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Abstract

Among the most remarkable recent developments in string theory are the AdS/CFT
duality, as proposed by Maldacena, and the emergence of noncommutative geometry.
It has been known for some time that for a system of almost coincident D-branes
the transverse displacements that represent the collective coordinates of the system
become matrix-valued transforming in the adjoint representation of U(N). From a
geometrical point of view this is rather surprising but, as we will see in Chapter 2, it
is closely related to the noncommutative descriptions of D-branes.

A consequence of the collective coordinates becoming matrix-valued is the ap-
pearance of a “dielectric” effect in which D-branes can become polarized into higher-
dimensional fuzzy D-branes. This last aspect has inspired Polchinski and Strassler
to find a nonsingular string dual of a confining four-dimensional gauge theory. The
nonsingular geometry is sourced by an extended brane arising from Myers’ “dielec-
tric” effect. Following the spirit of the Polchinski-Strassler paper, we find N = 2
supergravity solutions with polarized branes and a field-theory dual. In our case we
are able to present exact supergravity solutions by using M-theory reductions to type

ITA supergravity.
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Chapter 1

Introduction

1.1 A very brief history of string theory

String theory emerged in the late 1960’s as an attempt to explain the strong nuclear
force. The basic idea was that the fundamental excitations are one-dimensional loops
rather than pointlike objects as in standard quantum field theory. In superstring theo-
ries the world-sheet actions used to describe the string are supersymmetric versions of
the Polyakov action. The latter are derived from the Nambu-Goto action, which has
the interpretation of the area swept out by the string as it propagates in space-time.
In the 1970’s QCD was recognized as the correct theory of the nuclear forces, while
string theory embarked on a more ambitious role of unifying all interactions. This fol-
lowed the remarkable work of Schwarz and Scherk [1] in which it was realized that the
theory includes general relativity. There are two established equivalent formulations
of the superstring. The first one has a manifest world-sheet supersymmetry, and is
the result of work by Ramond [2], Neveu and Schwarz [3]. The second formulation,
developed by Green and Schwarz in [4] makes the ten-dimensional target space su-
persymmetry manifest. In the 1980’s it has been discovered that there exist 5 distinct
string theories having space-time supersymmetry, type I, type IIA, type IIB, SO(32)
heterotic and Eg x Eg heterotic, all of them living in a critical space-time dimension of
10. Phenomenology would then require to have 6 of the 10 dimensions compactified
on a space of a size comparable to the string scale and Planck length. One of the 5

superstring theories, the Fg x Eg heterotic, upon compactification on a Calabi-Yau
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space, gives a low-energy theory that can come close to the standard model physics.
There are very many choices in choosing the compactification space, thus it became
clear that more work was needed in understanding the nonperturbative properties
of the theory. Significant developments occurred in the mid 90’s with the discovery
of dualities which showed that the five superstring theories are essentially equivalent
to one another, and they are all related to a fundamental eleven-dimensional theory,
called M-theory [57].

To study perturbation theory for strings one has to deal with a dimensionless
coupling constant, g,, given by the expectation of a dilaton field ¢, i.e., g, =< e? >.
The S duality, for example, relates theories having reciprocal coupling constants,
gs — g—ls. Another example is T duality which in the simplest case relates a theory
compactified on a small circle of radius R, to another one compactified on a large

Ol,

circle of radius R’ = %.

A key role in understanding these dualities is played by extended p-dimensional
objects, p-branes, that have a nonperturbative origin. Among these excitations a
particular class, the D-branes, has played an outstanding role. We are going to
analyze certain aspects of D-brane actions in the first part of this work. D-branes
also played an important role in the proposal of Maldacena [27], regarding a duality
between 4-dimensional N = 4 U(N) super-Yang-mills theory associated with N D3-

branes and type IIB string theory on AdSs x S°.

1.2 Basic review of D-branes

Dp branes can be viewed as dynamical (p+ 1)-dimensional hyperplanes on which open
strings can end. Alternatively they can be thought of as non-perturbative objects with
tension that depends on the string coupling constant as gis, and carry closed-string
Ramond-Ramond (RR) charges. In type IIA/IIB string theories a Dp brane is a
BPS saturated object preserving 16 supercharges for p taking even/odd values. A
single D-brane world volume theory admits a U(1) gauge field. In type II superstring

theories when we consider the case of N almost coincident D-branes the U(1) gauge is
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enhanced to U(NN) gauge theory [62]. The U(N) gauge theory has N? gauge bosons,
say AY with ¢ = 1,..N, and their supersymmetric partners. The off-diagonal degrees
of freedom corresponding to ¢ # j, represent the ground state of a string connecting
2 different branes. In the low-energy limit one can integrate out the massive open
string modes, to write a D-brane action that includes only massless modes. The first

term of the action for a single Dp-brane takes a Born-Infeld form:

So = —T, / @+ (70 /=0t (P[G + Blay + 2n0’Fuy) (1.1)

where T}, is the Dp-brane tension and Fy, is the U(1) field strength along the brane.
The other fields appearing in the above action represent massless Neveu-Schwarz (NS)
fields of the closed string theory: the dilaton ¢, the metric G, and the NS two-form B.
For constant field strength, the Born-Infeld action includes the entire o/ corrections.
The interaction with the massless RR fields are given by the Chern-Simons term of

the D-brane actions:
Scs = up/P[Z CMeBle2ma't (1.2)

where the C™ denotes an n-form RR potential. Notice that n takes only even values
for type IIB theory and only odd values in type ITA. The generalizations to multiple
(almost) coincident branes is challenging, but significant progress has been done in
[19; 17] using the idea that the action has to be consistent under 7" duality transfor-
mations. Still, some questions remained open, like whether the resulting non-abelian
action has the gauge symmetries required by the full string theory. This question
is addressed in Section 2.1 and in reference [59]. An outstanding characteristic of
non-abelian D-brane actions is that the transverse scalars that play the role of col-
lective coordinates becomes matrices transforming in the adjoint representation of
U(N). This fact allows for the existence of a “dielectric” effect, for which a group of
N D-branes can have a ground state corresponding to a higher dimensional “fuzzy”
D-brane. This possibility can be anticipated from the fact that terms containing
commutators of the transverse scalars appear in the expression of the N D-brane

potential in certain background fields. The “fuzziness” in localizing the multiple Dp
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branes in the transverse directions occurs when the (9 — p) transverse scalars cannot
be diagonalized simultaneously. This effect is related to noncommutative descriptions
of D-branes, a connection that we will study in Section 2.2. In a noncommutative de-

scription the coordinates of the D-brane satisfy the following commutation relations:
(2", 27] = 0", (1.3)

where 6 is an antisymmetric constant matrix. On such a noncommutative manifold

the ordinary product of fields is replaced by a star product as follows:

i

() g(x) = €379 () g(2!) s (1.4)

A noncommutative gauge theory along the D-branes has been shown to exist in
the presence of an antisymmetric 2 form NS field B in the bulk, as was studied in

120].

1.3 Review of AdS/CFT duality and generaliza-
tions

An outstanding development in string theory occurred in 1997, when Maldacena [27]
made the conjecture that NV = 4 four-dimensional SU(N) Super Yang-Mills theory
is dual to string theory on AdSs x S°. The conjecture was inspired by considering
a system of N parallel D3 branes and then taking a limit such that the field theory
along the D3 branes decouples from the bulk theory. The duality reveals that when
the Yang Mills theory is weakly coupled, i.e. g%,;N << 1, the string theory in
the bulk is strongly coupled, and vice versa. One can notice that the supergravity
approximation is valid if the string length [, is much less than the radius of the AdSs
and S°, i.e:

R = (4mg,N)"41, >> 1. (1.5)



>

Thus when the four-dimensional field theory is strongly coupled one can in principle
use the duality to perform calculations on the supergravity side. It has been shown
in [27] that for a local operator O; of dimension A; in the conformal field theory,
there correspond two solutions of the linearized supergravity equations. One of the
solutions is non-normalizable and is related to the coefficient of the operator O;. The
other solution is normalizable and is related to the vacuum expectation value of O;.

By considering a system of parallel Dp branes one can extend this type of duality
to other cases, as long as there exists a decoupling limit. In [50], it has been shown
that this limit exists for p < 6. For generic p, the (p + 1)-dimensional field theory
in general is not conformal, and related to this, the supergravity dual is valid only
for a certain range of energies. If we denote by r the transverse location of the
parallel brane system, we can break the U(N) gauge symmetry to U(N — 1), i.e.
U(N) — U(N — 1) x U(1), by displacing one brane by r5. This corresponds to
giving a expectation value to some of the fields, U = ry/a’, which also represents
the ground state energy of a string connecting the displaced brane to the rest. If we
want to use the supergravity picture to describe the boundary field theory both the
curvature of the bulk space and the string coupling constant have to be small. Since
both quantities depend in general on the radial coordinate 7, which in turn is related
to the energy scale of the field theory, we conclude that in general a reliable dual
supergravity description exists only for certain energy scales.

The AdS/CFT duality, as proposed in its initial form by Maldacena, applies to
conformal N’ = 4 gauge theories. In order to obtain a confining field theory one
has to perturb the duality by adding mass terms that preserve less supersymmetry.
Polchinski and Strassler in [38] have obtained the first example of a 4-dimensional
confining gauge theory having a dual supergravity description without a naked sin-
gularity. Their motivation was provided by Myers’ observation in [17] that multiple
D-branes in transverse background fields can “blow up” to form higher-dimensional
D-branes. Using rather elaborate perturbative calculations, Polchinski and Strassler
showed that a system of N D3 branes placed in certain transverse perturbative fields

polarizes into a D5 (or NS5) brane.



1.4 Outline

The rest of the thesis is organized as follows. In Chapter two we address the question
whether the non-abelian Chern-Simons term of the D-brane action is invariant under
gauge transformations of RR fields of the form C}, — C,+dA,_;. This is based on work
done in [59]. Detailed proofs are given in appendices A and B. In the same chapter we
also obtain conceptually clear derivations of arbitrary noncommutative descriptions
of D-brane actions starting from multiple lower dimensional D-branes, based on [60].
Chapter 3 of this thesis is based on [61]. We are employing perturbative techniques
to show that N D4 branes can be “polarized” into NS5 branes. Remarkably, in our
case, we can go beyond perturbative analysis and find the exact supergravity solution
by studying the corresponding 11-dimensional supergravity picture and reducing it

to 10 dimensional type ITA supergravity.



Chapter 2

Aspects of D-Brane Actions

2.1 Gauge invariance of the Chern-Simons term

Using the principle of consistency under T-duality transformation, the authors of [17;
5] extended the world-volume action for a single D-brane to the case of N coincident
D-branes. Naively generalizing the single D-brane action to multiple coincident D-
branes, by considering non-abelian fields and including a trace over the gauge group
U(N) does not lead to the correct result. This naive method fails to account, for
example, for known potential terms involving commutators of the transverse scalars.
The extended Chern-Simons action contains extra terms that, in general, give a non-
trivial coupling between the N D-branes and a higher rank RR form. As mentioned
in [6], it is not obvious whether the extended action is still invariant under gauge
transformations of the type, C, — C, + dA,_;. It is the purpose of this sectionto
investigate this question. It was not clear, a priori, whether to expect this to work.
The fact that it does seems quite remarkable.

