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Real-Time Optimal Trajectory Generation for Constrained

Dynamical Systems

by

Mark B. Milam
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Doctor of Philosophy

Abstract

With the advent of powerful computing and efficient computational algorithms,

real-time solutions to constrained optimal control problems are nearing a reality. In

this thesis, we develop a computationally efficient Nonlinear Trajectory Generation

(NTG) algorithm and describe its software implementation to solve, in real-time,

nonlinear optimal trajectory generation problems for constrained systems. NTG is

a nonlinear trajectory generation software package that combines nonlinear control

theory, B-spline basis functions, and nonlinear programming. We compare NTG

with other numerical optimal control problem solution techniques, such as direct

collocation, shooting, adjoints, and differential inclusions.

We demonstrate the performance of NTG on the Caltech Ducted Fan testbed.

Aggressive, constrained optimal control problems are solved in real-time for hover-

to-hover, forward flight, and terrain avoidance test cases. Real-time trajectory

generation results are shown for both the two-degree of freedom and receding

horizon control designs. Further experimental demonstration is provided with the

station-keeping, reconfiguration, and deconfiguration of micro-satellite formation

with complex nonlinear constraints. Successful application of NTG in these cases

demonstrates reliable real-time trajectory generation, even for highly nonlinear

and non-convex systems. The results are among the first to apply receding horizon

control techniques for agile flight in an experimental setting, using representative
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dynamics and computation.
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Chapter 1

Introduction

A simple one-degree-of-freedom approach to tracking a real-time target using feed-

back control system is to subtract the current state of the system from the target

and feed this error to the controller. It is well known that this approach frequently

fails for a large class of nonlinear mechanical systems with constraints, where a

global asymptotically stable solution that satisfies the constraints does not exist.

Even when a solution is found, it is difficult to achieve high performance in the

presence of constraints.

When used in conjunction with a stabilization technique, generating a trajec-

tory that satisfies the system dynamics has been proven effective in mitigating the

deficiencies of the one-degree of freedom design. Typical applications of trajectory

generation include obstacle avoidance by a robotic vehicle, minimum time missile

interception of an agile target, formation flight of microsatellites with coverage

constraints, and a rapid change of attitude for an unmanned flight vehicle to evade

a dynamic threat. References [1] and [68] articulate the need for advanced control

techniques to accomplish these missions.

Depending on the system setup, there may be more than one level of trajectory

generation, as shown in Figure 1.1. At the mission level, an objective along with

a set of mission constraints are derived from high level mission inputs, with which

a desired trajectory is generated. The time-scale at this level of trajectory gener-

ation is on the order of minutes to hours. At the vehicle level, a local trajectory
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Figure 1.1: Separation of different levels of trajectory generation.

generation algorithm autonomously computes an open loop reference trajectory

given the full system dynamics, actuation and boundary constraints, and the cost

objective. System level trajectory generation may have a time-scale on the order

of tens of milliseconds to minutes, depending on the application. The operator

may also directly provide a reference trajectory at the system level.

There are two different approaches and combinations of the two, for system level

trajectory generation. One is called the two-degree-of-freedom design, depicted in

Figure 1.2, and the other is receding horizon control design, depicted in Figure

1.3.

The two-degree of freedom design consists of a trajectory generator and a linear

feedback controller. The trajectory generator provides a feasible feed-forward ref-

erence trajectory that satisfies system and actuation constraints. A gain-scheduled

feedback controller then stabilizes around and tracks the reference trajectory. The

advantage of this approach is that the system is tracking a feasible trajectory along

which the system can be stabilized. Furthermore, the reference trajectory can be

as aggressive as allowed by the model.

In receding horizon control, an open-loop trajectory is found by solving a finite-

horizon constrained optimal control problem starting from the current state. The



1. Introduction 3

P
Plant

∆

Feedback

noise output

xd

Compensation

ref

ud u

δu
Trajectory

Generation

Figure 1.2: Two-degree-of-freedom-design.

P
Plant

∆

outputnoise
ref uTrajectory

Generation

Figure 1.3: Receding horizon control design.

controls of this trajectory are then applied for a certain fraction of the horizon

length, after which the process is repeated. It has been shown theoretically that

receding horizon control is stabilizing if an appropriate cost function is chosen and

the trajectory can be computed quickly.

It is possible to combine the two-degree-of-freedom and receding horizon control

designs. For example, one could generate a feasible trajectory using the two-degree-

of-freedom design and stabilize with the receding horizon control design.

A prime example, where a two-degree-of-freedom or receding horizon control

design would be applied, is an unmanned flight vehicle. The desired objective of the

unmanned flight vehicle could be commanded by the operator or pre-programmed

without further operator intervention. The desired objective may be to go to a
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certain point, pass through several way-points, or track a target. For some mis-

sions, unmanned flight vehicles will autonomously fly highly aggressive maneuvers,

frequently on the fringe of the flight envelope. The idea of directly commanding

the unmanned flight vehicle to track a target would be impractical, considering

the fast dynamics and constraints of a typical unmanned flight vehicle. Some fu-

ture unmanned flight vehicles could autonomously launch an attack and return

to base or land on aircraft carriers. These vehicles would provide more tactical

flexibility than a cruise missile because they would be able to loiter in the area and

search for a moving target, which it could then strike with its weapons. Future

unmanned flight vehicles will have the ability to respond quickly to a wide range of

unforeseeable circumstances in search and rescue, border patrol, and counter-drug

operations. A key feature of these unmanned flight vehicles will be their ability to

autonomously plan their own trajectories. Therefore, the important goal of opti-

mal trajectory generation is to construct, in real time, a solution that optimizes the

system objective while satisfying system dynamics, as well as state and actuation

constraints.

Hence, it is the objective of this thesis to develop an efficient computational

algorithm for real time optimal trajectory generation of constrained systems and

demonstrates its effectiveness on an experiment testbed that represents a real-

world application.

1.1 Previous and Parallel Work

Most early numerical methods of solution to constrained optimal trajectory gener-

ation problems relied on either indirect or direct methods of solution. The indirect

method relies on finding a solution to the Pontryagin’s maximum principle [83].

This results in finding a numerical solution to a two-point boundary value prob-

lem, if no closed form solution can be found. The multiple shooting method, used

to solve two-point boundary value problems, is discussed in Pesch [77, 78] and

von Stryk [108]. The direct method obtains solutions by direct minimization of
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the objective function, subject to the constraints of the optimal control problem.

An introduction to direct methods can be found in Hargraves and Paris [41] and

vonStryk [109]. Techniques were developed to optimally interpolate a set of stored

trajectories on-line by Chen and Allgower in [18] and [3], respectively. A tech-

nique for generating real time trajectories by searching and interpolating over a

large trajectory database in real time can be found in Atkeson [4].

Several randomized trajectory generation techniques have recently been re-

ported and have promising potential for real-time applications. For example, see

LaValle [55], Frazzoli [36], and Hsu [44]. These techniques are most applicable to

the mission level trajectory generation shown in Figure 1.1.

Another approach to solving the trajectory generation problem would be to use

nonlinear geometric control techniques. These techniques attempt to find ad hoc

outputs such that the complete differential behavior of the system can be repre-

sented in terms of these outputs and their derivatives. The theory of existence and

generation of these so-called flat outputs are subjects of Isidori [46], Rathinam [87],

Charlet et al . [16], Fliess [32, 33], Chetverikov, [19], and [62, 65]. Unfortunately,

there are many classes of systems for which these outputs cannot be found, even

if they can be proven to exist. However, it is usually not very difficult to find

some outputs that will characterize at least part of the system behavior. In this

case, attention must be paid to the stability of the resulting zero dynamics which

could lead to unbounded controls and states. Techniques were developed in Deva-

sia and Chen [25], Devasia [24], and Verma and Junkins [107] to circumvent this

problem. Some methods of real-time trajectory generation without constraints for

differentially flat systems are illustrated in van Nieuwstadt [103]. An approach to

find feasible trajectories for constrained differentially flat systems by approximat-

ing constraints with linear functions is given in Faiz and Agrawal [29]. Agrawal

and Faiz in [2] investigated higher-order variation methods to solve optimization

problems for feedback linearizable systems without constraints.

An example of work more related to the approach in this thesis can be found in

Steinbach [98]. Steinbach shows that combining inverse dynamics with sequential
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quadratic programming can drastically reduce computation times in robotic mo-

tion planning. The work of Oldenburg et al. [75] and [76] expands on Steinbach’s

approach by including the case when the system is not feedback linearizable. Old-

enburg relies on the work of van der Schaft in [102], which provides a method to

represent a nonlinear state space system as a set of higher-order differential equa-

tions in the inputs and outputs. Mahadevan et al. in [60] and [61] use Oldenburg’s

work and apply it to chemical processes. Veeraklaew et al. in [106] combines the

concepts of differential flatness and sequential quadratic programming. However,

his choice of basis functions representing the outputs requires additional continuity

constraints to the resulting optimization problem. Bulirsch et al. [37] discusses the

use of sequential quadratic programming methods to solve trajectory optimization

problems.

1.2 Overview and Statement of Contributions

A brief summary and thesis contributions by chapter:

• Chapter 2: In this chapter we derive a novel homotopy method, which when

used in conjunction with a stored database of trajectories, will find nearby

optimal trajectories. Additionally, we discuss the relationships between Ver-

tical Takeoff and Landing (VTOL) design and differential flatness. Finally,

we present a promising new VTOL design and demonstrate that it is differ-

entially flat.

• Chapter 3: In this chapter we first propose a generic algorithm to reduce the

dimension of the system dynamics to facilitate real-time computation. Sec-

ond, we develop the Nonlinear Trajectory Generation (NTG) algorithm and

describe the software implementation intended to solve nonlinear, optimal,

real-time, constrained trajectory generation problems. NTG is a software

package that combines techniques of nonlinear control, B-splines, and non-

linear programming.
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• Chapter 4: In this chapter, we compare and contrast NTG with the optimal

control problem solution techniques of direct collocation, shooting, adjoints,

and differential inclusions.

• Chapter 5: In this chapter, we investigate the performance of NTG on the

Caltech Ducted Fan experiment. Results are presented for both the two-

degree-of-freedom and receding horizon control design. For the two-degree

of freedom design, aggressive constrained optimization problems are solved in

real-time for hover-to-hover, forward flight, and terrain avoidance test cases.

The results confirm the applicability of real-time, nonlinear, constrained re-

ceding horizon control. They are among the first to demonstrate the use

of receding horizon control for agile flight in an experimental setting, using

representative dynamics and computation.

• Chapter 6: In this chapter, we provide another example of complex, real-time

nonlinear constrained trajectory generation for the station-keeping, reconfig-

uration, and deconfiguration of micro-satellites.
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Chapter 2

Background and Mathematical Framework

In this chapter we will survey the techniques that are currently used for con-

strained trajectory generation, followed by background material that motivates

this research.

2.1 Optimal Control Problems under Consideration

Let x : [t0, tf ]→ Rn denote the state of the system and u : [t0, tf ]→ Rm the input

of the system

ẋ = f(x, u), (2.1)

where all vector fields and functions are real-analytic. It is desired to find a tra-

jectory of (2.1) in [t0, tf ] that minimizes the performance index functional

J :=

∫ tf

t0

L(x, u, t)dt+ φf (xf , uf , tf ) (2.2)

J : Rm × R+ → R subject to a vector of N0 initial time, Nf final time, and Nt

trajectory constraints,

lb0 ≤ ψ0(x0, u0) ≤ ub0,

lbf ≤ ψf (xf , uf ) ≤ ubf ,

lbt ≤ S(x, u, t) ≤ ubt.

(2.3)
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The functions ψ0 : Rn×Rm → RN0 , ψf : Rn×Rm → RNf , S : Rn×Rm×R+ →

RNt are assumed to be as least C2 on appropriate dense open sets. The final time

tf could be either fixed or free.

2.2 Necessary Conditions of Optimality for Constrained

Systems

Bryson and Ho [12] and Lewis and Syrmos [58] derive the necessary conditions

using the calculus of variations. Pontryagin et al. [83] show that finding an ex-

tremal solution is equivalent to the requirement that the variational Hamiltonian

be minimized, with respect to all admissible inputs.

Without loss of generality, we will assume that there is one control (m = 1)

and one state inequality constraint (Nt = 1, S(x, t) ≤ 0) and that the trajectory

constraint is active on the time interval t ∈ [t1, t2] ⊂ [t0, tf ]. An active constraint

is known as a constrained arc.

Defining the Hamiltonian H and the auxiliary functions Ξ and Φ,

H(x, u, λ, µ, t) := L(x, u, t) + λT f(x, u) + µTS(q)(x, u, t)

Ξ(x0, u0, t0, ν0) := φ0(x0, u0, t0) + νT0 ψ0(x0, u0, t0)

Φ(xf , uf , tf , νf ) := φf (xf , uf , tf ) + νTf ψf (xf , uf , tf ),

(2.4)

where the λ : [t0, tf ] → Rn, ν0 ∈ RN0 , νf ∈ RNf and µ : [t0, tf ] → R are La-

grange multipliers. The number of time derivatives q of S such that u explicitly

appears and S
(q)
u 6= 0 is denoted by S(q)(x, u, t). In order that S(q)(x, u, t) = 0 and

S(x, u, t) = 0 on [t1, t2] we also require that the entry conditions

NT (x(t1), t1) = [S(x(t1), t1), S
(1)(x(t1), t1), . . . , S

(q−1)(x(t1), t1)] = 0 (2.5)

be satisfied. See Bryson, Denham and Dreyfus [11] for more details. The Lagrange

multipliers π ∈ Rq will be associated with the constraints in equation (2.5).
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An optimal solution of (2.2) and (2.3) must satisfy the the necessary conditions

ẋ = Hλ (2.6)

λ̇T = −Hx (2.7)

Hu = 0 (2.8)

λT (t0) = Ξx|t=t0 (2.9)

λT (t−1 ) = λT (t+1 ) + πTNx|t=t1 (2.10)

H(t−1 ) = H(t+1 )− π
TNt|t=t1 (2.11)

λT (tf ) = Φx|t=tf (2.12)

µ = 0 if S(q)(x, u, t) < 0 (2.13)

µ ≥ 0 if S(q)(x, u, t) = 0 (2.14)

and if the final time tf is not specified we must include

(Φt +H)|tf = 0. (2.15)

Note: The partial derivatives Hx, Ξx, and Φx are considered row vectors, i.e.,

Hx = ( ∂H
∂x1

, . . . , ∂H
∂xn

) and the transpose of the column vector (.) is denoted by (.)T

The necessary conditions result in a multi-point boundary value problem at

times t0, t1 and tf involving the differential equations (2.6) and (2.7). At each

boundary there will be effectively n constraints derived from the total number of

terminal equations minus the free variables.

Utilizing (2.11) and (2.15), we can determine t1 and tf . The input on the

constrained arc can be found from S(q)(x, u, t) = 0. Otherwise we can use equation

(2.8). The Lagrange multiplier µ is found from equation (2.13) off the constrained

arc and equation (2.8) when on the constrained arc.

Generally, closed form solutions are difficult to find. Numerical methods based

on gradient descent or Newton’s method are usually invoked to find solutions to

multi-point boundary value problems. It is up to the user to provide an initial
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guess to the free-variables ν0, νf , π, t1, and tf sufficiently close to a solution to

guarantee convergence of the method.

The multiple shooting numerical method is advocated by Pesch in [77] and [78].

A thorough description of shooting techniques is provided by Stoer and Burlisch

[99]. One advantage of using shooting is that very accurate solutions are obtain-

able. Potential disadvantages of shooting include a high sensitivity to the initial

guess, as well as the need for robust integration techniques over large time intervals

since equations (2.6) and (2.7) will likely have both unstable and stable compo-

nents. An alternative to the shooting method, which is less sensitive to the initial

guess, is to replace the ordinary differential equations in equations (2.6) and (2.7)

by their finite difference approximations. Press et al. discuss so called relaxation

methods solution methods in [86]. Due to the undesirable convergence rates and

computation times, neither of these numerical methods are practical for real-time

implementation. In the next section, we will assume that a solution to an optimal

control problem can be determined off-line using the above mentioned numerical

techniques and stored in a database for on-line use. We will use a trajectory in the

database as the initial guess to solve a neighboring optimal control problem with

high confidence in real-time.

2.3 Trajectory Generation Using Homotopy

Homotopy can best be shown by a simple example. Suppose that one wishes to

obtain the solution of a system of N nonlinear equations in N variables,

W (x) = 0, (2.16)

where W : RN → RN is a smooth mapping. Without a good initial guess x̄,

an iterative solution to equation (2.16) will often fail. As a possible remedy, one

defines a homotopy V : RN × R → RN such that

V (x, 1) = U(x) V (x, 0) =W (x),
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where U : RN → RN is a smooth map having known solutions. Typically, one may

choose a convex homotopy such that

W (x, ε) := εU(x) + (1− ε)V (x),

and continuously trace an implicitly defined curve from a starting point (x1, 1) to

a solution (x̄, 0). Burlisch in [13] and [99] warns that morphing a simple system

not related to the problem to a complex system may not succeed in critical cases.

In the following section, a homotopy method is presented without applying a

homotopy to the system dynamics. Chen et al. [18] also took a similar approach

to singular optimal control problems.

2.3.1 Algorithm Description

It will be assumed that the desired objective is to move the system from a known

initial state to a known final state while minimizing a prescribed cost function.

The proposed homotopy algorithm will find an optimal trajectory connecting the

initial and final state. The central idea of the algorithm is to decompose the

operating envelope into regions. For each region a trajectory is computed off-line

and the initial and final states and costates are saved into a database for on-line

use. The boundaries of each region are determined such that for each trajectory

in the region, there exists a homotopy to any other trajectory in the region. The

advantages to this algorithm is that only a small subset of all trajectories need to

be stored on-board, and every trajectory is optimal with respect to a prescribed

cost function.

We tacitly assume that a solution has been found to the trajectory generation

problem for some specified system (2.1), with associated cost function in equation

(2.2), an initial state constraint ψ0(x0) = 0, and the desired state ψf (xf ) = 0. A

solution to this problem implies that we have also found ν0 and νf in equation (2.4).

Now suppose that we would like to determine the solution with the new boundary

conditions x̃(t0) and ψ̃(x(tf )) = 0, where x̃(t0) and ψ̃(x(tf )) are “sufficiently close”
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to x(t0) and ψ(x(tf )) = 0, respectively. By “sufficiently close” we mean that there

exists a homotopy between x(t0) and ψ(x(tf )) = 0 and x̃(t0) and ψ̃(x(tf )). The

implicit function theorem will dictate whether or not a homotopy exists. To obtain

a solution with the new desired goal ψ̃(x(tf )) and initial state x̃(t0), we will embed

the known solution into a family of perturbed solutions through the parameter ε

using a convex homotopy. Define

x̂(t0, ε) := x(t0)ε+ x̃(t0)(1− ε) (2.17)

ψ̂(x(tf ), ε) := ψ(x(tf ))ε+ ψ̃(x(tf ))(1− ε), (2.18)

where ε ∈ [0, 1] is a perturbation parameter, x̂(t0, ε) : Rn × [0, 1] → Rn, ψ̂ :

Rn× [0, 1]→ Rp. By making ε go to zero, we obtain the solution to the trajectory

generation problem of interest.

In principle, we know that the solutions of the differential equations (2.6) and

(2.7) are determined by x(t0) and λ(t0). That is, if we alter ψ0 and ν0, we change

x and λ for all t. Thus, we may write at the final time tf :

x(tf ) = x(ψ0, ν0, tf ) λ(tf ) = λ(ψ0, ν0, tf ). (2.19)

For ease of notation, we will write the terminal boundary conditions as

G(y, ε) = 0, (2.20)

where y = (ν0, νf ) and G is an (n + N0) vector-valued functional.

Suppose we are given a solution (z0, ε0) of (2.20). Using homotopy, we want

to find a solution z(ε0 + ∆ε) for a small perturbation ∆ε. The implicit function

theorem [50] gives conditions which one can solve (2.20) in some neighborhood of

(z0, ε0):

a. G(z0, ε0) = 0 for some z0 and ε0;

b. Gz(z0, ε0) is nonsingular;

c. G(z, ε) is continuous on some neighborhood of z0 and ε0.
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Condition (b) implies that the flight envelope has been properly decomposed

into regions, such that there are no singularities between trajectories for any given

region. Note that Keller [50] proposes several numerical methods to get around

singular points.

By taking the total derivative of (2.20) with respect to ε and solving for dz
dε
, we

obtain the following differentiable equation:

dz

dε
= −G−1

z (z, ε)Gε(z, ε). (2.21)

In order to solve equation (2.21), it is necessary to determine the Jacobians Gz(z, ε)

and Gε(z, ε). This can be accomplished numerically using a finite-difference ap-

proximation or through an integration of a set of ordinary differential equations.

To find Gz(z, ε) and Gε(z, ε) numerically, we can use a numerical approximation

to these Jacobians. For example, we can use a forward difference approximation

∂G

∂zi
=
G(z + δiei, ε)−G(z, ε)

δi

∂G

∂ε
=
G(z, ε+∆ε)−G(z, ε)

∆ε

with ei the ith unit vector and δi a scalar.

We can also get an expression for Gz(z, ε) by integrating a system of ordinary

differential equations. This method is recommended since its results are more

accurate than the finite difference method in approximating Gz(z, ε).

Differentiating both sides of equations (2.6) and (2.7) with respect to z, while

holding ε constant, and defining two new variables

ξ =
∂x

∂x0
, η =

∂λ

∂λ0
, ξ, η ∈ Rn×(n),

we obtain the differential equations

ξ̇ = Hλx · ξ +Hλλ · η (2.22)

η̇ = Hxx · ξ +Hxλ · η. (2.23)
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Changing z, while holding ε constant, we have ∂x
∂x0

(t0) = 0 ∈ Rn×n, ∂λ
∂λ0

= I6 ∈

Rn×n, ∂x
∂λ0

= 0 ∈ Rn×n, and ∂λ
∂x0

= 0 ∈ Rn×n . Now we can find Gz(z, ε) by

integrating the η(t) and ξ(t) dynamics forward in time:

Gz(z, ε) = Gz(η(tf ), ξ(tf ), ε). (2.24)

In an analogous manner, the following differential equations are derived which

we will use to calculate the Jacobian Gε(z, ε) (holding z0 constant). Defining

ζ =
∂x

∂ε
, χ =

∂λ

∂ε
, ζ, χ ∈ Rn

we obtain

ζ̇ = Hλx · ζ +Hλλ · χ+Hλε (2.25)

χ̇ = Hxx · ζ +Hxλ · χ+Hxε (2.26)

and observe that if we change ε, but hold z constant, we have, referring to equation

(2.17), ζ(t0) = x(t0)− x̃(t0) and χ(t0) = 0. Now we can find Gε(z, ε) by integrating

the ζ(t) and χ(t) dynamics forward in time:

Gε(z, ε) = Gε(ζ(tf ), χ(tf ), ε). (2.27)

2.3.2 Ducted Fan Example

An example of the use of the homotopy technique will be illustrated using the

planar ducted fan. Figure 2.1 depicts the coordinate systems and conventions

used for the ducted fan. Writing Newton’s equations about Ow we have

mẍ = FXb
cos θ + FZb

sin θ (2.28)

mz̈ = −FXb
sin θ + FZb

cos θ +mg (2.29)

Jθ̈ = FZb
rp. (2.30)



2.3. Trajectory Generation Using Homotopy 16

The numerical values of the constants used in this example are the following:

m = 2.2 kg mg = 4 N rp = .2 m J = 0.05 kgm2. (2.31)

The optimal cost with free final time is

min
u
J ≡

∫ T

0
(RT +R1F

2
Xb

+R2F
2
Zb
)dt, (2.32)

with input constraints −5 ≤ FZb
≤ 5 N, 0 ≤ FXb

≤ 17 N, as well as constraints on

the initial and final state. The problem can be described as the following: Minimize

a balance between time and energy subject to initial and final time constraints as

well as a trajectory constraint on the input.

