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Abstract 

 

A general method is first reported for reliably fabricating highly-ordered conventional 

superconductor nanowire arrays, with good control over nanowire cross section (down to 

10 nm by 11 nm) and length (up to 200 microns). Nanowire size effects are 

systematically studied through electrical measurements and explained with theories. A 

comprehensive investigation of influence of nanowire length on superconductivity is 

reported for the first time.  

We further demonstrate the preparation and electrical properties of high-

temperature superconductor nanowires. We find that high-temperature superconductivity 

can be retained in nanowires ~10 nm in width and >100 microns in length. All nanowires 

exhibit a superconducting transition above liquid nitrogen temperature, and a transition 

temperature width that depends strongly upon the nanowire dimensions.  

The experience gained from the above projects has allowed for the fabrication of 

superconductor films patterned with ultrahigh-density (pitch ~30 nm) two-dimensional 

arrays of nano-holes. Significantly enhanced critical currents are observed in such 

systems. 

We then describe a method for the assembly of nanoparticles into granular solids 

that can be tuned continuously from two dimensions to one dimension, and establish how 

electron transport evolves between these limits. We find that the energy barriers to 

transport increase in the one-dimensional limit, in both the variable-range-hopping and 
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sequential-tunneling regimes. Furthermore, in the sequential-tunneling regime, we find an 

unexpected relationship that is peculiar to one-dimensional systems, between the 

temperature and the voltage at which the conductance becomes appreciable. These results 

are explained by extrapolating existing theories to one dimension. 

We also describe an approach to combine the geometric confinement of a Si 

nanowire and the electric field confinement from an array of ultrahigh-density top gates 

to form a concatenated array of coupled quantum dots. Reproducible confinement and 

coupling effects are observed. 

We have achieved single-atomic resolution in our scanning tunneling microscopy 

studies of graphene sheets on SiO2 substrates, from which we discovered significant 

changes in electronic states for bended regions in graphene sheets. We have also carried 

out the first systematic study on local conductance variations in graphene. Our results 

suggest large local variations in both the morphology and the electrical properties of 

graphene. 
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Chapter 1  

Thesis Overview 

 

One-dimensional (1D) nanostructures have attracted widespread research interests for 

their novel physical properties and potential applications in nanoelectronic circuits. 

Quantum mechanical effects become important in such systems due to geometric 

confinement in the lateral dimensions (size effects), and new physics emerges and 

dominates their properties. The very small length scales and energy scales of such 

systems, however, make the investigation of such new physics challenging. In particular, 

1D systems with highly nonlinear (non-ohmic) electrical properties (e.g., superconductors 

and granular conductors) have proven to be difficult to investigate. These problems are 

addressed in this thesis through the development of precisely controlled nano-fabrication 

techniques and low temperature electrical measurements. Experimental results are also 

systematically compared and explained with theories. Three major research areas are 

discussed in this thesis, each of which further contains several different research projects. 

 

Quasi-One-Dimensional Superconductors.  

When prepared as sufficiently narrow diameter (~10 nm) nanowires, 

superconductors become quasi-one-dimensional and exhibit unique properties. Such 

nanowires are an ideal test-bed for the investigation of size effects on superconductivity, 

and have potential applications in nanoelectronic circuits. Quite different from normal-
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metal or semiconductor nanowires, precise controls over nanowire length and cross 

sectional area are both crucial for achieving a quantitative understanding of such systems. 

However, previous studies on superconductor nanowires have only achieved limited 

dimensional and positional control and very limited materials flexibility. In particular, the 

class of high-temperature superconductors has been unavailable for study as nanowires.  

A general method is reported in Chapter 2 for reliably fabricating highly-ordered 

superconductor nanowire arrays, with good control over nanowire cross section (down to 

10 nm by 11 nm) and length (up to 200 μm), and with full compatibility with device 

processing methods. Nanowire size effects are systematically studied through electrical 

measurements, and quantitatively explained with theories. In particular, for conventional 

superconductor nanowires, a comprehensive investigation of influence of nanowire 

length on superconductivity is reported for the first time, from which characteristic 

quasiparticle diffusion lengths are extracted.[1]  

We further demonstrate in Chapter 3 the preparation and electrical properties of 

high-temperature superconductor nanowires for the first time. We find that high-

temperature superconductivity can be retained in nanowires ~10 nm in width and >100 

µm in length. All nanowires exhibit a superconducting transition above liquid nitrogen 

temperature, and a transition temperature width that depends strongly upon the nanowire 

dimensions. These nanowires can function as superconducting nanoelectronic 

components over much wider temperature ranges as compared to conventional 

superconductor nanowires. We also demonstrate the applicability of phase-slip theories in 

explaining the size effects in high-temperature superconductor nanowires for the first 

time.[2] 
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The experience we gained from the above two projects has recently allowed for 

the fabrication of superconductor films patterned with ultrahigh-density two-dimensional 

arrays of nano-holes. Because the hole-to-hole distances in the film are extremely small 

(~30 nm), the holes effectively act as pinning centers for supercurrent vortices, and 

drastically enhanced critical currents are observed comparing to unpatterned films. These 

results are discussed in Chapter 6. 

 

One-Dimensional Granular Conductors and Quantum Dot Arrays.  

Sufficiently small (<100 nm) nanoparticles exhibit charge and energy 

quantization and are often called ‘‘quantum dots’’, referring to the quantum confinement 

in all three spatial dimensions. Granular conductors are solids comprised of densely-

packed quantum dots, and their electrical properties are determined by the size, 

composition, and packing of the composite quantum dots. The ability to control these 

properties in two- and three-dimensional granular conductors (2D and 3D quantum dot 

arrays) has made such systems prototypes for investigating new physics. In contrast, 

attempts to assemble quantum dots into ordered 1D (single-file nanoparticle arrays/chains) 

or quasi-1D granular structures have only achieved limited success, largely due to the 

difficulty in obtaining continuously connected 1D superstructures. 

A novel approach is reported in Chapter 4 for assembling closest-packed arrays of 

5 nm and larger quantum dots that permits a continuous, precise tuning of the resultant 

granular solid from 2D to 1D. We report on the electrical properties of the novel 1D 

granular solids, and systematically establish how electron transport through these systems 



4 

evolves from the 2D limit to the strictly 1D limit. We find the electrical properties of 1D 

granular conductors are fundamentally different from 2D systems. In the low-voltage 

variable-range-hopping regime, we experimentally determine the relevant dimensional 

factor that describes the 2D-1D transition. In the high-voltage sequential-tunneling 

regime, we find an unexpected sublinear relationship between the conductance onset 

voltage and the temperature, which appears peculiar to strictly 1D systems. These results 

are explained by extrapolating existing granular conductor theories to 1D.[3]  

Chapter 5 describes a different approach to study 1D arrays of quantum dots, in 

which an array of ultrahigh-density metal nanowires (serving as top gate electrodes) is 

fabricated perpendicular to and on top of an individual Si nanowire. The combination of 

geometric confinement from the width of the underlying Si nanowire and the electric 

field confinement from the ultrahigh-density top gates has for the first time allowed for 

the controlled formation of a concatenated 1D array of small (17 nm) quantum dots 

coupled in series along the length of the Si nanowire. Reproducible confinement and 

coupling effects are observed with large energy scales (~10 meV) through low-

temperature electrical measurements, and compared with theory.[4] 

 

Graphene.  

Graphene is the name given to a flat monolayer of carbon atoms tightly packed 

into a two-dimensional (2D) honeycomb lattice, and is a basic building block for 

graphitic materials of all other dimensionalities. As a newly discovered material, 
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graphene has attracted widespread research interests for its outstanding electrical and 

mechanical properties. 

Chapter 7 contains a short discussion on my ongoing research on graphene, 

including studies towards the fabrication of nano-ribbon arrays for potential applications 

in nanoelectronic circuits, and scanning tunneling microscopy (STM) studies of graphene 

sheets on SiO2 substrates. Single-atomic resolution is achieved in our STM studies, from 

which we discovered significant changes in electronic states for bended regions in 

graphene sheets. We have also carried out the first systematic study on local conductance 

variations in graphene, the results of which indicate coupling effects from the underlying 

SiO2 substrate. Our results suggest large local variations in both the morphology and the 

electrical properties of the same graphene sheet, challenging previous assumptions. 

 

Other Research Projects. 

