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Abstract 

With the development of bulk metallic glasses (BMG) in recent years, more and more 

scientists in solid state physics are trying to understand the mechanism of glass-formation 

in terms of thermodynamics and kinetics, while engineers in metallurgy are trying 

different compositions and processes to improve the mechanical properties of BMGs and 

their composites. 

Glasses are nothing but frozen liquids. So far most of the studies of metallic glasses have 

been below the glass transition temperature because molten metallic liquids are 

chemically reactive with the container walls. For this reason, we used the Electrostatic 

Levitation (ESL) method that was developed by Dr. Won-Kyu Rhim. 

In this thesis, the instrumentation of the ESL is described. Discussion on the advantages 

and disadvantages of ESL is given by comparing with the other levitation methods. 

Because of the advantage in sample position stability over all the other levitation methods, 

the ESL facility at Caltech is uniquely capable of measuring the viscosity and 

thermophysical properties of liquid metals in the undercooled temperature range. The 

ESL was further improved at Caltech to reduce temperature gradients on a sample and 

increase the stability of the sample positioning with a tetrahedral laser heating system.  

Using such an improved ESL, thermophysical properties of some evaporative metallic 

liquids such as Ti and silicon-germanium alloys have been successfully studied and mass 

loss as well as composition changes could be accounted for. 

Several BMGs developed at Johnson group at Caltech have been studied using ESL. 

Among the liquid thermodynamics and kinetic properties of interest, special attention has 

been paid on to measurements of the TTT curve, viscosity, and volume changes with 

temperature. These data give useful insight on the glass-forming mechanism. Through 

these studies, guidelines in the search for good ductile metallic glass-formers have 

emerged. Discussing these guidelines is an important part of this thesis. 
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Finally, we discuss an investigation to understand observed hysteresis in the viscosity and 

the so-called threshold temperature that has been observed in some of the best glass-

forming metallic liquids. We conclude this investigation with a hypothesis of a liquid-to-

liquid phase transition that occurs above liquidus temperatures in several systems that we 

have studied. 
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1 Introduction 

1.1 Thermophysical Properties of Liquid Metals 

Thermophysical properties of metals in molten state have not been studied as much as in 

the solid state because of the experimental difficulties caused by: 

 High temperature 

 Chemical reactivity (no crucible materials) 

 Crystallization triggered by the container walls for liquids in the undercooled 

temperature range. 

Containerless methods have been developed to study the properties of liquid metals. The 

electromagnetic levitator (EML) [1] has been commonly used to levitate and melt 

metallic samples. Since the levitation and heating cannot be decoupled in an EML, 

flowing gases have been used to cool levitated liquid metals during levitation. This limits 

the cleanliness of the sample surfaces and creates instabilities in the sample’s position 

and irregularity in its shape. Microgravity has been proposed as an approach to alleviate 

these problems: a) Parabolic flights and drop tubes have been used to achieve a 

microgravity environment for timer of about 4 to 20 seconds [2, 3], which is not long 

enough for most of studies on liquid metals; b) A space shuttle provides an ideal 

environment of microgravity for studying liquid metals [4] but the cost of launching a 

payload into earth orbit is high and the waiting period is long. The first Electrostatic 

Levitator (ESL) was developed by Won-Kyu Rhim, and has allowed unique studies of 

liquid metals [5--14]. After being upgraded both in software control and the hardware 
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setup, the ESL at Caltech has enabled us to challenge the limits of measurements on 

metals in liquid state at elevated temperature. 

1.2 Studying Liquids to Improve the Quality of Solids 

Studying the properties of liquid provides some unique information that can improve the 

processing and qualities of materials in the solid state. With the recent development of 

BMGs and their composites, a better understanding of the thermophysical properties of 

these alloys in liquid state has become very important in developing new BMG alloys and 

characterizing the glassy solids [15--17]. With the easy control of sample temperature 

and removal of the disturbing influence from container walls, the ESL, along with its 

various non-contact diagnostic techniques, can provide a variety of data on the 

thermophysical properties of these metallic alloys in liquid state. 

1.2.1 Heating history and thermophysical properties 

Most glassy alloys are made by cooling from their molten state. The thermal history of 

the process influences the structure and properties of the materials. Among these, is the 

influence of the so-called threshold temperature. This is defined by the difference 

between the liquidus temperature and the temperature required to preheat the sample to 

obtain good glass-forming ability. Figure 1.1 shows an example of the threshold 

temperature influence on the degree of liquid undercooling which can be achieved [18]. 

The cooling curve of a sample provides information on the phase transition to the 

crystalline state as illustrated in Figure 1.2. During the cooling of Zr57Cu15.4Ni12.6Al10Nb5 

(Vit106), a 12KV AC pulse was applied on the z-direction electrodes, and was observed 

to trigger a crystallization of the liquid. 
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When a triggering pulse was applied at a given undercooled temperature, crystal 

nucleation was observed in the liquid and the crystallization progressed as the sample 

was cooled. We see in Figure 1.1 that the incubation period prior to the rapid 

crystallization varies as a function of the initial starting temperature. 

Depending on the temperature when the triggering was applied, the liquid went through 

an undercooling below its melting temperature, followed by a recalescence back to a 

higher temperature. The Vit106 sample vitrifies in the absence of the triggering when 

allowed to cool to low temperature. 

 

Figure 1.1: The cooling curves obtained for Zr57Cu15.4Ni12.6Al10Nb5 (Vit106) with 

different levels of overheating [9] 
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Figure 1.2: Cooling curve of Zr57Cu15.4Ni12.6Al10Nb5 (Vit106) when crystallization 

was triggered at different temperatures by applying a 12KV AC pulse 
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1.2.2 Thermodynamic properties of undercooled liquids 

Thermophysical properties of liquid metals are very important, but often hard to obtain. 

The specific volume and thermal expansion coefficient of liquid are important, for 

example, in precision mold casting. The liquid surface tension is important for modeling 

the flow of liquids at high viscosity. According to the free volume model [19], the 

viscosity of a liquid is related to the “free volume” of the liquid, so the changes of liquid 

volume determine the changes of viscosity.  

 η = η𝟎𝟎 𝑬𝑬𝑬𝑬𝑬𝑬 (𝒃𝒃𝒗𝒗𝟎𝟎
𝒗𝒗𝒇𝒇

),        (1.1) 

where 𝑣𝑣𝑓𝑓  denotes the average free volume per atom, and 𝑏𝑏𝑣𝑣0 the critical volume for flow. 

Liquid volume changes with temperature can also reveal the structural changes in liquid 

[20]. Equation 1.1 links the thermodynamic and kinetic properties of the liquid. 

1.2.3 The driving force for phase transition to crystalline state 

At melting temperature, the Gibbs free energy of the liquid equals the solid. The 

difference in enthalpy between crystalline and liquid at the melting temperature is the 

heat of fusion. This determines the amount of heat released from the liquid-solid phase 

transition. By measuring the specific heat of an undercooled liquid and comparing it with 

the solid, we can determine the difference of Gibbs free energy between liquid and 

crystalline as a function of temperature. This difference is the driving force of the phase 

transition. This is not only important in modeling the phase transition but also important 

in industrial processing of molten alloys. 
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1.2.4 Kinetic properties of liquid metals 

The change of viscosity with the temperature is important in understanding the kinetic 

aspect of a metallic liquid. The temperature dependence of the liquid viscosity can be 

characterized by the fragility index which is defined as [21] 

 𝑚𝑚 = 𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙 (η))

𝑑𝑑(
𝑇𝑇𝑙𝑙
𝑇𝑇 )

|𝑇𝑇=𝑇𝑇𝑙𝑙 .      (1.2) 

Several models have been used to fit the experimental viscosity data [22--24]. The 

measurements of viscosity on liquid metals can provide insight into structural changes in 

the liquid during cooling and freezing to the glassy state. 

1.3 Motivation and Objectives 

The main objective of this thesis is to investigate the thermophysical properties of several 

different alloys in liquid state, and to understand the role of thermodynamic and kinetic 

properties of a liquid in its crystallization. The instrumentation upgrades on the ESL at 

Caltech using a tetrahedral laser heating system have enabled us to measure certain 

thermophysical properties of various alloys in their liquid state for the first time [25, 26]. 

1.3.1 Thermophysical properties of the Liquid Ti-6Al-4V alloy 

The commercial alloy Ti-6Al-4V has been widely used in many industries, but several of 

its thermophysical properties in its liquid state were unknown when this work began. This 

lack of property of data on the molten alloy has limited the ability to understand and 

model the processing of the material from the melts by casting and other forms of 

solidification. 
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Thermophysical property measurements on Ti-6Al-4V not only provide some important 

data for industry but also demonstrated the capability of the upgraded ESL system. The 

complete set of thermophysical properties measured by ESL helps our understanding of 

this commercially important alloy. 

1.3.2 Investigating molten Si, Ge and SixGe1-x 

Si and Ge are typical semiconductors and they undergo a semiconductor to metal 

transition on melting. However, only a few measurements of their thermophysical 

properties in the liquid state have been carried out. This has limited our knowledge of 

their liquid properties. 

Ge–Si alloys have been used in optics for high-brilliance X-ray sources such as 

synchrotron radiation, as well in more electronic devices. Ge-Si alloys form random 

diamond cubic solid solutions over the entire concentration range. Their local structure in 

liquid state has been studied by neutron diffraction, X-ray diffraction and EXAFS. Using 

the ESL facility at Caltech, we studied the thermophysical properties of the liquids to 

achieve a better understanding of structural changes and alloying effects in the melts. 

1.3.3 Studies of bulk metallic glass alloys in their molten states 

With the development of BMG’s in recent years, the requirement of low cooling rates 

alloys with high ductility became important for their structural applications. Study of 

BMGs in the liquid state helps to understand the mechanism of glass-formation in BMGs 

[18, 27--31]. By comparing changes of thermophysical properties with the systematical 

composition changes from binary to multi-component alloys, a better understanding of 
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the liquid to crystal phase transition and structural changes in the liquid has made 

possible developing new materials with enhanced glass-forming ability and assisted in 

process design for industrial applications of BMGs [15]. 