δe

Ow

Zb

Zw

γ

Xw

α

θ V

Xb

δp

δp

XI

ZI

Figure 2.1: UCAV coordinate system conventions.

In this example, the integration technique used was a predictor-corrector algo-

rithm described by Allgower in [3].
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For the first example we computed off-line a trajectory using the optimal tra-

jectory solver RIOTS [90] for the initial conditions x(t0) = (0 0 0 0 π/2 0)T and

the final conditions ψ̂(x(tf )) = ψ(x(tf )) = x(tf ) − (1 0 − 1 0 π/2 0)T . The cost

function weights were chosen as RT = 4, R1 = 1, and R2 = 2. It is desired to

deform the initial condition to x̃(t0) = (−1 0 − 1 0 π/2 0)T . Note that the final

unknown time is a free variable. The predictor-corrector algorithm was coded in

Matlab and consumed approximately 11 minutes of CPU time on a Sun Ultra 30.

The results of the simulation showed that the homotopy could be performed, but

the computation time was prohibitive.

The same setup was used for the second example, except that RT = 200 and

x̃(t0) = (−.8 0 − .8 0 π/2 0)T . The difference between the two examples is that, in

the second, there is significant weight on the time. The results of this simulation

are shown in Figure 2.2. For this example, it took approximately 38 minutes of

CPU time.

At ε = .35 the trajectory suddenly changes. This can be explained by the

significant positive to negative change of Lagrange multiplier λ3(t0). The sign of

the determinant of Gz(z, ε) indicates a singularity. However, the implementation of

the algorithm is robust enough so that we still proceed with the homotopy in effect,

jumping over the singularity. Note that this singularity is not explicitly occurring

the the time domain since the homotopy parameter does not enter explicitly in the

state or costate equations. It is the significant change in λ3(t0) that is causing the

large change in the dynamical behavior seen in Figure 2.2.

The unexpected singularity illustrates the necessity of an off-line study to find

trajectories such that we can steer around singularities. The nonsingularity of

det(Gz(z, ε)) 6= 0 must be off-line. If a singularity occurred, a modification of

the cost function would be of first consideration. If a modification of the cost

function does not work, one could break the problem into separate homotopy

problems: x(t0) → x̄(t0) and ψ(x(tf )) → ψ̄(x(tf )) and then x̄(t0) → x̂(t0) and

ψ̄(x(tf ))→ ψ̂(x(tf )). Updating the algorithm presented in the previous subsection

by using the techniques given in Allgower [3] or Keller [50] to handle singularities,
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Figure 2.2: Ducted fan trajectory generation homotopy example: x: 0→ −.8 and

z: 0→ −.8 with large time weight.
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would be a last resort.

In general, another fundamental problem with this technique is sensitivity. We

are using a form of shooting to find Gz(z, ε) by integrating a system of ordinary

differential equation that have both stable and unstable components. Integrating

such a system of ODE’s over a significant time span can become ill-conditioned.

This results in the ODE solver proceeding very slowly, producing large CPU times.

This sensitivity is due the nature of the necessary conditions of optimal control.

Multiple shooting may help mitigate some of these integration problems.

2.4 Nonlinear Programming Techniques

The problem of finding a local minimizer x ∈ Rn for a nonlinear function F (x)

subject to a set of nonlinear constraints c ≥ 0, where c(x) ∈ Rn, is a nonlinear

constrained optimization problem. All the problems of interest to be solved in this

thesis can be generalized into the form

min
x
F (x)

subject to c(x) ≥ 0.

(2.33)

Optimization problems of the form (2.33) can be a very difficult problem to solve.

For instance, it is NP-hard in the traditional complexity model [105]. Algorithms

to solve (2.33) may take many iterations and function evaluations. A promising

global optimization technique, based on surrogate functions, is given by Dennis et

al. [23]. Global optimization of (2.33) is a difficult problem and an open area of

reserach . In this thesis, we will concentrate on using the well understood numerical

techniques that will find local minima of (2.33).

Sequential Quadratic Programming (SQP)and Interior Point Methods (IPM)

are popular classes of methods considered to be effective and reliable method for

locally solving Equation (2.33). At each iteration of an SQP method, one solves

a quadratic program (QP) subproblem that models (2.33) locally at the current

iterate. The solution to the QP is used as a search direction to determine the
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next iterate. Eliminating inequality constraints by adding slack variables and

incorporating them into a logarithmic barrier function in the objective function,

(2.33) is transformed into

min
x
F (x)− µ

m
∑

i=1

log si

subject to c(x)− s = 0.

(2.34)

Interior point refers to the fact that the slack variables are required to remain

strictly positive throughout the optimization.

Successful algorithms need to be both efficient and robust. Under reasonable

assumptions, a robust algorithm must be globally convergent (convergent from

any starting point) and able to solve, in practice, both well-conditioned and ill-

conditioned problems. NPSOL [38], SNOPT [39], CFSQP [57], KNITRO [110],

and LOQO [104] are the nonlinear programming solvers we consider in this thesis.

2.4.1 Optimality Conditions

Definition 2.1. A point x∗ is a local minimizer of (2.33) if

1. c(x∗) ≥ 0;

2. there exists a δ > 0 such that F (x) > F (x∗) for all x satisfying

||x− x∗|| ≤ δ and c(x) ≥ 0.

The term active constraint will be used to designate a constraint ci(x) ≥ 0 if

ci(x) = 0. If ci(x) > 0, a constraint is considered inactive.

The Lagrangian L(x, λ) ≡ F (x) − λT c(x) is a scalar function with the n vari-

ables x and the m variables λ which correspond to the Lagrange multipliers. The

Lagrangian is used to express first-order and second-order optimality conditions

for a local minimizer.

Let Ĵ(x∗) denote the set of gradients of the active constraints at x∗. A con-
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straint qualification ensures the existence of the Lagrange multipliers. One such

constraint qualification is that the gradients of the active constraints at x∗ be lin-

ear independent, i.e., that matrix Ĵ(x∗) should have full row rank. A point that

satisfies this particular constraint qualification is known as a regular point.

Necessary conditions for x∗ to be a local minimizer are that there exist Lagrange

multipliers λ∗ such that

c(x∗) ≥ 0 (2.35)

∇xL(x
∗, λ∗) = ∇F (x∗)− Ĵ(x∗)Tλ∗ = 0 (2.36)

λ∗ ≥ 0. (2.37)

These conditions are known as the first-order Karush-Kuhn-Tucker (KKT) neces-

sary optimality conditions. Note that x∗ is a stationary point of ∇x(x
∗, λ∗) but

not necessarily an unconstrained minimizer of the Lagrangian.

Suppose that x∗ is a local minimizer and a regular point. Then, x∗ is a KKT

point and

ZT∇2
xxL(x

∗, λ∗)Z is positive semidefinite, (2.38)

where Z is a basis for the nullspace of Ĵ . These conditions are known as the

second-order KKT conditions. If we replace (2.37) and (2.38) by

λ∗ > 0

ZT∇2
xxL(x

∗, λ∗)Z is positive definite,
(2.39)

we obtain sufficient conditions for optimality.

A key challenge to developing a fast algorithm for solving this problem is to

find an accurate approximation to the Hessian of the Lagrangian ∇2
xxL(x, λ), the

second derivative that reflects the curvature of the objective and constraints.

The common approach to approximating ∇2
xxL(x, λ) has been to follow quasi-

Newton techniques for unconstrained optimization. A single, positive-definite

approximation matrix is maintained using the Broyden-Fletcher-Goldfarb-Shanno
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(BFGS) quasi-Newton update, and typically the dependence of the Lagrange mul-

tipliers is ignored. See Gill et al. [40] for a complete discussion on the BFGS

method. The BFGS direct approximation may be poor, even for ideal problems,

but has been used in CFSQP and NPSOL successfully. KNITRO and LOQO use

analytical Hessians of the constraint and objective to form the approximation to

the Hessian of the Lagrangian.

2.4.2 Techniques for Global Convergence

Nearly all techniques for nonlinear programming are iterative, producing a se-

quence of subproblems related in some way to the original problem. Newton

methods have rapid local convergence rates, but fail to converge from all start-

ing points. Gradient descent methods converge from nearly any starting point but

have poor local convergence properties. Line-Search methods are one means of

ensuring global convergence while attempting to maintain fast local convergence.

Line-Search methods limit the size of the step taken from the current point to the

next iterate. Such methods generate a sequence of iterates of the form

xk+1 = xk + αp,

where p is the search direction obtained from the subproblem, and α is a positive

scalar steplength. For unconstrained minimization, or if feasibility is maintained

for the constraints as with CFSQP, the best steplength is one that minimizes

the objective function F (xk+1). However, determining a minimizer along p is an

iterative process and frequently time consuming. Typically, x is determined by a

finite process that ensures a reduction in F (x). The nonlinear programming code

NPSOL and LOQO use line-search methods. See Fletcher [31] for an overview of

line search methods.
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2.4.3 Trust-Region Methods

The main alternative to line-search methods are trust-region methods. The moti-

vation behind the trust-region approach is that the minimum of the local quadratic

model should be accepted so long as the model adequately reflects the behavior

of the function under consideration. Trust-region methods choose a radius δ and

determine xk+1 that is the global minimizer of a model of the function subject to

||xk+1 − xk|| ≤ δ. The nonlinear programming code KNITRO uses trust region

methods.

2.4.4 Merit Functions

Regardless of whether a line-search or trust-region method is used, when feasi-

bility of the iterates is not maintained, it can be difficult to guide the choice of

steplength. For problems with linear constraints, it is straightforward to maintain

feasibility at every iteration. However, when even a single constraint is nonlinear,

maintaining feasibility at every iteration becomes difficult. For infeasible iterates,

it is not immediately obvious how to choose the step length; we would like the next

iterate to minimize the objective function, but we would also like to reduce the in-

feasibilities of the constraints. Merit functions are used to guide the improvement

of the feasibility and the optimum at the same time. Since NPSOL, LOQO, and

KNITRO use merit functions, they are considered infeasible methods. CFSQP is

a feasible method; thus, there is no need for a merit function. If we assume, for

simplicity that all constraints are equalities of the form c(x) = 0, two popular

merit functions are the l1 merit function

M(x) = F (x) + ρ||c(x)||1

and the augmented Lagrangian

M(x, λ) = F (x)− λT c(x) +
ρ

2
c(x)T c(x)
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where ρ is a penalty parameter and λ is a set of Lagrange multiplier estimates.

2.4.5 Simple Infeasible Nonlinear Programming Algorithm Using

a Line-search

Algorithm 2.1. Choose an initial guess for the optimization variables x0 and the

Lagrange multipliers λ0. Set k = 0 , while the KKT conditions are not satisfied:

1. Set up a subproblem to compute a search directions p̄ and λ̄ for both the

decision variables and Lagrange multipliers.

2. Compute step length αk that reduces the merit function.





xk+1

λk+1



 =





xk

λk



+ αk





p̄

λ̄





3. Update c(xk), F (xk), ∇F (xk),∇c(xk).

4. Update Hk, the approximation to the Hessian of the Lagrangian.

5. Set k = k + 1.

This algorithm is the basic one used in NPSOL and LOQO. The difference

between the two algorithms is in the computation of the subproblem. NPSOL

finds the search direction by solving a sequence of QP problems with an active set

method. LOQO uses barriers for the constraints so it only has one subproblem

iteration. LOQO solves directly for the Newton step (p̄, λ̄) from (x0, λ0) to (x∗, λ∗)

by the following:





∇2
xxL(x0, λ0) G(x0)

T

G(x0) 0









p̄

−λ̄



 = −





g(x0)−G(x0)
Tλ0

c(x0)



 . (2.40)
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Similarly, NPSOL solves quadratic program

min
p
g(x0)

T p+
1

2
pT∇2

xxL(x0, λ0)p (2.41)

subject to G(x0)p− c(x0) = 0. (2.42)

2.4.6 Active Set Methods

The active set method starts with a feasible point p0 and a working set of variables.

The active set method proceeds to move to a constrained stationary point of the QP

by holding a set of variables constant and temporarily ignoring the other bounds.

If the solution (the new search direction p) to the QP program (2.42) is feasible

with respect to the bounds, a full step is taken. Otherwise, the maximum feasible

step is taken along the search direction and a bound is added to the working set.

This sequence repeats until a full step is taken. At the stationary point, if for any

bound there exists a negative Lagrange multiplier, the associate bound is dropped

from the working set and the procedure starts over. If all the multipliers are

positive, the algorithm stops. NPSOL and CFSQP are active set methods.

It looks promising that interior point methods may show a significant reduction

in the total number of iterations compared to active set methods. The subproblem

may take longer than any one QP subproblem computation, but the time of this

one iteration will be faster than the total QP computational time. Active set

methods take a combinatorial number of iterations for the subproblem.

2.5 Numerical Solutions of Optimal Control Problems

Using Nonlinear Programming

2.5.1 Direct Methods of Solution Using Nonlinear Programming

We can deduce from Section 2.2 that the trajectory generation problem can be

formulated in terms of an optimal control problem. In general, the optimal control

problem can be solved by either indirect or direct methods.
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Indirect methods are based on the calculus of variations and the maximum

principle. In the direct approach, the optimal control problem is transformed into

a nonlinear programming problem (NLP). In Section 2.2 an indirect method was

used to solve the optimal control problem. For an overview of the indirect and

direct methods see Betts [7, 5] and Stryk and Burlisch [109]. In this section we

will concentrate on the direct method of solution.

Direct methods are generally more robust to the initial solution guess than

indirect methods. This is a result of not having to explicitly solve the necessary

conditions of optimal control, which are frequently ill-conditioned. In addition,

unlike indirect methods, direct methods do not require an a priori specification of

the switching structure when inequality state constraints are present. However, it

appears that the computational requirements of direct methods are at least that

of indirect methods.

The collocation method of [42] and adjoint method [82] are the methods of

transcription that are most relevant to the trajectory generation problem. Se-

quential quadratic programming, presented in Gill et al ( [40] and [56] et al.,is the

technique we will use to solve the nonlinear programming problems presented in

this thesis.

The nonlinear programming problem can be stated as the following:

min
y∈RM

F (y)

subject to lj ≤ cj(y) ≤ uj j = 1, . . . ,mN ,

(2.43)

where lj and uj ∈ R,the constraint function cj : Rn → R is at least C2, and

the cost function F : Rn → R is also at least C2. We will rely on commercially

available nonlinear programming packages. It will be required that the nonlinear

programming problem be provided, not only the cost function and the constraints,

but also gradients of cost function and constraints with respect to the decision

variables y.

The rest of this section we will discuss the conversion techniques from the
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optimal control problem to the nonlinear programming problem.

2.5.2 Transcription Techniques from the Optimal Control Prob-

lem to the Nonlinear Programming Problem

Collocation

A reliable method to convert an optimal control problem to a nonlinear program-

ming problem is collocation. For an overview of collocation methods see Stryk

[108].

The first step in collocation process is to break the time domain into smaller

intervals

t0 < t1 < . . . < tN = tf . (2.44)

The nonlinear programming decision variables then become the values of the state

and the control at the grid points, namely,

y = (u0, x1, u1, x2, u2, . . . , xN , uN ). (2.45)

The key notion of collocation methods is to replace the original system in equation

(2.1) with a set of defect constraints ζi = 0, which are imposed on each interval of

discretization. An expression of ζi can be derived based on the choice of numerical

integration.

If we assume, for illustration, that there is also a state variable equality con-

straint S(x(t)) = 0, initial condition ψ0(x(t0)) = 0, and final output constraint



2.5. Numerical Solutions of Optimal Control Problems Using Nonlinear Programming 28

ψf (x(tf )) = 0, then the complete set of nonlinear programming constraints are

c(y) =

















































ψ0(x(t0))

S(x0)

ζ0

S(x1)
...

S(xN−1)

ζN−1

S(xN )

ψ(x(tN ))

















































= 0. (2.46)

Suppose, for simplicity, that we want to choose the control u(t) to minimize the

cost function J = φ(x(tf )) , the nonlinear programming objective function will

become

F (y) = φ(xN ). (2.47)

The gradients of the cost function and the constraints in equation (2.43) with

respect to decision variables in equation (2.45), easily follow. It is apparent that

the nonlinear programming problem that results from this formulation is very

large, rendering a real-time implementation difficult.

Stryk et al. in [109] show how direct methods are related to indirect methods.

This result is particularly useful when one wants to use the direct method to

estimate constrained arcs as well as provide an initial guess to an indirect method.

Adjoints

The Adjoint method is a direct method that uses a combination of nonlinear

programming and shooting. RIOTS [90] and COOPT [93] use the Adjoint method.

RIOTS uses single shooting while COOPT uses modified multiple shooting.

In contrast to the collocation method, the adjoint method has significantly less
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decision variables. In fact, there are as many decision variables u(ti) as there are

collocation points N . The trade off is that an integration has to be performed

backward in time on an adjoint system for each constraint. Bryson and Ho [12]

state that the numerical integration required to find the adjoints is quite stable

numerically since integration is carried out in backward time. The assumption

is that the system dynamics are stable in forward time. Since there are many

integration schemes possible, we will sketch the formulation of the gradients in

continuous time.

By taking the total differential of equation (2.2), applying the Adjoint Lemma

[49] and constructing a δu(t) history such that the cost function is decreasing, the

gradient of the cost function with respect to the decision variables is

∇uJ(u) = pTc fu + Lu (2.48)

ṗc = −fT
x pc − L

T
x pc(tf ) =

∂φ(x(tf ))

∂x(tf )
,

where pc ∈ Rn. Likewise, the gradient of the endpoint equality constraint is

∇uψ(x(tf )) = pTeefu (2.49)

ṗee = −fT
x pee pee(tf ) =

∂ψ(x(tf ))

∂x(tf )
,

where pee ∈ Rn. Finally, the gradient of a state inequality constraint S(x(t)) < 0,

S : Rn → R which is active between ta and tb (t0 < ta < tb < tf ) is

∇uS(t) =



























0 if ts < ta

pTicfu if ts ∈ (ta, tb)

0 if ts ≥ tb,

(2.50)

ṗic = −f
T
x pic pic(ts) =

∂S(x(ts))

∂x(ts)
ta ≤ ts ≤ tb

where pic ∈ Rn. Expressions for other constraints, such as endpoint inequality
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constraints and trajectory equality constraints, can be found in a similar manner.

Once the gradients are known, there is enough information to solve the nonlinear

programming problems in (2.43).

2.6 Trajectory Generation Using Feedback Lineariza-

tion

The system under consideration in this section is

ẋ = f(x) + g(x)u

y = h(x)
(2.51)

x ∈ Rn, u ∈ Rm, y ∈ Rm. The non-affine system in equation (2.1) can be

transformed into this form by adding integrators to all inputs.

2.6.1 Mathematical Background

We define adfgj = [f, gj ] as the Lie Bracket of the smooth vector fields f and gj

and

[f, g] =
∂g

∂x
f −

∂f

∂x
g = Lgf − Lfg.

where gj is the jth column of g(x) in equation (2.51). We note that ad0f = g and

adk
fg = [f, adk−1

f g] for all k ≥ 1.

Define the distributions

∆0 = span{gj , 1 ≤ j ≤ m}

∆i = span{adi
fgj , 0 ≤ l ≤ i, 1 ≤ j ≤ m} i > 0,

which have the recursion properties

∆i+1 = ∆i = adi+1
f ∆0 = ∆i + adf∆i

where adf∆ = span{adfY, Y ∈ ∆}. (By definition ∆0 ⊂ ∆1 ⊂ · · ·∆i.)



2.6. Trajectory Generation Using Feedback Linearization 31

The Lie derivative of a function h with respect to a vector field f

Lfh =
∂h

∂x
f (2.52)

is the scalar function corresponding to the directional derivative of h along the

direction of f . The k-th Lie derivative of h with respect to f is defined recursively

by the function

Lk
fh = LfL

k−1
f h. (2.53)

A distribution ∆ is involutive if and only if, given any pair of vector fields g1

and g2 in ∆, their Lie Bracket [g1, g2] belongs to ∆.

2.6.2 Classical Feedback Linearization

We will make use of the notion of observability in the sequel. A system 2.51 is

said to be observable if

Theorem 2.1. Observability (Sontag [97])

dim(Span(h1, adfh1, . . . , ad
k1−1
f h1, . . . , (hm, adfhm, . . . , ad

km−1
f hm)) = n

for some ki such that
∑m

1=1 ki = n.

Definition 2.2 (Feedback linearizability). The nonlinear system in (2.51) is

feedback linearizable if there is a dynamic feedback

ż = α(x, z, v) z ∈ Rp

u = β(x, z, v) v ∈ Rm
(2.54)

and new coordinates ξ = φ(x, z) and η = ψ(x, z, v) such that in the new coordinates

the system has the form

ξ̇ = Aξ +Bη, (2.55)

where A ∈ R(n+p)×(n+p) and B ∈ R(n+p)×m. If dim z = 0, then we say the system

is static feedback linearizable.
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The system (2.51) has a well defined vector relative degree if there exists a

vector of integers r = (r1, . . . , rm), such that

Bij(x) = Lgj
Lri−1
f hi(x) (2.56)

satisfies detB(x0) 6= 0 and Lgj
Lk
fhi(x) = 0 for every 1 ≤ i ≤ m, 1 ≤ j ≤ m,

k < ri − 1 for all x in a neighborhood of x0.

If the system has well defined vector relative degree, the system can be partially

linearized. To partially linearize the system, differentiate the outputs zi until the

at least one uj explicitly appears. Following this procedure for each output we

obtain the following:











y
(r1)
1

...

y
(rm)
m











=











Lr1
f h1
...

Lrm

f hm











+B(x)u := α(x) +B(x)u. (2.57)

Define ξik = z
(k−1)
i for i = 1, . . . ,m and k = 1, . . . , ri,and denote

ξ = (ξ11 , ξ
1
2 , . . . , ξ

1
r1
, ξ21 , . . . , ξ

2
r2
, . . . , ξrm−1

m )

= (z1, ż1, . . . , z
(r1−1)
1 , z2, . . . , z

(r2−1)
2 , . . . , z(rm−1)

m ).
(2.58)

Selecting η to be a n −
∑

i ri dimensional function such that the coordinate

transformation (ξ, η) = Ψ(x) is a diffeomorphism with Ψ(0) = 0,

u := B(ξ, η)−1[v − α(x)]

x := Ψ−1(ξ, η)
(2.59)
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the system dynamics in (2.51) can be put in the form

ξ̇11 = ξ21

...

ξ̇r11 = vi

...

ξ̇1m = ξ2m

...

ξ̇rm
m = vm

η̇ = q1(η, ξ) + q2(η, ξ)u.

(2.60)

If
∑

ri = n, the system (2.51) is feedback linearizable by static state feedback.

The internal dynamics of the system that result in finding the control input

that maintains the outputs to zero

η̇ = q1(η, 0) + q2(η, 0)u, (2.61)

are called the zero dynamics.