The world-volume action for the D(p — 1) branes will be written in the static
gauge: one can use space-time diffeomorphisms to define the fiducial world-volume to
2t =0,i=p,...,9, and world-volume diffeomorphisms to match the coordinates of
the branes with the remaining space-time coordinates, i.e. ¢* =2% a=0,...,p— 1.
The transverse displacements of the branes are Az’ = (27a/)¢" = \¢', where ¢' is
an N x N matrix. For both the Born-Infeld part and the Chern-Simons part of the

non-abelian action, the background fields are considered to be functionals of the non-



8

abelian scalars ¢’s, as suggested in [7], while the pull-backs are defined in terms of
covariant derivatives, D,¢, as in [8]. Furthermore the action includes a symmetrized
trace prescription: we have to take a symmetrized average over all orderings of ¢,
D,¢', F,, and pairs of gb%/gb%/_l from the inner product. This prescription is in
N
agreement with results obtained in [9] from matrix theory considerations. However,
it should be noted that the symmetrized trace (STr) prescription requires corrections
at order six and higher in the world-volume field strength [12].
The Chern-Simons term for N coincident D(p — 1) branes is given by [17],

Ses = iy / STr (P [¢eis (SCMeB)] M), (2.1)

P(...) represents the pullback from the 10 dimensional target space to the p-dimensional
D-brane world-volume, i4i4 defines an inner product, e.g., izisC® = 1 [¢7, ¢'] Cl-(j2 ),
F,p, is the gauge field strength living on the D-brane, and o¢’s are the coordinates
parallel to the directions of the branes. We should emphasize that because of the
existence of the previously defined inner product, multiple D-branes can couple to
higher dimensional RR potentials, unlike for the case of a the single D-brane.

For simplicity, the gauge field living on the brane (F,;) and the background NS-NS
field B, are initially taken to vanish. Even for this simplified case, the demonstration
of gauge invariance is rather long and subtle. We have tried to make it as clear and
simple as possible. The proof involves writing the coupling as a sum of terms and
then integrating these terms by parts; one uses various symmetries and identities to
recombine the resulting terms into total derivatives and RR field strength terms. We
refer the reader to appendices A and B for the complete analysis of gauge invariance
for the I =0 and F' # 0 cases, where F'is the U(N) field strength along the branes.
Here we just quote and discuss the final results.

The total coupling between N D(p — 1) branes and a C, 4o potential can be



expressed in a gauge invariant way as

)\k+1+2r+l7;k+7’p!
Hp—1 Z 2rel(k + )il (p — 2r —1)!

r,l
. . v -/ .y .y
Dal ¢j1 e Dal ijl ?ZQ(k+r)¢12(k+r)_1/' . 'gblgth FaP*2r+1aP*2'r+2 T Fap—lap)v

g

—=(2k+p+1) i
STr(F,, (¢)i1i’li’g...i;(k+r)_li’2(k+r)j1...jlal+1...ap_2r¢

(2.2)
where we defined
FO ) = Y - s
ml Z()n+l+2k+2r+1)" 7
&Eil R 6901” FO’(QkerJrl)(a, xz) ’xizo (23)

and FOCkr+l) = qO0.(2k+p) - Since the above coupling was derived assuming k > 0,

for £ < 0 there is an additional monopole coupling term given by

AEp!
- P F...Fy o1
Fr T DRI — 2[R (o e

(2.4)

In conclusion, we have obtained a manifestly gauge invariant expression for the Chern-
Simons coupling between N D(p—1) branes and a RR potential C},o. In the presence
of a 2-form B field, the gauge transformations of the RR fields become

D e 5N CMeP +d> AP, (2.5)
n n p

The presence of the B field does not affect the generality of the previous proof since,
from the point of view of the gauge transformations, we can absorb B into the def-
inition of the RR fields. However, the proof applies only for finite N. For N — oo
we can no longer use the property of cyclicity of the trace, and we expect monopole
couplings even to higher rank RR fields. As in the matrix model, one can construct a
higher dimensional brane out of an infinite number of lower dimensional ones, hence

in (2.1) we should have source terms for higher dimensional D-brane charges.
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2.2 Noncommutative descriptions of D-brane ac-

tions

2.2.1 Introduction

The purpose of this part is to derive noncommutative descriptions of D-branes from
nonabelian D-brane actions. The noncommutative descriptions are characterized by
an antisymmetric 2 form ® that appears in the expression for the noncommutative
Born-Infeld determinant. This point will be explained in further detail later on. It
is a known result of [21] that from the non-abelian Born-Infeld action of infinitely
many D(—1) instantons one can construct the background-independent, & = —B,
description of noncommutative D-branes. Similarly, in [13; 14; 15|, the same type of
equivalence was shown for the Chern-Simons terms. In [16], it has been remarked that
by placing D(—1) instantons in a constant B-field one can construct noncommutative
D-branes with arbitrary noncommutativity. We clarify this point by starting from the
action of N coincident D(—1) instantons in a constant B-field as given by [17; 18; 19].
We show that such actions lead us to construct D-brane actions in an arbitrary
noncommutative description. The map relating the Born-Infeld terms is seen to be
consistent with the map relating the Chern-Simons terms.

We will now review some relevant results of [17; 18] and [20]. For concreteness,
we will assume Euclidean space-time and maximal rank constant B-field along the
directions of a Dp-brane. We use the convention 2ra’ = 1. Then the world-volume

Dp-brane action can be described in noncommutative variables, i.e. [x?, 2] = i as

P

(2m)="
G,

SBI =

/dp+1x\/det(G +F+d), (2.6)

where the noncommutative star product is implicit in the above equation. For abelian

and constant F', the Seiberg-Witten transformations relating F' to F are given by

A 1
F=

_ F 2.7
1 6F 1+ F9 (27)
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For every closed string background characterized by the NS-NS 2-form B, the
closed string metric g, and the closed string coupling constant g, there is a continuum
of descriptions given by a choice of ®. The open string metric GG, the open string
coupling constant G and the noncommutativity parameter # can be expressed in

terms of closed string variables as follows:

1 e 1
G+ ~ g+ B
G, =

(i 5)

(2.8)

Finally, let us review the main results of [17; 18]. The remarks we have made in the
previous section are very useful for understanding these results.
The non-abelian Born-Infeld action describing N (Euclidean) coincident Dp-branes

in a closed string background defined by ¢, B’ and g is

(QW)FTP

s

SBI =

/ AP oS T ((f<Zﬁ VAet(P[Eoy + Bui(M~1 = 8)5 Ejy] + Fab)det(M;f)> ,

(2.9)

where E' = g+ B’ and ¢ is the bulk dilaton(not to be confused with the ® introduced

earlier). Furthermore, i, j are indices for the transverse coordinates, a,b are indices
for the coordinates parallel to the D-brane. We also define!

M} =6, —i[ X', X*] By, (2.10)

where the X’s are N X N matrices representing the transverse displacements expressed

in the static gauge.

For the non-abelian Chern-Simons action, we have

Scs = ,up/STr <P[e_i(iXiX)(Z C’(”)eB,)]eF> : (2.11)

where p,, is the RR charge of a Dp-brane. In the aforementioned actions, the bulk

Unlike in [17], we used the convention Fyp = 9,4y — OpAq — i[Aq4, Ap) in order to be consistent
with the definition of F' in [20].
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fields should be considered functionals of the N x N matrices X, and the trace
should be symmetrized between all expressions of the form F,, D, X" [X*, X7], and
X*. However, since we are only going to consider D(—1) instantons in constant
background fields, these details are irrelevant for our purposes.

More precisely, in the next two section we consider an infinite number of D(—1)
instantons with ¢ = 0 and where ¢ and B’ are constants. The presence of the
B’ field will allow us to construct D-brane actions in an arbitrary noncommutative
description. In Section 2.2.2, we show that the Born-Infeld action of D(—1) instantons
in a constant B’ field naturally leads to NC Born-Infeld action, where the B field is
identified as B = B’'+0~! for arbitrary noncommutativity parameter . Having shown
this, the nonabelian generalization of the Chern-Simons action for an infinite number
of D(—1) instantons should correspond to the NC Chern-Simons action in the same

noncommutative description as the Bl action. This fact is confirmed in Section 2.2.3.

2.2.2 Noncommutative Born-Infeld action

In this Section, we follow the line of thought in [21] and derive the equivalence of the
nonabelian BI action of an infinite number of D(—1) instantons and the BI action of
a noncommutative Dp-brane in a general noncommutative description. First consider

the nonabelian BI action of N D(—1) branes (N — 00) in a constant B’-field:

2 : :
Sp1 = —WSTr\/detij (5z] — z(g + B,)Zk[Xk, X]]) (212)
s
We are interested in a particular classical configuration given by
(2", 2] = 0", (2.13)

Notice that the 8" is a measure of noncommutativity of the transverse coordinates
for multiple D-branes, while the # we introduced in the previous sectioncharacterizes
the noncommutativity along the coordinates of a D-brane. The degrees of freedom

on the noncommutative Dp-brane arise by expanding the matrix variable X* around
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this classical configuration as follows:

X' =z2'+0V A, (2.14)
Then, we have
i[X X7 = (0'F'0 — 0)", (2.15)
where
Bl = =it o, ) 4 0/ o, A — AL, ). (2.16)

We can reexpress Tr over the Hilbert space as an integral over the volume of non-

commutative space by replacing

Tr — (); /dp“x, (2.17)
2

where Pff' is the Pfaffian of 6/. We write the action in terms of new variables,

_ <27r>1g e \/ N e g
Swo= Pfe, det |1 — (g+ B)(O'F'0 — 9)] (2.18)
(27) =" ,
- &P det (g+ BY(OE - 1)] (2.19)
9
(277-)% p+1 / —1 Y13l
- = i det[g+B o —(g+B)6’F]. (2.20)

We would like to compare this with the BI action of a noncommutative Dp-brane in a
description with the same noncommutativity parameter # which appears in the above

action. The NC BI action for a Dp-brane is

SNCBI = derll' det (G + F + (I)> . (221)
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Reexpressing it in terms of closed string variables by using the relations (2.8) gives

us
(2m)"2" /det(g + B) / \/
S = AP ey fdet (G+®+ F 2.22
Nept gs  +/det(G + ®) ) (2:22)
(27)1% / 1 L
= d’tlz | d t B B F 2.2
” et{g+B+(9+ B)—— 1o (2.23)
(27) ="

= /d”+1x\/det g +B+(1—-(g+ B)@)F). (2.24)
We observe that (2.12) agrees with (2.21) once we make the following identifications:
0=0, F=F, B=B +6¢" (2.25)

Notice that here 6 is a free parameter, not fixed to be B~! as in [21]. By identifying
B’ in the nonabelian action for N D(—1) instantons (N — oo) with B — 67!, we can
go to the noncommutative description of Dp-brane with arbitrary noncommutativity
parameter 6. It is interesting to note that ® takes the following form in matrix-model-
like variables:

®=—0""(1+(g+B),'07"), (2.26)

where A denotes the antisymmetric part.