During my graduate study, I also worked on several other projects through close 

collaboration with other lab members and participation in the synergetic projects in the 

lab, including size-dependent transport and thermoelectric properties of bismuth 

nanowires,[5] azidation of silicon(111) surfaces,[6] ultrahigh-density molecular electronic 

memory circuits,[7] and switching kinetics of bistable [2]rotaxanes.[8] These, however, 

will not be discussed in detail in this thesis. Interested readers are referred to the 

respective publications and the theses by A. Boukai, J. E. Green, and J. W. Choi. 
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Chapter 2   

Quasi-One-Dimensional Conventional 

Superconductor Nanowire Arrays  

 
The contents presented in this chapter are based on K. Xu and J. R. Heath, 

"Controlled fabrication and electrical properties of long quasi-one-dimensional 

superconducting nanowire arrays," Nano Letters, 8, 136-141 (2008). (Ref. [1]) 

 

2.1 Introduction 

A superconductor wire becomes quasi-one-dimensional (quasi-1D) when its diameter is 

comparable to or smaller than the material-dependent superconducting coherence length ξ 

(~100 nm for elemental superconductors) and magnetic penetration depth λ (~40 nm for 

elemental superconductors). In such systems, the Ginzburg–Landau complex order 

parameter ψ (and consequently, the local density of superconducting electrons, |ψ|2,) 

becomes constant over the cross section,[2,3] and is only a function of the position x along 

the wire. Quasi-1D superconductors provide an ideal test-bed for investigating 

superconductivity in finite size. In a strictly 1D system, superconductivity is not 

possible.[4] 

Below the superconducting transition temperature, Tc, the electrical resistance of a 

bulk superconductor quickly drops to zero, while the resistance in a quasi-1D system 

decreases more gradually (Fig. 2-1A). This finite resistance at T<Tc is a consequence of 
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Thermally Activated Phase Slip (TAPS) and Quantum Phase Slip (QPS) processes.[2,5,6] 

For TAPS, thermodynamic fluctuations (~kT) stochastically and instantaneously depress 

|ψ| to zero at a random point along the wire, resulting in a local non-superconducting 

state. Because ψ is constant over the cross section, the local non-superconducting state 

blocks the entire cross section, and so a superconducting current (supercurrent) cannot 

pass through (Fig. 2-1B). A measurable resistance thus appears. In contrast, although 

thermodynamic fluctuations may also lead to instantaneous local non-superconducting 

states (~ξ in size) in bulk superconductors, supercurrents can always find alternative 

paths to bypass (get around) such local states (Fig. 2-1C), and zero-resistance can still be 

achieved. 

 

Figure 2-1. Schematics of quasi-one-dimensional (quasi-1D) superconductors in 

comparison with bulk superconductors. (A): Schematics of the temperature 

dependence of resistance for a quasi-1D superconductor and a bulk superconductor. 

The resistance (R) is normalized by the normal state resistance, RN. (B): Schematics 

showing the appearance of a local non-superconducting state that blocks the passage of 

a supercurrent in a quasi-1D superconductor. (C): Schematics showing that 

supercurrents can bypass local non-superconducting states in a bulk superconductor. 
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Formally, the depression of local |ψ| to zero allows for a sudden change of 2π in 

the phase of ψ and a finite voltage drop across the wire. Such processes are thus named 

“phase slips”.[2] The energy required to locally depress |ψ| is  




A
H

F c

83

28 2

  (1) 

Hc is the thermodynamic critical field of the superconductor, and A is the cross-section 

area of the wire. Equation (1) represents the superconducting condensation energy within 

a wire segment of length ~ξ, and suggests thinner wires have a smaller energy barrier for 

phase-slip processes and therefore a slower decrease of resistance for T<Tc. This can be 

seen from the resistance formula 

kTFe
kTe

R /
2

2

TAPS 2





 (2) 

where )/1()/)(/( 2/1
GLkTFL   , L is wire length, and )(8/ c TTkGL    is the 

Ginzburg–Landau relaxation time. Equation (2) predicts zero resistance when T 

approaches zero since kT<<F. Even then, however, ΔF might[6-9] be tunneled via 

quantum fluctuations, leading to QPS and a finite resistance when T approaches zero. 

Because both ξ(T) ≈ ξ(0)(1−T/Tc)
-1/2 and λ(T) ≈ λ(0)[1−(T/Tc)

4]-1/2 are large for T 

close to Tc, quasi-1D superconductivity was first reported in micron-size filaments within 

several millikelvins just below Tc.
[2,3,10,11] However, for lower temperatures ξ and λ both 

rapidly reduce to their zero-temperature limits. For pure metals, λ(0) is ~40 nm, while 

ξ(0) varies from ~1 μm to 40 nm. Consequently, for T<Tc, strong quasi-1D behavior 

requires nanowires (NWs) with diameters substantially below 40 nm. This is beyond the 

limits of conventional lithographic fabrication methods, and necessitates non-traditional 
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fabrication methods. In early studies, Giordano et al. obtained superconducting In and 

PbIn NWs ~50 nm in diameter with limited dimensional control basing on a step-edge 

technique, and modeled their results within the context of TAPS and QPS.[7,12] 

Recently, Bezryadin et al. developed a new method to produce superconducting 

NWs, based on the sputter deposition of MoGe or Nb onto suspended carbon nanotube 

(CNT) or DNA molecule templates.[13-15] This method can produce NWs ~10 nm in 

diameter and ~100 nm in length, but is only applicable to the limited types of materials 

that wet the templates. Other materials form disconnected beads along the template.[16,17] 

The method relies on the stochastic bridging of CNT/DNA templates onto predefined 

trenches, and the location and dimensions of the NWs are thus hard to control. The 

suspended structure also limits the length of the NWs to be ~200 nm. This leads to two 

potential problems: 1) Cooper pairs from the superconducting contacts may tunnel 

through the very short NW channel and result in proximity-induced superconductivity, 

even when the NW itself is a normal material. Indeed, superconductivity has been 

observed in uncoated CNTs ~300 nm in length bridging superconductive Re, Ta or Nb 

contacts.[18,19] 2) The difficulties in producing NWs of varied lengths also complicate the 

discussion of whether there is a well-defined critical NW size limit beyond which 

superconductivity cannot be retained. Some experiments suggest that superconductivity 

disappears if the normal state resistance of the NW, RN, is larger than Rq = h/4e2 = 6.5 

kΩ.[13,20,21] This argument implies two superconducting NWs with RN just below Rq 

would lose their superconductivity when connected in series (as now 2RN>Rq), and 

suggests that superconductivity is hard to achieve in long NWs. 
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Tian et al. and Michotte et al. fabricated embedded superconducting NW arrays 

by electrodeposition into porous membranes.[22-26] This method can produce NWs >20 

nm in diameter and ~10 μm in length, but is only applicable to the limited types of metals 

that can be electrodeposited. The wire-to-wire diameter variation for the obtained NWs in 

the same array is relatively large (~10 nm).[23] Also, transport measurements on 

embedded arrays are typically limited to two-point measurements, and the number of 

NWs being measured is uncertain.[23,25] 

Starting from a ~100 nm-wide Al wire, Zgirski et al. monitored the evolution of 

superconductivity of the wire between subsequent thin-down sessions, down to a width of 

~8 nm, where superconductivity disappears.[8] Dimensions are difficult to control with 

this method, and the non-selective physical thin-down process results in serious etching 

of the substrate, making the method incompatible with other circuits on the substrate.  

Altomare et al. fabricated superconducting NWs ~10 nm in diameter by 

depositing Al onto a thin InP edge obtained by selective etching of the side edge of a 

GaAs wafer that has a molecular-beam epitaxy (MBE) grown InP layer.[9,27] This method 

bears a resemblance to our previous work on Pt NWs.[28-30] However, without a 

subsequent pattern transfer step, NWs thus fabricated are on the very thin side edges of 

GaAs wafers close to the surface (< 2 μm),[27] making subsequent processing difficult. In 

addition, highly directional evaporation of the superconductor material is required for the 

method, which is not available for many superconductor materials. 
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To sum up, previous experiments have together painted an incomplete picture of 

quasi-1D superconductors. Issues such as proximity effects, the lack of 4-point contacts, 

limited materials flexibility and limited NW dimensional control are unresolved. 

In this chapter, we describe[1] a general method for reliably fabricating quasi-1D 

superconductor nanowire arrays, with good control over nanowire cross section and 

length, and with full compatibility with device processing methods. As shall be discussed 

in Chapter 3, this method is generally applicable, including to high Tc materials, as long 

as a thin film of the material is available. Nearly atomically straight Nb NWs with widths 

ranging from bulk-like to 10 nm and aspect ratios approaching 104 are prepared. Four-

point electrical measurements indicate the NWs are uniform and defect-free, and good 

reproducibility is found between NWs with the same designed cross sections. Thinner 

NWs exhibit a slower relative decrease of resistance below Tc, and more pronounced 

contributions from QPS in the low-temperature limit. The ability to fabricate very long 

(up to 100 μm) NWs with different lengths but identical cross sections has for the first 

time allowed for the investigation of length’s sole influence on superconductivity in 

NWs, from which characteristic quasiparticle diffusion lengths are extracted. All results 

are interpreted within the context of phase-slip models. 