Asymptotically stable zero dynamics are called minimum phase, else they are

considered non-minimum phase. Unstable zero dynamics cannot be ignored in

constrained trajectory generation. In the case that the relative degree is not well

defined, the Dynamic Extension Algorithm can be used to maximize the vector

relative degree. See Isidori [46] or [74] for a thorough discussion of the Dynamic

Extension Algorithm .

The question arises whether or not there exists a set of outputs, such that the

system can be linearized. The following theorem states a necessary and sufficient

condition.

Theorem 2.2. (Isidori [46]) The system (2.51) is locally static feedback lineariz-

able if and only if, in U0, a neighborhood of the origin in Rn:
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1. ∆i is an involutive distribution of constant rank for every i ≥ 0;

2. rank ∆n−1 = n.

Remark 2.1. The theorem implies that there exists outputs λ1(x), . . . , λm(x)

such that, relative to the outputs λi the system has
∑

ri = n in a neighborhood

or the origin. The functions λ1(x), . . . , λm(x) can be constructed by solving a set

of first order partial differential equations of the form

Lgj
Lk
fλi(x) = 0 for all 0 ≤ k ≤ ri − 1, 1 ≤ j ≤ m.

It has been shown by Charlet et al. in [16] that (2.51) with m = 1 local

static feedback linearization is equivalent to dynamic feedback linearization. For

m > 1, necessary and sufficient conditions do not exist for dynamic feedback

linearization. Thus, the difficulty of finding linearizing outputs for multi-input-

multi-output systems is compounded by the fact that the system may not be

static feedback linearizable, but still dynamically feedback linearizable.

Example 2.1. Consider the dynamics of the planar ducted fan shown in Figure

2.1 with unity mass, inertia, distance from the center of mass to the FZb
application

point, and gravitational force.

ẍ = FXb
cos θ + FZb

sin θ (2.62)

z̈ = −FXb
sin θ + FZb

cos θ + 1 (2.63)

θ̈ = FZb
. (2.64)

Choosing outputs to be

z1 = x+ cos(θ) and z2 = z − sin(θ), (2.65)
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we obtain the decoupling matrix:

B(x) =







cos θ 0

sin θ 0






. (2.66)

The vector relative degree is (2, 2). Since B(x) is singular, the system is a candidate

for dynamic feedback linearization. The dynamic extension algorithm in Isidori [46]

can be applied to maximize the vector relative degree with a dynamic compensator

and hopefully feedback linearize the system. Applying the dynamic extension

algorithm, we obtain the coordinate transformation,

σ 7→ FXb
− θ̇2 (2.67)

and the dynamic compensator,

σ̈ = v1 (2.68)

with the new input v1. The decoupling matrix for the extended system

B1(x) =







cos θ − sin θσ

− sin θ − cos θσ






(2.69)

is nonsingular and has vector relative degree (4, 4). Therefore, the system in

equation (2.62) is feedback linearizable, with the outputs in equation (2.65), change

of coordinates in equation (2.67), and the dynamic compensator in equation (2.68).

The attitude of the ducted fan can be found from the following expression:

tan θ =
(mg −mz̈2)

mz̈1
.

The other dependent variables can easily be found once θ is known.

Closely related to dynamic feedback linearization is differential flatness. Fliess

and coworkers in [32] introduced the notion of endogenous feedback, which is
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essentially a dynamic feedback of the form (2.54), but with the added requirement

that the compensator can be uniquely determined as function of x, u and a finite

number of derivatives of u. They have shown that dynamic feedback linearization

via endogenous feedback is equivalent to differential flatness.

2.6.3 Devasia-Chen-Paden Non-minimum Phase Zero-Dynamics

Algorithm

The Devasia-Chen-Paden provides a way to generate trajectories for a class of

systems with unstable zero dynamics. For this algorithm to work, the system must

have a well-defined relative degree and its zero dynamics must have a hyperbolic

fixed point. Chen et al. show in [17] and Devasia et al. in [25] that finding a

solution to the two-point boundary problem

η̇ = s(η, Yd) η(±∞) = 0 (2.70)

will produce a bounded solution to the non-minimum phase zero-dynamics prob-

lem. The solution of the two-point boundary value problem in (2.70) will move

the zero dynamics along the zero dynamics unstable manifold for −∞ < t ≤ t0, to

an initial condition of the zero dynamics at t0, such that the zero dynamics will

acquire the zero dynamics stable manifold at some future time tf .

Remark 2.2. Note that for −∞ < t ≤ t0 and tf < t < ∞ the output is zero.

Truncation of the trajectory is necessary for practical implementation. In addition,

the non-casual part of the truncated trajectory can be shifted to t0.

2.7 Differential Flatness

Definition 2.3. The nonlinear system in (2.1) with states x ∈ Rn is differentially

flat, if there exists a change of variables z ∈ Rm, given by an equation of the form

z = h(x, u, u̇, . . . , u(p)), (2.71)
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such that the states and inputs may be determined from equations of the form

(x, u) = w(z, ż, . . . , z(l)). (2.72)

The change of variable will transform the system (2.1) into the trivial system

ż = v. Differential flatness is not bound to an equilibrium. The transformation

may take place around arbitrary trajectories. We will refer to the change of vari-

ables z as the flat outputs. The flat outputs are not necessarily the sensor outputs

of a system. Note that equation (2.72) is only required to hold locally.

The significance of a system being flat is that all system behavior can be

expressed without integration by the flat outputs and a finite number of its deriva-

tives. That is, referring to Figure 2.3, the problem of finding curves that take the

system from x(0), u(0) to x(T ), u(T ) in equation (2.1) is reduced to finding any

sufficiently smooth curve that satisfies zk(0) and zk(T ) up to some finite number.

There is no need to solve a two-point boundary value problem if the system is

differentially flat.

Once all the boundary conditions and trajectory constraints are mapped into

the flat output space, (optimal) trajectories will be planned in the flat output space

and then lifted back to the original state and input space as shown in Figure 2.3.

The idea is that this methodology will alleviate adjoining the system dynamics in

the optimal control problem formulation. Consequently, the number of variables

in the optimal control problem will be reduced to expedite real-time computation.

It is debatable whether or not the necessary and sufficient conditions for differ-

ential flatness exist. Fliess et al. in [32] and [33] provide necessary conditions and

Charlet et al. [16] provide sufficient conditions for a class of systems. Chetverikov

in [19] is the first to provide necessary and sufficient conditions, but the solution

appears to involve solving a set of nonlinear partial differential equations. Al-

though the work of Chetverikov is promising, one frequently has to resort to trial

and error to construct the flat outputs.

Example 2.2. Suppose we wish to generate trajectories for the system (2.73) from
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Flat space

State space

x(T ), u(T )

x(0), u(0)

(z(T ), ż(T ), . . . , z(l)(T )) =

w−1(x(0), u(0))
(z(0), ż(0), . . . , z(l)(0)) =

w−1(x(T ), u(T )

Figure 2.3: A flat system has the important property that the states and the inputs

can be written in terms of the outputs z and their derivatives. Thus, the behavior

of the system is determined by the flat outputs. Note that the map w is bijective.

the initial point x(0), u(0) to the final point x(T ), u(T ):

ẋ1 = x2

ẋ2 = u1

ẋ3 = u2 cosx2

ẋ4 = u2.

(2.73)

The flat output for this system is given by Chetvirkov in [19] to be z1 = x1 and
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z2 = x3 − x4 cosx2. Taking derivatives, we have,

z1 = x1 ż1 = x2 z̈1 = u1 z
(3)
1 = u̇1

z2 = x3 − x4 cosx2 ż2 = x4 sinx2u1

z̈2 = u2 sinx2u1 + x4 cosx2u
2
1 + x4 sinx4u̇1.

(2.74)

It can be shown that there is a local diffeomorphism between the variables

x1, . . . , x4, u2, u1, u̇1

and the variables

z1, . . . , z
(3)
1 , z2, ż2, z̈2.

Therefore, by specifying the initial and final state, input, and auxiliary state (ξ =

u̇i) we uniquely specify the flat outputs and their derivatives in flat output space.

The problem has been resolved into one of solving an algebraic problem. Moreover,

any curve that satisfies the boundary conditions in the flat output space is a

trajectory of the original system (2.73).

Example 2.3. This example illustrates that the flat output may contain the input.

This problem can be found in Martin et al. [66]:

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1u2.

(2.75)

The flat outputs are z1 = x3 − x1u2 and z2 = x2. It can be shown that there

is a local invertible map between the variables x1, x2, x3, u1, u2, u
(1)
2 , u

(2)
2 and the

variables z1z
(1)
1 , , z

(2)
1 , z2, . . . , z

(3)
2 .

2.8 System Design and Differential Flatness

A salient feature of flight control systems is that the requirements imposed are

often conflicting. In this section, we look at the role differential flatness plays in a
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VTOL design.

The four propeller “Aeroranger” is shown in Figure 2.4. The orientation of

FR

FF

ZB

YB

XB

CG

CL

Larger thrust to balance moments

FL

FB

Figure 2.4: The views of the “Aeroranger” show the body coordinate frame, di-

rection of rotation of the propellers, the definition of the applied forces due to the

ducted fan thrust, and a method used for stabilizing the aircraft in aerodynamic

flight without using aerodynamic surfaces.
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the vehicle is given by

R1 =















cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ















.

(2.76)

R1 maps vectors expressed with respect to body coordinates to inertial coordi-

nates. The Euler angle rotation sequence ψθφ is used to map a vector in inertial

coordinates to body coordinates. We use Euler angles for visual clarity. Quater-

nions may be used to remove the orientation singularities associated with Euler

angles.

The lift (L), drag (D), and side force (Y ) are referenced with respect to wind

coordinates. R2 maps vectors in the wind coordinates to the body coordinates in

terms of the angle of attack (α) and the side slip angle (β):

R2 =















cosα cosβ − sinβ cosα − sinα

sinβ cosβ 0

sinα cosβ − sinα sinβ cosα















. (2.77)

Applying Newton’s laws gives the translational dynamics in inertial coordinates

m











ẍ

ÿ

z̈ − g











= R1











FXB

FYB

FZB











+R1R2











FXA

FYA

FZA











, (2.78)

where (x, y, z) denotes the position, m is the mass, g is gravity, FXB
, FYB

, and FZB

are the applied thrust forces in body coordinates, and FXA
, FYA

, and FZA
are the

aerodynamic forces. The translational equations of motion are written in inertial

coordinates, since we are interested in generating trajectories for the position of

the vehicle at low velocities. The applied thrust forces are fixed in the body as

shown in Figure 2.4.
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Using Euler’s equation in body coordinates (assuming no products of inertia)

gives the rotational dynamics

IxΩ̇x + (Iz − Iy)ΩyΩz = MXb
+MXa

IyΩ̇y + (Ix − Iz)ΩzΩx = MYb
+MYa

IzΩ̇z + (Iy − Ix)ΩxΩy = MZb
+MZa ,

(2.79)

where Ix,Iy, and Iz are the principal moments of inertia, MXb
, MYb

, and MZb

are the body moments due to the differential thrust forces, MXa , MYa , and MZa

are the aerodynamic moments, and Ω1, Ω2, and Ω3 are the angular rates in body

coordinates given by

Ωx = φ̇− ψ̇ sin θ

Ωy = θ̇ cosφ+ ψ̇ cos θ sinφ

Ωz = ψ̇ cos θ cosφ− θ̇ sinφ.

(2.80)

The body moments are

MXb
= kw(FL + FR − FF − FB)

MYb
= lFB(FF − FB)

MZb
= lLR(FL − FR),

(2.81)

where kw is the torque constant of the propeller, lFB is half the distance between

the applied force FF and FB, and lLR is half the distance between the applied force

FL and FR as seen in Figure 2.4.

Example 2.4. Near hover, the “Aeroranger” is differentially flat. Since the system

is near hover, we will assume that the aerodynamic forces FXa , FYa , and FZa in

equation (2.78) are zero. Choose the outputs for the “Aeroranger” to be

z1 = x, z2 = y, z3 = z, z4 = φ. (2.82)

Taking up to the fifth derivative of equation (2.82) and substituting equations

(2.78), (2.79), and (2.80) we can write the flat outputs in terms of the states,
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inputs, and their derivatives.

z
(1)
1 = ẋ z

(2)
1 = ζ1(cos θ cosψ)

z
(1)
2 = ẏ z

(2)
2 = ζ1(cos θ sinψ)

z
(1)
3 = ż z

(2)
3 = −ζ1 sin θ − g

z
(1)
4 = φ̇ z

(2)
4 = f1(ψ, φ, θ, ψ̇, θ̇, φ̇,MXb

,MYb
,MZb

)

z
(3)
1 = f2(ζ1, ζ̇1, ψ, φ, θ, ψ̇, θ̇, φ̇)

z
(3)
2 = f3(ζ1, ζ̇1, ψ, φ, θ, ψ̇, θ̇, φ̇)

z
(3)
3 = f4(ζ1, ζ̇1, ψ, φ, θ, ψ̇, θ̇, φ̇)

z
(4)
1 = f5(ζ1, ζ̇1, ζ̈1, ψ, φ, θ, ψ̇, θ̇, φ̇,MYb

,MZb
)

z
(4)
2 = f6(ζ1, ζ̇1, ζ̈1, ψ, φ, θ, ψ̇, θ̇, φ̇,MYb

,MZb
)

z
(4)
3 = f7(ζ1, ζ̇1, ζ̈1, ψ, φ, θ, ψ̇, θ̇, φ̇,MYb

,MZb
),

(2.83)

where

ζ1 = FL + FR + FF + FB (2.84)

is the combined force of the propellers along Xb as shown in Figure 2.4. In short,

(z1, . . . , z
(4)
2 , z2, . . . , z

(4)
2 , z3, . . . , z

(4)
3 , z4, ż4, z̈4) = Ψ(ξ), (2.85)

where

ξ = (x, y, z, θ, φ, ψ, ẋ, ẏ, ż, θ̇, φ̇, ψ̇,MXb
,MYb

,MZb
, ζ1, ζ̇1, ζ̈1).

The above relation is locally invertible, with the exception of a few points, since

det(
∂Ψ

∂ξ
) =

−ζ61 cos 2θ − ζ
6
1

2IxIyIz

in nonzero. The “Aeroranger” is differentially flat by Definition 2.3. For imple-

mentation, it is desirable to have a closed form solution of equation (2.85). First,
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ψ can be found from the following:

tanψ =
z̈2
z̈1
. (2.86)

Second, θ can be found from the following:

tan θ =
g − z̈3

z̈1 cosψ + z̈2 sinψ
. (2.87)

Using the information provided by two derivatives of equation (2.86), (2.87), the

flat output z4 and then substituting into equation (2.79), it is possible to recover

MXb
, MYb

, and, MZb
. Using equation (2.84), ζ1 may be recovered from the follow-

ing:

ζ1 = m

√

z̈1
2 + z̈2

2 + (z̈3 − g)2. (2.88)

Finally, the applied forces may be recovered using equation (2.88) and equation

(2.81). As a result of using the two argument tangent function, we can avoid the

singularity at θ = π
2 .

Remark 2.3. It is not difficult to show that the “Aeroranger” is differentially flat,

when the aerodynamic forces are not negligible. However, a closed form solution

may be elusive. We will assume that actuation for this system will not only be the

thrusts due to the propellers, but also four aerodynamic surfaces, one on each wing

of the “Aeroranger”. An additional assumption is needed, that the aerodynamic

surfaces only contribute to the aerodynamic moments and not the aerodynamic

forces. We choose the flat outputs the same as those in equation (2.82). We will

assume that the aerodynamic forces are a function of V , α, β. Moreover, we will

assume that the aerodynamic moments are a function of V , α, β, and δi, where

δi i = 1, . . . , 4 is the deflection angle of the ith surface.

First, we will solve for ψ, θ and ζ1. Expressions for α and β can be determined

from

tanα =
w

u
sinβ =

v

V
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where u, v, and w are the body velocities. The body velocities maybe found from











u

v

w











= RT
1











ż1

ż2

ż3











and V =
√

ż21 + ż23 + ż23 . Now, we can write

(ψ, θ, ζ1) = a1(ż1, z̈1, ż2, z̈2, ż3, z̈3, z4) (2.89)

using equations (2.78). Similarly, using equations (2.79), we can write

(M1,M2,M3) = a2(ż1, . . . , z
(4)
1 , . . . , z

(4)
2 , ż3, . . . , z

(4)
3 , z4, ż4, z̈4) (2.90)

where M1 = MXb
+MXa , M2 = MYb

+MYa ,M3 = MZb
+MZa . The combination

of FL, FR, FF , FB, and δi i = 1, . . . , 4 should be optimized, depending on the flight

regime.

Remark 2.4. Martin in [64] showed that a planar approximation of a VTOL is

differentially flat. In addition, Martin also illustrated in [63] that a conventional

aircraft in forward flight is differentially flat. The difficulty has been determin-

ing a set of flat outputs for a VTOL on the configuration manifold SE(3). We

have shown that, with appropriate actuation, an aircraft can be designed that is

differentially flat in both the forward flight and hover flight regimes.

The differential flatness characteristics have been summarized for several VTOL

configurations near hover and in forward flight, as seen in Figure 2.5. The class of

VTOL systems under consideration has rigid rotor blades. Due to the complexity,

we do not consider thrust vectoring as an option for the 3-D systems or engine air

bleeds for actuation. All configurations are assumed to have aerodynamic surfaces

in forward flight that contribute only to the aerodynamic moments, and not the

aerodynamic forces. Table 2.8 is a summary of the results.
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VTOL Hover actuation Flat near Flat in forward flight?

hover?

Ducted Fan Thrust vectored ducted fan Yes Yes, with no vectoring;

unknown otherwise

Two Ducted Fans Two ducted fans Yes Yes

“Aeroranger” Four propellers Yes Yes

“Aerojeep” Four ducted fans Unknown Unknown

Table 2.1: Summary of the flatness characteristics of several simple VTOL con-

figurations. Flat in forward flight implies that the mixing of hover actuation and

aerodynamic surfaces is possible.

Two Ducted Fans

AerorangerAerojeep

Ducted Fan with Thrust Vectoring

g

Figure 2.5: Two planar VTOL configurations and two six DOF configurations
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2.9 Parameterization of the Output

In the previous section, techniques were presented to reduce or eliminate the dy-

namic constraints by selecting a special set of variables (outputs) that could com-

pletely characterize the states and inputs of the system under consideration. In

this section, we will discuss how to select the outputs from a finite dimensional

space, in order that the problem under consideration can be efficiently solved.

There are many curves that can be used to approximate the outputs (Fourier

series, polynomials, rational segments, etc.). Aside from accurately representing a

basis of the solution of the trajectory generation problem under consideration with

a reasonable number of decision variables, the main requirements of the curve are

the ability to set a level of continuity Ck, without adding additional constraints.

Local support is also a desirable property of the basis functions. Local support

means that the curves only influence a region of the curve local to the current

point of interest. Specifying the level of continuity is necessary, since the states

and inputs are a function of the outputs and their derivatives. Local support is

favorable for numerically stable computer implementation. A high order single

polynomial would be necessary to satisfy complex constraints. Solving for the

coefficients of the polynomial would be an inefficient and ill-conditioned operation.

A solution that meets the main requirements is piecewise Bezier polynomials or

B-splines. An overview of B-splines, from which much of the following is derived,

can be found in Deboor [9].

An output y(t) may be defined in terms an order k Bezier curve by

y(t) =
n
∑

i=0

Ni,k(t)Ci 0 ≤ t ≤ 1.

The coefficients Ci are called control points. The basis functions Ni,n are the

kth-order Berstein polynomials given by

Ni,k =





k

i



 (1− t)k−iti.
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A B-spline curve is constructed from Bezier curves joined together with a pre-

scribed level of continuity between them. The points at which the curves are

joined are called the breakpoints. The breakpoints are a strictly increasing se-

quence of real numbers. Figure 2.6 provides an example of a B-spline output with

and a constraint. A nondecreasing sequence of real numbers containing breakpoints

τ = t0, . . . , tK are called the knot vector. The difference between the breakpoints

and the knot vector is that there may contain additional breakpoints in the knot

vector containing the same value. Frequently, the breakpoints are referred to as

the knot points. The number of times a breakpoint appears in the interior of knot

vector is known as the multiplicity mi. The smoothness si of a breakpoint provides

the level of continuity at a breakpoint. A breakpoint is Csi−1 times continuously

differentiable. The smoothness and multiplicity are related by the following:

ki = si +mi for interior breakpoints ∈ (t0, tp)

where ki is the order of the piecewise polynomial segments. A recurrence relation

is used to define the B-spline basis functions Bi,j of the B-spline curves

y(t) =
n
∑

i=0

Bi,k(t)Ci t0 ≤ t ≤ tp.

Given the knot vector τ and the order k, the B-spline basis functions are defined

by:

Bi,0(t) =







1 if ti ≤ t < ti+1

0 otherwise

Bi,k(t) = t−ti
ti+k+1−ti

Bi,k−1(t) +
ti+k−t

ti+k−ti+1
Bi+1,k−1(t).

(2.91)

B-spline Curve Properties

A comprehensive list of B-spline properties can be found in Deboor [9] and Piegl

and Tiller [81]. Several important properties of B-splines that are useful are listed:

1. Local Support: the B-spline basis function Bi,k is zero outside the interval

[ti, ti+k].
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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−0.5

0

0.5

1

1.5

2

2.5

3

x 
(m

)
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B−spline Curve
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Figure 2.6: The B-spline curve has six intervals (l = 6), forth order (k = 4), and

is C3 at the breakpoints (or smoothness s = 3). The nine control points are the

decision variables.

2. Number of Control Points: the number of control points (B-spline coeffi-

cients)

P = lk −
l−1
∑

i=0

si,

where l is the number of intervals, k the order, and s the smoothness. If

all breakpoints have the same smoothness s = si∀i, the number of control

points is P = l(k − s) + s.

3. Convex Hull: if t ∈ [ti, ti+1), then y(t) lies within the convex hull of control

points Ci−k−1, . . . , Ci.

4. Non-negativity: Bi,k ≥ 0 for all k,i, and t.
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5. Differentiability: all derivatives of the B-spline curve exits on the interior of

the breakpoint span. The curve is Csi−1 times continuously differentiable at

the breakpoints.

Derivatives of the B-spline curve are

y(j)(t) =
n
∑

i=0

B
(j)
i,k (t)Ci t0 ≤ t ≤ tp,

where the jth derivative of the B-spline basis function is given by

B
(j)
i,k (t) = k−1

k−i−j

[

t−ti
ti+k+1−ti

B
(j)
i,k−1(t) +

ti+k−t

ti+k−ti+1
B

(j)
i+1,k−1(t)

]

.

j = 0, . . . , k − 1
(2.92)

Other possibilities exist for the use of B-splines to approximate outputs. Func-

tions of B-splines of the form z = h(y(t)) are useful when piecewise polynomials

are not sufficiently accurate to represent the basis functions of the optimal control

problem under consideration. For example, consider a three-link model of a fish

with the angle of one link as the input (flapping motion) into the system. In this

situation, a sinusoid with varying amplitude may be a better choice of output than

a strictly piecewise polynomial.

Quaternion as basis functions

Quaternions are a convenient choice of curves to represent orientations in SO(3).

However, the orientation is represented by the quaternion q ∈ R4 with one con-

straint ||q||= 1. This implies that if B-spline curves are used to represent each

component of the quaternion, it will also be necessary to preserve the nonlinear

unit norm condition when solving for the control points, which is clearly undesir-

able.

