halos containing identifiable X-ray and/or optical clusters.

However, a significant fraction are nonvirialized, cluster-mass overdensities still in

the process of gravitational collapse—these should produce significantly weaker or no

X-ray emission. Our predicted abundance of such dark clusters is consistent with

the abundance implied by the detection of apparent dark lenses. Such weak lenses

should help shed light on the process of cluster formation. We also examine the

prospect of using the observed abundance of weak gravitational lenses to constrain

the equation-of-state parameter w = p/ρ of the dark energy.
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Abstract

We solve the time dependent entropy equation that describes the evolution of the vertical extent of

the convective region of a neutron star atmosphere during a Type I X-ray burst. The convective

region is well-mixed with ashes of nuclear burning due to the short turbulent mixing time scale and

its extent determines the rise time of the burst light curve. We show that the maximum vertical

extent of the convective region during photospheric radius expansion (PRE) bursts can be

sufficiently great that: (1) some ashes of burning are ejected by the radiation driven wind during

the PRE phase and, (2) some ashes of burning are exposed at the neutron star surface following

the PRE phase. Depending on the ignition conditions, ashes with mass number in the range

A ∼ 30− 60 are mixed in with the ejected material. If bursts ignite in the ashes of previous bursts,

as recent numerical simulations suggest, even heavier elements are ejected, possibly including some

light p-nuclei in the A = 80 − 100 region whose origin in the solar system is not understood. As

the ejected material cools during the PRE phase some of the ejected heavy-element ashes will cease

to be fully ionized. In addition, those ashes that remain bound to the neutron star will temporarily

reside in the photosphere even after it has settled back down to the neutron star surface. If

sufficiently heavy, some of these photospheric ashes will also cease to be fully ionized. We calculate

the expected column density of ashes in hydrogen-like states and determine the equivalent widths

of the resulting photoionization edges. We find that with current high spectral resolution X-ray

telescopes, which have not yet examined PRE bursts, one should be able to detect the line edges in

both the wind and from the neutron star surface. A detection would probe the nuclear burning

processes of a burst and might enable a measurement of the gravitational redshift of the neutron

star.

1.1 Introduction

Type I X-ray bursts are produced by the unstable nuclear burning of freshly accreted

hydrogen- and/or helium-rich material on the surface of a neutron star (NS) in a

low-mass X-ray binary (for reviews, see Lewin, van Paradijs, & Taam 1995; Bildsten

1998; Strohmayer & Bildsten 2004). The burst energies (1039−1040 erg), durations (∼
10−100 s), and recurrence times (hours to days), depend strongly on the composition

of the accreted matter and on the accretion rate, Ṁ , which can range from 10−11 to

10−8M� yr−1. The burst properties are also sensitive to the composition of the ashes
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of burning from preceding bursts as underscored by recent burst simulations that

implement large nuclear reaction networks for the energy generation (Schatz et al.,

2001; Brown et al., 2002; Woosley et al., 2004).

The sensitivity of the nuclear energy generation rate to temperature and density

concentrates the burning during a burst to a thin layer at the base of the accreted

atmosphere (e.g., Fujimoto, Hanawa, & Miyaji 1981; Fushiki & Lamb 1987). Since the

thermal timescale there is ∼ 1 − 10 s while the dynamical timescale is ∼ 10−6 s, the

temperature gradient near the burning layer is nearly adiabatic resulting in a region

of highly efficient convection. The short turbulent mixing timescale of the convection

ensures that the ashes of burning are well-mixed throughout the convective region.

The vertical extent of the convective region evolves during the burst, as demon-

strated in time-dependent numerical simulations (e.g., Joss 1978; Taam 1980; Ayasli

& Joss 1982; Woosley & Weaver 1984; Woosley et al. 2004). In this paper, we carry

out a thorough survey of the dependence of the convection region’s extent on Ṁ ,

the composition of the accreted material, and the pre-burst thermal state of the at-

mosphere. We also show how the evolution of the convective extent influences the

observed burst rise times.

We demonstrate that for photospheric radius expansion (PRE) bursts, in which

the super-Eddington luminosity drives a radiation-driven wind, the convective region

extends out to sufficiently low pressures that ashes can be ejected by the wind. De-

pending on the burst parameters, as much as ∼ 1% of the accreted mass can be ejected

by the radiative wind (Paczynski & Proszynski, 1986; Joss & Melia, 1987; Nobili, Tur-

olla, & Lapidus, 1994), corresponding roughly to the ratio of nuclear energy release to

gravitational binding energy ∼ Enuc/Egrav ' 2 Mev nucleon−1/200 MeV nucleon−1.

The ejected ashes may be detectable with spectroscopy during the PRE phase and

afterwards, when the photosphere, laced with heavy element ashes, settles back down

to the NS surface.

The sequence of events describing how the convective region evolves during a

burst is as follows. As the base temperature rises and the energy flux increases

during the early stages of a burst, the entropy in the convective region increases.
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Initially, only a negligible amount of thermal energy is lost to radiation diffusing into

the overlying radiative region and underlying crust. Since the timescale for radiative

diffusion across the convective-radiative interface is longer than the burning timescale

during these early stages, the convective region extends vertically outward to lower

pressures (Fujimoto, Hanawa, & Miyaji, 1981). Eventually, the burning rate becomes

sufficiently slow that the energy flux from the base is carried most efficiently by

radiation rather than by convection. At that point the convective region recedes back

to higher pressures.

Regardless of whether the convective region is expanding outwards or receding

downwards, its extent at a given time is effectively set by the radial location in the

atmosphere where the constant entropy of the convective region equals the radially

increasing entropy of the overlying radiative region. Based on this argument, Joss

(1977) showed that the convective region never acquires a high enough entropy to

reach the photosphere located at column depth y ∼ 1 g cm−2. Nonetheless, the con-

vective region can reach pressures . 1% of that at the base of the accreted layer

(Taam, 1981; Ayasli & Joss, 1982; Hanawa & Sugimoto, 1982; Hanawa & Fujimoto,

1984). Woosley et al. (2004) showed that in a pure He burst, the peak flux exceeded

the Eddington limit and the convective region extended beyond their numerical sur-

face (i.e., the resolution limit of their grid located at a pressure ∼ 0.3% that at the

base).

In this paper, we solve the time-dependent entropy equation that describes the

evolution of the thermal structure of the atmosphere and the growth of the convective

region. We calculate the minimum pressure reached by the convective region yc,min

for a range of burst parameters. We show that the maximum extent of the convective

region is sensitive to the burst ignition conditions and that, in general, the larger

the burst peak flux and the smaller the entropy of the pre-burst atmosphere, the

greater the convective region’s maximum extent. The maximum convective extent

also increases with decreasing Ṁ . We find that in systems where the accreted material

is helium-rich, such as 4U 1820−30 (see Cumming 2003 and references therein), or

in systems accreting solar abundances at Ṁ ∼ 10−10M� yr−1, yc,min � ywind during
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PRE bursts, where ywind is the column depth above which mass is ejected by the

radiation-driven wind. As a result, some of the nuclear burning ashes are ejected by

the wind while some remain bound to the NS and are exposed at the photosphere

after the wind turns off.

In § 1.2 we describe our analytic prescription for calculating the evolution of the

thermal structure of the radiative and convective regions during fuel accumulation

and the X-ray burst. We examine how the maximum extent of the convective region

depends on the burst ignition conditions and explore those conditions most conducive

to ash ejection and exposure. Since the burst rise time is effectively set by the thermal

diffusion time at the maximum convective extent, we also evaluate the dependence

of the burst rise time on burst parameters such as accretion rate and accreting com-

position. In § 1.3 we describe the composition of the ashes and the observational

consequences of heavy-element ash ejection and surface exposure. Depending on the

ignition conditions, nuclei as heavy as A ∼ 60 are ejected by the wind. If bursts

ignite in the ashes of previous bursts, as Woosley et al. (2004) suggest, even heavier

elements are ejected. These may include some light p-nuclei whose origins are not

understood, as they are systematically underproduced in all standard p-process sce-

narios. We show that a sufficient amount of these nuclei can be ejected during PRE

bursts to account for at least 1 − 10% of the observed solar system abundances. We

also calculate the column density of ashes in hydrogen-like states in both the wind

and the surface photosphere and discuss the prospects for detecting absorption line

features of the ashes from high spectral resolution observations of PRE bursts. Such

line features offer a direct probe of the nuclear burning and may help constrain the

NS equation of state. In § 1.4 we summarize our results, argue that ash ejection may

be responsible for the unusual Ne/O ratios observed in four candidate ultracompact

binaries, and mention the possibility of ash ejection during superbursts.
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1.2 Evolution of the atmosphere during a burst

In this section we consider the evolution of the atmosphere’s thermal structure during

a burst. We start in § 1.2.1 with a general description of the atmosphere’s structure

and explain the boundary conditions at the convective-radiative interface. The evo-

lution of the convective extent is described in § 1.2.2 and in § 1.2.3 we illustrate how

our prescription for determining this evolution yields an estimate of the light curve

during burst rise. In § 1.2.4 we explore the dependence of the convective extent and

the rise times on burst parameters such as accretion rate, composition of accreted

material, and column depth of ignition.

1.2.1 Thermal structure of the atmosphere

The NS atmosphere maintains hydrostatic equilibrium throughout the burst so that

the pressure varies with height as dP/dr = −ρg where ρ is the density and g is

the surface gravity. We assume an M = 1.4M� NS with radius R = 10 km giving

g = (1 + z)GM/R2 = 2.43 × 1014 cm s−2 where the gravitational redshift z = (1 −
2GM/Rc2)−1/2−1 = 0.31. Since the atmosphere is thin compared with the NS radius,

g is effectively constant throughout the accreted layer. Hydrostatic balance therefore

yields P = gy, where the column depth y is defined by dy = −ρdr. Parameterizing

the spatial coordinate by y, we now calculate the evolution of the thermal structure

of the atmosphere before and during a burst. We are interested in determining the

extent of the convective region over a broad range of burst parameters and thus

consider only one-dimensional models in our calculations. We do not account for the

affect of a spreading burning front during burst rise nor the influence of rotation on

the convective structure, though these effects may be important (see Spitkovsky et

al. 2002; Zingale et al. 2003).

Just before the thermally unstable helium ignition the accumulating atmosphere

is entirely radiative and its thermal profile is described by the heat equation

dT

dy
=

3κF

4acT 3
, (1.1)
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where F is the outward heat flux and the opacity κ has contributions from electron

scattering and free-free absorption and is calculated using the approximation given

by Schatz et al. (1999). The pre-burst flux F = FH + Fcrust, where FH is the flux

from stable hydrogen burning via the hot CNO cycle and Fcrust is the flux from heat

released by electron captures and pycnonuclear reactions deep in the crust (Brown

& Bildsten, 1998; Brown, 2000, 2004). Following the burst ignition calculations of

Cumming (2003, hereafter C03), FH = εH min(yH , yb) where yH is the column depth

of the layer that is burning hydrogen, yb ' 3×108 g cm−2 is the column depth at the

base, and εH = 5.8×1013 ergs g−1 s−1(Z/0.01) is the hot CNO energy production rate

for a CNO mass fraction Z. For a given local accretion rate ṁ (in units of g cm−2 s−1)

and accreted hydrogen mass fraction X0, the hydrogen burning depth is yH = 6.8 ×
108 g cm−2(ṁ/0.1ṁEdd)(0.01/Z)(X0/0.71). Here ṁEdd = 2mpc/(1 +XH)RσTh is the

local Eddington accretion rate where mp is the proton mass, c the speed of light,

and σTh the Thomson scattering cross section. For ṁ < ṁcrit ' 0.04ṁEdd there is

enough time to burn all the hydrogen before the helium burning becomes unstable,

and the burst ignites in a pure helium layer. As in C03, we assume Fcrust = ṁQcrust =

1021 ergs cm−2 s−1ṁ4Q17 where ṁ4 = 104 g cm−2 s−1 andQcrust = Q17×1017 ergs g−1

is the radiative energy emerging from the crust per unit mass.

The thermal evolution of the NS atmosphere during a burst is described by the

entropy equation

T
ds

dt
=
dF

dy
+ ε, (1.2)

where ε is the energy release rate from nuclear burning. During the burst the entropy

grows with time due to nuclear burning and we neglect the advective accretion flow.

Therefore, Tds = CpdT where Cp is the specific heat at constant pressure. Integrating

equation (1.2) over column depth then gives

∫ y2

y1

Cp
dT

dt
dy = F (y2) − F (y1) +

∫ y2

y1

ε dy. (1.3)

We assume the atmosphere is composed of two regions: a completely convective region

between yc < y < yb, and a completely radiative region for y < yc. During a burst yb
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is constant while yc evolves from an initial value yc = yb to a minimal value yc = yc,min

and finally back to yc = yb. Demarcating the atmosphere in this way is reasonable

given that the convective eddies are highly subsonic over most of the convective zone,

i.e., near the base vconv ' (F/ρ)1/3 ∼ 107 cm s−1 � cs ' (gyb/ρ)1/2 ∼ 2×108 cm s−1.

Although the entropy in the convective region grows with time, at a given instant it

is nearly spatially constant. This, in addition to the subsonic motion of the convective

eddies, suggests that the temperature in the convective region very nearly follows

an adiabat so that (d lnT/d ln y)conv = (d lnT/d ln y)ad ≡ n(y), i.e., T (yc < y <

yb) = Tb(y/yb)
n(y), where the adiabatic index n(y) varies with column depth. For the

equation of state we use the interpolation formulae of Paczynski (1983) to account for

the partially degenerate electrons. Using his notation, the specific heat and adiabatic

index are given by

Cp =
1

ρT

[

3

2
Pi + 12Pr +

P 2
end

(f − 1)Pe
+
Pχ2

T

χρ

]

, (1.4)

n =
P

CpρT

χT

χρ

, (1.5)

where Pi, Pr, and Pe = (P 2
end + P 2

ed)1/2 are the pressure due to ions, radiation, and

electrons, respectively, Pend and Ped are an approximation to the degenerate and non-

degenerate components of the electron pressure, P = Pi +Pe +Pr, f = d lnPed/d ln ρ,

and

χT ≡
(

∂ lnP

∂ lnT

)

ρ

=
1

P

[

Pi + 4Pr +
P 2

end

Pe

]

, (1.6)

χρ ≡
(

∂ lnP

∂ ln ρ

)

T

=
1

P

[

Pi +
P 2

end + fP 2
ed

Pe

]

. (1.7)

At burst onset the pressure is nearly that of an ideal gas and n ' 2/5 while at late

times radiation pressure contributes significantly, which in the limit P = Pr gives

n = 1/4.

The thermal profile in the radiative region satisfies equation (1.1). During the

early stages of a burst the thermal time at the base of the radiative region is much
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longer than the growth time of the convective region. The flux in the radiative region

during this time is therefore the pre-burst flux (i.e., FH + Fcrust). Eventually, the

convective region reaches sufficiently low pressures that the thermal time becomes

comparable to the growth time and the flux through the radiative region begins to

rise. Since the radiative region is composed primarily of freshly accreted hydrogen

and/or helium, the main opacity is Thomson scattering κ ' κes = σTh(1 + X)/2mp.

The opacity varies only slightly with column depth so that over much of the radiative

region d lnT/d ln y ' 1/4. For mixed hydrogen/helium accretion at ṁ < ṁcrit, a pure

helium layer develops over the region yH < y < yb. In this region FH = 0 and since

Fcrust is small at low ṁ, the pre-burst profile there is nearly isothermal.

We define the column depth of the convective-radiative interface yc as the location

where the density of the radiative solution just exceeds that of the convective solution.

For models accreting hydrogen, there is a large compositional contrast between the

helium-rich matter that is burning and the outer hydrogen-rich material. This inhibits

the outward progress of the convective zone as the burning material must get even

hotter to become buoyant in the overlying hydrogen-rich envelope. Since the particle

diffusion timescale is much longer than the growth time of the convective zone tgr ≡
dt/d lnTb, we approximate the composition gradient as a discontinuous step function.

For this reason, we also assume there is not adequate time for semi-convection to

develop. As we will show, the steeper composition gradient in systems accreting

hydrogen-rich material results in a significant suppression of the convective extent

as compared with those systems accreting pure helium. This is true even when the

former accretes at ṁ < ṁcrit and thus also burns in a pure helium environment (see

also Cumming & Bildsten 2000).

1.2.2 Temporal evolution of the convective extent

The evolution of the convective extent yc depends on the rate at which the base

temperature rises dTb/dt and the rate at which the thermal energy of the overlying

radiative region increases. The rate of temperature change in the convective region is
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dT/dt = (y/yb)
n [dTb/dt+ Tb ln(y/yb)dn/dt]. The second term is negligible compared

with the first term so that by equation (1.3),

dTb

dt
=

∫

yb

yc

ε dy + FH + Fcrust − Floss(yc)
∫ yb

yc

Cp(y/yb)n(y) dy
, (1.8)

where Floss(yc) is the radiative flux escaping from the convective region into the over-

lying radiative region. Physically, the rate at which Tb changes is determined by the

competition between the net energy input into the convective region (i.e., the energy

generated by nuclear burning and crustal heating minus the energy lost to radiation)

and the energy expended in heating up the growing convective region.

We determine dXi/dt = Ri(ρ, Tb, X1, . . . , XN), the rate at which the mass fraction

Xi of species i changes, assuming XH = X0(1 − y/yH) for y < yH and XH = 0 for

y > yH . We average over the convective region according to 〈Xi〉 =
∫

dyXi(y)/(yb−yc)

for each species i. For most models, the nuclear energy generation rate ε is determined

using an α-capture reaction network with rates Ri given by the NACRE group. For

models HeA1full and HHeB1full (see Table 1.1) we used an updated reaction network

that includes all proton-rich nuclei from hydrogen to xenon. The α-capture reaction

network includes a multiplicative factor of 1.9 in the triple alpha energy production

rate to account for two proton captures on 12C when hydrogen is present (CB00).

When we include the full network and not just the α-capture reactions we find

that protons are produced via (α, p) branches off the α-chain, so that proton captures

occur even when burning initiates in a pure helium layer (i.e., those systems accreting

mixed hydrogen and helium at ṁ . 0.04ṁEdd or systems accreting pure helium). The

dominant proton source is the reaction 24Mg(α, p)27Al(α, p) though others contribute

somewhat as well. The proton abundances achieved by these reactions are high

enough to allow the reaction 12C(p, γ)13N(α, p)16O to dominate over the 12C(α, γ)16O

reaction. The latter reaction acts as a bottleneck in the α-chain, so in bypassing

it the energy generation rate increases and the convective zone reaches even lower

pressures. Furthermore, some protons are captured by heavier nuclei, which together
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with the (α, p) branches leads to a broadening of the abundance pattern.

We use mixing length theory to estimate Floss(yc). According to mixing length

theory the fraction of the total flux transported by convection at column depth y is

(Hansen & Kawaler, 1994),

Fconv/F =
∇rad −∇ad

∇rad

(

1 − 1

Nu

)

, (1.9)

where ∇ad ≡ n(y), ∇rad = 3κFy/4acT 4, and Nu is the Nusselt number describing the

efficiency of convection. During the burst, convection is very efficient over most of the

convective region. Only when yc ' yc,min does convection become inefficient near the

top of the convective region, though it always remains subsonic (vconv . cs). Because

mixing length theory only provides an order of magnitude estimate of Floss(yc), we

introduce a scaling prefactor λ to parameterize the uncertainty in its exact value.

We thus have Floss(yc) = F − Fconv(yc) ≈ λF∇ad/∇rad = λ4acT 4
c ∇ad/3κyc. Unless

otherwise stated, we assume λ = 1. As we show below, the maximum extent of the

convective region is sensitive to the value of λ.

The rate of temperature change at the convective-radiative interface dTc/dt de-

pends on the growth time of the convective region tgr = dt/d lnTb and the thermal

timescale at the interface tth = CpTcyc/Floss(yc) (see Hanawa & Sugimoto 1982). At

early times, following the onset of unstable helium burning, the interface is located at

large column depths and tth � tgr. Thus, the radiative region cannot thermally ad-

just to the growing convective region and the thermal profile in the radiative region is

unchanged from the pre-ignition profile. The initial entropy of the atmosphere, which

is set by Finitial = FH + Fcrust, is therefore important in determining the evolution of

the convective region.1

Eventually the convective region reaches a low enough column depth that tth = tgr.

1When the density and temperature first get high enough for helium to ignite the burning
timescale may be longer than or comparable to the thermal timescale. The flux from this early
burning may change the pre-burst profile of the radiative region slightly, though eventually the
burning becomes non-linear and the burning time becomes much shorter than the thermal time. To
examine how this might affect the growth of the convective region we computed yc(t) assuming an
artificially high pre-burst flux (e.g., 5×Finitial). We find that this effect may decrease the maximum
extent of the convective region by as much as a factor of 3.
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Table 1.1. Burst ignition models

Model ṁ yb,8 X0 ZCNO Qcrust network

HeA1full 0.1 3.0 0.0 0.01 0.1 full
HeA1 0.1 3.0 0.0 0.01 0.1 α
HeA2 0.1 5.0 0.0 0.01 0.1 α
HeA3 0.1 3.0 0.0 0.01 0.2 α
HeC1 0.01 3.0 0.0 0.01 0.1 α
HHeA1 0.1 3.0 0.71 0.01 0.1 α
HHeB1full 0.05 3.0 0.71 0.01 0.1 full
HHeC1 0.01 3.0 0.71 0.01 0.1 α
HHeC2 0.01 3.0 0.1 0.01 0.1 α
HHeC3 0.01 3.0 0.1 0.0001 0.1 α

.Note.—Col. (1): Model. Col. (2): Local accretion rate
in units of ṁEdd. Col. (3): Ignition column depth yb,8 =
yb/108 g cm−2. Col. (4): Accreted hydrogen fraction X0.
Col. (5): CNO mass fraction ZCNO. Col. (6): Qcrust in units
of MeV nucleon−1. Col. (7): Reaction network used.

The radiative flux escaping the convective region Floss(yc) can then finally diffuse

through the entire radiative region without being overtaken by the growing convective

region. Some of this flux will heat up the radiative region, while the remainder escapes

out through the photosphere. The subsequent evolution of the convective-radiative

interface is determined by the column depth at which tth = tgr, i.e., the radiative

region continuously adjusts to Floss(yc), which varies due to changes in the burning

rate.

The evolution of tth and tgr during a burst is illustrated in Figure 1.1 for accretion

of pure helium at a rate ṁ/ṁEdd = 0.1 and solar abundance accretion at a rate

ṁ/ṁEdd = 0.01 and 0.1 (Tb is used to mark the passage of time; see Table 1.1 for a

summary of the model parameters). The pure helium model is similar to the ignition

models found by C03 in fits to the burst properties of 4U 1820-30. For hydrogen-rich

accreted material, the lower ṁ the shorter the growth time at a given Tb. This is

because the lower ṁ the larger the mass fraction of helium at the burning layer and
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Figure 1.1 Thermal timescale at the convective-radiative interface tth(yc) (solid line)
and the growth timescale of the convective region tgr ≡ dt/d lnTb (dashed line) as a
function of the base temperature Tb for nearly pure helium accretion with ṁ/ṁEdd =
0.1 (model HeA1; see Table 1.1) and solar abundance accretion (X0 = 0.71) with
ṁ/ṁEdd = 0.1 and 0.01 (models HHeA1 and HHeC1). All three models assume
yb = 3 × 108 g cm−2, ZCNO = 0.01, and Qcrust = 0.1 MeV nucleon−1. The maximum
extent of the convective region occurs approximately when the equality tth = tgr is
first satisfied.

therefore the higher the triple alpha energy generation rate ε3α ∝ X3
He.

In Figure 1.2 we show the temperature profile at different stages of a burst for the

same ignition models. At early times tth > tgr and the convective region moves out-

ward while the radiative region remains unchanged from its initial profile. When the

top of the convective region reaches a low enough pressure that tth = tgr, the radiative

region heats up. Eventually the entropy in the radiative region gets sufficiently high

and the burning rate sufficiently slow that the convective region recedes. The slope

of the convective adiabat changes during the burst, with radiation pressure becoming

increasingly important (n → 0.25) as Tb rises. Ultimately, the entire atmosphere

becomes radiative.

The temperature jump at the convective-radiative interface is less drastic for the
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Figure 1.2 Evolution of the temperature profile for the pure helium accretion model
HeA1 (left panel) and the mixed hydrogen/helium accretion model HHeC1 (right
panel) at nine different times corresponding to Tb/109 K = T0, 0.3, 0.5, 0.7, 0.9, 1.1,
1.3, 1.5, and 1.7, where T0 is the base temperature set by the radiative solution with
F = FH + Fcrust. For both models we assume ZCNO = 0.01, yb = 3 × 108 g cm−2,
and Qcrust = 0.1 MeV nucleon−1. The convective radiative interface is located at the
temperature (i.e., composition) discontinuity. The vertical dashed line denotes the
column depth where y = 0.01yb, corresponding approximately to the column depth
ywind below which material is ejected by the radiative wind of a PRE burst. The slope
of the convective region becomes more radiative-like (n → 0.25) as the temperature
rises and the ratio of gas pressure to radiation pressure decreases.

pure helium model compared to the mixed hydrogen/helium model because the com-

positional contrast between the ashes and unburnt material is smaller in the former

model. Thus, although both models have a pure helium burning layer, the ashes

of the hydrogen/helium model must get hotter to become buoyant in the overlying

hydrogen-rich matter and therefore they do not reach pressures as low as those of

the pure helium model. As we show below, both models achieve a super-Eddington

luminosity that drives a radiative wind capable of ejecting material located at column

depths y < ywind ' 0.01yb. For the pure helium model the convective zone reaches

pressures yc,min � ywind and one expects ashes of burning to be amongst the wind

ejecta. This condition is only marginally satisfied for the mixed hydrogen/helium
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model, though as we show in § 1.2.4 these results are sensitive to the value of λ.

1.2.3 Light curve during burst rise and radiative winds

We determine the rising portion of the burst light curve by calculating the radiative

flux loss at the photosphere Fph as Tb increases. To obtain Fph we integrate equation

(1.1) inwards (assuming the radiative zero solution at the outer boundary), varying

the flux at the top until the radiative solution intersects the convective solution at

the column depth yc. Initially, tth > tgr and Fph = 0. When tth first equals tgr the

flux Fph begins to rise, and increases thereafter as the radiative region heats up due

to the rise in Floss(yc). In Figure 1.3 we show the rising portion of the light curve

for the same models as Figure 1.1 and also for the pure helium model using the full

reaction network. We plot the luminosity L = 4πR2Fph as a function of t− t0, where

t0 corresponds to the time when the equality tth = tgr is first satisfied. The rise

time is effectively set by tth(yc = yc,min). Thus, low ṁ bursts have shorter rise times

because the convective region extends to lower pressures where the thermal timescale

is shorter. As the differences between the models HeA1 and HeA1full illustrate, the

shape and rise time of the light curves are sensitive to the energy generation rate.

Depending on the ignition conditions, the base temperature can get sufficiently high

that the flux becomes super-Eddington. We find that a peak surface luminosity

L > LEdd where LEdd = 4πGMc(1 + z)/κ is attained when ṁ . 0.1ṁEdd for accreted

material with solar abundance (ṁ can be higher if the material is helium-rich). Such

systems are likely to develop a radiative wind. Eventually, the flux loss exceeds the

flux from nuclear burning and the atmosphere begins to cool, though we do not

calculate this portion of the light curve.

The radiative wind generated by the super-Eddington luminosity of a PRE burst

will eject some ashes of burning if: (1) the fraction of the accreted mass ejected during

the wind satisfies ∆Mw/Macc = ywind/yb > yc,min/yb, and (2) the wind is generated

subsequent to the convective region reaching yc < ywind. As Figure 1.3 illustrates,

yc = yc,min well before the burst becomes super-Eddington and therefore condition
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Figure 1.3 Rising portion of the burst light curve for the same three models shown in
Figure 1.1 (solid lines). The dash-dot line is the light curve for the HeA1full model
calculated using the full reaction network. The luminosity is plotted as a function of
the offset time t− t0 where t0 corresponds to the time when the radiative region first
begins to evolve away from its pre-burst state (i.e., when the equality tth = tgr is first
satisfied). The dotted lines denote the constant accretion luminosity for each model
and the dashed lines denote the Eddington luminosity at the photosphere.

(2) is satisfied if condition (1) holds. Since the gravitational binding energy at the

surface is ∼ 100 times greater than the helium burning energy release per unit mass,

at most ∼ 1% of the atmosphere is ejected by the wind. To obtain an estimate of

∆Mw/Macc, suppose the surface luminosity L is super-Eddington so that matter is

lifted off the neutron star surface with a force f = (L − LEdd)/c. Since f ≈ vescṀw,

where vesc = (2GM/R)1/2 is the escape velocity at the surface and Ṁw is the mass-loss

rate due to the wind,

Ṁw ' L− LEdd

vescc
= 8.6 × 1017 g s−1

(

0.2 cm2 g−1

κ

)

×
(

L

LEdd
− 1

)

(1.10)

(Wallace, Woosley, & Weaver 1982; Paczynski & Proszynski 1986, see also Yahel,
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Brinkmann, & Braun 1984; Joss & Melia 1987; Nobili, Turolla, & Lapidus 1994).

The burst duration ∆t ∼ MaccQnuc/L, where Qnuc = 1.6 + 4.0〈XH〉 MeV nucleon−1

is the nuclear energy release and 〈XH〉 is the mass-weighted mean XH in the burning

layer (C03), so that for a pure helium burst ∆Mw/Macc ' Ṁw∆t/Macc ∼ (1 −
LEdd/L)Qnuc/vescc = 0.003(1 − LEdd/L).

1.2.4 Dependence of the convective extent on burst param-

eters

In Figure 1.4 we show the time variation of the convective extent yc during a burst,

with the progression marked by the temperature at the base of the burning layer

Tb rather than by time. We consider burst ignition models assuming both mixed

hydrogen/helium accretion and nearly pure helium accretion (see Table 1.1); the

latter models are similar to those obtained by CO3 in fits to the burst properties

of 4U 1820-30. The burning layer is pure helium in all models except in HHeA1,

HHeB1full, and HHeC3, which have XH ' 0.4, 0.1, and 0.1, respectively. We show

results for models with α-only and full reaction networks and consider a range of

accretion rate, ignition column depth, metallicity, and crustal heat flux.

The evolution of yc is sensitive to the assumed ignition conditions and to the energy

production due to non-α-capture reactions (see § 1.2.2). For the models considered,

the fraction of accreted mass lying above the convective region at its maximum extent

is in the range 10−4 . ∆M/Macc = yc,min/yb . 10−2, where Macc ' 4πR2yb ≈
4×1021 g (yb/3×108 g cm−2). Thus, the possibility exists that yc,min/yb < ∆Mw/Macc.

Ignition conditions that maximize the peak flux of a burst and minimize the entropy

of the atmosphere during the fuel accumulation stage yield bursts with the greatest

convective extents. The larger the peak flux, the faster Tb rises, and hence the shorter

the growth timescale tgr at a given Tb. The convective region must therefore reach out

to lower column depths before tth(yc) = tgr. As illustrated in Figure 1.5, such ignition

conditions are best satisfied at low ṁ. The reason is twofold. First, for ṁ < ṁcrit, the

pure helium layer that develops at the base of the atmosphere yields a peak luminosity
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Figure 1.4 Evolution of the top of the convective zone yc as a function of base tem-
perature Tb for the five burst models with pure helium accreted material (left panel)
and the five models with mixed hydrogen-helium accreted material (right panel) as
described in Table 1.1. The full reaction network models are shown as dash-dot lines.
The horizontal dashed line denotes the column depth where y = 0.01yb, corresponding
approximately to the column depth ywind.

considerably greater than that of bursts with mixed hydrogen/helium burning layers.

Second, because FH and Fcrust are both ∝ ṁ, the lower ṁ the smaller the pre-burst

flux and hence the lower the initial atmospheric entropy.

Since the rise time is determined by the thermal time at the convective-radiative

interface, bursts with a greater convective extent and thus lower ṁ have shorter rise

times, as shown in Figure 1.6. For accretion of helium-rich material, the rise times are

nearly independent of accretion rate (the weak sensitivity is due to the dependence

of Fcrust on ṁ). By contrast, for accretion of hydrogen-rich material the rise times

increase by a factor of ∼ 100 between ṁ/ṁEdd = 0.02 and 0.2. In their multizone

numerical simulations of X-ray bursts, Woosley et al. (2004) consider models that

accrete mixed hydrogen/helium with solar abundance at ṁ/ṁEdd = 0.02 and 0.1.