Special attention has been paid to measurements of specific volume changes with the 

temperature, the Time-Temperature-Transformation (T-T-T) curves for crystallization, 

and viscosity changes with temperature. These provide information useful in processing 

as well as hard-to-find data such as interfacial tension between solid and liquid. 

1.4 Thesis Overview and Key Contributions 

The ESL technique and instrumentation of ESL is introduced in Chapter 2. The 

advantages of the novel tetrahedral laser heating system over the previous one-beam 

heating system are discussed. The tetrahedral heating system used at Caltech is the only 

one of its kind in the world. This provides a stable sample levitation and uniform sample 

temperature. 

In Chapter 3, various non-contact methods for measuring thermophysical properties of 

levitated molten metallic samples in the ESL are described. 

Results of measurements on the commercial alloy Ti-6Al-4Vare reported in Chapter 4, 

with a complete analysis of thermodynamic properties measured in its molten state. For 

the first time, we have achieved stable levitation of this sample and successfully 

measured its thermophysical properties in undercooled temperature range. 

In Chapter 5, a new challenge on ESL is reported. Measurements on the thermophysical 

properties of liquid SixGe1-x, where x= 0, 0.25, 0.5, 0.75 and 1 have been carried out. The 
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challenge is not only by the difficulties of measuring a chemically reactive molten 

semiconductor, but also the evaporation of Ge from molten SixGe1-x samples which 

caused changes in mass and composition during the measurements. This made it more 

difficult to obtain accurate information on the specific volume and the density. Many 

results described in this thesis are the first data reported for the thermophysical properties 

of these alloys in the liquid state. These results provide new insights which will be 

valuable for future theoretical modeling and for processing these materials in the molten 

state. 

Chapter 6 reports thermophysical properties of several BMGs measured by ESL. This 

study is focused on the thermodynamics and kinetic properties, the glass-forming ability 

(GFA) and the properties of BMGs in the glassy state. The results of this study provide 

guidelines for finding good glass-forming metallic liquids and glasses with good ductility. 

The investigation on the volume changes in liquid Vit1 (Zr41.2Ti13.8Ni10Cu12.5Be22.5 ) and 

LM7 alloys suggests a liquid-to-liquid phase transition. This explains the reported 

hysteresis in viscosities of liquid Vit1 [32] and liquid LM7 above liquidus temperatures. 

This transition also appears to be related to the reported threshold temperature effect [30]. 
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2 Instrumentation on the Electrostatic Levitator 

2.1 Introduction 

The electrostatic levitator (ESL) at Caltech, which was upgraded from the original ESL 

developed by Rhim et al. [1], is extensively used in our experiments as a non-contact 

containerless material processing facility. Containerless methods have been used to 

investigate the thermophysical properties of materials in liquid state, especially in 

undercooled temperature range, to avoid the chemical reaction of the liquid with 

container walls and related heterogeneous nucleation. Compared with other containerless 

methods, we find that the ESL has many advantages over the others. EML 

(electromagnetic levitation), can easyly levitate conducting materials [2], while 

aerodynamic levitation can also levitate non-conducting materials [3], but both methods 

cause distortion in sample shape from spherical, which prevents accurate measurements 

of many properties such as volume, viscosity and surface tension. These two methods 

also need cooling gases and the impurities in the gases contaminate the surface of the 

samples. This contamination not only reduces the degree of undercooling, but also 

changes the surface properties such as emissivity. The vacuum chamber of ESL at 

Caltech has a base pressure of 10-8 torr, which is so far one of the cleanest facilities used 

in levitating molten metal. Good stability of the levitated sample is another advantage for 

ESL in measuring viscosity and other properties of liquid metals. Parabolic flights and 

drop towers offer only 5 to 20 seconds of reduced gravity for measurements, so the 

stability of the sample is hard to achieve [4, 5]. To measure the viscosity and surface 

tension of a molten metal, an oscillation is generated along the z-direction while the 
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oscillation amplitude and frequency is recorded. This requires a stable levitation of the 

sample and a rotation only along the z-direction. The upgraded ESL with its tetrahedral 

heating system was developed to further increase the stability of the sample and to reduce 

the temperature gradients on the samples. 

2.2 Levitation and Position Control 

 

The basic function of an 

ESL is to levitate a sample 

against the gravitational 

force by applying an 

appropriately controlled 

electric field to a charged 

sample so that the sample 

can be kept at a predetermined position in a vacuum chamber. Once the sample is 

prepared in a levitated state it is subjected to various thermal cycles or it can be 

interrogated for its properties using various non-contact diagnostic techniques. Figure 2.1 

is a schematic diagram of a one-dimensional ESL with controls in the vertical direction to 

balance the gravity force. In a similar way the sample position can be controlled in all 

three dimensions in a real ESL system, as illustrated in Figure 2.2. 

2.2.1 Charging the sample 

In Figure 2.1, when a negative voltage is applied to the top electrode a net positive charge 

on the surface of a grounded sample will be created by the applied electric field. This 

-V 

Fig.2.1: Schematic Diagram of one-dimensional ESL 
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induced charge on the sample increases with the increase in voltage until enough sample 

charge is accumulated for levitation. To keep a consistent polarity with that induced by 

the other charging methods, positive charging is chosen as the initial charge [6]. When 

the sample is levitated, the levitation force provided by the static electric field balances 

the gravity force satisfying the following force balance equation: 

 𝑀𝑀𝑙𝑙 = 𝑄𝑄 ∗ 𝐸𝐸 = 𝑄𝑄 ∗ �𝑉𝑉
𝑑𝑑
�      (2.1) 

where m is the sample mass, Q the sample charge, V the voltage applied, and d the 

distance between the top and the bottom electrode. From Equation 2.1 the sample charge 

Q is determined by mgd/V. 

The 3-D position of the sample is detected using two sets of two-dimensional position 

detectors, and the stable sample positioning is achieved by 3-D PID (Position Integral 

Derivative) feedback control. The three feedback signals are applied to x and y control 

electrodes in addition to the top “z” electrode. A three-dimensional ESL is illustrated in 

Figure 2.2. The control loop operates at 1000Hz. 

When a levitated sample is heated by laser beams, the initial charges on the sample tend 

to be partially lost. The sample becomes fully charged as the thermionic temperature 

(which is about 1300K) is reached and the thermionic emission of electrons reaches a 

steady state. To keep the sample positively charged at the temperature below the 

thermionic temperature, another charging method, UV radiation by a focused xenon lamp, 

is applied to charge the sample by photoemission. 
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 Figure 2.2: Schematic illustration of an ESL 
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Figure 2.3: Top View of ESL at Caltech 
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2.2.2 Heating the sample 

Sample heating is achieved by using a 200 Watt YAG laser. To further improve the 

uniformity of the sample temperature a tetrahedral laser heating arrangement was 

developed and implemented to the ESL system [7]. Uniform sample temperature means 

reduced temperature gradient across the sample. This translates to reduced thermal 

induced density gradients as well as surface tension gradients that are responsible for 

induced convective flows (Marangoni convection) in the sample. Such convective flows 

will affect the measurement results of physical properties, particularly transport 

properties such as atomic diffusion, thermal conduction, and viscosity [8]. For example, 

convective mixing can obliterate a diffusion profile making quantitative analysis difficult 

if not impossible. 

A balanced heating method was also found to be important to prevent a volatile sample 

from being propelled by the action of vaporizing material. The symmetric tetrahedral 

heating arrangement made the measurements of thermophysical properties of Ti-6Al-

4Vand Si-Ge alloys possible with increased accuracy [9]. These details are further 

described in Chapter 4 and Chapter 5. 

As illustrated in Figure 2.4, where a sample is heated by a single laser beam, power input 

is asymmetrical with energy input on one side of the sample. Energy is lost by radiation 

over the entire sample. Under steady state conditions, the net power input and output are 

equal and a time independent temperature profile is achieved in the sample. 
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Figure 2.4: Schematic illustration of single 

beam heating by a laser beam and 

radiation loss by the sphere producing a 

temperature gradient 

 

To obtain the exact steady state temperature distribution in the sphere, one solves the 

steady state Fourier equation (essentially Laplace’s equation) for the boundary condition 

Jr(R,θ,ϕ) = Rrr
T

=∂
∂ )k(- = ),(4 ϕθεσ lasersSB PT −        (2.2) 

where Jr(R,θ,ϕ) is the net radial component of the heat flux out of the sphere surface, k is 

the thermal conductivity of the sample, R is the sample radius, and ),( ϕθlaserP  is the laser 

power input at the sphere surface. 

The steady state heat flow equation in a sphere is a solution to the Laplace equation and 

can be solved by expanding temperature T in spherical harmonics  
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The coefficients   

 

Al m in the expansion are to be determined from the boundary condition 

that the heat flow from the surface equals the net radiated power density p (laser input 

power minus Stephen-Boltzmann radiation heat loss). 
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   (2.4) 

This net radiated power density includes laser heating and Stephen- Boltzmann radiative 

cooling. 

Calculations have been done for the single-beam (polar) and tetrahedral four-beam case, 

with the beam(s) focused to a point or uniformly spread over an entire hemisphere, for 

sample sizes of R=1 mm and R=6.35 mm. A T302 stainless steel ball with a thermal 

conductivity of k =16.7 W/m K (at 1000 K) and a total hemispherical emissivity of ε =0.3 

was considered as a test case.  

For comparison, the bulk metallic glass-forming alloy Zr58Nb3Cu16Ni13Al10 (Vit106a) 

was chosen, with ε =0.26 and k =25 W/m K (at 1000 K). Three different temperatures 

were considered, representative of the entire undercooled liquid region: 960 K, above the 

crystallization nose of the TTT diagram, 900 K, at the nose, and 740 K, below the nose. 

