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ABSTRACT

All higher symmetry schemes involving from three to ten
baryons with reasonable isotopic assignments are found. The
case of eight baryons is done explicitly; the results in the
other cases are stated. The predictions of the schemes re-
garding mesons and electromagnetic form factors are found
and briefly compared with experiment. A study is made of
the connections between different schemes.

The methods developed to treat the above problems are
used to make a systematic study of chiral symmetries (symme-~
tries involving YS). It is shown that only two special
cases, called free chiral symmetry and bound chiral symmetry,
are of interest. These are discussed in detail,

Several recently proposed theories are treated as

special cases.,
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I. INTRCBUCTION

"What we do here is nothing to what we drezm
of doing."
-- D. A, F. de Sade: Justine

Perhaps the strong interactions can be divided into
two kinds, one of which is much more highly symmetric than
the observed strong interactions, aml the other of which
breaks the symmetry. This is a very old idea (2, 3), at
least in the units in which particle physicists measure time.
When it was first proposed the hope was that the symmetry-
breaking interactions might be considerably weaker than the
symmetric interactions, so that (at least for certain pro-
cesses) reasonable results could be obtained by neglecting
the symmetry-breaking term, or perhaps treating it as a small
perturbation (2). More recently, it has been proposed that
even if the symmetry-violating interactions are relatively
strong, such a split might be useful if the higher symmetries
generate the currents of the weak interactions (4).

The greatest encouragement for the first viewpoint
comes from the observed pattern of baryon masses, which all
deviate less than 20 per cent from a2 common mean mass., This

is large compared to the splitting within the isotopic multi-
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plets, but small»cqmﬁared to baryoh-meson er baryon-lepton
mass differences. It is attractive to believe that the
baryons form a completely degenerate supermultiplet under
the symmetric interactions.

Much the same can be said about the recently dis-
cavered resonances in multi-meson systems. There are three
multiplets all believed to be vector and all of whose masses
lie close together. The p is an isotriplet at 750 mev. (5).
The w is an isosinglet at 790 mev, (6). The K* is an iso-
doublet with hypercharge 1 at 880 mev. (7). (The spin of
the K* is only conjectured to be 1.) All of these masses
differ less than 10 percent from their common mean mass.
This is all the more surprising considering the vastly dif-
ferent strong decay modes of these particles. Certainly any
theory that purports to explain the baryons as members of a
broken supermultiplet should do the same for these resonances.

In our analysis we begin with the baryons, since it is
always possible to build the mesons out of baryon-antibaryon
resonances, but it is impossible to do the reverse. The only
way that we can insure that the eight baryons will form a
combletely degenerate supermultiplet under the highly symme-
tric interactions is by making them the basis for an irre-

ducible representation of the symmetry group. (Cases where
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energy levels are degenerate without this happening--acci-
dental degeneracyé-are known in atomic problems, but they are
uncommon, and, more important, we do not know how to insure
their occurrence.)

'To introduce some terminology which will be used later,
we waﬁt to find a group G that possesses an irreducible
representation bva x 8 matrices, D(g). Further, we certainly
want the highly symmetric part of the interaction to be in-
variant under those transformations under which all the strong
interactions are invariant, so we want G to contain a sub-
group isomorphic to the usual baryon number-hypercharge-
isospin rotation group, such that under this subgroup the
basis of D(g) decomposes into a hypercharge zero isotriplet
(=2), a hypercharge zero isosinglet ( A\ ), and two hyper-
charge plus and minus one isodoublets (N and =), all with
baryon number one. Also, we want the matrices in D(g) to
preserve the symmetry of fhe free Lagrangian; thus they must
be unitary and the group G compact.

We call the scheﬁe described in the preceding para-
graph "a higher symmetry scheme", or, sometimes, just " a
symmetry“ or %"a scheme". The principal aim of the first
half of this thesis will be to find all possible higher-

symmetry schemes (not only for eight baryons but for interesting
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systems.with othef nﬁmbers of particles) and to extract some
of their.more elémentary consequences. By elementary, we
ﬁean those consequences that are independent of our assump-
tions about the naturebof the symmetry-breaking interactions.

To step out from behind the first person plural for a
moment, I like to think ofvthis part of the work as a cal-
culation--not strikingly different in spirit from a calcu-
lation of a radiative correction.®* It is true that the first
half of this thesis does not look like the usual physics
calculation, but that is only because the computational tools
are algebraic rather than analytic.

The second viewpoint ( that the symmetries are the
generators of the weak-interaction currents) has a close
analog in atomic physics. There we make great use of the
fact that the generator of the symmetries of the free Ham-
jiltonian (the linear momentum) is also, in a good approxima-
tion, the electromagnetic current. Useful sum rules are

derived from this, independent of the strength of the poten-

* Prof. R. Christy has informed me that the same calculation has
been done independently by Speiser and Tarski (8). Their
paper only states results, so it is impossible to determine
if their methods are the same as those used here. They have
missed some higher symmetry schemes, due to insufficient am-
bition in the case of disconnected groups.
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tial. 1If we know how the potential transforms under the
symmetry; we can‘obtain even more powerful rules. To my
.Rnowledge, the first attempt to apply similar principles to
elementary particle physics was the derivation of the
Goldberger-Treiman relation by Gell-Mann and Levy (9). This
derivation has since been superseded (10); however, its
starting point--the assumption that the divergence»of the
axial vector current is the pion field--still remains a good
example of the sort of argument we have in mind. More re-
cently Gell-Mann (4) has derived an approximate relation con-
necting the ratio of pion-muon decay to kaon-muon decay to
the pion-kaon mass ratio, using a model of a symmetric inter-
action with a symmetry-breaking term that transforms in a
specified way.

The currents of the weak interactions are axiai vector
as well as vector; therefore the transformations that gen-
erate them do not merely shuffle the baryon fields among
each othér, as do the transformations of the higher symmetry
schemes discussed earlier, but multiply some of the baryon
fields by YS. We call such transformations 'chiral trans-
‘formations“.

The second half of this thesis is a study of chiral

symmetries. We will not develop this investigation as far

as the investigation of ordinary higher symmetry schemes.
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This is not because we can not perform the same caiculations,
but becaﬁse theré ié no point to them. There is always the
?ossibility that an ordinary higher symmetry scheme might be
a good apprdximation if the baryon mass differences were
neglected. A chiral symmetry can only hold if the baryon
masses are neglected altogether; it is automatically a bad
apprbximation. Thére is no purpose in finding those chiral
symmetry SChemes-for which the eight baryons form an irredu-
cible representation, determining the predictions of chiral
symmetries about electromagnetic form factors, etc.

In everything that follows, we phrase our arguments in
terms of quantized fields and invariant interaction Lagrangians.
We emphaéize that this is done for convenience's sake alone.
Our conclusions, like all conclusions drawn from symmetry con-
siderations alone, are independent of detailed dynamical
assumptions. The discussion of invariant Yukawa coupling in
Part IV could equally well be phrased in terms of three-
point fﬁnctions, or spin zero resonances in baryon-antibaryon
scattering, or mesons identified with the divergences of
baryon currents.

We now summarize the development of the remainder of
the thesis.

. In Part II we give some facts about compact continuous
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groups and develop'séme techniques for working with their
low-lying irreducible representations. All of this material
is in the mathematical liferature in some form; we hope its
presentation here is more suitable for physicists. A calcu-
lué is developed for manipulating low-lying representations.
It is designed to imitate the familiar techniques of tensor
and spinor analysis. Our methods are most useful when
applied to representations of low dimension; they become in-
creasingly awkward and inconvenient when extended to repre-
sentations of higher dimension. Fortunately it is rarely
necessary in our investigations to deal with supermultiplets
of more than fifteen members.

In Part III we find all possible higher symmetry
schemes for eight baryons. There are ten such; they are
listed in Table I. In some of these schemes the underlying
symmetry group is connected; we will be able to deal with
these cases in a fairly straightforward manner. In other
schemes, slightly more difficult to treat, the underlying
symmetry group has several components. If we only consider
the comnected part, the eight baryons no longer form an
irreducible representation of the group, but decompose into
two quadruplets. (This is exactly like the decomposition of

the Dirac bispinors into two two-component spinors if we
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éonsider the connécted Ldrentz group only.)

In Part IV we exténd our formalism slightly and use it
to predict the number of Bose particles that may be coupled
'bilinéarly tb the barybn field in an invariant manner. Ye
formulate this discussion in terms of interaction Lagrangians
and invariant Yukawa couplings, but, as explained earlier,
all 6f our conclusions‘are consequences of symmetry only,
independent of detailed dynamical assumptions.

In Part V we determine which higher symmetry schemes
contain which other higher symmetry schemes. "e obtain the
important result that every eight-baryon scheme is either a
generalization of unitary symmetry (1ll) or of minimal global
symmetry (12). If, in any range of applications, the pre-
dictions of these two schemes are inaccurate, then the pre-
diction of no other eight-baryon scheme can be better.

All of these calculations can be done as well for
schemes involving other than eight baryons. We have per-
formed them for from three to ten baryons. The arguments are
so similar to those in the eight-baryon case that we have not
written them out here, but the answers are presented in tab-
ular form. The tables will be found at the end of the
thesis.

- Seven baryons (Table II) is of interest because the N\
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ﬁayvbe considered apart from the other baryons. Five
baryons (Table IV) is of-interest because of speculations
(;g) that the =, may be a bound state of the /\ and the
Te Three‘batyonsv(Table VI) is of interest because all the
baryons can be constructed in principle from nucleons and
N (or from A\ and = ). This is the principle of the
Sakata model. The schemes examined here are generalized
Sakata models (14, 15). To my knowledge, no one has serious-
ly proposed higher symmetries involving six or four baryons
(Tables III and V) but they are included here for the sake of
completeness. (Of course, the doublet approximation (l&) is
a sort of four-baryon higher symmetry and in such guise it
appears in Table VI.)

We also consider theories with nine or ten baryons
(Tables VII and IX); the hope here is that some of the nine
or ten baryon symmetry schemes will make predictions con-
cerning the eight observed baryons so attractive that we will
be williﬁg to search for extra baryons to prove them true,
or perhaps identify some spin % baryon-meson resonances with
the new particles. (A case where something like this has
'Vhappened is the m®* meson, predicted by charge independence
from the existence of the charged m's.) Out of proper order,

we might as well state here that the results of the investi-
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gation show the hope'is véin.

Part VI uses the results in the tables to briefly com-
pare some of the more interesting higher symmetry schemes
with experiment.

In Part VII we begin the study of chiral transforma-
tions;‘using the methods developed in the first half of the
thésis. We distinguish two important special cases. In one
case, the group of chiral tramsformations factors into the
product of two groups, one of which acts on the left-handed
barvons alone, and the other of which acts on the right-
handed baryons alone. We call this "free chiral symmetry".
In the other case, the chiral transformations act on the left-
and right-handed baryons together. The left-handed baryons
form a basis for a representation of the chiral symmetry group
which is either equivalent to the representation with the
right-handed baryons for its basis, or equivalent to its con-
jugate. _(This actually is what happens under Lorentz trans-
formations.) We call this "bound chiral symmetry". These
definitions are somewhat vague; we will be able to give
sharper ones in Part VII, after we have developed more machi-
| nery.