They follow several sequences of bursts for each model and obtain rise times in the

range 0.51×10−3−32.1×10−3 s for ṁ/ṁEdd = 0.02 and 0.51−0.66 s for ṁ/ṁEdd = 0.1,
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Figure 1.5 Maximum extent of the convective region yc,min as a function of ṁ in
units of the Eddington rate. Results are shown for mixed hydrogen/helium accretion
with Floss pre-factor λ = 0.1 and 1 and pure helium accretion with λ = 1 assuming
yb = 3 × 108 g cm−2, X0 = 0.71, ZCNO = 0.01, Qcrust = 0.1 MeV nucleon−1. The
horizontal dashed line denotes the column depth where y = 0.01yb, corresponding
approximately to the column depth ywind.

both in very good agreement with our estimates. Our rise times are also in broad

agreement with the relevant models of earlier numerical simulations (e.g., Taam 1981;

Ayasli & Joss 1982; Wallace, Woosley, & Weaver 1982).

1.3 Detecting the nuclear burning ashes

In § 1.2 we showed that the convective zone reaches sufficiently low pressures during

PRE bursts that yc,min � ywind over a broad range of burst parameters. Thus, ashes

of nuclear burning can be ejected by the radiative wind of PRE bursts. When the

photosphere settles back down to the NS surface following the PRE phase, it too will

be laced with heavy-element ashes. In this section we describe the composition of the

ejected and exposed ashes (§ 1.3.1) and address whether these ashes can be detected.

In § 1.3.2 we discuss the possibility that some of the p-nuclei observed in the solar
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Figure 1.6 Rise time dt/d lnL of the burst light curve as a function of ṁ in units of the
Eddington rate. Two sets of rise times are computed for the mixed hydrogen/helium
and pure helium models of Figure 1.5 with λ = 1: τdetect (solid lines) is the rise time
when the luminosity first exceeds the accretion luminosity, corresponding to when an
observer can first detect the burst; τ1/2peak (dash-dot lines) is the rise time when the
luminosity is half its peak value.

system owe their origin to ash ejection during PRE bursts. In §§ 1.3.3 and 1.3.4 we

determine the expected strength of spectral line features from ashes ejected in the

wind and those exposed at the NS surface.

1.3.1 Composition of ejected and exposed ashes

Just prior to the onset of the wind, the convective zone has receded to the base

and the atmosphere has a stratified compositional structure. Throughout the region

y < yc,min, the composition is that of the unprocessed accreted material. As we

show in Figure 1.7, for y > yc,min, the composition is determined by the burning

stage at the moment yc(t) = y during the convective zone’s retreat to the base.

Results are shown for model HeA1, which accounts for only α-capture reactions in

the nuclear network. The composition at the base of the wind is approximately that
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Figure 1.7 Ash composition as a function of column depth after the convective zone
has completely receded (i.e., yc = yb). Results are shown for the α-only reaction
network model HeA1. The helium mass fraction lies above the displayed region. For
y < yc,min ' 8 × 104 g cm−2, the composition is that of the unprocessed accreted
material. The vertical dashed line denotes y = 0.01yb ' ywind.

at y = 0.01yb = 3 × 106 g cm−2.

In Figure 1.8 we show the ash composition at y/yb = 0.01 ' ∆Mw/Macc for

models HeA1, HeA1full, and HHeB1full. While helium comprises the largest fraction

of the mass in all three models, the models’ overall abundance distributions differ

significantly from one another. Compared to the HeA1 model, the HeA1full model

has a much higher mass fraction of nuclei with A ∼ 30, with significant peaks at

28Si and 32S. The difference is a result of the accelerated nuclear processing due to

the bypass of the 12C(α,γ)16O reaction via the 12C(p,γ)13N(α,p)16O reaction (see

§ 1.2.2). In model HHeB1full solar abundance material is accreted at a sufficiently

high rate (ṁ = 0.05ṁEdd > ṁcrit) that when helium ignites XH ' 0.1 at the base.

The resulting proton captures yield a substantial amount of nuclei with A ∼ 60 by

the time yc = 0.01yb.
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Figure 1.8 Composition of material processed during a burst at the time the convec-
tive zone is located at yc = 0.01yb ' ywind and is receding to higher pressures. Results
are shown for the pure helium accretion model HeA1, which accounts for only the
α-capture processes, the pure helium accretion model HeA1full and the mixed hy-
drogen/helium accretion model HHeB1full, which account for both the α-capture
processes and proton-capture processes (see § 1.2.2).

1.3.2 Ejection of p-nuclei

In their numerical simulations of X-ray bursts, Woosley et al. (2004) find that bursts

ignite in the ashes of previous ones. These endpoint ashes are heavier than those

processed during the ongoing burst at the time yc/yb = 0.01 and are also likely mixed

throughout the convective region (though we do not show these ashes in Figures 1.7

and 1.8). Using a reaction network that extends up to Xe, Schatz et al. (2001) find

that for ṁ = 0.3ṁEdd and accreted material with solar abundance (i.e., burning in a

hydrogen-rich environment), the endpoint of the rp process burning is a closed SnSbTe

cycle that naturally limits rp process nucleosynthesis to light p nuclei. They find

overproduction factors (relative to solar abundance) of ∼ 108 for the p nuclei 92Mo and

96Ru and ∼ 109 for the p nucleus 98Ru (see also Schatz et al. 1998). Standard p-process

scenarios are unable to adequately explain the observed solar system abundances of
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these p-nuclei (for a review, see Wallerstein et al. 1997).

Whether ash ejection during PRE bursts can account for the observed solar sys-

tem abundances depends on the amount of p-process material ejected into the inter-

stellar medium by a PRE burst and the event rate of such bursts over the Galaxy

lifetime. In order to produce large amounts of p-nuclei, the burning layer must be

hydrogen-rich (ṁ ∼ 0.3ṁEdd) while PRE bursts require helium-rich burning layers

and thus ṁ . 0.05ṁEdd. However, this does not preclude PRE bursts from eject-

ing the nuclei, as accretion rates in bursting low-mass X-ray binaries are observed

to vary by factors of a few, with individual systems undergoing transitions from

hydrogen-rich to helium-rich burning over year timescales (as evidenced by varia-

tions in burst duration and peak fluxes; see e.g., Cornelisse et al. 2003). Thus, a

system undergoing a PRE burst may ignite in ashes rich with p-nuclei. To deter-

mine the fractional amount η of ashes that must be ejected in order to account for

the observed solar system abundance of p-nuclei, assume a p-nuclei overproduction

factor ξ = 109 and a galaxy disk mass Mdisk = 4 × 1010 (Klypin et al., 2002). Cur-

rently, there are ∼ 10 active X-ray burst systems at Ṁ ∼ 10−9M� yr−1 and ∼ 100

at Ṁ ∼ 10−10M� yr−1 (Lewin, van Paradijs, & Taam, 1995). If we assume this

is representative of the population count over the galaxy lifetime, then the total

amount of mass accreted by all PRE burst systems over 1010 yr is Macc,tot ∼ 100M�.

Then η = 0.4(Mdisk/4 × 1010M�)(ξ/109)−1(Macc,tot/100M�)−1. Thus, η is a factor

of ∼ 10 − 100 too high given that only ∼ 1% of all accreted matter is ejected. The

discrepancy can be overcome if, for example, the Galactic distribution of p-nuclei is

inhomogeneous (i.e., the solar abundance is higher than the Galactic mean by a factor

of ∼ 10−100) or the population of bursting systems was larger in the past. Assessing

the plausibility of either of these scenarios is beyond the scope of this paper.

1.3.3 Spectral edges in wind outflow

During the PRE phase, an optically thick, transonic, radiation-driven wind forms.

The sonic point of the wind lies 10 − 100 km above the NS surface and the photo-
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Figure 1.9 Equivalent width of the photoionization edge due to ashes ejected in a
wind as a function of the mass outflow rate for the PRE burst models HeA1full (solid
lines) and HHeB1full (dashed lines).

sphere, defined as the location where the effective optical depth τ∗ ≡ κρr is near

unity, is a factor of ∼ 10 farther out (Paczynski & Proszynski, 1986; Joss & Melia,

1987; Nobili, Turolla, & Lapidus, 1994). Once matter reaches the sonic point it

is essentially unbound from the NS, and is ejected to infinity. The ejected matter

cools during the PRE phase allowing some heavy element ashes to bind with one

or more electrons. Given that the luminosity always remains near Eddington at

the photosphere and rph ∼ 100 km, the effective temperature at the photosphere is

Teff ∼ 106 − 107 K. The recombinations are fast compared to the flow timescale (see

below), and the fraction of heavy ions in a hydrogen-like state is of order unity by

Saha equilibrium. The total column density of hydrogen-like ions above the pho-

tosphere is thus Nwind ∼ f(A,Z)Ne ' 1020 cm−2(f/10−4) where Ne ≈ σ−1
Th is the

electron column density and f(A,Z) is the abundance by number of element Z with

mass number A. This corresponds to an optical depth to a photoionization edge

due to hydrogen-like ions of τ ≈ Nwindσbf ∼ 1, where the bound-free cross section
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σbf(E) = 6.32 × 10−18 cm2(Ee/E)3Z−2 and Ee ' 13.6Z2 eV is the edge energy (Ry-

bicki & Lightman, 1979). It is worth noting that the effective temperature is low

enough at the photosphere that even at solar abundances τ ' 1. That the ejected

ashes have abundances much larger than solar only improves the likelihood of detec-

tion.

We now calculate Nwind more exactly and determine the resulting equivalent width

(EW) of the photoionization edge. We leave the calculation of the Hα EW to future

work. The column density of hydrogen-like ions is given by

Nwind =
f(A,Z)

mp

∫ ∞

rph

ζ [T (r), ρ(r)] ρ(r) dr (1.11)

where ζ is the fraction of that species in the hydrogen-like state at a given temperature

and density from Saha equilibrium. We use the results of Paczynski & Proszynski

(1986), who calculate general relativistic models of radiation-driven winds from NSs,

to obtain values for rph, T (rph), and ρ(rph) as a function of the mass outflow rate

Ṁw. For example, at Ṁw = 1018 g s−1, rph = 3 × 107 cm, Tph = 5 × 106 K, and

ρph = 5×10−7 g cm−3. Over the relevant range of Ṁw, the wind is quasi-static in that

the flow timescale tflow ∼ r/v ∼ 0.1 s is shorter than the characteristic timescale of the

wind tw = ∆Mw/Ṁw ∼ 1 s, where v(r) is the fluid velocity at r (see e.g., Joss & Melia

1987). Thus, the equation of continuity gives Ṁw ' 4πr2ρv. Paczynski & Proszynski

(1986) show that the velocity is nearly constant beyond the photosphere, i.e., v(r >

rph) ' vph ∼ 108 cm s−1, so that ρ(r > rph) ≈ Ṁw/4πr
2vph. The gas above the

photosphere is Compton-heated by the hot photons originating in the photosphere.

Since the Compton heating timescale tc ∼ kTmec
2/EγFσTh ∼ 10−7 s � tflow, where

Eγ is the photon energy and F the flux, the gas temperature is nearly constant out

to radii well above the photosphere (Joss & Melia, 1987; Nobili, Turolla, & Lapidus,

1994). For r � rph, tc . tflow and the gas cools adiabatically, though the density in

this region is so low that in calculating Nwind we assume T (r > rph) = Tph. For the

more abundant species shown in Figure 1.8, we obtain column densities in the range

Nwind ∼ 1016 − 1021 cm−2.
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To determine the EW of the photoionization edge we integrate over the optical

depth above the edge, τe = Nwindσbf(E). Since the recombination timescale trec ≡
1/ne〈σfbv〉 ∼ 0.01Z−4ρ−1

−6T
−3/2
7 B(Z, T ) s � tflow where ρ−6 = ρ/10−6 g cm−3, T7 =

T/107 K, B(Z, T ) = exp(x)
∫ ∞

x
exp(−t) d ln t, x ≡ Ee/kT , and σfb is related to σbf

through the Milne relation (Rybicki & Lightman, 1979), the recombinations are nearly

instantaneous on the timescale of the wind flow. Thus, assuming an effectively cold

atmosphere, EWe =
∫

{1 − exp[−Nwindσbf(E)]} dE (Bildsten et al., 2003). In Figure

1.9 we show EWe as a function of Ṁw for some of the ejected ashes of models HeA1full

and HHeB1full. As Ṁw increases, Tph decreases and the hydrogen-like fraction ζ

increases. For the heaviest ashes (e.g., 56Ni, 60Zn, and 62Ge) ζ ∼ 1 even at low Ṁw

so that Nwind(Z ∼ 30) and EWe(Z ∼ 30) are essentially set by f(A,Z), as noted

above. The computed values of EWe are within the range accessible by current high

resolution X-ray telescopes.

1.3.4 Spectral edges from NS surface

Following the burst peak, the atmosphere begins to cool, the flux becomes sub-

Eddington, and the wind turns off. The photosphere, still laced with heavy-element

ashes, settles back down to the NS surface. As in the case of line formation in the

wind outflow, whether these surface ashes can be detected depends on the column

density Nsurf of ashes that are not fully ionized. Here Nsurf ' f(A,Z)ζ(T, ρ)yph/mp,

where yph ≈ 1 g cm−2. As the surface temperature T decreases, Nsurf increases, al-

though lines cannot be detected once L = 4πR2σT 4 . Lacc. The decay timescale

of PRE bursts (i.e., the time during which Lacc < L < LEdd) is typically around

∼ 10 s. The downward drift speed of a nucleus with Z ∼ 30 in a pure H atmosphere

is v ≈ 1 cm s−1T
3/2
7 /ρ so that it takes ts ≈ 1 s(y/1 g cm−2)/T

3/2
7 for such a nucleus

to fall a column depth y (Bildsten et al., 1992, 2003). Thus, the residence time of

ashes in the photosphere also limits the detectability of lines as will high NS rotation

rates (Özel & Psaltis, 2003; Bhattacharyya et al., 2004; Chang et al., 2005).

In Figure 1.10 we plot EWe =
∫

{1−exp[−Nsurfσbf(E)]} dE as a function of L/Lacc
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Figure 1.10 Equivalent width of the photoionization edge due to ashes residing in
the photosphere at the NS surface for models HeA1full (solid lines) and HHeB1full
(dashed lines). The EW is plotted as a function of the ratio of surface luminosity to
accretion luminosity for a cooling NS atmosphere following the PRE phase. Detecting
such lines might allow for a measurement of the NS gravitational redshift.

for the same models as Figure 1.9. For reference, LEdd/Lacc ' 10 and 30 for models

HeA1full and HHeB1full, respectively. The values of EWe are again within the range

accessible by current X-ray telescopes and a measurement of the NS gravitational

redshift may be possible.

1.4 Summary and conclusions

We have shown that during a radius expansion Type I X-ray burst the convective

region of the atmosphere reaches sufficiently low pressures that ashes of nuclear burn-

ing, mixed throughout the convective zone, can be ejected by the burst’s radiative

wind. Specifically, we used an analytic prescription to solve for the evolution of the at-

mosphere’s thermal structure and found that systems that accrete pure helium, such

as 4U 1820-30, and those that accrete mixed hydrogen and helium at ṁ . 0.05ṁEdd,
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have convective zones that reach minimum column depths yc,min � ywind ' 0.01yb.

Previous studies have also found that the convective zone can reach pressures . 1%

that at the base for low ṁ bursts. However, these studies focused on numerical sim-

ulations of bursts that were unable to resolve the low-pressure regions reached by the

convective zone. Furthermore, such studies only explored a limited range of burst

parameter space while our analytic treatment enabled us to carry out a survey of the

dependence of yc,min on a variety of burst parameters such as ṁ, the composition of

accreted matter, and the pre-burst thermal state of the atmosphere. We have com-

pared some of the results of our analysis, such as the burst rise times, to those of

numerical simulations and found excellent agreement.

We did not account for the affect of a laterally spreading burning front during burst

rise nor the influence of rotation, though these may significantly alter the convective

structure. We also did not account for the suppression of convective motions by a

magnetic field even though the magnetic energy density B2/8π can be comparable

to the convective energy density ρv2
conv at low pressures. Such effects might alter the

conditions under which ashes are ejected.

For specific burst models we determined the composition of ejected ashes and

calculated the expected column density of hydrogen-like nuclei using models of rel-

ativistic radiation-driven winds. We then computed the EW of the photoionization

edge for the most abundant hydrogen-like nuclei in the wind. We carried out a similar

procedure to determine the EW for those ashes that remain bound to the NS and

thus reside in the photosphere after it settles back down to the NS surface. We found

EWs in the range 10−1000 eV suggesting that the line features can be detected with

current high resolution X-ray telescopes. Detecting the lines would directly probe the

nuclear burning. Those lines formed at the surface may allow for a measurement of

the gravitational redshift and thus help constrain the NS equation of state.

If bursts ignite in the ashes of previous bursts then some of these old ashes, which

are thought to contain large overabundances of p-nuclei relative to solar, are also

ejected in the wind. We showed that at least ∼ 1 − 10% of the p-nuclei observed in

the solar system may originate in X-ray bursts.
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Although low ṁ systems yield highly extended convective regions, their burst

recurrence times are long and often irregular making them difficult targets to monitor

given a narrow window of observing time. More promising are systems in which

the neutron star accretes helium-rich material (XHe ∼ 0.9 − 1) from an evolved

companion, such as a cold helium white dwarf. The ultracompact binary 4U 1820-30

(Porb = 11.4 min; Stella, Priedhorsky, & White 1987) is thought to reside in such a

system (Cumming 2003, and references therein). In particular, the system exhibits

radius expansion bursts with fairly regular burst recurrence times of only a few hours

despite accreting at ∼ 0.1ṁEdd (see e.g., Cornelisse et al. 2003, Kuulkers et al. 2003).

The interpretation of this system as a helium accretor is supported by its ultracompact

nature and the bursts’ fast rise and decay times and α-values.

Observations of four candidate ultracompact binaries have shown an unusual Ne/O

ratio in the absorption along the line of sight, with number ratios several times the

interstellar medium (ISM) value (Juett et al., 2001; Juett & Chakrabarty, 2003).

Two of the systems, 4U 1543-624 and 4U 1850-087, have shown variations in the

Ne/O ratio in follow-up observations (Juett & Chakrabarty, 2003, 2005), suggesting

either variations in the ionization state of the Ne and O or variations in the intrinsic

abundances. Both possibilities imply the absorption is from material local to the

binaries. One explanation for the unusual ratios is that the intrinsic abundance of

Ne and O is the same as the ISM but the O is in a higher ionization state than

Ne, leading to an apparent enhancement of the Ne/O ratio. Another possibility is

that the degenerate donors in these ultracompact binaries are neon-rich, perhaps

the chemically fractionated cores of C-O-Ne or O-Ne-Mg white dwarfs which have

previously crystallized (Schulz et al., 2001; Juett & Chakrabarty, 2003). A third

possibility we now propose is that the donors in these ultracompact systems are He

white dwarfs, as in 4U 1820-30, and that the accretion of helium rich matter results

in PRE bursts and ejection of ashes with highly non-solar abundances of Ne and O. A

radius expansion burst was indeed seen in one of the systems with an unusual Ne/O

ratio (2S 0918-549; Cornelisse et al. 2002). Though only a single realization, the

Ne/O ratio by number at y = 0.01yb for model HeA1 shown in Figure 1.7 is ∼ 1.2,



31

comparable to that seen in the four systems. In order for this explanation to work,

the ejected ashes must either somehow remain in the environment of the binary or

be continuously replenished by periodic PRE bursts. The variations in the observed

Ne/O ratio in observations of 4U 1543-624 and 4U 1850-087 could just reflect the

time since the last PRE burst.

Finally, we note that ash ejection may also occur during superbursts that undergo

photospheric radius expansion. The amount of mass ejected by superbursts may be

much larger than ordinary PRE bursts, suggesting even higher column densities of

ejected ashes.
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Abstract

We discuss physical experiments achievable via the monitoring of stellar dynamics near the

massive black hole at the Galactic center with a diffraction-limited, next-generation, extremely

large telescope (ELT). Given the likely observational capabilities of an ELT and what is currently

known about the stellar environment at the Galactic center, we synthesize plausible samples of

stellar orbits around the black hole. We use the Markov Chain Monte Carlo method to evaluate

the constraints that the monitoring of these orbits will place on the matter content within the

dynamical sphere of influence of the black hole. We compare these future constraints with those

obtained with the current data. We express our results as functions of the number N of stars with

detectable orbital motions and the astrometric precision δθ and spectroscopic precision δv at which

the stellar proper motions and radial velocities are monitored. Our results are easily scaled to

different telescope sizes and precisions. For N = 100, δθ = 0.5 mas, and δv = 10 km s−1—a

conservative estimate of the capabilities of a 30 meter telescope—we find that if the extended

matter distribution enclosed by the orbits at 0.01 pc has a mass greater than ∼ 103M�, it will

produce measurable deviations from Keplerian motion. Thus, if the concentration of dark matter

at the Galactic center matches theoretical predictions, its influence on the orbits will be detectable.

We also estimate the constraints that will be placed on the mass of the black hole and on the

distance to the Galactic center, and find that both will be measured to better than ∼ 0.1%. We

discuss the significance of knowing the distance to within a few parsecs and the importance of this

parameter for understanding the structure of the Galaxy. We demonstrate that the lowest-order

relativistic effects, such as the prograde precession, will be detectable if δθ . 0.5 mas. Barring the

favorable discovery of a star on a highly compact, eccentric orbit, the higher-order effects,

including the frame dragging due to the spin of the black hole, will require δθ . 0.05 mas. Finally,

we calculate the rate at which monitored stars experience detectable nearby encounters with

background stars. The encounters probe the mass function of stellar remnants that accumulate

near the black hole. We find that ∼ 30 such encounters will be detected over a ten year baseline for

δθ = 0.5 mas.

2.1 Introduction

Observational programs with ten meter class telescopes, including the W. M. Keck

Observatory and the Very Large Telescope (VLT), have yielded a wealth of informa-

tion on the stellar content inside the sphere of influence of the massive black hole at
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the Galactic center (GC; Ghez et al. 1998; Gezari et al. 2002; Hornstein et al. 2002;

Figer et al. 2003; Genzel et al. 2003; Ghez et al. 2005; Schödel et al. 2003). The black

hole is located at the center of a compact stellar cluster that has been the target of ob-

servational surveys for a decade (e.g., Krabbe et al. 1995; Figer et al. 2000; Gezari et

al. 2002). Near-infrared monitoring with speckle and adaptive optics techniques has

recently enabled complete orbital reconstruction of several stellar sources orbiting the

black hole (Eckart et al., 2002; Schödel et al., 2002, 2003; Ghez et al., 2005). Sources

have been monitored with astrometric errors of a few milli-arcseconds (Ghez et al.,

2003; Schödel et al., 2003), and radial velocity errors < 50 km s−1 (Eisenhauer et al.,

2003; Ghez et al., 2003), allowing the detection of the accelerated proper motions of

∼ 10 stars. One of these stars has an orbital period of only ∼ 15 yr (Ghez et al.,

2005; Schödel et al., 2003).

The presence of a dark mass at the center of the Galaxy could in principle be

inferred from the static nature of the radio source Sgr A∗ located at the center of

the stellar cluster (Backer & Sramek, 1999; Reid et al., 1999). Nevertheless, it is the

stars with the shortest orbital periods that have provided unequivocal proof of the

existence of a massive black hole and a measurement of its mass of ∼ 4 × 106M�

(Ghez et al., 2005; Schödel et al., 2003). Since, for a fixed angular scale, the orbital

periods are proportional to R
3/2
0 M

−1/2
bh and the radial velocities are proportional to

R
−1/2
0 M

1/2
bh where R0 is the heliocentric distance to the black hole and Mbh is its

mass, the two parameters are not degenerate and can be determined independently

(see Eisenhauer et al. 2003 and appendix to this chapter).

In spite of the quality of elementary data available about the black hole and the

bright stellar sources, the matter content in the vicinity of the black hole remains

unknown. The observed stellar sources may represent only a fraction of the total

matter content. Since the radial diffusion time ∼ 108−9 yr is shorter than the age of

the bulge, a large number of massive compact remnants (5−10M� black holes) could

have segregated into, and may dominate the matter density inside, the dynamical

sphere of influence of the black hole (Morris, 1993; Miralda-Escudé & Gould, 2000).

Furthermore, adiabatic growth of the massive black hole could have compressed a
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pre-existing distribution of cold dark matter (CDM) (Ipser & Sikivie, 1987; Quin-

lan, Hernquist, & Sigurdsson, 1995; Gondolo & Silk, 1999) and stars (Peebles, 1972;

Young, 1980) into a dense “spike.” A variety of dynamical processes, however, are

capable of destroying such a spike (Ullio, Zhao, & Kamionkowski, 2001; Merritt et

al., 2002; Gnedin & Primack, 2003; Merritt, 2003). A sustained CDM spike would

have implications for the detection of annihilation radiation for the CDM models in

which the CDM consists of weakly interacting massive particles (WIMPs).

The most complete catalogue of stars in the central parsecs was compiled by

Genzel et al. (2000) and Schödel et al. (2003). In a survey of the stellar sources,

Genzel et al. (2003) infer a spatial number density of n(r) ∝ r−1.4 over the radial

range 0.004 < r < 0.4 pc. Their sample was 50% complete for stars brighter than

K ∼ 18, where completeness is defined as the percentage of stars in the field of view

that are detectable and thus included in the sample. Expressed in terms of stellar

mass, the sample is 50% complete for masses m & 3M�, assuming stars on the main

sequence, a distance to the GC of 8.0 kpc (Reid, 1993) and K-band extinction of

3.3 mag (Rieke, Rieke, & Paul, 1989). A picture is emerging in which the brightest

stars in the central cluster (< 0.03 pc) are young, main-sequence stars with apparent

magnitudes K > 13 and masses 10 − 15M�. The stars outside 0.03 pc appear to be

spectroscopically and kinematically distinct. They span a larger range of magnitudes

K & 10 and contain ∼ 40 mass-losing Wolf-Rayet stars (e.g., Genzel et al. 2003 and

R. Genzel, private communication). Unlike the central cluster, these stars appear to

belong to twin, misaligned stellar disks (Levin & Beloborodov, 2003; Genzel et al.,

2003).

The formation of the observed young stars with ×100 larger specific binding en-

ergies relative to the black hole than that of the nearest observed accumulation of

molecular gas (e.g., Jackson et al. 1993) presents a challenge to star formation the-

ories and is a persistent puzzle (e.g., Morris 1993; Ghez et al. 2003; Genzel et al.

2003). A number of mechanisms for the formation and migration of stars in the

tidal field of the massive black hole have been proposed (Gerhard, 2001; Gould &

Quillen, 2003; Hansen & Milosavljević, 2003; Levin & Beloborodov, 2003; Kim &
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Morris, 2003; Milosavljević & Loeb, 2004). While the mechanisms have important

implications, they are also each deficient in at least one way.

There is a dearth of giants in the GC region (Eckart et al., 1995). Recently, Figer et

al. (2003) measured the radial velocities of 85 cool, normal giant stars with projected

distances from the central region between 0.1 − 1 pc. They find nearly complete

deficiency of giants with large radial velocities (Vrad > 200 km s−1). Since a star in a

circular orbit at a distance of 0.1 pc from the black hole has velocity ∼ 400 km s−1,

the absence of any such stars with comparable radial velocities indicates that the

observed giants are indeed limited to the region outside the central ∼ 0.5 pc.

While the measured stellar density profile of the Galactic bulge is consistent with

that of a singular isothermal sphere (Becklin, 1968), the profile in the central par-

sec is not well-known, especially for the lower-mass stellar populations. Assuming

relaxation that is driven by two-body processes, Bahcall & Wolf (1976) showed that

the equilibrium phase space distribution for a population of equal mass stars is a

power law in density ρ ∝ r−7/4. For a multimass distribution the lighter stars are less

centrally concentrated, resulting in a power-law profile that ranges from r−3/2 for the

least massive species to r−7/4 for the most (Bahcall & Wolf, 1977; Murphy, Cohn, &

Durisen, 1991). A coeval family of stars in the central region has reached equilibrium

only if it is older than the relaxation time

tE ∼ σ3

G2m?ρ ln Λ

≈ 2 × 108 yr

(

r

1 pc

)1/4 (

Mbh

4 × 106M�

)3/2

×
(

m?

10M�

)−1 (

ρ1pc

2 × 105M� pc−3

)−1 (

ln Λ

10

)−1

(2.1)

where σ is the local linear stellar velocity dispersion, m? is the mass of a typical field

star, ρ is the local stellar density, and ln Λ is the Coulomb logarithm.

Since the main sequence lifetime of stars more massive than ∼ 2M� is shorter than

tE , young massive stars in the GC are not relaxed; their distribution is primarily a

reflection of their formative conditions. While lower-mass dwarf stars are sufficiently
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old to be relaxed in the central potential, their distribution in the innermost region

could be affected by an abundance of stellar-mass black holes (5−10M�). As products

of normal stellar evolution, stellar mass black holes sink in the potential of the massive

black hole (Morris, 1993; Miralda-Escudé & Gould, 2000) and displace the less massive

stars and remnants.

Speckle imaging and more recently adaptive optics with the Keck and VLT have

provided several milliarcsecond astrometry, enabling the detection of proper motions

within the inner 0.5 pc and accelerated proper motions of ∼ 10 stars within the inner

0.05 pc. Radial velocities with spectroscopic precisions of δv ∼ 30 km s−1 have also

been obtained for the star S0-2, which has been monitored for over 70% of its orbit

including pericenter passage at ∼ 130 AU from the black hole. These observations

have enabled the black hole mass and GC distance to be measured to within ∼ 10%

(Ghez et al., 2005; Schödel et al., 2003).

Here we examine the extent to which one can probe the GC potential by monitor-

ing stars with a diffraction-limited, next-generation, extremely large telescope (ELT).

As compared with current 10 m class telescopes, the finer angular resolution of an

ELT enables the orbital motions of many more stars to be detected, each at greater

astrometric precision, δθ, and spectroscopic precision, δv. Given the range of possible

sizes of future telescopes and given the uncertainties in the ultimate capabilities of a

specific telescope class (e.g., 30 meter telescopes) we choose to express our results not

as functions of the ELT aperture but rather as functions of δθ, δv, and the number N

of stars with detectable orbital motions. We take δθ = 0.5 mas and δv = 10 km s−1

as our fiducial model, corresponding to a conservative estimate of the capabilities of a

telescope with a D = 30 m aperture. We show that N scales with telescope aperture

as N ' 100(D/30 m)2. We demonstrate that with an ELT one can measure the

density profile of a dark matter spike and those general relativistic effects that scale

as (v/c)2, where v is the speed of a star and c is the speed of light. Furthermore, we

show that the distance to the GC will be measured to remarkable precision. This will

help place tight constraints on models of the overall Galactic structure. We also show

that with an ELT one can detect the gravitational interactions between monitored
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stars and the background massive stellar remnants that accumulate near the central

black hole. Such interactions may probe the mass function of the stellar-mass black

holes thought to dominate the matter density in the region.

The paper is organized as follows. In § 2.2 we calculate the number of stars with

accelerated proper motions that can be monitored with a given ELT based on its as-

trometric, spectroscopic, and confusion limits. We also describe a realistic monitoring

program and demonstrate that confusion with the infrared emission from Sgr A∗ is

unlikely to affect an ELT’s ability to measure stellar motions. In § 2.3 we model the

orbital data and estimate the magnitude of various non-Keplerian effects including

Newtonian retrograde precession due to extended matter, relativistic prograde pre-

cession, precession induced by the coupling of orbits to the spin of the black hole,

and the Roemer time delay. In § 2.3.6 we consider the effect of stellar interactions

on the motion of the monitored stars. Specifically, we estimate the rate at which

discrete stellar encounters result in detectable changes of orbital motions. In § 2.4 we

discuss a method for generating mock ELT orbital data and describe a computational

technique for estimating uncertainties in the orbital parameters. The results of our

calculations are given in § 2.5. In § 3.4 we discuss astrophysical applications of the

proposed observations. Finally, in an appendix, we show the current constraints on

Mbh, R0, and the extended matter distribution, from fits to the Keck orbital data.

2.2 Observing stars in the central arcsecond with

an ELT

The purpose of this section is to estimate the number and distribution of stars whose

orbital motions can be detected with an ELT and to determine the astrometric and

spectroscopic precision to which their motions can be measured (§ 2.2.1). The latter

are determined by the specifications of the telescope and the properties of the stellar

population at the GC. Several factors complicate the monitoring of orbits within the

central arcsecond. The greatest obstacle to detecting and following hitherto unseen
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stars is stellar crowding. Light contamination from nearby bright stars as well as the

light from underlying faint stars flood the pixel elements and impose a limit to the

faintest detectable star. In § 2.2.2 we estimate the minimum luminosity permitted

by the crowding and thereby obtain an estimate of the number count of stars with

observable orbital motions.

2.2.1 Astrometric and spectroscopic limit

With adaptive optics, an ELT will operate near its diffraction limit in the K-band.

By determining the centroid of images, the measured relative positions of stars are a

factor of ∼ 20− 40 more definite than the images’ diffraction limit. For instance, the

diffraction limit of Keck is ∼ 50 mas while the astrometric error of a bright star near

the GC as seen by Keck is ∼ 1 − 2 mas. Naively, the expected astrometric limit of

an ELT with D = 30 m is therefore δθ30 ∼ 0.5 mas.

