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Overview 

The theme of this thesis is to apply remote sensing data on problems concerning the 

climate system. It is grouped into two parts. Part I (Chapters 1, 2) is devoted to 

spectroscopic measurements of HDO, H2O, and column CO2, and Part II (Chapters 3-5) 

is devoted to variations in the Earth’s reflectance. 

In Chapter 1, we derive the first simultaneous measurements of HDO and H2O in the 

tropical upper troposphere and lower stratosphere. This is made possible by extending the 

retrievals of the Atlas-3 Atmospheric Trace Molecule Spectroscopy (ATMOS) data 

deeper into the troposphere. The derived HDO/H2O ratio demonstrates that convection 

has a major influence on the moisture budget and the dehydration processes in this 

region. 

The objective of Chapter 2 is to determine the precision to which column averaged CO2 

volume mixing ratio (VMR) can be measured by near-infrared (NIR) spectrometry of 

reflected sunlight. The key idea in this study is the simultaneous use of the CO2 (1.58-µm 

and 2.06-µm) and O2 (0.76-µm) bands. This approach allows small changes in the 

spectrum arising from variations of column CO2 VMR to be distinguished from those 

arising from variations of other atmospheric/surface parameters. Using prototype retrieval 

simulations based on a practical satellite instrument design, we show that the 3-band, 

high-resolution, spectrometric approach using NIR reflected sunlight has the potential for 

highly accurate column CO2 VMR measurements. 
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In Part II, we examine the interannual variations in the earth’s reflectance. The innovative 

part of this study is the use of the Nimbus-7 TOMS reflectance measurements. The 

TOMS reflectance dataset is a byproduct from an instrument that was designed to 

measure ozone, and has not been widely used by the climate change community. We 

recognize that its excellent calibration and its relatively long temporal coverage (14 

years) make it a unique dataset suited for the study of interannual variations in the earth’s 

reflectance.  

Chapter 3 introduces the Nimbus-7 TOMS reflectance measurements and provides an 

overview on the interannual variability of the Earth’s reflectance. Variations in the 

globally averaged reflectance are also used to examine a postulated cosmic ray – cloud – 

climate connection. 

In Chapter 4, we relate interannual reflectance variations over the summertime polar icy 

areas to variations in the microwave-derived sea ice concentration. The results provide 

independent confirmation on sea ice variations observed by microwave instruments, and 

quantify the role of clouds in shielding the reflectance effect of sea ice variations. An 

interesting hemispheric asymmetry is found: a 1% change in the sea ice concentration is 

related to a significantly larger reflectance change in the Antarctic than in the Arctic icy 

areas. 

Chapter 5 is devoted to interannual reflectance variations over the northern midlatitude 

oceans. We find that interannual reflectance variations in these regions are, to a large 

extent, related to variations in the large-scale circulation, mostly through variations in the 
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storms tracks. The findings in this chapter suggest that the response of clouds to climate 

change may be better viewed from a large-scale circulation perspective, other than a 

purely thermodynamic one (such as in the cloud – temperature relations), a stand many 

previous investigations have taken.
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1.1 Abstract  

We report the first simultaneous measurements of HDO and H2O in the tropical upper 

troposphere and lower stratosphere. The HDO/H2O ratio is remarkably constant in this 

region despite a factor of 5 variation in the water vapor mixing ratio. This observation 

unambiguously demonstrates that convection has a major influence on the moisture 

budget and the dehydration processes in this region.  
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1.2 Introduction 

A recent assessment of stratospheric water observations obtained over the last 50 years 

concludes that there has been an approximate doubling in stratospheric humidity 

[Rosenlof et al., 2001; SPARC, 2000].  Such a change is quite disturbing, because 

stratospheric water plays important roles in the Earth's climate through its influences on 

radiation and ozone chemistry [Forster and Shine, 1999; Kirk-Davidoff et al., 1999]. 

Enhancement of stratospheric water impacts stratospheric ozone and may delay the 

recovery of the ozone column following its decades-long deterioration caused by halogen 

free radical catalysis [Kirk-Davidoff et al., 1999; Shindell, 2001]. It may also significantly 

contribute to the greenhouse warming [Hartmann et al., 2000; Shindell, 2001]. Because 

of these climatic impacts, it is important to understand how stratospheric water content is 

regulated and how it would respond to climate change. For this purpose, we shall 

distinguish the part of the stratosphere that is above 380 K isentropic surface, sometimes 

known as the “overworld,” from the part below, referred to as the “lowermost 

stratosphere” [Hoskins, 1991], as they are governed by distinct dynamical processes. In 

this work, we are mostly concerned with the “overworld” stratosphere, and the terms 

“stratosphere” and “overworld stratosphere” will be used interchangeably. 

The amount (or volume mixing ratio — VMR) of water vapor in the overworld 

stratosphere is determined both by the water VMR of air entering the stratosphere from 

the troposphere and by in situ production from oxidation of methane [Hurst et al., 1999]. 

While the in situ production of water by methane oxidation is relatively well understood 



  5 

[Hurst et al., 1999], important uncertainties exist in our knowledge of the processes that 

regulate the humidity of the air entering the stratosphere from the troposphere.  

Following Brewer’s classic work [Brewer, 1949], it is generally accepted that 

tropospheric air enters “overworld” mostly through the tropical tropopause. This Brewer-

Dobson circulation has been confirmed by stratospheric tracer measurements, and is 

understood in terms of a “wave-driven” circulation [Holton et al., 1995], although 

tropical diabatic heating may also play a role in driving the circulation [Plumb and 

Eluszkiewicz, 1999]. While the global mass transport may be estimated by calculating the 

extratropical wave-induced forcing [Rosenlof and Holton, 1993], the transport of water 

across the tropical tropopause is complicated because of water’s phase transition, and 

requires considering small-scale processes.  

The relative importance of large-scale circulation and small-scale processes in 

determining the stratospheric water content has been actively debated for decades but 

remains unclear [Danielsen, 1982; Holton and Gettelman, 2001; Newell and 

Gouldstewart, 1981; Sherwood and Dessler, 2001]. During this period, it is increasingly 

recognized that the tropical tropopause is not a sharp boundary [Atticks and Robinson, 

1983; Highwood and Hoskins, 1998; Newton and Persson, 1962]. Observations of ozone, 

lapse rate, and convective mass flux profiles show a layer extending roughly from 14 to 

19 km that marks the transition from the troposphere to the stratosphere [Folkins et al., 

1999], sometimes dubbed the tropical tropopause layer (TTL). Tropical troposphere-

stratosphere water transport is, therefore, more appropriately examined in the context of 

the TTL, instead of a discrete tropopause boundary.  
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The long-standing debate is mainly on the relative importance of the two processes that 

desiccate the stratosphere — here labeled “gradual dehydration” and “convective 

dehydration.” Above ~13–14 km in the tropics (base of the TTL), the clear sky radiative 

heating is positive. Diabatic heating therefore causes air to ascend “gradually” towards 

the stratosphere.  If at some point, this air becomes sufficiently supersaturated, ice 

crystals will form, grow and fall, leading to dehydration.  In this “gradual dehydration” 

process, the humidity of the air entering the stratosphere is controlled by the coldest 

temperature, or more precisely the lowest saturation water VMR, that it has experienced, 

often at or near the tropopause. The cold episodes can be induced by, for example, 

horizontal advection through a cold trap [Holton and Gettelman, 2001] or wave 

perturbations [Potter and Holton, 1995]. In contrast, in “convective dehydration,” air 

detrained from deep convection in the TTL is already dehydrated to stratospheric 

abundances, and experiences little further freeze-drying during its subsequent gradual 

ascent towards the stratosphere [Sherwood and Dessler, 2001]. Deep convection here 

refers to convection that detrains above the base of the TTL. The moisture in the 

detrained air may include contributions from lofted cloud ice that later evaporates. The 

term “freeze-drying” refers to the process of condensation and precipitation of ice 

particles. It is important to distinguish between “gradual dehydration” and “convective 

dehydration” because each is likely to have changed differently over the last several 

decades, and is likely to change differently in the future as well.  If gradual dehydration 

dominates, we should look to change in the temperature of the cold point as the primary 

forcing of stratospheric entry humidity.  On the other hand, if convective processes 
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control stratospheric entry humidity, we should look to changes in convection and cloud 

microphysics.   

The isotopic composition of water can be a useful tracer for studying the troposphere-

stratosphere exchange of water [Moyer et al., 1996]. The minor water isotopic species, 

such as HDO and H2
18O, have lower vapor pressures than H2

16O. As vapor condenses out 

of an air parcel, these minor isotopic species are preferentially removed and become 

progressively depleted in the residual vapor. The equilibrium fractionation factor is 

defined as α=Rvapor/Rcondensate, where R is the isotopic ratio (for instance [HDO]/[H2
16O]). 

We have used [X] for the VMR of gas X. The isotope ratios are also often expressed as 

deviations from those of the standard mean ocean water (SMOW), and are reported in the 

so-called δ notation: for example, the [HDO]/[H2O] ratio of a sample is often expressed 

as 

δD(‰)= 







−× 1

])/[]([
])/[]([

2

2

SMOW

sample

OHHDO
OHHDO

1000   (1.1) 

The lowered vapor pressure of HDO is related to its larger moment of inertia. The 

equilibrium fractionation of H2
18O, on the other hand, is due to its larger molecular 

weight. Because the moment of inertia has a larger effect on the saturation vapor pressure 

than the molecular weight, the equilibrium fractionation factor of HDO is about 8 times 

that of H2
18O. In this work, we will focus on the fractionation of HDO from ice-vapor 

transition. The equilibrium fractionation factor for ice-vapor transition (αI) is given by  

ln(αI)=16288/T2-0.0934   (1.2) 



  8 

where T is expressed in Kelvin [Merlivat and Nief, 1967]. Under disequilibrium 

conditions, the slightly lower diffusivity of HDO reduces the fractionation factor to 

α=αIS/(αI(S-1)β+1), where S is the supersaturation with respect to ice, and β=1.0251 is 

the ratio of the diffusion coefficients between H2O and HDO [Jouzel and Merlivat, 

1984]. These phase transition related fractionations form the basis for inferring the 

condensation and evaporation history of the moisture from measurements of its isotopic 

composition. 

Based on the measured isotopic composition of stratospheric water, an HDO abundance 

of δD = ~ –670‰ was inferred for the vapor that enters the stratosphere [Johnson et al., 

2001b; Moyer et al., 1996]. In contrast, simple models, such as the Rayleigh distillation 

model, predict a δD < -900‰ at the tropopause [Keith, 2000; Moyer et al., 1996]. The 

standard Rayleigh distillation model assumes that the condensates formed are in 

equilibrium with the vapor and are removed as soon as they form. The assumption of 

equilibration can be removed by replacing αI by α, which includes the kinetic 

fractionation effects associated with non-equilibration (Eq. 1.2). This model has been 

argued to be suitable for predicting the isotopic composition during gradual dehydration 

and in the protected core of convection [Keith, 2000]. Evaporation of lofted cloud ice was 

suggested in order to resolve this discrepancy between the observed δD and the model 

prediction [Johnson et al., 2001a; Keith, 2000].  

These stratospheric isotopic measurements, however, carry no information on the altitude 

at which ice lofting and evaporation occur. Convection could loft ice particles above the 

tropopause where they would evaporate, adding HDO-enriched moisture. On the other 
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hand, it is equally plausible that cloud lofting and evaporation occur well below the 

tropopause to provide a source of HDO-enriched moisture, which is then subject to 

further condensation and fractionation during the subsequent gradual ascent into the 

stratosphere. The stratospheric isotopic measurements therefore provide little constraint 

for discriminating between the two proposed dehydration scenarios [Keith, 2000; Moyer 

et al., 1996]. Observations throughout the tropical tropopause region are needed. 

In this work, we shall present measured HDO/H2O ratio profiles in the TTL and discuss 

the implications to the water transport in this region. 

1.3 Data and Spectral Retrieval 

We derive HDO/H2O profiles across the tropical tropopause from high spectral resolution 

(~0.01 cm-1), infrared solar absorption spectra acquired by the Atmospheric Trace 

Molecule Spectroscopy (ATMOS) Fourier Transform Infra-Red (FTIR) spectrometer 

during the ATLAS-3 space shuttle mission in 1994 [Gunson et al., 1996]. We shall 

present data from 11 tropical solar occultations taken between 5ºN and 20ºN from Nov. 

12 to Nov. 14. Figure 1.1 shows the locations of these occultations (white symbols) 

together with the minimum 11-µm brightness temperature obtained by geostationary 

satellites. The tropical occultations that we chose in general reside in or near the inter-

tropical convergence zone (ITCZ) region and are distributed over all longitudes. Since no 

ATMOS measurements were possible when the sun was blocked by optically thick 

clouds, our measurements are generally in the regions outside of deep convection. In 
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addition, our observations are limited in temporal coverage. More data are needed to 

examine possible seasonal behavior and interannual variability. 

 

Figure 1.1 The locations of 11 tropical ATMOS altas-3 sunset occultations (white symbols) that 

extended below the tropopause. They were taken during Nov. 12-14, 1994. We also plot the 

minimum 11-µm brightness temperature over this period. The numbers refer to the occultation 

number in the ATMOS database. The minimum 11-µm brightness temperature was derived from 

3-hourly geostationary satellite images averaged to a 0.3º×0.7º resolution. Deep convection is 

marked by the low brightness temperatures. The tropical occultations that we chose in general 

reside in or near the inter-tropical convergence zone (ITCZ) region and are distributed over all 

longitudes. Tracers such as CO in these occultations show tropospheric concentrations (> ~80 

ppbv) up to near tropopause (~16.5km) altitudes and quickly decrease to a stratospheric value (< 

20 ppbv). In contrast, the CO concentrations in the subtropical occultations start to decrease well 

below the tropopause. Each occultation used one of the following three optical band pass filters: 

filter 3 (∆), 1580-3340 cm-1, filter 4 (◊), 3150-4800 cm-1, and filter 9 (□), 600-2450 cm-1. 

The retrieval program that we use is the GFIT package provided by Geoffrey Toon at the 

Jet Propulsion Laboratory (JPL). The molecular parameters are taken from the ATMOS 

line list, which is an update of the High Resolution Transmission Molecular Absorption 

Database (HITRAN) [Brown et al., 1996]. This program has been used extensively in the 

retrieval of spectra acquired by the JPL Mark IV FTIR [Sen et al., 1996], an instrument 

similar to the ATMOS instrument. 
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The spectra used here are the same as in Moyer et al. [1996]. The analysis, however, has 

been improved in two ways. First, recent laboratory measurements have provided better 

spectroscopic parameters of H2O and HDO [Toth, 1998; Toth, 1999a; Toth, 1999b; Toth, 

2000; Toth et al., 1998]. Second, the spectral retrieval has been extended deeper into the 

troposphere. In the previous analysis, narrow spectral intervals, mostly a fraction of a 

wavenumber (cm-1) wide, were used to retrieve the abundance of HDO and H2O [Irion et 

al., 1996]. In contrast, in our analysis, wide windows (often tens of wavenumbers wide) 

are used. Given the much greater overlapping between gas absorption lines in the 

tropospheric spectra, the wide window approach is more suitable for tropospheric 

retrievals, and allows spectral parameters such as the continuum level and its tilt, to be 

better determined. As each occultation used one of the following three optical band pass 

filters: filter 3 (∆), 1580-3340 cm-1, filter 4 (◊), 3150-4800 cm-1, and filter 9 (□), 600-

2450 cm-1, appropriate spectral windows have been identified for each filter in order to 

retrieve the HDO and H2O abundance. It is worth noting that in the previous analysis 

[Irion et al., 1996], spectra acquired with filter 3 and filter 4 were not used. However, 

within the spectral range of filter 3, we have identified an excellent spectral window 

(around 2600 – 2800 cm-1) for HDO. Usable windows for HDO retrievals have also been 

identified for filter 4 spectra. The consistency among the three filters is examined using 

spectra obtained from the Mark IV balloon flights [Toon et al., 1999], which covered the 

spectral range of 650-5650 cm-1. The results show that the filter 9 windows consistently 

give a HDO mixing ratio ~12% higher than the other two filters. After this bias is 

corrected, the three filters agree within the estimated errors. More detailed descriptions of 
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the spectral windows and the consistency among the filters are presented in the 

Appendix.  

1.4 Results 

The HDO/H2O ratios, expressed as δD, show little further fractionation above ~12 km 

(Figure 1.2a). For the altitude range 11-19km, there is little systematic change in δD 

despite a fivefold decrease in the water mixing ratio [H2O] (Figure 1.2b).  

The HDO and H2O abundances that we report are for the slant columns along the limb 

path as measured by the instrument, not VMR profiles retrieved from these slant 

columns. In this way, errors associated with this extra step of retrieval are avoided. 