Given a vector v = θv̂, with v̂ ∈ S2, the exponential

exp(v) =
∞
∑

i=0

vi = (cos θ, v̂ sin θ) ∈ S3
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is the unit quaternion which represents the rotation by angle 2θ about the axis v̂,

where vi is computed using quaternion multiplication.

Suppose that it is desired to move the orientation of an object in SO(3) from

one point to another point. Assume that it is required to rotate about n known

axes v1, v2, vn, vi ∈ R3 consecutively starting from a known initial quaternion q0.

The quaternion evolution may be written

q(t) = q0

n
∏

i=1

exp (viyi(t)),

where yi(t) are B-spline curves. Since ||exp(viyi)||= 1 ∀ i, the quaternion curves

are in S3; thus, the unit norm condition is automatically satisfied. It can easily be

determined that local controllability of the curve is preserved.

Another representation of the quaternion may be the following:

q(t) = q0 exp











ω(t) cos y1(t) cos y2(t)

ω(t) cos y2(t) sin y1(t)

ω(t) sin y2(t)











, (2.93)

where ω(t), y1(t), and y2(t) are B-spline curves. In this case, the axis of rotation

ω(t) is allowed to change.

2.10 Summary and Conclusions

In this chapter, we presented an overview of of the classical numerical methods

for solving constrained optimal control problems. Solving a constrained optimal

control problems by the maximum principle, or related necessary conditions, is

known as an indirect method. The problem does not contain a closed form solu-

tion, multiple shooting or relaxation techniques can be employed for a numerical

solution. The advantage of indirect methods is that very accurate solutions can be

obtained. The main disadvantage of indirect methods is their lack of robustness

to a poor initial guess. We presented a homotopy method that uses a database
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of solutions as an initial guess. The technique looks promising, but suffers from

undesirable bifurcations.

Direct methods obtain solutions through the direct minimization of the objec-

tive functions subject to the constraints imposed by the optimal control problem.

Two direct methods were discussed: direct collocation and the methods of ad-

joints. Direct collocation has the advantage that it fairly robust to the initial

guess. The disadvantage it that the problem formulation usually results in large

optimization problems, not amenable to real-time implementation, due to finite

dimension approximations of the optimal control problem. The adjoint method

has the advantage that its solution accuracy rivals that of indirect methods. The

disadvantage of the adjoint method is that is cumbersome to use with trajectory

constraints and is prone to integration problems over large time periods.

In addition, we discussed nonlinear control techniques that are useful in trajec-

tory generation. Namely, if a system is differentially flat, one can design arbitrary

trajectories to take the system from any initial and final conditions.

Finally, we discussed using differential flatness in VTOL design and demon-

strated differential flatness for a neoteric unmanned VTOL design.
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Chapter 3

The Nonlinear Trajectory Generation (NTG)

Algorithm

In the previous chapter, several classical techniques for optimal trajectory genera-

tion of constrained systems were presented. The advantages and disadvantages of

each technique for implementation in a real-time environment were discussed. In

this chapter, we present a new approach to trajectory generation that combines

the benefits of several classical trajectory generation techniques. There are three

primary steps to the real-time nonlinear trajectory generation (NTG) approach we

propose. The first is to determine outputs, such that equation (2.1) can be mapped

to a lower dimensional output space. Once this is done, the cost in equation (2.2)

and the constraints in equation (2.3) can also be mapped to the output space. The

second is to parameterize the outputs in terms of B-spline curves. Finally, nonlin-

ear programming is used to solve for the coefficients of the B-splines to minimize

the cost subject to constraints in output space.

3.1 Transforming the System Dynamics to a Lower Di-

mensional Space

The first step of the NTG algorithm is to map the system dynamics in equation

(2.1) to a lower dimensional space. This is done by exploiting the concepts of

feedback linearization and differential flatness in Section 2.6 and 2.7, respectively.
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To summarize, our goal is to find outputs

z = h(x, u) z ∈ Rm, (3.1)

such that the original states x and inputs u can be recovered from the outputs and

their derivatives. That is,

ξ = Φ(x, u) ξ = (z1, . . . , z
r1
1 , . . . , zm, . . . , z

rm
m ) (3.2)

Since Φ is at least locally invertible, we will assume that

x = w1(ξ) and u = w2(ξ) (3.3)

can be written in closed form. If such outputs can be found, the system is called

differentially flat.

3.1.1 Differentially Flat Systems

If the system dynamics are differentially flat, then the algebraic equations (3.3) im-

plicitly reflects the system dynamics as in (2.1). Substituting (3.3) into equations

(2.2) and (2.3), the optimal control problem can be reformulated in the following

form:

min
ξ
J := φ0(w1(ξ0), w2(ξ0), t0) + φf (w1(ξf ), w2(ξf ), tf ) + (3.4)

∫ tf

t0

L(w1(ξ), w2(ξ), t)dt

subject to:

lb0 ≤ ψ0(w1(ξ0), w2(ξ0)) ≤ ub0,

lbf ≤ ψf (w1(ξf ), w2(ξf )) ≤ ubf ,

lbt ≤ S(w1(ξ), w2(ξ), t) ≤ ubt.

In this optimal control problem the decision variables are ξ which are the
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outputs and their derivatives. There are several issues that need to be addressed:

1. We have noted in Section 2.7 that not all systems are differentially flat. In

general, even if flat outputs can be proven to exist, finding the flat outputs

requires solving a set of nonlinear partial differential equations, for which an

analytic solution might not exist.

2. There may not be a closed form solution to Φ−1.

3. The flat output transformation may complicate the expressions for the ob-

jective and constraint functions.

In the next section, we will develop a systematic approach to address the above

issues.
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3.1.2 An Algorithm to Map the System Dynamics to Lower Di-

mensional Space

Algorithm 3.1. Steps to map system dynamics into a lower dimensional space.

Input: System dynamics in the form of equation (2.51)

Check: Static feedback linearization (Theorem 2.2)

If Static feedback linearizable and resulting PDE solvable

Output: Flat outputs, end algorithm

Input: Trial set of m outputs

Compute: Zero dynamics from equation (2.61)

Compute: Decoupling matrix from equation (2.56)

If Relative degree well defined

Output: Zero dynamics, end algorithm

Else

Apply: (MIMO only) Dynamic Extension Algorithm in Isidori [46]

If Dynamic extension algorithm succeeds

Output: Zero dynamics and dynamic compensator, end algorithm

Else

Compute: Equality constraints due to ill-defined relative degree

Output: Zero dynamics, dynamic compensator and

equality constraints due to ill-defined relative degree, end algorithm

Managing the zero dynamics and ill-defined relative degree

If the decoupling matrix has rank(B(x)) < m, we apply a linear transformation to

the input vector u = T û so that there are m − q zero columns in the decoupling
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matrix










z
(r1)
1

...

z
(rm)
m











=











Lr1
f h1
...

Lrm

f hm











+B(x)u := α(x) + E(x)û

η̇ = q1(η, ξ) + q2(η, ξ)u,

(3.5)

where

ξ = (z1, ż1, . . . , z
(r1−1)
1 , z2, . . . , z

(r2−1)
2 , . . . , z(rm−1)

m )

and

E(x)û =





E11 0

E21 0



































û1
...

ûq

ûq+1

...

ûm































(3.6)

with rank(E11) = q. Now, equation (3.5) can be written
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z
(rq)
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f h1
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û1
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ûq











(3.7)











z
(rq+1)
1

...

z
(rm)
q











=











L
rq+1

f hq+1

...

Lrm

f hm











+ E21











û1
...

ûq











(3.8)

η̇ = q1(η, ξ) + q2(η, ξ)û (3.9)

Equation (3.7) indicates which states and inputs can be determined from the

outputs. Equation (3.8), due to the ill-defined relative degrees, and equation (3.9),

due to the zero dynamics, will remain as dynamic constraints. These constraints

must be reflected in our algorithm. This is done through introduction of additional

“pseudo” outputs zm+1, . . . , zp+m such that all the remaining states and inputs are
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observable. A test for observability was given in Theorem 2.1.

In summary, when it is not possible or desirable to use the flat output, addi-

tional outputs along with equality constraints must be introduced to represent the

original system dynamics. Let

z = h(x, u) z ∈ Rp+m (3.10)

include the original and extended outputs, such that the original states x and

inputs u can be recovered from the outputs and their derivatives as in the following:

ξ = Ψ(x, u) ξ = (z1, . . . , z
r1
1 , . . . , zp+m, . . . , z

rp+m

p+m ) (3.11)

x = w1(ξ) and u = w2(ξ)

Υ(ξ) = 0, Υ ∈ Rp
(3.12)

where Υ(ξ) are constraints due to the “pseudo” outputs. The optimal control

formulation in (3.4) is extended to include the equality constraints due to the

additional “pseudo” outputs to the following:

min
ξ
J := φ0(w1(ξ0), w2(ξ0), t0) + φf (w1(ξf ), w2(ξf ), tf ) + (3.13)

∫ tf

t0

L(w1(ξ), w2(ξ), t)dt

subject to:

Υ(ξ) = 0 (3.14)

lb0 ≤ ψ0(w1(ξ0), w2(ξ0)) ≤ ub0, (3.15)

lbf ≤ ψf (w1(ξf ), w2(ξf )) ≤ ubf , (3.16)

lbt ≤ S(w1(ξ), w2(ξ), t) ≤ ubt. (3.17)
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3.2 Parameterization of the Flat Outputs and “Pseudo”

Outputs

The second step to the NTG algorithm was parameterizing the outputs with a

finite-dimensional approximation. In Section 2.9, we explained the properties of

B-splines that make them desirable as basis functions to parameterize the outputs.

These include including compact (local) support, ease of enforcing continuity at

breakpoints, and numerical stability. For each output zi , the order ki , continuity

Cs or smoothness si, and knot breakpoints τi = t0, ..., tKi
will be selected in

consideration of the maximum derivative that occurs in the output and the number

of desired decision variables.

A sample spline trajectory is depicted in Figure 3.1.

The outputs are written in terms of finite dimensional B-spline curves as:

z1 =
∑q1

i=1Bi,k1(t)C
1
i for the knot breakpoint sequence τ1

z2 =
∑q2

i=1Bi,k2(t)C
2
i for the knot breakpoint sequence τ2

...

zp+m =
∑qp+m

i=1 Bi,kq(t)C
p+m
i for the knot breakpoint sequence τp+m

and qi = li(ki − si) + si

whereBi,kj
(t) is the B-spline basis function defined in Section 2.9 and li = dim(τi)−

1 as the number of knot intervals for the ith output. After the outputs have been

parameterized in terms of B-spline curves, the coefficients of the B-spline basis

functions will be found using nonlinear programming.

3.3 Transformation into a Nonlinear Programming Prob-

lem

The last step to the NTG algorithm is to transform the optimal control problem,

represented in the new coordinates by equations (3.14) through (3.17), into a

nonlinear programming problem. Let dc = t0, . . . , tN denote the collocation points.
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Figure 3.1: In this hypothetical problem, the B-spline curve has six intervals (l =

6), fourth order (k = 4), and is C3 at the breakpoints (or smoothness s = 3). The

constraint on the B-spline curve (to be larger than the constraint in this example)

will be enforced at the 21 collocation points. The nine control points are the

decision variables.
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The collocation points are the points in the time interval that the constraints are

enforced (see Figure 3.1). The integration points or mesh points must also be

specified. Without loss of generality, we will assume that the integration points

are identical to the collocation points and the same for each constraint.

Integration

The integral I =
∫ tP
t0
L̃(t)dt can be approximated using a quadrature rule, which

is a sum of the form

Î =
P
∑

i=0

µiL(ti),

where the weights µi and the collocation points ti are determined in advance. The

P -point form of these rules typically obtain a convergence rate of O(P−r) for some

integer r ≥ 1, provided that the integrand has sufficient continuity. For example,

the error using Simpson’s rule is |Î−I|= O(P−4) provided that L̃ has at least four

continuous derivatives. An overview of quadrature methods can be found in Stoer

and Burlisch [99].

Using the evaluation rules in Section 2.9, the B-splines will have the sparse form

as shown in equation (3.18) when evaluated at each of the prescribed collocation

points di.
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(3.18)

Let

Zi(t) := z
(0)
i (t0), z

(1)
i (t0), . . . , z

(ri)
i (t0), . . . , z

(0)
i (tN ), z

(1)
i (tN ), . . . , z

(ri)
i (tN ) ∈ R(ri+1)×dc

denote an output zi and its derivatives evaluated at the all collocation points. Let

Z(ts) := (Z1(ts), . . . , Zp+m(ts)) designate ξ evaluated at the time ts ∈ dc. Let Gi

be the collocation matrix resulting from the B-spline basis functions for the ith

output in equation 3.18 and the B-spline coefficients for the ith input as

Ui := Ci
1, C

i
2, . . . , C

i
li(ki−si)+si

∈ Rli(ki−si)+si .
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Let U := (U1, . . . , Up+m) denote the B-spline coefficients for all outputs. These

are the decision variables in the nonlinear programming problem.

The cost in equation (3.14) is written

J(U) ≈ φ0(w1(Z(t0)), w2(Z(t0), t0) + φf (w1(Z(tf )), w2(Z(tf ), tf )+

N
∑

j=0,j=j+P

P
∑

k=0

µkL(w1(Z(tk+j), w2(Z(tk+j), tk+j)
(3.19)

where µk is dependent on the quadrature. The trajectory constraints in equations

(3.15) and (3.17) are written

Υi(U) = Υ(w1(Z(ti)), w2(Z(ti)), ti) i = 1, . . . , N

Si(U) = S(w1(Z(ti)), w2(Z(ti)), ti) i = 1, . . . , N.
(3.20)

Similarly, the initial and final constraints in equations (3.16) and (3.17), respec-

tively, are

ψ0(U) = ψ0(w1(Z(t0), w2(Z(t0))

ψf (U) = ψf (w1(Z(tf ), w2(Z(tf )).
(3.21)

Let c(U) denote all the constraints

(ψ0(U),Υ1(U), . . . ,ΥN (U), w1(U), . . . , SN (U), ψf (U)).

The nonlinear programming problem can be stated in the form

min
U∈RM

F (U) subject to lb ≤ c(U) ≤ ub

whereM =

m+p
∑

j=1

= lj(kj − sj) + sj .
(3.22)

In Section 2.4 we noted that the gradient of the cost and the constraints were

necessary for efficient solutions by the nonlinear programming solver. The gradient
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of the cost function with respect to the decision variables U is

∂J

∂U
=
∂φ0(w1(Z(t0)), w2(Z(t0), t0)

∂Z(t0)

∂Z(t0)

∂U
+

∂φf (w1(Z(tf )), w2(Z(tf ), tf )

∂Z(tf )

∂Z(tf )

∂U
+

N
∑

j=0,j=j+P

P
∑

k=0

µk

∂L(w1(Z(tk+j), w2(Z(tk+j), tk+j)

∂Z(tk+j)

∂Z(tk+j)

∂U

(3.23)

and the gradient of the trajectory constraints are

∂Si

∂U
=
∂S(w1(Z(ti)), w2(Z(ti)), ti)

∂Z(ti)

∂Z(ti)

∂U
. (3.24)

The gradients of the trajectory constraints (Υ(U)) initial time (ψ0(U)) and final

time constraints (ψf (U)) can be computed in a similar manner. The gradients

∂Z(ts)

∂U

are the components of collocation matrix (3.18) at time ts.

All results produced in this thesis use the nonlinear programming package

NPSOL. NPSOL does not accept analytical Hessians; it uses the BFGS algorithm

to estimate the Hessian.

The NTG software package is an implementation of the above stated algorithm.

Matrix multiplication optimized for the structure of 3.18 is used throughout the

package. The NTG software package requires the following information:

1. The Optimal Control Problem in equations (2.1), (2.2), and (2.3) trans-

formed into the form of equations (3.14) through (3.17).

2. The maximum derivative that occurs in each output.

3. The gradients of equations (3.14) through (3.17) with respect to ξ.

4. The “active variables”. That is, an array indicating the which components

of ξ are being used to compute the nonlinear cost and constraints.
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5. B-spline properties of each output: knot point sequence, order, and smooth-

ness.

6. Collocation points.

7. Type of quadrature used to approximate the integration (e.g. trapezoidal,

Simpson, etc.).

3.4 Conclusion

There were two main components to this chapter. First, we derived an algorithm

to map system dynamics to a lower dimensional space 3.1. This algorithm applies

to differentially flat as well as non-flat systems. Second, we develop the main result

of the thesis: the NTG algorithm.Finally, the NTG software package is described,

which is an implementation of the NTG algorithm. The NTG software package

is an efficient set of routines for the real-time solution of optimal, constrained

trajectory generation problems that combines the elements of geometric control,

B-splines, and nonlinear programming.
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Chapter 4

NTG Performance Comparisons

In this chapter, several comparisons are used to assess the performance of the NTG

software package. Version 2.3 of NTG using the sequential quadratic programming

solver NPSOL will be used in all computations.

4.1 An Investigation of NTG, Differential Inclusion,

and Collocation Integration Accuracy

In this section, we examine a problem investigated by Fahroo et al. in [28]. Fahroo

revisits the paper by Conway et al. [22] which attempts to refute Seywald’s paper

[94] on differential inclusions. Fahoo’s results agrees with Seywald in that using

the differential inclusion transcription method appears to reduce the size of the

nonlinear programming problem, without a loss of accuracy. Since the method

of differential inclusions is philosophically related to our method, we will put our

results along those of Seywald, Conway, and Fahroo.

The problem under consideration is a simple cart problem which admits an

analytical solution (see Fahroo et al. [28]). The equations of motions are

ẋ1 = x2 ẋ2 = −x2 + u. (4.1)
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The cost function to be minimized is

J :=

∫ 2

0
u2dt. (4.2)

The optimal cost of .577678 is provided by Fahroo et al. in [28]. The initial

conditions are

x1(0) = 0, x2(0) = 0, (4.3)

and the final time constraint is

x1(2)− 2.694528x2(2) + 1.155356 = 0. (4.4)

It is obvious that if we select the output z1 = x1 the equations of motion in

(4.1) are differentially flat. The output is parameterized with a B-spline with order

and smoothness k = 7 and s = 6, respectively. The number of knot intervals is

l = 2. The results of running NTG and the other transcription techniques are

found in Table 4.1.

The comparison is made with number of parameters versed optimality and

error in approximating the equations of motion. Since the system is differentially

flat, there is no error in approximating the equations of motion as with the other

techniques. Table 4.1 shows that the NTG approach performs well over other

transcription techniques when one compares cost versus the number of parameters.

Higher-order quadrature techniques are useful in NTG since the inputs are written

in terms of higher derivatives of the output.

4.2 Comparison of NTG and RIOTS

In this section, a comparison will be made between NTG and RIOTS [90]. RIOTS

uses the method of adjoints, outlined in Section 2.5.2, for the solution of optimal

control problems. RIOTS performs well for systems without constraints. How-

ever, once constraints are added to the optimal control problem, the algorithm

performance quickly degrades. Direct collocation was not considered comparative
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Method Cost Number Number

collocation parameters

intervals

Simpson collocation .577668 5 18

Simpson collocation .577682 20 63

Pseudospectral .577679 5 18

Pseudospectral .577678 20 63

Spectral Differential Inclusion .577679 5 12

Spectral Differential Inclusion .577678 20 42

NTG (Simpson quadrature) .5776891 10 8

NTG (Simpson quadrature) .5776787 20 8

NTG ( Milne quadrature) .5776780 5 8

NTG ( Milne quadrature) .5776779 10 8

Table 4.1: Summary of results of simple cart comparison showing that exploiting

differential flatness compares favorably with other transcription techniques.
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in this problem, so the results are omitted. A comparison measure was based on

computation times and convergence from random initial conditions. All tests were

conducted on a Sun Ultra 10 333 MHz computer.

The problem used for the comparison is the forced van der Pol oscillator. The

cost, dynamics, and constraints of the problem are the following:

min
u
J(u)

.
=

1

2

∫ 5

0
x21 + x22 + u2dt

subject to

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + (1− x21(t))x2(t) + u(t)

x1(0) = 1, x2(0) = 0, x2(5)− x1(5)− 1 = 0.

The forced van der Pol oscillator is differentially flat with the output z1(t) =

x1(t) This was exploited when implementing this problem in the NTG code. The

smoothness and order of the B-spline parameterization for each interval was taken

to be three and five, respectively. The number of collocation points was chosen to

be four times the number of coefficients.

For RIOTS, the input was parameterized by a second order B-spline for each

interval. Trapezoidal integration was used in both software packages.

First, a comparison was made between CPU usage and the cost. Each point

on the first plot of Figure 4.1 is the average cost and CPU time of 100 random

initial guesses for the free variable coefficients in both RIOTS and NTG. The plot

shows that as the number of coefficients representing the input in RIOTS and the

output in NTG was increased, the lower the cost. RIOTS needed a minimum of

11 intervals for convergence from a random initial guess, while NTG needed only

one interval.

The second plot in Figure 4.1 shows the trajectories at the lowest number of

intervals that converged for both RIOTS and NTG. Table 4.2 shows that NTG’s

computation time is one eighth that of RIOTS with a 12 percent increase in cost

for the minimum interval case.
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Figure 4.1: RIOTS and NTG van der Pol comparison
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Method CPU Time (s) Intervals Cost

NTG .002 1 1.9127

RIOTS .0178 11 1.7081

NTG .1191 30 1.6859

RIOTS .2261 200 1.6857

Table 4.2: RIOTS and NTG van der Pol comparison

The third plot in Figure 4.1 shows that both RIOTS and NTG converge to

same cost for increasing numbers of coefficients. The results of this comparison

show that for low intervals NTG can compute trajectories at significantly lower

CPU times than RIOTS at comparative cost. For some real-time applications

computing a feasible, albeit sub-optimal, trajectory may be necessary as a result

of processing limitations.

4.3 An Investigation of the Accuracy of NTG vs. Shoot-

ing: The Goddard Problem

Seywald and Cliff in [95] solved the Goddard problem for different dynamic pres-

sure constraints. Since they employ a combination of the Minimum Principle and

the shooting techniques, there is no finite dimensional approximation to the solu-

tion. Therefore, the investigation in this section will be to determine how well the

NTG solutions approximates the solution to the Goddard problem. We could not

get RIOTS to converge for this problem.

The Goddard problem is stated as

min
u,T

J(u, T ) := −h(T ) (4.5)
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subject to

V̇ =
1

m
(u−D(h, V ))−

1

h2
, D(h, V ) =

1

2
CDAρ0V

2eβ(1−h) V (0) = 0

ḣ = V h(0) = 1

ṁ = −
1

c
u m(0) = 1

0 ≤ u(t) ≤ 3.5,

(4.6)

where β = 500, CD = 0.05 and Aρ0 = 12400. The endpoint constraint m(T ) = .6

means that there is no more fuel left in the rocket and the trajectory constraint on

the dynamic pressure is 1
2Aρ0V

2 ≤ 10. See [95] for a complete variable description.

Applying the NTG algorithm 3.1 shows that this problem is not differentially flat.

Choosing the outputs z1 = m, we obtain zero dynamics from algorithm 3.1:

ḧ =
1

z1
(ż1 −D(ḣ, h))−

1

h2
. (4.7)

The additional “pseudo output” z2 = h is necessary so that the zero dynamics are

observable to the nonlinear programming problem. As a result of the Goddard

problem not being differentially flat, the additional equality constraint in equation

(4.7) must be included in the NTG problem. Both outputs will use an order k = 5

and a smoothness of s = 2.

