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Abstract

We investigate the role of Dp-branes, which are p+1 dimensional membranes where

open strings end, in two different types of anti-de-Sitter backgrounds: AdS3×S3×M4

and AdS5 × S5, where M4 is a compact four-dimensional manifold such as the four-

torus T 4 or the K3 surface.

In the spirit of the AdS/CFT correspondence, D-brane physics on an anti-de-Sitter

space should be captured by a dual conformal field theory defined on the boundary

of AdS. Recently, Karch and Randall and DeWolfe, Freedman and Ooguri proposed

in [9, 10, 11] that the presence of a single D5-brane in AdS5 × S5 is dual to a defect

conformal field theory in which the usual N = 4 bulk SYM theory is coupled to a 2+1

dimensional conformal defect field theory. Extending their result, we take the Penrose

limit of a single D5-brane embedded in AdS5 × S5 and propose a correspondence

between open string states ending on the D5-brane and gauge-invariant operators

living on the dual defect conformal field theory. Furthermore, we check this proposal

by verifying that the anomalous dimension of the gauge theory operators matches the

light-cone Hamiltonian of open strings ending on the D5-brane.

Maldacena has proposed that type IIB string theory compactified on AdS3×S3×
M4 is dual to a 1 + 1 conformal field theory defined on the conformal boundary of

AdS3 [12]. In this thesis, we restrict our attention to the study of a D-brane embedded

in AdS3×S3×M4 backgrounds and leave the explicit construction of the AdS/CFT

correspondence of this setup for future work by others. First, we investigate the

spectrum of open strings on AdS2 branes in AdS3 in an NS-NS background using the

SL(2, R) WZW model. Then, we construct boundary states for the AdS2 branes in

the Euclideanized AdS3 background and compute the one-loop free energy of open

strings stretched between the branes.
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Chapter 1

Introduction

String theory is a leading candidate for the theory of quantum gravity. It starts

on the premise that elementary particles are derived from one-dimensional objects,

strings, rather than point-like objects as assumed in the usual quantum field theories

such as the SU(3)× SU(2)× U(1) standard model. All known string theories carry

spin-two, massless objects in its mass spectrum which are identified as gravitons. Not

only does string theory give rise to a consistent theory of quantum gravity, it leads to

other favorable outcomes such as gauge groups large enough to construct grand unified

theories (GUT’s). It turns out that the structure of string theory is highly constrained

by requiring self-consistency. As a consequence, it is well appreciated that flat space

string theory exists only in ten dimensions when one includes fermionic excitations

for supersymmetry.1

One of the major triumphs of string theory in recent years is the concrete real-

ization of the link between gauge theories and string theories. Initial hints of a link

were already presented by ’t Hooft in the early 70’s when he proposed a procedure

to perturbatively quantize SU(N) gauge theories in the large N limit [1]. It turns

out we can interpret the gauge theory in this limit as a string theory in which the

string coupling constant scales as 1/N . It was only recently in 1997 that Maldacena

proposed a concrete realization of this interpretation by relating string theory on an

1One can also define flat “bosonic” string theory without fermions in twenty-six dimensions.

However, the theory contains tachyons which signals an instability [13].
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anti-de-Sitter (AdS) space background to a conformal field theory (CFT) defined on

the boundary of AdS. Many non-trivial checks of the AdS/CFT correspondence have

appeared in the literature2.

Despite this success, most of the checks on the string theory side were done in the

supergravity approximation due to the difficulty of including Ramond-Ramond (RR)

fields in string theory computations. Recently, it has been shown that string theory

can be fully solved in the PP-wave background, which can be obtained by taking the

Penrose limit of AdS, even in the presence of RR flux [5, 6]. Shortly after this devel-

opment, Berenstein et al. [7] have put forward an exciting proposal that successfully

tests the AdS/CFT correspondence beyond the supergravity approximation. The

success of the AdS/CFT correspondence naturally gives a strong motivation to study

string theory on general anti-de-Sitter backgrounds. In this thesis, we explore some

aspects of Dp-branes living in anti-de-Sitter backgrounds and explain their relevance

in the context of the AdS/CFT correspondence.

We investigate the role of Dp-branes, which are p+1 dimensional membranes that

couple to RR fluxes, in two different types of anti-de-Sitter backgrounds: AdS5 × S5

and AdS3 × S3 ×M4 where M4 denotes a compact four-dimensional manifold such

as the four-torus T 4 or the K3 surface. String theory on AdS5 × S5 can be obtained

by taking the near-horizon limit of a stack of D3 branes in type IIB string theory [8].

Likewise, string theory on AdS3 × S3 × M4 is obtained by taking the near horizon

limit of D1-D5 brane setup compactified on R6×M4. In this thesis, we are interested

in the S-dual of this setup so that one is left with a NS-NS background, and the string

theory becomes exactly solvable as a SL(2, R) WZW model.

In the spirit of the AdS/CFT correspondence, D-brane physics on an anti-de-Sitter

space should be captured by a dual conformal field theory defined on the boundary

of AdS. Recently, Karch and Randall and DeWolfe, Freedman and Ooguri proposed

in [9, 10, 11] that the presence of a single D5-brane in AdS5 × S5 is dual to a defect

conformal field theory in which the usual N = 4 bulk SYM theory is coupled to a

2+1 dimensional conformal defect. Extending their result, we take the Penrose limit

2For a comprehensive review of the AdS/CFT correspondence, see [2, 3, 4] and references therein.
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of a single D5-brane embedded in AdS5 × S5 and propose a correspondence between

open string states ending on the D5-brane and gauge-invariant operators living on the

dual defect conformal field theory. Furthermore, we check this proposal by verifying

that the anomalous dimension of the gauge theory operators matches the light-cone

Hamiltonian of open strings ending on the D5-brane.

It has been proposed that type IIB string theory compactified on AdS3×S3×M4

is dual to a two-dimensional conformal field theory defined on the conformal boundary

of AdS3 [12]. More specifically, the low energy dynamics is given by a 1+1 dimensional

sigma model whose target space is a deformation of the symmetric product of k copies

of M4, where k depends on M4. In this thesis, we restrict our attention to the study

of a D-brane defined on AdS3×S3×M4 backgrounds. The explicit construction of the

AdS/CFT correspondence for this setup deserves further study. First, we investigate

the spectrum of open strings on AdS2 branes in AdS3 in an NS-NS background using

the SL(2, R) WZW model. Then, we construct boundary states for the AdS2 branes in

the Euclideanized AdS3 background and compute one-loop free energy of open strings

stretched between the branes. One hopes that our analysis will eventually lead to a

verification of the AdS/CFT correspondence beyond the supergravity approximation

since string theory on AdS3 carries only NS-NS fields and can be fully solved using

the SL(2, R) WZW model.

The main goal of this thesis is two-fold. First is to study the role of open strings

in the context of the AdS/CFT correspondence, and the second is to test it beyond

the supergravity approximation by restricting to space-time backgrounds, such as

the PP-wave background and the AdS3 space, in which string theory can be entirely

solved.
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Chapter 2

D-Branes in AdS5 and PP-Wave

Background

2.1 Introduction

The AdS/CFT correspondence has led to deep understandings of string theory and

field theory. However, until recently, much of the progress in this direction has been

limited to supergravity approximations due to the difficulty when one has Ramond-

Ramond background. Recently, it has been shown that string theory can be fully

solved in the pp-wave background even in the presence of RR flux [5, 6] in the light-

cone Green-Schwarz formalism. Shortly after this development, Berenstein et al. [7]

have put forward an exciting proposal that tests AdS/CFT correspondence beyond

the supergravity approximation. More specifically, they have related closed string

states in the pp-wave background with operators of the dual N = 4 SYM with large

R-charge J ∼ √
N and finite ∆− J .

In this chapter, we extend the results of [7] to the case of open strings ending

on a D5-brane in the pp-wave background. We consider a large number of D3-

branes and a single D5-brane in the near-horizon limit. The resulting system is

AdS5 × S5 with the D5-brane spanning AdS4 × S2. Recently, extending the idea

of [9, 10], De Wolfe et al. [11] have proposed that its dual field theory is a defect

conformal field theory in which the usual N = 4 bulk SYM theory is coupled to a
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three-dimensional conformal defect. This defect field theory has been further studied

by [14], demonstrating quantum conformal invariance for the non-Abelian case. By

taking the Penrose limit [15, 16] of this setup, one obtains a D5-brane in the pp-wave

background. We construct a complete list of gauge invariant operators in the defect

conformal field theory which is dual to the open string states ending on the D5-

brane. Interestingly, particular boundary conditions of open stings on the D5-brane

are encoded in symmetry breaking pattern induced by the defect and a specific form

of defect couplings in the dual field theory.

This chapter is organized as follows. In Section 2, we give a brief review of the D-

brane setup and the field content of the defect conformal field theory. In Section 3, we

discuss the Penrose limit of this background and obtain the open string spectrum. In

the last section, we propose a list of gauge invariant operators dual to the open string

states. Finally in Appendix A, we explicitly check that the anomalous dimension

of the chiral primary operators vanishes up to order g2
Y M . D-branes in PP-wave

background were also considered by many other works1. This chapter is based on the

published article [20].

2.2 Review of defect conformal field theory

In this section, we briefly review the D3-D5 brane setup of [9] and the field content of

its dual defect conformal field theory discussed in [11]. The interested reader can find

further details in the aforementioned papers. We start with the coordinate system in

which the world-volume of a stack of N D3-branes span the directions (x0, x1, x2, x9)

and a single D5-brane spans the directions (x0, x1, x2, x3, x4, x5). The D-branes sit at

the origin of their transverse coordinates. The setup is summarized in the following

table:

1Some representative samples include [17, 18, 19].
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0 1 2 3 4 5 6 7 8 9

D3 x x x x

D5 x x x x x x

The presence of the D5-brane breaks 16 space-time supersymmetries to 8 supersym-

metries and reduces the global symmetry group SO(6) to SO(3)×SO(3), where each

SO(3) acts on the 345 and 678 coordinates, respectively. In AdS/CFT correspon-

dence, one is interested in taking the near horizon limit, where the string coupling

g → 0 and N → ∞ with the product gN fixed. In this limit, we have the D5-

brane spanning AdS4 × S2 subspace of AdS5 × S5. The dual conformal field theory

of type IIB string theory in this background is N = 4 SYM theory [8] that lives on

the boundary of AdS5 parameterized by (x0, x1, x2, x9). The D5-brane introduces a

codimension one conformal defect on this boundary located at x9 = 0. An analogous

model can be considered for the AdS3 × S3 case, where an AdS2 brane introduces

a one-dimensional defect in the dual CFT [52]. Such a reasoning has been used by

[21, 22] to construct boundary states for the AdS2 branes.

It has been argued by DeWolfe et al. [11] that type IIB string theory in AdS5×S5

with a AdS4×S2 brane is dual to a defect conformal field theory, wherein a subset of

fields of d = 4, N = 4 SYM couples to a d = 3, N = 4 SU(N) fundamental hyper-

multiplet on the defect preserving SO(3, 2) conformal invariance and 8 supercharges.

Let us summarize the field content of the defect conformal field theory relevant for

our purposes. Denote the SU(2) acting on the 345 directions as SU(2)H and the one

acting on the 678 directions as SU(2)V . Then we have the usual bulk d = 4, N = 4

vector multiplet which decomposes into a d = 3, N = 4 vector multiplet and a d = 3,

N = 4 adjoint hypermultiplet. The bosonic components of the vector multiplet are

Aµ(µ = 0, 1, 2), X6, X7, X8, with the scalars transforming as a 3 of SU(2)V , while

those of hypermultiplet are A9, X
3, X4, X5, with the scalars as a 3 of SU(2)H . The

derivatives of X3, X4, X5 along the 9-direction, which is normal to the defect, are also

a part of the vector multiplet. The four adjoint d = 4 Majorana spinors of N = 4

SYM transform as a (2,2) of SU(2)H × SU(2)V , which is denoted as λim. Under the
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dimensional reduction to d = 3, they decompose into pairs of 2-component d = 3

Majorana spinors, λim
1 and λim

2 , where the former is in the vector multiplet and the

latter in the hyper multiplet. We also have a d = 3, N = 4 SU(N) fundamental

hypermultiplet on the defect. It consists of complex scalars qm transforming as a 2 of

SU(2)H and d = 3 Dirac spinors Ψi transforming as a 2 of SU(2)V . They are coupled

canonically to three-dimensional gauge fields Aµ. Hence supersymmetry will induce

couplings to the rest of the bulk vector multiplet as well, while the bulk hypermulti-

plet does not couple to the defect hypermultiplet at tree level. This fact will play a

crucial role in reproducing the open string spectrum in Section 4. The field content

of interest is summarized in the following table.

Field Spin SU(2)H SU(2)V SU(N) ∆

X3, X4, X5 0 1 0 adjoint 1

X6, X7, X8 0 0 1 adjoint 1

λim 1
2

1
2

1
2

adjoint 3
2

qm 0 1
2

0 N 1
2

q̄m 0 1
2

0 N̄ 1
2

Ψi 1
2

0 1
2

N 1

Ψ̄i 1
2

0 1
2

N̄ 1

Field theory action takes the form

S = S4 + S3, (2.1)

where S4 is the usual d = 4, N = 4 SYM part and S3 is the d = 3 defect CFT action

with defect couplings with d = 4, N = 4 SYM fields. They are derived in [11] using

the preserved d = 3, N = 4 supersymmetry and the global symmetries. The authors

of [11] convincingly argue that the chiral primary operators in the defect CFT are

q̄mσ̃(I0
mnXI1

H ...X
IJ )
H qn, (2.2)

where we define a shifted Pauli matrices σ̃I (I = 3, 4, 5) as σI−2 and (...) denotes

traceless symmetrization. These operators will turn out to be the important building
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blocks for open strings ending on the D5-brane in Section 4.

2.3 Open strings in pp-waves

Let us now consider the pp-wave limit of near-horizon limit of D3-D5 brane setup

described in the previous section. It is convenient to introduce global coordinates on

AdS5 × S5 in taking the Penrose limit. The metric takes the form

ds2 = R2
[
−dt2 cosh2 ρ + dρ2 + sinh2 ρdΩ2

3 + dψ2 cos2 ϕ + dϕ2 + sin2 ϕdΩ
′2
3

]
, (2.3)

where R4 = 4πgα
′2N . We introduce light-cone coordinates x̃± = (t± ψ)/2 and take

the Penrose limit (R →∞ with g fixed ) after rescaling coordinates as follows

x̃+ = x+, x̃− =
x−

R2
, ρ =

r

R
, θ =

y

R
. (2.4)

After rescaling x± to introduce a mass scale, µ, the metric and the Ramond-Ramond

form takes the form

ds2 = −4dx+dx− − µ2~z 2dx+2 + d~z 2, (2.5)

F+1234 = F+5678 = µ, (2.6)

where ~z = (z1, ...z8).2 The SO(2) generator, J = −i∂ψ, rotates the 34 plane in the

original D3-D5 setup. One finds that

2p− = −p+ = i∂x+ = i∂x̄+ = i(∂t + ∂ψ) = ∆− J, (2.7)

2p+ = −p− = i∂x− =
i

R2
∂x̄− =

i

R2
(∂t − ∂ψ) =

∆ + J

R2
. (2.8)

Therefore, the Penrose limit corresponds to restricting to operators with large J ∼
√

N and finite ∆− J . Notice that we are in the large ’t Hooft coupling regime since

we keep g fixed.

In the Penrose limit, the string action reduces to the following form in the light-

cone gauge

S =
1

2πα′

∫
dτ

∫ πα′p+

0
dσ

[
1

2
ż2 − 1

2
z′2 − 1

2
µ2z2 + i

(
1

2
S1∂+S1 +

1

2
S2∂−S2 − µS1Γ

1234S2

)]
,

(2.9)

2We have chosen the null geodesic in the Penrose limit to lie on the D5-brane because in the

light-cone gauge, Neumann conditions are automatically imposed on x±.
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where Si are positive chirality SO(8) spinors. One can readily see that taking the

light-cone gauge leads to Neumann boundary conditions for x+, x− in the open-string

sector since

∂σx
− =

∂τz
i∂σz

i

p+
. (2.10)

We identify (z5, z6, z7, z8) directions with the original (x5, x6, x7, x8) directions and

z4 with the orthogonal direction to D5 brane in AdS5. We label the coordinates in

the Penrose limit such that the boundary conditions for the D5-brane are given as

+ - 1 2 3 4 5 6 7 8

N N N N N D N D D D

where N and D denote Neumann and Dirichlet boundary conditions, respectively. For

Si, the appropriate boundary condition is [23]

S2 = Γ1235S1. (2.11)

The boundary condition for the fermions effectively reduces the degree of freedom by

half. Taking the Penrose limit and taking the light-cone gauge break the symmetry

group SO(3, 2)×SU(2)H×SU(2)V to SO(3)×SU(2)V . This point has been clarified

in [24]. The full open string spectrum on a D5-brane has recently been computed by

[18]. The mode expansions for the bosonic part are

zI
NN(τ, σ) = cos(µτ)zI

0 +
1

µ
sin(µτ)pI

0 + i
∞∑

n=1

1√
ωn

e−iωnτ cos

(
nσ

α′p+

)
aI

n + c.c.,(2.12)

zI
DD(τ, σ) = i

∞∑

n=1

1√
ωn

e−iωnτ sin

(
nσ

α′p+

)
aI

n + c.c., (2.13)

where we have defined

ωn =

√√√√µ2 +
n2

4(α′p+)2
. (2.14)

Important difference between the Neumann and Dirichlet expansions is that the

Dirichlet expansion does not have a zero mode. This gives rise to 4 massive bosonic
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oscillators. Similarly, eight zero modes coming from fermions form 4 massive fermionic

oscillators and their contribution to the zero point energy exactly cancel the contri-

bution from the bosonic zero modes. Due to the mass term, fermionic creation and

annihilation operators have +1/2 and −1/2 eigenvalues with respect to Γ45 respec-

tively, and both transform separately as a doublet of SU(2)V . Hence, the light cone

open string ground state should be a singlet of SU(2)V for the fermionic zero modes,

thus correctly reproducing D5-brane SYM multiplet.

The light cone Hamiltonian is given as

2p− = −p+ = Hlc =
∞∑

n=0

Nn

√√√√µ2 +
n2

4(α′p+)2
, (2.15)

where Nn denotes the total occupation number of that mode for both bosonic and

fermionic oscillators. Rewriting the Hamiltonian in variables better suited for AdS5×
S5, one notes that a typical string excitation contributes to ∆ − J = 2p− with

frequency

(∆− J)n =

√
1 +

πgNn2

J2
. (2.16)

2.4 Open strings from defect conformal field

theory

In this section, we construct a list of gauge invariant operators in the defect CFT dual

to states in the open string Hilbert space. Recall that J is the generator of rotation

on the X3-X4 plane. Define

Z ≡ 1√
2

(
X3 + iX4

)
, σZ ≡ 1√

2

(
σ̃3 + iσ̃4

)
=

1√
2

(
σ1 + iσ2

)
, (2.17)

Both the operators Z and q̄mσZ
mnq

n have ∆ = J = 1. The fact that Z belongs to

the bulk hypermultiplet will be important later. We propose that the open string
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light-cone ground state corresponds to

|0, p+〉l.c. ←→ 1

NJ/2
σZ

mnq̄m ZZ · · · · · ·Z︸ ︷︷ ︸
J−1

qn. (2.18)

As mentioned above, this is a chiral primary operator with ∆ = J found in [11].

Because it is a chiral primary, ∆ − J = 0 in the strong ’t Hooft coupling limit.

This property agrees with the fact that the light-cone ground state has zero energy.

Furthermore, it does not transform under SU(2)V as one expects from the light-cone

ground state.

For excited states, as in the closed string case [7], we insert proper operators with

∆ − J = 1 without phases for zero modes and with appropriate phases for nonzero

modes. Here we consider Neumann and Dirichlet directions separately since there are

several crucial differences.

For the zero mode excitations along the Neumann directions, we have the following

correspondence3:

a†
1

0|0, p+〉l.c. ←→ 1√
J

J∑

l=0

1

NJ/2+1
σZ

mnq̄
mZ l(D0Z)ZJ−lqn, (2.19)

a†
2

0|0, p+〉l.c. ←→ 1√
J

J∑

l=0

1

NJ/2+1
σZ

mnq̄
mZ l(D1Z)ZJ−lqn, (2.20)

a†
3

0|0, p+〉l.c. ←→ 1√
J

J∑

l=0

1

NJ/2+1
σZ

mnq̄
mZ l(D2Z)ZJ−lqn, (2.21)

a†
5

0|0, p+〉l.c. ←→ 1√
J

J∑

l=0

1

NJ/2+1
σZ

mnq̄
mZ lX5ZJ−lqn. (2.22)

The above open string states are associated with preserved symmetries of the D5

brane. They are massive however since the symmetries do not commute with the

light cone Hamiltonian. Hence, these operators are obtained from the open string

3To be rigorous, the directions X0, X1, X2, X9 are related to the original coordinates by a con-

formal transformation after wick rotation as in the radial quantization. This transformation leaves

the 9 direction orthogonal to the defect.
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ground state operator (2.18) by acting corresponding preserved symmetries in the

defect conformal field theory. For example, the fourth operator (2.22) is obtained by

acting a SU(2)H rotation on the ground state operator. The rotation also acts on the

boundary fields q̄m and qn giving rise to additional terms such as

σ̃5
mnq̄

mZJ+1qn . (2.23)

For notational simplicity, we have suppressed this term in the above list. Likewise,

the other three operators have additional boundary contributions. In the weak ’t

Hooft coupling regime, these operators have ∆ − J = 1. Since they are in the same

multiplet as the chiral primary operator (2.18), their dimensions are also protected

by supersymmetry.

For nonzero mode excitations along the Neumann directions, we insert operators

with cosine phases45

a†
1

n|0, p+〉l.c. ←→ 1√
J

J∑

l=0

√
2 cos

(
πnl
J

)

NJ/2+1
σZ

mnq̄
mZ l(D0Z)ZJ−lqn, (2.24)

a†
2

n|0, p+〉l.c. ←→ 1√
J

J∑

l=0

√
2 cos

(
πnl
J

)

NJ/2+1
σZ

mnq̄
mZ l(D1Z)ZJ−lqn, (2.25)

a†
3

n|0, p+〉l.c. ←→ 1√
J

J∑

l=0

√
2 cos

(
πnl
J

)

NJ/2+1
σZ

mnq̄
mZ l(D2Z)ZJ−lqn, (2.26)

a†
5

n|0, p+〉l.c. ←→ 1√
J

J∑

l=0

√
2 cos

(
πnl
J

)

NJ/2+1
σZ

mnq̄
mZ lX5ZJ−lqn. (2.27)

The factor of
√

2 is necessary for correct normalization of the free Feynman diagram in

the two-point function. Notice that unlike the closed string case, the operators with

single insertions are not trivially zero which reflects the fact that there is no level

4This point is also noticed in [17].
5In principle, we should assign phases including the boundary contributions. Again, for simplicity,

we suppress them since it does not affect following calculations.
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matching condition for open strings. In addition, the sign of n has no significance,

which corresponds to the fact that there is only one set of oscillators instead of both

the left and right moving sectors.

We can compute the anomalous dimension of these operators following the closed

string case discussed in the appendix of [7]. The only difference from the closed

string case is that the exponential phase has been replaced by the cosine phase.

For example, let O be the fourth operator (2.22) above. The contribution from

1
2πg

∫
d4x2Tr[X5ZX5Z̄] in the bulk action gives

〈O(x)O∗(0)〉 =
N
|x|2∆

[
1 +

1

J

J−1∑

l=0

N(2πg)8 cos

(
πnl

J

)
cos

(
πn(l + 1)

J

)
1

4π2
log |x|Λ

]

=
N
|x|2∆

[
1 +

1

J

J−1∑

l=0

N(2πg)4

{
cos

(
πn(2l + 1)

J

)
+ cos

(
πn

J

)}
1

4π2
log |x|Λ

]

=
N
|x|2∆

[
1 + N(2πg)4 cos

(
πn

J

)
1

4π2
log |x|Λ

]
, (2.28)

where N is a normalization factor and Λ is the UV cutoff scale. As argued in [7],

contributions from other Feynman diagrams cancel this contribution when n = 06.

Therefore, the full contribution can be taken into account by simply replacing cos
(

πn
J

)

with cos
(

πn
J

)
− 1. Finally, we have to the leading order

〈O(x)O∗(0)〉 =
N
|x|2∆

[
1− πgNn2

J2
log |x|Λ

]
. (2.29)

Therefore, one gets

(∆− J)n = 1 +
πgNn2

2J2
= 1 +

n2

8(α′p+)2
. (2.30)

This is exactly the first order expansion of light-cone energy of corresponding string

states.