The results are summarized in Table 2.1, which gives the maximum temperature variation 

over the sphere under steady state heating conditions. 
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Table 2.1: Calculated temperature variation from the leading term in the spherical 

harmonic expansion reflecting the maximum temperature variation over the sample 

for Zr58Nb3Cu16Ni13Al10 (Vit106a) samples of 1 mm in radius and a stainless steel 

ball with a radius of 6.35 mm heated with different heating geometries 

 

Sample 

Radius of 

Spheres 

(10−3 m)   

Average 

temperature 

(K)  

1 beam 

focused 

(K) 

1 beam 

spread 

out (K) 

4 beam 

focused 

(K) 

4 beam 

spread 

out (K) 

Vit106a 1 960 3.1 2.1 1.3 0.055 

  900 2.4 1.6 1 0.043 

  740 1.1 0.7 0.47 0.02 

SST 

302 6.35 960 33.7 22.5 14.1 0.59 

  900 26 17.3 10.9 0.46 

  740 11.9 7.9 4.9 0.21 
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The experimental setup to divide a single YAG laser beam into 4 equal intensity beams is 

illustrated in Figure 2.5, where three 50/50 beam splitters and three mirrors are used. The 

use of beam splitters to divide the single laser beam into four beams eliminates the 

uncorrelated fluctuations in power, which would arise if separate lasers were used. 

With the present setup the laser power drift will only affect the average temperature but 

will not induce variations in temperature gradients (such as dipole, quadruple, etc.). 

  

main beam

BS1 M1

BS2 BS3

M2 M3

beam0beam1 beam2 beam3

Figure 2.5: Schematic illustration of the equalization of four laser beams 
originated from one laser. Three beam splitters 50/50 and three mirrors were 
used to divide the main laser beam into four beams of roughly equal power 
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As in Figure 2.5, our setup of the optical system was mounted on the top flange of a 

vacuum chamber in such a way that three of the four vertical beams went through three 

windows that are located at the apexes of a equilateral triangle and the fourth beam went 

through a window that was located at the center of the triangle. The electrode assembly 

was so positioned in the chamber that the central beam irradiated the top of the sample 

while the three side beams were directed to the sample through mirrors. All the optical 

components are arranged in such a way that the four beams irradiate the sample satisfying 

a tetrahedral geometry as illustrated in Figure 2.6. 

 

Figure 2.6: Schematic illustration 

of tetrahedral laser radiation 

setup 
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2.2.3 Tetrahedral laser heating and verification of temperature gradients 
reduction 

In order to verify the predicted reduction of temperature variations over the sample, a 

T302 stainless steel ball, 6.35 mm in radius, with thermal conductivity of 16.7 W/m K 

was used. The relatively large sample size enhanced temperature variations and 

facilitated attaching thin thermocouples. The sample was suspended by four thin wires. 

Four thermocouples were connected to the sample’s surface as shown in Figure 2.7. They 

were positioned in such a way that they detected the maximum temperature variations in 

the sample. Thermocouples Tc1 and Tc3 were utilized to measure the maximum 

temperature variations for the one-beam case and Tc2 and Tc4 for the maximal 

temperature variation in the four-beam case. Tc2 is located in the middle of the triangle 

formed by the laser spot 1, 2, and 3. K-type thermocouples of 0.07 mm in diameter were 

used and similar wires were used to support the sample. The temperature gradients were 

measured after the sample was allowed to reach steady state. For calibration purposes, the 

characteristics of different thermocouples were tested in a uniform 1100 K temperature 

field established by a resistant furnace. Their temperature readings varied less than 0.7 K. 
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Figure 2.7: Schematic illustration of the positions where the thermocouples were 

attached (shown by circle) and the spots where the laser beams impinged on the 

sample (). For the one-beam case, L1 was used and the maximum temperature 

variations for this case were measured by Tc3 and Tc1 
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Figure 2.8 (a) shows the measured maximum temperature variations over the sample for a 

sample that was heated by a single laser beam. When the beam was focused on the 

sample to a spot of about 1.6 mm in diameter, the temperature variation on the sample 

was as much as 35 K for an average sample temperature of 980 K. If the beam was 

spread out to about 10 mm in diameter (diffuse beam) the temperature variation went 

down to 10.4 K at the average temperature 943 K. When the sample was heated by four 

focused laser beams in a tetrahedral geometry as shown in Figure 2.8(b), the temperature 

variation still was as high as 22 K at an average temperature of 1003 K. However, as 

soon as the four beams in the tetrahedral geometry were spread out, the temperature 

variation was dramatically decreased to less than 0.5 K at an average sample temperature 

of 1003 K. This temperature variation was in the range of the experimental error of 0.7 K. 

Also shown in Figure 2.8 is the amplitude of the temperature variations calculated 

according to Eq. (2.3) in which only the leading term was considered. An emissivity of 

0.3 was used for the calculations. Since the maximum temperature variations scale 

linearly with the samples radius, Figure 2.8 can be used to extrapolate the temperature 

variations for different sample sizes. 
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Figure 2.8: Temperature 

variations within the sample for: 

(a) 1-beam heating geometry 

[focused beam (solid circle) 

diffusive beam (solid square)]  

 

 

 

(b) 4-beam heating geometry 

[focused (solid triangle) and diffuse 

(solid circle)]. The solid curves 

resulted from the calculations 

according to Eq. (2.3). 
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2.3 Conclusion 

Instrumentation on the Caltech ESL to upgrade the heating system has been carried out; a 

theoretical model was used to predict sample temperature variation under steady state 

heating by laser beams. This model was compared with experiments. 

The advantage of the improved laser heating with the tetrahedral arrangement is the 

reduced temperature gradient across a liquid sample, which tends to create density 

gradients and surface tension gradients that are responsible for inducing convective flows 

in the sample. Such convective flows will affect measurement results of physical 

properties, particularly transport properties such as atomic diffusion, thermal conduction, 

and viscosity. Convective mixing can completely obscure diffusion profiles for both heat 

flow and atomic diffusion. Reduction of sample temperature gradients is thus a 

substantial improvement in the ESL platform. 

Another advantage of the tetrahedral heating arrangement is the improvement of stability 

for a levitated volatile sample at high temperature. During the heating period, four 

equally powered laser beams keep the sample at a predetermined position instead of 

pushed away from it by imbalanced force field. Such an arrangement allowed the 

thermophysical properties of Ti-6Al-4Vand Si-Ge alloys to be measured quickly with 

increased accuracy. 
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3 Non-contact Diagnostic Methods Based on ESL for 
Thermophysical Properties Measurement 

3.1 Volume Measurement 

The volume of a levitated sample is measured from the backlit sample images taken by a 

high-resolution high-speed CCD camera. During the heating and cooling process the light 

radiated by the sample will change in both intensity and color, which makes it difficult to 

define the boundary of the sample. To overcome this difficulty, we have used a backlit 

image created by violet-colored light by putting a violet filter in front of the camera and 

another one behind the UV lamp. For the temperature range we are measuring, we have 

been getting well defined boundaries between the sample and the background. 

 

Figure 3.1: Backlight image of a molten Vit1 sample levitated in an ESL 
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Since the shape of the molten sample levitated by ESL is axisymmetric around the 

vertical z-axis when not rotating, taking a single side image of the sample is sufficient to 

extract full volume information from it. Figure 3.1 shows a typical image of a molten 

sample so obtained. The recorded video images are digitized and the sample volume is 

extracted from each video frame by fitting the image with Legendre polynomial. Real 

sample volumes were obtained by comparing the volumes with that of a calibration ball. 

Thermal expansion coefficient is calculated as: 

𝛼𝛼 = 1
𝑉𝑉
𝜕𝜕𝑉𝑉
𝜕𝜕𝑇𝑇

                                  (3.1) 

A detailed analysis has shown accuracy of 0.8% for density and 0.2% for the thermal 

expansion coefficient [1]. 

3.2 Temperature Measurement 

For sample temperature measurements we have used a two-color pyrometer (from 

Mikron Infrared Inc, Model: MI-GAR12-LO). This pyrometer is capable of measuring 

temperature in the range 500 ℃ to 2200 ℃. For temperatures higher than 2200 ℃ or 

lower than 500 ℃, we can use the single-color mode of the pyrometer with emissivity 

calibration. Results from the pyrometer are calibrated using the liquidus temperature of 

the sample that is available in the literature, or one independently measured, for example, 

by a differential scanning calorimeter. 
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3.3 Surface Tension and Viscosity Measurements 

The surface tension and the viscosity are measured by oscillating the sample with a pulse 

of AC voltage in the vertical direction at the frequency of harmonic oscillation of the 

sample. The amplitude of the oscillation of the sample is measured by projecting a laser 

beam at the sample and having a photo detector measure the intensity of laser beam 

which goes through a vertical slide at the center of the sample image. This is illustrated in 

Figure 3.2 and the intensity can be expressed as, 

𝐼𝐼 = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑒𝑒𝑡𝑡/𝜏𝜏 ∗ sin(𝜔𝜔𝑡𝑡 + 𝜑𝜑)    (3.2) 

where a is a constant, b is proportional to the maximum of oscillation amplitude, t is the 

time, τ is the decay time constant, 𝜔𝜔 is the resonant frequency, and 𝜑𝜑 is a constant phase 

Figure 3.2: Illustration of measurement of vertical oscillation amplitude of a molten 

sample 
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factor. Through Fast Fourier Transformation (FFT) analysis, both the oscillation 

frequency 𝜔𝜔 and the amplitude decay constant 𝜏𝜏 can be determined. The surface tension 

𝜎𝜎 is determined by the equation [2], 

 𝜔𝜔2 = 8𝜎𝜎
𝜌𝜌𝑟𝑟3 (1 − 𝑄𝑄2

64𝜋𝜋2𝑟𝑟3𝜎𝜎𝜀𝜀0
)     (3.3) 

where Q is the charge on the surface, r is the radius of the drop, 𝜌𝜌 is the density, and 𝜀𝜀0 is 

permittivity. Viscosity can be calculated by, 

 η =  𝜌𝜌𝑟𝑟
2

5𝜏𝜏
.        (3.4) 

The key to a successful measurement of viscosity is to have a stable levitation with 

rotation only along the z-axis. A detailed description was given in elsewhere [2] and a 

typical result of oscillation is illustrated in Figure 3.3. 
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Figure 3.3: Oscillation of a molten Vit 1 at temperature 1022 ℃ 
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3.4 Specific Heat and Total Hemispherical Emissivity 

When the heating laser is turned off, the cooling of a levitated spherical liquid sample 

will follow the Stephen-Boltzmann equation for pure radiative cooling,  

𝑚𝑚𝑚𝑚𝑝𝑝
𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

= −4𝜋𝜋𝑟𝑟2𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆�𝑇𝑇4 − 𝑇𝑇0
4�                    (3.5) 

where 𝑚𝑚𝑚𝑚𝑝𝑝  is the heat capacity, 𝜎𝜎𝑆𝑆𝑆𝑆  is the Stephen-Boltzmann constant, 𝜀𝜀  is the total 

hemispherical emissivity, T is the sample temperature and 𝑇𝑇0 is the room temperature. 