Referring to Table 4.3, the difference in the optimal cost between the minimum

and maximum number of knot intervals is approximately 1500m. The equality

constraint error was found by taking the maximum error in equation (4.7) over

2000 equally spaced intervals in [0, T ]. Our results in Table 4.3 look accurate when

comparing to the plot Seywald and Cliff provide in [94].

4.4 Variable Space Reduction

The research in this section has been the result of joint research with Nicolas Pe-

tit. A preliminary version of this material has appeared in [79]. In this section

we provide numerical investigations for an example that exhibits an explicit rela-
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Intervals Cost Maximum equality Number

constraint collocation

error intervals points

5 -1.012467 6.5e-3 40

10 -1.012661 8.4e-4 60

20 -1.012711 3.3e-4 80

25 -1.012713 1.0e-4 100

30 -1.012714 8.5e-5 120

Table 4.3: NTG Goddard example results showing the increase in accuracy in

solution as the number of knot intervals is increased

tion between relative degree and computation time for a single-input single-output

system. The relative degree of the system will directly relate to the amount of

inversion used in the optimization problem. The computational implications of in-

version are investigated. By example, we conclude that more inversion significantly

increases the speed of execution with no loss in the rate of convergence.

For either open-loop reference trajectory design or receding horizon techniques,

this example illustrates that the choice of adequate variables for representing a

system and its dynamics is crucial in the context of implementation of real-time

trajectory generation.

Classical collocation

A numerical approach to solving this optimal control problem is to use the direct

collocation method outlined in Hargraves and Paris [41]. The idea behind this ap-

proach is to transform the optimal control problem into a nonlinear programming

problem. This is accomplished by discretizing time into a grid of N − 1 intervals

t0 = t1 < t2 < . . . < tN = tf (4.8)
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and approximating the state x and the control input u as piecewise polynomials

x̂ and û, respectively. Typically a cubic polynomial is chosen for the states and a

linear polynomial for the control on each interval. Collocation is then used at the

midpoint of each interval to satisfy equation (2.1). Let x̂(x(t1)
T , ..., x(tN )T ) and

û(u(t1), ..., u(tN )) denote the approximations to x and u, respectively, depending

on (x(t1)
T , ..., x(tN )T ) ∈ RnN and (u(t1), ..., u(tN )) ∈ RN corresponding to the

value of x and u at the grid points. Then one solves the following finite dimension

approximation of the original control problem in equation 2.1











































min
y∈RM

F (y) = J(x̂(y), û(y))

subject to

˙̂x− f(x̂(y), û(y)) = 0, lb ≤ c(x̂(y), û(y)) ≤ ub,

∀t =
tj + tj+1

2
j = 1, . . . , N − 1,

(4.9)

where y = (x(t1)
T , u(t1), . . . , x(tN )T , u(tN )), and M = dim y = (n+ 1)N .

Inverse dynamic optimization

Seywald in [94] suggested an improvement to the previous method (see also Bryson

[10]). Following this work, one first solves a subset of system dynamics in equa-

tions (2.1) for the the control in terms of combinations of the state and its time

derivative. Then, one substitutes for the control in the remaining system dynamics

and constraints. Next, all the time derivatives ẋi are approximated by the first

order finite difference approximations

˙̄x(ti) =
x(ti+1)− x(ti)

ti+1 − ti

to get

p( ˙̄x(ti), x(ti)) = 0

q( ˙̄x(ti), x(ti)) ≤ 0







i = 0, ..., N − 1.
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The optimal control problem is turned into







































min
y∈RM

F (y)

subject to

p( ˙̄x(ti), x(ti)) = 0

q( ˙̄x(ti), x(ti)) ≤ 0.

(4.10)

where y = (x(t1)
T , . . . , x(tN )T ), andM = dim y = nN . As with the Hargraves and

Paris method, this parameterization of the optimal control problem in equation

(2.1) can be solved using nonlinear programming.

The dimensionality of this discretized problem is lower than the dimensionality

of the Hargraves and Paris method, where both the states and the input are the

unknowns. This leads to substantial improvement in numerical implementation.

NTG Approach

In fact, it is usually possible to reduce the dimension of the problem further. Given

an output, it is generally possible to parameterize the control and a part of the

state in terms of this output and its time derivatives. In contrast to the previous

approach, one must use more than one derivative of this output for this purpose.

We propose the methodology outlined in the in Chapter 3, in particular, algorithm

3.1, that builds on the concept of differential flatness.

Comparisons

Our approach is a generalization of inverse dynamic optimization. Let us summa-

rize the different ways we can write the optimal control problem:

• “Full collocation” solving problem (4.9) by collocating (x, u) = (x1, ..., xn, u)

without any attempt of variable reduction. After collocation, the dimension

of the unknowns space is O(n+ 1).

• “Inverse dynamic optimization” solving problem (4.10) by collocating x =
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(x1, ..., xn). Here the input is eliminated from the equation using one deriva-

tive of the state. After collocation the dimension of the unknowns space is

O(n).

• “Flatness parametrization” (Maximal inversion), which is our approach, solv-

ing problem (2.1) using Algorithm 3.1. After collocation, the dimension of

the unknowns space is O(n− r + 1).

4.4.1 Example

The example presented illustrates the benefits of transforming the optimization

problem to the lowest space possible. The system under consideration is an aca-

demic example, without any particular physical meaning, chosen to contain various

nonlinearities. Without loss of generality, its triangular form is chosen for the sake

of simplicity of the presentation. By considering different outputs with increasing

relative degrees results in different formulations of the optimal control problem

from the full collocation to the flatness parameterization. Finally, runs done with

these different approaches will be compared.

We consider the following fifth-order single-input dynamics



















































ẋ1 = 5x2

ẋ2 = sinx1 + x22 + 5x3

ẋ3 = −x1x2 + x3 + 5x4

ẋ4 = x1x2x3 + x2x3 + x4 + 5x5

ẋ5 = −x5 + u

and the following optimal control problem: find [0, 1] 3 t 7→ (x, u)(t) that mini-

mizes

J =

∫ 1

0

(

x21(s) +
1

100
u2(s)

)

ds, (4.11)
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subject to the constraints

(x1, x2, x3, x4, x5, u)(0) = (0, 0, 0, 0, 0, 0)

(x1, x2, x3, x4, x5, u)(1) = (π, 0, 0, 0, 0, 0)

∀i =∈ {1, 2, 3, 4, 5}, |xi|≤ 100

|u|≤ 100.

To solve this problem by collocation, it is possible to use the three different

approaches presented in the previous section

• “Full collocation”. One must consider (x1, x2, x3, x4, x5, u) as unknowns.

• “Inverse dynamic optimization”. For this example, we can solve for u by the

following

u = ẋ5 + x5.

Thus the whole system variables are parameterized by (x1, x2, x3, x4, x5).

• “Flatness parameterization” (Maximal Inversion). Consider the variable x4.

Two differentiations give

ẋ4 =x1x2x3 + x2x3 + x4 + 5x5

ẍ4 =5x22x3 + (x1 + 1)(sinx1 + x22 + 5x3)x3

+ (x1 + 1)x2(−x1x2 + x3 + 5x4)

+ x1x2x3 + x2x3 + x4 + 5x5 − 5x5 + 5u. (4.12)

This system has relative degree 2, when x4 is the output. By Result 1, it is

possible to parameterize all the system by x4 and 3 more variables. Here we

can choose (x1, x2, x3, x4) for this parameterization.

It is easy to check that when x3 is the output the system has relative degree

3. The whole system can be parameterized by (x1, x2, x3).
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Choice of Relative Variables for Differential equations

output degree complete parameterization to be satisfied

u 0 (x1, x2, x3, x4, x5, u) 5

x5 1 (x1, x2, x3, x4, x5) 4

x4 2 (x1, x2, x3, x4) 3

x3 3 (x1, x2, x3) 2

x2 4 (x1, x2) 1

x1 5 (x1) 0

Figure 4.2: The different formulations of the optimal control problem for the

example. Top: full collocation. Bottom: flatness parametrization.

Similarly, when x2 is chosen as the output, the system has relative degree 4

and it is possible to parameterize all its variables by (x1, x2).

At last, the system with x1 as output has relative degree 5. The system

is flat, i.e., it is possible to parameterize all its variables by x1 only. In the

optimal control problem, we can replace x2, x3, x4, x5 and u by combinations

of x1, ẋ1, ẍ1, x
(3)
1 , x

(4)
1 , x

(5)
1 .

The different formulations of the optimal control problem are summarized in

Figure 4.2.

Results

Every solution was double checked by a numerical integration of the dynamics of

the system. We only accepted valid solutions that satisfy 3.10 ≤ x1(1) ≤ 3.20.

Choices of NTG parameters are motivated by this requirement and the desire for

expedient execution. To perform as fair as possible comparisons we also give in each

case the convergence rate, i.e., the percentage of runs ending up with an optimal

solution satisfying the constraints. This is to prove that the use of inversion does

not induce any particular degradation in terms of numerical sensibility.

In each case we simulated 200 runs with random initial conditions. All tests



4.4. Variable Space Reduction 79

Relative Cpu-time (s.) Number of Variables Rate of

degree (average) (after collocation) convergence (%)

0 70.0 90 79.5

1 52.2 76 92.5

2 25.7 65 85.0

3 5.1 43 99.5

4 1.7 29 91.5

5 0.50 14 92.0

Figure 4.3: Main results. The cpu-time is an exponential decreasing function of

the relative degree. Top: full collocation. Bottom: flatness parametrization.

were conducted on a PC under Linux (Red Hat 6.2) with a Pentium III 733MHz

processor.

The results detailed in Figure 4.3 show that the cpu-time is exponentially

decreasing with the relative degree. The slowest problem is the one using full

collocation. The fastest problem is the one that uses the flat output.

NTG internally invokes NPSOL, the Fortran nonlinear programming package

developed by Gill et al. in [38]. NPSOL solves nonlinear programming problems

using a sequential programming algorithm, involving major and minor iterations.

At each major iteration a new quadratic programming (QP) problem is defined that

approximates both the nonlinear cost function and the nonlinear constraints. This

QP problem is solved during the minor iterations. The overall cpu-time required

is highly correlated to the sum of all the minor iterations. Inspecting the runs,

we concluded that the successive QP subproblems are generally well conditioned

in all cases. In this example, each variable is represented by approximatively 15

coefficients. Therefore the number of variables is a decreasing function of the

relative degree, see Figure 4.3.

It is known, see Gill et. al [37], that the cost of solving a well-conditioned QP

problem grows as a cubic function of the number of variables. In Figure 4.4 one
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Figure 4.4: log(Number of variables) versus log(cpu-time). In each case 200 runs

were done with random initial guesses. The variance of the results is represented

by the error bar. The slope of the linear regression of the mean values of cpu-time

is 2.80 .
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can see that this is a good explanation of the differences in experimental cpu-time,

the slope of the linear regression of the mean values of cpu-time versus the number

of variables being 2.80 .

Planar Ducted Fan Parameterization Comparison

The planar ducted fan, as shown in Figure 2.1, will be used in the next comparison.

The objective to move from equilibrium point to equilibrium point in minimum

time, subject to a thrust vectoring input constraint of the form

0 ≤ FXb
≤ 17 and − FXb

/3 ≤ FZb
≤ FXb

/3.

The boundary conditions are the following:

x(t0) = (∗, ∗, ∗, ∗, π/2, 0) and x(tf ) = (∗, ∗, ∗, ∗, π/2, 0),

where x(t) = (x, ẋ, z, ż, θ, θ̇) and ∗ can be either 1, 0, or -1. There are 6561 possible

combinations of boundary conditions.

In order to account for the free final time variable, the planar ducted fan

equations are scaled to yield

mx
′′
cos θ − (mz

′′
− ξ2mg) sin θ = ξ2FXb

mx
′′
sin θ + (mz

′′
− ξ2mg) cos θ = ξ2FZb

(J/r)θ
′′

= ξ2FZb

ξ
′

= 0,

(4.13)

where x
′
denotes dx

dτ
and τ = t/ξ.

Three different scenarios will be investigated in this comparison:

1. Collocation: The outputs are z1 = x, z2 = z, z3 = θ, z4 = FXb
, z5 = FZb

,and

z6 = ξ. In order to use direct collocation, the states x, z, and θ were approx-

imated with fourth-order B-splines and four intervals. Approximating the

inputs FXb
and FZb

with third-order B-splines and four intervals produced
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the best results. The variable time ξ was approximated by a first-order B-

spline with one interval. The resulting equality constraints were required to

be satisfied at 20 equally spaced collocation points.

2. Partial Linearization: The outputs are z1 = x, z2 = z, z3 = θ, and z4 = ξ.

Sixth order B-splines with C3 continuity across knot points and four intervals

will be chosen for the first three outputs. A first-order B-spline with one

interval is chosen to parameterize the final output.

3. Differentially Flat: The outputs are z1 = x+(J/rm) cos θ, z2 = z−(J/rm) sin θ,

and z3 = ξ. Seventh order B-splines with C4 continuity across knot points

and four intervals will be chosen for the first two outputs. A first-order

B-spline with one interval is chosen to parameterize the final output.

In total, NTG has four trajectory constraints (three due to the constraint on the

inputs and one due to the output selection). The number of B-spline coefficients

was chosen such that the minimum time of each scenario was within 5% of one

another.

Note: RIOTS was not included in this comparison since the problem is highly

constrained and nonlinear. Single shooting based techniques, such as RIOTS, often

do not work well for highly nonlinear constrained systems.

The point of this example is to compare the convergence of NTG with other

transcription techniques. Since there are no guarantees of convergence for non-

convex sequential quadratic programming based optimization techniques, it would

be expected that any technique used in real-time application would need to be

robust to the initial guess.

The simulations conducted to test convergence was the following: Choose 500

random initial guesses for NTG and 100 for direct collocation for the unknown free

variables in each of the 6561 test cases and test for convergence. Figure 4.5 gives

the results of the optimization. The first plot shows that for any given 6561 test

case most of 500 initial guess converged to a solution using NTG. In fact, all of the

6561 test cases converged for more than 20 of the 500 initial guesses. On the other
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hand, the second plot in Figure 4.5 shows that most of the 6561 test cases did not

converge for any initial guess using direct collocation. This test illustrates that it
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Figure 4.5: NTG direct collocation, “semi-flat” and “flat” convergence analysis.

The abscissa is the number of convergent test cases out of the 500 for each 6561

test case. The ordinate shows the number of 6561 test cases.

is advantageous to parameterize an output in a lower dimensional space instead

of parameterizing the inputs and the states when solving trajectory generation

problems. The direct collocation technique was surprisingly worse than the other

two parameterizations. The “semi-flat” test case converged in 2, 991, 107 test cases

and the “flat” parameterization converged in 2, 924, 928 test cases out of a possible

3, 280, 500. However, in the “flat” test case there exists a few of the 6561 test cases

in which none of the runs converged. In the “semi-flat” test case at least 16 of

the 500 initial guesses converged for each of the 6561 test cases. In general, the

“flat” parameterization test cases computation time was lower than that of the
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“semi-flat” parameterization.

Remark 4.1. There are many possible causes for the fact the the “flat” parame-

terization convergence performance was comparable with the “semi-flat” test case.

First, the forces are a very complicated expression of the derivatives of the outputs.

NPSOL uses first-order information to approximate the Hessian. It may be neces-

sary to use a nonlinear programming technique that uses analytical information.

Second, the flat parameterization may not be the best one for some problems due

to the fact that we added additional states for the dynamic compensator. Third,

the flat parameterization may not be well suited to all optimal control problems.

An optimal control problem that has a state constraint and a minimum energy

cost may be more amenable to the “flat” parameterization.

Much more work needs to be done in developing a standardized methodology

for comparing optimal control transcription techniques. Betts in [6] provides a

measure of the complexity of a problem for a SQP method by

hSQP =
q

ng
,

where q is the number of QP iterations and ng is the number of gradient calls.

Betts premise for this measure is that a problem is hard for an SQP method if the

active set changes for one iteration to the next.

4.5 Conclusion

In this chapter we compared the NTG algorithm with the several popular tech-

niques for numerically solving optimal control problems. We compared the accu-

racy of integration of NTG with collocation problems using the cart problem. The

Goddard problem was used to investigate the errors associated with B-spline finite

dimensional approximation to the solution as compared to an indirect method.

Next, NTG was compared with adjoint method used in RIOTS using a measure

of run-times and cost function minimization. Additionally, we choose outputs
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of a single-input-single-output system and the multi-input-multi-output (MIMO)

planar duct fan example with varying relative degree. A relation showing that con-

vergence rates and solution computation times were inversely related to the relative

degree was observed. We concluded that results of the MIMO planar ducted fan

needed further investigation and that the output parameterization may depend on

the optimal control problem under considerations.
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Chapter 5

Two Degree of Freedom and Receding

Horizon Control (RHC) of the Caltech

Ducted Fan

A preliminary version of a portion of this material has appeared in Milam et al.

[70].

5.1 Experimental Setup and Mathematical Model

The Caltech Ducted Fan is an indoor flying, tethered representation of the longitu-

dinal dynamics of a flight vehicle. In order to realistically emulate the longitudinal

dynamics of a flight vehicle, a number of design considerations were taken into ac-

count. The dynamics of tethering, which constrain the operation of the ducted fan

on a large cylinder, were designed in such a way that the overall system dynamics

behaved like that of a flight vehicle from the ducted fan’s point of view. Figure 5.1

shows an overview of the Caltech Ducted Fan testbed. The experiment consists of

a vertical stand and a horizontal boom which holds a ducted fan and wing. This

setup enables flight on a cylinder of height 2.5 m and radius 2.35 m. Because

of the mass of 12.5 kg and a maximum thrust of only 14 N , a counterweight is

attached to the boom via a cable and pulleys which reduces the effective weight

to mgeff = 7 N . This allows the system to attain sizable vertical accelerations,
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Figure 5.1: Ducted fan testbed
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ZB

XB

Figure 5.2: Ducted fan coordinate frames

while minimizing the force of potential crashes. Mechanical brakes in the vertical

direction are used as well to aid in crash landings. The sensors are read and the

commands are sent by a multi-processor system, comprised of a D/A card, an

optical encoder card, a digital IO card, two Texas Instruments C40 signal proces-

sors, two Alpha processors (500 and 600 MHz), and a ISA bus to interface with a

PC. The RHC control strategy used in this section resides on the 500MHz Alpha

processor. Actuation of the ducted fan is accomplished in two ways: by controlling

the current to the ducted fan, and by vectoring the resulting thrust via a servo

controlled bucket. The bandwidth of the ducted fan motor is one Hertz and the

bandwidth of the bucket servos are four Hertz.

Figure 5.2 depicts the inertial and body coordinate frames used in this section.

In the inertial frame, the axes are fixed to the ground, and the x and z directions

represent horizontal and vertical inertial translations. In the body frame, the XB

and ZB axes are fixed to the vehicle. θ represents the rotation of the ducted fan

about the boom axis. All three of these variables are measured via rotary encoders,

and the resulting signals are routed to the computing platform via slip-rings.

A preliminary derivation of the equations of motion for the Caltech Ducted

Fan experiment can be found in Milam et al. [71]. The equations of motion of the
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experiment are given by

mxẍ+ FXa − FXb
cos θ − FZb

sin θ = 0 (5.1)

mz z̈ + FZa + FXb
sin θ − FZb

cos θ = mgeff (5.2)

Jθ̈ −Ma +
1

rs
IpΩẋ cos θ − FZb

lτ = 0, (5.3)

where

FXa = D cos γ + L sin γ, FZa = −D sin γ + L cos γ

are the aerodynamic forces. We chose a spatial representation of the equations

of motion so that we can consider both hover and forward flight modes. J =

.25 kg m2 is the moment of inertia of the ducted fan about the boom, and

lτ = .35 m is the distance from center of mass along the Xb axis to the effec-

tive application point of the thrust vectoring force. The “effective mass” in the

XI direction is mx = 8.5kg and the mass is mz = 12.5 kg. We call mx an ef-

fective mass size it is actually derived by taking the ZI inertia of the complete

system divided by l2τ , Originally, we tried to make mx and mz equal so that the

equations of motion of the ducted fan in body coordinates would look like that of

a real aircraft. The parameter identification techniques presented in Franz et al.

[34] revealed that mx and mz where actually significantly different. FXb
and FZb

are thrust vectoring body forces; Ip = 2e−5 kg m2 and Ω = 1300 rad/s are the

moment of inertia and angular velocity of the ducted fan propeller, respectively.

The angle of attack α is related to the pitch angle θ and the flight path angle γ by

α = θ − γ, where the flight path angle can be derived from the spatial velocities

by

γ = arctan
−ż

ẋ
.

The lift (L) ,drag (D), and moment (M) are given by

L = qSCL(α), D = qSCD(α), andM = c̄SCM (α),

respectively. The dynamic pressure is given by q = 1
2ρV

2. The norm of the spatial
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velocity is denoted by V , ρ is the atmospheric density, and S is the surface area

of the wing. The coefficients of lift (CL(α)), drag (CD(α)), and moment (CM (α))

were determined from a combination of wind tunnel and flight testing.

Figure 5.3 depicts the coefficients of lift (CL(α)) and drag (CD(α)) and the

moment coefficient (CM (α)). These coefficients were determined from a combina-

tion of wind tunnel and flight testing and the parameter identification techniques

presented in Franz et al. [34].
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Figure 5.3: B-spline curve fits to wind tunnel and flight test results for the

CL(α),CD(α), and CM (α) aerodynamic coefficients.

Selecting the Outputs

We know from Example 2.1 that the planar ducted fan is differentially flat. How-

ever, it is unknown whether or not the planar ducted fan with aerodynamics is

differentially flat. We apply Algorithm 3.1. Choosing the outputs to be z1 = x
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and z2 = z, the algorithm terminates with a full rank decoupling matrix and the

following zero dynamics:

Jθ̈ −Ma(ż1, ż2),+
1

rs
IpΩż1 cos θ−

(mxz̈1 sin θ +mz z̈2 cos θ+

D(θ, ż1, ż2) sinα(θ, ż1, ż2)+

L(θ, ż1, ż2) cosα(θ, ż1, ż2)−mgeff)lτ = 0

(5.4)

The additional “pseudo output” z3 = θ will make the zero dynamics observable

in the nonlinear programming problem. Equation (5.4) must be included as an

equality constraint in the NTG problem formulation. When computing analytical

gradients, care must be taken with the flight path angle γ to prevent a singularity

at hover.

5.2 Two-degree-of-Freedom Design for Constrained Sys-

tems

5.2.1 Optimization Problem Formulation

A very aggressive optimization problem was chosen to be solved on-line: minimize

time (T ) subject to the trajectory constraints 0 ≤ FXb
≤ Fmax

Xb
, Fmax

Xb
/2 ≤ FZb

≤

−Fmax
Xb

/2, and zmin ≤ z ≤ zmax, the boundary constraints at the initial time

x(0), ẋ(0), ẍ(0), z(0), ż(0), z̈(0), θ(0), θ̇(0), θ̈(0),

and boundary conditions at the final unknown time T

x(T ), ẋ(T ), z(T ), ż(T ), θ(T ), θ̇(T ).

Fmax
Xb

= 11 N, zmin = −1 m, zmax = 1 m are the values of the constraints used for

all the test results presented in this section. In the two degree of freedom design,

the force constraints were chosen in the trajectory generation to be conservative
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so that the stabilizing controller has some remaining control authority to track the

reference trajectory. The reason that minimum time was chosen as the objective

was to make the trajectories as aggressive as possible. The boundary constraints on

the initial time accelerations provide us with smooth inputs in the case when a new

trajectory is computed away from an equilibrium. Our final boundary condition

will always be an equilibrium.

