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SUMMARY

The object of this study was to investigate those parameters which
affect the ovegéll performance of a sounding rocket. The index of perfor-
mance is the maximum summit altitude attained when neglecting ‘separation
in a nozzle operated under overexpanded conditions. Secondly, a theoretical
analysis was made of the affect of jep separation on nozzle performance.

A nozzle built with a variable area ratio, such that the optimum
may be obtained for each altitude, has been chosen as the standard by
which maximum performance may be calculated. The ratio of the summit
altitude reached by a conventional nozzle of fixed area ratio to that
attained by an ideal nozzle is symbolized as the ratio R. The following
conclusions have been reached:

a. Increasing the initial acceleration or the chamber pressure
increases the magnitude of R.

b. Increasing the loading factor, the specific impulse, or the
initial velocity, decreases the magnitude of R.

c. Incorporation of a two-step nozzle increases the performance
R by 7 to 8 percent in low-performance vehicles, and to an even greater
pércentage in high~performance vehicles. A significant increase in per-
formance would not be realized by using more than two steps.

During that portion of the vehicle flight when the jet is overexpanded,
the exhaust gases do not cling to the nozzle walls, but separate as a result
of simple oblique weak shock wave. This separation occurs at an area
ratio of about 3 to L4 larger than the optimum for a given altitude. The
following nozzle-performance characteristics can be deduced from this

separation theory:



a. .The loss in performance of a nozzle in the overexpanded region
of operation is not so severe as computatioﬁs neglecting jet separation
indicate.

b. The point of separation varies linearly with chamber pressure
and increases with decreasing Y. Increasing the cone angle decreases
the area ratio at which jet separation occurs. Experiment has shown that
at a cone angle of 15 degrees fhe detachment or wedge angle equals the
cone angle. Thus for a cone angle of 15 degrees, the gas path at the
boundary of the detached jet is parallel to the nozzle centerline. Since
for a given nozzle the same detachment angle exists regardiess of the
pressure ratio across the nozzle, and since temperature has no effect on
the sgparation pattern, the wedge angle is a function of the cone angle
alone.

c. By controlling the point of separation with some device which
would select the optimum separation point for a given set of rocket and

flight parameters, the available thrust of the vehicle can be increased.



GENERAL INTRODUCTION

It was decided to divide this analysis into two separate sections,
to approach the problem of performance neglecting the affects of sepa-
ration in the overexpanded nozzle, and then to study separation' theory,
and deterrine how this affects the results obtained neglecting separation.
In section 1, an analysis of the effects of the rocket parameters
on performance is me.de, noting what possible design techniques might be
incorporated to improve performance. In section 11, & theoretical analysis
is made to show the effect of separation in overexpanded nozzles. These
resul ts may then be qualitétively applied to the results of section 1, to

serve as a correction factor on performance evaluatione.



NOMENCLATURE

Definition
Velocity of sound in chamber
Velocity of sound before shock
Initial acceleration |
Oblique shock angle
Thrust coefficient
Thrust coefficient at sea-level
Thrust
Thrust at sea-level
nozzle throat area
Detachment nozzle area

Nozzle area at any location

Area ratio, ratio of exit area to throat area

Separation area ratio

Altitude in vacuum at any time, t
Burnout altitude

Sﬁmmit altitude

Sea-level specific impulse

Average specific impulse over flight
(fixed area ratio)

Average specific impulse over flight
(variable area ratio)

Mach number befbre shock
Initial propellent mass

Dead mass of missile

Units
ft./sec.
ft./sec.
ft./sec.?

degree

ft.
ft.

ft.

1bs thrust
1b, fuel/sec.

same

same

lbs. mass

lbs. mass
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Nomenclature - continued

Chamber pressure
Pressure before shock
Pressure after shock
Ambient atmospheric pressure
Ratio hs /hS

F v
Density before shock
Density after shock
Time

Burnout time

Velocity in nozzle before shock

Velocity after shock, parallel to u

Iqitial missile velocity
Burnout missile velocity
Weight of propellant

Ratio of specific heats

Detachment angle (wedge angle)

1/2 cone angle
"

Loading factor ﬁ%
0

Divergence factor (1/2 + 1/2 cos o< )

Nozzle efficiency

Units

psi
psi
psi

psi

slugs/cu.ft.
same

Secs.

Secs.,
ft./sec.
ft./sec.
ft./sec.
ft./sec.

1bs.

deg.

deg.



SECTION I

THE EFFECT OF NOZZLE DESIGN ON THE VERTICAL FLIGHT PERFCORMANCE

OF ROCKET VEHICLES.
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1. Introduction.

The purpose of Section I is to analyze the relative performance of
many types of sounding rockets. Invthis study a comparison is made between
a nozzle having a conventionéi fixed area ratio and an ideal &ne having
a variable area ratio. All other relevant parameters are held constant.

An attempt is also made to study this ideal nozzle by use of a multi-
stage one built in two or more separate sections, each of which has an
area ratio fixed at some optimum for a certain portion of the flight.

In this analysis it was decided to use the summit altitude in drag-
free flight as the basis of comparing relative performance. Since this
study is made over a wide variety of vehicles, it can be used as an index
for future design, if very high altitudes are desired.

Throughout the analysis of Section I, no account has been made of
the effect of jet separation in an overexpanded nozzle except for the
multi-stage type. Obviously, the purpose of such a nozzle is to force
jet separation at any desired altitude, and thus to minimize the thrust
deficiency when operating under overexpanded conditions.

In order to accomplish this study, it was necessary to develop the
flight equation, and under certain assumptions, to evaluate it over a
wide range of parametric conditions. A discussion of this equation is

presented.
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2. Derivation of the Flight Equation.

As a vehicle is launched vertically in still air, it is affected by a
combined action of gravity, air resistance, and upward rocket thrust. Ob-
viously, the weight of the rocket decreases as fuel is consumed, during its
vertical ascent, After the propellant has been consumed, the vehicle con-
tinues to ascent because of inertia until the summit is reached. During the
latter portion of the flight only air resistance and gravity are effective.
For thnis analysis it will be assumed that the effect of gravity is constant
and that the weight of the fuel expelled is a linear function of time.

In the derivation of the drag-free flight equation the thrust and
weight of the missile at any time, 1, is denoted by F and 5 the initial
gross weight by Wb; and the ratio of the initial propellant weight to the
total initial We;»;:ht by Y .

From Newtonian Mechanics, it is known that:

F -D _dv
[W "{‘ E5 1

in which the drag D is a function of the flight velocity and has the form:

1 2
D= 5 Po A 6’CD v
in which:
?o = density of the air at sea-level

6 = air density ratio

=g
]

largest cross-section of the missile
CD = drag coefficient
Since the greatest portion of the flight will occur at low drag, and

since the vehicles with values of u = Wb/A (gross weight per unit cross-
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sectional area) that equal or exceed 1000 1b/ft., they will be studied,
it is jus’Jr,i;t‘iable"L to neglect tne effect of air resistance in this analysis.
Thus the equation of motion reduces to:

_ci\_r__dzh_l_F—W]
T F

dt dt2
CF
Now the thrust at any time t is given by F = Fo T > where FO is the thrust
- Fo

obtained at sea-level and QF and CFo are the respective thrust coefficients.

Ailso from Newtonian mechanics we have:

bis

o+ lp

b

/ .
F =U a +g where . ' =
) o ( ) g) o

Since a constant rate of fuel consumption has been assumed, the weight

of the missile W at any instant can be expressed as:

t
p

Therefore, the drag free flight egquation becomes:

o= T-ffo [ -Y P—-] for values of t = tp

2 M (a +g) -—--CF 1 1-vL
dn _ G T8 T T 0 8 "V
L2 =
dt 1
M [—Y%—]
D
or
2 % "8 EE
dh_ g Cro
2" -1 g8 ---------- (1)
dt t
1—Y7t-—
p

The specific impulse (tnrust per unit mass flow rate) is:

SP

A&

= F/mg  in which m = dn/dt

The equation for specific impulse at sea-level is written as:

T.T’ o
EN (ao + g) ?P

I = :
Spo 1\1p g



L

where Mp is the initial mass of propellant, tp is the total burning

time, and Is is the sea-level specific impulse. Injecting this expression

o
into Equation (1), we obtain:

I, ¥ i
& |5 T
-—? = D -1 € e e e m - - - (2)
dt t
1l - Y%—
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3. Selection of Parameters.

Considering this flight equation, it is seen that the parameters
affecting the flight of a rocket are: the specific impulse, Iep, the
total burning time, tp, the loading factor, Y , and the variation in
thrust coefficient CF with alt%}ude.

For any rocket the factors which influence these flight parameters
will be discussed. The thrust coefficient, neglecting the nozzle effi-

ciency and divergence factor, is defined as:2

1 5 p ¥-I/% P -P
= — -2 L .90
Cp =7 -1 [1 P TR €

in which:

¥+ 1
1 2(% - 1)
v “1
¥ = ratio of specific heats
Pc = chamber pressure
Pe = exhaust pressure
P0 = ambient pressure

€ = ratio of throat area to exit area
Therefore the thrust coefficient varies with ¥ , Pc’ €, PO, and Pe’ which
is an isentropic function of Pc and € . The parameter tp is a function of
the initial acceleration, ao; and the loading factor, ¥ , as shown on page
3 of this thesis. As the flight equation (2) is written ISpo is the con=-
stant value for sea-level operation, but it must be noted that the actual
specific impulse Isp at any instant during flight may be quite different
from the sea-level value. Obviously, I =1 CF/CFO, and hence the

Sp SPq

choice is purely arbitrary as to whether ISp or CF is assumed to be the



variable,
Thus the flight equation may be evaluated for any given rocket design,

when specific values of the parameters ¥ , Pos €, I, as Y, and v s are

Sp
given. It is desired to determine how each of these parametets affect the
sumnit altitude reached by a rocket. The ratio ¥ was assigned a con-
stant value of 1.2 for all flights, and the area ratio, € , was chosen as
the optimum value for each trajectory. An attempt at an analytical solution
for determining the optimum area ratio is shown on page S| of Appendix 1,
but was abandoned as considerable questionable approximation is required

to carry out each solution. This optimum area ratio, that which will allow
the maximum summit altitude to be reached, was finally determined by
graphical analysis using a trial and error method.

It should be noted that for fixed optimum area ratios, it has been
assumed that no separation occurs in the exhaust nozzle during any portion
of the flight. Ordinarily those area ratios required to satisfy rocket
performance, which are greater than 3 or l, would result in overexpanded

3

performance of the nozzle at sea~level. Tests”™ have shown that separation
will occur at sea-level when area-ratios greater than 8 are used. When
this jet detachmenf occurs, the loss in net thrust due to over-expansion
is reduced. Conversely, those nozzles with low area ratios would become
highly underexpanded at high altitudes, but this resulting loss in thrust
can be calculated exactly, since the flow process is well defined. Hence
it is seen that the optimum area ratio is a continuously changing value,
which depends on the local ambient pressure during flight.