2.2.3 Noncommutative Chern-Simons action

If the nonabelian BI action for an infinite number of D(—1) instantons in a constant
B’ field gives rise to the NC BI action with B = B’ + #~! and noncommutativity
parameter 6, then we should expect the same identification to relate the Chern-
Simons term of the nonabelian action with that of the NC theory. This is precisely
what occurs, and the Chern-Simons action for a Dp-brane with a constant B field

and noncommutativity 6 can be expressed as the nonabelian CS action for an infinite
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number of D(—1) branes in a constant B’ field given by [17]

2 e ’
Ses = L8y | eilixix) Y cmeH | B'=B-¢". (2.27)
9s -
Here ix acts on an n-form w™ as
n ]‘ v n 1% Un
o™ = CESTR W da . da (2.28)

This provides a natural explanation of the rather surprising result recently derived
by [14], where they express an arbitrary NC CS action in terms of matrix-model like
variables, which turns out to be identical to (2.27). For simplicity, we follow the proof
of [22] to show that the nonabelian action gives rise to the NC action for D9-branes,

where we can ignore transverse scalar fields. In that case, the NC CS action is given

by [14; 22]
SNCCS = /Lg/ A/ det(l — HF) Z C(")eBJrF(lfGF)*l’ (2.29)

where 19 = (27)~*/g, is the RR charge of a BPS D9-brane. In terms of Q = —0+0F0,

(2.29) can be expressed as

Snoes = Ho / \/det(1 — OF) Z CMeBe=@7 (2.30)

The nonabelian CS action for an infinite number of D(—1) instantons (2.27) naturally
leads to the NC CS action for Dp-branes (2.29). Expanding the action (2.27) and
using the fact that i[X, X] = @ give terms of the form

27 (10 — 2r)!

s 277(5 — 1)1(5 — r)125=7(10 — 25)1 (2:31)

Tr |:Q'i2r+1'i27‘+2'“Qi9iloBf‘ B 0(10*25)

12041927 42° 125—112s ~ 125+1-.-410] | 7
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where [...] denotes antisymmetrization and 5 > s > r > 0 . Employing the identity
(2.17), one gets
10 — 2r)! o .
le ( 12r+112r+2m 29210 2.32
ug/ :1:254(5 —r)l(s —r)125=7(10 — 25)!Pf9Q @ (2:32)

/ / (10—2s)
XB[i2r+1i2r+2”'Bi2571i25 12541--.910] "

Finally, the above expression can be simplified to

0 e e e Qb Qi B B O

(2.33)

One can immediately see that (2.33) are the terms coming from the expansion of

(2.29). We have shown that our claim holds for the special case p = 9. The general
case has been already considered in [14].

Up to now, we have restricted the Ramond-Ramond fields to be constants, but

we can generalize our procedure to the case where the Ramond-Ramond fields are

varying by writing the fields as fourier transforms? such that

2
SCS = —7T leqSTr
9

S

o~ ilixix) Zc(n) (q)eB’eiq-X ., B=B-06"" (2.34)

To conclude, motivated by the identification relating the nonabelian BI action of
D(—1) instantons to the BI action of Dp-branes in the last section, we have proposed
and verified that the NC CS action of a Dp-brane with arbitrary noncommutativity
and varying Ramond-Ramond fields can be derived from considering the nonabelian
CS action for an infinite number of D(—1) branes after identifying B’ = B — 6.
Finally, let’s remark that since B = B’ + 67!, the freedom of description of NC
Dp-branes translates in the matrix-model-like variables into how one separates the
B-field into the external part B’ and the internal part =!. The internal part, 61,
is generated by the configuration of D(—1) instantons and B’ corresponds to the

external field imposed on them.

2See [23] for how to relate the currents expressed in matrix model language to those in noncom-
mutative gauge theory.
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Chapter 3

N = 2 Supergravity Solutions with
Polarized Branes

3.1 Introduction

In this chapter we construct several classes of exact supersymmetric supergravity
solutions describing D4 branes polarized into NS5 branes and F-strings polarized into
D2 branes. These examples belong to the same universality class as the perturbative
solutions used by Polchinski and Strassler to describe the string dual of N' = 1*
theories. The D4-NS5 setup can be interpreted as a string dual to a confining 4 + 1
dimensional theory with 8 supercharges, whose properties we discuss. By T-duality,
our solutions give Type IIB supersymmetric backgrounds with polarized branes.

Ever since the remarkable discovery of the AdS-CFT duality [27] there has been
a lot of interest in finding supergravity duals to four-dimensional field theories with
reduced supersymmetry, and to use these duals to understand real-world phenomena
like confinement and the generation of a mass gap.

In several cases the supergravity dual of the field theory is pure geometry [28; 29;
30; 31; 32; 33; 34], and the exact supergravity solution, although challenging, was
found. In other cases, like the AV = 1* theory, the string/supergravity dual (found by
Polchinski and Strassler in [38]) contains D3 branes polarized into 5 branes, and the
exact geometry is still not known.

We attempt to make one step in that direction. We find exact supergravity so-
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lutions with polarized branes and with 8 supercharges. These solutions describe D4
branes polarized into NS5 branes, and F1 strings polarized into D2 branes. They
are very similar to the Polchinski-Strassler (PS) case, both because polarization takes
place in the near horizon geometry of the branes, and because the fields inducing it
are tensor harmonics on the transverse space.

In fact, by T and S duality, these solutions give type II1B exact solutions containing
D3 branes smeared along one direction, which polarize into cylindrical NS5 or D5
branes. These solutions are dual to a limit of the Coulomb phase of the N' = 4
Super Yang Mills, which can have screening or confining vacua when the N' = 4
supersymmetry is broken to /' = 2. As we will see, the radius and orientation of the
cylinders parametrize a moduli space of vacua, for each type of (p,q) 5-brane.

We will first perform a perturbative investigation of the polarization of D4 branes
into NS5 branes, along the lines of [38]. As explained in [50], supergravity in the
near-horizon geometry of D branes describes a certain strongly coupled regime of
the field theory living on these branes. Both sides of this duality can be perturbed.
Introducing an operator in the Lagrangian of the field theory side is dual to turning
on a non-normalizable mode of the corresponding supergravity field in the bulk [51].

In the Polchinski-Strassler case, the 3+1 dimensional N' = 4 Super Yang Mills
theory was perturbed to the N’ = 1* theory by giving mass to the 3 chiral multiplets.
This was dual to perturbing the AdSs x S® geometry with RR and NS 3 forms along
the space transverse to the branes. These forms were responsible for polarizing the
D3 branes in (p, q) 5 branes. The resulting setups were dual to the different phases
of the N/ = 1* theory, and made visible many features of this theory.

In Section 3.2, we similarly perturb the near horizon background of a large number
of D4 branes with the operator corresponding to a mass term for the chiral multiplet
in the 4+1 dimensional A/ = 1 theory on the branes. This operator preserves 8 of the
original 16 supercharges, and transforms in the 10 of the SO(5) R symmetry group.
It corresponds in the supergravity dual to a non-normalizable mode of the RR 2-form
and NS 3-form field strengths on the 5-dimensional space transverse to the branes.

We will find that N D4 branes can polarize into & NS5 branes only for a very
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specific value of transverse field perturbation: Fy ~ Ngk T For all other values no

polarization happens. Moreover, our analysis shows that the polarization radius is a
modulus. An identical phenomenon happens when F1 strings polarize into D2 branes
[36].

Since the radius is a modulus, it is natural to suspect that these configurations
could descend from a Coulomb branch configuration of M5/M2 branes in M-theory.
Moreover, all the fields present could descend from the fields of the M5/M2 brane
supergravity solution by a twisted Melvin reduction. It is therefore not hard to see
what the full picture is.

If we have, for example, N M5 branes uniformly spaced on a circle, the angle
between two of them is A¢ = 2x/N. If one compactifies with a twist of 27 /N, the
upper end of an M5 brane is joined with the lower end of its neighboring M5 brane
(figure 3.1). Thus, the whole Coulomb branch descends into a configuration of N D4
branes polarized into one NS5 brane. If one increases the twist k& times, the upper
end of an M5 brane is joined with the lower end of its k£ th neighbor, and this gives k
chains of M5 branes, which descend into N D4 branes polarized into k& NS5 branes.

For all values of the twist that do not match an M5 brane end with another, the
descending configuration has no type ITA brane interpretation (it would be like N D4
branes polarized into a configuration with a noninteger NS5 brane charge). Therefore,
compactifications with twists that do not match the brane ends only give consistent
type IIA solutions when all the 5 branes are coincident.

Since the RR 2-form and NS 3-form field strengths acting on the 5 dimensional
space transverse to the D4 branes are proportional to the twist, we can see that the
above picture matches perfectly the one obtained via the Polchinski-Strassler analysis.
The discrete set of values of the fields for which the D4 branes polarize corresponds
to the discrete set of twists compatible with the M5 branes being on the Coulomb
branch. Moreover, the Killing vectors of the M-theory solution do not depend on the
radius. Hence, a twist by 2k7 /N will match the brane ends at any radius. This implies
that the descending configuration will be a solution at any radius, and therefore the

polarization radius is a modulus, exactly as the field theory analysis implies. As an
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aside we note that, if the Killing vectors had different radial dependence, the twist
would match the ends of neighboring branes only at certain values of the radius. In
this situation the radius is no longer a modulus.

The immediate bonus of the above picture is its application for finding exact
Polchinski-Strassler(PS)-like ITA solutions with polarized branes by simply reducing
with a twist M-theory supergravity solutions with branes spread on a circle. In
Section 3.3 we will find these solution, and show that they reduce to the first order
solution obtained in Section 3.2. We will also link the boundary theory fermion mass
parameters to the M-theory twists and show that the supergravity solution preserves
8-supercharges, just as expected from the gauge/gravity analysis.

One can also give an identical description to the polarization of F1 strings into
D2 branes described in [36]. In that case the M2 branes on the Coulomb branch are
compactified with a twist which matches their ends. This gives a geometry with F1
strings polarized into D2 branes. The radius is again a modulus, and this is consistent
with the Killing vectors for x1; and ¢ having no radial dependence. The compact-
ification twist preserves 8 supercharges, and can be again related to the masses of
the fermion bilinears turned on in the boundary theory to induce polarization. This
exact solution is discussed in Section 3.4.

In fact, both the twisted M2 and M5 supergravity backgrounds (without the
branes being polarized) have recently been obtained by Figueroa O’Farill and Simon
[39]. These solutions are basically superpositions of the supersymmetric flux 5 brane
with D4 branes and F1 strings respectively. The new feature of our supergravity
solutions is that for certain values of the fluxes, the D4 branes/F1 strings can polarize
into NS5/D2 branes, and that moreover, the polarization radius is a modulus. Thus,
the most general N' = 2 exact solution we can write contains several D4-NS5 (or
F1-D2) concentric circles of different radii, and different orientations. One can also
generate F1-D2 solutions with N/ = 1 supersymmetry, which can have 2 different
kinds of F1-D2 solutions, at various radii and orientations.

Using our methods it is also possible to obtain nonsupersymmetric exact solutions
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with polarized branes !. Indeed, as long as the twist along the circle where the branes
are placed matches their ends, one can twist along other directions by arbitrary
amounts, and still obtain a good solution. Supersymmetry was necessary in PS-like
setups to control the backreaction of the various fields on the metric. However, here
we have the exact metric, with the polarized branes, and we know that our setup is
a solution simply because it is the compactification of an M-theory solution along a
Killing vector direction.

In Section 3.5 we use T-duality to obtain exact Type IIB supergravity backgrounds
containing D3 branes polarized into cylindrical (p,q) 5-branes. The origin of these
solutions suggests that they are dual to the Coulomb branch of the AN/ = 2* theory in
the limit when the number of D3 branes becomes infinite and the distance between
them is kept fixed.