Parts VIII and IX treat free and bound chiral symme-

tries, respectively. Construction of an invariant Yukawa

interaction requires the introduction of both scalar and
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' pSeudosoalar mesoné. Free chiral symmetries require an em-
barassingly 1argé number of mesons. (The minimum number of
ﬁesons is the square of the number of baryons.) Bound chiral
symmetries are much more attractive in that they require far
fewer extra mesons. However, these considerations are not
as compelling as they would be for ordinary higher symmetry
schemes. Chiral symmetries are bound to be bad approxima-
tions; the symmetry-violating part of the interaction, which
creates the baryon masses, might well also make the extra
scalar mesons extremely unstable., Part X briefly discusses
some of the more interesting chiral symmetries.

The appendices deal with points auxiliary to the main
part of the text. Appendix I reviews briefly the connection
between a Lie group, its algebra, and the conserved currents
of a theory whose Lagrangian is invariant under the group.
Appendix II is a directory of all representations of simple
Lie groups with dimension less than sixteen. Appendix III
proves a.difficult theorem that is essential to the analysis
of chiral symmetries given in Part VII. Appendix IV dis-
cusses some chiral symmetries that are neither free nor bound,
and explaiﬁs why we believe they will not be of much use in

particle physics. Appendix V is on notation.
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IT. SOJME FACTS ABOUT LIE GROUPS

Most of the material in this section comes from the
standard texts (17, 18, 19) on Lie groups, but the presenta-
tion and some of the techniques have been suited to our
special purposes.

In all that follows, we exploit a fundamental theorem
on Lie groups: if Go is a compact connected Lie group, it is
locally isomorphic to a direct product of simple Lie groups.
A simple Lie group is a continuous group with no continuous
normal subgroup. All the simple Lie groups are known; there
are three infinite families and six exceptional cases.

The three infinite families are:

(1) su(n), n=2, the group of all n x n unitary ma-
trices with determinant one. SU(n) is called the spécial
unitary group. The dimension of SU(n) is n?-1.

(2) sp(n), n=2, the group of all 2n x 2n unitary

matrices with determinant one that satisfy the equation

drcrtJ =0, (2-1)

where O is the matrix,
0 I
(2-2)
".I. O L]

and Iris the n x n identity matrix. Sp(n) is called the
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éymplectic group. It is isomorphic to the group of all
unitary fransforﬁations on an n-dimensional quaternionic
Qector space. The dimension of Sp(n) is om? + 1.

(3) so(n), n = 7, the group of all n x n real orthogonal
matrices with determinant one. SO(n) is called the rotation
group. The dimension of Sd(n) is n(n-1)/2. The sequence be-
gins with SO(7) because S0(3) is locally isomorphic to SU(2),
S0(4) is not simple (it is locally isomorphic to the direct
product SU(2) x SU(2).), SO(5) is locally isomorphic to
Sp(2), and SC(6) is locally isomorphic to SU(4).

We will only need two of the exceptional Lie groups in
our investigation:

(1) U(1), the group of all complex numbers with modulus
one, and

(2) G2, a subgroup of SO(7) that leaves invariant a
certain antisymmetric trilinear form. It is possible to
choose coordinates in the seven-dimensional vector space
such thét this form, which we will call Eijk’ equals +1 for
(ijk) equal to (123), (145), (167), (246), (275), (365), and
(374), The dimension of G2 is fourteen.

The four other exceptional Lie groups are too large to
interest us. Their dimensions are 52, 78, 133, and 248.

Sometimes we will use the notation U(n) for the group
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of all n x n unitary matrices. U(n) is isomorphic‘to U(l) X

su(n).

If GO is loecally isomorphic to a direct product of
simple Lie groups, any irreducible representation of G, must
be equivalent to a direct product of irreducible representa-
tions of its factors. Thus we are interested in methods of
finding the irreducible representations of simple Lie groups.
The method we wili describe is a straightforward generaliza-
tion of the construction of the representations of SO(3) as
irreducible tensors. (E.g., spin zero is a scalar; spin one
is a vector; spin two is a traceless symmetric tensor; etc.)
In principle, it is capable of yielding all the representa-
tions of any simple Lie group.®* It is by far the simplest
and most direct method of extracting information about the
representations of low dimension. There exist methods of
greater complexity that simplify the treatment of represen-
tations of high dimension, but they require considerably
more labor to develop, and are not necessary for our purposes.

We begin with SU(n). We already introduced an n-
dimensional representation of SU{(n) when we defined the

aroup. We call the basis vectors for this representation

The exceptions are the two-valued “spinor''representations of
S0(n). These will be treated separately.
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simply "vectors". We indicate the components of a vector by
a roman ietter with a superscript,
x
with i understood as running from 1 to n. The complex con-
jugate vectors, . (x1)* form the basis for the conjugate
representation. We use a notation that mimics that of
ordinary tensor analysis, and indicate the components of a
conjugate vector by a roman letter with a subscript,
Ry o

The notation is in accord with that of tensor analysis in
that xi"yi (sum on i understood) is an invariant form. The
corresponding form constructed from two vectors, or from two
conjugate vectors, is not invariant. We may form tensors
with arbitrary numbers of upper and lower indices by taking
direct products of vectors and conjugate vectors. Jﬁst as
in ordinary tensor analysis, we may impose symmetry condi-
tions among the upper indices and among the lower indices,
but not Between upper and lower indices. Likewise, we may
invariantly sum an upper and a lower index, but not two
upper indices nor two lower indices.,

The basis vectors for the irreducible representations
of SU(n) are formed by the irreducible tensorial sets:

The representation of lowest dimension is the scalar

representation, of dimension one.
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The next representation has the vectors for its basis;
it is of dimensibn n. The conjugate representation has the
éonjugate vectors for its basis.

‘The next representation has the antisymmetric tensors
with two upper indices for its basis. It is of dimension
n(n-1)/2. The conjugate representation has the antisymme-
tric tensors with two lower indices for its basis.

Likewise, the symmetric tensors with two upper indices
form the basis for a representation of dimension nz-l, which
is equivalent to its conjugate.

The higher representations correspond to tensors with
more indices and more complicated symmetry properties, but
we will not need to use any of these, except for the repre-
sentations of SU(2), which should be familiar to the reader.

We designate the representations of SU(n) as scalar,
vector, symmetric tensor, etc. Sometimes we will make an
exception for SU(2) and, yielding to tradition, designate
the repfesentations by their spin, as (0), (%), (1), etc.

SO(n) may be considered as a subgroup of SU(n) that
leaves invariant the symmetric tensor éij' We can use this
tensor to lower all indices and also to sum over lower in-
dices. We can obtain the tensorial representations of SO0(n)

in the same manner we obtained those of SU(n). The ones of
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IoWést dimension are scalar (dimension one), vectof (dimen-
sion n),.antisymﬁetric tensor (dimension n(n-1)/2), and
éymmetric traceless tensor (dimension (n2+n-2)/2). All of
these are equivalent to their complex conjugates.
G2 is a subgroup of SO(7). However, it possesses an
invariant antisymmetric tensor, Eijk' We can use Ei' to

jk

split the general antisymmetric tensor, b, into two parts,

ij?

: ~

(2-3)
where,}\) ij 1s an antisymmetric tensor that obeys the equation,
N
Ei k5= O o (2-4%
The tensors of the form bjk form the basis of a representa-
tion of G2 of dimension 14. The other low representations of
G2 can not be reduced with the aid of Eijk; they are'the same
as those of 80(7).

The situation for Sp(n) is the same as that for S0(n),
except that instead of an invariant symmetric tensor éij’
there is an invariant antisymmetric tensor Cyij (the matrix
O introduced above). We can use O, just as we used 5, to
lower all upper indices and to sum over lower indices. The

lowest irreducible representations of Sp(n) are scalar (di-

mension one), vector (dimension 2n), antisymmetric "traceless"*

In this case, of course, when we say bij is "traceless'", we
mean Gijbij = 0.



-18-
tensor (dimensioﬁ n? - n-1), and symmetric tensor (dimension
n(2n+1)).
The two-valued representations of SO(n) can not be

constfucted by our tensorial methods. We construct them by
a method which is closely analogous to that used by Dirac to
construct the spinor representations of the Lorentz group.

- We define the Clifford algebra of order (2v+l) as a set

of (2v+1) matrices r1i that obey the anticommutation rules,

S’L I L, T Jﬁj = 25, (2-5)

The Clifford algebra of order three is the Pauli spin ma-
trices. The Clifford algebra of order five consists of the
Dirac matrices‘ax, X ay, az, B, and YS' It is easy to see
that the matrices in the Clifford algebra must be at least
2% x 2V, It is also easy to construct the Clifford algebra

out of Pauli spin matrices. Consider direct products of

Pauli matrices of the form

ve-r=-1

(1)" x ij x ( CTZ) s

where I is the 2 x 2 identity matrix, and the exponentiation
- symbolizes repeated direct products. There are v such
matrices. Likewise there are v matrices of the same form,

but with CTy replacing CTX. If we adjoin to these the
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difect product of v (jz‘s, we have a set of (2v+1) Hermitian
2V x 2Y matrices§ it is trivial to verify that they obey the
énticommutation rules.
We can use the Clifford matrices to construct the
lowest two-valued representation of SO(n). If ) is a 2"

component vector ("a spinor"), we represent the infinitesimal

transformation

X — x, + e X, (2-6)
L 1 13 3]

in SO(2v+l) by the transformation

' —> % 1 ¢ -
q> \*} % 1 o) i W (2-7)
in spinor space, where

G y=x M -0 - (2-3)

It is easy to verify that this generates a representation of
SO(2v+1) which is two-valued. This is the lowest two-valued.
represeﬁtation. For v= 3 (the only cases we need consider),
the other two-valued representations are of too high a
dimension to interest us.,

We can construct two-valued representations of SO(2v+2)
in the same spinor space, simply by following the prescrip-

tion apove and defining
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O, 2v42 = - =t ;
0 2%2= - Oppp s =21 1T (2-9)

The + sign lead to inequivalent representations; they are
compléx conjﬁgates.
G2 does not have any two-valued representations.
: Appendix IT is the fruit of this section. It lists

all fepresentations of simple Lie groups with dimension less

than sixteen.,
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ITI, THE EIGHT BARYON PROBLEM

We now want to use the methods of the prévious section
to solve the'problem fbrmulated in the introduction, and
find all higher symmetry schemes for eight baryons. UWe need
some notation: Let G be the group of symmetries and D(g)
its irreducible eight-dimensional representation. There is
no reason why G should be connected; it may have several
components. Let GO be the component of the identity, the
subgroup that consists of all group elements that can be con-
nected to the identity by a continuous curve. The restric-
tion of D(g) to G, forms a representation of G_, but it may
not be irreducible.

Such a situation exists in the case of Lorentz in-
variance. The Dirac bisﬁinors form the basis for an.irre-
ducible four-dimensional representation of the full Lorentz
group. However, if we just consider the component of the
identity--those Lorentz transformations with determinant one
that do not reverse the direction of time--the four-dimen-
sional representation reduces to the sum of two two-dimen-
sional omnes.

Let H be the eight-dimensional vector space that forms

the basis for D(g) and let us suppose it decomposes into
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several invariant subspaces.