It is seen immediately that the maximum total impulse, i.e., the

product of thrust and time, can be obtained if the nozzle could expand

or contract to satisfy local conditions during flight. This hypothetical
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nozzle shall e referred to hereafter as the ideal variable nozzle. Thus,
the ratio of the relative performence of a particular nozzle having a fixed
area ratio, to that of an ideal variable nozzle, the values of other para-
meters being the same, would serve to indicate the effectiveness of the
nozzle in producing the optimum thrust over the whole flight trajectory.
Obviously the ideal variable nozzle is somewhat fictitious, as it would
require an infinite area ratio when extremely high altitudes are reached.
For this reason an attempt was made to see what relative performance would
be, assuming that an € of 50 is the maximum ratio attainable.

As an approach to this perfect nozzle, a step-nozzle was considered.

The functions of this step-nozzle can be summerized as follows (see sketch

\T

below) :
~
- ﬁ\\fa
~

a. During the low altitude operation of the noszle, the area ratio

e

may be considered as 61 = fei/ft' As altitude is increased, a point is
reacred where €1 becomes optimum. Beyond this point the nozzle would be
operating under underexpanded conditions, and the gas jet would leave
tangential to the exit area fel. vince the exit pressure Pe is greater
"~ than the ambient pressure Po, complete conversion of the issuing jet
energy into effective thrust is not accomplished.

b. At some predetermined time, the ring valve, G, is mechanically

closed so that fel is no longer the exit area. This added extension (see
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sketch) would result in fe2 becoming the new exit area. The gases would
then conform to this new nozzle, and the thrust available wuld increase.
Ls the vehicle continues its powered flight, a new optimum altitude is
reached for this new area ratio €50 Conceivably, an infinite humber of
these extensions or steps could be incorporated, and hence, the ideal
variable nozzle would be approximated.

A few trajectory solutions are considered using this type of nozzle,
to determine what increase in performance is provided by such a two-step
nozzle (see page 63 Appendix 1). Also an attempt is mde to determine
the optimum number of such extensions. (see page 63 Appendix 1).

In an effort to solve the flight equation, the following three methods
were attempted:

i. numerical integration
ii. analytical integration

iii. total-impulse method
The first two methods are described in detail on pages S4 and56Gin
Appendix, and in both cases considerable guestionable approximations
would be necessary to facilitate a solution. The conventional total-
impulse method, which is presented below, proved to be the most satis-
factory solution. A& set of sample computations is included on page GO

of Appendix 1.
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L. Total-Impulse Method

Conventional Nozzle Solution.

Since all of the methods that were applied to a direct salution of
the flight equation appeared to require necessary assumptions which would
result eventually in errors of the same magnitude as the desired accuracy
of the results, it was decided to use a conventional method based on the
variation of specific impulse with altitude. Essentially, the steps
involved are as follows: (see Page O Appendix 1)

a. A set of standard trajectories was defined, one for each value

Of Ispo, ao’ v F) tp, vo, PC’ and x *
b. By use of the drag-free flight equations (3) and (L), (see page
56, Appendix 1), h_,is plotted as a function of time, using the ISp

—_ 0
sea~level value throughout.

c. For each set of parameters, various values of € are used, and
a plot of CF-versus—time is made, up to tp. Concurrently, é plot of
CF(max.)-versus-time is made, as though the nozzle were expanding to an
optimum € at each altitude.

d. The value of J/EF + dt is obtained by graphical methods for each
€ selected, as well as for the condition of variable € .

e. The ratio of the ,/&F * dt for a given area ratio to the (CFo tp)
)

is calculated. This shows how the average specific impulse over the total
powered flight differs from that of the initially assumed average, i.e.

I

*Po ch dt
f. The average specific impulse, I = % IS , is computed for

Fop (o}
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each set of defining parameters, and the optimum area ratio may then be
obtained as that which gives the maximum average I. Similarly the value
of 1 for the variable nozzle is computed.

g. A new corrected trajectory may be calculated by inserting the
new average I into equations (3) and (4). Actually, all that is desired
is the burnout altitude and velocity, and hence equations (5) and (6),
on page 57 , Appendix 1, are used. By use of hp and vp, the summit
altitude is computed, for the two conditions; (i) the optimum fixed area
ratio for the flight, and (ii) the ideal variable nozzle.

h.  The ratio of h  to h; (summit altitudes under (i) and (ii) above)
is then evaluated. The quantity I-R shows the remaining altitude that
could be obtained if a perfect variable area ratio nozzle could be developed.

The errors in this method may be examined in the following manner:

At first, it is noticed that the so-called average specific impulse, I, com-
. puted by graphical integration of the CF-versus—time curve, assumes a con-
stant value with respect to altitude. Actually, since the vehicle is at

a high altitude for the greater duration of the flight, an excess weight

has been assigned to the Isp at the low end of the plotted trajectory.

The problem should be attacked by several step-wise computations, and

the average I should be determined over each step. Thus the problem would
resolve itself into several solutions of the flight equation, each of which
serves as an added effect on the next step.

In an attempt to determine the magnitude of the error in determining
the average specific impulse, a two-step approximation is made (see page G4,
Appendix 1). Two values of the average specific impulse were determined,

one for the low end of the flight trajectory, and the other for the high
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end. The summit aliitude reached on considerations of both values was
determined and was compared with that attained using the’weighted average
of these two values. From this study it was found that the integrated
average I gives a value of summit altitude about 6 percent less than a
two-step approximation. Although it is admitted that this percentage is
a sizeable error, it is also of the same order of magnitude as would be
obtained by the initially attempted numerical integration method ( see
page 54 Appendix 1), which is a far more tedious solution. Furthermore,
this 6 percent error always occurs in the same direction, and offers a
conservative quantitative result, in contrast with the numerical integration
method. However, since a comparison of the relative performance of two
rockets is the object, and since this approximation error is introduced
for each fixed area ratio, as well as for the ideal variable nozzle, this
discrepancy is neglected.

A second error is introduced by the fact that the CF-versus-time
plot is taken from an altitude-versus-time curve that is based on the
sea-level value of specific impulse. Actually, by use of the newly
obtained I in the flight eaution, a second trajectory should be deter-
mined. From this curve a second CF~versus—time curve should be plotted.
Obviously,‘this procedure would result in many'such computations; but
since this error is in the opposite direction to that described above,
it serves as a compensating error. Likewise, this discrepancy is

neglected in as much as relative performance is the objective.

Step-Nozzle Solution.

In the selection of two or more ratios to be included in this new

nozzle, it was decided to obtain area ratios which are within practical
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limits of nozzle size. Yet these areas should be such as to give a near
maximum total impulse, and hence a maximum summit altitude. A unique and
desirable feature of the total-impulse methods of analysis used in the
initial, fixed area-ratio study, is that the method offers an ‘excellent
picture of which area ratios should be selected for this second portion

of the problem. By inspection of the C_-versus-time plots (see page 7|

F
of Appendix 1), it is seen immediately that it is desirable to use an area
ratio as low as possible during the early stages of flight, and cne as high
as is mechanically possible during the upper portions of the flight. By
merely integrating along several such combinations of plots this conclusion
becomes evident (see Table 2, Appendix 1). Of course this method of
selection presupposes that the gases detach from the nozzle section with
low area ratio and adjust to the nozzle section with larger area ratio at
the point of intersection of the CF-versus—time curves. This assumption
is not unreasonable, as it seems possible to control the separation
mechanically within the rocket itself by incorporating slots in the nozzle
which can be closed at will. Since it is believed that the estimated
upper limit to this step problem is reached at about an area ratio of 50,
no ratios above this figure are considered. Also, inspection of the
CF-versus-time curve shows that ratios greater than about 35 result in
a gain in total impulse that is rapidly diminishing. Consequently, an
upper limit of 35 was selected.

Thus the two-step solution resolves itself into exactly the same
procedure as for the fixed area-ratio nozzle, with the exceptions as

described above.
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S. Analysis of Results

Fixed Area-Ratio Nozzles.

In discussing the results obtained from these methods it,is first
desired to note the effect of varying certain nozzle and rocket parameters
on the performance of any nozzle. The basis of comparison was chosen as
the ratio R, which is the ratio of the summit altitude for a nozzle having
a fixed optimum area-ratio to the summit altitude for an ideal variable
nozzle. Reference is made throughout this analysis to the curves in Appen-
dix 1 to be used in conjunction with the table of results and graphs
included at the end of this section.

a. Loading Factor. It is noted in Table 5-1 for the case of

Ispo =200, v =0, a  =1g, that as the loading factor, Y, increases

from 0.60 to 0.90, the ratio R decreases from 0.992 to 0.819. This de-
crease implies that although a higher summit altitude will be reached with
an improved loading factor, the summit altitude with the ideal nozzle will
increase at a greater rate. This result is evident by inspection of curve
sheet no. 2. 4s Y is assigned a greater value, the burning time increases
and the total impulse for the variable nozzle continues to increase at a
greater rate, whereas the total impulse of the fixed area-ratio nozzle

increases only at a constant rate.

b. Initial Velocity. As the initial velocity, ) is increased

from O to 800 ft./sec., the ratio R decreases even though it still increases

with a decreasing loading factor. The reason for the rather sharp decrease
in relative performance with higher initial velocities is that, although the

total impulse is increased, the impulse for the variable nozzle increases
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at a greater rate. It is also of interest to note that the optimum fixed
area-ratio increased only 3 units with an increase in initial velocity,
from O to 800 ft./sec., other parameters remaining constant. In both
flight programs the variation in specific impulse with &€ is quite flat
(see curve sheets no. 2 and no. 3), and it appears that little loss in
performance would result if the nozzle designed for an initial velocity
of 0 ft./sec., were used rather than one of 800 ft;/sec.

Referring to graph 5-1, it is noted that as higher values of Y are
used, the effect of initial velocity on R becomes of decreasing importance.
This conclusion is based on the fact that at higher Y and hence at
longer burning times, the effect of initial distortion on the total impulse
curve becomes of less importance.

c. Specific Impulse, When the specific impulse is increased from

200 to 350 seconds, a decided drop in R occurs. For the case in which
a = 1lg, v, = 0, Y = 0.60, and P, = 300, the value of R dropped from

0.992 to 0.78L4. Likewise all other values of Isp resulted in a similar
o

decrease, betwegn ISpo = 200 to 350 seconds, (see graph 5-1). This sharp
drop in R should not be associated with any drastic loss in performance,
since the average specific impulse values are of the same relative magni-
tude as those obtained at ISP = 200 seconds. The major factor involved

o
here is that an increase in Isp increases the burning time. For a Y of

0.60, the burning time is incre:sed from 60 to 105 seconds. It is in this
upper range of the flight trajectory that the ineffectiveness of the fixed
area-ratio is observed, and hence for longer burning times the ratio R will
diminish.

Thus, it is seen that when either the loading factor, Y , or the
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, is increased, the fixed area-ratio nozzle approaches

specific impulse, ISp
o

the ideal still less. The main factor in causing this deficiency is the
longer burning time at higher altitudes. It is also of interest to note
that for motors of very high impulse (ISpo = 350 secs.) the ifitial velocity
has a neglible effect on the relative performance, although the total
impulse will obviously increase with increasing values of Ve The reason
for this apparent constancy of R with increasing v, is that a large change
in the lower portion of the trajectory has little or no effect when the |
burning time is of very large magnitude.