However, these solutions are not asymptotically AdS. The dual field theory cannot
therefore be interpreted as a UV-finite deformation of the N = 4 Super Yang Mills.
In a way this theory is similar to the one that is dual to the Klebanov-Strassler flow
(28], in that the rank of the gauge group grows as one goes to higher and higher
energies. This theory has confining, screening, and oblique vacua, much like the one
studied by Polchinski and Strassler. In fact, when one of the N/ = 1* masses becomes
much smaller than the others, the D3 branes polarize into a very elongated ellipsoid
[38]. In the limit that this mass goes to zero while the thickness of the ellipsoid is kept
fixed, the ellipsoid degenerates into a cylinder. As we will discuss in Section 3.2, the
background with D4 branes polarized into NS5 branes is dual to a 4+1 dimensional
theory with 8 supercharges. Since, when the branes are polarized, supergravity is
valid everywhere, the corresponding phases of the 4+1 dimensional theory have no
weakly coupled field theory description. Thus, they can only be described by their
supergravity dual, much like the (2,0) and little string theories. In Section 3.6 we
investigate the phase structure and the objects of this theory. We will find phases
in which electric quarks are confined and “magnetic little strings” are screened. The

exact supergravity dual allows us to find the tension of the confining flux tubes and the

1Such nonsupersymmetric solutions have been obtained in the past via Melvin reductions [42].
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masses of the baryons. The theories dual to the nonsupersymmetric exact solutions

can also be investigated, and exhibit similar phenomena.

3.2 Polarizing D4 branes into NS5 branes - the
gauge theory/supergravity picture

In type ITA supergravity a D4-brane is a BPS object that has world-volume symmetry
group SO(1,4) and transverse symmetry group SO(5). We will consider a system of
parallel D4-branes. As explained in [50], 10-dimensional type IIA supergravity has a
solution that describes the near-horizon geometry of a large number N of D4 branes.

In the string frame the solution is

ds* = Z7'Pdaf+ Z'da?

e = gz (3.1)
1
C = :
01234 0z

The D4 branes are aligned along the 0-4 dimensions, and da:ﬁ = nudxtdz”, where 1,
is the Minkovski metric along the D4 branes directions, while dz? = (dz')? i =5,9.
When the branes are coincident( located at r* = 23 = 0), the harmonic function Z

is given by

7 — 7TN9+304'3/2 _E

The same function Z appears both in the expression for the metric and for the elec-

trically coupled RR potential C® as a consequence of supersymmetry. Notice that

7 satisfies 8§lZ = 0. However Z fails to be harmonic at the origin, r = 0, where the
horizon of the D4-brane geometry is located.

In the dual picture this supergravity solution describes a certain strongly coupled

regime of the field theory living on these branes. Both sides of this duality can be

perturbed. We can introduce a hypermultiplet mass in the Lagrangian of the field
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theory; this corresponds in the bulk to turning on a supergravity non-normalizable
mode of the RR 2-form and NS 3-form field strengths on the directions transverse to
the branes [51]. Indeed, the boundary fermions transform in the 4 of the SO(5) R
symmetry group, and therefore the fermion mass in the 10 has the same representation
as a 2 or 3 form on the 5-dimensional space transverse to the branes.

Our plan is to we perturb the background (3.1) by a transverse RR 2 form F
and a NS 3 form Hj, and then find the supergravity solution to first order in the
perturbation parameters. This solution is the dimensional reduction of the one used
in [37] to explore the polarization of M5 branes into Kaluza-Klein monopoles, so many
of the equations will be similar.

By expanding the ITA supergravity equations of motion:

d*FQ = *F4/\H3

2d(e™?* x H3) = FyAFy—2d(xFyACh) (3.2)
about the background (3.1), we find that the first-order perturbation fields satisfy

1
d (—(*5[_[3 + gng)) =0

Z
1
1w b 1) = 0 53)
dF2 - 0 = ng,

where x5 is the flat Hodge operator on the transverse 5-dimensional space?. The
metric, dilaton, and 6-form field strength (or its Hodge dual Fj) only receive 2nd
order corrections coming from the backreaction of F, and Hj.

The derivation of (3.3) is rather straightforward if one uses the fact that both Fy

and Hj act along the 5-dimensional transverse space and makes use of the following

2These equations are very similar to the ones satisfied by the perturbation in [38] (Eqns. 25,27).
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relations:

1
xHy = W(*5H3) Adz® A dxt A da? A da? A da?
1
[y = E(*g)FQ) A dz® A dat A da? A da® A da? (3.4)

We should notice that the 2 form %(*5}[3 + gsF3), is harmonic, and thus it is given
by its value at infinity. In particular, if one changes Z, the form of F; and Hs might
change, but the combination %(*5H3 + gsF3) does not. Also, since Fy A Fy = 0, eq.
(3.2) implies that the NS 6-form potential Bg satisfies

dB6 = 672¢*H3+*F4/\Cl. (35)

We must now relate the precise form of the supergravity perturbations with the
fermion bilinears that are turned on, by analyzing their R-symmetry properties. Luck-
ily, this work has already been done in [37]. The theory along the D4-branes has a
field content consisting of a 5-dimensional hypermultiplet and a vector multiplet. The
five real scalars correspond to the transverse directions and transform in the vector
representation of the R-symmetry group. By pairing the 4 world-volume fermions

and 4 of the transverse space coordinates into complex combinations

7y =2’ +ix® Zy =% +ia’ (3.6)

A1 = /\1 + Z/\3 AQ = )\2 + i)\4, (37)

we can see that under an SO(5) rotation Z; — ¢'*' Z;, i = 1,2 the fermions transform

as

Ay — €@ =972, (3.8)

Ay — @827, (3.9)

The factor of 1/2 in the exponents appears since the fermions transforms as spinors
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under SO(5). We consider a diagonal mass term of the form:
mRe[A2] + m'Re[A]]. (3.10)
Thus, a fermion mass term behaves in the same way under SO(5) rotations as

Ty = Re[mdZ, A dZy +m/'dZ, A dZy) = =Ty;dx’ A da?. (3.11)

DO | =

We are interested in giving mass to half of the world-volume fermions (together with
their corresponding scalars). This preserves N = 1 supersymmetry in 4+1 dimension
(8 supercharges), and corresponds to m’ = 0. For future reference, we should note
that in this case the perturbation breaks the SO(5) R symmetry to U(1). Besides T

there exists another 2-tensor with exactly the same SO(5) transformation properties:

1 xixt 27
Vo == T

5 (S5 T + —5 Tig)da' A da. (3.12)

Thus, a general 2 form corresponding to the fermion mass will be a linear combination
of Ty and V3, with r-dependent coefficients. Similarly, the 3 form will be a combination
of the duals of these tensors 3. In order to find the 1-form potentials that give the

aforementioned 2-form field strength it is also useful to introduce the 1 form:
Sy = Thpa™da™ (3.13)

satisfying
d(S1) = 2T, d(r?Sy) = r?(2Ty + pVa). (3.14)

In order to obtain the first-order perturbation corresponding to the fermion mass
(3.11) one has to find the form that solves (3.3) and can be written as a combination
of T and V5. The equations are identical to the ones in [37]. They have four solutions,
given in eq. (2.22) of [37]. These solutions are the normalizable and non-normalizable

modes dual to a fermion mass and to another irrelevant operator.

3Several useful identities involving these tensors are given in Appendix C.
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One can see both from the M-theory picture [37] or by direct analysis that the

non-normalizable mode dual to a fermion mass operator is

This Z is the factor appearing in the equation (3.1), not to be confused with Z;
and Zs defined in (3.6). Note that the actual boundary fermion mass term is not
the parameter m appearing in this supergravity solution through 75 (3.11), but is
proportional to it [38; 48; 40]. One can use these fields to compute the value of the
6 form NS field which couples electrically to NS5 branes:

d(Bﬁ—Cg)/\Cl) = 6_2(1)*[‘[3—'—05/\172
1
— Q—Z(*5H3 + g Fy) AN dz® A dxt A da® A da® A dat
9s
= 2972y A da® A daxt A da? A da® A dat (3.16)

Since the expression Bg—C5AC] only depends on the harmonic combination %(* sHs+
gsF3), its value is given by the boundary conditions only and does not change when
Z changes.

To determine whether the solution (3.1), (3.15) allows the D4 branes to be po-
larized into NS5 branes, one must first find the potential of a probe NS5 brane with
large D4 charge n (such that n << N) in the geometry created by the N D4 branes.
One can thereafter find the potential for all the N D4 branes to be polarized into
several NS5 brane shells by treating each shell as a probe in the geometry created by
the others.

The action of type IIA NS5 branes is not an easy one to handle, and was found
rather recently [43] by reducing the action of the M-theory M5 brane [45; 44]. For-

tunately, the components responsible for the D4 charge have a rather simple form. If
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all the brane and bulk 3 form fields are turned off, the action becomes

SBI = T5\/d6£€_2q>\/—det(gij - €2¢E~Fj) (317)

SWZ = T5/Bﬁ_C5A01+C5/\F1, (318)

where F| = F} + C1, and F; = da is the field strength of the scalar living on the NS5
world-volume. This scalar descends from the M5 brane scalar describing its position
on the M-theory circle. Thus, it is no wonder that a nontrivial value of F} corresponds
to a nonzero D4 charge. Moreover, we can see from (3.18) that to give a circular NS5

brane the D4 charge n, one needs to turn on an F} such that?*:

2m
nr.
/ Fyd¢ = —2, (3.19)
0 T5
which, assuming Fy constant, implies Fyy = 570 = na'"/?, where 7, and 75 are the

D4 and NS5 brane tensions respectively. We assume that the NS5 brane probe has
D4 charge n, and geometry S* x R°, where the S! lies in the ij plane, 7 and j being
two of the transverse directions. The action per unit 441 volume in the geometry

(3.1,3.15) has the Born-Infeld part:

Vi = 202750 /G g0 + 0 F

2
_ 27TZ_3/47'5gs_2\/Zl/27“2 —}-932_1/2 (2n7'4 + O<Z>) ' (3.20)

TTs

As one can see, the first and the second terms under the square root represent,
respectively, the NS5 and the D4 contribution to the mass of the probe. We are
interested in the limit where the D4 contribution dominates the NS5 contribution. In

this limit the Born-Infeld action can be Taylor expanded as

2T T2
3.1/2 1
2ng3a’t/

4The argument for F'! being quantized (as opposed to F1) is similar to the one put forth in [35]
for the D-brane world-volume 2 form.

Ver ~ Z g (nmy + 2m7504) + (3.21)
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The first term represents the gravitational attraction between the N D4 branes sourc-
ing the geometry and the n D4 branes in the probe. The second is the “left over”
mass from the NS5 brane.
The Wess-Zumino action (3.18) similarly contains two terms, one representing the
RR 3-form mediated repulsion between the D4 branes, and the second coming from

the integral of Bg (3.16) over the world volume:

Z7 N nty + 2775Cy)  2maTsr?
9s g

Vivz = — (3.22)

As expected, due to supersymmetry, the leading contributions in the WZ and BI
actions coming from interactions between parallel D4 branes cancel each other. Thus,

the probe action seems to be given by the two remaining terms in (3.21,3.22):

27512 2mmTsr?

V;mive -

2ngia/l/? o g2 (3.23)

Nevertheless, there exists another term in the action which comes from the interaction
of the n D4 branes with the backreaction of the first-order fields (3.15) on the metric
and dilaton. In the next section, we will find the exact form of the metric, which allows
one to determine this term exactly. However, we can also determine this term using
the fact that our setup is supersymmetric, and thus the effective potential for the
probe comes from a superpotential. As we will see, the two procedures give the same
result, which confirms the validity of our approach. To obtain the superpotential, it
is helpful to express the potential in terms of complex variables. We can also consider
a more generic probe, by allowing the transverse circle to deform into an ellipse. If Z;
and Z, (defined as in eq. (3.6)) give the length and orientation of the two semiaxes

of the ellipse, then V.. becomes

Ty
2ng3a/l/?