In practice, the astrometric limit achievable with adaptive optics depends on

whether atmospheric fluctuations or centroid measurement errors dominate the sig-

nal. At the GC the separation between the guide star needed for the adaptive optics

infrared wavefront sensor and the star under study is typically ∼ 5′′, corresponding

to a separation of 0.25 m at the top (∼ 10 km) of the atmosphere. As long as the

telescope aperture is larger than this separation, as is the case for Keck and an ELT,

the atmosphere dominates and the astrometric precision scales with the telescope

diameter as D2/3 (Shao & Colavita, 1992). A 30 meter ELT is expected to have an

astrometric limit that is 32/3 ≈ 2 times smaller than Keck’s for K . 24. We there-

fore adopt δθ30 ∼ 0.5 mas in our calculations, though we consider this a conservative

estimate; a 30 meter ELT may attain an astrometric limit as small as 0.1 mas.1

With an adaptive-optics-fed spectrometer on Keck, Ghez et al. (2003) detected

spectral absorption lines in the star S0-2 at a spectral resolution of R = λ/∆λ ∼ 4000,

yielding a radial velocity measurement with an error of 40 km s−1 (see also Eisenhauer

et al. 2003). Integral field spectroscopy in the near-IR with a 30 meter ELT is expected

1www.astro.caltech.edu/mirror/celt/participants/AOWG/SRD v9.pdf
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to enable measurements with R ∼ 1 − 2 × 104, suggesting that velocity errors of

δv30 ∼ 10 km s−1 are attainable. This too is a conservative estimate as a 30 meter

ELT may achieve velocity errors more than an order of magnitude smaller (D. Figer,

private communication). As we discuss below, an ELT will be able to detect stars that

are fainter and hence cooler than those currently detectable. Cool stars exhibit rich

spectral features including possible molecular lines, enabling high spectral resolution

studies. For example, Figer et al. (2003) obtained radial velocities for 85 cool stars

in the central parsec of the Galaxy with velocity errors of ∼ 1 km s−1.

Although an ELT’s astrometric and spectroscopic limits may differ from the above

estimates, we show in § 2.4.2 that the uncertainties in the model parameters extracted

from the monitoring data, such as the distance to the GC and the extended matter

profile, scale almost linearly with the measurement errors. The constraints on the

parameters for different values of δθ and δv can therefore be readily inferred from our

results.

2.2.2 Confusion limit

The brighter stars wash out the signal of fainter stars, thereby limiting the luminos-

ity of the faintest observable star. This limit depends on the telescope optics (e.g.,

angular resolution) and on the stellar luminosity function (LF). Using measurements

of stellar photometry near the GC, we now estimate the minimum luminosity that

a star at the GC can have and still be identified and monitored with an ELT. For a

given star of luminosity l and for a given K-band stellar LF, we determine the inte-

grated flux from all nearby background stars with luminosity < l. At some minimum

luminosity, the emission from a single star is comparable to the background emission;

this luminosity sets the confusion limit.

Following Takeuchi et al. (2001) and references therein, let xS = S h(θ, φ) be the

response of the telescope to a source of flux density S at an angular position (θ, φ) from

the line-of-sight axis to the center of the source. h(θ, φ) is the point-spread function

(PSF) of the telescope, normalized to unity at the center. Since all sources at the
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GC are essentially at the same distance, we can instead express the response in terms

of stellar luminosity l, i.e., let x = l h(θ, φ). The variance in the telescope response

due to crowding is the confusion noise σ. To detect a source with high statistical

significance, its luminosity must be greater than some cutoff lc, or equivalently, x

must be greater than a response cutoff xc. Defining q = xc/σ, a source is above the

confusion limit if its signal-to-noise S = x/σ > q, where we take q = 5.

If the number of stars per square arcsec with luminosity in the range (l, l + dl) is

dN = αΦ(l)dl, where α is the normalization of the LF and Φ(l) is its shape, then the

mean number of source responses of intensity x is

R(x)dx =

∫

dN(l)

dl
dldΩ

=

∫

αΦ

(

x

h(θ, φ)

)

dΩ

h(θ, φ)
dx, (2.2)

where the integral is over the solid angle of the PSF. The confusion noise σ due to

all sources fainter than xc is then

σ2 =

∫ xc

0

x2R(x)dx. (2.3)

Since we are interested in calculating the cutoff response of a given detector for a

given LF, we need to solve for the confusion noise. Assuming a power law LF of the

form dN/dl = αΦ(l) = αl−η we have

R(x) =

∫

α

[

x

h(θ, φ)

]−η
dΩ

h(θ, φ)
= αx−ηΩeff , (2.4)

where

Ωeff =

∫

h(θ, φ)η−1dΩ. (2.5)

Therefore

σ2 = αΩeff

∫ xc

0

x2−ηdx =

(

q3−ηαΩeff

3 − η

)2/(η−1)

. (2.6)
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In this paper we only consider power-law LFs, though one can obtain an expression

for σ for general forms of the LF (Franceschini et al., 1989).

For a Gaussian PSF h(θ, φ) = h(θ) = exp[−(4 ln 2)(θ/θ0)
2], where θ0 is the PSF’s

full-width at half-maximum. This gives Ωeff = πθ2
0/ [(4 ln 2)(η − 1)] and thus

σ =

(

q3−η

3 − η

)1/(η−1) [

πθ2
0α

(4 ln 2)(η − 1)

]1/(η−1)

. (2.7)

We now estimate the value of σ for the Keck and an ELT. In the K-band, θ0 '
50 mas for Keck and θ0 ' 15 mas for a D = 30 m ELT. We also need the K-band

luminosity function (KLF) of stars at the GC. Genzel et al. (2003) find that the KLF

within 1.5′′ of the GC is well-described by a power-law with slope β = d logN/dK =

0.21 ± 0.03 where K is the apparent magnitude in the K-band. We consider KLFs

with slopes within the ∼ 2σ range 0.15 < β < 0.27, which in terms of η = 1 + β/0.4

corresponds to the range 1.38 < η < 1.68.

Schödel et al. (2003) measured the photometry of more than 40 stars in the central

arcsec, 29 of which reside within 0.8′′ (∼ 6000 AU). We normalize the KLF to these

29 stars. We limit our analysis to these innermost stars since the KLF inside 0.8′′

appears to differ from that outside this region (see § 3.1). We do not attempt to

account for a possible radial dependence but instead assume the KLF is constant.

Of the 29 stars, the brightest has apparent magnitude K = 13.4 and the dimmest

K = 17.3. Assuming a K-band extinction of 3.3 mag (Rieke, Rieke, & Paul, 1989)

and a distance to the GC R0 = 8 kpc, these apparent magnitudes correspond to

K-band luminosities of lmin = 0.8L� and lmax = 28L�. For a given η we calculate

α = Nobs(1 − η)/(l1−η
max − l1−η

min ) where Nobs = 29/π(0.8′′)2 and by equation (2.7) solve

for σ. Integrating the luminosity function over stars brighter than xc = qσ yields the

number count of detectable stars N(l > lc) ∼ αx1−η
c /(η − 1).

In Figure 2.1 we show how the K-band magnitude limit and number N of stars

with detectable orbital motions (those within 3000 AU of the GC; see below) scale

with the aperture of a diffraction limited ELT assuming β = 0.21 ± 0.06 (η = 1.53 ±
0.15). Since by equation (2.7) N ∝ x1−η

c ∝ θ−2
0 , we find that N ' 100(D/30 m)2.
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Figure 2.1 K-band magnitude limit and number of stars with detectable orbital mo-
tions as a function of the aperture of a diffraction-limited ELT. Results are shown
for power-law K-band luminosity functions normalized to observations by Schödel et
al. (2003) with slopes matching the ∼ 2σ range found by Genzel et al. (2003). The
uncertainty in the number counts is considerably smaller than the uncertainty in the
magnitude limits.

Furthermore, because xc ∝ α1/(η−1), N(l > lc) is not very sensitive to the value of

xc for a fixed η. Therefore, when the above analysis is performed on a subset of

the 29 stars within 0.8′′ (e.g., stars within 0.4′′ or alternatively stars brighter than

K = 16), the derived number counts, unlike the magnitude limits, do not change

significantly. The number counts we derive for an ELT are therefore robust even

though the magnitude limits are subject to some uncertainty.

To extract orbital parameters the acceleration of a star in the plane of the sky

must be detected, i.e., it must be greater than the threshold acceleration ξt. For Keck

ξt ∼ 1 − 2 mas yr−2 while for a 30 meter ELT ξt ∼ 0.5 mas yr−2. The accelerated

proper motion is detectable over the entire orbit if the acceleration at apocenter

exceeds the threshold. For a face on orbit this requires a(1 + e) < (GM/ξtR0)1/2.

Thus the acceleration will be detectable with a 30 meter ELT over the entire orbit

if a . 3000 AU (period . 80 yr). To construct our mock stellar orbits to simulate
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observations that can be made with an ELT, we only consider orbits satisfying this

constraint. As Figure 2.1 shows, within 3000 AU, approximately 100 stars are brighter

than a 30 meter ELT’s confusion limit. Furthermore, since the surface density of stars

is ∼ 200 arcsec−2, one does not expect to observe stars with apocenters smaller than

∼ 300 AU (∼ 0.04′′) with such an ELT. We therefore conclude that a 30 meter ELT

will detect the accelerated motion of ∼ 100 stars with semi-major axes . 3000 AU

and apocenter distances & 300 AU.

Another related issue is the frequency with which an ELT will measure positions

and radial velocities for the N monitored stars, given a reasonable commissioning

of ∼ 10 GC exposures per year. As it will be equipped with an integral field unit

spectrometer an ELT can obtain simultaneous spectral and spatial data over a rela-

tively large region of sky. It is possible for it to measure positions and velocities for

all N stars in a single image. This suggests that a dedicated observing program can

reasonably obtain ten measurements per star per year.

At the high levels of precision obtainable with an ELT, orbital parameter con-

straints should scale with the measurement errors σ (i.e., δθ and δv) and the number

of stars N as σ/N1/2. Based on the above discussion we therefore expect the param-

eter constraints to scale with telescope aperture as ∼ D−2/3/D ∼ D−5/3. We verify

this relation in our numerical simulation results described in § 2.5.

2.2.3 Central point source — Sgr A∗

At radio wavelengths Sgr A∗ is detected as a nonthermal (Beckert et al., 1996; Serabyn

et al., 1997), compact (Rogers et al., 1994), static (Backer & Sramek, 1999; Reid et

al., 1999), variable (Zhao, Bower, & Goss, 2001) source. An X-ray source coincident

with Sgr A∗ has also been detected (Baganoff et al., 2003) and consists of a resolved,

steady-state component with size ∼ 1′′ and an unresolved flaring component that

increases in flux density by an order of magnitude over the course of a few hours

roughly once per day (Baganoff et al., 2001; Goldwurm et al., 2003; Porquet et al.,

2003).
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Recently, a near-infrared counterpart to Sgr A∗ , located within a few mas of

the dynamically determined black hole position, has been observed in the H band

(1.7µm; Genzel et al. 2003b) and the L′ band (3.8µm; Ghez et al. 2004). Like the X-

ray emission, the infrared emission consists of a quiescent component and a variable

component. The latter exhibits flux densities that increase by a factor of a few over

the course of tens of minutes to one week, with possible signs of periodicity (Genzel et

al., 2003b). The observed L′-magnitudes are in the range 12.2 − 13.8, corresponding

to L′-luminosities ∼ 10 − 100L�.

Although the current sample of stars with detected accelerated motion are brighter

than the Sgr A∗ infrared emission, the stars detectable with an ELT will have compa-

rable luminosities. A star that passes near the black hole can therefore be confused

with the emission of Sgr A∗ . Conservatively, such confusion limits monitoring when

the projected separation between a star and Sgr A∗ is smaller than the resolution of

the detector. For a 30 meter ELT operating at the diffraction limit in the K band,

this corresponds to ∼ 15 mas (120 AU). However, as we found in § 2.2.2, confusion

with nearby stars precludes such a telescope from detecting orbits with apocenters

smaller than 300 AU (∼ 40 mas) and most of the monitored stars do not therefore

pass within 15 mas of Sgr A∗ . Of those that do, most spend only a small fraction of

their total orbital period that close to the black hole; e.g., a star with a semi-major

axis of 200 AU and eccentricity 0.9 is within 15 mas of the black hole for only 10% of

its orbital period. The same arguments hold for other ELT apertures. Therefore, the

infrared emission from the black hole will not significantly impair orbital monitoring

with an ELT.

2.3 Orbital dynamics

While current observations of stellar proper motions near the black hole at the GC

are consistent with motion around a Newtonian point mass, we show that with an

ELT non-Keplerian motions are going to be detectable. There are various effects

that cause deviations from Keplerian motion, including the Newtonian retrograde
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precession (NRP) of an orbit due to the presence of an extended matter distribution

(§ 2.3.2), the relativistic prograde precession (RPP; § 2.3.3), and the frame dragging

effects related to the black hole spin (§ 2.3.4). In addition, we account for an apparent

deformation of the observed proper motion (“Roemer effect”; § 2.3.5) due to the

differences in light travel times at different locations along the orbit. A discussion of

the effects of encounters between monitored stars and background stars is given in

§ 2.3.6. We now describe the orbital equations of motion and estimate the magnitude

of the various non-Keplerian effects. A number of relativistic effects, including those

we consider below, are discussed in Pfahl & Loeb (2003) in connection with long-term

timing observations of a radio pulsar that might be detected in a . 100 year orbit

about the GC.

2.3.1 Equations of motion

We found in § 2.2 that we do not expect a 30 meter ELT to detect orbits with

apocenter smaller than ∼ 300 AU, due to confusion noise. Assuming orbits uniformly

distributed in e2, the probability that a given star has e > 0.99 is 2%. Since most

of the ∼ 100 stars such an ELT monitors will have semi-major axes > 1000 AU, it

is unlikely that any will have pericenter distance smaller than a few AU. As a result,

the ratio of the Schwarzschild radius to the pericenter distance of the stars will satisfy

Rs/rp . 0.05, or expressed in terms of the stellar velocity at pericenter, vp/c . 0.2.

The post-Newtonian approximation to the geodesic equations that is accurate to order

(v/c)2 provides an adequate description of the stellar orbits given the observational

precision expected with an ELT.

The geodesic equation for test particles orbiting a spherically symmetric mass is,

in the post-Newtonian approximation (Weinberg, 1972; Rubilar & Eckart, 2001),

dv

dt
= −∇Φ −

[

2∇Φ2 + v2∇Φ − 4v(v · ∇)Φ − v × (∇× ζ)
]

/c2, (2.8)

where v = dx/dt is the velocity vector, Φ is a time-independent gravitational poten-

tial, and ζ = 2G(x × J)/r3 is a vector potential associated with the spin J of the
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gravitating mass, which we assume is constant with time. We assume the density

distribution of the extended matter at radii traversed by the stars and smaller is a

power-law profile ρ(r) = ρ0(r/r0)
−γ. Input model parameters are described in § 2.4.2.

The relativistic effects include corrections to the orbital dynamics and to the ob-

served motion due to propagation effects. The former class includes the RPP and

frame dragging while the latter class includes the lowest order (v/c) Roemer time

delay and such (v/c)2 effects as time dilation, gravitational redshift, and the Shapiro

time delay. Since the (v/c)2 propagation effects each have different functional de-

pendences on the orbital parameters (see e.g., Pfahl & Loeb 2003), including them

may break degeneracies, though they may also weaken the sensitivity to some param-

eters. However, our interest in the (v/c)2 relativistic effects is primarily connected

with the ability of an ELT to probe general relativity on the scale of a massive black

hole rather than with the effects’ potential utility for parameter estimation. Since

vp/c < 0.2, relativistic effects help to constrain the orbital parameters by at most a

few percent. We therefore chose not to include the (v/c)2 propagation effects in our

analyses. The analysis of actual data obtained from an ELT must, however, account

for all the relativistic effects.

2.3.2 Newtonian retrograde precession

The NRP was discussed in the context of the GC by Rubilar & Eckart (2001). An

extended matter distribution causes stellar orbits to precess due to differences in the

amount of mass that is contained between the apocenter and the pericenter radii.

In the numerical calculations that follow, we determine how much an orbit precesses

due to the extended matter by solving equation (2.8). Here, however, we obtain an

estimate of the magnitude of the precession for stars at the GC by considering the

potential of the extended matter to be a small correction δΦ to the potential of the

black hole. Expanding the total potential to linear order in δΦ, the angular shift per
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period is (Landau & Lifshitz, 1960)

∆φNewt =
∂

∂L

(

2

L

∫ π

0

r2δΦ dϕ

)

, (2.9)

where L is the orbital angular momentum per unit mass, r = a(1 − e2)/(1 + e cosϕ),

and ϕ is the phase of the orbit. If γ < 2 we have δΦ = βr2−γ, where β = GMext/(2−
γ)r3−γ

0 is a constant and Mext ≡Mext(r < r0) is the extended matter mass within r0.

The orbital precession is then given by (Munyaneza & Viollier, 1999)

∆φNewt =
2β

GMbh

[

a(1 − e2)
]3−γ

g(γ, e), (2.10)

where

g(γ, e) =
1 − e2

e2
(4 − γ) [I4−γ(e) − I5−γ(e)] + (7 − 2γ)I4−γ(e) (2.11)

and

In(e) ≡
∫ π

0

dϕ

(1 + e cosϕ)n
. (2.12)

Assume that the extended matter consists of stars with γ = 7/4 and ρ1pc =

2 × 105M� pc−3 (see § 3.1). Consider an S0-2-like orbit with a semi-major axis

of 0.005 pc and eccentricity e = 0.9. The enclosed stellar mass at apocenter and

pericenter are 6000M� and 150M�. Solving equation (2.10) yields a precession per

revolution of ∆φNewt ≈ 0.08◦, corresponding to an apparent angular apocenter shift of

roughly ∆φNewta(1 + e)/R0 ≈ 0.3 mas. Thus, a few S0-2-like orbits with astrometric

errors of 0.5 mas provide a meaningful constraint on the stellar distribution within the

inner few milliparsecs. If the density of the dark matter cusp at the stellar positions

exceeds ∼ 108M� pc−3, then it too will produce a detectable precession; it will not

be easily distinguished from the stellar contribution (however see § 2.3.6).
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2.3.3 Relativistic prograde precession

The RPP causes a pericenter advance per revolution of (see Weinberg 1972) ∆φpro =

3πRs/a(1 − e2), where Rs = 2GMbh/c
2 is the Schwarzschild radius of the black hole.

The magnitude of the effect is ∝ (v/c)2. The apparent apocenter shift per revolution

caused by the RPP is ∆s ≈ ∆φproa(1 + e)/R0 = 3πRs/R0(1 − e), which corresponds

to an apparent shift of ∼ 1 mas for the star S0-2. Although the RPP has an addi-

tional factor of (v/c) relative to the Roemer effect (§ 2.3.5), this attenuation can be

compensated for by having a few high eccentricity stars in the sample. Furthermore,

unlike the Roemer effect, the RPP shift is to first order independent of the semi-

major axis and is therefore equally sensitive to stars at all radii (although stars at

large radii also have long periods). Consider an orbit seen face-on and observed for

Norb complete periods. Since the precession angles per revolution add linearly, the

signal-to-noise from the RPP is Spro ∼ ∆sNorb/δθ, or

Spro ∼ 0.1
Norb

1 − e

(

Mbh

4 × 106 M�

) (

R0

8 kpc

)−1 (

δθ

1 mas

)−1

. (2.13)

In a sample of 100 stars observed with astrometric errors of 0.5 mas and having

an eccentricity distribution uniform over e2, we expect on average eight stars with

e > 0.96. If only one such star is followed over just a single period, the RPP shift

will be measured to 5-σ accuracy.

2.3.4 Frame dragging

For a spinning black hole, frame dragging effects also cause a precession of the pericen-

ter. The spin precession per revolution for a star orbiting a black hole with spin an-

gular momentum J is given approximately by (see Weinberg 1972, equation (9.5.22);
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note different notation)

∆φspin ≈ −8πj

(

GMbh

cL

)3

cosψ

= −2
√

2j∆φpro

3

√

Rs

a(1 − e2)
cosψ, (2.14)

where ψ is the angle between the orbital angular momentum vector and the black

hole spin axis and 0 6 j ≡ cJ/GM2
bh 6 1 is the black hole spin parameter.

The black hole spin induces an apocenter shift that is smaller than the RPP shift

by a factor of ∼ v/c. Even if the black hole is maximally spinning (j = 1), the shift

represents only a 5% contribution on top of the RPP for a star with a = 200 AU

and eccentricity e = 0.92. For an orbit observed face-on the signal-to-noise from a

spin-induced apocenter shift is

Sspin ≈ 2π
√

2j

R0

√

a(1 + e)

(

Rs

1 − e

)3/2
Norb

δθ
cosψ

≈ 0.001
jNorb cosψ

√

(1 + e)(1 − e)3

(

Mbh

4 × 106 M�

)3/2

×
( a

1000 AU

)−1/2
(

R0

8 kpc

)−1 (

δθ

1 mas

)−1

. (2.15)

For example, a 5-σ detection is achieved with an ELT with δθ = 0.5 mas if a star

with a = 300 AU and e = 0.99 is monitored for three complete orbits. We expect a

30 meter ELT to detect one star with a semi-major axis that small (§ 2.2). Assuming

eccentricities uniformly distributed in e2 the probability that star has e > 0.99 is

only ∼ 2%. If δθ = 0.05 mas, a star with a = 300 AU and e = 0.95 will yield a 5-σ

detection after being monitored for three complete orbits. Since so high a resolution

requires an ELT with apertureD ∼ 100 m, there will be several stars with a . 300 AU

and of these ∼ 10% will have e > 0.95. Detecting such a stellar orbit is therefore not

unlikely. The spin-induced orbital precession thus requires an astrometric precession

of δθ . 0.05 mas (see also Jaroszynski 1998; Fragile & Mathews 2000).
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2.3.5 The Roemer time delay

For orbits with non-zero inclination, the distance between the earth and star, and

hence the difference in time between stellar emission and observation, varies with

orbital phase. This time delay, given by ∆t = tobs − tem = z(tem)/c, where z(t) is the

relative distance between the star and the massive black hole, was first recognized by

Roemer in 1676 in application to the phases of Jupiter’s moons. Unlike the relativistic

Doppler effect, which includes corrections of order (v/c)2 and higher, the Roemer

delay is the classical Doppler effect, which only includes terms up to order v/c (see,

e.g., Loeb 2003). The delay has a magnitude corresponding to a few percent of a year

for an S0-2-like orbit, and is observed as an additional shift in the apparent stellar

position with time, ∆s(t). For a circular orbit seen edge-on the stellar positions z(t)

and s(t) are sinusoidal so that

∆s(t)/a = cos(ωtobs) − cos(ωtem)

= cos[ω(tem + a/c sin(ωtem))] − cos(ωtem)

' −ωa
c

sin2(ωtem), (2.16)

where ω = 2π/P and we used the fact that for orbits at the GC v � c. The maximum

shift, in units of the semi-major axis, is therefore v/c. For non-zero eccentricity and

arbitrary inclination the star’s projected position and distance as a function of time

are (see e.g., Murray & Dermott 1999)
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, (2.17)

where i is the inclination, ϕ(t) is the orbital-phase (i.e., the true anomaly), α is

the argument of pericenter, and we chose the reference direction so that the x-axis

coincides with the longitude of ascending node. The Roemer shift is then |∆s| =

(∆x2 + ∆y2)
1/2

where ∆x = x(tobs) − x(tem) and similarly for ∆y. To linear order in
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v/c the orbit-averaged Roemer shift can be written as

〈|∆s(t)|/a〉 ' ωa

c
sin i

√

f(e, i, α) (2.18)

where f(e, i, α) is a factor of order unity. For the two extreme cases α = 0 and

α = π/2 (corresponding to the line-of-node along the major-axis and minor-axis,

respectively), f(e, i, α) is given by

f(α = 0) =

√
1 − e2

2e4

{

2e4 cos2 i
(

3 −
√

1 − e2
)

+3e2
[

2 −
√

1 − e2 − cos2 i
(

4 − 3
√

1 − e2
)]

−6 sin2 i
(

1 −
√

1 − e2
)}

, (2.19)

f(α = π/2) =

√
1 − e2

2e4

{

−2e4
(

2 −
√

1 − e2
)

+e2
[

10 − 7
√

1 − e2 − cos2 i
(

4 −
√

1 − e2
)]

−6 sin2 i
(

1 −
√

1 − e2
)}

. (2.20)

An ELT will be able to detect the effect of the Roemer delay in orbits at the GC.

The signal-to-noise from Nobs observations of an orbit measured with astrometric

errors δθ is approximately Sdelay ∼ 〈∆s〉N1/2
obs /R0δθ, or

Sdelay ≈ 0.8
√

Nobs sin i
√

f(e, i, α)
( a

1000 AU

)1/2

×
(

Mbh

4 × 106 M�

)1/2 (

R0

8 kpc

)−1 (

δθ

1 mas

)−1

. (2.21)

If, e.g., we pick i ∼ π/3, α = 0, and e ∼ 1/
√

2, an astrometric error of 0.5 mas, a

mean semi-major axis of 1000 AU, and 10 observations per star, then we can detect

the delay to Sdelay ∼ 5 with roughly ten stars. We therefore expect the Roemer delay

to be detectable in such an ELT’s sample of ∼ 100 stars and the effect must be taken

into account during parameter estimation.
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2.3.6 Interstellar interactions

In the previous sections we described the motion of a star in the potential of a black

hole and a smooth distribution of extended matter, including stars, remnants, and

dark matter. This approximation ignores the fact that the potential due to stars and

remnants is the sum of discrete point-mass potentials and is therefore not perfectly

smooth. The stars experience perturbations due to nearby encounters with individual

stars and due to fluctuations in the potential arising from all stars. These pertur-

bations cause a star’s orbital parameters to change with time. The magnitude and

the rate of these changes depend on the stellar mass function, since the perturbations

are sensitive to the characteristic mass of the field stars. Thus, measuring the effects

of stellar encounters is a probe of the mass function in the central parsec. It also

breaks the degeneracy between the contributions of stellar matter and dark matter

to the Newtonian orbital precession. Encounters may also be a source of noise in

measurements of orbital parameters such as the black hole mass and distance to the

GC. While we do not include the effects of encounters in our numerical calculations

presented in § 2.5, we now estimate their magnitude and demonstrate that the en-

counters might be detectable with an ELT and present a powerful probe of the mass

function of stellar remnants at the GC.

An encounter between a test star of mass mj and a field star of mass mi with

impact parameter b induces a change in the test star velocity given by (see, e.g.,

Spitzer 1987)

δv =
2mivrel

mi +mj

[

1 +

(

b

b0

)2
]−1/2

, (2.22)

where b0 = G(mi + mj)/v
2
rel and vrel is the initial relative velocity of the stars. The

encounter induces a change in the test star’s velocity distinct from that due to orbital

motion around the black hole. We solve for the maximum impact parameter bmax

such that an encounter induces a change in velocity of the test star larger than

the minimum detectable change δvmin. For uncorrelated position measurements the
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minimum detectable change in velocity is δvmin ∼ δθR0/
√
NobsT , where T is the

time baseline over which the orbit is monitored, and Nobs is the number of position

measurements taken in time T . Assuming δθ = 0.5 mas (§ 2.2.1), T = 10 yr, and

Nobs = 100 yields δvmin ∼ 0.2 km s−1. By equation (2.22) we have

bmax = b0

√

(

2mi

mi +mj

vrel

δvmin

)2

− 1 ≈ 2Gmi

vrelδvmin
, (2.23)

where the approximation assumes vrel � δvmin and mj . mi. Assume vrel ∼ vp =

(GM(1 + e)/(1 − e)a)1/2 for an encounter near pericenter and vrel ∼ (GM/a)1/2 for

an encounter near apocenter. If we take δvmin ∼ 0.2 km s−1 and mi = 10M� then for

an S0-2-like orbit, bmax ∼ 10 AU at pericenter and bmax ∼ 50 AU at apocenter.

We ignore the effect of the black hole on the encounter and treat the interaction

between the stars as a two-body problem. This is a fair approximation as long as the

duration of the encounter is much shorter than the time scale over which the orbital

velocity changes significantly due to the influence of the black hole. At pericenter

passage, where the orbital acceleration is greatest, the orbital time scale is tp ∼
(1 − e)3/2P , where P is the orbital period. The two-body approximation is valid as

long as the duration of the encounter satisfies tenc ∼ bmax/vrel � tp. For an S0-2-like

orbit tp ∼ 0.5 yr while by equation (2.23) tenc . 0.01 yr even for mi = 20M�.

Next, we estimate the rate at which encounters b < bmax occur for a star on a

given orbit (see, e.g., Yu 2003). Let Γij(r,vj, t) dmi be the rate at which a star with

mass mj at position r with velocity vj at time t encounters stars with masses in

the range range mi → mi + dmi. Assume the number density of stars is spherically

symmetric and follows a power law ν(r) = ν0(r/rh)−α. The phase-space distribution

function of the stars is given by (Magorrian & Tremaine, 1999) f(E) = h(α)Eα−3/2,

where E = Ψ(r) − v2/2 and Ψ(r) is the relative gravitational potential at r, while

h(α) = (2πσ2
h)−3/2ν0

Γ(α + 1)

Γ(α− 1/2)
σ−2α+3

h , (2.24)

with σh the linear stellar velocity dispersion outside the sphere of influence of the BH
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rh ' 1 pc. The rate of detectable encounters in the mass bin is then

Γij =

∫ ∞

0

dvi
2πvi

vj

f(r, vi)

∫ vi+vj

|vi−vj |
dvrel v

2
rel Σ(vrel)

= 2πKh(α)

∫

√
2Ψ

0

(

Ψ − v2
i

2

)α−3/2

×vi

vj
(vi + vj − |vi − vj |) dvi, (2.25)

where the cross section for detectable encounters Σ = πb2max, and K = 4πG2m2
i /δv

2
min.

We now determine the rate at which stars that will be monitored with an ELT

undergo detectable encounters. The integral in equation (2.25) is most easily eval-

uated in the special case α = 3/2, which is compatible with current observational

constraints (Genzel et al., 2003). To obtain a rough estimate of the rates, consider

the case α = 3/2 and assume the background stars all have identical mass not smaller

than that of the test star (e.g., they are a population of stellar mass black holes). By

equation (2.25)

Γj(r,vj, t) =
3
√

2

8

Kν0

σ3
h

(2Ψ − 1

3
v2

j ), (2.26)

and upon averaging over the orbital phase

Γj(e, a) =
1

P

∫ P

0

Γj(r,vj, t) dt

=
5π

√
2ν0

2σ3
h

(

Gmi

δvmin

)2
GMbh

a
. (2.27)

Assume the N stars monitored with an ELT have an eccentricity distribution uniform

in e2 (isotropic velocity ellipsoid) so that dN/de da ∝ ea2−α = e
√
a. Integrating over

these distributions and normalizing to N = N(< a2) ∝ a
3/2
2 yields the total rate at

which encounters are detected with an ELT:

Γ(α = 3/2) =

∫ 1

0

∫ a2

a1

dN(e, a)

de da
Γj(e, a) de da

=
15π

√
2ν0

2σ3
h

(

Gmi

δvmin

)2
GMbhN

a1 + a2 +
√
a1a2

, (2.28)
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where a1 and a2 define the range in semi-major axis that is accessible to observations.

Given the above expression for the encounter rate for α = 3/2, we rely on scaling

relations to estimate the rate for different α. Since the encounter rate is proportional

to the stellar density, Γ(α) ' Γ(3/2)(rh/r)
α−3/2. Thus, if α = 7/4, the rate of

encounters is ∼ 3 times larger than for α = 3/2. The time scale for detectable

encounters is therefore

Γ−1 ∼ 0.3 yr

(

miν0

2 × 105M� pc−3

)−1 (

mi

10M�

)−1 (

N

100

)−1

×
( a2

3000 AU

)

(

σh

100 km s−1

)3 (

δθ

0.5 mas

)2

×
(

T

10 yr

)−2 (

Nobs

100

) (

a2

rh

)α−3/2

, (2.29)

where we use the results of § 2.2 that N ≈ 100, a1 ' 200 AU, and a2 ' 3000 AU,

and have also assumed that the mass density of background particles miν0 is constant

and independent of mi.

Therefore, assuming a density cusp dominated by ∼ 10M� black holes, ∼ 30

nearby stellar encounters will be detectable during ten years of monitoring with an

ELT with δθ = 0.5 mas. Measurement of the frequency of detectable orbital deflec-

tions Γ ∝ mi is a direct test of the average mass of the dark remnants that probably

dominate the mass density near the black hole (Morris, 1993; Miralda-Escudé &

Gould, 2000) but are otherwise not directly detectable. Since N(< a) ∝ a3/2, then

by equation (2.28), Γ ∝ a1/2, i.e., the encounter rate increases with distance from the

massive black hole. The stars at a > 3000 AU with detectable linear proper motion

may therefore yield the strongest constraint on the mass function of stellar remnants,

despite being below the threshold for detecting accelerated motion due to the massive

black hole.
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2.4 Method

In this section we describe how we generate mock ELT orbital data. We also describe

our implementation of the Markov Chain Monte Carlo (MCMC) method, which we

use to estimate the uncertainties in the orbital parameters and map the shape of the

likelihood surface.