6Refer to Appendix A which explicitly shows the anomalous dimension vanishes for the case

n = 0 since the operators are then chiral primaries.
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Now consider the directions with Dirichlet boundary conditions. As mentioned

earlier, the associated mode expansions do not have zero modes. For nonzero mode

excitations, we insert appropriate operators with sine phases as follows

a†
4

n|0, p+〉l.c. ←→ 1√
J

J∑

l=0

√
2 sin

(
πnl
J

)

NJ/2+1
σZ

mnq̄
mZ l(D9Z)ZJ−lqn, (2.31)

a†
6

n|0, p+〉l.c. ←→ 1√
J

J∑

l=0

√
2 sin

(
πnl
J

)

NJ/2+1
σZ

mnq̄
mZ lX6ZJ−lqn, (2.32)

a†
7

n|0, p+〉l.c. ←→ 1√
J

J∑

l=0

√
2 sin

(
πnl
J

)

NJ/2+1
σZ

mnq̄
mZ lX7ZJ−lqn, (2.33)

a†
8

n|0, p+〉l.c. ←→ 1√
J

J∑

l=0

√
2 sin

(
πnl
J

)

NJ/2+1
σZ

mnq̄
mZ lX8ZJ−lqn. (2.34)

Notice that the sine phases naturally kill the zero modes when n = 0. We should

ask what is the fate of the operators with insertions along the Dirichlet directions

without phase. These operators are obtained by acting on the ground state operator

with symmetries broken by the defect7. Therefore, their dimensions are not generally

protected. In fact, the operators X6, X7, X8 are in the bulk vector multiplet and cou-

ple to the defect hyper multiplet via the defect F-term to the leading order. Similarly,

the normal derivative D9Z couples to the defect hyper multiplet despite the fact that

Z itself is in the bulk hyper multiplet[11]. This boundary interaction gives rise to

large anomalous dimensions of order N/J ∼ J when one inserts operators without

phases. Hence such operators will disappear in the strong ’t Hooft coupling regime as

implied by the open string spectrum. Nevertheless, once we include the sine phase,

boundary interactions are suppressed by a factor of sin2
(

πn
J

)
∼ 1/J2, and they can

be ignored to the leading order in 1/J . Therefore, the only contribution to anomalous

dimensions comes from the bulk interaction. The computation is essentially the same

as above, and the result agrees with the open string spectrum.

7As a result, we do not have additional boundary terms unlike the case for Neumann directions.
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For fermionic excitations, we insert J = 1/2 components of λim, which is just

λ1m.8 As in the bosonic sector, the number of zero modes is half of that of non-

zero modes. Hence, we need a similar mechanism to remove possible gauge theory

operators corresponding to the 4 unphysical zero modes. The symmetry breaking

pattern and the form of boundary interactions in the defect CFT allow one to do

this consistently. Recall that the operators λ1m
1 and λ1m

2 are in the vector and hyper

multiplets respectively. Only λ1m
1 couples to the defect hypermultiplet while λ1m

2 can

be obtained from Z by acting preserved supersymmetries 9. Therefore, we associate

sine and cosine phases with λ1m
1 and λ1m

2 respectively. As in the bosonic sector, this

assignment reproduces the open string spectrum in the fermionic sector. This result

is also implied by the 8 preserved supersymmetries.

2.5 Discussion

In this chapter, we have considered a Penrose limit of type IIB string theory on

AdS5 × S5 with a D5-brane spanning AdS4 × S2 whose dual field theory is N = 4

SYM coupled to a three-dimensional conformal defect. The Penrose limit gives rise

to a D5-brane in the pp-wave background. The limit corresponds to looking at a

subsector of operators in the dual field theory with large J ∼ √
N and finite ∆ − J

in the large ’t Hooft coupling regime. We have studied perturbative open string

spectrum on this brane and constructed a complete list of gauge invariant operators

dual to the open string states from the defect conformal field theory. The peculiar

feature of defect couplings, symmetry breaking pattern in the dual field theory and

sine-cosine phases are essential to reproduce the proper boundary conditions for the

open strings.

One can also consider several M D5-branes. Then the defect hypermultiplet gets

an additional U(M) index with qm and q̄n transforming as M and M̄ of U(M) re-

8We take i to be the quantum number of J , which is a generator of Cartan subalgebra of SU(2)H .
9They also transform q and q̄ into Ψ and Ψ̄. Therefore, when we insert λ1m

2 , we have additional

boundary terms with q or q̄ replaced by Ψ or Ψ̄.
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spectively. This naturally induces Chan-Paton factors at the ends of open strings as

expected. It would be interesting to construct defect conformal field theories arising

from other supersymmetric brane intersections and study their Penrose limits. Then

we expect to find specific defect couplings and symmetry breaking patterns which

reflect the boundary conditions of the D-branes in this limit.

Lastly in Appendix A, we have explicitly shown that the anomalous dimensions

vanish for the chiral primary operators, which correspond to vaccuum states on the

string side, as expected. However, a finite piece remained which diverges like N in

the Penrose limit but not in the usual ’t Hooft limit in which g2
Y MN is kept fixed. It

has not been settled whether this subtlety can be overcome by absorbing the finite

piece in some regularization scheme or not. If not, a well-defined perturbative gauge

theory may not be defined in the Penrose limit and the full nonperturbative effects

have to be considered. It would be very interesting to resolve this issue and to see

if other open string setups, such as the one considered by [17], also possess a similar

problem.
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Chapter 3

Open Strings in AdS3

3.1 Introduction

In the previous chapter, we have considered the spectrum of a single D5-brane in

AdS5 × S5 and discussed its dual defect conformal field theory proposed in [11]. We

then took the Penrose limit of this setup and proposed gauge invariant operators dual

to open string states on the string theory side. In this chapter, we consider D-branes

in AdS3×S3×M4. For this case, a defect conformal field theory dual to the D-brane

setup has not been rigorously constructed in the lines of [11]1. From this point on,

we will be mainly interested in the D-brane setup for its own sake and leave the

AdS/CFT correspondence for future work. More specifically, we study the spectrum

of open strings confined to live on AdS2 branes embedded in AdS3.

The SL(2, R) WZW model is ubiquitous in string theory. It arises in contexts

ranging from the Liouville model in two-dimensional gravity [26, 27, 28, 29] to three-

dimensional Einstein gravity [30] to two-dimensional black holes [31] to Neveu-Schwarz

5-branes [32] and their relation to singularities in Calabi-Yau spaces [33, 34, 35]. In

addition, the SL(2, R) WZW model describes the worldsheet of a string propagating

in AdS3 with a background NS-NS B-field. The application to string theory in AdS3

is of particular interest, as it opens a window onto the AdS/CFT correspondence be-

1A first step towards this goal has been taken by [25].
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yond the gravity approximation. For all of these reasons, the SL(2, R) WZW model

has been intensively studied for more than a decade.2

Recently, a proposal was put forward [37] and checked [36] for the structure

of the Hilbert space of the model. The symmetries of the theory require that its

Hilbert space decompose as a sum of irreducible representations of the current algebra

ŜL(2, R)×ŜL(2, R). But which representations appear, and with what multiplicities?

According to the proposal of [37], the Hilbert space contains discrete representations

and continuous representations, as well as their images under spectral flow. It was

argued in [37] that the discrete representations and their spectral flow images corre-

spond to short strings in AdS3, and the continuous representations and their images

to long strings. In both cases, the integer w indexing the spectral flow was interpreted

as the winding number of the strings about the center of AdS3.

The analysis of [37] determined the spectrum of closed strings in AdS3. We ad-

dress the corresponding problem for open strings. More specifically, our setting is

critical open bosonic string theory in AdS3 ×M, with an NS-NS background, and

in the presence of a D-brane whose world-volume fills an AdS2 subspace of AdS3

and wraps some subspace of the compact space M. This AdS2 brane preserves one

linear combination of the left- and right-moving current algebras. Consequently, the

Hilbert space of open strings ending on the AdS2 brane decomposes as a sum of ir-

reducible representations of a single ŜL(2, R). Our main task will be to determine

which representations appear in the spectrum.

Some intuition may be gained from the SU(2) counterpart of our problem [38,

39, 40, 41, 42, 43, 44, 45, 46]. In the SU(2) case, the D-brane worldvolumes analo-

gous to our AdS2 branes are S2 subspaces embedded in the SU(2) group manifold

S3. These S2 branes are quantized: if the level of the WZW model is k, there are

k + 1 possible D-brane configurations, labeled by a quantum number n taking the

values n = −k/2,−k/2 + 1, . . . , k/2. If k is even, the D-brane with quantum number

n = 0 wraps the equatorial S2 within S3. In general, the D-branes associated with

increasing |n| wrap smaller and smaller 2-spheres. By the time n reaches ±k/2, the

2A representative sample of references is given in [36].
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S2 worldvolumes have degenerated to the north or south pole of S3.

The Hilbert space Hn of open strings ending on the S2 brane with quantum

number n decomposes as

Hn =
k/2−|n|⊕

j=0

Dj , (3.1)

where Dj is the irreducible representation of the current algebra ŜU(2) whose ground

states make up the spin-j representation of SU(2) [41]. It is evident from (3.1) that

the Hilbert space “loses” representations as |n| increases. For example, the Hilbert

space of open strings ending on an equatorial S2 brane is Hn=0 =
⊕k/2

j=0 Dj, which is

the holomorphic square root of the Hilbert space of closed strings in SU(2), projected

onto integral j. On the other hand, when n = ±k/2 and the D-brane has shrunk to the

north pole or the south pole, the Hilbert space is reduced to the single representation

Hn=±k/2 = Dj=0.

We seek a similarly detailed picture of the Hilbert space of AdS2 branes in AdS3.

Our method resembles that of [37]: we start by constructing classical open string

world-sheet solutions, based on which we then conjecture the form of the quantum

Hilbert space. To test the validity of this approach, and to introduce the tools we will

need for SL(2, R) in what may be a more familiar context, we begin in Section 3.2

with a semiclassical treatment of S2 branes in the SU(2) WZW model. The Hilbert

space structure that emerges from our semiclassical methods is identical to that of

(3.1), though we cannot see the quantization of the parameter n.3 Our approach

explains naturally in terms of the geometry of S3 why ŜU(2) representations are

skimmed off the Hilbert space as |n| increases.

We then return to the SL(2, R) model. Following a review in Section 3.3 of the

closed string Hilbert space, we take up the subject of AdS2 branes in Sections 3.4 and

3.5. Like the S2 branes in SU(2), the AdS2 branes in SL(2, R) are quantized. The

quanutm number they carry is essentially fundamental string charge. In a suitable

coordinate system, each AdS2 brane is located at some fixed value ψ0 of one of the

3A semiclassical argument for the quantization of n was given in [44].
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coordinates. The quantization condition is

sinh ψ0 = gsQ , (3.2)

where gs is the string coupling constant and Q is the fundamental string charge carried

by the brane. The condition (3.2) restricts ψ0 to a discrete (but now, neither finite

nor bounded!) set of allowed values. As with the S2 branes, though, our analysis is

insensitive to this quantization.

The simplest case, ψ0 = 0, is treated in Section 3.4. This case is the SL(2, R)

analogue of the equatorial S2 branes in the SU(2) model. An AdS2 brane with ψ0 = 0

is a “straight” brane cutting through the middle of AdS3. The Dirichlet boundary

condition defining such a straight brane preserves the full spectral flow symmetry of

the closed string theory. Semiclassical analysis suggests that the open string Hilbert

space is the holomorphic square root of the Hilbert space of closed strings in AdS3. A

one-loop Euclidean partition function calculation, described in Appendix D, confirms

this conjecture.

Section 3.5 is devoted to branes with ψ0 6= 0. Exact quantitative results are

unavailable here; nevertheless, we are able to arrive at a qualitative picture of the

Hilbert space.

An AdS2 brane with ψ0 6= 0 is analogous to an S2 brane with n 6= 0 in the SU(2)

model. Varying ψ0 away from zero curves the brane towards the boundary of AdS3.

Unlike the situation for S2 branes in S3, there is no loss of representations as |ψ0|
increases. This difference is traceable to a simple difference in the geometry of the

two setups.

Introducing an AdS2 brane with ψ0 6= 0 breaks half the spectral flow symmetry:

the curved-brane Dirichlet boundary condition is preserved only if the integer w

parametrizing the spectral flow is even. Nevertheless, we can construct classical short

and long string solutions—and the Hilbert space contains discrete and continuous

representations—of both odd and even w. There is an important difference, though,

between the short and long string solutions, having to do with the action on AdS3

of PT, the space-time parity and time-reversal symmetry. When acting on discrete
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representations, PT flips the parity of w. Thus it is possible to reach a discrete

representation of any given value of w from a discrete representation of any other

given w by a sequence of symmetry transformations: even w spectral flow and, if

necessary, target space PT. Consequently, the ψ0 dependence of the density of states

of the discrete representations is the same for all w. By contrast, PT maintains the

parity of w when acting on continuous representations. Thus the ψ0 dependence of

the density of states of the continuous representations is different for odd and even

w. We highlight this difference by examining the contributions of the odd and even

w sectors to the divergence structure of the one-loop Euclidean partition function.

In the limit ψ0 → ±∞, the AdS2 brane approaches the boundary of AdS3, and

the induced electric field on the brane worldvolume approaches its critical value. We

therefore conjecture that the ψ0 →∞ limit reproduces noncommutative open string

(NCOS) theory on AdS2. At the end of Section 3.5, we show that, in this limit, the

WZW Lagrangian takes a form similar to the Lagrangian of noncommutative open

strings [47, 48], appropriately modified to account for the AdS2 background. We also

take some preliminary steps towards a computation of the one-loop partition function.

Towards the completion of this work, we received the preprint [49], which contains

some overlap with certain of our results. In addition, branes in AdS3 were recently

studied from a different point of view in [50].

3.2 S2 Branes in the SU(2) WZW model

In this section, we study S2 branes in the SU(2) WZW model from a semiclassical

point of view. Our reasons for doing so are twofold. First, the SU(2) WZW model is

in several important ways similar to—and different from—the SL(2, R) model which

is our main focus, and it is useful to develop the ideas we will need later on in a

more familiar setting. Second, the SU(2) model provides a testing ground for the

semiclassical techniques that will eventually help us maneuver through the intricacies

of the SL(2, R) model. By examining classical open strings ending on S2 branes in

S3, we will be led to the picture of [41] for the structure of the quantum Hilbert space.
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Before turning to the analysis of S2 branes in S3, let us begin with some remarks

on branes in WZW models in general [51, 43]. In free bosonic open string theory

with target space coordinates Xa, the standard boundary conditions at the string

endpoints may be expressed as

∂+Xa = ±∂−Xa , (3.3)

with the plus sign indicating a Neumann condition and the minus sign a Dirichlet

condition. In the free theory, the ∂+Xa (∂−Xa) are (anti-)holomorphically conserved

currents. The simplest extension to strings propagating on group manifolds replaces

∂+Xa (∂−Xa) by the (anti)-holomorphically conserved currents Ja
R (Ja

L). In addition,

we could generalize (3.3) to the condition

∂+Xa = Ra
b∂−Xb , (3.4)

where Ra
b is a constant matrix; which directions are Neumann and which Dirichlet are

then determined by the eigenvalues of Ra
b . The corresponding operation in the WZW

model involves “twisting” the condition relating the left- and right-moving currents

by an automorphism R of the Lie algebra [51, 43],

Ja
R + Ra

bJ
b
L = 0 . (3.5)

The statement that R is a Lie algebra automorphism means that, for all Lie group

generators T a and T b, [R(T a), R(T b)] = R([T a, T b]). The automorphism R is further

required to preserve conformal invariance at the worldsheet boundary. In (3.3) we had

a choice of sign; choosing the plus sign in (3.5) ensures that the boundary conditions

preserve the affine symmetry algebra.4

The condition (3.5) is called a gluing condition, and implies the boundary con-

ditions satisfied by the target space coordinates. The gluing condition (3.5) defines

branes, whose worldvolumes within the group manifold G extend in the directions for

which the boundary conditions derived from (3.5) are Neumann. The brane worldvol-

ume containing a fixed element g ∈ G can be represented as the “twined” conjugacy

4We will not consider the more general brane configurations that can be obtained by relaxing

this requirement.
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class

Wr
g = {r(h)gh−1 : h ∈ G}, (3.6)

where r is the group automorphism induced near the identity from the Lie algebra

automorphism R.5

Now let us make this concrete for the case of branes in S3, the group manifold of

SU(2). We write the general SU(2) group element as

g = exp
(
i ~ψ · ~σ

)
, (3.7)

where

~ψ =
(
ψ − π

2

)
(sin ω cos φ, sin ω sin φ, cos ω) , (3.8)

the coordinates (ψ, ω, φ) lie in the ranges

−π

2
≤ ψ ≤ π

2
, 0 ≤ ω ≤ π , 0 ≤ φ ≤ 2π , (3.9)

and ~σ = (σ1, σ2, σ3) is the vector of Pauli matrices. Explicitly, in this parametrization,

g =




sin ψ − i cos ω cos ψ −ie−iφ cos ψ sin ω

−ieiφ cos ψ sin ω sin ψ + i cos ω cos ψ


 . (3.10)

The S3 metric in these coordinates is

ds2 = dψ2 + sin2 ψ (dω2 + sin2 ω dφ2) , (3.11)

from which it is apparent that the surfaces of constant ψ are 2-spheres embedded in

S3.

Classical string worldsheets in S3 are given by solutions of the SU(2) WZW model.

We take the worldsheet coordinates to be τ and σ. For closed strings, σ is periodic

with period 2π; for open strings, 0 ≤ σ ≤ π. It is also convenient to define the

light-cone combinations

x± = τ ± σ . (3.12)

5For X in the Lie algebra and t sufficiently small, r(etX) = etR(X).
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The WZW theory possesses three right- and left-moving currents, which may be

grouped into the matrices

JR = k ∂+gg−1 , JL = k g−1∂−g ; (3.13)

here k is the level of the WZW model. The WZW equations of motion state that

these currents are conserved, i.e., ∂−JR = ∂+JL = 0.

Taking the Lie algebra automorphism in (3.5) to be trivial leads to the gluing

condition

JL = −JR . (3.14)

The worldvolumes of the associated branes are ordinary conjugacy classes of S3: they

are the 2-spheres given by

Tr g = 2 sin ψ0 , (3.15)

for some constant ψ0 ∈ [−π/2, π/2]. The worldvolume of the S2 brane with ψ0 = 0

spans the equatorial 2-sphere of S3; as |ψ0| → π/2, the S2 branes degenerate to single

points at the north or south pole.

It is useful to introduce a second parametrization of the SU(2) group element,

g =




sin r sin θ + i cos r sin t − cos r cos t− i cos θ sin r

cos r cos t− i cos θ sin r sin r sin θ − i cos r sin t


 , (3.16)

where the coordinates (r, θ, t) satisfy

0 ≤ r ≤ π

2
, 0 ≤ θ, t ≤ 2π . (3.17)

The S3 metric in these coordinates takes the form

ds2 = cos2 r dt2 + dr2 + sin2 r dθ2 . (3.18)

One simple class of open string configurations satisfying the WZW equations of

motion is given by

t = aτ , θ = aσ + θ0 , r = r0 , (3.19)
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where 0 ≤ a < 1 and 0 ≤ θ0 ≤ π/2.6 The solutions satisfy the Dirichlet condition

defining the S2 brane, provided

sin θ0 =
sin ψ0

sin r0

and a = 1− 2θ0

π
. (3.20)

It follows that

a ≤ 1− 2|ψ0|
π

. (3.21)

That is, a has an upper bound that decreases with increasing |ψ0|. The geometry of

the S2 branes and their attached open strings is shown in Figure 3.1(a).

r

θ

 Classical
Solutions

Branes

(a)

 Classical
Solutions

Branes

(b)

ψ
1

ψ
2

ψ=

ψ=

Figure 3.1: (a) A view at fixed t of S2 branes and open strings ending on them. (b)

A view at fixed t of a system of two S2 branes with open strings.

Let us compare the result of our classical analysis with the known structure of

the quantum Hilbert space of open strings ending on S2 branes. The Hilbert space

6This range for θ0 assumes that ψ0 > 0. If ψ0 < 0, the proper range for θ0 is π ≤ θ0 ≤ 3π/2.

The bound 0 ≤ a < 1 will be explained in greater detail in the analogous SL(2, R) context in

Section 3.5.1; essentially, any solution with arbitrary a can be mapped by spectral flow to a solution

satisfying the bound. One important difference between the SL(2, R) and SU(2) models, though, is

that, in the quantum theory of the SL(2, R) model, spectral flow generates new representations of

the current algebra, whereas in the SU(2) model, it does not.
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is a sum of representations of ŜU(2); the spin j of a representation appearing in the

sum is related to the parameter a of the associated classical solution by j = ka/2.

Although the analysis we have just presented is not refined enough to see it, ψ0 is

quantized [44] as ψ0 = πn
k

, where n = −k/2,−k/2 + 1, . . . , k/2. Thus, for given ψ0,

the bound (3.21) on a translates into a bound

j ≤ k

2
− |n| (3.22)

on the spins of the allowed representations in the Hilbert space. This bound matches

the conformal field theory analysis of [41], in which the Hilbert space Hn of open

strings ending on the brane labeled by n was shown to be

Hn =
k/2⊕

j=0

N j
ααDj , (3.23)

where α = 1
2
(n + k

2
), Dj is the irreducible spin-j highest weight representation of

ŜU(2), and the fusion coefficients are given by

N j
αβ =





1 if |α− β| ≤ j ≤ min{α + β, k − α− β}
and 2(j + α + β) ≡ 0 mod 2 ,

0 otherwise .

(3.24)

A priori, the sum over j is to be taken in half-integer steps (i.e., j = 0, 1/2, . . . , k/2).

However, the fusion coefficient N j
αα is nonzero only if j is an integer. The equatorial

S2 brane has α = k/4; the branes at the poles have α = 0 and α = k/2. For all α,

the sum cuts off at min (2α, k − 2α), which is readily seen to be equivalent to the

cutoff (3.22). Thus (3.23) is identical to (3.1). Our classical methods have reproduced

information about the quantum Hilbert space.

The restriction to integral j in the sum (3.23) (or (3.1)) can be simply understood,

at least for equatorial S2 branes. In addition to the stringy solutions (3.19), the

equatorial S2 brane also admits the particle-like geodesic solutions

t = aτ , r = 0 . (3.25)
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Let us consider the k → ∞ limit of the theory. In this limit, if we expand around

geodesic solutions like (3.25), the WZW model reduces to quantum mechanics on S2.

Its Hilbert space is therefore the space L2(S2) of square-integrable functions on S2.

This space decomposes into spherical harmonics, which correspond to representations

of integral spin only.

We conclude this section with a slight generalization. Let us consider a system

of two S2 branes, located at ψ = ψ1 = πn1/k and ψ = ψ2 = πn2/k; without loss

of generality, we may assume that ψ1 > 0 and |ψ1| > |ψ2|, as shown in Figure 1(b).

The conformal field theory analysis of (3.23) and the expression (3.24) for the fusion

coefficients tell us that the Hilbert space of strings stretching from the brane at ψ1

to the brane at ψ2 has the decomposition

Hn1,n2 =

1
2
(k−n1−n2)⊕

j= 1
2
|n1−n2|

Dj . (3.26)

We wish to reproduce the bound on j by semiclassical methods. We consider classical

solutions of the form (3.19), subject to the Dirichlet boundary conditions

sin θ0 sin r0 = sin ψ1 , (3.27)

sin(aπ + θ0) sin r0 = sin ψ2 . (3.28)

An argument like the one in the single-brane example shows that now a is bounded

both above and below,

|ψ1 − ψ2|
π

≤ a ≤ 1− ψ1 + ψ2

π
. (3.29)

The solutions saturating the inequalities are those with r0 = π/2. Since j = ka/2,

the bound on a translates to

1

2
|n1 − n2| ≤ j ≤ 1

2
(k − n1 − n2) , (3.30)

which matches the conformal field theory result.
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3.3 Closed strings in AdS3

Our search in Sections 3.4 and 3.5 for solutions of the SL(2, R) WZW model corre-

sponding to open strings ending on branes will be guided by the known properties of

closed string solutions. In this section, we summarize the analysis of [37] of closed

bosonic string theory in AdS3. Our review has two parts. First, we survey the classical

closed string solutions of the SL(2, R) WZW model, beginning with simple geodesic

solutions and building up more complicated solutions by acting with global isometries

and spectral flow. Next, we sketch the structure of the quantum Hilbert space.

3.3.1 Classical solutions

The space AdS3 is the group manifold of SL(2, R). If we think of AdS3 (with unit

anti-de Sitter radius) as the hyperboloid

(X0)2 − (X1)2 − (X2)2 + (X3)2 = 1 (3.31)

embedded in R2,2, then a point in AdS3 is given by the SL(2, R) matrix

g =




X0 + X1 X2 + X3

X2 −X3 X0 −X1


 . (3.32)

Alternatively, we may parametrize g in terms of the global coordinates (ρ, θ, t) defined

in Appendix C,

g =




cos t cosh ρ− cos θ sinh ρ sin t cosh ρ + sin θ sinh ρ

− sin t cosh ρ + sin θ sinh ρ cos t cosh ρ + cos θ sinh ρ


 . (3.33)

The AdS3 metric in these coordinates is

ds2 = − cosh2ρ dt2 + dρ2 + sinh2ρ dθ2 . (3.34)

The parametrization (3.33) is the SL(2, R) counterpart of the SU(2) parametrization

(3.16).
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Like the SU(2) theory, the SL(2, R) theory possesses three conserved right- and

left-moving currents,

Ja
R(x+) = kTr

(
T a∂+gg−1

)
, Ja

L(x−) = kTr
(
T a∗g−1∂−g

)
(a = +,−, 3) .