Viaive = (|Zl|2 + | Zy|? — 4mngsa'1/2Re(ZlZ_2)) , (3.24)

and it is not hard to see that it contains two of the three terms coming from the
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superpotential:

1
W ~ 717y — imngso/l/Q(Zf + Z3). (3.25)

The full potential of the probe is then

T
n = Woill/? (121 — Zymng, | + | Zy — Zymng,o'??) (3.26)
and its minima are at
Z1 = mng,a'? 2y, Zy = mng.,a'V?Z, (3.27)

Evidently the only nontrivial solutions are obtained for

1

This implies that for some special values of the parameter m, the radius and orien-
tation of the polarization configuration combine to form a complex modulus. For all
other values, the only solution is Z! = Z? = 0, so there is no polarization. This
rather surprising result has subsequentely been reconfirmed in a Dijkgraaf-Vafa type
analysis in [58].

One should furthermore notice that the polarization potential does not depend
on the specific form of the harmonic function Z. If the metric is of the form (3.1),
the perturbation (3.15) is weaker then the background, and the energy of the probe
comes predominantly from D4 branes, then Z does not enter the first term of the
potential. Moreover, Eq. (3.16) implies that Z does not influence Bg— C5 A Cy, which
gives the second term of the potential. Since the third term is related to the first
two by supersymmetry, it likewise has no Z dependence. Thus, the probe potential is
independent of the positions of the N D4 branes that source the geometry. Therefore,
we can find the full potential of the N D4 branes polarized into several rings of NS5
branes by treating each ring as a probe in the geometry created by the others. The
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potential is just

V%ull = Z Vnia (329)

where n; is the D4 brane charge of the ¢ th tube. For a given m, only the tubes with
n; = m can have a nonzero radius. It is also possible to superpose several of
these tubes, and obtain tubes with k£ x n; D4 branes polarized into k& NS5 branes. The
energy of such a tube is k£ times the energy of a simple tube. One can also extrapolate
this formula to find that the potential for all N D4 branes to be polarized into one
NS5 brane is given by simply replacing n by N in (3.26).

Notice that the orientation of the NS5 in the 2°x% and 282° planes is given by the
phases of the complex-valued Z; and Z5;. When polarization occurs these phases can
be arbitrary as long as they are equal to each other, as can be seen from (3.27). We
have found a very interesting phenomenon. For certain values of the polarizing field
strength the generic configuration consists of several rings of D4 branes polarized into
NS5 branes at generic radii and generic orientations in the 2°2% and 2%z° planes. For

other values, no solution with polarized branes exists. In the next chapter we will see

how this phenomenon beautifully emerges from M-theory.

3.3 The exact supergravity solution describing the

D4 — NS5 polarization

In this section we will find the M-theory description of the polarized D4 brane con-
figuration found in the previous chapter. This enables us to find the exact type
ITA supergravity solution containing these polarized branes. Moreover, this descrip-
tion provides an intuitive geometric explanation of the moduli space of polarization
vacua we found perturbatively. The strong coupling limit of type ITA string the-
ory is 11-dimensional supergravity. The bosonic sector of the 11-dimensional theory
contains only the metric and the three-form gauge potential that couples electrically
to M2-branes and magnetically to M5-branes. The M5-brane is a BPS object with

world-volume symmetry group SO(1,5) and transverse symmetry group SO(5).
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Ten-dimensional type IIA supergravity solutions can be obtained starting with
a 11-dimensional supergravity background and then performing a Kaluza-Klein di-
mensional reduction along a spacelike direction. However, to be able to perform the
reduction we need the existence of a symmetry of the 11-dimensional background,
more exactly we need a Killing vector field along which the three-form gauge po-
tential is constant. To dimensionally reduce the background we first perform an
identification along the direction of the Killing vector and use the symmetry to re-
move the dependence of the background on the coordinate along the Killing vector
orbit.

We will consider the solution describing a system of parallel M5-branes. This
supersymmetric solution admits 16 supercharges. An interesting question is how much
of the initial supersymmetry remains after a dimensional reduction. The answer is
given by the number of 11-dimensional Killing spinors that remain invariant along the
orbits of the Killing vectors used for the reduction [39; 41]. Let us start by consider

the near horizon 11-dimensional supergravity background of N parallel M5 branes:

ds* = Z7'\Pdat + Z*da? (3.30)

A

FT" = sFy=d(Z7Y) ANda® A ..da* A datt,

where the branes are aligned along the 0,1,2,3,4, and 11 directions, and Z is a

harmonic function on the transverse space. When the branes are coincident

3
— RMS 2

Z =2 r?=a'r', R = Nﬂlz, (3.31)

9
7«3

where ¢ runs over the 5 transverse directions. For non-coincident branes, Z is a
superposition of the harmonic functions sourced by the individual branes. If the M5
branes are smeared on a circle of radius 7y in the p — ¢ plane, Z is given by:

RS 2T d¢
7 =M / 3.32
21 Jo (X2 + p2+ 12— 2ropcos ¢)3/2’ (3.32)

where x denotes the other 3 transverse directions.
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As we explained in the Introduction to this chapter, the polarized state from
the previous section can be obtained by uniformly distributing the N M5 branes
on a transverse circle of radius ry and performing a dimensional reduction along
Opp = 011+ B0J,. This is the type of reduction that gives the usual Melvin background.

However, in our case only those twists that identify the upper end of one brane
with the lower end of the other are consistent with the setup. These are twists by
multiples of %’T The smallest twist joins neighboring M5 branes; the N M5 branes
join to form one “slinky-like” object, which when reduced to type IIA becomes a
circular NS5 brane with D4 charge N. Larger twists join branes which are further

apart, and thus give several slinkies. In general, if

1 2km
B=——|— )
= () 539

we obtain N D4 branes polarized into & NS5 branes.

Figure 3.1: The twisted compactification of the M5 branes.

To obtain a Type ITA background, one needs to smear the M5 branes along the
circle. Naively, this seems to allow a twist by an arbitrary B. Nevertheless this would
give a configuration with a non-integer NS5 brane charge, which is non-physical. The
condition that locally the NS5 charge be quantized is equivalent to the constraint
(3.33) on the possible values of the shifts.

For large enough N, the discretely arrayed branes are seen in supergravity as

smeared. Indeed, if the distance between two M5 branes on the slinky (222) is
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smaller than the radius where the curvature created by one brane becomes larger
than the string length, supergravity is only valid away from the slinky. Therefore,
the branes appear as effectively smeared.

The Killing vectors of interest in the 11-dimensional geometry sourced by the
smeared branes (3.31), (3.32) are 011,0,,, and 0,,, where ¢; is the angular coordinate
in the plane of smearing, and ¢, is the angle in an orthogonal plane. It is possible
to obtain a polarized configuration by simply reducing with a twist along ¢;. Such
a configuration would not be supersymmetric. To preserve some supersymmetry, we
need two twists of equal magnitude. In the absence of M5 branes, such a reduction
would give the supersymmetric flux 5-brane found in [41]. Adding the M5 branes
does not spoil the supersymmetry [39]. For consistency with the previous chapter, let
us choose the smearing plane to be 2° — 2%, and call p; and ¢, the polar coordinates in
this plane. We can also denote by ps and ¢, the polar coordinates in the orthogonal
2% — 29 plane. Since the M5 branes are smeared at p; = 79 in the 2° — 2® plane,
the harmonic function will only depend on p;,p; and 2. Reducing along the Killing

vector | = Oy + B10y, + B20y, is consistent with performing the identifications:

2t~ M 427 RYn,
&1~ 1+ 2mng +2mn R By

Gy ~ o+ 2mng + 2 R Bs. (3.34)

Supersymmetry requires the ¢; and ¢o twists (B; and Bs) to be equal in magnitude
[39; 41]. The type IIA coordinates descend from 11-dimensional coordinates with

standard periodicity, which are constant along orbits of the Killing vector I:
¢1 = ¢ — Biz'!, ¢ = ¢y — Box'' . (3.35)

Using the relation® between the M-theory metric and the string frame metric, the

®We use Type IIA conventions in which the dilaton is e?.
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dilaton field and the RR 1-form potential:

dsfl = (gse_‘b)2/3ds%0 + (gse_‘i’)_‘l/?’(alx11 + gSC’udx”)2, (3.36)
we can determine

g; Pt = (Z)TVE 4 (2)YP(pIBY + piB3) = A (3.37)
0:C;, = A1 p2B, 72/3 (3.38)
9:Cg, = AN'pB2%
ds?y = ANV2(Z7Vdad + 7%/da?)

— ATV2ZYB3(p2Bidgy + piBadgs)?. (3.39)

The fields H3 and F; descend from the 11 dimensional 4-form F4:

Fy = g,Fy + da'' A\ H, (3.40)

and are given by
9sFy = x5dZ (3.41)
x5Hy = (Bipiddy + Bapjdn) A (—dZ), (3.42)

where x5 is the flat Hodge dual on the 5-dimensional space transverse to the branes. It
is not hard to obtain from (3.39) and (3.42) the first order perturbations found in the
previous section (3.15). The tensors S; and V5 can be expressed in polar coordinates

as

S = m(pidér + pydes) (3.43)
Vo = mlpidey + p3dea) A (dr/r), (3.44)

where r? = p? + p2 + 2. Identifying m = By = By, we can see that to first order in B

the exact solution found in this chapter reproduces the one given in (3.1, 3.15). Also,
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the discrete values of m which allow polarization (3.28) are the same as the values of
B which match the brane ends (3.33). Furthermore, we can see from the equations
(3.38), (3.39) that the dilaton and the metric receive only second and higher order
corrections in the perturbative field F5 and Hj3. Keeping only the first order terms in

B's, (3.39) gives
g, CM = A12238, ~ 79,

in agreement with (3.15). Also from (3.42), using dZ = —3(dr/r)Z and (3.44) one

recovers the first order solution for Hj given in (3.15).

3.4 The exact supergravity solution describing the
F1 — D2 polarization

In this section we find the M-theory description of the supersymmetric polarization
of N F1 strings into D2 branes. The perturbative analysis of this polarization was
performed in [36]. In that paper it was shown that a large number N of parallel fun-
damental strings can polarize into cylindrical D2 branes in the presence of transverse

RR 2-form and 6-form field strengths ©:

gsfy = Z(2T2—6V2)

9s(xsfs) = —Z(6V2), (3.45)

where T, and V5 are again antisymmetric tensors on the 8-dimensional space trans-
verse to the strings. By grouping the 8 transverse coordinates into 4 complex coordi-

nates:

A= 40l P =at4ia’, P =247, =25+ (3.46)

6We use for convenience the conventions of [36], Fs = *Fy = *(Fy — C; A Hz), and *g is the flat
Hodge dual on the transverse space.
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and by using the SO(8) R-symmetry transformation properties of the fields, it was

argued that a perturbation with
Ty = mRe(dz*dz*) (3.47)

preserves 4 supercharges.

The M-theory picture of this polarization is very similar to the one found in the
previous chapter. The only change comes from replacing the M5 branes with M2
branes.

Let us consider the 11-dimensional supergravity background describing the near

horizon of a large number N of coincident M2 branes:

dst, = ZyPdat + 2, da?

Ey = d(Z7Y) Ada® Ada' A dat
RG
_ tm2 2

Zy r?=a's', Ry, =32n°NI, (3.48)

)
716

where the branes are aligned along 0,1,11, and 7 = 2,3, ..., 9.
When the M2 branes are smeared on a circle of radius r¢, the only change in the

metric above is the harmonic function:

Y z
21 Jo (X2 + p?+rE —2rpcos¢)8/?
2

M?2 (x2+ (p— r0)2)5/2(x2 + (p+ 7“0)2)5/2'

where x denotes the 6 transverse directions perpendicular to the smearing plane.