 

2.2 Fabrication of conventional superconductor nanowire arrays 

Superconducting NW Arrays were prepared using Superlattice Nanowire Pattern 

Transfer (SNAP), which translates the atomic control over the film thicknesses of a 

superlattice into control over the width and spacing of metal and semiconductor NWs.[28-
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30] In this method, Pt NWs are obtained by directional e-beam evaporation onto the raised 

edges of a differentially etched edge of a GaAs/AlxGa(1-x)As superlattice (cf. Fig. 2-3A), 

and transferred onto a substrate.  
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Figure 2-2. Vanadium and niobium nanowire (NW) arrays fabricated by direct 

application of the SNAP process, using the corresponding metals to replace Pt for the 

directional e-beam evaporation step. (A): Scanning electron microscope (SEM) image of 

an array of 20 nm wide vanadium NWs. Scale bar: 100 nm. (B): SEM image of an array 

of 20 nm wide niobium NWs. Scale bar: 200 nm. (C): Four-point resistance measured on 

different vanadium NW arrays similar to those shown in (A). (D): Four-point resistance 

measured on different niobium NW arrays similar to those shown in (B). 

(A) (B)

 (C) (D)
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We initially attempted to replace Pt with the superconducting materials vanadium 

(V) and niobium (Nb). Highly ordered NWs were obtained (Fig. 2-2A,B), but none of 

those NWs were superconducting. All arrays have increased resistance at low 

temperature (Fig. 2-2C,D). In fact, e-beam evaporated thin films of V and Nb were also 

found non-superconducting, presumably due to inflated lattice parameters.[31]  

Thus we prepared the superconducting NW arrays in a fashion analogous to how 

Si NW arrays are fabricated[29,32,33] – i.e., SNAP is utilized to prepare a Pt NW array 

mask on top of a superconducting thin film, and directional dry etching is utilized to 

translate the Pt NW pattern into the film to produce superconducting NWs. 

Superconducting materials are in general not as stable as Si, so the protocol used for Si 

was modified accordingly. In particular, the superconducting film was protected with a 

thin SiO2 layer deposited prior to the SNAP procedure. This layer also ensured the 

superconducting NWs were well-insulated from the Pt NW mask. The resultant on-chip 

NWs can be readily integrated with microcircuits on the same substrate (e.g., 4-point 

contacts made out of either the same superconducting film or a different material), in 

comparison with other methods where NWs are obtained as suspended[6,13-15,21,34-36] or 

embedded[23,25,26] structures, or on the very thin edges of substrates.[9,27] We chose Nb as a 

first demonstration here, but as shall be discussed in Chapter 3, this method is generally 

applicable, including to high Tc materials, as long as a thin film of the material is 

available. The detailed fabrication processes are described below. 

Si substrates with a 300 nm thick SiO2 or Si3N4 top layer were cleaned in a 

piranha solution (H2SO4/H2O2) and rinsed thoroughly with deionized water. SiO2, Si3N4 

and Si substrates were all compatible with the fabrication procedure, and consistent 
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results were observed on SiO2 and Si3N4 substrates (Si substrates are not tested due to the 

large current through the Si channel). Fully functional thin Pt/Ti (5 nm/2 nm) contact 

electrodes with thick Au/Ti (50 nm/10 nm) wire-bonding pads were fabricated on some 

of the substrates by electron-beam lithography (EBL). 

Superconducting Nb films were prepared in a Denton Vacuum Discovery 550 

multi-cathode DC/RF magnetron sputter deposition system. Substrates were loaded onto 

a rotating stage and the chamber was pumped down overnight to achieve a base pressure 

of 10-7 Torr (1 Torr ~ 133 Pa). Ultrahigh-purity argon (99.999%+) was introduced into 

the system as the sputtering gas at 15 sccm (standard cubic centimeters per minute) and 

kept at 2.5 mTorr. Nb films were deposited at ~0.8 nm/s by DC sputtering from a 3-inch 

Nb target (99.96%, Plasmaterials, Livermore, CA), after an extensive (>30 minutes) pre-

sputtering with a shield between the substrates and the target to clean the surface of the 

target thoroughly and getter-absorb the residual background gases in the chamber. 

Without breaking the vacuum, 4 nm SiO2 was immediately RF sputtered from a 3-inch 

silicon dioxide target (99.995%, Kurt J. Lesker, Livermore, CA) to cover the films. 

An array of Pt SNAP NWs was obtained by e-beam evaporation onto the raised 

edges of a differentially etched edge of a GaAs/AlxGa(1-x)As superlattice wafer (IQE, 

Cardiff, UK).[28] In this way, the atomic control over the film thicknesses of the 

superlattice stack was translated into control over the width and spacing of NWs (Fig. 2-

3A). The array of Pt SNAP NWs was then stamped (as an ink) onto a SiO2-coated 

superconductor (Nb) thin film and securely bonded to the surface (Fig. 2-3B) with a thin 

layer of epoxy (EpoxyBond 110, Allied High Tech, Rancho Dominguez, CA). The 
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superlattice was then released by a selective wet etch, leaving the highly-ordered array of 

Pt nanowires on the surface (Fig. 2-3C). 

Super-
conductor
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Figure 2-3. Process flow for the fabrication of superconducting nanowire (NW) 

array devices. (A): An array of Pt SNAP NWs is obtained on the raised edges of a 

differentially etched edge of a GaAs/AlxGa(1-x)As superlattice wafer. (B): The array of Pt 

NWs is stamped onto a SiO2-coated superconductor (Nb) thin film and bonded to the 

surface. (C): The superlattice is released by a selective wet etch, leaving the highly-

ordered array of Pt NWs on the surface. (D): Al2O3 is deposited as a pattern for the 

contact electrodes. (E): A monolithic (all Nb) NW array circuit is obtained after the 

pattern is translated with a directional dry etch. (F): The resultant NW array circuit is 

drawn here. In practice, it is protected by the SiO2 cover layer. 

For substrates with pre-defined contact electrodes, Pt NW arrays were aligned 

perpendicular to and across the underlying electrodes with ~1 μm registration.[29] For 
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substrates without pre-defined contact electrodes, Pt NW arrays were put down at the 

center of the substrate, and EBL was used to pattern a 40 nm thick Al2O3 mask for the 

contact electrodes (Fig. 2-3D). The Pt NW array and Al2O3 electrode masks were 

translated into the underlying Nb film by highly directional reactive-ion etching (RIE) in 

a 40 MHz Unaxis SLR parallel-plate RIE system with CF4/He (20/30 sccm, 5 mTorr, 40 

W).  

   

Figure 2-4. Scanning electron microscope (SEM) images of representative Nb 

nanowire arrays. (A) 16 nm wide nanowires with 33 nm pitch (periodicity). Scale bar: 

200 nm. (B) 10 nm wide nanowires with 60 nm pitch. Scale bar: 100 nm. Both sets of Nb 

nanowires are 11 nm high.  

Devices are ready for measurement after the pattern translation: for substrates 

with predefined electrodes, the Nb NWs are contacted by the underlying Pt electrodes, 

while for substrates without predefined electrodes, the Nb NWs are seamlessly connected 

to the contacts made out of the same superconducting film, forming monolithic Nb NW 

array circuits defined by the Pt NW and Al2O3 contact electrode masks (Fig. 2-3E and 1-

3F). With this careful design, the obtained Nb NWs are well insulated from the Pt NW 

(A) (B)
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masks above by the SiO2 and epoxy layers (Fig. 2-3E), and the whole structure is covered 

and protected by the SiO2 layer on the top and the very thin fluorocarbon polymer films 

coated on the sidewalls during the dry etching step.[37] Representative images of the 

fabricated Nb NW arrays are presented in Fig. 2-4.  

 

2.3 Electrical properties of conventional superconductor nanowire arrays at low 

current levels 

The electrical properties of the fabricated superconducting NW array devices 

aHre measured in a pumped 4He system (Quantum Design MPMS-XL; base temperature 

~1.7 K) with standard DC or AC lock-in techniques at low frequency. Low-current 

measurements were first performed, in which a sufficiently small current is used to probe 

the equilibrium properties without causing significant perturbations to the system. 