I“i = 1‘11 + II,) + eoe I{n . (3—1)

where, if 8o is in GO, then
= -r')
D(go) H, = H, . (3-2)
Let g' be an element of G. Then g"l 8o &' is in G, and

D(g'"t gy g') Hy = Hy

or

D(g')"! D(g,) D(g') Hy = H; 3

thus,

D(go) D(z2') Hi = D(g*) Hi .
This implies that

D(g') Hy = H, (3-3)

where i may or may not equal j. However, given any i and
Jjs we must be able to find a g' such that the above equation
is true; otherwise D(g) would not be irreducible. Equation

3-3 and the unitarity of D(g') imply

dim Hi = dim Hj . : (3-4)
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Thus H may décomﬁose,into’twobfour-dimensional subspaces, or
eight one-dimensional subspaces. However, we know the exact
éymmetries of the strong interactions are in Gd, and these
have a three-dimensional invariant subspace ( 2, ). Thus if
the representation of Go is not irreducible, the eight
baryons must decompose into two quadruplets, ¢ of which
contains N and the =\'s, the other, nuclemi and = 's.

We are now feady to decompose G0 into a airect product
of simple Lie groups. For simplicity, in everything that
follows, we neglect factors of U(l). We know Go must con-
tain at least one factor of U(l), corresponding to trans-
formations that multiply all eight baryons by the same phase
factor. Such transformations lead to baryon conservation.
If the representation of Go is not irreducible, there may be
two such factors, each of which leads to baryon conservation
within each quadruplet. Likewise, when we speak of the exact
symmetries in the sequel, we will mean only hyperchargze and
isospin,‘net baryon number.

At this point, reading dimensions from Appendix II, we
have the following possibilities:

| I. The representation of Gy is irreducible.
a. G, is simple. G, can be su(2), s80(7),

SO0(8) (in either its vector or its spinor
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representation), SU(8), SU(3), or Sp(4).
b.‘ G, is a direct product. G, can be sU(2) x
sU(2), su(2) x sp(2), SU(2) x SU(4), or SU(2)
x SU(2).
II. The representation of G5 is the sum of two four-
~dimensional representations.
a. Gy is simple. G, can be SU(2), Sp(2), or
Su(4).
b. G, is a direct product.
1. Every factor of Go is represented non-
trivially in each of the four dimensional
representations. G is SU(2) x SU(2).
2. Some factor of G, is represented triv-
ially in one of the irreducible represen-
tations. Then an isomorphic factof must be
represented trivially in the other one. G,
can be SU(2) x SU(2) x SU(2), Sp(2) x Sp(2),
SU(4) x SU(4), or SU(2) x SU(2) = SU(2) x
SU(2).
We will now examine these cases, and apply to each of
them the one criterion we have not yet used: 1is it possible

to imbed the exact symmetries of the strong interactions in

the representation?
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Ia. SU(2) is a three parameter group, and tﬁe exact
symmetriés form é four parameter group, so they can not be
imbedded~in Su(2).

The exact symmetries are all defined in terms of
unitary matrices, so they are all contained in the vector
representation of SU(8).

Likewise, if‘we use the fields, N\, =, pt+t =7,

i (p- =7), n+ = 9 and i (n- =9), the exact symme-
tries are all defined in terms of real orthogonal matrices,
and are thus contained in the vector representation of S0(8).

If SU(3) contains the exact symmetries in such a way
that the vector representation contains a hypercharge zero
iscdoublet and‘a hypercharge one isosinglet, then the space
of all mixed tensors (nine objects) will contain hypercharge
plus and minus one isodoublets, two hypercharge zero\iso-
singlets, and a hypercharge zero isotriplet. The space of all
traceless mixed tensors has one of the isosinglets missing,
giving jﬁst the right isospin and hypercharge distribution.
This is the unitary symmetry scheme of Gell-Mann (11).

S0(8) contains SO0(3) x S0(5), which is locally iso-
 morphic to SU(2) x Sp(2). The spinor representation of SO(8)
must be double-valued both under rotations in S0(3) and under

those in S0(5); thus it must become the product of the vec-
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tor representation of SU(Z) and the vector representation of
sp(2). Qe will show below that these contain the exact
éymmetries.

S0(7), in the saﬁe manner, contains S0(3) x S0(4),
which is locally isomorphic to SU(2) x SU(2) x SU(2). The
spinor representation of SO(7) must be double-valued both
under rotations in SO(3) and under rotations in S0(4); there-
fore, as above, it must become the product 3-spinor x 4-
spinor, or, in terms of SU(2), (vector x vector x scalar)

x (vector x scalar x vector), We will show below that this
contains the exact symmetries. Lagrangians possessing the
symmetry of SO(7) have been suggested by Tiomno (20) and
Dallaporta (21).

We will now show that the exact symmetries can not be
imbedded in Sp(2). Sp(2) is defined as the group of all

4 % 4 unitary matrices satisfying the equation
- .

Let us choose a set of basis vectors such that the exact
symmetries of the strong interactions are all represented by

real matrices. For these symmetries,

ouU=UC,. ‘ (3-5)
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If Y, is the N field, this implies
&) &PI\= A \.\),\ ’ : (3-6)

where A is a complex number of modulus one. Now, in this
set of basis vectors, O may not be represented by the same
matrix as in equation 2-2, but it must still be antisymme-
tric, and it must still have determinant one. Antisymmetry
implies

A=20 . (3"7>

Hence det O = 0 , | (3-8)
a contradiction.
Ib. Assume G, is SU(2) x SU(2), where the first

factor has the four-dimensional representation. Consider

. - —
the generator of isotopic rotations, T, T must be expressible

as a sum of elements of the algebras of the two factors. If

the proper commutation rules are to be obeyed, then T must

— — — — —y
T + :

be Tl , Tz, or Tl TZ’ where Tl

the basis elements of the algebra of the first factor, and

is the vector formed from

— —

T2 that formed from those of the second factor. But if T
—

is T,, all the isotopic multiplets occur in pairs; if it is

— —
T,, they all occur in quadruplets; and if it is T, + T,, the

2° 1
eight baryons break up into an isotopic quintuplet and an

isotopic triplet.
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CIf G, is SU(Z)'x SU(2) x SU(2), exactly parallel
arguments to those'above»lead to the conclusion that either
féll the isotopic multiplets occur in pairs, or there exist
particies'with isospin 3/2.

We may write the eight baryons as a product of a quad-
ruplet and a doublet, where the doublet is an isospinor with
hypefcharge 0, and thevquadruplet is an isospinor with hyper-
charge 0 énd two isosinglets with hypercharge + 1. The
exact symmetries acting on the quadruplet are symplectic
matrices, so the exact symmetries may be imbedded in SU(2) x
Sp(2). This is contained in SU(2) x SU(4), so the exact
symmetries may also be imbedded in this group. This is the
symmetry of the original globally-symmetric pion-nucleon
coupling (2).

IT a. SU(2), Sp(2) and SU(4) each have only oﬁe four-
dimensional representation. So the two invariant subspaces
must each break up into the same pattern of isotopic multi-
plets ~-‘this is not what happens.

IT b1, If Go is SU(2) x SU(2), we can not use the
four-dimensional representation of SU(2), because this leads
to isotopic quadruplets. So each factor must be represented
by spinors, and the same arguments apply as in the preceding

paragraph.
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I1 b 2.. One of the invariant subspaces must contain N and
the 23 's, Aréumént pérallel to those at the end of T a.
éhow that the exact symmetries of these particles can not be
imbedded in a representation of Sp(2), so G, can not be Sp(2)
pe Sp(Z);

-On the other hand, the exact symmetries are certainly
all unitary, so G_ can be SU(4) x SU(4).

If G, is SU(2) x SU(2) x SU(2) x SU(2), let us choose
the ordering so an element not in the identity exchanges the
first and second factors, and also the third and fourth. If
we consider A and the Z1 's as the product of two hyper-
charge 0 isospinors (first and third factors), and nucleons
and = 's as the product of a pair of hypercharge +1 iso-
singlets (second factor) and a hypercharge 0 isospinor
(fourth factor), we have imbedded the exact symmetriés in
this group.

Let us write ﬁhe general element of G0 above as (g7,
891 835 ga), where g; is an element of SU(2). If we consider
the subgroup of all elements of the form (gl, 891 9 g3),
it is isomorphic to SU(2) x SU(2) x SU(2), and still contains
- the exact symmetries, This is the "minimal global symmetry
group of Yang and Lee (12).

The first three columns of Table I summarize the results
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" of this part.’ I would like to emphasize in just what sense
we have found "ali possible symmetries" of the eight baryons.
We have found all possible .components of the identity, Go.
(With the neglect of faétors of U(l); see the remarks earlier
in this section.) We have not investigated the possibility
of adjoining additional discrete symmetries. Such possibili-
ties do exist; for example, in the symmetry scheme based on
SU(3) (unitary symmetry), there is a discrete symmetry,
called R by Gell-iMann (1l), and hypercharge reflection by

 Sakurai (22), that may or may not be adjoined to the group.

For those symmetry schemes in which the representation
of GO is reducible, we know that there must be at least one
discrete element in G that has the effect of exchanging two
of the isomorphic components of G,, but beyond this, we know
little of its nature, and nothing of the possible exiétence
of other discrete elements.

The third column lists the dimension of G, (the number
of lineariy independent elements in its algebra). Since every
infinitesimal transformation yields a conserved current (see
Appendix I), this is also the number of conserved currents in

-the theory.



-31-
IV. YUKAWA COUPLINGS AND FORM FACTORS

We would like to consider the possible ways in which
we may couple mesons (scalar, pseudoscalar, vector, or axial
~vector) in the Yukawa manner, to our eight baryons, without
destroying our symmetry. For simplicity we consider the

scalar source

ToW,  aen e

the other three sources transform in the same manner. This
source forms a basis for the 64 dimensional product represen-
tation D(g) x D(g). In general, this representation is not

irreducible; we may break it up into its irreducible parts,
Blg) x D(g) = D(L(g) + DD (g) + =+

If we introduce a set of meson fields that form a basis for
one of the representations D(l)(g), we may couple these
fields symmetrically to the Yukawa source. The number of

. . . Lo (1) (i) . .
fields required is dim D » 1f D can be written in real
form, this is also the number of mesons needed. If D(i)
can not be written in real form, the meson fields must be
complex, and 2 dim D(l) mesons are needed, the real and the

imaginary parts of the fields. In the table we list the
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minimum number of mesons required, after one meson. (We can
always couple a single meson to '\v i LP i.) This is the

(1)

émallest dim D . It turns out, in our cases, that the D(i)
of smallést dimension can always be written in real form.*

Of course, all of this is quite independent of our
formulation of the problem in terms of Yukawa coupling. In-
stead of speaking of fields and Lagrangians, we could just
as well have talked of nucleon-antinucleon resonances and
three-point functions and have obtained the same results.
Conclusions drawn from symmetry conditions alone are inde-
pendent of the detailed dynamics.

This point is not as widely appreciated as it should
be. Gursey has invented a theory which requires the intro-
duction of an extra scalar meson+, in addition to the known
pseudoscalar ones (23). He then tries to remove the‘extra
meson by writing its field as a function of the fields of

the pseudoscalar mesons in a way that preserves the symmetry

group. Thus he removes the unwanted meson at the cost of

* It is possible to prove that this is always the case. The
proof is both tedious and unenlightening, and will not be
given here.

* This is a chiral symmetry; elements of the symmetry group
exchanze scalar and pseudoscalar mesons. It will be dis-
cussed in Part IX.
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introducing a nonlinear cbupling.v‘This is clearly a fallacy:
if the theory is‘symmetric under Gursey's group, and if there
ére resonances in the nucleon-antinucleon system corres-
ponding to the known‘pseudoscalar mesons, then there must be
a resonance correspondinz to the extra meson. (This is under
the assumption that the symmetry is not too badly broken.
If it is badly broken, then the extra meson might not be
observable; even 1f it had been introduced as a dynamically
independent field. In either case, there is no reason to
introduce non-linear coupling.)