From the radiative cooling curve, we can calculate 
𝑚𝑚𝑝𝑝

𝜀𝜀�  as a function of temperature T. If 

either one of 𝑚𝑚𝑝𝑝  or 𝜀𝜀  is available from data, the other can be calculated [3]. A good 

example is the measurement of Ti-6V-4Al, which is discussed in Chapter 4. 

3.5 Time-Temperature-Transformation (T-T-T) Curves for Crystallization 

In the research of crystallization process, T-T-T curve is important to understand 

crystallization both in thermodynamics and kinetics. The ideal T-T-T curve is supposed 

to be measured by cooling the sample to a certain temperature at an infinite cooling rate 

and holding the temperature while measuring the fraction of crystallization at different 

times. Practically it is difficult to measure the TTT curve of molten metallic materials 

because it requires a containerless process and long time of measurement. 

The first TTT curve of BMGs was measured by Kim et al. who used the original model 

of this ESL [4]. As illustrated in Figure 3.4, a molten levitated sample is cooled 

radiatively from above melting temperature to a predetermined temperature. A 
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predetermined power of laser is turned on to maintain a constant temperature. The 

recalescence of a liquid sample marks the initiation of crystallization. 

The limitation of measuring T-T-T curve by ESL is the slow radiative cooling rate. So far, 

only a few TTT curves of BMG alloys have been measured by ESL [5]. 

 

 

Figure 3.4: Measurement of T-T-T curve by ESL 
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4 High Temperature Thermophysical Properties of Molten 
Ti-6Al-4V 

4.1 Abstract 

Thermophysical properties of both solid and liquid Ti-6Al-4V alloys were measured 

around the melting temperature by ESL. The properties include the specific heat, the total 

hemispherical emissivity, the heat of fusion, the density and the thermal expansion 

coefficient. Liquid properties were also measured over 280 K of undercooled region. 

Over 1661 K~ 1997 K the ratio of the constant pressure heat capacity and the total 

hemispherical emissivity for liquid phase can be expressed by CP, l /εT, l = 3064 

+0.1291(T- Tm) J/kg/K with the melting temperature Tm = 1943 K. For solid phase it can 

be expressed by CP,S/ε T,S = 2699+0.08191(T- Tm) J/kg/K over 1200~1943 K. The heat of 

fusion has been calculated to be 300 kJ/kg. Liquid density over 1661 to 1997 K can be 

expressed by dl(T)= 4123-0.254 (T - Tm) kg/m3, and the corresponding volume expansion 

coefficient is αl =6.05x10-5 K-1 near Tm. 

4.2 Introduction 

Ti-6Al-4V and its variants are widely used for industrial applications such as turbine 

blades, air-frames, rocket components, ship propeller shafts, pressure vessels, prosthetic 

implants, automotive components and sports equipment. Such wide applications are due 

primarily to their low density, good strength, ductility, refractory nature, and their 

resistance to corrosive chemical environments (acids, chloride solutions, sea water, etc.) 

[1]. While thermophysical data of Ti-6Al-4V in both liquid and solid phases are essential 
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for simulation of the casting and modeling of crystallization phase transition, the high 

melting point and the risk of contamination in its molten phase make it difficult to 

measure its thermophysical properties in liquid state using traditional methods This 

makes it necessary to use a containerless technique. In the present work we attempted to 

use the ESL along with the accompanying non-contact diagnostic techniques for 

determination of thermophysical properties of Ti-6Al-4V [2-4]. Our experimental facility 

allowed us to levitate the sample in high vacuum, thus isolating it from container walls as 

well as surrounding gasses [5]. 

Some of the thermophysical properties of Ti-6Al-4V have been published by other 

authors. Kaschnitz et al. used pulse heating method to measure CP and electrical 

resistivity of both solid and liquid [6]. However, their liquid data are limited to above the 

melting temperature. Brooks et al. used scanning calorimetry at lower temperatures and 

the drop in calorimetry at high temperature to measure enthalpy [7]. The ESL data 

obtained complement some of these existing data with more detail information in the 

undercooled temperature region. In the ESL, the liquid Ti-6Al-4V revealed undercooling 

as much as 282K. Properties presented in this thesis are specific volume, density, thermal 

expansion, specific heat capacity, heat of fusion, enthalpy and Gibbs free energy 

difference between undercooled liquid and solid. Using the solid phase specific heat 

measured by Kaschnitz et al. and CP/εT measured by the ESL, we also determined total 

hemispherical emissivity in the solid phase. 
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4.3 Experiment Details 

The Ti-6Al-4Vsamples provided by the United Technology Corporation were ground to 

roughly spherical shape in diameter about 2.5 mm. Sample temperature was measured 

using a single color pyrometer operating at 700 nm and it was calibrated with respect to 

the known melting temperature Tm =1943 K. Upon blocking the heating laser beams, both 

the sample temperature and the sample video-images were simultaneously recorded. 

Since the molten sample levitated by the ESL is axisymmetric around the vertical 

direction in absence of a sample rotation, a single side image of the sample contains full 

volume information. The recorded video images are digitized and the sample volume is 

extracted from each video frame by fitting the image with Legendre polynomial [4]. 

Knowing the mass of the sample, the density is calculated.  

4.4 Results and Discussion 

4.4.1 Specific heat 

Figure 4.1 shows that the liquid Ti-6Al-4V cooled from 1977 to 1661 K with 282 K 

undercooling before it recalesced to Tm and turned into a α  phase solid. The α phase solid 

kept cooling until an α to β transition took place.  
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Figure 4.1: Free cooling curve of a Ti-6Al-4V sample in absence of heating 

beams. Note that the liquid exhibits a deep undercooling before the 

recalescence. Also note an α to β phase transition taking place in solid phase 
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The ratio between the constant-pressure heat capacity and the total hemispherical 

emissivity as a function of the temperature was calculated from Eq. (3.4) in which dT/dt 

was obtained from the Figure 4.1. These results are shown in Figure 4.2 for both the solid 

and the liquid phases. For the liquid phase, CP, l /εT, l can be expressed by: 

𝑚𝑚𝑝𝑝 ,𝑙𝑙

𝜀𝜀𝑇𝑇 ,𝑙𝑙
= 3064 + .1291(𝑇𝑇 − 𝑇𝑇𝑚𝑚 ) [J/kg/K], over 1661 K≤ T ≤ 1977 K.  (4.1) 

Our results for solid CP,S/ε T,S can be expressed by: 

CP,S/ε T,S = 2699 +0.08191(T-Tm) [J/kg/K]  over 1200K ≤ T≤ 1943K. (4.2) 

 

Figure 4.2: Ratio between the constant-pressure heat capacity and the total 

hemispherical emissivity of both liquid and solid Ti-6Al-4V as a function of 

temperature 
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From this equation (4.1) one can determine 𝜀𝜀𝑇𝑇,𝑙𝑙  if CP, l is known, or vise versa. If we use 

the value CP, l = 931 J.kg-1.K-1 at Tm given by Kaschnitz et al. [6], the hemispherical total 

emissivity εT, l is determined to be εT, l = 0.304. If we assume εT, l =0.304 to remain 

unchanged over a few hundred degrees around the melting temperature, CP, l can be 

determined using Eq. (4.1) and it is expressed by: 

CP, l = 931+0.0392(T-Tm) [J/kg/K] over 1661 K≤ T ≤ 1977 K.  (4.3) 

Kaschnitz et al. independently measured CP,S for solid phase [6] using the drop 

calorimetric technique. In Figure 4.3, their CP,S results for solid phase along with our 

results for liquid phase in Eq. (4.3) are shown. 

 

Figure 4.3: Constant pressure specific heat of both liquid and solid Ti-6Al-4V. 

The liquid data are from our experiment and solid data are from Kaschnitz et al. [6] 

who used the drop calorimetric technique 
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4.4.2 Enthalpy and Gibbs free energy 

The heat of fusion can be determined by adding the enthalpy contributions of the 

undercooled liquid and that of the isothermal region following the recalescence (see 

Figure 4.1). The contribution of the undercooled portion was obtained by integrating CP, l 

over the temperature range between Tm and the maximum undercooling temperature, 

whereas that of the isothermal region following the recalescence was obtained by 

integrating εT, l AσSB (Tm
4 -Ta

4) over that region. The sample surface area was derived 

from the measured specific volume data given below. The heat of fusion so obtained was 

300 kJ kg-1, which agrees well with 295 ± 15 kJ/kg measured by Brooks et al. [7], and 

286 ± 17 kJ/kg by McClure and Cezairliyan [9]. 