(3.35)

Here k is again the level of the WZW model, and the T a, given in terms of the Pauli

matrices by

T 3 = − i

2
σ2 , T± =

1

2
(σ3 ± iσ1) , (3.36)

form a basis of the Lie algebra of SL(2, R). Sometimes we write the currents in the

matrix form

JR = k∂+gg−1 , JL = kg−1∂−g . (3.37)

The general solution g of the WZW model can be factored as a product of left-

moving and right-moving parts,

g(σ, τ) = g+(x+)g−(x−) , (3.38)

but, as we have said, it is useful to begin by studying geodesic solutions, which depend

only on the time coordinate τ .

The simplest timelike geodesic solution is

g0 =




cos ατ sin ατ

− sin ατ cos ατ


 , (3.39)

describing a point particle at the center of AdS3,

t = ατ , ρ = 0 . (3.40)

The most general timelike geodesic can be obtained by acting on (3.39) with the

global isometry group SL(2, R)× SL(2, R) of the WZW model. Such a solution has

the form

g = U




cos ατ sin ατ

− sin ατ cos ατ


 V, (3.41)
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where U and V are constant SL(2, R) elements. The parameter α in (3.39) and (3.41)

is related through the Virasoro constraints to the conformal weight h of the sigma

model on the compact space M. The conserved currents of the solution (3.41) are

J3
L = J3

R =
kα

2
, J±L = J±R = 0 , (3.42)

and the energy, defined as the sum of the zero modes of J3
L and J3

R, is kα.

The construction of spacelike geodesics is similar. The simplest spacelike geodesic

solution

g0 =




eατ 0

0 e−ατ


 (3.43)

describes a straight line through the spacelike section t = 0 of AdS3. The most general

spacelike geodesic solution is

g = Ug0V , (3.44)

where, again, U and V are constant SL(2, R) isometries. Its currents are

J3
L = J3

R = 0 , J±L = J±R =
kα

2
, (3.45)

and its energy is zero.

Given a classical solution g̃(σ, τ) = g̃+(x+)g̃−(x−), we can generate a new solution

g(σ, τ) = g+(x+)g−(x−) by spectral flow, which involves setting

g+ = e
i
2
wx+σ2

g̃+ , g− = g̃−e
i
2
wx−σ2

, (3.46)

for some integer w. Spectral flow acts on the AdS3 global coordinates by

ρ → ρ , t → t + wτ , θ → θ + wσ , (3.47)

and on the SL(2, R) currents by

J3
R = J̃3

R +
kw

2
, J±R = J̃±R e∓iwx+

, (3.48)

J3
L = J̃3

L +
kw

2
, J±L = J̃±L e∓iwx− ; (3.49)
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or in terms of Fourier modes,

J3
R,L n = J̃3

R,L n +
kw

2
δn,0 , J±R,L n = J̃±R,L n∓w . (3.50)

Timelike geodesics are mapped under spectral flow to short string solutions, which

expand and contract periodically in global time and wind w times around the center

of AdS3. Spacelike geodesics are mapped to long string solutions, which start in the

infinite global-time past as circular strings of infinite radius wound w times near the

boundary of AdS3, collapse (to a point, if there is no angular momentum) as t → 0,

and expand again as t →∞ to wound circular strings at the boundary. The solutions

constructed in this way have energies

E =
kw

2
+

1

w

(
∓kα2

2
+ 2h

)
, (3.51)

where the minus sign corresponds to short strings and the plus sign to long strings.

3.3.2 The quantum Hilbert space

We now recall the structure of the quantum Hilbert space of the SL(2, R) WZW

model. The Hilbert space decomposes as the sum of discrete representations of the

ŜL(2, R) current algebra, continuous representations of the current algebra, and the

images of these representations under spectral flow. Let us briefly review what this

means.

The zero modes Ja
0 of the generators Ja of the (left- or right-moving) ŜL(2, R)

current algebra form a closed subalgebra, which generates the group SL(2, R). Among

the unitary representations of this SL(2, R) are the principal discrete highest- and

lowest-weight representations, which are realized in the Hilbert space

D±
j = {|j; m〉 : m = ±j,±(j + 1),±(j + 2), . . .} . (3.52)

The states |j; m〉 are simultaneous eigenstates of L0, the zeroth Virasoro generator

obtained from the Sugawara construction, and J3
0 , the SL(2, R) Cartan generator,

with eigenvalues −j(j − 1) and m. These representations are unitary if j > 0. The

representations D̂±
j of the ŜL(2, R) current algebra are constructed by considering



32
the states in D±

j as primary states for the action of Ja
n. That is, the states |j; m〉 are

taken to be annihilated by the Ja
n with n > 0, while the Ja

n with n < 0 are understood

as creation operators, whose repeated action on the states |j; m〉 yields states that fill

out the representations D̂±
j .

Another unitary representation of SL(2, R) is the continuous representation, re-

alized in the Hilbert space

Cα
j = {|j, α; m〉 : m = α, α± 1, α± 2, . . .} , (3.53)

with 0 ≤ α < 1 and j = 1/2 + is, for real s. Again, the states in |j, α; m〉 are

simultaneous eigenstates of L0 and J3
0 , with eigenvalues −j(j − 1) and m. The

representation Cα
j of SL(2, R) gives rise to a representation Ĉα

j of the current algebra

in the manner described above for the discrete representations.

As we have just noted, the representations D̂±
j and Ĉα

j are described by the action

of the current algebra modes Ja
n on their constituent states. Spectral flow by w units

alters the modes Ja
n, as noted in (3.50), and so maps the representations D̂±

j and Ĉα
j

into new representations D̂±,w
j and Ĉα,w

j . The closed string Hilbert space was proposed

in [37] to be the direct sum of D̂+,w
j ⊗ D̂+,w

j and Ĉα,w
j ⊗ Ĉα,w

j , the two factors in each

tensor product accounting for left- and right-moving states. The permissible values of

j for the discrete representations are bounded by 1
2

< j < k−1
2

; note that, before the

physical state conditions are imposed, j may be any real number in this range. The

states in D̂+,w
j ⊗D̂+,w

j correspond to wound short strings and their excitations,7 while

the states in Cα,w
j ⊗ Cα,w

j correspond to wound long strings and their excitations.

The spectra of both kinds of states was computed in [37] and was checked by an

independent calculation in [36].

It is important to keep clear the distinction between the Hilbert space of the

WZW model and the Hilbert space of the physical string theory. The (AdS3 part of

the) latter is the subspace of the former defined by the Virasoro constraints. Spectral

flow is a symmetry of the WZW model, but does not commute with the Virasoro

7The representations D̂+,w
j and D̂−,w+1

k
2−j

, may be identified. This accounts for the exclusion of

D̂−,w
j from the list of allowed representations: it would be redundant to include it.
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constraints, and is therefore not realized explicitly in the physical string Hilbert space.

While in our analysis of classical solutions above and in subsequent sections, we have

freely borrowed and will continue to borrow the intuitions (and language) of strings,

we should bear in mind that our conclusions really pertain to the Hilbert space of the

WZW model before the imposition of the Virasoro constraints.

3.4 The straight AdS2 Brane

Having reviewed closed string theory in AdS3, we now add branes to the game. We

said in Section 3.2 that the brane worldvolumes in group manifolds can be thought

of as twined conjugacy classes of the form

Wr
g = {r(h)gh−1 : h ∈ G} , (3.54)

where r is a group automorphism. In the case G = AdS3, it was shown by Bachas

and Petropoulos [52] that the only physically reasonable branes are those for which

r is the nontrivial outer automorphism that acts on a group element h, parametrized

as a 2× 2 matrix as in (3.33), by

r(h) = ω−1
0 hω0 , with ω0 =




0 1

1 0


 . (3.55)

For this choice of r, the twined conjugacy classWr
g is equivalently characterized as the

set of g′ ∈ SL(2, R) such that Tr (ω0g
′) = Tr (ω0g). The worldvolumes of the resulting

branes are two-dimensional, since they are parametrized by arbitrary SL(2, R) group

elements subject to the single condition

Tr (ω0g
′) = 2 sinh ψ0 , (3.56)

where sinh ψ0 is a constant whose physical meaning will become apparent shortly.

Upon tracing through the procedure for extracting boundary conditions for coordi-

nates from the gluing conditions for currents, one indeed finds (3.56) as the Dirichlet
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condition for the coordinate transverse to the worldvolume. The gluing conditions

for the coordinates parallel to the brane worldvolume take the form

JL = −ω0JRω0 , (3.57)

and can be shown to be equivalent to the appropriate Neumann conditions for the

SL(2, R) WZW model action.

Thinking of AdS3 as the hyperboloid (3.31) in four-dimensional space, (3.64) be-

comes the statement X2 = sinh ψ0. Subject to this condition, (3.31) becomes

(X0)2 − (X1)2 + (X3)2 = 1 + sinh2 ψ0 , (3.58)

which is the equation of two-dimensional anti-de Sitter space. Thus the worldvolume

geometry of the physical branes of [52] is that of AdS2 embedded in AdS3. Analysis

of the Dirac-Born-Infeld action of these AdS2 branes shows that they consist of one

D-string bound to some number of fundamental strings. The fundamental string

charge Q is proportional to the constant sinh ψ0; it follows that ψ0 is quantized. The

quantization condition is

sinh ψ0 = gsQ , (3.59)

where gs is the string coupling constant.

In dealing with AdS2 branes, it is convenient to switch to a coordinate system in

which the Dirichlet condition is simple. The AdS2 coordinates (ψ, ω, t) are defined in

terms of the global coordinates by

sinh ψ = sin θ sinh ρ , cosh ψ sinh ω = − cos θ sinh ρ , t = t , (3.60)

and in terms of the embedding hyperboloid coordinates by

X1 = cosh ψ sinh ω , X2 = sinh ψ , X0 + iX3 = cosh ψ cosh ωeit . (3.61)

The AdS3 metric in AdS2 coordinates is

ds2 = dψ2 + cosh2 ψ(− cosh2 ωdt2 + dω2) . (3.62)

The AdS2 coordinates are the SL(2, R) analogue of the coordinate system given

in (3.7) for SU(2). In AdS2 coordinates, the Dirichlet condition giving the location
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of the AdS2 brane becomes ψ = ψ0. Some AdS2 branes in AdS3 are shown in Figure

3.2.

θ

Branes

ρ
ψ=0

Figure 3.2: AdS2 branes in AdS3. The view is of the (ρ, θ) plane at fixed global time

t. The branes are surfaces of constant ψ.

In understanding AdS2 branes and the strings that end on them, there is a crucial

distinction to be made between the “straight” branes located at ψ = ψ0 = 0 and the

“curved” branes located at ψ = ψ0 6= 0. In this section, we study straight branes,

following the paradigm of Section 3.3. First we construct classical geodesic solutions

confined to the brane. Next we investigate how spectral flow generates classical string

solutions that satisfy the appropriate boundary conditions. This leads to a proposal

for the open string spectrum. We conclude by describing a check of this proposal by

an explicit partition function calculation modeled on that of [36].

3.4.1 Classical solutions

Our experience with closed strings suggests that looking at geodesics might be a

promising starting point for the study of open string solutions. A σ-independent so-

lution that satisfies the Dirichlet condition necessarily lies entirely within the brane.
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The timelike and spacelike geodesics (3.39) and (3.43) obviously satisfy this require-

ment. In the closed string case, we built the most general timelike and spacelike

geodesic solutions from these basic ones by acting with the global isometry group

SL(2, R)× SL(2, R). In the presence of an AdS2 brane, however, the only permitted

isometries are those preserving the gluing conditions

JL = −ω0JRω0 (3.63)

and leaving fixed the brane worldvolume—or equivalently, preserving the Dirichlet

condition

Tr (ω0g) = 2 sinh ψ0 . (3.64)

The isometry g → UgV transforms the currents according to

JR → UJRU−1 , JL → V −1JLV . (3.65)

The conditions for this isometry to preserve (3.63) and (3.64) are therefore

V −1JLV = −ω0UJRU−1ω0 , (3.66)

Tr (ω0UgV ) = Tr (ω0g) , (3.67)

which are satisfied if and only if V = ω0U
−1ω0. Thus the boundary conditions imposed

by the AdS2 brane break the global isometry group from SL(2, R) × SL(2, R) to a

single SL(2, R). This is natural: the two factors of SL(2, R) in closed string theory

correspond to independent transformations of left- and right-moving modes, whereas

the left- and right-moving modes of open strings are related by the gluing conditions

at the worldsheet boundary. Our choice of gluing conditions guarantees that the

SL(2, R) global symmetry is naturally promoted to an affine symmetry, just as in the

closed string case.

The preceding analysis of the breaking of the isometry group holds for straight

branes and curved branes alike: nothing in the argument depended on the value

of ψ0.
8 One difference between the straight and curved cases is that, as we have

8If ψ0 = 0, the most general solution of (3.66) and (3.67) is V = ±ω0U
−1ω0, but the counting of

parameters remains the same.
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noted, straight branes contain particle-like solutions such as the ones shown in Figure

3.3. Curved branes, on the other hand, do not. When we generate the open string

solutions associated with curved branes, we will need a different starting point. We

will explore this in more detail in Section 3.5.

(a) (b)

Figure 3.3: (a) A timelike geodesic and (b) a spacelike geodesic confined to the brane

at ψ0 = 0.

Spectral flow generates new open string solutions from old ones. In the closed

string case, the parameter w was required to be an integer, to maintain the periodicity

of the closed strings. In the presence of an AdS2 brane, w must again be integer,

but for a different reason: to ensure compatibility of spectral flow with the gluing

conditions (3.63).

Is the Dirichlet condition compatible with spectral flow? Suppose we are given a

solution satisfying the boundary condition

sinh ψ ≡ sin θ sinh ρ = sinh ψ0 (3.68)

at σ = 0 and σ = π. If we act with w units of spectral flow, we obtain a new solution

characterized by

sinh ψnew = sin θ sinh ρ = sinh ψ0 at σ = 0 ,
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sinh ψnew = sin(θ + πw) sin ρ = ± sin θ sinh ρ = ± sinh ψ0 at σ = π ,(3.69)

where the sign is plus if w is even and minus if w is odd. For a straight AdS2 brane,

ψ0 = 0, and so the Dirichlet condition imposes no added restrictions on w. On the

other hand, spectral flow is a symmetry of curved branes only for even w.9 This is

a key difference between straight and curved branes, and much of Section 3.5 will be

devoted to its consequences.

(a) (b)

Figure 3.4: (a) An open short string classical solution corresponding to w = 1 spec-

tral flowed timelike geodesic solutions. (b) A classical open long string solution cor-

responding to w = 1 spectral flowed spacelike geodesic.

Spectral flow applied to timelike geodesics yields short strings. If w is odd, these

are wound open strings that contract and expand periodically in t, and whose end-

points are symmetric with respect to the central axis ρ = 0 of AdS3. If w is even,

the string endpoints coincide, giving wound circular strings. Spacelike geodesics are

mapped by spectral flow to long strings. Examples of strings of both kinds with w = 1

are shown in Figure 3.4. A calculation just like the one sketched in Section 3.3 shows

9If w is odd, then a string whose σ = 0 endpoint lies on a brane at ψ = ψ0 will end up at σ = π

with ψ = −ψ0. This will come in handy in Section 3.5.
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the space-time energy of these solutions to be

E = J3
0 =

kw

4
+

1

w

(
∓kα2

4
+ h

)
, (3.70)

where the minus sign is for short strings and the plus sign for long strings. The

energy of these open strings is precisely half the energy (3.51) of their closed string

counterparts.

3.4.2 The quantum Hilbert space

The classical solutions describing short and long strings ending on the straight AdS2

brane are in a sense “exactly half” of the corresponding closed string solutions: left

movers and right movers are related by the gluing conditions, and the energy of

the resulting strings is half that of the closed strings. As in the closed string case,

discrete representations ought to be associated with short strings and continuous

representations with long strings. We therefore propose that the quantum Hilbert

space is the direct sum of D̂+,w
j and Ĉα,w

j , summed over all integers w, and with 1
2

<

j < k−1
2

for the discrete representations and j = 1
2
+ is with s ∈ R for the continuous

representations. Our proposed open string spectrum is thus the holomorphic square

root of the closed string spectrum found in [37].

In Appendix D, we verify this conjecture by an independent calculation of the

spectrum. We compute the finite-temperature partition function in Euclidean AdS3

and interpret the result in terms of the free energy, summed over string states. This

enables us to read off the spectrum of open string states. The result is in exact

agreement with the conjecture.

3.5 The curved AdS2 brane

We now consider open strings constrained to end on a curved AdS2 brane located

at ψ = ψ0 6= 0; without loss of generality, we may assume ψ0 > 0. Our method

is the same as in the closed string and straight brane cases: we begin in Section

3.5.1 with the study of classical solutions and their symmetries, and then in Section
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3.5.2 conjecture the structure of the quantum Hilbert space. Several elements of the

story are different for curved branes. First, there are no classical geodesic solutions.

Second, and more seriously, spectral flow is a symmetry of the AdS2 brane only if the

winding number w is even. Generating solutions with odd winding number thus calls

for new tricks, which we describe in detail.

As we explain in Section 3.5.2, the chief consequence of these differences is that,

in the Hilbert space of the WZW model, the density of states of the odd winding

continuous representations of ŜL(2, R) behaves differently from the density of states

of the even winding continuous representations as a function of the brane position

ψ0. Both kinds of representations are present in the spectrum for all ψ0, though, as

is the entire set of discrete representations. This is to be contrasted with the SU(2)

WZW model, whose Hilbert space in the presence of S2 branes loses representations

as ψ0 increases.

In Section 3.5.3 we present a generalization to a system with two curved AdS2

branes. In Section 3.5.4 we study the limit ψ0 → ∞ in which the AdS2 brane

becomes highly curved. In this limit, the WZW model Lagrangian resembles that of

noncommutative open string theory in AdS2.

3.5.1 Classical solutions

The program we followed in the last section began by constructing σ-independent

classical solutions lying within the brane. If ψ0 > 0, no such solutions exist. For

suppose g = g(τ) is a (non-constant) solution. It must satisfy the Dirichlet condition

Tr (ω0g) = 2 sinh ψ0, as well as the gluing condition (3.63), which for the case at hand

reads

g−1∂τg = −ω0∂τgg−1ω0 , (3.71)

as ∂+g = ∂−g = 1
2
∂τg(τ). Multiplying on the right by (∂τg)−1, inverting, and taking

the trace gives Tr (gω0) = −Tr (ω0g), and thus Tr (gω0) = 0, in contradiction with

the Dirichlet condition.

Though there are no particle-like solutions, we are led to simple string solutions by
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the following physical argument. Imagine starting with the timelike geodesic (3.40)

in a flat AdS2 brane and then increasing ψ0 by turning on a background electric field

on the brane. The timelike geodesic on the brane can be thought of as an infinitely

small string, whose endpoints are equally and oppositely charged with respect to the

background electric field. As ψ0 increases, the string must stretch so that its tension

will balance the forces due to the electric field. This picture suggests the basic timelike

string solution shown in Figure 3.5(a),

t = ατ , θ = ασ + θ0 , ρ = ρ0 , (3.72)

with

θ0 =
π

2
(1− α) , sinh ρ0 =

sinh ψ0

sin θ0

, (3.73)

and 0 ≤ α < 1. At fixed time, this solution describes a string curved in a circular

(a) (b)

Figure 3.5: The basic (a) “timelike” and (b) “spacelike” string solutions ending on a

curved AdS2 brane.

arc and symmetric about θ = π/2. It is easily checked that (3.72) solves the equation

of motion. Its currents are the same as those of (3.40), and so it obeys (3.63). The

choice of θ0 and ρ0 ensure that (3.64) is satisfied as well.10

10The most trivial solution imaginable is a “pointlike instanton”: a solution with t, ρ, and θ all
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The solution (3.72) is the SL(2, R) analogue of the SU(2) solution (3.19) for

open strings ending on S2 branes. An important difference between the two is that

the range of α in (3.72) is 0 ≤ α < 1, regardless of the value of ψ0, whereas the

corresponding parameter a in the SU(2) case is subject to the upper bound (3.21),

which depends on ψ0. This bound restricts the allowed representations in the SU(2)

WZW model Hilbert space. We will argue in Section 3.5.2 that the absence of such

a bound for AdS2 branes implies that there is no similar restriction on the allowed

representations in the SL(2, R) model Hilbert space. Our classical analysis reveals

this difference between the two models to be entirely geometric: in the SL(2, R)

model, every AdS2 brane stretches from θ = 0 to θ = π, while in the SU(2) case, the

range of θ, and hence of a, depends on ψ0.

The basic spacelike solution is given in matrix form as

g =



√

1 + β2 eατ β eα(σ−π
2
)

β e−α(σ−π
2
)

√
1 + β2 e−ατ


 , (3.74)

and in global coordinates as

tan t =
β sinh(α(σ − π/2))√

1 + β2 cosh ατ
,

tan θ =
−β cosh(α(σ − π/2))√

1 + β2 sinh ατ
,

cosh2 ρ = (1 + β2) cosh2 ατ + β2 sinh2(α(σ − π/2)) , (3.75)

where β = sinh ψ0/ cosh π
2
α.11 This solution, depicted in Figure 3.5(b), is a stringy

generalization of the spacelike geodesic (3.43). It begins in the infinite worldsheet

constant. It is amusing to observe that (3.72) may be obtained as the image under spectral flow

by α units of the pointlike instanton solution with t = 0, θ = θ0, and ρ = ρ0. Of course, α is, in

general, fractional, and so the notion of spectral flow here is purely formal.
11One way to derive this solution is to assume first that ψ0 is small and perturb the spacelike

geodesic (3.43) accordingly. From the lowest-order corrections to (3.43) it is possible to guess the

form of (3.74), and to check that it is a valid solution even if ψ0 is not small. The basic timelike

solution (3.72) may be derived from the timelike geodesic (3.39) by similar methods.
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past τ = −∞ at t = 0 and at the edge θ = 0, ρ = ∞ of the brane, and arrives in the

infinite worldsheet future τ = +∞ at the other edge θ = π, ρ = ∞, again at global

time t = 0. Its excursion from the brane in the worldsheet interim is governed by α.

When α is small, the string stays near the brane; as α increases, it strays farther and

farther away. A routine calculation shows that the currents of (3.74) are the same as

those of (3.43).

Having obtained the basic timelike and spacelike solutions, our next task is to

generate new solutions by acting with isometries and spectral flow. As we commented

in Section 3.4, the allowed isometries are the same in the presence of curved AdS2

branes as with straight branes. We have already seen, though, that spectral flow is

different. If w is even, spectral flow is still a symmetry of the curved brane, and we

can apply it to (3.72) and (3.74) without incident. For example, spectral flow applied

to (3.72) gives

t = (α + w)τ , θ = (α + w)σ + θ0 , ρ = ρ0 . (3.76)

If w is even, this solution describes a cylindrical worldsheet making w/2 (not w!)

complete cycles around the center of AdS3, and whose endpoints coincide with the

endpoints of the original solution (3.72).

Applying an even amount of spectral flow to (3.74) gives a long string-like solution.

Its properties are most easily seen by replacing t → t + wτ , θ → θ + wσ in the

coordinate description (3.75). It begins in the infinite space-time past as a circular

string of infinite radius with its endpoints coincident at θ = 0. Next it collapses to

finite radius. Its endpoints become separated in t and move in towards the center

(θ = π/2) of the brane. Finally, the string re-expands towards infinite radius, where

its endpoints reconverge at θ = π.

How shall we generate solutions with odd w? Our strategy will be different in the

timelike and spacelike cases. The construction in the timelike case makes use of the

discrete target space symmetry

PT : g → ω0gω0 . (3.77)
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Calling this symmetry PT is justified by its action on the global coordinates,

t → −t , θ → π − θ , (3.78)

which reveals it as the composition of a parity and a time-reversal transformation.

The PT symmetry acts on the currents by

JR,L → ω0JR,Lω0 , (3.79)

and hence on their modes by

J3
R,L n → −J3

R,L n , J±R,L n → −J∓R,L n . (3.80)

These expressions make it clear that PT is an automorphism of the current algebra

and a symmetry of the WZW model. Moreover, it preserves the gluing condition

(3.63) and the Dirichlet condition (3.64).

The PT symmetry maps short strings of winding number w to short strings of

winding number −w − 1. To see this in a simple example, consider the closed string

or straight brane timelike geodesic (3.40). Acting with w units of spectral flow gives

the solution

t = (α + w)τ ; (3.81)

thus, without loss of generality, we may take 0 ≤ α < 1 in (3.40), and regard a

solution t = ατ with general α as the image of the solution with 0 ≤ α < 1 under

a suitable amount of spectral flow. Now if we apply PT to (3.81), we get a solution

with

t = −(α + w)τ = (α′ + (−w − 1))τ , (3.82)

where α′ = 1− α satisfies 0 ≤ α′ < 1. By our previous logic, this is to be thought of

as the image of (3.40) with parameter α′ under −w − 1 units of spectral flow.

Our course for finding short string solutions with odd w is now clear: we simply

act with PT on a solution with w = 0 (e.g., the image under an isometry of the

basic timelike solution (3.72)) to reach the w = −1 sector, and then act on the result

with w + 1 units of spectral flow, which is a symmetry because w + 1 is even. As an
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example, if we implement this procedure on (3.72), we find the solution

t = (1− α + w)τ , θ = (1− α + w)σ + π − θ0 , ρ = ρ0 . (3.83)

Figure 3.6 shows a more complicated open short string solution with w = 1.