2.4.1 Parameter estimation

We are interested in estimating the uncertainties in the parameters given proper mo-

tion and radial velocity information for a sample of N stars orbiting the massive black

hole at the GC. Each star’s projected orbit is described by six phase-space parame-

ters. The black hole mass, its three-dimensional position, and the normalization and

slope of the extended matter distribution, contribute an additional six parameters.

The entire parameter space of our model therefore has dimension J = 6N + 6.

Parameter estimation on a J-dimensional grid is not practical. Since the computa-

tional cost of the grid-based approach increases exponentially with J , the parameter

space becomes prohibitively large for even just two or three stars. By contrast, the

cost of the MCMC method scales almost linearly with J .

We now briefly describe the basic ideas of the MCMC method and our choice of

implementation. A general discussion of the theory and application of the MCMC

approach is given in Gilks, Richardson, & Spiegelhalter (1996). Readers not interested

in the details of our parameter estimation scheme can skip ahead to § 2.4.2.

Let D denote the observed data, θ the model parameters, P (θ) the prior distri-

bution (which is uniform here), and L(D|θ) the likelihood of detecting the data for a

given set of parameter values. By Bayes’s theorem the distribution of θ conditioned

on D is given by

π(θ|D) =
P (θ)L(D|θ)

∫

P (θ)L(D|θ)dθ , (2.30)

and is called the posterior distribution of θ. The statistical properties of the parame-

ters such as means, moments, and confidence contour levels, are entirely specified by
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π(θ|D).

Explicit evaluation of the integral in the denominator of equation (2.30) is not

practical in large dimensional models. The MCMC method avoids evaluating the

integral by instead generating a Markov chain of parameter points the distribution of

which converges to the posterior distribution π(θ|D). The Markov aspect refers to the

property that the probability distribution of the nth state (i.e., point) in the chain θn

depends only on the previous state θn−1. It can be shown (e.g., Gilks, Richardson, &

Spiegelhalter 1996) that the density of points in a Markov chain converges to π(θ|D)

if the following criteria are satisfied: (1) the chain is irreducible, namely from any

starting state θ0 the chain can reach any non-empty set with positive probability in

some finite number of iterations; (2) the chain is aperiodic in that it does not oscillate

between different sets of states in a regular periodic fashion; (3) the chain is positive

recurrent, meaning that if the initial value θ0 is sampled from the posterior then the

expected time (i.e., number of iterations) to return arbitrarily close to state θ0 is

finite. There are several algorithms for generating Markov chains that satisfy the

above properties. We use the Metropolis algorithm (Metropolis et al., 1953) in our

numerical calculations.

Our implementation of the Metropolis algorithm is as follows:

1. Start a chain at t = 0 with some initial state θ0.

2. Generate a trial state θ′ according to the jump proposal distribution q(θ′|θt)

(see below). Compute

α(θt, θ
′) = min

[

1,
L(D|θ′)
L(D|θt)

]

. (2.31)

3. Sample a uniform random variable U that lies between (0, 1).

4. If U 6 α(θt, θ
′) then set θt+1 = θ′ (i.e., accept the jump). If U > α(θt, θ

′) then

set θt+1 = θt.

5. Increment t.
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6. Go to step #2.

If the observational errors follow a normal distribution, L(D|θ) ' exp[−χ2(θ,D)/2].

The χ2(θ,D) statistic for a single star is given by

χ2(θ,D) =

M
∑

i=1

{

[xi(θ) − xi(D)]2

σ2
x,i

+
[yi(θ) − yi(D)]2

σ2
y,i

}

+

K
∑

j=1

[vj(θ) − vj(D)]2

σ2
v,j

, (2.32)

where (x, y) is the astrometric position of the star, v its radial velocity, and σ the

corresponding measurement errors (i.e., σx,y = δθ and σv = δv). We simultaneously

fit to multiple stars by summing each star’s χ2 to form a cumulative χ2 for the model.

The jump proposal distribution q(θ′|θt) is the probability of selecting a trial state θ′

given the current state θt. For the Metropolis algorithm one considers only symmetric

proposals of the form q(θ′|θt) = q(θt|θ′). We choose to model the jump distribution

as a multivariate normal distribution with mean θt and constant covariance matrix

C.

Although the distribution of points in a chain is independent of the form of the

jump distribution once the Markov chain has converged, the time it takes a chain to

converge is sensitive to the jump distribution. To ensure an efficient run one must

carefully chose the shape and step size of the jump distribution. An ideal jump

distribution has a shape and step size that not only minimizes the convergence time

but also samples the entire posterior distribution efficiently. In our implementation

the shape of the jump distribution is determined by C and the step size is determined

by a constant scale factor multiplying C.

C is chosen such that the shape of the jump distribution is similar to that of the

posterior distribution, although we again emphasize that the shape is only important

for the efficiency of convergence. This ensures that the chain mixes well even in

regions of degeneracy. To this aim, we compute the covariance matrix that describes

the shape of the χ2 surface in the neighborhood of its minimum. We first compute the

approximate best-fit parameter state θbf by minimizing χ2. We then specify a pilot
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covariance matrix Cp that is purely diagonal with variances given by a reasonable

guess of the 1σ uncertainties for individual parameters. We draw a number (∼ 1000)

of pilot points from a multivariate normal distribution with mean θbf and covariance

Cp. Since the pilot points are within ∼ 1σ of the χ2 minimum, the shape of the

χ2 surface in the region of the points is approximately quadratic. We solve the

linear least-squares problem by fitting a quadratic χ2 model to the points and obtain

the approximate Fisher matrix that describes the curvature of the χ2 surface. We

then determine the eigenvalues and eigenvectors of the Fisher matrix. If any of the

eigenvalues are negative, indicating that the shape of the surface is unconstrained in

some direction, we generate more pilot points and redo the linear least-squares fit.

Finally, we invert the resulting Fisher matrix to obtain the covariance matrix C.

The constant scale factor that determines the step sizes must also be carefully

chosen to ensure that the chain effectively explores the parameter space. If the steps

are too small the chain does not mix well, as it stays in one region of the parameter

space for long periods of time. If the steps are too large, the trial states are rejected

frequently. For a multivariate normal jump distribution the most efficient step sizes

are those for which ∼ 25% of the jump proposals are accepted (see Gelman 1995).

We chose the (constant) jump scale factor to optimize the acceptance rate.

The first steps in a chain may be sensitive to the starting state θ0 and are therefore

not sampled from the posterior distribution. We discard these initial “burn in” points.

To ensure that a chain has converged and is sampling the full posterior distribution we

run multiple chains each starting at widely dispersed states. We tested for convergence

with the Gelman-Rubin test statistic (Gilks, Richardson, & Spiegelhalter, 1996).

2.4.2 Mock data

To generate a realistic set of orbital data we must determine: (i) the number of

stars N we can detect and monitor with an ELT, (ii) the spatial distribution of these

stars, (iii) the number of observations per year per star and, (iv) the observational

errors in the stellar positions and velocities. In § 2.2 we showed that with a 30 meter
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ELT the position of the stars can be centroided to an astrometric precision δθ30

between 0.1 − 0.5 mas and the radial velocities measured to accuracies δv30 between

1−10 km s−1. We found that with such an ELT we can detect the accelerated proper

motion of approximately 100 stars. We estimate that an integral-field spectrograph

on an ELT enables a dedicated GC observing program to obtain the positions and

velocities of each of the 100 stars roughly ten times per year.

A realistic mock data set might therefore consist of N = 100 stars, observed over

a ten year baseline with ten observations per year per star, with position and velocity

measurements for each star accurate to 0.5 mas and 10 km s−1. Unfortunately, run-

ning our MCMC simulation on such a large data set was not feasible due to limits in

computational speed. A typical run requires ∼ 107 iterations (i.e., jumps) in order

to fully sample the posterior distribution. This corresponds to a minimum of ∼ 3

days on a desktop machine for just 20 stars (J ' 126) with 100 points per star; a

simulation with 100 stars takes approximately five times longer. However, one can

obtain realistic results from a reduced sample size by properly scaling the χ2 values

(see equation 2.32) to emulate the full sample size. In particular, we construct a mock

data set with N = 20 and multiply the χ2 of each star by a factor of five.

This approach yields realistic estimates of parameter uncertainties as long as the

mock data set with N = 20 stars fairly represents the full data set with 100 stars. We

minimize the effects of sample variance as follows. We first generate data for 1000

synthetic orbits. These orbits are drawn from the distribution function of the power-

law density profile assuming randomly oriented orbits and considering only those

orbits with semi-major axes in the range detectable with an ELT (see § 2.2). We

generate mock data for these orbits assuming Gaussian position and velocity errors

with dispersions δθ and δv and a specific input model for the potential (e.g., black

hole plus extended matter). For each individual star, we compute the difference in

χ2 between the best-fit model (essentially the model used to generate the data) and

the null hypothesis model (e.g., no extended matter). We then rank the stars by the

size of this χ2 difference. We bin the 1000 stars into N bins according to their rank

and randomly select one star from each bin. The resulting N stars form the set of
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orbits to which we fit.

Table 2.1 lists the orbital parameters for one realization of a sample of 20 stars

to which we fit. Given the orbital parameters, we generate mock data by solving

the equation of motion for each star (see equation 2.8). In Figure 2.2 we show the

astrometric positions of the 20 stars over the ten year observational baseline with ten

epochs per year. The values of the input model parameters describing the potential

are: Mbh = 4 × 106M�, R0 = 8 kpc, (xbh, ybh) = (0, 0), Mext(r < 0.01 pc) = 6000M�

and either γ = 1.5 or 2.
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Figure 2.2 Astrometric positions of the 20 synthesized orbits to which we fit the
model. The thick-lined portion of each orbit is the proper motion over the fitted 10
year baseline assuming 10 observations per year.

To test that the parameter uncertainty estimates are not affected by sample vari-

ance we ran simulations on several different draws of 20 stars. As we show in § 2.5,

the parameter uncertainties obtained are similar amongst the different data sets, sug-

gesting that sample variance does not affect the results. Thus, given the current

uncertainties in an ELT’s ultimate capabilities, as well as the uncertainty in the ex-

act nature of the stellar distribution at the GC, we conclude that to a reasonable
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Table 2.1. Stellar orbital parameters

Star P a e rmin i
(yr) (AU) (AU) (deg)

1 2.9 325 0.852 48 89
2 5.2 476 0.587 197 104
3 5.4 488 0.783 106 46
4 9.5 712 0.560 313 86
5 13.4 895 0.800 179 114
6 14.2 931 0.772 212 81
7 17.7 1078 0.800 216 15
8 23.2 1289 0.605 510 126
9 25.2 1363 0.903 132 25
10 26.6 1413 0.730 382 142
11 36.8 1755 0.705 517 56
12 40.4 1869 0.890 206 93
13 42.3 1928 0.885 223 105
14 46.6 2056 0.703 611 42
15 50.6 2172 0.552 973 104
16 51.5 2197 0.567 951 145
17 52.2 2218 0.439 1245 106
18 52.5 2225 0.636 810 95
19 57.8 2372 0.319 1617 26
20 78.1 2901 0.220 2264 60

Note. — The listed parameters are orbital
period (P ), semi-major axis (a), eccentricity
(e), pericenter distance (rmin), and inclination
(i). They are not all independent variables.
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approximation a mock data set comprising N = 20 stars with χ2 values increased

fivefold yields parameter uncertainties similar to that expected with observations by

a 30 meter ELT.

We also show in the next section that the orbital parameter constraints scale with

the measurement errors σ and number of stars N as σ/N1/2. Results for a wide range

of assumed ELT capabilities (i.e., different δθ and δv, different aperture, etc.) can

therefore be computed by scaling the results of our fiducial 30 meter ELT model,

using the relations between N , aperture D, δθ, and δv, given in § 2.2.

2.5 Results

In this section we investigate how well observations with an ELT constrain the struc-

ture of the GC. Our model of the GC and the orbits was described in § 2.3. We

draw stellar orbital parameters from a phase-space distribution determined by the

model and use these orbits to synthesize mock ELT data (see § 2.4). We then fit a

model to the mock data and calculate the uncertainties in the parameters using the

MCMC technique discussed in § 2.4.1. We show results for a 30 meter ELT with

(δθ, δv) = (0.5 mas, 10 km s−1) and (δθ, δv) = (0.1 mas, 2 km s−1). However, since

the parameter uncertainties scale with measurement error σ and number of moni-

tored stars N as σ/N1/2, the results can be used to describe the capabilities of an

ELT with different specifications. For example, a 100 meter ELT will detect ∼ 10× as

many stars (§ 2.2.2); if the telescope has astrometric and spectroscopic errors that are

smaller than those of a 30 meter telescope by a factor of 5 the parameter uncertainties

will be ∼ 10× smaller. In this section, we estimate the limits that can be placed on

the parameters associated with the black hole including Mbh and R0 (§ 2.5.1), as well

as on the extended distribution of (dark) matter near the black hole (§ 2.5.2). We

discuss the dependence of the limits on the astrometric and spectroscopic precision of

the observations. We also investigate whether relativistic corrections to the Keplerian

motion can be detected at the GC (§ 2.5.3).
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2.5.1 Measuring Mbh and R0
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Figure 2.3 Constraint on Mbh and R0 obtainable with an ELT assuming an extended
matter distribution with γ = 1.5 (results are similar for γ = 2). The solid contours
show the 68%, 95%, and 99.7% confidence levels assuming an astrometric limit of
δθ = 0.5 mas and a spectroscopic limit of δv = 10 km s−1 for the draw of 20 stars
shown in Table 2.1. The line-dot contour shows the 99.7% confidence level for a
different draw of 20 stars. The dashed contour shows the 99.7% confidence level for
smaller astrometric and spectroscopic limits of δθ = 0.1 mas and δv = 2 km s−1. An
ELT will constrain both Mbh and R0 to better than 0.1%.

In Figure 2.3 we show the constraints an ELT will place on Mbh and R0. For an

astrometric limit of δθ = 0.5 mas and a spectroscopic limit of δv = 10 km s−1 (see

§ 2.2.1) the fractional uncertainties in Mbh and R0 are less than 0.1% at the 99.7%

level. This is a factor of ∼ 100 better than present uncertainties. The result is robust

in that simulations with distinct mock data sets of 20 stars, drawn in the fashion

described in § 2.4.2, produce similar uncertainties in the model parameters.

For astrometric and spectroscopic limits that are a factor of 5 smaller the fractional

uncertainties in Mbh and R0 are smaller by almost a factor of 5. The uncertainties

in Mbh and R0 scale almost linearly with the measurement errors for observations at
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this precision. We also verified that the uncertainties scale with N as roughly N−1/2.

Observations with a 30 meter ELT will therefore constrain the distance to the GC

to within a few parsecs and the mass of the black hole to within a few thousand solar

masses. We discuss the implications of measuring R0 to such high accuracy in § 3.4.

2.5.2 Measuring the extended matter distribution
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Figure 2.4 Constraint on the extended matter distribution obtainable with an ELT.
Shown are the 68%, 95%, and 99.7% confidence levels on the enclosed mass and slope
of an extended matter distribution assuming an astrometric limit of δθ = 0.5 mas
and a spectroscopic limit of δv = 10 km s−1. The input models have power-law slope
of γ = 1.5 and γ = 2 and an input enclosed mass of 6000M� within 0.01 pc. The
dashed contour is the constraint at the 99.7% level for measurement errors that are
a factor of 5 smaller.

In Figure 2.4 we show the constraints an ELT will place on the extended matter

distribution for input power-law models with Mext(r < 0.01 pc) = 6000M� and γ =

1.5 or γ = 2. We chose these distributions in order to conform to the extrapolation of

the observed stellar density distribution and to theoretical estimates of dark matter

clustering (see § 3.1). We find that for an ELT with δθ = 0.5 mas and δv = 10 km s−1
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one can detect such extended matter distributions, yielding measurements of Mext and

γ that are accurate to 20 − 30% (i.e., δMext ∼ 1500M� and δγ ∼ 0.5). Since the

amplitude of the Newtonian retrograde precession varies linearly with Mext (§ 2.3.2),

the fractional uncertainty is δMext/Mext ∝ δ∆φNewt/∆φNewt ∝ M−1
ext , where δ∆φNewt

is set by the astrometric precision. Thus δMext is independent of Mext so that an

extended matter distribution is detectable (i.e., observations yield a lower bound) for

δθ = 0.5 mas and δv = 10 km s−1 as long as Mext(r < 0.01 pc) & δMext ∼ 1500M�.

Such an ELT will therefore place interesting constraints on the extended matter at

the GC.

2.5.3 Measuring relativistic effects

As discussed in § 2.3.3, order of magnitude estimates suggest that post-Newtonian

corrections to the equations of motion, involving terms of order (v/c)2, are measurable

with an ELT with astrometric resolution of δθ . 0.5 mas. In an effort to demonstrate

this more quantitatively, we allow the speed of light to be a parameter in our model

and examine how well we recover its value. We purposely do not include relativis-

tic corrections to the observed motion associated with propagation effects (e.g., the

Roemer time delay and other higher-order corrections) so that we can examine the

detectability of (v/c)2 general relativistic corrections to the orbital dynamics such

as the prograde precession of the major axis position. In Figure 2.5 we show the

constraint on c as a function of Menc. Post-Newtonian effects are observable, as c

is measured to ∼ 5% accuracy. Since v/c . 0.2 for all stars in the sample (§ 2.3.1)

the few percent constraint on c suggests that while the (v/c)2 effects are measurable,

the (v/c)3 effects are not. The orbital precession due to black hole spin is of order

(v/c)3 (§ 2.3.4) and detecting it with an ELT with δθ = 0.5 mas requires the favorable

discovery of a star on a compact and highly eccentric orbit. Based on estimates of the

signal-to-noise from a spin-induced apocenter shift (equation [2.15]), an astrometric

precision of ∼ 0.05 mas is needed to reliably detect the black hole spin.

The degeneracy between c and Menc is a consequence of the degeneracy between
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Figure 2.5 An ELT’s sensitivity to post-Newtonian effects assuming an astrometric
limit of δθ = 0.5 mas and a spectroscopic limit of δv = 10 km s−1. Shown is the
uncertainty in the speed of light and the extended matter mass as obtained by in-
cluding post-Newtonian corrections to the equations of motion. The Roemer delay
and special relativistic effects are not included in the model in order to demonstrate
that general relativistic effects of order (v/c)2, including the prograde precession, are
detectable with an ELT. The line styles are the same as in Figure 2.3.

the prograde relativistic precession and the retrograde Newtonian precession. De-

creasing c increases the amount of prograde motion ∆φpro while increasing Menc in-

creases the amount of retrograde motion ∆φNewt. The two effects compensate for one

another over a range of c and Menc. The degeneracy is broken at sufficiently extreme

values of Menc because the relativistic and Newtonian effects each induce a distinct

precessional shape.
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2.6 Constraints on Galactic structure from mea-

surements of R0

The distance to the GC, R0, is a fundamental parameter in models of the Milky Way

structure. As Olling & Merrifield (2001) note, models of the Milky Way exhibit strong

interrelations between the Galactic constants (R0 and the local Galactic rotation

speed Θ0), the shortest-to-longest axis ratio, q = c/a, of the dark matter halo, and the

local stellar column density Σ∗. The determination of q is of particular interest since

different models of dark-matter and structure formation scenarios predict different

values for q. Cold dark-matter simulations typically produce galactic halos that are

triaxial (Warren et al., 1992; Jing & Suto, 2002) although these tend become oblate

under the influence of the dissipative infall of gas resulting in halos with q ' 0.5

(Dubinski, 1994). Alternatively, hot dark-matter models predict round halos with

q ∼ 0.8 (Peebles, 1993) while some baryonic dark-matter models imply q ∼ 0.2

(Pfenniger, Combes, & Martinet, 1994). As we now discuss, determining R0 to 0.1%

via monitoring of stellar orbits at the GC with an ELT enables an extremely precise

measurement of q in the Milky Way.

Olling & Merrifield (2000) demonstrate that there is significant uncertainty in

existing estimates of q in galaxies due to both the limited amount of data available

for measuring q and the fact that different measurement techniques have yielded

systematically different values. Presently, the situation is not any better for our own

Galaxy, with plausible values lying in the range 0.3 . q . 1.

The measurement of q in the Milky Way entails measuring the Galaxy’s radial

mass distribution and the degree to which this mass distribution is flattened. Olling

& Merrifield (2000) show that the uncertainty in q in the Milky Way is almost entirely

due to the large errors in the Galactic constants Θ0 and R0. Indeed, Olling & Mer-

rifield (2001) show that the fractional uncertainty in q is nearly twice the fractional

uncertainty in Θ0. Therefore, a precision measurement of the Sun’s proper motion

with respect to the GC in combination with a precision measurement ofR0 tightly con-

strains Θ0 and hence q. According to Salim, Gould, & Olling (2002) future astrometric
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surveys will be able to measure the Sun’s proper motion µ = V/R0 to within several

microarcseconds, corresponding to 0.1% accuracy. Here V = Θ0 + V� ' 220 km s−1

is the sum of the rotation speed of the local standard of rest and the Sun’s motion

relative to it. The uncertainty in Θ0 will be the dominant error in V ; V� is already

known to an accuracy of 0.6 km s−1 from the Hipparcos catalogue (Dehnen & Binney,

1998). Thus, the monitoring of stellar orbits at the GC with an ELT in conjunction

with future astrometric survey missions will constrain the Milky Way’s dark-matter

halo shape parameter q to a few tenths of a percent.

2.7 Conclusions

We have examined a variety of experiments that can be achieved through the infrared

monitoring with an ELT of stars within a few thousand AU of the GC. The astrometric

limit of a 30 meter ELT is conservatively 0.5 mas and possibly as high as 0.1 mas.

By comparison, the astrometric limit of current observations is 1 − 2 mas.

The greater point-source sensitivity and spectral resolution of an ELT enables the

measurement of radial velocities with errors . 10 km s−1. At present, of the ∼ 10

stars with measured accelerated proper motions, spectral lines have been detected

only in S0-2, with radial velocity uncertainties of ∼ 30 km s−1. Measuring the radial

velocities of stars breaks the degeneracy between mass and distance and thus yields

a direct measurement of the distance to the GC. If the spectra of fainter stars can

be obtained, the detection of deep molecular lines will improve upon the velocity

estimates by an additional factor ×10. The solar type stars that will be detectable

with an ELT may therefore yield radial velocity uncertainties considerably smaller

than 10 km s−1.

A 30 meter ELT will be able to detect stars down to a K-band magnitude of

K ∼ 22, approximately four magnitudes fainter than currently possible. Due to

confusion, it will be difficult to detect still fainter stars. Using measurements of the

K-band luminosity function within the inner 1′′ of the GC, we estimate that such

an ELT will detect the accelerated motion of ∼ 100 stars with semi-major axes in
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the range 200 . a . 3000 AU. Current observations are limited to the detection of

∼ 10 stars, all with a & 1000 AU. We find that the number of stars with detectable

accelerated motion scales with the aperture of an ELT as N ' 100(D/30 m)2.

Given the observational capabilities of an ELT and the likely, albeit at low masses

largely uncertain, stellar environment at the GC, we constructed a plausible sample

of stellar orbits. The model includes the dynamical contribution of an extended

distribution of dark matter around the black hole that is composed of stellar remnants

and CDM. We find that for measurements at the precision obtainable with an ELT

the uncertainty in the model parameters scale with the measurement errors σ (i.e.,

δθ, δv) and the number of monitored stars N as roughly σ/N1/2. Thus, while we

focus on the capabilities of a diffraction limited 30 meter ELT with δθ = 0.5 mas

and δv = 10 km s−1, our results can be used to determine the capabilities of an ELT

with different specifications. For example, a 100 meter ELT will detect ∼ 10× as

many stars so that if it has astrometric and spectroscopic errors that are smaller by

a factor of 5, the measurement accuracy in the parameters will improve by a factor

of approximately ten.

We find that with a 30 meter ELT the parameters Mbh and R0 will be measured

to an accuracy better than 0.1%. Determining R0 to within a few parsecs will signif-

icantly constrain models of the Galactic structure as it aids the precise measurement

of the dark matter halo shape.

While current observations of stellar proper motions are compatible with Keplerian

motion, a number of dynamical effects produce significant deviations, including the

Newtonian retrograde precession, the relativistic prograde precession, frame dragging

due to the black hole spin, and interstellar interactions involving nearby encounters.

All but the frame dragging effect produce non-Keplerian motions that are detectable

with a 30 meter ELT. Unfortunately, the spin of the massive black hole at the GC

will probably be out of reach to kinematic studies unless an astrometric precision of

∼ 0.05 mas is achieved.

The presence of an extended distribution of matter results in a Newtonian retro-

grade precession due to differences in the amount of mass enclosed within an orbit’s
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pericenter and apocenter. We considered extended matter density profiles consistent

with current observations of the stellar distribution at the GC. We modeled the dis-

tribution as a power-law profile normalized such that Mext(r < 0.01 pc) = 6000M�

and with slope γ = 1.5 or 2. Standard models of dark matter clustering about a mas-

sive black hole predict similar profiles. An orbit monitoring program with a 30 meter

ELT will constrain the mass and slope of such profiles to ∼ 30% accuracy. Thus,

monitoring orbits with an ELT provides a probe of the extended matter distribution

within ∼ 104 Schwarzschild radii of the massive black hole at the GC.

We also calculated the rate at which the monitored stars experience detectable

deflections due to stellar gravitational scattering encounters with background compact

remnants. We considered a detection threshold set by the minimum detectable change

in the velocity of a monitored star. For a density cusp dominated by ∼ 10M� black

holes, ∼ 30 nearby stellar encounters will be detected by a 30 meter ELT over a ten

year observing baseline. This will confirm the presence of a cusp of compact remnants

at the GC and enable the measurement of the remnants’ masses.
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2.A Current constraints on R0 and the extended

matter distribution

In collaboration with Andrea Ghez’s GC group at UCLA, we present here estimates of

R0 and limits on the extended matter distribution based on an analysis of the orbital
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Figure 2.6 Constraint on Mbh and R0 from joint fits to the orbital motions of the
stars S0-2, S0-16, and S0-19.

motion measurements obtained with Keck over the last decade. The astrometric and

radial velocity measurements are described in part in Ghez et al. (2005) and Ghez

et al. (2003), respectively; the most recent data along with the constraints presented

here are described in an upcoming paper. We perform a joint fit to the orbital motions

of the stars S0-2, S0-16, and S0-19 using the methods described in § 2.4.

In Figure 2.6 we show the current constraint on Mbh and R0 as obtained with the

joint orbital fits. The measured value for R0 is in agreement with the values obtained

using other, less direct, techniques and the uncertainty is comparable in magnitude

(cf., Reid 1993). Another group using VLT observations of orbital motions at the GC

have obtained a similar measurement of R0 (Eisenhauer et al., 2005).

In Figure 2.7 we show the limits on Mext(r < 0.01 pc) and γ assuming the power-

law model described in § 2.3.2. Currently, one can only place an upper-bound on the

extended mass corresponding to ∼ 10% of the black hole mass. Theoretical estimates

predict an extended mass of ∼ 103M� within 0.01 pc, well below the current upper-

bound.
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Figure 2.7 Constraint on the extended matter distribution from joint fits to the orbital
motions of the stars S0-2, S0-16, and S0-19.

As one expects given the current data, the orbital motions are fit equally well by

relativistic and non-relativistic models.
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Schödel, R. et al. 2002, Nature, 419, 694
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Chapter 3

Finding Isolated Stellar Remnants

at the Galactic Center

Miloš Milosavljević and Nevin N. Weinberg

Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125

Abstract

Although the central parsec of the Galaxy was host to intense star formation activity in the recent

(1 − 3) × 107 yr, the stellar mass function inside the sphere of dynamical influence of the massive

black hole (MBH) Sagittarius A∗ at the Galactic center is completely unknown. A measurement of

the mass function is particularly desirable as the mass density is likely dominated by massive

remnants, including stellar-mass black holes, that collect near the MBH because of dynamical

segregation. The cluster of massive remnants is expected theoretically but has eluded observations.

Its existence is of critical importance for the prospects for detecting gravitational radiation from

the capture of compact objects by central MBHs in other galaxies. Here we describe how the

monitoring of stellar proper motions can be used to directly probe the masses of isolated stellar

remnants near the MBH. We derive expressions for the rate at which perturbations from remnants

deflect stellar orbits and describe how the remnant masses can be extracted from the monitoring

data. We discuss alternative astronomical signatures of the concentration of remnants near Sgr A∗

and suggest that the X-ray transients discovered by Muno et al. (2005) are isolated stellar-mass

black holes accreting from dense molecular clouds.
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3.1 Introduction

The monitoring of bright stars near the massive black hole (MBH) at the Galactic

center with speckle imaging and adaptive optics has yielded stellar proper motions and

revealed orbital solutions (e.g., Schödel et al. 2002; Ghez et al. 2003). A combination

of proper motions and radial velocity data were used to independently constrain the

mass of, and distance to, the MBH (Eisenhauer et al., 2003). The central parsec of the

Galaxy was recently host to intense star formation activity. A number of B stars (the

“Galactic center cluster”), Wolf-Rayet stars, and luminous supergiants orbit within

the dynamical sphere of influence of the MBH (e.g., Krabbe et al. 1995; Genzel et al.

2000; Gezari et al. 2002; Ghez et al. 2003; Genzel et al. 2003). These massive stars

might be a frosting on an invisible cake: The mass density should be dominated by

massive stellar remnants that have eluded detection.

The most massive stars and remnants sink toward the MBH via dynamical friction,

displacing the less massive ones to larger radii. Although the OB-type stars may be

the most massive objects while on the main sequence, the stellar-mass black holes

are the most massive species on average. The black holes form a cusp in which the

density is a power law in radius ρ ∝ r−7/4 (Bahcall & Wolf, 1976, 1977; Murphy,

Cohn, & Durisen, 1991; Preto, Merritt, & Spurzem, 2004). Miralda-Escudé & Gould

(2000) estimate that ∼ 20, 000 stellar-mass black holes could have collected within the

central parsec (also see early analysis by Phinney 1989 and Morris 1993). The rate

at which the stellar-mass black holes are captured by the MBH is ∼ 10−6 −10−7 yr−1

(Sigurdsson & Rees, 1997; Freitag, 2003; Gair et al., 2004), much too low to deplete

them.

A direct measurement of the stellar black hole masses would be of immense benefit

given current uncertainties in the black hole mass function. The mass of the black

hole that is produced in the core collapse of a very massive star with solar or super-

solar metallicity is sensitive to mass loss after the star becomes a Wolf-Rayet star

(Woosley, Heger, & Weaver, 2002). The mass loss is not severe for the first generation

of metal-poor, “Population III” stars, and these could have left behind a population
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of ∼ 100M� black holes (e.g., Madau & Rees 2001). Only 19 X-ray binaries have been

dynamically confirmed to contain compact objects with masses above 3M�; some of

these have masses uncertain by a factor of 2 (Orosz, 2003).

The Galactic center is an ideal place to look for exceptionally massive remnants.

The region is host to star-formation as evidenced by the young stars in the Galactic

center cluster and in the nearby Arches and Quintuplet clusters. Quintuplet contains

one of the most luminous stars known, the “Pistol star” (Figer et al., 1998), which

is a candidate progenitor of a black hole more massive than found in X-ray bina-

ries. Compact star clusters may be sites of runaway stellar coalescence leading to

the formation of supermassive stars that collapse into intermediate-mass black holes

(IMBHs; Portegies Zwart & McMillan 2002; Gürkan, Freitag, & Rasio 2004). The

clusters sink in the gravitational potential of the Galactic bulge via dynamical friction

and are disrupted by the MBH, thereby delivering the IMBHs into the MBH’s sphere

of dynamical influence (Hansen & Milosavljević, 2003; Yu & Tremaine, 2003; Kim,

Figer, & Morris, 2004; Levin et al., 2005).

We here describe how the monitoring of stellar proper motions can be used to

directly probe the mass function of stellar remnants near the MBH. A similar tech-

nique was discussed by Ashurov (2004) in the context of globular clusters. In § 3.2,

we derive expressions for the rate at which perturbations from remnants deflect stel-

lar orbits. In § 3.3, we describe the procedure by which the remnant masses and

densities can be extracted from the monitoring data. In § 3.4, we discuss some other

observable signatures of the remnants.

3.2 Gravitational interactions

Gravitational interactions deflect neighboring bodies. We work under the approxi-

mation that the interaction timescale is much shorter than the orbital period and the

period over which the motion of a star is being monitored. Both conditions are satis-

fied for stars that traverse a large fraction of an orbit over a decade. An exception are

the stars in a secular resonant relation with a perturber; these resonances, however,
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do not affect the semimajor axis (Rauch & Tremaine, 1996).