Utilizing the values that are given above, the difference of enthalpy between liquid and 

solid phases can be calculated by: 

∫ −
− ∆+∆=∆

T

T

sl
pmsl

m

dTTCHTH ')'()(  

= 300+6.81x10-2(T- Tm)-1.66x10-4(T- Tm)2  [kJ/kg/K],   (4.4) 

where mH∆ =300 kJ kg-1 is the enthalpy of fusion, and )(TC sl
p
−∆  the specific heat 

difference between liquid and solid. 

Likewise, the Gibbs free energy difference between liquid and solid phases can be 

calculated by: 
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= - 1.57x10-1(T-Tm)-3.30x10-5(T- Tm)2  [kJ/kg/K]    (4.5) 

4.4.3 Specific volume 

The specific volume of Ti-6Al-4V was measured in the temperature range from 1050 to 

1943 K for solid and from 1661 to 1977 K for liquid. The results are graphically 

presented in Figure 4.4. The liquid specific volume exhibits a linear nature and its least-

squares fit to the data can be expressed by:  

Vl = Vm, l [1+ 6.05x10-5(T - Tm)] [m3/kg] over 1661 K ≤ T ≤ 1977 K, (4.6) 

where Vm, l =2.425x10-4  m3/kg is the specific volume at Tm, and 6.05x10-5 K-1 represents 

the volume thermal expansion coefficient of liquid Ti-6Al-4V at the Tm. 
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Figure 4.4: Specific volume versus the temperature of liquid and solid Ti-6Al-4V 

4.4.4 Density 

The sample density derived from the measured specific volume is shown in Figure 4.5. 

The liquid density can be fitted by: 

 𝑑𝑑𝑙𝑙 = 4122 − 0.2535(𝑇𝑇 − 𝑇𝑇𝑚𝑚 ), [𝐾𝐾𝑙𝑙 𝑚𝑚−3] 

 𝑙𝑙𝑣𝑣𝑒𝑒𝑟𝑟 1661 𝐾𝐾 ≤ 𝑇𝑇 ≤ 1977 𝐾𝐾      (4.7) 
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Figure 4.5: Density of Ti-6Al-4V in both liquid and solid state 
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32.8mg to 32.6 mg during the melting process. Consider the mass loss of about 0.5 % 

during the cooling and 0.5% during the heating; we estimate the total accuracy of specific 

volume and density to be 1%, which excludes the uncertainty in temperature. Assuming 

that 1% of mass loss is from the evaporation of aluminum, the final composition could be 

shifted to 92Ti4Al4V. Since the emissivity of solid is not a constant for the temperature 

we measured, the temperature on the solid in Figure 4.1 and Figure 4.2 are for illustration 

only until more information on the emissivity available. 

Data comparison with pure titanium [10] is summarized in Table 4.1. We found that 

molten titanium and molten Ti64 have the same melting temperature (1943 K), and 

almost the same specific volume but their thermal expansion coefficients are quite 

different. The thermal expansion coefficient of molten Ti-6Al-4V is only 52% that of 

molten titanium. 
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Table1 4.1: Density Comparison of Ti-6Al-4Vwith Titanium in Liquid State at Tm 

Material Tm Density 
[kg·m-3] 

Thermal Expansion 
Coefficient (K-1) 

References 

Molten 
Titanium 

1943K 4321 1.17x10-4 Paradis et al. 
[8] 

Molten Ti-
6Al-4V 

1943K 4122 6.05x10-5 Current study 

   

4.6 Conclusion 

A containerless measurement of Ti-6Al-4Vwas conducted by ESL in the temperature 

range of 1200 to 1977 K including 282 K of undercooling from liquidus temperature. 

Taking advantage of capabilities that are specific to ESL we have measured the ratio of 

specific heat and total hemispherical emissivity both in liquid and solid phases, the 

specific volume, and the density. The enthalpy of fusion extracted from our experiment 

agrees well with the literature values. The enthalpy and Gibbs free energy difference 

between liquid and solid that we calculated can be used for modeling and simulations.  
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5 Thermophysical Properties of Liquid SixGe1-x 

5.1 Abstract 

Thermophysical properties of liquid SixGe1-x (x= 0, 0.25, 0.5, 0.75, and 1) are measured 

by the ESL at Caltech. The specific volume, the density and the thermal expansion 

coefficient in full range of composition over a wide range of temperature are determined 

in liquid state. The viscosities of these liquid alloys are measured for the first time. The 

dependences of the liquid surface tensions on the temperature are measured for the first 

time.  

5.2 Introduction 

Semiconductors are playing important roles in our daily life today, and their 

thermophysical properties have been studied extensively. Silicon is the host material for 

the majority of semiconductor applications. The thermophysical properties of SixGe1-x in 

crystalline, amorphous and liquid phases are of substantial interest. The atomic structure, 

electrical, optical and thermophysical properties of the liquid phase are the key factors 

that determine the quality of crystals grown from the melt. However, thermophysical 

properties of undercooled molten semiconductors have not been studied so much because 

molten semiconductors are highly reactive to the wall of the container. Several 

containerless methods have been applied to study molten Si and Ge [1--10], but only few 

studies have been reported on the alloys of SixGe1-x [11--16]. Another interest in this 

study is to verify a first order liquid-to-liquid phase transition at roughly 1345K for 

undercooled Si. This was predicted by Angel and Borick [17]. 
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In the present study of measuring the thermophysical properties of SixGe1-x alloys in 

liquid state, a parallel effort has been formulated: one is to use the microgravity 

environment in an airplane as it flies through a parabolic trajectory in Europe [15], and 

the other is to use the ESL at Caltech for the same properties measurements. Such an 

effort provides valuable information about SixGe1-x alloys. This is of great interest both in 

the academic as well as in the industrial community. 

The previous studies on thermophysical properties of molten semiconductors by this ESL 

were limited within pure Si and Ge [7--9]. One of the new challenges to measure 

thermophysical properties of molten SixGe1-x alloys is the evaporation of Ge atoms. The 

evaporating Ge changes the sample mass as well as the composition of the alloys. To 

overcome this problem, the mass loss must be monitored during the measurements. The 

ESL at Caltech, which is equipped with tetrahedral heating setup, enables us to conduct 

such quick measurements of molten SixGe1-x in a high vacuum of 10-8 torr. The volume 

monitoring process allows us to track both the mass loss and the composition changes of 

the sample due to the evaporation simultaneously with the other property measurements. 

5.3 Experimental Method 

The high purity of 6N semiconductor SixGe1-x (X=0, 0.25, 0.5, 0.75 and 1) samples used 

in our measurement were provided by Samwer. They measured the thermophysical 

properties of these samples in a microgravity environment provided by parabolic flights 

[15]. On our side at Caltech, the same setup of ESL as described in Chapter 2 has been 

used to measure the same properties. A special attention has been paid on the mass loss 

and composition shift during the experiment by checking the volume changes throughout 
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the experiments. Assuming the mass loss is due to the evaporation of Ge in SixGe1-x 

alloys, we calibrated the data taking into account the mass loss and the composition shifts 

based on the monitored volume. This assumption is based on the higher vapor pressure of 

Ge in the temperature range of the measurements. 

5.4 Result and Discussion 

5.4.1 Specific volume and thermal expansion 

Figure 5.1 shows the specific volume of liquid SixGe1-x for x=0, 0.26, 0.55, 0.77 and 1, 

with a linear fit to the temperature: 

𝑣𝑣 = 𝑎𝑎 + 𝑏𝑏𝑇𝑇 [cm3/g]       (5.1) 

where a= 8.66 × 10−1 x4 - 1.42x3 + 7.79 × 10x2 - 8.70 × 10−3 x + 1.58 × 10−1  and 

b=6.78× 10−5x4 - 1.30× 10−4x3 + 8.52× 10−5x2 - 2.60× 10−5x + 1.99× 10−5. 
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Figure 5.1: Specific volume of molten SixGe1-x for x = 0, 0.26, 0.55, 0.77 and 1 around 

melting temperature. 

Thermal expansion coefficients of volume at melting temperature are: 

𝛽𝛽 = (1
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)𝑇𝑇=𝑇𝑇𝑚𝑚 = 𝑏𝑏/(𝑎𝑎 + 𝑏𝑏𝑇𝑇𝑀𝑀) [K-1].    (5.2) 

Table 5.1 lists the results from parabolic flights [15], current measurements and some 

data of molten Si and Ge published before [7, 9]. We found that, for pure Si and Ge, the 
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Table 5.1: Comparison with previous measurements on molten Si, Ge, and their 

alloys 

Sample Density at 
Tliq [g/cm3] 

Tliq[K] β [10-4K-1] Reference Methods 

Ge 5.49 ± 0.01 1211 1.09±0.01 Present work ESL 

Ge 5.67 1211 0.9656 Rhim [7] ESL 

Ge 5.57 ± 0.01 1211 1.06 ± 0.02 Chathoth 
[15] 

Parabolic 
Flight 

Ge74Si26 4.72±0.01 1433 0.802 Present  ESL 

Ge75Si25 5.26±0.01 1423 0.73±0.01 Chathoth 
[15] 

Parabolic 
Flight 

Ge45Si55 3.91±0.01 1563 0.63±0.01 Present  ESL 

Ge50Si50 5.87±0.01 1548 1.79±0.02 Chathoth 
[15] 

Parabolic 
Flight 

Ge23Si77 3.44±0.01 1623 0.52±0.01 Present  ESL 

Ge25Si75 4.46±0.01 1623 3.06±0.02 Chathoth 
[15] 

Parabolic 
Flight 

Si 2.51 ± 0.01 1687 0.43±0.01 Present  ESL 

Si 2.52±0.01 1687 1.37±0.02 Chathos[15] Parabolic 
Flight 

Si 2.583 1687 0.74 Zhou [9] ESL 
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From the Equation 5.1, we can calculate the molar volume of liquid SixGe1-x in a full 

composition range as a function of temperature. 