To obtain the polarized state we again distribute the M2 branes on a circle, and
compactify with a twist, as in (3.34). Local D2 charge quantization implies that
only certain values of the twist (given by eq.(3.33)) give consistent backgrounds.
Alternatively, one can see that only twists by multiples of %’r link an end of an M2
brane with the end of another, like in Figure 3.1.

We can assume without loss of generality that the M2 branes are distributed in
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the 2% — 2% plane, and introduce polar coordinates (p1, ¢1) for the z* — 2® plane, and
(p2, po) for the z° — 29 plane.

If the number of M2 branes is large, supergravity sees them as effectively smeared.
We can therefore dimensionally reduce the background (3.48, 3.49) along the Killing
vector | = 011 + B10y, + B0y, as in Section 3. If | By| = | Bsy| the resulting background
preserves 8 supercharges.

For completeness, we should note that one can consider a more general reduction,

6

involving twists in the 22 — 2® and 2® — 27 planes as well. For certain values of

the twists these reductions can also give supersymmetric backgrounds with polarized
branes. The comprehensive analysis done by [39] for coincident branes applies here
without change.

Using the reduction formula (3.36), we can determine

grVBeM3 = (Z)723 4 (2)V3(p2B2 + p2B2) = A
9:C5, = AN 'piBi 2"
9:C5, = AN 'p3ByZ'? (3:50)

dsty = AV2(Z27Bdai+ Z'Pda?) — AV 223 (i Brdgy + p3Bades)’.
Also using (3.40) we obtain

F, = 0=1F,+C, A Hy

Hs = d(Z1) ANda® A da'. (3.51)

Identifying m = B; = B, we will verify that to first order in B this exact solution

reproduces the perturbative one (3.45). Notice that (3.50) implies

gSC(l) ~ ZSl
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Thus(using Appendix C),
9oy = d(ZS1) = Z(2T5 — 6Va). (3.52)

Also, from (3.51) we have
Fy=(=ZS) Nd(Z7Y) A da® A dat. (3.53)

Using Fy = #Fy and (3.44) we can easily recover the second equation of the pertur-

bative solution given in (3.45).

3.5 Towards the full Polchinski-Strassler solution

It is possible to obtain the exact Type IIB solution describing smeared D3 branes
polarized into a cylindrical NS5 branes by simply T-dualizing the background (3.39)
along one of the directions parallel to the D4 branes. Indeed, the D4 branes become
D3 branes smeared along the T-duality direction, while the NS5 branes remain the
same. By an SL(2, Z) transformation this configuration can give configurations with
D3 branes polarized into (p,q) 5 branes.

These configurations have the same types of fields as in the PS solution. Never-
theless, they have N' = 2 supersymmetry and have a different topology from the case
discussed in [38]. The NS5 branes we obtain have topology S* x R®, while the ones
in [38] have topology S? x R*.

To our knowledge there seem to be two major difficulties in obtaining the full
PS solution. The first one is finding the exact N/ = 1* supergravity background
without the polarized branes, and the second one is finding the modification of this
background when the branes are polarized. Our solutions are insensitive to the exact
form of Z, and seem to suggest that the second step only involves changing the
harmonic function Z. It would be interesting to see if by applying this intuition to

the solution obtained by lifting the 5-dimensional N' = 1* supergravity flow one could
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find the full PS solution’.

If we choose the T-duality direction y to be z*, the exact solution (3.39) becomes

e = g,AY? (3.54)
9sCy = A1Z(S; Ady) (3.55)
xs¢Hs = (SiAdy)AdZ (3.56)

sy = NP (Z7'2dx} + 2V (do? + dy?))
A <Z(Sl)2 T (A - 1)dy2> (3.57)
gsFs = *6dZ (3.58)

with

AN=1+Z(B*p?+ B2p?) and Sy = Byp*ddy + Byp?dos, (3.59)

where the parallel directions are 0123, Z is given by equation (3.32), and the Hodge
dual *g on the space transverse to the branes has flat indices.

As a side note we should note that this solution exists even for By # Bs, when
there is no supersymmetry. The exact type IIB solution for a circular D5 brane with

large D3 brane charge can be easily obtained using S-duality.

3.6 More about the theory on the D4 branes

As we explained in the previous sections, the strongly coupled theory dual to the
supergravity background with polarized branes is related to the 441 Super Yang Mills
theory living on the D4 branes. As is well known, this theory is not renormalizable
and becomes strongly coupled in the UV. In that regime it can be described by string
theory on the background (3.39), which can be thought of as the dual of the UV
completion of this theory.

By turning on the supergravity modes corresponding to fermion masses, the UV

completion is modified and can in some cases include polarized branes. In these

TA related problem which might be easier to approach would be using an A = 2 AdS, flow [46]
to find the full solution corresponding to M2 branes polarized into M5 branes [47].
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cases, the supergravity solution is valid everywhere, and thus there is no regime
where the boundary theory is weakly coupled. When there are no polarized branes,
the supergravity background again becomes singular, and the IR limit of the field
theory becomes weakly coupled.

For fermion masses allowing brane polarization (m ~ one can pass from

a phase where the theory has a weakly coupled field theory description (as a mass-
deformed N' = 1 Super Yang Mills theory in 441 dimensions) to a phase where there
is no weakly coupled field theory description, by simply changing the polarization
radius.

The purpose of this section is to learn as much as possible about these theories
by studying their supergravity duals. The first thing to notice is that these theories
have 8 supercharges. One can see this both directly (a mass for a chiral superfield
in 4+1 dimensions preserves A/ = 1 supersymmetry) or by noticing that the exact
supergravity dual of these theories has 8 supercharges [39].

As in the case of D3 branes, the ends of objects ending on the branes can be
interpreted as “states” in the boundary theory. As both F1 strings and D2 branes
can end on a D4 brane, this theory will have both “quarks” and “little strings.”
Thus, an infinite F1 string ending on a D4 brane can be interpreted as a quark. In
the confining phase, the energy of the flux tube between two such quarks is given by
the energy of an F-string with its ends on the boundary, lowered into the bulk [53].

The potential of an quark-antiquark pair is given in the gauge theory by the ex-
pectation value of the Wilson loop operator < W (C') >. Since correlations of local
operators are given by the supergravity action for fields with sources on the bound-
ary, a natural proposal for the expectation of the Wilson loop is the action of a string
ending on the loop C' at the boundary [53]. In the leading order approximation this
corresponds to the minimum area, and due to the curvature of the metric the string
surface will go deep into the interior of the space. Thus if we move the quarks apart
on the boundary, the variation of their potential is given by the string tension calcu-
lated with the string frame metric next to the D-brane sources. Thus for the initial

configuration of D4-branes, since the metric components along the branes vanish as



41
we approach the D4-branes, it costs no energy to move the quarks apart. For the
NS5 branes the metric components along its world-volume do not vanish, therefore
the string tension will have a non-zero value, indicating that the quarks are confined.

9

One can also see that the D2 brane “little strings,” are screened. The generalized
Wilson surface that describes the properties of these strings is given by the energy of
a D2 brane lowered in the bulk [53; 37]. Since this D2 brane can attach itself to the
NS5 brane, there is no energy cost to move the two “little strings” apart. Therefore
the little strings are screened. Since we are in a phase where the quarks are confined,
it is appropriate to call the little strings “magnetic little strings.”

It is quite easy to find the tension of the confining flux tube. When the quarks are
far apart, the bulk string joining them is basically composed of two vertical segments,
and one segment sitting near the polarized branes. The energy of the two vertical
segments is essentially constant, and therefore the flux tube tension is given by the
tension of an F1 string sitting near the NS5-D4 shell.

It is possible to extract the components of the near-shell geometry from the exact

solution. At p; = ro + €, the harmonic form (3.32) becomes

Ris
Znear shell — 5 3.60
hell = 22 ( )
and therefore g = r9B + O(e), and e ~ €.
Thus, the flux tube tension is
Tﬁux tube — V —d00911 ’near shell = TOBa (361)

independent of the 't Hooft coupling of the boundary theory. Note that as ry — 0 the
weakly coupled infrared region is recovered, there is no confinement, and the string
tension becomes zero as expected. One can also see that the magnetic little strings

are screened, by estimating the energy of a D2 brane in the near shell limit:

Vb = €/ —go0g11922 Incar shenn ~ € — 0 (3.62)
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Since the weakly coupled theory has an SU(N) gauge symmetry, one expects that
in the confining phase a baryon made of N quarks is a free object. One can see that
the bulk dual of a baryon in the unperturbed field theory is a D4 brane wrapping the
warped 4-sphere transverse to the D4 branes. Nevertheless, unlike its 341 dimensional
“cousin” [54], this baryon is not stable because of the lack of conformal invariance.
It tends to slide off towards the infrared and self-annihilate.

Nevertheless, when the D4 branes are polarized, the D4 brane baryon sliding
towards the infrared crosses the polarized configuration at a finite radius. Via the
Hanany-Witten effect [52], the resulting baryon is a D2 brane ending on the NS5-D4
shell, and filling the 2-ball whose boundary is the polarization circle. There are then
N fundamental strings that can end on the junction between the D2 brane and the
NS5-D4 shell.

Indeed, by investigating the NS5 brane action [43] (formulas 54,55), we can see
that the D2 brane ends source a nonzero NS5 world-volume 3-form dby, and the
dissolved D4 branes create a nonzero world-volume 1-form F;. The anomaly given
by the term

dbo NF N By (3.63)

under the gauge transformation 0 By = dx; is proportional to the number of dissolved
D4 branes (N), and can only cancel if N F1 strings end on the NS5-D2 junction.
Therefore, the D2 brane filling the 2-ball inside the polarization circle is indeed the
baryon of this theory.

One can also estimate the dependence of the mass of this baryon on the parameters
of the theory. Assuming the order of magnitude of Z to be R?/r3, we find the mass
of the baryon to be

To
Mbaryon - 7—D2/ dpldgble_(I> \/_9009P1P19¢1¢1 ~ N3T095' (364)
0
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Chapter 4

Summary

Two of the major recent developments in string theory have been the discovery of
gauge theory - string theory duality and the emergence of noncommutative field the-
ory. In this thesis we have studied aspects of both of these directions. A central role
in understanding these developments is played by D-branes.

We have dedicated Chapter 2 of this thesis to study some properties of D-branes
actions. We analyzed the gauge invariance of the Chern-Simons term under gauge
transformations of RR fields, and in the process we rewrote the action in a form that
makes the symmetry manifest. In the same chapter we also gave a simple derivation
of noncommutative D-brane actions starting from the action of a large number of
lower dimensional D-branes.

In Chapter 3 we have investigated the polarization of D4 branes into NS5 branes
both by perturbing their near-horizon geometry and performing a Polchinski-Strassler
type analysis, and by investigating the M-theory origin of this polarization. This
enabled us to obtain the exact supergravity solutions describing this polarization,
which to the best of our knowledge is the first exact solution that contains polarized
branes and has a field theory dual. We also obtained the exact supergravity solution
describing the polarization of F1 strings into D2 branes. We then used T-duality to
obtain type IIB solutions with 8 supercharges describing smeared D3 branes polarized
into concentric cylindrical (p,q) 5 branes.

In the last section of Chapter 3 we investigated some of the properties of the super-

symmetric 4+1 dimensional theory dual to the D4-NS5 exact background, and gave
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string theory descriptions of some of the objects this theory contains. The solutions
found in Chapter 3 belong to the same universality class as the exact Polchinski-
Strassler solution. We hope that the ideas presented here will be useful steps towards

finding this solution.
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Appendix A: Gauge invariance for the F' = (0 case

In the following, we will show that the coupling between N D(p — 1)branes and a
Cpior RR form is invariant under the transformation C' — C' + dA. A particular
case of this problem was proved in [6], in a matrix theory context, working in the
momentum basis. Here, we generalize, considering D(p — 1)branes instead of DO
branes, with non-trivial pull-back and Fy;, terms. (Nonzero F' will be considered in
the next appendix.)

Specializing (2.1) to the case F' = B = 0, the coupling between a C,19; RR form
and N D(p — 1)branes is given by

1 / ST <P ) | (A-1)

Each of the RR fields ()95 are functionals of the transverse coordinates ¢ :

iNigig)"

0(07 ¢) - 6>\¢i8xi 00(07 l‘i)|xi=0 = Z JQZS“ s qsznale s a:t“l 00(07 l‘i)|xi=07 (A_2)

N,in

where C°(a, ') is the background RR field. If A\¢® are the transverse displacements

of the branes, the pullback of a p form, €2, in the static gauge is

Odo™ 0o

1 Hp
(P2 aray = Qo (55le 1222 ) (5551N 222 ) ’ (A-3)

where Iy is an N X N unit matrix, and €2, should be considered a functional of the
¢’s. The indices p’s run over all coordinates, so we will take ¢* = 0 for the p’s parallel
to the direction of the branes. As defined in the previous equation the pullback of
an antisymmetric form is not necessarily an antisymmetric form since, as N x N
matrices, J,,¢" do not commute in general. However, as part of the symmetrized
trace prescription we should take a symmetrized average over all orderings of 9,,¢',

thus enforcing antisymmetry on the a’s.
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With antisymmetry enforced on the a’s, (A-3) becomes

[P(QP)][al...ap} = Qal...ap + Ainl[ag...apaa1]¢il +.o+

P! i i i i
All'(p _ l)!Qil---il[al+1---apaa1¢ Lo aal}Qb I + )\inl___ipa[algb Lo aap}gb L (A—4)
(ixigiy)"
We are going to use this equation for 0, = %Cpﬁk. Combining equation (A-2)

and (A-4), one gets the C,19; coupling of N D(p — 1)branes (for F,, = 0) as

/Lp_l/\kJrnHikp!
Enlll(p —1)!

xSTr (aal I Wl L R T ) , (A-5)

Oyir - . Dyin OV

’1...i’2kj1...jl[al+1...ap

where 0 <[ < p.
Notice that the STr (...) expression involves symmetrizing over all the 9, ¢’*, for
s=1,2,...,1, also over all the ¢'s, for ¢ = 1,2,...n, and all the pairs ¢™2i -1, for

j =1,2... k. We can rewrite this term as y,_1 >, ¥ where

oo P B . Oyin) OO A-6
b m( ot - Oain) by g1 il -ap (A-6)
STr (aal LN B LN L LY T ) . (A7)

In the previous equation we antisymmetrized over all the a’s, and this will be implicit
in the rest of this proof.

In order to show that the coupling is invariant, up to a total derivative, under
gauge transformations C' — C + dA, we will try to write Zl,n b as a sum of total
derivatives and gauge invariant terms that depend on the field strength of the RR
field. Integrating b, by parts with respect to o, and dropping the resulting total
derivatives and field strength terms, we can express b}, as a sum of two types of terms.
(we will keep track of the field strength terms and will present them later.) The first
type of term for b;' will cancel against the second type of term in the expansion for

b?_*ll. In this way all the terms cancel, except for the first term in b} ; and b}",. (The
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second term of b} will turn out to be 0 for | = 4, = p, or for n = ny, = 0.)

When integrating b}’ by parts with respect to 0, we will get terms in which 0,
acts either outside the trace on C°, or inside on ¢’s. For the part inside the trace, for
simplicity of notation, we will only write down the ¢ terms that have changed after
integration by parts. Note that due to the antisymmetry in the a’s, 9,,0,,¢’ — 0.
Let’s denote by U]" the factor outside the trace,

Un——ikp! 0.i O CO
E kIl (p — 1) (Optr - Ooin) iy i@t

With these conventions, dropping the total derivative part,

by = (UM)STr (... 0y ¢ ...) = (=0 )(UMSTY (.7 ..
—k [(Uﬁ)STr ( I W ) + (UMSTr ( LB D, Gl )]
—n(U)STr (... ¢7 ... 00" ...).
(A-8)

The factor of k comes from the k pairs of ¢/'¢/'~! of the inner product and n from

the n ¢’s of the Taylor series expansion of the RR form. Let

A, = (UP)STr ( I W )
Ay = (UP)STr ( DI D, Gl )
Dp = (UM)STr (... 0 ... 0y din...).

by = (=0, ) (UMSTr (... ¢ ...) — k(Ay + Ay) — nDJ. (A-9)

Writing
0yn CY

4ty g1 J1G1 41 Op

_ el 0
=(p+2k+ 1)8[:% Cig...igkjl...jlam...ap] + axii Cini/g...ap +

[(p + 2k — 1) more terms obtained interchanging 4, with all the other indices],
we can rewrite D} as:

D= (gauge invariant term) +DJ'[;, i +. ..+ D', i, +DJ'fiyyy +- -+ D7 gy

+Dln‘in<_>al+1 + te + D?’in‘_’ap' (A_lo)
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(notation: D}|;, ;, means that in the term outside the symmetrized trace, i.e. U,
we interchange i,, with i,, and if these are dummy indices, this is equivalent to keeping
the outside term U}* the same while interchanging 4, with ¢, inside the trace.) Note
that every time we interchange two indices from the set of indices ¢ and j inside the
trace we get a minus sign since these indices are contracted with indices of the RR

form in the term outside the trace.

Since,
D= P (o0 C STy (... ... Bygéi™ ... (A-11
1 = m ( il .. - :E’L") i/l---i,gkjl---jl[al+1---(1p r ( .. Qb Ce al}@b .. ) ,( - )

we have the following relations:

Diflipsy = b1, (A-12)

in <]y
the original term.

DMinejy, = (UMSTr (c..¢” ... 040" ... 000" ...)
= —(U"STr ( .. ¢jl .. .3a5¢j5 .. .3al¢i" .. ) =—-D}, (A-13)

forany s =1,...1 — 1, from the antisymmetry in the a’s.

Di'li, i, + DJ'| = D'liyeig, + Dp'lioit, (A-14)

. .,
In 91 1

Using the above relations, (A-10) becomes

D= (gauge invariant term) +k(D7|;, s, + DJ'| )— (I—=1)Dp + b}

in iy
+D?|in‘_>al+1 + e + ‘Dln|'in<_’ap' (A_]‘5)

Dropping the gauge invariant term,

(D7) = k(By+ By) + b + D'lincay + -+ DJ'liycsay, (A-16)



49
where we have defined:
By = D}'l;, i, = (U")STx ( L gt D, ¢ )
———

By = D}y, e, = (U])STx ( LB i D, e ) : (A-17)

The notation ¢'¢’ means that ¢', ¢’ show up together, as one entry, in the sym-
~—

metrized trace prescription. In this way, the prescription, after interchanging some

of the indices inside the trace, is consistent with the initial one.

Using the last equation to replace the D} term in (A-9), we find:

by = (—0,)(UP)STr (.7 .. ) — k(A + Ay) — %[k(Bl + By) + b7

+D?|in‘_>al+1 + e + D7|'Ln<_’ap] (A_]‘8)
br(n 4 1) = (=00 )(UP)STr (... ¢ .) — k(I(Ay + As) + (B, + Ba))
_n(‘D7|in<—’al+l + e + D?|Zn‘_>ap) (A_]‘g)

Note that (=0, )(U)STr (... ¢/ ...) = (=0, )(U)STr (... ¢% ...), forany s = 1,...1—
1; we get a minus sign from a; <+ a,, and another minus sign from j, < j;.

Let’s evaluate, [(A; + As) +n(By + By) = (IA; +nBy) + (lA2 + nBsy),

IA, +nB, = IUSTr (...d)ﬁ...aald)i’zkd)i’zk—l...)
N’

+ nUMSTr ( L Lo S o WO L ) , (A-20)
N——

IA; +nB, = IU'STr (...qsi'zk1...aal¢ﬁ¢i’2k...)
N——

+ nUPSTr ( e B L0 L TG I L ) . (A-21)
N——
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All the STr (...) terms are multiplied by

vr— P o )t
L Enlil(p —1)! (O - - Oin) il g dilag g ap

Using the antisymmetry in the a’s , and the symmetries in the dummy indices of the

factor outside the trace, we have,

!
Ay +nBy = (U')) STr ( Q1 9, Pl )
g=1 N———

+ (U)) ST ( L N ) . (A-22)
s=1

Let’s denote by STr ( 1 ok ), the expression in which ¢+ and ¢z
—— ~—
are distinct entries in the symmetrized trace prescription, without any constraint on

the ”left neighbour” of ¢%. However, the ”left neighbour” can only be one of the

..........

1A, +nBy = (n+ 1+ k)U'STr ( L i ) —
—— =~

—> UST ( 1 L i 1 ok ) — UP'STr ( 1o ) (A-23)
r N’ N——

One can notice that the last term is b, while the first term is 0, since U;" is antisym-

metric in @5, , and ij,.
IA; +nBy = b — (k — 1)UPSTr ( O R S LY RO LY ) : (A-24)
————
We can ilustrate the type of identity that we used with a concrete example:
STy (XY ZT) = 3STr (XY ZT) — STt (XZ YT) —STr (YZ XT) . (A-25)
=<~ ~~ L~

where X,Y, Z, T are some N x N matrices.



o1

Similarly for

nBy + 1Ay = nUrSTr (...qsi’zk...gbf’zk1¢in...aal¢ﬁ...>
N——

+ USTr ( P P10, ¢ ) (A-26)
N———

nBy + 1Ay = (n + 1+ k)U'STr ( L T T ) -
~— =

—(k = 1)UPSTr ( L P12 Pl ) — UPSTr ( L Pl ) . (A-27)
N e’ N——

nBy + 1Ay = b} — (k — 1)Ul'STr ( QL P gl i ) : (A-28)
~—_——

From (A-24) and (A-28), we get

Then equation (A-19) gives

l .
nzi —_ n Ji -
b, n+l+2k( 0 )(U)STE (... 07 .. )

n

T ok [Dincarys + -+ -+ Doy -

(A-30)

Let’s remind ourselves what these terms really are

—ikp!
! (Ogir - OpinOay) C3)

" Enlll(p— 1) iyt i1
x STr (aal P Dy LGN P Pl ) .
- N——
(A-31)

(—0,)(UMSTr (... 67 ..

ikp!
o T il (p — 1)

xSTr (aal G Dy (PG GO, P Pk ) .
- N—_——

Dy R R W e

T al+1> il 31 J1ina 2. .ap

(A-32)
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If we use the same expansion for bl s we get
[+1 A
n—1 n—1 in )
bl+1 = n 4+ l i 2k(_a‘ll+1)(Ul+1 )STr ( ¢ A )

n—1 e
o [P s o D ] - (A33)