It is also noted that when Ispo = 350 secs., relatively large éhanges
in the initial velocity shifts the optimum area ratio not more than about
3 to L units, so that not too great a decrease in performance would result
if the same nozzle were used for flights with different values of'vz.

d. Chamber Pressure. Referring to graph 5-2, it is seen that as

the chamber pressure is increased from 300 to 1500 psia, the value of R
rises linearly from 0.872 to 0.911, when all other parameters are fixed.
The effect of chamber pressure is quite interesting in that changes in it
do not increase the burning time, but rather increase the net thrust and
exhaust velocity. Thus, as was expected, the average impulse for the
optimum area ratio nozzle increased from 222 to 245 seconds. Even when
the ‘area ratio is held constant at optimum value for Pc = 300 psia., the
average impulse will increase (see curve sheets no., 2, 3 and 5). Actually
the optimum area ratio increases rapidly with Pc’ but the selection of the
optimum is quite arbijrary, since the same performance can be expected over
a wide range of € . The increase of R with,Pc is caused essentially by

the fact that the total impulse for the optimum area ratio increases at a
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a greater rate than the total impulse with the variable nozzle. This fact
can be seen by comparing curve sheets no. 2, 3, and no. 6. Since the burn-
ing time is short, the difference between the total impulse obtained by

the ideal variable and the fixed area-ratio nozzles is minimiZed.

e. Initial Acceleration. The effect of changing the initial accel-

eration can be seen in graph 5-2, and in curve sheets no. 2, 7, and no. 8.
The more rapid is the acceleration, the shorter is the burning time. This
effect should give a lower value of R with an inecreased a, for reasons
explained previously. However, the increased acceleration improves the
performance in that the net thrust and the thrust coefficient increase
greatly. This increased performance tends to balance out the loss in total
impulse because of the shorter burning time, so that the average specific
impulse is only slightly less. This fact is born out for the cases of

a =1g, I = 222; for a_ = 2g, I = 218; and for a = 3g, I =216, However,
the ideal variable nozzle loses more impulse than the fixed area ratio
type because of burning time.  Hence, over the same range of initial
accelerations, the average impulse varies from 22l to 234. The net result
gives a ratio R that increases from 0.872 at a = lg, to 0.928 at a, = 3g.
It is also interesting to note that the choice of a, has little effect

on the optimum area ratio.

Two-Step Nozzle.

Referring to Table 5-1, it can be seen that the performance improves
decidedly wlen a two-step instead of a fixed-area-ratio nozzle is used.
Three sets of parameter values, previously used in the calculations for
the fixed area-ratio performance, are used in making this comparison. For

these three sets of values a combination of an area ratio of 6 and 35 is
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is found to be the most effective, and that no significant improvement
will result if more than two steps are considered. This conclusion can
be borne out by inspection of the several curve sheets in Appendix 1.
sp, = 200, a = lg, v_ = 800, Y = 0.60, and P‘c = 200,

the value of R increases from 0.96l to 0.937. For the case of Tspo = 200,

For the case of I

a, =1lg, v =0, Y = 0.85, and P, = 300; the value of R increases from

0.835 to 0.913. For the case of ISpO =200, a_=1g, v. =0, ¥ = 0.85,

¢] o

and Pc = 300, the value of R increases from 0.725 to 0.81. It is to be
exrected that the value of R increases by the greatest amount for the
latter case, since the additional burning time allows the maximum available
increase in performance. lore striking is the fact that such a great improve-
ment is available even for short-duration rocket motors. Thus, it is quite
desirable to devise some method such as that previously described, which
will allow the exit gases to adjust to a new and larger area ratio when
altitudes are reached at which the low area ratio is no Ilonger very
effective.

An attempt was made to see how close to unity this ratio R could

approximate. For the last case mentioned, i.e. Ig, = 350, it was

5P
assumed that a mechanical maximum € of 50 be crnosen as the upper limit.
£1so the nouzzle was allowed to expand as a variable nozzle until this

of 50 was reached. Following this'ractical" ideal nozzle trajectory, it
was found that the average impulse would increase only from L28 to 430

seconds. Hence, the assumption of fixed-area-ratios of 6 and 35 for a

two-step nozzle gives the maximum attainable R.
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Table 5-1

Table of Results

ISp o a'O vo V Pc €°Pl‘ Iav . Ivar - tp R

200 1g 0 .60 300 6.5 215 222 60 922
200 ig 0 .75 300 7.0 222 23l 75 872
200 ig 0 .85 300 7.5 223 240 85 .835
200 1g 0 .90 300 8.0 223 2L3 90 .819
200 1g 800 .60 300 9.5 226 239 60 .86l
200 ig 800 .75 300 10.0 230 21,2 75 .8l
200 1g 800 .85 300 10.5 232 246 85 .825
350 1g 0 .60 300 9.0 392 431 90 .78L
350 1g 0 .75 300 10.5 398 152 131 .70
350 ig 0 .85 300 11.0 L03 L67 149 .725
350 1g 0 .90 300 11.5 1,07 Lé7 157 .716
350 ig 800 .75 300 15.0 L5 L7k 131 <743
380  1g 800 .85 300 16,00 118 183 149 .72
200 1g 0 75 600 11.0 231 2b3 75 .88L
200 1g 0 .75 1500 23.0 25 255 75 911
200 2g 0 .75 300 6.0 218 228 50 .905
200 3g 0 .75 300 6.0 216 22L,  37.5 .928
200 1g 800 .60 300 6-35 233 239 60 .937
200 1g 0 .85 300 6-35 232 2Ll0 85 .913
350 1g 0 .85 300 6-35 1,28 W67 149 .81
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6. Conclusions.

The results of this study can be classified into two catagories.
It is possible to predict how each rocket parameter will aid or hinder
the maximum attainable performance from a given rocket, for which summit
altitude is the index of performance. By expressing this summit altitude
as a function of that attained by a perfect nozzle, the following are the
effects of the various rocket parameters on this ratio R:

a. Increasing the loading factor decreases the value of R.

b. Increasing the specific impulse Isp lowers the value of R.

0
¢. Increasing the initial acceleration a, increases the value of R.

d. Increasing the initial velocity v decreases the value of R.

e. Increasing the chamber pressure Pc increases the value of R.

By considering for the parameters maﬁ;—ﬁore sets of values than are
presented in this study, it would be possible to make many crossplots.
From these plots it should be possible to note how the parametric values
should be adjusted so as to achieve a maximum value of R when certain
parameters are frozen by design.

Also, by this analysis, it is shown that the development of a
step-nozzle should be undertaken. Its application will not be limited
to vehicles of extremely high performance, because increases of 7 to 8
percent in relative performance are available for rocket vehicles of the
type in production today, i.e., vehicles operating with specific impulses
of the order of Ispo = 200 seconds. Vehicles operating with larger values
of specific impulse than the above would have an even greater increase

in performance if a step-nozzle were used.



SECTION II

AN ANALYSIS OF FLOW SEPARATION IN ROCKET NOZZLES

AND THE EFFECT ON NOZZLE THRUST.
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7. Introduction.

In Section 1 of this presentation no account has been taken as to
the effect on performance of separation in the overexpanded nogzle of a
sounding rocket, except for the two-step nozzle. In a two-step nozzle,
artificial detachment occurs which increases the flight performance. The
object of Section IT is to determine the effects of spontaneous detach-
ment or separation on the performance of conventional nozzles.

When considering optimum conditions of operation in the preceding
performance analysis, it was assumed that at altitudes at which the external
pressure exceeded the exit pressure, separation occurs at the exit plane
of the nozzle. At higher ambient pressures the nozzle will become propor-
tionally more ineffective in producing thrust than at optimum conditions.
The pressure deficiency between the interior and exterior of the nozzle
would increase with increasing external pressures, and would thus give a
negative thrust component. Hence, a plot of thrust coefficient versus
ambient pressure will decrease linearly with increasing ambient pressure.
Hence the gases will cling to the walls and hence reduce thrust.

Through an investigation of compression shock-wave theory, it is
desired to determine how jet detachment affects both the performance at
optimum area ratio and operation at highly overexpanded conditions. It
is believed that in the overexpanded operation of a nozzle some point in
the nozzle is reached where separation must occur in ofder to satisfy the
laws of motion and thermodynamics. Hence, if this separation does occur,
the thrust deficiency will not continue to increase linearly with increas-

ing ambient pressure, but will deviate from this pattern when separation
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occurs, and will give somewhat better performance than that previsously
estimated.

An attempt is made to determine the effect of separation on the
conventional real nozzle by mathematical analysis and to note how this
analysis agrees with experimental measurements being conducted as part

3

of a research program at the Jet Propulsion Laboratory.
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8. Separation Theory.

9

Considerable mathematical theory” has been developed on the separation
of jets from various control surfaces. It has been ascertaingd that the
jet does not detach from the surface when the gas pressure reaches that

at the local exit, but clings to the wall until a point is reached at
which the inertia effect of the jet is overcome by the demands of the

flow contour. At this point, where the gas pressure may be considerably
below atmospheric, a shock occurs in the flow as the jet attempts to

adjust to the required exit conditiond. It is not known definitely
whether the separation point occurs at the exact position of this shock
wave. Many schlieren photographss show that the separation point and shock
loéation are not identical; the separation occurring at some small distance
downstream from the shock, but is apparently caused by the shock. It can
be seen readily by inspection of the following picture that this effect of
the gases clinging to the nozzle walls is detrimental to the performance of

a rocket, since a resulting negative thrust occurs, caused by the pressure

deficiency on the nozzle surface:

—1
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By investigating and determining the point beyond the optimum area ratio
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at which actual separation does occur, it will be possible to predict the
magnitude of the thrust deficiency caused by the clinging gases. If the
magnitude of the negative thrust, F,l is large enough, it may be found
feasible to install air-ble&dholes at various locations, each correspondirg
to some optimum area ratio, and hence each causing separation to occur at
any time desired. |

Since it is believed that a shock wave or series of shock waves is
the determining factor in locating the point of separation in a nozzle,
it was decided to investigate this problem analytically on the assumption
that one simple oblique shock wave occuré at the point of separation.
Several simplifying assumptions have been made in an effort to keep this
analysis clear and concise, without sacrificing the accuracy desired. A
one-dimensional analysis has been made throughout, neglecting the effect
of curvature in the nozzle. The fact that the study is conducted for a
point in the immediate neighborhood of the wall makes the one-dimensional
analysis appear reasonable. Since the assumptions will probably lead to
a certain amount of error, a more detailed consideration of boundary-layer
effects does not appear justified, and hence was neglected. In most rocket
nozzles it is known that frozen expansion does not occur, but that the
reaction continues beyond the exit of the combustion chamber. Throughout
this treatment the flow of gases is assumed to be frozen, and hence
remains constant.

When the oblique shock occurs, the jet separates from the wall, and
the gas pressure is adjusted through some path to the local ambient pressure.
How this adjustment occurs is extremely difficult to ascertain; hence it

was decided to consider that the pressure after separation adjusts immediately



26~

to atmospheric. Since the effects of the boundary-layer and three-
dimensional flow have already been neglected, énd since the flow study
is being conducted close to the wall, this assumption appears reasonable.
Since a nozzle contour is divergent and since the gases must adjust
to somé final flow pattérn when separation occurs, the question arises as
to how this final pattern appears. There does not appear to be aﬁy Justi-
fication for assuming the flow to be parallel to the nozzle centerline
after jet separation occurs. Hence, it was decided to determire the point
of separation for various values of wedge angle, ©, and then to superimpose
the experiméntal results for given nozzles, i.e. given cone angles, €k,
and}then to note the relationship between o« and 6. Thus for a given
nozzle, it would be possible to predict immediately the value of detach-
ment angle.
For any given combustion-chamber-nozzle combination only the rocket
parameters, Pc’ X , Tc’ Po’ throat area, and mixture ratio are available
to aid in the location of the separation point. Therefore, it is necessary
to set up the oblique-shock equations for flow in a divergent section of
a nozzle, basing the flow pattern on the above assumptions, and to correlate
these shock equations with existing}rocket-nozzle equations. Id the follow-

ing Section these equations will be considered.