Fig. 2-5 presents the measured electrical properties of Nb nanowire arrays at low 

current levels. A total current level of ~100 nA is typically used in the low-current 

measurements. Because there are typically ~100 parallel NWs in each array, the current 

level corresponds to ~1 nA per individual NW. This is well below the current limit 

beyond which the V-I relationship is expected to become nonlinear for a NW, I0 = 4ekT/h 

= 13 nA·(T/K),[2] which is ~20 nA for the base temperature of our system. As a result, 

Ohmic (linear) V-I curves are observed at all temperatures (Fig. 2-5B). Low-current-limit 

resistance is then calculated from linear fits to such V-I curves, and plotted as a function 

of temperature (Fig. 2-5A). 
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(A)
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(B)

 

Figure 2-5. Measured electrical properties of Nb nanowire arrays at low current 

levels. (A): Temperature dependence for the four-point resistance of Nb NW arrays and 

films contacted with monolithic Nb contacts. Red lines: arrays of 12 NWs of cross 

section 11nm × 10nm and length L (From top to bottom) = 3 and 0.9 μm. Blue lines: 

arrays of 100 NWs of cross section 11nm × 16nm and L = 100, 50, 20, 10, 2.4, and 1.6 

μm. Green lines: arrays of 250 NWs of cross section 30nm × 16nm and L = 1.5 and 1.3 

μm. Black dashed lines: 11 nm thick films with width of 3 μm, L = 60 and 20 μm. Purple 

dashed line: a 30 nm thick film with width of 20 μm, L = 2.5 μm. Inset: Length 

dependence of the normal-state resistance for arrays of 100 NWs of cross section 11nm 

× 16nm. (B): Representative four-point V-I curves in the low-current limit for an array of 

100 Nb NWs of cross section 11nm × 16nm and L = 10 μm. (C): A close-up of the 

temperature dependence for the four-point resistance of an array of 12 NWs of cross 

section 11nm × 10nm and L = 3 μm.  

  Superconductivity is observed on all NW arrays (Fig. 2-5A). Here we’ve followed 

the criterion for superconductivity used in previous NW studies, i.e., whether the 
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resistance decreases significantly (near exponentially) when the temperature is reduced 

below a device-dependent Tc.
[6,13,36] Although not clear from Fig. 2-5A, the thinnest NWs 

do show the onset of superconductivity at ~2.5 K, and the resistance continues to drop 

when the temperature is lowered (Fig. 2-5C). 10% of total resistance vanishes at the base 

temperature (1.7 K). 

Remarkably, superconductive behavior is observed in long (100 μm) NWs with 

normal state resistance RN = 245 kΩ for each individual NW. As discussed previously in 

Introduction, basing on results in short NWs, some researchers have speculated that 

superconductivity may not be retained in a NW if RN > Rq ~6.5 kΩ, the quantum 

resistance for Cooper pairs.[13,21] This suggests the observed superconductivity could be 

proximity-induced by superconducting contacts[18,19,38,39] and is difficult to retain in long 

(high RN) NWs. In agreement with recent experiments,[6,9] our results indicate RN>Rq 

should not be the criterion for the superconductor-insulator transition in NWs: 

superconductivity is intrinsic to NWs and can be maintained in long (and hence high RN) 

NWs. 

To further demonstrate that the observed superconductivity is intrinsic to the NWs 

(as opposed to proximity-induced superconductivity from superconducting contacts), we 

also examined NW arrays contacted with normal-state leads (Fig. 2-6). Such device 

structures are difficult to achieve using other NW fabrication methods. A clear resistance 

drop is observed with Tc ~ 3.5 K, but the superconductivity is partially suppressed by the 

normal-state contacts, as evidenced by a drop in Tc (Tc ~3.5 K as compared with Tc ~5 K 

for Nb-contacted NWs of similar dimensions) and a substantial residual resistance at low 

temperature. For the two sets of data, the shorter NW array has a slightly lower Tc due to 
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stronger suppression from the contacts. Although the longer array has a considerably 

larger normal state resistance (proportional to the length), an identical residual resistance 

of 18 Ω is obtained for both arrays at low temperature. This is indicative of a resistive 

superconducting-normal mixed state localized at the contact interfaces.[40] The Pt-

contacted NW arrays provide unambiguous evidence of the intrinsic origin of 

superconductivity in NWs, but the strong suppression of superconductivity by the 

contacts is undesirable. Consequently, we shall focus on Nb-contacted arrays in the 

discussions below. 

 

Figure 2-6. Measured temperature dependence for the four-point resistance of two 

Nb NW arrays contacted using normal-state Pt. The NWs in both arrays have the 

same cross section (30nm × 16nm), but different lengths (L) as labeled in the graph. 

Note from Fig. 2-5 the consistency, for both Tc and the log(R)-T slopes, between 

data collected from different arrays with the same NW cross sections. The qualitatively 

different behavior found in the two longest arrays will be discussed later. Data from NWs 

of different cross sections are clearly different. Lower Tc is found for thinner NWs, with 

the cross-section dependence of Tc in general agreement with data on CNT-templated 
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NWs.[14] According to equations (1) and (2), the log(R)-T slope (~ΔF) is proportional to 

A but independent of L. Consequently, the similar slopes in the four 11nm × 16nm arrays 

of varying lengths testify to the uniform cross section of the NWs. Moreover, the slope 

for these NW arrays is ~3-fold smaller than for the 30nm × 16nm arrays. 

(A)

Nb contacts
30nm × 16nm × 1.3μm

(B)

Nb contacts
11nm × 16nm × 20μm

(C)

Nb contacts
11nm × 16nm × 2.4μm

 

Figure 2-7. Fitting of the measured R(T) data to phase-slip theories. (A): The R(T) 

data collected on an array of NWs of cross section 30nm × 16nm × 1.3μm, fitted to 

TAPS theory. TAPS + QPS gives an indistinguishable result. (B): The 11nm × 16nm × 

20μm data fitted to the theories. (C): The 11nm × 16nm × 2.4μm data fitted to the 

theories. 

Three representative sets of the measured R(T) data shown in Fig. 2-5A are fitted 

to theories (Fig. 2-7). According to equation (2), log(RTAPS) ~ −ΔF/kT. Because Hc 

~(Tc−T) and ξ ~ (Tc−T)-1/2, equation (1) gives ΔF~(Tc−T)3/2. This means a higher ΔF and 

therefore a faster drop in log(RTAPS) at lower T. This behavior is observed in the thicker 

NWs (Fig. 2-7A), and the data fit well to TAPS theory.[6] 

Thinner NW arrays deviate from TAPS fits by having resistance higher than 

predicted in the low-T limit (Fig. 2-7B,C). Such behavior has been previously ascribed to 
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QPS processes[6-9,23] – i.e., the acquisition of phase slips by tunneling through ΔF. We use 

the formulation adapted by Tinkham to account for QPS:[6,7] 
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GLQPS GLFL   , and B and a are fitting parameters of order 

unity. Because RQPS << RTAPS when T is close to Tc, the contribution from QPS is 

unimportant in thicker NWs (Fig. 2-7A).  

In contrast, thinner NWs have wider transitions with respect to temperature, and 

RQPS << RTAPS may no longer hold at low temperature. Because ΔF ~ (Tc − T)3/2 and 

1
c )(~ TTGL , log(RQPS) ~ /GLFa  ~ (Tc − T)1/2 has a weaker-than-linear 

dependence on T, and drops more slowly at low T relative to log(RTAPS). Therefore, RQPS 

is expected to dominate the total phase-slip resistance in the low-temperature limit. Such 

behavior is observed in the 11nm × 16nm × 20μm sample (Fig. 2-7B). For similar but 

shorter NWs, an improved fit is obtained by taking into account both TAPS and QPS. 

However, a nearly constant log(R)-T slope is observed in the low-temperature limit (Fig. 

2-7C), deviating from QPS prediction. Such behavior has been reported in short 

NWs,[6,8,13,14,36] while long NWs typically show the expected QPS behavior,[7,9,23] in 

agreement with our results. Because precise control of length and cross section has been 

difficult in previous studies, these observations have been inconclusive. We believe our 

data indicate that QPS can be partially suppressed in short NWs in the low-temperature 

limit due to contact effects, e.g., a local enhancement of ψ, as will be discussed further 

later. 
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The two longest NW arrays show a wide shoulder feature around 2.5 K (Fig. 2-

5A) that cannot be explained with TAPS and QPS theories. A similar feature was 

recently reported in an Al NW 100 μm in length, and was accounted for by assuming the 

NW to be composed of segments of two different cross section areas with different Tc.
[9] 

This argument, however, cannot explain why the shoulder is not observed in an Al NW 

10 μm in length[27] or in any of the L≤20 μm NW arrays with the same cross section in 

our experiment. Also, it is hard to imagine why our 50 and 100 μm long arrays of 100 Nb 

NWs would both contain segments of exactly two different cross sections such as was 

proposed for the single Al NW. This “abnormal” behavior of long NW arrays in 

comparison with the consistent results found on the other four shorter arrays implies the 

shoulder feature should have a sole mechanism that depends only upon the length of the 

NWs. This mechanism will be discussed in detail later.  