Figure 3.6: A classical open w = 1 short string solution.

This trick fails for long string solutions. An argument like the one given above

demonstrates that PT maps long string solutions with winding number w to long

strings with winding number −w, and therefore does not mix odd and even winding

sectors. Instead, to construct spacelike solutions with odd w, we recall that spectral

flow leaves fixed the σ = 0 endpoint of a string ending at ψ = ψ0, but maps the σ = π

endpoint to ψ = −ψ0. This prompts us to introduce a second AdS2 brane located at

ψ = −ψ0. If we can find an unwound spacelike string with one endpoint on the brane

at ψ0 and the other endpoint on the brane at −ψ0, then the action of spectral flow

with odd w will produce a string with odd winding number, both of whose endpoints

lie on the ψ0 brane.

Given (3.74), it is relatively straightforward to find unwound spacelike strings

stretching from the ψ0 brane to the −ψ0 brane. There are two distinct classes of

solutions, depending on the value of α. Let β = sinh ψ0/ sinh π
2
α. For |β| < 1, we
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have the solution

g =



√

1− β2 eατ −β eα(σ−π
2
)

β e−α(σ−π
2
)

√
1− β2 e−ατ


 . (3.84)

For |β| > 1,

g =



√

β2 − 1 eατ −β eα(σ−π
2
)

β e−α(σ−π
2
) −√β2 − 1 e−ατ


 . (3.85)

What do these solutions look like? The two branes meet at the two lines θ = 0

and θ = π on the boundary ρ = ∞ of AdS3. The solution with |β| < 1 describes a

string that begins in the infinite worldsheet past at the point t = 0 on one of these

lines (θ = π if β is positive), fills out a spacelike surface between the two branes,

and contracts in the infinite worldsheet future to the point t = 0 on the other line.

The solution with |β| > 1 describes a string that begins at a point on one of the

lines (θ = π if β is positive), fills out a timelike surface between the two branes with

minimum radius cosh−1 β, and returns after an interval π of target space time to a

point on the same line. The two cases are sketched in Figure 3.7. The solution in the

borderline case |β| = 1,

g =




0 −eα(σ−π
2
)

e−α(σ−π
2
) 0


 , (3.86)

stretches between the centers θ = π/2 of the two branes at global time t = π/2.

Acting with an odd amount w of spectral flow on these strings gives long string

solutions whose endpoints both lie on the brane at ψ = ψ0. The image of (3.84)

under spectral flow begins in the infinite space-time past as a string of infinite radius

whose two endpoints lie on opposite edges of the brane. With increasing t, the string

contracts until, at t = 0, the endpoints cross at the center θ = π/2 of the brane.

Afterwards, the string expands until t = ∞, when the endpoints again reach opposite

edges of the brane. At t = ∞, each endpoint is at the edge opposite to the edge at
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(a) (b)

Figure 3.7: Strings stretched between the branes at ψ = +ψ0 and ψ = −ψ0, with (a)

|β| < 1 and (b) |β| > 1.

which it began at t = −∞. By contrast, in the flowed solution with |β| > 1, the

endpoints do not have enough energy to reach the center of the AdS2 brane, and

return at t = ∞ to the edge at which they began. Figure 3.8 depicts the long strings.

To summarize, we have constructed classical solutions for open strings ending on a

curved AdS2 brane. We began with simple timelike and spacelike string solutions akin

to the closed string and straight brane geodesics considered in Sections 3.3 and 3.4.

Acting with the isometry group SL(2, R) generated more unwound solutions. As in

the straight brane case, spectral flow with even w gave us new winding solutions, but

unlike the straight brane case, spectral flow with odd w was no longer a symmetry.

Short string and long string solutions in odd winding sectors do exist, but to reach

them, we required new techniques: target-space PT symmetry for short strings and

the introduction of a brane at ψ = −ψ0 for long strings.

3.5.2 The quantum Hilbert space

In Section 3.4.2 we described the structure of the Hilbert space of the SL(2, R) WZW

model in the presence of an AdS2 brane at ψ0 = 0. Now, drawing on what we have
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(a) (b)

Figure 3.8: A long classical string solution corresponding to w = 1 sector for (a)

|β| < 1 and (b) |β| > 1.

learned about classical open strings ending on curved branes, we sketch how the

Hilbert space changes as ψ0 is increased above zero.

The WZW model Hilbert space at ψ0 = 0 contained discrete representations D̂+,w
j ,

for w ∈ Z and 1
2

< j < k−1
2

. We propose that all of these representations persist in

the ψ0 > 0 Hilbert space. “Discrete” is something of a misnomer in the context of

the WZW model of (the universal cover of) SL(2, R), since the discreteness of j is

enforced only by the Virasoro constraints. At the level of the WZW model Hilbert

space, before the Virasoro constraints are imposed, j is not quantized, and it is

meaningful to speak of the density of states defined by a measure in j-space. In the

presence of a curved brane at ψ = ψ0, this measure depends on ψ0. We conjecture

that the ψ0 dependence is the same in all winding sectors.

As in the straight brane case, the WZW model Hilbert space at nonzero ψ0 con-

tains continuous representations Ĉα,w
1
2
+is

, for all α ∈ [0, 1), w ∈ Z, and s ∈ R. Once

again, the density of states of these representations now depends on ψ0. We conjec-

ture that the ψ0 dependence is the same in all even winding sectors and in all odd

winding sectors, but that the dependence in the even winding sectors is different from
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the dependence in the odd winding sectors.

In support of our conjectures, we note first that, for all ψ0, we were able to

construct classical short string solutions for α satisfying 0 ≤ α < 1, which is the

semiclassical version of the range 1
2

< j < k−1
2

. This, we observed, is unlike the

situation in the SU(2) WZW model, where the range of j for which classical solu-

tions exist is bounded in terms of ψ0. In the SU(2) WZW model, the truncation of

classical solutions as ψ0 increased manifested itself in the quantum theory as a loss of

representations in the Hilbert space. In the SL(2, R) WZW model, there is no trunca-

tion classically, which leads us to believe that in the quantum theory, representations

spanning the entire range of j are likewise present.12 The measure in the space of j

may depend on ψ0, but this is the only possible ψ0 dependence in the structure of the

discrete sector of the Hilbert space.

Spectral flow by an even amount is a symmetry of the theory. It follows that the

ψ0 dependence of the density of representations must be the same in all even winding

sectors and in all odd winding sectors. In addition, target space PT symmetry links

even and odd winding short string sectors. Consequently, the ψ0 dependence of the

density of discrete representations must in fact be the same in all winding sectors.

The existence of classical long string solutions is strong evidence that the WZW

model Hilbert space contains continuous representations. Spectral flow by an even

amount is a symmetry of the long string solutions, but target space PT symmetry does

not mix even and odd long string winding sectors. Therefore, the ψ0 dependence of

the density of states of the continuous representations is the same in all even winding

sectors and in all odd winding sectors, but the dependence in the even sectors is, in

general, different from the dependence in the odd sectors.

We will presently provide further evidence that this is so by studying a certain

family of physical short string solutions in the even and odd winding sectors. We

compute the energy E of these solutions as a function of their size R. In both the

odd and even winding sectors, E(R) increases monotonically at large R to a value

whose functional form as a function of w is the same in all sectors. However, the

12A more computational argument in support of this claim is presented in Section 3.5.4.
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dependence of E on R—and on ψ0—is different in the two types of sectors. The

existence of an upper bound for E(R) in the short string sectors implies that, above

this bound, a continuous representation appears. The ψ0 dependence of E(R) at large

R is different for odd and even w. This implies that the ψ0 dependence of the density

of states of the emergent continuous representations is likewise different for odd and

even w.

The short string solutions under consideration belong to the physical Hilbert space.

To apply our conclusions to the WZW model Hilbert space, we reason a fortiori : since

the (AdS3 part of the) physical string Hilbert space is the WZW model Hilbert space

after the imposition of the Virasoro constraints, if continuous representations exist in

the physical Hilbert space, surely they must exist in the WZW model Hilbert space.

We now fill in the details of this argument. To construct the even winding solu-

tions, we begin with the basic unwound timelike solution

t = ατ , θ = ασ + θ0 , ρ = ρ0 , (3.87)

with 0 ≤ α < 1, θ0 = π
2
(1− α), and

sinh ρ0 =
sinh ψ0

cos πα
2

. (3.88)

We then act with the isometry given by U = e
1
2
ρ1σ3 and V = ω0U

−1ω0 = U , where ρ1

is a constant. Finally, we perform an even amount w of spectral flow. The currents

of the resulting solution are

J3
R =

k

2
(α cosh ρ1 + w) , (3.89)

J±R = ±ik

2
(α sinh ρ1 e∓iwx+

) , (3.90)

and similarly for Ja
L.

To construct the odd winding solutions, we once again introduce a second AdS2

brane at ψ = −ψ0, and consider the unwound short string

t = ατ , θ = ασ + θ0 , ρ = ρ0 , (3.91)
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with 0 ≤ α < 1, θ0 = π(1− α

2
), and

sinh ρ0 =
sinh ψ0

sin πα
2

. (3.92)

This is a string stretching between the two branes. Again, we act with the isometry

given by U = e
1
2
ρ1σ3 and V = ω0U

−1ω0 = U , and perform w units of spectral flow

on the result. Since w now is odd, both endpoints of the resulting solution lie on the

brane at ψ = ψ0. The currents of this solution, too, are given by (3.89) and (3.90).

To obtain physical string solutions in AdS3 ×M, we must impose the Virasoro

constraints TAdS
±± + h = 0, where TAdS is the energy-momentum tensor for the AdS3

modes of the string, and h is the energy-momentum tensor for M, which we regard

as a conformal weight for the sigma model on M. The energy-momentum tensor

is calculable in terms of the currents (3.89) and (3.90), and the resulting Virasoro

constraint expresses α in terms of h [37],

α = α± = −w cosh ρ1 ±
√

w2 sinh2 ρ1 +
4h

k
. (3.93)

Choosing the branch α = α+, the space-time energy takes the form

E = J3
0 =

k

2


cosh ρ1

√
4h

k
+ w2 sinh2 ρ1 − w sinh2 ρ1


 . (3.94)

This expression is valid for both the even and odd winding solutions.

The last ingredient we need for our argument is a precise notion of the size of the

string. We define R to be the maximum value of the coordinate ρ(σ, τ). By writing

even and odd winding solutions in the matrix form (3.33), it is straightforward to

calculate that, for both types of solutions,

cosh R = cosh ρ0 cosh ρ1 . (3.95)

In (3.94), we expressed the string energy as a function of ρ1, the isometry parameter.

We now work towards rewriting E as a function of R, in the large R limit.
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As ρ1 →∞, α = α+ approaches 0 according to

α =
4h
k
− w2

w cosh ρ1 +
√

w2 sinh2 ρ1 + 4h
k

∼ 1

w

(
4h

k
− w2

)
e−ρ1 . (3.96)

It follows from (3.92) that for odd w, in this limit,

sinh ρ0 =
sinh ψ0

sin πα
2

∼ sinh ψ0
πα
2

∼ 2w sinh ψ0

π(4h
k
− w2)

eρ1 , (3.97)

and therefore

cosh R = cosh ρ0 cosh ρ1 ∼ 2w sinh ψ0

π(4h
k
− w2)

eρ1 cosh ρ1 , (3.98)

so that

R ∼ 2ρ1 + log

(
2w sinh ψ0

π(4h
k
− w2)

)
. (3.99)

For even w, as ρ1 →∞, ρ0 → ψ0, and so

cosh R ∼ cosh ψ0 cosh ρ1 , (3.100)

or

R ∼ ρ1 + log cosh ψ0 . (3.101)

Substituting (3.99) and (3.101) into (3.94) allows us to determine E as a function of

R. We find that, for odd w,

E(R) =
4h + kw2

4w
− 4h− kw2

2πkw2
e−R sinh ψ0 , (3.102)

while for even w,

E(R) =
4h + kw2

4w
− (4h− kw2)2

4kw3
e−2R cosh2 ψ0 , (3.103)

plus terms respectively of order e−4R and e−2R for even and odd w.

What we learn from this analysis is that, in both the odd and even winding

sectors, E(R) has an asymptote at 4h+kw2

4w
. This asymptote signals the existence of

continuous representations. Solutions with energies below the asymptote are bound

states—short strings—trapped within a finite radius in AdS3. By contrast, solutions
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with energies above the asymptote are free to escape to the boundary of AdS3. These

are the long strings, which inhabit continuous representations. This interpretation is

consistent with the fact that the energy of physical long strings with winding number

w is bounded below, in the semiclassical limit of large h and large k, by 4h+kw2

4w
, the

asymptotic value of E(R) . We have thus shown that continuous representations of

every w exist in the physical string Hilbert space; hence, a fortiori such representations

exist in the WZW model Hilbert space.

We can take this argument one step further to confirm that the ψ0 > 0 WZW

model Hilbert space not only contains continuous representations of every w, but

within each winding sector contains representations Ĉα,w

j= 1
2
+is

of every s. The Virasoro

constraint determines α in terms of s and h. Thus, if s were somehow quantized in the

WZW model Hilbert space, the physical long string spectrum at fixed w and h would

be quantized as well. As we have seen, though, the physical long string spectrum

at fixed w and h is continuous. Thus s must not be quantized in the WZW model

Hilbert space; representations with arbitrary s ∈ R must actually appear.

The approach of E(R) to its asymptote is different as a function of R and ψ0

in the even and odd winding sectors. This is consistent with our claim that the ψ0

dependence of the density of states in the WZW model Hilbert space is different in

the odd and even winding long string sectors. An additional piece of evidence for this

point comes from an analysis in the spirit of [36] and Appendix D of the divergence

structure of the one-loop Euclidean partition function. The divergences in question

signal the presence of continuous representations; they originate in the infinite volume

factors that appear when long strings are subject to a flat potential. Accordingly,

it is sufficient to consider the contribution to the functional integral of the large ρ

region. In global coordinates, the WZW action at large ρ takes the form

S ∼
∫

d2z
(
∂ρ∂̄ρ +

1

4
e2ρ|∂̄(θ − it)|2 + · · ·

)
. (3.104)

In the one-loop calculation, the worldsheet is taken to be cylindrical and of Eu-

clidean signature; the target space time is likewise Euclidean. The worldsheet coor-
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dinate z = σ + iτ is subject to the periodicity

τ ∼ τ + 2πtW , (3.105)

with tW the worldsheet modulus. At finite temperature, the target space coordinates

t and θ describe a torus: θ is periodic by nature, and t is periodically identified with

period equal to the inverse temperature β; that is,

θ − it ∼ θ − it + 2πn + iβm , (3.106)

where m and n are integers.

If ρ is assumed to be fixed at ρ0, the equations of motion constrain θ − it to be a

harmonic map from the worldsheet to the target space. The general harmonic map

from the cylinder to the torus is of the form

θ + it = wσ + ibτ + θ0 , (3.107)

where w, b, and θ0 are real constants. Matching the periodicities (3.105) and (3.106)

of the worldsheet and target space sets b = βm
2πtW

. The partition function thus receives

contributions from harmonic maps of the form (3.107), for all integers m. As in

Appendix D.2, it is sufficient for our purposes to concentrate on the m = 1 sector.

If it is to describe a legitimate open string configuration, the map (3.107) must

satisfy the gluing conditions and the Dirichlet condition. A straightforward calcula-

tion shows that, in the presence of an AdS2 brane at ψ = ψ0, the gluing conditions

are satisfied if one of two conditions holds:

1. w = b =
β

2πtW
; or

2. θ0 = 0 or π, and w is an integer.

Suppose condition 2 is fulfilled. Then the Dirichlet condition sin θ0 sinh ρ0 =

sinh ψ0 can be satisfied only if ψ0 = 0. In this case, there is a family of solutions of

the form (3.107) with the desired properties, indexed by the continuous parameter

ρ0. The solutions (3.107) are holomorphic—that is, functions of z = σ + iτ—if the

worldsheet modulus takes the special value

tW =
β

2πw
. (3.108)
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As explained in [36], the functional integral suffers a logarithmic divergence at this

special value of tW . The divergence is the hallmark of a continuous representation,

whose density of states can be derived by properly regularizing the infinity. We have

thus arrived again at a conclusion we reached in Section 3.4: the straight brane Hilbert

space contains continuous representations for all values of the winding number.

If ψ0 6= 0, then harmonic maps satisfying the gluing conditions must fulfill condi-

tion 1. In this case, the Dirichlet condition reads

sin θ0 sinh ρ0 = sin(wπ + θ0) sinh ρ0 = sinh ψ0 . (3.109)

If w is not an integer, (3.109) determines θ0 and ρ0 uniquely. If w is an odd integer,

(3.109) has no solution. If w is an even integer, (3.109) collapses to the single condition

sin θ0 sinh ρ0 = sinh ψ0, which has a family of solutions indexed by a single continuous

free parameter. Condition 1 trivially implies (3.108); thus the maps (3.107) are

holomorphic. The functional integral thus has a divergence at tW = β
2πw

if w is

even, but this divergence is apparently absent if w is odd. Following the logic of the

last paragraph, we conclude that the WZW model Hilbert space contains continuous

representations in the even winding sectors. On the other hand, this line of reasoning

tells us nothing about the odd winding continuous representations. Of course, we

have already independently established that continuous representations exist in all

winding sectors. This argument points to a difference in the mechanism for generating

continuous representations in the even and odd winding sectors, illustrating our claim

that the nature of the continuous representations at nonzero ψ0—and in particular,

their density of states—depends significantly on the parity of the winding number.

3.5.3 A two-brane system

An interesting perspective on the Hilbert space in the presence of a curved brane

at ψ = ψ0 is obtained by revisiting a device from Section 3.5.1: the introduction

of a second brane at ψ = −ψ0. Odd spectral flow maps an open string with both

endpoints on the brane at ψ = ψ0 to a string that begins at σ = 0 on the ψ0 brane

but ends at σ = π on the −ψ0 brane. The two-brane system thus preserves the full
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spectral flow symmetry. The Hilbert space of the enlarged system has the structure

H = H++ ⊕H+− ⊕H−+ ⊕H−− , (3.110)

where, for example, H+− is the Hilbert space of open strings starting on the brane at

ψ = +ψ0 and ending on the brane at ψ = −ψ0, and similarly for the other summands.

Clearly H++
∼= H−− and H+− ∼= H−+.

Each summand can be further decomposed as the sum of discrete and continuous

representations of ŜL(2, R). As in the single-brane case, the symmetries of the system

give clues about how the representations in various sectors of the theory are related.

Spectral flow by an even amount is a symmetry of each summand individually, while

spectral flow by an odd amount maps H++ ↔ H+− and H−− ↔ H−+. For example,

the action of spectral flow with w = 1 on the discrete representations of H++ and

H+− is given by

· · · D̂+,−2
++,j D̂+,−1

++,j D̂+,0
++,j D̂+,1

++,j D̂+,2
++,j · · ·

↗↘ ↗↘ ↗↘ ↗↘
· · · D̂+,−2

+−,j D̂+,−1
+−,j D̂+,0

+−,j D̂+,1
+−,j D̂+,2

+−,j · · ·
. (3.111)

Extending the reasoning of Section 3.5.2, we can deduce that the ψ0 dependence of

the density of discrete representations in the even (odd) winding sectors of H++ must

be the same as the ψ0 dependence of the density of representations in the odd (even)

winding sectors of H+−. A similar statement holds for H−− and H−+, and for the

density of states of continuous representations. Within each summand, target space

PT symmetry mixes discrete representations with odd and even w, but preserves the

parity of w of the continuous representations. We can hence argue further that the

ψ0 dependence of the density of discrete representations is the same for all winding

sectors and all summands. By contrast, the ψ0 dependence of the density of states

in the continuous representations is different in the odd winding sectors and the even

winding sectors in each summand, and the dependence in H++ is different from the

dependence inH+−. One advantage of enlarging our system to include a second brane
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is that the entire structure of the continuous sector of the single-brane Hilbert space

is encoded in the representations Ĉα,0
++,j, Ĉα,0

+−,j and their properties under spectral flow

and the target space PT symmetry.

Just as in the SU(2) WZW model, we may further generalize to a system of AdS2

branes located at ψ = ψ1 and ψ = ψ2. The discussion is completely analogous to what

has already been said. We begin by constructing basic unwound classical solutions

stretching from one brane to the other, and employ spectral flow to generate the space

of all classical solutions. The basic unwound timelike solutions are again

t = ατ , θ = ασ + θ0 , ρ = ρ0 , (3.112)

where 0 ≤ α < 1, and θ0 and ρ0 are chosen so as to satisfy the appropriate Dirichlet

conditions. The basic spacelike solution is given in matrix form as

g =




(1 + ab) exp(ατ) a exp(ασ)

b exp(−ασ) exp(−ατ)


 , (3.113)

where the integration constants a and b are likewise fixed to satisfy the Dirichlet

boundary conditions.

Spectral flow by an even amount w is a symmetry of the system. Short string

solutions in odd winding sectors may be constructed by means of the PT symmetry

of the target space, as explained in Section 3.5.1. To construct long string solutions

belonging to odd winding sectors, we introduce a third AdS2 brane at ψ = −ψ2,

and follow the procedure described in Section 3.5.1 for finding solutions stretching

between the ψ1 and −ψ2 branes. Spectral flow by an odd amount w then gives open

string solutions stretching between the ψ1 and ψ2 branes.

Again, these classical constructions provide us with a reasonable conjecture for

the quantum Hilbert space of the two-brane system: that it contains discrete repre-

sentations D̂+,w
j for all integers w and j satisfying 1

2
< j < k−1

2
, as well as continuous

representations Ĉα,w
j for all integers w, all α in the range 0 ≤ α < 1, and j of the form

j = 1
2

+ is for all real s.
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3.5.4 The NCOS limit

The WZW Model Action

In the limit ψ0 →∞, the AdS2 brane approaches the boundary of AdS3. In this limit,

the factor of cosh2 ψ in the metric (3.62) tends to suppress open string fluctuations

along the AdS2 brane. However, the induced electric field on the brane also grows

exponentially with ψ0, balancing the effect of the metric. In fact, as ψ0 →∞, the elec-

tric field approaches its critial value, and the theory resembles the noncommutative

open strings studied in [47, 48]. Let us now make this more precise.

We work in a target space of Euclidean signature. Our first task is to find a

system of coordinates that is well adapted to our problem. In the Euclidean AdS2

coordinates (ψ, ω, t), the AdS3 metric is

ds2 = dψ2 + cosh2 ψ (cosh2 ωdt2 + dω2) , (3.114)

and the invariant 2-form that describes the NS-NS background takes the form

F =

(
ψ − ψ0 +

sinh 2ψ

2

)
cosh ω dω ∧ dt . (3.115)

It proves convenient to replace the AdS2 coordinates (ω, t) by a complex coordinate

γ, defined such that the AdS2 brane worldvolume is covered by the upper half plane

Imγ ≥ 0. The transformations are

tanh τ =
|γ|2 − 1

|γ|2 + 1
, (3.116)

sinh ω = −Re γ

Im γ
. (3.117)

In these coordinates, the metric and 2-form become

ds2 = dψ2 +
cosh2 ψ

(Im γ)2
dγdγ̄ , (3.118)

F =
1

2

(
ψ − ψ0 +

sinh 2ψ

2

)
dγ ∧ dγ̄

(Im γ)2
. (3.119)
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Given these expressions for the metric and the 2-form, the WZW model La-

grangian takes the form

L =
k

2π

[
2∂ψ∂̄ψ +

cosh2 ψ

(Im γ)2

(
∂γ∂̄γ̄ + ∂̄γ∂γ̄

)
−

(
ψ − ψ0 +

sinh 2ψ

2

)
1

(Im γ)2
(∂γ∂̄γ̄ − ∂̄γ∂γ̄)

]
.

(3.120)

The worldsheet coordinates are (z, z̄), and range over the upper half plane; the world-

sheet metric is Euclidean; and the area element is d2z ≡ dz dz̄.

To take the limit ψ0 → ∞, we first redefine ψ → ψ − ψ0; the new coordinate ψ

measures deviations from the brane at ψ0. The Lagrangian for large ψ0 is then

L =
k

π
∂ψ∂̄ψ +

k

2π(Im γ)2

[
e2(ψ+ψ0)

2
(∂̄γ∂γ̄) +

1

2
(∂γ∂̄γ̄ + ∂̄γ∂γ̄)− ψ(∂γ∂̄γ̄ − ∂̄γ∂γ̄)

]
.

(3.121)

It is useful to introduce Lagrange multipliers β and β̄, giving

L =
k

2π

[
2 ∂ψ∂̄ψ + β∂̄γ + β̄∂γ̄ − 2(Im γ)2

e2(ψ+ψ0) + 2
ββ̄ +

1

(Im γ)2

((
1

2
− ψ

)
(∂γ∂̄γ̄ − ∂̄γ∂γ̄)

)]
.

(3.122)

We now redefine ψ → ψ/2 and take the limit ψ0 →∞, with the result

S =
k

2π

∫
d2z

(
1

2
∂ψ∂̄ψ + β∂̄γ + β̄∂γ̄ + 2

ψ − 1

(γ − γ̄)2

(
∂γ∂̄γ̄ − ∂̄γ∂γ̄

))
. (3.123)

The action (3.123) resembles the action of noncommutative open strings in flat space.