 

 

Figure 5.2. molar volume of liquid SixGe1-x at temperature T, derived from the 

Equation 5.1 
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Figure 5.2 shows dependence of the molar volume of liquid SixGe1-x changes on the 

temperature and composition. We noticed that molar volume of molten SixGe1-x decreases 

with the addition of Si in a non-linear way and the thermal expansion coefficient is higher 

on the Ge rich side than the Si rich side. 

molar excessive volume shows how a mixed solution deviates from an ideal solution and 

therefore gives an insight of the bonding structure of mixed liquid. It also helps the 

modeling in applying the mixing rules. The molar excessive volume of molten SixGe1-x at 

temperature T can be calculated by ∆𝑉𝑉𝐸𝐸 = 𝑉𝑉 − [𝑥𝑥𝑉𝑉𝑆𝑆𝑆𝑆 + (1 − 𝑥𝑥)𝑉𝑉𝐺𝐺𝑒𝑒 ], where 𝑉𝑉𝑆𝑆𝑆𝑆  and 𝑉𝑉𝐺𝐺𝑒𝑒  

are the molar volume of Si and Ge. 

 

Figure 5.3: molar excessive volume of SixGe1-x, calculated from equation Eq. (5.1) 
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Figure 5.3 shows a 3-dimensional molar excessive volume of SixGe1-x. It shows that the 

bottom of this curve is located near x ∼ 0.85.  

Solid Ge-Si alloys form random diamond cubic over the entire composition range. Recent 

synchrotron X-ray diffraction measurements [18] and energy-dispersive X-ray diffraction 

measurements [16, 19] on molten Si, Ge, and Si50Ge50 showed that the coordination 

number (CN) to be about 6. This implies covalence bonding in their liquid state. Our 

results in Figure 5.3 show that adding up to 15% of Ge into Si can reduce the molar 

excess volume. This may suggest an increase in CN with more metallic bonding into the 

covalence bonding of Si for liquid SixGe1-x, 0.7< x <1. This should be verified by the 

synchrotron X-ray diffraction on a levitated molten sample.  

Our specific volume results do not show any evidence of anomalous change in 

undercooled region of SixGe1-x alloys. 

5.4.2 Viscosity 

Viscosities and surface tension of liquid SixGe1-x, (where x=0, 0.25, 0.5, 0.75, and 1) 

samples were measured by the ESL. Figure 5.4 shows the viscosity of measured liquid 

SixGe1-x alloys. The composition changes in this Figure is the result of the calibration we 

made due to evaporation of Ge We find that Si52Ge48 has a higher value of viscosity than 

the other alloys, which may indicate a good composition for glass-forming, according to 

the discussion in Chapter 6.  
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Figure 5.4: Viscosities of liquid SixGe1-x, for x= 0, 0.25, 0.52, 0.78 and 1 
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x approaches 1. These results suggest that atoms in liquid Si have stronger valence 

bonding. Adding a small amount of Ge (<30%) reduces its viscosity. This explanation 

also agrees with our conclusion from the specific volume measurements. 
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Figure 5.5: Comparison of presently measured viscosity of liquid Si with the 

literature values. 
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5.4.3 Surface tension 

The surface tensions of liquid SixGe1-x are shown in Figure 5.6. The measured surface 

tensions of molten Si by Zhou et al. using the ESL [9], and the data of SixGe1-x by 

Chathoth et al .measured during the parabolic flights [15] are also plotted. In Chathoth’s 

experiments, the temperatures associated with the surface tensions measurements were 

not specified so we are plotting their data with their liquidus temperatures. The 

measurements by ESL provide dependence of surface tension on the temperature, which 

are the first data on these mixed liquid alloys. 

The surface tension measurements of molten Si in this report have extended a much 

deeper undercooling temperature region than the previous report by Zhou et el. Except 

for the Si that shows a positive temperature gradient of surface tension, the other four 

alloys show almost constant values over the temperature range investigated. The surface 

tension of a liquid should decrease with rising temperature because the interface between 

liquid and gas disappears as the critical temperature is reached. Positive temperature 

gradient for surface tension in some alloys may be due to the surface segregation of low 

surface tension elements with increasing undercooling. Figure 5.6 shows the surface 

tensions of molten Si with positive temperature gradient. It suggests that the predicted 

liquid-to-liquid phase transition below the melting temperature could be associated with a 

surface segregation [17]. The MD simulation suggests a surface segregation at 

composition of Si80Ge20 [20], but our results of surface tensions have not shown any 

evidence to support this because the surface tension of liquid Si80Ge20 remains as a 

constant in the temperature range that we studied with about 300 degree undercooling. 
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Figure 5.6: Surface Tension of molten SixGe1-x, where x=0, 0.25, 0.52, 0.78, and 1 
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5.5 Conclusion 

With the Electrostatic Levitator and non-contact measuring techniques we have 

successfully measured the specific volume, viscosity and surface tension of SixGe1-x at 

x=0, 0.25, 0.5, 0.75 and 1 from above liquidus temperature to undercooled temperature 

region. By fitting data, we created a formula for specific volume and thermal expansion 

coefficient of liquid SixGe1-x, showing their dependence on the temperature and the 

composition. The viscosity of Si with a 276 degree undercooling also confirmed our 

previous observation of no anomalous increase of viscosity with the temperature decrease 

at melting temperature. 

The specific volume data of liquid Si does not support the prediction of a first order 

liquid-to-liquid phase at 1345 K, but our surface tension data of liquid Si suggest a 

surface segregation upon deep undercooling. 
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6 Thermophysical Properties of BMG Alloys in Undercooled 
Liquid Region 

6.1  Abstract 

The thermophysical properties of some glass-forming metallic liquids studied by ESL 

show that both glass-forming ability and properties of the solid BMGs are related to the 

liquid viscosity in the undercooled temperature range between Tg and Tl. Our study 

revealed that GFA is closely related to the viscosity near Tl. whereas the ductility and 

toughness of the glass can be correlated with the viscosity changes with temperature near 

Tg. A best fit of the critical cooling rate for glass-formation can be expressed by 𝑅𝑅𝑐𝑐 =

𝐸𝐸𝑥𝑥𝑝𝑝[13.7 − 2.09 ∗ ln(η(𝑇𝑇𝑙𝑙))]  [K/s] with the viscosity in [mPas s]. Liquid volume 

changes of Vit1 and LM7observed above Tl. suggest a liquid-to-liquid phase transition 

occurs in the alloys above their liquidus temperatures. This may explain both the 

hysteresis effects in their viscosities and also the threshold temperature effect observed. 

6.2 Introduction 

One of the most promising developments in international metals community in recent 

years has been the development of bulk metallic glasses (BMGs). Glass is a solid without 

long range order. Glasses are formed when the liquids solidify without crystallization. 

Metallic glasses offer attractive properties, combining some of the desirable properties of 

conventional crystalline metals with the formability of polymer glasses and conventional 

oxide glasses. The concept of metallic glasses was first introduced by Turnbull et al. [1] 

in the 1950s. He argued that pure metallic melts can achieve deep undercooling or even 

become amorphous if the cooling rates are high enough. In 1960, Klement et al. [2] 
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reported the first non-crystalline glassy structure in a solidified Au-Si alloy produced by 

rapid quenching from melt at cooling rate of 106 K/s. By adding more elements into the 

melt, the alloy melting temperature can be lowered and the glass-forming ability (GFA) 

can be improved. By adding Ge into Au-Si, for example, Chen [3] and his co-workers 

lowered the liquidus temperature by 10 K and vitrified an Au-Si-Ge melt at a cooling rate 

of 103 K/s. In the early 1990s, Inoue and co-workers discovered new ternary alloys of Zr-

X-Y (X=Al, Y= Ni, Cu, Co) that required a quenching rate of 102 K/s to produce a glass 

phase [4]. In 1993, Peker and Johnson reported a highly processable metallic glass 

Zr41.2Ti13.8Ni10Cu12.5Be22.5 (Vit1) which enabled a critical cooling rate of 1 K/s [5]. These 

alloys mark the advent of the second-generation BMGs. 

BMGs tend to be strong, hard, and wear-resistant, yet can be molded on a fine scale, 

which provides an opportunity for industrial applications such as molding golf clubs and 

cell phone cases [6--9], creating amorphous foam [10--13], doing micro-replication [14, 

15], blow-molding [16], and forming amorphous composites [17--19] etc. The 

importance of better understanding the thermodynamic and kinetic properties of BMGs in 

undercooled liquid region (UCLR) has been realized and many studies have been 

published. 

At Caltech we have used the ESL to investigate the thermophysical properties of BMGs 

in the UCLR as described in Chapter 1. The non-contact diagnostic techniques for 

measuring those thermophysical properties in the UCLR were described in Chapter 3. 

Two major subjects are studied on BMGs in this thesis: 

a) How to improve the GFA  
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GFA is one of the major subjects of BMGs [20--24]. It has been reported that GFA is 

associated with the volume changes at melting temperature and also with the viscosity of 

the liquid at nose temperature of the time-temperature-transformation (TTT) curve for 

crystallization [22]. The threshold temperature, which is the overheating temperature 

above the liquidus for which subsequent undercooling is enabled, has also been found to 

influence the GFA [24]. 

b) How to improve the ductility of BMGs 

BMGs have most of the desirable qualities of metals except ductility and toughness. This 

often prevents the application of BMGs in broader fields. Many researchers have been 

focusing on improving the ductility and toughness of BMGs, or designing new 

composites [18, 25, 26]. 