27—

9. Derivation of Obligue Shock Equations(9)

Consider the following flow picture along a control surface form
which the flow separation at some detachment angle & is caused py an
oblique shock at some angle, © , from the control surface. The flow con-
ditions in front of a shock are denoted by P,, u,, and Ql, whereas those
after shock occur are PZ’ Uy and @ o° From momentum considerations, the
stream velocity after a shock will be lower than before, u,< u,, but it
will still be supersonic at ordinary values of 6. Obviously the pressure

P2, will be larger than P, and depending on whether the shock involved is

1

weak or strong, this pressure ratio can be of a reasonably large value.

The continuity equation must be satisfied across this shock, hence:
R, 0y Sin @ =0, (u2 Sin ¢ - v, Cos@)
But since
v, Cosgp = u, tan 6 Cos §
R4 Uy %Sin@): P2 (u2 Sin g -, Tan & Cos B ) and

therefore,
Ql u1 Sin@
?2 =u2 Sin@ - Uy tan 6 Cos@
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Likewise the equation of momentum normdl to the shock is

2 on 2 . 2
P, +Q, u,” Sin"% Py + 0, ('u2 Sin g - v, Cos @ )

Consequently,

&

2 2 : . 2
Py + 05 (u2 Sing- u, tan & Cos@) - -(1)

P1 +€1 u:L Sin" @

The equation of momentum parallel to the shock must also be satisfied
2w _ . .
Ql u, Sinp Cosg = e, (u2 Sln@ -, Cos @ )(u2 Cos@ + v, S5in B)
From the two previous equations

Q 1 u12Sin@ Cos@ =€2(u281n@>- U, Tan © Cos@ )(u2 Cos@ + U, tan © Sin@)

By dividing the above equation through by (1),

u:L Cosg. =u2 Cos@ +u2 TanQSm@

Rewriting one obtains,

- U, Cos @ _ by 2)
2 Cosg + Tan 6 Sing 1+ Tan @ Tan ©

Placing this equation into the continuity equation, there is obtained:

(1 4 Tan 8 Tané )

C2=¢ (1 -Tan@Cotg ) ~ ~ ~ ~ — 7 - - —(3)
Since v2 = u2 Tan ©
Therefore
u:l Tan ©
VST T mn e Ten 20— - -~ --------- (4)

2 1+Tang,TanG

The conservation of energy across the shock requires that

P
> ¥ 11 2 2 ¥ 2
1 Ty -1 a“'ﬁ (u2 +v2)+x-1é—2'

and it follows that
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2 2 .
_:I_.u2+_:§—i_u2 Sec” @ x fg
2% Ty-1g, 0T 2 X-1 %,

The pressure ratio across the shock wave may be obtained by considering

the Mach number component normal to the wave; hence, for a normal shock
@)

this value has been

Po_ 2% 2 X-1

P, X+11 “¥+1

[

¥ -1

1,2 sin’@ e (e)

By substituting from (2) and (4) into the energy equation (5) one obtains
an equation involving only Uy B, and o, which is quite useful when the
wave angle and deflection angle are known (eqs L4.21 L and P):

. 2 ¥+1 S5in ® Sin @ (7)

1
S =St~/ (s -8) 2 """ -C
M, &

Since all of the above equations have been derived from the continuity,

momentum, and energy equations associated with the shock wave, it becomes

necessary to introduce certain nozzle equations to facilitate the application

of an oblique shock solution to a specific type of control surface. For
any given nozzle-rocket combination, the following information will be
available for determining an analytical solution to the point of jet

separation in the nozzle:

1) P, chamber pressure
2) T, chamber temperature
3) r mixture ratio

L) ¥ ratio of specific heats of product gases
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5) P~ ambient pressure

6) f, throat area

7) a, velocity of sound in the chamber
In order to solve completely the separation problem, a solution based on
oblique shock theory requires the determination of the following quantities:

1) P, pressure before shock

2) ¢, mass density before shock

3) u velocity of initial flow

i) A area of nozzle at point of separation

5) u, velocity after shock

6) e  wedge angle
7) P, pressure after shock
8) e shock angle

9) €, density after shock

In order to determine the above nine quantities, it is necessary to
find nine equations involving them for a complete soclution. From the pre-
viously derived oblique shock equations one has, in effect, four basic
equations (1), (2), (3) and (5). The remaining equations are simply com-
binations of these and offer convenient methods for their application;

When the above variables are considered, it is possible to reduce
this number to seven by making certain simplifying assumptions. Since
only one-dimensional flow is considered and also the curvature of the
nozzle is assumed large at the point of separation, it seems logical to
assume that little or no pressure deficiency occurs beyond the point of

shock. It appears reasonable to take the pressure P,, after shock, to

2’

be exactly equal to the ambient pressure, Po’ which is a known quantity.
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That this assumption does not lead to too great an inaccuracy will be borne
out later in this analysis.

The above assumption is made throughout this analysis in an effort
to minimize the number of variables involved, and appearé reasonable since
all boundary-layer effects have been neglected. Since the wedge angle, ©,
will be assigned various values, it‘becomes necessary to find only seven
basic relationships in order to arrive at the desired solution. Since one
has four such relationships involving the unknowns, one will investigate
the known isentropic nozzle relationships to determine some connection

between the known data and the variambles.

Isentropic Nozzle Relationships.

From the.continuity equation, in conjunction with the condition for
isentropic flow through a Delaval nozzle, one obtains the well known
relationship between area raﬁio, € , and the pressure at any point in
the flow: %)

C o ¥+1/% -1

€2=x51 ‘tx+1] ________ (8)
P 2/’6 P ‘-1/‘6

— 1 = o

& -5

c c

From the energy equation for flow in a nozzle:

1.2 1 2 1 2
7% tx-1% Ty-o1 %
g 2
1.2 _ 1 2 2y _ 1 2 1
7% Ty-1 (ac a4 ) = ¥-1 & {1 - a 2 ]
C
5 1/2 a2
u, = ] a 1_.i.
1{*«-1 ¢ a @
c
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2
but ay =¥ R Tl and a  =Y¥R Tc

therefore
1/2

c

s [f -2

Assuming isentropic flow from the chamber to the point of jet separation

in the nozzle

-T‘—l—{
=
c

therefore: -
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From the continuity equation
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therefore: -
1/2

LTI L E S Y
TRES SN
T [ e
L : 1]1/8 B KEzzd . [Pc QC]
[ef2 ™" ]1/2 [chc] e

Now one has seven basic equations and seven unknowns. The method

1/2

1/2

"

il

R 1715

of compining these equations in conjunction with the known information
is discussed on page 19, of Appendix 11, together with the computations

involved in carrying out the solution.
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10. Experimental Procedure

Since the prime objective of this analysis is to note how closely
the analytical results will chéck with actual performance, it becomes
necessary to discuss briefly the method‘of experimentation being conducted
at the Jet Propulsion Laboratory.(B)

In the test setup, a water-cooled, Nitric acid-aniline motor is
being operated at various increments of chamber pressure in conjunction
with various cone angle nozzles and with varying area ratios. At various
locations along the nozzle wall, pressure taps are inserted to record
pressures. These pressures are recorded on a mercury manometer bank,
and ﬁhotographic records made after equilibrium has been established.
Obviously, at jet separation the pressure ﬁill Jjump along some deficiency
curve to approach the local ambient pressure. Hence this pressure gradient
curve gives a complete picture (see pages 105 to 1'4 , Appendix 111).
This information has been plotted for several conditions of operation, and
the point of jet separation is assumed to be the point where the pressure
Jjump commences. Inspection of these curves reveals that it is possible
to predict the point of separation within .1 area ratio.

From tiis experimental arrangement it is also possible to determine
the effect of separation on thrust performance. The thrust of a correctly
designed nozzle for sea-level is measured, and then a cone section is added.
Since the gases cling to the walls beyond this correct design point, a
negative thrust componeht will occur due to the pressure deficiency
suffered by the addition of this nozzle extension. This deficiency can

be measured, and also calculated from a consideration of the known measured
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pressure forces acting on the extended nozzle. A comparison between the
thrust deficiency determined by experimentation, and analytical analysis

will be considered in the next chapter.
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11. Analysis of Results.

General Considerations.

From the oblique shock wave theory, in conjunction with known isen-
tropic nozzle equations, the point of separation was determined in over-
expanded nozzles for various chamber pressures and wedge angles. These
results, which are based on the assumption that a simple weak oblique-
shock wave is associated with the separation, are tabulated on Table 11-1,
page A4%. These data are also shown graphically in Graph 11-1, page 45 .
This data is also reduced to a plot of dimensionless parameters on Graph
11-2. This graph can be used to show the area ratio of separation as a
function of altitude at constant chamber pressure, as well as a function
of chamber pressure at constant altitude.

It will be noted that the point of separation is approximately a
linear function of chamber pressure, for a given mixture ratio and wedge
angle, assuming frozen flow through the nozzle. This function appears
to be entirely within reason, as an increase in chamber pressure should
result in increasing the momentum of the gas stream. This added kinetic
energy in the flow stream should cause the stream to cling to the diver-
gent exit cone until larger area ratios are reached. As the wedge angle
is increased separation occurs at larger area ratios. The effect of
changing ¥ is to shift the point of separation to higher values with

decreasing ¥ . This is easily understood when considering that the

T
c

exhaust velocity is proportional to £/ [y » %;] , M being the

molecular weight of the product gases. A plot of exhaust velocity versus
T

c . . .
b at constant T shows that a decrease in ¥ results in an increase
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in exhaust velocity, and hence momentum of the flow stream. Thus, the
increased momentum should cause separtion to occur at higher area ratios.
From graph 11-1 it will also be noted that the effect of ¥ is more pro-
nounced at larger wedge angles, which again can be realized from momentum
considerations in the flow stream in conjunction with the physical problem
of increasing wedge angle.

From graph 11-1, it will be noted that for 6 = 15 degrees, ¥ = 1,26,
the point of separation varies from GES = 6.0 to 8.1 for P, = 250 to 350 psia.,
expanding to an atmospheric pressure of 1.1 psia. Parallel to this ié the
plot for ¥ = 1.22, all other conditions being the same. Also on this curve
is plotted the experimental results for a nozzle with a cone angle of 15
degrees, and an area-ratio of 10 (see Appendix 111). Inspection of the
parallelism of this curve indicates a definite relationship between << and
8. Also from the almost coincidence of the plots, it appears that for a nozzle
of oK =15 degrees, that the wedge angle will be & = 15 degrees, and hence
the detachment flow will be parallel to the nozzle centerline. By inspection
of the experimental data (see Appendix 111), an explanation is offered for
apparent non-~linear variation of separation area ratio with chamber pressure.
While the experimental point at Pc = 350 psia checks almost exactly with the
computed value, the results at lower chamber pressures diverge to a maximum
of about 1/2 an area ratio. In the experimental tests, it was found impossible
to hold ¥ constant, but that equilibridm expansion possibly became predominant
when operating at lower chamber pressures, resulting in lower values of ¥ .
It will be noted that the lowering of ¥ in the experimental tests resulted
in increasing vglues of €& s? which is in direct agreement with the computed

results. Hence, the comparison of experimental data to theoretical curves
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should be viewed by comparing the experimental results in the upper portion
of the chamber pressures with those computed for ¥ = 1.26, and those for
lower chamber pressures with computed values for ¥ = 1.22, If this is
done, it can be seen that the linearity of Pc versus E.s is upheld
remarkably well for a given nozzle.

ithen a nozzle of cone angle = 10 degrees, was tested experimentally,
the variation in €4 with chamber pressure showed a remarkable parallelism
to that for (= 15 degrees (see Graph 11-1). As in the previous tests, it
was impossible to hold ¥ constant with changing chamber pressures, which
accounts for the non linearity on the plot. It is now readily seen that the
flow detachment does not occur parallel to the nozzle centerline for all
cone angles; only for o= 15 degrees does this occur. By inspection of
Graph 11-1, it appears that the wedge angle for eA= 10 degrees is approxi-
mately 17 degrees.

From the above comparison of the experimentél results with theoretical
computations, one very interesting conclusion can be reached. It appears
that for a given cone angle, one and only one wedge angle occurs, indepen-
dent of changes in chamber pressure, mixture ratio, ¥ , and altitude. On
page B8, Appendix 11, it is shown that variations in temperature have no

-effect on the oblique shock solutions. Hence it can be concluded that the
wedge ahgle is a function of the cone angle alone, and is independent of
all other rocket and nozzle parameters. Conversely, for a given nozzle,
it is possible to immediately predict the wedge angle.

it is interesting to note how far this obligue shock theory will hold
up, as larger wedge angles are considered. Referring to the shock polar

diagram (see curve sheet 7, Appendix 11), it will be noted that this theory
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can be exptected to offer a correct solution for wedge angles uv to about
L5 degrees. After this point, either a normal shock or a series of oblique
shocks may occur within the nozzle to cause separation; or the gases will
issue from the throat as a jet, rather than cling to the diverging portion

of the nozzle at all,

iffect on Thrust Coefficient.

In an effort to apply these results to an actvwal nozzle, noting how
this theory affects the methods of predicting rocket performance in use
today, a typical nozzle of area-ratio, X = 10, is considered, with a cone
angle of 15 degrees. From existing nozzle theory, neglectirng the effect
of jet separation, a plot of thrust coefficient versus PO/PC is made
(see Graph 11-3). Obviously, this is a linear relationship. For an area
ratio of €= 10, the point of separation was determined by extrapolating
Graph 10-2, for e<= 6 = 15 degrees, § = 1.26. This corresponds to point
A, on Graph 11-3. Since, as the pressure ratio PO/Pc is increased, the
point of jet separation will move back toward the throat, a family of

& = constant curves must be plotted, to determire how the thrust coeffi-
cient varies with PO/Pc after separation commences. Curve of €= 8, and

€ = 6, neglecting separation, are dotted in for this purpose. The points
of separation for these ratios are then determined, as before, from

Graph 11-2. Thus the variation of Cf,versus PO/PC, considering the effects
of separation, is plotted. From the threeczs considered, it apvears that
CF‘is a linsar function of Po/Pc after separation commences. This curve

is of interest, in that it shows that a nozzle designed for € = 10, which

will be optimum for some definite altitude, will be more effective in pro-

ducing thrust at sea-level than conventional computations would indicate.
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As mentioned previously, this better performance is a result of a lesser
degree of pressure deficiency occurfing with separation than with complete
clinging of the jet to the nozzle.

From the available experimental data on a nozzle withe&= 15 degrees,
and €= 10, this same plot of Cp versus PO/Pc was determined. Since o<
and © are identical for this unique case, a comparison of theory and actual
performance can readily be made. From Graph 11-3, it is seen that the re-
sults agree very well, although the experimental curve shows values of Cp
about .05 below the theoretical curve, for all values of Po/Pc' Since the
theoretical curve is plotted assuming the divergence factor,(z) A , as
unity, and the nozzle efficiency as 100 percent, this is to be expected.
For a cone angle K= 15 degrees, A\ should be .985. Assuming'?o = .99,
the values of CF (actual) should be about .03 less than the theoretical
calculations. &lso, in the theoretical calculations, it was assumed that
the pressure after shock immediately jumped to atmospheric. Inspection of
the actual experimental results (pagesios to |14 , Appendix 111) shows
a definite pressure deficiency curve over a finite distance along the diver-
gent exit cone, before atmospheric pressure is reached. Consideration of
this effect would account for the remaining difference of 0.02 between the
theoretical and actual thrust coefficients. This remarkable apreement
between theory and actual performance serves as added proof that a simple
weak oblique shock wave is sufficient to define the point of separation.
From this discussion it is also seen that the initial assumption Qf neglect-
ing pressure deficiency after shock did not lead to serious error.

Effect on Generalized Thrust Diagram.

To show an even more generalized effect of separation theory on
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performance, it becomes desirable to note how these oblique shock solutions
affect the studies of previous investigators in nozzle flow. Dr. F. J.

(8)

Malina did considerable work on nozzle flow, based on the idea that
separation does not occur within the nozzle. He was interested primarily
in determining where the normal shock location in the flow stream would
occur. The results of his study are replotted on Graph 11-L. On this
curve Malina plotted Fx/Ft (thrust obtained with the nozzle cut off at
any section, to a nozzle cut off at the throat) versus € . -He computed
this curve and noted the efifect of a normal shock occurring, as is shown
on the graph. In an effort to see how oblique shock theory alters these
curves, the following analjsis is made:

a. From curve sheet no. 7, Appendix 11, for Po/Pc = .050, ¥ = 1,22,
the Mach number Ml, before shock, is Mi = 3.1, for the weak wave solution.
By inspection of curve sheets no. 5Saand 7, it will be noted that the value
of M1 does not vary appreciably with small changes in ¥ . Hence, assuming
M1 to be == 3.4, for a ¥ of 1,20, the area ratio for separation is ES = 7.0,
from curve sheet no. 6.

b.  Therefore, for E.S = 7.0, and Po/Pc = .050, point A is plotted
in Graph 11-li. Similarly, the remaining points A are determined.

¢. For any further increase in nozzle area ratio, the thrust will
remain constant, as the gases are completely detached from the walls. Thus
Fx/Ft curve becomes a straight line as shown.

Since these oblique shock solutions offer an alternate or strong wave
solution, it becomes necessary to note how this would affect the Malina per-
formance curves, if no weak wave occurred, This solution is determined as

follows:
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a. From curve sheet no. 7, Appendix 11, for Po/Pc = .050, and
¥ = 1.26, M, = L.05.

b. From curve sheets no. 5 and 5-4, it can be seen that the strong
wave Mach number u, is not affected»very much by small changes' in ¥ (see
points B). Thus assuming M, = ).,00, at ¥ = 1.20, and using curve sheet
no. 6, 638 = 29, is the strong wave solution.

c. TFor €_ =29, and PO/Pc = .050, point B on Graph 11-} is deter-
mined. Similarly other points B are determined.

Through the above analysis a very unique qualitative presentation of
shock effects on nozzle performance can be realized. Should a weak wave
be sufficient to cause separation, the detachment occurs at a relatively
small area ratio. Jet separation caused by a strong oblique shock must
occur at a very large area ratio.? Finally for a single normal shock to
cause separation, it must occur at still larger ratios. Of course the
latter is impossible, and both experiment and theory have shown that a
simple weak wave is sufficient to satisfy the conditions for jet separation
for moderate cone angles (up to 20 degrees). These other two solutions,
while of academic interests, could not possibly occur within a normal
nozzle. Recent experimentshave been made in an attempt to allow both a
normal shock and a strong oblique shock occur within the nozzle. Referring
to Graph 11-4, it is seen that if a chambe; pressure of P = 250 psia is
used in conjunction with a nozzle of area-ratio € = 20, that both of these
shocks will occur within the nozzle. The results of these tests fail to
show any change in the area-ratio of separation over that obtained with

a nozzle of area-ratio € = 10, having the same cone angle. This offers

conclusive proof that the simple weak oblique shock alone is associated
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with jet separation. Also this fact infers that no matter how long the
nozzle is made, the effective thrust will be the constant for the same
cone angle, once the area-ratio of separation has been reached.

During the course of experiments, several mixture ratios of the
propellants were used to find one appropriate for the tests. Consequently
several different chamber temperatures were encountered. It was found
that changes in temperatures did not alter the location of the separation
area-ratio. This agrees exactly with the analytical computations included

in this thesis.



TABLE OF RESULTS

Ll

e . e P;L €5 My © Po/Py
250 1.26 15 5.375 6.06 3.07 30.7 2.63
300 1.26 15 5.175 7.1 3.18 29.8 2.73
350 1.26 15 5,00 8.12 3.358 29.0 2.82
250 1.26 20 .00 7.5 3.06 33.8 3.52
300 1.26 20 3.68 9.05  3.38 33.5 3.83
350 1.26 20 3.50 10.5 3.72 32.7 L.03
250 1.26 10 7.35 L.87 2.89 27.9 1.92
300 1.26 10 7.35 5.51 3.00 26.7 1.92
350 1.26 10 7.27 6.20 3.1k 25.7 1.94
250 1.22 15 5.575 6.32 2.97 31.08 2.53
300 1.22 15 5.440 7.140 3.10 29.9 2.59
350 1.22 15 5.275 8.L8 3.23 29.5 2.67
250 1.22 20 4.0k 8.07 3.13 35.0 3.149
300 1.22 20 3.85 9.55 3.2 34.15 3.66
350 1.22 20 3.70 11.04L 3.60 33.5 3.81
250 1.22 10 7.75 5,04 2.61 27.80 1.82
300 1.22 10 7.52 5.80  2.95 27.07 1.87
350 1.22 10 7.50 6.53 3.05 26.15 1.88

Table 11-1
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12, Conclusions.

From the previous analysis of results of this theoretical study,
in conjunction with experimental data, the effect of separatiop on the
performance of overexpanded nozzles in sounding rockets may be summarized
as follows:

a. The point of separation occurs at an area ratio of about 3 to L
beyond the optimum area-ratio, for a given set of rocket parameters. The
point of separation is independent of mixture ratio and temperature.

b. After separation of the jet occurs, the thrust will remain
constant. Should the altitude be changed the thrust will drop off linearly
with ambient pressure, for the same chamber pressure, but will not be the
sharp drop encountered when separation theory is not used. Hence the
performance in highly overexpanded nozzles is much better than previously
estimated.

Ce The wedge angle is a function of the nozzle cone angle alone,
adiabatic expansion exponent, and nozzle length.

d. The final pattern of the detached flow is parallel to the nozzle
centerline, only when the cone angle is 15 degrees. For smaller cone
angles the resultant flow pattern will converge toward the center of the
jet.

e. A simple weak oblique shock wave is sufficient to define the
location of the jet separation. Only when extreme nozzle lengths are
considered, with very low chamber pressures, can a strong shock wave or

a normal shock wave occur within the nozzle. Even then if a weak wave
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occurs first, the strong wave will have no effect on the point of separation.

f. The point of separation varies linearly with chamber pressure,
and increases with decreasing § .

g, If some device can be constructed which will select, "at will,
the point of separation at various optimum positions during the course
of rocket flight, a definite increase in thrust will be obtained.

h. It is recommended that further study in this subject should be
made to determine the relationship between the angle of detachment and
the cone angle of the nozzle. 4lso it might prove of interest to note
what effects a three-dimensional analysis would have on the theoretical
results. It is known that a simple oblique shock is not sufficient to
define the conditions of flow in the center of the jet, and that a normal
shock does occur at the center. Only by a rigorous three-dimensional
analysis could this be approached. It appears from this study that the
neglect of boundary layer influence and of pressure deficiency after the
shock are valid assumptions, and could be used in a three-dimensional

analysis.
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1. Analytical Approach to Finding Optimum Area-Ratio.

= C
Ispo Y F e o
2 t C 1 G .
- T i
Given dg: P °© L1l g= |——2 _1) ¢
dt Yt 1-K, 1t
1 = — 2
t
b

It is now desired to obtain an equation of h in terms of € , by

integrating the above expression twice. TFrom this 3—2 could be evaluated,

and hence it would be possible to determine ¢ for maximum altitude. It
must be borne in mind that the optimum e is that which would give the

highest summit altitude, and hence E—IE mst be a maximum. To accomplish

d¢

the above integraticn, it is desirable to obtain CF as a function of € .

CF = Cp +§%E ar where the pressure change is that from
o sea-level to any altitude

A plot of CF versus pressure results in a straight line relationship
for any fixed area ratio, from(z)
Pe - P
C,=C + ————¢€ where P_ is the nozzle exit pressure, which
F FMAX Pe e :

is fixed by Pc’ ¥ , and the nozzle parameters.

Ce |
€=9
€=c
€=8
I~ e=lo
I
P—
écF
For each assumed value of € , determine the slope of this plot, 3T ° and

d0Cp
then a plot ds made of 57 versus € .
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€ —>
. . : . . aC
This plot will obviously show a linear relationship, and hence 5_}_’2 — KBE

CF can now be expressed as a function of € . Using the desired rocket
0

parameters Isp s ¥ s 805 Voo and Pc’ in conjunction with existing
0
charts, 1-JD—92(,i) the following plot is made:

[

£ —>
From this plot it was found that a power series equation is the best, as

the variation is very nearly linear. Therefore an equation of the form

3

C = - K)_LE + K5€2 - K6 e o o o 18 evaluated.

Fo

3C
Now CF = S—ISE AP + CF s therefore an expression for AP in terms
o

of the existing parameters is desired. AP

P - P = f(h). From standard

altitude data, an equation of the form P Poe h represents the
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pressure variation with altitude. Substituting the above expressions into

the differential equation for drag free flight, the equation reduces to:

2 3 ~xh
2 -3
92—}_1 _ K1 -KJ_LG + KSC b Kéc ee e g
dt2 1 - Kzt
—
This reduces to:
@n_ A+Be™ 8
2 T1-KEE -8 (&)
dt 2

This integration can obviously be carried out, though a tedious one, after
which the derivative éh is evaluated and equated to zero for a maximum.

S€

However, as mentioned before, this solution will not necessarily give the

D

£

maximum vp, although the maximum h_will occur. Only a solution of this
equation under a given set of parameter values would ascertain this
question.a

Considering that a new equation (&) to be doubly integrated is
required for each set of parameters, it is felt that a trial and error
solution by graphical means is the most practical attack. Hence this
analytical soluticn was disregarded, and is included here only for academic

interest,
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2. Numerical Integration Process.

—

-
Ispoy Cp
2 t CF
Given the flight equation dh_ P °© | g
2 t
dt 1-Y T
L. p _

it is desired to determine the altitude reached at the end of burning and
the vehicle velocity attained at this altitude. To accomplish this aim,
the following numerical integration process is used:

a. Determine the total burning time for a given set of rocket
parameters.

b. Split up this tp into several even increments of At,

2
c. Obviously, at t = 0, éuﬁz will equal age

d. Taking this value of ciznge in velocity over the initial &%,
add it to v, and obtain the velocity at the end of the first increment of
time.

e. Compute the average velocity over this increment, from which the
increase in altitude over hb is computed.

f. From the new altitude obtained, determine the thrust coefficient
under either ideal variable nozzle or fixed area ratio conditions, as
desired.

g. With this new CF evaluate the flight equation again over the

second &t increment, and continue as before.

Thus a table shown below is computed:

2 2 o 7
b2 s e Twe Tmoonop 2/p, g
at?  at
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Continuing this procedure until the burnout time is reached, the hp and

v§ were evaluated under both fixed area ratio and variable ideal area

ratic conditions. It was noted that because the altitude variation with
time is of an exponential nature, that Ah and hence AP are larger in
the upper range. Hence smaller At increments are required for the high
altitude considerations. Several attempts were made at determining how
small a value of At was necessary in order to obtain results within the
accuracy of the end results desired. For the case of Ispo = 200, a, = 1z,
Y = .75, P, =300, and v_ =0, it was found that, with a At of S seconds
throughout the integration process, the burnout altitude for the optimum
fixed area ratio condition was higher than for the ideal variable nozzle
and that the summit altitude ratio was very close to unity. But when steps
of the order of two seconds apart were used the magnitudes of the burnout
altitudes were reversed, and the summit altitude ratio reduced to the
expected value of .90. Hence, it was concluded that it would be necessary
to resort to the impractical value of At=1 second, if the expected
accuracy were to be obtained. Since this would involve tedious calculation,

this method was abandoned.



~56—

3. Analytical Approach.

A second attempt at»solving the drag-free flight equation by analytical
methods is now presented. The procedure followed assumes essentially a
trajectory in a vacuum, i.e., no change in thrust due to atmospheric changes.
By applying a correction term to account for the variation in thrust with
altitude, the true trajectory for drag-free flight is approached.

From the flight equation, and assuming a vacuum trajectory:

IspoY
d2h - d2hoo Aveo 1-'p 1
252 T T T &
dt dt at 1 _v%-p
tp Ispov tp
T g I, Y
1Y PE_ 1-vY t_p 5Py
¥ P t
o | ] o
where I is assumed to be a constant.
sP,
t
% P t t
gl ‘
. = _-5Po - P _vE .y _p
S Ty T Y1n(1 Yt) T *©
iy P 5Po
t
(o)
t
Y, =-¢gI ln(l—\/-ﬁ-—) -g‘l:+vO (3)
° p
t
b
ho o= € “spy p ¥ b
o T 1n (1—\’-{,—-) - gt + v,
Y P
t
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g I _t

1= Po P (1ovE ) (@i ) r I gt -Fett Ut (L)

Y j p °
for the case where t = tp, equations (3) and (L) become:--
15 -_-gzspo 1n (1 -+v) -gt, + TV, (5)
I g t

_ 7SPo D 1 2

hp% —--———;——-—-—-(1—Y) ln(l—Y)+ISpogtp—-§gtp + V tp (6)

To apply the corrections §h and v for variation in specific
impulse with altitude, a logarithmic series expansion to equation (L)

is made and second and higher order terms are dropped. Hence:

2 2

1
h = +Ispogt--2gt +V0t

- ¥
%
This simplified form of the altitude variation with time may now be
inserted into the gltitude correction term, as a first approximation
method of determining the magnitude of S h. The magnitude of this
altitude correction term, caused by variation of thrust with altitude

is determined as follows; Since:

Po r
2 T Cp
e -1 ¢ (1)
dt t
1-v
P
2 TISPOY Ispo\2 CF
. d(Sh) t T [
e o = p - 1 - p FO
at? g ~1 g
t t
1 -Y—EI; _J 1 —YTD;
- L




therefore:——

a®(8h) _

(1 -e”™h

dt.2

U —="%%




-59~

Letting h = h,, as a first approximation, this equation becomes:~~

b
d (8§h) _ . P o
dt - dt
(1 -Kt)
b
letting:—-
N = ﬂ.}fﬁ _D(...g.
2 tp 2
this eguation becomes:~-
t2
2
d(éh) _ (1 -¢ )
—at &t (7)
1 -Kt
t1

The sclution of this equation obviously requires a numericel tabulation
method of solution, from which §h and §v can be evaluated. The evaluation

(L)

of this type of equation has been carried out by Chien, but the values
are only approximate as only a first order solution was obtained. #gain,
this problem requires such small increment At for the desired accuracy

that this m=thod of solution was abandoned.
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L. Sample Computations.

Determination of the Altitude Index Factor by Total-Impulse lethod.

a.

d.

Parameter Selection

I = 350
sp, =
a, = 1g
v =0

o

Y = .85
Pc = 390
¥ = 1.2

Determination of #p

= 1}9 secs.

. - 500YE _ (350)(.85)
p~ (g, +8) ~ 2

Set-up of Vacuum Flight Equation.

Igy, 8t
_ "Sbo t t 1 .2
hw = _——Y-——.— (1 -Y E; ) 11’1(1 -y Tt;) + Ispogt -5 gt + Vot

b, = §g§9%§é;ggg (1- i%gz)ln (1- iﬁ;ﬁ )+ (350)gt - 16,09 + O

=2
i

1,970,000 In(1 - ,0057t) - 11250t In(1 - .0057t) + 11280t

- 16.09 t° (1)

Tabulation of Cp versus t (using vacuum trajectory).

From equation (1) above, Table #1, shown on page 692 is compiled,

showing the variation of altitude with time. Use is made of NACA TN.#21

5(6)
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and #1200,(7) for obtaining altitude versus pressure data. The values of

9]
s o . . . N <
CF for wvarious PC/PO ratics at a given € were obtained from charts 1-JD—92,( )

where both X and Nb were assumed to equal unity, and ¥ = 1.2. Those

values of CF’ exceeding 1000, were obtained by computing from the standard

equation:

,\/2 ¥-1
=T /g1 (-F/%° )

The values of CF for the ideal variable nozzle were obtained by follow-
ing the "line of maximum thrust coefficient” on this GALCIT JPL chart

e. Determination of Optimum Area Ratio and I,y

Curve sheet #1 shows a plot of thrust coefficient, CF’ versus burning
time. From this curve the total impulse is evaluated by obtaining the
integral /I-CF dt, for various selected area ratios, and also for the ideal
variable nozzle flight. Then this value of impulse is compared with that
obtained with a nozzle correctly designed for sea-level operation, when

operated for the same period of time at sea-level.

e, dat

s . r . . o

Thus this ratio T represents the improvenent in specific impulse
over the I_ =~ under sea~level conditions. Since ISpO was used throughout

o
the previous computaticn for vacuum flight trajectory, repeating this

process using a new [ (average) would correct for the effect of atmos-
pheric pressure variation on performance.

From curve sheet #1 it is seen that the optizum area ratio is 10,
and the I (average) corresponding to this fixed area ratio flight is

l07.5. Also the I (average) for the variable nozzle is L67.
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fe Determination of Summit Altitude Ratio - R.

Injecting the two new values for specific impulse into the wvacuum
flight equations:

v==gIln (1 —‘V%E ) - gt + v,

.t vp =-gIln (1 -V) - gtp + v
v, = - z(407.5) 1n(1-.85) - 1h9g
v, = 20,060 ft./sec.
v‘p = —g(L67) 1n(1-.85) - 1L9¢
v&) = 23,710 ft./sec.
also:
Igt 1
hp == (1 -v) In(2 -Vv) + I gtp -5 gtp + votp
h = (LO7.5)8 (1{%%(.15) 10(1=285) | (407.5) £ (1h9) - 16,09 (1L9)

h = 946,000 feet
= (U6T) g (3h9) (.15) 1n(1-.85)
p N

+ (L67) g (1L9) - 16.09 (149)

h',, = 1,133,000 feet

iy
also:

h
s

]

2
hp vy /2g

h = 946,000 + (20,060)%/2¢ = 7,166,000 ft. (for € = 10)

5

1l

h'y = 1.133,000 + (23,710)2/2g = 9,873,000 ft. (for variable nozzle)

therefore:

R = hs/h's = ,725
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g. Determination of Step-nozzle Solution.

From curve sheet #1 it can be seen that in order to combine two or
more area ratios in one nozzle, it is only necessary to start the inte-
gration process following one fixed area ratio until the second desired
nozzle shape is crossed (graphically). At this point the integration
process should follow the new path. In this manner the average specific
impulse, I, for any number of nozzle combinations may be computed. Ob-
viously, this assumes no separation occurring and that the gases instant-
anesously fans out to follow the larger ratio at this intersection point.

Using this method of integration, various combinations of area ratio
were integrated, see Table 2. It was found that using the lowest possible
area ratio, i.e. approaching sea-level optimum design, in combination
with the highest value of area ratio within mechanical limits, gave the
greatest overall total impulse. Although area ratios greater than 50
were not considered, it is readily seen, from curve sheet #1, that larger
values would show diminishing increase in effectiveness. Eventually a
maximum would be reached which is probably very close to 50.

Since an area ratio of 50 shows no great improvement over that at

35, i.e. € = 35 shows about the greatest rate of increase in performance,

it was decided that under the given parameters, a combination of € = 6,
and € = 35 would be the most practical.

From table 2 ij dt = 258.6l secs.

C. d
L F L
D

(o)
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vp = —g(L28) 1n(1-.85) -1L9¢

v, = 21,210 ft./sec.

p 085 ? [
b = 1,016,000 £t.

hg=h +v/2g = 1,016,000 + (21,210)° /2g

h_ = 7,996,000 ft.

R =h/n' = 7,996,000/9,873,000 = .81

h. Consideration of Ideal Variable Nozzle Limited to € = 50.

Since all comparisons are based on an ideal nozzle with infinite
expansion ratio, it was decided to note how close a two step nozzle approaches
the best possible nozzle that could be built. Obviously, an infinite noz-
zle is out of reason, hence a nozzle was considered that would be ideal
until it reached an €= 50, after which it would follow the impulse pat-
tern of a nozzle with a fixed area ratio of 50.

By integrating along the ideal curve until the €= 50 curve deviated
from theideal, it was found that the /[CF dt obtained was 259..0. This
resulted in an average I of L30, as compared to L28 obtained in the two-
step process. Thus, it is felt that a two-step nozzle is as close to the
ideal 1limit as is possible to obtain, and that more steps are not practical.

i. Determination of Error in ,[CF dt Hethod.

Since there is some argument as to the Jjustification of using the
total impulse method of evaluating the average specific impulse over the
whole period of flight, it was decided to note what quantitative error is

involved.,
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To approach the actual average impulse, it would be necessary to
divide the flight program into several increments and evaluate the
I(average) over each increment. From this value the velocity and alti-
tude attained at the end of this increment should be added into the
equation for the next increment evaluation. It was decided to approach

this problem by a one-step computation, as shown graphically below:

o / 2

+t —

+t —

By this one-step approximation method, the upper portion of the
flight pattern can be more jJjustifiably weighted as against the poorer
performance of the lower portion.

Referring to curve sheet #1, the optimum curve of 10 was used.

It was decided to place the step at a burning time of L5 seconds, as
the inflection point occurs in this region. 3By integrating the area
0-1, a mean value of C was obtained, and similarly for the region from
1-2. These values were applied to determine the respective values of

specific impulse, I1 and Il' .
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I, =1

C. dt .

Jo & 0y (108)hs)

s, T, T = (L.I2) L5y = 37 secs.
(o]

C, dt
=1, fci - (350) (2.727)(1h9-U5) _ )53 (oo

; (1.42) (1L9-L5)
The average I for the flight, on the basis of this one-step approxi-

mation would be:

I= *t =
p

Ip b, + I by (3u7)<u5)1z (L23) (149-L5)
9

"

401 = L07.5 (obtained by the total impulse method)

Hence, by comparing the summit altitude reached by the one-step
method, as against the weighted average of the one-step method, it is
possible to realize the magnitude of the error involved.

1)  Average of One-Step Method.

vy = - gl In(1 -v) = gtp + v
v, = -g(L01) 1n(1-.85) -g(1L9)
v, = 19,660 ft./sec.
- 1g 1 2

h = _;;2 (1-v) (2 =) + Iet, - 5 gt % + vt

hp - (h01>(8)(%§§)(-15) 1n(10.85) + Lo1g(1L9) - % g(lh9)2
h_ = 921,000 ft.

o)

h_ = 921,000 + (19,660)%/2g = 6,921,000 ft.
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2) Cne-step Method.

Let ¥ 'be the loading factor for the flight commencing at t = L5 secs.
M

- _ P [i .
Y= 5 T where i | is the dead weight
P 0
. 149-45
= o M ' = M
at time t = L5 secs., MP o X,
V= 7T0M
MP P
therefore
« TOM
P o
STOM_ + M
o) o
but
Mp
s
D o
o.o M = 08 fﬂ + 08 NI
P 5 IY 2 o
. ¢ 15M
. M = = ,176 U
. L '—B?B 17 .
N - .80

LM+ L176M
7 P 7 Jp

a. Flight 1

v. = -gI, In(1-VY) -gt_ + v
p1 1 p1 o)
v = -g(3L7) 1n(1-.85) -g(L5)
Py
v = 1770 ft./sec.
Pq
I, gt
h =_1 1-v) 1n(1-V g -Zgt ¢ t
b, 5 ( ) 1n( )+ 1,6 b, "2 g b, + v, 5,
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n = OUDES)(15) 1n(1=285) | (310)6(18) - 10.09(L5)°
b, 85

h = 302,L00 ft.
Py

b. Flight 2

—_ - 4 - 1
vp2 = gIl' 1n(1- V') gtp; + v
Vo, = -g(L23)1n(1~.80) -g(1L9-L5) + 1770
2
v_ = 20,040 ft./sec.
P2
I!' gt
1 ‘ 1 1
= - -V 1 t Veax ot ! IR
h.pz NE (1- v') 1n(2 ) + I,'e b, 772 g b, + v 5,
n = {22)e(0)(-20)(1nl1=200) . (123)¢(100)-26.09(204)% + 2770(10L)
5 .
n_ = 856,000 ft.
Py
therefore:
h (total) =h +h
P Py Py

302,400 + 856,000 = 1,158,400 ft.

I

h' (summit) = 1,158,400 + (2o,ouo)2/2g

¢. Error in (a) versus (b)

o h's - By _ 7,368,400 - 6,921,000

s U 7, 365, [00

% error = 6.0%
Thus it is seen that the total impulsé method gives a quantitative
error of 6% lower than a one-step approximation to the actual flight

pattern.
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Computations.

A, Graphical Analysis of the Oblique Shock.

The following isentropic nozzle equations, previously derived are

given:
2x+1/x—1
)
€2=‘6-1 (\6"‘1 (8)
2 _P!:2/]g [1_ ?_1‘_6%3_.]
Pc Pc

-

&

1/2 P, ¥-1/%7 1/2
U, = ac[xi ] [1 - K] (9)

Cc

$+1/%-1 1/2
o] e

91 Ul € = l}d (:6_'*'-—1) (10)

To fit with the desired experimental test, using acid-aniline as the
propellent combination, and to allow usable mixture ratios of from 1.9

to 3.1, it was decided to perform the analytical computations for values
of ¥ of 1.22 to 1.26. To note the effect of chamber pressure, Pc’ on the
separation point, values of PC, of 250, 300, and 350 psia were chosen.

can immediately be plotted
(3)

Using Pl/Pc as a paraneter, curves of € and U,

from the above equations. GALCIT JPL curves 1-JD-170 give values of

\the gas constant, R, and chamber temperature, TC, for various mixture ratios
of acid-aniline combination, and hence "ac" can be determined. TFor each
choice of € and Ui’ Ql, may be computed, and hence a plot of Q& versus

Pl/Pc for different fixed P, can be made.

To illustrate the above, wnsider the case of ¥ = 1.26. For this
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case equation (8) reduces to:

2 155

€ = ot =T\ .208
(21) 1 [1 (52) 20 J
c C

Since a, =Yy RT, and for ¥ =1.26 3 R = 72 ft./deg. F; T, takes successive

values of 3785 degrees R, 3810 degrees R, and 3835 degrees R for values of
P, of 250,300, and 350 psia, respectively. Hence a, becomes 3340 ft/sec.,
3350 ft./sec., and 3360 ft./sec., for increasing values of chamber pressure.

Using these values for A, equation (9) reduces to;

Py ' 1/2
Ul = 8..8 ac 1 - (-F-) . 208

Hence three curves of U, versus Pl/Pc are plotted (see page 91| ). The

density before shock, Ql, becomes :

_ .667\/Pc Cc
Q1” Ule

P
- : - _ _{250)(1hl) - - a0=3 .
P, = 250 psia, ec =g %c = A 3Ee) (322 = .1 x 1077 sluss/cu.ft.

— : _ _(300)(akl) _ -3
P, = 300 psia, @ _ = (727 (3510) (322 = 4.89 x 10
S . _ (350) (abL) _ -3
P, =350 psia, @ = oy (aen) = 067 * 10
therefore:
. =3, oo 11/2
?1 _ (.667)(L.1 x 2077 x 250 x 1ilh) _ 8.13 for P_ = 250 psia

Ule Uie
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gimilarly:
Ql = %ié; for PC = 300 psia.
Ql = é%i%g for p_ = 350 psia.

5ince € is a direct function of Pl/PC, the density, Qj} can be plotted
as a function of Pl/Pc for different chamber pressures using the epopro-
priate Ui’ previously computed.

Using this method, the curve sheet 1 was plotted.

Considerins the obligue shock equation (6):

P
2 . 2,(2% \ .2 ¥-1
-15-;— sin @(m) i -m

Solving in terms of sin2 % > and replacing Mlz by U12 ei/“ﬁfa} we obtain:

Lo
Pi g+ 1

2% [v,°0,
B+ 1 % Pl

sin2Q =

For the case when ¥ = 1,26, this reduces to:

E,

= + .115
shf2§ = 2 5
a5 [V €
=

It has been assumed in this study, that when separation does occur, there
is no pressure deficiency, but that the gases immediately adjust themselves
to ambient atmosovheric pressure. For tnls computation it was decided to

use P = F
o) 2

were to be conducted under these conditions.

= 1.1 psia as the standard pressure, as the exverimental tests
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Hence, it is immediately seen, that for any asswed value of Pl’
the values of U:L and Ql can be obtained frem curve sheet #1. Then sin2€>
can pe computed. To facilitate this solution, P2/ Pl of U:L anc (’1 com~-
patable with a given Pl, for fixed PC were tabulated. From this tabulation
sinZ@ could be plotted as a function of P2/P1 for fixed Pc' On this same
graph, it was found desirable to plot & versus s:'Ln2 © , and hence for
a given P:L’ pressure before shock, the angle of shock, @ , can be immediately
ascertained. This graphical presentation is shown on curve sheet #2.

To evaluate the conditions after the oblique shock has occurred, it

becomes desirous to make use of the previously derived momentum equations:

_ (1 +tan e tan 8 )
{2—61 (1 -tan © tan@) (3)

_ !
U2 - Ul (1 + tan & tan o) (2)

These equations have been plotted as a function of 6 , for values of &

ecqual to 10, 15, and 20 degrees. See curve sheets 3 and L, pages $5 and

98.

B. Solution of Obligue Shock Equations.

To solve the obligue shock equations, the following steps can be used:

1. Assume a value of P:L; from curve sheet #1, obtain U P 1 and € ,

1°
for the given P, and g .

2.  From curve sheet #2 obtain @ , for the given F_ and ¥ .

3. wWith this % and the given O, obtain the required value of ?2
and U2.

ly»  VWith these values of Ul’ Pl’ Ql, e, U2, P2, 8 and Q2, substitute

into the oblique shock energy equation:
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2 2 2
U1 X P1 _ U2 sec & X P2
> 7 =

5-1p, 5 +6-1?§ (5)

and check for compatability.
5. After having found that unique condition which checks the above
equation, recheck the result by use of the momentum equation across the

shock:

2 2, . 2
Py + Qlul sin“g = F, + p, (U2 sin @ - U, tan & cos B) (1)

C. Illustrative Example.

To show how this combined graphical-analytical solution works, the

case where P = 300 psia, § = 1.22, P =P, = 1.1, and © = 20 degrees

2

*

will be considered.
Making successive trials at assumed values of Pl’ in conjunction
with the enclosed curves, the following table is evaluated:

\ -b
P P/P, U, g,x10 c P,/P, B U,  £x10

-k

3.5 85.8 7820 1.15 10.25 L.03 35,2 6230 2.97

L.5  66.7 7665 1.L0 8.50 3.13 32,2 6235 L.15
5.0 60 7605 1.50 7.85 2.82  31.1 6235 .60
5.5  5L.5 7510 1.65 7.30 2,565 30.0 6235 5.37

Inserting these values, for the case of 8=20 degrees, into the
energy equation:
2

Ul % i
2 -1 Q4 2 v -1

we obtain the following table:
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Py U12/2 5.5, F1/ey .568 U22 11250/ P2
3.5 30.5 o). ): 22,1 37.9
1.5 29.l; 25,7 22,1 27.1
5.0 28.5 26.7 22.1 2.l
5.5 28.) 26.5 22.1 20.9

Plotting both sides of this equation versus Pl’ we find the unique value

of P, = 3.85, as that which satisfies this equation. Returning to the

curve sheets, it is noted that for P, = 3.85, that €= 9.55, &= 3L.15,

0, =1.22 x 1o'h, U, = 7760, f, = 3.30 x 1o‘h, and U, = 6225,

7
Inserting these values into the momentum equation across the shock

to check for compatability:

P, +Py U12 sin23 =P, +0, (U2 sin26- U, tan 6 cos @ )2

(3.85)(10h) + (1.22 x 107%)(7760) (.312h) = (1h.2)(10h) + (3.30 x 107)

x [(6225)(.560) - (6225)(.36L)(.628)] °

555 + 2310 = 2030 + 842

2865 == 2872 (close)

Thus, we have determined that € _= 9.55 is the area ratio at which
separation occurs, when operating at Pc = 300 psi., with a deflection angle
of 20 degrees, and with ¥ = 1.22, under sea-level atmosvheric condition of
P, = 1.1 psia.

Since our obligue shock wave theory shows us that two possible shocks
can satisfy these equations, it becomes necessary to consider not only

which of these solutions is actually found by the above method, but whether

the alternate solution is possible.



-85-

D. Determination of Alternate Solution.

The mach number, }51, corresponding to the solution just obtained for

P, = 3.85, is calculated by:

{‘P 60)(1.22 x 1O’L‘)1/2
M, =0 / =0 / _.._l = (77 hd = 30“2
1 I} N ¢4 (1.22)1/2(3.853c1hh)1/2 —

Referring to the oblique shock equations:

1 _ .2 ¥+ 1 sin @ sin ©

Ly - oulg - 351 [ nleing | (7)

M.‘L

T2__2% 2 2. ¥-1 (6)

-—-3—- = 3+ 7 11 sin 6 - 3+ 1
By taking successive values of €> R and solving for Ml’ for 6 = 200,
¥ = 1.22, the following table is prepared: 1

s+l . . Z o2 ,

8 sin2 8 5 sin © sin 8 cos (8- 0) Mi Ml Ml
25 177 .160 .996 .016 62.5 7.94
30 .250 .189 .98l .058 17.2 li.26
35 327 217 .965 .102 9.8 3.14
L5 199 .268 906 .203 .92 2.23
60 < TL7 .329 . 766 37 2.88 1.70
75 .930 .366 573 .290 3.45 1.86
80 .962 373 .500 .216 .63 2.16
85 .988 .378 123 09U 10.6 3.28
87 .988 .3788 390 .02l La.7 6.48

Taking these values of Ml’ Qa , and inserting them into equation

(6), we obtain the following set of data:
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6 1y Cin2 %5% M12 sin‘g P,/P,
25 7.94 WA77 12.26 12,16
30 li.16 .250 L.77 k.67
35 3.1 .327 3.55 3.5
L5 2.23 199 2.725 2.625
60 1.70 L7 2.38 2.28
75 1.86 .930 3.5L 3.4
80 2.16 967 L.97 L.87
85 3.28 .988 11.70 11.6
87 6.8 .998 146.00 L5.90

Plotting M, versus P2/P1, we obtain curve sheet #5. For isentropic flow

1

through a nozzle we have the defining relation:
Py/P, =P /Py X Py/P,
therefore:

(1 +(% - ymlz) #/¢-1

P,/P) = P/, 5

for this problem, P,/P_ = 11,.1/300 = .0L7
therefore:

(1 + (zs - 1)M12)8/"1
Pz/Pi = 047 5

for various values of M we obtain:

2 5 5455
" (1 + -1, ) (1 + -110) ) P2/P1
2 1.l 7.58 356
3 1.99 L5.7 2.115
L 2.76 277.0 13.03
5 3.75 1525, 71.60

Plotting these values on the same graph, we find that two solutions satisfy

these equations. That solution, marked A, represents the solution previously
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determined, analytically, i.e. 3.42, for r, = 3.85 (or PZ/Pi = 3.78).

s Ml =
This solution corresponds to a weak wave obligue shock, as the pressure
rise occurring is reasonably small. However, a second solution, marked
B, occurs for a mach number Hl = L. L, with an accompanying pressure rise
PZ/Pi of 23.5. Cbviously, this strong wave solution would require that
the gases cling to the nozzle until the pressure was about .6 psia. To
determine what area ratio this represents, a plot of € versus Ml has
been incorporated, see curve sheet #6. From this curve it can be seen
that for a mach number, My = L., an arsa ratio of aporoximately li2.5
would be needed before this shock occurred. Hence this strong wave does
not appear to have any practical sighificance at this noint.

This point represents the minimum Mach number which can occur in
tne gas flow, where the gases can be turned through a wedge angle of
20 degrees, by a simple oblique'shock wave., Any flow mach nuaber, Mi,
less than 1.70 would have to be turned by a normal shock or some combination
of waves. Oince this point is of definite interest, it was decided to
see how this varied witn chanzing 6, and to note wnat further prediction
could be made by such an investigation.

Tollowine a similar wnrocedure to that just described, a complete
diagram, curve sneet 77, was constructes, for various ©, at ¥ = 1.26,
wote that a line connecting &ll these critical points, line A-A, could
be called a "line of maximum deflection angle'. If the isentropic nozzle
equation is plotted on this diagram, the point where these two lines
intersect serves to indicate the maximum deflection angle that could occur,

and allow a simple shock to satisfy the resultinege flow. On curve sheet

#7, are plotted three such nozzle equations (for PO/PC = ,040, .Ol7 and
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.056). It appears that for the cases considered in this treatment, that
a maximum of 6 = ;5 degrees micht still allow a simple oblique shock

solution.

E. Temperature Considerations.

The question arises as to whether varying the temperature of the gases
flowing through a nozzle would have any effect on this solution. Through-
out the solution it has been assumed that the gases flow in a frozen state,
i.z., combustion is completed in the combustion chamber, and hence ¥ does
not vary through the nozzle.

Inspection of the isentropic nozzle equations:

1/2

K
2
(m U, ec (10)

-
1

P ~ % -1 1/2
U:(Z% a 1-(p/p) % (9)
1 ¥- 1 c 1" ¢
shows that

T 2
R °<‘/Pc Ps o \/1-’:?—0 o \/ec Te
1 a, \/§?ﬁﬁ: T,

Therefore, the nozzle equations show no temperature sensitivity. Refer-

ring to the oblique shock equations, it is seen that

B/Py &y Uy Rr, x 1, /YT
But Tl is dependent on ‘I‘c such that any change in TC would also result in
a change in T, in the same direction. Hence it can be concluded that

1

temperature is not of prime importance.
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F. Effect on Thrust Coefficient.

In an effort to note how the previously accepted thrust coefficient
variation with altitude would be affected by separation, a typical nozzle,

of area-ratio ¥ = 10, was considered. The effect of ambient pressure

change on the coefficient, C., is determined as follows, neglecting

separation:(B)
Since:
Fon Py | fEPg_fe_ <
where:
Y. 1/2
o - [_2_. - ]
FMAX ¥ -1 P,

and Pe is that unique value of exit pressure which exactly equals the

ambient pressure. For a given € this value of Pe is determined by

solution of the equation.(3)

¥+ 1
> 2(%~-1)
_ %+ 1
€= T ¥ 12
% -1

¥-1

(
P
C

From the above equations, it is readily seen that a plot of CF versus

g
e
)
~
[Y
1
s
oo™
ot
S

PO/Pc would be a linear relationship, continually decreasing with
increasing Po. This is obviously the effect of the gases clinging to
the nozzle, even though pressures far below the ambient pressure, Ps

exist in the nozzle. This plot is made for € = 10, on Graph 11-3 in

the "Results and Conclusions", for ¥ = 1,26
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Since separation does occur, and for a given divergence angle and
¥ , the value of separation area—ratio,eas, has been determined, as a
function of Pc/Po’ it is now possible to determine the point at which
the CF versus PO/PC curve deviates from the linear relation. Also the
variation in CF versus PO/PC after separation commences can be determined.
By referring to Graph 11-2, for an EQS = 10, PC/PO = 31.3, this
represents the point‘at which separation commences to occur for this
nozzle. As atmospheric pressure is further reduced, or PC/Po increases,
‘the separation point will move back toward the throat. Hence it becomes
necessary to consider other separation locations to note the effect on
CF'

sideration of the above equations, for various values of € . The

Similar area-ratio versus PO/PC curves were constructed, by con-

value of PC/PO for successive € values was noted from Graph 11-2,

and thus Graph 11-3 was constructed.
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