 

2.4 Electrical properties of conventional superconductor nanowire arrays at high 

current levels 

While low-current limit measurements reflect the equilibrium properties of the 

NWs, the high-current limit represents different physics, since the current itself causes 

the breakdown of superconductivity, and so can address how large a supercurrent can be 

sustained in a NW (array). In addition, true quasi-1D superconductors provide for an 

ideal system to study the current-induced nonequilibrium phenomena.[3] However, a 

systematic study on this topic with varied dimensions of NWs has been lacking. In this 

regime, we observe three qualitatively different behaviors when the dimensions of the 

NWs are varied by design (Fig. 2-8).  
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Figure 2-8. Four-point V-I curves for three representative arrays of Nb NWs, 

measured with increasing (red) and decreasing (blue) current bias at the base 

temperature. (A): An array of 250 NWs of cross section 30nm × 16nm and L = 1.8 μm. Ic 

denotes the critical current, i.e., the highest supercurrent that can be sustained when the 

applied current is swept up from zero, while Ir denotes the retrapping current, i.e., the 

current level at which the array returns to the superconducting state when the current is 

swept back down. Inset: Temperature dependence of Ic and Ir. (B): An array of 100 NWs 

of cross section 11nm × 16nm and L = 2.4 μm. Inset: Temperature dependence of Ic. 

(C): An array of 100 NWs of cross section 11nm × 16nm and L = 100 μm. Inset: An 

expanded plot of the intermediate state region (Ic < I < IN); arrows point to voltage jumps. 

Strong hysteresis is found in the V-I responses of thicker NWs at base temperature 

(Fig. 2-8A): the transition between the superconducting and normal states happens at 

different current levels for decreasing and increasing current. Such hysteresis is 

(A) 

(B) (C) 
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characteristic of single NWs,[9,14,34,41] but has not been observed in NW arrays 

before,[23,25,26] presumably due to the large (~10 nm[23]) NW-to-NW diameter variation. 

The observed clear hysteresis, as well as the fact that the Ic per NW (2.1mA/250 = 8.4 

μA) is comparable to a CNT-templated short Nb NW of similar width[14] suggests the 

uniformity and high quality of our NWs, so the collective behavior of the array retains the 

traits of individual NWs. Because we have more than 100 NWs per array, the resultant 

total Ic = 2.1 mA is more than 102 higher than those previously reported in individual 

NWs or small NW arrays. This large Ic in our on-chip arrays could find applications in 

carrying high levels of low-dissipation current, while the strong hysteresis effect could be 

potentially tailored into an information storage or switching mechanism with a high on-

off ratio and low power dissipation. Both Ic and Ir drop when temperature is raised, but Ir 

drops slower so the hysteresis weakens and eventually disappears at high temperature 

(Fig. 2-8A inset), in agreement with results on individual NWs.[34] The hysteresis is not 

found in the thinner NWs at low temperature (Fig. 2-8B and 1-8C) due to the larger 

residual resistance, again agreeing with results on single NWs.[41] Ic is significantly 

reduced compared to the thicker NWs, consistent with previous experiments.[35] 

Qualitatively different behaviors are also found for NWs with the same cross 

section but different lengths. In comparison with a single jump between the 

superconducting and normal states at Ic for shorter NWs (Fig. 2-8B), longer NWs first 

enter an intermediate state at Ic, and jump to the normal state at a higher current level, IN 

~2Ic (Fig. 2-8C). This intermediate region exhibits multiple voltage jumps (Fig. 2-8C 

inset). Such behavior is characteristic of long quasi-1D superconductors, and each 
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voltage jump is associated with the emergence of a localized resistive “phase-slip center” 

(PSC) along the wire.[2,3,11]  

In contrast to the stochastic TAPS and QPS events, PSCs are stable and have 

fixed locations within the NW for a constant driving current. The core of each PSC (~2ξ 

in length) quickly oscillates between the superconducting and normal states, and this 

leads to a finite resistance. Each PSC has a characteristic interaction length of ~2Λ, 

where Λ ~10 μm is the quasiparticle diffusion length. The number of PSCs a wire can 

accommodate should thus be ~L/2Λ. Theory[2,42] predicts that a single PSC emerges at the 

center of the NW at Ic (Fig. 2-9), resulting in the first voltage jump step in the V-I curve. 

Additional PSCs appear as the applied current increases, leading to additional voltage 

jump steps. When a new PSC emerges, all PSCs reorganize to distribute evenly along the 

nanowire, until the number of PSCs exceeds ~L/2Λ (Fig. 2-9).[2,42] 

2ξ 2Λ

I

Ic

2Ic

Length of nanowire, L

 

Figure 2-9. The expected distribution of phase-slip centers (PSCs; shown as red) 

along a quasi-1D superconductor nanowire of length L, as the applied current (I) is 

varied from Ic to 2Ic. New PSCs emerge as I increases, and all PSCs rearrange to 

distribute evenly along the length of the nanowire. 

The evolution of PSCs have been extensively studied in microbridges and 

submicron “whiskers”[3] very close to Tc and mesoscopic (~100 nm) nanoribbons,[43] but 
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results on NWs, which are truly quasi-1D superconductors at any temperature, have been 

limited. For example, in electrodeposited Sn NW arrays, PSCs are pinned down at local 

defects, and the number of PSCs observed is independent of the length of the arrays.[23] 

We have charted the evolution of PSCs in our (11nm × 16nm) NW arrays with L= 

2-100 μm, by plotting dV/dI, so that each PSC-related voltage jump in the V-I curve 

appears as a peak.[43] These features evolve reproducibly as a function of temperature and 

applied magnetic field (Fig. 2-10). In the low-temperature limit, 4 and 2 peaks are found 

for L=100 μm and L=50 μm NWs, respectively, between Ic (~12 μA) and IN (~24 μA). 

NWs with L≤ 20 μm exhibit no peak lines. The faint features found on the two shortest 

arrays are attributed to contact-induced PSCs.[44] Theory predicts[2,42] that for an 

absolutely uniform filament of length L, approximately L/2Λ steps should occur between 

Ic and 2Ic. The length of each PSC in our NWs can thus be estimated to be 2Λ ~ 25 μm, 

comparable to the 10-50 μm values found in various materials.[11,26,45] Three small 

branching features are observed close to Ic for the 20 μm NWs (Fig. 2-10D), while the 10 

μm NWs have one such feature (Fig. 2-10E), suggesting PSCs can still appear in NWs 

slightly shorter than 2Λ when the energy provided by temperature and current is 

sufficiently high. Such branching is not seen in the 2.4 μm (Fig. 2-10F) and 1.6 μm (not 

shown) arrays where L<<2Λ. The clear and consistent length dependence of PSCs’ 

behavior revealed in the above discussions supports our conclusions that the NWs are 

uniform and effectively defect-free (defects would act as pinning centers for PSCs). The 

collective behavior of 100 NWs agrees with that expected for a single homogeneous 

quasi-1D superconductor.[42] 
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Figure 2-10. Differential resistance dV/dI of arrays of 100 NWs of cross section 11 

nm × 16 nm, as a function of current, temperature and applied magnetic field. (A) 

and (C)-(F): temperature is varied at zero field. (B): Applied magnetic field is varied at 

constant temperature T = 1.72 K. The lengths of the arrays are labeled on each plot. 

Black arrows point to the small branching features observed close to Ic at higher 

temperatures for arrays of intermediate lengths, and red arrows point to the very faint 

(light blue) peak lines found only on the two shortest arrays.  

The characteristic lengths revealed above should also be relevant to the 

equilibrium properties of the NWs. In particular, consider the shoulder feature observed 

~2.5 K in the low-current R-T curves of the 50 μm and 100 μm arrays (Fig. 2-5A). This 

feature deviates from TAPS and QPS models, but coincides with the onset of stable PSC 

peak lines (Fig. 2-10A,C). Such features are not observed in shorter NWs that exhibit no 

PSC peak lines in the high-current limit. NWs longer than ~2Λ could allow for multiple 

phase-slip events in each NW for the same instant, which is not considered in the TAPS 

and QPS models.[6,8,46] A resistance higher than predicted (i.e., the shoulder feature) 



30 

would thus be observed. Shoulder features were observed in early experiments on long 

tin whiskers[2,10] near Tc, but were attributed to contact effects,[2] which is clearly not the 

case for our results. As discussed earlier, the faint features found on the shortest arrays 

(Fig. 2-10E,F) may arise from contact effects, but the corresponding local enhancement 

of ψ is found to suppress QPS and result in smaller residual resistances in comparison 

with theory (cf. Fig. 2-7C and related discussions). 

 

2.5 Conclusion 

In this chapter, we have reported[1] on the fabrication and properties of 

superconducting nanowire arrays with good control over both cross section and length. 

The nanowires are compatible with device processing, allowing for the establishment of 

4-point electrical contacts. We investigated Nb nanowires with individual nanowire cross 

sectional areas that range from bulk-like to 10 × 11 nm, and with lengths from 1 to 100 

micrometers. Electrical measurements in the low-current and high-current limits indicate 

the nanowires obtained are uniform and effectively defect-free. Size effects on 

superconductivity are systematically studied; in particular, the ability to fabricate very 

long nanowires with identical cross sections allows for the first systematic investigation 

of length’s sole influence on superconductivity in nanowires, from which characteristic 

quasiparticle diffusion lengths are extracted. All results are interpreted within the context 

of phase-slip models. 