In this chapter, the GFA and ductility of BMGs are discussed along with their 

relationship to their thermophysical properties in the UCLR. A guiding principle for 

better GFA based on our experimental measurements is provided. We also offer an 

explanation on some unsolved questions in Vit1 and LM7 by providing evidence of a 

liquid-to-liquid phase change taking place above the liquidus temperatures of the alloys.  

6.3 Influence of Thermophysical Properties of BMGs in UCLR on GFA and 
Ductility 

6.3.1 Glass-forming ability 

GFA is important for exploring and developing new BMGs. GFA is associated with the 

critical size that a BMG material can be cast or equivalently with the lowest cooling rate 

of the liquid (Rc) necessary to produce an amorphous solid free of crystals during 
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solidification. The bigger in critical size, the better the GFA is. The smaller Rc, the higher 

the GFA of a system should be. Figure 6.1 illustrates the concept of Rc using a TTT curve.  

 

When a liquid is cooled from above the liquidus temperature Tl to a temperature below  

 

A time-dependent volume fraction of crystalline phase X is given based on the non-

isothermal crystallization kinetics [27, 28]: 

 𝑋𝑋(𝑇𝑇) = 4𝜋𝜋
3𝑅𝑅4 ∫ 𝐼𝐼(𝑇𝑇 ′)[𝑇𝑇𝑙𝑙

𝑇𝑇𝑙𝑙
∫ 𝑈𝑈(𝑇𝑇")𝑑𝑑𝑇𝑇"]3𝑑𝑑𝑇𝑇"𝑇𝑇𝑙𝑙
𝑇𝑇′ .    (6.1) 

here I and U are the steady-state crystal nucleation frequency and the crystal growth rate, 

respectively. If one selects X < 10-6 as a criterion for glass-formation, then the critical 

cooling rate Rc can be derived from Eq. (6.1) as: 
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Figure 6.1: Illustration of Critical Cooling Rate on a TTT curve. The critical cooling 

rate is 𝑹𝑹𝒄𝒄~ ∆𝑻𝑻
∆𝒕𝒕
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 𝑅𝑅𝑐𝑐4 = 4𝜋𝜋
3×10−6 ∫ 𝐼𝐼(𝑇𝑇 ′)[𝑇𝑇𝑙𝑙

𝑇𝑇𝑙𝑙
∫ 𝑈𝑈(𝑇𝑇")𝑑𝑑𝑇𝑇"]3𝑑𝑑𝑇𝑇′𝑇𝑇𝑙𝑙
𝑇𝑇′ .    (6.2) 

According to the common crystallization theory, the nucleation frequency and crystal 

growth rate can be expressed by the following equations [29, 30] 

 𝐼𝐼 = 𝐴𝐴𝐷𝐷𝑒𝑒𝑓𝑓𝑓𝑓 exp(− ∆𝐺𝐺∗

𝑘𝑘𝑆𝑆𝑇𝑇
) ,      (6.3) 

where, A is a constant, 𝑘𝑘𝑆𝑆is the Boltzmann’s constant, 𝐷𝐷𝑒𝑒𝑓𝑓𝑓𝑓  is the effective diffusivity 

which can be estimated by the Stokes- Einstein equation, 𝐷𝐷𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑘𝑘𝑆𝑆𝑇𝑇/(3𝜋𝜋η𝑎𝑎), where η 

is the dynamic viscosity of the liquid, and  ∆𝐺𝐺∗is the activation barrier for nucleation,  

 ∆𝐺𝐺∗ = 16𝜋𝜋∆𝑆𝑆𝑓𝑓(𝛼𝛼𝑇𝑇)3

3𝑁𝑁𝐴𝐴 (𝑇𝑇𝑙𝑙−𝑇𝑇)2 .       (6.4) 

The growth rate is 

 𝑈𝑈 = 𝐷𝐷𝑒𝑒𝑓𝑓𝑓𝑓
𝑎𝑎
�1 − exp �−

(𝑇𝑇𝑙𝑙−𝑇𝑇)∆𝑆𝑆𝑓𝑓
𝑁𝑁𝐴𝐴𝑘𝑘𝑆𝑆𝑇𝑇

��,     (6.5) 

where ∆𝑆𝑆𝑓𝑓 , α, 𝑁𝑁𝐴𝐴, and 𝑎𝑎 are molar fusion entropy, a structure factor, Avogadro’s number, 

and inter-atomic spacing of the alloy, respectively. 

The nucleation rate and the growth rate vs. temperature are illustrated in Figure 6.2 for 

Vit1 from Muhkerjee et al. [20]. He found that the nucleation rate and growth rate at the 

“nose” temperature 𝑇𝑇𝑁𝑁 in its TTT curve plays the most important role in crystallization. 

He claimed that ln(𝑅𝑅𝑐𝑐) ∝ 1
η(𝑇𝑇𝑁𝑁 )

, where η(𝑇𝑇𝑁𝑁)  is the viscosity of the liquid at nose 

temperature. 

  



73 

 

Figure 6.2: Illustration of growth rate of Vit2 

From Equation 6.2 we can approximate the critical cooling rate by 

 𝑅𝑅𝑐𝑐 ∝ �𝐼𝐼�𝑇𝑇𝛾𝛾�𝑈𝑈3�𝑇𝑇𝛾𝛾��
1/4

∝ 𝐹𝐹(𝑇𝑇𝛾𝛾 )
η(𝑇𝑇𝛾𝛾 )

,     (6.6) 

where 𝐹𝐹(𝑇𝑇) represents the thermodynamic properties of both liquid and crystal and 𝑇𝑇𝛾𝛾  is 

a temperature to be determined between 𝑇𝑇𝑙𝑙  and 𝑇𝑇𝑥𝑥  (the liquidus and crystallization onset 

temperature respectively), 

 𝑇𝑇𝛾𝛾 =  𝑇𝑇𝑥𝑥 + 𝛾𝛾(𝑇𝑇𝑙𝑙 − 𝑇𝑇𝑥𝑥),       (6.7) 
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where γ is a constant to be determined. The viscosity at 𝑇𝑇𝛾𝛾  can be estimated by 

extrapolating the viscosity measured near liquidus temperature. 

6.3.2 Ductility of amorphous metals 

The ductility of amorphous metals has been studied by many researchers. The fragility of 

a liquid has been correlated with the ductility of the solid glass [31--33]. Schroers and 

Johnson have shown that the ductile behavior of BMGs is closely related to their 

Poisson’s ratio [32] and Novikov et al. have shown a correlation between Poisson’s ratio 

and fragility index m [43]. Angell defined liquid fragility m as the gradient of viscosity 

curve at glass transition temperature on a reduced temperature scale [34]: 

 𝑚𝑚 = �𝑑𝑑 log 10 η

𝑑𝑑�
𝑇𝑇𝑙𝑙
𝑇𝑇 �

�
𝑇𝑇=𝑇𝑇𝑙𝑙

.      (6.8) 

The rheology of glass-forming metallic liquid has been described in two types of 

phenomenological theories: free volume theories and shear transformation zone theories 

[35--39]. The experimental measurement of viscosity near melting temperature is limited 

by the chemical reaction between the sample and the container walls. So far, most 

viscosity data for BMG liquids near the liquidus temperature were obtained by ESL. ESL 

has an advantage in the stability of sample position compared with EML in studying 

viscosity of BMG liquids in the UCLR. 



75 

6.4 Viscosities of Liquid BMG Alloys in the UCLR 

6.4.1 Measurements of viscosities 

With the technique described in Chapter 3, the viscosities of several BMGs at the UCLR 

have been measured by the ESL at Caltech as shown in Figure 6.3 [40--41]. The critical 

cooling rate of these glass-forming alloys ranges from 500 K/s to 1 K/s. 

The viscosity at the high end of UCLR is observed to follow an Arrhenius relation, which 

can be described by 

 ln η = 𝐴𝐴 + 𝑆𝑆
𝑇𝑇
        (6.9) 

where A and B are constants. Figure 6.4 shows log η vs. (1/T) and we notice that the 

linear fit of Log(η(1/T)) data all points to an η0 of the order of 10-3 [mPas s] as (1/T) 

approaches 0. This is close to the lower limit of viscosity at high temperature, estimated 

by Eyring’s concept of rate theory [42] η0=h/v (∼4x10-2 mPas s for Vit1), where h is the 

Plank constant and v is the average atomic volume. 
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Figure 6.3: Viscosity of some BMGs measured by ESL at Caltech 
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Figure 6.4: Viscosity of some BMGs versus 1/T. The linear fit of ln(η) point to a 
same high temperature viscosity limit in the order of 10-2 [mPas s] 

From Equation 6.8 we can estimate the viscosity at shallow undercooling temperature T: 

 ln �(η(𝑇𝑇))−ln (η0)�

ln�η(𝑇𝑇𝑙𝑙)�−ln�η0�
=

1
𝑇𝑇
1
𝑇𝑇𝑙𝑙

= 𝑇𝑇𝑙𝑙
𝑇𝑇

,      (6.10) 

This can be simplified by,  
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 η(𝑇𝑇)
η0

= �η(𝑇𝑇𝑙𝑙)
η0

�
𝑇𝑇𝑙𝑙
𝑇𝑇

.       (6.11) 

6.4.2 Comparison of critical cooling rates with viscosities 

With Equation 6.6, 6.7 and 6.11, we can estimate the critical cooling rate to be 

 𝑅𝑅𝑐𝑐 ∝ (η(𝑇𝑇𝑙𝑙)
η0

)
− 𝑇𝑇𝑙𝑙
𝑇𝑇𝑥𝑥+𝛾𝛾 (𝑇𝑇𝑙𝑙−𝑇𝑇𝑥𝑥 ), 

or 

 ln(𝑅𝑅𝑐𝑐) = 𝐴𝐴 − 𝑇𝑇𝑙𝑙
𝑇𝑇𝑥𝑥+𝛾𝛾(𝑇𝑇𝑙𝑙−𝑇𝑇𝑥𝑥 )

ln(η(𝑇𝑇𝑙𝑙)
η0

).     (6.12) 

From the data shown in Table 6.1 we have calculated Rc according Equation (6.12). 