The actual calculation of the decomposition by our
ténsor methods is very straightforward. Rather than ex-
plaining the method generally, we give two examples.

(1) The eight-baryon theory based on SU(8). The
direct product is the space of all mixed tensors. It decom-
poses into the space of all traceless mixed tensors (dimen-
sion 63) and the spéce of all scalars (dimension 1).

(2) The eight-baryon theory based on SU(3). The
baryons transform like traceless mixed tensors H) 2. The
Yukawa source is E¥§: QJﬁ} If we have a set of eight
mesons Cb ?, which also transform like traceless mixed ten-

sors, then we may couple the mesons to the baryons by

Ly=2 @: L;)f; iji. | (4-1)
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In this case we can also éouple the same eight meson to the

baryons in a completely independent way, through
L =g' Qi‘ k\)k q)j . (4-2)
I k j i

Note that it is not necessary to cbmplétely decompose
the pfoduct, merely to find which of the low-lying represen-
tations occur in it.

Also notekthat it is not necessary to trace through
the Yukawa coupling in order to determine the isotopic con-
tent of the meson fields., This is determined simply by the
representation and the way in which the exact symmetries are
imbedded in GO, properties which were found in Part III.
Thus in the unitary symmetry scheme we know that the eight
mesons mﬁst decompose into an isoscalar, two isospinors, and
an isotriplet, just because they belong to the mixed tensor
representation of SU(3).

The original eight-fold way in#olved the pseudoscalar
equivalent of this coupling, with the mesons identified as
the n's, the K's and a hypothetical meson called TK,O. It
has been suggested that the recently discovered resonance in
the’3n system at 550 mev (24) might be x °.

We should remark that the mesonic Yukawa interaction
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may often have a higher symmetry than the original group.
Thus if Qe start off with a theory of eight baryons which
ére a basis for a representation of SU(2) x Sp(2), and
couple three mesons in-a symnetric manner, we find that the
resultant Lagrangian has the symmetry of SU(2) x SU(4). We
must bé careful when we make a prediction on the basis of
some.symmetry scheﬁe, to be sure the prediction is made on
the basis.of the symmetry scheme alone, and not on some
particular Lagrangian, which may possess higher symmetries
than those we know. (Iﬁ the case above, we may remove the
"unwanted" symmetry by coupling, let us say, ten vector
mesons to the Yukawa source.)

The decomposition of products of spiﬁor representations
does not follow from tensor methods; however, it can be ob-
tained directly by analogy with the familiar properties of
the Dirac wave functions. As usual, we must treat SO(2v + 1)
and SO(2v + 2) separately. We begin with SO0(2v + 1). If we
call the fundamental spinor representation \P , we can de-

compose the direct product (spinor) x (spinor) into the forms

VY, gy, Wi nly,

WL O, Ty,

etc.
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The same arguments involving the generators of the rotation
group that are used in Diraé theory show here that these
transform, respectively, like scalar, vector, antisymmetric
tenéor with fwo indices, antisymmetric tensor with three
indices, etc.

As we demonstrated in Part II, we can use the same
spinérs and Cayley matfices to form a representation of
S0(2v + 2). Here we have two inequivalent cases, (spinor) x
(spinor) and (spinor) x (conjuzate spinor). In either case
we can‘make the decomposition shown above. However, for
(spinor) x (conjugate spinor), the forms after the scalar
have to be grouped together pairwise to make scalar, anti-
symmetric tensor with two indices, etc. Likewise, for
(spinor) x (spinor), the forms have to be grouped pairwise,
beginning with the first two, to form vector, antisymmetric
tensor with three indices, etc.

Thus, in the eight-baryon theory based on the spinor
representation of S0(7), we can couple seven mesons to the
Yukawa source, while in that based on the spinor representa-
tion of S0(8) we need 28 mesons.

Electromagnetic Form Factors

We can use techniques very similar to the ones above

to calculate the electromagnetic form factors. To lowest
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order inkelectromagnetism, the electromagnetic form factor
is lineafly relaﬁed to the matrix element of the electric
éurrent between single nucleon states, calculated in the
absence of electromagnetic interactions.

Charge conservation is one of the symmetries we have
taken care to include in our group, so the electric current
ig associated with some element of the algebra of Gge

Now if a is an element of the alecebra of Gys and g

is an element of G, then o=l a g is also an element of the

&
algebra. That is to say, the elements of the algebra.(and
hence the associated currents) form the basis for a repre-
sentation of G, called the adjoint representation. If GO is
simple, the adjoint representation is irreducible; otherwise,
it may or may not be reducible.

If G, is SU(n), the adjoint representation is fhe mixed
traceless tensor representation. If G5 is SO(n), it is the
antisymmetric tensor representation. If G, is Sp(n), it is
the symﬁetric tensor representation. If G, is U(1), it is
the trivial representation. If GO is G2, it is the repre-
sentation of dimension 14.

To find the possible electromagnetic form factors, we

must:

(1) Find the adjoint representation;
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(2) Decompose it into irredﬁcible parts;

(3) Discard those irreducible parts that make no con-

tribution to the electric current; and

(4) Decompose the representation of the current 5(@)

% D(g) into its irreducible parts.

Then, we may couple each irreducible part of the ad-
joint representation to the corresponding irreducible part of
the product representation. ZRach such possible coupling is
a possible contribution to the form factor. (Actually, a
possible contribution to either the charge or moment form
factors.)

We list the number of independent form factors in the
last column ofvour tables, and do three cases explicitly
here, to demonstrate the technique. All of these are eight-
baryon theories.

(1) Theory based on S0(7). The adjoint representatioﬁ
is the antisymmetric tensor representation. H occurs once
in the direct product: there is one independent form factor.
That is to say, all form factors are proportional to the
charge.

(2) Theory based on SU(2) x SU(2) x SU(2) (minimal
clobal symmetry). We label the‘representations of 5, (jl,
dn, j3), where tﬁe j's are the "angular momenta". The

baryons transform according to (%3, %, 0) x (%, 0, %).
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(Contrary to appearances,'this is an irreducible represen-
tation of the fuil group; bacause the full group contains a
discrete element that exchanges the second and third factors
of G_.)
The adjoint representation is

(1,0,0) + (0,1,0) + (0,0,1) .
This is the sum of two irreducible parts (indicated by the
brackets); Each part cont:ibutes to the electric current.
The product representation is

(1,0,0) + (1,0,0) + (0,1,0) + (0,0,1)

+oeee

where we only write out the part of the sum that is of
interest. This contains one of our irreducible representa-
tions twice and the other one once; there are thus three in-
dependent form factors.

Since there are three independent form factors, but
nine experimentally measurable (in principle!) form factors
(the eigﬁt.baryons and the $.° N\ cross term), we can find
six equations between these factors. All we have to do is
write out the representations explicitly in terms of the
bcomponent‘baryonsf We express the results in terms of mag-
netie¢ moments, althoush they are true for all form factors

at all energies.
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m( ) =0,

u(  © =o,
w( e 7 =o,
u( 9 +uC n)=o0, (4-4)
H (. D +u( p ) =0,

wo=ul( D ) + k) |,

where p is the mixed moment, responsible for
decay.
(3) Theory based on SU(3) (unitary symmetry). The

adjoint representation is the mixed traceless tensor repre-

sentation. The direct product contains this twice; once as

N i k — k i i

. and once as . « If Q. 1is the ma-
kPk&PJ \PJ \Pk %
trix that generates the electric current, then the most

general form for the moment form factor is

T i k ~] —k iA]
+
a W Wig*re Wy Wy o
where we have omitted gamma matrices. This is the expression

found by Coleman and Glashow (23).* All of the form factors

may be found in terms of those of the neutron and proton.

* The techniques used in this section are an attempt to genera-

lize the methods of this paper.
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uC = up,
u(» ) = %u(n),
w9 = wm,
wC ) =u( 7)== w) +u) (4-5)
uC 9 = ),

wy, =% 3u(n).

There is one final remark to be made about the calcu-
lation of moments. In doing the eight-baryon problem, we
factored out of G0 a factor of U(1l) that led to nucleon
number conservation. We have ignored this factor in the
discussion of moments. This is unobjectionable in the eight-
baryon case, because the total charge of the eight baryons
is zero, and nucleon number makes no contribution to the
charge. This is not the case for some of the other symmetry
schemes listed in the tables; for.these we must include the
factor of U(l), which leads to one more independent form

factor.
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SO (8) SU

SO(8) SU4) ® (2)
(vector) Su(4) (spinor) ® SU(4)

SU (3) SU(2) ® SU(2) SO (7) SU((2) ®

®SU(2) ® SU(2) Sp(2)

SU(2) ® SU(2) ® SU(2)

Figure 1 Hierarchy of the eight-baryon higher symmetry
schemes. Note that every scheme is a general-
ization of either unitary symmetry or minimal
global symmetry.



43
V. CONNECTIONS

We say one symmetry scheme contains another if the
group of the first schéme contains the group of the second
as a subgroup in such a way that the representation of the
second group is obtained by restricting the representation
of the first group to the subgroup. A more physical way of
stating the relation is to say that the first symmetry scheme
is a more symmetric generalization of the second, but, of
course, the transition from the more symmetric scheme to the
less is easier to prove.

Figure I shows the complete set of containment rela-
tions among the eight-baryon symmetry schemes. The most
significant fact shown in the figure is that every eight-
baryon symmetry scheme is a generalization either of‘the one
based on SU(3) (unitary symmetry) or of the one based on
SU(2) x SU(2) x SU(2) (minimal global symmetry). We will
now pro?e the relations shown in the figure. In the sequel,
"SU(8) is used as an abbreviation for Ythe eight-baryon
symmetry scheme for which G is SU(8)", etc.

It is clear that SU(8) contains all symmetries. Like-
wise SO(8) (vector) contains all symmetries that can be

written in real form.
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In Part III we showed that SO(8) (spinor) coﬁtained
SU(2) % Sp(Z). Qe can argue similarly that it contains SO0(4)
ﬁ 80(4), which is locally isomorphic to SU(2) = SU(2) x
su(2) x su(2). Since the representation of SO(8) must be
two-valued under rotations of either factor of 80(4), it
must become (scalar x vector x scalar x vector) + (vector x
scalar x vector x scalar), any other combination leading
either to too high a dimension or to a loss of the symmetry
between the two factors of SO(4).

Likewise, S0(8) contains SO0(7), and the spinor repre-
sentation of S0(8) must become a two-valued representation
of S0(7). The only possibility is the lowest spinor repre-
sentation.

We have shown in Part III that SO(7) contains SU(2) x
SU(2) x SU(2); also that SU(2) x SU(4) contains SU(Zj x Sp(2).

SU(4) contains SO(4) in such a way that the vector re-
presentation of SU(4) becomes the vector representation of
30(4), of the vector x vector representation of SU(2) x
SU(2), locally isomorphic to SO0(4). Thus SU(4) x SU(4) con-
tains SU(2) x SU(2) x SU(2) x SU(2).

Sp(2) contains Sp(l) x Sp(l), which is isomorphic to
SU(2) x SU(2). The vector representation of Sp(2) becomes

the (vector x scalar) + (scalar x vector) representation of
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SU(2) x SU(2). Tﬁus SU(2) x Sp(2) contains the minimal
global s&mmetry group. |

| We have shown in Part III that SU(2) x SU(2) x SU(2)
x SU(2) contains SU(2) x SU(2) x SU(2).