5.2.2 Timing and Trajectory Management

Two different modes are considered in the experimental results: hover-to-hover and

forward-flight. These modes may also be combined. In the hover-to-hover mode

the user commands a desired position xd and zd via the joystick positions. Every

tsample seconds a new minimum time trajectory is computed from the boundary

conditions tsample seconds into the future to the desired equilibrium position given

by current position of the joysticks. Equilibrium is defined for the hover-to-hover

mode as being the desired translational position, zero velocities, θ = π/2, FZb
= 0,

and FXb
= 7 N. The forward-flight mode is similar to the hover-to-hover mode

except that the user commands the desired position in the vertical direction zd

and the desired spatial velocity ẋd. The equilibrium manifold is found by solv-

ing the resulting transcendental equations when ż = 0 in equation (5.1) . A plot

of the equilibrium manifold is shown in Figure 5.4. Figure 5.5 shows the timing

scheme used in the experiment. A higher level management function controlling

which trajectory to stabilize about is necessary since there is the possibility of the

algorithm not converging as well as excessive computation time in computing a

trajectory. Before any optimizations have been computed, a nominal equilibrium

trajectory is used, denoted by Traj0. The first optimization is provided with the

state and inputs of this nominal trajectory tsample seconds in the future as an initial

boundary condition and the equilibrium condition indicated by the joystick posi-

tions as the final boundary condition. If the optimization has finished successfully

before tsample seconds, at t = tsample the resulting trajectory is used and another

optimization is triggered in the same fashion. If the optimization takes longer than



5.2. Two-degree-of-Freedom Design for Constrained Systems 93

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

Fz (N)

−6 −4 −2 0 2 4 6
2

4

6

8

Fx (N)

−6 −4 −2 0 2 4 6
0

1

2

3

4

θ 
(r

ad
)

xdot (m/s)

Figure 5.4: forward-flight mode equilibrium manifold

Figure 5.5: Sample run showing joystick input and timing concepts. The initial

conditions for each run are denoted with IC, and the final conditions with FC.

tsample seconds, the trajectory is truncated in the first truntime − tsample seconds to

attempt to maintain continuity in the trajectory, but a small discontinuity may
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occur. For this reason, tsample should ideally be longer than the expected run

times of NTG. An important point is that the value of tsample is not a constant.

The reason is as follows: the initial bound for the next optimization must lie on a

point on the last accepted trajectory where the differential equations are exactly

satisfied. This is enforced at 21 points along each trajectory, but because of the

variable horizon length (due to minimum time), the spacing of the points in time

varies. For this reason, tsample is chosen to coincide with the closest enforcement

point, within some nominal sample time.

Due to the nature of the trajectory generation methodology used in this exper-

iment, the convergence to an optimal solution is not guaranteed. Because of this,

higher-level management logic also has to decide whether to use a given trajectory

computed by NTG. The most obvious criterion to accept a trajectory is an indi-

cation of convergence returned by NTG. Other criteria include an upper bound

on the acceptable run-time. For example, if the runtime is more than 10 percent

longer than tsample, the current trajectory generation computation is aborted. If

the decision is made to reject a trajectory, the last accepted trajectory continues

to be used and another optimization is triggered as usual. If the existing trajec-

tory is exhausted before another one is accepted, the final equilibrium condition is

continued as long as necessary. In hover, this simply means that x and z are kept

at the desired values and all velocities are zero; in forward-flight, x is incremented

with time according to the desired velocity and the vertical position z is kept at

the desired value.

5.2.3 Stabilization around Reference Trajectory

Although the reference trajectory is a feasible trajectory of the model, it is neces-

sary to use a feedback controller to counteract model uncertainty. There are two

primary sources of uncertainty in our model: aerodynamics and friction. Elements

such as the ducted fan flying through its own wake, ground effects and thrust not

modeled as a function of velocity and angle of attack contribute to the aerody-

namic uncertainty. The friction in the vertical direction is also not considered in
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the model. The prismatic joint has an unbalanced load creating an effective mo-

ment on the bearings. The vertical frictional force of the ducted fan stand varies

with the vertical acceleration of the ducted fan as well as the forward velocity.

Actuation models are not used when generating the reference trajectory, resulting

in another source of uncertainty.

The separation principle was kept in mind when designing the observer and

stabilizing controller. Since only the position of the fan is measured, the rates

must be estimated. The gains were scheduled on the forward velocity.

The stabilizing LQR controllers were gain scheduled on pitch angle (θ) and the

forward velocity. The weights were chosen differently for the hover-to-hover and

forward-flight modes. For the forward flight mode, a smaller weight was placed

on the horizontal (x) position of the fan compared to the hover-to-hover mode.

Furthermore, the z weight was scheduled as a function of forward velocity in the

forward-flight mode. There was no scheduling on the weights for hover-to-hover.

The elements of the gain matrices for both the controller and observer are linearly

interpolated over 51 operating points.

In Section 5.2.1, the optimal trajectory generation problem we outlined the

optimal control problem we intended to solve. The three outputs z1 = x, z2 = z,

and z3 = θ will each be parameterized with four (intervals) , sixth order, C4

(multiplicity), piecewise polynomials over the time interval scaled by the minimum

time. The last output (z4 = T ), representing the time horizon to be minimized, is

parameterized by a scalar. Choosing the outputs to be parameterized in this way

has the effect of controlling the frequency content of inputs. Since the actuators are

not included in the model, it would be undesirable to have inputs with a bandwidth

higher than the actuators. There are a total of 37 variables in this optimization

problem. The trajectory constraints are enforced at 21 equidistant breakpoints

over the scaled time interval.

There are many considerations in the choice of the parameterization of the

outputs. Clearly there is a trade between the parameters (variables, initial values

of the variables, and breakpoints) and measures of performance (convergence, run-
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time, and conservative constraints). Extensive simulations were run to determine

the right combination of parameters to meet the performance goals of our system.

5.2.4 “Shuttle” Maneuver

In this test the system was run in hover-to-hover mode. Two makers were placed

3/4 of a revolution apart (approximately 11 m if we unwrap the cylinder). The

goal is to fly back and forth from marker to marker as many times as possible in 60

seconds by commanding the x and z positions with the joystick (tsample = 2.0 sec).

This type of highly aggressive maneuvering will test NTG’s convergence properties

since a new trajectory is computed starting from the last trajectory unless it is

the first trajectory. The first trajectory is poor guess that does not satisfy the

system dynamics. The results of the test are shown in Figure 5.6. We were able to

finish nearly 4.5 cycles. This compares roughly with 3 cycles for a gain scheduled

LQR controller. Note that we must be careful when making comparisons since the

results are dependent on the skill level of the pilot. Figure 5.6 also shows a very

large delay from the commanded position to the actual motion of the system due

to the computation times (see Figure 5.8). On-board computation may limit the

effectiveness of the two-degree of freedom design. Figure 5.8 shows all trajectories

for the run, accepted or not. All trajectories are convergent. One trajectory that

was accepted reached an equilibrium state.

5.2.5 Terrain Avoidance

In this section we present the results of two terrain avoidance maneuvers. To

obtain hover-to-hover test data, the operator commanded a desired horizontal and

vertical position with the joysticks with tsample = 1.0 sec. By rapidly changing the

joystick positions, NTG can produce very aggressive trajectories.

In the first test case, the ducted fan is requested to fly between, and then out of,

two large peaks in the z state. The trajectory constraint is modeled by a B-spline

in the NTG software. Figure 5.9 shows the position and orientation of the ducted

fan. It is hypothesized that the tracking of the gain scheduled linear controllers
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Figure 5.6: “Shuttle” maneuver depicting joystick command , NTG reference tra-

jectory, and actual state

are marginal due the fact that the mass properties were not updated in the linear

control design when the mass properties were updated in the reference trajectory

design. (See Franz et al. [34].) In addition, the friction in the z direction is

not modeled. Adding an integrator to the linear compensator would improve the

performance in the z direction.

In the second test case, he top plot in Figure 5.11 shows z and x positions of the

ducted fan and the typical z axis trajectory constraints. The maneuvers are created

by holding the commanded z constant and changing the commanded x by the

following sequence: 0 7→ 7.5 7→ 15 7→ 7.5 7→ 0. (Note: these commanded positions
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Figure 5.7: “Shuttle” maneuver depicting all the trajectories that are computed

and which trajectories are accepted. For each trajectory, a fixed constant is added

to the time axis so that all trajectories can be seen. “X” denotes the start of a

trajectory. “O” denotes an accepted trajectory that was applied until completion;

that is, the system reached a hover equilibrium.

are approximate.) These maneuvers were done over a time period of 60 seconds

with a computation time on average of .7 seconds for 4 to 8 seconds of trajectory.

Each of the 60 trajectories converged to a locally optimal solution. The bottom plot
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Figure 5.9: Terrain avoidance position and pitch attitude of the Caltech Ducted

Fan. NTG reference trajectory (dashed) and actual (solid). The attitude (θ) is

denoted by the orientation of the airfoil.

in Figure 5.11 corresponds to approximately the same changes in x but with some

terrain added in real-time. There was no new initial guess provided to NTG when

it was required to solve this optimization problem. The new terrain profile was

also not tested off-line. These results give a reasonable argument for computing

the trajectories on-line. It would be difficult to store trajectories for unknown

threats and changes in terrain. All but one of the 60 trajectories converged to a
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Figure 5.10: Terrain avoidance commanded and actual forces

local optimal solution. The one that did not converge was a result of asking the

ducted fan to move to a position in violation of the trajectory constraints. The

average computation time of each trajectory was approximately .8 seconds for 4

to 9 seconds of trajectory.

5.2.6 Forward-Flight Trajectory Generation

To obtain the forward-flight test data, the operator commanded a desired forward

velocity and vertical position with the joysticks with tsample = 2.0 sec. By rapidly

changing the joystick positions, NTG produces high angle of attack maneuvers.

Figure 5.12 depicts the reference trajectories and the actual θ and ẋ over 60 sec.

Figure 5.13 shows the commanded forces for the same time interval. The sequence

of maneuvers in this plot are the following: First, the ducted fan transitions from

near hover to forward-flight. Second, the ducted fan is commanded from a large

forward velocity to a large negative velocity. Finally, the ducted fan is commanded



5.2. Two-degree-of-Freedom Design for Constrained Systems 101

0 5 10 15

−2

−1

0

1

2

al
t (

m
)

x (m)

x vs. alt (terrain)

0 5 10 15

−2

−1

0

1

2

al
t (

m
)

x (m)

x vs. alt (no terrain)

Figure 5.11: Hover to hover test case: Altitude and x position for two different

vertical trajectory constraints. The actual (solid) and NTG reference trajectories

(dashed). The attitude (θ) is denoted by the orientation of the airfoil.

to go to hover. Figure 5.15 is an illustration of the ducted fan altitude and x

position for these maneuvers. The airfoil in the figure depicts the pitch angle

(θ). It is apparent from this figure that the stabilizing controller is not tracking

well in the z direction. This is due to the fact that unmodeled frictional effects

are significant in the vertical direction. Figure 5.16 shows the run times for the

30 trajectories computed in the 60 second window. The average computation

time is less than one second. Each of the 30 trajectories converged to an optimal

solution and was approximately between 4 and 12 seconds in length. A random

initial guess was used for the first NTG trajectory computation. Subsequent NTG
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computations used the previous solution as an initial guess. Much improvement

can be made in determining a “good” initial guess. Improvement in the initial

guess will improve not only convergence but also computation times.

The error in the equality constraint in equation (5.4) is shown in Figure 5.14.

The equality constraint was required to satisfy to equality constraint within 0.1 N.

The density of the collocation points will dictate how well the equality constraint

is satisfied between collocation points.
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Figure 5.12: Forward-flight test case: θ and ẋ desired and actual.

5.2.7 Conclusions and Future Work

In this section a methodology for real-time trajectory generation and validation of

this approach with experimental results was presented. It was demonstrated that

minimum time constrained trajectory generation is possible in real-time for two

different flight modes on the Caltech Ducted Fan. In addition, it was illustrated

that dynamically changing trajectory constraints can be taken into account in

real-time.
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Figure 5.14: Forward-flight accepted trajectory errors
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For both the forward-flight and the hover-to-hover test cases, it was always

assumed that the ducted fan could track the reference trajectory. Recall that the

initial state of the reference trajectory starts from a point on the previous reference
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trajectory, not from the actual position of the fan. There may be circumstances in

which the ducted fan cannot track the reference trajectory. In this case, one may

want to update the reference trajectory using the current state of the ducted fan.

Developing a high confidence hierarchical control scheme is a direction of future

research. In this work, confidence is achieved in our trajectory generation routine

by defining a set of logic to manage the output from NTG. Standard measures

of convergence and confidence need to be developed for on-line systems hosting

algorithms that are not guaranteed to converge.

Along the same lines of a hierarchical control scheme is to develop different

levels of trajectory generation. In our tests, it was noticed that trajectories could

be any length from 1 sec to 25 sec with the same number of variables for each

trajectory. It may be useful to have NTG determine trajectories using a kinematic

model of the ducted fan at a high level and then determine trajectories at a lower

level using a dynamic model. By doing this, it could be possible to get a more

consistent length of trajectory for each computation.

Another topic for future research would be further development of on-line tra-

jectory generation tools such as NTG. Developing a sequential quadratic program-

ming routine designed specifically to run in real-time is a research goal. A se-

quential quadratic programming technique that incorporates an analytical Hessian

and/or is based on the Interior Point Method are potential candidates to improve

run-times and rates of convergence. B-splines are only one possibility of basis

functions to use to parameterize the outputs. There may be other basis functions,

such as rational B-splines, that better span the trajectory space of a system than

B-splines and are more suitable for real-time computations.

5.3 Receding Horizon Control for Constrained Sys-

tems

The research in this section has been the result of joint research with Ryan Franz

and John Hauser. A preliminary version of this material has appeared in Milam
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et al. [69] and Franz et al. [35].

In receding horizon control (RHC), an open-loop trajectory is found by solving

a finite-horizon constrained optimal control problem starting from the current

state. The controls of this trajectory are then applied for a certain fraction of the

horizon length, after which the process is repeated.

Receding horizon control has found successful applications in the process con-

trol industry for some time, where dynamics are relatively slow. However, the algo-

rithm demands tremendous computational power, and can exhibit poor convergent

stability if not implemented properly. These difficulties have largely prevented its

application to stability critical nonlinear systems with fast dynamics. Increasingly

powerful and affordable computing facilities combined with better understanding

of receding horizon control’s stability properties have revived interests in this area.

See Mayne et al. [67], Findeisen et al. [30] and the references therein for a good

review of recent work in this field.

To implement the receding horizon control strategy, a constrained nonlinear

optimization problem must be solved on-line. Due to the complexity of solving

a nonlinear programming problem in real-time, the computational delay cannot

be ignored. This is particularly important in aerospace applications, where the

timescales of the vehicle dynamics (and the requisite control loops) are very short

and comparable to the time required to solve a finite-horizon optimization problem.

The application of receding horizon control to aerial vehicles has been proposed

and analyzed by several researchers. Representative examples include the mixed

integer linear programming approach of Richards and How [88], the LMI framework

for receding horizon control of Bhattacharya and Balas [8], and the work of Singh et

al. [96], which provide simulation results for stabilization of an Unmanned Aerial

Vehicle (UAV) about an open loop trajectory using receding horizon control.

The receding horizon strategy offers many benefits in this environment, such as

the inherent ability to deal with constraints in the state and control. Examples of

such constraints commonly encountered include static terrain obstacles, dynamic

or pop-up threats and saturations on the actuators. However, these approaches
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would serve little practical purpose until stable and efficient computational tech-

niques are developed to provide real-time solutions to the underlying constrained

nonlinear optimal control problems.

The goal of the work in this section is twofold. The first goal is to address issues

of implementation with substantial computation times and fast system dynamics

and the second is to provide a validation of theoretical results through implemen-

tation on an actual nonlinear experiment. A full nonlinear model of the Caltech

Ducted Fan including aerodynamics is used in order to test the viability of this

technique on a flight platform. The results are among the first to demonstrate

the use of receding horizon control for agile flight in an experimental setting using

representative dynamics and computation.

This section is structured as follows: Section 5.3.1 provides theoretical back-

ground as well as some motivation for the choices made in terms of timing; Section

5.1 describes the actual experiment and its math model; Section 5.3.2 and 5.3.3

provides the detail of the RHC problem formulation and the description of the sys-

tem used in NTG, respectively; Section 5.3.3 describes in detail the two different

timing methods used in the experiment; and finally, Section 5.3.4 provides results

before concluding.

5.3.1 Theoretical Background

Problem formulation

In RHC, the current optimal control u(·; yk) ∈ [0T ] for the current initial state

yk at time tk is the solution to following optimal control problem with a scalar

objective and constraints:

min
u

∫ T

0
q(y(τ), u(τ)) dτ + V (y(T )),

s.t. ẏ(t) = f(y(t), u(t)), y(0) = yk,

lb0 ≤ ψ(y(0), u(0)) ≤ ub0,

lbt ≤ S(y(t), u(t)) ≤ ubt.
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The vector S(y(t), u(t)) is a trajectory constraint (enforced over the entire time

interval) while ψ is an initial time constraint. The control objective is to steer the

state to an equilibrium point, usually the origin. No terminal constraint is enforced

in this study. In theory, the resulting control u(·; yk) is instantaneously applied

until a new state update occurs, usually at a pre-specified sampling interval of

time tsample seconds. Repeating these computations yields a feedback control law.

Computational Delays

A major issue in the implementation of receding horizon control is handling the

computational delay associated with the real-time optimization. We present here

a summary of relevant theory which motivates our choices for timing made in the

sequel.

Our system is described by

ẏ = f(y, u) + g(y, u, w), (5.5)

where f(·, ·) is the nominal (i.e., model) system vector field and g(·, ·, ·) describes

the effect of the external disturbance w, together with that portion of the system

dynamics that is not explicitly modeled. Thus, for the purpose of control design,

etc., we will use

ẋ = f(x, u) (5.6)

as the model system. Now, suppose that

u = k(x) (5.7)

is a state feedback that exponentially stabilizes the origin for the nominal system

(5.6) and that V (x) is a quadratic Lyapunov function proving such. For example,

k(·) might arise as the solution to an infinite horizon optimization problem with

V (·) as the corresponding minimum cost (to go). In the case that the perturbation

is nonzero but can be bounded by a constant, one may use Lyapunov arguments



5.3. Receding Horizon Control for Constrained Systems 109

to show that the state of the true closed-loop system (5.5), (5.7) will converge to

a neighborhood of the origin.

Next we construct a sampled data feedback structure such that at every time

tk := kδ we obtain a measurement yk := y(tk). At every time step, we calculate a

trajectory x(·; yk), u(·; yk) by simulating the closed loop model system (5.6), (5.7)

for a length of time (either δ or 2δ seconds).

We propose the following four methods for applying the resulting open-loop

input trajectory to the actual system (5.5):

1. apply u[0,δ](yk) (the control trajectory over the interval tsim ∈ [0, δ] resulting

from a simulation starting at yk) over the interval t ∈ [tk, tk+1]. Note that

implementing this option requires that the simulation be run in zero time.

2. apply u[0,δ](yk) over the interval t ∈ [tk+1, tk+2]. Note that this option will

always involve a delay.

3. apply u[δ,2δ](yk) over the interval t ∈ [tk+1, tk+2].

4. apply u[0,δ](x(δ; yk)) over the interval t ∈ [tk+1, tk+2]. Here x(δ; yk) represents

the state of the system x starting at yk simulated ahead δ s.

When the system perturbation is identically zero g(x, u, w) ≡ 0, we see that options

1, 3, and 4 will be identical. Options 2, 3, and 4 are all implementable if the

simulation computation can be completed in less than δ seconds (i.e., faster than

real-time). Because option 2 involves a delay (even in the no perturbation case),

we propose that 3 and 4 will be the best methods with non-zero run-times. Clearly,

the performance of the sampled data system schemes with nonzero perturbation

will depend on the sample time δ.

As a next step, suppose that we compute the input trajectory u(·; yk) by solving

the finite horizon optimal control problem

J∗
T (y(tk)) = min

u(·)

∫ T

0
q(x(τ), u(τ)) dτ + V (x(T )), (5.8)

ẋ(t) = f(x(t), u(t)), x(0) = y(tk), lbt ≤ S(x(t), u(t)) ≤ ubt,
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where the incremental cost satisfies q(x, u) ≥ cq(‖x‖
2 + ‖u‖2) with cq > 0 and

S(u(t), u(t)) are constraints on the trajectory. If the terminal cost V (·) is chosen

to be a control Lyapunov function (CLF) satisfying minu((V̇ ) + q)(x, u) ≤ 0 on

a neighborhood of the origin, option 1 (with g(x, u, w) ≡ 0) is the receding hori-

zon control scheme RH(T, δ), analyzed in Jadbabaie et al. [48]. Now allowing

g(x, u, w) to be nonzero, we discuss some stability properties of this structure.

As in the stability analysis of unperturbed receding horizon control in Jad-

babaie et al. [48], we will use J∗
T (·) as a Lyapunov function. Roughly speaking, we

require that J∗
T (yk) be a strictly decreasing sequence, ensuring the convergence of

the state to a (hopefully small) neighborhood of the origin.

Note that J∗
T (·) is Lipschitz continuous with constant K over the compact

region of interest. The properties of q(·, ·) and V (·) ensure that

J∗
T (x(tk + δ)) ≤ J∗

T (x(tk))−Qδ(x(tk)), (5.9)

where the decrement Qδ(·) is a positive definite function (given by integrating the

optimal incremental cost over a δ second interval).

Suppose, now that we apply the same open loop control u(·) (e.g., the just com-

puted optimal u(·)) to the real and model systems, (5.5) and (5.6), with potentially

different initial conditions. By a standard argument (using the Bellman-Gronwall

lemma, see [51]), we have

‖y(tk + δ)− x(tk + δ)‖ ≤ eLδ‖y(tk)− x(tk)‖+
b

L

(

eLδ − 1
)

, (5.10)

where b is a bound on ‖g(y(t), u(t), w(t))‖, t ∈ [tk, tk + δ], and L is a Lipschitz

constant for f(·, ·).

Combining (5.9) and (5.10) and noting that y(tk) = x(tk), we obtain

J∗
T (y(tk + δ)) ≤ J∗

T (x(tk + δ)) +K‖y(tk + δ)− x(tk + δ)‖

≤ J∗
T (y(tk))−Qδ(y(tk)) +K

b

L
(eLδ − 1) .
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For small δ > 0, we can bound the terms on the right according to Qδ(x) ≥
δ
2cq‖x‖

2

and K b
L
(eLδ − 1) ≤ 2Kbδ. We conclude that, for small δ, J∗

T (y(t)) will decrease

provided that

‖y(t)‖2 ≥
4Kb

cq
. (5.11)

This determines the radius rb for an invariant sub-level set of J∗
T (·) to which the

state of the true system will converge to under the scheme of option 1. Namely, rb

such that ‖x‖2 ≥ 4Kb
cq

on ΓT
r̄(T )\Γ

T
rb
, that is the annulus between the ball imposed

by the error caused by g and the ball imposed by the finite horizon. A picture of

this is shown in Figure 5.17. If g is zero, we have the same result shown in [47].