Selecting η0 = 8 × 10−3 [mPas S], Figure 6.5 shows ln(𝑅𝑅𝑐𝑐) versus  𝑇𝑇𝑙𝑙
𝑇𝑇𝑥𝑥+𝛾𝛾(𝑇𝑇𝑙𝑙−𝑇𝑇𝑥𝑥 )

ln(η(𝑇𝑇𝑙𝑙)
η0

) 

for γ=0.05, 0.1, 0.15, 0.4, and 1. 
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Table 6.1: The critical cooling rates, liquidus temperature, onset crystallization 

temperature, and viscosity at the liquidus temperature for BMG forming liquids 

studied 

Material Rc  

[K/S] 

Tl  

[K] 

Tx  

[K] 

η(𝑇𝑇𝑙𝑙) 

 [mPas s] 

Zr42.63Ti12.37Cu11.25Ni10Be23.75 1.8 993 712 600 1

Zr52.5Cu17.9Ni14.6Al10Ti5 

 

7.75 1115 742 200 

Zr57Cu15.4Ni12.6Al10Nb5  9.6 1090 727 180 

Ni60Nb40 132 1448 924 45 

Cu50Zr50 269 1200 717 78 

Zr55Al22.5Co 22.5  

 

97 1323 808 100 

  

                                                 
1 There are two different value of viscosity for Vit1 at liquidus temperature, which will be discussed in 6.5 
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Figure 6.5: 𝐥𝐥𝐥𝐥(𝑹𝑹𝒄𝒄) versus  𝑻𝑻𝒍𝒍
𝑻𝑻𝑬𝑬+𝜸𝜸(𝑻𝑻𝒍𝒍−𝑻𝑻𝑬𝑬)

𝐥𝐥𝐥𝐥(η(𝑻𝑻𝒍𝒍)
η𝟎𝟎

), selecting η𝟎𝟎 = 𝟖𝟖 × 𝟏𝟏𝟎𝟎−𝟑𝟑 [mPas s], for 

γ=0.05, 0.1, 0.15, 0.4, and 1 
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From Figure 6.5, we found that γ=0.4 is the best linear fit. For γ=1 (i.e. 𝑇𝑇𝛾𝛾 = 𝑇𝑇𝑙𝑙  ), the best 

fit between the viscosity at liquidus temperature and the critical cooling rate of the alloy 

can be expressed as: 

 ln(𝑅𝑅𝑐𝑐) = 13.7 − 2.09 ∗ ln(η(𝑇𝑇𝑙𝑙)).     (6.13) 

Equation 6.13 provides a useful empirical relationship between the critical cooling rate 

[K/s] and the viscosity [mPas s] at liquidus temperature. 

 Compared with other criterions for GFA such as Trg(=Tg/Tl), ∆Tx (=Tx −Tg), ∆Trg(=(Tx 

−Tg)/(Tl −Tg)), δ(=Tx/(Tl −Tg)), γ(=Tx/(Tg + Tl)), γm(=(2Tx −Tg)/Tl), ϕ(=Trg(∆Tx/Tg)0.143), 

α(=Tx/Tl), β(=Tx/Tg + Tg/Tl), β(=Tx ×Tg/(Tl −Tx)2) and ϛ(=Tg/Tl +ΔTx/Tx), as summarized by 

Long et al. [43],  Equation (6.13) separates the kinetic parameter, the viscosity, and the 

thermodynamics parameters. While the kinetic properties (e.g. viscosity) of a liquid 

determine whether it is strong or fragile, the thermodynamics properties determine the 

liquidus temperature Tl. The lower the Tl, the higher the viscosity at liquidus temperature 

will be, and, therefore, the better GFA. 

For a BMG, Rc < 103, equation 6.13 shows that the viscosity at liquidus temperature 

should be higher than ∼26 [mPas s]. Equation 6.13 is plotted in Figure 6.6 which shows 

how the critical cooling rate is associated with the viscosity at liquidus temperature. 
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Figure 6.6: Plot of Eq. (6.13), which shows how the viscosity at liquidus temperature 
influences the critical cooling rate 
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liquidus temperature. Ductile bulk metallic glasses with high GFA are difficult to find 

from liquids with high liquidus temperatures. 

6.5 Structure Changes in Vit 1 and LM7 in the UCLR 

As we discussed above, the viscosity of a undercooled liquid plays an important role in 

the glass-forming ability. A recent measurement of the viscosity of Vit1 showed that the 

initial sample history prior to experimentation can affect the resulting viscosity measured 

above the liquidus [44]. As illustrated in Figure 6.7, Busch et al. found that molten Vit1 

is kinetically strong when heated from low temperature to above the liquidus temperature 

at 1026 K. The viscosity dropped drastically to lower values upon heating to above 1225 

K. It remains in such a “fragile” state until deeply cooled below liquidus temperature. 

Busch explained this phenomenon in terms of a polymorphous phase transition in the 

liquid. 

This hysteresis in the viscosity curves of Vit1 was not found in the measurements by ESL 

because the upper limit of viscosity measured by ESL is ∼250 [mPas s]. For higher 

viscosity, there is no oscillation. However, measurements on a similar BMG, LM7, show 

evidence of the hysteresis in viscosity above liquidus temperature. Figure 6.8 shows the 

viscosity of LM7 as measured by ESL at Caltech 
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Figure 6.7: Viscosity versus temperature for continuous cooling with an average 
cooling rate of 2 K s−1 using a constant clockwise shear rate. When cooling from 
1125 K (□), the viscosity stays about two orders of magnitude higher than when 
cooled from 1225 K (○). For the latter run, the data above 1045  K are not shown 
since the sensitivity of the torque sensor does not allow for accurate data. Data in 
this region ( ) are represented by isothermal viscosity measurements. [41] 
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As described in Chapter 3, the sample was first heated to above 1500 K and then cooled 

to various temperatures. An AC voltage applied at resonance frequency of the drop 

generates an oscillation. The viscosity is calculated according to the decay of the 

oscillation amplitude. The viscosity increased drastically when the sample was cooled 

below ∼1233 K. The sample remained as such a strong viscous liquid until heating is 

applied and temperature reaches above ∼1320 K. At ∼1320 K, the viscosity dropped back 

to its original value for the fragile liquid. These measurements are well above the liquidus 

temperature at 1033 K of the alloy and the results cannot be attributed to crystallization. 

We therefore suggest that the liquid undergoes some sort of phase transition which 

exhibits hysteresis. Whether it is only a kinetic change or thermodynamic phase change 

determine the type of the phase transition involved.  

The DSC measurements on LM7 by Kim in Figure 6.9 suggest a small heat flow at T 

∼950 ℃ (or 1223 K), which seems to be the melting of some crystalline phase, but it is 

hard to understand how such a small amount of crystalline phase could create such 

dramatic changes in viscosity. 

To further investigate whether there is a structure change in the liquid, the volume of 

molten liquids of Vit 1 and Lm7 were measured as shown in Figure 6.10 and Figure 6.11. 

 

  



86 

 

 

Figure 6.8: Viscosity of LM7. Sample was cooled from molten at 1500 K, and 
showed a dramatic increase in viscosity when cooled below 1223 K. Upon heating 
from 1100 K, the viscosity dropped back to its original curve at 1320 K. 
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Figure 6.9: DSC measurement of LM7, which shows a small change at 950 ℃. 
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Figure 6.10: Specific volume of Vit1 upon cooling and heating. The volume was 
cooled from 1400 K and shows a sudden decrease below 870 K. Upon heating from 
800 K, the sample partially crystallized and the temperature jumped to the solidus 
temperature. The volume in heating is smaller than in cooling until a threshold 
temperature 1250 K is reached. 
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Figure 6.11: Specific volume of LM7 in cooling and heating. The volume at heating 
is smaller than in cooling until a threshold temperature of 1250 K is reached. 

 

Both Figure 6.10 and Figure 6.11 show that the volume of the liquid on heating is lower 

than in cooling until a threshold temperature reached, which is about 1250 K for both 

Vit1 and LM7. The liquids with lower volume also show higher viscosities according to 

our concurrent viscosity measurements. 

An earlier study on Vit1 by ESL showed that there is a threshold temperature for Vit1 at 

1250--1300 K [45]. When the sample was preheated above 1300 K, the crystallization 

time was ∼130 second when sample was isothermally annealed at 830 K, whereas for 

preheating less than 1250 K, the crystallization time at 830 K was only ∼30 second. Lin 
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et al. suggested the existence of solid oxides in samples below the threshold temperature 

[46], but DSC data in Figure 6.9 suggests that only a very small amount of oxides is 

possible. This could not cause such dramatic changes in viscosity. 

Apparently, the viscosity hysteresis, the volume difference, and the overheating threshold 

temperature are mutually related to the same underlying cause: a phase transition. This 

could be a polymorphous liquid-to-liquid phase transition as mentioned by Busch et al., 

or phase separation which was reported to occur at lower temperature about 680 K [47]. 

A polymorphous liquid-liquid phase transition should have a single transition temperature, 

but the volume differences in Figure 6.6 are temperature related. This suggests a 

continuous composition behavior. 

The phase separation seems to be the plausible explanation for the experimental results. If 

this is true, then composition changes in the liquid should occur during the cooling. This 

might be the cause of an asymmetric eutectic zone behavior discussed by Li [48]. 

The DSC data on Vit1 is shown in Figure 6.12 for a graphite crucible and an alumina 

crucible. They show no evidence of crystal melting above liquidus temperature. The heat 

released for the graphite crucible at 970 ℃ may be caused by the chemical reaction of 

liquid Vit1 and graphite as already observed by Masuhr [49]. 
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Figure 6.12: DSC measurement on Vit1 in both graphite crucible and alumina 
crucible (darker) 
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