Discreteness of the stellar gravitational potential, which is a sum of a large num-

ber of point-mass potentials, induces diffusion of the orbital elements of a test star.

Occasional nearby encounters (“large-angle scattering”) induce instantaneous, large

deflections that are not described by diffusion. We here calculate the evolution of the

semimajor axis probability distribution due to orbital diffusion and nearby encoun-

ters.

The focus on the semimajor axis is arbitrary. Other orbital elements are also

perturbed; Similar expressions to those for the semimajor axis can be derived for the

eccentricity, the inclination, etc.

Near the black hole, the semimajor axis is related to the orbital energy via

a = GMbh/2E, where Mbh ≈ 4 × 106M� is the mass of the MBH; we use the semi-

major axis and the energy interchangeably in what follows. We first calculate the

orbital diffusion due to multiple, small-angle deflections, induced by the discreteness

of the stellar gravitational potential. The diffusion of the probability N(E, t)dE that

a star subject to such encounters has energy between E and E + dE at time t is

described by the orbit-averaged Fokker-Planck equation. Since we are interested in

the evolution of the semimajor axis, we ignore the angular momentum terms in the

Fokker-Planck equation. This simplifies the calculation and does not significantly

affect our estimates. It also simplifies the forthcoming analysis to assume that the

mass of the test star equals the mass m of the perturbers. Though artificial, this as-

sumption introduces small inaccuracies in our estimates; generalization to a spectrum

of stellar and perturber masses is straightforward but tedious.

The Fokker-Planck equation reads

∂N

∂t
= − ∂

∂E
(〈∆E〉tN) +

1

2

∂2

∂E2

(

〈(∆E)2〉tN
)

, (3.1)

where 〈∆E〉t and 〈(∆E)2〉t are the orbit-averaged diffusion coefficients; the averaging

is carried out as in equation (3.7).

Expressions for the diffusion coefficients in the case of an isotropic background of
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perturbers are given in equations (A20) and (A21) of Cohn (1979), which are written

in terms of the phase space distribution of the perturbers f(Ep). For a general power-

law profile, the isotropic distribution function is given by (Magorrian & Tremaine,

1999)

fγ(Ep) =
ν0

(2πσ2
0)3/2

Γ(γ + 1)

Γ(γ − 1/2)

(

Ep

σ2
0

)γ−3/2

, (3.2)

where ν0 is the number density of the perturbers at the radius r0 ∼ GMbh/σ
2
0 ∼ 1 pc

and σ0 ∼ 100 km s−1 is the one-dimensional stellar velocity dispersion just outside of

r0. A realistic choice for the number density is ν0 ∼ 2 × 105(m/M�)−1 pc−3.

The distribution function attains the simplest form, that of a constant f3/2 =

3
√

2ν0/16πσ3
0, for a spatial density profile that is a power law ρ ∝ r−γ with γ =

3/2. This profile is compatible with the observed stellar number density distribution

(Genzel et al., 2003), and is slightly shallower than the density profile γ = 7/4 that the

most massive bodies would settle into as a result of dynamical friction and diffusion

(see § 3.1). The constant is a conservative choice for the distribution function that

further simplifies the calculation.

Substituting f3/2 into the expressions for the diffusion coefficients we obtain 〈∆E〉 =

(4/3)πΓf3/2(2ϕ−5E) and 〈(∆E)2〉 = (8/15)πΓf3/2v
2(2ϕ+3E), where Γ = 4πG2m2 ln Λ,

ln Λ is the Coulomb logarithm, and ϕ(r) = GMbh/r is the gravitational potential

of the black hole. Upon orbit averaging, 〈∆E〉t = −4πΓEf3/2/3 and 〈(∆E)2〉t =

−16πΓE2f3/2(1 − 8/
√

1 − e2)/15.

The solution to equation (3.1), written as a probability N(a0, a, t) that a star

with initial semimajor axis a0 = GMbh/2E0 ends up on an orbit with semimajor axis

a = GMbh/2E after time t is given by

N(a0, a, t) =
exp {−[ln(a0/a) + b2λt]

2/4b1λt}
a
√

4πb1λt
, (3.3)

where λ = 4πΓf3/2/15, b1 = 16 (1 − e2)
−1/2 − 2, and b2 = 16 (1 − e2)

−1/2
+ 3.

Next, we turn to an alternative statistical description of stellar encounters, which

explicitly accounts for single scattering events that result in large deflections. We
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calculate the orbit-averaged rate K(E,E ′)dE ′ at which a star with specific binding

energy E experiences an encounter in which its energy changes to a value between

E ′ and E ′ + dE ′. The rate is evaluated by time-averaging the local rate K(E,E ′, r)

along the initial orbit. The local rate was derived by Goodman (1983) for globular

clusters but is equally applicable to objects orbiting a massive black hole. In the

notation of Goodman, ∆E = E ′−E is the star’s energy change, v =
√

2(ϕ− E) and

v′ =
√

2(ϕ− E ′) are the velocities of the star before and after the encounter, Ep is

the energy of the perturber, while vp =
√

2(ϕ− Ep) and v′p =
√

2(ϕ− Ep + ∆E) are

the velocities of the perturber before and after the encounter. The rate equals

K(E,E ′, r) =
2π2G2m2

v|∆E|3











A(E,E ′, r) +B(E,E ′, r)

C(E,E ′, r) +D(E,E ′, r)

, (3.4)

where the upper term should be used for ∆E < 0, the lower for ∆E > 0, and

A(E,E ′, r) =

∫ E′

0

f(Ep)

(

8

3
v2 − 4∆E

)

vdEp,

B(E,E ′, r) =

∫ ϕ(r)+∆E

E′

f(Ep)

(

8

3
v′2p − 4∆E

)

v′pdEp,

C(E,E ′, r) =

∫ E′

0

f(Ep)

(

8

3
v′2 + 4∆E

)

v′dEp,

D(E,E ′, r) =

∫ ϕ(r)

E′

f(Ep)

(

8

3
v2
p + 4∆E

)

vpdEp. (3.5)

Substituting f3/2 into the integrals yields the transition rate

K(E,E ′, r) =

√
2π

10

G2m2ν0

σ3
0|E ′ −E|3

×











10ϕE ′ + 5E ′E − 15E ′2 + 8ϕ2 − 6ϕE − 2E2 (if E ′ < E),
√

ϕ−E′

ϕ−E
(14ϕE ′ − 5E ′E − 7E ′2 + 8ϕ2 − 10ϕE) (if E ′ > E).

(3.6)

For an eccentric orbit with eccentricity e, the radial dependence is removed by taking
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the orbital average,

K(E,E ′) = P (E)−1

∮

K(E,E ′, r(t))dt

= 2P (E)−1

∫ r+

r−

K(E,E ′, r)
√

2(ϕ− E) − (1 − e2)ϕ2/2E
dr, (3.7)

where r− and r+ are the turning points at which the argument of the square root in

equation (3.7) vanishes and P (E) = 2−1/2πGMbhE
−3/2 is the orbital period of the

star.

The probability N(E, t)dE that a star has energy between E and E + dE at time

t evolves according to

∂N(E, t)

∂t
=

∫ 2E

0

[N(E ′, t)K(E ′, E) −N(E, t)K(E,E ′)]dE ′. (3.8)

The first term on the right hand side of equation (3.8) represents the increase due to

scattering from another energy into E, and the second represents the decrease due

to scattering from E into another energy. The integral in equation (3.8) is logarith-

mically divergent which is a disguised form of the Coulomb logarithm (Goodman,

1983).

Assuming the initial energy of the star E0 is precisely known, for times short

compared to the relaxation time ∼ E/〈(∆E)2〉1/2 we expand N(E, t) in order of t

and keep only the linear order in equation (3.8) to obtain

N(E, t) ≈ tK(E0, E) (3.9)

The expansion in equation (3.9) is valid only where |E−E0| is larger than the diffusion

width ∼ t〈(∆E)2〉1/2.

For the special case of a circular orbit of energy E scattered onto an eccentric orbit

with energy E ′, ϕ(r) = 2E. Changing to semimajor axes in the place of energies we

obtain

N(a0, a, t) =

√
2π

10

a0t

a2

G2m2ν0

σ3
0

K̃circ(a0/a) (circular), (3.10)
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where

K̃circ(x) = |1 − x|−3 ×











18 + 25x− 15x2 (if x < 1),

√
2 − x(12 + 23x− 7x2) (if x > 1) .

(3.11)
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Figure 3.1 Probability that after T = 10 yr the semi-major axis of a star is changed
from an initial value ai to a final value af due gravitational encounters encounters for
ai = 1000 AU (left panel) and ai = 2500 AU (right panel) with e = 0 and e = 0.9
assuming m = 10M�.

In Figure 3.1 we show the probability per unit semimajor axis that a star with

initial semi-major axis a0 ends up on an orbit with semi-major axis a in a time

T = 10 yr. For small |∆a| = |a − a0|, where the linear expansion in equation (3.9)

is invalid, diffusion due to multiple, small-angle deflections is the correct description

and the probability is given by equation (3.3). For large |∆a|, large-angle deflections

dominate over diffusion and the solution is given by equation (3.9), or by equation

(3.10) for the special case of a circular orbit. In both regimes the dependence on the

density of scatterers, their mass, and the time, occurs strictly through the product
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mρt.

3.3 Parameter estimation

We here derive the posterior likelihood on the mass and the density of perturbers

P (m, ρ|{ãi,k, ãf,k}) given a set of initial and final measured semimajor axes ãi,k and

ãf,k. We use tilde to denote measured quantities and the index k ranges from 1 to

Nstar, where Nstar is the number of monitored stars. Lacking prior knowledge of m

and ρ, Bayes’s theorem tells us that the posterior likelihood equals

P (m, ρ|{ãi,k, ãf,k}) =

Nstar
∏

k=1

P (ãi,k, ãf,k|m, ρ)
∫ ∫

P (ãi,k, ãf,k|m, ρ)dmdρ
. (3.12)

Let P (ã|a) be the probability that a measurement of the semimajor axis yields the

value ã given that the true semimajor axis equals a. Then the probability that the

measured semimajor axis changes from ãi to ãf is given by (for clarity we omit index

k)

P (ãi, ãf |m, ρ) =

∫ ∫

P (ãi|ai)P (ãf |af )P (ai, af |m, ρ)daidaf . (3.13)

The probability that a star with true semimajor axis ai is scattered onto af is the

product of the star having semimajor axis ai with the transition probability calculated

in § 3.2, P (ai, af |m, ρ) = P (ai)N(ai, a), where P (a) is the distribution of test star

semimajor axes, and N(ai, a) was defined in § 3.2 and depends on m and ρ.

Finally, the uncertainty in the measurement of the semimajor axis must be quan-

tified. It depends on the eccentricity and the inclination of the orbit. We here ignore

these details and model the uncertainty via

P (ã|a) = δ−1
√

Nobs/2πe
−Nobs(a−ã)2/2δ2

, (3.14)

where Nobs is the number of observations of a star, and δ is the characteristic as-

trometric uncertainty in determining the stellar position in three dimensions. This

picture applies only to short-period stars with orbits that can be monitored over at



93

least a large fraction of the orbit.

An estimate of δ for a 30 meter class telescope is 0.5 mas (Weinberg, Milosavljević,

& Ghez, 2004), which at the Galactic center translates to δ ∼ 4 AU. While keeping

in mind that the method is sensitive only to the product mρ, we set the density of

the perturbers to ρ = 2 × 105(r/1 pc)−3/2M� pc−3. We calculate P (m|ρ, {ãi,k, ãf,k})

with t = 10 yr, Nobs = 100, a0 = 3000 AU, and a prior m > 0.5M�. We generate

mock data sets {ãi,k, ãf,k} using m = (5, 10)M�. For given m, data sets drawn from

the same distribution yield slightly different posterior likelihoods. To obtain unique

likelihoods, we carried out a geometric averaging over a large number of realizations.

The resulting posterior likelihoods are shown in Figure 3.2. If only 10 stars are

available at a0 = 1000 AU, no constraints can be obtained on the mass.

Figure 3.2 Posterior likelihood distributions P (m|ρ, {ãi,k, ãf,k}) for a sample of 100
stars on circular orbits at a0 = 3000 AU generated for m = (5, 10)M�. For details
see § 3.3.

To measure the mass independently one must either assume prior knowledge of

the density, or measure the density via another method. The total mass density can

be determined via accurate astrometry of stars orbiting the MBH, since the extended

mass distribution in remnants induces Newtonian retrograde precession in the stellar

orbits. Its amplitude is proportional to the density (Rubilar & Eckart, 2001), and

will be measurable with a 30 meter class telescope (Weinberg, Milosavljević, & Ghez,

2004).

We now review the limitations and the caveats of our simplified calculation. The
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choice to restrict to the evolution of the semimajor axis is conservative. Other stellar

orbital elements also incur changes and this enhances the power to constrain the

perturber mass. In § 3.2, the choice to equate the perturber mass to that of the

test star is valid for 5 − 10M� black hole perturbers and B-type stars, which lie in

the same mass range. In § 3.3, the choice of Gaussian measurement uncertainty on

the semimajor axis (equation 3.14) is ad hoc. The correct uncertainty would differ

between stars and would be a function of the inclination of the orbit and of the

fraction of the orbit covered by the monitoring. The choice to restrict to circular

orbits while evaluating the posterior likelihood is conservative, since eccentric orbits

diffuse a little faster, as evident in Figure 3.1. Finally, the choice of density profile

with logarithmic slope γ = 3/2 is conservative given that γ = 7/4 is expected; the

latter slope would imply ∼ 3 times larger rate of encounters, although the overall

normalization of the density is sufficiently uncertain to preclude a definite prediction.

3.4 Discussion

Some other methods might also help detect isolated stellar remnants at the Galactic

center. Chanamé, Gould, & Miralda-Escudé (2001) suggested that the cluster of

black holes could be detected by monitoring pairs of images of background bulge

stars that are lensed by the MBH and looking for microlensing events induced by the

black holes. Required for this is photometric completeness at K = 23 mag, which

might be within reach of a 30 meter class telescope. Chanamé & Gould (2002) also

suggest that one could identify a population of millisecond pulsars and look for a

signature of their past dynamical ejection by stellar-mass black holes in the cluster.

Unfortunately, pulse broadening makes the detection of any pulsars in the central

parsec difficult.

The remnants accrete from the hot plasma permeating the Galactic center region;

some of the remnants may also accrete from molecular clouds. The X-ray luminosity

of a remnant accreting from the ISM is given by L = εṁc2 where ε is the X-ray

efficiency and ṁ the accretion rate. The plasma temperature at 1′′ from Sgr A∗ is



95

∼ 1 keV (Baganoff et al., 2003) and the relative velocity of the remnants through

the hot gas is ∼ 700 km s−1. The accretion rate is ṁ = 4πλG2m2ρ/(v2 + c2s)
3/2

with λ . 1, where cs ∼ 300 km s−1 is the sound speed. The size of the accretion

disk that forms around the remnant depends on the pressure gradients across the

accretion radius ra = Gm/(v2 + c2s) ∼ 2× 1011m10/v7
2 cm, where m = 10m10M� and

v = 700v7 km s−1. In the Galactic disk, electron density gradients on such scales are

� 1 (Armstrong et al. 1995; see also Agol & Kamionkowski 2002). However at the

Galactic center interstellar turbulence could be much stronger than in the Galactic

disk and the gradients could be significant. The luminosity associated with accretion

is L ∼ 1030ε−1λm
2
10/v7

3 ergs s−1, where ε = 0.1ε−1. The radiative efficiency of Sgr

A∗ in the X-rays, relative to the estimated mass flow across the Bondi radius at 1′′,

is ε ∼ 10−10; such efficiency would render direct detection of remnants in the X-rays

hopeless.

A remnant traversing a static, dense molecular cloud with n = 106 cm−3 will emit

at ∼ 1033ε−1λm
2
10/v7

3 ergs s−1. This is consistent with the estimated time-averaged

luminosities of the X-ray transients identified with Chandra by Muno et al. (2005).

These authors suggested that the transients are black hole binaries formed by three-

body exchange between a stellar binary and a stellar-mass black hole in the central

parsec. If one assumes a high accretion efficiency then the X-ray transients could

instead be isolated stellar-mass black holes traversing dense molecular clouds. The

emission will be variable on a time scale equal to the orbital time at the accretion

radius, tvar ∼ r
3/2
a /

√
Gm ∼ m10/v7

3 h, which is compatible with the apparent vari-

ability in the sources of Muno et al. Using opacities in Morrison & McCammon

(1983), the clouds of size 0.1 pc are marginally optically thin to 1 keV photons.

In §3.2, we limited our analysis to encounters between stellar remnants and stars

with measurable orbital motion about the MBH. However, encounters also produce

anomalous motion in stars at larger radii (r ∼ 0.05 pc), for which accelerated motion

due to the MBH is not detectable. The rate of detectable encounters among all stars

with measurable linear motion is K ∼ 3(Nstars/100)(r/1 pc)1/2−γ yr−1 (Weinberg,

Milosavljević, & Ghez, 2004). Since Nstars ∝ r3−γ, if γ < 7/4 the rate increases with
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radius. Thus, stars at large radii may also be sensitive probes of the stellar remnant

mass function. However, given the probable inhomogeneity of the mass distribution

at large radii, it may be difficult to disentangle encounters with remnants from other

gravitational interactions experienced by a monitored star.
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Abstract

We calculate the abundance of dark-matter concentrations that are sufficiently overdense to

produce a detectable weak-gravitational-lensing signal. Most of these overdensities are virialized

halos containing identifiable X-ray and/or optical clusters. However, a significant fraction are

nonvirialized, cluster-mass, overdensities still in the process of gravitational collapse—these should

produce significantly weaker or no X-ray emission. Our predicted abundance of such dark clusters

is consistent with the abundance implied by the detection of apparent dark lenses. Weak lensing

by these nonvirialized objects will need to be considered when determining cosmological

parameters with the lens abundance in future weak-lensing surveys. Such weak lenses should also

help shed light on the process of cluster formation.
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4.1 Introduction

Weak gravitational lensing due to the deep gravitational potential of a galaxy clus-

ter gives rise to a detectable weak distortion of the images of background galaxies.

This weak shear has now been detected around roughly 30 clusters and been used

to map the total dark-matter mass in the clusters as well as the dark-matter distri-

butions within the clusters (see Bartelmann & Schneider 2001, Mellier 1999). Weak

lensing also has the potential to map the mass distribution on even larger scales

(Miralda-Escudé 1991; Blandford et al. 1991; Kaiser 1992; Bartelmann & Schneider

1992; Stebbins 1997; Kamionkowski et al. 1998). Just last year, four groups indepen-

dently reported detection of cosmic shear, distortions to background galaxies induced

by weak gravitational lensing by mass inhomogeneities on few-Mpc scales along the

line of sight (Bacon et al. 2000; Kaiser et al. 2000; Wittman et al. 2000; Van Waerbeke

et al. 2000). It is apparent that in the future, such cosmic-shear surveys will have

the sensitivity to identify galaxy clusters in the field. Since such surveys will probe

the total mass directly, it could provide a powerful new technique for determining

the cluster-halo abundance and thus the power-spectrum amplitude σ8 and matter

density Ωm (e.g., Kruse & Schneider 1999; Reblinsky et al. 1999).

In fact, one spectroscopically confirmed cluster has already been detected via its

gravitational-lensing effect on background galaxies (Wittman et al. 2001). More in-

triguing is the apparent dark lens discovered by Erben et al. (2000). This lensing

signal corresponds to a ∼ 1014M� mass concentration, but there is no obvious corre-

sponding galaxy overdensity (Gray et al. 2001) and only faint (if any) X-ray emission.

Evidence for other apparent dark lenses has been reported by Miralles et al. (2002)

and Koopmans et al. (2000), the latter involving a detection through strong, rather

than weak, lensing.

In retrospect, the existence of such dark concentrations should not come as too

much of a surprise. Galaxy clusters form at rare (e.g., > 3σ) high-density peaks of a

Gaussian primordial distribution. Thus, for every virialized cluster, there should be

a significant number of proto-clusters (e.g., 2σ − 3σ peaks), mass overdensities that
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have not yet undergone gravitational collapse and virialized, but which have begun

to break away from the cosmological expansion. The timescale for collapse of cluster-

mass objects is large, and the overdensities can be very large even before they have

virialized. It should thus not be too surprising if such objects produce a weak-lensing

signal that resembles that from virialized clusters.

These proto-clusters should contain galaxies and maybe a few groups that later

merge to form the cluster. Since the X-ray luminosity is a very rapidly varying

function of the virialized mass, the summed X-ray emission from these objects should

be much smaller than that from a fully virialized cluster of the same mass. When

we refer to these proto-clusters as “dark,” we thus mean that they should be X-ray

underluminous. Strictly speaking, the mass-to-light ratios of these clusters should

be comparable to those for ordinary clusters. However, high-redshift clusters may

be difficult to pick out in galaxy surveys, and these proto-clusters should have a sky

density a few times smaller. Thus it would not be surprising if these dark lenses had

no readily apparent corresponding galaxy overdensity.

In this paper we calculate the abundance of dark and virialized lenses. To do

so, we first determine the overdensity required to produce a detectable weak-lensing

signal as a function of redshift. We consider several different density profiles including

a homogeneous sphere, an isothermal sphere, a Navarro, Frenk, & White (Navarro et

al. 1997, 1996, 1995) profile and a Hernquist (Hernquist 1990) profile. We then use

the spherical-top-hat-collapse (STHC) model to determine the differential abundance

of overdensities as a function of position along their evolutionary cycle. Using the

aperture mass technique (Schneider 1996) we can then determine the sky density and

redshift distribution of halos that are sufficiently overdense to produce a detectable

weak-lensing signal.

As our results below will show, there should be roughly one dark lens for every 5–

10 virialized lenses discovered by weak lensing. It is worthwhile to point out that this

result is robust in that the ratio of dark to virialized lenses is not expected to be very

sensitive to the amount of observational noise in the lensing map, i.e., observational

noise will equally affect the detectability of both types of lenses. Therefore, although
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our results are obtained by assuming the only source of noise is the intrinsic ellipticity

distribution of the source galaxies—in accordance with other such theoretical weak-

lensing studies found in the literature—the predicted relative abundance of dark and

virialized lenses will not change very much if we made a more exact estimate of the

total noise in weak-lensing maps. It is also encouraging to note that given the sky

coverage and average image size of weak-lensing maps to date, the number of dark

lenses we would expect to have seen is of order unity and therefore consistent with

the detection (Erben et al. 2000, Miralles et al. 2002) of one or two dark lenses.

4.2 Minimum overdensity required to produce weak-

lensing signal

In this section we provide the conditions for an overdensity of mass M and radius R

at redshift z to produce a detectable weak-lensing signal. Following the procedure

of Bartelmann & Schneider (2001) (see also Schneider 1996, Seitz & Schneider 1997,

Kruse & Schneider 1999) we determine the dependence of a lensing system’s signal-

to-noise ratio on that system’s overdensity and redshift.

In a weak-lensing map, a mass overdensity causes the image of the background

source galaxies to be tangentially sheared. Noise is introduced by both the intrinsic

ellipticity of these background galaxies as well as by the presence of foreground galax-

ies in the image. To arrive at a signal-to-noise relation for a weak-lensing system,

consider N galaxy images each at angular position θi = (θi cosφi, θi sinφi) with tan-

gential ellipticity εt(θi) and within a lens-centered annulus that is bounded by angular

radii θin 6 θi 6 θout. The shear γ is related linearly to the dimensionless surface mass

density of the lens, which is the physical surface mass density Σ(θ) divided by the

critical surface mass density Σcrit. For a lens at redshift zd and a source at redshift

zs,

Σcrit(zd; zs) =
c2

4πG

Ds

DdDds
, (4.1)

where Dd, Ds and Dds are the angular-diameter distances between the lens and the
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observer, the source galaxy and the observer, and the lens and the source, respec-

tively. To account for the redshift distribution of the source galaxies, define (Seitz &

Schneider 1997)

Z(zs; zd) ≡ limzs→∞ Σcrit(zd; zs)

Σcrit(zd; zs)
=

Σcrit∞(zd)

Σcrit(zd; zs)
. (4.2)

Then the dimensionless surface mass density is given by

κ(θ, zs) =
Σ(θ)

Σcrit

=
Σ(θ)

Σcrit∞

Σcrit∞

Σcrit

≡ κ(θ)Z(zs; zd). (4.3)

Furthermore, the linear relation between the shear and surface mass density im-

plies that they have the same dependence on source redshift so that γ(θ, zs) ≡
Z(zs; zd)γ(θ). For the rest of this paper any reference to κ or γ refers to κ(θ) and

γ(θ), respectively. Assuming the intrinsic orientation of galaxy sources is random,

the expectation value of the image ellipticity is (Seitz & Schneider 1997; Bartelmann

& Schneider 2001)

E(ε) ≈ 〈Z〉γ(θ), (4.4)

where

〈Z〉 =

∫

dzs pz(zs)Z(zs; zd), (4.5)

and pz(zs) is the redshift distribution of source galaxies. The function 〈Z〉 = 〈Z〉(zd)—

of order unity for the redshifts considered—allows a source redshift distribution to be

collapsed onto a single redshift zs satisfying Z(zs) = 〈Z〉 (see Bartelmann & Schneider

2001).

Using the Map-statistics introduced by Schneider (1996), define a discretized es-

timator for the spatially filtered mass inside a circular aperture of angular radius

θ,

Map ≡ 1

n

N
∑

i=1

εt(θi)Q(|θi|), (4.6)

where n is the number density of galaxy images and Q is a weight function that will be

chosen later so as to maximize the signal-to-noise ratio of the estimator. Assuming
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the ellipticities of different images are uncorrelated, the dispersion of Map can be

obtained by squaring (6) and taking the expectation value, yielding

σ2 =
σ2

ε

2n2

N
∑

i=1

Q2(|θi|), (4.7)

where σε is the dispersion of the two component ellipticity. By (4) the expectation

value of Map is,

〈Map〉 =
〈Z〉
n

N
∑

i=1

γt(θi)Q(|θi|), (4.8)

where γt is the tangential shear. Taking the ensemble average of (8) over the proba-

bility distribution for the galaxy positions gives,

〈Map〉c = 2π〈Z〉
∫ θout

θin

dθ θ 〈γt〉(θ)Q(θ), (4.9)

where 〈γt〉(θ) is the mean tangential shear on a circle of angular radius θ and the

subscript “c” stands for continuous. Similarly, we can take the ensemble average of

the dispersion (7), to obtain

σ2
c =

πσ2
ε

n

∫ θout

θin

dθ θ Q2(θ). (4.10)

The ensemble-averaged signal-to-noise ratio is then,

S

N
=

〈Map〉c
σc

=
2〈Z〉√πn

σε

∫ θout

θin
dθ θ〈γt〉(θ)Q(θ)

√

∫ θout

θin
dθ θQ2(θ)

. (4.11)

By the Cauchy-Schwarz inequality the signal-to-noise ratio of the estimator is maxi-

mized if

Q(θ) ∝ 〈γt〉(θ). (4.12)

Since

〈γt〉(θ) = κ̄(θ) − 〈κ〉(θ), (4.13)
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(Bartelmann 1995) where 〈κ〉(θ) is the dimensionless mean surface mass density on

a circle of radius θ and κ̄(θ) is the dimensionless mean surface mass density within a

circle of radius θ, the maximized signal-to-noise ratio becomes

S

N
=

2〈Z〉√πn
σε

√

∫ θout

θin

dθ θ [κ̄(θ) − 〈κ〉(θ)]2. (4.14)

If instead of using a maximized weight function Q we chose one of the often used

generic weight functions given in Schneider et al. (1998), our estimate of the signal-to-

noise ratio for a given lens would be slightly smaller. In an upcoming paper (Weinberg

& Kamionkowski 2002) we show that although using such a weight function reduces

the predicted abundance of dark and virialized lenses somewhat, the principle result of

this paper, namely that the relative abundance of dark to virialized lenses is 10–20%,

is virtually unchanged so long as θout & 3 arcmin.

To compute the signal-to-noise ratio for a lens with a given density profile we

need to determine the mean tangential shear of the source galaxies. Different density

profiles will in general produce different shear patterns. In particular, the more cuspy

a profile, the stronger its lensing signal. Of course this becomes more complicated

when considering profiles with power-law breaks. For instance, although the NFW

profile goes as r−1 at small radii while the isothermal sphere goes as r−2, at larger

radii the former varies as r−3 while the latter remains at r−2. The net effect, as we

will show, is that the NFW profile yields a stronger signal compared to the isothermal

sphere for lenses at reasonable redshifts. That said, we consider a variety of profiles

to account for the full range of possibilities and to study the dependence of our results

on these profiles. Specifically, we compare the calculated abundances assuming the

overdensity is a point mass, a uniform-density sphere, an isothermal sphere, an NFW

profile, and a Hernquist profile. For an object of a given mass, mean overdensity,

and density profile, we can solve for the parameters of the given profile (e.g., the

radius, the velocity dispersion, the scale radius, the scale density, etc.) and determine,

using equation (14), whether such an object produces a sufficiently large weak-lensing

signal-to-noise ratio so as to be detectable. Note that for an overdensity with angular
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radius smaller than the size of the lensing image, the shear pattern beyond the radius

of the overdensity will be that of a point mass. Furthermore, if the angular radius is

larger than the image size then the lensing signal is determined by just the mass MP

within the projected image radius P = θoutDd and not the mass outside this radius.

The derivation of the signal-to-noise relation for each of these profiles is given in the

Appendix.

To produce a detectable signal, an overdensity must be large enough to yield a

signal-to-noise ratio greater than some minimum value. For the calculations done in

this paper we adopt the following fiducial values, unless stated otherwise: (S/N)min =

5, θout = 5 arcmin, the number density of galaxy images is n = 30 arcmin−2, and

σε = 0.2. The minimum nonlinear overdensity corresponds to a particular position

along the linear-theory evolutionary cycle. In the next section we discuss how we

relate the minimum nonlinear overdensity to a corresponding minimum linear -theory

overdensity. This will enable us to apply the Press-Schechter formalism to obtain an

estimate of the abundance of overdensities that produce a weak-lensing signal as a

function of redshift.

4.3 Dynamics

We use the STHC model to relate the minimum nonlinear overdensity needed for a

detectable weak-lensing signal at a given redshift to a minimum linear-theory over-

density. According to STHC the nonlinear evolution of cosmic density fluctuations

is approximated by a dynamical model in which the initial linear perturbation is an

isolated, uniform sphere surrounded by unperturbed matter. Gravitational instability

causes the initially small linear perturbation to grow and enter the nonlinear regime,

ultimately forming a virialized object that is decoupled from the cosmological back-

ground. In order to avoid the collapse to infinite density predicted by the solution of

STHC, we invoke a simple smoothing scheme that allows us to map a linear overden-

sity greater than the critical linear density contrast, δc ∼ 1.69, to a finite nonlinear

overdensity. In what follows we shall consider the STHC model in a ΛCDM universe.
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Following the derivation of the relevant STHC formula, we present our smoothing

scheme. Finally, we discuss how we distinguish “virialized” clusters from those that

have not yet collapsed.

For a flat cosmology with a cosmological constant, the change in the proper radius,

r, with scale factor a for a uniform spherical overdensity of fixed mass M is given by

(see Peebles 1984, Eke et al. 1996)

(

dr

da

)2

=
r−1 + ωr2 − β

a−1 + ωa2
, (4.15)

where a = (1 + z)−1, β is a constant that is positive for overdensities and

ω = (Ω−1
0 − 1), (4.16)

where Ω0 is the cosmological density parameter. Note that the units of r are such

that (3M/4πρ0)
1/3 ≡ 1 where ρ0 is the cosmological background density at z = 0.

Separating the variables in equation (15) and integrating gives

∫ r

0

r′1/2

(ωr′3 − βr′ + 1)1/2
dr′ =

∫ a

0

a′1/2

(ωa′3 + 1)1/2
da′. (4.17)

Solving for the root of the numerator in equation (15) gives the turnaround radius

(i.e., radius at maximum expansion), rta, as a function of the density parameter ω

and perturbation amplitude β. An exact solution for rta is given in Appendix A of

Eke et al. (1996). For overdensities that are past turnaround the left-hand side of

equation (17) is integrated from zero to rta and added to the integral from r to rta.

The evolution of the radius of an overdensity as a function of time is illustrated in

Figure 1. Note that the cosmological constant has the effect of slowing the collapse

as compared to a CDM universe.

The nonlinear overdensity is given by

1 + δNL =
ρpert

ρb

, (4.18)
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where ρpert is the mean density of the perturbed region and ρb is the background

density at the given redshift. Since ρpert = ρ0/r
3 and ρb = ρ0/a

3, the nonlinear

overdensity becomes

1 + δNL =
(a

r

)3

. (4.19)

For a given nonlinear overdensity of mass M at redshift z we can find the radius of

the perturbation r such that (S/N) > (S/N)min. We can then solve equation (17) for

β.