Effects due to errors in the tangent pressure (2%), the tangent temperature (3K), and the 

zero level offset (1%) have been folded into the error bars. The effect of methane 

oxidation has been removed [Irion et al., 1996]. Unlike inferring the entry composition 

from the stratospheric measurements, our results are not sensitive to errors in this 

correction, as the effect of methane oxidation is small in the TTL. 
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Figure 1.2 A) The δD profiles from the 11 tropical occultations. B) δD is plotted against the water 

mixing ratio [H2O] for the altitude range of 11-19 km. The different filters are represented by 

different colors: f3, blue, f4, green, and f9, red. The effect of methane oxidation has been 

removed [Irion et al., 1996]. The δD vs. [H2O] relationship predicted by the Rayleigh distillation 

model, appropriate for the “gradual dehydration,” is over-plotted (solid). The fractionation factors 

are extrapolations from the data by Merlivat and Nief [1967]. The kinetic isotopic fractionation 

effect from a 10% supersaturation was included in calculating the dashed curve. The effect of the 

finite resolution of the ATMOS measurements has been included in both curves. The expected 

~200‰ additional fractionation from the “gradual dehydration” process is completely absent in 

the data. This result thus shows “gradual dehydration” cannot be mainly responsible for the 

dehydration in the TTL, and that convective influence on the moisture must extend well above 

~13-14km. 
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The constancy of the observed δD unambiguously demonstrates the major influence of 

convection on the moisture budget in the TTL. Because most convection does not extend 

above ~14 km [Folkins et al., 1999; Highwood and Hoskins, 1998], it is commonly 

assumed that convection does not have major effects on the characteristics of the bulk of 

the TTL [Holton and Gettelman, 2001]. If this were indeed the case, freeze-drying during 

the gradual ascent would have to be mainly responsible for the decrease of [H2O] in this 

layer. During the gradual ascent, the air is in general stably stratified, and the time for ice 

particles to precipitate is short compared to the advective cooling timescale. Under these 

conditions, the simple Rayleigh distillation model can be used to describe the evolution 

of the isotopic composition of the moisture. This has been demonstrated in the lower and 

middle troposphere when stably stratified conditions prevail [Gedzelman, 1988]. In 

Figure 1.2b, we show the δD vs. [H2O] relationship predicted by the Rayleigh model with 

a starting composition of δD = -635‰ and [H2O] = 15 ppmv, appropriate for the base of 

the TTL (solid curve). The predicted additional 200‰ depletion in δD as [H2O] decreases 

from 15 ppmv to 4 ppmv is completely absent in the observations. Possible 

supersaturation during the gradual ascent [Jensen et al., 2001; Jensen et al., 1996] may 

reduce the fractionation, however, is insufficient to explain the difference. For instance, a 

10% supersaturation reduces the fractionation by only ~20‰ (dashed line). We therefore 

conclude that the gradual freeze-drying scenario cannot be mainly responsible for the 

dehydration in the TTL, and that convective influence on the moisture must extend well 

above ~13-14 km. This result is consistent with a recent study on the O3 and CO 

distributions in the TTL [Dessler, 2002].  
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There is a potential uncertainty regarding the interpretation of the isotopic data. The 

fractionation factors between the vapor and solid phases for the HDO-H2O system have 

been measured only between 0 and -40ºC. Within this temperature range, the 

fractionation factor increases with a decreasing temperature, as described by Equation 1.2 

[Merlivat and Nief, 1967]. It remains an assumption that this result can be extrapolated to 

the temperature range relevant to the TTL. This assumption is supported by recent 

laboratory measurements of desorption rates of H2O ice in the temperature range of 175 

K to 190 K [J. A. Smith, personal communications]. 

Evaporation of lofted cloud ice that is enriched in HDO appears to have contributed to 

the uniformity of the isotopic composition in the TTL. The ice-to-vapor ratio can exceed 

100 at the top of convective towers [Knollenberg et al., 1993]. Therefore, only a small 

fraction of this ice needs to remain in the air and later evaporate to make a significant 

contribution to the total moisture. Isotopic evidence of ice lofting and evaporation has 

been documented near the midlatitude tropopause [Smith, 1992], and it is likely that the 

same process operates in the tropics as well. In fact, simple models predict that the 

evaporation of lofted cloud ice would cause δD to increase with altitude, as contributions 

from evaporation of lofted ice become increasingly more important in the total moisture 

[Keith, 2000]. Interestingly, some of our profiles do exhibit such a reversal (Figure 1.3, 

blue). 
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Figure 1.3 The derived δD profiles from ATLAS-3 occultations #94 (blue) and #96 (red). The 

reversal of the δD gradient seen in #94 is likely a consequence of ice lofting and evaporation, 

while the constancy of δD in #96 suggests that dehydration is accomplished by mixing with dry 

air instead of freeze-drying. 

The “convective dehydration” mechanism proposed by Sherwood and Dessler [2001] 

may also help to explain the lack of δD gradient in the TTL. In their model, for the region 

outside of deep convection, less energetic convection supplies moisture to the base of the 

TTL. As the air gradually ascends by radiative heating, its [H2O] decreases since the 

moist air is progressively diluted through mixing with much drier air detrained from the 

more energetic convective events that penetrate into the TTL. In this scenario, the 

decrease in [H2O] in the upper troposphere is not directly related to condensation, thus 

does not involve further isotopic fractionation. As an extreme example, consider the case 
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when the air detrained from the more energetic convections has a negligible amount of 

moisture compared to the air that is gradually rising from the base of the TTL. In this 

case, the δD would be constant all the way across the TTL. The constant δD shown in 

Figure 1.3 (red) is perhaps a consequence of this “mix-drying” mechanism. The air 

detrained from the more energetic convective events, of course, also carries a finite 

amount of moisture. However, since evaporated cloud ice constitutes a significant portion 

of this moisture, its isotopic composition would not be significantly different from that of 

the moisture that gradually ascends from the base of the TTL. Evaporation of lofted ice 

and the “mix-drying” mechanism can therefore combine to explain the lack of vertical δD 

gradient in the TTL. It is interesting to note that a recent modeling effort that includes 

cloud lofting/evaporation and this “mix-drying” mechanism was able to produce a δD vs. 

[H2O] relationship similar to the observations that we have presented here [S. Sherwood, 

personal communication]. The TTL water isotopic data thus support “convective 

dehydration” as the control of stratospheric humidity [Sherwood and Dessler, 2001], and 

question the necessity of additional “gradual dehydration”. 

The averaged δD is -640‰ between 13 km and the tropopause (~16.5 km) with a 

standard deviation of 39‰ and -631‰ between the tropopause and 19 km, with a 

standard deviation of 15‰. There are 36 samples between 13 km and the tropopause and 

24 samples between the tropopause and 19 km. The samples are weighted by their 

individual uncertainties when we calculate the mean and the standard deviation. The 

estimated measurement uncertainty of individual samples in each region is about 22‰ 

and 25‰, respectively. The scatter in the upper troposphere thus exceeds what one 
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expects from measurement errors by a factor of 2. The larger scatter in the upper 

troposphere may be a consequence of convection. More consistent values are found in the 

lower stratosphere where the convective influence diminishes. The difference in the δD 

between the two regions may be used to place an upper bound to the dehydration by 

gradual freeze-drying. For instance, a 20% decrease in water VMR (from 5 ppmv to 4 

ppmv) by gradual freeze-drying would produce additional depletion of ~50‰ in δD. 

There is no evidence for such depletion. We note, however, that the coarse resolution (~2 

km vertical, ~200 km horizontal) of the ATMOS measurements may hide localized 

depletions of this magnitude, if ice lofting and evaporation produce a thin layer (< 1km) 

of HDO-enriched moisture beneath the tropopause. In situ data are needed to resolve 

these fine scale structures. For the discussions in this paragraph, it is important that there 

is no significant altitude-dependent bias in the derived δD. We have examined the effects 

of systematic errors such as errors in the pressure broadening coefficients or the tangent 

temperature. They do not cause significant altitude-dependent biases in the TTL region 

(Appendix). 

Our observations also show that the cessation of further fractionation starts at ~12 km, 

somewhat below the base of the TTL. This suggests evaporation of lofted ice as an 

important source of moisture at these altitudes as well. These altitudes roughly 

correspond to the region of maximum convective outflow [Folkins, 2002]. The air in this 

region does not ascend into the stratosphere. Instead, it joins the Hadley cell as it 

descends by radiative cooling and is advected towards the subtropics. As the dryness of 

the subtropical upper troposphere allows much of the Earth’s surface radiation to escape 
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to the space, its behavior plays an important role in the water vapor feedback. Our results 

suggest that the amount of condensates that can be lofted and evaporated in the 

convective outflow may play a role in modulating the strength of this important feedback, 

a view that has not yet been generally accepted [Held and Soden, 2000]. 

1.5 Conclusions 

The results presented here suggest that the widely held view that tropopause temperature 

acts as the only control on stratospheric humidity is too simplistic. This view has led 

researchers to point to specific regions as the “door” to the stratosphere, simply because 

the tropopause temperature there is sufficiently cold to produce the measured 

stratospheric water abundance [Highwood and Hoskins, 1998; Newell and Gouldstewart, 

1981]. Others have suggested, based solely on inferred warmer tropical tropopause 

temperature, that during the Eocene (55 to 38 Ma), stratospheric water was much higher 

and therefore optically-thick polar stratospheric clouds could explain the warmth of the 

high latitudes [Kirk-Davidoff et al., 2002]. The results presented here question the 

validity of such a simplistic view. Changes in convection and cloud microphysics need to 

be included in understanding past and future stratospheric humidity changes [Sherwood, 

2002].  
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1.7 Appendix 

The purpose of this Appendix is to provide some details on the analysis of the ATMOS 

spectra. We shall describe the spectral intervals (or windows) used to retrieval HDO and 

H2
16O with some representative spectra. We shall also evaluate the consistency among 

the different filters and the effect of some potential systematic errors. 

Measurable HDO lines (~25 lines) for filter 9 spectra in the TTL mostly lie between 1300 

and 1500 cm-1. In this spectral range, the H2O absorption is quite strong. Because of the 

strong increase in H2O absorption with decreasing height, this spectral interval becomes 

saturated below ~10 km. Therefore, HDO abundance, in general, cannot be reliably 

retrieved from tropical filter 9 spectra below this altitude. Figure 1.4 displays a 

representative spectrum for HDO retrieval within the spectral range of filter 9. The 

spectra range from 1800 to 2000 cm-1 is suitable for the retrieval of H2
16O. A 

representative spectrum is shown in Figure 1.5. The large residues are caused by un-

removed solar absorption features [Farmer and Norton, 1989].  

The main window used to retrieve the HDO abundance in the spectral region of filter 3 

spans from 2675 cm-1 to 2795 cm-1. It contains about 30 measurable HDO lines for the 

TTL occultations. Figure 1.6 shows a 4 cm-1 wide subset of this window at a tangent 

altitude of 10.6 km. The other absorption features in this sub-window are due to methane. 

With no H2O absorption, this window remains unsaturated and HDO abundance can be 

retrieved at altitudes as low as 6 km. 



  22 

 

Figure 1.4 A representative spectral fit of HDO for filter 9 spectra. The diamonds are the 

measured spectrum, and the solid line is the calculated spectrum, and the dashed line is the 

absorption due to HDO. At the top of the figure, we list the spectrum name, the zenith angle ψ, 

tangent altitude, root-mean-square of the residual, and the number of gas molecules (in this case 

HDO) per cm2 for the vertical column above the tangent altitude. The slant column in this case is 

~163 times that of the vertical column. The error quoted is from fitting the window 1425-1455 

cm-1. Only a subset of that window is shown here. 
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Figure 1.5 The same as Figure 1.4, except for a H2
16O window (1h2o). The error quoted is from 

fitting the window 1944 -1958 cm-1. 

 

Figure 1.6 The same as Figure 1.4 except for a filter 3 spectrum. The error quoted is from fitting 

the window from 2675-2795 cm-1. 
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Figure 1.7 The same as Figure 1.6 except for H2
16O. The error quoted is from fitting the window 

3250-3301 cm-1. 

 

Figure 1.8 The same as Figure 1.4 except for a filter 4 spectrum. The error quoted is from fitting 

the window 3761-3378 cm-1. 
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The window from 3205 to 3301 cm-1 is used to retrieve H2
16O from the filter 3 and filter 

4 spectra. A subset of this window is shown in Figure 1.7. This window is well suited for 

tropospheric H2
16O retrievals. In fact, the continuum level in this window remains evident 

at 8-9 km. 

There are fewer usable HDO lines (~10) for filter 4 spectra. These lines reside in the 

spectral range of 3760-3800 cm-1. H2O absorption is quite strong in this range. The 

continuum level is obscured by H2O absorption at an altitude of 13 km (Figure 1.8). The 

absorption by H2O limits the retrieval of HDO/H2O ratio from filter 4 spectra to altitudes 

above 10 km. 

The consistency among the filters is examined using the Mark IV spectra, which covers 

the spectral range of 650-5650 cm-1 [Toon et al., 1999]. The Mark IV FTIR is similar to 

the ATMOS instrument, although there are also some important differences. Each Mark 

IV spectrum is taken over a period of 210 seconds, while each ATMOS spectrum is taken 

within 2 seconds. The Mark IV spectra have very high signal-to-noise ratio (SNR> 600). 

The typical value for an Atlas-3 ATMOS spectrum is ~100. The long scan time for the 

Mark IV instrument contributes to the high SNR. On the other hand, the solar intensity is 

more likely to vary during the measurement of a Mark IV spectrum. This may introduce 

additional non-random noise to the spectrum. Other factors, such as water trapped inside 

the instrument, pressure changes during the balloon ascents, also introduce errors that are 

specific to the Mark IV balloon spectra. Consequently, the residuals from fitting the Mark 

IV spectra tend to be dominated by systematic errors, while for the ATMOS spectra, the 

residuals are more randomly (Gaussian) distributed.  
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Despite these differences, the Mark IV spectra can still be used to examine systematic 

differences in the retrieved HDO from the different spectral windows.  Five recent 

balloon flights (3 in 1997, 1 in 1999, and 1 in 2000) are used. As each Mark IV spectrum 

simultaneously covers the spectral range of 650 - 5650 cm-1, HDO abundance can be 

retrieved using our identified spectral windows for each filter. The retrieved abundances 

are then compared among the filters. 

We find that the spectral windows for filter 9 appear to yield HDO abundances 12% 

higher than those for filter 3 (Figure 1.9). There are 86 measurements in Figure 1.9, and 

the standard deviation is ~2%. In the processing of the ATMOS data, we have reduced 

the HDO abundance retrieved from filter 9 by 12%. Filter 4 windows are found to agree 

with filter 3 windows within ~2% and no correction is made in processing the ATMOS 

filter 4 data. The choice of filter 3 as the standard is completely arbitrary, as we have no 

reason to suspect the HDO line intensity measurements in the 2700 cm-1 region to be 

more accurate than those in the 1400 cm-1 region. Correspondingly, the absolute values of 

δD are subject to a ~50‰ uncertainty, until the cause for the systematic difference 

between the spectral regions is understood. It is, therefore, important to realize that the 

results presented in this work are based on the relative variations in δD and not its 

absolute accuracy.  

A more important issue is whether there are significant altitude dependent biases in the 

derived δD. Figure 1.10 shows the effects of systematic errors in the pressure broadening 

coefficients (5%) and the tangent temperature (3K). These are estimated by perturbing 

the parameters and repeating the δD retrievals. The difference between the results of the 
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perturbed run and the unperturbed run is shown in Figure 1.10. The effects of a pressure 

broadening coefficient error have considerably more scattering than those of a 

temperature error. This is perhaps because changes in the pressure broadening 

coefficients affect the shape of the absorption lines and have greater impacts on the 

spectral fits. A temperature change, on the other hand, can be more consistently 

compensated by a change in the gas slant column abundance. Effect of a 5% error in the 

pressure broadening coefficient on the derived δD is quite large (more than 20‰). A 3 K 

error in the temperature can also induce a 10‰ error in the filter 9 spectra1. Systematic 

biases with altitude, on the other hand, are found to be small (5‰ across the TTL).  

                                                           
1 Low altitude (<11 km) filter 9 spectra (red) are more susceptible to systematic errors as the spectral 
windows tend to be saturated by H2O absorption. This is not discussed here as we are mostly interested in 
higher altitudes. 



  28 

 

Figure 1.9 The ratio between the HDO slant columns derived using filter 9 windows and filter 3 

windows for the tangent altitude range of 11-25 km. Spectra from five recent Mark IV balloon 

flights are used. The different flights are represented by different symbols. 

 

Figure 1.10 Variations in the derived δD due to a 5% increase in the pressure broadening half 

width (A) and a 3K increase in the tangent temperature (B), for the 11 tropical occultations. Filter 

3 is shown in blue, f4, green, and f9, red. 
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2.1 Abstract 

We introduce and explore a strategy for measuring the column-averaged CO2 dry air 

volume mixing ratio XCO2 from a satellite. It employs high-resolution spectra of reflected 

sunlight taken simultaneously in near-infrared (NIR) CO2 (1.58-µm and 2.06-µm) and O2 

(0.76-µm) bands. Simulation experiments, performed to quantify the likely performance 

of such measurements, show that precisions of ~0.3-2.5 ppmv for XCO2 can be achieved 

from individual clear sky soundings for a range of atmospheric/surface conditions when 

the scattering optical depth τs is less than ~0.3. When averaged over many clear-sky 

soundings, random errors become negligible. This high precision facilitates the 

identification and correction of systematic errors, which are recognized as the most 

serious impediment for the satellite XCO2 measurements. We briefly discuss potential 

sources of systematic errors, and show that some of them may result in geographically 

varying biases in the measured XCO2. This highlights the importance of careful calibration 

and validation measurements, designed to identify and eliminate sources of these biases. 

We conclude that the 3-band, spectrometric approach using NIR reflected sunlight has 

the potential for highly accurate XCO2 measurements. 
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2.2  Introduction 

Reliable predictions of future levels of atmospheric CO2 require a quantitative 

understanding of both CO2 emissions and the specific processes and reservoirs 

responsible for sequestering CO2 [IPCC, 1995]. Measurements from a surface network 

are currently used to monitor atmospheric CO2. Although these measurements are highly 

accurate, the network is too sparse to adequately characterize the geographic distribution 

of the CO2 sinks and the processes controlling their variability [Sarmiento and Wofsy, 

1999]. As a result, space-borne techniques are being sought to measure the column 

averaged CO2 with more complete global coverage. 

To surpass the performance of the existing surface network for inferring sources and 

sinks of atmospheric CO2, inversion studies suggest that a precision of better than 2.5 

ppmv is needed for global measurements of monthly mean column-averaged CO2 dry air 

volume mixing ratio or vmr (XCO2)2 on a 8°×10° grid [Rayner and O'Brien, 2001]. In 

addition, because sources and sinks are inferred from spatial and temporal gradients in 

XCO2, these measurements must have no significant geographically varying biases. Here, 

we introduce a method to measure XCO2 from space, and use simulated spectra to 

demonstrate that high precisions can be achieved. We briefly review effects of systematic 

errors and biases, but defer a more comprehensive investigation to later publications. 

                                                           
2 We can formally define XCO2= 0.2095 × (column CO2/ (column O2). The term vmr is used for 

dry air volume mixing ratio throughout this paper. 
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Figure 2.1 Simulated atmospheric transmission of the 0.76-µm O2 A-band (a), 1.58-µm (b) and 

2.06-µm (c) CO2 bands for standard midlatitude summer atmosphere, assuming a solar zenith 

angle (SZA) of 35° and a nadir viewing geometry. 

2.3 Measurement Strategy 

To produce self-consistent estimates of retrieval precision, all results presented here are 

based on simulations of a practical satellite instrument design, which employs three 

spectrometers that simultaneously take high-resolution spectra of reflected sunlight in 

near-infrared (NIR) CO2 and O2 bands (Figure 2.1). 

The 1.58-µm CO2 band is well suited for retrieving column CO2 because it is virtually 

free of interfering atmospheric absorbances, and is also sufficiently weak that the 

continuum level can be ascertained between the CO2 lines even at high solar zenith 

angles (SZAs). A resolving power (R=λ/∆λ) of about 21,000 (i.e., the spectral resolution 

is about 0.075 nm), is sufficient to separate CO2 lines from the underlying continuum. 

This facilitates the detection of wavelength-dependent variations of the surface albedo or 

airborne cloud and aerosol particles. 
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Spectra of the 1.58-µm CO2 band alone, however, cannot yield XCO2 with sufficient 

precision, because space-borne measurements of the absorption in this band are 

influenced by a number of factors besides the CO2 vmr. Uncertainties in the surface 

pressure and the atmospheric path traversed by the reflected radiation can contribute 

errors in XCO2. Both topographic variations over land and local weather contribute 

uncertainties in surface pressure and total atmospheric mass in a CO2 sounding.  

Scattering by clouds/aerosols further contributes to uncertainties in the atmospheric 

pathlength. Undetected water vapor variations introduce uncertainties in XCO2 both by 

altering the dry-air fraction of the total atmospheric pressure, and by broadening the CO2 

lines more efficiently than O2 and N2. All these factors must be explicitly constrained to 

retrieve XCO2 to the required high precision (better than 2.5 ppmv). 

As shown in previous studies [O'Brien et al., 1998; Stephens and Heidinger, 2000], 

spectra of the O2 A-band (0.76-µm) provide constraints on both the surface pressure and 

optical path-length variations associated with the scattering by clouds/aerosols.  The fact 

that the O2 A-band contains both weak and strong lines provides the additional 

information on the altitude distribution of cloud/aerosols.  We will limit our discussion to 

relatively clear sky conditions (scattering optical depth τs< ~0.3, as determined from the 

O2 band). 

The 0.76-µm O2 band spectra alone, however, are not adequate for characterizing the 

scattering by clouds/aerosols in the 1.58-µm CO2 band as cloud/aerosol optical properties 

(optical depth, single scattering albedo, and phase function) can vary substantially with 
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wavelength between the two bands. Although there is an O2 band at 1.27 µm, closer to 

the 1.58-µm CO2 band, it cannot be used for space-based O2 observations as it produces 

intense, variable dayglow emission [Noxon, 1982]. 

We therefore use the CO2 band at 2.06 µm in conjunction with the O2 A-band to 

constrain the wavelength dependence of atmospheric scattering. This CO2 band is 

sufficiently strong to be sensitive to scattering by cloud/aerosols. It also includes weak 

water vapor lines that can be used to provide direct constraints on the humidity. On the 

other hand, since lines in the 2.06-µm band are strongly saturated, this band is more 

susceptible to systematic errors and must not be used with the O2 band alone for CO2 

measurements. 

The spectral range of each spectrometer is chosen to cover the entire absorption band as 

well as some continuum at both ends of the band (Figure 2.1). The use of the entire band 

provides explicit constraints on the atmospheric temperature profile, because temperature 

affects strengths of the lines differently across the band in a well-known manner. The 

continuum at edges of the bands provides additional information about the wavelength 

dependent optical properties of the surface and airborne particles.  For our analysis, we 

assume the resolving power (R=λ/∆λ) to be ~21,000 for the CO2 bands and ~17,500 for 

the O2 band. A small footprint (< 5 km2) was assumed to increase the chance of 

observing the entire atmospheric column in the presence of patchy clouds. It also helps to 

minimize spatial inhomogeneities (clouds, surface topography, shorelines, etc.) within 

individual samples that could introduce errors in the retrievals. We consider only 
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measurements with nadir viewing geometry in this study. Given the assumed resolving 

power and footprint size, we assume that the continuum signal-to-noise ratio (SNR), the 

SNR in spectral regions without significant gaseous absorption, is ~400 for the CO2 

bands and ~600 for the O2 band in each spectral sample and in each footprint when SZA 

is 35° and the surface albedo is ~6%. This performance can be achieved with photon-

noise limited detectors and current spectrometer technologies. 

2.4 Retrieval Approach 

The XCO2 retrieval algorithm involves three major components. The first is a spectrum-

resolving (line-by-line), multi-stream multiple scattering model for producing synthetic 

radiance spectra in scattering, absorbing atmospheres [Crisp, 1997]. Here, the same 

model was used to generate the “observed” spectrum and the “retrieved” spectrum. For 

both applications, the atmosphere was divided into 11 layers with 8 levels in the 

troposphere. The second component simulates the instrument's spectral resolution, 

spectral range, sampling, wavelength-dependent line shape function, and throughput, as 

well as several instrument noise sources. The third component is an inverse method based 

on optimal estimation theory [Rodgers, 2000] for retrieving XCO2 from the observed 

spectra. This model simultaneously retrieves several properties of the atmospheric and 

surface state x, e.g. cloud, aerosol, temperature, humidity and surface pressure, albedo, as 

well as the CO2 vmr. 

The function f(x) is used to denote the forward model, which includes the radiative 

transfer and the instrumental response components. The resulting synthetic spectra at the 



  42 

three selected bands simulate the measurements obtained from a single sounding, denoted 

as y. The measurement process can thus be written as y=f(x)+ε, where ε denotes the 

measurement error. 

We fit the three synthetic spectra simultaneously for the atmospheric/surface state using 

the optimal retrieval theory, which seeks to minimize the cost function  

χ2=[y-f(x)]TSε
-1[y-f(x)]+(x-xa)TSa

-1(x-xa)    (1)  

where xa is the a priori state, Sa is the a priori covariance, and Sε is the measurement 

error covariance. We assume the measurement errors to be Gaussian. We also assume 

that they are independent between pixels so that Sε is diagonal. 

A principal feature of the optimal retrieval theory is the use of a priori constraints, which 

represent the a priori distribution of expected values for each parameter in the 

atmospheric state vector and the expected joint distribution between the parameters. For 

some variables, the a priori constraints can be estimated from existing climatological 

data (temperature, humidity profiles, and surface pressure) and model outputs (CO2 

profiles). For other properties, such as cloud and aerosol profiles, ad hoc constraints were 

constructed based on a Markov description of the profiles [Rodgers, 2000]. For the 

retrieval experiments presented here, we assumed that cloud/aerosols vary on a vertical 

scale height of about 200 mb, 500 mb and 300 mb in the planetary boundary layer (PBL), 

the free troposphere, and the stratosphere, respectively. The standard deviation in the 

scattering optical depth of each of the 11 layers is assumed to be ~50%, and to vary 
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independently in the 2.06-µm and 0.76-µm bands.  Scattering at 1.58 µm is interpolated 

from those of the other two bands. This approach will introduce little error if the 

wavelength dependence of the scattering is known or if it varies smoothly between 0.76 

and 2.06 µm. For the experiments presented here, we included in the a priori constraints 

an interpolation error of ~3%. The validity of these assumptions is discussed in the 

Discussion section. The band averaged albedos are considered to vary by ~30% and are 

independent among the three bands. We assume no covariance between different 

quantities (e.g., between CO2 and temperature). 

In our retrieval experiments, the forward model is linearized around each 

atmospheric/surface state, giving a weighting function matrix [Kij]=∂fi/∂xj. Figure 2.2 

shows the band averaged weighting function (i.e., 
2/1

22
, / 



= ∑

i
ijij KK ε ) for CO2 

variations versus pressure levels, for cases with (solid line) and without (dashed line) 

atmospheric scattering. These weighting functions include contributions from both the 

1.58-µm and 2.06-µm CO2 bands. The sensitivity to CO2 is maximum near the surface, 

where most CO2 sources and sinks are located.  In contrast, thermal IR techniques have 

poor sensitivity at low altitudes because the thermal contrast between the surface and the 

near-surface atmosphere is usually small [Engelen et al., 2001].  When atmospheric 

scattering is present, the sensitivity to low altitude CO2 vmr decreases (dashed line in 

. Figure 2.2
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Figure 2.2 Band-averaged weighting function for CO2 variations at different pressure levels with 

no atmospheric scattering (solid) and with τs=0.1 (dashed). The weighting functions were scaled 

by the weighting at 1 bar level when τs=0. 

2.5 Achievable Precisions 

A linear covariance analysis was conducted to study the achievable precisions. The 

posterior covariance for the state variables is  

S=(KTSε
-1K+Sa

-1)-1      (2) 

The quantity XCO2, can be obtained by averaging the CO2 profile, i.e., XCO2=hTx, where h 

is a vector that represents the vertical pressure-weighted averaging. The formal error 

variance in the retrieved XCO2 is thus hTSh. 
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Figure 2.3 Achievable XCO2 precisions calculated from linear covariance analysis versus the total 

scattering optical depth τs for SZA=35° over the ocean (solid), over the land (dotted), and 

SZA=75° over the ocean (dashed).  The symbols (∆, ◊, �) represent the single sounding 

precisions obtained from retrieval experiments for a few selected cases. We have assumed that 

scattering at 1.58 µm can be interpolated from the other two bands to ~3% accuracy. 

Figure 2.3 shows the achievable precisions over the ocean (albedo is 0.06) for SZAs of 

35° and 75° for a range of total scattering optical depth τs. The precision worsens with 

increasing τs and SZA. The former is due to the fact that most CO2 variation is in the 

lower atmosphere, especially in the PBL. Increasing τs thus decreases the sunlight that 

passes through this region and reduces the sensitivity to CO2 changes there. The poorer 

precisions at high SZAs are mainly due to the reduced SNR, since less sunlight is 

intercepted by a unit area. For τs between 0.05-0.30, the precision for a single sounding is 

~0.4 to 0.9 ppmv for SZA=35° (solid), and ~1.3 to 2.5 ppmv for SZA=75°(dashed). The 

a priori error on XCO2 is ~8 ppmv. If the 2.06-µm CO2 band is not used, the achievable 
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precisions worsen by more than a factor of two (not shown). Similar estimates made for 

observations over land show better precisions, ~0.3-0.4 ppmv, ( , dotted line) as 

the higher albedo over land (a value of 0.2 was used) increases the SNR and reduces the 

relative contribution to the observed signal from light scattered by cloud/aerosols. 

Figure 2.3

Results from linear covariance analysis were tested against retrieval experiments. About 

300 of atmospheric/surface states were constructed consistent with the a priori 

constraints so that they cover the plausible climatological range. For each of the 

prescribed atmospheric/surface conditions, synthetic spectra were generated and 

subsequently retrieved for the atmospheric/surface state.  Precisions were evaluated by 

comparing the retrieved quantities with the prescribed values. Results from a few such 

experiments are shown in Figure 2.3. The achieved precisions from these simulations 

agree well with the linear covariance estimates for low cloud/aerosol loadings or low 

SZAs. At high SZAs and with high cloud/aerosol loadings, the achieved precisions from 

the retrieval experiments become worse than the linear covariance estimates. This is 

presumably due to the increasingly nonlinear nature of the retrieval problem as scattering 

becomes more important. 

For a space-borne CO2 sensor in a high inclination orbit, thousands of soundings could be 

acquired on monthly to seasonal timescales on spatial scales of 8° × 10°. Therefore, 

averaging large numbers of clear sky soundings will be possible except for regions with 

persistent overcast conditions, rendering random error negligible ( ). Note that 

the random errors decrease at a rate slower than the square root of the number of 

soundings, as the a priori errors tend to correlate with each other for nearby soundings. In 

Figure 2.4
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Figure 2.4

Figure 2.4 Precisions of XCO2 retrievals as a function of the number of soundings averaged for 

SZA=35° (solid) and 75° (dashed). Both cases have a surface albedo of 0.06 and a τs of ~0.15. 

, we have assumed the a priori errors to be perfectly correlated so that they do 

not improve through averaging. 

 

Effects of wavelength-dependent surface albedo due to mineral features, plankton, etc., 

have been simulated by including in the state vector slow variations in the surface albedo 

of each band ~30% on the scale of ~3 nm. We find that they do not significantly affect 

the achievable precision.  This is expected because the spectral scale of the surface colors 

is much broader than that of the gaseous CO2 features, and can be resolved explicitly in 

the continuum between the lines throughout each band. The effect of water vapor 

broadening of CO2 lines was not tested in the above calculations. But these effects are 

reasonably well understood [Rosenmann et al., 1988], and will be described in 

subsequent work. This factor should not significantly reduce the accuracy of XCO2 
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retrievals because water vapor is well constrained by spectra acquired in the 2.06-µm 

band. 

2.6 Systematic Errors and Potential Biases 

The preceding analysis assumes that the forward model is perfect. In practice, there will 

inevitably be inadequacies in the representation of the characteristics of the instrument 

(e.g., uncertainties in the instrument line shape, zero offset, detector nonlinearity, 

polarization etc.), and in the atmospheric radiative transfer (e.g., errors in the gas 

absorption line database, oversimplifications in the treatment of radiative transfer). These 

inadequacies will introduce systematic errors in the XCO2 measurements. For the purpose 

of characterizing the carbon sources and sinks, it is critical that the measurements are free 

of spatially and temporally coherent biases, i.e., systematic errors that vary with 

geographic location, SZA, or surface type. As an example of such a systematic error, we 

consider the effect of an uncorrected zero offset error due to excess dark current in the 

detector of the 1.58-µm region. This error adds a constant radiance offset to each 

spectrum, decreasing the fractional depths of the CO2 absorption lines. The magnitude of 

the induced systematic error depends on the absorption depth of the CO2 lines and the 

continuum radiance level; the former varies with SZA and the latter varies with both 

surface albedo and SZA. For dark surfaces or high SZAs, the signal gets weaker, and the 

error induced in XCO2 gets larger, as shown in Figure 2.5. Since surface albedo is 

typically much larger over land than ocean, a given zero level offset error would reduce 

the XCO2 less over land than over ocean, resulting in a spurious oceanic sink of CO2. 
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Similarly, since the high latitude observations are generally made at higher solar zenith 

angles than the low latitude observations, the zero level offset error would reduce the 

XCO2 less in the tropics than in the polar regions, leading to a spurious high latitude CO2 

sink. 

 

Figure 2.5 Deficits in XCO2 due to a constant zero offset error over the ocean (surface albedo of 

0.06, dashed line) and over the land (surface albedo of 0.2, solid line) as a function of SZA. The 

zero offset error is 0.2% of the continuum level for an albedo of 0.06 at 35° SZA. All cases have 

a τs of ~0.05. 

Fortunately, there are two factors that mitigate the impact of the systematic errors: 1) In 

the high-resolution, spectrometric approach, many types of systematic errors will produce 

distinctive spectral signatures. The high SNR that is attainable using reflected NIR 

sunlight facilitates the detection of these residuals, and provides the information needed 

to deduce their origin and test the efficacy of any corrections. 2) Validation experiments 
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that combine accurate ground-based and airborne CO2 profiling capabilities provide an 

effective way for identifying and quantifying biases with large spatial scales. While the 

amplitude of systematic errors will vary with location, their sources will vary slowly in 

many cases (as in the zero offset example). Such errors can be corrected by careful 

calibration and validation measurements. 

Sampling biases may also affect the inference of carbon sources and sinks, even if the 

XCO2 retrievals are perfect. For instance, the solar NIR method only measures XCO2 

during the day under clear-sky conditions. However, in many ecosystems, photosynthesis 

is stronger in these conditions such that the measured XCO2 could be lower than average. 

To mitigate the impact of such sampling errors, the space based XCO2 measurements must 

be combined with time-resolved in situ data, and analyzed with carbon chemical tracer 

transport models that properly account for the measurement time and observing 

conditions. Such models are being developed [Rayner et al., 2002]. 

2.7 Discussion 

Although the a priori constraints used here were somewhat crude, they were sufficiently 

loose so that they did not excessively constrain the retrieval of XCO2. In the analysis of 

real satellite observations, these constraints can be improved by both establishing a more 

reliable climatology and using the preceding adjacent retrievals along the satellite track, 

so that the retrieval precisions will be further improved. 
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The interpolation of scattering properties measured at 0.76 µm and 2.06 µm to 1.58 µm 

warrants more discussion. For aerosols whose optical properties change slowly over this 

range of wavelengths (e.g., small sulfate particles, black carbon), interpolation by the 

simple Angstrom relation τ∝νn can be accurate to about a 1% level, even without a priori 

knowledge of the coefficient n or the actual aerosol type. Airborne particles whose 

optical properties do not change uniformly with wavelength, however, need to be typed 

in order to do an accurate interpolation. The high-resolution measurements provide 

additional constraints on the particle type. For example, the 2.06-µm band and the 1.58-

µm band are on the edge of strong water ice absorption features. A thin cirrus ice cloud 

can thus be clearly identified since it produces a significant slope in the continuum and 

also changes the shapes of the cores of saturated lines. Ubiquitous airborne dust and long-

lived soluble aerosols pose special problems as they have variable compositions and size 

distributions that can yield a range of spectral signatures at NIR wavelengths. The 

identification and characterization of these aerosols warrant further investigation. We 

have assumed that scattering at 1.58 µm can be interpolated from the other two bands 

with an accuracy of ~3%. A different choice of the interpolation error, e.g., 10% or 1%, 

worsens or improves the achievable precision by less than 20-30%. 

2.8 Summary and Conclusions 

We have introduced a method of measuring XCO2 from the space using high-resolution 

NIR spectrometry of reflected sunlight. The simultaneous use of the CO2 (1.58-µm and 

2.05-µm) and O2 (0.76-µm) bands allows small changes in the spectrum arising from 
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variations of XCO2 to be distinguished from larger spectral changes arising from 

variations of other atmospheric/surface parameters (e.g., water vapor, cloud, aerosol, 

temperature, surface pressure, surface albedo). Using prototype retrieval simulations 

based on a practical satellite instrument design, we show that it is possible to retrieve 

XCO2 to precisions of ~0.3-2.5 ppmv from a single, clear-sky sounding (τs < ~0.3) for a 

range of atmospheric and surface conditions. Thousands of such soundings are expected 

at regional scales on monthly intervals, and can be combined to reduce the effects of 

random measurement errors over all but the most persistently cloudy regions. The main 

challenge is therefore to avoid systematic measurement errors that can introduce 

geographically dependent biases. These factors highlight the need for a careful calibration 

and validation program, designed to identify and eliminate these biases. We conclude that 

the 3-band, high-resolution, spectrometric approach using NIR reflected sunlight has the 

potential for highly accurate XCO2 measurements. 
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3.1 Introduction 

The earth’s reflectance is an important aspect of the earth’s climate. Simple assumption 

about its response to climate variations can lead to some interesting conclusions, such as 

the stability of a snowball Earth. Reflectance variations associated with changes in, for 

example, the sea ice, or the oceanic stratus, have been conjectured to play important roles 

in climate variability [Budyko, 1969; Klein and Hartmann, 1993].  

Satellites have enabled global reflectance measurements from the space. The most 

comprehensive measurements of the earth’s radiation budget were obtained from the 

Earth Radiation Budget Experiment (ERBE) [Barkstrom, 1984], and are distributed by 

the NASA Langley atmospheric sciences data center. The combination of scanner and 

non-scanner measurements from a suite of satellites provided a global coverage from 

November 1984 to February 1990. The wide field of view (WFOV) non-scanner on board 

of the Earth Radiation Budget Satellite (ERBS) continues to function to this date. The 

non-scanner data cover the latitude range from 60°S to 60°N, and is believed to maintain 

a good calibration up to September 1999 [Wielicki et al., 2002]. However, due to the 

orbital precession of the ERBS satellite, the monthly mean measurements can have large 

temporal sampling noises [Bess et al., 1999]. This problem is particularly severe for short 

wave measurements at higher latitudes. In the new edition of the ERBE non-scanner data, 

there is a significant amount of missing data in the midlatitude shortwave measurements 

due to excessive temporal sampling error.  
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The weather satellites have also been measuring the earth’s reflectance. However, as they 

were designed for weather studies, their long-term stability and the inter-calibration 

among the satellites are insufficient for the study of interannual variations [Brest et al., 

1997]. As a consequence, a comprehensive study of the interannual variability of the 

Earth’s reflectance has not yet been made. In this chapter, we shall argue that the 

ultraviolet (UV) reflectance measured by the Total Ozone Mapping Spectrometer 

(TOMS) on board of the Nimbus-7 satellite [Herman et al., 2001a] can be used to fill this 

gap. In section 3.2, we shall describe the TOMS data, and why it is suitable for the study 

of interannual reflectance variations. A comparison with the ERBE data is presented in 

the Appendix. In section 3.3, we shall examine the variations of the globally averaged 

reflectance. Implications on the suggested influence by cosmic rays on the Earth’s global 

cloud cover will be discussed [Svensmark, 1998; Svensmark and FriisChristensen, 1997]. 

We will then provide an overview on the global distribution of the interannual reflectance 

variability (Section 3.4). More detailed studies of reflectance variations over the polar sea 

ice covered regions and the northern midlatitude oceans are presented in later chapters.  

3.2 Data 

The TOMS reflectance is measured at an ozone non-absorbing ultraviolet (UV) 

wavelength (380nm) [Herman et al., 2001a]. The Nimbus-7 satellite’s local-noon orbit 

and the instrument’s cross-track scanning feature allow a complete daily coverage except 

for regions in polar night. The reflectance R is essentially determined by removing the 

effect of Rayleigh scattering above an assumed Lambertian surface [Dave, 1978]. A 
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correction for the different pressures of the cloud layer and the ground was applied 

[Herman et al., 2001a]. The Nimbus-7 version-7 TOMS reflectance data is available for 

over 14 year (November 1978-May 1993). The long-term stability of the derived R is 

estimated to be ~0.2 reflectance unit (RU) 3 [Herman et al., 2001b]. This relatively long 

temporal coverage and the high long-term stability make the Nimbus-7 TOMS 

reflectance an attractive dataset for examining interannual variations. The field of view 

(FOV) of the TOMS instrument is 50 × 50 km at nadir and 150 × 200 km at extreme off-

nadir angles. The daily and monthly data that will be used have been aggregated into a 

1.25° longitude × 1° latitude grid. Monthly averages for a grid box were computed only 

for the months with at least 20 days of good daily data. We note that the local noon 

measurement time of TOMS may introduce a temporal sampling bias. However, as the 

local noon is when the solar radiation is the strongest, for monthly averages, severe 

temporal sampling bias problem is not expected except in regions with strong and 

persistent diurnal cloud variations. Additional discussion is provided in the Appendix. 

The TOMS reflectance is believed to approximate the UV albedo of the scene [Herman et 

al., 2001a]. As the TOMS instrument scans perpendicular to the principal plane of the 

reflection, the number of measurements in the direct forward scattering or back scattering 

directions is reduced. More importantly, the strong Rayleigh scattering of the atmosphere 

greatly reduces the anisotropy of the UV reflection. The large FOV of the TOMS 

instrument further averages out the anisotropic reflection of individual cloud/surface 

                                                           
3 The reflectance and albedo are expressed in reflectance unit (RU) instead of percent to avoid confusion, 
following Herman et al. 2001. 1 RU=1% reflectance. 
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features. A much reduced anisotropy in the TOMS reflectance measurements is supported 

by angular dependence models constructed for UV radiation [Pubu and Li, 2001].  

Besides being relatively long and well calibrated, the TOMS UV measurements have 

some additional advantages over visible measurements for studying cloud variations. 

Herman and Celarier [1997] noted that the surface reflectance in the UV is smaller and 

less variable than that in the visible for snow/ice free areas. Moreover, in the study of the 

visible albedo, it is often noted that the cloud albedo has a strong dependence on solar 

zenith angle (SZA): for the same cloud field, the albedo increases with the SZA. This 

dependence, while also exists in the UV, is greatly reduced because of the strong 

Rayleigh scattering. This point is further demonstrated by a comparison between the 

ERBE and the TOMS measurements in the Appendix. 

The mean distributions of the TOMS reflectance have been documented [Herman et al., 

2001a]. For reference,  displays the mean reflectance for January (a) and July 

(b). Readers are referred to Herman et al. [2001a] for details. 

Figure 3.1
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Figure 3.1 Climatological mean distribution of the TOMS reflectance for January (a) and July (b). 

The climatology is formed using data from 1979 to 1992. 
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3.3 Globally Averaged Reflectance  

Suggestions of sunspot–climate correlations have a long history [Herschel, 1801]. In the 

last two decades there have been increasing numbers of reports on the possible links 

between solar variations and the climate [see reviews by Wilcox, 1975; Tinsley and Deen, 

1991; Tinsley, 1997]. Recently, a large variation (3-4%) in the global cloud amount was 

found to highly correlate with the solar cycle [Svensmark and Friis-Christensen 1997]. 

This finding was used to imply a solar-terrestrial connection, where cosmic ray can vary 

the planetary albedo through its effect on global cloud cover [Svensmark and Friis-

Christensen, 1997; Tinsley, 1997]. The 3-4% variation in the global cloud amount was 

suggested to alter the global albedo by more than 1% [Svensmark and FriisChristensen, 

1997]. The dataset used in their work was the International Satellite Cloud Climatology 

Project (ISCCP) C2 cloudiness data [Rossow and Schiffer, 1991]. The re-calibrated 

ISCCP D2 data show a similar behavior [Rossow and Schiffer, 1999].  

The interannual variations of the area-weighted averages of the TOMS reflectance 

between 60°S and 60°N are shown in Figure 3.2. We have formed the anomalies by 

removing the mean seasonal cycle (thin line), and a 12-month running mean was applied 

to highlight the low frequency variations (thick line). The domain 60°S - 60°N was used 

for a direct comparison with the previous work [Svensmark and FriisChristensen, 1997]. 

Global averages give essentially the same result. The effects from the 1982 El Chichon 

and 1991 Mount Pinatubo eruptions are clearly evident. On the other hand, there is no 

evidence of an increased reflectance at the 1986 cosmic ray maximum, where the global 
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cloud amount from the previous study peaks [Svensmark and FriisChristensen, 1997]. In 

fact, during the same period where the ISCCP global cloud amount was found to vary by 

3-4%, in phase with the cosmic ray intensity (1984-1990), low frequency variations in the 

TOMS reflectance are remarkably small (< 0.2 RU).  

 

Figure 3.2 Interannual variations of the area-weighted averages of the TOMS reflectance between 

60°S and 60°N. The unit is RU. 

As discussed in section 3.2 and in Appendix, cloud variations in general have larger 

effects in the UV reflectance than in the visible. So, why the large variations in the 

ISCCP global cloudiness are not present in the reflectance measurements? Kuang et al. 

[1998] showed that variations in the globally averaged cloud optical depth in the ISCCP 

data is out of phase with those in the cloud amount. This appears to explain the small 

variation in the reflectance, while it is also possible that variations in both the cloud 

amount and the cloud optical depth result from imperfect calibration of the ISCCP data. 
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Our results add an interesting aspect to the debated cosmic ray - cloud – climate 

connection [Jorgensen and Hansen, 2000], i.e., the originally suggested reflectance 

change from such a connection is absent [Svensmark and FriisChristensen, 1997], and 

the postulated connection must somehow account for the stability of the global 

reflectance. We note of course that from a statistical point of view, the postulated 

connection suffers from the shortness of the data records that were used as well.  

3.4 Global Distributions of Interannual Reflectance 

Variability 

In this section, we shall present the global distributions of the interannual reflectance 

variability. The interannual variability in a grid box is defined as the standard deviation 

of the monthly anomalies. The interannual variability is shown for the December-

February (DJF) (Figure 3.3 a) and June-August (JJA) (Figure 3.3 b).  

The large variability over the DJF NH continents is mostly related to variations in the 

snow cover. The variations over the N. America can be related to the Pacific North 

Atlantic (PNA)–like teleconnection patterns [Gutzler and Rosen, 1992; Serreze et al., 

1998]. As this circulation pattern is associated with the strength of the ridge over N. 

America, it affects the intrusion of cold air mass from the north, and modifies the snow 

cover and reflectance over the N. America. The snow cover over the Eurasia has been 

linked to the North Atlantic Oscillation (NAO) and other teleconnection patterns through 

the effects of these circulation patterns on the air temperature and/or precipitation [Clark 
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et al., 1999]. In the Southern Hemisphere (SH), effects of snow cover are limited to the 

Andes Mountain during SH winter.  

The large reflectance variations over Spain are not related to snow cover. Instead, they 

are related to cloud variations due to storm track shift, also related to the NAO [Hurrell 

and VanLoon, 1997]. During the positive phase of the NAO, the N. Atlantic storm track 

shifts north, and reduces the cloud cover over the Mediterranean area. Southeast China 

also has substantial interannual reflectance variations during DJF. The wintertime 

Southeast China is characterized by mid-tropospheric subsidence forced by convection 

over Indonesian (the winter East Asian monsoon). This subsidence is unfavorable for 

cyclogenesis [Chen et al., 1991], but leads to the common stratus clouds over wintertime 

Southeast China, which is mostly responsible for its relatively high mean reflectance 

(~55RU). The interannual reflectance variations in this region are presumably associated 

with variations in the winter East Asia monsoon. The monsoon is, in turn, strongly 

modulated by the El Nino Southern Oscillation (ENSO) — related variations in the 

strength of convection over Indonesia [Wang et al., 2000]. 
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Figure 3.3 Interannual reflectance variability for DJF (a) and JJA (b). 
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Large reflectance variability over the ocean is associated with the rearrangement of 

convection by ENSO (low latitudes) and sea ice variations (high latitudes). The 

reflectance effect of sea ice variations will be discussed in more detail in Chapter 4. The 

effect of ENSO on the clouds and the reflectance is relatively well understood [Fu et al., 

1996]. During El Nino years, the tropical convection region that normally resides in the 

western equatorial pacific moves eastward, causing a corresponding shift in the 

reflectance.  

Low variability is naturally found over the desert areas (both continental and maritime) 

and over the permanent ice shelves like the Greenland and the Antarctic continents. Quite 

low variability is also found over the midlatitude Southern Oceans, where the mean 

reflectance is 40-50 RU, owing to the storm track and the associated cloud fields. The 

variability over the midlatitude northern oceans is higher. In particular, the JJA variability 

has a banded maximum at about 40°N in N. Pacific. This coincides with the 

climatological mean sea surface temperature (SST) gradient. The reflectance variations 

over the midlatitude northern oceans will be examined in more detail in Chapter 5. 

3.5 Summary 

In this chapter, we have introduced the Nimbus-7 TOMS reflectance measurements as a 

useful dataset for interannual reflectance variation studies. We have also presented an 

overview of the interannual variability of the Earth’s reflectance. In particular, variations 

in the globally averaged reflectance have been used to examine the postulated cosmic ray 

– cloud – climate connection. 
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3.6 Appendix 

The purpose of this appendix is to compare the TOMS UV reflectance data and the 

ERBE visible albedo data. The ERBE data that we shall use include the combined data 

from scanner and non-scanner measurements (hereafter ERBE_SC), and the wide field of 

view (WFOV) non-scanner data (hereafter ERBE_NS).  

The ERBE_SC data is available from November 1984 to February 1990, and is provided 

on a 2.5° longitude × 2.5° latitude grid. This dataset combines the scanner and non-

scanner measurements from a suite of satellites, and will be used as the “truth,” to which 

the other datasets will be compared. Both the TOMS reflectance and the ERBE_SC data 

are averaged into a 5° × 5° grid. This grid size was chosen so that no interpolation was 

needed for either dataset. Figure 3.4 compares the observed mean seasonal cycles for a N. 

Pacific grid, 175°-170°W, 50°-55°N (a) and a S. Pacific 175°-170°W, 45°-50°S (b) grid. 

The mean seasonal cycles were formed using the data from February 1985 to January 

1989. While there are significant year-to-year variations in both the visible albedo and the 

UV reflectance that are not captured in the mean seasonal cycles, the ratios between the 

two for the 4 years consistently show a seasonal variation that maximizes in the winter of 

each site (c). This seasonal variation is associated with the seasonally varying SZA, 

instead of real cloud changes. The TOMS reflectance, with a much weaker dependence 

on the SZA, therefore, can be used to better compare the cloud fields of the different 

seasons.  
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Figure 3.4 Comparison between the mean seasonal cycles in the TOMS reflectance (solid) and 

the ERBE_SC visible albedo (dashed) over a N. Pacific (a) and a S. Pacific site (b). The mean 

ERBE_SC albedo in January over the N. Pacific site and in July value the S. Pacific site are not 

reported as there are 2 years (out of 4) with missing data. The visible albedo to UV reflectance 

ratios for the individual months are shown in (c) for January (×) and July (∆). 

Aside from this seasonal effect at mid-high latitudes, variations in the UV and visible 

reflectance are closely related. In particular, over open oceans without sea ice, cloud 

variations are by far the largest contributor to reflectance variations. As the cloud 

droplets/particles are Mie scatterers at UV and visible wavelengths, they have similar 

effects in the UV and visible. Figure 3.5 shows the correlation between the monthly 

anomalies of the TOMS reflectance and the ERBE_SC visible albedo (a) and the 

regression coefficients (b) for their coexisting 64 months (November 1984–February 

1990). The mean seasonal cycles from February 1985–January 1989 are removed from 

the monthly data to form the monthly anomalies. For the ERBE data, we used only 

months with at least 20 days of good daily data.  
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Figure 3.5 Correlation (a) and regress (b) coefficients between monthly ERBE visible albedo and 

TOMS UV reflectance anomalies. 
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The correlation between the two measurements is ~0.9 over most of the globe except 

where the variations are small. The regression coefficients are lower (i.e., variations in 

the visible albedo is smaller) at higher latitudes and over land, associated with stronger 

attenuation by the atmosphere and the higher land albedo in the visible. The high 

regression coefficients off the Peruvian and Namibian coasts are likely a consequence of 

the pronounced year-round diurnal cycle observed in the dominant stratocumulus clouds 

in these regions [Rozendaal et al., 1995]. These clouds tend to reach their maximum 

before sunrise and their minimum around noon due to the dissipation by in-cloud solar 

heating. The local noon TOMS measurements thus capture smaller variations than the 

ERBE measurements which precess through all local time over roughly a month. Weaker 

and less persistent diurnal cycles were observed over other eastern subtropical ocean 

regions [Rozendaal et al., 1995], which may be responsible for the slightly higher 

regression coefficients there as well. The correlation over the southern oceans is relative 

low. This is presumably a combined effect of a smaller interannual variance and the 

seasonally varying TOMS reflectance to ERBE albedo ratio. 

As we mentioned earlier, the ERBE non-scanner also provided a relatively long-term 

record of albedo measurements for low latitudes. Figure 3.6 compares the albedo in the 

ERBE_NS, ERBE_SC datasets and the TOMS reflectance for their overlapping 64 

months for a tropical (175°-170°W, 0°-5°S) and a subtropical (85°-90°W, 15°-20°S) site. 

Over both sites, the TOMS reflectance is correlated to the ERBE_SC albedo variations 

better than the ERBE_NS albedo. The correlation coefficients between TOMS and 

ERBE_SC are 0.99, and 0.9 for the tropical and the subtropical sites, respectively. The 
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corresponding values between ERBE_NS and ERBE_SC are 0.9 and 0.81. This is true for 

almost all regions. We note that the subtropical site has a strong diurnal cloud cycle, and 

is where the sampling issue of TOMS is expected to be most severe. We therefore 

conclude that the TOMS reflectance is more suitable for interannual reflectance 

variations than the ERBE_NS data for low latitude studies as well.  

 
Figure 3.6 Comparison between monthly ERBE visible albedo and TOMS UV reflectance 

(dashed) over a tropical (a) and a subtropical (b) site. Data from ERBE_SC are shown by the 

solid line, and data from ERBE_NS are shown by the star symbol. 
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4.1 Abstract   

Using the Total Ozone Mapping Spectrometer (TOMS) measurements, we show that 

ultraviolet Lambertian equivalent reflectance (UV LER) variations of the polar icy areas 

are well correlated with the microwave-derived sea ice concentration variations on 

interannual timescales. The effect of interannual sea ice variations on the UV LER 

appears to have a hemispheric asymmetry: a 1% change in the sea ice concentration is 

related to a larger UV LER change in the Antarctic (0.59±0.09%) than in the Arctic icy 

areas (0.35±0.05%). This result is extended to the top of the atmosphere (TOA) 

broadband visible albedo by relating the UV LER to the TOA albedo. The observed 

asymmetry is absent in a general circulation model that we have examined. 
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4.2 Introduction  

Monitoring of the polar regions is of considerable interest to the detection of global 

warming because of the expected sensitivity of these regions to climate change. Recent 

studies using satellite microwave data and submarine sonar sounding data revealed 

significant polar sea ice changes over the past few decades [Cavalieri et al., 1997; 

Rothrock et al., 1999]. The thinning and shrinking Arctic sea ice, in particular, has been 

suggested as an early signal of global warming [Vinnikov et al., 1999]. 

The sea ice is also well known for its roles in various feedbacks in the climate system. 

The sea ice-albedo feedback, being perhaps the best known example, has long been 

recognized as an important mechanism that increases the climate sensitivity [Budyko, 

1969]. The strength of this feedback strongly affects the modeled amplitude of the global 

warming [Rind et al., 1995]. Besides the dependence on complex interactions in the ice 

pack [Curry et al., 1995], strength of the sea ice-albedo feedback is also modulated by 

clouds, which can shield sea ice related surface albedo changes, thus reducing their 

effects. The magnitude of this shielding effect has, however, considerable uncertainties, 

owing to the inadequate cloud observations in the polar regions and the parameterization 

uncertainties of these clouds in the models [Ingram et al., 1989]. 

In this paper, we examine the ultraviolet Lambertian equivalent reflectance (hereafter, 

UV LER) changes over the polar icy areas during the past two decades and quantify the 

effect of sea ice changes on the UV LER. The UV LER is essentially derived by 

removing the Rayleigh scattering contributions from the measured top of the atmosphere 
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(TOA) UV reflectance, thus including effects from both the surface and the clouds. We 

then extend the estimate to the TOA energy budget by relating the UV LER to the TOA 

broadband visible albedo. A brief comparison with general circulation model (GCM) 

results is presented. 

4.3 Data and Methods 

The UV LER changes are derived from the Total Ozone Mapping Spectrometer (TOMS) 

reflectance measurements at an ultraviolet (UV) ozone non-absorbing wavelengths (380 

nm), as described in some details in Chapter 3. In short, the Nimbus-7 TOMS version-7 

monthly reflectance that we use is available from November 1978 to April 1993, and is 

provided at a 1.25° longitude ×1° latitude grid. The instrument calibration has been 

maintained within 0.2% (or RU) per decade [Herman and Celarier, 1997; Herman et al., 

1991]. For discussions in this chapter, reflectance will be expressed in percent, as for the 

sea ice concentration, instead of RU, which is used in Chapters 3 and 5. 

The sea ice concentration data that we use were derived from the Nimbus-7 Scanning 

Multichannel Microwave Radiometer (SMMR) and the Defense Meteorological Satellite 

Program's (DMSP) DMSP-F8, -F11 and -F13, Special Sensor Microwave/Imager 

(SSM/I) using a modified version of the Bootstrap Algorithm [Comiso, 1999]. Daily and 

monthly data from 1979 through 2000 were obtained from the National Snow and Ice 

Data Center Distributed Active Archive Center (NSIDC DAAC), University of Colorado 

at Boulder, in a 25 km resolution with a polar stereographic projection. To compare with 

the reflectance data, we have re-gridded the sea ice data into the TOMS grid. 
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We study the interannual variations in the area-averaged UV LER over the icy regions for 

the months when the sun is at least 10º above the horizon (April to August for the Arctic, 

and October to February for the Antarctic). The icy area is defined as the region where 

the maximum sea ice concentration over the past two decades is greater than 5% (gray 

area in Figure 4.1). It covers about 17 × 106 km2 over the North Pole and about 25 × 106 

km2 in the south. This definition effectively excludes broad areas particularly in the 

northern oceans that make little contribution to the sea ice changes, and reduces 

variations unrelated to the sea ice changes. We then calculate the area-averaged mean 

summertime UV LER over the polar icy areas from 1979 to 1991. The interannual 

variability is defined as the standard deviation of the summertime mean UV LER. Data 

after 1991 were not used for this part of the analysis due to significant effects from the 

Mount Pinatubo eruption. Months with significant gaps in either dataset have been 

excluded from the analysis. This includes October 1978, June 1979, August 1984, 

December 1987 and January 1988. 

The Nimbus-7 TOMS monthly record continues to April 1993, and is extended to the end 

of 1994 by the Meteor-3 TOMS. The TOMS team has normalized the Meteor-3 

calibration to bring the two instruments into absolute agreement during their overlap 

period (about 20 months), yet residual inter-calibration errors as high as 1% may still 

exist for the northern high latitudes, as a consequence of the latitudinal dependence of the 

Meteor-3 and Nimbus-7 normalization [Seftor et al., 1997]. The calibration problem, 

together with the Mount Pinatubo eruption, complicates the interpretation of a time series 

derived from a simple averaging. However, this difficulty can be mitigated by comparing 

the region where interannual sea ice variation is large with the region where there has 
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been relatively little sea ice change. We have divided the polar icy area into a large sea 

ice variation region (interannual variability > 7%, marked by dark gray in Figure 4.1) and 

a small sea ice variation region (interannual variability < 7%, marked by light gray in 

). The 7% threshold was chosen so that the two regions constitute nearly equal 

areas. The two areas also have similar statistics in terms of latitude and mean reflectance. 

As the calibration error and the volcanic aerosol effect mainly depend on the latitude and 

the reflectance, their contributions are effectively removed by subtracting the UV LER 

variations over the small sea ice variation area from the variations over the large sea ice 

variation area. This method is also applied to the Earth Probe (EP) TOMS data to extend 

the analysis to the year 2000. Continuous coverage is unfortunately not available due to a 

2-year gap between EP TOMS and the Meteor-3 TOMS (December 1994–July, 1996). 

Figure 4.1



  83 

 

Figure 4.1 The Arctic (a) and Antarctic (b) icy areas are defined as the regions where the 

maximum sea ice concentration is greater than 5% over the 2 decades that we examine, and 

shown in grey (both light and dark). Dark grey shows the regions where interannual sea ice 

variability is greater than 7%. 
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4.4 Results 

Figure 4.2 a shows the interannual variability in the Arctic summertime (April-August 

averages) UV LER (diamond) and the sea ice concentration (triangle). Comparison is 

made for the years 1979 to 1991, when the well-calibrated Nimbus-7 TOMS data were 

available and effects from Mount Pinatubo were absent. The effect of sea ice on the 

reflectance is clearly evident (correlation r=0.81). A change of 1% in the sea ice 

concentration is related to 0.39±0.11% change in the TOA UV LER by linear regression. 

The decreasing trend in the Arctic sea ice has been well documented [Parkinson et al., 

1999]. The independent TOMS data, showing a darkening Arctic, (the UV LER 

decreased by 1.1±0.4% per decade over the period 1979–1991), complement the 

microwave data in establishing the Arctic sea ice area decrease, especially as the 

microwave instruments change from the SMMR to the SSMI in 1987 [Bjorgo et al., 

1997]. Analysis using daily data of only the days that both measurements are available 

gives the same result. 

The changes over the Antarctic icy area (Oct.-Feb. averages) are shown in Figure 4.2b. 

The data at year 1979 is the mean for the months from October 1978 – February 1979, 

and the same applies to other years. Although the Antarctic sea ice did not show 

significant secular trends, large interannual variations were clearly present and strongly 

changed the circumpolar reflectance. Using linear regression to derive the effect of sea 

ice on the UV LER is problematic given the lower correlation (r=0.67).  

The effect of sea ice on the UV LER is further examined by subtracting the variations 

over the small sea ice variation area (marked by light gray in Figure 4.1) from the 
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variations over the large sea ice variation area (dark gray). This method effectively 

removed errors due to calibration and effects from variations that are rather uniform over 

the poles (e.g., from the Mount Pinatubo eruption), and hence greatly improved the 

correlation between the sea ice and the UV LER variations (Figure 4.3). The correlation 

is 0.88 for both poles, as calculated from the years for which both types of data exist (20 

years). Linear regression shows that 1% change in the sea ice concentration is related to a 

TOA UV reflectance change of 0.35±0.05% and 0.59±0.09% for the Arctic and the 

Antarctic, respectively. The values are consistent with those of Figure 4.2. The high 

correlations indicate that sea ice has the dominant effect on the interannual polar 

reflectance variations; cloud variations seem to have been averaged out on this timescale. 
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Figure 4.2 Summertime (April-August averages for the Arctic and October–February averages for 

the Antarctic) interannual variations of the UV LER (diamond) and the sea ice concentration 

(triangle) for the Arctic (a) and the Antarctic (b) icy areas. 
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Figure 4.3 Differences in the summertime (April-August averages for the Arctic and October–

February averages for the Antarctic) UV LER changes (diamond) and sea ice concentration 

changes (triangle) between the polar icy regions where the interannual sea ice variability is 

greater than 7% and the icy regions where the variability is less than 7%. The lines are formed by 

subtracting the changes in the low sea ice variability regions from the changes in the high sea ice 

variability regions. This approach effectively removes the interferences from the Mount Pinatubo 

eruption and the inter-calibration errors between the Nimbus-7 TOMS and the Meteor-3 TOMS, 

and is used to extend the regression study between sea ice changes and UV LER changes for 

additional years (1992-2000), as compared to . Figure 4.2
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4.5 Discussion 

Typical values of UV LER for optically thick cloud and for the open ocean are 0.90 and 

0.05 for summertime ocean at mid-high latitudes [Herman and Celarier, 1997]. The 

value for sea ice is ~0.9 as seen in the TOMS daily maps of UV LER (this was estimated 

from the mean UV LER for the grids with sea ice concentrations greater than 95%). The 

effect of cloud shielding is evident for both poles. The averaged UV LER for the grids 

with little sea ice (< 5%) is ~0.4 for the Arctic, and ~0.45 for the Antarctic icy area, as 

compared to the value of 0.05 for the clear sky open ocean. 

The UV LER of sea ice in the Arctic, however, reaches a minimum for the months June 

and July. The value is ~0.75 when averaged over the entire Arctic icy area and can be as 

low as 0.65 when only the areas with large interannual variations (dark grey in 

) are considered. This seasonal cycle is consistent with other sea ice surface albedo 

studies [Curry et al., 2001], and may be understood in terms of the extensive melt ponds 

over the summer Arctic. Such a large seasonal variation in the UV LER is absent for the 

Antarctic sea ice, as there are no melt ponds for the Antarctic sea ice. The generally 

darker Arctic sea ice in June and July may partially explain the smaller UV LER effect of 

sea ice changes over the Arctic. It is also possible that, on an interannual timescale, 

variations in the mean Arctic sea ice concentration may be influenced more by regions 

and months with less reflective sea ice or more prominent cloud shielding. More studies 

are needed to understand this asymmetry between the two poles.  

Figure 

4.1

We now try to extent our results on the UV LER to the TOA broadband visible albedo, 

using the following two approaches.  
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First, the relationship between UV LER change and broadband visible albedo change is 

investigated with an idealized situation, which is a superposition of (1) ice-free ocean 

under clear sky, (2) sea ice under clear sky, and (3) overcast cloud. Then the averaged 

visible albedo over this region is given by  

 Rvis= (1-fice-fcld)rocean+ ficerice+ fcldrcld        (1)  

where rocean, rice and rcld are the TOA broadband visible albedo for three scenarios 

respectively and fice and fcld are the fractional area of scenario (2) and (3), respectively. 

Using MODTRAN [Wang and Anderson, 1996] with sub-polar summer atmospheric 

profiles provided by the MODTRAN package, we calculate the TOA broadband (0.2-

5µm) visible albedo for above scenarios at different solar zenith angles. For the scenario 

of overcast cloud, the calculated TOA broadband visible albedo is insensitive to the 

surface below cloud deck. We then average the albedo over 40-80º solar zenith angle, a 

range approximately appropriate to the summer time polar region at local noon time. In 

this way, we obtain rocean ~0.10, rice~0.59, and rcloud ~ 0.70 (to calculate rice, we have used 

the spectral albedo appropriate for the dry snow over sea ice scene [Schramm et al., 

1997]). It follows that a 1% change in the cloud scene, keeping the fraction of the clear 

sky sea ice scene fixed, gives a 0.85% change in the UV LER and a 0.6% change in the 

TOA visible albedo. On the other hand, with a fixed fraction of cloud scene, a 1% change 

in the clear sky sea ice scene corresponds to a ~0.85% change in the UV LER and a 

0.49% change in the TOA visible albedo. Thus, a 1% change in the UV LER corresponds 

to a larger change in the TOA visible albedo (0.7%) if the variation is caused by changes 

in the cloud scene than it does if the variation is due to changes in the sea ice scene 

(0.58%). Since the interannual variations in the UV LER is apparently due to sea ice 
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variations, the effect of 1% sea ice change on the TOA visible albedo (cloud shielding 

effect included) is estimated to be 0.20% for the Arctic and 0.34% for the Antarctic. On 

an interannual timescale, a unit change in the summertime sea ice concentration, 

therefore, has a greater impact on the TOA visible albedo over the Antarctic than the 

Arctic. 

An empirical relation between the UV LER and the TOA visible albedo was also derived 

by comparing the TOMS data with the broadband Earth Radiation Budget Experiment 

(ERBE) TOA visible (0.2-5 µm) albedo data [Barkstrom, 1984]. The ERBE data are 

available from February 1985 to January 1989, and are provided at a 2.5° longitude × 2.5º 

latitude grid. The data that we use have been modified by the National Center for 

Atmospheric Research (NCAR) [Hurrell and Campbell, 1992]. We obtained a linear 

relation of ~0.7%, and ~0.6% visible albedo change per 1% UV LER change for the 

Arctic and the Antarctic icy regions, respectively (The ERBE albedo changes and the UV 

LER changes are linearly correlated with r=0.89 for the Arctic and 0.78 for the 

Antarctic.). Since these values are derived from reflectance and albedo variations 

associated with both sea ice and cloud variations, they should provide upper limits on 

how much TOA visible albedo variation is associated with a unit UV LER change when 

this change is mostly due to sea ice variations. The values are roughly consistent with our 

idealized calculations. We note that the estimate for the Antarctic is more uncertain due 

to the smaller linear correlation between the ERBE albedo and the UV LER over the 

Antarctic icy area.  

The extension of our UV LER results to the visible is admittedly crude. Alternatively, 

one may use the AVHRR polar pathfinder data to directly examine the relation between 
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variations in the TOA visible albedo and those in the sea ice. A comprehensive analysis 

of the polar pathfinder data, however, is out of the scope of this work. 

We have also examined the relation between sea ice changes and the TOA visible albedo 

in the outputs of a coarse resolution Geophysical Fluid Dynamics Laboratory coupled 

climate model simulation forced by increasing greenhouse gases and the direct effect of 

tropospheric sulfate aerosols [Dixon and Lanzante, 1999]. This model was used 

previously to project future sea ice changes [Vinnikov et al., 1999]. We have examined 

the outputs for a 100 year period from their model epoch A, which corresponds to the 

years from 1966 to 2065. In the model results, the summertime TOA albedo is highly 

correlated with sea ice (r=0.97), with estimated sensitivity of ~0.25% and ~0.27% visible 

albedo change per 1% sea ice coverage change for the Arctic and the Antarctic, 

respectively. The asymmetry in the effect of sea ice changes between the two polar 

regions is absent in this model. 

We note that values presented here are estimates for the current climatic conditions and 

should be used only to study moderate climate changes. Large climate changes may 

significantly affect, for example, the cloud field, and therefore change the strength of the 

albedo effects. 

4.6 Conclusion 

In this paper, we have examined UV LER changes over the polar icy areas during the 

past two decades. We show that the UV LER variations correlate well with those of the 

microwave-derived sea ice concentration on an interannual timescale. Since the 
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microwave data involved matching records from different instruments [Bjorgo et al., 

1997], our result provides independent confirmation on the record matching and should 

help alleviating concerns in this regard. The high correlations also indicate the dominant 

effect of sea ice on the interannual polar reflectance variations. We have quantified the 

effect of interannual sea ice changes on the UV LER, in which the shielding effect from 

clouds is apparent. Moreover, the effect of sea ice on the UV LER is significantly smaller 

in the Arctic than in the Antarctic. This result is extended to the TOA broadband visible 

albedo by relating the UV LER to the TOA albedo. The observed asymmetry is absent in 

a GCM. Determined from observations over the entire polar icy regions over a two 

decade period, these results should help the quantification of sea ice-albedo feedback 

under the current climatic conditions. 
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Chapter 5: Interannual Reflectance Variations 

over the North Pacific and North Atlantic 
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5.1 Abstract 

We investigate the interannual reflectance variations over the N. Pacific and the N. 

Atlantic using the Total Ozone Mapping Spectrometer (TOMS) reflectance data from 

1979 to 1992. The leading patterns of the reflectance variations over the N. Atlantic and 

N. Pacific are related to variations in the storm tracks, and to the corresponding North 

Atlantic Oscillation (NAO) and Pacific North American (PNA) circulation patterns. 

Reflectance variations over the N. Pacific during the non-summer seasons, however, also 

have a substantial component that is linked to PNA related variations in the lower 

tropospheric stability, through the effect of stability on boundary layer clouds. The effect 

of stability variations on the reflectance, however, appears to saturate when the static 

stability becomes sufficiently large. This would limit the efficiency of the proposed 

summertime stability-boundary layer cloud feedback. We have also found a negative 

local correspondence between summertime reflectance and sea surface temperature (SST) 

anomalies. However, the reflectance anomalies are largely attributed to variations in the 

frontal clouds, instead of the marine boundary layer stratiform clouds (MSC). This result 

argues against the proposed feedback between summertime SST and MSCs. 
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5.2 Introduction 

The importance of clouds in the Earth’s weather and climate is universally recognized. 

While existing observational and theoretical studies have acquired a wealth of 

information on the different cloud processes and their interaction with the weather 

systems (for a summary, see, e.g., Houze [1993]), incorporating this information into 

climate studies (e.g., through parameterizations) proves difficult. Current general 

circulation models (GCMs), a major tool in climate research, are not yet capable of 

simulating cloud processes and cloud-related feedbacks correctly, as highlighted by the 

inconsistency among the GCMs [Alekseev et al., 1996; Cess et al., 1989]. It is therefore 

of interest to undertake observational studies on cloud variations and their relationships 

with meteorological conditions on spatial and temporal scales that are more closely 

related to climate processes. 

The low stratiform clouds prevalent over midlatitude and eastern subtropical oceans, in 

particular, have received much attention. These clouds, being low and highly reflective, 

have a great impact on the Earth’s radiation budget [Hartmann et al., 1992]. Using 

surface cloud observations, significant relationships have been identified between the low 

stratiform cloudiness and variables such as the lower tropospheric static stability, the sea 

surface temperature (SST), among many others [Hanson, 1991; Klein and Hartmann, 

1993; Klein et al., 1995; Norris and Leovy, 1994; Norris et al., 1998]. Because of the 

large radiative effect of these low stratiform clouds, various feedbacks have been 

suggested based on the observed relationships [Klein and Hartmann, 1993; Miller, 1997; 
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Norris and Leovy, 1994; Norris et al., 1998; Philander et al., 1996]. These feedbacks 

may have contributed to many important features of the climate system, such as the 

persistence of midlatitude SST anomalies [Norris et al., 1998], stability of the tropical 

climate [Miller, 1997], and the position of the inter-tropical convergence zone [Philander 

et al., 1996]. Some may also enhance the climate sensitivity to future changes. For 

instance, Klein and Hartmann [1993] found that the seasonal variations of the low 

stratiform clouds are linearly related to the lower troposphere static stability over a 

variety of geographic locations. Based on this result, they suggested that as global 

warming strengthens the summer time monsoon-like circulation between the midlatitude 

continents and oceans, the strengthened subsidence over the northern midlatitude oceans 

would increase the static stability, increase the low cloud amount, and cool the ocean. 

This would in turn increase the temperature contrast between the continents and the 

oceans, and strengthen the monsoon-like circulation.  

A number of studies have used satellite albedo and radiative flux data over the 

extratropical oceans [Oreopoulos and Davies, 1993; Weaver, 1999; Weaver and 

Ramanathan, 1996; Weaver and Ramanathan, 1997]. Oreopoulos and Davies [1993] 

identified significant relationships between monthly albedo and SST over two subtropical 

regions where low stratiform clouds prevail. Weaver and Ramanathan [1996, 1997] and 

Weaver [1999] examined the impact of midlatitude cyclones on the radiative fluxes over 

the Northern Hemisphere extratropical oceans. Spatial variations in monthly cloud 

radiative forcings were linked to those of the lower troposphere static stability and the 

mid-tropospheric vertical velocity [Weaver and Ramanathan, 1997].  
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While the surface observations cover a longer time period and distinguish the different 

cloud morphological types, an important piece of information for understanding the 

underlying processes, the satellite data provide a top-down view, a better spatial 

coverage, and are not limited to the low stratiform cloudiness; variations in the cloud 

optical depth and other cloud types are also included. This is particularly important over 

the midlatitude oceans due to the presence of various cloud types [Norris, 1998a]. 

However, these previous studies are limited by the short temporal data coverage (5 

years), the inferred relationships are mostly based on seasonal and spatial variations. 

Effects of different factors may not be separable in these variations. For instance, Weaver 

and Ramanathan [1997] noted that the January spatial distribution of the monthly cloud 

shortwave forcing in the North Pacific is independent of the lower troposphere static 

stability and the strength of the synoptic activity. This result, however, is apparently 

caused by the cancellation of those two effects: synoptic activity is strongest over the 

western N. Pacific where the lower troposphere stability is lowest in January.  

While the interannual reflectance variability over the extratropical oceans is not 

particularly large (Chapter 3), the potential coupling between the reflectance and other 

aspects of the climate system in these regions warrants a closer investigation. Here, we 

extend these previous studies by using the TOMS reflectance data. The longer temporal 

coverage of the TOMS data provides more degrees of freedom and helps separating the 

effects of various processes. In section 5.3, we present a brief review of the various cloud 

processes over the extratropical oceans. The seasonal variations in the reflectance are 

discussed in Section 5.4. We then describe the additional datasets and the analysis 
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methods used in this study (section 5.5). The results are described in Section 5, followed 

by discussion and some concluding remarks. 

5.3 Cloud Processes over the Midlatitude Oceans 

A quick inspection of the midlatitude oceans reveals the prominent cloud features 

associated with the extratropical cyclones (Figure 5.1, Figure 5.2). There have been 

extensive surface observations of these clouds, which have played important roles in 

culminating the classical Norwegian cyclone model [Bjerknes and Solberg, 1922]. 

Satellite observations further enriched our understanding of these clouds and the 

associated cyclone systems [e.g., Reed 1990]. The basic cloud feature of extratropical 

cyclones is the comma-shaped cloud band associated with the ascending regions [Houze, 

1993]. This comma cloud band has a large vertical extent and exerts strong cloud 

radiative forcing [Weaver and Ramanathan, 1996; evident in Figure 5.1, Figure 5.2 as 

well]. For a detailed discussion on the formation of the comma cloud, readers are referred 

to, e.g., Carlson [1980].  
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Figure 5.1 Visible (upper) and infrared (lower) images taken by the GEOS-10 geostationary 

meteorological satellite on November 2, 2001. North American continent is at the east part of the 

images. 
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Figure 5.2 The same as  but for July 17 2001. Figure 5.1
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Besides the comma clouds, the midlatitude and eastern subtropical oceans also have a 

large amount of boundary layer clouds. This has been well documented by surface 

observations [Warren, 1988]. These boundary layer clouds are also evident in the satellite 

imagery, as they appear bright in the visible image and dark in the infrared. For example, 

the clouds behind the cold front with a granular appearance in Figure 5.1a are identified 

as stratocumulus. On the other hand, the low clouds in Figure 5.2 have a more diffusive 

and smooth texture and are related to stratus clouds. This is also seen in the daily 

reflectance map taken by the Earth Probe (EP) TOMS instrument at roughly the same 

time (Figure 5.3). As the TOMS instrument makes measurements at approximately local 

noontime, the TOMS daily map is a composite map instead of an instantaneous image. 

The missing data are due to gaps between the EP TOMS orbital tracks. These gaps are 

absent in the Nimbus-7 TOMS data. In the TOMS data, the comma clouds are associated 

with very high reflectance (~80%). The stratocumulus behind the cold front in Figure 5.1 

has a reflectance of ~20-30%, while the reflectance of the regions covered by the stratus 

in Figure 5.2 is ~40-50%.  

The widespread boundary layer clouds seen over the extratropical oceans may form 

through two distinct mechanisms [Houze, 1993]. One includes advection of cold air over 

warm water. The resulting convective instability gives rise to an unstable boundary layer. 

The boundary layer deepens as it entrains air from above. Clouds form at the top of the 

boundary layer when the upward convective plumes reach above the condensation level. 

This mechanism is responsible for the extensive boundary layer cloud cover over the 

eastern subtropical oceans. Cold air outbreaks from the winter time continents and cold 
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advection associated with midlatitude cyclones also form extensive boundary layer 

clouds over the midlatitude oceans. These cloud-topped boundary layers are typically 

capped by temperature inversions. The clouds may take on different appearances 

depending on the strength of the mixing and the inversion. For instance, cumulus may 

form when there is strong mixing and a weak inversion, while stratus is more likely for 

weak mixing and a strong inversion. A tendency for a more stratiform appearance with an 

increasing lower tropospheric static stability has been illustrated by composite studies 

using surface ship observations [Norris, 1998a]. The lower tropospheric static stability 

may be defined as the potential temperature difference between the surface air and the air 

above the inversion, and can be used to represent the strength of the inversion. 

Boundary layer clouds also form when warm air is advected over a cold surface under 

stable conditions. As the air is cooled from below, clouds may form first as fog. As the 

fog thickens and becomes opaque in the infrared, differential radiative heating 

destabilizes the top layer of the fog. With the enhanced mixing, the fog layer further 

deepens and sometimes becomes elevated stratus. These clouds are often associated with 

a deep, stratified cloud layer with little capped inversion [Norris, 1998a].  
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Figure 5.3 The TOMS daily reflectance maps taken at approximately the same time as Figure 5.1 

(upper panel), and  (lower panel). Figure 5.2
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Figure 5.4 Climatological mean reflectance for January (a) and July (c). Contributions from grids 

with reflectance greater than 75 RU are shown in (b) and (d) for January and July, respectively. 

The units are RU. There is no data poleward of 62°N in January. 
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5.4 Seasonal Reflectance Variations 

The seasonal cycles of the reflectance are necessarily related to those of the underlying 

cloud formation processes. The seasonal variations of the storm tracks have been well 

documented [Chang et al., 2002]. The North Pacific and North Atlantic storm tracks are 

strongest in the winter season4. In summer, following the movement of the jet stream, the 

storm tracks migrate poleward and become weaker. The lower tropospheric static 

stability over the ocean, on the other hand, is greater in the summer. The seasonal 

variation of stability is particularly pronounced over the western North Pacific. The 

western sides of the northern oceans are characterized by strong cold advection and weak 

static stability in winter and by warm advection and strong static stability in summer. 

This seasonal behavior is associated with the seasonal varying temperature difference 

between the continents and the oceans [Klein and Hartmann, 1993].  

The seasonal variations of these meteorological conditions are captured in the TOMS 

reflectance. The mean TOMS reflectance for January and July (averaged over the period 

1979-1992) are shown in Figure 5.4 (a and c). In Figure 5.4 (b and d), we also show the 

contributions to the January/July mean reflectance from points with TOMS reflectance 

greater than 75 RU (hereafter this quantity will be referred to as Rhigh). As discussed in 

the last section, high values (~80 RU) in the TOMS reflectance are associated with 

frontal clouds. We shall use Rhigh as an indicator of contributions from frontal clouds to 

                                                           
4 The N. Pacific storm track is known to have a curious midwinter minimum. This behavior, however, will 
not be discussed here. Interested readers are referred to Nakamura, H., Midwinter Suppression of 
Baroclinic Wave Activity in the Pacific, Journal of the Atmospheric Sciences, 49 (17), 1629-1642, 1992. 
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the monthly mean reflectance. This indicator is not perfect, because the so-defined Rhigh 

is dependent on the grid size, as a larger grid size would smooth out the highly reflective 

clouds to a greater extent. It may, hence, have a latitudinal dependence, as the equal-

angle TOMS grid corresponds to a smaller area at higher latitudes. These complications 

should be kept in mind in interpreting the results. We note, however, that the distribution 

of Rhigh in general agrees with the International Satellite Cloud Climatology Project 

(ISCCP) [Rossow and Schiffer, 1991] deep convective cloud plus nimbostratus cloud 

amount (defined as optical thickness greater than 23, and cloud top above 680 mb), which 

are based on very high spatial resolution measurements (like those in , 

). 

Figure 5.1 Figure 

5.2

The seasonal variations of the mean reflectance, however, are not dictated by the 

occurrence of high reflectance. For instance, while the N. Pacific has fewer occurrences 

of highly reflective points in the summer, its mean reflectance is in fact greater (

). The summer reflectance maximum is due to a higher frequency of intermediate 

reflectance values (~45 RU). The histograms constructed from the 14-year gridded 1.25° 

longitude by 1° latitude TOMS reflectance are shown in the Figure 5.5 for January (solid) 

and July (dashed). In constructing the histograms, each grid box is weighted by its area. 

Regions with sea ice are excluded from the analysis. The bin size is 1 RU, and the total 

number of grid boxes ranges from 3 to 8 millions. From Figure 5.5a, it is clear that while 

the summertime N. Pacific has fewer occurrences of reflectance higher than 75 RU, the 

most frequently occurring reflectance value is ~45 RU, typical of a stratus. The most 

frequent reflectance in winter is ~25 RU, characteristic of stratocumulus. The persistency 

Figure 

5.4
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of summer time stratus over the N. Pacific is evident in daily satellite images like 

 and . In the ISCCP data, this seasonality is expressed in an increased 

cloudiness for middle to low cloud top (below 400mb) and intermediate optical depth 

(3.6-23) clouds in summer. The reflectance distribution of the Southern Ocean exhibits a 

similar seasonality: the winter reflectance (July) distribution has a maximum at ~25 RU, 

while the summer distribution (January) has a broader maximum from 20 to 45 RU. In 

comparison, the reflectance distribution over the N. Atlantic has a smaller seasonal 

variation. In particular, the most frequent reflectance value in January is greater than that 

of the other two oceans. While the specific distributions depend on the areas that were 

used to represent the three oceans, the observation that reflectance values of ~45 RU 

occur more often during seasons with higher lower tropospheric stability is robust.  

Figure 

5.2 Figure 5.3

 

Figure 5.5 Occurrence frequencies for different reflectance values over the N. Pacific 160°E-

140°W, 35°N-60°N (a), N. Atlantic 80°W-10°W, 35°N-60°N (b) and the Southern Oceans 

180°W-180°E, 65°S-40°S (c) in January (solid) and July (dashed). 
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5.5 Data and Methods 

The time period that we shall examine is 1979-1992. This time period is set by the 

availability of the TOMS data, which is described in Chapter 3. Various meteorological 

variables from the National Centers for Environmental Prediction / National Center for 

Atmospheric Research (NCAR/NCEP) reanalysis [Kalnay et al., 1996] are also used. 

Parameters of interest include air temperature, humidity, geopotential height, and winds 

at various pressure levels, and the SST. The pressure level data are available on a 2.5° 

longitude × 2.5° latitude grid, and the SST is available in a 192×94 Gaussian grid. 

Monthly means will be mostly used in this study, although the 4-times-daily data will 

also be used.  

We use the Empirical Orthogonal Function (EOF) analysis to identify large-scale 

structures in the interannual reflectance variations. The EOF method has been used 

extensively in the field of meteorology. Readers are referred to, for instance, 

Preisendorfer and Mobley [1988] for more details. We use singular value decomposition 

(SVD) to further examine the relation between large-scale patterns of reflectance 

variations and various meteorological variables, including the lower tropospheric 

stability, the storm track, and the large-scale circulation. The SVD analysis expands two 

fields into paired patterns so that the explained squared covariance is maximized for any 

given number of pairs. This method is discussed in some detail in Bretherton et al. 

[1992]. A few useful SVD statistics are summarized below. One is the squared 

covariance fraction (SCF) of a pair of patterns, defined as the squared covariance 



  111 

explained by this pair divided by the sum of the squared covariance explained by all pairs 

from the SVD expansion of two fields. As described in Bretherton et al. [1992], the SCF 

is a good indication of the relative importance of a pair of patterns in the expansion of 

two fields. Another useful statistics is the normalized covariance (NC), defined as the 

covariance explained by a pair normalized by the square root of the product of the total 

variances within each field [Zhang et al., 1998]. NC provides a measure on the absolute 

strength of the coupling between the two fields as represented in a given pair of SVD 

patterns. The correlation coefficient r between the time series of a given pair will also be 

used as an indication of the strength of the coupling. The statistical significance of these 

statistics is tested by Monte-Carlo experiments that take into account the spatial 

coherence and the auto-correlation within each field [Norris, 2000].  

We use θ(700 mb)-θ(1000 mb) to represent the lower tropospheric stability, where θ is 

the potential temperature. Alternative choices of using moist potential temperature 

difference instead of θ difference or pressure levels such as 500 mb or 850 mb instead of 

700 mb give similar results. We use the 3-30 day band pass filtered root-mean-square 

(rms) daily pressure vertical velocity (ω) at 500 mb (hereafter rms ω) to represent the 

strength of synoptic activity. Maxima in rms ω approximate the storm track. It needs to 

be noted, however, that many other band pass filtered variances or covariances can be 

used to diagnose synoptic activities. Different diagnoses may give slightly different 

descriptions of the storm track [Trenberth, 1991]. The effect on our results will be 

discussed. Rhigh will also be used as a diagnosis of the storm track. Derived from 

reflectance measurements, Rhigh is a more direct measure of the effect of frontal clouds on 
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the reflectance than the other diagnoses. The 500mb geopotential height will be used to 

diagnose variations in the large scale circulation. 

The regions that we shall examine are the N. Pacific (150°E-110°W, 20°N-60°N) and the 

North Atlantic (70°W-0°W, 20°N-70°N). Although a smaller N. Pacific domain is used 

to reduce the influence from tropical western Pacific, the results presented in the 

following are unchanged when a broader domain (120°E-110°W instead of 150°E-

110°W) is used. These domains are used for the reflectance, Rhigh, lower tropospheric 

stability, 500mb rms ω. For these variables, land areas and areas with climatological sea 

ice concentrations greater than 3% have been excluded from the analyses. For the 500mb 

geopotential height, we have used the sector of 100°E-30°W, 20°N-85°N to pair with the 

N. Pacific and the sector of 120°W-60°E, 20°N-85°N to pair with the N. Atlantic. The 

four seasons are examined separately, and the results for the December-February (DJF) 

and the June-August (JJA) seasons are presented. The results are in general not sensitive 

to the specific domain selection and the exclusion of land areas. The few exceptions will 

be noted. The percentage variance explained by the leading two EOFs for various fields 

are summarized in .  and  present the correlation coefficients 

between the time series of the leading EOFs for DJF and JJA, respectively. The SVD 

statistics between various fields and the reflectance field are summarized in Table 5.4.  

Table 5.1 Table 5.2 Table 5.3
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5.6 Results  

a. DJF North Pacific 

Figure 5.6 displays the leading EOF patterns of the DJF season for the reflectance (a), 

stability (b), Rhigh (c), rms ω (d), 500mb height (e), together with their time series (f). The 

time series are normalized. Values in the EOF patterns represent the magnitude of the 

variations for a 1 standard deviation variation of the EOF time series. The units are RU, 

for reflectance and Rhigh, Kelvin for stability, mb/day for rms ω, and meters for 500mb 

height. As the patterns resulted from EOF/SVD analyses carry arbitrary signs, we have 

arranged the signs so that all patterns are of the same polarity. These apply to the rest of 

this Chapter as well. The first EOF of the reflectance field explains 21% of the total 

variance in the reflectance field (Table 5.1) and is well separated from the second mode, 

by the criterion proposed by North [1982]5. The time series of the leading EOFs of all 

variables are significantly correlated ( ). The statistical significance is calculated 

through Monte-Carlo experiments that take into account the auto-correlation within each 

time series. As these EOF time series emerge from completely separate analyses, the 

strong correlations among the different fields in the N. Pacific winter provide a strong 

indication that these aspects of the climate system are highly organized. The SVD 

analyses, designed to extract correlated patterns in two fields, not surprisingly, produce 

similar results ( ).  

Table 5.2

Table 5.3

                                                           
5 The criterion is that the separation between the variances (λ) explained by two successive EOFs, ∆λ, 
needs to satisfy ∆λ > λ(2/N)1/2, where N is the number of realizations. 



  114 

 

a 

b 

c 

d 

Figure 5.6 The leading EOF patterns of the following fields for the DJF N. Pacific: from top to 

bottom (a) reflectance, (b) lower tropospheric stability, (c) Rhigh, (d) 500mb rms ω (to be 

continued). 
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Figure 5.6 (continued) The leading EOF patterns of 500mb geopotential height (e) and 

the time series of the leading EOFs (f). Negative contours are dotted.
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The physical interpretation of these patterns and their relationships is as follows. The 

leading EOF of the 500mb height (Figure 5.6e) resembles the Pacific-North Atlantic 

(PNA) pattern (negative phase) [Wallace and Gutzler, 1981]. The PNA pattern may be 

understood in terms of a Rossby-wave train originating from the subtropical upper 

troposphere, induced by outflows from tropical convection [Trenberth et al., 1998]. 

Associated with the positive/negative phase of the PNA pattern, the subtropical jet stream 

shifts southward/northward. The mean flow steers the weather disturbances and causes a 

equatorward/poleward shift in the N. Pacific storm track, as seen in Figure 5.6 d [also see 

Lau, 1988]. The pattern of the rms ω is essentially unchanged when the land area is 

included or a wider domain or a longer time period is used. It is worth noting, however, 

that the specific position of the storm track and the pattern of its variation do depend on 

the particular statistics used to represent the storm track [Trenberth, 1991]. For instance, 

if the rms 200mb band pass filtered (2-8 days) meridional wind, or the rms 500mb height 

is used, the positive and negative anomalies are more east-west oriented so that the shift 

in storm track has a more meridional nature. The shift in the storm track is naturally 

reflected in the reflectance field. In particular, the leading EOF of Rhigh (Figure 5.6c) 

exhibits such a shift. However, a shift in the storm track does not explain the leading EOF 

pattern of the total reflectance field, which is characterized by an elongated band with 

slightly negative anomalies and strong positive anomalies to the north and south of this 

band. This pattern is in contrast to that of a shifting storm track where the positive and 

negative anomalies have similar magnitudes. We relate this difference to variations in the 

lower tropospheric stability field (Figure 5.6b). In the same manner as the Rossby-wave 

train induces the 500mb height pattern, it also induces corresponding patterns in the 
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lower tropospheric stability. As stronger lower tropospheric stability tends to increase the 

stratiform nature of the clouds associated with an unstable boundary layer [Norris, 

1998b], it increases the fractional cloud cover and hence the reflectance. An increased 

stability is, therefore, expected to increase the reflectance north of the storm track where 

unstable boundary layers prevail due to the frequent cold advection. On the other hand, 

over the western and central subtropical Pacific, the cloud cover is dominated by 

cumulus. A weakened subtropical high, and a reduced stability thus favor the occurrence 

of more cumulus and increase the reflectance. Based on these discussions, the leading 

EOF pattern of the interannual reflectance variation over the DJF N. Pacific appears to be 

closely related to the PNA circulation pattern through variations in the position of storm 

track and the strength of the lower tropospheric stability.  



  118 

 

North Pacific North Atlantic Region 

DJF JJA DJF JJA 

R 21/9 16/12 16/12 13/11 

∆θ 35/21 17/15 32/24 26/14 

Z500mb 23/18 15/11 28/15 21/13 

rms ω 20/12 23/10 22/15 27/9 

Rhigh 14/9 10/8 14/11 10/7 

 

Table 5.1 Fractional variances explained by the leading two EOFs in various fields. Units are 

percent. The data is presented in the form of a/b where a and b are the percentage variances 

explained by EOF1 and EOF2, respectively. 

 

 Stability Rhigh rms ω Z(500mb) 
R 86/32 80/74 62/55 78/27 

Stability   75/33 62/59 83/35 

Rhigh     82/58 85/10 

Rms ω       73/20 

 

Table 5.2 Correlations between the time series of the first EOFs of various variables for the N. 

Pacific. Within each pair, the first value is for the DJF season, and the second value for JJA. Units 

are in %. Bold indicates 99% significance. 
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 ∆θ Rhigh rms ω Z(500mb) 
R 53/71 79/75 75/59 58/37 

Stability  14/69 46/65 62/63 

Rhigh   59/70 43/48 

Rms ω    54/52 

 

Table 5.3 The same as , except for the N. Atlantic. Table 5.2

 

 Stability Rhigh rms ω Z500mb 

75/25/92 46/15/94 51/15/82 66/20/90 N. Pacific 

25/10/78 30/11/95 44/13/78 28/10/91 

49/18/85 38/14/95 49/16/88 48/17/87 N. Atlantic 

49/16/87 26/10/94 50/14/86 42/13/84 

 

Table 5.4 Statistics from paired SVD analyses between reflectance anomalies and those of 

various variables over N. Pacific and N. Atlantic. The values are presented as SCF/NC/r. Bold 

indicates 99% significance. Units are percent. 



  120 

b. DJF N. Atlantic 

The variables under consideration here are not as closely related to each other over the N. 

Atlantic compared to that seen over N. Pacific in DJF. This is evident in their correlation 

coefficients (Table 5.2). Therefore, in , we present the leading EOF pattern of 

the reflectance field, together with leading SVD patterns of various fields when they are 

paired with the reflectance field. This distinction, however, appears unnecessary, as the 

SVD patterns closely resemble those from the EOF analyses.  

Figure 5.7

Figure 5.7

The leading EOF pattern of the reflectance field is characterized by an elongated positive 

anomaly. A very similar pattern is seen in Rhigh and rms ω. However, when the ice 

covered areas and the land areas are included, the 500mb rms ω pattern exhibits both 

positive and negative anomalies, and suggests a shift in the storm track (Figure 5.7f). The 

lack of a strong negative anomaly in Figure 5.7 a, c, d is apparently because the area 

around Greenland is where the negative anomaly resides. The SVD pattern of the 500mb 

height is shown in (Figure 5.7 e). This pattern resembles that of the negative phase North 

Atlantic Oscillation (NAO) except that the negative anomaly is shifted towards the west. 

When a longer time period is used, the leading EOF of the 500mb height over the 

Atlantic section follows the NAO pattern more closely. Similarly, the negative anomaly 

in the lower troposphere stability field is also shifted towards the east when a longer 

period is used. The difference between  and the canonical NAO pattern is, 

therefore, attributed to the non-stationary nature of the circulation. This cautions the 

interpretation of the EOF/SVD patterns from our rather short record: while the general 
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patterns, such as the shifts in the storm track, should hold, the detailed features may vary 

when longer records are available. The patterns in the storm track and the 500mb height 

are consistent with the findings of [Lau, 1988], which shows that the NAO pattern 

corresponds to a meridional shift in the storm track.  

The time series of the leading EOFs of reflectance and stability are 99% significantly 

correlated, and the first SVD patterns have 99% statistical significance except for SCF, 

which is significant at a 95% level. However, the SVD pattern of stability bears little 

similarity to the pattern of reflectance variation. In fact, the expected reflectance variation 

from the pattern of stability is in general opposite of that in the pattern of the reflectance 

variation. This, together with the resemblance between the patterns of R and Rhigh, 

suggests that stability has little effect on the interannual reflectance variations over the 

DJF N. Atlantic and the latter is mostly due to the meridional shifting of the storm track. 

The correlation between reflectance and stability variations is likely because they both 

respond to large scale circulation variations. This difference from the DJF N. Pacific is 

explained in terms of the difference in the position and the strength of storm tracks over 

the two basins. The DJF Pacific storm track is weaker, and more importantly, there is a 

large area north of the Pacific storm track where the occurrence of frontal clouds is 

minimal, and variations in the boundary layer clouds can control the reflectance. Such a 

setting is absent in the N. Atlantic.  
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Figure 5.7 Leading EOF/SVD patterns over the DJF N. Atlantic. From top to bottom: (a) the 

leading EOF pattern of reflectance (a), the leading SVD patterns of the following quantities when 

paired with the reflectance: stability (b), Rhigh (c), 500mb rms ω (d), (and on the next page) 

500mb height (e), and 500mb rms ω when the ice covered area and the land areas are included (f) 

(to be continued). 
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Figure 5.7 (continued)   
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c. JJA N. Atlantic 

The various patterns are quite similar over the N. Atlantic in JJA as in DJF (Figure 5.8). 

In Fig 5.8 d, we display the leading EOF pattern of 500mb rms ω when land and ice 

covered area are not excluded. The leading pattern in reflectance is also associated with a 

shift in the storm track. The associated circulation pattern is weaker than the winter and 

resembles that of the negative phase NAO in summer (not shown). The positive anomaly 

around the Canary Islands is likely associated with a strengthened subtropical high and an 

increased stability (Fig 5.8 b), as stratocumulus tends to prevail in these regions during 

the summer season [Klein and Hartmann, 1993].  The negative anomaly to the north in 

the reflectance field may also be related to the large negative anomaly in the stability 

field. 
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Figure 5.8 Top to bottom (a-d): the same as  a,b,c,f, except for JJA N. Atlantic. Figure 5.7
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d. JJA N. Pacific 

The leading EOF pattern of the reflectance variations over the JJA N. Pacific is 

characterized by an elongated positive anomaly on the west side of the basin and a 

weaker feature on the east side of the basin ( ). The leading SVD pattern 

between reflectance and stability failed statistical significance tests on all measures 

(Table 5.4) and is not presented.  

Figure 5.9

Figure 5.9

The reflectance anomaly on the west resembles the anomalies in the leading SVD 

patterns of Rhigh and rms ω (Figure 5.9). Because the center of the positive anomaly in 

these patterns lies to the south of the climatological summertime storm track maximum, 

this suggests an intensification and equator-ward shift in the storm track [Norris, 2000]. 

The negative reflectance anomaly has a more tropical origin and is more directly related 

to the El Nino Southern Oscillation (ENSO) [Fu et al., 1996], although the midlatitude 

circulation in general is also influenced by the ENSO [Chang et al., 2002]. The 

reflectance anomaly on the eastern side of the basin appears not directly related to frontal 

clouds. Klein et al. [1995] related the summertime boundary layer cloud variations over 

this part of the Pacific basin to the variations in the subtropical high. The pattern in 

 over the east pacific is consistent with the cloud variations associated with a 

weakened subtropical high, as identified in that study. A similar conclusion was reached 

by Norris et al. [1998]. Given the few frontal clouds in this region during summer 

(Figure 5.4d), it appears appropriate to attribute the reflectance variations in this region to 

those of the boundary layer clouds, and hence to variations in the subtropical high. A 
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weakened subtropical high reduces the incidence of cold advection over the 

stratocumulus region off the California coast. This results in the decreased reflectance. 

The weakened subtropical high also allows more intrusions of midlatitude synoptic 

activities. These activities increase the stratiform clouds in the midlatitude stratus regime 

and disrupt the boundary layer processes in the subtropical stratocumulus regime [Klein 

et al., 1995]. The zero contour in a over the eastern N. Pacific appears to 

separate the midlatitude and the subtropical regimes (compare with Figure 5.4a). 

Figure 5.9

 

Figure 5.9 Leading EOF/SVD patterns over the JJA N. Pacific. From top to bottom: the leading 

EOF pattern of reflectance (a), and the leading SVD patterns of the following quantities when 

paired with the reflectance: Rhigh (b), 500mb rms ω (c). 
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e. Relation between Summertime Reflectance and SST 

An outstanding question in the study of midlatitude climate variability is the ocean-

atmosphere interaction. The atmospheric influence on the extratropical SST has been well 

established [Frankignoul, 1985]. The SST anomalies can be generated by anomalous 

sensible/latent heat flux across the air-sea interface or by anomalous wind driven 

turbulence mixing or Ekman pumping. Whether the midlatitude SST anomalies can 

effectively force a response in the atmospheric circulation to substantiate an ocean-

atmosphere feedback has been actively studied but remains controversial [Kushnir et al., 

2002]. The study of midlatitude air-sea interaction has mainly focused on the winter 

season, when the air-sea coupling is the strongest. More recently, Zhang et al. [1998] 

examined the air-sea interaction during the summertime N. Pacific, and concluded that 

the leading summertime SST anomaly pattern is at least as persistent as that in winter, 

and it varies coherently with its winter counterpart. Since the ocean mixed layer is 

considerably shallower in the summer, a summertime low cloud-SST feedback was 

invoked to explain the persistency of the summer SST anomaly patterns [Norris et al., 

1998]. As this feedback is in essence a reflectance-SST feedback, an examination of the 

relation between reflectance and SST appears appropriate.  

Figure 5.10 displays the SVD patterns between reflectance and SST over the summertime 

(JJA) N. Pacific (a) and N. Atlantic (b). The correspondence between positive reflectance 

anomalies and negative SST anomalies is quite remarkable. A similar correspondence 

between marine stratiform clouds (MSC) and the SST was interpreted as the response of 

MSC to the SST anomalies, and a feedback was inferred based on the effect of MSC on 
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reflecting sunlight [Norris et al., 1998]. This view, however, is not supported by our 

analysis. As discussed in the previous sections, the reflectance anomalies over the JJA N. 

Atlantic and west N. Pacific are related to the storm track, and more specifically, to the 

highly reflective frontal clouds. While the Rhigh patterns in c, b have 

smaller amplitudes than their counterparts in total reflectance (Figure 5.8a, Figure 5.9a), 

this difference is mostly because we have only included contribution from grid boxes 

with reflectance greater than 75RU, which, while illustrates the pattern, necessarily 

underestimates the contribution from the frontal clouds. A lower threshold for R

Figure 5.8 Figure 5.9

high 

(65RU) produces patterns with amplitudes that approach those in the total reflectance 

field (not shown). While the choice of the threshold for Rhigh has some uncertainties, a 

reflectance of 65RU should be sufficiently higher than that of most MSCs. The majority 

of the reflectance variations, thus, appear unrelated to MSC variations. This argues 

against boundary processes between SST and MSC as being important for the 

reflectance-SST correspondence. Instead, it is more appropriate to view the 

correspondence between an increased reflectance and a decreased SST as a consequence 

of both responding to anomalous synoptic activities. In the JJA eastern N. Pacific, 

boundary layer clouds are more important contributors to the reflectance variations. 

However, as pointed out by [Klein et al., 1995], the circulation variations associated with 

an anomalous subtropical high may also simultaneously drive anomalies in the SST and 

MSC. Based on our results, there appears little evidence for an MSC-SST feedback over 

midlatitude oceans during summer. We speculate that the effect of SST anomalies (or 

SST gradient anomalies) on the storm track may hold more promises for an explanation 

for the persistence of the summertime SST anomaly. For instance, it is possible that 
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changes in the SST can affect the storm track by modifying the low level baroclinicity. 

How the atmospheric circulation responds to extratropical SST anomalies remains an 

active research topic [Kushnir et al., 2002]. 

While we believe that the reflectance anomalies and the SST anomalies are both 

responding to anomalous synoptic activities, reflectance variations over the summertime 

northern oceans can, nevertheless, be important for the energy budget in these regions. 

We have identified statistically significant SVD patterns between the reflectance field 

and the surface heat flux out of the ocean (sensible heat + latent heat), over the JJA 

northern oceans. The SVD patterns in the surface heat flux ( ) bear many 

similarities to those in the reflectance field that were identified as due to storm track 

variations (  and ). This is consistent with our interpretation, as 

increased synoptic activities increase both the reflectance and the surface heat flux. 

Simple estimates indicate that the shortwave forcing due to the reflectance variations is of 

a similar magnitude to the surface heat flux variations, reaching ~ 20W/m

Figure 5.11

Figure 5.8 Figure 5.9

2. We have 

assumed an incoming solar flux of ~400W/m2, appropriate for the summertime northern 

oceans. Therefore, reflectance variations do appear to be a significant player in the heat 

budget over these regions. This is not true in the winter, where variations in the surface 

heat flux far exceed the contributions from the reflectance variations (not shown). 
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Figure 5.10 The leading SVD patterns between reflectance (color) and SST (contours) over the 

JJA N. Pacific (a) and N. Atlantic (b). The units are Kelvin and RU for SST and reflectance 

anomalies, respectively. 
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Figure 5.11 The SVD patterns of surface heat flux when it is paired with the reflectance for JJA 

N. Pacific (a) and JJA N. Atlantic (b). Units are W/m2. 
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5.7 Discussion 

It is worth noting that except for the DJF N. Pacific, the first two EOFs of the reflectance 

field for the other three cases that we present are not considered as statistically well 

separated [North et al., 1982]. In interpreting them as independent, physical patterns of 

variations, we have used their relation with the storm track variations and, of course, 

some physical intuition. The relation between the storm track and the reflectance in these 

cases is robust, not only in the sense that their covariability statistics for the leading SVD 

patterns are significant; a local correspondence between reflectance, Rhigh and rms ω in 

the following pairs of SVD patterns is observed as well.  

The seasonal variation of the relation between stability and reflectance is particularly 

interesting and warrants more discussion. Figure 5.12 displays the local correlation 

between interannual variations of stability and the reflectance over the N. Pacific for the 

four seasons. For the calculation of local interannual correlations, we average the TOMS 

monthly reflectance onto a 2.5° longitude × 2° latitude grid, with grid centers at 0°, 2.5°, 

5°E, etc., and 89°, 87°, 85°S, etc. Meteorological variables from the NCEP reanalysis are 

interpolated onto this grid. Linear correlations were calculated between the monthly 

anomalies of the reflectance and stability for each grid.  
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Figure 5.12 The interannual local correlation coefficients between reflectance and stability 

anomalies for DJF (a), MAM (b), JJA (c) and SON (d), over the N. Pacific Areas with sea ice are 

excluded. 

The significant correlation (99% significance is ~0.4 as suggested by Monte-Carlo 

experiments) found over broad areas north of the N. Pacific storm track confirms the 

reflectance-stability relation depicted in the EOF/SVD analysis. Also consistent with the 

EOF/SVD analyses, there is no correlation over the western N. Pacific during JJA. This is 

particularly interesting as the summertime western N. Pacific is the region with the 

maximum lower tropospheric stability and low stratiform clouds. The in-phase seasonal 

cycles of the two have led to the proposition of a positive feedback between the 

summertime midlatitude stratus and the monsoon-like circulation between the midlatitude 
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continents and oceans [Klein and Hartmann, 1993]. Our analysis, however, suggests that 

the reflectance becomes independent of the lower tropospheric stability when the latter 

becomes sufficiently large. This behavior is also evident in the day-to-day reflectance 

variations.  

We have averaged the daily 1.25° longitude by 1° latitude TOMS reflectance into static 

stability bins for the JJA N. Pacific6 (Figure 5.13). Cases with positive and negative 

500mb ω are shown separately. The curve with negative 500mb ω (ascent) tends to be 

brighter because frontal clouds tend to be associated with mid-tropospheric ascents. As 

the TOMS measurements were made near local noontime, while the NCEP reanalysis is 

available on 4 fixed universal times (UT) per day, we have used the NCEP data at the 

most nearby time in constructing Figure 5.13. The NCEP data have also been interpolated 

on to the TOMS grid. Despite potential mismatch in temporal and spatial sampling, a 

general increase in the local noon reflectance with the static stability is evident. The 

existence of this relation is to a large extent due to the prevalent boundary layer clouds 

over the summertime N. Pacific. During other seasons, e.g., DJF, the day-to-day 

reflectance variation is more strongly dominated by frontal clouds. This results in a 

strong relation between reflectance and 500 mb ω, but only a weak relation between 

reflectance and static stability (not shown). Interestingly, the JJA reflectance-stability 

curve starts to level off as the static stability becomes larger than 20 K. Note that the 

climatological mean static stability over the summertime west N. Pacific is above 20 K 

[Klein and Hartmann, 1993]. The lack of interannual correlation between reflectance and 

                                                           
6 This part of analysis was carried out in collaboration with X. Huang at Caltech. 
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static stability over the western N. Pacific is, therefore, consistent with the day-to-day 

relation between the two. What may have caused the reflectance to become independent 

of the stability when the latter is sufficiently large? One possible reason is that the 

reflectance of boundary layer clouds simply dos not become much higher than 45RU, due 

to their limited vertical extent. This is supported by visual examination of the TOMS 

daily images and the GEOS visible images: only the frontal clouds appear to have 

reflectance of above 60-70RU. When the static stability is sufficiently high (> 20K), as 

over the JJA western N. Pacific, boundary clouds are almost always present, as seen in 

surface ship observations. The strong static stability, on the other hand, also keeps these 

clouds shallow, therefore limiting their brightness. The combined effect is to reduce the 

dependence of reflectance on the lower tropospheric static stability.  
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Figure 5.13 The averaged TOMS reflectance for stability bins over the JJA N. Pacific (160°E-

140°W, 45°N-60°N). Within each bin, there are at least 1000 measurements. 
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5.8 Concluding Remarks 

In this work, we have examined large-scale patterns in the interannual reflectance 

variations over the North Pacific and the North Atlantic. Interannual reflectance 

variations are found as an integral part of the midlatitude climate variations. The leading 

mode of the reflectance variation over the N. Atlantic is related to a meridional shift in 

the storm track in both winter and summer, and a corresponding NAO-like circulation 

pattern. A similar shift in the storm track exists in the non-summer seasons over the N. 

Pacific, and is related to the PNA pattern. The shift in the storm track is reflected in the 

occurrence frequency of the highly reflective frontal clouds. Variations in total 

reflectance, however, have a substantial component that can be linked to PNA related 

variations in the lower tropospheric stability, through the effect of stability on the 

boundary layer clouds. The leading pattern in the reflectance variations over the JJA 

western N. Pacific is associated with variations in the storm track intensity, while the 

pattern in the eastern N. Pacific is related to a varying subtropical high.  

The interannual relationship between midlatitude reflectance and lower tropospheric 

stability is found to be more complex than the original proposal [Klein and Hartmann, 

1993]. Our results over the N. Pacific during the non-summer seasons support the 

influence of stability variations on the reflectance over the midlatitude oceans through 

their effects on the boundary layer clouds. However, examination over the JJA western 

N. Pacific reveals that the effect of static stability on the reflectance may vanish when the 

stability is sufficiently large. This behavior is expected to limit the efficiency of the 
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proposed summertime stability-boundary layer cloud feedback [Klein and Hartmann, 

1993]. Moreover, reflectance variations over the N. Atlantic and JJA western N. Pacific 

are more closely related to variations in the frontal clouds along the storm track instead of 

the boundary layer clouds. This suggests that previous analyses based on surface 

observations may have overemphasized the importance of the low clouds.  

The relations between summertime reflectance and SST anomalies are largely local, and 

the patterns resemble those from earlier studies using MSC amount and SST [Norris et 

al., 1998]. However, the reflectance variations can be largely attributed to variations in 

the occurrence of highly reflective frontal clouds, instead of variations in the MSC 

amount. We suggest that the relations between reflectance, MSC, frontal clouds and SST 

may owe their existence to the effect of synoptic activities on all these quantities. The 

negative local correspondence between SST anomalies and reflectance/MSC anomalies, 

therefore, should not be taken as evidence for a cloud-SST feedback. 

The results obtained from this analysis differ from those based on seasonal, spatial, and 

daily variations in some important ways [Weaver and Ramanathan, 1997]. For instance, 

based on spatial variations, reflectance was found independent of the static stability in 

January N. Pacific, and strongly dependent of the stability in July [Weaver and 

Ramanathan, 1997], exactly the opposite of the findings in this study. This highlights the 

importance of direct investigations of interannual variations; results obtained from 

seasonal, spatial and daily variations, while valuable, may not hold for the interannual 

variations.  
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Several previous studies related cloud properties to cloud temperature or the SST, in 

attempts to understand the response of clouds, and its feedback to climate change 

[Tselioudis et al., 1993; Weare, 1994]. The findings in this study, however, suggest a 

more dynamically oriented view, other than a purely thermodynamic one. We argue that 

the question of cloud feedback maybe better answered in terms of how the large scale 

circulation would initially respond to a climatic forcing, and how clouds would respond 

to and reinforce these changes in the circulation. This work represents an effort in this 

direction. Finally, the TOMS record used here is still relatively short for interannual 

studies. A longer record would certainly enhance the statistical significance of the results. 

Unfortunately, such a record is yet to be made available. 
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