The fabrication method demonstrated with Nb nanowires in this chapter is 

broadly applicable to various thin film superconductors. In the next chapter, we will 
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discuss how similar fabrication methods were further harnessed to produce high-quality 

high-temperature superconductor nanowires. 
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Chapter 3  

Long, Highly-Ordered High-Temperature 

Superconductor Nanowire Arrays 

 
The contents presented in this chapter are based on K. Xu and J. R. Heath, "Long, 

highly-ordered high-temperature superconductor nanowire arrays," Nano Letters, 

8, 3845-3849 (2008). (Ref. [1]) 

 

3.1 Introduction 

As discussed in Chapter 2, a superconducting wire becomes quasi-one-dimensional 

(quasi-1D) when its width w is reduced to be comparable to or smaller than the Ginzburg-

Landau (GL) coherence length ξ and magnetic penetration depth λ.[2,3] For w < ~ξ, the GL 

order parameter ψ (and the density of Cooper pairs, |ψ|2) is constant over the cross section 

and is only a function of the position x along the wire. For w < ~λ, a current passed 

through the wire should spread uniformly over the cross section. The electrical resistance 

R of a quasi-1D superconductor decreases to zero gradually below the superconducting 

transition temperature Tc due to phase-slip processes (Chapter 2).[2,4] Phase-slip processes 

may also result in resistive or insulating behaviors for thin (~10 nm) wires when 

temperature approaches zero.[4,5] 

Both conditions for quasi-1D superconductivity are met for elemental 

superconductors when w < ~λ, because they are typically type I, satisfying  2  
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(except for Nb, which has ξ ≈ λ). Phase-slip theories were first validated in micron-size 

filaments within several millikelvins below Tc because both ξ(T) ≈ ξ(0)(1−T/Tc)
-1/2 and 

λ(T) ≈ λ(0)[1−(T/Tc)
4]-1/2 are large close to Tc.

[2,3] Recent nanotechnology advances have 

allowed for the fabrication of elemental superconductor nanowires (NWs) with w down 

to ~10 nm < λ(0) (~40 nm[6]).[7-13] These NWs are strictly quasi-1D for any T<Tc, and 

phase-slip theories have been verified in these systems.  

Alloy and compound superconductors are typically type II superconductors, 

satisfying  2 . Many of these materials are in the extreme type II limit, with ξ ~1 nm 

and λ ~100 nm. The current fabrication limit for superconductor NWs is w ~10 nm, 

satisfying ξ << w << λ for these materials. In this region, because w < λ, transport currents 

are still expected to be homogeneous over the NW cross section, but because w > ξ, ψ 

may vary over the NW cross section. Recent experiments suggest that, in this regime, 

phase-slip theories may still be applicable. For example, phase-slip theories give 

excellent fits for MoGe NWs when w ~ 4ξ << λ[4,5,14] and NbN strips when w ~25ξ < λ.[15] 

Recent studies on NbSe2 NWs have also suggested the appearance of phase-slip centers 

and other quasi-1D characteristics when 10ξ < w < λ.[16,17] 

With ξ~2 nm and λ~150 nm, cuprate-based high-temperature superconductors 

(HTS) are all in the extreme type II limit.[18] Also, the underlying mechanism of high-

temperature superconductivity is fundamentally different from the BCS Cooper pair 

mechanism for conventional superconductors, and is one of the major unsolved problems 

of theoretical condensed matter physics as of 2009.[19-21] It is therefore of fundamental 

interest to understand (1) whether high-temperature superconductivity can be retained in 
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NWs at all, and, (2) if it is retained, whether phase-slip theories, which have been widely 

applied to conventional superconductor NWs, still apply to HTS NWs.  

In addition, strong suppression of superconductivity by phase-slip processes has 

been observed in previous studies on quasi-1D NWs made from elemental 

superconductors[10-13] and from the binary alloy MoGe.[4,5,22] The very low Tc (typically 

below liquid helium temperature) also limits their potential applications as zero-electrical 

resistance conductors or active components in nanoelectronic circuits.[22-26] The short ξ 

(~2 nm) that characterizes HTS materials may reduce the influence on superconductivity 

of phase slip processes in HTS NWs, and the expected significantly higher Tc should 

uniquely enable applications of HTS NW materials. 

However, achieving high-temperature superconductivity in NWs requires 

achieving the correct stoichiometry and the correct perovskite-like crystal structures of 

the HTS materials. This renders many superconductor NW fabrication methods[5,10,12,16,27] 

inapplicable, and so little has been reported in this area.  

Short HTS NWs (w ~50 nm) have been synthesized, but superconductivity was 

only tested through magnetization measurements of powders of these materials.[28,29]  

Patterning HTS NWs from epitaxially grown HTS thin films is also challenging: 

HTS materials are unstable towards processing steps involving acid, water, or moderately 

elevated temperatures. In addition, for patterning, HTS films are resistive to directional 

dry etching, and no selective chemical dry etch for HTS materials has been reported. For 

physical dry etching, HTS films exhibit slower etching rates than typical etch-mask 

materials. As a result, HTS thin films have only been patterned into short submicron 
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bridges, and property measurements of those bridges have yielded inconsistent results.[30-

34] Bonetti et al. reported substantial broadening of the transition temperature width and 

telegraph-like resistance fluctuations in a w = 250 nm YBa2Cu3O7-δ (YBCO) bridge,[33] 

but their findings were not confirmed by others in similar or narrower bridges.[30-32,34] 

Mikheenko et al. studied YBCO bridges of several different widths, and observed 

broadening of transition temperature width in a w = 500 nm bridge.[34] The broadening 

was modeled with phase-slip theories, but unrealistic fitting parameters were obtained 

because w > λ >> ξ, and also no clear trend was found as the width of the bridges was 

varied.  

In summary, no clear size effects have been studied for HTS bridges (or wires) in 

the w << λ ~100 nm region. 

We have significantly modified the superlattice nanowire pattern transfer (SNAP) 

technique[35-37] to overcome the limitations of previous studies. We report[1] for the first 

time that arrays of HTS NWs can be produced down to w = 10 nm (<< λ) and up to 200 

μm in length, achieving aspect ratios of >104. Through four-point electrical 

measurements, we find high-temperature superconductivity is retained in these NWs: all 

nanowires exhibit a superconducting transition above liquid nitrogen temperature, and a 

transition temperature width that depends strongly upon the nanowire dimensions. 

Nanowire size effects are systematically studied, and we demonstrate for the first time the 

applicability of phase-slip theories in explaining the size effects in high-temperature 

superconductor nanowires. These nanowires can function as superconducting 

nanoelectronic components over much wider temperature ranges as compared to 

conventional superconductor nanowires. 
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3.2 Fabrication of high-temperature superconductor nanowire arrays 

As discussed in Chapter 2, we have previously developed the fabrication methods 

to prepare high-quality elemental (Nb) superconductor NWs, basing on pattern 

translation of Pt NWs through directional dry etching.[13] HTS materials are very unstable 

relative to Nb. Thus, a water-free process that avoided temperatures above 120oC was 

developed to accommodate the fragility of HTS thin films. Because HTS materials can 

only be patterned by slow physical dry etching (~10 times slower than the mask Pt NWs), 

a slow-etching SiO2 layer was sandwiched between the HTS thin film and the Pt NW 

array. Reactive-ion etching translated the Pt NW features into the SiO2 layer, which then 

served as a mask for an Ar+O2 physical dry etch of the HTS film. O2 helped maintain the 

correct oxygen stoichiometry in the HTS material,[38] and ~10 second etch cycles were 

separated by 1 minute cool-down periods to prevent heat accumulation within the HTS 

film. 

HTS materials react with many metals and form highly resistive contacts.[39] 

Thus, four-point probe contacts were made to the HTS NW array out of the same HTS 

film by patterning on top of the SiO2 layer before pattern translation of the Pt NWs. 

Metal contacts for wirebonding were connected to the HTS layer far away from the NW 

array. The detailed fabrication processes are described below. 

   An array of Pt SNAP NWs was obtained by e-beam evaporation onto the raised 

edges of a differentially etched edge of a GaAs/AlxGa(1-x)As superlattice wafer (IQE, 

Cardiff, UK).[35] The array of Pt SNAP NWs was then stamped onto a HTS thin film that 

is pre-coated with a ~50 nm thick SiO2 layer. For the YBCO HTS NWs discussed in this 
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chapter, a 30 nm c-axis oriented epitaxial YBCO HTS film (E-type, THEVA, Ismaning, 

Germany) was used. A thin (~10 nm) layer of chemically-modified heat-curable epoxy 

(EpoxyBond 110, Allied High Tech, Rancho Dominguez, CA. Modified with dibutyl 

phthalate.) was used to securely bond the Pt NW array to the surface. The 

superlattice/NW array/epoxy/SiO2/HTS assembly was baked on a hot plate at 120 °C for 

5 min, and the superlattice was then released by a selective wet etch. 5% I2 in anhydrous 

methanol was used as the etchant, which was found to effectively dissolve the 

superlattice without degrading the HTS film. After the residual epoxy was etched away 

with an oxygen plasma, a highly-ordered array of Pt NWs was obtained on top of the 

SiO2-covered HTS film (Fig. 3-1a).  