We can see that the second term in the expression for b} is the same as the first in
the expression for b}';;'. All the D}'|( ) terms from (A-30) are equal to each other, due
to the antisymmetry in the a’s, and as it turns out, they come with the right sign to
cancel the first term from (A-33). Let’s check the numerical coefficients. The second

term of b} is

p! n (p—1)
Knlll(p — Din + 1+ 2k F

Note that this is 0, for [ = [,,,,. = p, or for n = n,,;, = 0. The first term of bz+1 is

p! [+1
Eln =D+ D(p—1—1D!n+1+2k

The numerical factors are the same so all the terms cancel against each other, except
for the bf, and the first term of b} given by (A-30). The [ = 0 case has to be analysed

separately, since we cannot integrate by parts in this case.

n 1 3 . L
by = m(@m ...am'n)cg il ar.. ay O 1T (¢ R XL 0% T ) ) (A-34)

As in equation (A-23), we can write

0= (n+k)UrSTr ( LTINS ) = nUPSTr ( il ) +
N~~~ N—— N——

+(k — 1)UPSTr ( L Pl ik ) + UPSTr ( Pkl ) . (A-3p)
~—_——— N—_——

Similarly,
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0 = nUZSTr ( PR ) + (k= 1)UpSTr ( QPR Pl )
N—— N

+UPSTr ( L ) : (A-36)
N——

From (A-35) and (A-36) we have

2UrSTr (gzﬁkgbk) = —nUPSTr (¢¢k)—
N—_—— N——
—nUPSTr (¢k¢> = —n(Ufli,eiy, + Ui lieiy,)STE (ww)

(A-37)

Repeating this k times, we end up with

n

UpSTr ( g ) = 7 (U8 = Uglineiy = - = Ug'lins,)

xSTr ( OO ) . (A-38)
N—_——

From (A-30) we find that the first term of 67! is (rename j, — i,)

TR f;jzn n Qk)axil o 0pin 100, CF iy ST <¢ N L LI S ) :
(A-39)
Now we can sum the b2 term and the first term of 7! to get a gauge invariant term
equal to
it 0,(2k+p+1) i in iy Aih
(= 1)(n 1 Qk)af”il . .8901-",1ﬂliﬁ"'iékalmapSTr (ng Lo @@l . ) , (A-40)

where FOCk+r+1) = qC0.(2k+P)  The monopole coupling doesn’t show up in the pre-
vious expression, since in deriving (A-38) we assumed k > 0. Keeping track of the

gauge invariant terms dropped in (A-16), we can express the total coupling, for F' = 0,
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as
)\(kz—l—n—i—l)z'kp!
Hp—1 I;O El(n — D)W(p—D'(2k +n+1)
,(2k j i bi in biby 1ib
X Qvil .. .811-,1,1 Fi?i(’i-iizl.?.jzalﬂ...apSTr <8a1 .. .8al¢ﬂ¢ Lo gmohkgiak- . ) .

(A-41)

For k = 0 we need to add the usual monopole coupling given by p,—1C> , from

(A-34).
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Appendix B: (Gauge invariance for the [’ # 0 case

For non-zero F along the brane, the pull-back is defined using covariant derivatives.
There are a few useful relations involving covariant derivatives that allow us to use
the previous proof in the case when F' is nonzero. If Y)Y}, Y, are N x N matrices
transforming in the adjoint representation of the gauge group (D,Y = 0,Y +i[A,, Y]),
and f is a scalar function, then:

() Tr[Da(YiY2)] = Te[Dy(Y3)Ya] + TalYi (D,Y2)]

(b) Da(fY) = (0af)Y + fDaY

(c) [Dy, Do]Y =i[Fi2,Y], where Fio = 01 Ay — 02 A1 +i[A1, As]

(d) DioFiq = 0, by the Bianchi identity
In this case, the equivalent of (A-5), which gives the coupling between N D(p—1)

branes and C4of is

1 /\k+n+l+2rik+rp!

Hp— 0
Oyir + . 0pin Cy
;2Tr!(k+r)!(n)!l!(p—l—27’)! v

ity gy J1d1 @141 Op—2r

xSTr (Da1 ¢ .. Da " .. " ¢ 2<k+r>¢ 2(hr)—1 ¢12¢’1 Fopa, 1}) . (B-1)

v~

where 0 <[ < p — 2r, and r is the number of F’s appearing inside the STr part. As
in the proof for F = 0, we will write the sum in (B-1) as 1,1 3, Ao
and denote by U}, the term outside the trace corresponding to by',. When integrating
by, by parts, now we will have extra terms containing STr ( oDy, Dy @ .. ) Since
D4, Doyj¢ = 5[Day, Doy = £[Fiyay, @] these extra terms will cancel against other
terms in the expansion for b} ,,.,,. Given these facts, the right-hand side of (A-8)

has an additional term equal to:

(I = 1)(~UP)STr (¢ ... Dy Doy .. , (B-2)
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while (A-24) changes to:

[A, +nBy =0}, — (k+r— 1)U ST ( L RN N LI (o ) —

—rU STr ( L F@n ) .(B-3)
’ ——
Now, we can see that the generalizations of equations (A-29) and (A-30) are

Z(Al + AQ) + n(31 + Bg) = Qb?T — T'UlnTSTI' ( .. [F, ¢i/2(k+’“)] .. ) (B—4)
) ) N ,

K l2(lc (O WUEISTr (o)
on+ ll(—lkg(;‘)%— T) (U)STx (¢ ... Doy D™ )
 on+1 —i-?;(k ) (D} Jin < i1 + ...+ DJJin < ap_sr]
* T ST (- ). (B-5)

The second term in the expansion for bj', has the same structure as the fourth term

in the expansion for b, .,,. While it is easy to see that these extra terms have the

required form to produce the (partial) cancelation between b}, and 0} ,,,,. The
numerical pre-factor from bf, is
iFrpl i
I(l—1)= B-6
2r(k + r)lrl(n)ll(p — 1 — 2r)! ( )2’ (B-6)
while from b , ., the pre=factor is
Rt ip)
(r+1)(k+r+1). (B-7)

2rtl(k4+r+ DI(r+ 1!l —2)(p — 1 — 2r)!

Since the numerical factors are the same, when we are summing the 0},’s over r, all
the extra terms that we get in the case of a non-zero F' will cancel against each other,

except for the second term of b, ,. At the limits, when r = r,,;, the fourth term in
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the expression for b}fr is 0, since Tpin(Fmin + k) = 0. If & > 0, rp, = 0, otherwise
Tmin = —k. When r = r,.., [ < 2 so the second term in the expansion for b{fr is 0.

After summing over [ and r we are left with

Z(byzoﬂ + Z m(—aal)(Ulnl}r)STr ( L )

r

_ i ) ,l
+ Z mUQW*lSTr (qb] "'[Fa1a17¢]] ) . (B—8)

r>Tmin

For b, we are using a transformation as in (A-38):

Up, STr ( Ll a1 ) =

7
g

- no_Ur n ) b 7)1
m(UO,T - UO,r|in<—>i/1 e UO,T‘inHi’Q(k_,'_T))STr ( . &b (k+r)?i (ktr) R )
———— Uy STr | ...[F,¢"=20+0-1] .
n+2(k-+r) % ' _[ @ __/]
(B-9)
Using (B-9) to replace bj . in (B-8), we get
n n n . —grl. .,
; n+2(k+r) Ot = Usylinety = oo = Utirhiniee)
-/ -/ 1 .
STr | ... @200 P2tk -1 — (=0, (U )STr (... ¢ .. ).
x r( &b ?i D >+Zn+2(k+r>( 1)( l:l,’r) r( ¢ )
(B-10)

The above expression is gauge invariant since we can write it as a field strength term

noticing that after renaming j; — i,, the STr parts are identical and
(0)(U5) = n(p = 27) Uy lin (B-11)

Taking into account the corresponding gauge invariant terms dropped in equation

A-16) the total coupling between N D(p — 1) branes and a C), 5. potential can be
( g p+
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expressed in a gauge invariant way as

)\k+1+2r+l7;k+7’p!
Hp—1 Z 2rrel(k 4+ ) (p — 2r = 1)!

r,l
. . . ./ .y .y
Doy ... Do ¢ @i hgh By B ),

g

—=(2k+p+1) i
STr(F,, (¢)i1i’li’Q...i;(k+r)_li’2(k+r)j1...jlal+1...ap_2r¢

(B-12)

where we defined,

—=(2k+p+1) A" i i 0,(2k+p+1) i
F = E Lo MmOy ... Ogin B P ,
e (9) = (n)!(n—l—l+2k—|—2r—|—1)¢ 0" 0 (0,2)

21=0
Since equation (B-9) was derived assuming k& > 0, for & < 0 there is an additional
monopole coupling term given by:

MElp! 0
= R Gp — 2R -2

F...Fy o) (B-13)
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Appendix C: Tensor spherical harmonics

We give several useful relations between the transverse space tensors used in this
paper. If the transverse space is 5-dimensional, and we are interested in describing

antisymmetric 2-form and 3-form harmonics, they depend on the tensors

1
T, = ETmndajm A dz™ (C-1)
1z 27! ; .
T3 = *5T2 (C-S)
1 z9z™ m n »
Vs = Q(Tanp + 2 more)dz™ A dx" A dz?, (C-4)
which satisfy:
TQ — ‘/2 = *5‘/3 (0-5)
dlnr)AVy = 0 (C-6)
d(lnr) Ax5Vs = d(Inr) A *5T3 (C-7)
d(V3) = —=3d(lnr)AT; (C-8)
d(*5‘/3) = 2InrA *5T3. (0-9)

In order to express the 1-form potential it is also useful to introduce the transverse
space 1-form

S1 = Thpx™da" (C-10)

satisfying

d(S) = 2T (C-11)
d(r?Sy) = rP(2T3 + pVa). (C-12)
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If the transverse space is 8 dimensional one can similarly introduce 2-form and 6-form
tensors . We give all the fields in terms of Ty, V; and S;, and equations (C-1,C-2,C-
10,C-12) are the only ones needed.

IFor the precise formulas see the Appendix in [36].
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Appendix D: Consistency checks

As explained in [50], in the case of a large number N of D4 branes there exists a
decoupling limit, o/ — 0, keeping g,(a’)'/? fixed, where the field theory on the branes
decouples from the theory in the bulk.

The type II A supergravity solution can be trusted [50] in the region: O‘N/ <
r < N'Y3q/. For smaller r the curvature becomes too large, and the weakly coupled
description of the physics is provided by the 441 dimensional Super Yang Mills theory.
For larger r the dilaton becomes too large, and a weakly coupled description of the
physics is provided by 11 dimensional supergravity.

The condition for the validity of the perturbative calculations done in Section 3.2

2
is: {72 < L

mQNgs_lo/P’ﬂ

Bf? = FyFyqe" ~ g *m*Z ~ =4 (D-1)
1
|Fs|> = Forozar For23ar g™ g™ g™ ~ ot
Thus the perturbation is small if m*Ng;'a®/? < r. For the smallest mass which

allows for a moduli space this is equivalent (in the decoupling limit) to g?—;\f < r, which

is trivially satisfied. For the other masses that allow polarization the perturbative

. . 2 .1
calculations are valid for ’;2?\, <.
S

Finally, let us consider the regime where the M5 branes become effectively smeared.
The curvature near a single M5 brane is large in string units for distances of order
o'. Therefore the smearing approximation is justified for 2”% < o . This constraint
is satisfied in the energy region of interest.

The regime where the M5 branes are seen as smeared is the same as the regime
where the D4 contribution to the energy of the polarized configuration is dominant
(3.21). Outside this regime, both the supergravity perturbative approach in Chapter
2 and the exact solution in Chapter 3 stop being valid.
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