“Je have now explained all the arrows that appear in
Figure I; we still have to explain the arrows that do not
occur there, by showing that those symmetry schemes not
joined by arrows do not contain each other. ‘e can take
care of most of the work with three trivial observations: a
theory with less curreﬁts can not contain a theory with more;
a theory with lower meson number can not contain a theory

with greater; a theory in which G_ is represented reducibly

o
can not contain a theory in which Go is represented irredu-
cibly.

For the rest:

S0(8) (vector) can not contain any theory that can not
be written in real form.

80(8) (spinor) is a scheme in which it is possible to
couple 28 meson symmetrically to the Yukawa source. These
mesons include two isotopic quadruplets. Thus this scheme
can not contain SU(2) x SU(4), in which the lowest irreduci-
ble compdnent'of the product which contains isotopic quadru-

plets is of dimension 45.
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Likewise, S0(7) (spinor) is a scheme in which it is
possible to couple éeven mesons symmetrically to the Yukawa
source. These aré an isotriplet and two isodoublets., Thus
this can not contain SU(2) x SU(2) x SU(2) x SU(2), in which

isotriplets always come in pairs.
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VI. DISCUSSION OF HIGHER SYMMETRY SCHEMES

We will begin by considering the eight-baryon schemes,
and then discuss some of the other possibilities in the
tables. Since we have just shown that every eight-baryon
scheme contains either minimal global symmetry or unitary
symmétry, it suffiées to examine the consequences of these
theories and their simplervgeneralizétions.

Unitary symmetry requires a minimum of eight pseudo-
scalar mesons to construct an invariant Yukawa interaction.
These eight have the right isospin and hypercharge assignments
to be the pions, the kaons, and the recently observed three-
pion resonance (24). If this assignment is correct, unitary
symmetry is clearly a very bad approximation (at least at
low energies (26), because of the very large differeﬁce be-
tween K and 7 coupling constants and masses. The eight ob-
served (possible) vector mesons mentioned in the introduction
fit niceiy into this scheme; they may be coupled to the bary-
ons in precisely the same manner as the pseudoscalar mesons.

Global symmetry, on the other hand, has the possibility
of being a reasonable low energy approximation, since the
pions, the most strongly interacting particles, form a super-

multiplet by themselves. The scheme has been applied to the
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aﬁalysis of several expefiments (27, 28) and does not yield
results inconsisﬁent with the data. If we wish to couple
ihe eicht vector mesons in a symmetrical way, we may choose
the symmetry‘scheme based on SU(2) x Sp(2). We can then
couple ten mesons that transformn according to the symmetric
tensor representation of Sp(2) to the factor of Sp(2).
Eight of these have the desired isospin-hypercharge assign-
ments; the other two are singlets with hypercharge plus and
minus two. Let us call these hypothetical particles gt and
G . G+ could be produced in the scattering of Kt off nuclei.,
that is to say, in the reaction

KW #n — ¢ + A .

6" could also be produced in the reaction

©4+p — G+ = ,
which could occur virtually in high energy nucleon-nucleon
scattering. If C were lighter than two K's, it would be
stable under the strong interactions and easily detectable

by its weak decay into m aﬁd K. If it were heavier than two
K's, it could decay strongly into two K's in an I = 0, J =1
state, Presumably this could be detected by the same methods
used to detect the K*¥(Z7). (The group Sp(2) was first intro-
duced by Salam énd Ward (29), in a somewhat different con-

text. )



2s for electromagnetic processes, the /\ moment is
currently being ﬁeasured‘by'Cool et. al. at Brookhaven.
Global symmeiry predicts that this should be zero; unitary
symmetry that it sheuld be one half the neutron moment.
Preliminary results (30) indicate that it is on the order of
minuseene, in agreement with the predictions of unitary
symmetry. Unfortunztely, there is no reason why this parti-
cular prediction of unitary symmetry should be taken serious-
ly. If we examine, in terms of diagrams, the contributions
to the A moment in unitary symmetry, we find that the
main contribution comes from two K intermediate states. The
large mass of the K, relative to the m, and the small K
coupling constant, should reduce these terms considerably.

We can also predict the electromagnetic mass splittings
within the baryon multiplets, in the neglect of the eymmetry-
breaking interactions. We have not developed systematic
methods here. Unitary symmetry predicts only the = mass
splittiné in terms of the other splittings (25). The re-
sult is in agreement with (none too accurate) experiment.
Minimal global symmetry, predicts, among other things, that
>the'charged 2, mass difference should vanish. This is easy
to see; the minimal global symmetry group contains a trans-

formation that changes the fundamental fields as follows:



n —> =0
p <> —5_-

This completely reverses the sign of the electromagnetic
current, so the electromagnetic mass shifts, which are even
in e, should not Be changed.

The remarks made about the accuracy of the magnetic
moment predictions of unitary symmetry also apply to the
mass shifts. We thus have a peculiar picture: unitary sym-
metry, which can not be taken seriously as a good approxi-
mation, predicts the electromagnetic properties of the bary-
ons fairly well, while global symmetry, which might be a
reasonable approximation, fails completely. Probably the
accuracy of unitary symmetry is merely coincidental.

No improvement is obtained by studying symmetry schemes
involving more baryons. Thé only nine-baryon scheme that
does not have an exorbitantly large number of mesons is that

based on SU(3) x SU(3), which contains unitary symmetry.
The only ten-baryon schemes with reasonable meson numbers
are that based on SU{(2) x SU(5), which contains global sym-

metry, that based on S0(5) x S0(5), which also contains
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giobal symmetry, and'that‘based on 8p(2). The same mesons
can be coupled té this as were coupled to the factor of
Sp(Z) in the global symmetry variant studied above. Here
there are two additional hypercharge two pseudoscalar
mesons as well as two additional vector mesons, This scheme
predicts all baryon momenté to be proportional to the charge.

Among schemes involving lesser numbers of baryons, the
only ones‘of interest are the seven-baryon scheme based on
32, the five-baryon scheme based on 38p(2), and the three-
baryon scheme based on SU(3). G2 has been suggested by
Behrends and Sirlin (31). It is contained in the eight-
baryon scheme based on the spinor representation of S0(7).
It predicts all baryon moments to be proportional to the
charge. The five-baryon scheme based on Sp(2) has the same
mesonic possibilities as the two other theories we héve dis-
cussed using Sp(2). It also predicts all moments to be pro-
portional to the charge. The three-baryon scheme based on
sSu(3) ié the generalized Sakats model (14, 15). There are
the same mesonic possibilities as in the eight-baryon scheme
based on SU(3). This scheme predicts equality of the /\
and neutron moments. Since all of these schemes involve
placing the pions and kaons in the same supermultiplet,

their predictions about moments are as untrustworthy as those



of the gightfolﬂvway.

There are twobéossible checks on a symmetry scheme
which we have neglected. One is the correlation of baryon-
meson resonances. Glashow and Sakurai (32) have studied
such resonances using the coupling constants obtained from
unitary symmetry but the correct particle masses. Their re-
sults indicate that, in this case at least, the particle
mass differences éeriausly distort the results obtained from
the symmetric interaction alone. The other is the predic-
tion of high-energy scattering amplitudes. Gell-ilann and
Zachariasen (26) have shown that, if the interaction is
truly a Yukawa interaction mediated by elementary pseudo-
scalar fields, and if the symmetry is violated by mass
differences only, then the broken symmetry will become visi-
ble at sufficiently high energies. There is, of coufse, no
data available on high-enerzy hyperon-hyperon scattering.

e should also remark that predictions of this kind are not
merely a congequence of symmetry, but strongly depencent on

the detailed dynamics.
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VII, THE STRUCTURE OF CHIRAL SYVMMETRIES

As-exﬁlained in thé'introduction, this point marks a
natural bresk in our investigation. Until now, we have been
studying symmetries that shuffle the baryon fields among
themséives. We shall refer to such symmetries as "ordinary
symmétries" in what follows. Now we widen our field of in-
terest to include also symmetries that multiply the baryon
fields by Y5 and which interchange scalar and pseudoscalar
mesons. We call these "chiral symmetries".

A chiral transformation has the general form:

Yrca+ 83 9 vy,

(7-1)

-¢+c¢ .
in which Q , & are n x n matrices acting upon the n
fermion fields Lp . ©C acts upon the mesons and may mix
scalar with pseudoscalar mesons and vector with pseudovector

mesons. = The fermion part may be rewritten:
Y — (a2 + B2) Y. (7-2)

where a and @ are the chiral projection operators
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(1 - 1 v5>

If two chiral transformations are performed sequen-

tially,
(Ala + Bla)(Aza + Bza) W ==(A1A2a + Blea) LP . (7=3)

Thus the chiral transformation corresponding to the product
of (Ay, By) with (AZ, Bz) is given by the matrix pair (AIAQ,
BIBZ)‘ For this reason, most of our subsequent results are
xpressed in terms of chiral eigenstates rather than parity
eigenstates.

In order to leave invariant the kinematic part of the
Lagrangién, and hence the commutation relations, A, B, and C
must be unitary matrices. We shall be concerned principally
with the behavior of the fermions under chiral symmetries --
each such transformation is characterized by a pair of uni-
tary matrices, (A, B), which act, respectively, upon right-
and left-handed fermions. When A = B, the transformation is
a conventional non-chiral one. Otherwise, the transforma-
tion treats the two chiral eigenstates differently, and
cannot be an invariance of the entire Lagrangian unless the

fermions are massless.,
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It is convenient to consider the matrix pair (A,B) as
a pair of representations (D_(g), DL(g)) of an abstract con-
Fas

tinuous (Lie) group G.

\y — Delgla Y + Dy(2)a W .

Likewise,

P — p4t) O . (7-4)

We will assume G is connected. This is true of all the
chiral symmetry groups studied in the literature, as well as
of the examples we will present later, and for good reason:
we introduce chiral symmetries to obtain partially conserved
currents. Butkonly the connected part of the group generates
currents -- the addition of discrete elements to a connected
Lie group would place additional restrictions on the theory
with no corresponding gain in currents.

Since A and B are unitary matrices, the group G must
be compaﬁt. Just as before, we can decompose G into a direct

product

G =G] x Gy x *** Gy, (7-5)

where the G; are simple Lie groups. Also, just as before,

we neglect factors of U(1).
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We are interested in theories conserving parity.

Parity ié an operation of the form
WY (x,e) = P YW (- x,t) (7-6)
o

where P is an n x n unitary matrix acting upon the n fermion
fields, ‘e assume that all the baryons have real relative

parity, hence P2 = 1., Thus we may write
P=P -P |, (7-7)

+ . . . .
where P- are projection operators whose sum is unity,

In we now introduce new fields HJ' defined by
+ -
k\)' = (P + VS P ) LP ’ (7"'8>
then, under parity,
\'\)'(X,t) —% YO \i)'(" :{,t) - (7"’9)

We shall always use‘the \P ' as the basic fermion fields,
but hencAeforth, we omit the prime.

This change of basis fields may transform a group of
chiral transformations into a group of conventional nonchiral
ones. By the same token, the inverse transformation may be
used to obtain a theory with differing fermion parities,
which admits a gfoup of chiral symmetfies, from an ordinary

non-chiral higher symmetry scheme, in which all
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of the fermion parities are the same.

Tﬁus wekseé how a given symmetry group may accomodate
a multiplet of baryons not all of the same parity. For
exampie, unitary symmetry may be adopted to describe the
eight baryons with ¥, parity opposite to that of N, A ,
and = '. Tour of the currents are vector; they are the
isospin and strangeness currents. The remaining four cur-
rents are pseudovedtor, and are only conserved when all
baryon masses are neglected.