Metal (Au/Ti) contact pads for wirebonding were lithographically defined far 

away from the NW array, and CF4 reactive ion etching (RIE) was used to remove the 

SiO2 layer before metal was deposited, so the metal contact pads were directly connected 

to the HTS layer (Fig. 3-1b). An additional Ti/Pt bilayer was deposited onto the Au-Ti 

metal pads to prevent complete removal of Au in the subsequent dry etching steps. E-

beam lithography was then used to pattern a 40 nm thick Al2O3 mask on top of the SiO2 

layer to define the four-point probe contacts (Fig. 3-1c). The Pt NW array and Al2O3 

electrode masks were first translated into the SiO2 layer by highly directional RIE in a 40 

MHz Unaxis SLR parallel-plate RIE system with CF4/He (20/30 sccm, 5 mTorr, 40 W) 

(Fig. 3-1d).  

The patterns in the SiO2 layer (Fig. 3-1d) then served as a mask for an Ar+O2 

physical dry etching (18/2 sccm, 10 mTorr, 190 W) of the HTS film (Fig. 3-1e). O2 was 

used with Ar in this etching step to help maintain the correct oxygen stoichiometry in the 
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HTS thin film,[38] and ~10 second etch cycles were separated by 1 minute cool-down 

periods to prevent heat accumulation within the HTS film. The top-lying platinum 

nanowires were also removed in this step. 

 

Figure 3-1. Process flow schematics for the fabrication of high-temperature 

superconductor nanowire array devices. (a): Pt SNAP nanowires are deposited onto 

a SiO2-coated high-temperature superconductor (HTS) thin film. (b): Au-Ti metal pads 

are deposited and connected to the HTS layer far away from the nanowire array, after 

the underneath SiO2 layer is removed using dry etching. An additional Ti/Pt bilayer is 

deposited onto the Au-Ti metal pads to prevent complete removal of Au in the 

subsequent dry etching steps. (c): Al2O3 is lithographically patterned to define the 

contact electrodes. (d): The nanowires and contact patterns are translated into the SiO2 

layer with selective reactive-ion etching. (e): The nanowires and contact patterns defined 

in the SiO2 layer are translated into the HTS film with Ar+O2 physical dry etching. This 

also removes the top-lying Pt nanowires. The final structure is a single crystal HTS 

nanowire array device protected by a thin SiO2 film, with nanowires seamlessly 

connected to the contacts made from the same HTS film.  
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The final structure is a monolithic, single crystal HTS nanowire array device 

protected by a thin SiO2 film, with nanowires seamlessly connected to the contacts made 

from the same HTS film (Fig. 3-1e).  

HTS NW arrays of various dimensions were fabricated. Fig. 3-2 presents 

representative images of the YBCO NWs discussed in this chapter. Three 10 micrometer 

wide strips of YBCO films underwent the same fabrication and testing as the NWs, and 

independent electrical measurements of these strips produced overlying resistance-

temperature (R-T) curves (Fig. 3-3a). The strips exhibit a Tc of 85 K, a sharp transition 

width of ~3 K, and a critical current density of 0.83 MA/cm2 at 77 K. These values agree 

with those measured from the starting film. Thus the different behaviors observed in the 

NWs are attributed to size effects. 

   

Figure 3-2. Scanning electron microscope images of representative YBa2Cu3O7-δ 

nanowire arrays. (a): Scanning electron microscope image showing an YBa2Cu3O7-δ 

nanowire array and two contacts. Scale bar: 2 μm. (b): High-magnification micrograph of 

an YBa2Cu3O7-δ nanowire array (nanowires width = 10 nm). Scale bar: 200 nm. 

 

(a) (b)
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3.3 Electrical properties of high-temperature superconductor nanowire arrays at 

low current levels 

(a) (b)

(c)

 

Figure 3-3. Temperature and magnetic field dependence for the four-point 

resistance of YBa2Cu3O7-δ nanowire arrays in the low-current limit. (a): Temperature 

dependence of resistance for nanowire arrays and films with various dimensions at zero 

magnetic field. Pink: arrays of 100 nanowires, width w = 10 nm and length L (from top to 

bottom) = 200, 100, and 50 μm. Green: arrays of 150 nanowires, w = 15 nm and L = 35, 

30, and 27 μm. Light blue: three arrays of 400 nanowires each, with w = 20 nm and L = 5 

μm. Red dot lines: three geometrically identical strips fabricated through the same 

process, w = 10 μm and L = 50 μm. Black lines are fits of the nanowire data to thermally 

activated phase slip (TAPS) models. (b): The resistance-temperature relationship for a 

400 nanowire array with w = 20 nm and L = 5 μm, with and without an applied 5 T 

magnetic field. (c): The resistance-temperature relationship for an array of 100 

nanowires with width w = 10 nm and L = 100 μm, with and without an applied 5 T 

magnetic field. 
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R-T data, taken in the low-current limit (~1 nA per NW) (Fig. 3-3), reveals that 

high-temperature superconductivity is retained in all NWs, as characterized by a 

significant drop in resistance when temperature is reduced below Tc ~80 K. Consistent 

trends are found for NWs with the same widths, whereas thinner NWs exhibit broader 

transitions with respect to temperature. Tc for the NWs is close to that of the starting film. 

For the thicker (w = 20 nm) NWs, the resistance drops by an order of magnitude at liquid 

nitrogen temperature (77 K). It drops below the measurement limit at ~69 K (Fig. 3-3a,b), 

higher than the triple point of nitrogen (63 K). This implies that YBCO NWs thicker than 

~20 nm could operate as fully superconducting nanoelectronic components in a pumped 

liquid nitrogen system. Thinner NWs have significantly broadened transition temperature 

widths, and the resistance drops to effectively zero at ~20 and ~10 K for w = 15 and 10 

nm NWs, respectively. Even these temperatures are considerably higher than those found 

in conventional superconductor NWs of similar widths, which are typically below liquid 

helium temperature (4.2 K). The very broad (>50 K, comparing to a few Kelvins for 

conventional superconductor NWs) transition temperature widths observed in these NWs 

could found applications in NW-based nano-SQUIDs,[22] in which the quantum-

interference-induced resistance oscillations of a pair of superconductive, yet resistive, 

NWs are monitored for local magnetic field measurements. 

The broadened transition temperature widths in the HTS NWs can be captured by 

the same phase-slip theories[2,4] that have been applied to elemental superconductor NWs. 

As discussed in the Introduction, although phase-slip theories were originally derived for 

NWs with w comparable to or smaller than both ξ and λ, recent studies on binary 

compound superconductor NWs and submicron bridges have suggested that they may 
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still be applicable in our case in which ξ < w < λ.[4,15] For thermally activated phase slip 

(TAPS) processes, thermodynamic fluctuations (~kT) instantaneously suppress 

superconductivity at a random point along the NW, resulting in a measurable resistance. 

The energy required to locally suppress superconductivity is (note: the exact form here is 

different from eqn. 1 in Chapter 2, because now SI units is used, which is more 

convenient for the discussions here): 
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Bc is the thermodynamic critical field and A is the cross-section area of the NW. The 

resultant resistance then follows an Arrhenius-like equation with respect to temperature, 

RTAPS ~ exp(−ΔF/kT). Thinner NWs have smaller A and therefore smaller energy barriers 

to overcome to acquire resistance. As a result, the resistance of thinner NWs drops more 

gradually below Tc, and those NWs have wider transition temperature widths.  

As shown in Fig. 3-3a, the R-T relationship observed in our experiment can be 

satisfactorily modeled with TAPS theory using reasonable fitting parameters. The 

difficulty in directly applying Eq. (1) to obtain ΔF for data fitting lies in the fact that both 

Bc and ξ depend on T and may be different from the bulk. In previous studies on 

conventional superconductor NWs, Tinkham et al. derived a formula to estimate the zero-

temperature limit ΔF(0) using Ginzburg-Landau relations, and ΔF(T) was then estimated 

using Eq. (1) and the relationships that Bc ~(Tc−T) and ξ ~(Tc−T)−1/2 when T~Tc, thus:[4,40] 
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In this way, ΔF is estimated from the known normal state resistance RN and the 

NW length L, whereas the cross section A becomes implicit in data fitting. ξ(0) and Tc are 

fitting parameters. This approach applies only to the “dirty limit”, i.e., the mean free path 

  << BCS coherence length 0 , so     2/1
0

2/1
0 //1   LL   (and thus Bc) is 

correlated with   and therefore RN. 