We now relate this same β to the linear-theory perturbation amplitude. Eke et

al.(1996) showed that

β =
a0(2ω)1/3

3A(a0(2ω)1/3)
δlin
0 , (4.20)

where a0 is the scale factor today, δlin
0 is the linear-theory overdensity extrapolated

to the present and

A(x) =
(x3 + 2)1/2

x3/2

∫ x (

u

u3 + 2

)3/2

du, (4.21)

(Peebles 1980). The linear-theory overdensity at redshift z is given by

δlin(z) = δlin
0 D(a), (4.22)

where D(a), the linear theory growth factor for a ΛCDM cosmology, is

D(a) =
A(a(2ω)1/3)

A(a0(2ω)1/3)
. (4.23)

Using equations (20), (22), and (23) we get the desired relation between the linear-

theory overdensity and β:

δlin(z) = 3β
A(a(2ω)1/3)

a0(2ω)1/3
. (4.24)

Equations (17), (19) and (24) therefore provide a map between the nonlinear over-

density and the linear-theory overdensity at a given redshift.
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It can be shown that r → 0 in the limit that δlin → δc, corresponding to the

well-known infinite density predicted by the solution of STHC. An actual overdensity

will, of course, virialize before reaching the singular solution. To properly account for

this we introduce the following smoothing scheme.

0

0.5

1

1.5

r/
r ta

0 0.5 1 1.5 2 2.5 3

t/tta

ΛCDM
CDM
ΛCDM with smoothing

Figure 4.1 Radial evolution of a density perturbation according to the STHC model.
At the turnaround time, t = tta, the perturbation reaches a maximum-expansion
radius and begins to collapse. As expected, in a ΛCDM cosmology (dashed curve)
the collapse takes somewhat longer than in a CDM cosmology (line-dot curve). The
collapse to a singularity predicted by the solution of the STHC model is avoided by
the smoothing scheme (solid curve), which yields a constant radius once the virialized
overdensity is reached.

Rather than assuming that an overdensity satisfies equation (19) throughout its

evolution, assume it satisfies it only until it reaches the virialized overdensity 1 +

δNL
vir (z). Once the perturbation reaches the virialized overdensity take its radius to

be a constant with time so that the overdensity continues to grow only because

the cosmological background density keeps decreasing. The nonlinear overdensity is
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therefore given by

1 + δNL =







(

a(t)
r

)3

, if
(

a(t)
r

)3

6 1 + δNL
vir (z);

(1 + δNL
vir )

(

a(t)
avir

)3

, otherwise,
(4.25)

where avir is the scale factor at virialization. Since δlin(t2) = δlin(t1)D(a2)/D(a1), the

linear-theory overdensity then becomes

δlin =







3βA(a(2ω)1/3)

a0(2ω)1/3 , if 1 + δNL 6 1 + δNL
vir (z);

δlin(avir)
D(a(t))
D(avir)

, otherwise.
(4.26)

Therefore, if the minimum nonlinear overdensity needed to produce a detectable weak-

lensing signal at redshift z is larger than the virialization overdensity, we evaluate

avir using equation (25) and then compute the minimum linear-theory overdensity

using the lower expression in equation (26). In Figure 1 we plot the radius of an

overdensity as a function of time using this smoothing scheme. In Figure 2 we show

the nonlinear overdensity as a function of the linear-theory overdensity. Note that

the value of the overdensity at virialization can be obtained by assuming r = rvir, the

virialized radius, in equation (19), and using the expression from Lahav et al. (1991),

which gives the ratio between the turnaround radius and the virialization radius. For

convenience we use the Kitayama & Suto (1996) approximation to 1 + δNL
vir (z), as well

as their approximation to δc(z). We independently verified that both approximations

matched the solution of the exact formalism described above.

In summary, given the minimum nonlinear overdensity needed to produce a de-

tectable weak-lensing signal, δNL
min, of an object of mass M at redshift z, we use

equations (17), (25), and (26) to compute the corresponding minimum linear-theory

overdensity, δlin
min, needed to produce a detectable weak-lensing signal. If δlin

min < δc(z)

then the object can produce a detectable weak gravitational lens, even though it is

not yet virialized.
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δlin

Figure 4.2 Nonlinear overdensity as a function of the linear-theory overdensity ac-
cording to the STHC model. The full solution of the STHC model predicts collapse
to an infinite overdensity as δlin → 1.69 (dashed curve). According to the smooth-
ing scheme, however, once a mass concentration reaches the virialization overdensity
1+δNL

vir (z), its radius remains constant so that the overdensity increases in proportion
to the decrease in the background density. The solid curves show the smoothing
scheme solution for mass concentrations that reach the virialization overdensity at
z = 0.1, 0.2, 0.5, and 1.0, from top to bottom. In an Einstein–de Sitter Universe, the
virialization overdensity is independent of redshift and therefore all of the solid curves
would be the same.

4.4 Abundances

To calculate the abundance of overdensities that produce a detectable weak-lensing

signal as a function of redshift, we use Press-Schechter theory assuming Gaussian

statistics for the initial linear-theory density field. The differential number count of

lensing objects per steradian, per unit redshift interval is

dN(δlin
min)

dzdΩ
=
dN(δlin

min)

dV

dV

dzdΩ
, (4.27)
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where
dV

dzdΩ
=

c

H0

(1 + z)2DA(z)2

√

Ω0(1 + z)3 + 1 − Ω0

, (4.28)

is the comoving-volume element, c is the speed of light, H0 is Hubble’s constant, and

DA(z) is the angular-diameter distance at redshift z. The total number density of

weak lenses is given by

dN(δlin
min)

dV
=

∫ ∞

0

f(M ; δlin
min)

dn

dM
(M)dM, (4.29)

where dn(M)/dM , the comoving number density of virialized objects of mass M in

the interval dM , is (Press & Schechter 1974)

dn

dM
(M) =

√

2

π

ρ0

M2

δc(z)

σ(M, z)

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

exp

[

−δc(z)
2

2σ2

]

. (4.30)

In this paper we use the Viana & Liddle (1999) fits to the dispersion of the density

field, σ(M, z), obtained from the galaxy cluster X-ray temperature distribution func-

tion. The function f(M ; δlin
min) is the fraction of objects, either dark or virialized, that

can lens (δ > δlin
min) relative to those that are virialized (δ > δc). The probability that

an object’s linear overdensity is in the range δ1 < δ < δ2 is

P (δ1 < δ < δ2) = erf

(

δ2√
2σ(M, z)

)

− erf

(

δ1√
2σ(M, z)

)

, (4.31)

where “erf” is the error function. Therefore, for dark lenses (i.e., those objects with

δlin
min < δ < δc)

fdark(M, z) =























P (δlin
min < δ < δc)
P (δ > δc)

, δlin
min < δc;

0, otherwise,

(4.32)
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while for virialized lenses (δ > δc and δ > δlin
min),

fvir(M, z) =























P (δ > δlin
min)

P (δ > δc)
, δlin

min > δc;

1, otherwise.

(4.33)

For low enough masses, the minimum overdensity needed to produce a detectable

weak-lensing signal becomes so large that both fdark and fvir approach zero, thereby

imposing an effective weak-lensing mass threshold (see Section 5.2). Integrating equa-

tion (27) over redshift assuming f = fdark yields the number count of dark lenses per

unit area on the sky and similarly for virialized lenses when f = fvir.

4.5 Results

4.5.1 Minimum overdensity as a function of redshift

We can now compute the sky density of weak lenses. To gain physical insight into the

results as well as illustrate the calculational procedure discussed above we first show

the redshift dependence of the minimum nonlinear overdensity. As noted earlier, the

result is sensitive to the lens density profile on account of the minimum overdensity’s

dependence on the shear. Since the shear is proportional to the surface mass density,

the NFW and Hernquist profiles (for whom ρ ∝ r−1 as r → 0) have a constant shear

at small radii while the isothermal sphere profile (ρ ∝ r−2) has a shear that goes as

r−1 for all radii. This is shown in Figure 3, where we plot the radial dependence of

the mean tangential shear for these different profiles.

In Figure 4, the minimum nonlinear overdensity as a function of redshift for a

1014M� object is plotted for the various profiles. All the profiles show the same general

trend: a minimum at z ∼ 0.3 and monotonic rises at lower and higher redshifts. This

is a consequence of the source-galaxy redshift distribution, which we assume is given
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Figure 4.3 Mean tangential shear as a function of angular distance from the lens center
for an NFW (solid curve), Hernquist (dotted curve) and isothermal sphere (dashed
curve) density profile. The normalization is arbitrary.

by a function of the form

pz(zs) =
βz2

s

Γ(3/β)z3
0

exp
[

−(zs/z0)
β
]

, (4.34)

with β = 1.5 and mean redshift 〈zs〉 ≈ 1.5z0 = 1.2 (cf. Smail et al. 1995; Brainerd

et al. 1996; Cohen et al. 2000) . Since lenses are most effective when they lie

midway between the source and the observer (i.e., the factor DdDds/Ds peaks when

Dd ' Dds), an overdensity at z ∼ 0.3 is ideally positioned to lens source galaxies

that are primarily located at z = 〈zs〉 ∼ 1, thereby accounting for the minimum

in the curves. Accordingly, overdensities located at lower and higher redshifts than

z ∼ 0.3 are less effective at lensing so that a larger overdensity is needed to produce a

detectable lens. In addition, for an overdensity with redshift approaching unity, there

are fewer background galaxies to lens (less signal) as well as more foreground galaxies

in the image (greater noise), further decreasing the observed lensing signal-to-noise
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Figure 4.4 Minimum nonlinear overdensity needed to produce a detectable weak lens-
ing signal as a function of redshift for a 1014M� object with a density profile that
is a uniform-density sphere (line-dot curve), a truncated isothermal sphere (dashed
curve), a Hernquist profile (dotted curve), and an NFW profile (solid curve). An
overdensity with a larger mass will displace these curves downwards. The thin, long-

dash-dot curve is the overdensity at virialization in the STHC model.

Another feature to note in Figure 4 is the difference in amplitude of 1+δNL
min between

the different profiles. Over most of the redshift range, the NFW profile requires the

smallest overdensity in order to produce a detectable weak-lensing signal while the

uniform-density sphere requires the largest. This is because the NFW profile has its

mass much more centrally concentrated as compared to the uniform-density sphere.

A source galaxy at some angular radius near the lens center will therefore be sheared

more strongly by the former and hence produce a larger signal. A similar explanation

accounts for the differences in amplitude of 1+δNL
min between the non-uniform profiles.
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4.5.2 The abundance of dark and virialized lenses

In Figure 5 we show the redshift distribution (normalized to unity) of dark and

virialized lenses for the NFW, Hernquist, and isothermal-sphere profiles. Because the
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Figure 4.5 Redshift distribution of dark lenses (left panel) and virialized lenses (right
panel) for a truncated isothermal sphere (dashed curve), a Hernquist profile (dot-
ted curve), and an NFW profile (solid curve). The ordinate gives the normalized
probability distribution per unit redshift interval.

minimum overdensity for the uniform-density sphere was so large, the probability of

detecting a lens with such a profile is negligible and hence no longer considered. For all

three profiles the distribution peaks at z ≈ 0.5 and has a full-width at half-maximum

of ∆z ≈ 0.5. The distribution drops off at z ≈ 1 for two reasons: the minimum

overdensity is becoming increasing large since 〈zs〉 ' 1, and the STHC dynamics

predicts fewer and fewer massive, large overdensities at these higher redshifts.

The sky density of dark lenses as a function of redshift for the same three profiles is

shown in Figure 6. Depending on the density profile, we expect to find between 1−20

dark lenses per square degree out to z = 1, and virtually none at higher redshifts. The

reason the Hernquist profile predicts a smaller dark-lens sky density compared with

the isothermal sphere and NFW is that such a profile requires a larger overdensity to

produce a detectable weak-lensing signal (see Figure 3). Finally, note that although
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Figure 4.6 Number counts of dark and virialized lenses for a truncated isothermal
sphere (dashed curve), an Hernquist profile (dotted curve), and an NFW profile (solid
curve). The ordinate gives the sky density of lenses at redshifts less than z. The top
curve for a given density profile corresponds to the sky density of virialized lenses and
the bottom curve to the sky density of dark lenses.

this distribution is integrated over dark lenses of all masses, the minimum overdensity

as a function of redshift becomes so large for M . 5×1013M� that there are virtually

no dark lenses with such small masses. This point is illustrated in Figure 7, where

we plot the weak-lensing mass distribution (i.e., the integrand of equation (29) times

the mass) for both dark and virialized lenses at z = 0.5. Furthermore, since the

Press-Schechter mass function falls off steeply with mass, there will be very few dark

lenses with M & 1015M� despite the lower value of the minimum overdensity at these

masses.

In Figures 5 and 6 we also show the redshift distribution and sky density of

virialized lenses for the three different density profiles. Although the weak-lensing

mass threshold is, as expected, somewhat smaller for virialized lenses than for dark

lenses (see Figure 7) their normalized distributions are not very different. Nonetheless,

the sky density of virialized lenses is 10 − 80 degree−2 and hence a factor of 4 − 10
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Figure 4.7 Predicted weak-lensing mass distribution at redshift z = 0.5. Shown is
the comoving number density as a function of mass of dark lenses (thick lines) and
virialized lenses (thin lines) of mass M in the interval d lnM . Plotted for comparison
is the virialized mass distribution, i.e., dn

dM
(M) ×M (thin, dash-dot line). Since the

minimum mass overdensity needed to produce a detectable lens (see Figure 4) is
lowest for the NFW profile (solid curves), such a profile predicts a smaller weak-
lensing mass threshold as compared to the Hernquist profile (dotted curve) and the
truncated isothermal sphere (dashed curve). The two diamonds on each dark lens
mass distribution curve mark the mass at which the minimum overdensity needed to
produce a detectable lens is 275 and 100. The sharp lower-mass cutoff in the dark
lens mass distribution is a consequence of the heaviside step-function nature of fdark.

larger than the sky density of dark lenses. This is because by redshifts of z ≈ 0.5

(where the distributions peak) a majority of objects in the mass range that can lens

will have already virialized.

Having computed the redshift distribution and sky density of dark and virialized

lenses we now determine their relative abundances. The fraction of weak lenses that

are caused by dark, non-virialized objects as a function of redshift is shown in the

left panel of Figure 8. Out to z ≈ 1 the fraction is nearly constant with about 20%

of all weak lenses arising from dark objects. We again emphasize that the predicted
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Figure 4.8 Left panel: The fraction of weak lenses that are dark lenses as a function
of redshift for a truncated isothermal sphere (dashed curve), an Hernquist profile
(dotted curve), and an NFW profile (solid curve). The fraction is relatively constant
between redshifts z = 0.2 and z = 1.0, beyond which the abundance of both dark and
virialized lenses drops to zero. The coarseness of the curves for z > 1 is an artifact
of numerical noise that is a result of this dropoff in both abundances. Right panel:
The fraction of virialized objects with M > 5× 1013M� that are able to weak lens as
a function of redshift for the same density profiles as above.

abundance of dark lenses relative to virialized lenses is significant not because dark

lenses comprise the lower-mass end of the mass function; on the contrary, virialized

lenses have a lower mass threshold than dark lenses as shown in Figure 7. Rather, it

is significant because according to the STHC model, a substantial fraction of cluster-

mass objects are sufficiently overdense to produce a detectable lensing signal despite

not having reached the virialization overdensity. For z > 1 the abundance of weak

lenses of all types (both virialized and dark) drops off significantly. This, again, is

because 〈zs〉 ∼ 1 and because the evolution of overdensities has not yet had enough

time to produce sufficiently large overdensities. This is also illustrated in the right

panel of Figure 8, where we show the fraction of virialized objects that can lens as

a function of redshift. For 0.2 . z . 0.5 a large fraction of virialized objects with

M > 5 × 1013M� can produce a detectable weak-lensing signal but, for the same

reason as above, by z = 1 this fraction is nearly zero.
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Finally we would like to point out that given the above results for the weak-lensing

mass distribution, it is not surprising that in their study of weak lensing by low-mass

galaxy groups, Hoekstra et al. (2001) could only (just barely) detect a weak-lensing

signal by stacking 50 such groups together. Namely, the groups in Hoekstra et al.’s

sample, which were at a mean redshift of 0.3, had a mean overdensity of only ∼
75 and a mean mass of just ∼ 4 × 1013M�, assuming an isothermal density profile

and using their measured value of ∼ 275 km s−1 for the lensing-inferred velocity

dispersion. Therefore, as Figure 7 suggests, individual groups from their sample were

neither massive enough nor sufficiently overdense to produce a detectable weak-lensing

signal.

4.5.3 The effect of increasing the image size on the lensing

signal

In the above calculations we assume that the lensing images are 5 arcmin in radius,

roughly the size of lensing maps to date. However, if a lens is relatively nearby or has

a large radial extent it is possible that a large fraction of the total lensing signal is

missed. This effect might be especially troublesome for the detection of dark lenses,

given that they are not yet virialized and hence have larger radii. We now address

this issue by determining the extent to which increasing the image size alters the

predicted abundance of dark lenses.

Before moving on, however, we note that while we examined the predicted distri-

bution and sky density of weak lenses for a variety of profiles, there is good reason

to regard the NFW profile as the most plausible. For virialized lenses this is clearly

the case as N-body simulations show that the halo density profiles are well-fit by the

NFW form. Though it is difficult to be as certain in the case of dark, non-virialized,

lenses (N-body simulation fits to profiles have so far only been for virialized systems),

because most of the dark lenses are well past turnaround (1 + δNL & 50) and because

it is unlikely that the STHC model perfectly describes the evolution of overdensities

all the way to virialization, assuming an NFW profile for dark lenses is a fair ap-
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proximation. Furthermore, since virialization is expected to occur from inside-out,

the centers of dark lenses, where most of the lensing signal is coming from (as we

show quantitatively below), are likely near virialization and hence well described by

the NFW profile. For these reasons (and also to avoid overly cluttered figures), the

rest of the figures in this paper show results only for the NFW profile. To obtain

approximate results for the other profiles, simply scale by the relative abundances

shown in Figure 6.
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Figure 4.9 Upper panels: The signal-to-noise ratio within an angular radius θ from
the lens center as a function of θ for an NFW profile. Lower panels: The fraction of
the total lensing signal that comes from outside the angular radius θ. Approximately
90% of the lensing signal comes from a region smaller than the lensing halo radius.
All four panels correspond to an object at redshift z = 0.3 and mass M = 1014M�.
The left-hand-side plots are for a nonlinear overdensity of 200 and the right-hand-side
plots for a nonlinear overdensity of 70.
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Figure 4.10 Effect of increasing the image size on the abundance estimates. Plotted
are the minimum overdensity needed to produce a detectable lens (left panel) and
the sky density of weak lenses (right panel) as functions of redshift for image sizes of
0.02 degree2 (line-dot curve), 0.2 degree2 (dashed curve), and 1 degree2 (solid curve).
The top three curves in the right panel correspond to virialized lenses and the bottom
three to dark lenses. An NFW profile is assumed. Note that increasing the image size
beyond 1 degree2 barely increases the predicted sky density since the signal becomes
increasingly small at larger angular distances from the lens center (see Figure 9).

In Figure 9 we plot the cumulative signal-to-noise ratio and the fraction of the

total signal as a function of the angular distance from the lens center for a lens with

an NFW profile at redshift z = 0.3 with mass M = 1014M�. Although the fraction

of the signal that comes from within 5 arcmin is ∼ 90% for lenses of overdensity

1 + δNL
min = 200 and 1 + δNL

min = 70, the lens with overdensity 200 requires an image

size of just ∼ 2 arcmin to be detectable (S/N = 5) while the lens with overdensity

70 requires ∼ 10 arcmin to be detectable. In general we find that in order to detect

nearly all dark lenses with S/N > 5 in a given field the image area must be at

least ∼ π(15′)2 ≈ 0.2 degree2, as shown in Figure 10. Larger image sizes will not

significantly increase the number of dark lenses detected as very little signal comes

from radii larger than 15 arcmin. Also note that although lensing geometry favors a

lens midway between observer and source, this effect is somewhat countered by the

fact that the closer a weak lens is to the observer, the closer the source galaxy images
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pass to the highly overdense lens center (i.e., the solid angle subtended by the lens

is larger). As a result, if the image size is large enough to enclose a large portion of

the lens core, the lensing signal will be strongest when the lens-observer distance is

slightly smaller than the lens-source distance. This accounts for the shift, shown in

Figure 10, of the minimum of 1 + δNL
min(z) toward smaller redshift as the image size is

increased.

4.5.4 Estimating σ8 from the abundance of weak lenses
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Figure 4.11 Predicted sky density of weak lenses at the 95% confidence limits of σ8

(solid curves) given by Viana & Liddle (1999). The dashed curves are the predicted
sky densities for the mean value of σ8. The top three curves correspond to virialized
lenses, and the bottom three to dark lenses. An NFW profile is assumed.

The present-day abundance of rich, X-ray clusters has been used to constrain the

value of σ8, the amplitude of mass fluctuations in spheres of radius 8h−1 Mpc (Evrard

1989; Henry & Arnaud 1991; White, Efstathiou & Frenk 1993; Viana & Liddle 1996;

Eke, Cole & Frenk 1996; Kitayama & Suto 1997, Viana & Liddle 1999). In Figure

11 we show the extent to which the measured abundance of weak lenses (from future
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cosmic-shear surveys, say) can further constrain σ8. Here we have plotted the sky

density of weak lenses (both virialized and dark) at the 95% confidence limits of σ8

given by Viana & Liddle (1999). Since weak lenses are produced by only relatively rare

objects, their abundance is very sensitive to the value of σ8, suggesting the usefulness

of weak lenses in measuring the amplitude of mass fluctuations.

Another benefit of using weak lenses to measure σ8 is their broad redshift distri-

bution. In particular, a systematic uncertainty in measuring σ8 by measuring rich

cluster abundances is the degeneracy between σ8 and Ωm that arises from the limited

range in redshift in which rich clusters are observed. To break this degeneracy, sub-

stantial effort is made to measure not only the present-day rich cluster abundance but

also the rich cluster abundance at higher redshifts (z ≈ 0.3; e.g., Henry 1997). This,

in turn, gives an estimate of the evolution of the cluster mass function and hence an

estimate of Ωm. However, because they are faint, detecting high redshift (z > 0.3)

rich clusters is difficult. Weak lenses, on the other hand, do not suffer from this

limitation and in fact are expected to have a broad redshift distribution and be most

abundant at z ∼ 0.5 (see Figure 5). As a result, detecting weak lenses provides an

excellent means of measuring the evolution of the mass function and hence measuring

Ωm. By thereby breaking the degeneracy between σ8 and Ωm, weak-lensing surveys

are also well-suited to constrain the power-spectrum amplitude, σ8.

4.6 Discussion and conclusions

In this paper, we have calculated the abundance of dark and virialized lenses. This

was accomplished by first expressing the lensing signal strength as a function of the

dark-matter overdensity and redshift. Having determined the overdensity required

to produce a detectable weak-lensing signal we used the STHC model to calculate

the differential abundance of overdensities as a function of position along their evo-

lutionary cycle. Overdensities whose lensing signal yielded S/N > 5 were divided

into two classes: those with 1 + δNL < 1 + δNL
vir were dark lenses while those with

1 + δNL > 1 + δNL
vir were virialized lenses.
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The distinction between dark and virialized lenses was based on the former being

at an unrelaxed, and hence earlier, stage in the overdensity evolutionary cycle. This

distinction is not arbitrary but rather is expected to result in observational features

that definitively separate the two classes of lenses. For instance, since dark lenses will

typically have overdensities of 1+δNL ∼ 100 while virialized lenses have 1+δNL ∼ 300

(see Figure 4), the projected surface density of a dark lens is smaller than that of a

virialized lens by a factor of 32/3 ∼ 2. The sky density of galaxies in a dark lens will

therefore be about two times smaller than in a virialized lens. As it is difficult to

detect a significant galaxy overdensity for even a virialized, lensing, cluster at redshifts

of z ∼ 0.5, it will be all the more difficult to do so for a dark cluster. Another

distinctive observational feature expected of dark lenses is a low X-ray luminosity

as compared with virialized lenses, a consequence of the X-ray luminosity function’s

steep dependence on total virialized mass. This effect might also account for the low

X-ray luminosities observed by Postman et al. (2001) in three high-redshift clusters;

namely, these objects are in fact proto-clusters that have not yet completely virialized.

Although we considered a variety of density profiles in our calculations of the

predicted distribution and sky density of weak lenses, as we noted in Section 5.3,

there is good reason to regard the NFW profile as the most plausible form for both

virialized and dark lenses. Nonetheless, while N-body simulations show that virialized

systems are well-fit by the NFW form, testing whether non-virialized, cluster-mass,

halos in N-body simulations are also well-described by the NFW profile is a worthwhile

investigation that has not yet been performed. That said, we have shown that the

redshift distribution of dark and virialized lenses for all the considered profiles is fairly

broad with an average around z = 0.5 and an FWHM of ∆z ≈ 0.5. The sky density

of dark lenses for the NFW profile was calculated to be ∼ 20 degree−2 (and ∼ 10

degree−2 for an isothermal sphere profile) and should therefore be readily detectable

by upcoming cosmic shear surveys. For virialized lenses, we found a sky density of

∼ 80 degree−2 assuming an NFW profile (and ∼ 50 degree−2 for an isothermal sphere

profile), a factor of 4 to 5 larger than that of dark lenses. This difference is due to the

fact that most of the weak lenses are at redshift z ≈ 0.5 and have masses of ∼ 1014M�
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so that the majority are, according to the STHC model, virialized. It is important to

note that while the aperture mass weight function used here was chosen to match a

specific density profile, as we show in an upcoming paper (Weinberg & Kamionkowski

2002), a more general, non-optimal weight function, such as that given by Schneider

et al. (1998), would lower the overall abundance of both types of lenses equally. The

principle result of this paper, namely the expectation that ∼ 10−20% of weak-lenses

are dark, would not change.

We find it encouraging that given the sky coverage of weak-lensing maps to date

(∼ 1000 arcmin2) and the average size of the individual lensing maps (∼ 30 arcmin2),

the number of dark lenses we would expect to have seen is of order unity and thus

consistent with the detection (Erben et al. 2000, Miralles et al. 2002) of one or two

dark lenses. Furthermore, in mock observations of numerical simulations, White, van

Waerbeke, & Mackey (2001) showed that a weak-lensing search for clusters will likely

suffer from serious line-of-sight projection effects due to the fact that clusters pref-

erentially live in larger structures. These structures on larger scales, which perhaps

correspond to 2σ – 3σ peaks in the primordial distribution, may well be the type of

systems that we find give rise to dark lenses.

Finally, we have also shown that measuring the abundance of weak lenses can

substantially help to constrain σ8, the rms mass fluctuation in spheres of radius

8h−1 Mpc. This is a consequence of the broad redshift distribution of weak lenses

and the fact that they correspond to high-density peaks in the Gaussian primordial

distribution. Cosmic-shear surveys, with their ability to detect cluster mass weak

lenses over large areas of sky, should therefore provide a powerful new technique for

determining the power-spectrum amplitude.
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4.A Derivation of the signal-to-noise relation for

various density profiles

Starting from equation (14), we derive the signal-to-noise relation for a point mass, a

uniform-density sphere, a truncated isothermal sphere, an NFW profile and a Hern-

quist profile. Since these profiles are all axially symmetric, 〈κ〉(θ) = κ(θ).

1. Point Mass : The dimensionless mean surface mass density within a circle of

radius θ for a deflecting lens of point mass M at angular diameter distance Dd

is

κ̄ =
1

Σcrit∞

M

πP 2
, (4.35)

where P = θDd. The quantity κ, the dimensionless mean surface mass density

on a circle of radius θ, is ∝ δ(θ), the Dirac delta function. Therefore, by equation

(14), the signal-to-noise relation for a point mass is given by

S

N
=

√
2〈Z〉M

σεΣcrit∞πD
2
d

√
πn

θout

√

(

θout

θin

)2

− 1. (4.36)

This can be expressed as a minimum mass needed to produce a detectable

weak-lensing signal, which in useful units is

Mmin = 3.7 × 1013

(

S/N

5

) (

Dd

0.3DH

)2
( σε

0.2

)

(

θout

5 arcmin

)

( n

30 arcmin−2

)−1/2

×
(

(θout/θin)2 − 1

100

)−1/2

Σcrit∞〈Z〉−1M�,

where DH = c/H0 is the Hubble distance.

2. Uniform Density Sphere: Repeating the same procedure as above but for a

sphere of uniform density ρ(r) = ρc and mass M yields the following for the

surface mass density (where we use the Abel integral equation to relate volume
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mass density to surface mass density);

κ =
1

Σcrit∞

∫ ∞

−∞
dz ρ(r) =

2ρc

Σcrit∞

√
R2 − P 2, (4.37)

κ̄ =
1

πP 2

∫ P

0

κ(P ′) 2πP ′ dP ′

=
4ρc

3Σcrit∞

(

R3 −−(R2 − P 2)3/2

P 2

)

, (4.38)

where dz is along the line of sight and R = (3M/4πρc)
1/3 is the radius of the

sphere. The signal-to-noise ratio is then computed by solving equation (14)

with the above relations for κ and κ̄.

3. Truncated Isothermal Sphere: The radial density profile of an isothermal sphere

is

ρ(r) =
σ2

v

2πGr2
, (4.39)

where σv is the line-of-sight velocity dispersion of the particles (i.e., galaxies)

in the system. The surface mass density is then given by

κ =
1

2
κ̄ =

θE

2θ
, (4.40)

where θE = σ2
v/GDdΣcrit∞. For a truncated isothermal sphere of mass M and

radius R, M =
∫ R

0
drρ(r)4πr2 = 2σ2

vR/G, so that

θE =
M

2R

1

DdΣcrit∞

.

Equation (14) then gives

S

N
=

〈Z〉M
σεΣcrit∞Dd

√
πn

2R

√

ln(θout/θin). (4.41)

4. NFW Profile: The NFW density profile is given by

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (4.42)
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where rs and ρs are the scale radius and density, respectively. The mass within

radius r is then

M(r) = 4πρsr
3
s

(

ln(1 + r/rs) −
r/rs

1 + r/rs

)

. (4.43)

Bartelmann (1996) (see also Wright & Brainerd 2000) showed that the radial

dependence of the tangential shear for an NFW profile is

γnfw(x) = κ̄(x) − κ(x) =
ρsrs

Σcrit∞

g(x), (4.44)

where x = θDd/rs and

g(x) =
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(4.45)

The signal-to-noise ratio is then

S

N
=

2
√
πn〈Z〉

σεΣcrit∞Dd
ρsr

2
s

√

∫ xout

xin

dx x g(x)2. (4.46)

There are thus three unknowns if given an overdensity of mass M : rs, ρs, and

R. We therefore need a third relation in addition to equations (A10) and (A13)

in order to break the degeneracy. It is obtained via the following conservation

of energy argument, first put forth by Dalcanton et al. (1997) for the case of

disk formation.

Assume the mass profile before collapse is a uniform sphere of radius Ri and

assume that at this initial stage the system’s energy is entirely gravitational

(E = −3GM2/5Ri). As noted by Dalcanton et al. (1997), this assumption

is well-motivated in the context of disk formation by the observed similarity

between disk angular momentum distributions and the angular momentum dis-
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tribution of a uniformly rotating sphere. It is natural to assume a similar initial

condition occurs for systems at larger scales, i.e., cluster masses. As the over-

density collapses and approaches virialization, the mass distribution evolves

into an NFW profile, as suggested by numerical simulations. At this stage the

systems potential energy within a radius r is

Φ(y) = −8π2Gρ2
sr

5
s

(

1 − 2y ln y + 1

y2

)

, (4.47)

where y ≡ 1 + r/rs. Assuming the energy of the overdensity within Ri is

conserved during collapse and that the system is near virialization so that E ≈
|Φ| /2 then gives Ri = 8.74rs. Since the truncation radius is given by the radius

that contains mass M , by conservation of mass R = Ri = 8.74rs (i.e., though the

mass is redistributed as the overdensity evolves the size of the sphere containing

mass M is constant in time). When we include the effects of the cosmological

constant in the conservation of energy argument there is little change in the

result. The above relation between R and rs thus provides the sought-after third

equation needed to break the degeneracy between rs, ρs, and R. In an upcoming

paper (Weinberg & Kamionkowski 2002) we show that the above approach yields

concentration parameters that are slightly different from those obtained by N-

body simulations (i.e., Bullock et al. 2001). Nonetheless, the concentration

parameters obtained by the two approaches predict a similar abundance of

virialized lenses. Note that since the N-body simulations fit the concentration

parameters to virialized objects, the above analytic approach must be used in

order to compute the abundances of dark lenses.