Under parity, 7-2 becomes
(A7 + Ba) .

Conservation of parity implies that if the matrix pair (A,B)
occurs in the chiral symmetry group, then the pair (B,A)
must also occur.

We can assume with no loss of generality that the re-
presentations Dp(g) and D;(g) are irreducible, since we can
always éonstruct any representation as a direct sum of irre-
ducible representations. Then DR(g) and Dj (g) must each be
equivalent to a direct product of irreducible representations
of the simple factors of G. We may choose the basis fields

so that DR(g)'is actually a direct product,
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DR(g) = Dl(gl)‘x-Dz(gz) X c-foo Dm(gm), ‘ (7‘1Ql

where Dl(gl) is an irreducible representation of Gj, etc.
Parity conservation guarantees that D; (g) is also such
a direct product, but possibly with its factors reordered.

Hence

+

DL(g)‘= R Di(gl) X Dé(gz) X saves Dé(gm) R" , (7-11)

whére Di(gl) is an irreducible representation of Gy, etc.,
and R is a unitafy operator which may interchange the fac-
tors of DL(g).

The parity operation exchanges the matrices in Dp(g)
and D; (g). At the same time, it transforms the abstract
group G, Clearly parity must turn the factors of G into the
factors of G, Since the square of the parity transformation
is unity, either a factor of G must remain fixed or it must:
change places with another, isomorphic, factor. We will
examine these two cases separately:

a) A factor of G remains fixed.‘

G = Gl X osesesse

il

DR(g) Dl(gl) KX esevsnse

i

DL(g) Di(gl) X snessases ) (7'12)
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The parity transformation exchanges the matrices in D, with

1
those in Di. Since the théory conserves parity, every
matrix that occurs in Dl(gl) must also occur in Di(gl).
This does not mean that Dl(gl) is necessarily the same re-

presentation as Di(gl). It may be some equivalent represen-

tation,
DI(g.) = SD (g ) st ,
1 -1 1 "1
or it may be the complex conjugate representation,
Di(gl) = Ul(gl) ’

or it may even be some representation equivalent to the com-

plex conjugate representation,

- +
Dl(gl) = 8 Dl(gl? S .

In both instances, it follows from parity conservation

that

8¢ = 1 . (7-13)

We denote these possibilities collectively by
s Dy(g) 8T or

- _

D!(g) =D (g) = (7-14)

= +
8 Dy(g) 8 .
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In Appendix III we’show‘that these are the only possibili-
ties. We call ajchirél symmetry of this type a bound chiral
éymmetry~(b;c.s.);

b) Two isomorphic factors of G are interchanged

G = GIXGZX sssane

1

D.(g) =D, (g,) xD,(g,)

#l

b (g) = Di(g,) x DI(z) - (7-15)

Although Gl and G2 are isomorphic, there are in general
many possible isomorphisms between them. Simply to be de- -
finite,rlet us define an isomorphism between them in the
following standard manner: D1 and Dz.cannot be both trivial.
Let Dl bé non-trivial., Since Gl is simple, D1 must be faith-
ful; that is to say, Dl(gl) is isomorphic to G,. Likewise
Dé(gz) is isomorphic to Gz. Pafity reversal exchanges the

2

same matrices. Thus there is an isomorphism between D1 and

matrices in Dl,with those in D!, so they must contain the

Dé defined by matrix equality. The standard isomorphism be-
tween G1 and 62 is defined as the product of these three

isomorphisms. With this definition, it follows that

Dy(g) = Di(g) . , (7-16)
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The parity transformation also exchanges the matrices

in Dz(g) with those in Di(g). By the same arguments used in

case (a), we find,

(7-17)

- To summarize, any chiral symmetry group may be written

as the direct product of simple Lie groups. These groups

either occur as singlets,

with the corresponding

DR(g) =

]
o
—~
09
[
~
el

D, (g) = D () x

with the corresponding

DR(g)

]

Dl(gl) %

il

DL(g) 'Dl(gz) X

LR
representations,
L N N J

LA S N

Vand
Gz)‘x ss0re L] Gl"Gz
representations

Dz(gz) X socee ’

~JS
13 0- L N I} L ]
2(61) X

(7-18)

(7-19)
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There are two important special cases of equation

7"19 L] If

the resulting chiral symmetry resembles very closely a pro-
duct of two b.c.s., which are interlinked by the parity
operation. We call this a doubly bound chiral symmetry; it
will be discussed along with b.c.s. in Part IX.

Alternatively, it may be that
D = 1 7-21
l(gl) , (7-21)
which implies
a%4
ADl(gl) = 1 . (7-22)

The left- and right-handed fermions transform quite inde-
pendently. We call this situation free chiral symmetry
(foecess).

Iﬁ Appendix IV we discuss briefly chiral symmetries
that are neither bound nor free, and explain why they are

not of much interest.
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. VIII. FREE CHIRAL SYMMETRY

For the discusiion of f.c.s., we will adopt a simpli-

fied notation for the fundamental transformation,

Y — D(gyla @ +D(gya @ . (8-1)

The conserved currents occur in pairs: vector currents
are associated with transformations for which 8, = 8y and
pseudovector currents with transformations for which g, = ggl.
They are identical in structure, differing, in their fermion

parts, only by the presence or absence of YS‘

The Yukawa sources

TPi; Wi ’

transform under 4-1 in the following manner:

P, 3 W, — B0 by, () W, 7 .(8-2)
Thus they form a basis for the representation 5(g1) x D(g,)

of the chiral symmetry group G; x G,. If D(g;) is an
irreducible representation of G1 of degree n, this is an
irreducible representation of G, x G_ of degree nz. Likewise,

1 2
the conjugate sourees
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Wia Wy
form a basis for the conjugate representation E(go) x D(gl).

In order to introduce Yukawa interactions of spinless

mesons to these sources in a symmetric way, we must couple

2

to the n fermions n® meson fields @, ;, which also form a

basis for E(gl) x D(gy). The invariant interaction is
= [N + H.co = —_.
=8 W2 WPy, ¢ =2 W2y By

tgp, 7 L\)jq)*ji . (8-3)

If we define "Hermitian and “anti-Hermitian" mesons by

o} = % + }*
1 5 (P i1 J.i)
= ,,,' L ff | -
"ij /2 (q) i ji) s (8-4)

then,

Lh=8 Wi W3 Oy5+s YWyi¥s Wymy « (85

The Cyij are gcalar and the nij are pseudoscalar
These mesons are complex. If D(g) is not equivalent
to D(g), D(g;) x D(g,) canmot be equivalent to D(g;) x B(gz),

and B(gl) X D(gz) cannot be expressed in real form. The n?
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2

complex. mesons decompose into 2n”~ real mesons, n2 scalar

ones and n2

pseu&oséalar ones, all of which mingle irreduci-
Bly under the action of the chiral symmetry group.

Note that in this case the form of the Yukawa inter-
action is quite independent of the nature of the original
chiral symmetry group. It possesses the symmetry of U(n) x
U(n) -- the largest possible chiral symmetry group‘on n
fermions. If the Yukawa coupling is the only interaction
ﬁresent, this is the symmetry of the Lagrangian.

If D is equivalent to D, there exists a matrix C such
that T@c transforms in the same way as UP » We can use

C to decompose L, into two invariant parts, each of which

involves n2 real mesons:

L =1/2 (L _+ an) , - (8-6)

where
L =g K(q)c)i Y j+(@c)j ¥ i] s |
+ g‘ K(IP C)i YS kP T ((P C)j Ysldv il nij , (8-6a)

and
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Lo=8 (WO, Y, -(@o, v, 10,

+ g i(&v ), Yq L\).j + (q)c)j Ys \Vi-] g (8-6b)
L__ describes the'interactions of ¥ n(n + 1) scalar mesons

ns

and 3 n(n - 1) pseudoscalar meson; an describes the inter-

actions of %5 n(n + 1) pseudoscalar mesons and % n(n - 1)

scalar mesons.

Because of the appearance of C in equations 8-6, it

seems that Lns and an

natures depend upon the structure of the f.c.s., in contrast

may describe many theories whose
to the situation for Ln' In actuality, this is not the case.
It may be shown (33) that C satisfies the equation

C C = !: 1 - . (8"7)

If CT = +1, it is possible to perform a unitary transfor-

mation such that
cC =1 . (8-8)

1f C E_= -1 (this can only happen if n is even), it is

possible to perform a unitary transformation such that

cC = G ’ (8"9)



-67-
where O 1is the matrix defined in equation 2-2., We denote
these two cases by a superscript *.

, : + + .
Just as for Ln’ thevLﬁg and an have symmetries of

S o+ +
large f.c.s. groups. L,  and an have the symmetry of SO(n)

x SO(n); if these are the only interactions, there are n? - n

conserved currents. Lns and an

x Sp(n/2); if these are the only interactions there are

2 n conserved currents.

have the symmetry of Sp(n/2)

n
Thus there are only five kinds of f.c.s. groups des-

cribing (irreducibly) the interactions of n fermions with

spinless mesons. They are: L, (which involves n? scalar me-

2 pseudoscalar mesons), Lﬁ% and Ln% (which each

sons and n
involves n2 mesons of mixed parities). If n is odd, the
theories»Ln; and Ln; do not exist, and there are only three
possibilities. |

We explicitly display the possible interaction Lagran-
gian forn =1, 2, and 3. For n = 1, we call the fermion A .
. The only Lie group with a Qne-dimensional representation is
U(1), and D(g) ié clearly not equivalent to D(g). The

corresponding theory involves two isosinglet mesons, one

scalar and one pseudoscalar:

L, =g NN O +g7\‘(5f\n . (8-10)
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For n = 2, we call the two fermions nucleons. The
only Lie groups with two-dimensional representations are

SU(2) and U(2). SU(2) leads to interactions of the form L;,

L,,=gNT 0 N+gNY Nn

- Ny, T «7N+aNN (8-11)
= . L . -

L2p & 5 m & S

L:pAis invariant under the free chiral generalization of
4

isospin =-- it is the C -model, first investigated by
Schwinger (34).

U(2) leads to the interaction L,

LZ =% (LES + sz) R (8-12)

This model is invariant both under free chiral isotopic
transformations and under free chiral phase transformations
of both fermions: both isotopic spin and baryon number are
free chiral symmetries.
For n = 3, we may have interactions of the form Lg and
+

Lye In L3 we must identify the fermions as a triplet if

isospin is to be a subgroup of the f.c.s. group.

— — &> —
+

L38=g?~(ixv52)+gi°6-2 (8-13)

<> . .
where O 1is a symmetric isotensor -- it includes doubly

chargéd particles. Likewise



+ e = <> and
L3P=gﬂ‘ (ZxZ)+g = -G ‘YSZ.(8-14)

There are two ways we can embed the baryons in L3.
One is as the 2 's

L o=1L +1l . (8-15)
The other is as /\ and nucleons. In this case there are
also eighteen (2n2) spinless mesons. We may identify seven
of the pseudoscalar ones as the known spinless mesons. The
two other pseudoscalar ones are isosinglets, which we call

X and O . We write out only the ps-ps interaction (the

s-s terms are identical in form but lack Ys's):

Ly = g H—g—-’)(('ﬁvSN-ZT\YS/\)
1 p— —
+\I;O—(NY5N+/\Y5/\)
L. .Sy T T R P
+\l——;n My, T M +K /\Y5N+KNY5/\1
+ scalar terms . (8-16)

This is the first Lagrangian we have displayed that contains
partially conserved strangeness-changing currents. It may

be thought of as the generalization to f.c.s. of the Sakata

model (é) .
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- IX. BOUND CHIRAL SYMMETRIES

The general structure is

Dp(g) D(g)

D (g) = D(g) , (9-1)

where D(g) is defined by equation 7-14.,
We want our symmetry group to include the known exact

symmetries of the strong interactions; if g is one of these,

then

1}

DR(g) DL(g) . (9-2)

If

1}

D, (g) sp(g) s* , (9-3)

then equation 9-2 implies

[1, s]

[v,s] =0 (9-4)

where I is isotopic spin and Y is hypercharge. Since the
baryon multiplets are uniquely determined by their isotopic
spin and hypercharge, S must siﬁply multiply each multiplet
by é constant. s? is 1, so this constant must be +1.

We may write
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s = P - P , (9-5)

where P+Aand P are projection operators whose sum is 1. We
will show that every theory of this type may be obtained
- from an oxrdinary symmetry group.

Consider a Lagrangian L( W o) which admits a group G
of ordinary symmetries. The eiements of G transform both
chiral eigenstates of q) o identically; they are described
by pairs of matrices (D(g), D(g)). Since the D are irredu-
cible, the n fermions possess the same relative parities.

Now define the new fields
' + -
W= @+, PHY | . (9-6)

If L is expreésed in terms of LP , it is still invariant
under a group of transformations isomorphic to g. waever,
the symmetries are bound chiral symmetries described by the
pairs of matrices (D(g), SD(g)S+). In the resulting theory,
the ferﬁions P Q) must possess relative parities opposite
to the P~ kP .

This is in apparent contradiction with the convention
extablished in equation 7-9, which defined our fundamental
fields in such a way that all baryons had the same parity.

The explanation is that two different definitions of parity
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are being used. If we'ohly look at the highly symmetric
part of‘the Lagréngian, there are many conservation laws
émong the baryons. Each of these conservation laws leads to
an ambiguity in the definition of relative baryon parity,
just like the ambiguity in the definition of relative baryon
parity caused by strangeness conservation in the real world.
We can only tell which parity is the real parity by looking
at the symmetry-breaking part of the interaction.

The preceding analysis has shown that we will not ob-
‘tain any surprising new theories by considering bound chiral
symmetries satisfying equétion 9-3. However, the variety of

theories which utilize the alternative
- +
D(g) = SD(g)s (9-7)

is much richer. We give three examples of such theofies.
OQur first model is based on SU(3). This is the Lie
group of lowest dimension that possesses representations
that aré not equivalent to their conjugates. We label the
representations by their dimension; in this notation the

lowest representations of SU(3) are
3‘, 3, 6’ g, 89 « & o &

In the general nomenclature of Part II, these are vector,
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conjugate vector, symmétfic tensor, conjugate symmétric
tensor, énd mixe& traceléss tensor. We use these abbrevia-
tions to-avoid handling these awkward phrases.
'(DR, DL) is (3, 3). The real 3 x 3 orthogonal trans-
formations are the same for both chiral eigenstates; we may
take them as a representation of isospin. This is a theory

of the 37, 's. The Yukawa source,

forms a basis for the representation

i

D, (g) x Dy(g) 3x3

-

6 + 3 (9-8)

We may cbuple three spinless mesons to this source; and

their conjugates to the conjugate source. These mesons are

complex; just as in Section IV, they decompose into scalar

and a pseudoscalar isovectors:
—_—

= —Y -
Lint gZ‘SXZ

—

+gix S« . (9-9)

—
1)

The conserved currents form a vector triplet and a

pseudovector quintuplet.
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The second model (4) has SU(3) x SU(3) for its chiral
symmetry group. vawe indicate the elements of this group

by (gla 82),'theni

DR(g) 3 (gl) x 3 (gz)

D 3 3 . 9-10
D (g) (gz) X (gl) ( )
This is an example of a doubly bound chiral symmetry. The
group contains not only isospin, but the eightfold unitary
symmetry group. Lf we consider the subgroup of all elements

of the form (gl, gl), it is represented by

De(g)) = D (g)) = 3(g)) x 3(g)) = 8(g)) + g .
(9-11)
The model contains unitary symmetry as an ordinary nbn-
chiral symmetry. In addition to the eight known baryons, it
contains a ninth baryon, with I = 0, Y = 0O,

As above, the Yukawa source transforms equivalently to

DL(g) X DR(g) = 3(g1) X 3(g1) X 3(g2) X 3(g2)
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= (3(g1) % §<g2>> + (3(g)) x 6(3,)
+ (3(gy) x 6(gy))

+ (6(g)) x 6(gy)) . (9-12)

We couple nine spinless mesons that form a basis for the
representation‘(B(gl) x E(gz)) to this source, and couple
their conjugates to the conjugate source. 3(g1) X E(gz) is
" not equivalent to its conjugates; the nine meson fields must
be complex, describing eighteen real mesons. These eighteen
mesons have the same quantum numbers as those appeéring in
equation 8-16. |

We can write the right-handed baryons as a tensor
\+’ i , where the Latin index runs from 1 to 3 and‘indi-
cates transformation properties under the first factor of
sU(3), end the Greek. index also runs from 1 to 3 and indi-
cates tfénsformation properties under the second factor of

SU(3). Then the invariant Yukawa coupling is

- Toi i k_aBY i -
L. kP aa kp 4) Ye eijk + herm. conj. (9-13)

where dD is the meson field.
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Were it not for the introduction of many unobserved
particlés, thislﬁould be an extremely satisfactory theory --
it contains all the (partially) conserved currents needed to
describe both weak and electromagnetic interactions. There
are eightAvector currents (the eight currents of unitary
symmetry), the four associéted with isospin and hypercharge,
plus a pair of Y = #1, I = %, currents. The eight pseudo=
vector currents are of the same isotopic character.

Besides SU(n) and the exceptional group E6, the only
simple Lie groups that possess representations not equiva-
lent to their conjugates are the family $O0(2v +2). Our
third model (or, more properly, family of models) is based
on this group. We take DR(g) to be the lowest spinor repre-
sentation, of dimension 2Y (as defined in Part II), and D, (g)
to be the conjugate spinor representation. If we define

r' o to be i, then the bilinear form
O | L i < +
W a‘ﬁi Lp 0<£ i &£ 2v+1

transform like a 2v + 2 component vector under the chiral
symmetry group, and we may invariantly couple 2v + 2 real
spinless mesons to it by Yukawa couplings. The resulting
interaction is hermitian only if the 2v + 2 mesons are also

coupled to the éonjugate sources, Lr a r} \v .
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Depending upon the relative sign of this term, the inter-
action aescribes.ZU + 1 pseudoscalar (or, scalar) mesons and
one scalar (or, pseudoscalar) meson.

In terms of SO(2v + 1) the "pseudoscalar interaction

is

L=slyp T, 9P, -9yo) (91
1 £ 1 & 2w+1 .

If v = 1, this is Schwinger's -model again, obtained
by a quite different process than that of Section IV.

If v = 3, this is the generalization of the seven-
dimensional model of Tiomno and Dallaporta first discovered
by Gursey (23). There are two I = 0, Y = 0 currents, and
one isotdpic multiplet for each of the following (I,Y) values:
(o, 2>, (o0, -2), (1,0), (3/2, 1), (3/2, -1), (1/2, 1),

(1/2, -1). The pseudovector currents have the same isotopic
assignments as the pseudoscalar mesons: (1, 0), (1/2, 1),
and (1/2, -1).

This model has many attractive features. It contains
more than énough currents to describe weak interactions and
requires_the introduction of only one new particle. The
presence of I = 3/2 strangeness changing currents is parti-

cularly interesting in the light of recent experimental
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evidence (35) indicating'that these play a role in leptonic

decay modes of neutral K-mesons.
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X. DISCUSSION OF CHIRAL SYMMETRIES

OQur discussion of chiral symmetries will be even more
fragméntary than the discussion of ordinary higher symmetry
schemes in Part VI, There is a reason for this: most inter-
esting conclusions (4, 9) drawn from chiral symmetries re-
quiré some detailed hypothesis about the nature of the
symmetry-violating part of the interaction, and we do not
want to begin here an investigation of such possibilities.
Nevertheless, we will be able to make some observations.

Gell-Mann (4) has emphasized that one can always as-
sociate a Lie group with the weak interactions in the
following manner: One takes the total isopin, the total
hypercharge, and the spatial integrals of the fourth com-~
ponents of the beta-decay currents ("the total weak éharged').
One then forms all possible sums and iterated commutators of
these operators. These then form the generators of a Lie
group. if one follows conventional field theory and assumes
that all these currents are bilinear forms in baryon fields
obeying canonical commutation rules, this group is a chiral
symmetry group. (This is also true under less restrictive
conditions; for example, it is sufficient to assume that the

charge operators introduced above turn one-baryon states
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~ into one-baryon states, with coefficients independent of the
momentum,) We will call this group the full weak group.

Of course, chiral symmetries may be of use even if
the chiral symmetry group is not the full weak group. We
could obtain useful results even if the generators of the
chiral symmetry group only contain part of the weak current
-- say, the strangeness conserving part.

If we assume all eight baryons are fundamental fields,
then the existence of leptonic /N and 2, decays (37) shows
that the full weak group must mix these baryons with the
nucleons. If similar decays were observed for the = , it
would show that the eight baryons must form a basis for an
irreducible representation of the full weak group. (Note
that this group must be connected, in contrast to the groups
of ordinary higher symmetry schemes.)

Now, for all we know, the full weak group may be as
large as U(8) x U(8), the largest free chiral symmetry on
eight batyons. However, if we optimistically speculate that
the baryon-meson interactions have something to do with this
group, we can exclude this case, which requires 128 mesons.
The same argument excludes other varieties of f.c.s.

As for b.c.s., we can exclude immediately the variety

discussed at the'beginning of Part IX. Such a group implies
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that the nucleon beta-decay current must be purely‘vector,
in contradiction.to experiment, Any b.c.s. we use to con-
étruct the full weak group must involve complex conjugation.
It is'nowva‘simple matter to find interesting chiral symme-
try schemes from the tables. We only want to look at con-
nected'groups‘whose represéntations are not equivalent to
their conjugates. We also want hypercharge and isospin to
be represented by the same transformations on the left- and
right-handed baryons. For eight baryons, the only possi-
bilities that do not involve excessive numbers of mesons are
the b.c.s. based on the spinor representation of SO(8), dis-
cussed on pagé 76, and the chiral symmetry based on the
product group SU(4) x SU(2). In this theory we may intro-
duce the chiral transformations either through the factor of
SU(4), or through that of SU(2), or through both. We will
discuss the case in which both factors involve chiral trans-
formations., It is most convenient to consider SU(4) in its
guise of S0(6); the model can then be considered as a member
of the family discussed on page 76.

G is S0(6) x SU(2) x sU(2). DR is (spinor) x (%) x
(0)s Dy Gs conjugate spinor) x (0) x (%). This is the
product. of a b,c.s. and an f.c.s. We can couple three

pseudoscalar mesons (m's) and one scalar meson to the factor



-82-

of SU(2) x Sﬁ(2). Likewise, Qe can couple five pséudoscalar
mesons aﬁd one scalar meson to the factor of S0(6). The
pseudoscalar'mescns are a hypercharge zero isosinglet and two
hypercharge plus_and minus one isodoublets., We may identify
~them with the K's and with X ©. The scalar meson is, of
course, a hypercharge zero isosinglet. The vector currents
have (I, Y) assignments of (%, +1), (%, -1), (0, 0), (0, +1),
(o, -1), (1, 0) and (1, 0). The pseudovector currents have
(I, Y) assignments of (%, +1), (%, -1), (0, 0), and (1, 0).
The chiral symmetry group contains the global symmetry
variant based on Sp{(2) x SU(2) as an ordinary higher symme-
try. This scheme was discussed in detail in Part VI.