With  ~10 nm and ξ0 ~1 nm, HTS materials are in the opposite, “clean limit”,[18] 

so λ≈λL is not correlated with RN, and Eq. (2a) is no longer applicable. For the w = 20 nm 

NWs, the transition temperature width is small (T~Tc), and so we’ve assumed a T-

dependence of ΔF as in Eq. (2b). We then used A explicitly from the NW geometry, ξ(0) 

~2 nm for YBCO from literature,[6] and Bc(0) as the fitting parameter to estimate ΔF(0) 

from Eq. (1). A reasonable fit (Fig. 3-3a) is thus obtained with Bc(0) ≈ 0.25 T. This value 

is slightly lower than the bulk YBCO value, Bc(0) ~0.5-2 T.[6] This could be due to 

uncertainties and/or approximations in the fitting model,[10,41] size effects,[42] or surface 

effects (e.g., loss of oxygen) that reduce the effective w to < 20 nm. 

For the w = 10 nm and 15 nm arrays, the transitions are too broad and no simple 

analytical approximation of λ(T) [and therefore Bc(T)] is expected to hold over the whole 

range.[2] On the other hand, because w << λ, Bc is correlated with the critical current 

density Jc by:[2,43] 

0

c
c

B
aJ        (3) 

where a is a constant of order unity, depending on the criterion used for the calculation. 

For example, the free-energy criterion gives a = 1, whereas Ginzburg-Landau theory 
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gives a = (2/3)3/2 = 0.544.[2,43] Using this relationship, Tinkham demonstrated that ΔF(T) 

is directly proportional to the critical current Ic(T):[40] 

)(
23

41
)( c TI

ea
TF 







   (4) 

We measured Ic(T) directly, and estimated ΔF(T) by fitting to Eq. (4), with a as 

the single fitting parameter. Satisfactory fits were obtained (Fig. 3-3a) with reasonable 

fitting parameters, a = 0.95 and 0.76 for w =10 nm and 15 nm NWs, respectively. These 

values are quite reasonable, considering that a is the only parameter used in fitting. 

Larger values of a are expected if we take into account that the measured Ic could be less 

than predicted by Eq.(3) due to heating effects, but such effects may not be significant,[8] 

considering the very high Tc and the fact that our nanowires are epitaxially anchored to 

the substrate and in equilibrium with a helium gas during measurement. The deviation of 

the fits in the low-T limit agrees with the fact that TAPS was originally developed for 

T~Tc and should not be expected to hold at T<<Tc. We, however, cannot completely 

dismiss the possibility that surface impurities might contribute to the broadening of 

superconducting transition widths for thinner NWs. 

In addition to the much higher Tc, HTS NWs are also less susceptible to 

suppression of superconductivity from applied magnetic field than are conventional 

superconductors.[12,13] As shown in Fig. 3-3b and c, a 5-T magnetic field only slightly 

perturbs the R-T curves of the YBCO NWs. This is because HTS have higher upper 

critical magnetic fields comparing to conventional superconductors, and also our NWs 

have w << λ ~ 150 nm.  
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3.4 Electrical properties of high-temperature superconductor nanowire arrays at 

high current levels 

 

Figure 3-4. Electrical properties of YBa2Cu3O7-δ nanowire arrays in the high-current 

limit. (a): Four-point V-I curves for an array of 400 nanowires, w = 20 nm and L = 5 μm. 

Measured with both increasing and decreasing current bias (arrows). Ic denotes the 

critical current, i.e., the highest supercurrent that can be sustained when the applied 

current is swept up from zero, whereas Ir denotes the retrapping current, i.e., the current 

level at which the array returns to the superconducting state when the current is swept 

back down. (b): Expansion of the plot in (a) in the low voltage range. (c) and (d): V-I 

curves and dV/dI as a function of I and T for an array of 150 nanowires, w = 15 nm and L 

= 27 μm. Current sweep is from negative to positive. (e) and (f): V-I curves and dV/dI as 

a function of I and T for an array of 100 nanowires, w = 10 nm and L = 50 μm. Black 

lines are TAPS fits to V-I curves. 
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The electrical properties of the HTS NW arrays are also investigated in the high-

current limit (Fig. 3-4). We address whether a dissipationless supercurrent can be 

sustained in HTS NWs. For the w = 20 nm NW array (Fig. 3-4a), at 75 K, although 

residual resistance is still present (cf. Fig. 3-3a,b), a significant part of the current is 

already carried by supercurrent, so the voltage drop across the NWs is much smaller than 

when the NWs are in the normal state (90 K). Sweeping up from zero current, the V-I 

relationship in this regime can be modeled with TAPS,[2,12] before the NWs suddenly 

enter the highly-resistive normal state at critical current Ic. When the current is swept 

down, the NWs return to the superconducting state at a lower current level, Ir. Such 

hysteresis has been reported in conventional superconductor NWs (Chapter 2).[13,16,44] At 

lower T, a larger portion of the current is carried by the supercurrent, resulting in smaller 

voltage drops, and Ic increases steadily. At 70 K, where the low-current-limit resistance is 

very close to zero (cf. Fig. 3-3a,b), dissipationless (characterized by a zero voltage drop) 

supercurrent starts to emerge (Fig. 3-4b). At 65 K, which is still higher than the triple 

point of nitrogen (63 K), the low-current-limit resistance has dropped below a 

measureable value, and a dissipationless supercurrent is sustained up to ~0.2 mA.  

Similar trends are found for the thinner NWs (Fig. 3-4c,e). Dissipationless 

supercurrent occurs below the temperature at which the low-current-limit resistance drops 

to effectively zero (red curves), which is ~20 and ~10 K for w = 15 and 10 nm NWs, 

respectively. These temperatures are still considerably higher than conventional 

superconductor NWs. As with NWs of conventional superconductors,[13,44] hysteresis in 

the V-I curves is less prominent for thinner NWs. 
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Figure 3-5. Additional differential resistance maps measured on YBa2Cu3O7-δ 

nanowire arrays. Plotted are dV/dI as a function of I and T for (a): an array of 150 

nanowires, w = 15 nm and L = 35 μm, (b): an array of 100 nanowires, w = 10 nm and L = 

100 μm, and (c): an array of 100 nanowires, w = 10 nm and L = 200 μm. Grey areas in 

(b) and (c) indicate unmeasured regions in which the voltage level would be too high (> 

~20 V) to be safe for our experimental setup. For example, for R = 60 kΩ and I = 0.4 mA, 

V = IR = 24 V. 

The wide superconducting transition-temperature width found in the thinner NWs 

is further studied by plotting the differential resistance dV/dI as a function of I and T (Fig. 

3-4d,f). At T<Tc, a gap of low differential resistance opens up at low current due to 

supercurrent, and the width of this gap (Ic + Ir) increases steadily with decreasing 

temperature. Transitions between the superconducting and normal states sharpen, and 

regions with effectively zero differential resistance start to appear at finite current. In 

contrast to arrays of conventional superconductor NWs, no peak lines or branching 

features are observed in the dV/dI-T plots. Similarly clean and featureless dV/dI plots 

were obtained for all our YBCO NW devices of various dimensions (Fig. 3-5).  

As discussed in Chapter 2, peak line features in dV/dI-T plots are typical for long, 

conventional superconductor NWs, and reflect multiple voltage-jump steps in V-I curves. 



51 

Each such voltage-jump step is associated with the emergence of a localized resistive 

“phase-slip center” (PSC) along the NW.[2] Each PSC has characteristic interaction length 

of ~2Λ, where Λ is the quasiparticle diffusion length (~10 μm for elemental 

superconductors). Theory predicts that for a uniform filament of length L, approximately 

L/2Λ steps should occur between Ic and 2Ic,
[2,45] and we’ve previously verified this 

prediction in Nb NW arrays (Chapter 2).[13] HTS materials have extremely small Λ (<~10 

nm for YBCO[46]), so all the NWs investigated in this work satisfy L>>2Λ, and in this 

limit PSC steps are not expected to be resolvable.[45] Voltage-jump steps have been 

previously observed in several studies on HTS micron- and submicron- bridges,[33,34,47] 

but they are not obviously a consequence of PSCs.[33] 

 

Figure 3-6. High-temperature superconductor nanowire as a current limiter. 

Simulated current-limiting behavior of an individual YBCO nanowire (width =20 nm) 

basing on the experimental data shown in Fig. 3-4a. The NW is connected in series with 

a load resistance of 50 KΩ. 
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Besides the emerging applications of superconductor NWs in nano-SQUIDs,[22] 

single-photon detectors,[26] and quantum computing,[23-25] another possible application for 

HTS NWs is to function as current limiters[48] in nanoelectronic circuits. We simulated 

the current-limiting behavior of an individual YBCO NW (w = 20 nm) basing on the data 

shown in Fig. 3-4a (Fig. 3-6). At 75 K, the NW limits the current at high bias voltages, 

but because the NW is not fully superconducting, at low biases the NW consumes some 

energy. At T = 65K, the NW is fully superconducting and the current limiter is close to 

perfect: when I < