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Abstract

This dissertation is in three parts.

I. Chapter 1 presents a convenient notation for describing methods of aggregating
information to form posterior distributions, allowing a description of both Bayesian
updating and many of the cognitive errors people commit in the lab. Chapter 2 looks
at the monotone ordering problem: if the prior distributions are ordered in some
manner, what updating operations will preserve that ordering” Bayesian updating
is a member of a small class of operators which preserve the monotone likelihood
ratio property, but is not in the class of functions which preserve first-order stochastic
dominance. This chapter also considers ordering distributions by their medians, which
is useful for Political Science and other decision making applications.

I1. Chapter 3 presents a literature review of existing models of information ag-
gregation from one party and gives the very weak conditions under which one or two
biased advocates will always reveal full information. Chapter 4 then presents a model
of a trial, in which events are grouped into causal stories. Each story may point to a
specific verdict, but the judge has leeway in selecting a verdict when multiple stories
are shown to simultaneously be sufficient to explain an event. Two judges may be
‘perfect Bayesians’, share the same priors, and still arrive at different verdicts for the
same trial. Unlike the information revelation literature to date, there may be apropos
stories and facts that neither party will want to reveal in equilibrium.

I11. Chapter 5 presents a simultaneous model of goods or actions which demon-
strate conformity effects. Previous models of such goods universally describe people
as acting in sequence; actors in the model here act simultaneously, so they must de-

cide what to do based only on prior information about the distribution of tastes in the
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society. The shape of this distribution (e.g., centered around zero, skewed upward,
or fat-tailed) predicts the number of people who will act in some systematic ways,

which I catalog here.

Advisors: Matthew O Jackson (primary), Kim C Border, Peter L Bossaerts,
Richard D McKelvey
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Foreword

This dissertation confronts a few of the problems I have encountered in my readings
of the economic literature.

The first problem is in monotone ordering. Much of the existing literature dis-
cusses a certain result about the monotone likelihood ratio property (MLRP), that if
two distributions satisfy the MLRP and are then updated using one piece of news, then
the two resulting posterior distributions will also satisfy the MLRP. The problem with
this result is that the MLRP is basically useless (save for a caveat below)—outside of
mathematical models, it is difficult to believe that one person’s beliefs about a lottery
would satisfy the MLRP with respect to another person’s, nor is there any easy way
to test or observe this.

Another ordering, first-order stochastic dominance (FOSD), is useful. If one per-
son’s beliefs about a lottery FOSD another’s, then the first person gains more utility
from the lottery, regardless of the details of the utility function. The MLRP only
says anything about people to the extent that it implies FOSD. So Chapter 2 goes
directly to FOSD, asking what operators preserve the FOSD ordering, the way that
Bayesian updating preserves the MLRP. In order to answer this question, I introduce
a notation for defining general updating operations in Chapter 1.

The next problem is in information provision by one or two biased advocates.
If we assume a simple data gathering framework and allow actors to find the game
theoretic equilibrium, then they always get the payoff from full information revelation.
Especially with two advocates, this is a very robust result. Unfortunately, it does not
ring true. No lawyer I have spoken to feels that this describes the outcomes they have

observed in the courtroom, where advocates carefully select the information they wish
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to reveal. We are similarly hard-pressed to find people who feel that having opposing
lobbyists is sufficient for legislators to garner all the information they need, which
would imply that the democratic process would be better served with better-funded
lobbyists and fewer confounding signals from the populace. Although there are times
when layman observations are corrected by Game Theory, I do not think this is such
a case: full information is not always revealed.

There are two modifications we can make. The first is to assume that decision
makers do not play a game toward a Nash equilibrium, but naively process informa-
tion. This is the approach of Chapter 3, which reviews some of the literature that
takes this approach and describes a few other models apropos to modeling lobbyists
under this regime.

The other modification is to leave the machinery of Nash equilibria and Bayesian
updating in place, but make information more complex. There must be an asymmetry
between information providers for the full information equilibrium to be broken. That
is, the decision maker must process information differently when she hears it from
one person than when she hears it from another. This is realistic, but seems on
the surface to be anathematic to the ideas of rational information processing. The
model of Chapter 4 reconciles this: the decision maker is capable of correct Bayesian
updating, but in certain situations still has leeway to process information differently.
The key is to take into account the question of causality, which is outside the realm
of statistics.

The final problem is in group behavior, notably the emulation of others. This is a
common human trait, but is not well treated in the economic literature. The standard
model claims that people emulate others because of limitations in information gath-
ering: unable to research a question themselves, they observe consumption by their
cohort, and take that as a recommendation for the product consumed. Eventually,
there is a critical mass of recommendations, and everyone thereafter consumes the
same product—with probability one. The reasoning is not descriptive of how many
consumption decisions are made, and the prediction is clearly false in innumerable

cases in which emulation of others is an issue.
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In Chapter 5, I offer an alternative model. As with the models above, the actors
follow the rules of Statistics and Game Theory closely, but they explicitly get utility
from emulating others. This is mostly consistent with the information cascade model
described above, but allows individual preferences to have greater reign: if somebody
strongly dislikes a product, they may not buy even if everybody else does. It also
clarifies the importance of expectations, especially in situations of partial information.
Finally, the distribution of tastes for a good predict what percentage of people will
consume, with extreme outcomes like 100% consumption occurring only in extreme
situations.

The last two sections also indirectly address another difficulty in the rational in-
formation aggregation literature: advertising. We all know the product the Coca-cola
Company makes, and all of its relevant characteristics regarding taste, caffeine con-
tent, et cetera—so why does Coca-cola blanket the world with advertising? Further,
why is the advertising basically contentless? If consumers are purely data-oriented
and only take from an ad the fact that there exists a product with certain features,
then advertising for Coca-cola and virtually any other product would look very dif-
ferent from what we see. The forms of advertising Coca-cola uses in the real world
derive naturally from the type of advocate described in Chapter 4 and the type of

consumer described in Chapter 5.



Chapter 1

Updating operators introduced

This chapter will introduce a general notation for updating operators. Such an oper-
ator takes two sets of beliefs or information as inputs, and produces a posterior set of
beliefs as an output. Especially within the behavioral literature, there exist an abun-
dance of models of learning and updating which each have their advantages. In this
chapter, I will not advocate for one over the others, and will not propose new ones.
I will simply discuss the need for a framework which includes Bayesian updating as
a special case of a more general process, and will offer a consistent notation for this
process.

In Chapter 2, I will show that some operators preserve certain orderings of sets of

beliefs, while other updating operators preserve other orderings.

1.1 Beliefs versus data

Conside a consumer’s beliefs about the likelihood that an advertised good is useful or
not, or a person’s beliefs about the likelihood of good or bad weather tomorrow. We
can write these beliefs as probability density functions (PDFs), just as we can use a
PDF to summarize the data which the weatherman uses to determine the likelihood
of rain. But although they can both be written as PDFs, distributions of beliefs are
not distributions of data.

Data involves events which have actually happened and—apart from potential

doubts about our measurement instruments or misapplications of the Heisenberg
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Uncertainty Principle—are not in dispute. If we are unsure about how the data
was produced, we can potentially break open any black boxes and understand the
mechanism to as much precision as our capabilities allow.

Beliefs often come from unbreakable black boxes. For example, information
providers may have trade secrets which they will not reveal, or they may prefer
not to let people know how much of a guess their beliefs really are. Consumers may
not know why they believe that the red dongle is better than the blue dongle, and
even if scientists could put together a model of the brain that could explain these
opinions, it is probably impossible to know enough about a person’s experiences or
past training to put the model to use. Finally, there are the simple practical consid-
erations, that we ask the beliefs of information providers in situations where our time
or abilities preclude gathering the data ourselves. If we had the ability and resources
to understand the sources of an expert’s data, then we wouldn’t have bothered asking
the expert. So unlike black boxes which produce data, which we may be able to take
apart and understand better, the head-shaped boxes that produce beliefs can not be
taken apart, for social, biological, and practical reasons.

This leads to another important difference between beliefs and data. It is an easy
matter to put together a method of aggregating data. Bayes’s rule is easily applied to
produce Bayesian updating, which, given the right setup, is a mathematically correct
method for assimilating new data. But since beliefs differ from data for all the reasons

above, it is difficult to justify using the same method to aggregate them.!

1.2 Definition of an updating operator

This section presents a notation which captures the idea of taking two PDF's as input,
and then concluding with a posterior PDF.
Let 7(x) be the true, unobservable PDF of z. Say that one source claims that

for £ =1, 7(1) = a, and another source claims 7(1) = b. The decision maker must

1For an entirely different discussion of why probabilities describing beliefs are not to be treated
like probabilities describing random events, including some interesting history on the subject, see
the introductory chapter to Shafer [50].
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amalgamate these two data points into one belief, so let op(a,b) be the updating
operation, mapping RT x Rt to R*.
The same may be done for any value of z: let a(x) be one source’s claims about
the true distribution of x, and let b(x) be the other’s. Then op(a(z),b(z)) defines an
implicit function mapping z to RT. A few more caveats ensure that this will lead to

a valid output given valid PDF's as inputs.

Definition 1 An updating operator is any two-variable function op(a,b) : Rt xRt —
R*, where op(a,b) > 0 for all a > 0 and b > 0; and if ffooo a(z)der = 1 and
[ b(x)de =1, then [° op(a(z),b(x))dz is finite.

I will restrict attention to operators which are continuous in both variables. It
will also be occasionally useful to restrict attention to those updating operators which
are increasing in both arguments. That is, if « > §, then op(a,7y) > op(53,7) and
op(y, &) > op(7y, B) for all . This is sensible because if one source modifies its report
from a(z1) = S to a(z1) = «, thus putting more weight on z;, a listener should take
that into account when aggregating the information and put a little more weight on
1 as well.

Although the discussion to this point has been oriented toward symmetric appli-
cations, the first and second inputs into the updating operation will have different
interpretations for many of the applications below. Further, symmetric operators
will be shown to have some additional implications over the general specification of
Definition 1, where op(a,b) may or may not equal op(b, a).

There is no reason why [ op(f(z),g(z))dz should be one, meaning that the

actual posterior requires normalization.

Definition 2 The posterior distribution given updating operator op(-,-) and inputs

f(-) and g(-) is

op(f(z),9(x))
I on(f(y), g(y))dy’

pOSt(f('), g(')’ Op('a ')’ CC) =
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which is guaranteed to integrate to one.

In this notation, Bayesian updating is equivalent to op(f(z|-),g(-)) = f(z|-)g(-),
for any fixed z, giving a posterior which matches the definition given below in Equa-
tion 2.1. For example, let x be an observable variable and ¢ be a parameter of z
such as the mean. A Bayesian researcher would begin with prior beliefs that ¢ has
a PDF g¢(t), that the data has distribution f(z|t). The researcher then runs an
experiment which provides a value of z, x. At this point, the researcher applies
op(f(x|t), g(t)) = f(x|t)g(t) to arrive at a posterior post(t|x), which is a function of
t but not x.

Shafer [50] describes how this is equivalent to Dempster’s rule within the proba-
bility framework here.

For a posterior which averages the priors, op(f(-),9(-)) = f(-) + g(-), and the

posterior is

f@)+g(=) _ flz)+g(2)
[ fly) + g(y)dy 2

pOSt(f('), g(')a Op('a ')’ )

Finally, notice that if £ is any positive constant,

k-op(f(z),9(x))  _  op(f(x),9(x))
I k-op(f(y),9)dy [ op(f(y), 9(v))dy

In other words, any statement below about the properties of op(f(-), g(), ) also
applies to op/(f(-),9(-),x) = k- op(f(-),9(:),z). Having made this note here, I will
state all results below ignoring the fact that the operators can trivially be multiplied

by any positive constant.

1.3 A few examples

This section takes examples from the behavioral literature and shows what they imply
about the form of the updating operator. It is not a comprehensive or complete survey

of the literature, but will give the reader familiar with the various effects discussed
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in behavioral economics an idea of how those effects are described by the framework

here.

1.3.1 Order effects

There is extensive experimental evidence that the order in which information is re-
ceived will affect the way in which it is processed; see, e.g., Camerer [12] for a survey.
For example, Tversky and Kahneman [54] found ‘anchoring’ effects where subjects
place more weight on evidence presented earlier than on evidence presented later.
Such behavior can not be modeled by a symmetric updating operator: it must be the
case that the order of the inputs to the function matches the order in which the data
is presented, and op(a, b) # op(b, a).

This experimental evidence tells us nothing more about the form of updating
operator. For example, the meaning of ‘weighting’ depends on the choice of operator:
a multiplicative operator could take the form op(a,b) = a* - b, k > 1; an additive
operator could take the form op(a,b) =k-a+b, k > 1.

In a slightly different framework, such asymmetric operators will allow partial

information revelation on page 53.

1.3.1.1 Learning models

‘Cournot learning’ is the creation of beliefs based on the last play observed. In other
words, given a new round of information, the updating rule is to throw out past
rounds and simply take the new round as a new set of beliefs. ‘Fictitious play’, in the
context here, involves a learning model which averages outcomes over all past rounds.
The assumptions of both of these learning models can be subsumed into one model,

by a weighted averaging operator

op(a,b) = a + ~b,

where a is the new probability of an event, and b is the old beliefs about its probabil-

ity (the output of the updating operation from the last round). If v = 0, then this is
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Cournot learning, and if v is greater than to one, then it is closer to the learning as-
sociated with fictitious play. See Fudenberg and Levine [22] or Cheung and Friedman
[14]; or see Camerer and Ho’s Experience-Weighted Attraction [11], which is based
on this method of updating.

This form will make a reappearance in Section 2.6.3.

1.3.2 Framing effects

Prior information can affect the absorption of subsequent information. People who
strongly believe a theory may ignore information which counters their pet theory,
and update only using information which agrees with their priors. Camerer ([12],
introduction) gives an extensive review of the various studies which have observed
such effects.

The most direct way to model this is to say that there is a perception function,
f(a,b), which transforms new information b based on the prior beliefs a. A standard
updating method may then be applied to the transformed information. An unbiased
observer would update using op(a, b), while an observer who suffers these encoding
biases would update using op(a, f(a,b)).

For example, say that the mean of a variable is a hotly contested issue. People
who believe that the mean is positive ignore new information which claims that it is
negative, and vice versa. Then

fla(z),b(x)) =

7

{ U(z) mean(a)- mean(b) <0

b(z) mean(a) - mean(b) > 0

where U(z) is an uninformative prior (defined formally in Section 5.4.3). Normal
Bayesian updating, as above, is the updating operator op(a,b) = a - b, so Bayesian
updating given framing effects can be modeled by op(a, f(a, b)), or be rewritten as a

function only of a and b:

a mean(a) - mean(b) < 0

-] ,

a-b mean(a) - mean(b) >0



7

since Bayesian updating based on the uninformative prior results in a posterior which

equals the prior.

1.4 Conclusion

We have only one tool for updating beliefs about the probability of events using data:
Bayes’s rule. But if we only have beliefs presented to us by consultants, advertisers,
newspapers, or other humans, then it is inappropriate to use Bayes’s rule as if these
are objective observations about potential states of the world. It is often physically
impossible to gather enough information to reduce these opinions to objective data,
and replacing the missing information with beliefs about the received beliefs, beliefs
about those beliefs about beliefs, et cetera, leads to an analytic quagmire which is
beyond the computational ability of most humans, and makes it impossible for the
modeler to make serious predictions or to say anything descriptively interesting about
people and their processing of beliefs.

There are a number of methods of assimilating information which have shown
themselves to be descriptive of how people in experimental labs and in the real world
assimilate data.

Because of both the theoretical problem that beliefs are not data and can not
be reduced to data, and the results from the lab, it is valuable to admit different
types of updating operations into our theoretical models. This chapter introduced
a notational framework for doing this, and gave examples of how this corresponds
to certain effects observed in the behavioral literature. The chapters which follow
will use this framework to determine which updating operators are admissible given

certain pieces of evidence or theoretical requirements.



Chapter 2

Gathering information from
multiple parties

2.1 Introduction

First-order stochastic dominance (FOSD) is a useful property for a set of probability
distributions to have. A lottery whose distribution FOSDs! that of another lottery
can be said to be ‘better’ or ‘more optimistic’, in the sense that the expected utility
given the the dominant lottery is higher than that of the dominated lottery. This
statement assumes that a higher payoff is better, but assumes nothing about risk
preferences, returns to scale, or anything else about the form of utility functions.

For some applications, FOSD can be used as a sanity check: the distribution of a
stock’s expected ask price should always FOSD the distribution of the expected bid,
and as new information comes in, the updated ask distribution should still FOSD
the updated bid’s distribution. In other applications, it is a useful assumption: one
bidder may have a higher expected value for a good than another, which we can model
by saying that the first bidder’s distribution of the good’s expected value FOSDs that
of the second.

What sort of information from the auctioneer would or would not affect this

ordering?

!The phrase ‘f FOSDs g’ may be read as ‘f first-order stochastically dominates g’. The clarity
of the abbreviation more than makes up for any aesthetic shortcomings it may have. Similarly, the
reader may take ‘f MLRPs g’ to mean ‘f satisfies the monotone likelihood ratio property [defined
below] with respect to g’.
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Similarly, Section 5.5.2 below asks when one advertisement can be classed as
‘better’ than another. If one person begins with some prior and were to update with
advertisement A to posterior A, or were to update with advertisement B to posterior
B, then if posterior A FOSDs posterior B, we can say that A is a better advertisement
than B. This is Milgrom’s application in his ‘good news, bad news’ paper [37].

If the prior distributions satisfy the monotone likelihood ratio property (the
MLRP, defined below), then the posterior distributions after Bayesian updating with
common information will also satisfy the MLRP, regardless of what common infor-
mation is used to update. Since any pair of distributions which satisfy the MLRP
also satisty FOSD, MLRP priors guarantee Bayesian posteriors which are ordered by
FOSD.

This is the state of the literature. This result appears in a discrete form in Whitt
[58], in Milgrom [37], and in some of the papers that they cite. Bikhchandani, Segal,
and Sharma [8] do a similar thing with a simplified setup.

This chapter explores this result. I first show in Section 2.3.2 that the MLRP
is both sufficient, as discussed in the literature, and necessary for posteriors which
are guaranteed to be ordered by FOSD. Then in Section 2.4, I modify the theorem
to describe a situation where posteriors are ordered not by FOSD, but by statistics
such as the median. This result requires that public information be log-concave
(for example, the common normal distribution), and private information be from a
translation family. For those applications which focus on the median, such as political
questions or some types of jury situations, these conditions are all that is necessary.

Within the context of the general notation for updating operators introduced in
Chapter 1, the obvious next question is: how far can these results be generalized
beyond Bayesian updating?

Calvert [10] claims that “[...] there is nothing magical about Bayes’s rule that
should cause us to believe, in advance, that a different rule would qualitatively change
our conclusions about the rational use of [...] information.” Section 2.6 shows that
there is something magical about Bayes’s rule, and that other reasonable methods

of updating do not have the consistency property of preserving the MLRP for which
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Bayes’s rule is frequently cited in the literature. If we believe that the MLRP should
be preserved, then we believe that Bayesian updating is the correct method of aggre-
gating information.

But as proven in Section 2.3.2, Bayesian updating does not guarantee posteriors
ordered by FOSD given arbitrary priors ordered by FOSD—the priors need the more
restrictive monotone likelihood ratio property. Theorem 16 shows this again, by
describing the full set of updating operations which will guarantee FOSD posteriors
given FOSD priors. This set of operators consists of those which take linear weighted

averages of their inputs, and conspicuously excludes Bayesian updating from the set.

2.2 Preliminary notes

Say that there are two competing researchers, who both know the conditional dis-
tribution f(z[t) (with z,¢ € R), but have private probability density functions for ¢,
g1(t) and go(t). Assume that all functions have strictly positive values for all z € R
and t € R (that is, they have full support).

Given a probability density function (PDF) g;(¢) describing the parameter ¢,

Bayes’s rule tells us how to use f(z|t) to update to posterior distributions:?

post;(tlx) = J(@lt)g:(1) : (2.1)

 Je f(@ln)gi(r)dr

Typically, t is a parameter such as a mean, and x is new data such as experimental
observation. Let Z be the observed values of z; after Z is observed, it has a fixed value,
so post;(t|z) is a function of only t.

That said, questions of whether the various functions g;(¢t) and post;(t|x) are

ordered of course require some methods of ordering distributions.

2‘Bayesian updating’ means different things to different people. For example, Majumdar [34]
and Whitt [58] prefer a form which is applicable to a finite number of states of the world. New
information eliminates states of the world from consideration, and thus changes the probabilities
placed on the other states. Here, I use a continuous form, and new information comes in the form
of a likelihood function with full support.



11
2.2.1 Ways to order a family of distributions

Since this section gives general definitions, take p(t) to be any PDF, mapping from
values of t € R to R

Often, we have a family of related PDFs. For example, each researcher may have
beliefs which differ slightly from the beliefs of other researchers. Let i € R be an index,
and denote a member of the family of distributions as either p;(t) or, equivalently,

p(t]7). A family of PDFs is ordered when any two members p;(t) and p;(t) are ordered.

MLRP, the monotone likelihood ratio property: if i > 7,

p(t]i)

p(t]7)
is an increasing function of ¢; if ¢ < j it is decreasing, and is constant (one) if
1 = j. Notice that these are strict inequalities.
Having two functions p;(z) and ps(z) is equivalent to having one function p’(x|7)
where p'(z]1) = pi(z) and p'(z|2) = pa(x). Therefore, to say ‘gi(t) MLRPs go(t)’

means that g(t)/g2(t) is an increasing function of .

FOSD, first-order stochastic dominance: p;(t) FOSDs ps(t) iff for any constant k:
/ p(t)dt > / po(t)dt. (2.2)
k k

Alternatively, a family p(-|t) satisfies FOSD iff p(-|t;) FOSDs p(:|to) for all t; > t5.

single-crossing: p;(t) > pa(t) for all ¢ less than some point K, and pi(¢) < po(t)
for all t > K.

translation: A translation family of distributions is a set of PDF's p(t|7) such that
p(t — i|i) = p(t|0). For example, the Normal distributions, 7' ~ N (7, 1), are a trans-
lation family. I will often refer to p(¢|0) as simply p(¢), which is the underlying
distribution which is being translated by 4 units to produce p(t|7).
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These terms allow the following definitions:

Definition 3 Consider PDFs f, g1, and g2, all of which have full support over the
reals. Then an updating operation preserves FOSD iff g1(t) FOSDs go(t) implies that
posty(t|x) FOSDs posty(t|z) for all likelihood functions f(x|t) and any fized x.

Definition 4 Preserving the MLRP is similarly defined.

2.3 Bayesian updating preserves the MLRP

As discussed above, FOSD provides an ideal method of ordering distributions. But
unfortunately, it is easy to construct examples which show that Bayesian updating
does not preserve FOSD. This section shows how the problem can be surmounted
using the MLRP.

Diagrammatically, Figure 2.1 shows the trick used in the literature to ensure that
posteriors satisfy FOSD: MLRP priors imply MLRP posteriors, which in turn imply
FOSD posteriors.

Priors Posteriors

MLRP MLRP

‘ single-crossing ‘ ‘ single-crossing ‘

FOSD FOSD

Figure 2.1: Relations to be proven in the sequel

2.3.1 Ordering posteriors with the MLRP

The validity of the arrows in Figure 2.1 are proven in the following statements, all of

which have appeared in the literature and/or are easily proven.
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Lemma 1 Lett € R, and pi(t) and pa(t) be continuous PDFs. Define K to be the
set of ts such that py(t)/p2(t) = 1. If p1(t) MLRPs po(t), then K is a single point.
Also, p1(t)/p2(t) < 1 for allt < K and p,(t)/p2(t) > 1 for allt > K. In other words,
MLRP =-single-crossing.

[This and other proofs not given in the body of the text are in the appendix, Chapter
7.]

Lemma 2 If p;(t) is a family of single-crossing distributions then the family satisfies
FOSD.

Lemma 3 Given x € R and t € R, and a functions f(x,t) with full support over
the ranges of x and t. Then if f(x,t) satisfies the MLRP with respect to t [that is,
f(z,2) MLRPs f(z,1)], then it also satisfies the MLRP with respect to x [that is,
f(2,t) MLRPs f(1,t)].

Lemma 4 Bayesian updating is done using a draw from x and the single distribution
f(z|t). Then a distribution family g;(t) satisfies the MLRP < within the support of
f(z|t), the family of posterior distributions satisfies the MLRP with respect to t.

Proof: This is proven in a more general setting by Proposition 10 and Lemma 11.

¢
Note also that by Lemma 3, statisfying the MLRP with respect to t is equivalent

to satisfying the MLRP with respect to x.

Chaining the above together gives the following result:

Theorem 5 MLRP priors (ont) = FOSD posteriors ont for any fived x, within the
support of f(z|t). That is, g1(t) MLRPs go(t) implies posti(t|x) FOSDs posts(t|x)

for any x.

Proof: MLRP priors on ¢t = MLRP posteriors on ¢ (by Lemma 4); MLRP poste-
riors = single-crossing posteriors (by Lemma 1); single-crossing posteriors = FOSD

posteriors on ¢ (by Lemma 2). {
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2.3.2 Necessity

For any set of FOSD likelihood functions g;(t), there is some prior distribution f(x|t)
such that updating g with f always results in FOSD posteriors—just use the Uniform
distribution over the support of the gs, for example.?

However, if the MLRP is not satisfied (for a set of points greater than measure
zero), then there is always a function f(z|t) for which the posteriors will not be
ordered by FOSD for some value of z. This section will show how to construct such

a function, thus demonstrating the ‘only if’ part of the following:

Proposition 6 A pair of priors gi(t) and go(t) such that g,(t) FOSDs go(t) can be
updated using any likelihood function f(x|t) to an FOSD family of posteriors iff g1(t)
MLRPs gs(t).

Proof: Theorem 5 proved that if g;(¢) MLRPs go(¢), then these prior distributions
satisfy FOSD, and can be updated by any likelihood function to an FOSD family of
posteriors. To prove the other direction, assume the MLRP is not satisfied. Then

there is some range (a,b) over which g;(t)/g2(t) is decreasing. Define

[

;L a(t) te(a,b) nd , go(t) t€ (a,b) )
Tl oty 270 0 tg@y

Then g4(t)/g;(t) is (weakly) increasing everywhere the ratio is defined, so Theorem 5
can be applied to show that regardless of the distribution f(x|t) and the observed =,
posth(t|x) FOSDs post(t|x) for any fixed x.

Let f(z|t) be the Uniform|[a, b] distribution for all £. Then post; (t) = post!(t) and
posty(t) = posty(t), since they match throughout the support of f(z|t) and are zero
elsewhere. Therefore posty(t) FOSDs post;(t)—so post;(t) clearly does not FOSD
postsy(t). Thus, for any family of distributions which does not satisfy the MLRP for
some range, there is a distribution with a small support which can be used to update

to get non-FOSD posteriors.

3For the support of (—o0,c0), a Uniform(—oo, co) distribution is defined on page 93.
4These distributions need to be multiplied by a constant to integrate to one, but the constant is
clearly irrelevant.
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The Uniform distribution is certainly exceptional, having limited support and only

two values of p(t). So as a further embellishment, consider this distribution:

e(l—e(y’“))
2(b—a) y<a
T~ l—e a<y<b. (2.3)
e(1—e>—1))
2(b—a) y > b

The distribution approaches the Uniform distribution as € goes to zero, but it has
full support, no discontinuities, is weakly single-peaked, and would still serve as a
counterexample for an appropriately small e. So there is nothing unique about the

support or form of the Uniform distribution.

2.4 Linear translation

This section finds conditions where any translation family (which may or may not sat-
isfy the MLRP) leads to ordered posteriors. If g(t|¢) is a translation family as per the
definition in Section 2.2.1, then ¢(¢|2) FOSDs g(¢|1). But as discussed above, FOSD
priors are not sufficient to guarantee FOSD posteriors, so instead, a new ordering will
be offered.

The trick is to set up an MLRP translation family for the function used to update,

and then do an appropriate coordinate transformation. It relies on the following:
Proposition 7 A function is log-concave iff its translation family satisfies MLRP.

For a proof, see Eeckhoudt and Golier [19], section 4.1.°> It will be useful to note
for later reference that this result does not depend on the fact that the integral of a
PDF over its entire domain is one.

Consider this alternate setup: f;(z|t) is a translation family, taking functions of
the form f(z|t) and matching them to a single function g(¢) in different positions,

as dictated by 7. Barring a few details to be discussed below, this is equivalent to

5They refer to the MLRP as the Monotone Probability Ratio (MPR) property, reserving the
name monotone likelihood ratio property for something else.
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having a translation family g;(¢), whose members are matched to one and only one
distribution f(x|t).

This version is the model above, where g(t|7) is specific to individual ¢ and f(x|t)
is a single, common function. The symmetry of z, ¢, and Equation 2.1 allows this.
However, the conditions of Lemma 4 have shifted: in the alternate setup, it was
necessary that the family f;(z|t) satisfy the MLRP, but here the g;(¢) family need
only satisfy translation, in many ways an easier condition to satisfy.® However, the
function f(z|t) must now satisfy log-concavity (since its translation family had to
satisfy the MLRP).

The statement about the posterior also changes in the modified coordinate system:;

to clarify, I present the following fact, which is true for any pair of functions f and g:

/AB f(z)g(x + d)dx = /B+ flz —d)g(z)dz. (2.4)

A+d

Figure 2.2 shows this graphically: the left-hand side of Equation 2.4 multiplies the
values of g(x) in the region between A+ d and B +d by the values of f(x) between A
and B. The right-hand side of the equation multiplies the same values of g(z) in the
region between A+ d and B + d by the values of f(x — d) in the region between A+ d
and B+ d. Since the values of f(x) in the first region and f(z — d) in the second are
the same, the equation holds.

Let the CDF of post;(x|t) up to a be POST;(a|t); Equation 2.4 allows us to rewrite
the numerator of POST;(alt) (see Equation 2.1), using A = —oo, B =0, and d = i.

Making the substitution and then neatening the notation:

[ sa@eeria = [ fo-nga,

6Easier’ should not be taken too literally here: there are families which satisfy MLRP but are
not translation families (such as the Chi-squared distributions), and translation families which do
not satisfy MLRP. However, it is easier to justify modelling two people having beliefs which are
translations of each other than to explain why two people would have beliefs which MLRPed each
other.
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fix) f({x-d)

gi{x)

A B A+d B+d

Figure 2.2: Visual aid for Equation 2.4

/_(; f(z)g(z| —i)dx .:.’ /_; F(z]i)g(z)dz.

The left-hand integral is up to a fixed point in the coordinate space, and could
be written as the numerator to POST_;(0). But the right-hand integral is up to the
moving index for the translation family: POST;(i).

We know that the left side satisfies FOSD, and so is increasing as i increases (that
is, as —i falls); so the right-hand side must also be increasing as ¢ increases.

Since f;(z|t) was a translation family which satisfies the MLRP for any fixed z,
Proposition 7 says that f(z[t) (aka fo(z|t)) must be log-concave given z.

The following statement has now been proven in the new coordinate system:

Theorem 8 If g;(t) is a translation family of priors and f(z|t) is a log-concave like-

lihood function for any given x, then POST;(i) is an increasing function of i.

This means that for low values of i, most of the distribution is above i (that is,
i is below the median of the distribution given i), while for high values of i most of

the distribution is below ¢ (that is, i is above the median given 7).

Log-concavity on non-PDF general functions How shall we interpret the log-
concavity of f(z|t) in terms of t? Consider the bivariate function f'(z,t) : R xR —

R*, where f'(z,t) = f(z|t). The only conceptual asymmetry between z and ¢ is that
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Jo, f'(z,7)dr must be finite, while [ f'(x,t)dx may take on any value. Some of the
results about PDF's listed to this point apply when we hold x fixed at Z but let ¢ vary
as when we hold ¢ fixed at ¢ and let z vary.

For example, any nonnegative, continuous, log-concave function can not have two
local maxima. If f'(z,t) satisfies log-concavity for any fixed ¢, then f'(z,t) is single-
peaked. Similarly, if f'(z,t) satisfies log-concavity for any fixed Z, then f'(z,¢) must
be either single-peaked, monotonically decreasing, or monotonically increasing.

If f'(z,t) is log-concave for any fixed Z, then f'(Z,t) satisfies the MLRP with
respect to any translation of itself. For example, f'(Z,t) MLRPs f'(Z,t + 7).

A pair of functions which satisfy the MLRP can not cross more than once. Since
f(z,t) MLRPs f'(z + 7,t), the two functions satisfy single-crossing or do not cross
at all; the same is true when f'(z,t) MLRPs f'(Z,t + 7).

So although f'(Z,t) is not a PDF, many of the implications of log-concavity still

hold, sometimes with minor modification.

2.4.1 When both theorems hold

Intuitively, as more information appears, one may expect that the various private
posteriors converge toward a single distribution. One may easily construct counterex-
amples where this is false, but in the case where both of the above theorems hold,
then this is indeed the case. This section states the joint result formally and then

gives a detailed description of how the distributions compress into one distribution.

Corollary 9 If the priors are a translation family which satisfy the MLRP, and are

updated using a log-concave distribution g(t), and k € R is any constant, then both

] i+k
/ post;(T)dr and / post;(T)dr
k —00
are increasing functions of © for all k.

Proof: The premises of both Theorems 5 and 8 hold, and therefore the conclusions

of both theorems are simultaneously true. $
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For some intuition as to what this means, consider the location of the medians
under the two conclusions above. The priors were a translation family, meaning that
if the median of gy(¢) is at 0, then the median of g;(¢) is at 1, the median of go(t) is
at 2, et cetera.

As for the posteriors, say that the median of posty(t) is zero, i.e.,

o 1
/ posty(T)dr = =.
0 2

The following lines prove by contradiction that the median of a posterior distribu-
tion with index greater than zero must be greater than zero when Corollary 9 holds.

Consider post;(t) integrated from —k to infinity, where —k is any negative number:

8

posty(T)dr

/ posty(T)dr >

posty(T)dr

V
MJHC\gg;\

o

=

Inequality 2.5 is an application of Theorem 8 (which restates Theorem 5). This
sequence of inequalities demonstrates that it would be a contradiction for the median
of post(-) to be at any value —k less than zero. More generally, the median must be
an increasing function of the index whenever FOSD holds.

If the second inequality holds, then the median of post;(-) can not be too much
greater than the median of posty(-). Again, assume that the median of posty(-) is at
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Inequality 2.6 is from the second half of Theorem 8 (which restates Corollary 9).
So the median of post;(-) can’t be larger than one if the median of posty(-) is zero.
Combining both of these restrictions at once means that if the median of posty(-) is
zero, the median of post; (+) is between zero and one. Similarly, the median of post_; ()
is between negative one and zero, the median of posts(-) is between zero and two, et
cetera. Further, this holds not only for the median—that is, where the CDF is %—
but where the CDF is any value between zero and one, e.g., the first quartiles will
compress in upon themselves in a similar fashion. Thus, the distributions begin evenly
spaced, but after updating, they compress in upon themselves.

This discussion applies to any of the ‘weighted Bayes’s rules’ which will be defined

and discussed below.

2.5 A few examples

Here are a few brief sketches of how theorems such as Corollary 9 could be applied
in the design of models. The first is taken from consumer theory, and the second is

from Political Science.

2.5.1 Expectations about a movie

Let the quality of a movie be ¢ € R, and the number of positive movie reviews be
x € N. Say that consumers have prior beliefs that their utility for a good will be
EU;(t) = K; + t, where K; is a constant scalar which is specific to individual ¢, and
priors on t ~ A (0,1). For example, an action movie may appeal to April more than
Bob, so that K4 > Kpg, but if the movie is well made then both are likely to enjoy the
movie more. The random variable z depends on ¢ via the joint distribution f(z|t),
which is a Bivariate Normal distribution known to all consumers. Then both April
and Bob can observe z and then update their prior EU;(t) using f(x|t). The premises
of Corollary 9 hold, so we will find that posta(t) FOSDs postg(t), but the distance

between the median of post4(t) and the median of postg(t) is less than K4 — Kp. In
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other words, April still prefers the movie over Bob, but they are closer to a consensus

after counting reviews than before.

2.5.2 Public opinion about public opinion

A continuum of politicians are each attempting to place themselves at what they in-
dividually perceive to be the median of the distribution of public opinion regarding a
question.” Say that initially, voters’ positions are represented by points ¢ € (—o0, c0)
along the political spectrum, and g¢;(¢) is the PDF of voters along that political spec-
trum as perceived by politician i. Further, assume that g;(¢) is of the form N (i, 1),
meaning that each politician believes that public opinion is normally distributed
around his current position. New information comes in the form of a likelihood func-
tion f(z|t) which is log-concave in ¢. This is exactly the setup in Theorem 8, and
so if new public information appears regarding the distribution of opinion among the
populace, then there is only one value ¢’ such that if 4 = ¢’ then politician 7 will
not change his position. All politicians with i < ¢’ will find that their median shifts
upward to a point between ¢ and ¢', while those with 7 > ¢’ will find that their median
shifts downward to a point between ¢’ and 7.

If candidates believe that they should position themselves as close to the median
as possible, then they may initially place themselves at disparate points along the po-
litical spectrum, because they have different perceptions of the distribution of public
tastes. But as more information appears, we will see the positions of the candidates

converge toward one point.

2.6 General updating operations

Say that a decision maker would like to know the likelihood of x € R, and toward
that end two different authorities each present her with a different PDF for z, f(z)

and g(z). The decision maker herself can only have one set of beliefs, so she must

"The assumption that a candidate should place himself at the median is prevalent in the Political
Science literature, but note the caveats of Section 5.6.1.
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amalgamate f(z) and g(x) into one posterior PDF. For example, it may be reasonable

for the decision maker to simply take the average of the two densities:

F(2) + g()

y 2.7)

post(z) =

Now say that the second authority has two distributions to choose from, ¢ (¢) and
g2(t). The same question as above can be asked: if g;(t) MLRPs g5(t), then what sort
of updating operations will preserve the MLRP? This section shows that the result
that the Bayesian updating operation preserves the MLRP can be expanded to a class
of updating operations which I dub ‘weighted Bayesian rules’—but this class does not
include many reasonable updating operations such as the averaging operator above.
We are guaranteed that if an updating operation that is not in this class is used, then
there is some public information which will destroy the order of the posteriors, using
the MLRP ordering. Meanwhile, the averaging operator of Equation 2.7 is a member
of the class of functions which preserve FOSD, but which may destroy the MLRP

ordering.

2.6.1 Operators which preserve the MLRP

Recall from Definition 2 that the updating operator must be rescaled to be a true
PDF'. However, the following statement tells us that we can simplify the problem by

ignoring the rescaling.

Proposition 10 The posterior distribution post(f, g1, 0p,x) MLRPs post(f, g2, op, )
iff the function op(f, g1,x) MLRPs the function op(f, g2), .

That said, we can consider arbitrary positive functions without regard to whether

they integrate to one. Then:

Lemma 11 A continuous operator preserves the MLRP iff it is of the form

op(a,b) = t(a) - 1*,
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with p > 0, and t(-) any transformation.

The fact that the first argument may undergo any transformation is not surprising;:
an operator preserves the MLRP if op(f (), g1(z)) MLRPs op(f(x), g2(x)) for any pair
of gs which satisfy the MLRP and any density f(z). So naturally, if op(-, -) preserves
the MLRP given f(z), it also preserves the MLRP given ¢(f(x)).

More interesting would be to restrict ourselves to operators which preserve the

MLRP symmetrically: op(f, g1) MLRPs op(f, g2), and also op(g1, f) MLRPs op(gs, f).

Theorem 12 A continuous operator preserves the MLRP symmetrically iff it is of
the form
op(a,b) = a? - b,

with p,q > 0.

Proof: In this case, we have two conditions: op(a,b) = t(a) - b? and op(a,b) =
a? - t(b). Any operator which satisfies both of these conditions must take the form
op(a,b) =af - b?.

So the MLRP is symmetrically preserved in all cases only when decision makers
update based on a monomial operator. The Bayesian updating operator, op(a, b) =
a - b, is the special case where p = ¢ = 1.

The exponents p and ¢ allow the decision maker to place more or less weight on the
distributions f(-) and ¢(-). Say that g(x) is a single-peaked distribution; the convex
transformation of squaring would exacerbate the peak, reducing the variance of the
distribution. In the context of receiving information from an advisor, this means that
op(f,g,7) = f1(x)g*(x) places more weight on the second advisor’s claim and puts
more of the posterior density around the center of that advisor’s distribution. In a
similar manner, op(f, g,z) = f/?(x)g"(z) discounts the first advisor’s advice. At the
extreme, op(f,g,z) = f°(z)g'(x) is a long way of writing op(f, g, ) = g(z), ignoring
the input of the function f(-) entirely. This justifies the use of the term ‘weighted
Bayes’s rule’ to describe this class of updating operators, where the weights are the

exponents p and q.



24

But the set of weighted Bayes’s rules is a small subset within the class of possible
methods of updating, excluding such intuitive methods as averaging and convolution.
If the reader does not believe that preserving the MLRP is essential, then he or she
should take the methods discussed earlier in this chapter with a grain of salt, since
they describe only characteristics of Bayesian updating and slight variants thereof.
But if the reader believes that the MLRP should be preserved by new information,
then the above shows that the reader must also believe that people use Bayesian

updating (possibly weighted) to assimilate new information.

2.6.2 Operators which preserve single-crossing

Here is a characterization of the set of updating operators which lead to posteriors

ordered by FOSD:

Proposition 13 Given any pair of priors g1 and g which satisfy single-crossing, and
any function f, and an updating operator op(f,g) which is monotonically increasing
in f and g, the operator op(-,-) provides posteriors ordered by FOSD iff the function
1s of the form

op(f,9) = t(f) + g9,

where t(-) is a transformation function of any form, and q is any positive constant.

This also describes the set of updating operators which preserve single-crossing:

Lemma 14 An updating operator op(f,g) which is monotonically increasing in f

and g preserves single-crossing iff the function is of the form

op(f,9) =t(f) + g9,

where t(-) is a transformation function of any form, and q is any positive constant.

Notice that if g(z) = g2(x), then t(f(x)) + qg1(z) = t(f(z)) + ggo(x), meaning

that the point at which the priors cross is also the point at which the posteriors cross.
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That is, if decision makers use an updating operator which preserves single-crossing,

no new news can move the point of crossing.

2.6.3 Operators which preserve FOSD

The set of operators which preserve FOSD matches the set of operators which preserve

single-crossing.

Theorem 15 Within the class of operators op(f, g) which are monotonically increas-
ing in both arguments, an operator preserves FOSD iff it is of the form op(f,g) =
t(f) + qg, where t(-) is a transformation function of any form and q is a positive

constant.

Thus, the only updating method which preserved first-order stochastic dominance
in all cases is that of taking the weighted mean of the two sets, perhaps transforming
the first before knowing the second. As established in section 2.3.2, Bayesian updating
is not in this set.

As we did with the MLRP, it is worth considering the problem of symmetrically
preserving FOSD as well.

Theorem 16 Within the class of operators op(f, g) which are monotonically increas-
ing in both arguments, an operator symmetrically preserves FOSD iff it is of the form

op(f,9) = pf + qg, where p and q are arbitrary positive weights.

Proof: We require both op(f, g) = t(f) + gg and op(f,g) = pf +t'(g). The only
operators which satisfy both of these conditions are those listed in the theorem. <»
Recall from Section 1.3.1.1 that these updating operators could be used to describe

Cournot learning or fictitious play models.

2.6.4 Preserving both the MLRP and FOSD

Both the MLRP and FOSD are preserved in the case of only one updating operator—

the trivial operator where new information is ignored entirely.
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Lemma 17 The only updating operator which preserves both the MLRP and FOSD

18:

Proof: This is the only operator which satisfies both Lemmas 11 and 15.$

There is no function which symmetrically preserves both the MLRP and FOSD.
The definitions given here are strict, but can be weakened: the ratio in the definition
of MLRP must be increasing, which can be weakened to nondecreasing; and the
comparison in the definition of FOSD may be weakened from ‘less than’ to ‘less than
or equal to’. Then the class of updating operators which symmetrically preserve both

the weak MLRP and weak FOSD becomes a large one:

where h(x) is any arbitrary PDF which depends on neither f(z) nor g(z).

2.7 Conclusion

This chapter discussed the result that Bayesian updating preserves the monotone
likelihood ratio property. This means that if a pair of priors satisfy the MLRP,
and both are updated with the same likelihood function and the Bayesian updating
operation, then the two posteriors will also satisfy the MLRP. It is necessary and
sufficient that the priors satisfy the MLRP for the posteriors to satisfy first-order
stochastic dominance. Using a simple redefinition of the axes, we also find that if the
priors are translations of one another, and are updated using a distribution which is
appropriately log-concave, then the posterior medians (or any other order statistic)
will be ordered.

But (weighted) Bayesian updating is necessary and sufficient for all of the above
results. If a modeler believes that the MLRP is always preserved when people update
their priors, or that posterior medians should be ordered as discussed above, then the

modeler must describe people as using Bayesian updating. If a modeler believes that
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people do not use Bayesian updating, then he must also believe that the ordering
among people’s beliefs can be destroyed by certain pieces of new information.
Similarly, the class of averaging operators preserves first-order stochastic domi-
nance. A researcher who desires that FOSD be preserved must assume an averaging
operator, and a researcher who does not assume an averaging operator must accept

that the FOSD ordering will not always be preserved.
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Chapter 3

Information provision by one
biased advocate

3.1 Introduction

This chapter discusses models of information revelation by biased advocates, such
as lobbyists or lawyers. It takes two approaches. The first is to make the typical
assumptions of Game Theory, in which judges can predict how advocates will react to
their demands, and advocates take into account what information opposing advocates
provide in deciding what they themselves should present. This approach requires
minor assumptions to find that the outcome will always be that of full information
revelation.

The second is to assume that the judge is an automaton, and look at what infor-
mation the advocate will present that puts his cause in the best light. There are a few
types of information that an advocate could give—experimental results, statistics, or
facts about a legislator’s constituency—and so there are a variety of models which
will be considered here.

Having assumed that the judge is an automaton, unless there exists a monotonic
transformation from the judge’s utility from an outcome to that of the advocate (that
is, the advocate is in agreement with the judge), it is easy to construct cases where

only partial information will be revealed.
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3.1.1 Prior models and types of advocates

The literature describes two types of advocates, classified by the clarity of their moti-
vations. The first type includes consulting firms or subordinates entrusted with data
gathering, whose biases exist but are unknown to the decision maker. Such advocates
are discussed in works by Crawford and Sobel [17], by Dewatripont and Tirole [18],
and in the literature based on these papers. However, they are not discussed here.

This chapter focuses on a second type of advocate, such as lobbyists or lawyers,
whose bias is clearly known to all involved, and whose goal is focused on influencing
the decision maker to implement their preferred outcome. Milgrom and Roberts [36],
Austin-Smith [3], and Calvert [10] model this type of advocate. These models will be
discussed below (although Calvert is left to the footnote on page 40).

Glazer and Rubenstein [23] have a unique model of debate among two advocates
with a clear bias. However, their model assumes a limit to the amount of information
that an advocate may provide, making it inappropriate for answering the question of
when full information will be revealed.

Finally, all of this literature is divergent from the mechanism design literature in
the structure of information to be extracted. In most models for mechanism design,
the facts sought are unverifiable information, such as one’s desire for a public good,
so people are able to lie about these facts. The setup in all of the models in this
chapter and those cited above includes an honesty rule of some sort, stipulating that
advocates may obscure the facts or remain silent, but they may not lie. The question
is then only about how much information the advocates will be willing to reveal, not

the accuracy of the information.

3.2 General framework

This chapter will present a number of models, based on a number of specific assump-
tions and underlying spaces. In this section, I will present the notation and framework

with which all of these models will be described. Since this is a general description,
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most of the spaces involved (W, S, and A) will not be specified until the examples
that follow. The power of Theorem 18 (page 33 is that it works with virtually any

specification of these spaces.

decision maker’s

Nature’s 0 advocate’s Clg)éc)e, U0
. o(- . ) )
’WI choice T S choice 5] m
state actual possible signal action payoff to
space state signals sent by d.m. advocate

Figure 3.1: From state of the world to advocate’s payoff

The process is a series of mappings, from states of the world to signals to actions
to utilities. The full process is depicted in Figure 3.1. First, Nature picks one state of
the world, w, from all true states, W, and reveals that state to the advocate but not
the decision maker. Given a state of the world, there is some set of signals S which

the advocate may send.

Assumption 5 Assume that there exists a mapping o : W — S, which is common
knowledge. The inverse mapping o= : S — W is also common knowledge. Also

assume that o' (S) is closed for all S € S.

So o(w) is the set of signals which may be sent given that w is the true state of the
world, and given a single signal S, 71(S) is the set of states in which the advocate
could have sent the signal S. Notice that ¢ may embody an honesty rule, but I only
assume that it is some fixed, common knowledge mapping.

From these possible signals, the decision maker may present any one signal S to the
decision maker, who chooses some action A for any given signal S, from the space of
possible actions 4. The decision function which makes this mapping, D(-) : § — A,
is selected by the judge, and may include strategic considerations.

The advocate has some utility associated with each action, U(A) : A — R, which

he hopes to maximize.
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3.2.0.1 Full information

For the question, ‘when will full information be revealed?’ to be a coherent one, we
need to ensure that something like full information can always be presented. The

following definition and assumption allow this.

Definition 6 A signal S is fully informative iff o~ *(S) is a set with only one element.
Assumption 7 For any given w, there ezists a signal S¥ such that o~'(S) = {w}.

That is, if the signal could only have been sent in one state of the world, then that
signal tells the decision maker the state with certainty. For any state of the world,
the advocate is capable of sending such a decisive signal.

I assume that the decision maker can do no better from the advocate than being

told the state of the world with certainty.

Assumption 8 The decision maker’s utility is mazximized when the advocate reveals

Sv.

This is the only assumption about the decision maker’s goals that we will need.

From here, an example is in order.

3.3 Milgrom and Roberts’s model

This section describes a model best suited for the presentation of evidence, such as
facts at a trial or statistics about a proposed policy. Barring a few modifications
made for expositional clarity, the model is from Milgrom and Roberts [36].

The state of the world, w € [0, 1], is known to the lobbyist but not the decision
maker. The lobbyist may send to the decision maker a signal consisting of a subset of
[0,1], S = [a, b], and is bound by honesty to reveal only a subset S such that w € S.
That is, 0 maps from w to all closed subsets of [0, 1] which contain w. The inverse,

o~ !, therefore maps from any closed interval to itself.
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w = [0,1]
o = w — sets of [0, 1] which include w
S = sets of [0,1] which include w
A = W
UA) = A

Figure 3.2: Unidimensional model based on that of Milgrom and Roberts

The decision maker’s action will be to select a value of w, based on her beliefs.
That is, A = W. Define her loss function to be —|A — w/|, so she wants to select A as
close to w as possible.

The lobbyist’s utility is simply U(A) = A, meaning that he hopes for as large a
decision as possible.

The model, within the framework presented here, is summarized in Table 3.2. All
of the elements from Figure 3.1 have now been defined, save for the strategic choices
of the actors.

Milgrom and Roberts show that there is an attractive equilibrium in which the
decision maker uses the decision function D(S) = min(S), meaning that she assumes
the worst possible state as measured by the advocate’s utility.

Given this action, the advocate will send a signal of the form [w, y], where y is
any value greater than w. If he sends a signal [z,y] with z < w, then he will get a
lower payoff than if he had revealed [w,y]. He is barred from giving a signal [z, y]
with > w, since in this case w ¢ [z,y]. Therefore, the decision and payoff will be
equivalent to the decision and payoff that would be reached if the advocate had given

full information.

3.3.1 How robust is this equilibrium?
3.3.1.1 Robust to changes in the model

Milgrom and Roberts’s equilibrium is entirely independent of the information, sig-
nal, and action spaces. The decision maker can always comport herself as if she
has received the most pessimistic full information signal consistent with the data.

Formally:
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Theorem 18 Assume that the conditions of Assumption 5, Assumption 7, and As-
sumption 8 hold. Then there exists a Nash equilibrium whose payoff to the advocate

is equal to the payoff he would get from revealing full information.

Assumption 5 assumes that the decision maker has some way of mapping from
signals back to states of the world, which is what we would expect any decision
maker to be doing anyway after she receives her signal. Assumption 7 says that there
is always full information to be revealed, and Assumption 8 says that full information
is a good thing. These are relatively uncontroversial statements, set in a framework
which is general enough to describe a variety of models from the literature, so we
would expect this to be a rather robust result. If we hope to write a model where
full information is not revealed, then we will not get there by creative specifications

of the signal, state, or action spaces.

3.3.1.2 Not robust to changes in equilibrium concepts

Say that instead of the state of the world being a point w € [0, 1], the state is a point
w € R. The decision maker could still insist on the assume-the-worst strategy given
a report from the advocate that w € [a,b], for any real a and b, or even a report
w € [a,00). As above, she may choose the minimum, w = a.

But what should the decision maker do if the advocate gives the no-information
report w € (—o00,00)? The assume-the-worst strategy dictates that the decision
maker should choose —oco. This is indeed an equilibrium: if the advocate knows that
the decision maker will choose —oc given a report of (—oo,00), then he will never
dare make that report. But by choosing —oo, the decision maker is giving herself an
infinite loss, while deciding on any real number would give her a finite loss.

On a technical level, this means that the equilibrium is subgame perfect, but is
not a sequential Nash equilibrium.

On a colloquial level, the gist of these refinements is that an advocate may ‘call
the decision maker’s bluff” and present partial information, or may simply forget to

hand in a report. If the advocate commits such a failure, then the decision maker
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would be throwing away useful priors and any information the advocate does provide

by continuing to follow her proclaimed strategy.

3.3.1.3 Possible responses

From here, there are three directions we may take: the first is to presume that
the decision maker can make good on her threat to select A = —oo if need be, in
which case our models may ignore the information revelation process entirely. A
biased information provider can always be coerced to provide full information, and
so the advocate and decision maker may be treated as a unit. For some cases, this is
appropriate, but for others this is a little too optimistic.

The second option, chosen by some subset of the literature, is to assume that the
decision maker is not strategic: she calculates her posterior beliefs given whatever in-
formation the advocate is willing to give, and takes appropriate action. This direction
will be followed in Section 3.4

The third option is to make fundamental changes to the standard framework. This

approach is taken in Chapter 4.

3.4 A survey of models of information provision to
automata

This section gives a survey of some selected models of information provision by one
biased advocate. All of them assume that the information provider is a non-strategic
automaton, which avoids the full information result of Theorem 18, even though it
could be applied to all of the models below if the decision maker were allowed to act
as a strategic agent. The focus will be on lobbying applications.

The result is that without judges who are capable of strategically interpreting
information, partial information is possible in almost all cases. The exception is
when there is a monotonic mapping from the utility from a decision to the information

provider to the utility from the same decision to the decision maker. In this case, the
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advocate becomes an extension of the decision maker, and so will comply with the
decision maker’s desire for full information.
Since partial information revelation is now possible, let S; »>; S, signify that
signal one is more informative than signal two. The exact meaning of this term will
be given on a case-by-case basis. Also, let S signify full information and Sy signify

no information.

3.4.1 Revelation of a PDF

Rosenthal [48] and Goldstein [24] report that many lobbyists describe their jobs as
that of producing ‘traceability’. Government policy is far too complex for the average
individual to understand, and it is easy to lose the connection between the passage
of a law and its effects. The role of the lobbyist is to make clear that connection, so
that voters know that a change can be traced to a bill and the bill can be traced back
to their representative, and representatives know that voters know.

In abstract terms, a representative is interested in placing herself at the median
of (or some other statistic based on) voter preferences along some single dimension.
Let the true density of preferences be p(z) : R — R. The lobbyist has the option
of approaching the representative and presenting the value of p(z) for some range
z € (a,b).

In a world where signals may be density functions, the question of ordering be-
comes nontrivial, so before discussing this model, I will first digress to the subject of

Blackwell’s ordering of information.

3.4.1.1 Blackwell’s garbling criterion

Blackwell’s [5] definition of ‘more informative’ was to simply say that if a decision
maker’s er ante utility was higher given experiment A than given experiment B,
then experiment A was more informative to the decision maker. He defines ‘garbling
transformations’, and shows that in the case where there is a garbling transformation

from one set of signals to another, then the pre-transformation signal set is more
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) = O
S s, G = argmax, EUy(D|S;) > argmax,, EUy(D|S2)
L=l=2 (OI‘ SQ = G12 : Sl)
D(S) = argmax,EUy(D|S)

Figure 3.3: Information is trivially more valuable if Blackwell’s garbling definition
applies.

valuable to the decision maker than the post-transformation set regardless of the
utility function involved.

If a garbling matrix exists, then a model based on this definition of informativeness
would be trivial, since ‘more informative’ corresponds to ‘more useful to the decision
maker’. The question of whether the advocate will reveal full information is then
simply a question of whether the advocate’s interests align with the decision maker’s.
However, for an arbitrary pair of information sets, a garbling matrix is unlikely to
exist.

Take 2 to be any set of signals such that any pair of signals S; and S; are related
by some garbling matrix Gj; (that is, S; = Gj; - S;), and Uy(D) to be the decision
maker’s utility from decision D. The setup is summarized in Figure 3.3.

If the advocate’s utility, U4 (D), is a monotonically increasing transformation of
the decision maker’s utility function Uy(D), then the advocate will reveal as infor-
mative a signal as possible; if Us(D) is a monotonically decreasing transformation
of Uy(D), then the advocate will reveal as uninformative a signal as possible; and
if there is no monotonic transformation, then it is unclear what the advocate will

choose.

3.4.1.2 Traceability

Return to the traceability question discussed at the beginning of this section. Let the
density of voter tastes over some policy dimension be p(x), z € [0, 1]. The legislator’s
only source of information about p(x) is a lobbyist who may choose to reveal some but

not all of the density function. There are right-leaning lobbyists, for whom U(A) = A,
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4% = prob. densities over z € [0, 1]
decision maker’s prior = UJ|0,1]
S = 2001
S; =1 S, = ‘Sl‘ > ‘SQ|
D(S) = median or mean of posterior
U(D) = D

Figure 3.4: Traceability model

and left-leaning lobbyists, for whom U(A4) = —A.

Garbling provides only a very partial ordering of the space of possible signals. For
example, say that a left-leaning lobbyist is only willing to reveal p(z) for z < 3, while
a right-leaning lobbyist is only willing to reveal p(z) for # > 1. There is no garbling
that would transform the left-leaning information into the right-leaning information,
so Blackwell’s Theorem can not help us in ordering the distributions. Instead, I offer
an alternate model here.

Let W, the space of states of the world, be the set of PDFs over z € [0,1]. The
lobbyist can send information about any subset of points in [0,1], or S = 2[%!. One
possible ordering of S which allows any two elements to be compared would be based
on the magnitude of the sets: Sy »=; Sy iff [S1| > |Sa|.

The posterior beliefs of the decision maker depend on her prior and the information
proffered by the lobbyist. The legislator will assimilate the new information using
Bayesian updating (despite the caveats of Chapter 1). For simplicity, I will assume
that the decision maker has the uniform prior p(xz) = 1, Vo € [0,1]. The lobbyist is
bound to tell the truth when he does say anything, so the decision maker’s posterior
beliefs about those points reported on is equal to the report given. If =S is the
complement of S, then for any z € =S, p(z) = 1/|1 — p(S)|; that is, the decision
maker is left with a uniform posterior belief, whose likelihood equals one minus the
total probability reported by the lobbyist. With the posterior in mind, the decision
maker can then act by choosing the median or mean of the distribution. See Figure

3.4 for a summary of the model.
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3.4.1.3 Median model

It is easy to come up with examples where information is not fully revealed by a

lobbyist of either extreme. For example, say that the distribution of tastes is

f()_{Sx z €[0,3]
lo zgpl]

This is a well-behaved distribution: it is weakly single-peaked, and the discon-
tinuity may easily be smoothed out without changing the discussion below. The
true median of this distribution is at % ~ .35. Say that the decision maker asks a
left-leaning lobbyist for information. Then he would only reveal that f(z) = 0 for

T € [%, 1]. The decision maker would conclude with the posterior

oy 2 z€l0,3]
pOS(.’L’)—{O $¢[0,%]a

whose median is at i.
A right-leaning lobbyist would reveal the part of the distribution in [0,.1255],

leading to the following posterior beliefs:

8z z€0,.1255]
post(z) = .
1.004 = & [0,.1255]

Notice that at the point .1255, f(z) = 1.004. The median of this posterior is at .502.
In both cases, the advocates chose to reveal only partial information, and the
decision maker choses a location some distance from the true median. The following

proposition gives the general result.

Proposition 19 If the true distribution of x € [0,1] is f(z), the decision maker’s
prior is p(x), and the decision maker will choose the median of her perceived posterior
distribution, then a lobbyist who prefers smaller outcomes to larger will not reveal full
information if there exists some interval (a,b) above the median of f(x) such that

fly) > ply) for all y € (a,b), and there also exists some interval (c,d) below the
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median of f(x) such that f(y) < p(y) for all y € (c,d).

The same lobbyist will reveal some quantity of information if there erists some
interval (a,b) above the median of p(z) such that p(y) > f(y) for all y € (a,b),
and there also exists some interval (c,d) below than the median of p(x) such that
p(y) < f(y) for all y € (c,d).

The inequalities are reversed for a lobbyist who prefers larger outcomes to smaller

outcomes.

3.4.1.4 Mean model

If the decision maker chooses the mean of the posterior distribution, then:

Proposition 20 A right-leaning lobbyist will reveal full information iff p(x) is non-
decreasing. The lobbyist will reveal no information iff p(z) is nonincreasing.

The reverse is true for a left-leaning lobbyist.

So in both the case of selecting a mean or a median, full information is revealed
only under specific conditions, and it is possible that a sole lobbyist won’t reveal full

information regardless of whether he wants a high or low D.

3.4.2 Austin-Smith’s two-dimensional model

To conclude the section on one-advocate models, I will discuss Austin-Smith’s model
(3], fitting it into the framework discussed above. As with Blackwell’s method of
ordering information, we find that with no monotone mapping from informatveness
to advocate’s utility, there is no guarantee of full information revelation.
Austin-Smith’s world has two states, A and B, and the decision maker has two
options, A and B. The value to the decision maker of taking the correct action takes
two arguments, the state and the decision. When the decision matches the state,
U(A,A) = U(B,B) = 1; when they do not, U(B,A) = U(A, B) = 0. Prior to any
information from the lobbyist, the decision maker believes the likelihood of state A is

Tg > % The decision maker maximizes his expected utility, and therefore chooses A
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with certainty if the posterior likelihood of state A is greater than a half, and similarly
for B.!

There is one lobbyist, who wishes that either A is always chosen, or that B is
always chosen, depending on his persuasion. Since there is no monotonic transfor-
mation from the lobbyist’s goals to those of the decision maker, Blackwell’s Theorem
(discussed in section 3.4.1.1) is not useful here.

The signals the lobbyist chooses from are experiments, which turn up either out-
come O; or Oy. 2 The experiment is described by two numbers: p € [0,1] gives
the likelihood that the outcome is O, in state A, while g € [0, 1] gives the likelihood
that the outcome is Oy in state B. The signal space is thus the set of ordered pairs
S = (p,q) o p < ¢, and can be partially ordered by Sy >; Sy iff ¢ —p; > g2 —po. The
fully informative signal in this context is Sp = (0, 1): the decision maker knows that

the state is A if the experiment turns up O; and the state is B given outcome Os.

11

The fully uninformative signal here is Sy = (5, 3), or any other signal where ¢—p = 0.

Austin-Smith shows that an experiment can induce two types of behavior in the
decision maker: it can convince her to choose A with certainty, or it can induce her
to choose A given the signal O; and B given signal O,. Given the parameters here,

1

notably m > 3, the decision maker will always choose A given outcome O;. The

decision maker will choose B given outcome O, iff P(B|O,) > 3, which occurs iff

pr < q(1—m). (3.1)

! Austin-Smith’s setup bears a resemblance to that of Calvert [10], though neither paper cites the
other. But Calvert’s definition of bias is different. His decision maker is considering two projects,
whose value is in [0,1], and must choose the better of the two. An advisor will give project 4 a
‘good’ rating only if the utility from A is over a certain threshold. If that threshold is near one,
then the advisor is considered to be biased against A, since A has to be almost flawless to receive a
‘good’ rating. But unlike Austin-Smith’s model, after receiving a ‘good’ rating, the decision maker is
guaranteed that the project is indeed a good one. Advisors therefore represent different information
partitions, and it is tenuous to say that an advocate who reliably reports where a project’s value is
located in the partition {[0,.5],[.5,1]} is ‘less biased’ than an advocate who reliably reports where
a project’s value is located within {[0,.95],[.95,1]}. It is also difficult to predict a priori which of
these two partitions will be more informative to a decision maker. I therefore stick to Austin-Smith’s
variant of this model, where bias and informativeness are easier to define.

2 Austin-Smith used the notation Sy and S;.
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Assuming p < ¢ ensures that the signals can not be reversed, and the outcome
where B is chosen with certainty can be shown to be impossible given a prior belief
that the likelihood of A is greater than % The ex ante probability of outcome A is
one if Condition 3.1 does not hold, and is equal to the probability of O, if it does
hold. The probability of O, from the point of view of the lobbyist with prior belief

that outcome A will occur with probability 7 is
P(0y]A) - P(A) + P(09|B) - P(B) = pr® 4+ q(1 — 7).

Figure 3.5 shows that for ¢ = .5 and m = .6, the probability of B is an increasing
function, until p = %, at which point A will be chosen with certainty.

The model is summarized in Figure 3.6.

04
probability
of B

Figure 3.5: The probability of B increases with p, but then falls to zero.

The ez ante utility to a B-lobbyist is increasing as P(Os) increases, but only so
long as condition 3.1 is met. Fixing ¢ = 1, for example, as p increases from zero to
one, the signal goes from being fully informative to being fully uninformative. But
the B-lobbyist’s utility is monotonically increasing until p = (1—m) /7, at which point
utility drops to zero. As shown in Figure 3.5, a monotonic change in informativeness
(by any measure, not just p — ¢) does not imply a monotonic change in utility. This

allows the optimal solution to be neither full nor partial revelation; for the B-lobbyist,
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W = [A, B]
S = (p,9)
S1zr8 = lg—pi| > g —pof,or >
A pr > q(1 —m)
D(S) = A pr<q(l—-7)& O
B pr<q(1-m)& O
0 if D # lobbyist type
u(D) - { 1 if D = lobbyist type

Figure 3.6: Austin-Smith’s model

the optimum is in fact § = (1=7,1).3

The A-lobbyist will choose p and ¢ to fail to satisfy condition 3.1, so that A will
be chosen with certainty. Sy = (%, %) achieves this goal: since neither signal (O; nor
O, imparts any information, the decision maker is left with her prior that = > %, and

so will choose A with certainty.

3.5 Conclusion

This section discussed the amount of information revealed by biased advocates. We
would like advocates to consistently reveal unbiased information, or enough infor-
mation that an unbiased decision is possible. To achieve this, it is sufficient that
the decision maker can design a monotonically increasing mapping from information
provided to the advocate’s utility. But it is not always possible to design such a
mapping—especially if one wishes to ensure robustness properties such as equilibria
being sequential Nash-—and so some situations will lead to full information revelation

as desired, while in others, the advocate’s bias will influence the final policy outcome.

3In equilibrium, the decision maker chooses B when indifferent. Otherwise B would signal
((1 = m)/m) — €, and no equilibrium would exist given continuous signals.
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Chapter 4

Information provision by two
biased advocates: A model of the
perception of causation

4.1 Introduction

This chapter presents a model of a trial. Two advocates present arguments to a

! who then decides which arguments are correct, and the severity of

decision maker,
the punishment (if any).

What arguments will the advocates make, and how can we expect the decision
maker to evaluate them? To answer these questions, I present a model of causal
stories and their evaluation. The model includes both events of the usual form (‘C
occurred’), and events of the form ‘C' causes E’. The data-oriented models, of which
the literature is primarily composed, are a special case of this model. The additional
embellishments beyond the data-oriented model are not necessarily ‘irrational’ or
proxies for cognitive limitations; instead, they address questions of the perception of
causality, which lie outside the framework of statistics.

For comparison, a strictly data-oriented model works as follows: the state of the

world is described by a list of facts, and advocates simply provide information so that

'In the U.S. court system, there are two types of decision maker, who have different tasks: jurors
and judges. For the purposes of this chapter, there is no benefit to making a distinction between the
two, so I will use the terms ‘decision maker’ or ‘judge’, even though the person involved is sometimes
an actual judge and is sometimes a juror.
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the decision maker can update her prior beliefs about the veracity of the facts to
more accurate posterior beliefs. After taking factual statements from the advocates
and doing the appropriate updating, she decides upon the most likely state of the
world based only on her own posterior beliefs about the facts. The prediction of
the data-oriented model is simple and theoretically robust: opposing advocates will
always reveal full information. A full discussion is in Section 4.3.2.

The prediction of the causal model is that each advocate will be much more
selective in deciding what information he will provide. It is possible that there are
apropos stories which neither party will want to tell.

Although partial information revelation may seem intuitively obvious or easily
explained, the literature suffers from a paucity of models based on a structure which
allows partial information revelation in equilibrium. For example, the conditions
needed for full information revelation discussed in Section 4.3.2 below allow for deci-
sion makers who have short memories or use randomization devices.

The primary difference between the model presented here and the data-oriented
models is that it is often the case that two different explanations of an event are
simultaneously sufficient explanations. For example, ‘She stabbed him because she
had hated him for months’, and ‘she stabbed him because she was drunk and out of
control’ are two different stories which imply two different penalties. So what does
the judge do if both stories are proven to be true? Probability will not help her,
because she already knows the state of the world (the defendant was both drunk and
had hated him for months), so the final verdict is left to the judge’s opinion. It is
possible that she will base her opinion on who presented the argument; if she does
so, then there may exist stories that will be detrimental to the presenter, regardless
of whether the plaintiff or defendant presents.

Normatively, there is a significant difference between these two models: under the
data-oriented model, information is always fully revealed, so the decision maker is in
the ideal position to make a decision; but in a causally oriented model, the decision
maker may easily reach a different decision from the one she would make given full

information.
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Applications The model here may be applied to any situation where two opposing
advocates attempt to convince a decision maker that theirs is the correct viewpoint.
This includes advertising, where two vendors vie for a purchase from one consumer;
or lobbying, where lobbyists at either extreme argue that a legislator should vote in
favor of their side.

Also, this model may generally tell us more about how people make decisions.
Since it allows for the separation of beliefs about facts from opinions about motives

or causes, it facilitates study of the properties of those opinions.

Outline of the paper Section 4.2 gives a review of the literature of causality,
from the perspective of statisticians, psychologists, and legal philosophers. I discuss
the advice given by the texts on legal argument, which articulate the importance of
presenting parsimonious arguments in trial. As in the one-advocate case of Chapter
3, Section 4.3.2 proves that under the simplest of assumptions, full information is
always revealed by two advocates in a data-based framework. Section 4.4 gives an
overview of an alternate story-based model and its elements, and Section 4.5 describes
the causal weights and probabilities alluded to above. Section 4.6 then asks which

stories the advocates will choose to reveal.

4.2 Background

This section will discuss the prior work on causality, and then present a few excerpts
from some of the law textbooks which taught argument to many of the lawyers this

paper hopes to describe.

4.2.1 Prior work on causality
4.2.1.1 Statisticians

The statistician and the judge are in different positions. The statistician must deter-

mine which events may be counted as causes of the event in question. In so doing, he
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faces a number of paradoxes and problems, which have been cataloged by previous
authors; Thalos [53] gives a good overview. But the decision maker here has the
causal stories handed to her by the advocates, and need only evaluate them.

Another significant difference is that the statistician has an abundance of data
with which to calculate correlations. Granger’s [26] concept of causality, also known
as ‘screening off’; is the basis for the statistical causality literature (e.g., Perl [44]).
It is oriented toward statistical prediction: if C reduces the variance of our best
predictor of E, then we class C' as a cause of E' and can measure its efficacy as such.
Granger, with his statistician’s wit, begins his exposition on causality with: “Let U,
be all the information in the universe accumulated since time t — 17 ([26], p 428).
Such a quantity of evidence will not be brought to the courtroom.

Finally, the perception of causality is not causality. There are philosophers and
statisticians who claim that causality does not exist, or that it is restricted to a few
well-defined cases. But the word ‘because’ is fundamental to language, because we
perceive causality in myriad cases and base our thinking upon these observations.

For all of these reasons, the model presented here focuses on the perception of
causality and the associated subjective probabilities, and is thus oriented toward

behavioral prediction instead of statistical prediction.

4.2.1.2 Psychologists

The literature on stories as perceived by jurors is primarily empirical. My claim that
people process information via stories exactly matches that made by the Story Model
of Pennington and Hastie ([41], [42], [43]). Their model of a story includes ingredients
such as goals, initiating events, actions, and consequences. The model here is more
abstract and discusses only sets of causes. As with any abstraction, this allows more
general analysis and application to many situations, at the cost of being unable to
make some of the more specific statements that derive from the more detailed Story

Model.
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4.2.1.3 Lawyers

Legal philosophers are familiar with the idea of separating necessary causes from
sufficient causes, e.g. Honoré [30]. But as a qualitative field, legal philosophy stops
with these classifications. This paper extends the idea by placing quantifiable causal
weights on individual causes. This also allows us to specify exactly which part of a
ruling is the subjective evaluation of probabilities (which can be audited by outside
observers) and which part is pure opinion (which can not be audited); and allows for

empirical tests, in the lab and from actual cases.

4.2.2 Stylized facts about trials

This section will present some of the facts we observe in law as practiced in the United

States, which the model will use or explain.

4.2.2.1 Appellate lawyers exist

We commonly say that a judge’s role is to determine the truth, but this is true only
in an approximate sense. The judge’s role is to weigh the cases presented by both
sides and select which she deems to be the best one.

The distinction is articulated in the voluminous rules of evidence. Consider the
situation in which a defendant gave a clearly sincere confession to a crime before
having his Miranda rights explained to him. The fact that he confessed may easily
reach the judge’s ears, but for a number of reasons, it is not admissible evidence. A
Platonic truth-seeking judge would be unconcerned: she knows beyond a reasonable
doubt that the true state is that the defendant is guilty, and could ignore any addi-
tional information the prosecutor may present. But in reality, the prosecutor must
present a case using admissible evidence, and the judge must decide whether the case
proves guilt. If there is evidence that the judge based her decision on knowledge of
the truth rather than on the prosecutor’s case, then the decision may be overturned
by an appellate court.

The evaluation of stories explains why lawyers before the appellate and Supreme
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courts exist. The judges are former lawyers and therefore well-versed in the minu-
tize of legal procedure, and the cases are full information throughout, since findings
of fact in a lower court may not be disputed. That is, the trial is not about un-
earthing new evidence, but about processing existing evidence. To a truth-seeking
judge, the lawyers are redundant: a clerk could photocopy the appropriate papers
for the judge at a fraction of the cost of hiring two lawyers and staging a trial. The
Bayesian /Platonic appellate judge can only explain her need for opposing lawyers
and a trial as a show of fairness, tradition, or public record. But the appellate judge
whose job is to weigh two sides of a case and select the more compelling of the two

tautologically relies upon lawyers to provide the arguments she will weigh.

4.2.2.2 The story told by the law texts

For a look at how lawyers argue, I found the two books on trials from USC Law’s
Fall 2002 reading list, by Mauet [35] and Murray [39]. Mauet also appears on what
other reading lists I could find (those of the law schools at NYU and the University
of Chicago), and is in its sixth edition, implying that it has come recommended by
many law professors in the past.

Mauet is clear on advising the law student to become a storyteller: “Trials involve
much more than merely introducing a set of facts; those facts must be organized and
presented as part of a memorable story.” [p 27] Nor must this story be burdened
by too much detail: “A theory of the case is a clear, simple story of ‘what really
happened’ from your point of view [...] If you can not state your theory of the case
in a minute or two, it needs more work.” [p 24]

Murray [p 9] corroborates this testimony:

The trial lawyer’s task can be analogized to the role of raconteur at a
social party or similar informal gathering. The storyteller entertains his
audience by recreating in the consciousness of the listener an image of an

event or episode from another time and place.

A key aspect of storytelling is selecting which facts will be used to tell the story.
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As any good storyteller (or anyone with a long-winded friend) knows, the story can
be ruined if too many extraneous or tangential facts are included. Mauet [p 516]

seems to have this in mind when he advises the law student:

1. Do not overprove your case. [...] In general, calling a primary witness
and one or two corroboration witnesses on any key point is enough. It’s
usually best to make your case in chief simple, fast, and then quit while

ahead.

Similarly from Murray [p 9]: “Even the simplest and shortest of events contains a
myriad of potential details. [...] The trial lawyer must rigorously select those details
that are essential to the image to be presented and must find efficient ways by which
to convey them.”

These passages are representative of what actual law students are advised to do in
selecting a trial strategy. If we wish to model a trial process as it is actually executed,
then we must take into account the fact that the lawyer is a storyteller, and that

revealing full information is anathematic to the process of telling a convincing story.

4.2.2.3 Discovery

This advice comes into especially stark contrast when we consider the discovery pro-
cess, which precedes the trial itself. No facts or arguments may be presented in trial
unless they appear in the briefs filed before the trial. The custom is therefore for the
advocate to list every conceivable item in the briefs, to avoid the possibility that he
needs some fact in trial but is barred from using it because he failed to include it
in his briefs. For the game theorists, this is fortunate because the universe of items
which can be presented in trial is a well-defined, common knowledge set: items listed
in the briefs. For the discussion here, it is noteworthy that this set of items is cus-
tomarily as large as possible, often including multiple stories or legal categorizations,
so Mauet’s and Murray’s advice that the advocate should pick one story and prove

it with a small subset of the items listed in the briefs is especially striking.
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4.3 Conditions for full information revelation

This section presents a very general corollary of the Minimax Theorem that shows
that full information will be revealed in all of the models presented in the literature
of Chapter 3. It provides motiviation for the main results, which appear later in this

chapter.

4.3.1 Definitions

The conditions required for full information revelation are few and simple. The first

is that advocates are in opposition:

Definition 9 Denote the mth outcome of a game as D,, € D, where D is any set of
outcomes (or decisions). Let the utility of that outcome to player n be U,(D,,) € R.
A strictly competitive game is a two-player game where Uy (D) > Uy(D3) if and only
if Us(Dy) > Us(Dy).

So if one player prefers D; to D, the other must prefer Dy to D;.

This is a formalization of the description of strictly competitive games given in,
e.g., Luce and Raiffa [33]. As they point out, any strictly competitive game can
be transformed into a zero-sum game: replacing Uy (D) with —U; (D) will not affect
player two’s decisions, since both utility functions order outcomes in the same manner.

The next condition reflects an interesting feature of full information: once one
player reveals it, the signal of the other player can be ignored and questions of game

theory become irrelevant.

Definition 10 A strategy is unilateral iff it may be chosen by any player under any
conditions, the outcome s the same regardless of which player plays the unilateral
strategy, and the outcome given that one player chooses the unilateral strateqy does
not depend on what the other player does. The outcome given the unilateral strategy

is the unilateral payoff.
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For the sake of concreteness, I present the following game between two opposing
advocates. Let Z = {iy,1s,...,4,} be the set of available items of information. The
strategy set for both advocates consists of all subsets of Z; let the group of information
items chosen for presentation by player one be (G; and that chosen by player two be
(5. These subsets may be the empty set or all of Z. Let their union be G = G; U Gs.

The decision maker has a function which maps from sets of information GG into final
decisions D(G). For concreteness, take D(G) € R, and let the first advocate’s utility
be increasing in the value of D(G), while the second advocate’s utility is decreasing
in D(G). In the game here, the advocates present her with G, so she decides D(G).

The game is strictly competitive with respect to the advocates’ payofts from the
final decision. G; =7 is a unilateral strategy: G is defined to be a subset of Z, so if
Gy = Z, then G; U Gy is the same (Z) regardless of what Gy chooses, and similarly
for G; = 1.

This is a model of gathering information in its purest form: the decision maker
simply seeks a series of facts which she is unable to gather herself, due to restrictions
on time, ability, or other resources. Once the information is handed to her, she
is entirely unconcerned with the source of the information, and she independently

arrives at her decision. It features a unilateral strategy and competing advocates.

4.3.2 The full information outcome

The outcome of the game described above will be determined by the following lemma,

which is a simple corollary of the Minimax Theorem.

Lemma 21 In a strictly competitive game with a unilateral strateqy, players will

always recewve the unilateral payoff.

Proof: Regardless of what player one does, player two can play the unilateral
strategy, meaning that his optimal response will give a payoff as large or better than
the unilateral payoff. The minimum among these maxima is the unilateral payoff.
Similarly for the other player: the maximum among his minimum payoffs is the

unilateral payoff. The minimax payoff for player one matches the maximin payoff
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for player two, and the game is strictly competitive. The Minimax Theorem (as in,
e.g., Luce and Raiffa [33]) tells us that the unilateral payoff is therefore always an
equilibrium payoff.

Assume there exists another equilibrium with a different payoff. One player or
the other will be doing worse than the unilateral payoff, since the game is strictly
competitive. That player will defect to the unilateral strategy, meaning that the
assumption of an equilibrium with a different payoff was false. <

Notice that the proof was in no way dependent on the example: it applies to any
strictly competitive game with a unilateral strategy. Also notice that the theorem
said nothing about how the decision maker goes about making a decision, or in the
context of the example, we did not need to make any assumptions about the function
D(G). The function may or may not include strategic considerations made by the
decision maker beforehand, and makes no assumptions about how new information
changes the final decision. The only assumption inherent to this functional form is
that she bases her decisions only on the information set G.

Full information revelation is a unilateral strategy by most definitions of the term
(including Definition 6). If advocates are only partially revealing information, and
one or the other could do better by revealing full information, then he always has the
option to do so, and his opposition can do nothing to obfuscate facts after they have
been brought to light. Therefore, as per the proof of Lemma 21, neither player will
ever accept a payoff less than that he could get by revealing full information.

Nothing prevents another outcome from having a payoff which is the same as that
for full information revelation. But full information is a focal equilibrium and seems
more likely to be chosen than an alternate (possibly mixed) strategy whose payoff is
the same. Therefore, although there is no theoretical guarantee that full information
will generally be a unique equilibrium, it seems reasonable to presume that that is

the outcome that will prevail if the conditions of Lemma 21 hold.?

2Tf we were so inclined, we could use this as a definition of irrelevance: those facts which are not
revealed in equilibrium do not change the outcome, and are therefore irrelevant.
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It can be shown that every single example given in Chapter 3 for one player fits

the description here.

Robustness, and alternatives Lemma 21 has only two premises: that the game is
strictly competitive and that a unilateral strategy exists. We needed no assumptions
about the structure of information that may be presented, the order in which players
move, the decision maker’s method of processing information, or other typical details
of the game form.

So the theorem has few moving parts that could break, and should apply in a wide
range of situations. Yet, as will be discussed in Section 4.2.2.2, advocates typically
tell only one story each, revealing only the subset of information apropos to the story
they tell. What this means is that in these situations of partial information revelation,
the judge takes into account more than just the list of facts, but the context of those
facts, such as who presents which fact.

One approach we may take is to presume that the judge calculates the likelihood
of certain events or stories depending on who presents them. Phrasing the main
question in the terminology of Chapter 1, what updating operators would admit the
revelation of only partial information? Recall the definition of a unilateral strategy:
that if one player plays that strategy, the outcome is the same regardless of what the
other player does, and this is true for both players. In other words, if Z is a unilateral
strategy, then op(a,Z) = op(Z,b) for all a and all b.

For a partial information revelation outcome to prevail in a strictly competitive
game, it must be that no unilateral strategy exists. In other words, op(a,Z) # op(Z, b)
for some a and b. All symmetric updating operators therefore have a unilateral
strategy, and some subset of the asymmetric updating operators do not.

This is a problem because any data-oriented method of determining the state of
the world will be symmetric: the fact is the same regardless of the teller, so the
decision maker shouldn’t care who told her which fact. The model here reconciles
this by presenting a natural model of the decisionmaking process which allows the

judge to decide the state of the world using a symmetric operator such as Bayesian
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updating, but to make asymmetric decisions within certain states of the world, after

she has her posteriors in hand.

4.4 The model

As discussed in Section 4.3.2, a model based purely on statistical calculation derives
equilibrium advocate behavior very different from that of the stable state of actual
advocate behavior described in Section 4.2.2.2. Therefore, this section proposes a
model which adds causal machinery to the estimation of subjective probabilities,
resulting in theoretical equilibria that match the actual stable state much more closely.

The focus of this model will be upon a civil trial. Unlike other types of trial,
judgments are usually in dollars, which can easily be represented by a continuous
variable, and there is no requirement that judgments be ‘beyond a reasonable doubt’.
The additional considerations of a criminal, appellate, or Supreme Court trial may
easily be added to the model here.

This section will first introduce the individual components of the model: stories,
sufficient causes, the judge’s beliefs about these components, causal weights, and the

verdict function.

4.4.1 Objects

Let S be the set of stories. Stories are binary (either true or false), and each story
S € S has a probability P(S) of being true.

Let E signify the event which brought the trial about, and which the advocates
seek to explain.

Let s(S) signify the statement ‘S is sufficient for E to occur’. Such claims of
sufficiency are objects, just like the stories. Let the space in which these objects lie

be SC.
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4.4.1.1 Stories as legal arguments

Although many of the examples given here and elsewhere in the causal literature are
factual in nature, the story told by a lawyer will consist of both facts about past
events and legal arguments. A sample story: Ms. A was driving carefully but hit
ice; driving errors fall under a negligence rule; negligence rules in driving have been
applied in similar past cases.

Taking legal argument as an exercise in classification (as many legal philosophers
do, e.g. Sunstein [52]) opens up the possibility that multiple stories explain the same
simple event, and are all correct even though they may each imply a different verdict.
For example, there may be one statute that classifies driving under a negligence rule
(so Ms. A is not liable), and another which classifies operating heavy machinery in
inclement conditions under strict liability (so Ms. A is liable). Both of these stories

may simultaneously be true and sufficient to explain the events under the law.

4.4.2 The judge’s beliefs

The judge will develop subjective beliefs about the probability that a given story or
cause is true. Here, I lay the framework for describing the judge’s beliefs, and over
the course of this section, will describe the spaces and objects on which these beliefs

act.

Definition 11 Let J : § x SC — [0, 1] map from sets of stories and sufficient causes

to the judge’s subjective belief that the elements of these sets are true.

For notational simplicity, I will sometimes discuss the judge’s beliefs over fewer than
two-dimensions. For example, her belief about the probability of an event S is rep-
resented by J(S,SC). I will abbreviate this unduly cumbersome notation to J(5),
leaving it to be understood that a space which is not specified is unrestricted.

A reasonable judge will have beliefs which have some structure to them, meaning
that there will be certain restrictions on the function J(-,-). The first is that the

judge should have true beliefs about the stories:
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Assumption 12 J(S) = P(S) for all S € S.

4.4.3 A timeline of the trial model

Here is a brief outline of the trial process. All terms will be defined and discussed in
the sequel.

There exists a universe of stories (the briefs) from which the advocates may select
the stories they wish to present to the judge. The plaintiff and defendant simulta-
neously® present as many stories as they wish. All parties have perfect priors over
the judge’s subjective probabilities. That is, any impartial observer could predict the
judge’s subjective opinions regarding the probability that S; is both true and suffi-
cient to cause F; and the verdict, v(S;) € R, which will be selected if S; is the only
story which is true and sufficient to cause F.

A story is accepted if the judge determines that the story is true and sufficient to
explain E.

If a judge accepts none of the advocates’ stories as true and sufficient, then she
would either express her disappointment with the advocates informally, or call a
mistrial. I will model this here by presuming that if the judge selects the state of the
world where none of the stories are true, she re-draws another state from the same
probability distribution. She will thus eventually settle on a positive number of true
stories with probability one.

Having accepted some stories and rejected others, she places a weight on each of
the stories which she did accept, meaning that the judge feels that some stories were
more important in explaining E, even though any one of them would be sufficient by
itself. Having determined her opinion (expressed in the weights and defined formally
in Definition 17 below), she uses that opinion to calculate the final verdict.

The plaintiff receives a payoff equal to the verdict, and the defendant receives

a payoff equal to the negation of the verdict. The judge does not receive a payoff,

3In an actual trial, the plaintiff goes first, then the defendant, then both sides are allowed a
rebuttal in the same order. I feel that explicitly modeling the turn-taking would add little value
over simply finding the equilibria of the simultaneous game here.
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meaning that she will base her verdict not on an expected utility calculation, but
using a process which follows guidelines outlined below. The advocates are assumed
to have uninformative prior beliefs about the judge’s opinion; informative priors would

temper the results below but not change their substance.

4.5 Causal weights and probabilities

This section will discuss the calculation of the subjective probability that s(S) is
true, the weight the judge places on a causation, and the final verdict given that
some number of stories are true.

This section will conclude by describing the expected final verdict.

4.5.1 The probability that a sufficiency claim is true

I will begin by describing the subjective probability J(s(S)) for syllogisms. Then, I
will generalize to real-world histories. A legal argument will include elements of both

logical classifications or proofs, and of storytelling about the history of an event.

4.5.1.1 Syllogisms

Consider the following three-cause story to explain the event ' = Socrates is a mortal:
S1 = {C;7 = Socrates is a man, Cy = all men are mammals, C3 = all mammals are
mortals}. Assume for now that S; is the only mechanism by which E could be true.
It is clearly sufficient to explain E, in that if all its elements are given to be true,
then E is true with certainty. Now consider S, = {C; = Socrates is a man, Cy = all
men are mammals}. Story S, is sufficient to explain F if and only if Cj is true, and
so the probability that S, is sufficient to explain E equals the probability that S is
true given Sy, i.e., J(s(S2)) = J(S1|52).

Now say that in addition to story Si, E could also be true via story S3: {C; =
Socrates is a man, Cy = all men are mammals, C'; = all mammals are living things,

Cs = all living things are mortal}. Now S, is sufficient to explain F if either S; or
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Ss are true given Sy, and so the probability that S, is sufficient to explain E is now
J(s(S2)) = J(S1 U S3/857).

Finally, consider S; = {C, all men are mammals, C3 = all mammals are mortals}.
One manner of thinking says that since S; ¢ Ss3, the probability that S, is sufficient
to explain E should not be based on S3. After all, if an advocate presented an
encyclopedia, facts C through C,; would all be in there somewhere, but we would
not say that the advocate has provided an explanation for E. Therefore, J(s(S;)) =
J(S1]52).

Alternatively, we could allow oversufficient evidence, meaning that Ss is apropos

even though Sy ¢ S;. If we allow this, then J(s(S4)) = J(S1 U S3|S4).

4.5.1.2 A full information definition of the probability of sufficient cau-

sation

Outside of syllogisms, the statement ‘S is sufficient for F to occur’ is impossible
to quantify. Even if we have a firm grasp on the causal mechanism, there are still
contingencies where S occurs but E does not, e.g., a meteor may fall from the sky
and crush all involved.

Let U be a universal story, listing all of the events which are necessary for us to
completely guarantee that an event will be true. Such a set could only be known by
an omniscient observer. But if we allow that such a set exists, then the discussion
regarding syllogisms above applies directly. Let ¥ be the set of universal stories
which explain E.

For example, a lawyer may tell a short story S; to explain a driver hitting a
pedestrian, saying only that the driver hit a patch of ice and slid into the pedestrian.
But this simple story is part of an infinitely larger sequence of events, U;, which
includes such causes as: the pedestrian was out shopping because she had just won
the lottery, the driver was not skilled with handling ice, the driver was going home
late that day because the copier at work broke, and of course, a meteor did not fall
from the sky and crush all involved. The probability that S5 is sufficient to explain
the accident requires that all of the ‘helper events’, U;\ S5 are all true as well. That
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is, J(s(S5)) = J(Uy|S5). There are a multitude of other sets of helper events which
would be sufficient to cause the accident with probability one, and which are each a
superset of Sx; let these be Uy, ...Ug. If any one of them is true, then the accident
would have occurred, so J(s(S5)) = J (U,_; 100 UilS5)

The following definitions derive directly from the discussion above.
Definition 13 Allowing for oversufficiency, J(s(S)) = J(Uyeur UIS)

Definition 14 Disallowing oversufficiency, J(s(S)) = J (U{U\UeuE,SgU} U|S)

4.5.1.3 Acceptance

A judge accepts a story if she both believes that the story is true, which will occur
with probability J(S); and believes that the story is sufficient to explain the event E,
which will occur with probability J(s(S)). It will be convenient to define a separate

notation for this action, since acceptance plays so heavily in the sequel.

Definition 15 A story S is accepted if it is judged to be true and to be a sufficient
explanation for E. The probability of acceptance is PA(S) = J(S,s(S)). Let PA(=S)*
signify the probability of rejection, 1 — J(S, s(5)).

If the judge is omniscient and knows U”, then in the respective cases of allowing and

disallowing oversufficiency,

PA(S):P(SU U U) or PA(S) =P U v
UeU¥® U|UEUE ,SCU
For example, if the judge believes that truth and sufficiency given truth are statisti-
cally independent, then
PA(S)=J(S) - J(s(9)).

“In this context, the symbol ‘—’ signifies negation, not the complement, so P(—S;) is the proba-
bility that S; is false, not the probability that {Sa,...,S,} is true.
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4.5.2 Weights on sufficient causation

The weight placed on any given story depends on which stories have been accepted
as true and sufficient. Therefore, let S be the set of stories which have been accepted
as both true and sufficient, and express the weight placed on S; when § is the set
of true stories as W(S1,S). Since these are weights, they should be positive, sum to

one, and be zero for all S not in S. Formally:

Assumption 16 If E is an event, and S = {Si,...,Sy,}, is the set of stories which
have been accepted as true and sufficient to explain E, then for each S; € S:

(i) W(S;,S) >0, Vi

(ii) Yo W(S;,S) =1

(iii) W(S;,S) =0, VS, € S.

As a special case of Assumption 16 it is possible that only one story is accepted
as an explanation for E. In this case, W(S1,{S1}) = 1.

With two stories, there are three possible states: (S; N Sy), (S; N —Ss), and
(=51 NSz). The state (—S; N —S) is not relevant to the judge’s task. Each state

implies a different weight placed on S; and Ss:

5=1{5,5) = W(S1,8) + W (Sy, S) = 1.

There is nothing in the realm of statistics which will tell us how the judge will dis-
tribute the weights in the third case. Returning to an example from above, she may
decide that ‘she was drunk’ was the primary cause, or she may decide that ‘she had

hated him for months’ was the primary cause.

4.5.2.1 Verdicts

Let each story have a value, v(S) € R, representing the verdict (in dollars paid by
the plaintiff to the defendant) which would be given if the judge decided that S were

the sole cause of E.
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Given that § = {S1,...,S,} are accepted as true and sufficient to cause E, the
final verdict is assumed to be a linear combination of each story’s value weighted by

its causal weight:

V(S) = ZW(S,-,S) D) (4.1)

So given that there are a number of true stories which conclude with the event, the
final verdict will be a linear combination of the individual verdicts.

If there is only one story which is accepted, then W (S,{S}) = 1, and the final
verdict reduces to the definition of v(-): V({S}) = v(S).

The results which follow do not rely heavily on the linear form of the verdict
function, but do depend on the assumption that the verdict is some sort of weighted

aggregation of the accepted stories.

4.5.2.2 Opinion formally defined

The notation for weights is valuable because it isolates the allocation of causal weights

from the calculation of subjective probabilities.

Definition 17 A judge’s opinion is a set of causal weights for any given set of stories.
That is, for any given S = {Si,...,S,}, the judge’s opinion has a subset of weights
W(S1,S), ..., W(S,,S).

We can require consistency from the judge in terms of her evaluation of proba-
bilities, and can accuse her of bias if her evaluation is too far from a more objective
standard. But the opinion as defined here is indeed an opinion, and we can expect
that it will vary widely from judge to judge, or even occasion to occasion.

If a judge seems biased, we need to test that claim using cases which minimize the
probability that competing stories are simultaneously true, so that the ruling will be

a question of evaluating the likely state of the world instead of the judge’s opinion.
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The expected outcome The ex ante expected outcome is the following sum over

all the nonempty sets of stories S:

(4.2)

> [(H PA(S)) (Z v(S)W (S, 3,-))

S;e25 SES; SES;

The product is the probability that all the elements of S have been accepted as true
and an explanation of F; the sum is the weighted sum of the verdicts from Expression
4.1.

The defendant wants to minimize Expression 4.2, while the plaintiff wants to

maximize it.

4.5.3 Equilibrium

Define an incremental change to be the addition or removal of any number of stories
from the set of stories presented by an advocate. Define an equilibrium set of stories
to be a set such that neither agent wishes to make an incremental change to it.
This is a non-restrictive definition of equilibrium, in that if we were to allow more
drastic changes to be made, we may find fewer equilibria; this is comparable to finding
local maxima instead of a global maximum. A more general analysis is not possible

given the relatively sparse assumptions made here.

4.5.4 An example from advertising

Having introduced all of the concepts, I present an example from the realm of adver-
tising.

Apple wishes to convince the listener of the event F, = ‘an Apple computer will
make you happy’; while Dell wishes to convince the listener of E; = ‘a Dell computer

will make you happy’. Take the universe of possible claims to be as follows:

S, = Apple computers are cute.

Sy = Apple computers have a superior bus architecture.
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Sy = Dell computers are inexpensive.

Dell and Apple may each present as many stories as they wish, each consisting of
some subset of the above causes. Let us take the status quo to be Situation 4.3 from
Figure 4.1. Let us presume the status quo is that Apple tells story S, and Dell tells
Sq.

Since there are two events to be accounted for, I specify the event the story is said
to be sufficient to explain, e.g., s(S,, E,) should be read, ‘S, is sufficient to explain
E,’. Similarly, W(()S,, {S}) will be extended to W (()S,, E,, {S}).

Let us take all of these stories to be true with certainty, i.e., P(S;) = 1, for all 1.
This means that PA(S;) = J(S;, E{a,a})-

There are two pairs of arbitrary elements which the decision maker chooses. The
first pair is J(s(Sa, Fy)) and J(s(Sq, Fg)): the probability that the story presented
by the advertiser is sufficient to lead to the computer making the buyer happy. For
artists, J(s(S,, E,)) tends to be high and J(s(Sy, E4)) tends to be low; the reverse is
typically true for frugal businessmen.

The second pair of arbitrary elements are the weights W (S,, Eq4, {Sa, Sq¢}) and
W (Sa, Eq,{Sa, Sa}). That is, given that both stories are accepted as true and suffi-
cient, what weight does the consumer place on each?

The verdict given that S, is accepted is that the consumer buys an Apple computer
and not a Dell with certainty; the verdict given S, is similarly defined. Let W,
signify W (s(S,, Eq, {Sa, Sa}) (and similarly for ;). Then a linear combination such
as W,v(S,) + Wav(Sy) results in the purchase of an Apple with probability W, and
a Dell with probability W;. The model here assumes that W, + Wy = 1, but if that
assumption is dropped and W, + W, < 1, then the decision maker buys no computer
with probability 1 — Wy — W,; if W, 4+ W, > 1, then she buys both computers with
probability W, + W, — 1.

It is difficult to specify what W, or W, will be, but a few reasonable guesses will

allow comparative statics to be made.
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Apple’s stories Dell’s stories P(Apple)

Sa Sq .8
Sas St Sq T .
Sa Sty Sa 9 (4.5)

Figure 4.1: Some stories and the likelihood of buying an Apple induced therefrom

4.5.4.1 Comparative statics

Figure 4.1 shows some sample outcomes given that the advertisers told some set of sto-
ries. Situation 4.3 is the status quo: Apple tells its ‘user-friendly’ story, while Dell tells
its ‘inexpensive commodity’ story. Alternatively, Apple could tell its user-friendly
story and the additional story about its bus architecture, as in Situation 4.4. The tech-
nical story may be detrimental to the user-friendly story, creating confusion. The sum
of weights placed on both stories [W(S,, Ea, {Sa, Ss, Sa}) + W(Sa, Eq4,{Sa;, S, Sa})]
may be less than the weight originally allocated to the user-friendly story by itself
(W (Sa, Eq, {Sa, Sa})], so the probability of purchasing an Apple falls.

It would be still more confusing if Dell were to advertise the superiority of its
competitor’s product, which would cause the probability of buying a Dell to fall.

In short, it may be detrimental for either side to present S, and so both sides
prefer Situation 4.3 over the alternatives which reveal all the facts.

The key is that the consumer evaluates a story based on who tells it. In a model
which does not take the teller of the story into account, it is impossible that the
outcome in Situation 4.4 is not equal to the outcome in Situation 4.5, since the same
three stories are told in both cases. If both situations result in a probability of buying
an Apple of .7 and a probability of buying a Dell of .3, then Dell will tell {S,}; if both
outcomes give P(A)=.9 and P(D)=.1, then Apple will tell {S,}; full information will
always be revealed.

The following sections describe the general conditions under which partial infor-

mation revelation will occur.
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4.6 How many stories to present

The intent of this section is to explain why lawyers present only one story, as per
Mauet’s and Murphy’s comments above.

First, note that if the judge’s opinion is appropriately restricted, then it will be
irrelevant to the advocate’s information revelation decision: all available stories will

be told in all situations.

Lemma 22 Let the set of stories which the advocates may choose to present consist
of a fized set of n stories: S = {S1,S9,...,Sn}. If the judge’s opinion with respect
to the subsets of S is fixed before the trial, then the final verdict will be the one that

would be given if the advocates admitted all of S.

Proof: The model fits all of the requirements for the full information payoff given
above in Section 4.3.2: revealing all of S is a unilateral strategy, as per Definition 10,
and the game among the lawyers is strictly competitive, as per Definition 9. Apply
Lemma 21.<$

But if the judge arrives at her opinion at the end of the trial, it is possible that she
will choose to base her opinion on who presents the story; full information revelation

then becomes less likely. I will restrict attention to the case of three stories.

Theorem 23 There are three stories which the advocates could submit: S =
{S4,Sp, Sm}. Without suffering any loss of generality, let v(Sq) = 0, v(S,) = 1,
and v(Sp) € (0,1).

If the defendant has already presented Sy and the plaintiff has already presented
Sp, and if the judge may base her opinion on who presented S, then there exist
conditions and a judge’s opinion such that the plaintiff would not present S,,; there
exist conditions and a judge’s opinion such that the defendant would not present Sy,;

and all of these conditions may simultaneously be true.

The important point behind this theorem is that there are conditions where both

sides could regret presenting S,,. If the plaintiff presents S,,, then the judge may
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select W (S,,{Sa, Sm, Sp}) to be small, leaving moderate weight on S,; while in the
case where the defendant presents S,,, she may select W (Sq, {S4, Sm, Sp}) to be small,
leaving moderate weight on S,. Therefore, we may easily construct cases where
neither party wants to reveal S,,, and as a result the judge will hear only the extreme

arguments.

Risk aversion I have not defined the likelihood that the judge will select an advo-
cate’s worst outcome, nor have I defined the advocates’ levels of risk aversion. In the
case where the conditions alluded to in Theorem 23 and explicitly stated in Equa-
tions 7.17 and 7.18 are not satisfied, then questions of risk aversion are obviated: full
information will always be revealed. In the case where these conditions are satisfied,
then it is possible that we will not have full information revelation. As the worst
case receives more weight, or as the advocates become more risk averse, the proba-
bility of partial information revelation rises. In the case of absolute risk aversion, the

advocates will reveal full information if and only if the conditions are not satisfied.

4.6.1 An example: the aleatory judge

Let there be three stories: Sig leads to a ten-year sentence for the defendant, S
leads to a twenty-year sentence, and S3g a thirty-year sentence.

The judge has the following aleatory® decision procedure: she first hears all cases
by all sides, then decides which of the stories presented are acceptable explanations
of the case. If only one is accepted, then that story’s verdict is the trial’s verdict. If
only one advocate’s stories are accepted, then she randomly selects among the stories
presented by that advocate with equal probability. If both advocates have stories
which are accepted, then she first randomly selects which advocate to listen to, then
randomly selects a story among those he presented.

Why is this plausible? It takes into account that the judge has a rational means

of determining the state of the world (that is, which stories among those presented

5The OED defines aleatory as “dependent on the throw of a die”, citing a fragment from
Urquhart’s translation of Rabelais: “So continually fortunate in that aleatory way of deciding Law
Debates”.
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are true). But once she has determined the state of the world, and has exhausted all
information about what happened and which legal rules are apropos, she may still not
have a verdict with certainty. From there, she may then base her decision on whether
she finds the plaintiff or defendant to be more worthy of agreement, rather than
deciding solely based on the arguments themselves, all of which she may determine
to have equal merit.

Assume that all three stories, if presented, will be accepted with certainty. Clearly,
the defense would prefer to present S1g over the other two stories or no story at all; the
prosecution prefers Ssy over the other options. Then the judge will flip a coin to choose
whom to listen to, and the expected outcome to this situation is a 30/2 + 10/2 =20
year sentence.

Would the defense present Sa? If he does so, then the judge will first flip a
coin to choose whether to listen to the plaintiff or defendant, and if she chooses the
defendant, will then flip a coin to decide which of the defendant’s stories to listen
to. The expected verdict is 30/2 + (4 + 2)/2 =22.5 years, so the defense is better
off not presenting Soo. Similarly, the expected verdict if the plaintiff presents Sy is
(% + 22—0)/2 + 10/2 =17.5 years, so the plaintiff is also better off not presenting Sog.

The more moderate story will not be told.

Advocates v inquisitors In some ways, the claim advocates against the advocate
model. The fact that the judge or jury may be inclined to use the presenter of the
information in reaching a verdict means that the advocates may be reticent to present
all of the information they could present. Notably, the more moderate explanations
get lost. If the trial were instead conducted by one inquisitor who is advised by the
prosecution and defense, but who will not reveal the source of any piece of information,
then the only equilibria are those outcomes with verdicts equal to the full information

verdict.

4.6.2 Comparative statics

The limits given in Theorem 23 move as we would expect them to.
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Corollary 24 The range of values of v(S,,) which will induce the plaintiff to always
reveal Sy, increases as v(Sy) decreases, and as v(Sy) grows.

If we assume that acceptance of Sy, Sp, and Sq are independent events, then
as PA(Sy) increases, the range of values of v(Sy,) which will induce the plaintiff to
always reveal Sy, shrinks.

Simalarly for the defense.

Assuming independence, there is no change in the plaintiff or defendant’s range

for revelation given a change in PA(S,,).

So if the plaintiff has a stronger initial argument, either because it is more likely
to be true or because it induces a more favorable verdict, then there will be fewer
conditions under which the plaintiff will certainly want to contribute another story. If
the defendant has a stronger argument (measured by verdict, not probability), then
there are more conditions under which the plaintiff will certainly want to add another
story.

The comparative statics—especially the claim that PA(S,,) will not change the

range of revelation—may easily be tested in the lab.

4.6.3 An alternate specification

One reader commented that assuming a mistrial in the case where no stories are true
may not be appropriate; for example, the judge may rule for the defense in such a

case. In this case, Theorem 23 reduces to the following:

Corollary 25 Assume the same situation as Theorem 23, but the judge rules for the
defense in the case when no story is accepted as true. Then there does not exist a

situation where any defendant will reveal S,,. Any prosecutor will reveal S, iff

J({Sp, Sm})
(1= J({S4, Sm}))

v(Sm) >
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4.7 Conclusion

The idea that one thing causes another can not be accurately described by statistics.
We are all familiar with the problems: Christmas card sales do not cause Christmas;
my watch reading 12:01 does not cause your watch to read 12:01. Although we as hu-
man beings understand the true causal relationships among the events, it is basically
impossible to robustly write down the relationships using only joint probabilities.

A decision maker may be a perfect Bayesian with respect to her evaluation of
questions of probabilities, but this would say nothing about how she goes about
placing weights on different causes. As such, two ‘perfectly rational’ judges may
arrive at different decisions given the same case—or one judge may arrive at different
decisions given two cases which the statistician would describe as equivalent.

For the question of information revelation, this may create problems. It is possible
that a judge would place different weight on a story depending on who presented it,
and this makes it possible that neither side will want to present certain pieces of

important information.
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Chapter 5

Conviviality

5.1 Introduction

People find benefit in behaving like others. There are a variety of explanations for
this fact, depending on the situation: others’ actions can signal which choice is better;
the value of joining a network is greater when it has more members; people will pay
more for a good if they know they can resell it to others who also want the item;
or people may simply enjoy the feeling of commonality produced by imitating other
members of a group. In this chapter, I develop a model to describe any situation
where the value from acting or consuming is an increasing function of the proportion
of other people who are also acting or consuming. People in this model will use their
prior information and any available public information to develop expectations about
the final number of consumers, and behave accordingly.

Models of ‘herding’ behavior exist in the literature, but all are sequential models.
This is the first model describing people who make a simultaneous decision. Since
actors move simultaneously, they can not simply observe others who acted before
them, as the extant models describe people as doing. Instead, they must base their
actions on their prior beliefs about what people will do.

This chapter then focuses on the question: how do ex ante priors on the distribu-

tion of tastes predict who will act ex post?



71

5.1.1 Comparison with previous scholarship, with focus on

applications

The body of this chapter takes conformity effects as given, and from that starting
point, derives implications about possible outcomes. As such, I will not delve into
the question of why it is that these conformity effects exist in certain situations.
The purpose of this introduction is therefore to discuss some of the situations
where one would expect conformity effects to be important. I do not intend to prove
that such effects must exist based on other underlying features, since these underlying
features would be irrelevant to the reduced-form model which follows. I will explain
for each of the situations below why it is plausible that actors would have utility
which is increasing in the number of other people who act like them, and then, having
discussed why it is plausible that the percentage of actors is included in the utility

function, I will simply take this as given when the model itself is described.

5.1.1.1 The restaurant problem

The most common models of the emulation of others are the ‘herding’ or ‘information
cascade’ models, e.g. Banerjee [4] or Bikhchandani, Hirshleifer, and Welch [7].

The main feature of the model is that there is a sequence of moves, which lead to
a path-dependent outcome.!

The model here does away with the assumption of sequential information. It also
uses information about the distribution of tastes within society, allowing discussion
of how prior information predicts who will act. There is no analog to such predictions
in the herding model.

The herding model remains untested in the literature. Tests searching for herding
effects in various situations abound (e.g., Weinberg on employment [56], Evans et al
on racial attitudes [20], Campbell on high school dropout and pregnancy rates [13],

Kennedy on prime-time television [32], Anderson and Holt in the lab [2], et cetera),

1Orléan [40] almost addresses this, by asking how people will change after everyone has already
acted, given only the aggregate number of people acting at the time. In this respect, his model is
more akin to that of Brock and Durlauf, discussed below.
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but none of these tests are informed by the models from the herding literature which
they cite. The problem is not with the empirical tests, it is with the theoretical
model, which does not make testable predictions beyond the basic claim that people
herd. The model of this chapter makes specific, testable claims about herding based

on publicly available information and prior beliefs.

5.1.1.2 Network externalities

This is a property of goods where consumption by others increases the utility of the
good, such as computer equipment. The typical analysis (e.g., that of Choi [15]) is
similar to that of the restaurant problem, except expected utility is gained directly

instead of through information; the discussion above applies.

5.1.1.3 Finance

Many financial instruments fit this model, for a number of reasons:

e Pricing is partly based on the value of the underlying asset and partly on what
others are willing to pay for the asset. At the extreme, people will buy a stock
which pays zero dividends only if they are confident that there are other people
who will also buy the stock; as more people are willing to buy, the value of the

stock to any individual rises.

e It has long been a lament of the fund manager that if the herd does badly but
he does well, he sees little benefit; but if the herd does well and he does badly,
then he gets fired. Therefore, ‘behave like others’ may very explicitly appear in

a fund manager’s utility function.

e Since an undercapitalized company is likely to fail, the success of a public of-
fering may depend on how well-subscribed it is, providing another justification

for putting the behavior of others in the fund manager’s utility function.

e If a large number of banks take simultaneous large losses, then they may be

bailed out; since a bail-out is unlikely if only one bank takes a loss, this may
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also serve as an incentive for financiers to take risks together.

e Simply following the herd: “[...] elements such as fashion and sense of honour
affected the banks’ decision to take part in a syndicated loan. Banks are cer-
tainly not insensitive to prevailing trends, and if it is ‘the in thing’ to take part

in syndicated loans]. . .], people sometimes consent too readily.” ([31], p 337)

As noted above, the model here is a reduced form model which simply assumes
that a financier’s expected utility from an action is increasing in the percentage of
other people acting. I make no effort to explain why the above effects can happen,
but posit that given these effects, the model below is applicable.

Empirically, there is evidence that analysts do indeed herd. For example, Graham
[25] finds evidence of herding among investment newsletter recommendations, and
finds that the more reputable ones are more likely to herd. Meanwhile, Hong [29] finds
evidence of herding among investment analysts, and finds that inexperienced analysts
are “more likely to be terminated for bold forecasts that deviate from consensus”,
and therefore less reputable analysts are more likely to herd. Welch [57] find that an
analyst recommendation has a strong impact on the next two recommendations for
the same security by other analysts, and that this effect is uncorrelated with whether
the recommendations prove to be correct or not. Although these papers disagree
in the details, they all find empirical evidence that analysts are inclined to behave
like other analysts (and therefore the people who listen to analysts will also tend to
behave alike), so the model below is apropos.

Within the theoretical finance literature, papers abound regarding herding behav-
ior (Grossman [27, 28], Radner [46], Choi [15], Minehart and Scotchmer [38]), yet
all concern themselves with equilibrium after a sequence of events, when informa-
tion about who chose what has been disseminated (usually in the form of prices).
The model here is more applicable to the case of an initial public offering (IPO)
of a security, where there is not yet information about others’ choices available for

dissemination.
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It is commonly known that log equity returns have a kurtosis larger than that
of a Normal distribution. Theorem 35 shows that if we assume that private equity
values are Normally distributed, but people value equities based on a mix of private
value and public value, then equity demand must be leptokurtotic. Under appropriate

conditions, this will imply leptokurtotic returns as well.

5.1.1.4 Brock and Durlauf’s model

Brock and Durlauf [9] specify a model which is similar to the one presented here. In
the first round, a prior percentage of actors is given, and people act iff that percentage
would be large enough to give them a positive utility from acting. In subsequent
rounds, individuals use the percentage of people who chose to act in the prior round
to decide whether to act or not.

Brock and Durlauf make a number of strong assumptions, including quasilinear
utility, a logistic distribution of preferences, and a cutoff-type equilibrium, where
everyone with a taste parameter over a certain point consumes and everyone below
that point does not.? Their model is comparable to the setup of examples A and B
of Section 5.4.2, and arrives at a comparable equilibrium in those specific situations.
But since they assume such a specific form of distribution and utility function, their
paper gives a limited answer to the question of how prior information affects the

number of people who will choose to act.

Timing and information The timing of Brock and Durlauf’s model is also worth
considering: they have a tatonnement process toward a Nash equilibrium, while I
calculate a Nash equilibrium directly. This is basically equivalent, except that implicit
to Brock and Durlauf’s setup is the assumption that people have full information
about the distribution of tastes in the society. This paper also discusses the cases of

uninformative or only partially informative prior information.

2Theorem 28 shows that by assuming both a logistic distribution and a cutoff equilibrium, they
made one assumption more than they needed—a cutoff equilibrium can be derived from their other
assumptions.
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5.1.1.5 Consumer goods

Fashion good models such as Frijters [21], Pesendorfer [45], or Bernheim [6] are based
on goods as a signal of status. They claim that people want to send signals to others
indicating their quality—in Pesendorfer’s language, they buy a “design commodity”
for the sake of attracting a high-quality “date”. The strength of that signal declines
as more people send it.

An important feature of such items is that they are often Giffen goods, since
an expensive item may be in demand simply because it is expensive. As such, this
chapter will have something to say about status-oriented models, in that it places
restrictions on the sort of assumptions that they may be founded on. Most notably,
Theorem 34 shows that such goods can not exist at equilibrium if the distribution of

tastes is sufficiently diffuse and there is full information about tastes and prices.

5.1.2 Some conclusions

Following are the main conclusions of the analysis of the model presented in this

chapter:

Equilibria A unique equilibrium exists in many specifications. Conditions where
there may be multiple equilibria are specified and discussed. An equilibrium where
there is a cutoff, such that everybody whose taste parameter is above the cutoff acts
and everybody whose taste is below the cutoff does not act, will always exist. In some
cases all equilibria will be cutoff equilibria.

That said, we begin with a distribution of tastes, and end with a distribution of
cutoffs. Assume for the sake of this summary that tastes are normally distributed,
meaning that they are symmetric with a single peak at zero. A single peak at zero

means that indifference is the most likely opinion.

No information In the case here, if there are no public signals, then there is only

one cutoff, such that everyone acts as if they gained no utility from the behavior
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of others. So in many situations where there should be network externalities, peer

pressure, et cetera, these forces have no effect.

Full information Given full information, the distribution of tastes will be more
leptokurtotic (spread out toward the extremes) relative to the distribution of tastes.
For example, movie quality may be drawn from a bell curve centered around a moder-
ate quality, but movie returns tend to be either in the ‘flop’ or ‘blockbuster’ category.
There is reason to believe that equity valuations should be normally distributed, but
equity returns tend to be leptokurtotic; the claim here is that these effects are due to
the conformity effect inherent in movie or equity demand.

The distribution of cutoffs may be so extreme that virtually everyone acts or does
not act—herding. Such equilibria are guaranteed only under certain conditions. First,
people have to weight the actions of others very heavily, or the society’s tastes must
be known to be very homogenous. Second, there must be prior information about the
mode of the distribution of tastes.

So as the weight of other’s actions rise (or the variance of the society’s tastes
become more concentrated), the distribution of cutoffs become more and more spread

out, until moderate outcomes are impossible.

Giffen goods The hallmark of the status-driven fashion good is an upward sloping
demand curve. This is shown to be impossible under certain conditions, such as when

people have full information about prices and the distribution of tastes is sufficiently

diffuse.

Advertising ‘Better’ advertising will be defined. Not only will better advertising
induce more consumption, but better expectations about advertising can increase

consumption.

An empirical test The model is applied to TV specials, which give evidence of

multimodality in demand.
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5.1.3 How to use this chapter

This paper is a catalog of results, most of which take some informational structure
as given and conclude something about equilibria: that they are cutoff-form, that
they are unique, that they are distributed leptokurtotically, that they must involve
heavy conviviality effects, et cetera. These descriptions of equilibrium may easily be
translated into statements about demand, which will be much more detailed than
those possible using the basic herding model discussed above.

But demand is at most half of any microeconomic model, requiring a supply curve
or competing goods for context. So this paper is not a complete model of anything
by itself, but an input into the production of microeconomic models of situations
where people gain utility from emulating others. The assumptions are thus intended
to cover enough ground that the model designer may select those assumptions that
best describe the situation he is modeling, and may then couch the corresponding

results about demand within a complete microeconomic model.

5.1.4 Outline

Section 5.2 defines the model. Section 5.3 defines a Bayesian Nash equilibrium in this
context. Section 5.4.2 discusses equilibria given complete information, Section 5.4.3
discusses what the equilibria will look like in the case of uninformative prior informa-
tion, and Section 5.4.4 gives a comparative statics result for the case of informative
but incomplete information. Section 5.5 shows two ways in which the model could be
extended to include advertising, Section 5.6 offers some extensions, and Section 5.7
shows some empirical evidence that the viewership of TV specials shows simultaneous

conviviality effects of the type discussed in this chapter .

5.2 The model

Actors are faced with a binary action. For example: stand in line at the popular

restaurant or go straight in to the unpopular one, install either a DOS-based operating
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system or a UNIX-based system, revolt or don’t revolt, buy a good or don’t buy it.
For the sake of consistent terminology, I will describe the choice as being between
‘acting’ and ‘not acting’.

A countably infinite number of individuals will simultaneously choose to act or not
act. The decision is based on two factors. The first factor is the percentage® of others
acting, k € [0, 1], which will be endogenously determined. The second factor is the
net individual utility to consumer ¢, denoted by a real number ¢;. The distribution of ¢
within the society depends on a parameter m, which is discussed below. Given m, the
distribution of tastes is described by a PDF f(¢|m) which has support (—oc, 00) for
any given m. The family of distributions f(¢|m) is common knowledge, even though

m may not be.

5.2.1 Time line

The sequence of events is as follows:

1. Everyone shares a common prior belief about the distribution of the parameter
m, in the form of a probability density function a(m), with full support over all
m € (—o00, 00), derived from either previous experience or (credible) advertising.
This prior may range anywhere from fully informative to entirely uninformative.

As a common special case, the parameter m will often be taken to be the mode.

2. Nature draws a fixed value y for m, but may or may not reveal u to actors.
3. Individuals draw a private utility ¢;.

4. Individuals use t; to update their prior beliefs a(m) to a new private likelihood

distribution over the distribution of tastes.

3This is an approximation, since it is impossible to define a percentage of a countably infinite
number of people. More precisely, we will find that there exists a consistent estimate of the likelihood
that a randomly drawn individual will act, k& € [0,1]. T will stick to the description ‘percentage of
actors’, however, because it makes more intuitive sense, and is formally correct in the real world,
where there are a large but finite number of actors.



79

5. Person 7 now has enough information to calculate the expected utility from

acting and from not acting, and makes a decision accordingly.
6. All individuals act simultaneously.

7. Person i receives a payoff based on t¢; and the actual proportion of people who

acted.

8. Section 5.4.3.4 considers the case where individuals have a second chance to act

and receive a second round of payoffs.

5.2.2 Assumptions about the utility function

The total value from acting is a function V (¢;,k) : R x [0,1] — R, where t; € R is
a level of tastes drawn from the distribution discussed above, and k& € [0, 1] is the

percentage of other actors, ex post, after everyone has decided whether to act or not.

Assumption 18 The function V (t,k) is the same for all actors, is continuous at all
but a finite number of discontinuities, and is strictly monotonically increasing in both
t and k.

The utility from not acting is defined to be V (0,1 — k).

Notice that when not acting, people care about the percentage of others who are
not acting, just as they care about the percentage of others who act when taking the
action themselves.

We could have described the situation with three variables: ¢ being the private
utility from acting, k£ being the percent of actors, and s the private utility from not

acting. But s would be redundant:

Lemma 26 For any function U(-,-) which is monotonically increasing in both argu-

ments, there exists a function V(-,-) which is also monotonically increasing in both

arguments, such that if U(t,k) > U(s,1 — k), then V(t — s, k) > V(0,1 — k).
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Normalizing the private utility from not acting to zero is therefore a convenient
and unrestrictive assumption.

Finally:

Assumption 19 There is some sufficiently low value tyin such that V(tmin, 1) <
V(0,0).

This means that if if ¢ draws ¢; < %, then ¢; will not act, regardless of expecta-
tions about k. In other words, tastes do matter somewhat, so that even if 7 knows
that everyone will act with certainty (k = 1), he still won’t act if he finds doing so
sufficiently distasteful. This assumes away some perverse equilibria.

Having described the value from acting and not acting, the game is simply a
question of comparing the expected values of V: all consumers observe their private
utility ¢;, and simultaneously decide whether to consume or not, based on whether

EV (t;,k) > EV (0,1 — k) or vice versa.

5.3 Equilibria defined

This section defines pure strategy symmetric Bayesian Nash equilibria in the context
of the model, along with the closely related expected demand function.

The manner in which Bayesian Nash equilibria will be defined in this chapter
requires two new sets of notation: one to describe sets of actors and non-actors, and
one to describe the subjective distribution of k£ given t.

In the equilibria below, a person will be able to decide whether to act or not
based entirely upon his or her draw of ¢;. Let those ¢ which prompt the consumer to
act be T4, and those that cause the consumer to not act as 7V. I will assume that
consumers who are indifferent will not act; let the ts which induce indifference be T,

meaning that T* C TV.

Equilibria defined The actors in the model are completely described by the pa-

rameter ¢, and the set of pure-strategy actions available to them are to act or not act.
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Therefore, a pure strategy symmetric Bayesian Nash equilibrium (herein referred to
as ‘an equilibrium’) is completely described by a set T#. For linguistic simplicity, I
will often say ‘T4 is an equilibrium’ to mean ‘in equilibrium, only members of the set
T4 act’.

A set T4 is an equilibrium iff any individual who draws ¢; € T4 chooses to act,
given the prior information held by the individual and given that all other players
are playing the strategy ‘act iff I draw tastes ¢; € T’; and no individual who draws

t; € T4 acts, given the same information.

Conviviality This notation allows the following definitions: active conviviality is
when someone whose draw of t; is less than zero chooses to act. That is, T4 N
(—00,0) # {0}. Inactive conviviality is when someone whose draw of t; is greater
than zero chooses not to act. That is, TV N (0, 00) # {0}.

The gist of these definitions is that if utility were purely a function of tastes, then
everyone with ¢; < 0 wouldn’t act while everyone who draws ¢; > 0 would. Situations
of active or inactive conviviality are those where someone has changed their behavior

based on the behavior of others.

5.3.1 Cutoff equilibria and expected demand curves

Without saying anything about the priors, the following is true for any Bayesian Nash

equilibrium:

Lemma 27 Define f(t|m) to be a translation family* based on a PDF with a finite
number of discontinuities. Then in equilibrium, T4 is a (possibly empty) set of open

intervals.
A desirable refinement would be to have a cutoff equilibrium:

Definition 20 A cutoff equilibrium is where T4 is of the form (T*,00) for some

point T™.

4Translation families were defined in Section 2.2.1.
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In the analysis of the three cases which follow, all equilibria in the full information
case will be cutoffs, reasonable assumptions will induce cutoff equilibria in the case
of an uninformative prior, and a cutoff will simply be assumed for the case of an

informative public prior.

Bayesian updating The decisions made by the actors are made using posterior
probability distributions, arrived at after absorbing all available information. Within
the context of this chapter, Bayesian updating (Equation 2.1) takes the likelihood
function f(t/m) and the prior density a(m) and produces a posterior density of m

given t defined to be

Demand as a function of tastes This section defines the expected demand curve
associated with each equilibrium 74. Discussion of the implications of cutoff equilib-
ria is best done in the context of the expected demand functions they imply: Section
5.4.2.4 will show that cutoff equilibria are related to monotonically upward-sloping
expected demand, while non-cutoff equilibria will have nonmonotonic expected de-
mand.

Taking as given the set 74 and the value of m, the total number of people acting
is

k(T4 m) = f(z|m)dz.
TA

A belief about £(T%, ) may be thought of as the expected demand given equilibrium
T4, mapping m to the percentage of actors.

Actor 7’s value from acting given the above information would be V' (¢;, k(T4, m)).
However, if m is not known, ¢ must rely on the posterior likelihood of a given value of
m: post(m|t;). Taking this into account, the expected utility from acting is the sum

of [(the payoff given m) x (the likelihood of m)] over all possible values of m, that is:

/00 V (ti, k(T*,m)) post(ml|t;)dm. (5.1)

o
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If k(T4,m) were an invertible function of m (see below), so that there exists a
function m(T*, k), then we could write 4’s perceived probability that k percent of the

people will consume, given T4, as:
pi(k) = post(m(T*, k)t;),
and Equation 5.1, the expected utility of acting, could be written as

/01 V (ti, k) pi(K)ds.

5.3.2 Cutoff equilibria and monotonic demand

We don’t yet know what T4 or TV look like in equilibrium; we don’t yet know how

the expected value of k is derived from ¢;; but we can still state the following relation:

Theorem 28 Assume that f(-|m) and post(-|m) satisfy FOSD.> Then: k(T#,m) is

monotonically increasing in m < T4 is a cutoff equilibrium.

One would expect that under normal conditions, as the median of consumer tastes
increases, the percentage of people acting would also increase. This theorem says
that such ‘normal conditions’ imply a cutoff equilibrium. Or, inherent to a non-cutoff
equilibrium is the claim that there is some region in which consumers liking the good
more would imply fewer consuming.

For the remainder of the chapter, I will consider only cutoff equilibria. In some
of the cases below, this will be proven to be the only possibility, meaning that goods
with upward-sloping expected demand curves can not exist. In other cases, it will
be assumed; the commentary above shows that this is a plausible but not trivial

assumption.

5FOSD was defined in Section 2.2.1.
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5.4 Equilibria given different types of public infor-

mation

I will describe equilibria in three situations: the first is the case where the true
parameter m is known with certainty. The second is the case where there is no prior
information about m. The third is the case where there is commonly known prior
information (but still some uncertainty) about m.

The main conclusions of this section are as follows:

e Given full information, all equilibria are cutoff equilibria. There can be multiple
equilibria, but only if the distribution of tastes is sufficiently concentrated at

certain points or if the utility from conformity is high enough. [Theorem 34]

e A prior distribution of medians, a(m), induces a distribution of cutoffs; under
appropriate assumptions (notably full information and that f(-|m) is single-
peaked), the distribution of cutoffs is less concentrated around the center than
the distribution of medians. Given some parameters, all equilibria are extreme.

[Theorem 35]

e If m is taken to represent prices (see Section 5.4.2.4 for details), then demand
curves can slope upward only if people are sufficiently concerned with how
others behave, or if tastes are sufficiently homogenous, as defined by Theorem
35. Since fashion goods are often used as examples of Giffen goods, this places

restrictions on how one could model them. [Proposition 36]

e Given full information about m, a symmetric distribution assures us that there
is an equilibrium with no conviviality effects; an upward-leaning distribution
assures us that there exists an equilibrium with active conviviality; a downward-
leaning distribution assures us that there is an equilibrium with inactive con-

viviality. [Theorem 41]

e Given an uninformative prior, there can be only one cutoff equilibrium. [Propo-

sition 39
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e Given an uninformative prior and a symmetric distribution, there are no con-
viviality effects; given a distribution leaning toward the positive, there are active
conviviality effects; and given a distribution leaning toward the negative, there

are inactive conviviality effects. [Theorem 40]

e Given one distribution of prior information a;(-) which satisfies the monotone
likelihood ratio property (MLRP) with respect to another, as(-). Then any
equilibria induced by a;(-) must involve strictly fewer actors than any equilibria
induced by as(-), meaning that more people will act. In other words, better
advertising makes more people want to buy, where ‘better’ is defined using the

MLRP. [Theorem 42]

5.4.1 Some preliminary results

The following lemmas will used in all three informational cases below. A cutoff
equilibrium will be either proven or assumed for each case. As such, a single point T*
defines an area T4 = (T*, 00), so all we need to find a pure strategy Bayesian Nash
equilibrium of a cutoff form is the single point 7.

The consumer is indifferent if the expected utility from acting is the same as
the expected utility from not acting. For each ¢;, define ¢t*(¢;) : R — R to be the
point such that if the cutoff 7% were to equal ¢*(¢;), then one who drew ¢; would be

indifferent. It solves:

/_ TV (s, B([1 (1), 00), 7))post (1) dr = / V(0,1 — k([#* (), 00), 7))post(r[t:)dr.
(5.2)

Proposition 29 If the posteriors post(-|m) satisfy FOSD, and the likelihood function

f() is continuous, then t*(t;) is a continuous, increasing function of t;.

This is the tool we need to find the equilibria:
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Corollary 30 Given that the posteriors post(-|m) satisfy FOSD and the likelihood
function f(-) is continuous; then the cutoff-type pure strategy Bayesian Nash equilib-
rium T* is at the value(s) of t; for which t*(t;) = t;. There is always at least one

cutoff equilibrium, either at some finite value or at T* = oo.

We can also transform this result to the space of k. Theorem 28 stated that if
there is a cutoff equilibrium, then k(T4,t) is a monotonically decreasing function of
t, so this is a trivial transformation. Define k*(¢;) : R — [0, 1] as the percentage of
people who would need to act to make one who drew ¢; indifferent between action
and inaction. If ¢; has density f(¢), then let F'(¢t) be the cumulative distribution
function (CDF) of t. Also, note that if ¢; were the cutoff in a cutoff equilibrium, and
if 7 believes that the ;s are distributed ~ F;(-|m), then 1 — F;(¢;|m) percent will act.

Restating Corollary 30 in the space of k:

Corollary 31 The cutoffs for cutoff-type pure strategy Bayesian Nash equilibria are
at the value(s) of t; for which k*(t;) =1 — F;(t;). If k*(t;) > 1 — F;(t;) for all t;, then

K* =1 is an equilibrium (where no one acts).

In other words, we need only find a person who would be indifferent if they
happened to be the cutoff. Such a person may consistently be a cutoff in equilibrium,
and a person may only be a cutoff in equilibrium if he is indifferent given that he is

the cutoff.

5.4.2 Full information

This section discusses the full information case, defined to mean that it is common
knowledge that the parameter m equals some fixed value p with certainty.
The caveats about when we are assured a cutoff equilibrium (and therefore mono-

tonic expected demand) become moot in the full information case:

Lemma 32 Given full information, all perfect strateqy Bayesian Nash equilibria are

cutoff equilibria.
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This result did not make any assumptions about the form of the distribution of

tastes f(-), and requires only the monotonicity from Assumption 18 with regards to

the function V (-, -).

From here, complications ensue; some examples may be helpful.

1-F(®) \\\ o

\\
\\ 075 T
\\

Figure 5.1: the ‘normal’ case

5.4.2.1 Example A: the normal case

Take f(-/m) = N(m,1), and take the value function to be linear and separable:
V(t,k) =t+nk.

If n = 1, then we have the case in Figure 5.1: k*(¢;) is the straight line; 1 — F'(¢;]0)
is the curve. The equation k*(¢;) = 1 — F(t;|m) is satisfied at the crossing of these
two curves, meaning that this is the location of any equilibria. Clearly, there is only
one crossing point, and therefore a unique equilibrium.

Comparative statics are simple in this case: if m rises from zero to a positive
value, the curve translates to the right, and therefore the cutoff falls. Since the cutoff
falls, more people act. In other words, if it is revealed that more people like a good,

then more people will consume.
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Figure 5.2: If people care enough about k, perverse equilibria appear.

5.4.2.2 Example B: the abnormal case

The case n = 2, so V (t,k) = t + 2k, is much more interesting. Now consumers are
twice as interested in the percentage of actors than in the good itself, and the result
is as in Figure 5.2. There are three possible cutoffs, and the society agreeing on any
one of them is a Nash equilibrium. One way to resolve this is to make a pessimism
assumption, that given a few equilibria, everyone agrees on the one with the lowest
number of people acting (and therefore the highest value of t).

The comparative statics for the pessimist (or the optimist) case is very simple: as
the mean of the distribution rises, 7" falls and more people act. There is a jump in
the value of the cutoff at a certain value (as the ‘S’ crosses the line).

Much more interesting is the ‘moderation’ case: if consumers agree upon the
middle of the three equilibria, then as p4 increases, 7™ also increases, meaning that
fewer people consume. People may coordinate on this middle equilibrium, but the
equilibrium is unstable: if people think the cutoff is perturbed to the left of 7™, this
would only lead to a greater shift to the left, eventually reaching the leftmost crossing

point, and similarly with a shift to the right. Therefore the equilibrium point can be
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thought of as the dividing line between points which lead by tatonnement to a low
T* and points which lead to a high T™; since this is increasing, the number of points
which lead to high consumption rates increases as the mean taste for the action or

good increases, consistent with intuition.

General results These examples show that if the distribution of tastes is diffuse
enough or (equivalently) the desire for conformity is low enough, then there will
be only one equilibrium. The following results explain sufficient conditions for one

equilibrium.

Proposition 33 The PDF f(-|m) may take any form, and the parameter m will

be known to have the value p with certainty. If for any equilibrium point t = T,

f(tln) < —2(t) for all t > 7, then there will be only one equilibrium for the given

L

Theorem 34 The PDF f(-|m) may take any form, and the parameter m will be
known to have the value p with certainty. If f(t) < —2%=(¢') for all t, ¥, then there

will be only one equiltbrium for any w.

The left-hand side of the inequality in this statement is the derivative of the CDF,
while the right-hand side is the derivative of k*(¢), so this statement holds when the
CDF is expanding more slowly than £*(¢) is contracting [Notice that 0k* /0t is always
negative]. In words, this means that the value from conforming expands quickly
relative to the most concentrated parts of the distribution. If the PDF has low peaks,
or if k*(t) falls very quickly, then there will be only one equilibrium. This condition

is sufficient for a unique equilibrium, but not necessary.

5.4.2.3 The distribution of cutoffs

Even though m was taken as fixed above, it may have been drawn from a distribution
a(m) before being fixed and made common knowledge. For example, the median of

movie enjoyability may be observed to have distribution a(m). When a new movie
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comes out, the median of its quality is drawn from a(m), and reviewers reveal the value
of m to the viewing public. The model is then as above: m is a fixed, known scalar,
and Theorem 34 showed that if certain conditions hold, then 7*(m) is a function
producing only one equilibrium for each fixed value of m.

Let T*(u) be the function mapping values of u to the equilibrium 7™ that they
induce.

Given the original ez ante distribution of a(m), then, what is the ez ante distri-
bution of 7*? The following theorem then says that under appropriate conditions,

the distribution of 7™ is a fat-tailed one relative to a(m).

Theorem 35 The ex ante distribution of the median m is a(m), which can take any
form. After drawing u from a(m), p is known with certainty. Assume the PDF f(x)
is single-peaked, with a mazimum value of f(x) = %, and the value function is linear:
V(t, k) =nk +1t. Let d(T*) be the ex ante distribution of T* (before u is known).
Given these assumptions, the ratio a(m)/d(T*(m)) is single-peaked with a peak at
the point where u = T*(u). That is, d(T*) is less concentrated toward the center than

a(m).

Given the assumptions about f(-) and V (¢, k) the conditions of Theorem 34 now
apply, so there will be only one cutoff for any given value of m, and T*(m) is truly a
function.

Returning to the example, if movie quality is normally distributed, then movie
returns will be fat-tailed. De Vaney and Walls ([55], p 1512) studied movie returns
and found exactly this: “The end-of-run or total revenue distribution for motion
pictures ...never quite reaches log normality; it has fatter tails than the log normal
and mass points at the far right, where the superstars are located.”

Continuing the example in the context of the theorem, a(m)/d(T*(m)) is single-
peaked, so its inverse [d(T*(m))/a(m)] can be described as ‘single-troughed’. Also,
Theorem 41 below will show that 7%(0) = 0, so this is where the nadir of the trough
will be located. These facts imply that the distribution d(7*) must have a lower

center and fatter tails than the Normal distribution. That is, actual movie quality
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which is distributed log-normally leads to log movie returns which have a leptokurtotic

distribution, as found by De Vaney and Walls.

An example For further intuition on the meaning of this theorem, consider the case
where the distribution a(m) is the Uniform[—1, 1] distribution, and where f(-|m) is
a Normal(m, 1) distribution. Continue to assume that the value function is linear:
V (t, k) = nk +t. Then the proof shows that the distribution of d(7™) is proportional

to the ratio )

on

or — f(T*(m)|m)’

2n

The premises of Theorem 34 assure us that the denominator is always positive, which
would make this a continuous function of n for the range where these premises hold.
When the distribution f(¢/m) is N (0,1), the peak of the distribution is at zero,
where f(0[0) ~ 4. If 5~ >> 4 [ie, n << 1.25], this ratio as a function of m is
approximately constant. If ﬁ is only a little larger than .4, the ratio will be larger at
m = £1 and dip to a minimum at m = 0. As n gets larger, the trough gets deeper,
until i = .4, at which point the function becomes discontinuous, multiple equilibria

are possible, and only extreme values of 7™ will be stable equilibria.

5.4.2.4 Giffen goods

Fashion goods are often used as an example of Giffen goods, so it is worth considering
when Giffen goods would arise in the model here. It is easy to modify the model to
include prices: take the parameter m to be the negation of the market price, so as the
price rises, then the median of the consumers’ value for purchasing the good falls. For
example, if the good were free, then the taste for the action of purchasing the good
may be distributed ~ AN (0, 1), but if the good cost two dollars, then tastes for the
action of purchasing the good would be distributed ~ N(—2,1), with most people
not wanting to consume the good, while those who strongly preferred the good when
it was free still gaining positive utility from buying the good for $2.

The question of drawing the demand curve them becomes: as the final price
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increases, does the cutoff 7™ rise or fall?
The setup above gave conditions where 7*(m) is a one-to-one function. Returning

to the original interpretation where f(¢|m) is increasing in m,

Proposition 36 Given the premises of Theorem 34, T*(u) is a strictly decreasing

function.

This reverses if m represents prices, so f(t|m) is decreasing in m: as the fixed price
u rises, the cutoff T* rises, meaning that the percentage of consumers falls. In other
words, given the premises of Theorem 34, the demand curve always slopes down.

The premises of Theorem 34 are not trivial, and all of them may be plausibly
dropped to describe a society where Giffen goods could exist. First, it is assumed that
either consumers are not too concerned with the behavior of others, or that tastes are
not too concentrated. Fashion goods are universally those where people are concerned
with emulating the behavior of others. Also, if there are multiple equilibria, then a
shift in prices can both cause a change in the location of the equilibria and a change
in which equilibrium the consumers coordinate upon.

Second, it is assumed that the value of acting is monotonically increasing in the
percentage of other actors. But consider fashion good models such as Frijters [21],
Pesendorfer [45], or Bernheim [6], based on goods as a signal of status. Each of these
models feature a utility function which is increasing in the percentage of high-type
consumers of a good, and is decreasing in the percentage of low-type consumers.
Therefore the value of consuming may increase or decrease as a function of the total
number of consumers. The moral is not that fashion goods can’t be Giffen goods—
there is evidence that such goods do exist—but that any model of fashion goods with
Giffen demand curves can not be based on a homogenous society with full information

and purely self-interested actors.
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5.4.3 Uninformative prior information

The uninformative prior I will use in this chapter is constructed as follows: Define

Lo [ mel=dd
d(m):{ 0 mgl-dd

the function

This is a Uniform distribution over the range [—d,d]. The uninformative prior is
then defined as the function limg o, Uy(m). This type of distribution is discussed
extensively in texts on Bayesian inference, e.g. Zellner [59], pp 41ff.

Defining a(m) to be an uninformative prior as defined here greatly simplifies the

equation for Bayesian updating:

B f(tlm)a(m)
post(mlt) = T rT aluydn
f(tim)[2] i
i | st ™€ (5.3)
Sl 0 mg[—dd
f(tm) _
- 1im{fddf<tu>du [, (5.4)
el 0 mg[-dd

Equation 5.3 breaks the statement down into the case where Uy(m) = [2], and where
Ui(m)—and thus the whole expression—is zero. Equation 5.4 follows from the fact
that [%] is constant with respect to yu, so it comes out of the integral in the denominator
and cancels out. Equation 5.5 uses the fact that ffooo f(t — p)dp = 1, and that the
case where m ¢ [—d, d] is obviated when d — co. Equation 5.6 uses the assumption
that the family f(¢|m) is a translation family. This assumption provides the structure
needed to arrive at the results below.

Notice that as m rises, the point at which f(-) is evaluated declines, so that

post(-|t) is the mirror image of f(-|¢) around t.
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Here are a few useful definitions for any generic PDF p(-):

Definition 21 A distribution is symmetric iff p(d) = p(—d) Vd.
A distribution is upward-leaning iff p(d) > p(—d) Vd > 0.
A distribution is downward-leaning iff p(d) < p(—d) Vd > 0.

So if a symmetric prior f(-|t) is updated using an uninformative prior, the posterior
will be symmetric; if an upward-leaning prior is updated using an uninformative prior,
then the posterior will be downward-leaning; and vice versa for a downward-leaning

prior.

5.4.3.1 Uninformative priors with symmetric, single-peaked priors imply

cutoff equilibria

A distribution f(z|0) is single-peaked iff: for all z < 0, f(z) is an increasing function;
for all z > 0, f(z) is a decreasing function; and f(x) attains its maximum at z = 0.
This conditions and a few more are sufficient to guarantee that equilibria will be

of a cutoff form:

Proposition 37 Assume uninformative prior information; that f(t|0) is single-
peaked and either symmetric or upward-leaning; and that f(t|m) is a translation

family. Then the only pure strateqy Bayesian Nash equilibria are of a cutoff form.

Some examples Here are a few examples to give some intuition as to why upward-
leaning or symmetric priors imply a cutoff equilibrium, while downward-leaning priors
allow relatively perverse equilibria.

Consider the following case:

tan(t
V(tk) = Lﬁj;()w

3/2 zeft—Lit+1]
post(z|t) = { X 2

0 z¢lt—3it+1]

T = (-.295,.295).
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The function arctan(t)/(7/2) is monotonically increasing in t, but asymptotically
approaches one; this means that no one would be willing to act if no one else does.
The posterior is upward-leaning, so the priors must have been downward-leaning.

The person who drew ¢t = —.295 believes that a total density of £ = % is within
T# and will act, and arctan(—.295)/(7/2) = —%, so V(t,k) = V(0,1 — k) = . The
person who drew ¢ = i believes k¥ = 1, and arctan(.295)/(7/2) = 3, so V(t, k) =
V(0,1 —-k) = %. Thus, both ends are valid cutoffs, and the reader may verify that
all individuals with draws in 74 will prefer to act and all those with draws outside
of T4 will not act.

At the same time, T4 = (—.295, 00) is also an equilibrium.

Now, consider the same setup as above but a downward-leaning posterior:

3/2 zelt—35,t+ ¢

post(z|t) = .
0 x¢[t—%,t+%]
Consider any two points ¢; and t,. Given the posterior here, k(T4 t;) < k(T4,t,).
This means that V(tl,k(TA,tl)) < V(tg,k(TA,tg)), while V(O,l - k(TA,tl)) >
V(0,1 — k(T4,t,)), so it could never be the case that both ¢; and t, are cutoffs,
so we could not see an equilibrium of the form T4 = (¢, ).

An immediate implication of Proposition 37:

Corollary 38 For a fived set T4; if f(t|m) is a single-peaked and either symmetric
or upward-leaning function and people have an uninformative prior; then k(T4,t) is

monotonically increasing in t.

Proof: This is simply extending the result of Proposition 37 via Theorem 28.

¢

The question of whether it is plausible to assume that the expected demand is an
increasing function of ¢ is therefore obviated in the case of an uninformative prior: it

is a direct result of the model’s setup and assumptions.
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5.4.3.2 Uniqueness of a cutoff equilibrium

Regardless of whether Proposition 37 applies, the following can be said about the

class of cutoff equilibria:

Proposition 39 Define f(t|m) to be a translation family. If individuals have unin-
formative prior information about the true center of the distribution, then there is a

unique cutoff equilibrium.

If Proposition 37 holds, then this implies a unique equilibrium, but if it does not
hold, there may be non-cutoff equilibria in addition to the unique equilibrium of a
cutoff form.

Further, the shape of the distribution says something about where the unique

cutoff equilibrium is located:

Theorem 40 Assume f(t|m) is a translation family of a PDF that is continuous at
all but a finite number of points, and that the prior is uninformative.

(i: no conviviality) In the symmetric case [f(d) = f(—d)], the unique equilibrium
satisfies T* = 0, meaning that there is neither active nor inactive conviviality. That
18, if the distribution is symmetric, people behave as if they only cared about their
private signals.

(ii: active conviviality) If the distribution is upward-leaning, meaning that f(d) =
[f(=d)/A] for all d > 0 and some A < 1, then the unique cutoff equilibrium satisfies
T* < 0, meaning that everyone with a private signal to act will do so, but some people
with negative private signals will ignore them and act anyway.

(iii: inactive conviviality) If the distribution is downward-leaning, so f(d) =
[f(—=d)/A] for all d > 0 and some A > 1, then the unique cutoff equilibrium sat-
isfies T* > 0, meaning that everyone with a private signal not to act will not act, but

some people with positive private signals will ignore them and not act as well.

This theorem underscores the importance of the distribution of tastes—ignored

in herding models—in determining the outcome of the game. If I think that the
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distribution of outcomes is skewed upward, then I am more likely to ignore a small
negative signal and follow the crowd. If I think the distribution is symmetric, then I
have no information to go on either way, and so I can do no better than just follow

my own signal.

5.4.3.3 Comparing posteriors

A theorem similar to Theorem 40 would be useful, comparing outcomes given different
shapes of distributions. In this case there is the additional information m = p. Thus
the definition of ‘leaning’ used below is less stringent, but depends upon p. A N (0,1)
is symmetric by this definition, for example, but the A/(1,1) distribution is upward-

leaning, since p(i) > p(—i) for all i > 0.

Definition 22 A distribution f(-|u) is symmetric iff f(d|u) = f(—d|u) Vd.
A distribution f(-|p) is upward-leaning iff f(d|u) > f(—d|p) for all d > 0.
A distribution f(-|p) is downward-leaning iff f(d|p) < f(—d|u) for all d > 0.

Theorem 41 Given that m = p is known.

(i: no conviviality) In the symmetric case, there is an equilibrium at T* = 0,
meaning that there is neither active nor inactive conviviality.

(ii: active conviviality) If the distribution is upward-leaning, then there is an equi-
librium at some point T* < 0.

(#ii: inactive conviviality) If the distribution is downward-leaning, then there is an

equilibrium at some point T > 0.

None of these cases preclude other equilibria existing elsewhere, as shown by
example B above, which was symmetric but had equilibria greater than, less than,
and equal to zero. However, in the case where there is only one equilibrium, this
demonstrates the points also be made by Theorems 40 (above) and 42 (below): the
shape of the distribution matters in determining the final level of consumption, where
upward-leaning distributions lead to more consumption; and the news of some ms are

‘better’ in the sense of causing more people to act.
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5.4.3.4 A two-period model

Consider the case where the model has been executed (with an informative or unin-
formative prior), and actors are given a second opportunity to decide. Total utility
will now be a monotonically increasing function of the payoffs in both periods. With
a countably infinite number of actors, each actor has measure zero, and therefore
can not behave strategically in the first period to change the information available in
the second period. Therefore all actors will try to maximize their utility in the first
round, and the model above applies in that round. If it is common knowledge that the
equilibrium T4 was chosen, then both inputs into the function m(T4, k) as defined in
Section 5.3.1 may be observed, and therefore m is known with certainty. For example,
if it is common knowledge that a cutoff strategy was chosen; that the cutoff was at
zero, so T4 = (0, 00); that tastes are distributed N'(m,1); and that k = 90% of the
actors acted; then anyone can check the back of any statistics textbook to verify that
the center of the distribution must be at m = 1.28.

Therefore, in the second round, given all of the information assumed to be avail-
able, actors will have full information, and the results of Section 5.4.2 apply in the

second round.

5.4.4 The case of prior information

Changes in prior information shift the equilibria in the same manner as a similar

change in m in the full information case. Formally,

Theorem 42 Assume prior distribution ai(m) satisfies the monotone likelihood ratio
property with respect to az(m), and assume cutoff equilibria. Assume nothing about
the distribution f(t). Then someone who is indifferent between action and inaction

given prior as(m) will strictly prefer acting given ai(m).

This means that if public information a;(m) MLRPs as(m), then a; is ‘better’:
it induces a cutoff further to the left, and thus causes more people to act. This will

have an immediate application in the model of Section 5.5.2.
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The reader may wonder why the MLRP was needed for this theorem. The short
answer is that this is what is necessary to ensure posteriors which satisfy FOSD using

Theorem 5, but Chapter 2 gives a complete discussion of this question.

5.5 Application: advertising

5.5.1 Advertising model one

One interpretation of advertising is that it directly raises the expected utility from
consuming a product, by revealing facts about the product or its quality.

Let A € [0,1] be the percentage of people who see an ad and let v € R* be the
added value from seeing the ad. For the sake of simplicity, assume that v’s effect
is additive and the same for all, so after viewing an ad the taste for the product or
action rises from ¢ to ¢ + v.

Seeing and ad imparts both A and v, since v is directly observable, and A is
observable in the medium chosen—commercials on prime time TV imply a wide
viewership, while a mass mailing implies that everyone threw out the ad before looking
at it. Those who don’t see the ad need to have prior expectations, Ay and v, in
order to form expectations about how others will behave. In the sequel, we take the
advertiser’s strategic choices for A and v as given, leaving these considerations (and
the question of what is credible) to another paper.

The functions used to evaluate expected utility, and the information used to make

the evaluation, are therefore:

consume don’t consume
see ad EV(ZL,Z +1/,k‘A, v, A(),l/(),ti) EV(O,l - k|A, v, A(),V(),ti)
don’t see ad EV(ti,k“Ao,I/(),ti) EV(O,]_ - k|A0,l/(),ti)

There are now two cutoffs, since those who see ads have more information and
a different value function from who don’t. Label T} as the cutoff after viewing

advertising and 7§ as the cutoff without advertising.
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Theorem 43 The no-advertising cutoff Ty is decreasing in Ay and vy. The cutoff

with advertising, T}, is decreasing in A, v, Ay, and vp.

This means that more people consume as the As and vs rise. The observation that
an effective ad campaign (that is, a high value of A and v) can expand consumption
is not at all surprising. What makes this statement distinct from the results of a
model based on purely private utility is that expectations about advertising (Ao and

vy) affect the actions of both those who do and don’t see advertising.

5.5.2 Advertising model two

The second manner of modelling advertising focuses on the advertiser’s goal of con-
vincing the consumer that members of an imagined community® all wish to consume
the product. As such, the advertiser presents a distribution a(m), which shows the
likelihood that the mode of the distribution is at a given point m. Rarely do we see
histograms of tastes in advertising, but a consumer who is familiar with his cohort
will know how many of his fellows will benefit from an advertised feature, and thus
impute a distribution of medians a(m). The consumer then acts on that distribution,
rather than on the desirable characteristic itself.

From here, the results above apply directly. Notably, Theorem 42 defines when
one advertisement is ‘better’ than another: when the distribution of tastes implied
by one MLRPs the other.

Theorem 43 can also be applied in this setup, where advertising offers an entire
distribution instead of a scalar (so we define the ordering a;(m) > as(m) iff a;(m)
MLRPs aq(m)), and the key conclusion will be the same: both better advertising and

better expectations about advertising will induce more people to consume or act.

6Imagined Communities is the title of a book by Benedict Anderson, but my usage has only
passing relation to his.
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5.6 Extensions

5.6.1 DPolitics and spatial models

If voter turnout is a convivial activity (see Chapter, 6), then this directly contradicts
median-voter type results, which assume that a candidate will do his best to maximize
the number of people who sympathize with his position. A candidate who claims to
have a small following, all of whom will turn out to vote, may do better than one who
has a larger, more tepid, following.

Given this claim, the question of where candidates should place themselves to
maximize their share of votes cast becomes a nontrivial one. Such a model of can-
didate placement may have equilibria where some candidates place themselves at

extremes and some place themselves in the center.

5.6.2 Finance

Anywhere increased demand increases the expected payoff for an asset, this model is
applicable. Given any of the situations enumerated on page 72, the results here may
be used to produce more accurate forecasts of expected payoffs.

The reader will note that the model presented so far falls just short of proving
that leptokurtotic returns are caused by conviviality effects: it showed that demand
would be leptokurtotic, but this is only have of the supply and demand model which
would have to be written out to completely explain prices. Fully specifying the model

is not a difficult extension, but is beyond the scope of this chapter.

5.6.3 Competing groups and fashion goods

One possible extension to the model is to take into account the size of the opposing
group. Schuessler [49] points out that if 50% of the population is in a group the actor
wishes to join, then joining makes a statement about the actor and his beliefs. But if
99% of the population is in that group, then joining is a meaningless default action.

This implies that one would enjoy joining a group more if the opposition is large but
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not too large. Since the percentage of people in the opposition is 1 — k, this means
that the value function V(¢, k) would be nonmonotonic in k.

The proofs in this chapter relied heavily on monotonicity, and for good reason: if
we allow V (¢, k) to be nonmonotonic in k, then virtually any behavior can be explained
by some admissible value function, leaving us with a vacuous theory. Therefore, one
must be cautious in designing a theory that takes this into account.

The same missing facet that Schuessler discusses also makes this model inappro-
priate for studying fashion goods per sé. The story told by many of the models of
fashion goods (and many fashion magazines) is that there are ‘fashion leaders’ who
try to distinguish themselves from others, and the hoi polloi who try to emulate the
fashion leaders, but not each other. We would again need a model that includes

multiple groups to describe the situation.

5.7 Is TV viewership bimodal?

This section analyzes some data for viewership of TV specials. It finds evidence that
the distribution of the number of viewers across programs is not unimodal. This
supports the hypothesis that TV viewing is a convivial good.

The ‘herding’ literature, as discussed on page 71, can not explain this: it says
that some viewers know that the show will be good (or not), and they inform others,
who then herd along with the information provider. But TV specials are one-time
broadcasts, meaning that no one has more information about the show’s quality than
anyone else. Everyone sees the same advertisements beforehand, and knows that
everyone else has as much information as they do. There is no information to be
cascaded.

Therefore, the viewership of TV specials, if it is to be modelled as including a
conviviality component, requires a simultaneous model such as the one presented

here.
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5.7.1 Data

I use a set of ratings data furnished to me by Michael Chwe, who obtained the data
directly from AC Nielsen. They cover viwership for October 1988, February 1989,
and July 1989.

The data specified which programs were one-time specials. Within specials, I
excluded three large classes of program, based on the fact that information about
the quality of such programs may exist and be unevenly distributed among potential
viewers, allowing for information cascades. These classes are TV broadcasts of movies,
since those who saw the movie in theatres could initiate an information cascade; sports
events, if only because they include many repeating events such as the World Series
or Olympics; and spin-offs of existing television programs, such as special episodes of
a sitcom broadcast at a special hour or retrospectives of long-running programs.

This paring-down left 86 specials, with data in all of the demographic categories
listed below.

5.7.2 The unimodality assumption

The key assumption of the model here is that there is a unimodal distribution of
viewers’ tastes for any given program. Deviations from this could be due to two
possible causes: the distribution of program quality is fundamentally multimodal, or
the taste for any given program is multimodal.

A program’s quality is an amalgamation of the work of dozens or hundreds of
individuals: writers, producers, technicians, set designers, and on-screen talent. Being
such an amalgamation, it seems the Central Limit Theorem (CLT) would be ideal: a
series of reasonably independent draws are made from dozens of different distributions
(the pool of writing talent, set design talent, et cetera), and the program’s overall
quality is a weighted mean of these individual draws. The CLT then says that the

distribution of program quality should be Normal (and therefore unimodal).



104

5.7.2.1 Why assuming unimodality in tastes furthers the study

One may explain the result that viewership is multimodal by claiming that viewer
tastes are multimodal, but this simply restates the question on a different axis: why
are tastes multimodal?

Without reference to some desire to emulate others in one’s cohort, explanations
for multimodal tastes are impossible to make clear.

For example, one common argument is that certain racial or demograpic groups
have a preference for certain types of dress or music, which immediately engenders
the question: why do some groups prefer one form over the other? This question is
especially difficult given that many seemingly disparate forms, such as sephardic oud
music and surfer rock, bear a close resemblance in spite of a very disparate following.”

Some argue that members of certain groups all share a common upbringing, mean-
ing that all consumers of this generation all had parents and teachers who consumed
the same music and wore clothing in the same manner. Of course, this does not
answer the question from the previous paragraph, but rephrases it in terms of the
previous generation.

A related argument is that search is difficult, and so members of a cohort look to
each other to determine what media are of high quality. This is difficult to support
because search in the context here, broadcast television in the USA of the 1980s, is
as cheap as pushing a button on a remote control. In the context of oud vs. surfer
music, the search claim is that people require help from their cohort to determine the
quality not of individual performers, but of entire genres; this places an undue level
of stupidity upon the consumer.

In short, the arguments as to why tastes are multimodal, or that certain de-
mographic groups tend toward certain programs, can not be satisfactorily described
without some reference to a simple desire to emulate others—which is the alternate
hypothesis tested here. So by assuming a unimodal distribution of tastes, we give the

null hypothesis (no desire to emulate others) a chance to be true.

"Dick Dale, whose music defined the surfer genre, is Lebanese. His music consists of playing a
Middle Eastern melody on an electric guitar, sometimes doubling the rhythm.
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The identical consumer story One final suggestion with which the author has
often been confronted is as follows: assume that every potential viewer has exactly
the same tastes, and exactly the same value of their time. Then everyone will gauge
the quality of a program equally: if the program is not worth one’s time, it will not
be worth anybody’s time; and similarly if the program is worthy. Thus, a Normal
distribution of program quality can quickly lead to a sharply bimodal distribution of
turnouts. However, this model is based on the clearly false assumptions that everyone
is identical, and fails to be robust to weakening of that assumption. If people’s tastes
or values for time are Normally distributed, we have the model of Section 5.4.2; with

k = 0. As such, a unimodal distribution of turnout will result.

5.7.3 Method

I use Silverman’s test of bimodality [51]. It is based on this function: f(¢, X) =

?=1N7(1(_27X")/h), where X1, Xy, ... X, are the data observed, N (y) is a Normal(0, 1)

density function evaluated at y, and h is a smoothing parameter. Figure 5.3 shows the
effect of raising h on the shape of the fitted curve, using viewership data for all men.
When h is very small, the Normal distributions around each data point approach
spikes, so there is a mode at every data point. As h rises, the spike around each
point spreads out and merges with other spikes, until eventualy the entire data set
is subsumed under one single-peaked curve. Thus, there is a monotonic relationship
between h and the number of modes in the density function induced by A.
Silverman offers a bootstrap method of testing a null hypothesis of the form ‘the
distribution has k£ or fewer modes’. The procedure begins by finding the smallest
value of h such that f (t, X) has k£ modes; the null hypothesis is that this value of
h (herein hg) is consistent with the data. Then, we draw a bootstrap sample, X',
from the data, write down f (t, X') based on hg, and count its modes. Thanks to the
monotonic relationship between h and the number of modes, the percentage of such
bootstrap distributions with & or fewer modes matches the likelihood that f(¢, X)

given hg is consistent with the data. A full proof is in Silverman[51]. If we reject
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Figure 5.3: As h rises, the kernel density smooths out and has fewer modes.

this hypothesis, then we would need a lower value of h, and therefore more modes, to

explain the data.

5.7.4 Results

Figure 5.7.4 lists p-values for tests of £ modes, run over a number of different demo-
graphic subcategories. The tests were run over 200 bootstrap intervals.

In all but one subcategory, we reject the hypothesis that there is only one mode,
and in all but one subcategory, we fail to reject a hypothesis that there are two or

more modes. In the one case where we failed to reject the possibility of one mode
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max # of modes All women Women 18-34 Women 18-49 Women 25-54

1 385 .69 917 .87
2 875 985™ 835 995™
3 995 .54 985** .78
4 .61 .605 1.00** .93*
Y .89 .89 96™ 95

All men Men 18-34 Men 18-49 Men 25-54

1 .705 .465 .66 .73
2 .65 .995* .94* .58
3 A7 95** .85 .81
4 .365 .60 .61 .66
5 725 .365 .79 .92*
All households East Coast West Coast South
1 .35 18 .28 .64
2 .84 .33 .66 .96**
3 .865 .48 .94* .62
4 .90* .85 .92* .34
5 .645 .94* .68 .53

Figure 5.4: The p-values for modality tests. Stars indicate significance.

(women 18-49), the test proved especially unpowerful, and failed to reject four out of
six of the proposed hypotheses.

The test thus gives evidence that the distribution of viewership is multimodal
among many cohorts. Given that there are two or more modes, and making the
assumptions discussed above, the model of Section 5.4.2 tells us that k—the desire

to emulate others—is large, and clearly nonzero.

5.7.5 Test conclusion

The test fails to reject the hypothesis that the structure of demand for TV specials
demonstrates a desire to emulate others. However, any such emulation could not have
been derived from an information cascade, since no viewers had more information
about the programs prior to their one-time broadcast. The analysis assumed that
underlying tastes were unimodal, but it is difficult to explain why that assumption

would not be true if people have no interest in emulating other members of their
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group.

5.8 Conclusion

People gain utility from behaving like others in a multitude of situations. If all
individuals act simultaneously, however, the problem of predicting how others will
behave typically requires more information than any one person has.

There are two classes of equilibria: one is described by a cutoff level of tastes,
above which people act; and the other is characterized by disjoint sets of actors. The
first category includes normal distributions in the uninformative prior case and all
distributions in the full information case, while the second class includes equilibria
where the expected demand is somewhere a decreasing function of the median of
tastes. In the case where tastes are distributed normally, adding the fact that people
like to behave like others doesn’t change behavior from the entirely private valuation
case, where information is limited. Without additional information, individuals are
forced to assume that the average is like them, and the no-change result follows.
However, they may switch to a new equilibrium after they know how many others
actually are consuming. The new equilibrium will be more likely to be extreme the
more consumers care about how others act (or equivalently, if the distribution of
tastes has a tall peak); if consumers care enough, then only extreme equilibria are
possible.

Advertising and prior expectations are self-fulfilling: given a constant personal
utility, low expectations of the number of consumers may still prevent a consumer
from acting, because he expects that nobody else will act. This is a testable conclusion
entirely distinct from a random utility maximization model with no social component;
in such a model, after a consumer draws t;, he doesn’t care about the distribution
from which it was drawn.

Better advertising can cause more people to consume, as one would expect, but

so can better expectations about advertising.
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Chapter 6

Appendix: Voting as convivial act

Siding with Riker & Ordeshook [47], T will describe the desire to vote as stemming from
‘civic duty.” The question is then: where does civic duty come from? One plausible
answer is: emulation or agreement with the behavior of one’s cohorts. Symbolically,
let ¢t be a real number representing a person’s private taste for voting and k£ be the
percentage of one’s cohort who votes. Then the null hypothesis of Chapter 5 is that
we can write the utility from voting as u(t), while the alternate is that we need to
write it as u(t, k), where utility is monotonically increasing in both terms. Schuessler
[49] describes, but does not detail or test, a similar model.

The way to test this statement is by checking the variance and kurtosis of the
distribution of turnouts among different districts. If & is relevant, then the distribution
of turnout will be wider, with fatter tails, than if it is not. This is a restatement of
Theorem 35.

This appendix tests the empirical claim that actual turnout has a higher variance
and a leptokurtotic return relative to a model of self-interested turnout. I will first
describe the self-interested model, based on civic duty being normally distributed,
then discuss the data used to test this model, and finally ask whether the self-interesed
model could plausibly have led to the variance and kurtosis we see in the data.

The conclusion is that a non-convivial model can indeed explain the data. Al-
though it may or may not describe how people actually think, a model which does
not explicitly take into account the emulation of others in actions or opinions may be

adequate for answering empirical questions.
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6.1 Theoretical model

As a baseline, consider the model where utility is entirely private. Let the sense of
civic duty, or the taste for the act of voting, be represented by t € R. This may be
negative, for example, if the cost of going to the polls is high. Let the utility from
voting be u(t) = t + n - k, where n represents the intensity of the desire to emulate
others. Within district d, let the mean of ¢ be my, and let tastes be distributed
t ~ N(mg,1).

Let erf(xz|mq) be the percentage of people below some level z given m,. The
percentage of the population which votes will be er f(mg4|0). This is because everyone
with ¢ > 0 votes, meaning that 1 — er f(0|my) people are voting, and the symmetry
of the normal distribution allows us to write this as er f(mg4|0). This function can be
inverted: if p; percent voted, then it must be that the district’s mean is located at
mg = erf1(pg).

But the taste for voting changes from area to area. To take this into account say
that mg ~ N (i, 1), where p is a parameter to be specified below, and the variance is
fixed at one for scaling. Notating the probability density of means my as N, ,(my),
the probability of outcome py is N, 1 (erf ! (pa))-

So the input into the model is the parameter u describing the means of tastes
among districts. The output is a density function of turnout, with support between
zero and one. Statistics about this density function, such as its mean, variance, and
kurtosis, may be found by direct calculation. If these statistics describe a Normal
distribution, then we may conclude that n = 0; if the statistics describe something

wider than a Normal, then Theorem 35 tells us that n # 0.

6.2 Data

I used the National Election Study’s cumulative data file from 1948-2000. For certain
years, the researchers went to registrars’ offices and checked for the name of survey

respondents on the rolls, confirming whether or not he or she had voted. This is the
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measure I used as my data, which gave me 6,836 confirmed votes/nonvotes.! Idivided
these by their district and year. After throwing out district/years which claimed 100%
turnout or had 10 or fewer respondents, I had 346 observations of district/years and
their corresponding percent turnout. A histogram of the turnouts is shown in the

left-hand histogram of Figure 6.1.

nomber of distictyears

Figure 6.1: NES turnout by district/year

Figure 6.2: A private-utility model of turnout by cohort

6.2.1 Calibrating the model

Recall that the mean of district means, y, needs calibration from the model above.
We need only one value of p which leads to a reasonable posterior density to fail to
reject the hypothesis; I selected p = 2.4, resulting in the posterior density of turnout
drawn in the right-hand graph of Figure 6.2, and the model parameters in the table

below:

! Another measure, which directly asked people if they voted or not, was hopelessly flawed and
revealed 100% turnout in a large plurality of districts.
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model data | data std. dev

mean 787 793 .0092
variance 0217 .0247 .0024
skew | -0.00419 | -0.00393 .00076
kurtosis .00212 .00222 .00046

The standard deviations were produced by the bootstrap method; the other data
is from direct calcuation of the appropriate moments. Notice that these moments are
the average of certain pieces of data (such as (x — u)?, in the case of kurtosis), and so
the Central Limit Theorem dictates that these statistics will be normally distributed.
The usual interpretations of the standard deviation and confidence intervals therefore
apply.

The theoretical mean, skew and kurtosis are all within a standard deviaton of the
data’s actual values, and the variance is within two standard deviations. Since there
was only one parameter to the model, the fact that four statistics match the data is
a nontrivial result. Therefore, I fail to reject the null hypothesis: the data can be
explained by a model with no conviviality effects and normally distributed random
tastes for voting.

In conclusion, although it seems reasonable that there are cohorts of people who
tend to influence each other in voting or not voting together, the data can be explained
using a simple model which does not explicitly include this effect.? If the desire to
emulate others were a sufficiently strong independent factor, then the variance and
kurtosis of the distribution would be larger than the theoretical distribution with the

same mean, but this is not the case.

2With cohorts significantly smaller than districts, we may be able to find more evidence for
conviviality effects, but the data is not available.
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Chapter 7

Appendix: Proofs

I first present some auxiliary results which I feel have little value by themselves, but
which are necessary for proving some of the results used in the body of this work;

and then prove those results not proven in the body of the dissertation.

7.1 Auxiliary results

7.1.1 For Chapter 2

Proposition 44 Let op(f, g) be monotonically increasing in g, let f(x) be any PDF,
and let gi(z) and go(x) be any pair of PDFs which satisfy single-crossing. Then
post(op, f, g1,x) FOSDs post(op, f, g2, x) for any such functions iff

/ op(f, g1, 2)dz = / op(f, s, 2)d.

o —0o0

Proof: First, I will show that this equality condition is sufficient for the posteriors
to satisfy FOSD. Since op(f, g) is monotonically increasing in g, it preserves single-
crossing, meaning that op(f, g1) single-crosses op(f, g2).

Since [* op(f(z), g1(z))dz = [ op(f(x), g2(x))dz, this means that the poste-

riors

op(f, g1) and op(f, 92)
2o op(f (), g1 (x))da I2o on(f (), go(z))da

also satisfy single-crossing, and therefore FOSD is satisfied (by Lemma 2).
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Say that, contrary to the above premise, there exist three functions g;(-), ga(),

and f(-) such that

/_ " op(f(@), g1(a))dz > / op(f(2), ga(2))da. (7.1)

FOSD is satisfied when

I op(f(z), 91 (x))da . [ op(f(z), g2(x))da
Joooon(f (@), 1(x))da [ op(f(x), ga2(x))dz’

which we can rewrite as

Ji>op(f(2), g1 (2)dz [ op(f(2), g1 ())da

>

[ op(f (), go(2))da ~ [ op(f(), go(2))dx

=1+46. (7.2)

If the premise of the theorem held, then § would always equal zero. Assuming
Inequality 7.1 means that o > 0, but is constant with respect to k, so if the ratio
of [ op(f(x),q1(x)) to [~ op(f(x),g2(x)) approaches one for some sequence of ks,
then FOSD will not be not satisfied.

If it is not the case that this ratio approaches one, then we may easily construct a
set of distributions where it does. Recall that one of the conditions on op(f(z), g1(z))
was that its integral over all x € R be finite. For this to be true, it must be that
fcoo op(f(z), g1(z)) approaches zero as ¢ approaches oco. Therefore, there is some ¢

such that
[ op(f(z), 1(w))da

I~ op(f(@), g2(@))dz

|

Now define

o (a) = { 9:(x) r<c
1 any y such that op(f(2),y) = (1+ 1) op(f(2), ga(x)) = >¢

That is, g (z) is the same as g;(x) for all z up to ¢, and then takes on any value such

that we are assured that op(f(x), ¢}(x)) is slightly larger than op(f(x), g2(x)) for all
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x > c. Single-crossing is still satisfied, and any offending discontinuity may be easily
smoothed out.

Notice that

I20 op(f(2), 91(x))da . J5. on(f(2), 91(x))da
JZo on(f (@), go())dx JE o on(f (@), g2(x))dx
> 1+ g, (7.3)

since ¢/ () is at its smallest if it were zero above ¢, and ¢ was defined so that Inequality
7.3 is true.

We now have

while

Inequality 7.2 is not satisfied for ¢{(z), g2(x), and k£ = ¢, meaning that FOSD is not
satisfied for these functions.

If the reverse of Inequality 7.1 is true, then there are two ways we can construct
single-crossing functions which do not lead to FOSD posteriors. One is to repeat the
above procedure, instead modifying the left-hand tail of go(z). A neater way is to let
f™(z) = f(—z), g7*(z) = go(—2), and ¢7*(z) = ¢g1(—x). By taking the mirror image

in this way, we still have ¢7"(z) single-crossing ¢5*(z), and

/_00 op(f™(x), 91" (z))dz = /00 op(f(x), g2(x))dx

) and -
/_00 op(f™(x), 95 (x))dz = /_00 op(f(z), g1(z))dz.

meaning that either Inequality 7.1 is true or if it is false, then

o

[ ot g nis > [ on(me), g7

oo — 00
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The conditions up to Inequality 7.1 are now satisfied, and we may apply the procedure
which followed that inequality to show that there exist functions f™(z), ¢/*'(z), and
g2(z) which do not satisfy FOSD.

In conclusion, if there exist three distributions such that

/ " op(f (@), 1 (x))da # / " op(f (@), gala))d,

then either FOSD is not satisfied for the distributions as given, or new PDFs can be
constructed for which FOSD does not hold. $

7.1.2 For Chapter 5

Lemma 45 Define f(t|m) to be a translation family based on a continuous PDF,
where m is the translation parameter. Define the difference between the utility from

acting and not acting (given a fized T4) as:

o o

D(t;, T4 = / V (t;, k(T4, 7)) post(r|t;)dr — / V(0,1— k(T4, 7)) post(r|t;)dr.

—0oQ —0oQ

D(t;, T4) is a continuous function of t; for any fived T.

Proof: We need to show that for all ¢, there is some ¢ such that:

e > D@, T —D(t—45T4

= /oo V (ti, k(TA’T)) post(t|t;) =V (()’ 1— k(T4 7_)) post(r|t;) —

o0

[V (t; = 6,k(T*, 7)) post(r|t; — 6) — V (0,1 — k(T*, 7)) post(r|t; — 6)] dr.

I will show this by dividing the space into the interior, [U, L|; and the tails, (—oo, L)
and (U,o0); where L and U are functions of §. Then, I will find an appropriate ¢,
such that both the interior and the tails are bounded, even given the worst-case value

function.
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The center Within any given range 7 € [L, U], both V (¢, k(T#,7)) and V(0,1 —

k(T#,7)) are bounded and continuous, as is post(mlt), so

/L 1% (ti, k(T4, 7')) post(t|t;)dT, / V (0, 1 — k(T4, 7')) post(t|t;)dr,

L

and their difference are continuous in ¢;. Therefore, given L, U, and €, we can find

a 0 such that

€/2 > /L V (, k(TA,T)) post(r|t;) — V (0,1 — k(TA,T)) post(tlt;) —
[V (t; — 6, k(T?, 7)) post(r|t; — 6) — V (0,1 — k(T*, 7)) post(r|t; — 6)] dr.

The worst case Let A(t,d) = D(¢t, T4) — D(t — §,T4). For a given condtional
PDF post(m|t) and fixed §, A(t,d) would be at its largest for a k(T“,-) such that

kE(TA, 1) =1,k(TA7—=8) =0 V7 3 post(r|t;) > post(r|t; — 0)
k(T4 7)=0,(TA7—8) =1 V73 post(r|t;) < post(t|t; — )
Let M(t;,0) be the maximum of
V(1) =V (0,0) = [V (t: = 8,0) = V (0, 1)]]
or
[V (#:,0) =V (0,1) = [V (t: = 6,1) = V(0,0)]| .
Since M (t;,6)" is not a function of 7, it comes out of the integral:

A(t,6) < M(t;, (5)/ |post(7|t;) — post(r|t; — J)|dr. (7.4)

—0o0

The tails Since post(r) is a PDF with only a finite number of discontinuities,

post(t) — 0 as 7 — oo or T — —o0, meaning that for any € and any §, there must

! The reader may be uncomfortable with the fact that as we search for an appropriate value of §,
M (t;,8) changes. But the reader may then pick an arbitrary value, say seven, and is assured by the
monotonicity of V (¢, k) that M (¢;,8) € [M(t;,0), M (t;,7)] for all § < 7. The integral in Equation 7.4
is therefore bounded above by a similar expression with M (¢;, ) replaced by max[M (t;,0), M (t;,7)]
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be some interval [L(d),U(d)] such that outside of that interval, both

L($ o0 €
JE post(rt;)dr + Jusy post(Tlt)dr < sz

—00

and

L(6 0 €

—0oQ

Since the sum in Inequality 7.5 is bounded above for both post(7|t;) and post(r|t;—
9), their difference (as in the integral of Inequality 7.4) is also bounded above by

max(QM(fti 5 IG5 5)). This means that the part of A(t, ) pertaining to (—oo, L) U

(U, ) is bounded by €/2. Above, I showed that we can also find an appropriate §
such that the part of A(¢,¢) pertaining to [L,U] is also bounded by €/2. So there

exists a d such that the sum of the two parts is bounded by €, which was to be shown.

&
Lemma 46 If my # my, then T*(my) # T*(ms).

Proof:  Assume m; > mg, and that T7%(m;) = T*(my). Since T*(m;) and T*(my)
are assumed to be the same, let 7™ signify both. One who drew ¢; = 7™ would be

indifferent between action and inaction given either m; or ms, meaning that

V(T*,1—F(T*Imy)) = V(0,F(T*lmy)) (7.5)
and

V(T* 1= F(T*my)) = V(0, F(T*|ms)) (7.6)

But m; > my and the monotonicity of V' (¢, k) immediately implies that

V(T*,1—-F(T*Imy)) > V(T*,1—F(T"|msy))
and

V(O, F(T*|m2)) > V(O’F(T*‘ml))

meaning that only one of Equations 7.5 or 7.6 can be true. <
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Lemma 47 Say two lines, defined by y = ax + k, and y = bx + ky, intersect at the
point (z1,y1). Then a one unit horizontal shift in the first line, to y = a(x — 1) + k,
leads to a horizontal shift in the point of intersection of 3%-, so the z-coordinate of

the new point of intersection is r1 + ;2.

Proof: For the entertainment of the reader, I will present two proofs, an algebraic
calculation and a geometric demonstration.
Algebraically, we can solve the initial system of equations to find that the point

of intersection for y = ax + k, and y = bx + k; is at the point

T :kb_ka
1= a—b’

while the intersection for the lines y = a(z — 1) + k, and y = bz + k; is at the point

kb—ka—l-a
a—>b

a
= — 7.7
$1+a_ba ( )

To =

which was to be shown.

Geometrically, the situation is illustrated in Figure 7.1: the line of slope b is shifted
laterally by one unit, so the bottom line is given to have length one. The slope of
the hypotenuse of the bottom triangle is b, so the ratio of the vertical length to the
horizontal length is b. Since the horizontal length is one, the vertical length must be
b.

For the next triangle up, we now know that the vertical length is b, and the ratio
of vertical to horizontal is a, so the horizontal leg must have length b/a. We can
continue going from lower right to upper left, calculating the length of one leg at a
time, giving the lengths as shown in the diagram.

So given that the line has shifted by one unit, the intercept between the line of
slope a and the lines of slope b has shifted laterally by:
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slope=a slope=a
slope=b
7 /a8
(b/a) b¥/at
(bra)® bY/a9
(bla)*
b¥a?
(bfa)®
b/a)?
ki) b’a

b/a

Figure 7.1: Shifting the line of slope a one unit to the left shifts the point of inter-
section by more than one unit.

as above. $
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7.2 Proofs for Chapter 2

Lemma 1 Lett € R, and p,(t) and ps(t) be continuous PDFs. Define K to be the
set of ts such that py(t)/p2(t) = 1. If p1(t) MLRPs ps(t), then K is a single point.
Also, p1(t)/p2(t) < 1 for allt < K and p,(t)/p2(t) > 1 for allt > K. In other words,
MLRP = single-crossing.

Proof: If K = {0}, then it must be that either p;(¢t) > py(t) for all ¢ or
p1(t) < po(t) for all ¢. The first case implies that

/_: pu(t)dt > /: polt)dt,

but since both integrals must equal one, this is a contradiction. Similarly for the
second (<) case. Therefore K # {(}. [Note that this is true for all continuous PDFs,
without regard to the MLRP.]

If there are two points t1,ty € K, meaning p(t1)/p2(t1) = p1(t2)/p2(t2), then the
MLRP is violated.

By the MLRP, if ¢ < K, then py(t)/p2(t) < p1(K)/p2(K); since p1 (K) /p2(K) = 1,
this means that p;(t)/p2(t) < 1. Similarly for ¢ > K. Thus, p;(t) and po(t) satisfy

single-crossing. <

Lemma 2 Ifp;(t) is a family of single-crossing distributions then the family satisfies

FOSD.

Proof: Take K defined as in Lemma 1, and consider two members of the family,

p1(t) and po(t). Then for any point k > K, p1(t) > po(t) for all ¢ > k, so

/koo pi(t)dt > /koo po(t)dt

and FOSD is demonstrated. Now considering k¥ < K,

/ Y ()t < / * pa(0)dt (7.8)

—0oQ —0oQ
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Since these are PDFs, they integrate to one, and so Inequality 7.8 is equivalent to

| —/koopl(t)dt <1 —/koopg(t)dt

Subtracting one and negating both sides demonstrates FOSD again. <

Lemma 3 Given x € R and t € R, and a functions f(x,t) with full support over
the ranges of x and t. Then if f(x,t) satisfies the MLRP with respect to t [that is,
f(z,2) MLRPs f(z,1)], then it also satisfies the MLRP with respect to x [that is,
f(2,t) MLRPs f(1,t)].

Proof: Let t; > t, and z; > x2. We assume that

fz1,t1) S flx1,t2)
f(x%tl) f(antQ) '

Cross multiplying gives
[z, t) S flz2,t1)
f(xlatQ) f(antQ)’

proving our result. <

Proposition 10 The posterior distribution post(f, g1, 0p, ) MLRPs post(f, g2, op, )
iff the function op(f, g1,x) MLRPs the function op(f, g2), .

Proof: MLRP means that the ratio

is increasing in z. Of course, multiplying the ratio by a constant (in terms of z)

won’t change this, so

is also increasing in x. But this is the ratio of the posteriors, so the posteriors

satisfy the MLRP.
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The steps reverse to show the ‘only if’ part of the statement. <

Lemma 11 A continuous operator preserves the MLRP iff it is of the form

op(a,b) = t(a) - ¥*,

with p > 0, and t(-) any transformation.

Proof: First, consider four positive real numbers, a, b, ¢, and d, and a continuous
function ¢ : R — R such that
a_c_ ¢la) _ ¢(c)

5>3:>W>Wd) (7.9)

for all positive a, b, ¢, and d. What can be said about the function ¢(-)?

Setting b = (ad/c) + €, ad > ¢b, so ¢(a)p(d) > ¢(c)p(b); setting b = (ad/c) — e,
ad < cb, so ¢(a)p(d) < ¢(c)p(b); so by continuity, it must be the case that ¢(a)p(d) =
&(c)o(b) whenever ad = cb. This means that ¢(a)¢p(d) is a function only of the product
ad, and can be expressed as a new one-argument function 7(ad) = ¢(a)¢(d).

Taking the derivative of this identity gives two new equations:

¢(a)p(d) = 7'(ad)-d

Rearranging:

do) I
oa) "7 o) "

Rewrite ¢'(a)/¢(a) as dIn(¢(a))/da, and notice that this equation holds for any a

and d. So for some constant p and for any x € R,

dIn(¢(x))

-z = .
dz p
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Integrating p/x and exponentiating gives:

bla) = Ca?,

where In C' is the constant of integration.

Let a > (8 and take a = gl(a), b = gQ(Q), c = gl(ﬂ)a d = 92(5): and ¢($) =
op(f, g,z). Then making these substitutions into Implication 7.9 gives:

> =

g2(a) ~ g2(B) " op(f,g2,2) © op(f, 92, 8)

g1(a) _ 9:1(B) op(f, g1, ) S op(f, 91, B) (7.10)

That is: if g1(-) MLRPs go(-), then op(f(-), 1(-),-) MLRPs op(f(-), g2(-),-). The
proof shows that this can only be the case when op(f,g) is of the form Cg¢?. The
constant C' may be a function of f but not of g.

This proves that any function which preserves the MLRP must be a monomial.

To show that any monomial updating operator preserves the MLRP, let

91(z)/g2(x) be an increasing function of z. Then

Cglla) _ (m(x))p

92()

must also be increasing, so long as p > 0. <

Proposition 13 Given any pair of priors g1 and go which satisfy single-crossing, and
any function f, and an updating operator op(f,g) which is monotonically increasing
in f and g, the operator op(-,-) provides posteriors ordered by FOSD iff the function
1S of the form

op(f,9) = t(f) +qg,

where t(-) is a transformation function of any form, and q is any positive constant.
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Proof: We need only prove that

/ op(f,gl,ac)dx: / Op(f,gg,$)d$ (711)

—0o0 —00

if and only if op(f, g, z) can be written in the form t(f) + gg; Proposition 44 (page
113) proves the rest.
To show that the integral of ¢(f(z)) 4+ q¢g(x) is constant in changes in g(-), we need

only break down the integral:

/Zt(f(x))+qg(x)dx = /oo t(f(z dx+/zqg(x)dx
/

83

f(z))
t(f(z))dz + q.

8

This is constant with respect to g(-).

To prove the other direction, I use the following three sample functions to show
that if the updating operator is not of the form given here, then Equation 7.11 does
not hold (and so posteriors will not satisfy FOSD, by Proposition 44).

@) = {% x € [0,¢€]

o x & [0,¢€]

B t zel0¢

f(@) = { 0 z¢&]0,¢
@) = I zell,1+4
o= {o s [1,1+¢

For simplicity, g1 (x) and go(x) are weakly single-crossing, but they may be smoothed
out to functions which are strictly single-crossing.

Here are some useful integrals, which hold for all n,m > 0:

/_Zf(m)dx:/_zgl(x)dm:/_Zg2(x)dx _
/(:fn(x)g{”(x)dx _ (%)(Hm_l)
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/_ T @)@ = 0

Now consider any function op(a,b). Weirstrass’s polynomial approximation theo-
rem tells us that any continuous function can be approximated arbitrarily well by a
polynomial of the form

op(a,b) = Z kija't’
i=0,1,2,...
§=0,1,2,...

When will [%_op(f(x),g1(x))dz = [ op(f(x),g2(x))dz? If the expansion in-
cludes terms of the form k;, f*(z), where g;(x) or gs(z) do not appear, these will be
equal between both integrals. A term of the form kg g(z) will integrate to one in both
cases. But any other term will differ from one integral to the other. Letting € get
arbitrarily large will make this difference as large as wished, outstripping the error
term in the polynomial approximation. So if op(a, d) is not of the form given in the
theorem, there exist functions f(z), ¢1(z), and go(z) such that g,(z) and gy(x) are
single-crossing, but Equation 7.11 does not hold, and so the posteriors do not satisfy

FOSD. ¢

Lemma 14 An updating operator op(f,g) which is monotonically increasing in f

and g preserves single-crossing iff the function is of the form

op(f,9) = t(f) +qg,

where t(-) is a transformation function of any form, and q is any positive constant.

Proof: Any pair of single-crossing priors satisfies FOSD (Lemma 2). Therefore,
if op(a, by) and op(a, by) take any pair of functions which satisfies FOSD and return a
pair of functions which satisfy FOSD, then this updating operator takes any pair of
functions which satisfies single-crossing, and returns a pair of functions which satisfy
FOSD. By Proposition 13, it must be the case that this operator is of the linear form

given in that proposition.
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If g1(x) > ga(z), then since

8

o0

| @) +a@ds = [ @)+ g,

W) el @)+ e

(
( ( _
2 t(f(2) + g1(2)da Joo t(f(2)) + g2(2)dz

So if g1(z) > go(x) for all x < K, where K is the crossing point of the priors,
then posti(x) > poste(z) for all z < K; conversely for all z > K, meaning that if the

priors satisfy single-crossing, so do the posteriors. ¢

Theorem 15 Within the class of operators op(f, g) which are monotonically increas-
ing in both arguments, an operator preserves FOSD iff it is of the form op(f,g) =
t(f) + qg, where t(-) is a transformation function of any form and q is a positive

constant.

Proof: Necessity: Single-crossing priors are a subset of FOSD priors, so it must be
the case that this operator is in the class of operators described by Proposition 13
(or equivalently, Proposition 44).

Sufficiency is easily checked: if g;(z) FOSDs gy(x), then Inequality 7.12 holds for
any k; the rest follows from algebra (and the fact that the integral in the denominator

of Inequality 7.13 is the same for both g; and g5).

/k T g@)de > /kng(x)dl« 12
[ty v [Ca@ds > [Tifa@)dn g [ meis

/:ot(f(x)) + qg1(z)dz > /koo t(f(z)) + qgo(2)d
JZ @) + o) [ () +aga(e)da
U@ +an@de ~ [ @) + a9z (7.13)

7.3 Proofs for Chapter 3
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Theorem 18 Assume that the conditions of Assumption 5, Assumption 7, and As-
sumption 8 hold. Then there exists a Nash equilibrium whose payoff to the advocate

15 equal to the payoff he would get from revealing full information.

Proof: The decision maker may set
D(S) = argmin,,¢,-1(5)U(D(S)). (7.14)

Say that the advocate reveals S?, where S¥ C S2. Since the decisionmaker is now
doing the minimization in Equation 7.14 over a larger set, she will arrive at a value
such that U(D(S?)) < U(D(S%)). So the decision maker would rather defect from
revealing S? to the strategy of revealing S¥, so S? is not an equilibrium. So the only
equilibrium possible for the advocate has a payoff equal to S*. Assumption 8 tells
us that if the advocate reveals S™, then the decisionmaker can do no better, and

therefore will not defect from this equilibrium. <

Proposition 19 If the true distribution of x € [0,1] is f(x), the decision maker’s
prior is p(x), and the decision maker will choose the median of her perceived posterior
distribution, then a lobbyist who prefers smaller outcomes to larger will not reveal full
information if there exists some interval (a,b) above the median of f(x) such that
f(y) > ply) for all y € (a,b), and there also exists some interval (c,d) below the
median of f(x) such that f(y) < p(y) for all y € (c,d).

The same lobbyist will reveal some quantity of information if there erists some
interval (a,b) above the median of p(z) such that p(y) > f(y) for all y € (a,b),
and there also ezists some interval (c,d) below than the median of p(x) such that
p(y) < f(y) for all y € (c,d).

The inequalities are reversed for a lobbyist who prefers larger outcomes to smaller

outcomes.

Proof: If the decision maker has full information, then her posterior matches
the true distribution f(z), and the median of the posterior is therefore the median of

f(z). Now say the advocate fails to reveal the value of f(x) within (a,b) and (c, d).
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Then the posterior given this lesser information matches f(z) outside these regions
but has more weight in (¢,d) and less in (a,b), so the posterior median favors the
advocate more, and the advocate will therefore not reveal full information.

If the decision maker has no information, then her posterior matches her prior,
p(z), and the median of the posterior is therefore the median of p(z). Now say the
advocate reveals the value of f(z) within (a,b) and (c¢,d). Then the posterior given
this greater information matches p(z) outside these regions but has more weight in
(¢,d) and less in (a,b), so the posterior median favors the advocate more, and the

advocate will therefore prefer to reveal the information about f(z) inside (a,b) and

(c,d). ¢

Proposition 20 A right-leaning lobbyist will reveal full information iff p(x) is non-
decreasing. The lobbyist will reveal no information iff p(x) is nonincreasing.

The reverse is true for a left-leaning lobbyist.

Proof: If there is some region [a, ] where the density function is decreasing, then
the mean of p(z) for z € [a, b] is less than the mean of the uniform distribution over the
same area. Therefore the lobbyist is better off not reporting this region. Conversely,
for any area over which p(z) is increasing, the mean is larger if the lobbyist reveals

p(z) than if he doesn’t.

7.4 Proofs for Chapter 4

Theorem 23 There are three stories which the advocates could submit: S =
{S4, Sp, Sm}. Without suffering any loss of generality, let v(Sq) = 0, v(S,) = 1,
and v(Sp,) € (0,1).

If the defendant has already presented S; and the plaintiff has already presented
Sp, and if the judge may base her opinion on who presented Sy,, then there exist
conditions and a judge’s opinion such that the plaintiff would not present S,,; there

exist conditions and a judge’s opinion such that the defendant would not present Sy,;
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and all of these conditions may simultaneously be true.

Proof: With only S; and S, the expected verdict is:

(07

1= PA({=84,7Sp})’

V({Sa, Sp}) = (7.15)

where

o = PA({=S4, Sp}) + PA({Sa S,})W (5(Sp, {Sa: 5p}))-

This is the payoff given the three possible states in which one of the stories told
by one of the advocates is true. Since v(Sy) = 0, the terms PA({Sy, ~Sp}) - 0+
PA({S4, Sp})W (s(S4, {Sa,Sp})) - 0 have been omitted from «. Since the event
{—S4,~S,} would involve a retrial, we scale the verdict by 1 — PA({—S4, =S,}).

[To delve into a bit more detail, the verdict will be

o+ PA({=S5 -8, Dl + PA({~S0,-5, Dl + PA{=S1, =S, -]
= a+ PA({~S4, =S, } e+ [PA({=Sa, =S, }) P+ . ..
= /(1 = PA({~54, 25p}));

as in Equation 7.15.]

If S,, is presented, then there are eight possible states. To simplify the math, I
will assume that the weights W (S,, {Sp, Sa}) = W(S,, {Sp, Sd4, 7Sm}), and similarly
for {—S,, Sa}, and {S,, 7S4}. Weakening this assumption will make the bounds found
below more stringent. Given this assumption, the verdict given all three stories will

be:

o + 3

V({Sd’ Sm’ Sp}) - 1-— PA({_'Sda _'Spa _'Sm})’

(7.16)

where

o = PA({—S4, Sp; 7Sm}) + PA({Sa, Sp, =Sm })W (5(Sp, {Sa, Sp})), and
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B= " PA{St S0 Sm}): W((Sms 54 Sps S }))0(Sm) + W (5(Sps {Sts Sps Sm}))]
+PA({Sa; 2Sp, Sm})- W (s(Sm; {Sa; Sm}))v(Sm)
+PAX{S 1, Sy S })- W (5(Sms {Sps S }))0(Si) + W (5(Sps {5y S })]
+PA({~S4,7Sp, Sm})- v(Sm)-

If S,, is presented but rejected, then o is the expected verdict; if S,, is pre-
sented and accepted, then the expected verdict is 5. For the plaintiff to decide
whether he should present S,,, he need only calculate the expected payoff before
Sm is presented (EV({S4, S,})), as in Equation 7.15, and the expected payoff af-
ter Sy, is presented(EV ({S4, Sm,Sp})), as in Equation 7.16. If EV({Sy4, Sm,Sp}) >
EV ({S4, Sp}), then the plaintiff would benefit from presenting S,,, and if the reverse
is true, then he would not.

If we show that when Equation 7.15 is at a maximum and Equation 7.16 is at a
minimum, the plaintiff still wants to present S,,, then we have proven that the plaintiff
will always present S, regardless of the judge’s opinion. The expected payoff before
presenting Sy, is at a maximum when W (s(S,, {S4, Sp})) = 1-that is, when the judge
places maximal weight on S, in all cases where she has leeway to do so. In this case, o
reduces to Qe = PA(S,), and o, = P({Sp, 7Sm}). Notice that since v(S,) = 1,
these are actually expected verdicts, e.g., Qmaz = PA(Sp)v(Sp).

After presenting S,,, the expected verdict is at a minimum when
W (5(Sts LS50 Sms Sy1)) = W (s(Sas {80 Sm}) = 1, and W(s(Sp, {Sms Sp1)) = 1—
that is, when the judge places as much weight as possible on Sy, and, when S; is not
an option, on Sy,. In this case, 5 reduces to Suin, = PA({—S,, Sm})v(Sm)-

The plaintiff will therefore always present S, when:

Vmin({Sda Sma Sp}) > Vmaw({sda Sp})
PA({Sp,~Sm})+PA{~54,5m})v(Sm) > PA(Sp)
[1-PA({=Sq,7Sp,~Sm})] [1-PA({-S4,~Sp})]
PA({—=S4Sm })v(Sm) > PA(SP) _ PA({SP’_‘Sm})
[1-PA({=S4,7Sp,7Sm})] [1-PA({=S4,7Sp})] [1-PA({=S4,7Sp,~Sm})]
PA(Sp) [1-PA({=S4,7Sp,2Sm})]  PA({Sp,=Sm})
v(Sm) > PACsas) TPAM-Seos ]~ PAG-S5SD" (7.17)
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When Inequality 7.17 does not hold, then there exist circumstances such that the
plaintiff prefers that S,, not be revealed. Notice that this constraint may easily be
greater than one, in which case there is no v(S,,) for which the plaintiff will always
reveal S,,.

Now consider the defense: if the verdict without S, is at a minimum, and the
verdict with S, is at a maximum, and the defense still wants to present S,,, then he
will want to present S, regardless of the judge’s opinion.

Before presenting S,,, the expected verdict is at a minimum when
W (s(S4,{Sa, Sp})) = 1. Then o = PA({—Sy, Sp}). After presenting S,,, the expected
verdict is at a maximum when W (s(S,, {S4, Sm,Sp})) = W(s(Sp, {Sm,Sp})) = 1,
and W(Sy,{S4¢,Sm}) = 1. In this case, o/ = PA({—S4,Sy,~Sm}) and f =
PA{S,, Sm}) + PA({~Sp; Sm})v(Sm). We want to find when:

Vmaw({Sda Sma Sp}) < Vmin({Sda Sp})a

or

PA({=54,5p;~Sm})+PA({Sp,Sm })+PA{=Sp,Sm })v(Sm)]
(1=PA({=S4,75p,7Sm})]

PA({~S54,5})

< [=PA({=84-5,N]"

As above, we may now move the leftmost terms of the left side to the right side,

giving:

PA({~SpSuo(Sm) o _PA{=SgSpY) _ PA{=S4,SpSm})+PA(Sp,Sm})
[T—PA{~SaSp,~Sm ] = PA({~S84,-5,})] [T— PA({=54,5,5m})]
PA({_'S ,S }) [l_PA({_'S ;S a_‘Sm})]
v(Sm) < ECPACS, Sl PAG=SyE.Y

_ PA({~54,59,7Sm})+PA({Sp;Sm}) (7.18)

PA({_'SP’STR}) )

Under reasonable assumptions, neither Constraints 7.17 nor 7.18 will hold, mean-
ing that the prosecution can envision a judge’s opinion which will make presenting S,
undesirable, and the defense can do the same. For example, say that P(S.,), P(S4),

and P(S,) are statistically independent, and P(S,,) = P(S;) = P(S,) = . Then
Constraint 7.17 reduces to v(S,,) > 3, and Constraint 7.18 reduces to v(Sp) < —4i.

Neither of these will be true given v(S,,) € (0, 1), so neither party is guaranteed that
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presenting S, is beneficial regardless of the judge’s opinion. ¢

Corollary 24 The range of values of v(S,,) which will induce the plaintiff to always
reveal Sy, increases as v(Sy) decreases, and as v(Sy) grows.

If we assume that acceptance of Sy, Sy, and Sq are independent events, then
as PA(S,) increases, the range of values of v(Sy,) which will induce the plaintiff to
always reveal S, shrinks.

Similarly for the defense.

Assuming independence, there is no change in the plaintiff or defendant’s range

for revelation given a change in PA(Sy).

Proof:  Assuming independence simplifies the constraint in Inequality 7.17,

which we can now write as:

PA(S,)

= (PA(S,) — PA(S:) — PA(S)PA(S,)(PA(S) — 1)

(7.19)

By inspection, the limit does not depend on PA(S,,).
Taking the derivative of the plaintiff’s limit in Equation 7.19 with respect to

PA(S,):
i, PA(S,)

dPA(S,) ~ (PA(S,) — PA(Sq) — PA(Sy)PA(S,))?’

which is always positive. This is the lower bound of the range of values of v(S,,)
which induce the plaintiff to reveal S,,, so as it rises, that range shrinks.

To show that the effect of a rise in v(S,), we need only rescale the new verdicts,
by dividing them by v(S,), and reapply Theorem 23. This will give us a limit in the
new scale, L;, which is the plaintiff’s limit in the case where v'(S,) = 1. To find
the plaintiff’s limit in the original scale, we need only multiply L; by v(S,), which
was assumed to be greater than one, so L, > L. Statistical independence was not
required for this argument.

Similarly for the defense. <

Corollary 25 Assume the same situation as Theorem 23, but the judge rules for the
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defense in the case when no story is accepted as true. Then there does not exist a

situation where any defendant will reveal S,,. Any prosecutor will reveal S,, iff

PA({Sp, 5m})
PA({~S4, Sm})

v(Spm) >
Proof: In this case, the payoff given only two stories is:
ay = [PA{=S54, Sp}) + PA({Sa; Sp})w(Sp, {Sa; Sp})],

and the payoff given three stories is:?

PA(=Sp) e+

PA(Sm) - [PA({S4, Sp, Sm})- W (5(Sm, {Sa, Sm> Sp}))v(Sm) + W (5(Sp, {Sa> Sms Sp}))]
+PA({Sa; 7Sy, Sm})- W (s(Sm; {Sa; Sm}))v(Sm)
+PA({ =S54, 5p, Sm})- [W(s(Sm, {Sa, Sm})v(Sm) + W (5(Sp, {Sa, Sm}))]
+PA({ =54, =5p, Sm})- v(Sm)]-

If the variables are such that the best case before revealing S, has a higher payoff
than the worst case after revealing it, then these variables guarantee that any defense

would always reveal S,,. That is:

Vinin(Sas Sp) > Vinaw(Sa, S, Sp)
PA({=54,5p}) > PA({=S4, Sp, Sm}) + PA({Sp, Sm})
+ PA{=5p, Sm})v(Sm)
PA({=54,5,,Sn}) > PA({S,,Sm}) +PA{=S,, S })0(Spm).

Since PA({—S4, Sp, Sm}) < PA({Sp, Sm}), this inequality will never be true, meaning

that a defense attorney can always imagine a judge who will make revealing S,,, a bad

2For consistency with the proof in Theorem 23, I assume that W(S,, Sq,S,) is constant in the
two-story and the three-story case. Again, if we allow this to change, the worst case only gets worse,
so the result about the defendant does not change and the limit for the prosecutor becomes more
stringent (PA(S,)(1 — PA({=S4,2Sm )/ PA({~S4, Sm})).
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move.
For the prosecutor, he will always present S, if the following worst-case inequality

1s true:

Vmaw(sda Sp) < Vmin(sda Sma Sp)
PA(SP) < PA({SIH_' m}) + PA({_'SdaSm})U(Sm)

PA({SpaSm}) < PA({_'Sda Sm})v(sm)

PA((S,, S})
PA(~555,)) ~ ")

7.5 Proofs for Chapter 5

Lemma 26 For any function U(-,-) which is monotonically increasing in both argu-

ments, there exists a function V(-,-) which is also monotonically increasing in both

arguments, such that if U(t,k) > U(s,1 — k), then V(t — s, k) > V(0,1 — k).

Proof: Let ki (¢, s) be the value of k such that U(t, k5 (¢, s)) = U(s,1 —k}(t, s)).
Let ¢(t,s) = 1 — 2k}(t, s), and let V(7,k) = 7 + k. Substituting ¢(t, s) for 7, we see
that a decision maker using V' is indifferent when 1 — 2k5(¢,s) + k =1 — k, or when
k = ki(t,s). That is, a decision maker using V' and the transformed taste parameter
T = ¢(t, s) is indifferent when he would have been indifferent using the original utility
function.

The reader may verify that the decision maker would also prefer acting or not
acting in the same manner using both functions.

Finally, notice that f(¢,s) is monotonically increasing in ¢ and monotonically

decreasing in s, and V (7, k) = 7 + k is monotonically increasing in 7. <

Lemma 27 Define f(t|m) to be a translation family® based on a PDF with a finite

number of discontinuities. Then in equilibrium, T4 is a (possibly empty) set of open

3Translation families were defined in Section 2.2.1.
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intervals.

Proof: The premises of Lemma 45 (page 116) are met, and so D(¢|/T*) (defined
therein) is a continuous function of ¢ for any given T4.

T4 comprises those t;s such that D(t;, T4) > 0. Since D(¢,T4) is continuous, it
must be that if D(¢;, T4) > 0, there is some neighborhood where D(t; ¢, T*) is also
greater than zero, so all points in the neighborhood of t; are also in T4. ¢

Notice that if D(t) were based on a set T4 which included singleton points or other
closed intervals, T4 simply would not be consistent with itself—some neighborhood
around those singletons would still want to act. Put another way, if it were announced
to the society that some arbitrary set 7' was going to act, this would inspire to action

only those who drew ¢ from some open set of intervals.

Theorem 28 Assume that f(-|m) and post(-|m) satisfy FOSD.* Then: k(T4,m) is

monotonically increasing in m < T4 is a cutoff equilibrium.

Proof: = Say that person 7 does act, and consider another person j, with

tj > ;.

e Since V (t, k) is monotonically increasing in ¢, V' (¢;, k) > V (¢;, k) for all k, so
1 1
/ V (t, k) pj(k)dK > / V (ti, k) pj(K)dk.
0 0

e Since (by assumption) there is a monotonic transformation k(74,t) from ¢ to
k, and post(-|t;) satisfies FOSD on the range of ¢, it also satisfies FOSD on the
range of k, where its transformation is notated as p;(-). Since V (t;, k) is an

increasing function of k£, FOSD dictates that

/OIV(ti,/i)pj(/i)dm > /01 V (b, &) pi(r)dr.

4FOSD was defined in Section 2.2.1.
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e Person ¢ will act iff
1 1
/ V (ti, k) pi(Kk)dk > / V(0,1 — k) pi(k)dk.
0 0
e Since V (0,1 — k) is monotonically decreasing in k£, FOSD gives:
1 1
/ V(0,1 —k)p;(k)dk > / V(0,1 — k) p;(k)dk.
0 0
Chaining all four of these inequalities together gives:

/01 V (tj, k) pj(k)dr > /01 V(0,1 — k)p;(k)dk,

so that person j will also act. Since all that was assumed was that ¢; > ¢;, this proves
that if ¢; € T4, then [t;,00) € T#. Similarly, if ¢, < t;, and i does not act, then

neither will n, so t; € TV implies (—oo,t;] € T™. This leaves a single point for T*.
< If T4 is a range of the form (#*,00), then k(T4,¢) is simply
f(z|t)dx.
t*

FOSD says that this integral is increasing in ¢ for fixed ¢*, which was to be shown.

¢

Proposition 29 If the posteriors post(-|m) satisfy FOSD, and the likelihood function

f() is continuous, then t*(t;) is a continuous, increasing function of t;.

Proof: It must be shown that if ¢; > ¢;, then t*(¢;) > t*(¢;). Given that post(-|t;)
FOSDs post(-|t;) if t; > t;, Theorem 28 says that & ((¢*(¢;),00), ) is monotonically
increasing in 7. Say that one who draws ¢; is indifferent at the cutoff t*(¢;), so

that Equation 5.2 holds, and now consider t; > t;. Since V (;, k((t*(¢;), 00), 7)) is
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monotonically increasing in 7, FOSD says that:

/00 V (ti, k((t*(t;), 00), T))post(r|t;)dr > /00 V (i, k((t*(t;), 00), T))post(T|t;)dT
- - (7.20)
Similarly, V' (0,1 — k((¢*(¢;), 00), 7)) is decreasing in 7, so FOSD gives:
/OO V(0,1 = k((t*(t;), 00), T))post(rT|t;)dr > /OO V(0,1 —Kk((t"(t;), 00), T))post(r|t;)dr
- - (7.21)
Adding in monotonicity of V' (¢, k) with respect to ¢, so V(¢;, k) > V (t;, k) for all k,
and chaining together Equations 7.20, 5.2, and 7.21, we conclude that

o0

/ TVt B (1), 00), 7))post(rt;)dr > / V(0,1 — k(£ (t:), 00), 7))post (|t )dr-

o —00

Therefore, where i was indifferent at the cutoff ¢*(¢;), j strictly prefers acting. So
t*(t;) must be greater than t*(¢;).

Notice that if post(-|t) has only a finite number of discontinuities and no point
masses, then both of the integrals in Equation 5.2 are continuous, and t*(¢;) is a

continuous function of ¢;.

Corollary 30 Given that the posteriors post(-|m) satisfy FOSD and the likelihood
function f(-) is continuous; then the cutoff-type pure strategy Bayesian Nash equilib-
rium T* is at the value(s) of t; for which t*(t;) = t;. There is always at least one

cutoff equilibrium, either at some finite value or at T* = oo.

Proof: This simply states a necessary condition for a Bayesian Nash equilibrium.
It is sufficient because everyone who draws ¢; > 7™ will want to act and everyone who
draws t; < T* won’t, by FOSD and monotonicity.

There will always be some value of T* € [—o0, co| which is an equilibrium. Propo-
sition 29 showed that ¢*(¢;) is a decreasing function of ¢. This affords only two pos-
sibilities: ¢*(¢;) = ¢; at some number of points, in which case these are all potential
equilibria; or t*(¢;) > t; for all values of ¢;, in which case T* = oo is a consistent cutoff

(since it will inspire no one to act). The possibility that ¢*(¢;) < t; for all values of
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t;, in which case everyone acts and T™ would equal —oo, is precluded by Assumption

19. &

Corollary 31 The cutoffs for cutoff-type pure strateqy Bayesian Nash equilibria are
at the value(s) of t; for which k*(t;) = 1 — F;(t;). If k*(t;) > 1 — F(t;) for all t;, then

K* =1 is an equilibrium (where no one acts).

Proof: It is clearly necessary that the person at the cutoff be indifferent between
acting and not acting, by definition, so at the cutoff, t*(¢;) = ¢;. This is sufficient
because everyone who draws a ¢; such that £*(¢;) > K* will want to act and everyone
who draws ¢; such that k*(¢;) < K* won’t, by FOSD and monotonicity.

There will always be some value of K* € (—o0, 00| which is an equilibrium. There
are only two possibilities: £*(¢;) =1 — F(¢;) at some number of points, in which case
these are all potential equilibria; or k*(t;) > 1 — F(t;) for all values of ¢;, in which
case setting K* > 1 is a consistent cutoff (since it will inspire no one to act). The
possibility that k*(¢;) < 1 — F(t;) for all values of ¢;, in which case everyone acts and

K* < 0, is precluded by Assumption 19. <

Lemma 32 Given full information, all perfect strateqy Bayesian Nash equilibria are

cutoff equilibria.

Proof: In the full information case, it is known with certainty that the parameter
m takes on the value u, and so the percentage of actors given a set of intervals 74
(not necessarily a cutoff) is know to be k(T4, 1). Now say that a person with a draw

of t; is indifferent between action and inaction, i.e.:
V(tla k(TAa :u’)) = V(07 1- k(TAa :U'))
Then by the monotonicity of V (-, -), it must be that for all people who draw ¢; < 1,

V(ti k(T4 ) < V(t, k(T4 1)) = V(0,1 = k(T4 p)),
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so they therefore prefer not acting over acting. For all people who draw ¢; > 4,
V(tj, k(T4 1)) > V(te, k(T4 1)) = V(0,1 = k(T4, 1),

so they prefer to act. Therefore ¢; is a cutoff, and T must be (¢;, 00).
If the cutoff is t*(¢;) = oo, this is defined to mean that for all ¢;, V (t;, k(T4, 1)) <
V(Oa 1- k(TAa :U’)) <>

Proposition 33 The PDF f(-|m) may take any form, and the parameter m will
be known to have the wvalue p with certainty. If for any equilibrium point t = T,

ftlp) < —agt* (t) for all t > 7, then there will be only one equilibrium for the given

1.

Proof: For the sake of contradiction, say that there is another point 7/ > 7
which could be an equilibrium cutoff, meaning that 1 — F(7'|u) = k*(7'). Writing
this equation as the integrals of derivatives (and breaking the integrals into parts at

T)’

1—

/_T f(t|,u)dt+/T f(t|u)dt] :/T ‘38’1* (t)dt+/T 85 Wdt  (1.22)

At 7,1 — F(7|pu) = k*(7), or

T ak,*
"

1—/memw= (t)dt

meaning that Equation 7.22 holds iff

T’ 7! 8k*
‘Lfmmw——T (1)t

But if f(¢[n) < —2%(¢) for all ¢ > 7, then the left-hand side of this equation is always

less than the right-hand side. Therefore 7 can not be a cutoff.

Theorem 34 The PDF f(-lm) may take any form, and the parameter m will be
(t') for all t,t', then there

known to have the value p with certainty. If f(t) < —3(,;”;



141

will be only one equilibrium for any p.

Proof: Given the condition here, the conditions of Proposition 33 will hold for

any draw of .

Theorem 35 The ex ante distribution of the median m is a(m), which can take any
form. After drawing u from a(m), p is known with certainty. Assume the PDF f(x)
is single-peaked, with a mazimum value of f(x) = L, and the value function is linear:
V(t,k) = nk +t. Let d(T*) be the ex ante distribution of T* (before u is known).
Given these assumptions, the ratio a(m)/d(T*(m)) is single-peaked with a peak at
the point where yu = T*(u). That is, d(T*) is less concentrated toward the center than

a(m).

Proof: The transformation from the PDF a(m) to the PDF d(-) is a simple

coordinate transformation:

ar) = ar@)? )
oT*NT)  dT
T = g™ (7.23)

A change in m is best envisioned using Figure 5.2 (page 88): a one-unit change

in m translates the curve one unit to the left; % is then how far to the left the

intercept between the line and the curve moves. The slope of one minus the CDF

is —f(T*(m)|m), and the slope of the function k*(m) is —5-. Plugging these slopes

into Equation 7.7 from Lemma 47 (page 119), we get:
dT* :

= = (72

dm

The premise of Theorem 34 guarantees that the denominator is always positive,

meaning that a positive shift in m always leads to a finite, positive shift in 7.

Equation 7.23 says that Equation 7.24 gives us the ratio % which the Theo-

rem describes. Since f(-) is assumed to be a single-peaked distribution, f(7*(m)|m)
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is largest where 7%(m) = m, and is monotonically decreasing as m diverges from that
value in either direction; the left-hand side of Equation 7.24—and therefore the left-
hand side of Equation 7.23—is also largest where 7*(m) = m and is monotonically

decreasing as m diverges from that point.

Proposition 36 Given the premises of Theorem 34, T*(u) is a strictly decreasing

function.

Proof: Let pu be the value of m which induces an equilibrium at 7, and let

7' > 7. The proof of Theorem 34 showed that Equation 7.22 should actually be an

1-/T f(t|u)dt</T a%pdt, (7.25)

-0

inequality:

where p is the median which leads to an equilibrium at 7™. Notice that the right-
hand side is not a function of u, while the left-hand side is an increasing function of
u. Therefore, if the two sides of Inequality 7.25 are equal, they will be for some value
' > p, meaning that the equilibrium value 7" > 7 can only occur given a median
@' > p. In other words, the mapping from m to 7™ is an increasing function; along
with the fact from Lemma 46 (page 118) that 7*(m) is one-to-one, this means that

its inverse T*(m) is itself an increasing function. <

Proposition 37 Assume uninformative prior information; that f(t|0) is single-
peaked and either symmetric or upward-leaning; and that f(t|m) is a translation

family. Then the only pure strateqy Bayesian Nash equilibria are of a cutoff form.

Proof: The proof is based on the fact that any interval of T4 that is bounded
above and below must be bounded by two elements of 7%, t; and ¢,. By the mono-
tonicity of V (-,-), if to > ¢;, but someone who drew either would be indifferent, it
must be that one who draws t; expects more people to act than one whe drew t,.
This is not the case for the lowest interval in 74. [Assumption 19 assures us that
such a lowest interval exists.] The proof will mostly concentrate on the function
k(T#,-); the reader is referred to Figure 7.2 for depictions of the various dissections

and translations.
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Figure 7.2: top: symmetric, single-peaked distributions centered at zero and one
bottom: k(T4,t); the mirror image at C of k(T4,t) for t < C' (middle dotted line)
both: T4 includes A; = (0,1) and (4, 4.5)

As proven in Lemma 27, T4 consists of a set of open intervals. Let A; be the
lowest of these, and ¢; to be its infimum and ¢, its supremum. They are elements of
T*, but it suffices to know that they are not in 74 and all points between them are.
It will be proven that ¢, actually should be in T4, giving a contradiction which can
only be resolved if A; is of the form (¢, 00).

Let the center of Ay, (1 + t2)/2, be C. Let the crossing-point of post(-|t;) and
post(-|tz) be X. If f(-|0) is symmetric, then X = C; if f(-|0) is upward-leaning, the
posteriors are downward-leaning (as per the discussion on page 94), so X < C.

Since post(-|t;) and post(-|ty) are translations of the same single-peaked distribu-
tion, C' is their unique crossing point.

a Fact #1: For t < C, k(T*,t) is an increasing function of t. Why: Shifting the
single-peaked posterior distribution to the right means that the likelihood placed on
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everything to the right of the distribution’s mode increases, which includes all of 74
for x < t1, and all of TA\A1 for x > t; and z < C. Symmetry/downward-leaning
along with single-peakedness imply that k(A;,t) is increasing for ¢t € [t;,C]. >
a Fact #2: k(TA,C —d) < k(TAC +d) for all d > 0. Why: By the

symmetry /downward-leaning condition, for the integrals of the posteriors within A;:

t2 t2
/ post(z|C + d)dz > / post(z|C — d)dzx,

t1 t1

with equality in the symmetric case. For those points above 5,

/ post(z|C + d)dx > / post(z|C — d)dz,
TA\A,

TA\A,

since post(T|te) > post(r|t;) for all 7 > C. >
By monotonicity, these facts about the function k(74,7) also hold for t,’s value
of action, V (t1, k(T4, 7).

From here, break down the function V' (¢, (7, -)) into a sum of two subfunctions:

oo V (t1, k(T4,1)) t<C
) {V(tl,k(TA,QC—t)) t>C
0 t<C

{ V (t1,k(T4,1) =V (t1,k(T4,2C - t)) t>C

The function m(t) is symmetric about C, while n(t) is the asymmetric part. In the
lower graph of Figure 7.2, V(T#, k) is the upper solid line, m(t) is the middle dotted
line and n(t) is the distance between the middle dotted line and the upper solid line.
By fact #1, m(t) is monotonically increasing up to C' and therefore monotonically
decreasing above C, and by fact #2, n(t) is always positive.

< Fact #3: The expectation of m(-) given post(-|t2) equals the expectation given
post(-|t1). Why: The situation is symmetric around C. >

a4 Fact #4: The expectation of n(-) given post(-|ts) is greater than or equal to the
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expectation given post(-|t;). Why: n(tz) > 0, while n(t;) = 0. >
Facts #3 and 4 show that the sum m(ty) + n(t;) is greater than the sum m(t;) +
n(t1), meaning

V (t, k(T4 1)) > V (1, k(T4 1)) ; (7.26)

by the monotonicity of V (-, ),
V (t2, k(T 12)) > V (t1, k(T4 1)) . (7.27)
Chaining together Inequalities 7.26 and 7.27,
V (t2, k(T 12)) > V (t1, k(T4 1)),
and we may similarly prove that
V(0,1 — k(T 1)) <V (0,1 - k(T4 1)),

so it can’t be the case that people at both ¢; and ¢, are indifferent. If £; € T, then
t, must be in T“; since this would be true for any lower upper bound of T4, T4 can

have no upper bound. <

Proposition 39 Define f(t|m) to be a translation family. If individuals have unin-
formative prior information about the true center of the distribution, then there is a

untque cutoff equilibrium.

Proof: Since we are considering the class of cutoff equilibria, k(74,t) is assumed
to be a monotonically increasing, invertible function of ¢, meaning that there is an
inverse (7%, k) which gives the unique value of k such that if k percent act, it must
be that m = ¢. The distribution of possible values of £ for person 7, given that ¢; is

the cutoff, can therefore be described as:

pi(k) = post(t(TA, k)|t;)
= post(t((t;, 00), k)|t;) (7.28)
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= f(t[t(({t:;, 00), k) (7.29)
= f(0[¢((0,00), k)) (7.30)

Equation 7.28 expands T4 to (¢;, c0) under the assumption that t; is the cutoff.
Equation 7.29 restates Equation 5.5, that the posterior given an uninformative prior
is the mirror of the likelihood function. Equation 7.30 follows from the translation
property of the whole operation.

In conclusion, p;(k) does not depend on ¢ or ¢;, so it can be written without
a subscript as one common function p(k). Therefore, in the comparison between

expected utility from acting and not acting,

/01 V (t, k) p(k)ds v /01 V(0,1 - &) p(k)ds, (7.31)

the left-hand side is monotonically increasing in ¢;, since the expression V (t;, k) p(k)
is monotonically increasing in t; for a given &, so the integral of these expressions for
all kK must also be increasing, while the right-hand side now makes no mention of ¢;
and is thus a constant. A monotonically increasing function is equal to a constant
at at most one point, so there is at most one equilibrium cutoff point. As discussed
above, if the left-hand side of Comparison 7.31 is always less than the right-hand side,
then no one would be willing to act if they were pivotal, and so the equilibrium cutoff

is T* = oc0. ¢

Theorem 40 Assume f(t|m) is a translation family of a PDF that is continuous at
all but a finite number of points, and that the prior is uninformative.

(i: no conviviality) In the symmetric case [f(d) = f(—d)], the unique equilibrium
satisfies T* = 0, meaning that there is neither active nor inactive conviviality. That
18, if the distribution is symmetric, people behave as if they only cared about their
private signals.

(ii: active conviviality) If the distribution is upward-leaning, meaning that f(d) =
[f(=d)/A] for all d > 0 and some A < 1, then the unique cutoff equilibrium satisfies

T* < 0, meaning that everyone with a private signal to act will do so, but some people
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with negative private signals will ignore them and act anyway.
(iii: inactive conviviality) If the distribution is downward-leaning, so f(d) =
[f(—=d)/A] for all d > 0 and some A > 1, then the unique cutoff equilibrium sat-
isfies T* > 0, meaning that everyone with a private signal not to act will not act, but

some people with positive private signals will ignore them and not act as well.

Proof: (i) One who drew ¢; is indifferent iff

o0

/ TVt k(s 00), 7)) post(r[t:)dr = / V(0,1 = ((t;, 00), 7))post(|t:)dr (7.32)

—00 —0oQ
This would be equivalent if we ran the variable of integration backward, so let § = —7:

—0o0

/ T V(0,1 — k((ts, 00), 7))post(|t:)dr = — / V(0,1 — k((t;, 00), 8))post(]t;)do

o o

But by symmetry, 1 — k((¢;,0),0) = k((t;,00),7), and since the posterior is also
symmetric, post(0|t;) = post(r|t;). Making these substitutions and again substituting

T=—0,

— /—00 V(0,1 — k((t;, 00), 8))post(8t;)dd = /00 V (0, k((t;, 00), T))post(r|t;)dr.
- - (7.33)
We have thus solved for ¢; in the left-hand side of Equation 7.32: the right-hand side
of Equations 7.33 says that it is zero.
(ii) The proof of the skewed case is by comparison with an artificial symmetric
distribution. We will mostly be interested in the case where ¢; = 0, so wlog assume
this is the case. Then define the symmetric function 7 (-) to be post(z) when z > 0

and the mirror image 7(z) = post(—z) when = < 0. Then post(-) is now defined by:

mz) x>0
post(x):{ () .

@ z < 0.



148

Notice that 7(-) is not really a PDF—it doesn’t integrate to one:

1= /_oof(x)

/: ”Sf)d +/0 (z)dz

So we need a scaling factor
1+4 1+A

so that [ Sw(x)dz will indeed integrate to one. Then the expected value of acting for

someone with ¢; = 0, if they were the cutoff and tastes had distribution S7(-), would

be:
/Z 1% (0,/000 S7T($|T)d3;) Sr(=7)dr

Notice that, as discussed above, post(r) = w(—7). We know from (i) above that
under this scenario, the person at ¢t = 0 is indifferent between action and inaction.
Now returning to the asymmetric case of post(-), we can use the definition of

post(-) in terms of 7(-) to write the expected value of acting as:

[ o e
/0°° v (0’ /0 W‘“ + /Tooﬁ(l“ - T)dx) @dm

Why: as per the definition of a translation family in Section 2.2.1 , we can write
7(x|7) as w(x — 7/0), which, by the notational standard that «(-) = = (-|0), is what
appears in the integrals above. In the first integral, 7 < 0, so the posterior likelihood
post(t) = f(—7) = w(—7), and since z is always greater than zero, z — 7 > 0, so
f(x — 1) = w(x — 7). In the second part, 7 > 0, so f(—7) = n(—7)/A, but z — 7 is

less than zero if x < 7 and greater than zero when x > 7; thus the integral over x
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has to be broken down into the two parts shown above.
We now wish to compare the expected value in the symmetric and the asymmetric

case. For example, the first half of Expression 7.34 is bounded below by:
0 [e's) 0 o]
/ Vv (0,/ m(x — T)d.’L‘) n(—7)dr > / V (0, S/ m(zr — T)d.’L‘) w(—7)dr
—00 0 —00 0

because S < 1 when A < 1 as in the upward-leaning case we are considering, and
V (0, -) is monotonically increasing. In the downward-leaning case, A > 1, the in-
equality is reversed.

As for the second half, break down the argument to V (0, -) as follows:

/Ooof(a:—T)dac = /Odex—i—/ij(x—T)d:v—i-/;oyr(x_T)dx
_ (14&) [/OTW(x—T)dx] +/2jo7r(x—7)d:c (7.35)

> 28 [/0 (- T)d:c] + 5/200 oz — 7)do (7.36)

= s[["rta-rad T

Equation 7.35 is due to the symmetry of 7 (-). Inequality 7.36 uses the fact that the
coefficient (1 + %) is equal to 25, and the fact that S < 1. The inequality reverses
when S > 1.

Every step in the following chain of inequalities has now been shown:

EV (act|skew) = ( / flo—1 dx) post(r)dr
_ ( (o — T)dﬂ:) r(—7)dr

/0 y ( /0 Ar(z — 7)dz + /:ow(x - T)dx) ”(;17) dr
> /_(; v (O,S/Oooﬁ(:c - T)dm> r(—r)dr
+ /Ooo 1% (o,s/oooyr(x - T)dac> W(;) dr
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_ (1+%> /0 v(o S/Ooﬁ(x—T)dx) r(—r)dr
_ / (os/ a:—de> r(—7)dr

= EV/(act|symmetry)

Similarly, EV (0,1 — k) is smaller in the asymmetric case, and so where a person
who drew zero was indifferent in the symmetric case, he strictly prefers to act in the
asymmetric case. So it must be that T < 0.

(iii) Reverse the inequalities noted in the proof of (ii). <

Theorem 41 Given that m = p is known.

(i: no conviviality) In the symmetric case, there is an equilibrium at T* = 0,
meaning that there is neither active nor inactive conviviality.

(ii: active conviviality) If the distribution is upward-leaning, then there is an equi-
librium at some point T* < 0.

(1i: inactive conviviality) If the distribution is downward-leaning, then there is an

equilitbrium at some point T > 0.

Proof: Recall that ¢*(0) is the point at which one who drew ¢; = 0 would be

indifferent if ¢*(¢y) were the cutoff. It is the point where

falm)dz) = V(O,1— [ f(elm)dz)
#(0) #(0)
or
00 t*(0)
f(zlm)dz = / f(zlm)dz
t*(0) —00

In the symmetric case, where f(z|m) = f(—xz|m), this is clearly true at ¢*(0) = 0,
and therefore T* = 0 does indeed describe a Bayesian Nash equilibrium.

In the case where f(xz|m) > f(—z|m), then the point which solves the above
equation must satisfy ¢*(0) > 0. By Assumption 19, there is some value of ¢, ¢, such
that the associated cutoff is t*(t) = —oo. Since t*(t;) is a continuous, monotonic
function of ¢;, we know that t,, < 0, and that there is some point ¢, € (tx,0) such
that ¢, = ¢*(t,).
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In the case where f(z|m) < f(—z|m), then ¢*(0) < 0. By continuity, there is some

range such that t*(¢;) < t; for all ¢; € (0,¢.). If this range has an upper bound, then

at that bound, ¢, = t*(t.); if it has no upper bound, then 7* = oo is an equilibrium.

¢

Theorem 42 Assume prior distribution ai(m) satisfies the monotone likelihood ratio

property with respect to ax(m), and assume cutoff equilibria. Assume nothing about

the distribution f(t). Then someone who is indifferent between action and inaction

given prior as(m) will strictly prefer acting given a;(m).

Proof: By Theorem 5, the assumptions about the priors imply that for any fixed

t;, the posterior post(-|t;,a;) FOSDs the posterior post(-|t;, as). The expression

% (t/too al(x|7')dx>

is an increasing function of 7, by FOSD. Therefore,

/ V (ti,/ al(xh')dx> post(T|t;, ar)dr >
—00 t;

/ V (tz-,/ al(:r|7')dx) post(T|t;, as)dT,
—00 t;

by FOSD. By FOSD,

/ V <ti,/ al(x|7')da;) post(7|t;, ag)dT >

—00 t;
/ 1% <t,~,/ ag(x|7')d:1:) post(t|t;, as)dr
—00 ti

If one who drew t; and has prior as(-) is indifferent, then

/ V (ti,/ @(mh)dx) post(tlt;, as)dT =
—00 t;

/ Vv <0,1 —/ al(ac|7)dx) post(T|t;, az)dT.
—00 t;

(7.37)

(7.38)

(7.39)
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Similarly,

V(O,l— ) f(:r\T)dx)

is monotonically decreasing in 7, so by FOSD:

/ v (0, - /t N a2($|7')dx) post(rt ax)dr > (7.40)

o i

/ Vv (O, 1 —/ az(x|7')dx> post(T|ti, ar)dr

1

and, by FOSD:

/_OO 1% (O, 1-— /too ag(:c|7')dx> post(t|t;, ay)dT > (7.41)

o i

/ Vv (0, 1 —/ al(x|7)dx> post(T|t;, ar)dr
—00 ti

Chaining together Expressions 7.37, 7.38, 7.39, 7.40, and 7.41 shows that

/ 1% (ti,/ al(x\T)dx) post(T|t;, ar)dr >
—00 t;
/ Vv (0, 1 —/ al(:c|7')da:> post(t|t;, a;)dr.
—00 ti

So if one who drew t; is indifferent given as(-), he strictly prefers to act given a;(-).

¢

Theorem 43 The no-advertising cutoff 15 is decreasing in Ay and vy. The cutoff

with advertising, T, is decreasing in A, v, Ay, and vp.

Proof: 1If i believes that the original distribution of tastes was f;(-), and believes
that Ay percent of consumers have expanded utility by v, then ¢ believes that the

post-advertising distribution of tastes (herein f/()) is
fi(#) = Ao fi(t — wo) + (1 = Ao) fu(1).

In other words, Ay percent of the distribution was shifted over by vy while 1 — Ay

percent didn’t change. Say that the cutoff without advertising was t*(¢;), and so
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one who drew ¢; is indifferent between action and inaction given no advertising. But

(since F;(t) — Fi(t — vo) > 0 if vy > 0)

1= F{#" () = 1—[AoFi(t —vo) + (1= Ag) Fi(1)]
= 1= [AFi(t) + (1 = Ao) Fi(t) — Ao[Fi(t) — Fi(t — w)]] (7.42)

> 1 — Fi(t).

In Expression 7.42, the first two terms in the brackets sum to Fj(t), and the remaining
part within brackets represents the shortfall by which 1 — F!(¢*(¢;)) does not reack
1 — F;i(t). So i now believes that there are more people acting given the same cutoff
t*(t;), and therefore where i was indifferent, ¢ now strictly prefers acting, and the
cutoff must fall. Since Ay[F;j(t) — F;(t — vp)] is increasing in both Ay and in v, the
cutoff ¢*(0) must fall further for larger values of Ay and .

Similarly, the distribution of tastes given A and v,

fi () = Afi(t —v) + (1= A) fi(®),

will also have a higher percentage of people over any given cutoff as A and v rise.
Also, if 7 was indifferent between action and inaction given the cutoffs t% and ¢, and
Ayp or v fall, then ¢ falls, meaning more people will consume, meaning that 7 strictly

prefers acting given the cutoff t%, meaning that cutoff must fall. <
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