5. Hernquist Profile: The Hernquist profile is given by

ρ(r) =
M∞
2π

1

(r/rs)(r + rs)3
, (4.48)

where rs is the scale radius and M∞ is the mass enclosed at infinity. The mass
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within radius r is then

M(r) = M∞

(

r/rs

1 + r/rs

)2

. (4.49)

Using the Abel integral equation it can be shown that the dimensionless surface

mass density for the Hernquist profile is

κ(x) =
M∞

πr2
sΣcrit∞

f(x), (4.50)

where x = θDd/rs and

f(x) =



























1
(x2−1)2

[

(2+x2)arctanh
q

1−x
1+x√

1−x2
− 3

2

]

, (x < 1)

1
(x2−1)2

[

(2+x2) arctan
q

x−1
1+x√

x2−1
− 3

2

]

, (x > 1)

(4.51)

The dimensionless surface mass density within x is then,

κ̄(x) =
2

x2

M∞
πr2

sΣcrit∞

∫ x

0

dx′ x′ f(x′). (4.52)

The signal-to-noise ratio is then obtained by inserting the above relations into

equation (14).

As in the case of the NFW profile, given an overdensity of mass M , there are

three unknowns. We therefore apply the same energy conservation argument as

above, assuming the overdensity is initially a uniform density sphere of radius

Ri and upon collapse relaxes to a Hernquist profile. The potential energy upon

collapse is

Φ(y) = −GM
2
∞

6rs

(

1 − 6y2 − 8y + 3

y4

)

, (4.53)

where y = 1 + r/rs. Assuming energy conservation and a nearly virialized

overdensity yields R = Ri = 3.2rs, allowing us to solve the signal-to-noise

relation.
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Abstract

We examine the prospect of using the observed abundance of weak gravitational lenses to constrain

the equation-of-state parameter w = p/ρ of the dark energy. Dark energy modifies the

distance-redshift relation, the amplitude of the matter power spectrum, and the rate of structure

growth. As a result, it affects the efficiency with which dark-matter concentrations produce

detectable weak-lensing signals. Here we solve the spherical-collapse model with dark energy,

clarifying some ambiguities found in the literature. We also provide fitting formulas for the

nonlinear overdensity at virialization and the linear-theory overdensity at collapse. We then

compute the variation in the predicted weak-lens abundance with w. We find that the predicted

redshift distribution and number count of weak lenses are highly degenerate in w and the present

matter density Ω0. If we fix Ω0 the number count of weak lenses for w = −2/3 is a factor of ∼ 2

smaller than for the ΛCDM model w = −1. However, if we allow Ω0 to vary with w such that the

amplitude of the matter power spectrum as measured by the Cosmic Background Explorer

(COBE) matches that obtained from the X-ray cluster abundance, the decrease in the predicted

lens abundance is less than 25% for −1 6 w < −0.4. We show that a more promising method for

constraining the dark energy—one that is largely unaffected by the Ω0 − w degeneracy as well as

uncertainties in observational noise—is to compare the relative abundance of virialized X-ray

lensing clusters with the abundance of non-virialized, X-ray underluminous, lensing halos. For

aperture sizes of ∼ 15 arcmin, the predicted ratio of the non-virialized to virialized lenses is greater

than 40% and varies by ∼ 20% between w = −1 and w = −0.6. Overall, we find that if all other

weak lensing parameters are fixed, a survey must cover at least ∼ 40 square degrees in order for

the weak lens number count to differentiate a ΛCDM cosmology from a dark-energy model with

w = −0.9 at the 3σ level. If, on the other hand, we take into account uncertainties in the lensing

parameters, then the non-virialized lens fraction provides the most robust constraint on w,

requiring ∼ 50 square degrees of sky coverage in order to differentiate a ΛCDM model from a

w = −0.6 model to 3σ.

5.1 Introduction

Observations of distant type Ia supernovae (SNIa) indicate that the universe is un-

dergoing a phase of accelerated expansion (Perlmutter et al. 1999, Riess 1998). This,

combined with the flat geometry favored by the cosmic microwave background (CMB)

measurements (Miller et al. 1999, de Bernardis et al. 2002, Halverson et al. 2002,
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Sievers et al. 2002, Lee et al. 2001) and the evidence for a low matter-density with

Ω0 ∼ 0.3 (Peacock 2001, Percival et al. 2001), suggests that the bulk of the total en-

ergy density of the universe is in the form of some exotic dark energy with a negative

equation of state. One of the primary objectives of cosmology today is to uncover the

origin and nature of this dark energy.

A possible candidate for the dark energy is a cosmological constant Λ, with an

equation of state w = p/ρ (where p is the pressure and ρ is the energy density

of the dark energy) strictly equal to −1. Another possibility, and one that may

find favor from a particle-physics point of view, is a dynamical scalar field, termed

quintessence, Q. Unlike the cosmological constant, the Q-component is both time-

dependent and spatially inhomogeneous with an equation of state w > −1 that is

likely to be redshift-dependent. Determining the value of w and how it changes with

time are key to constraining the nature of the dark energy.

While the accelerating expansion implies only that w < −1/3, combinations of

CMB data, SNIa data, and large-scale-structure data suggest that w is most likely

in the range −1 6 w < −0.6 (Wang et al. 2000, Huterer & Turner 2001, Bean

& Melchiorri 2002, Baccigalupi et al. 2002; also see appendix). Though combining

these different data sets have provided some constraint on w, how w should vary with

redshift is largely unknown. Particle physics offers several possible functional forms

for the quintessence field’s potential V (Q) and hence possible scenarios for the time

history of w. Nonetheless, determining w’s redshift evolution observationally is likely

to be very challenging (Barger & Marfatia 2001, Maor et al. 2001, Weller & Albrecht

2001).

Strengthening the measured constraint on w and perhaps excluding the cosmo-

logical constant as the source of the dark energy appear, however, to be attainable

goals within the near future. Since the dark-energy dynamics influences both the

evolution of the background cosmology and the growth of structure, it directly affects

many observables. Its modification of the angular-diameter distance, the luminosity

distance, and the amplitude of the matter power spectrum, are the primary sources of

dark-energy constraint in measurements of CMB anisotropies, SNIa, and local cluster
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abundances, respectively.

In this paper we consider another possible means of constraining w: measure-

ment of weak gravitational-lens abundances. Weak-lensing—the weak distortion of

background-galaxy images due to the deep gravitational potential of an intervening

overdensity—provides a powerful technique for mapping the distribution of matter in

the universe (see reviews by Bartelmann & Schneider 2001, Mellier 1999). Here we

study the impact of the dark energy on the predicted redshift distribution and sky

density of weak lenses. Dark energy affects the abundance of weak lenses by not only

modifying the distance-redshift relation and the matter power spectrum but also by

altering the rate of structure growth. In particular, the larger w is the faster and ear-

lier objects collapse. An interesting consequences of this is that if we separate weak

lenses into the two observational classes—those that have collapsed and reached virial

equilibrium and are therefore X-ray luminous and those that are non-virialized and

hence X-ray underluminous (Weinberg & Kamionkowski 2002; hereafter WK02)—the

abundance of one class evolves slightly differently from the other. Therefore the rel-

ative fraction of these two types of lenses varies with w. This observable is especially

promising as compared to measurements of absolute abundances because it is less

sensitive to uncertainties in both the cosmological parameters and the noise in the

lensing map.

This paper is organized as follows. In Section 2 we briefly summarize the weak-

lensing signal-to-noise estimator and discuss how we determine the mass- and redshift-

dependent minimum overdensity required to produce a detectable weak-lensing signal.

Section 3 is devoted to the spherical-collapse model in quintessence cosmologies. We

provide fitting formulas for the nonlinear overdensity at virialization and the linear-

theory density at collapse, and describe our approach to normalizing the matter power

spectrum. In Section 4 we show the resulting effect the dark energy has on the weak-

lens abundances, and in Section 5 we present our conclusions. In an appendix, we

discuss the current constraints on w without the restriction w > −1 and consider the

consequences that follow if the dark energy is phantom energy w < −1.

Finally, we note that a similar analysis has recently been performed by Bartel-
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mann, Perrotta & Baccigalupi (2002), although not for the case of non-virialized

lenses. Although we agree with their general conclusion that the weak lens abun-

dance is a potentially sensitive probe of the dark energy, our results differ from their

results in important details. We discuss these differences in Section 4.2.

5.2 Minimum overdensity needed to produce de-

tectable lensing signal

In order to compute the abundance of weak gravitational lenses for dark-energy cos-

mologies we must first determine the necessary conditions for a halo of a given density

profile and redshift to produce a detectable weak-lensing signal. Of course the more

overdense a halo is relative to the background density the more it coherently dis-

torts the nearby background galaxies and hence the stronger its lensing signal. The

detectability of this signal is hampered, however, by noise in the weak-lensing map,

primary of which is the intrinsic ellipticity distribution of the background galaxies.

The goal is therefore to determine the minimum overdensity a halo must have such

that it produces a sufficiently large signal relative to the noise so as to be detectable.

A convenient method for computing this minimum overdensity is provided by Schnei-

der’s (1996) aperture-mass technique.

Consider a lens at redshift zd of surface mass density Σ(ϑ) within an angular

radius ϑ. For a source at redshift zs the convergence κ is given by

κ(ϑ) =
Σ(ϑ)

Σcrit
, Σcrit =

c2

4πG

Ds

DdDds
, (5.1)

where Dd, Ds, and Dds are the angular-diameter distances between the lens and the

observer, the source galaxy and the observer, and the lens and the source, respectively.

Following Schneider (1996), define a spatially filtered mass inside a circular aperture

of angular radius θ,

Map(θ) ≡
∫

d2
ϑκ(ϑ)U(|ϑ|), (5.2)
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where U(ϑ) is a continuous weight function that vanishes for ϑ > θ. If U(ϑ) is a

compensated filter function,
∫ θ

0

dθϑU(ϑ) = 0, (5.3)

then Map can be expressed in terms of the tangential component of the observable

shear, γt,

Map(θ) =

∫

d2ϑ γt(ϑ)Q(|ϑ|), (5.4)

where the function Q is related to U by

Q(ϑ) =
2

ϑ2

∫ ϑ

0

dϑ′ ϑ′ U(ϑ′) − U(ϑ). (5.5)

In this paper we use the l = 1 radial filter function from the family given in Schneider

et al. (1998):

U(ϑ) =
9

πθ2
(1 − x2)(

1

3
− x2), Q(ϑ) =

6

πθ2
x2(1 − x2), (5.6)

where x = ϑ/θ. Taking the expectation value over galaxy positions and taking into

account the redshift distribution of source galaxies then gives

Map(θ) = 〈Z〉
∫

d2ϑ 〈γt〉(ϑ)Q(|ϑ|), (5.7)

where 〈γt〉(ϑ) is the mean tangential shear on a circle of angular radius ϑ. The

function 〈Z〉, given by

〈Z〉 =

∫

dzs pz(zs)Z(zs; zd), (5.8)

where pz(zs) is the redshift distribution of source galaxies and (Seitz & Schneider

1997)

Z(zs; zd) ≡ limzs→∞ Σcrit(zd; zs)

Σcrit(zd; zs)
=

Σcrit∞(zd)

Σcrit(zd; zs)
(5.9)

allows a source with a known redshift distribution to be collapsed onto a single redshift

zs satisfying Z(zs) = 〈Z〉 (Seitz & Schneider 1997; Bartelmann & Schneider 2001).
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The source-redshift distribution is taken to be

pz(zs) =
βz2

s

Γ(3/β)z3
0

exp
[

−(zs/z0)
β
]

, (5.10)

with β = 1.5 and mean redshift 〈zs〉 ≈ 1.5z0 = 1.2 (cf., Smail et al. 1995; Brainerd

et al. 1996; Cohen et al. 2000). Finally, assuming the ellipticities of different images

are uncorrelated it can be shown (cf., Kruse & Schneider 1999) that the dispersion

σM(θ) of Map is

σ2
M(θ) =

πσ2
ε

n

∫ θ

0

dϑϑQ2(ϑ), (5.11)

where n is the number density of galaxy images and σε is the dispersion in the galaxies’

intrinsic ellipticity. In this paper we assume n = 30 arcmin−2 and σε = 0.2. The

signal-to-noise ratio S within an aperture radius θ is then given by

S =
Map

σM
=

2〈Z〉√πn
σε

∫ θ

0
dϑϑ〈γt〉(ϑ)Q(ϑ)

√

∫ θ

0
dϑϑQ2(ϑ)

. (5.12)

The tangential shear at ϑ, 〈γt〉(ϑ), depends on the amplitude and shape of the

lensing halo’s density profile. Bartelmann (1995) showed that 〈γt〉(ϑ) = κ̄(ϑ)−〈κ〉(ϑ),

where 〈κ〉(ϑ) is the dimensionless mean surface mass density on a circle of radius ϑ

and κ̄(ϑ) is the dimensionless mean surface mass density within a circle of radius ϑ.

In this paper we describe the mass density of lensing halos with the universal density

profile introduced by Navarro, Frenk & White (1996; 1997; hereafter NFW). Thus,

for an NFW halo at a given redshift with a given mass and mean overdensity relative

to the background (∆ ≡ 〈ρpert〉/ρb), we can solve for the parameters of the profile

(i.e., the scale radius and the scale density) and obtain an estimate of 〈γt〉(ϑ).

Since the details of how we solve for the NFW-profile parameters are given in the

Appendix of WK02 we do not repeat them here. Briefly describing the key points,

we assume a collapse process analogous to that used by Dalcanton et al. (1997), in

which the mass profile before collapse is a uniform sphere and that as the overdensity

collapses and approaches virialization, the mass distribution evolves into an NFW
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profile. Based on conservation of energy and mass we then obtain a halo concentration

expressed in terms of the ratio between the turnaround radius and the scale radius.

The benefit of such a procedure is that it enables us to solve for the NFW-profile

parameters for both virialized and non-virialized systems, despite the fact that the

concentration parameters quoted in the literature are for virialized systems only.

We have compared the virialized halo concentration parameters inferred using this

procedure with those obtained from numerical simulations and found that the two are

roughly consistent with each other. For example, in our approach a 1014M� object at

z = 0 has an NFW halo concentration c (defined as the ratio of the radius enclosing

an overdensity of 200 to the scale radius) of 8.74 if ∆ = 200 and 6.53 if ∆ = 100,

while numerical simulations typically yield values of c ∼ 7 for virialized halos.

Note too that although N-body simulation fits to profiles have so far only been for

virialized haloes, because most of the dark lenses are well past turnaround (∆ & 100)

and because the STHC model likely breaks down at some point before virialization,

assuming an NFW profile for dark lenses is a fair approximation. Furthermore, since

virialization occurs from inside-out, the central regions of a dark lens, where most

of the weak-lensing signal comes from, are likely to be near virialization and thus

well-described by the NFW form. Lastly, although we only consider the NFW profile

in this paper, in WK02 we computed virialized and dark lens abundances assum-

ing various types of other profiles including a uniform density sphere, the Hernquist

(Hernquist 1990) profile, and the Isothermal Sphere profile. Although the total num-

ber count of weak lenses does change for these different profiles the normalized redshift

distributions and the number count ratios of dark lenses to virialized lenses are largely

unaffected. In this paper, we are chiefly concerned with the possibility of constraining

the equation of state of the dark energy via these differential, rather than cumulative,

abundances. Assuming the weak lenses have an NFW profile is therefore not crucial

to the arguments or conclusions made herein.

With the density profile known we can determine, using equation (12), the ex-

pected value of S. The minimum mean overdensity, ∆min, needed to produce a

detectable lens is then given by that overdensity for which S > Smin. In this paper
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we assume Smin = 5 and θ = 5′, unless stated otherwise.

5.3 Spherical collapse in dark energy cosmologies

According to the spherical model of gravitational collapse a density perturbation

with a nonlinear overdensity ∆ corresponds to a particular position along the linear-

theory evolutionary cycle. Thus the minimum nonlinear overdensity ∆min described

above corresponds to a minimum linear-theory overdensity δmin; if an object of mass

M at redshift z has a linear-theory overdensity δ > δmin = δmin(M, z), then it is

sufficiently overdense to produce a detectable weak-lensing signal. By determining

δmin from the computed ∆min we can apply the Press-Schechter (1974) theory to

calculate the number of halos per unit mass and redshift with δ > δmin and hence

S > Smin. We can then find the redshift distribution and sky density of weak lenses

and how these observables vary with w. We will show that for a broad range of

dark-energy cosmologies a substantial fraction of detectable weak gravitational lenses

have δmin < δc ≈ 1.69, where δc is the critical density threshold for collapse. Those

objects with δ < δc are commonly thought to be density perturbations that have not

yet reached virialization and are therefore expected to have observational properties

that are very different from typical virialized lensing clusters.

In this Section, we present the approach used to map the minimum nonlinear

overdensity ∆min to a minimum linear-theory overdensity δmin for quintessence models

(QCDM). We describe the dynamical equations of gravitational collapse in QCDM

and give fitting formulas for the nonlinear overdensity at virialization, ∆vir(z), and

the critical density δc. We then discuss how we calculate the abundances of weak

gravitational lenses, both those with δ < δc and those with δ > δc. Below we assume

a flat cosmology with a Hubble parameter h = 0.65, a spectral index ns = 1, a baryon

density Ωbh
2 = 0.02, and Ω0 = 0.3, unless stated otherwise.
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5.3.1 Dynamics

In quintessence the dark energy is a dynamical, time-dependent component, Q, with

an equation of state parametrized by w ≡ pQ/ρQ, the pressure divided by the energy

density. The evolution of the energy density with the cosmological scale factor goes

as ρQ ∝ a−3(1+w), so that for w = −1 the standard cosmological-constant model,

ΛCDM, is recovered. Current observational evidence cannot yet rule out a w in the

range −1 6 w . −0.5.

In order to relate a nonlinear overdensity to a linear-theory overdensity in QCDM

we must first solve for the evolution of the overdensity’s radius, R, with time. For

a spherical overdensity patch with uniform matter density ρpert = 3M/4πR3 the

evolution is described by the momentum component of the Einstein equations (Wang

& Steinhardt 1998; hereafter WS98):

R̈

R
= −4πG

3
[ρpert + (1 + 3w)ρQ] . (5.13)

As WS98 pointed out, for w 6= −1 the space curvature kpert inside the overdensity

patch is time-dependent. Physically, this is because the evolution of the energy den-

sity in the Q component is evolving independently of the change in radius of the

overdensity patch. As a result, one cannot assume that within the collapsing over-

density the rate of change of the internal energy in the Q-component, uQ, equals the

rate of work done by the Q-component. That is, because dρQ/dt is nonzero unless

the Q-component is the cosmological constant,

duQ

dt
=

d

dt
(ρQV )

6= −pQ
dV

dt
, (5.14)

where V ∝ R3 is the volume of the overdensity patch. Therefore equation (13)

cannot be cast in the form of a first-order differential equation as is often done when

going from an acceleration equation to a Friedman-like energy equation. Assuming

a constant kpert, as was done in the version 1 preprint of  Lokas & Hoffman (2001),
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yields significantly different solutions for the evolution of the radius, R(t), and hence

for ∆vir(z) and δc.

If we combine equation (13) with the Friedman equation for the background,

(

ȧ

a

)2

=
8πG

3
(ρb + ρQ) , (5.15)

and impose the boundary conditions dR/da|a=ata
= 0 and R|a=0 = 0, where ata is

the scale factor at turn-around, then for a spherical density perturbation with a given

∆ and redshift z, the unique temporal evolution of the overdensity, from linearity to

nonlinearity, can be solved (cf., Appendix A in WS98). We then have a one-to-one

map from ∆(z) to δ(z), as shown in Figure 1 for the cases w = −1,−2/3 and −1/3.

The map has a mild w dependence, with a given δ corresponding to a slightly larger ∆

as w increases. This is a consequence of the earlier formation of structure in QCDM

models relative to ΛCDM models; overdensities collapse faster and are therefore more

concentrated for w > −1. This point is well illustrated in Figure 2, where we show the

growth of a spherical perturbation for the same quintessence models. As expected,

the larger w is, the earlier structures reach turnaround and collapse.

It can be shown that in the limit δ → δc the spherical-collapse model predicts

that the radius, R, of the overdensity goes to zero and hence ∆ → ∞. Of course

well before reaching the singular solution an actual overdensity will virialize, thereby

halting its collapse. To account for this fact we invoke a simple smoothing scheme in

which the radius of the matter perturbation is constant with time upon reaching the

virialized overdensity (see Figure 2). We refer the reader to WK02 for details of the

smoothing method.

As described in WS98, the value of ∆vir(z) for quintessence models, needed here

in order to implement the smoothing scheme, can be obtained via the virial theo-

rem, energy conservation, and solving equations (13) and (15) for the overdensity at

turnaround. In Figure 3 we show the resulting numerical solution to ∆vir(z). We find

that an accurate fitting function to ∆vir(z) for −1 6 w 6 −0.3, modeled after the
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Figure 5.1 Nonlinear overdensity as a function of the linear-theory overdensity for
three constant-w models. The full solution of the spherical-collapse model predicts
collapse to an infinite overdensity as δ → δc ∼ 1.69. According to the smooth-
ing scheme, however, once a mass concentration reaches the virialization overdensity
∆vir(z), its radius remains constant so that the overdensity increases in proportion to
the decrease in the background density. Shown are the smoothing-scheme solutions
for mass concentrations that reach the virialization overdensity at z = 0.

approximation given in Kitayama & Suto (1996) for a ΛCDM cosmology, is

∆vir(z) = 18π2
[

1 + aΘb(z)
]

, (5.16)

where

a = 0.399 − 1.309(|w|0.426 − 1),

b = 0.941 − 0.205(|w|0.938 − 1), (5.17)

and Θ(z) = 1/Ωm(z)− 1 = (1/Ω0 − 1)(1 + z)3w. Since structures start to form earlier

the larger w is, the mean gas temperature in collapsing objects is higher in larger-w

models. As a result, a greater overdensity is required in order for such objects to
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Figure 5.2 Radial evolution of a density perturbation that is collapsing today accord-
ing to the spherical-collapse model. The ordinate gives the radius, r, in units of the
turnaround radius, rta, and the abscissa gives the time, t, in units of the overdensity
collapse-time for the ΛCDM model. As w increases perturbations reach turnaround
and collapse earlier, although growth is suppressed earlier as well. The collapse to a
singularity predicted by the solution of the spherical-collapse model is avoided by the
smoothing scheme (thick curves), which yields a constant radius once the virialized
overdensity is reached.

become bound and virialized, explaining why ∆vir rises with increasing w. Note,

however, that for ∆(z) < ∆vir(z) the map from nonlinear to linear overdensity has a

weak dependence not only on w but on Ω0 and redshift as well. The critical threshold

for collapse today δc(z = 0) = δc(z)D(0,Ω0, w)/D(z,Ω0, w), where D(z,Ω0, w) is the

linear growth factor (see WS98), also has a weak dependence on Ω0 and w, as shown

in Figure 4. For 0.1 6 Ω0 6 1 and −1 6 w 6 −0.3, we find that an accurate fitting

function to δc(z), also modeled after the approximation given in Kitayama & Suto
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Figure 5.3 Nonlinear overdensity at virialization as a function of redshift for three
constant-w models. As w increases ∆vir increases because overdensities collapse ear-
lier, when the mean gas temperature was higher. For all models ∆vir asymptotes to
the Einstein–de Sitter value of 178 at high redshift.

(1996) for a ΛCDM cosmology, is

δc(z) =
3(12π)2/3

20
[1 + α log10 Ωm(z)] ,

α = 0.353w4 + 1.044w3 + 1.128w2

+ 0.555w + 0.131. (5.18)

Incorrectly assuming that kpert is constant, however, yields a δc(z = 0) with a much

stronger dependence on these parameters, with inferred values for Ω0 = 0.3 of δc(z =

0) ∼ 1.5 and ∼ 1.0 for w = −2/3 and w = −1/3, respectively ( Lokas & Hoffman

2001).
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Figure 5.4 Linear-theory critical threshold for collapse, δc, at z = 0 as a function of
Ω0 for three constant-w models. δc does not vary significantly over a wide range in w
or Ω0.

5.3.2 Abundances

Since we are interested in computing the abundances of both virialized weak lenses and

non-virialized weak lenses we consider two ranges of overdensity in our lens-abundance

calculations: (1) δmin < δ < δc, the non-virialized lenses, and, (2) δ > δc > δmin, the

virialized lenses. As we showed in WK02, the mass distribution of both the dark and

virialized lenses peaks near ∼ 1014M�, though the virialized lenses’ mass threshold of

∼ 1013M� is several times smaller than that of the dark lenses (see WK02, Figure [7]).

Although both types of lenses correspond to overdensities in a similar mass range, the

virialized lenses are typically virialized clusters that form at rare (e.g., > 3σ) high-

density peaks of a Gaussian primordial distribution, while the non-virialized lenses

correspond to proto-clusters (e.g., 2σ − 3σ peaks)—mass overdensities that have not

yet undergone gravitational collapse and virialized, but that have begun to break away

from the cosmological expansion. These proto-clusters should contain galaxies and

perhaps a few groups that later merge to form the cluster (cf., White, van Waerbeke,
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& Mackey 2002). The timescale for collapse of cluster-mass objects is large, and the

overdensities can be very large even before they have virialized. It should therefore

not be too surprising that proto-clusters produce a weak-lensing signal that resembles

that from virialized clusters.

Though the lensing signals may be similar, the two lens types are expected to

have different observational features. In particular, since the X-ray luminosity is a

very rapidly varying function of the virialized mass, the summed X-ray emission from

a non-virialized lens should be much smaller than that from a fully virialized lensing

cluster of the same mass. In referring to these proto-clusters as “dark,” we thus mean

that they should be X-ray underluminous. Although the mass-to-light ratio of these

clusters should be comparable to those for ordinary clusters, since (1) high-redshift

clusters may be difficult to pick out in galaxy surveys and, (2) proto-clusters will

typically have a sky density a few times smaller than ordinary clusters, it would

also not be surprising if these dark lenses had no readily apparent corresponding

galaxy overdensity. Observational evidence of such dark lenses has been reported in

detections by Erben et al. (2000), Umetsu & Futamase (2000), Miralles et al. (2002),

Dahle et al. (2002), and Koopmans et al. (2000), the latter involving a detection

through strong, rather than weak, lensing. A more detailed discussion of the features

that may distinguish dark and virialized weak lenses is given in WK02.

Since the weak-lensing signal reveals only the projected mass distribution, line-

of-sight projection effects can lead to false halo detections. Using mock observations

of numerical simulations White, van Waerbeke, & Mackey (2002) showed that the

presence of large-scale structure results in projection effects that significantly limit

the efficiency of a weak lensing survey. Similarly, Hoekstra (2002) showed that the

combined effect of large-scale structure and the intrinsic ellipiticities of background

galaxies can lead to 20 − 40% errors in the determination of a lensing halo’s mass.

Such effects will obviously hamper efforts to constrain cosmological parameters from

cumulative number counts of weak lenses. However, it is important to note that

because the mass distributions of both dark lenses and virialized lenses are similar,

false halo detections are not expected to affect the dark lenses anymore than they do
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the virialized lenses. In fact, because the dark lenses have a larger mass threshold, a

weak-lensing survey might be more efficient at detecting dark lenses than virialized

lenses. Complementary observations in the optical and X-ray (and perhaps strong

lensing and the Sunyaev-Zel’dovich effect) will clearly help to minimize the number

of false detections. Although virialized lenses might benefit more from such follow-up

observations, dark lenses will likely benefit as well, as they are expected to have a

slight overdensity of galaxies as compared to the field, and also perhaps emit a weak X-

ray signal. Therefore, even though systematic uncertainties like false halo detections

might render the absolute number count of dark or virialized lenses impractical as

a means of constraining cosmological parameters, the relative number count of dark

to virialized lenses remains a viable option since both lens types are, for the most

part, equally affected by such systematics. Of course these conclusions are based

on the simplifying assumptions inherent in the STHC model. It would therefore be

very interesting to compare the analytic weak-lensing results obtained in this paper

with numerical simulation predictions, in which non-virialized haloes are considered

in addition to the oft-considered virialized haloes. This would provide an independent

means of quantifying the completeness of future weak-lensing halo searches for both

virialized and dark lenses. However, that comparison is beyond the scope of the

present paper.

Turning now to the details of the calculational method, in order to compute the

abundances of virialized and dark lenses we need to know the probability that an

object of a given mass at a given redshift is in one of the above mentioned ranges

in overdensity. If we assume Gaussian statistics for the initial linear-theory density

field, then the probability that an object’s overdensity is in the range δ1 < δ < δ2 is

P (δ1 < δ < δ2) = erf

(

ν2√
2

)

− erf

(

ν1√
2

)

, (5.19)

where “erf” is the error function, ν = δ/σ, and σ = σ(M, z) is the rms density

fluctuation of an object of mass M at redshift z. From Press-Schechter theory, we

have that the comoving number density of virialized objects (those with δ > δc) of



154

mass M = 4πR3ρ0/3 in the interval dM that are at redshift z in a universe with

comoving background density ρ0 is,

dn

dM
(M, z) =

√

2

π

ρ0

M2

δc(z)

σ(M, z)

∣

∣

∣

∣

d lnσ(M, z)

d lnM

∣

∣

∣

∣

× exp

[

− δc(z)
2

2σ2(M, z)

]

. (5.20)

We can therefore compute the abundance of objects in the overdensity range δ1 <

δ < δ2 by convolving the above mass function of virialized objects with P (δ1 < δ <

δ2)/P (δ > δc). Specifically, the fraction of objects that can lens relative to those that

are virialized is, for dark lenses,

fdark(M, z) =



















P (δmin < δ < δc)
P (δ > δc)

, δmin < δc;

0, otherwise,

(5.21)

and for virialized lenses,

fvir(M, z) =



















P (δ > δmin)
P (δ > δc)

, δmin > δc;

1, otherwise.

(5.22)

As noted in WK02, the lower the mass of the object the larger the minimum over-

density needed to produce a detectable weak-lensing signal. For low enough masses

the minimum overdensity becomes so large that both fdark and fvir approach zero,

thereby imposing an effective weak-lensing mass threshold. It is worthwhile to note

that we have also considered the mass function suggested by Sheth & Tormen (1999),

a variant of the Press-Schechter mass function that more accurately reproduces the

mass functions found in numerical simulations. However, since the resulting lens

abundances are essentially the same for both mass functions and because it is useful

to compare our results with previous theoretical investigations of weak lens abun-

dances, which often used the Press-Schechter mass function (e.g., Kruse & Schneider
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1999), we only show results for the Press-Schechter mass function.

To summarize, given f and equation (20) we can compute the total comoving

number density of weak lenses of a particular type. Multiplying by the comoving

volume element dVc/ dz dΩ(w) then gives the differential number count of lensing

objects per steradian, per unit redshift interval:

dN

dz dΩ
=

dVc

dz dΩ

∫ ∞

0

f(M)
dn

dM
(M)dM. (5.23)

By integrating over redshift we can then compute the number of dark and virialized

lenses we expect to see per unit area of sky for a given QCDM model.

5.3.3 Normalizing the power spectrum

In equation (23) the volume term and the two terms within the integrand are all

functions of w. While the predicted abundance of weak lenses will therefore vary

with w, the degree to which it will vary depends on the shape and normalization of

the power spectrum of density fluctuations. In particular, to compute the abundance

of weak-lenses we need to know σ(M, z).

For the shape of the power spectrum we use the fitting formulas given in Ma et

al. (1999) for QCDM models with the transfer function and shape parameter for

ΛCDM models given by Bardeen et al. (1986) and Hu & Sugiyama (1996, eqs. [D-28]

and [E-12]), respectively. Since the Q-component does not cluster on scales less than

∼ 100 Mpc (Caldwell, Dave & Steinhardt 1998), at the weak-lensing scales the shape

of the spectrum does not differ significantly from the well studied ΛCDM shape.

The normalization of the power spectrum, often expressed in terms of σ8, the rms

fluctuation today at a scale of 8 h−1 Mpc, is not as well-constrained as its shape and

will in general be a function of w. There are two different methods commonly used

to obtain the normalization: to fix it by the observed X-ray cluster abundance or

to fix it by the CMB large-scale anisotropies observed by the COBE satellite. Both

approaches have comparable uncertainties; the cluster abundance constraint on σ8

has a 20% uncertainty at the 2σ level (WS98) while the COBE constraint has a 7%
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Figure 5.5 Dependence of σ8 on w as obtained using three different approaches: fixing
Ω0 = 0.3 and normalizing to the observed X-ray cluster abundance (dashed line),
fixing Ω0 = 0.3 and normalizing to COBE (dotted line), and allowing Ω0 to vary with
w such that the cluster abundance constraint matches the COBE constraint (solid
line).

uncertainty at the 1σ level (Bunn & White 1997). To obtain an estimate of how

σ8 varies with w so that we may, in turn, determine how dN/dzdΩ varies with w

for dark and virialized lenses, we will consider three possible approaches. The first

two involve fixing the cosmological parameters (e.g., Ω0, h, Ωb, ns) and using either

the cluster-abundance constrained σ8(w) or the COBE constrained σ8(w). For the

former we will use the fit given in WS98, and for the latter the fit given by Ma et al.