The only interesting schemes involving more than eight
baryons are the ten-baryon scheme based on SU(5) x SU(2),
which contains the model discussed above, the nine~béryon
scheme based on SU(3) x SU(3), which was discussed on page
74, and the ten-baryon b.c.s. based on SU(5). Here D, is the

antisymmetric tensor representation and D, its conjugate.

L
We can couple ten mesons to the Yukawa source. Five are
scalar and five pseudoscalar. Each quintuplet has (I, Y)

distribution (%, +1), (%, -1) and (0, 0). This contains the

ordinary higher symmetry scheme based on S0(5).
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The only interestihg schemes involving less than
eight baryons aré the five-baryon b.c.s. based on SU(5),
which requires twenty mesons, and the f.c.s. based on SU(3),

This is the generalization of the Sakata model discussed on

We would like to stress that we have obtained such a
small number of interesting models only because we have de-
fined to be uninteresting all groups that lead to very large
numbers of mesons. If the full weak group has nothing to do

with baryon-meson interactions, this is without justification.
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APPENDIX I. LIE ALGEBRAS AND CONSERVED CURRENTS

We want to feview here the relation between the alge-
bra of‘a symmetry group of a theory and the conserved cur-
rents of that theory.

Thé connection between a Lie group and its algebra is
this: if g is an element of the group "infinitesimally close
to the identity", then g may be written as 1 + AA, where A
is an element of the algebra. Every representation of the
group defines a representation of the algebra; we define

T(A) by
D(1L + 2A) = 1 + aT(A) . (Al+1)

Since D(g) is unitary, T(A) is anti-Hermitian. Note that
D(glgz) = D(gl)D(gz) implies T(A + B) = T(A) + T(B).

We will show that the elements of the Lie algebra
generate the conserved currents. If the Lagrangian is in-

variant under transformations of the form,
= -
Y D(g)ay +D(g)a W ,

b=y O , (a1-2)

the most general form we consider here, then it is also
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'iﬂvariant'under the infinitesimal transformations
| q)—,[1,+ MTp(a)a + TL(A)Eillq),
O-{1 +a TQ(A)'} 6 . (A1-3)

Now, consider transformations of the same form as Al-3,
but with A a function of space-time. Hamilton's principle

asserts that

51 = g 8L §Xd4x =0 (A1-4)

DN

for any variation, which means that
8L _
But if L does not involve higher than first derivatives,

8L - 3L . _d _ oL . (A1-6)

We have assumed 3L/d\ is zero. Thus

3]
--E- - O ’ (A1'7)
oK
4
where

K a(apx)
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If L involves derivatives only through the kinematic

term,
CYFY snap e, 0,

~then
o=t P oev lrwa s T waly

+ au @ - T¢(A)¢ . (A1-9)

For arbitrary A, ju is not a parity eigencurrent.
X . . | +. .
However, consider its parity transform P JHP. The parity
invariance of the theory guarantees that this must also be a

current generated by some element of the algebra, which we

will call B.

P+juP = i C’P - Y, [TR(B)a + TL(B)Zl q)

+3 @1 (BYOD . (A1-10)
u ]

Taking the sum and differeﬁce of these equations, we find
that (A + B) generates a conserved vector current, and that
(A -~ B) génerates a conserved pseudovector current.
In‘practice, we will take care to choose the basis
elements of our algebra Ai so that they generate only vector

and pseudovector currents. If all the baryons have the same
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intrinsic parity, the condition for this to hold is that
= < -
IR(Ai) __TLV(Ai) ; (Al-11)

where the upper sign holds for vector, the lower for pseudo-
vectér, currents,

For any realistic theory, the chiral symmetries are
merely partial symmetries. All of the pseudovector currents
and some of the vector currents are only partially conserved;

Al-7 1is replaced by

3j
—r - 3L' (A1-12)
axu o A

where L' is the symmetry-breaking part of the Lagrangian.



- APPENDIX II: A DIRECTORY OF REPRESENTATIONS

In this appendix we list all representations of simple
Lie gfoups with dimension n less than sixteen. An asterisk
(*) indicates a pair of inequivalent complex conjugate repre-
sentations.

Any n: The representation of SU(2) with spin (n-1)/2.
The vector representation of SU(n).* The vector representa-
tion of SO(n).

Any even n: The vector representation of Sp(n/2).

n =_1: The scalar representation of any group.

n = 5: The antisymmetric tensor representation of Sp(2).

n = 6: The symmetric tensor representation of SU(3).*
The antisymmetric tensor representation of SU(4).*

n_=_7: The vector representation of G2.

n_= 8: The mixed, traceless tensor representation of
SU(3), The spinor representation of S0(7). The spinor re-
presentétion of SO(8).*

n = 10: The symmetric tensor representation of SU(4).*
The antisymmetric tensor representation of SU(5).* The sym-
metric tensor representation of 8p(2).

n = 1l4: The antisymmetric tensor representation of G2.

The antisymmetric tensor representation of Sp(3).
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n=_15: The mixed, traceless tensor representation of
SU(4). The symmetric tensor representation of SU(5).* The

antisymmetric tensor representation of SU(6)%*,
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APPENDIX III: PROOF _OF A THEOREM

In this appendix we prove the theorem we need in Part
VII. We show that if D(g) and D'(g) are two irreducible re-
presentations of the same simple Lie group that involve the
same matrices, then either D is equivalent to D', or D is
equivalent to D', Actually, we will be able to prove this
theorem for every simple Lie group except SO(8); for this
group we will construct a special argument showing that we
may perform an automorphism of the group such that D(g) and
D'(g) are transformed into two other representations that
are connected in the manner we desire. This latter is all
that is needed for our purposes.

Let D(g) and D'(g) be two irreducible representations
of the simple Lie group G, such that D and D! involvé the
same matrices. If D is Frivial, the theorem is immediate.
If D is not trivial, since G is simple, it must be faithful.

Thus we can always solve
D'(g') = D(g)

for g' as a function of g. From the definition this func=-
tion is an automorphism of G. If it is an inner automorphism,

D(g) and D*(g) are equivalent representations.
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The structﬁre of A, the group of automorphiéms of a
simple Lie grouﬁ, has been extensively studied (36). 1In
'general,.A decomposes into severél components, The unit
component is the group of inner automorphisms. Each of the
other components is the product of the group of inner auto-
mdrphisms and é particular outer automorphism.

Now, in order for our assertion above to be true, A
must have either one component (for those groups for which .
all representations are equivalent to their conjugates) or
two componenté (for those groups for which there exist re-
presentations inequivalent to their conjugates). Indeed, for
all of the simple Lie groups except SU(n) (n = 3), SO(2v)
(v = 3), and the exceptional group E6, A has only one com-
ponent, and for these it has two. These groups possess re-
presentations inequivalent to their conjugates.

The sole exception to the above is SO(8). For this
group A has six components. We must sharpen our arguments
here: we are not searching for a general automorphism, but
one associated with parity. Since the square of the parity
operation is one, the gutomorphism must be an involution.
Four of the six components of A contain involutions. Let g°
be an outer automorphism that is also an involution. Then

it can be shown that there exists an outer automorphism g'
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such that (g? ) = (g*%) t where g* is in the same compo-
nent of A as thevputer automorphism that leads to complex
éonjugation. Let'(DR, DL) be D(g), D(g') . Define
D'(g)vto be b(g*’ ) and define h by g = h' . Then (DR, DL)
is D'(h), D'(h*) , and the proof proceeds as for all

other simple Lie groups.
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APPENDIX IV: OTHER CHIRAL SYMMETRIES

Let us return to the decomposition of a general chiral
symmetry group according to equation 7-5. Suppose a pair of
isomorphic factors G1 and G2 is interchanged under the
parity operation, and that both groups act non-trivially

upon the chiral eigenstates,

G=G1X62Xoo0oo

DR(g) = Dl(gl) X Dz(gz) X o o o oo

DL(g) = Dl(gz) x Dz(gl) X o o o o o .
where neither D1 nor D2 is trivial, and where D2 is equiva-
lent neither to Dl nor to its conjugate. This kind of com-

ponent of the general chiral symmetry group is neithér a
b.ces. nor a f.c.s. We shall show, however, that its
structure is too complicated to provide a model of the
strong interactions.

Charge independence is presumably an exact symmetry of
the strong interactions -- thus isotopic rotations must form
a subgroup of any chiral symmetry proposed for the baryons.
It is sufficient for us to examine the behavior of right-

handed baryons; however, they behave under isotopic rotations,
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the left-handed baryons must follow suit.

In‘general, the irrgducible representations D1 and Dz
of the full chiral symmetry group provide reducible repre-
sentations of the isotopic spin subgroup. Possibly, isotopic
spin is described entirely by factors of G other than G, and

1

GZ.A Then it is described only trivially by Dy and Dye 1In

this case, every isotopic multiplet of baryons must occur at

2

evidently unsatisfactory alternative.

least n1 x n, times (where ni is the dimension of Di) -=- an

On the other hand, if D. contains a non-trivial repre-

1

sentation of isotopic spin, so must Dz, since parity ex-

changes G1 and Gz. That is to say, the generators of iso-

topic rotations are

—» -~ —
I = Il + 12 s

where E} are three elements of the Lie algebra of G1 and.;;
are the three isomorphic elements in the Lie algebra of Gz.
If doubly-charged baryons (I £ 3/2) are not to occur,.zl and

?; must be reducible into isotopic singlets and doublets only.

The simplest possibility occurs for G, = G, = Su(2).

2
We may take D; to be the spin 1/2 representation -- then D,
must be any inequivalent (and hence higher isospin) repre-

sentation. Thus there must occur baryons of I = 1 and hence
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of charge greater than one.
split into a singlet and a doublet. But any inequivalent

1f G G2 T sU(3), the vector representation must
representation (except the conjugate) must involve isospins
of one or greater and again the theory necessarily involves
baryqns of higher charge.

If G is isomorphic to any other simple Lie group, the
smallest inequivélent representations are four- and five-
dimensi§na1 at least. Such a theory must involve at least

twenty baryons.
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APPENDIX V. NOTATION

We.adhere to the sténdard notation of the literature
in the discussion of fields and particles, except that we
use an ordinary L for the Lagrange density, rather than a
script L.

On page 3 we use the word "compact". This is a
topological term. For our purposes it suffices to know that
a group of matrices is compact if the set of matrix elements
is bounded. Thus any group of unitary matrices (for which
every matrix element is bounded by one) is compact, while
the group of all linear transformations is not compact.

In the discussion of group theory, we define all terms
that are not defined in the text of Wigner (33) and adhere
to Wigner's notation, with the following exceptions:

We use an ordinary multiplication sign (x) for the
direct product. Likewise, we use an ordinary addition sign
(+) for the direct sum.,

We indicate the complex conjugate representation by
an overbar‘(a(g)), instead of by an asterisk (D(g)¥*).

In the case of Lie groups, for the sake of brevity,
we sometimes speak of "isomorphisms" and "faithful repre-

sentations' when we only mean "local isomorphisms" and
y
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"locally faithful representations". We never do this when

the distinction is important.
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