Finally, we extend this discussion to include situations in which y(tk) 6= x(tk),

which is the case in options 2, 3, and 4. In this case (5.10) necessarily contains an

exponential (in δ) term multiplied by the error in the initial conditions. Performing

analysis similar to that detailed above, we obtain the relation

J∗
T (y(tk + δ)) ≤ J∗

T (y(tk))−Qδ(y(tk)) +K b
L
(eLδ − 1)

+ (K(1 + eLδ) +KQ)‖y(tk)− x(tk)‖,
(5.12)

where KQ is a Lipschitz constant for Qδ(·). Clearly, mismatches in the initial

conditions lead to performance degradations, including an enlargement of the ter-

minal set (rb increased) as well as potential destabilization. It is therefore of prime

importance to minimize the initial condition mismatch to the extent possible. We

conjecture that option 2 does a poor job of this; indeed, even in the no perturba-

tion case such an error is induced by delay. Accordingly, we study options 3 and

4 both in simulation and experimentally on the physical system in an attempt to

determine which will provide the best performance.

A final note is meant to justify the use of a “fast as possible” timing scheme,

whereby δ is taken as the last computation time and thus is not constant. The

reference [48] provides as a result the stability of RH(T, {δk}), where 0 ≤ δk ≤ T

and liml→∞

∑l
k=0 δk =∞.
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Figure 5.17: Illustration of sub-level set of J∗
T (·) to which the state of the true

system will converge

5.3.2 Receding Horizon Control Formulation

We first state explicitly the cost functions used in this section, as defined in equa-

tion (5.8):

q(x(t), u(t)) =
1

2
xTerr(t)Qxerr(t) +

1

2
uTerr(t)Ruerr(t)

V (x(T )) =
1

2
xTerr(T )Pxerr(T ) (5.13)

xerr ≡ x− xeq = [x, z, θ − π/2, ẋ, ż, θ̇]T ,

uerr ≡ u− ueq = [FXb
−mgeff , FZb

]T ,

Q = diag[4, 3, 15, 3, 4, 0.3],

R = diag[0.5, 0.5],

where the equilibrium point of interest is hover:

xeq ≡ [0, 0, π/2, 0, 0, 0]T , ueq ≡ [mg, 0]T .
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We choose Q and R to be the same as weights used to generate LQR gains with

good performance, and P to be the corresponding stabilizing solution to the alge-

braic Riccati equation resulting in a CLF terminal cost around a hover equilibrium.

The sole trajectory constraint on the state is −.9 ≤ z ≤ .9. The input con-

straints are




0

−Fmax
Xb

/2



 ≤





FXb

FZb



 ≤





Fmax
Xb

Fmax
Xb

/2



 , (5.14)

where Fmax
Xb

is 13 N and mg is 7.0 N.

5.3.3 NTG Setup

For our system we will choose as outputs z1 = x(t), z2 = z(t), z3 = θ(t) in solving

the problem posed in equation (5.8).

By choosing this parameterization, the equality constraint in equation (5.4)

will need to be satisfied over the entire trajectory. In the case of only forward-

flight, it would be possible to choose a parameterization that contains no equality

constraints.

The optimal control problem is set up in NTG code by parameterizing the

three position states (x, z, θ), each with 8 B-spline coefficients. Over the receding

horizon time intervals, 21 collocation points were used with horizon lengths of 2.0

seconds. Collocation points specify the locations in time where the differential

equations and any constraints must be satisfied, up to some tolerance.

Timing and Optimization Formulation

The choice of x(0) for the optimization is dictated by the choice of timing scheme.

We use two different strategies, corresponding to options 3 and 4 in Section 5.3.1,

for choosing these initial constraints.

In some applications of receding horizon, run-times are insignificant compared

to the dynamics of the system. This is not the case on most aerial platforms

with current computing power. On our hardware we were able to achieve run-

times between 0.1s and 0.3s in most cases; we ordinarily run linear controllers at



5.3. Receding Horizon Control for Constrained Systems 114

Figure 5.18: Illustration of timing scheme without prediction.

a minimum of 50Hz. Because of this, the discussion in Section 5.3.1 is crucial.

Option 3: No Prediction

The first scheme for choosing the initial constraints in the state is the simplest, as

it involves no model prediction. Whenever a computation is triggered, the current

state of the system is given as the initial constraint on the state trajectory for the

optimization problem. By the time the computation is finished tsample seconds

later, however, the idea is that the system has changed significantly. To attempt

to use a valid control, we simply discard the first tsample seconds of the trajectory,

hoping that the resulting start point will coincide roughly with where we were

in the previous trajectory. Fig. 5.18 shows graphically how this process works

on one of the states. In this case, the controls corresponding to the line labeled

“Receding Horizon Reference Trajectory” are applied to the system. Note that the

figure exaggerates certain things for illustration. For example, the horizon length

thorizon is in reality much longer than tsample.

In our implementation, tsample can either be set to some constant, or the com-

putations can be run as “fast as possible”, meaning a new computation is triggered

immediately after the last one has finished. In this case, tsample varies with the
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Figure 5.19: Illustration of timing scheme with prediction.

runtime.

Option 4: With Prediction

The second scheme we examine attempts to minimize discontinuities by using

prediction. When a computation is triggered, the current state of the fan is first

used as the initial condition for a simulation in which the control trajectory of the

previous computation is used as input. This simulation is run for some amount

of time tsim. If a If fixed period is being used, tsim is simply equal to the tsample.

if a “fast as possible” rule is used, tsim is taken as an average of the past n

runtimes. After the simulation is completed, the final values are passed as the

initial constraints to the optimization. The resulting trajectory is output from

the beginning. Figure 5.19 shows this process graphically. Again, the controls

corresponding to the line labeled “Receding Horizon Reference Trajectory” are

applied to the system.

Further Considerations

As with any timing scheme, there are necessarily discontinuities in the resulting

control due to model mismatch and a non-zero sampling period. Early experience
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showed that some effort in minimizing these jumps was worthwhile. Accordingly,

we use an inequality constraint on each optimization to achieve smoother control

signals, |uk+1(0)− uk(tsample)| < a for some a. If a fixed period is used, tsample is

simply equal to the period. If a “fast as possible” rule is used, tsample is taken as

an average of the past n run-times. This approach is compatible with both timing

schemes discussed above. Graphically, control trajectories always start near the

previous trajectory.

Another consideration involves non-convergent trajectory computations. Un-

fortunately, not all trajectory computations are guaranteed to converge. Each

computation is given the last computed trajectory as an initial guess, which is

sometimes not good enough. Also, some combinations of initial constraints and

cost function are simply degenerate. If a computation returns certain signs of

failure, the last good trajectory is simply continued and another computation is

triggered. This will certainly fail if non-convergence happens frequently or repeat-

edly, as it has the effect of greatly increasing the sample time. In practice, this

has not been a problem. The issue of non-convergence and state constraints will

be discussed further in the results Section 5.3.4.

A characteristic of the spline representation used to solve the optimal control

problem is that, between enforcement points, the values of the states, their deriva-

tives, and the controls may not be consistent with the equations of motion for

the system. Because of this, a point on the trajectory is, in general, not suitable

as an initial equality constraint for a successive computation. Nevertheless, ex-

perience showed us that some sort of effort in minimizing large jumps in at least

the forces is worthwhile. To deal with this, we introduce a degree of freedom

on the accelerations by eliminating their initial constraints. We are most inter-

ested in minimizing jumps in the controls, so we enforce an inequality constraint

|uk+1(0) − uk(tsample)| < a for some a. If a fixed period is used, tsample is simply

equal to the period. If a “fast as possible” rule is used, tsample is taken as an

average of the past n run-times. This approach is compatible with both timing

schemes discussed above; graphically, control trajectories always start near the
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horizon predict no predict

1.0s 0.4s 0.15s

1.5s 0.5s 0.2s

2.0s 0.65s 0.3s

2.5s 0.6s 0.4s

3.0s 0.5s 0.4s

Table 5.1: Maximum acceptable periods as determined in simulation

previous trajectory.

5.3.4 Results

Timing Method Selection

We investigate through simulation and experimental testing the timing method

and horizon length to use for our results. Table 5.3.4 shows results of identifying

the highest acceptable periods for different combinations of timing mode, horizon

length. The simulation allows us to explore many different configurations without

fear of damaging the hardware. The test used for these results was a 20 m step in

x, a fairly demanding request which puts the fan into a forward-flight state to test

out the full features of the model. We were unable to design a gain-scheduled LQR

controller which could perform this maneuver in an acceptable fashion. Acceptable

results were chosen as stable and with few qualitative differences from the best

results.

Next, Table 5.2 shows horizon lengths and timing methods that were acceptable

on real experiment. One difference from these runs for the simulation was that on

real experiment we used a smaller step of 5m in x in order to prevent damage to the

apparatus. Another difference from the simulation is that the fixed period chosen

is only a lower bound on the actual period. The majority of calculations remain

below the fixed period in all the runs, but there are still some which exceed the

value due to limited computing power. The prediction timing method produced
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horizon predict no predict

1.0s 0.0s 0.2s

2.0s 0.1s 0.2s

3.0s 0.2s 0.2s

Table 5.2: Maximum acceptable periods as determined on the real experiment

larger run-times on average, and appeared more sensitive to the model used in

NTG. The no prediction timing method with a 2s horizon running in “fast as

possible” mode was chosen for the example test cases shown in this section. A

thorough investigation of appropriate horizon times for the Caltech Ducted Fan

can be found in Dunbar et al. [26].

Ducted Fan Flight Test Results

In this section we present the result of commanding a large change in the equi-

librium of the system using the cost and constraints in equation (5.13). This

aggressive command results a highly nonlinear motion of the system.

The two test cases that are investigated are aggressive maneuvering, using a

series of step commands, and operation of the ducted fan near a state constraint.

The desired commands to the experiment are input with joysticks. They are set

up so that the user can change in real-time the x and z equilibrium positions of

the experiment.

The first test case is an 11 m step command in x followed by an −11 m step.

Figure 5.20 shows an animation of the translation and rotation of the ducted fan

as well as the angle of the thrust vectoring bucket and the force being applied on

the system. The commanded forces are depicted in Figure 5.21. The RHC at tk

is denoted by a dotted line. The insert picture illustrates with a solid line the

portion (tsample) of the RHC control that is being commanded to the experiment.

The allowable jump in the control at tk+1, given by |uk+1(0) − uk(tsample)|, was

bounded by .25 N. Figure 5.22 illustrates that the system quickly responds to the
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Figure 5.20: Plot depicting the actual attitude and position of the ducted fan

throughout both step commands.
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Figure 5.22: Horizontal position of the ducted fan

step commands and then settles at the desired commanded location. The receding

horizon reference trajectory in Figure 5.22 is the predicted state resulting from

the control applied in Figure 5.21 applied over each tsample. Moving in and out of

stall on several occasions, the attitude of the ducted fan changes significantly over

the course of the run, as shown in Figure 5.23. The velocity of the ducted fan is

depicted in Figure 5.24. The RHC strategy provides very aggressive and responsive

flight qualities. Each RHC trajectory in this run converged to an optimal solution.

The computation times for each trajectory are shown in Figure 5.25. The largest

computation times occur when the system is far from the commanded equilibrium.
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Figure 5.25: Force constraints and computation times.

NTG is started with an initial guess. However, the RHC solution at tk+1 uses

the solution from tk as the initial guess. The forces in are acceptably with the

prescribed bounds as shown in Figure 5.25. The density of the collocation points

determines how well the controls stay within the prescribed bounds.

The second test case is used to illustrate the inherent difficulties with state con-

straints. Figure 5.26 shows part of a run where only the z equilibrium is position is

changed. In this case, the z state constraint is set be less than the maximum verti-

cal travel of the experiment. Due to friction, there are significant model differences

between NTG and the real system in the vertical direction. This difference in the

model exhibits a weakness in our RHC strategy to model uncertainty. Between the

times 115.5 to 117.1 s and 120.4 to 121.7 s NTG does not provide a feasible trajec-
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tory since we are starting in a region of infeasibility. Figure 5.26 shows the system

recovers but hits the soft state constraint again. Finally, the joystick is moved and

the system moves away from the constraint. The are many strategies that one

could adopt to mitigate this problem. One could use a barrier function, change

the state constraint in real-time so that the RHC problem is feasible (this would

only work if the system does not exhibit strong non-minimum phase characteris-

tics), or be conservative on the state constraints in order to mitigate our problem.

A hard constraint was created by placing a block of wood below the ducted fan

stand counterweight so that the ducted fan could come close but not violate the

trajectory constraint. The ducted fan lightly bounced off the hard constraint and

remained stable with all convergent trajectories.

5.3.5 Conclusion

The results presented in this section demonstrated the potential of real-time reced-

ing horizon control for constrained systems with fast dynamics. Real-time RHC

control represents a revolutionary alternative to the traditional linear or nonlinear

controller design with many benefits.

First, in most cases, a global system model and objective function are easier

to obtain than a traditional linear or nonlinear controller that works globally. For

a complex nonlinear system, classical controller design techniques would include

inflexible methods such as gain scheduling. In comparison, given an accurate

nonlinear model and adequately defined objective function, real-time RHC could

provide a global optimal control that is elegant and flexible. For example, RHC

can be easily reconfigured by changing the model (a reconfigurable UAV with a

swing wing, or payload variation, etc.)

Second, real-time RHC can provide optimal control solution, even for systems

with complex constraints such as actuator saturation, operational limits, terrain

avoidance, etc. In contrast, it is extremely difficult to design a classic controller

for constrained systems.

Third, with accurate modeling and precise objective definition, system perfor-
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mance could be far more superior than classic linear or nonlinear controller can

achieve, particularly for very aggressive maneuvering that pushes the constraint

boundaries.

Fourth, in many cases, real-time RHC eliminates the necessity of both inner

loops and outer loops that is common in classic tracking and stability control

design. Instead, trajectory generation and robust control are performed in a single

integrated design with potentially better performance and higher bandwidth.

The theoretical discussion in Section 5.3.1 provided a framework for qualitative

evaluation of different timing schemes to compensate for computational delays.

The feasibility of two timing methods are verified through simulation, while the

non-predictive timing scheme was deployed in a ducted fan experiment.

In thischapter, we investigated implementing both a two-degree-of-freedom de-

sign as well a receding horizon design on the Caltech Ducted Fan experiment.

The advantages and disadvantages of the two-degree of freedom design were the

following.

Advantages:

1. More robust to model uncertainty

2. Works with state constraints

3. Flexibility in objectives

Disadvantages:

1. System reaction latency due to trajectory computation time

2. Linear controller design is complex and may not be compatible with the

trajectory generation problem

3. Allowances have to be made for tracking controller

The advantages and disadvantages of the receding horizon design are the fol-

lowing.

Advantages:
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1. Quick response to commands

2. Tolerable to reconfiguration

3. Globally stabilizing

Disadvantages:

1. Sensitive to modeling

2. Care must be taken with state constraints

Future research includes extending RHC for nonlinear optimization at the mis-

sion level. Merits of different timing methods are to be examined through rigorous

mathematical investigation and numerical simulation. One area of active research

interests is to keep the current state updated for the optimization routine. We hope

our computational experience will guide theoretical developments in the future.
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Chapter 6

Micro-satellite Formation Flying

The research in this chapter has been the result of joint research with Nicolas

Petit. A preliminary version of this material has appeared in [73].

Nonlinear station-keeping and reorientation control of a cluster of fully actu-

ated, low-thrust, micro-satellites is considered in this chapter. We propose a very

general optimization based control methodology to solve constrained trajectory

generation problems, which will enable mircosatellites to autonomously perform

station-keeping and reorientation maneuvers. Performance is reported for a typi-

cal micro-satellite formation flying space mission, using the Nonlinear Trajectory

Generation software package.

6.1 Introduction

Several proposed earth orbiting demonstration space missions plan to utilize for-

mations of cooperating, fully-actuated, micro-satellites to perform the function of

a single complex satellite. The Air Force space based radar system called Tech-

Sat21 [100] is a prime example of such a mission. Burns [14] provides an overview

of the TechSat21 mission.

One challenge of these missions is the formation control of the micro-satellites

to meet a unified objective. Two typical formation control objectives are the

following:
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1. Station-keeping: A distributed array of small micro-satellite apertures will

collaborate to form a much larger aperture than that possible with a single

satellite.

2. Reconfiguration and Deconfiguration: Distribution of micro-satellite aper-

ture can be dynamically reconfigured or deconfigured to meet changes in

imaging or mission requirements.

Under the classical gravitational potential assumption, a standard approach

to the formation control problem is to linearize the dynamics of the satellites

around some reference orbit. In the case that the reference orbit is circular with

no perturbation forces, the linearized equations of motion are commonly referred

to as the Clohessy-Wiltshire equations [21]. When the correct initial conditions are

chosen, the relative positions of the micro-satellites are periodic. By positioning

the satellites at different phases along these periodic solutions, a sparse aperture

can be created for imaging. Ideally, if satellite positioning is acceptable for imaging,

no fuel would be used by taking advantage of the natural dynamics of the vehicles.

Yeh et al. in [113, 114] provided insight into the control of satellite formations

using Hills equations.

However, most micro-satellite missions will be subject to various perturbation

forces. The second zonal harmonic of the non spherical Earth (J2) is a domi-

nant perturbation for the orbits under consideration in this work and cannot be

neglected. The J2 perturbation acts differentially on each satellite and induces

secular motion between the micro-satellites in the formation. Sedwick et al. [92]

derived an analytic expression for exact cancellation of differential J2 for a micro-

satellite formation in a polar, circular orbit. Schwieghart et al. [91] extended these

results to non-polar orbits. The appropriate choice of initial conditions for a micro-

satellite can also mitigate the differential effect of J2, see Schaub et al. [89], Vadali

et al. [101] and Koon et al. [53].

Our approach is based on using optimal control to actively control the sparse

aperture of the micro-satellites formation. This has the advantage over existing
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techniques in that geometric formation constraints can be satisfied for arbitrary

orbits. Past work has shown that optimal control has proven relevant to formation

flying in the absence of J2.

Kumar et al. [54] used optimal control to solve for the relative motion of

two satellites in very low Earth orbits. As a result, Kumar kept the satellites con-

strained to a box, accounting for a generic differential drag perturbation. Kong [52]

provided criterion for optimal trajectories for spacecraft interferometry. Inalhan

et al. [45] considered the micro-satellite reconfiguration as a distributed and hier-

archical control problem. Carpenter [15] also considered a decentralized formation

control problem.

In this paper we will explicitly take the J2 effect into account and considers

a centralized optimal control formulation for a micro-satellite formation. The

optimal control problem is then solved using the Nonlinear Trajectory Generation

(NTG) software package described in Chapter 3.

Two strategies will be considered. First, the station keeping control of three

satellites: minimize fuel subject to some nonlinear communication and imaging

trajectory constraint. Second, the reconfiguration control of three micro-satellites:

minimize fuel subject to final time formation constraints.

We will address the formation control problem in terms of the absolute ref-

erence frame. Using the absolute reference frame is a challenge since numerical

computations must be done with a high degree of accuracy. Yet, this point of view

simplifies the methodology. Optimal trajectories to as a reference trajectory may

not be simple periodic trajectories. Instead, the trajectories would be expressed as

a time varying curve, creating complicated expressions for the linearized dynam-

ics. Finding the best trajectories for a formation of micro-satellites is a difficult

task. The numerical implementation of optimal control for such a strategy would

also be complex. Another disadvantage of using the linearization is that large

reconfiguration maneuvers may be away from the region where a linearization is

valid.

This chapter is organized as follows. Section 6.2 presents the formulation of
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the problem under consideration. Section 6.3 describes the costs and constraints

in order to satisfy typical station keeping and reconfiguration requirements.

Numerical results are given in Section 6.4. Several trade studies are conducted

and simulation results are also presented in this section. Finally, extensions to

general classes of perturbations and conclusions are given in Section 6.5.

6.2 Problem Formulation

The inertial, orbital, and body are the three reference frames that will be used

during our analysis. The superscripts I, O and B denote the inertial,orbit, and

body frames, respectively. Figure 6.1 depicts the coordinate systems. For the

inertial coordinate system, the XI direction is toward the vernal equinox, the Y I

direction is along the equatorial axis and the ZI points toward the north pole.

Classically, the local coordinate system is chosen so that the XO axis points up,

the Y O axis is parallel to the velocity vector and the ZO axis is in the cross range

direction. The body frame is fixed to the satellite and assumed to be aligned to the

orbital frame. The motion of each fully actuated micro-satellite can be described

in absolute coordinates. Including the J2 perturbation, the dynamics are described

by the following differential equations

mẍi = −
µxi
|ri|3

(

1− J2
3

2

(

Re

|ri|

)2(

5
z2i
|ri|2

− 1

)

)

+ uIxi

mÿi = −
µyi
|ri|3

(

1− J2
3

2

(

Re

|ri|

)2(

5
z2i
|ri|2

− 1

)

)

+ uIyi

mz̈i = −
µzi
|ri|3

(

1 + J2
3

2

(

Re

|ri|

)2(

3− 5
z2i
|ri|2

)

)

+ uIzi
,

(6.1)

where xi, yi, and zi are the coordinates of the absolute position of the ith micro-

satellite i ∈ {1, 2, 3} and |ri|=
√

x2i + y2i + z2i . The gravitational constant is

denoted by µ and the second zonal harmonic of the non-spherical earth effect by

J2.

The mass of each satellite is denoted by m and is considered constant (100 kg).
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Figure 6.1: Orbit and inertial coordinate systems.

It is assumed that the moments of inertia are such that (IZ > IX ,IY ) so that each

micro-satellite is gravity gradient stabilized.

It is assumed that the body frame of the satellite is always aligned to the orbit

frame as a result of passive attitude stabilization. Therefore, it is easy to find the

transformation from the body frame to the inertial frame by the following

uI = TIBu
B = TIOu

B

TIO =

[(

q

||q||

)

×

(

p× q

||p× q||

)

,
p× q

||p× q||
, −

q

||q||

]

,

where uI = (uIxi
, uIyi

, uIzi
)T , p = (ẋ, ẏ, ż)T . TIO is the transformation from the

frame fixed to the orbit to the inertial frame and TIB is the transformation from

the body frame to the inertial frame. TIB is a rotation matrix, so ||uBi ||= ||uIi ||

where ||·|| is the Euclidean norm. This particular point will be useful in the optimal
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problems formulations.

Note that the orbit rate is given by ω = TOI ṪIO. Since TOI is a function of

the inertial velocity, difficulties will arise when linearizing a micro-satellite with J2

about an arbitrary trajectory in the orbit frame.

6.2.1 Micro-Satellite Formation Flying Requirements

Typical requirements for formation flying are given by Chien et al. in [20] and by

Esper in [27]. All numerical calculations presented in this paper assume a semi-

major axis (a) of 7138 km, which corresponds to an altitude of 800 km for a circular

orbit. Eccentricities (e) between between 0 and 0.1 are addressed. In general, the

technique presented here can be used for any desired orbit. The requirements on

the control actuation and the ∆V are the following:

1. The thrust is considered continuous and is limited to |30mN |.

2. The integral of the absolute value of accelerations (∆V ), must not exceed

20m/s/year.

6.2.2 Micro-Satellite Trajectory Generation

To solve the proposed optimal control problems we will use NTG. First, outputs

must be found such that equations (6.1), can be mapped to a lower dimensional

output space.

The problem of the outputs for this system is particularly easy to solve since,

as with any fully actuated mechanical system, each micro-satellite is differentially

flat. Namely, by choosing the configuration variables in (6.1) we can parameterize

the complete state and inputs.

Numerical implementation. In NTG, a time scaling is required when working

with the system dynamics in equations (6.1) to make the evaluation of the B-spline

polynomials accurate. In order to not interfere with the absolute precision of the

software package, a time scale was also applied. It turned out that the following
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scalings worked particularly well for our problem

ts =
t

St
, qs =

q

Re
, ms =

m

Sm
.

The time was scaled by St so that an orbit was approximately one time unit. The

inertial positions q were scaled by the radius of the earth Re and the mass m was

scaled by Sm to unity.

6.3 Optimal Control Problem Formulation

Parameterizing the trajectory of the micro-satellites over large periods of time

would require prohibitively many variables, particularly when using absolute coor-

dinates, rendering real-time computation impossible. Therefore, in order to make

the real-time computation tractable, we solve optimal control problems over a

finite horizon [0, T ]. We take T equal to the approximate period of the orbit

(without control) and solve the optimal control problem for one orbit. Then we

take the ending point of this optimal trajectory as a new starting point and solve

the optimal control problem over the horizon [T, 2T ], etc. This receding horizon

methodology, though sub-optimal when compared to the optimal control solution

over the whole mission, is numerically tractable and very efficient. Furthermore, it

may be necessary to adopt such a strategy, albeit not provably stable, to provide

robustness in the presence of unmodeled dynamics and perturbations.

We will consider the three modes of operation as shown in Figure 6.2.

Figure 6.2: Micro-satelllite modes of operation: reconfiguration, station-keeping,

and deconfiguration
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6.3.1 Station-Keeping with Guaranteed Earth Coverage

The instantaneous fuel consumption of each micro-satellite can be represented

as |uBxi
|+|uByi

|+|uBzi
|. This non-differentiable function would make our numerical

solver behave poorly. To overcome any trouble with the evaluation of the gradient

of the cost, we substitute the quadratic cost (uBxi
)2 + (uByi

)2 + (uBzi
)2. Though this

does affect the formulation of the optimal control, the solution obtained provides

a very low |uBxi
|+|uByi

|+|uBzi
| cost. Moreover, the mapping from uB to uI is such

that ||uB||= ||uI ||, which is very convenient for numerical resolution.

Let T > 0 be the finite horizon over which we want to solve the optimal

control problem. The positions of the three micro-satellites will be denoted by

q1 = (x1, y1, z1), q2 = (x2, y2, z2), q3 = (x3, y3, z3) and the thrusts by uB1 =

TOI(u
I
x1
, uIy1 , u

I
z1
), uB2 = TOI(u

I
x2
, uIy2 , u

I
z2
), uB3 = TOI(u

I
x3
, uIy3 , u

I
z3
).

We will now cast the requirements for imaging and communications into nonlin-

ear constraint. Determining these constraints are likely to be mission specific. The

constraints chosen are purely for illustration to show that complicated, nonlinear

constraints can be handled with our methodology.

The first constraint we will consider can be written as

||qi(t)− qj(t)||≤ d,

∀t ∈ [0, T ], ∀(i, j) ∈ {1, 2, 3}, i 6= j. (6.2)

We will interpret this as a communication constraints, that is, we desire the micro-

satellites to stay close together so that communication between the micro-satellites

is possible.

The second constraint we will consider is an imaging constraint. We will require

that the area projected on the earth be above some threshold. For the sake of

simplicity and computational efficiency, we chose not to compute the exact surface

of the projection of the triangle defined by the three micro-satellites on the earth.

Instead, we computed the projection on the earth as if the earth was locally a

plane, which is a reasonable approximation for areas as small as 1000m2.



6.3. Optimal Control Problem Formulation 136

Figure 6.3: Station keeping with guaranteed earth coverage

This “projected” area is, up to an arbitrary choice of orientation,

A(t) =
1

2
n(t) ·m(t),

where

m(t) =(q1(t) + q2(t) + q3(t))/||q1(t) + q2(t) + q3(t)||

n(t) =(q1(t)− q3(t))× (q1(t)− q2(t))

The projected area is depicted in Figure 6.3. The imaging constraint is

A(t) ≥ S, ∀t ∈ [0, T ]. (6.3)

Finally, we solve the following optimal control problem:

Problem 1 (Nonlinear Station-keeping). Given initial states of the three
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micro-satellites q1, q2, q3, p1, p2, p3, find a trajectory that minimizes

J(uB1 , u
B
2 , u

B
3 ) =

∫ T

0

(

||uB1 ||
2+||uB2 ||

2+||uB3 ||
2
)

dt (6.4)

subject to the dynamics (6.1) and the constraints (6.2), (6.3).

6.3.2 Nonlinear Formation Reconfiguration and Deconfiguration

Given any initial position and velocity of each micro-satellite, we require the three

micro-satellites to change their positions and velocities so that the following con-

straints are satisfied at the final time:

• the relative distances of the three micro-satellites must be less or equal to a

prescribed value.

• the projected area on the earth must be no less than a certain value.

Mathematically, these requirements infer the following optimal control problem.

Problem 2 (Reconfiguration). Given initial values for the positions and ve-

locities of the three micro-satellites q1, q2, q3, p1, p2, p3, we look for a minimum

of

J(uB1 , u
B
2 , u

B
3 ) =

∫ T

0

(

||uB1 ||
2+||uB2 ||

2+||uB3 ||
2
)

dt (6.5)

subject to the dynamics (6.1) and the constraints

||qi(T )− qj(T )||≤ df

A(T ) ≥ af .

Moreover, we also solve the inverse problem. Starting from a given triangu-

lar configuration, we can compute the thrusts required to go to any prescribed

positions and velocities. This can be very useful when imaging of the earth is

not necessary. We can ask the micro-satellite to go and wait in a “parking” orbit
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where they do not burn any fuel. For example, if the satellites were to follow one

another on the same free orbit, they would not burn fuel or pull apart due to J2

differential perturbations. When imaging of the earth is necessary, we can recon-

figure the micro-satellites into a triangular formation facing the earth and either

drift or station keep the formation. Mathematically, these requirements infer the

final optimal control problem.

Problem 3 (Deconfiguration). Given initial states of the three micro-satellites

q1, q2, q3, p1, p2, p3, we look for a minimum of

J(uB1 , u
B
2 , u

B
3 ) =

∫ T

0

(

||uB1 ||
2+||uB2 ||

2+||uB3 ||
2
)

dt (6.6)

subject to the dynamics (6.1).

6.4 Numerical Results

In this section, we provide numerical solutions to the station-keeping, reconfigura-

tion, and deconfiguration problems formulated in in the previous section.

6.4.1 Station-Keeping

The parameterization of the variables of the micro-satellite cluster was achieved

by using 10 polynomials of order 9, with 4 regularity conditions at each knot point

for each output. This makes a total of 486 coefficients. Seventy collocation points

were used to enforce the constraints and evaluate the cost. Orbits without control

were used as initial guesses.

The runs were done on a 600 MHz PC. For the station-keeping problem within

one orbit, runs take about 120 seconds, while reconfiguration and deconfiguration

runs less than one orbit take approximatively 5 seconds to run. The orbits are

approximately 6000 sec. The large difference in computation times is due to the

fact that we are enforcing difficult nonlinear trajectory constraints for the station-

keeping problem and only a nonlinear final time constraint for the reorientation
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problem.

The initial starting state of each micro-satellites was propagated without con-

trol to provide the initial guess. Let S denote the desired projected surface area

and d the maximum distance allowed between the micro-satellites.
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Figure 6.4: Station-keeping for three micro-satellites. Relative distances (m)

Results for the minimum projected surface area S = 100 m2 and the maximum

distance between the satellites d = 500 m are reported in Figure 6.4 and Figure 6.5.

Figure 6.6 shows the ∆V used for the 50 orbits. Figure 6.7 depicts the difference

in projected area with and without control.

In this case, the initial conditions were chosen by perturbing nominal values

of orbital elements. The hypothesis is that up to first order the formation should

not pull apart if the eccentricity and semi-major axis are chosen the same for

all micro-satellites. For instance, we chose a = 7138 km, e = 0.1, i = 45 deg,

w = 2 rad, Ω = 0.1 rad, M = 0.1 rad where a is the semi-major axis, e the
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Figure 6.5: Station-keeping for three micro-satellites. Projected area (m2).

eccentricity, i the inclination, w argument of periapsis, Ω the longitude of the

ascending node, and M the mean anomaly, respectively. Then we perturbed this

nominal set by ∆1 = (0 km, 0, 0 deg, − 1e − 3 deg, 3.5e − 4 deg, 0 deg),

∆2 = (0 km, 0, 0 deg, 5e − 4 deg, 0 deg, 0 deg) and ∆3 = (0 km, 0, 0 deg, −

1e− 3 deg, − 3.5e− 4 deg, 0 deg) for satellite 1,2 and 3 respectively. There is no

particular reason for choosing these initial conditions, except that they nominally

satisfied the station-keeping constraints.

For this trajectory i = 45 deg, and the resulting ∆V = 10.4 m/s/year.

Table 6.1 contains results of trade studies with eccentricity, inclination, pro-

jected surface area S and the maximum distance between satellites d. Many of

these results meet a reasonable requirement of a ∆V ≤ 20 m/s/year. The 90 deg

inclination seems easier to control. While the J2 effect is more important than in

the other cases, the differential J2, which really matters, is lower. The controls in
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Figure 6.6: Station-keeping for three micro-satellites. ∆V (m/s)

the body frame were within ±30 mN for all cases under consideration

6.4.2 Results to Problems 2 and 3: Nonlinear Reconfiguration

and Deconfiguration

We choose to compute optimal reconfiguration within 2 orbits and studied various

cases consistent with the station-keeping cases. A typical micro-satellite reconfigu-

ration maneuver is depicted in Figure 6.8. While the cost of going into a triangular

formation decreases with the size of the triangle (constraints are in fact weaker),

the cost to come from a triangular formation to a given control-free trajectory

increases (the configuration gets harder to recover).

The “parking” strategy seems relevant to useful for mission design. A typical

deconfiguration maneuver is depicted in Figure 6.9. It can be seen in Table 6.2

that the ∆V cost of a typical “going out of formation”, then “going into formation
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Figure 6.7: Projected area for station-keeping with and without control. Projected

area (m2). Without control, the projected area becomes singular.

again” is about 0.1 m/s.

The reconfiguration maneuver can be used for a variety of different mission

requirements. Reconfiguration of a micro-satellite formation to view a specific

region of the earth is one possibility. Another possible using of configuration is to

move the formation in a configuration such that it can drift while imaging. When

the formation drifts apart, the formation can be reconfigured to drift again.

6.5 Conclusion

In this chapter, NTG was employed and successfully solved the important prob-

lems of station-keeping, reconfiguration, and deconfiguration for micro-satellite

formation flying.
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Table 6.1: Station-keeping. Top: effect of S for a given d. Bottom: effect of e for

a given S.

i = 0 deg S = 100 m2 S = 200 m2 S = 300 m2

d ≤ 500 m ∆V = 25.6 m/s/year ∆V = 47.8 m/s/year ∆V = 67.3 m/s/year

i = 45 deg S = 100 m2 S = 200 m2 S = 300 m2

d ≤ 500 m ∆V = 10.4 m/s/year ∆V = 17.0 m/s/year ∆V = 26.8 m/s/year

i = 90 deg S = 100 m2 S = 200 m2 S = 300 m2

d ≤ 500 m ∆V = 8.69 m/s/year ∆V = 21.4 m/s/year ∆V = 27.4 m/s/year

i = 0 deg e = 0 e = 0.1

S ≥ 100 m2, d ≤ 500 m ∆V = 25.6 m/s/year ∆V = 36.7 m/s/year

S ≥ 100 m2, d ≤ 300 m ∆V = 34.2 m/s/year ∆V = 33.2 m/s/year

i = 45 deg e = 0 e = 0.1

S ≥ 100 m2, d ≤ 500 m ∆V = 10.4 m/s/year ∆V = 26.0 m/s/year

S ≥ 100 m2, d ≤ 300 m ∆V = 37.0 m/s/year ∆V = 34.2 m/s/year

i = 90 deg e = 0 e = 0.1

S ≥ 100 m2, d ≤ 500 m ∆V = 8.69 m/s/year ∆V = 26.1 m/s/year

S ≥ 100 m2, d ≤ 300 m ∆V = 21.7 m/s/year ∆V = 28.9 m/s/year

Many perturbations were not taken into account in this work, such as solar

pressure, aerodynamics drag, etc. Depending on the orbit, other perturbations

(such as aerodynamic at very low earth orbits) may be dominant. The technique

we presented may be generalized to include any perturbation that can be modeled

as a function of the positions and their time derivatives, since the model remains

flat.

The choice of initial conditions seems also a critical issue. Using tools from

dynamical systems theory, Koon et al. [53] showed that some regions of space

offer better initial conditions than others for the station-keeping problem. Starting



6.5. Conclusion 144

Table 6.2: Reconfiguration ∆V for various objectives.

Projected area objective (m2) 150 200 300 400 500 600

Bound on relative distances (m) 150 200 300 400 500 600

Going in formation

∆V (m/s)
1.49e-1 1.09e-1 7.04e-2 4.25e-2 1.20e-2 9.44e-3

Going out of formation

∆V (m/s)
1.23e-2 1.02e-2 1.32e-2 2.62e-2 3.07e-2 4.89e-2

from these regions of space, we may expect even lower fuel consumptions with the

same requirements.

The main result of this work is to report that it is possible to solve problems

of engineering interest for micro-satellite formation flying missions by a trajectory

generation approach. These trajectories can be computed on board in real-time

using NTG.
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Figure 6.8: Reconfiguration. Going into a formation with a projected area of

450m2. Top: projected area versus time. Middle: relative distances versus time.

Bottom: thrusts in the body frame, where each colunm is a different satellite.
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Figure 6.9: Deconfiguration. Going to a “parking” configuration. Top: projected

area versus time. Middle: relative distances versus time. Bottom: thrusts in the

body frame, where each column is a different satellite.
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Chapter 7

Future Work

Differential Flatness The question of necessary and sufficient conditions for

differential flatness remains an open research problem. Due to its complexity, we

could not determine if the paper by Chetverikov in [19] proves the prized result or

casts the problem into an equally difficult one. Finding approximate flat outputs

is another area that is important to the improvement of NTG like algorithms.

Differential Flatness and VTOL aircraft Design Designing an aircraft that

can hover and be efficient in forward flight is a difficult proposition. It appears that

many VTOL aircraft have been designed without accounting for the complexity

of the control problem. More research needs to be done to integrate the control

system design with the overall design of the aircraft. Simple, differentially flat

VTOL aircraft designs, such as the “Aeroranger” may make VTOL aircraft more

reliable and efficient than helicopters.

Use of Feasible Nonlinear Programming Solver It was mentioned in Chap-

ter 2, that NPSOL was an infeasible sequential quadratic programming method. In

other words, NPSOL does not necessarily satisfy the nonlinear constraints, system

or otherwise, until an optimal solution is reached. This is not an ideal situation

for critical real-time trajectory generation problems in that a feasible solution is

better than none at all. There are several feasible nonlinear programming solvers

available. CFSQP is a feasible sequential quadratic programming solver that uses
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the active set method. The NTG software version 3.1 supports the CFSQP solver

and well as NPSOL. A lack of time prevented us from doing significant testing with

CFSQP, so it was not included in this thesis. A future research direction would

be implement a feasible nonlinear programming solver in NTG and show that one

can always obtain a solution, albeit not optimal. In fact, the trust region method

KNITRO appears to be the next solver to be employed in the NTG algorithm.

Not only does it have a feasible solution option, but it also has the capability to

accept analytical second order information concerning the constraints and the ob-

jective. In the NTG performance evaluation in Chapter 4, we hypothesized that

using second order information would increase the convergence rate for systems

that had highly nonlinear constraints.

Combination of NTG and Indirect Methods The combination of NTG and

indirect methods such as the trajectory morphing technique presented by Hauser

et al. in [43] could be used to obtain very accurate solution to optimal control

problems. Using the solution of a direct method to initialize an indirect method

is advocated in von Stryk et al. [109].

Along the same lines, a topic of future research would be to use the information

in the trajectory generation solution, such as the Lagrange multipliers, to find a

compatible locally stabilizing controller. This is related to the neighboring ex-

tremal problem in Bryson and Ho [12]. Currently, we design the locally stabilizing

controller off-line with no regard to the cost function in the trajectory generation

problem.

Develop a Set Accepted Standards to Compare Optimal Control Tran-

scription Techniques The Constrained and Unconstrained Testing Environ-

ment (CUTE) can be used by nonlinear programming solver developers to test

their code. A similar environment to CUTE needs to be developed for the optimal

control community. Accuracy of solution, computation time, convergence rates

are just a few measures that would be used to test optimal control transcription
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techniques. A library of optimal control problems with a standard interface would

also be necessary for the environment.

Generic Optimal Control Problem Solution There may be situation in

which it is necessary solve a more general optimal control problem that cannot be

cast into the cost of equation 2.2 and and the constraints in equation 2.3. The

cost

J :=

∫ tf

t0

L(x(τ − t1), x(τ − t2), . . . , u(τ − t1), u(τ − t2), . . . , τ)dτ+

φ(x(t1, t2, . . . , ), u(t1, t2, . . .), t1, t2, . . .) ti ∈ [t0, tf ]

(7.1)

and the constraints

lb ≤ S(x(t− t1)x(t− t2), . . . , u(t− t1), u(t− t2), . . . , t) ≤ ub ∀t ∈ [t0, tf ] ti ∈ [t0, tf ]

(7.2)

may be applicable a distributed, multi-vehicle environment optimal control prob-

lem. For example, the correlation cost function

J1 :=

∫ tf

t0

x(τ)x(τ − t1)dτ

or the trajectory constraint

S1 := ẋ2(t1) + sinx(t− t2) + t3 = 0 ∀t ∈ [t0, tf ] ti ∈ [t0, tf ]

cannot be implemented in the version of NTG used in this thesis.

New Applications of NTG The application of NTG to agile missiles and

projectiles is an area of future research. See Milam et. al [72] for a solution to a

missile problem using NTG. In addition, applying NTG to systems governed by

Partial Differential Equations (PDE)’s is an area of future research. Petit et. al

[80] has started this effort by extending NTG to use tensor product B-spline basis

functions.
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The field of physical based animation appears to be an area where NTG can

contribute to state of the art. Witkin et al. [111], Z. Popovic et al. [85], J.

Popovic et al. [84], Wu et al. [112], and Liu et al. [59] all use either direct

collocation or multiple shooting to solve their problems. The animation community

could all benefit from having a physical based animation capability built in their

design software. Currently, the animation design software MAYA, Lightwave, and

3DStudioMax, have only an inverse kinematics capability. Game consoles could

benefit from a program such as NTG built in the software to provide the user more

realistic control and visual effects.
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[85] Z. Popović and A. Witkin. Physically based motion transformation. In Com-

puter Graphics (Proceedings of the SIGGRAPH 1999), pages 11–20, 1999.

[86] W. H. Press, B. P. Flanerry, S. A. Teukolsky, andW. T. Vetterling.Numerical

Recipes: The Art of Scientific Computing. New York:Cambridge University

Press, 1986.

[87] M. Rathinam. Differentially flat nonlinear control systems. Ph.D. thesis, Cal.

Inst. of Tech., 1997.

[88] A. Richards and J. How. Model predictive control of vehicle maneuvers with

guaranteed completion time and robust feasibility. In Proc. American Control

Conference, 2003. Submitted.

[89] H. Schaub. Spacecraft formation flying control using mean orbital elements.

Journal of the Astronautical Sciences, pages 69–87, 2001.

[90] A. Schwartz. Theory and Implementation of Numerical Methods Based on

Runge-Kutta Integration for Solving Optimal Control Problems. Ph.D. thesis,

U.C. Berkeley, 1996.

[91] S. A Schwieghart and R.J. Sedwick. A perturbative analysis of geopotential

disturbances for satellite formation flying. In Proceedings of the 2001 IEEE

Aerospace Conference, pages 1862–1867, 2001.

[92] Y. Sedwick, D. Miller, and E. Kong. Mitigation of differential perturbations

in formation flying satellite clusters. Journal of Astronautical Sciences, 47(3

and 4):309–331, 1999.



160

[93] R. Serban and L. R. Petzold. COOPT-a software package for optimal control

of large-scale differential-algebraic equation systems. Journal of Mathematics

and Computers in Simulation, 56(2):187–203, 2001.

[94] H. Seywald. Trajectory optimization based on differential inclusion. J. Guid-

ance, Control and Dynamics, 17(3):480–487, 1994.

[95] H. Seywald and E. M. Cliff. Goddard problem in the presence of a dy-

namic pressure constraint. J. Guidance, Control and Dynamics, 16(4):776–

781, 1993.

[96] L. Singh and J. Fuller. Trajectory generation for a uav in urban terrain,

using nonlinear mpc. In Proc. American Control Conference, 2001.

[97] E. D. Sontag. Mathematical Control Theory. Springer, New York, 1998.

[98] M. C. Steinbach. Optimal motion design using inverse dynamics. Technical

report, March 1997. Konrad-Zuse-Zentrum für Informationstechnik Berlin.

[99] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, New

York, 1991.

[100] TechSat 21. http://www.vs.afrl.af.mil/vsd/techsat21/ .

[101] S. Vadali, H. Schauband, and K. Alfriend. Initial conditions and fuel-optimal

control for formation flying of satellites. In AIAA Guidance, Navigation and

Control Conference, August 1999.

[102] A. J. van der Schaft. Representing a nonlinear state space system as a set of

higher-order differential equations in the inputs and outputs. Systems and

Control Letters, 12:151–160, 1989.

[103] M. van Nieuwstadt. Trajectory generation for nonlinear control systems.

Ph.D. thesis, Cal. Inst. of Tech., 1997.

[104] R. J. Vanderbei. LOQO User’s Manual - Version 4.05, October 2000.



161

[105] S. A. Vavasis. Nonlinear Optimization : Complexity Issues. Number 8 in

International series of monographs on computer science. Oxford University

Press, 1991.

[106] T. Veeraklaew and S. K. Agrawal. New computational framework for tra-

jectory optimization of higher-order dynamic systems. J. Guidance, Control

and Dynamics, 24(2):228–236, 2001.

[107] A. Verma and J. Junkins. Inverse dynamics approach for real-time determi-

nation of feasible aircraft reference trajectories. In Proc. AIAA Guidance,

Control, and Navigation Conference, pages 545–554, 1999.

[108] O. von Stryk. Numerical solution of optimal cntrol problems by direct collo-

cation. International Series of Numerical Mathematics, 111:129–143, 1993.

[109] O. von Stryk and R. Bulirsch. Direct and indirect methods for trajectory

optimization. Annals of Operations Research, 37:357–373, 1992.

[110] R. A. Waltz and J. Nocedal. KNITRO User’s Manual- Version 3.0, April

2003.

[111] A. Witkin and M. Kass. Spacetime constraints. In Computer Graphics (Pro-

ceedings of the SIGGRAPH 1988), pages 159–168, 1988.

[112] J. Wu and Z. Popovic. Realistic modeling of bird flight animations. In Com-

puter Graphics (Proceedings of the SIGGRAPH 2003), 2003. submitted.

[113] H. H. Yeh and A. Sparks. Geometry and control of satellite formations. In

Proceedings of the American Control Conference, pages 384–388, 2000.

[114] H.H. Yeh, E. Nelson, and A. Sparks. Nonlinear tracking control for satellite

formations. In Proceedings of IEEE Conference on Decision and Control,

pages 328–333, 2000.