(1999); see Figure 5. The third approach is to allow the cosmological parameters to

be free parameters and then jointly match the cluster-abundance constraint with the

COBE constraint so that each gives the same σ8(w). Since measurements of σ8 are

most degenerate with Ω0, we will let Ω0 be the parameter that varies. In Figure 6

we show the region in the Ω0–w plane where the X-ray cluster-abundance constraint,

at the 95% confidence level, overlaps the COBE constraint. The solid curve shows

where the central values match, with the resulting range in Ω0 (0.3 . Ω0 . 0.4
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for −1 < w < −0.4) within observational uncertainties (Wang et al. 2000). The

corresponding σ8(w) curve is shown in Figure 5. As we will show, the predicted

weak-lens abundances and how they vary with w strongly depend on which σ8(w)

normalization approach is chosen.
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Figure 5.6 Region in the Ω0–w plane where the X-ray cluster abundance constraint of
σ8, at 95% confidence, overlaps the COBE constraint of σ8. The gray scale gives the
corresponding σ8 values and the solid line shows wheres the central values match.

5.4 Results

We are interested in determining whether the number count and redshift distribution

of both dark and virialized weak lenses have the potential to constrain w. Another

possibly useful observable for this purpose is the number count of dark lenses relative

to virialized lenses. Since dark lenses are at an earlier stage of their dynamical

evolution as compared to virialized lenses, those cosmologies that favor a faster growth

of structure (i.e., QCDM models with larger w) will, for a given σ8, have fewer dark

lenses and more virialized lenses. The ratio of the two is therefore expected to vary
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with w. A priori, this latter observable seems particularly promising. As discussed in

WK02, the ratio of dark to virialized lenses is not very sensitive to observational noise

in the weak-lensing maps since observational noise equally affects the detectability of

both types of lenses. Contrastingly, uncertainties in observational noise will make it

difficult to constrain w by simply comparing predicted weak-lens number counts with

observed weak-lens number counts.

Before presenting how the above observables are modified by the dark energy

we first discuss how each of the factors that determine the observed abundance is

affected by changes in w. Doing so provides both physical insight into the results and

illustrates the calculational procedure discussed in the previous sections.

5.4.1 Preliminaries

As noted above, the predicted abundance of weak lenses will vary with w on account

of three factors: the comoving volume element, the Press-Schechter comoving number

density of virialized objects, and the value of fdark/vir [equations (21) and (22)]. The

degree to which each varies depends on the chosen σ8(w) normalization. As Figure

7 shows, dVc/dz dΩ decreases monotonically with increasing w for both fixed Ω0 and

Ω0 = Ω0(w) as given by jointly normalizing σ8 to COBE and the cluster abundance.

However, because the joint normalization yields a larger Ω0 with w and a less signifi-

cant decline in σ8 for w > −1 as compared to the COBE normalization with Ω0 fixed,

the former approach predicts a nearly constant virialized object number density with

increasing w while the latter predicts a significant decrease in the number density.

A similar trend is seen in the functions fvir and fdark, as Figure 8 demonstrates.

Here we plot the fraction of objects that have not yet reached turnaround (0 <

∆ < ∆ta) and the fraction of objects that are between turnaround and virialization

(∆ta < ∆ < ∆vir) relative to those objects that are virialized (∆ > ∆vir). The figure

illustrates several key elements of structure formation according to the spherical-

collapse model for dark-energy cosmologies. First, the fraction, χ, of objects in both

of these lower-overdensity ranges increases with mass in accordance with the hierar-
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Figure 5.7 Comoving volume element as a function of redshift (left panel) and the
comoving number density of virialized objects as a function of mass (right panel) for
three constant-w models. Results are shown for both the COBE normalization of σ8

with fixed Ω0 = 0.3 (thin lines) and the joint cluster abundance–COBE normalization
of σ8 with Ω0 = Ω0(w) (thick lines).

chical growth of structure. The fraction also increases with redshift since objects are

collapsing and evolving toward virialization. It is also interesting to note that objects

with ∆ta < ∆ < ∆vir evolve more rapidly as compared to objects with 0 < ∆ < ∆ta.

This is demonstrated by the fact that at z = 1 the fraction of both types of objects

is nearly the same though by z = 0 there are more objects that have not reached

turnaround. Furthermore, the larger w is, the greater the difference between the

rates of evolution. These effects are a consequence of the suppression of structure

growth in cosmologies with dark energy; namely, growth slows down earlier for larger

w and those objects that are less overdense at a given redshift have greater difficulty

overcoming the repulsive effects of the dark energy and collapsing. Finally, the plots

show how strongly the fraction depends on the chosen σ8 normalization, with a sig-

nificant variation with w for the COBE normalization and a fairly small variation

for the cluster-abundance normalization. This, in turn, means that the degree to

which the functions fvir and fdark vary with w is highly dependent on the assumed
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Figure 5.8 Fraction χ of objects with overdensities in the range ∆ta < ∆ < ∆vir

(upper panels) and 0 < ∆ < ∆ta (lower panels) relative to those objects that are
virialized, ∆ > ∆vir, as a function of mass. The left panels correspond to the COBE
normalization of σ8 with Ω0 = 0.3 and the right panels correspond to the X-ray
cluster abundance normalization of σ8 with Ω0 = 0.3. For each constant-w model we
show the fraction χ at z = 0 (bottom curve), z = 1/2 (middle curve), and z = 1 (top
curve).

normalization approach.

5.4.2 Weak lens abundances

In Figure 9 we show the predicted redshift distribution of virialized lenses and dark

lenses for three constant w models. For the COBE-normalized σ8 with fixed Ω0 the

distributions show a fairly strong sensitivity to w. As w increases from −1 to −1/3

the peak of the distributions shifts toward lower redshifts. Although one might expect
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the trend to be in the opposite direction given that structures form faster for larger w

models, the effect is counteracted by the decrease in σ8 with increasing w. That the

decrease in σ8 so overwhelms any tendency for structure to form faster for w > −1

is not surprising given the weak w dependence in the ∆ – δ map (Figure 1) and in

the function δc(z) (Figure 4). Note, however, that the shift in the distributions with

w becomes much less significant if a joint COBE-cluster abundance normalization is

assumed. Finally, given that dark lenses are likely progenitors of virialized clusters,

it is not surprising that both normalization approaches predict that the dark lenses

have a larger mean redshift than the virialized lenses.
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Figure 5.9 Normalized redshift distribution of virialized lenses (thin lines) and non-
virialized lenses (thick lines) for three constant-w models. The left panel shows results
obtained when σ8 is normalized to COBE with Ω0 = 0.3 and the right panel when σ8

is jointly normalized to COBE and the X-ray cluster abundance with Ω0 = Ω0(w).
The peak of the redshift distributions shifts toward lower redshifts as w increases
because σ8 decreases with w. The shift in the peaks is less drastic, however, when
the joint normalization is assumed.

To determine how well the weak lens redshift distributions can constrain w we

generated mock redshift data and determined (using the Kolmogorov-Smirnov test)

the probability of differentiating two different constant-w models as a function of
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the number of lenses detected. We found that to differentiate a ΛCDM model from

both a w = −0.6 model and a w = −0.9 model at the 3σ level required, on average,

approximately 200 weak lenses and 2000 weak lenses, respectively. As we show below,

this corresponds to a survey coverage of ∼ 15 and ∼ 150 square degrees. Note,

however, that for sufficiently wide surveys systematic uncertainties such as mass-

redshift selection effects and lens density profiles might dominate the errors.

By integrating over the redshift distribution we obtain the total number of virial-

ized and dark lenses expected per square degree on the sky. As Figure 10 shows, the

COBE normalization with Ω0 = 0.3 shows a significant decline in the number count

as w increases. By w = −2/3 the number count of both virialized and dark lenses

has dropped by a factor of two from the ΛCDM value. The joint normalization, in

which we allow Ω0 to vary with w, predicts a much more mild dependence on w with

the number count dropping by only ∼ 20% from w = −1 to w = −2/3 for both lens

types. Therefore, while the COBE-only normalization approach predicts that the sky

coverage needed to distinguish the ΛCDM model from a w = −0.6 model to 3σ is only

∼ 2 degree2, the joint approach requires ∼ 15 degree2. Similarly, to distinguish the

ΛCDM model from w = −0.9 requires ∼ 40 degree2 and ∼ 100 degree2, respectively.

The systematic uncertainties affecting absolute sky density measurements, such as

noise in the lensing maps and uncertainties in the lens density profiles, are expected

to add further complications. This suggests that it will be very difficult to constrain

w using just the number count of either virialized or dark lenses without, at the very

least, a tighter constraint on Ω0.

We also note that our results do not agree with the results found by Bartelmann,

Perrotta, & Baccigalupi (2002; hereafter BPB). They found that from w = −1 to

w ≈ −0.6, the number of virialized weak lenses per square degree increases by nearly

a factor of two. The increase is roughly linear up to the maximum after which the

number count declines steeply. In obtaining these results, however, they use the

formulas for ∆vir and δc given in  Lokas & Hoffman (2001), who assume that the space

curvature within a collapsing overdensity patch is time-independent. As we showed

in Section 3.1, this assumption is invalid for w 6= −1 and leads to incorrect values for
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Figure 5.10 Total number of virialized lenses (dashed curves) and non-virialized lenses
(solid curves) per square degree as a function of w. Thin lines correspond to the
COBE normalized σ8 with Ω0 = 0.3 and thick lines to the joint COBE–cluster abun-
dance normalized σ8 with Ω0 = Ω0(w). While the number count drops by a factor of
two between w = −1 and w = −2/3 for the COBE-only normalization, the drop is
much less significant for the joint normalization.

∆vir and δc. To confirm that this is the source of our differences, we recomputed the

number count of weak lenses as a function of w using the algorithm described in BPB

(which differs somewhat from ours because we are interested in separating lenses

into virialized and non-virialized types). When we assume the incorrect  Lokas &

Hoffman (2001) values for ∆vir and δc we recover the results found by BPB; however,

when we assume the values for ∆vir and δc predicted by solving the spherical-collapse

equations of Section 3.1, we obtain results very similar to those described in the

preceding paragraphs.

5.4.3 Fraction of lenses that are dark

As mentioned above, the number-count ratio of dark to virialized lenses is an observ-

able that is much less sensitive to observational noise than is the redshift distribution
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Figure 5.11 Fraction of lenses that are dark as a function of w for aperture sizes
θ = 3, 5, 10 and 15 arcmin. Results are shown for both the COBE normalization
with Ω0 = 0.3 (dashed lines) and the joint COBE–cluster abundance normalization
with Ω0 = Ω0(w) (solid lines). As θ increases, the fraction of lenses that are dark
rises significantly.

and number count of weak lenses. Unfortunately, for aperture sizes θ (defined in Sec-

tion 2) less than 10′ in radius the ratio is fairly constant over a broad range in w, as

we show in Figure 11. The ratio varies more strongly if the aperture size is increased

to 15′. In particular, for θ = 15′ there is a ∼ 20% difference between the ΛCDM

model and w = −0.6, so that differentiating the two models to a 3σ significance re-

quires the detection of ∼ 600 virialized lenses or equivalently a sky coverage of ∼ 50

degree2. Although using the non-virialized lens fraction requires large survey coverage

for modest constraints on w, its principal advantage (in addition to being relatively

insensitive to observational noise) is that it is not very sensitive to the chosen method

of normalization; for any aperture size both the joint normalization and the COBE

normalization with fixed Ω0 yield similar dependences on w. Therefore, unlike the

case for weak-lens sky-density or redshift distribution predictions, uncertainties in σ8

and Ω0 do not strongly affect the predicted ratio of dark to virialized lenses. Inci-
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dentally, although aperture sizes greater than ∼ 15′ yield ratios with even stronger

w dependences, noise contributions from large-scale structure become significant at

such large angular distances from the lens center (Hoesktra 2002). It is therefore not

practical to make measurements at radii well beyond 15′.
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Figure 5.12 Total number of virialized lenses (dashed line) and non-virialized lenses
(solid line) per square degree as a function of the aperture size θ for a ΛCDM cosmol-
ogy. While the number count of virialized lenses peaks at θ = 5 arcmin and declines
thereafter, the number count of non-virialized lenses increases almost linearly for
θ > 5 arcmin.

As an aside, while the ratio of dark to virialized lenses does not have a particularly

strong w dependence, it does have a strong θ dependence; only ∼ 5% of lenses are

dark when θ = 3′ but ∼ 50% are when θ = 15′. In Figure 12 we plot the number

of virialized and dark lenses as a function of θ for the ΛCDM model. As θ increases

from 3′ to 15′ the sky density of dark lenses increases from zero to five per square

degree while the sky density of virialized lenses peaks at θ = 5′ and gradually declines

for larger aperture sizes. Figure 13 explains this trend. For an overdensity of mass

M = 5 × 1014M� we plot, as a function of redshift, θvir, the projected angular size

of the virialization radius, and θmax, the projected angular size of the maximum
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Figure 5.13 Observed angular size of θvir (dashed line) and θmax (solid line) as a func-
tion of redshift for an overdensity of mass M = 5 × 1014M� for a ΛCDM cosmology.
If θmax > θvir an overdensity need not be virialized to produce a detectable lensing
signal. However, the range in redshift over which a non-virialized lens can be detected
is limited by the aperture size θ (e.g., thin, dotted lines), which defines the maximum
observable angular scale. For θ . 3 arcmin virtually no dark lenses can be detected.

radius that produces a detectable lens (i.e., θmax = Rmax(z)/Dd(z) where R3
max =

3M/4π∆min(z)). For θmax > θvir an overdensity can be non-virialized and still produce

a detectable lensing signal (i.e., a dark lens). However, since θ defines the maximum

observable angular scale, for sufficiently small θ there is no range in redshift such

that θ > θmax > θvir, in which case non-virialized overdensities cannot produce a

detectable lens. In general we find that the minimum aperture size needed to detect

dark lenses is ∼ 3′. For larger θ, the area below θmax and above θvir has a substantial

relative increase while the area below θvir has just a mild relative increase. After

taking into account the fact that the aperture mass Map(θ) decreases with increased

θ, this translates to an increase in the sky density of dark lenses and a decrease in

the sky density of virialized lenses for θ > 5′. The fraction of lenses that are dark

therefore increases with aperture size.
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5.5 Discussion and conclusions

We have examined the possibility of using the measured abundance of weak gravita-

tional lenses to constrain a principal property of the dark energy, its equation-of-state

parameter w. Since dark energy modifies both the background cosmology of the uni-

verse and the growth of structure, it will necessarily have an effect on the efficiency

of weak-lensing. The goal of this paper was to determine the nature and strength of

the effect.

The change in the background cosmology with w influences the predicted weak

lens abundance in essentially three ways. First, the size of comoving volume elements

shrink with increasing w. Second, the distance-redshift relation is modified, thereby

shifting the location of the lensing-kernel maximum (i.e., where the combination of

angular diameter distances DdsDd/Ds peaks). Third, since the evolution of the back-

ground matter density is modified by the dark energy, the density of a given halo

relative to the background density changes with w. This, in turn, affects the strength

of a halo’s lensing signal; the larger the overdensity the stronger the signal. While the

volume term is explicitly factored into the expression for the weak-lens sky density

[equation (22)], the latter two effects are incorporated into the signal-to-noise estima-

tor for which we use the aperture-mass technique introduced by Schneider (1996).

The change in the growth of structure with w is somewhat more subtle. The dark

energy modifies both the rate of structure growth and the amplitude of the matter

power spectrum. To determine the former we solved the spherical-collapse model

with dark energy included. Though growth occurs more rapidly as w increases, the

overall effect on the ∆ – δ map, needed to relate the minimum overdensity required to

produce a detectable lens, ∆min, to a corresponding linear-theory overdensity δmin, is

fairly small. Similarly, the linear-theory overdensity at collapse δc does not vary much

with w. The effect on ∆vir is more significant, however. As w increases, structures

require substantially greater overdensities in order to reach virial equilibrium because

they collapse sooner, when the universe is younger and hotter.

To determine how the power-spectrum amplitude, σ8, varies with w we considered
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three possible approaches. One was to normalize to the X-ray cluster abundance

as was done in WS98. Another was to normalize to the COBE measurements of

CMB anisotropies on large angular scales. These two approaches predict similar

values of σ8 for the ΛCDM model. However, if all cosmological parameters are held

fixed as w varies, the values of σ8 are no longer in accordance. This is because the

cluster abundance approach is accounting for the earlier forming, and hence hotter,

galaxy clusters in models with w > −1. The COBE normalization, on the other

hand, is accounting for the increase in the Integrated Sachs-Wolfe (ISW) effect as

w increases (cf. BPB). Given these differing influences, the two approaches are not

expected to yield the same σ8 when all the cosmological parameters are held fixed

to those of the ΛCDM model while w is varied. This suggests a third approach to

normalizing the power spectrum; namely, let the parameters vary with w such that

the cluster abundance normalization matches the COBE normalization. In practice

we accomplished this by letting just Ω0 vary with w, as it is the parameter most

degenerate with σ8. The resulting range in Ω0 for −1 < w . −0.4 was found to

be 0.3 < Ω0 < 0.4 and hence within observational uncertainties. Though all three

normalization approaches predict that σ8 decreases with w, the difference in the

magnitude of the decrease between the approaches is significant. As a result, each

predicts substantially different variations in the weak-lens abundance with w.

Having determined all the dark energy effects, we computed the redshift distribu-

tion and sky density of weak lenses as a function of w. As in WK02, we distinguished

between two classes of lenses, those that have collapsed and virialized and those that

have not. This distinction is based on the expectation that the virialized lenses, being

in a relaxed state, are X-ray and/or optically luminous. The non-virialized lenses,

being at an earlier stage in the overdensity evolutionary cycle, are expected to be

X-ray underluminous because the observed X-ray luminosity function has a steep de-

pendence on the total virialized mass within a halo. Furthermore, though the typical

mass of both lens types is ∼ few × 1014M�, the sky density of galaxies within the

non-virialized lenses is expected to be smaller than in the virialized lenses because

they have not yet collapsed and hence have larger radii (see WK02 for more details).
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We found that the variation in the redshift distribution and the sky density of both

lens types with w depends strongly on the power-spectrum-normalization approach.

If Ω0 is fixed and σ8 is normalized to the COBE measurements, there is a significant

variation in the abundances with w. In particular, the sky density of both virialized

lenses and non-virialized lenses drops by a factor of two from w = −1 to w = −2/3.

This decline, a result of the significant decrease in σ8 with w, occurs despite the

faster formation of structure for w > −1. If, on the other hand, Ω0 is allowed

to vary with w such that the COBE normalization matches the cluster-abundance

normalization, the redshift distributions and sky density change very little with w;

between w = −1 and w = −2/3 the sky density of both lens types varies by just

∼ 20%. This insubstantial variation is the result of an increase in Ω0 with w and a

less significant drop in σ8 with w as compared to the COBE normalization with Ω0

fixed. Obtaining a strong constraint on w from the sky density or redshift distribution

of weak lenses therefore appears to be contingent on improved measurements of Ω0

from independent observations.

Perhaps more promising is the possibility of utilizing the observed ratio of dark

lenses to virialized lenses. Unlike measurements of the absolute sky density of weak

lenses, the ratio is not very sensitive to the amount of observational noise in the weak-

lensing maps since the abundance of both dark lenses and virialized lenses are equally

affected by noise. Similarly, the ratio does not vary significantly over a wide range

of cosmological parameters so that uncertainties due to the Ω0 − w degeneracy are

minimized. We found that for aperture sizes of ∼ 15′ the ratio varies by about 20%,

dropping from 0.5 to 0.4, between the ΛCDM model and w = −0.6. We also showed

that the ratio of dark to virialized lenses increases with aperture size, in effect because

larger apertures enable the detection of the more extended radii of the non-virialized

lenses.

Weak-lensing has already been shown to be a powerful probe of the matter dis-

tribution in the universe (see e.g., Bartelmann & Schneider 2001). It also has the

potential to help constrain the amount and nature of the dark energy. Huterer (2002)

showed that given reasonable prior information on other cosmological parameters, the
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weak-lensing convergence power spectrum can impose constraints on the dark energy

comparable to those of upcoming type Ia supernova and number-count surveys of

galaxies and galaxy clusters. Constraining the dark energy from absolute measure-

ments of weak-lens abundances will likely prove difficult, however. The variation in

the weak-lens sky density with w is sufficiently small that modest uncertainties in Ω0

(and observational noise) can mask the effect of the dark energy. More auspicious is

the possibility of utilizing the relative abundance of dark lenses to virialized lenses to

constrain w. Future weak-lensing projects such as the the VISTA survey, the SNAP

mission, and LSST (see Tyson et al. 2002 for a discussion of its great promise as a

probe of dark energy) are expected to provide the wide-field surveys needed for this

technique to be viable.

We thank R. Caldwell for helpful suggestions, and an anonymous referee for useful

comments that have improved the presentation of this paper. NNW acknowledges

the support of an NSF Graduate Fellowship. This work was supported by NSF AST-

0096023, NASA NAG5-9821, and DoE DE-FG03-92-ER40701.

5.A Phantom energy: dark energy with w < −1

causes a cosmic doomsday†

The simplest explanation for dark energy is a cosmological constant, for which w =

−1. However, this cosmological constant is 120 orders of magnitude smaller than

expected from quantum gravity. Thus, although we can add this term to Einstein’s

equation, it is really only a placeholder until a better understanding of this negative

pressure arises. Another widely explored possibility is quintessence (Caldwell, Dave,

& Steinhardt, 1998; Ratra & Peebles, 1988; Wetterich, 1995; Coble, Dodelson,& Frie-

man, 1997; Turner & White, 1997; Boyle, Caldwell, & Kamionkowski, 2002), a cosmic

†A version of this section was first published as R. Caldwell, M. Kamionkowski, and N. Weinberg
Physical Review Letters, 91, 071301 (2003).
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Figure 5.14 Current constraints to the w-Ωm parameter space. The red solid curves
show the age (in Gyr) of the Universe today (assuming a Hubble parameter H0 =70
km sec−1 Mpc−1). The light shaded regions are those allowed (at 2σ) by the observed
cluster abundance and by current supernova measurements of the expansion history.
The dark orange shaded region shows the intersection of the cluster-abundance and
supernova curves, additionally restricted (at 2σ) by the location of the first acoustic
peak in the cosmic-microwave-background power spectrum and quasar-lensing statis-
tics.

scalar field that is displaced from, but slowly rolling to, the minimum of its poten-

tial. In such models, the equation-of-state parameter is −1 < w < −1/3, and the

dark-energy density decreases with scale factor a(t) as ρQ ∝ a−3(1+w).

Fig. 5.14 shows constraints to the w-Ωm parameter space (where Ωm is the pres-

sureless matter density in units of the critical density) from the cluster abundance,

supernovae, quasar-lensing statistics (see refs. Wang et al. 2000; Perlmutter, Turner,

& White 1999 and references therein), and the first acoustic peak in the CMB power

spectrum (values taken from Ref. Page et al. 2003). As the figure shows, w seems to

be converging to w = −1.

But what about w < −1? Might the convergence to w = −1 actually be indi-

cating that w < −1? Why restrict our attention exclusively to w > −1? Matter

with w < −1, dubbed “phantom energy” (Caldwell, 2002), has received increased
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attention among theorists recently. It certainly has some strange properties. For

example, the energy density of phantom energy increases with time. It also violates

the dominant-energy condition (Hawking & Ellis, 1973; Carroll, Hoffman, & Trodden,

2003a), a cherished notion that helps prohibit time machines and wormholes. How-

ever, it is hard to see how time machines and wormholes would arise with phantom

energy. Although sound waves in quintessence travel at the speed of light, it does

not automatically follow that disturbances in phantom energy must propagate faster

than the speed of light; in fact, there are already several scalar-field models for phan-

tom energy in which the sound speed is subluminal (Caldwell, 2002; Parker & Raval,

2001; Armendariz-Picon et al., 1999; Chiba, Okabe, & Yamaguchi, 2000; Faraoni,

2002; Carroll, Hoffman, & Trodden, 2003b). It is true that these models feature un-

usual kinetic terms in their Lagrangians, but such terms may arise in supergravity

(Nilles, 1984) or higher-derivative-gravity theories (Pollock, 1988). Theorists have

also discussed stringy phantom energy (Frampton, 2002) and brane-world phantom

energy (Sahni & Shtanov, 2002). Connections with the dS/CFT correspondence have

also been made (McInnes, 2002). To be sure, phantom energy is not something that

any theorist would have expected; on the other hand, not too many more theorists

anticipated a cosmological constant! Given the limitations of our theoretical under-

standing, it is certainly reasonable to ask what empirical results have to say.

In Fig. 5.15 we generalize the analysis of cosmological constraints to a parameter

space that extends to w < −1. As indicated here, there is much acceptable parameter

space in regions with w < −1 (see also refs. Hannestad 2002; Schuecker et al. 2003).

With certain prior assumptions, the best fit is actually at w < −1.

As we now show, if w < −1 persists, then the fate of the Universe is quite

fantastic and completely different than the possibilities previously discussed. To

begin, let us review these other fates. In a flat or open Universe without dark energy,

the expansion continues forever, and the horizon grows more rapidly than the scale

factor; the Universe becomes colder and darker, but with time the comoving volume

of the observable Universe evolves so that the number of visible galaxies grows. If

the expansion is accelerating, as a consequence of dark energy with −1 6 w < −1/3,
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Figure 5.15 Same as in Fig. 5.14, except extended to w < −1. Here, the blue dot-dash
curves show for phantom-energy (w < −1) models the time (in Gyr) remaining in the
Universe (assuming a Hubble parameter H0 = 70 km sec−1 Mpc−1).

then the expansion again continues forever. However, in this case, the scale factor

grows more rapidly than the horizon. As time progresses, galaxies disappear beyond

the horizon, and the Universe becomes increasingly dark. Still, structures that are

currently gravitationally bound, such as the Milky Way and perhaps the Local Group,

remain unaffected. Thus, although extragalactic astronomy becomes less interesting,

Galactic astronomy can continue to thrive.1

With phantom energy, the Friedmann equation governing the time t evolution

of the scale factor a(t) becomes H2 ≡ (ȧ/a)2 = H2
0 [Ωm/a

3 + (1 − Ωm)a−3(1+w)],

where H0 is the Hubble parameter, and the dot denotes a time derivative. If Ωm '
0.3, then the Universe is already dark energy-dominated, and for w < −1 it will

become increasingly dark-energy–dominated in the future. We thus approximate the

subsequent evolution of the scale factor by neglecting the first term on the right-

hand side. Doing so, we find that the scale factor blows up in a time trip − t0 '
1There is another possibility: if the quintessence potential at some point becomes negative, then

the Universe can reach a point of maximum expansion and then re-collapse (Steinhardt & Turok,
2002; Kallosh, 2002).
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(2/3)|1 +w|−1H−1
0 (1−Ωm)−1/2 from the current time t0. For example, for w = −3/2

and H0 = 70 km sec−1 Mpc−1, the time remaining before the Universe ends in this

“Big Rip” (McInnes, 2002) is 22 Gyr.

As in a cosmological-constant Universe, the scale factor grows more rapidly than

the Hubble distance H−1 and galaxies will begin to disappear beyond the horizon.

With phantom energy, the expansion rate H grows with time, the Hubble distance

decreases, and so the disappearance of galaxies is accelerated as the horizon closes in

on us. More intriguing is that the increase in the dark-energy density will ultimately

begin to strip apart gravitationally bound objects. According to general relativity, the

source for the gravitational potential is the volume integral of ρ+3p. So, for example,

a planet in an orbit of radius R around a star of mass M will become unbound roughly

when −(4π/3)(ρ+ 3p)R3 ' M . With w > −1, −(ρ+ 3p) is decreasing with time so if

−(4π/3)(ρ+ 3p)R3 is smaller than M today, then it will remain so ever after. Thus,

any system that is currently gravitationally bound (e.g., the solar system, the Milky

Way, the Local Group, galaxy clusters) will hereafter remain so.

With phantom energy, −(ρ + 3p) increases, and so at some point in time every

gravitationally bound system will be dissociated. With the time evolution of the

scale factor and the scaling of the phantom-energy density with time, we find that

a gravitationally bound system of mass M and radius R will be stripped at a time

t ' P
√

2|1 + 3w|/[6π|1 + w|], where P is the period of a circular orbit around the

system at radius R, before the Big Rip (see Table 5.1). Interestingly, this time is

independent of H0 and Ωm.

Thus, for example, for w = −3/2, the interval is t ' 0.3P before the end of

time. In this case, clusters will be stripped roughly a billion years before the end of

time. In principle, if w were sufficiently negative, the Andromeda galaxy would be

torn from the Local Group before it could fall into the Milky Way; however, given

current upper limits to −w, this is unlikely. For w = −3/2, the Milky Way will get

stripped roughly 60 million years before the Big Rip. Curiously, when this occurs the

horizon will still be ∼ 70 Mpc, so there may still be other observable galaxies that

we will also see stripped apart (although given the time delay from distant objects,
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Table 5.1 The history and future of the Universe with w = −3/2 phantom energy.

Time Event
∼ 10−43 s Planck era
∼ 10−36 s Inflation

First Three Minutes Light Elements Formed
∼ 105 yr Atoms Formed
∼ 1 Gyr First Galaxies Formed
∼ 15 Gyr Today

trip − 1 Gyr Erase Galaxy Clusters
trip − 60 Myr Destroy Milky Way
trip − 3 months Unbind Solar System
trip − 30 minutes Earth Explodes
trip − 10−19 s Dissociate Atoms
trip = 35 Gyrs Big Rip

we will see the Milky Way destroyed first). A few months before the end of time, the

earth will be ripped from the Sun, and ∼ 30 minutes before the end the earth will fall

apart. Similar arguments also apply to objects bound by electromagnetic or strong

forces. Thus, molecules and then atoms will be torn apart roughly 10−19 seconds

before the end, and then nuclei and nucleons will get dissociated in the remaining

interval. In all likelihood, some new physics (e.g., spontaneous particle production

or extra-dimensional, string, and/or quantum-gravity effects) may kick in before the

ultimate singularity, but probably after the sequence of events outlined above.

The end of structure, from cosmic, macroscopic scales down to the microscopic,

leads us to remark that our present epoch is unique from the viewpoint that at no

other time are non-linear structures possible. When the phantom energy becomes

strong enough, gravitational instability no longer works and the Universe becomes

homogeneous. Eventually, individual particles become isolated: points separated by

a distance greater than 3δt(1 + w)/(1 + 3w) at a time trip − δt cannot communicate

before the Big Rip. Therefore, the dominance of the phantom energy signals the end

of our brief era of cosmic structure, which began when the non-relativistic matter

emerged from the radiation. In such a Universe, certain cosmic questions have new

significance. It is natural to find ourselves—or more generally, non-linear structure—
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living close to the onset of acceleration if the structure is soon destroyed and the

Universe does not survive much longer afterwards (McInnes, 2002). A Big Rip renders

the “why now?”, or question of cosmic coincidence, irrelevant.

The current data indicate that our Universe is poised somewhere near the razor-

thin separation between phantom energy, cosmological constant, and quintessence.

Future work, and the longer observations by WMAP, will help to determine the

nature of the dark energy. In the meantime we are intrigued to learn of this possible

new cosmic fate that differs so remarkably from the re-collapse or endless cooling

considered before. It will be necessary to modify the adopted slogan among cosmic

futurologists—“Some say the world will end in fire, Some say in ice” (Frost, 1916)—for

a new fate may await our world.

RRC thanks the UCSB KITP for hospitality. This work was supported at Caltech by

NASA NAG5-9821 and DoE DE-FG03-92-ER40701, at the KITP by NSF PHY99-
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Schuecker, P., Caldwell, R. R., Böhringer, H., Collins, C. A., Guzzo, L., & Weinberg,

N. N. 2003, A&A, 402, 53

Seitz C., Schneider P., 1997, A&A, 318, 687

Sheth R. K., Tormen G., 1999, MNRAS, 308, 119

Sievers J. L. et al., 2002, submitted to ApJ, astro-ph/0205387

Smail I., Hogg D. W., Yan L., Cohen J. G., 1995, ApJ, 449, L105

Spergel, D. N. et al., astro-ph/0302209 (2003).

Steinhardt, P. J. & Turok, N., Science 296, 1436–1439 (2002).



181

Turner, M. S. & White, M., Phys. Rev. D 56, 4439–4443 (1997).

Tyson J. A., Wittman D. M., Hennawi J. F., Spergel D. N., 2002, astro-ph/0209632

Umetsu K., Futamase T., 2000, ApJ, 539, 5

Wang L., Steinhardt P. J., 1998, ApJ, 508, 483 (WS98)

Wang L., Caldwell R. R., Ostriker J. P., Steinhardt P. J., 2000, ApJ, 530, 17

Wang, L. et al., Astrophys. J. 530, 17–35 (2000).

Weinberg N. N., Kamionkowski M., 2002, MNRAS, in press, astro-ph/0203061

(WK02)

Weller J., Albrecht A., 2001, Phys. Rev. Lett., 82, 896

Wetterich, C., Astron. Astrophys. 301, 321 (1995).

White M., van Waerbeke L., Mackey J., 2002, ApJ, 575, 640