The only differences are that the metric in the (γ, γ̄) plane is that of AdS2, and that

there is a coupling to the extra scalar field ψ, which obeys the Dirichlet condition

ψ = 0 on the boundary.

The Spectrum

Our next goal is to evaluate the Euclidean one-loop thermal partition function exactly

and read off the physical string spectrum. As in Appendix D, the partition function

may be written as a sum over a complete set of classical solutions and fluctuations

about these solutions. Solving the WZW model equations of motion produces clas-

sical solutions, given as functions of (ψ, γ, γ̄); the fluctuations about these solutions

can then be evaluated by the method of iterative Gaussians [54]. From the resulting
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expression for the partition function, we can determine which ŜL(2, R) representa-

tions appear in the WZW model spectrum, as discussed in Appendix D. The result

is somewhat unsettling: we find that the Hilbert space contains only the discrete

representation D̂w=0
j , for 1

2
< j < k−1

2
.

This is clearly wrong: the existence of sectors of the Hilbert space with w 6= 0

is guaranteed by the spectral flow symmetry. We understand their absence from

the partition function calculation to mean that our set of classical solutions was

incomplete. In particular, there seem to be solutions—short and long wound strings—

that are not easily expressible in the (ψ, γ, γ̄) coordinates. It would be desirable to

find all of the classical solutions and perform a complete computation of the one-loop

free energy. Nevertheless, our computation captures part of the physical spectrum.

Most important, our result implies that the spectrum contains discrete representations

with 1
2

< j < k−1
2

, which is a significant fact that cannot be seen at the semiclassical

level. These bounds on j are the same as the bounds that come out of the ψ0 = 0

partition function calculation described in Appendix D. This strongly suggests that,

for all ψ0, the spectrum contains discrete representations obeying 1
2

< j < k−1
2

.

The one-loop worldsheet is the semi-annulus in the upper half z-plane defined by

the identification z ∼ ze2πt, where t is a worldsheet modulus. At finite temperature

T , the AdS3 time coordinate is made periodic with period 1/T ; in the coordinates we

are using, this is accomplished by identifying γ ∼ γe1/T . In order that the Lagrangian

be single-valued, we must also identify β ∼ βe−1/T . These identifications mandate

the relations

γ(ze2πt) = en/T γ(z) , β(ze2πt) = e−n/T γ(z) , (3.124)

for some integer n.

We begin by finding classical solutions for γ and ψ. The equation of motion for β

is ∂̄γ = 0. Classical solutions are of the form

γcl(z) = reiθz
n

2πtT , (3.125)

where reiθ is a complex constant. The range of the coordinate γ is Im γ ≥ 0. This
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necessitates

t ≥ |n|
2πT

, (3.126)

and also determines θ in a manner detailed below.

Let us now expand about the classical solutions, defining fields Γ and B by

γ = γcl(1 + Γ) , β =
B

γcl

. (3.127)

The partition function then involves functional integrals over B and Γ. The SL(2, R)-

invariant functional measure for these fields is

D
(

eψ/2γcl

2 Im γcl

Γ

)
D

(
2e−ψ/2 Im γcl

γcl

B

)
D

(
eψ/2γ̄cl

2 Im γcl

Γ̄

)
D

(
2e−ψ/2 Im γcl

γ̄cl

B̄

)
. (3.128)

Classically, this is equivalent to DΓDBDΓ̄DB̄, but quantum mechanically, a chiral

anomaly is present, which effectively shifts the Lagrangian by

−2

π

[
∂ log

(
eψ/2γcl

2 Im γcl

)
∂̄ log

(
eψ/2γ̄cl

2 Im γ̄cl

)]
. (3.129)

When this term is expanded out and added to (3.123), the result is

L =
k − 2

2π

(
1

2
∂ψ∂̄ψ + 2

ψ − 1

(γcl − γ̄cl)2
∂γcl∂̄γ̄cl

)
+

k

2π

(
B∂̄Γ + B̄∂Γ̄

)
+ F (Γ, ∂Γ, Γ̄, ∂̄Γ̄) ,

(3.130)

where F contains terms from the Taylor expansion of the last term in (3.123). As

these terms make no contribution to the partition function, we drop them in what

follows. The effect of the chiral anomaly is therefore to shift the prefactor k of the

terms in ψ to k − 2.

Next we separate ψ into its classical and fluctuating parts, defining a new field φ

by ψ = ψcl + φ, where ψcl satisfies the equation of motion

∂∂̄ψcl =
2∂γcl∂̄γ̄cl

(γcl − γ̄cl)2
(3.131)

derived from (3.130). One solution is

ψcl = 2 log Im γcl + f(z) + f̄(z̄) , (3.132)
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where f is an arbitrary holomorphic function. We can use the freedom of the choice

of f to ensure that ψcl be single-valued and satisfy its Dirichlet boundary condition.

Thus we may take

ψcl = log

[
Im γcl

|γcl|

]2

+ c , (3.133)

where the constant c is adjusted so that ψcl = 0 when Im z = 0. Substituting in

the form of γcl and letting z = x ∈ R+, we must have c = −2 log(sin θ). Letting

z = −x, we must have c = −2 log(sin( n
2Tt

+ θ)). Consistency then requires | sin θ| =

| sin( n
2Tt

+ θ)|, which is satisfied (for n 6= 0) if

θ =
π

2

(
m− n

2πTt

)
, (3.134)

for some integer m. Since γcl(z) is constrained to lie in the upper half plane as z

ranges over the worldsheet semi-annulus in the upper half z-plane, we must have

0 ≤ arg(γcl(z)) = θ + n
2πTt

arg(z) ≤ π, whenever 0 ≤ arg(z) ≤ π. This is possible only

if m = 1. Thus θ = π
2
(1− n

2πTt
). In summary, our classical solutions have the form

γcl = rei π
2 (1− n

2πTt)z
n

2πTt , (3.135)

ψcl = 2 log

∣∣∣∣∣
Imγcl

γcl cos( n
4Tt

)

∣∣∣∣∣ , (3.136)

where t > |n|
2πT

and r > 0.

Integration by parts brings the action into the form

S =
∫

d2z

[
k − 2

4π

(
∂φ∂̄φ + (ψcl − 2)∂∂̄ψcl

)
+

k

2π

(
B∂̄Γ + B̄∂Γ̄

)]
. (3.137)

The term involving ψcl can be easily integrated over the worldsheet semi-annulus,

giving (k − 2)n2/8πT 2t.

Now we evaluate the Euclidean partition function. The partition function breaks

up as a sum Z =
∑

nZn over sectors indexed by the integer n that appears in the

classical solutions (3.135) and (3.136). Each Zn contains an integral
∫∞
|n|/2πT

dt
t

over

the worldsheet modulus t; the range of integration is set by (3.126). There is also

an integral over the modulus r, but this contributes only a numerical factor. Finally,
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we must perform the functional integrals over φ, B, Γ, the worldsheet ghosts, and

the internal conformal field theory. Upon taking careful account of the boundary

conditions for B and Γ, we find that the functional integral of the (B, Γ) system is

exactly canceled by the functional determinant coming from the worldsheet ghosts.

The remaining functional integral is over the free bosonic field φ, which obeys the

Dirichlet boundary condition φ = 0. This is a standard functional determinant; the

result is 1/|η(it)|. Assembling all the pieces together, we have

Zn ∼
∫ ∞

|n|/2πT

dt

t

1

|η(it)| exp

(
−(k − 2)n2

8πT 2t

)
qh− cint

24 D(h) , (3.138)

where q = e−2πt, h indexes the weight in the internal conformal field theory, D(h) is

the degeneracy at weight h, and cint is the central charge of the internal conformal

field theory.

As in [36] and Appendix D, it is sufficient for our purposes to look at the n = 1

sector. The central charges cSL(2,R) of the SL(2, R) conformal field theory and cint

of the internal conformal field theory must sum to 26; since cSL(2,R) = 3 + 6
k−2

, we

have cint = 23 − 6
k−2

. Substituting this expression into (3.138), and expanding the

factors in 1/η(it) = e2πt/24/
∏∞

m=1(1− e−2πtm) as geometric sums, we may rewrite the

integrand as a sum of terms containing exponentials of the form

exp

(
−2πt(h + N − 1)− k − 2

8πT 2t
− πt

2(k − 2)

)
, (3.139)

where N is an non-negative integer. The dominant contibution to the partition func-

tion comes from the saddle point of the exponent,

ts =
k − 2

2πT
√

1 + 4(k − 2)(N + h− 1)
. (3.140)

The lower bound of the t integral forces

1

2πT
< ts < ∞ , (3.141)

which translates into the bounds

0 < N + h− 1 +
1

4(k − 2)
<

k

4
− 1

2
. (3.142)
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This is identical to the inequality (79) of [37], with w = 0. It was shown in [37] that

(3.142) is equivalent to the bounds 1
2

< j < k−1
2

on the SL(2, R) spin. By a chain of

reasoning reviewed in Appendix D in the context of the corresponding straight brane

calculation, we may conclude that the physical open string spectrum at ψ0 = ∞
contains the unwound discrete representation D̂+,w=0

j , for all j obeying 1
2

< j < k−1
2

.

As we remarked above, the appearance of the bounds 1
2

< j < k−1
2

at ψ0 = 0 and

at ψ0 = ∞ gives us cause to believe that the same bounds hold for all ψ0. Nonethe-

less, this calculation is manifestly incomplete, since it misses the winding sectors.

Presumably this is because our choice of coordinates is well suited to describing only

a limited subset of the classical solutions. It would be interesting to find the remaining

solutions and complete the calculation of the partition sum.

3.6 Discussion

We have studied the spectrum of open strings ending on AdS2 branes in AdS3 in

an NS-NS background. Perturbative open string theory on an AdS2 brane is de-

scribed by the SL(2, R) WZW model, subject to the boundary conditions (3.63) and

(3.64), which state that the worldsheet ends on the AdS2 brane and satisfies Neumann

boundary conditions in the directions parallel to the brane. The condition (3.63) also

guarantees that the boundary condition preserves one copy of the SL(2, R) current

algebra.

Our study of the open string spectrum has been modeled on the treatment of closed

strings in AdS3 in [37]. The basic idea is to begin by studying classical solutions of the

WZW model, beginning with the simplest solutions and building up more complicated

ones by isometries and spectral flow, and, having compiled a complete catalogue of

the classical solutions, to conjecture the form of the quantum Hilbert space. It was

shown in [36] that this method leads to a correct proposal for the closed string WZW

model Hilbert space.

We have applied this approach to open strings ending on AdS2 branes. As a

warm-up and a useful point of comparison, we first looked at S2 branes in the SU(2)
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WZW model. It was known from conformal field theoretic analysis [41] that the

Hilbert space of open strings stretched between two S2 branes at ψ0 = πn1/k and

ψ0 = πn2/k is the sum of irreducible highest-weight representations of ŜU(2), whose

spin j is bounded as in (3.30). Our analysis of classical string worldsheets precisely

reproduced this inequality. The only property of the quantum Hilbert space that

could not be seen from our classical analysis was the quantization condition

2j + n1 + n2 + k ≡ 0 mod 2 . (3.143)

We next considered strings ending on AdS2 branes in AdS3. We began in Section

3.4 by studying the straight brane located at ψ0 = 0. Analysis of classical solutions led

us to conjecture that the Hilbert space of the WZW model in the open string sector

is the holomorphic square-root of the closed string Hilbert space. In particular, the

spectrum contains both short strings and long strings, and is invariant under spectral

flow. We proved this conjecture in Appendix D by exactly evaluating the one-loop

open string free energy, as in [36].

The situation of the brane with ψ0 > 0 is more interesting. The boundary condi-

tion (3.64) preserves only spectral flow with even w, so it was reasonable to expect

differences in the ψ0 dependence of the spectra in the even and odd winding sectors.

We found both short and long classical string solutions in all winding sectors, but also

an important difference between the short and long strings. Short string solutions

with different winding numbers can be mapped to one another, even when the differ-

ence in their winding numbers is odd, by combining spectral flow by an even amount

and a PT transformation of the target space. Since both even spectral flow and the

PT transformation are symmetries of the full quantum theory, we argued that the ψ0

dependence of the density of states of the short string solutions must be the same in

all winding sectors.

On the other hand, we showed that the ψ0 dependence of the density of states of

long string solutions is different in the odd and even winding sectors. We saw this

difference explicitly by computing the energy of odd and even winding short strings as

a function of the string size. In both cases, the energy rose to an asymptote, signaling
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the presence of a continuum above the asymptotic value. The rate of approach to the

asymptote differed, though, in the odd and even winding sectors. Further evidence

for the different behavior of long strings with odd and even winding number came

from an analysis of the divergence structure of the Euclidean partition function.

In the limit ψ0 → ∞, the induced electric field on the worldvolume of the AdS2

brane reaches its critical value, producing noncommutative open string theory on

AdS2. In Section 3.5.4, we calculated the worldsheet action for open strings in this

limit, and obtained a result similar to that of [55] for noncommutative open strings in

flat space [47, 48]. We carried out a partial computation of the one-loop free energy

in this limit, using the method of quadratures, as in [54].

Our work has focused exclusively on AdS2 branes, which preserve one copy of the

SL(2, R) current algebra. There are other branes in AdS3, some of which break the

current algebra symmetry entirely [56]. It would be interesting to analyze the open

string theory of these branes, as well.
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Chapter 4

Boundary States of AdS2 Branes in

AdS3

4.1 Introduction

In this chapter, we study AdS2 branes embedded in AdS3 [57, 52, 58] in the closed

string sector by constructing their boundary states. In the previous chapter, the

spectrum of the open string ending on the AdS2 brane was shown to be exactly equal

to the holomorphic square root of the spectrum of closed strings in AdS3 when the

brane carries no fundamental string charge. It contains short and long strings, and

is invariant under spectral flow. When the brane carries fundamental string charge,

we were not able to derive an exact spectrum although we found some qualitative

features of the spectrum using semi-classical analysis. One of the purposese of this

chapter is to derive an exact open string spectrum in the general case where the

D-branes can carry nonzero fundamental string charge and become curved.

A boundary state [59, 60] is a useful concept in studying D-branes. Although the

construction in [60] assumes rationality of conformal field theory, it was shown in

[61, 62, 63, 64] that the idea can be applied to the non-rational case of the Liouville

field theory. More recently the technique developed in the Liouville theory is applied

to the AdS2 branes [66, 67]. In this chapter, we will closely follow the construction in

these papers. We will, however, make a different ansatz about one point functions of
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closed string operators in a disk worldsheet, which leads to different expressions for

the boundary states. We show that the semi-classical limits of these new boundary

states reproduce the geometric configurations of the AdS2 branes.

Given a pair of boundary states, it is straightforward to compute a partition

function on an annulus worldsheet. This gives the spectrum of the conformal field

theory on a strip where the boundary conditions on the two sides of the strip are

specified by the choice of the boundary states. We can also compute an annulus

partition function when the target space Euclidean time is periodically identified,

adopting a method suggested in [68] . An integral of this partition function over the

moduli space of worldsheet then gives the one loop free energy at finite temperature.

From this, we can read off the physical spectrum of the open string on the AdS2

brane. We find that the result agrees with the exact computation in the previous

chapter (see [53]) when the brane carries no fundamental string charge.

4.2 One point functions on a disk

The boundary state can be found by computing the one point functions of closed

string operators on a disk worldsheet. Here we will derive them for the AdS2 brane,

following the approach in [66, 67].

4.2.1 Review of closed string in AdS3

In this chapter, we will mostly work in Euclidean AdS3, which is the three-dimensional

hyperbolic space H+
3 given by one of the two branches of

(X0)2 − (X1)2 − (X2)2 − (X3
E)2 = R2, (4.1)

embedded in R1,3 with the metric

ds2 = −(dX0)2 + (dX1)2 + (dX2)2 + (dX3
E)2, (4.2)

where R is the curvature radius of H+
3 . It is related to AdS3 with the Lorentzian

signature metric by the analytic continuation X3 → X3
E = −iX3. The Euclidean
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AdS3 can also be realized as a right-coset space SL(2, C)/SU(2). Accordingly, the

conformal field theory is the SL(2, C)/SU(2) coset model. In the semi-classical ap-

proximation, which is applicable when the level k ∼ R2/α′ of the SL(2, C) current

algebra is large, states in the theory are given by normalizable functions on the tar-

get space. The space of such states is decomposed into a sum of principal continuous

representations of SL(2, C) with j = 1
2

+ is (s ∈ R+). It was shown in [54] that

the exact Hilbert space of the coset model at finite value of k consist of the standard

representations of SL(2, C) current algebra whose lowest energy states are given by

principal continuous representations [54].

Let us introduce a convenient coordinate system (φ, γ, γ̄) on H+
3 . They are related

to the embedding coordinates (X0, X1, X2, X3
E) in (4.1) in the following way:

φ = log
(
X0 + X3

E

)
/R, (4.3)

γ =
X2 + iX1

X0 + X3
E

,

γ̄ =
X2 − iX1

X0 + X3
E

.

A point in the coset SL(2, C)/SU(2) has its representative as a Hermitian matrix:




γγ̄eφ + e−φ −γeφ

−γ̄eφ eφ


 , (4.4)

and the metric can be written as

ds2 = R2
(
dφ2 + e2φdγdγ̄

)
. (4.5)

In this theory, there exists an important set of primary fields defined by

Φj(x, x̄; z, z̄) =
1− 2j

π
(e−φ + |γ − x|2eφ)−2j. (4.6)

The labels x, x̄ are introduced to keep track of the SL(2, C) quantum numbers.1 The

1In the string theory interpretation discussed in section 3, (x, x̄) is identified as the location of

the operator in the dual CFT on S2 on the boundary of H+
3 .
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SL(2, C) currents act on it as

Ja(z)Φj(x, x̄; w, w̄) ∼ − Da

z − w
Φj(x, x̄; w, w̄) , a = ± , 3 , (4.7)

where Da are differential operators with respect to x defined as

D+ =
∂

∂x
, D3 = x

∂

∂x
+ j, D− = x2 ∂

∂x
+ 2jx. (4.8)

The energy momentum tensor is given by the Sugawara construction, and the world-

sheet conformal weights of this operator is

∆j = −j(j − 1)

k − 2
. (4.9)

When j = 1
2

+ is with s ∈ R, the operators (4.6) correspond to the normalizable

states in the coset model. The operators with the SL(2, C) spin j and (1 − j) are

not independent but are related to each other by the following reflection symmetry

relation,

Φj(x, x̄; z, z̄) = R(j)
2j − 1

π

∫
d2x′|x− x′|−4jΦ1−j(x

′, x̄′; z, z̄), (4.10)

where

R(j) = ν1−2j
Γ

(
1− 2j−1

k−2

)

Γ
(
1 + 2j−1

k−2

) . (4.11)

The two and three point functions of these operators have been computed in

[71, 72, 73]. The two point function has the form,

〈Φj(x1, x̄1; z1, z̄1)Φj′(x2, x̄2; z2, z̄2)〉
=

1

|z12|4∆j

[
δ2(x1 − x2)δ(j + j′ − 1) +

B(j)

|x12|4j
δ(j − j′)

]
. (4.12)

The coefficient B(j) is given by

B(j) =
k − 2

π

ν1−2j

γ
(

2j−1
k−2

) , (4.13)

where

γ(x) =
Γ(x)

Γ(1− x)
. (4.14)
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The choice of ν will not play an important role in the discussion of this chapter,

except for its behavior in the semi-classical limit

ν → π (k →∞). (4.15)

It can be deduced by comparing (4.10) with its classical counterpart [65]. In [72], it

is set to be

ν = π
Γ

(
1− 1

k−2

)

Γ
(
1 + 1

k−2

) , (4.16)

by requiring a certain consistency between the two and three point functions.

The three point function is expressed as

〈Φj1(x1, x̄1; z1, z̄1)Φj2(x2, x̄2; z2, z̄2)Φj3(x3, x̄3; z3, z̄3)〉 =

= C(j1, j2, j3)
1

|z12|2(∆1+∆2−∆3)|z23|2(∆2+∆3−∆1)|z31|2(∆3+∆1−∆2)
×

1

|x12|2(j1+j2−j3)|x23|2(j2+j3−j1)|x31|2(j3+j1−j2)
, (4.17)

with the coefficient C(j1, j2, j3) given by

C(j1, j2, j3) = −G(1− j1 − j2 − j3)G(j3 − j1 − j2)G(j2 − j3 − j1)G(j1 − j2 − j3)

2π2νj1+j2+j3−1γ
(

k−1
k−2

)
G(−1)G(1− 2j1)G(1− 2j2)G(1− 2j3)

,(4.18)

where

G(j) = (k − 2)
j(k−1−j)
2(k−2) Γ2(−j | 1, k − 2)Γ2(k − 1 + j | 1, k − 2). (4.19)

and Γ2(x|1, ω) is the Barnes double Gamma function defined by

log (Γ2(x|1, ω))

= lim
ε→0

∂

∂ε




∞∑

n,m=0

(x + n + mω)−ε − ∑
n,m=0

(n,m) 6=(0,0)

(n + mω)−ε


 . (4.20)
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4.2.2 Constraints on one-point functions

In this subsection, we will derive functional equations satisfied by one-point func-

tions of closed string operators on a disk with boundary conditions corresponding

to AdS2 branes. We will follow the discussion in [66, 67] closely, except that we

use a more general ansatz for the one-point function as we will explain in the next

paragraph. Given the one-point functions, we can find boundary states |B〉〉 for the

AdS2 branes. According to [57, 52, 58], AdS2 branes preserve one half of the current

algebra symmetry because of the boundary condition on the currents,

Ja(z) = J̄a(z̄); at z = z̄, a = 3, +,−. (4.21)

In the closed string channel, it is translated into the condition on the boundary states

as

(Ja
n + J̄a

−n)|B〉〉 = 0, a = 3, +,−, n ∈ Z. (4.22)

We start with the ansatz that the one-point function is of the form

〈Φj(x, x̄; z, z̄)〉 =
U+(j)

|x− x̄|2j|z − z̄|2∆j
for Im(x) > 0, (4.23)

U−(j)

|x− x̄|2j|z − z̄|2∆j
for Im(x) < 0.

The z dependence is determined from conformal invariance on the worldsheet and the

x dependence is fixed by conformal invariance on the target space. The parameters

(x, x̄) can be regarded as coordinates on the boundary of Euclidean AdS3, which is

S2. The AdS2 brane divides S2 into half, and the upper half plane covers one patch

and the lower half the other. From the point of view of the conformal field theory on

the boundary, the AdS2 introduces a one-dimensional defect on S2, across which the

two different CFT’s are glued together [25]. Therefore the one point function 〈Φj〉
may have a discontinuity across Imx = 0. The expression (4.23) allows this possibility

as the coefficients U+ and U− can be different.

The reflection symmetry (4.10) implies a relation between U+ and U−. Taking

the expectation value of (4.10) on both sides, we get

U±(j)

|x− x̄|2j
= R(j)

2j − 1

π

(∫

Imx>0
d2x′U+(1− j)

|x− x′|−4j

|x′ − x̄′|2(1−j)
+ (4.24)
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+
∫

Imx<0
d2x′U−(1− j)

|x− x′|−4j

|x′ − x̄′|2(1−j)

)
,

On the left-hand side, we choose U+ for Imx > 0 and U− for Imx < 0. Setting

x′ = x′1 + ix′2, we can rewrite the above x′-integration as

= U+(1− j)
∫ ∞

−∞
dx′1

∫ ∞

0
dx′2

(
x′1

2 + (x′2 − x2)
2
)−2j

|2x′2|2(1−j)
+ (4.25)

+U−(1− j)
∫ ∞

−∞
dx′1

∫ 0

−∞
dx′2

(
x′1

2 + (x′2 − x2)
2
)−2j

|2x′2|2(1−j)
.

By using the Euler integral

∫ 1

0
dx xa−1(1− x)b−1 =

Γ(a)Γ(b)

Γ(a + b)
, (4.26)

we see that for the case x2 > 0, the first term vanishes and only the second term

contributes. On the other hand, when x2 < 0, the second term vanishes and only the

first term contributes. We can summarize the result as

U±(j) = R(j)U∓(1− j). (4.27)

Introducing f±(j) by

U±(j) = Γ
(
1− 2j − 1

k − 2

)
ν

1
2
−jf±(j) , (4.28)

the reflection relation (4.27) becomes

f±(j) = f∓(1− j) . (4.29)

To determine f+(j), it is useful to consider the bulk two-point function of Φj with

a degenerate field. Degenerate fields correspond to those with spin 2j = n+(k−2)m,

where n,m ∈ Z. A particularly useful one is the degenerate field with j = −1/2,

which satisfies

∂2
xΦ−1/2 = 0. (4.30)

It means that there are only two terms in its operator product expansion with Φj as

Φ− 1
2
Φj ∼ C−(j)Φj− 1

2
+ C+(j)Φj+ 1

2
+ · · · , (4.31)
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Here the “· · · ” denote the current algebra descendants. To simplify the equations,

in this subsection, we are suppressing the dependence on x and z. The coefficients

C±(h) have been derived in the earlier literature, but let us compute them here for

completeness. Let us take a correlation function of Φj′ with both sides of (4.31). The

left hand side gives

〈Φ− 1
2
ΦjΦj′〉 = C

(
−1

2
, j, j′

)
. (4.32)

Using the expression for the three point function and the identity

lim
ε→0

G(j1 − j2 + ε)G(j2 − j1 + ε)

G(−1)G(1 + 2ε)
= −2π(k − 2)γ

(
k − 1

k − 2

)
δ(s1 − s2), (4.33)

with j1 = 1/2 + is1, j2 = 1/2 + is2, we find that (4.32) contains delta functions at

j′ = j ± 1
2
. On the other hand, the right-hand side of (4.31) gives

〈Φ− 1
2
ΦjΦj′〉 ∼ δ

(
j′ − j +

1

2

)
C− (j) B

(
j − 1

2

)
+δ

(
j′ − j − 1

2

)
C+(j)B

(
j +

1

2

)
+· · · .

(4.34)

Comparing the coefficients of the delta functions, we find

C+(j) = ν
γ

(
− 1

k−2

)

γ
(
− 2

k−2

) (4.35)

C−(j) =
γ

(
− 1

k−2

)
γ

(
2j−2
k−2

)

γ
(
− 2

k−2

)
γ

(
2j−1
k−2

) .

Given the coefficient C±(j) for the operator product expansion of Φ− 1
2
Φj, one

can deduce a functional relation for U+(j).2 Consider the following bulk two-point

function involving a degenerate field Φ−1/2

〈Φ− 1
2
(x; z)Φj(x

′; z′)〉. (4.36)

2Here we take x to be on the upper half plane. A similar relation for U− can be derived by

considering x in the lower half plane. Since U± are related to each other by the reflection relation,

it is sufficient to determine conditions on U+.
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Using the operator product expansion derived in the above paragraph, we find

〈Φ− 1
2
(x; z)Φj(x

′; z′)〉 =
|x′ − x̄′|−1−2j

|x− x̄′|−2

|z′ − z̄′|− 3u
2
−2∆j

|z − z̄′|−3u
× (4.37)

(
C+(j)U+

(
j +

1

2

)
F+(x, x′; z, z′) + C−(j)U+

(
j − 1

2

)
F−(x, x′; z, z′)

)
.

Here F± are four-point conformal blocks. According to [71], we have

F+(x, x′; z, z′) = ηu(1−j)(1− η)−
u
2

(
χF (−u, 1− 2uj, 1− u(2j − 1); η) + (4.38)

+
uη

1 + u(1− 2j)
F (1− u, 1− 2uj, 2− u(2j − 1); η)

)
,

F−(x, x′; z, z′) = ηuj(1− η)−
u
2

(
χ

1

2j − 1
F (2u(j − 1), 1− u, u(2j − 1) + 1; η)+(4.39)

+ F (1− u,−u, u(2j − 1); η)
)
,

where F (a, b, c; z) are the hypergeometric functions 2F1(a, b, c; z),

u =
1

k − 2
, (4.40)

and χ and η are cross ratios of the target space and the worldsheet coordinates,

χ =
|x− x′|2
|x− x̄′|2 , η =

|z − z′|2
|z − z̄′|2 . (4.41)

It was pointed out in [66] that, when the operator Φ− 1
2

approaches the boundary

of the worldsheet, it overlaps only with the identity operator and the operator with

j = −1. This is analogous to the situation in the Liouville theory discussed in [73].

Using this, the two point function 〈Φ− 1
2
Φj〉 can be evaluated as

〈Φ− 1
2
(x; z)Φh(x

′; z′)〉 =
|x′ − x̄′|−1−2j

|x− x̄′|−2

|z′ − z̄′|− 3u
2
−2∆j

|z − z̄′|−3u
× (4.42)

(B+(j)G+(x, x′; z, z′) + B−(j)G−(x, x′; z, z′)) ,
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where

G+(x, x′; z, z′) = ηuj(1− η)
3u
2

(
(1− χ)F (1 + u, 2uj, 1 + 2u; 1− η)− (4.43)

(1− η)
2uj

1 + 2u
F (1 + u, 1 + 2uj, 2(1 + u); 1− η)

)
,

G−(x, x′; z, z′) = ηuj(1− η)−
u
2

(
1− χ

2
F (2u(j − 1), 1− u, 1− 2u; 1− η)+(4.44)

F (2u(j − 1),−u,−2u; 1− η)
)
,

and u is given by (4.40). The conformal blocks in the two expressions, (4.37) and

(4.42), are related to each other as

F− =
Γ(u(2j − 1))Γ(1 + 2u)

Γ(2uj)Γ(1 + u)
G− +

Γ(u(2j − 1))Γ(−2u)

Γ(2u(j − 1))Γ(−u)
G+, (4.45)

F+ =
Γ(1 + u(1− 2j))Γ(1 + 2u)

Γ(1 + 2u(1− j))Γ(1 + u)
G− − Γ(1 + u(1− 2j))Γ(−2u)

Γ(1− 2uj)Γ(−u)
G+. (4.46)

(See Appendix E for some useful identities involving the hypergeometric function.)

According to [61, 66, 67], B+ is given by

B+(j) = A0U
+(j) , (4.47)

where A0 is a constant that depends on the boundary condition and can be interpreted

as the fusion coefficient of Φ−1/2 with the boundary unit operator. Likewise, B−(j)

term can be interpreted as the contribution coming from the fusion with j = −1

boundary operator. Comparing the terms dependent on G+ in (4.37) and (4.42), we

derive the following functional equation for U+(j):

A0U
+(j) =

Γ(−2u)

Γ(−u)

(
C−(j)U+

(
j − 1

2

)
Γ(u(2j − 1))

Γ(2u(j − 1))
− (4.48)

C+(j)U+
(
j +

1

2

)
Γ(1 + u(1− 2j))

Γ(1− 2uj)

)
.

Substituting the expression for C±(j) given by (4.35), this reduces to

A0ν
−1/2

Γ
(
1 + 1

k−2

)

Γ
(
1 + 2

k−2

)f+(j) = f+
(
j − 1

2

)
− f+

(
j +

1

2

)
. (4.49)
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Given f+(j) satisfying (4.49), we get f−(j) by using (4.29).

It is convenient to introduce a parameter θ by

A0ν
−1/2

Γ
(
1 + 1

k−2

)

Γ
(
1 + 2

k−2

) = −2 sinh θ. (4.50)

We can regard θ as parametrizing the boundary condition as A0 depends on it. In

fact, the semi-classical analysis in the next section shows that θ specifies the location

of the AdS2 brane. A general solution to (4.49) and (4.29) is then a linear combination

of

f±(j) = exp [±(θ + i2nπ)(2j − 1)] , exp [±(iπ(2n + 1)− θ)(2j − 1)] , (4.51)

where n ∈ Z.

4.3 Boundary states for AdS2 branes

Among the solutions (4.51), we claim that the following one correctly represents the

boundary condition for a single AdS2 brane.

f±θ (j) = Ce±θ(2j−1), (4.52)

where C is a constant independent of j but may depend on θ and k. From now on, we

neglect this constant and it will not affect the rest of our discussion. In this section,

we will provide evidences for this claim.

Given the f±(j) solution (4.52), and therefore the one point function U±(j), the

boundary state is expressed as

|B〉〉θ =
∫

1
2
+iR+

dj

(∫

Imx>0
d2x

U+
θ (1− j)

|x− x̄|2(1−j)
|j, x, x̄〉〉I +

∫

Imx<0
d2x

U−
θ (1− j)

|x− x̄|2(1−j)
|j, x, x̄〉〉I

)
,

(4.53)

where |j, x, x̄〉〉I is an Ishibashi state built on the primary state |j, x, x̄〉. The coeffi-

cients are chosen so that the one point functions are correctly reproduced as

〈j, x, x̄|B〉〉θ = lim
z→∞ |z − z̄|2∆j〈Φj(x, x̄; z, z̄)〉. (4.54)
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It can be verified using the two point function (4.12) and the reflection relation (4.27)

that the boundary state given by (4.53) satisfies this condition. In the following, we

will examine aspects of |B〉〉θ.

4.3.1 Semi-classical analysis

Let us first study the semi-classical limit of the boundary state for the solution (4.52).

We use the method of [74, 67] to identify the D-brane configuration corresponding to

the boundary state. In the semi-classical limit (k → ∞), we can consider a closed

string state |g〉 localized at g ∈ H+
3 . Namely, it is defined so that

〈g|j, x, x̄〉 = Φj(x, x̄|g). (4.55)

The overlap of the localized state |g〉 with the boundary state |B〉〉θ can then tell us

about the configuration of the brane. (An analogous idea has been used in [75] to

characterize boundary states for D-branes wrapping on cycles in Calabi-Yau mani-

folds.) In the limit k →∞, the overlap 〈g|B〉〉θ is simplified as

lim
k→∞

〈g|B〉〉θ

=
∫

1
2
+iR+

dj

(∫

Imx>0
d2x

f+
θ (1− j)

|x− x̄|2(1−j)
Φj(x, x̄|g) +

∫

Imx<0
d2x

f−θ (1− j)

|x− x̄|2(1−j)
Φj(x, x̄|g)

)
,

where we used (4.15). First let us focus on the integral on the upper half plane,

∫
1
2
+iR+

dj
2j − 1

π

(∫

x2>0
d2x

f+
θ (1− j)

(2x2)2(1−j)

1

[eφ(x2
1 + x2

2 − (γ + γ̄)x1 + i(γ − γ̄)x2 + γγ̄) + e−φ]
2j

)
.

(4.56)

After integrating over x1 and changing integration variable x′2 = eφx2, we get

∫
1
2
+iR+

dj
2j − 1√
π22−2j

Γ(2j − 1
2
)

Γ(2j)
f+

θ (1−j)
∫ ∞

0
dx′2(x

′
2)

2j−2

[(
x′2 +

1

2
i(γ − γ̄)eφ

)2

+ 1

] 1
2
−2j

.

(4.57)

In terms of AdS2 coordinates defined in Appendix C, we have

i

2
(γ − γ̄)eφ = − sinh ψ. (4.58)
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The x′2-integral is performed in Appendix E, and the result is

∫
1
2
+iR+

djf+
θ (1− j)

eψ(2j−1)

cosh ψ
=

∫ ∞

0
ds

e2i(ψ−θ)s

cosh ψ
, (4.59)

where j = 1/2 + is. Likewise, we can perform the integral over the lower half plane.

Combining the results together, we find that the overlap is given by

lim
k→∞

〈g|B〉〉θ =
∫ ∞

0
ds

e2i(ψ−θ)s

cosh ψ
+

∫ ∞

0
ds

e−2i(ψ−θ)s

cosh ψ
=

∫ ∞

−∞
ds

e2i(ψ−θ)s

cosh ψ
(4.60)

=
1

4π cosh ψ
δ(ψ − θ) =

1

4π
δ(sinh ψ − sinh θ) (4.61)

Thus we found that 〈g|B〉〉θ has a support in the two-dimensional subspace at ψ = θ

in AdS3. We can identify this as the location of the AdS2 brane.

In this formalism, the insertion of the identity operator should reproduce the

Born-Infeld action in the semi-classical regime. Using the reflection symmetry and

taking the large k limit in (4.24), we see that

〈1〉θ ∝ cosh θ
∫

d2x|x− x̄|−2. (4.62)

The Born-Infeld action of AdS2 branes has been computed by independent methods

in [52] to be

SBI ∝ cosh ψ
∫

dωdt cosh ω. (4.63)

If we identify θ with ψ in the semi-classical limit and
∫

d2x|x − x̄|−2 as the volume

divergence associated with the non-compactness of AdS2 branes, the two expressions

agree.

The one point function is given by a linear combination of the solutions (4.51)

to the functional equations discussed in the last section. Since we found that f±θ ∼
e±θ(2j−1) reproduces the correct semi-classical geometry of the AdS2 brane, the co-

efficients for all other solutions in (4.51) should vanish in the semi-classical limit

k →∞.

In fact we can make a stronger statement. If we assume the state |g〉 satisfying

(4.55) exists at finite value of k, then the j-integral to compute overlap 〈g|B〉〉θ is

finite only for the particular solution, f±θ (j). For all other solutions in (4.51), the
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integral is divergent for k > 3. This suggests that the coefficients in front of the other

solutions in (4.51) should vanish identically even for finite k.

4.3.2 Annulus amplitudes

Given the boundary states, the partition function on the annulus worldsheet with the

boundary conditions θ1 and θ2 on the two boundary of the annulus is computed as

exchanges of closed string states between |B〉〉θ1 and |B〉〉θ2 . If we view this in the

open string channel, one should be able to express it as a sum over states of open

string stretched between the two AdS2 branes at θ1 and θ2. These open string states

are normalizable. For the Euclidean AdS2 branes in Euclidean AdS3, they belong to

principal continuous representations.

We want to compute the following amplitude between two boundary states:

θ1〈〈B|(q
1
2
c )L0+L̄0− c

12 |B〉〉θ2

=
∫

1
2
+iR+

dj

(∫

Imx>0
d2x

U+
θ1(j)U

+
θ2(1− j)

|x− x̄|2 +
∫

Imx<0
d2x

U−
θ1(j)U

−
θ2(1− j)

|x− x̄|2
)

q
s2

k−2
c

η(qc)3

=
(∫

d2x|x− x̄|−2
) ∫ ∞

0
ds

cos 2(θ1 − θ2)s

sinh 2π
k−2

s

2π

k − 2
s

q
s2

k−2
c

η(qc)3
.

Using the fact

s
q

s2

k−2
c

η(qc)3
=

2
√

2√
k − 2

∫ ∞

0
ds′ sin

(
4π

k − 2
ss′

)
s′

q
s′2
k−2
o

η(qo)3
, (4.64)

where

qc = e2πiτc , qo = e2πiτo , τo = − 1

τc

, (4.65)

we can go to the open string channel:

=
(∫

d2x|x− x̄|−2
)

4
√

2π

(k − 2)3/2

∫ ∞

0
ds′




∫ ∞

0
ds

cos (2θ12s) sin
(

4π
k−2

ss′
)

sinh 2π
k−2

s


 s′

q
s′2
k−2
o

η(qo)3
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=
(∫

d2x|x− x̄|−2
)

π√
2
√

k − 2

∫ ∞

0
ds′

2s′ sinh 2πs′

cosh ((k − 2)θ12) + cosh (2πs′)
q

s′2
k−2
o

η(qo)3
,

where θ12 = θ1−θ2. Obviously, the overall factor involving the x-integral is divergent.

In the closed string channel, it is the volume divergence coming from the fact that the

AdS2 brane is non-compact. In the open string channel, the divergence can be inter-

preted as due to the fact that normalizable states are in infinite dimensional principal

continuous representations of SL(2, C) and that states in a given representation has

the same worldsheet conformal weight.

If we define ρ(s) as states of open string Hilbert space belonging to the principal

continuous representation with j = 1
2

+ is, the above result shows that it is given by

by

ρ(s) ∝ s sinh 2πs

cosh ((k − 2)θ12) + cosh (2πs)
. (4.66)

The spectral density is real and non-negative as it should be. For the case θ1 = θ2

(single AdS2 brane case), θ1 dependence completely disappears. Note, however, we

have neglected the overall constant C in the one point function (4.52), which can be

θ-dependent but is independent of s.

The reality and positivity of ρ(s) gives a stringent constraint on the boundary

state. One can show that, if f±(j) is not given by (4.52) but contains other solutions

in (4.51), the spectral density becomes negative at some finite value of s.

4.3.3 Finite temperature partition function calculation

In this subsection, we consider AdS2 branes in finite-temperature AdS3 and compute

the partition function by using the boundary states we have constructed. For the

ψ = 0 case, we can directly compare the result with that of Appendix A in [53].

Finite-temperature AdS3 is given by identifying the Euclidean time tE = it in the

target space

tE ∼ tE + β . (4.67)

It induces identification of boundary coordinates as well:

|x| ∼ |x|eβ . (4.68)
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As pointed out in [68], the thermal identification induces new sectors of strings

winding around the compact time direction. As in [69], given a classical solution

g̃(σ, τ) = g̃+(x+)g̃−(x−), where x± = −iτ ± σ, we can generate new solutions by

setting

g+ = e
i
2
wRx+σ2 g̃+, g− = g̃−e

i
2
wLx−σ2 , (4.69)

where σi are the Pauli matrices. If we choose wR = −wL = −iwβ/2π with w ∈ Z,

the action generates the following change in the string coordinates,

tE ∼ tE +
w

2π
σ,

θ ∼ θ − w

2π
τ,

ρ ∼ ρ. (4.70)

The string worldsheet is periodic in σ → σ + 2π, modulo the identification (4.67).

This induces the following transformation on the Virasoro generator,

L0 → L0 + iw
β

2π
J3

0 + kw2 β2

16π2
, (4.71)

L̄0 → L̄0 − iw
β

2π
J̄3

0 + kw2 β2

16π2
.

Correspondingly the boundary states include all the winding sectors:

|B; β〉〉θ =
∑
w

|B; β〉〉θ,w. (4.72)

Here |B; β〉〉θ,w=0 is the boundary state given by (4.53), except that the x integral is

restricted in the range

e−β ≤ |x| ≤ 1, (4.73)

which is the fundamental domain of the identification (4.68). The other states

|B; β〉〉θ,w are given by performing the spectral flow (4.71). The amplitude we want

to compute then is

θ1〈〈B; β|(q
1
2
c )L0+L̄0− c

12 |B; β〉〉θ2 =
∞∑

w=−∞
θ1,w〈〈B; β|(q

1
2
c )L0+L̄0− c

12 |B; β〉〉θ2,w. (4.74)
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The overlap in the w winding sector can be expressed as

θ1,w〈〈B; β|(q
1
2
c )L0+L̄0− c

12 |B; β〉〉θ2,w = q
kβ2

16π2 w2

c θ1,w=0〈〈B; β|(q
1
2
c )L0+L̄0− c

12 e
βτc
2

w(−J3
0+J̄3

0 )|B; β〉〉θ2,w=0,

(4.75)

where τc = itc and φ0 = −βτcw/2. Substituting (4.53) into this, we find that the

right-hand side is expressed as an integral over x in the range (4.73). The integration

domain is divided into four regions, depending on the signs of Imx and Imeiφ0x.

Combining them together, we find

−2q
kβ2

16π2 w2

c

∫
1
2
+iR+

dj

(∫

Imx>0, Im(xeiφ0)>0, e−β<|x|<1
d2x|x− x̄|−2j|xeiφ0 − x̄e−iφ0|−2(1−j)

)
×

(
U+

θ1
(j)U+

θ2
(1− j) + U+

θ1
(j)U−

θ2
(1− j) + U−

θ1
(j)U+

θ2
(1− j) + U−

θ1
(j)U−

θ2
(1− j)

)
×

sin φ0
qs2/(k−2)
c

ϑ11(
φ0

π
|itc)

.

The x-integral is performed in Appendix E,

(x-integral) =
πβ

| sin φ0|δ(s) . (4.76)

Thus the overlap in the winding number w sector is given by

θ1,w〈〈B, β|(q
1
2
c )L0+L̄0− c

12 |B, β〉〉θ2,w ∝ β
e−

ktcβ2

8π
w2

|ϑ11(
βtcw
2π
|itc)|

. (4.77)

Altogether we have,

θ1〈〈B|(q
1
2
c )L0+L̄0− c

12 |B〉〉θ2 ∝
∞∑

w=−∞
β

e−
ktcβ2

8π
w2

|ϑ11(
βtcw
2π
|itc)|

. (4.78)

After taking the ghost sector and the internal CFT into account and performing the

modular transformation, we recover the partition function computed via the func-

tional integral method in the appendix of [53].

One interesting fact is that the partition function does not depend on θ1 or θ2.

This is unexpected from the semi-classical analysis performed in [53]. The reason for

this is unclear and deserves a closer inspection.
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4.4 Discussion

In this chapter, we constructed the boundary states for AdS2 branes in AdS3, following

[66, 67] but using the different ansatz. The boundary states are expressed as linear

combinations of the Ishibashi states as in (4.53), where the one point functions U±
θ (j)

are given by,

U±(j) = Γ
(
1− 2j − 1

k − 2

)
ν

1
2
−je±θ(2j−1), (4.79)

modulo factors independent of j. In the semi-classical approximation, the location of

the brane is given by ψ = θ in the AdS2 coordinates defined in Appendix C.

From the point of view of the boundary conformal field theories, the AdS2 branes

create defects which connect different conformal field theories while preserting at

least one Virasoro algebra. Since the boundary states allow study of the AdS2 branes

beyong the supergravity approximation, it would be interesting to use them to explore

the correspondence further.
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Chapter 5

Summary

The AdS/CFT correspondence states that string theory (M-theory) on an AdS back-

ground is equivalent to a conformal field theory defined on the boundary of AdS.

Using this correspondence, one ultimately hopes to probe gauge theory computations

that greatly simplify on the gravity side and vice versa. Ideally, one would like to

better understand physically interesting theories such as QCD (SU(3) gauge theory),

whose analysis has been limited to numerical methods. This is because the coupling

constant becomes large at low energy scales and perturbative methods fail.

Clearly, string theory on AdS backgrounds is interesting for its own sake. In this

thesis, we have explored the properties of Dp-branes, which are p+1 dimensional mem-

branes on which an open string can end, embedded in AdS3 and AdS5 backgrounds.

For the AdS5× S5 case, ref. [11] explicitly realized the AdS/CFT correspondence by

constructing a defect conformal field theory that describes open strings ending on a

single D5 brane. A natural generalization would be to study other D-brane setups

such as for multiple D-branes. In this thesis, we took a Penrose limit of this setup

and ended up with a flat D-brane embedded in PP-Wave background. Following the

proposal of [7], we derived a correspondence between open string states and gauge

invariant operators of the dual conformal field theory. Furthermore, we have checked

that the anomalous dimension of certain near BPS operators matched the light-cone

Hamiltonian of excited open-string states. In doing this, a possible problem arose

where the chiral primary operators received finite corrections that blow up in the PP-
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wave limit. One hopes that this difficulty can be overcome by employing a different

renormalization scheme or by considering ratios of correlation functions. Although

amplitudes themselves are divergent in the Penrose limit, ratios of amplitudes can be

finite. It would be interesting to see if a similar problem also exists in other open

string scenarios such as the orbifold model considered in [17].

In Chapters 2 and 3, we investigated AdS2 branes embedded in AdS3 × S3 ×
M4. According to the AdS/CFT correspondence, its dual conformal field theory

should be a 1+1 dimensional defect conformal field theory, but the dCFT has not

yet been constructed explicitly1. During the construction of boundary states for

AdS2 branes, we saw that the defect allowed one-point functions of primary fields

to have discontinuous jumps across the boundary. Following [36, 37], we employed

semi-classical analysis to propose the spectrum of open strings ending on AdS2 branes

embedded in Lorentzian AdS3 background. Then, we explicitly checked this proposal

by computing the one-loop partition function for the simplest case where the AdS2

branes contained no fundamental charge. In Chapter 3, boundary states of AdS2

branes were derived in Euclidean AdS3 via the SL(2, C)/SU(2) WZW model. One-

loop open string amplitude obtained from the boundary states were computed, and

it matched the string Hilbert space proposed in Chapter 2. By taking an orbifold of

AdS3, one can obtain the BTZ black hole or the cigar black hole geometry. It would

be very interesting to take the orbifold of the D-brane setup considered in Chapters

2 and 3 in hopes of using the D-branes to probe the singularities as in [76]. Lastly,

explicit construction of the dual defect conformal field theory analogous to the case

of AdS5 × S5 is sorely needed.

1For a first-step towards this direction, see [52].
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Appendix A

Anomalous Dimension

Computation

In this appendix, we show that the anomalous dimension for chiral primary opera-

tors defined in Chapter 1 of the form q̄2Zkq1 vanish up to order g2
Y M . We work in

Lorentzian space-time with mostly minus signature. The propagators for the defect

conformal field theory defined by equation (4.50) of [11] are

〈XV,H XV,H〉 =
i

p2
→ − 1

2(~p2)1/2
, (A.1)

〈λ1αλ̄1β〉 =
−i(ρk)αβpk

p2
, (A.2)

〈χA
1αχ̄B

1β〉 =
−i(ρk)αβpkδ

AB

p2
, (A.3)

〈AkAl〉 =
−igkl

p2
, (A.4)

〈qq̄〉 =
i

~p2
, (A.5)

〈ΨαΨ̄β〉 =
−i(ρk)αβpk

~p2
, (A.6)
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where → denotes the effective propagator for pinned operators. In addition, p =

(p9, ~p), k, l = 0, 1, 2 and ρk are three-dimensional gamma matrices such that Majorana

spinor indices range over α, β = 1, 2. Let us first evaluate the self-energy correction

at order O(g2
Y M) to q. Supersymmetry implies that the divergence should be at most

logarithmic and the dimension of q may get renormalized, but not its mass.

A.1 Defect scalar qm
i

q

q

q

(a)

XH

q

(b)

XV

(c)

A

(d)

µ

(e) (f)

Aµ

ψ λ  ,1

1
Aχ 

Figure A.1: One-loop self-energy correction to q

In this section, we compute the self-energy contribution to the defect scalar field

qm
i two-point function. Feynman diagram depicted in Figure A.1 (a) has the following
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amputated amplitude:

i
∫ d3k

(2π)3
〈q̄1

i

−δ(0)

2

(
q̄m
k σI

mnT
a
klq

n
l

)2
q1
j 〉 = 3δ(0)

∫ d3k

(2π)3
(T aT a)ji

1

~k2
. (A.7)

We follow a paper by Mirabelli and Peskin [77] and reexpress the delta function as

δ(0) =
∫ dk9

2π
eik90 =

∫ dk9

2π
. (A.8)

Using this, the amplitude becomes
∫ d4k

(2π)4
(T aT a)ji3k

2 1

(~p− ~k)2k2
, (A.9)

where we shifted ~k → ~k− ~p. All of the Feynman diagrams depicted in figures A.1(a)-

(f) have a common factor of the form
∫ d4k

(2π)4
(T aT a)ji

1

(~p− ~k)2k2
×NA(~p, k). (A.10)

We have already shown that N(a) = 3k2. We use the convention where the incoming

momenta have ∂µ → −ikµ. Straightforward calculation gives

N(a) = 3k2, (A.11)

N(b) = 3k2
9, (A.12)

N(c) = 3(~p− ~k)2, (A.13)

N(d) = 3(~p− ~k)2, (A.14)

N(e) = −(2~p− ~k)2, (A.15)

N(f) = 8~k · (~p− ~k). (A.16)

Putting all the pieces together, we have

(T aT a)ji

∫ d4k

(2π)4

1

(~p− ~k)2k2
× 2~p2. (A.17)

Notice that the quadratic and delta function like divergent pieces all cancelled out.

Wick-rotating the integrand by letting k0 = ik0
E and including contributions from

external legs, the quark qm
i two-point function at order g2

Y M is given by

−ig2
Y M

~p2
(T aT a)ji

∫ d3k

(2π)3

1

(~k)2|~k| . (A.18)
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A.2 q1q̄2 2 point function
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r

k
Aµ
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� � � � � � � � � � �

(e)

H

Figure A.2: O(g2
Y M) self-energy correction to q1q̄2 2 point function

The q1q̄2 composite operator is the simplest CPO discussed in Chapter 1. All non-

vanishing Feynman diagrams are summarized in Figure A.2. Other possible diagrams

vanish due to the structure of SU(N) algebra. Let us consider those coming from

interaction terms. Doing this, we get the following:
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For the graph shown in Figure A.2 (a), one gets

i
N2 − 1

2

∫ d4k

(2π)4

∫ d3l

(2π)3

1

(~r −~l)2~l2(~r − ~k)2~k2
. (A.19)

For Figure A.2 (b), we get

i
N2 − 1

2

∫ d4k

(2π)4

∫ d3l

(2π)3

k2
9

(~r −~l)2~l2(~r − ~k −~l)2(~k +~l)2k2
. (A.20)

For Figure A.2 (c), we get

i
N2 − 1

2

∫ d4k

(2π)4

∫ d3l

(2π)3

(~k − 2(~r −~l)) · (~k + 2~l)

(~r −~l)2~l2(~r − ~k −~l)2(~k +~l)2k2
. (A.21)

Simplifying the expression by Wick rotating and integrating over k9 leads to the

following result:

−i
N2 − 1

2

∫ d3k

(2π)3

∫ d3l

(2π)3

~k2 +~l2 − ~r · (~k +~l)

(~r −~l)2~l2(~r − ~k)2~k2|~k −~l| . (A.22)

Notice that the above expression is symmetric about ~k ↔ ~l. Now consider the terms

coming from quark self-energy.

For Figure A.2 (d), we get

−i
N2 − 1

2

∫ d4k

(2π)4

∫ d3l

(2π)3

2

(~r −~l)2~l2(~r −~l − ~k)2k2
. (A.23)

For Figure A.2 (e), we get same result as that of Figure A.2 (d). The entire self-energy

contribution after Wick rotation and integrating over k9 is

i
N2 − 1

2

∫ d3k

(2π)3

∫ d3l

(2π)3

2

(~r −~l)2~l2(~r − ~k)2|~k −~l| . (A.24)

The tree-amplitude of 〈O∗O〉 is given as

〈O∗(~x)O(0)〉 =
N

(4π)2

1

~x2
. (A.25)
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At order g2

Y M , the logarithmic divergent pieces cancel each other, and the two-point

function is given by

〈O∗(~x)O(0)〉 =
N

(4π)2~x2
+ g2

Y M

N2 − 1

2

∫ d3r

(2π)3

d3k

(2π)3

d3l

(2π)3

ei~r·~x ~r · (~k +~l)

(~r −~l)2~l2(~r − ~k)2~k2|~k −~l| .

(A.26)

For the remaining finite piece, taking ~k → ~k/|~r|,~l → ~l/|~r|, ~r → ~r/|~r| ≡ r̂, one can

express it as

∫ d3k

(2π)3

d3l

(2π)3

~r · (~k +~l)

(~r −~l)2~l2(~r − ~k)2~k2|~k −~l| =
A

|~r| , (A.27)

where A is a positive constant

A =
∫ d3k

(2π)3

d3l

(2π)3

1

(r̂ −~l)2~l2(r̂ − ~k)2~k2|~k −~l| . (A.28)

The above equality can be easily shown by shifting ~k → r̂− ~k, ~l → r̂−~l. Finally, we

have

〈O∗(~x)O(0)〉 =
N

(4π)2

(
1 +

g2
Y M(N2 − 1)

N

A

4

)
1

~x2
. (A.29)

A.3 q̄1Zq2 two-point function

The next simplest chiral primary operator is of the form q̄Zq. We divide the compu-

tation into two parts.

A.3.1 g2
Y MN terms

In this subsection, we focus on amplitudes with color structure that scale as g2
Y MN

compared to the tree-level amplitude. These come from Feynman diagrams depicted

in Figure A.3.

For each of the diagrams depicted in Figures A.3 (a) and (b), the amplitude is obtained

to be

N2 − 1

2

N

8

∫ d3k

(2π)3

d3l

(2π)3

d3m

(2π)3

1

~k2~l2 ~m2[(~r + ~m− ~k)2]
1
2 [(~r + ~m−~l)2]

1
2

. (A.30)
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For each A.3 (c) and (d), we have

N2 − 1

2

N

2

∫ d4k

(2π)4

d4l

(2π)4

d3m

(2π)3

(~k +~l) · [2(~r + ~m)− (~k +~l)]

~k2~l2 ~m2(r + m− l)2(k − l)2(r + m− k)2
. (A.31)

For each A.3 (e) and (f), we have

N2 − 1

2

N2 − 1

2N

∫ d3k

(2π)3

d3l

(2π)3

d3m

(2π)3

−1

2~k2[~l2]
1
2 ~m2(~k −~l)2[(~r + ~m− ~k)2]

1
2

. (A.32)

Lastly, A.3 (g) gives a term of the form

N2 − 1

2
N

∫ d4k

(2π)4

d4l

(2π)4

d3m

(2π)3

2

~k2 ~m2l2(l − (r + m− k))2(r + m− k)2.
(A.33)

Wick rotating the momenta by taking k0 → ik0, etc., keeping only terms that scale

as N , and summing all the contributions leads to an expression with a common

denominator

N

4

1

~k2~l2 ~m2|~r + ~m− ~k||~r + ~m−~l||~k −~l|
(
|~r + ~m− ~k|+ |~k −~l|+ |~r + ~m−~l|

) (A.34)

and numerator

|~k −~l|
(
|~r + ~m− ~k|+ |~k −~l|+ |~r + ~m−~l|

)
+ (A.35)

(~k +~l) · [(~k +~l)− 2(~r + ~m)] +

−2|~r + ~m−~l|
(
|~r + ~m− ~k|+ |~k −~l|+ |~r + ~m−~l|

)
+

−2~l2.

By noting that the denominator is left invariant under the exchange ~k ↔ ~l, we simplify

the above numerator to

−2
(
(~r + ~m)2 + |~r + ~m− ~k||~r + ~m−~l|

)
. (A.36)

Finally, the total contribution with a color structure that scales as N compared to

the tree-level amplitude can be written as

−N2 − 1

2

N

2

∫ d3k

(2π)3

d3l

(2π)3

d3m

(2π)3
× (A.37)
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(~r + ~m)2 + |~r + ~m− ~k||~r + ~m−~l|

~k2~l2 ~m2|~r + ~m− ~k||~r + ~m−~l||~k −~l|
(
|~r + ~m− ~k|+ |~k −~l|+ |~r + ~m−~l|

) .

As before, re-scaling the momenta according to ~r → ~r/|~r| ≡ r̂, ~k → ~k/|~r|, ~l → ~l/|~r|
and ~m → ~m/|~r|, the above expression can be simplified to

−N2 − 1

2

N

2
|~r|A, (A.38)

where A is a finite and non-zero numerical constant

A =
∫ d3k

(2π)3

d3l

(2π)3

d3m

(2π)3

(r̂ + ~m)2 + |r̂ + ~m− ~k||r̂ + ~m−~l|
~k2~l2 ~m2|r̂ + ~m− ~k||r̂ + ~m−~l||~k −~l| (A.39)

× 1(
|r̂ + ~m− ~k|+ |~k −~l|+ |r̂ + ~m−~l|

) .

Lastly, fourier transforming |~r| gives

N2 − 1

2

N

2

A

π2[~x2]2
(A.40)

as expected from conformal invariance and the fact that ∆q̄Zq = 2.

A.3.2 Other terms

All other contributions to the two-point function are depicted in Figure A.4.

For the Feynman graph shown in Figure A.4 (a), we have

N2 − 1

2

(
1 +

1

2N

) ∫ d4k

(2π)4

d3l

(2π)3

d3m

(2π)3

i

2~k2[(~r − ~m)2]
1
2 (~m− ~k)2~l2(~m−~l)2

. (A.41)

Similarly, we have for A.4 (b)

N2 − 1

2

∫ d4k

(2π)4

d3l

(2π)3

d3m

(2π)3

i(k9)2

2~k2[(~r − ~m)2]
1
2 (~m− ~k)2~l2(~m−~l)2(~m2 − (k9)2)

. (A.42)

For A.4 (c), we have

N2 − 1

2

1

2N

∫ d4k

(2π)4

d3l

(2π)3

d3m

(2π)3

i(k9 − l9)2

2~k2[(~r − ~m)2]
1
2 (~m− ~k)2~l2(~m−~l)2(k − l)2

. (A.43)
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For A.4 (d), we have

N2 − 1

2

1

2N

∫ d3k

(2π)3

d3l

(2π)3

d3m

(2π)3

(~k +~l) ·
(
2~m− (~k +~l)

)

4~k2[(~r − ~m)2]
1
2 (~m− ~k)2~l2(~m−~l)2[(~k −~l)2]

1
2

. (A.44)

Summing over all terms and including contributions that scale as O(1) and 1/N

compared to the tree-level amplitude from Feynman graphs A.3 (e) and (f) of the last

subsection leads to

N2 − 1

2

∫ d3k

(2π)3

d3l

(2π)3

d3m

(2π)3

(
−1

4

|~m|
~k2~l2(~m− ~k)2(~m−~l)2|~r − ~m|+ (A.45)

+
1

2N

1

4

2~m2

~k2~l2(~m− ~k)2(~m−~l)2|~r − ~m||~k −~l|

)
.

After rescaling the internal momenta as before and putting all the pieces together,

the two-point function becomes

〈q̄2Z̄q1(~x)q̄1Zq2(0)〉 =
N2 − 1

2

1

[~x2]2

(
1

2(4π2)2
+

g2
Y M

π2

(
N

2
A + B +

1

2N
C

))
, (A.46)

where A,B,C are finite and non-vanishing constants defined in equations (A.39) and

(A.45).

A.4 General case

In this section, we use induction to prove that the anomalous dimension vanishes

for all chiral primary operators of the form q̄2Zkq1 where k is a nonnegative integer.

Let {T a}, a = 1, · · · , N2 − 1 denote the generators of Lie algebra of SU(N) in the

fundamental representation and {vα} α = 1, · · · , N be the canonical basis of CN in

which the fundametal representation lives. For example, v1 = (1, 0, · · · , 0)T . Define

N × N matrices Cαβ ≡ vα(vβ)T . Some useful identities of SU(N) Lie algebra are

summarized in appendix B. We also need the following set of identities:

CαβCγδ = δβγCαδ,
∑
α

Cαα = 1N×N, Tr(Cαβ) = δαβ, (A.47)

[[Cαβ, T b], T b] = NCαβ − δαβ1N×N, (A.48)
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and

k∑

i=1

Tr(A1 · · · [Ai, B] · · ·Ak) = 0. (A.49)

Consider the two-point function 〈q̄2Z̄kq1(x)q̄1Zkq2(0)〉. We can treat the defect op-

erator q̄mZkqn as a single trace operator by expressing it as Tr(qnq̄mZk). There are

5 classes of Feynman diagrams that give rise to logarithmic divergences:

(A) Z self-energy.

(B) bulk quartic Z interaction and gauge boson exchange between two Z-legs.

(C) bulk-defect quartic interaction and gauge boson exchange between q-leg and Z-

leg.

(D) q self-energy.

(E) FV , D9X
I
H , and gauge boson exchange between two q-legs.

First of all, as discussed in [78], diagrams of the type (A) give a contribution of the

form

A(~x)kN
∑
σ

Tr(CαβT a1 · · ·T ak) Tr(CβαT aσ(1) · · ·T aσ(k)), (A.50)

where A(~x) is a function of x and independent of k and N . In order to derive the

contribution from graphs of type (B), consider the bulk quartic Z interaction first.

The relevant term in the Lagrangian is

−Tr([Z, Z̄][Z, Z̄]). (A.51)

We are interested in

−〈Tr(q1q̄2Z̄k) Tr([Z, Z̄][Z, Z̄]) Tr(q2q̄1Zk)〉. (A.52)

The color structure for the amplitude is given as

−∑
σ

∑

i6=j

Tr(CαβT a1 · · ·T ak) Tr([T aσ(i) , T b][T aσ(j) , T c]) Tr(CβαT aσ(1) · · ·T b · · ·T c · · ·T aσ(k))

= −∑
σ

∑

i6=j

Tr(CαβT a1 · · ·T ak)
1

2
ifaσ(i)bd ifaσ(j)cd Tr(CβαT aσ(1) · · ·T b · · ·T c · · ·T aσ(k)) (A.53)

= −1

2

∑
σ

∑

i6=j

Tr(CαβT a1 · · ·T ak) Tr(CβαT aσ(1) · · · (ifaσ(i)dbT b) · · · (ifaσ(j)dcT c) · · ·T aσ(k))(A.54)
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= −1

2

∑
σ

∑

i6=j

Tr(CαβT a1 · · ·T ak) Tr(CβαT aσ(1) · · · [T aσ(i) , T d] · · · [T aσ(j) , T d] · · ·T aσ(k)) (A.55)

using the identity given in equation (A.49) we sum over j first, (A.56)

=
1

2

∑
σ

∑

i

Tr(CαβT a1 · · ·T ak)
{
Tr(CβαT aσ(1) · · · [[T aσ(i) , T d], T d] · · ·T aσ(k))+ (A.57)

+Tr([Cβα, T d]T aσ(1) · · · [T aσ(i) , T d] · · ·T aσ(k))
}

(A.58)

using once more the identity given in equation (A.49) to sum over i yields (A.59)

=
1

2

∑
σ

Tr(CαβT a1 · · ·T ak)
{
kNTr(CβαT aσ(1) · · ·T aσ(k))− Tr([[Cβα, T d], T d]T aσ(1) · · ·T aσ(k))

}

=
1

2
kN

∑
σ

Tr(CαβT a1 · · ·T ak) Tr(CβαT aσ(1) · · ·T aσ(k)) (A.60)

−1

2

∑
σ

Tr(CαβT a1 · · ·T ak) Tr([[Cβα, T d], T d]T aσ(1) · · ·T aσ(k)). (A.61)

The gauge boson exchange diagram has exactly the same color structure. Together,

(B) gives

B(~x)

{
kN

∑
σ

Tr(CαβT a1 · · ·T ak) Tr(CβαT aσ(1) · · ·T aσ(k)) (A.62)

−∑
σ

Tr(CαβT a1 · · ·T ak) Tr([[Cβα, T d], T d]T aσ(1) · · ·T aσ(k))

}
, (A.63)

where we have absorbed a numerical factor independent of k and N into the definition

of B(~x). For the bulk-defect quartic interaction terms which are of the type (C), the

relevant terms in the defect Lagrangian are

Tr(q1q̄1[Z, Z̄])− Tr(q2q̄2[Z, Z̄]). (A.64)

The second term simply gives the same result as the first one, and so we just consider

the first term here. At g2
Y M ,

〈Tr(q1q̄2Z̄k) Tr(q1q̄1[Z, Z̄]) Tr(q2q̄1Zk)〉. (A.65)

Then, the color structure is

∑
σ

∑

i

Tr(CαβT a1 · · ·T ak) Tr(Cγα[T aσ(i) , T b]) Tr(CβγT aσ(1) · · ·T aσ(i−1)T bT aσ(i+1) · · ·T aσ(k))
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=

∑
σ

∑

i

Tr(CαβT a1 · · ·T ak) Tr([Cγα, T aσ(i) ]T b) Tr(T aσ(i+1) · · ·T aσ(k)CβγT aσ(1) · · ·T aσ(i−1)T b)

=
∑
σ

∑

i

Tr(CαβT a1 · · ·T ak)
{

1

2
Tr(CβγT aσ(1) · · · [Cγα, T aσ(i) ] · · ·T aσ(k)) (A.66)

− 1

2N
Tr([Cγα, T aσ(i) ]) Tr(T aσ(i+1) · · ·T aσ(k)CβγT aσ(1) · · ·T aσ(i−1))

}
(A.67)

where the second term vanishes, (A.68)

=
1

2

∑
σ

Tr(CαβT a1 · · ·T ak)
∑

i

Tr(CβγT aσ(1) · · · [Cγα, T aσ(i) ] · · ·T aσ(k)) (A.69)

using the identity given in equation (A.49), (A.70)

= −1

2

∑
σ

Tr(CαβT a1 · · ·T ak) Tr([Cγα, Cβγ]T aσ(1) · · ·T aσ(k)). (A.71)

(A.72)

The gauge boson exchange part of (C) has the following color structure:

〈Tr(q1q̄2Z̄k) Tr(q1q̄1Aµ) Tr(Z̄[Aµ, Z]) Tr(q2q̄1Zk)〉 (A.73)

→ ∑
σ

∑

i

Tr(CαβT a1 · · ·T ak) Tr(CγαT b) Tr(T c[T b, T aσ(i) ])

×Tr(CβγT aσ(1) · · ·T aσ(i−1)T cT aσ(i+1) · · ·T aσ(k))

=
∑
σ

∑

i

Tr(CαβT a1 · · ·T ak) Tr(CγαT b) Tr([T aσ(i) , T c]T b)

×Tr(CβγT aσ(1) · · ·T aσ(i−1)T cT aσ(i+1) · · ·T aσ(k))

=
1

2

∑
σ

∑

i

Tr(CαβT a1 · · ·T ak) Tr(Cγα[T aσ(i) , T c]) Tr(CβγT aσ(1) · · ·T aσ(i−1)T cT aσ(i+1) · · ·T aσ(k))

=
1

2

∑
σ

∑

i

Tr(CαβT a1 · · ·T ak) Tr([Cγα, T aσ(i) ]T c) Tr(CβγT aσ(1) · · ·T aσ(i−1)T cT aσ(i+1) · · ·T aσ(k))

=
1

4

∑
σ

∑

i

Tr(CαβT a1 · · ·T ak) Tr(CβγT aσ(1) · · ·T aσ(i−1) [Cγα, T aσ(i) ]T aσ(i+1) · · ·T aσ(k))

= −1

4

∑
σ

Tr(CαβT a1 · · ·T ak) Tr([Cγα, Cβγ]T aσ(1) · · ·T aσ(k)).
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The result is the same as the bulk-defect quartic interaction up to a numerical factor.

Together, (C) contributes with

C(~x)
∑
σ

Tr(CαβT a1 · · ·T ak) Tr([Cγα, Cβγ]T aσ(1) · · ·T aσ(k)) (A.74)

Now consider the terms coming from Feynman graphs of type (D). There are many

diagrams in this group but all of them have the same color structure. In the following,

we compute the gauge boson loop diagram to obtain

〈Tr(q1q̄2Z̄k) Tr(q1q̄1Aµ) Tr(q1q̄1Aµ) Tr(q2q̄1Zk)〉 (A.75)

→ ∑
σ

Tr(CαβT a1 · · ·T ak) Tr(CραT b) Tr(CγρT b)︸ ︷︷ ︸
1
2
Tr(CραCγρ)− 1

2N
Tr(Cρα)Tr(Cγρ)

Tr(CβγT aσ(1) · · ·T aσ(k))

=
N2 − 1

2N

∑
σ

Tr(CαβT a1 · · ·T ak) Tr(CβαT aσ(1) · · ·T aσ(k))

Together, (D) gives a contribution of the form

D(~x)
N2 − 1

N

∑
σ

Tr(CαβT a1 · · ·T ak) Tr(CβαT aσ(1) · · ·T aσ(k)) (A.76)

Lastly, let us compute the color structure of (E). Again three diagrams give the same

structure. For instance, the gauge boson exchange diagram gives

〈Tr(q1q̄2Z̄k) Tr(q2q̄2Aµ) Tr(q1q̄1Aµ) Tr(q2q̄1Zk)〉 (A.77)

→ ∑
σ

Tr(CαβT a1 · · ·T ak) Tr(CβγT b) Tr(CραT b)︸ ︷︷ ︸
1
2
Tr(CβγCρα)− 1

2N
Tr(Cβγ)Tr(Cρα)

Tr(CγρT aσ(1) · · ·T aσ(k))

=
1

2

∑
σ

Tr(T a1 · · ·T ak) Tr(T aσ(1) · · ·T aσ(k))− 1

2N
Tr(CαβT a1 · · ·T ak) Tr(CβαT aσ(1) · · ·T aσ(k)).

Hence, Feynman graphs of type (E) give a contribution of the form

E(~x)

{∑
σ

Tr(T a1 · · ·T ak) Tr(T aσ(1) · · ·T aσ(k)) (A.78)

− 1

N

∑
σ

Tr(CαβT a1 · · ·T ak) Tr(CβαT aσ(1) · · ·T aσ(k))

}
.

Putting all the results together and thanks to the following identity:

[[Cβα, T d], T d] = NCβα − δαβ1N×N = −[Cγα,Cβγ], (A.79)



100
we can express the result in terms of only two types of color structure given by

B(k, N) =
∑
σ

Tr(T a1 · · ·T ak) Tr(T aσ(1) · · ·T aσ(k)), (A.80)

D(k, N) =
∑
σ

Tr(CαβT a1 · · ·T ak) Tr(CβαT aσ(1) · · ·T aσ(k)). (A.81)

Altogether, we have

[
kN(A(~x) + B(~x)) + N(D(~x)−B(~x)− C(~x))− 1

N
(D(~x) + E(~x))

]
(A.82)

×D(k, N) + [B(~x) + C(~x) + E(~x)]B(k, N).

Notice that the functions A(~x), B(~x), C(~x), D(~x), E(~x) are independent of both k and

N and we can evaluate them for any convenient value of k and N .

As argued in [78],

A(~x) + B(~x) = 0. (A.83)

When k = 1, we have B(1, N) = 0 and the amplitude simplifies to

[
N(D(~x)−B(~x)− C(~x))− 1

N
(D(~x) + E(~x))

]
D(k,N) (A.84)

From the result obtained in the previous section, we know the logarithmic pieces

cancel for all N and conclude that

D(~x)−B(~x)− C(~x) = finite, D(~x) + E(~x) = finite. (A.85)

These equations together imply that

B(~x) + C(~x) + E(~x) = finite. (A.86)

Therefore, logarithmically diverging terms in Eq. (A.82) cancel out for any value of k

and N , and the dimension of pinned operators of the form q̄2Zkq1 are not renormal-

ized. This gives a convincing support that these operators are indeed chiral primaries

of the defect conformal field theory. In this section, we have ignored some Feyn-

man diagrams such as figure A.4 (b) because they are finite. Unlike the CPO’s of

the usual N = 4 SYM gauge theory, the CPO’s of the defect conformal field theory

considered in this appendix are renormalized and receive a finite contribution. As
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mentioned in the discussion of Chapter 1, this may ruin the specific PP-wave/dCFT

duality we have constructed since the amplitude blows up in the Penrose limit. It

would be highly interesting if this shortfall can be overcome by employing a different

renormalization scheme or by comparing ratios of amplitudes instead.
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Figure A.3: O(g2
Y M) self-energy correction to q̄1Zq2 2 point function which scales as

N compared to the free part.
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Y M) self-energy corrections to q̄1Zq2 2 point function.



104

Appendix B

Useful Formulae for dCFT

For fundamental representation of SU(N) ta such that [ta, tb] = ifabctc, we have

Tr[ta, tb] =
1

2
δab, tata =

N2 − 1

2N
1, (B.1)

facdf bcd = Nδab, fabctbtc =
N

2
ita, (B.2)

(ta)ij(t
a)kl =

1

2

(
δilδkj − 1

N
δijδkl

)
. (B.3)

Some d-dimensional integrals in Minkowski space are given by

∫ ddl

(2π)d

1

(l2 −∆)n
=

(−1)ni

(4π)d/2

Γ(n− d
2
)

Γ(n)

(
1

∆

)n− d
2

, (B.4)

∫ ddl

(2π)d

l2

(l2 −∆)n−1
=

(−1)ni

(4π)d/2

d

2

Γ(n− d
2
− 1)

Γ(n)

(
1

∆

)n− d
2
−1

. (B.5)

Other useful integrals are

∫ dx

2π

1

(a2 + (x + c)2)(b2 + x2)
=

|a|+ |b|
2|a||b| [(|a|+ |b|)2 + c2]

, (B.6)

∫ dxdy

(2π)2

1

(x2 + a2)(y2 + b2)[(x− y)2 + c2]
=

1

4|a||b||c| (|a|+ |b|+ |c|) , (B.7)

∫ dxdy

(2π)2

(x− y)2

(x2 + a2)(y2 + b2)[(x− y)2 + c2]
=

|a|+ |b|
4|a||b| (|a|+ |b|+ |c|) . (B.8)
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Appendix C

Coordinate Systems for AdS3

The space AdS3 is defined as the hyperboloid

(X0)2 − (X1)2 − (X2)2 + (X3)2 = R2 , (C.1)

embedded in R2,2. The metric

ds2 = −(dX0)2 + (dX1)2 + (dX2)2 − (dX3)2 (C.2)

on R2,2 induces a metric of constant negative curvature on AdS3. The quantity R

that appears in (C.1) is the anti-de Sitter radius; for convenience, we set R = 1. In

addition, to avoid closed timelike curves, we work not with the hyperboloid (C.1)

itself, but with its universal cover.

The two coordinate systems we use most extensively are global coordinates and

AdS2 coordinates. The global coordinates (ρ, θ, τ) are defined by

X0 + iX3 = cosh ρ eit , X1 + iX2 = − sinh ρ e−iθ . (C.3)

The range of the radial coordinate ρ is 0 ≤ ρ < ∞; the angular coordinate θ ranges

over 0 ≤ θ < 2π; and the global time coordinate t may be any real number. The

AdS3 metric in global coordinates is

ds2 = − cosh2ρ dt2 + dρ2 + sinh2ρ dθ2 . (C.4)

The AdS2 coordinates (ψ, ω, t) are particularly well adapted to the AdS2 branes we

consider in Sections 3.4 and 3.5. They are defined by

X1 = cosh ψ sinh ω , X2 = sinh ψ , X0 + iX3 = cosh ψ cosh ω eit . (C.5)
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All three AdS2 coordinates range over the entire real line. In this parametrization,

the fixed ψ slices have the geometry of AdS2. The AdS3 metric in AdS2 coordinates

takes the form

ds2 = dψ2 + cosh2 ψ (− cosh2 ω dt2 + dω2) ; (C.6)

the quantity in parentheses is the metric of the AdS2 subspace at fixed ψ. The

transformation between global and AdS2 coordinates is

sinh ψ = sin θ sinh ρ , cosh ψ sinh ω = − cos θ sinh ρ . (C.7)

The global time t is the same in both coordinate systems.

The space AdS3 is the group manifold of the group SL(2, R). A point in AdS3 is

given by the SL(2, R) matrix

g =




X0 + X1 X2 + X3

X2 −X3 X0 −X1


 . (C.8)

In the global coordinate system,

g =




cos t cosh ρ− cos θ sinh ρ sin t cosh ρ + sin θ sinh ρ

− sin t cosh ρ + sin θ sinh ρ cos t cosh ρ + cos θ sinh ρ


 . (C.9)
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Appendix D

A Partition Function Calculation

of the Open String Spectrum

In this appendix, we explicitly verify the proposal presented in Section 3.4.2 for the

open-string spectrum. First, in Section D.1, we compute the worldsheet one-loop

partition function Z for open string theory on Euclidean AdS3 at finite temperature

1/β. The partition function is proportional to the single-particle contribution to the

space-time free energy, Z = −βF . The free energy, in turn, can be written as

F =
1

β

∑

s∈H
log

(
1− e−βEs

)
, (D.1)

where the sum is over states s in the physical Hilbert space H of single-string states,

and Es is the energy of the state s.1 By writing Z in the right form, we can thus

read off the spectrum of open strings in (Lorentzian) AdS3. We show in Section

D.2 that the spectrum breaks up into a sum over discrete states and an integral

over a continuum, with energies agreeing with the expressions found in Section 3.4.

Moreover, we compute the density of states of the continuum.

Our calculation is patterned on the one done in [36] for closed strings in AdS3.

Especially in Section D.1, we emphasize here those features that are novel in the open

string case; the reader seeking greater detail is directed to [36] and the references

1We work at zero chemical potential.
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therein.

One point is worth clarifying at the outset. Though the free energy whose form

we undertake to calculate receives contributions only from states in the physical

Hilbert space of the string, our calculation is sufficient to confirm our proposal for

the spectrum of the WZW model. The physical Hilbert space is the tensor product of

a Hilbert space of AdS3 excitations and a Hilbert space associated with the “internal”

manifold M. For our purposes, we can take the spectrum of the internal conformal

field theory to be arbitrary. One of the physical state conditions is L0 +h = 1, where

L0 is the zeroth Virasoro generator of the AdS3 conformal field theory, and h is a

conformal weight in the conformal field theory on M. This condition can be seen as

parametrizing the spectrum of L0 in the WZW model. The remaining physical state

conditions, Ln +LMn = 0, with n ≥ 1, relate the Virasoro generators in the AdS3 and

internal conformal field theories. They can be solved within the tensor product of an

irreducible representation of ŜL(2, R) with some subspace of the internal conformal

field theory state space. Therefore, given the physical string spectrum in AdS3, it is

possible to deduce how the Hilbert space of the WZW model is decomposed into a

sum of irreducible representations of ŜL(2, R). This is why the one-loop free energy

computation below, though it is carried out in the physical string Hilbert space, is

nonetheless relevant to the spectrum of the WZW model.

D.1 The one-loop partition function

Our first business is to write the WZW action for Euclidean AdS3 at finite temper-

ature and the boundary conditions appropriate to a flat AdS2 brane. We define the

coordinates (v, v̄, φ) on Euclidean AdS3 by

v = sinh ρ eiθ , (D.2)

v̄ = sinh ρ e−iθ , (D.3)

φ = t− log cosh ρ , (D.4)
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where (ρ, θ, t) are global coordinates. The metric in these coordinates is [54]

ds2 = k
(
dφ2 + (dv + vdφ)(dv̄ + v̄dφ)

)
, (D.5)

where k is the square of the anti-de Sitter radius, and is identified with the level

of the WZW model. Euclidean AdS3 is the coset manifold SL(2, C)/SU(2); in the

coordinates (D.2), a general element is written as

g =




eφ(1 + |v|2) v

v̄ e−φ


 . (D.6)

Thermal AdS3 is given by the identification

t ∼ t + β , (D.7)

where β is the inverse temperature. In the coordinates (D.2), this translates to

φ ∼ φ + β . (D.8)

The WZW action in the coordinates (D.2) is2

S =
k

π

∫
d2z

(
∂φ ∂̄φ + (∂v̄ + ∂φ v̄)(∂̄v + ∂̄φ v)

)
. (D.9)

Throughout this calculation, we take the worldsheet to be Euclidean. In addition,

we alternate between real (σ, τ) and complex conjugate (z, z̄) worldsheet coordinates.

The relation between the two sets is

z = σ + iτ , ∂ ≡ ∂

∂z
. (D.10)

and similarly for z̄ and ∂̄.

2The action given here differs from the WZW model Lagrangian given in Section 3.5.4 by bound-

ary terms that can be ignored only if the straight brane boundary condition (D.11) holds. If the

AdS2 brane is curved, these terms must be included. The action then becomes considerably more

complicated, and loses some of the special properties that make possible the partition function

calculation described below.
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In the coordinates (D.2), the boundary conditions suitable for open strings ending

on a straight AdS2 brane are

v2 = 0 , (D.11)

∂σv1 = 0 , (D.12)

∂σφ = 0 , (D.13)

where v1 and v2 are, respectively, the real and imaginary parts of v.

The one-loop open string partition function is obtained by considering worldsheets

with the topology of a cylinder. As usual, 0 ≤ σ ≤ π. The worldsheet is made

cylindrical by imposing the periodicity

τ ∼ τ + 2πt . (D.14)

Here (and henceforth) t is simply a modulus, and is not to be confused with the global

time coordinate. The space-time periodicity φ ∼ φ + β of thermal AdS3 implies

φ(σ, τ + 2πt) = φ(σ, τ) + βn , (D.15)

for some integer n. If we define

un =
nτ

4πt
(D.16)

and

φ̂ = φ− 2βun , (D.17)

then φ̂ is periodic in τ , i.e., φ̂(τ + 2πt) = φ̂(τ). The WZW action may be written in

terms of φ̂ as

S =
kβ2n2

8πt
+

k

π

∫
d2z

(
|∂φ̂|2 + |(∂ − iun + ∂φ̂)v̄|2

)
. (D.18)

The partition function for Euclidean AdS3 is

Zn(β) ≡
∫
Dφ̂DvDv̄ e−S , (D.19)

summed over n. The rest of this section is devoted to evaluating the functional

integrals in (D.19).
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The second term in parentheses in (D.18) couples φ, v, and v̄. The field φ̂ can

be disentangled from v and v̄ using a standard chiral gauge transformation and the

chiral anomaly formulae familiar from the closed string calculation. This procedure

is valid in the open string case as well, since the string boundary conditions are left

invariant by the chiral transformation. The partition function then factorizes into a

functional integral over φ̂ and a functional integral over v and v̄, multiplied by the

constant e−kβ2n2/8πt coming from the constant term in the action. The φ̂ functional

integral is standard [79], and, up to normalization, yields

Zφ̂ =
β(k − 2)1/2

t1/2|η(it)| , (D.20)

where η is the Dedekind eta function. The remaining functional integral may be

written as

Zv =
∫
DvDv̄e−Sv , (D.21)

where

Sv =
k

π

∫
d2z|(∂ − iun)v̄|2. (D.22)

Integrating Sv by parts gives

Sv = −k

π

(∫

Σ
d2z v̄ (∂ + iun) (∂̄ + iun) v +

∫

∂Σ
dz̄ v1 ∂σv2 − un

∫

∂Σ
dz̄ v1v1

)
, (D.23)

where Σ denotes the worldsheet cylinder. Note that the two boundary terms are pure

imaginary.

Let us work on the bulk term in (D.23). We begin by expanding v1 and v2 in a

complete basis of functions. The boundary conditions (D.11) and (D.12) dictate the

expansions

v1(σ, τ) =
∑

M≥0,N∈Z

aMN
1

π
√

2t
cos Mσ ψN(τ/t) , (D.24)

v2(σ, τ) =
∑

M>0,N∈Z

bMN
1

π
√

2t
sin Mσ ψN(τ/t) , (D.25)

where aMN and bMN are real-valued coefficients, and ψN is defined to be cos (Nτ/t)
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for N ≥ 0 and sin (Nτ/t) for N < 0. It follows that

v = v1 + iv2 =
∑

M,N∈Z

vMN
1

π
√

2t
eiMσψN(τ/t) , (D.26)

where

aMN = (vMN + v−MN)/2 , (D.27)

bMN = (vMN − v−MN)/2 . (D.28)

The advantage of this rewriting is that eiMσψN(τ/t) is an eigenfunction of the

operator ∆v = − k
π
(∂ + iun)(∂̄ + iun) that appears in the bulk term of (D.23), with

eigenvalue λMN = − ((M + ûn)2 + (N/t)2). If we substitute the expansion (D.26) of

v into (D.23), then, expressing Sv in terms of the worldsheet coordinates (σ, τ), we

can immediately integrate over τ , to obtain

Sv =
1

π

∫ π

0
dσ

∑

M ′,M,N∈Z

vM ′N vMN λMN [cos M ′σ cos Mσ + sin M ′σ sin Mσ

+ i (cos M ′σ sin Mσ − sin M ′σ cos Mσ)] + boundary terms , (D.29)

up to a normalization factor. Since Sv is positive-definite, vMN and λMN are real

constants, and the boundary terms are pure imaginary, the imaginary part of the

bulk term must cancel with the boundary terms. We are then left with

Sv =
1

2

∑

M ′,M,N∈Z

vMN vMN λMN (δM ′,M + δM ′,−M + δM ′,M − δM ′,−M)

=
∑

M,N∈Z

vMN vM,N λM,N . (D.30)

The functional integral is a product of Gaussians, and may be evaluated by standard

methods. Up to a constant,

Zv =
∏

M,N∈Z

1√
(M + 2un)2 + (N/t)2

, (D.31)

which may be zeta-function regularized [80] to give

Z−1
v =

∣∣∣∣∣e
−4πu2

nt ϑ1(−2itun, it)

η(it)

∣∣∣∣∣ , (D.32)
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where ϑ1 is a Jacobi theta function.

We have now obtained expressions for all of the factors entering into Zn(β; t). The

overall normalization of Zn is fixed in the usual way, by examining the infrared limit.

Putting everything together, we obtain

Zn(β; t) =
1

4π
√

2t

β(k − 2)1/2e−kβ2n2/8πte4πu2
nt

|ϑ1(−2itun, it)|

=
1

4π
√

2t

β(k − 2)1/2

sinh(βn/2)

e−(k−2)β2n2/8πt eπt/4

[
∏∞

m=1(1− e−2πtm)(1− e−2πtmeβn)(1− e−2πtme−βn)]
.

(D.33)

The partition function we have calculated is that of a conformal field theory with

Euclidean AdS3 as its target space, but our physical open string theory contains

more: we must incorporate the contributions of the (b, c) ghosts as well as those

of the “internal” conformal field theory. In addition, we must integrate over the

worldsheet modulus t. When this is done, the partition function becomes

Z(β) =
β(k − 2)1/2

4
√

2π

∞∑

m=1

∫ ∞

0

dt

t3/2
e2πt(1− 1

4(k−2)
)
∑

h

D(h)e−2πth e−(k−2)β2m2/8πt

sinh(βm/2)
×

∞∏

n=1

∣∣∣∣∣
1− e−2πtn

(1− e−2πtn+βm)(1− e−2πtn−βm)

∣∣∣∣∣ . (D.34)

Here h indexes the weight in the internal conformal field theory, and D(h) is the

degeneracy at weight h.

D.2 The spectrum

Having calculated the partition function (D.34), we now massage it into a form from

which we can read off the spectrum. We noted at the beginning of this appendix that

the partition function Z is proportional to the the free energy

F =
1

β

∑

s∈H
log

(
1− e−βEs

)
=

∞∑

m=1

∑

s∈H

1

mβ
e−mβEs . (D.35)
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The partition function is likewise a sum over m of a function of mβ. It suffices, then,

to compare the m = 1 terms of the two expressions. In this section, we verify that

Es, extracted from the identification

∑

s∈H

1

β
e−βEs =

β(k − 2)1/2

4
√

2π

∫ ∞

0

dt

t3/2
e2πt(1− 1

4(k−2)
)
∑

h

D(h)e−2πth e−(k−2)β2xf/8πt

sinh(β/2)
×

∞∏

n=1

∣∣∣∣∣
1− e−2πtn

(1− e−2πtn+β)(1− e−2πtn−β)

∣∣∣∣∣ , (D.36)

agrees with the string spectrum proposed in Section 3.4.

To aid us in carrying out the t integral, let us introduce a new variable c, defined

by

e−(k−2)β2/8πt = −8πi

β

(
2t

k − 2

)3/2 ∫ ∞

−∞
dc c e−

8πt
k−2

c2+2iβc. (D.37)

As explained in [36], the right-hand side of (D.34) can be expressed as a summation

of terms of the form

−4i

β(k − 2)

∫ ∞

−∞
dc c

∫ β
2πw

β
2π(w+1)

dt

× exp

[
−β

(
q + w +

1

2

)
+ 2icβ − 2πt

(
h + Nw +

4c2 + 1
4

k − 2
− w(w + 1)

2
− 1

)]

=
−2i

πβ

∫ ∞

−∞
dc c

exp
[
2icβ − β(q + w + 1

2
)
]

−2π(h + Nw +
4c2+ 1

4

k−2
− w(w+1)

2
− 1)

×
{
− exp

[
−β

w

(
h + Nw − 1 +

4c2 + 1
4

k − 2
− w(w + 1)

2

)]

+ exp

[
− β

w + 1

(
h + Nw − 1 +

4c2 + 1
4

k − 2
− w(w + 1)

2

)]}
(D.38)

where w ranges over non-negative integers. We can complete the square of the expo-

nent in the first term (the fourth line) of (D.38) by letting c = s + i
4
(k− 2)w. Let us

think of the c integral as an integration over a contour (as it happens, the real line)

in the complex plane. We may then shift the contour of integration in the first term
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of (D.38) to c = s + i

4
(k − 2)w, and the contour of integration in the second term to

c = s+ i
4
(k−2)(w +1), where s in both cases runs over the real line. In doing so, the

contour of integration crosses some poles in the integrand, and the integral picks up

the residues of these poles. The residues of the poles from the first term are partially

cancelled by the residues of the poles from the second. The net result of the contour

shift is to pick up only the poles in the range

(k − 2)

4
w < Im c <

(k − 2)

4
(w + 1) . (D.39)

Their residues are

1

β
exp


−βq − β


1

2
+ w +

√
1

4
+ (k − 2)(Nw + h− 1− 1

2
w(w + 1))





 . (D.40)

The coefficient of −β in the exponent is supposed to be the energy of a typical state in

the discrete spectrum. Considerations similar to those given in [37] for closed strings

show that (3.70) (with the minus sign chosen) indeed takes the form (D.40) after

the physical state conditions are imposed. Our partition function calculation thus

reproduces the discrete spectrum of open strings in the physical Hilbert space.

We now turn our attention to the s integration. It is convenient to rearrange the

sum in (D.38) by redefining w → w − 1 in the second term and by deforming the

contours in both terms to c = s + i
4
(k − 2)w. The result is

1

2πiβ

∫ ∞

−∞
ds

(
4s

(k − 2)w
+ i

)

×





exp
[
−βq − β

(
kw
4

+ 1
w

(
4s2+ 1

4

k−2
+ Nw−1 + h− 1

))]

1
4

+ is− kw
8

+ 1
2w

(
Nw−1 + h− 1 +

4s2+ 1
4

k−2

)

−
exp

[
−βq − β

(
kw
4

+ 1
w

(
4s2+ 1

4

k−2
+ Nw + h− 1

))]

−1
4

+ is− kw
8

+ 1
2w

(
Nw + h− 1 +

4s2+ 1
4

k−2

)





. (D.41)

Let us consider the third line of (D.41). It can be shown [36] that summing over
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terms of this type yields

1

2πiβ

∫ ∞

−∞
ds

(
i +

4s

(k − 2)w

) 
2 log ε +

(
i +

4s

w(k − 2)

)−1
d

ds
log Γ

(
1

2
− 2is− M̃

)
 e−βf(s) ,

(D.42)

where

M̃ =
1

w

(
4s2 + 1

4

k − 2
+ Ñ + h− 1

)
− kw

4
, (D.43)

f(s) =
kw

4
+

1

w

(
4s2 + 1

4

k − 2
+ Ñ + h− 1

)
, (D.44)

Ñ = qw + Nw, and ε is a cutoff introduced to regularize a divergence that arises in

the sum. Similarly, summing over terms in the form of the second line of (D.41) gives

1

2πiβ

∫ ∞

−∞
ds

(
i +

4s

(k − 2)w

) 
2logε−

(
i +

4s

w(k − 2)

)−1
d

ds
logΓ(

1

2
+ 2is + M̃)


 e−βf(s).

(D.45)

Combining these results and making the change of variables s → s
2
, we find that

(D.41) can be written in the form

2

β

∫ ∞

0
ds ρ(s)exp [−βE(s)] , (D.46)

where

ρ(s) =
1

2π
2 logε +

1

2πi

1

2

d

ds
log

(
Γ(1

2
− is + m̃)Γ(1

2
− is− m̃)

Γ(1
2

+ is + m̃)Γ(1
2

+ is− m̃)

)
, (D.47)

E(s) =
kw

4
+

1

w

(
s2 + 1

4

k − 2
+ Ñ + h− 1

)
, (D.48)

m̃ =
1

w
(
s2 + 1

4

k − 2
+ Ñ + h− 1)− kw

4
. (D.49)
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Here ρ(s) and E(s) are the density of states and energy of the long strings. The

expression (D.48) is exactly what we would find if we imposed the physical state

conditions on the form (3.70) given in Section 3.4.1 for the long string energy.

Thus, by analyzing the partition function, we have reproduced our conjecture for

the spectrum of the straight brane. The result is summarized by writing the free

energy summand f(β) as

f(β) =
1

β

∑
D(h, Ñ , w)

[∑
q

e−βE(q) +
∫

ds ρ(s)e−βE(s)

]
, (D.50)

where E(q), E(s), and ρ(s) are the discrete state energy, the continuum state energy,

and the continuum density of states.
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Appendix E

Some Useful Integrals and

Formulae for Chapter 3

E.1 y-integral

The integral we want to compute is

∫

Imy>0, Im(yeiφ0 )>0, e−β<|y|<1
d2y|y − ȳ|−2j|yeiφ0 − ȳe−iφ0|−2(1−j). (E.1)

Use polar coordinates such that y = reiθ. Then, we get

=

(∫ 1

e−β

dr

r

) ∫ π−φ0

0
dθ| sin θ sin(θ + φ0)|−1 exp

(
2is ln

∣∣∣∣∣
sin(θ + φ0)

sin θ

∣∣∣∣∣

)
. (E.2)

The r integral is just β. Denote the remaining θ integral as g(s) and consider its

Fourier transformation:

g̃(s̃) =
∫ ∞

−∞
dseiss̃g(s) (E.3)

=
∫ π−φ0

0
dθ| sin θ sin(θ + φ0)|−1

∫ ∞

−∞
ds exp

[
is

(
s̃ + 2 ln

∣∣∣∣∣
sin(θ + φ0)

sin θ

∣∣∣∣∣

)]
(E.4)

= 2π
∫ π−φ0

0
dθ| sin θ sin(θ + φ0)|−1δ

(
s̃ + 2 ln

∣∣∣∣∣
sin(θ + φ0)

sin θ

∣∣∣∣∣

)
(E.5)

=
π

| sin φ0| . (E.6)
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Inverting the transform gives

g(s) =
∫ ∞

−∞
ds̃

2π
e−iss̃ π

| sin φ0| (E.7)

=
π

| sin φ0|δ(s) . (E.8)

Therefore, we get

(y-integral) =
πβ

| sin φ0|δ(s) . (E.9)

E.2 Integral in the localized graviton calculation

According to p. 344 Eq. 7 of Gradshteyn/Ryzhik, we have

∫ ∞

0
dx

xn

(ax2 + 2bx + c)n+3/2
=

n!

(2n + 1)!!
√

c (
√

ac + b)
n+1 , (E.10)

where a ≥ 0, c > 0, b > −√ac. We want to integrate

∫ ∞

0
dx′2 (x′2)

2j−2
(x′22 − 2 sinh ψx′2 + cosh2 ψ)

1
2
−2j . (E.11)

Using n = 2j − 2, a = 1, c = cosh2 ψ and b = − sinh ψ, we see the restrictions are

clearly satisfied for all values of ψ ∈ R. Using the fact that Γ
(

1
2

+ n
)

=
√

π
2n (2n−1)!!,

we have

∫ ∞

0
dx′2 (x′2)

2j−2
(x′22 −2 sinh ψx′2 +cosh2 ψ)

1
2
−2j =

22−2jΓ(2j − 1)
√

πeψ(2j−1)

Γ
(
2j − 1

2

)
cosh ψ

. (E.12)

E.3 Useful relations

We list some useful formulae involving the hypergeometric function and the gamma

function. The hypergeometric function, 2F1(α, β, γ; z), enjoys following useful identi-

ties:

2F1(α, β, γ; z) = (1− z)γ−α−β
2F1(γ − α, γ − β, γ; z). (E.13)
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The Gauss recursion formulae are given by

γ 2F1(α, β, γ; z) + (β − γ) 2F1(α + 1, β, γ + 1; z)− (E.14)

β(1− z) 2F1(α + 1, β + 1, γ + 1; z) = 0,

γ 2F1(α, β, γ; z)− γ 2F1(α + 1, β, γ; z) + βz 2F1(α + 1, β + 1, γ + 1; z) = 0,(E.15)

γ 2F1(α, β, γ; z)− (γ − β) 2F1(α, β, γ + 1; z)− β 2F1(α, β + 1, γ + 1; z) = 0.(E.16)

Under z → 1− z, we have

2F1(α, β, γ; 1− z) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
2F1(α, β, 1− γ + α + β; z) + (E.17)

zγ−α−β Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
2F1(γ − α, γ − β, 1 + γ − α− β; z).

Lastly, under z → 1/z, we get

2F1(α, β, γ; z) =
Γ(γ)Γ(β − α)

Γ(β)Γ(γ − α)

(
−1

z

)α

2F1

(
α, 1 + α− γ, 1 + α− β;

1

z

)
+(E.18)

Γ(γ)Γ(α− β)

Γ(α)Γ(γ − β)

(
−1

z

)β

2F1

(
β, 1 + β − γ, 1 + β − α;

1

z

)
.

We list some useful identities involving the gamma, Γ(z), function:

Γ(1 + z) = zΓ(z), (E.19)

Γ
(

1

2

)
=
√

π, (E.20)

Γ(1− z)Γ(z) =
π

sin(πz)
, (E.21)

Γ(1 + ix)Γ(1− ix) =
πx

sinh(πx)
, x ∈ R (E.22)

Γ(2z) =
22z−1

√
π

Γ(z)Γ
(
z +

1

2

)
. (E.23)
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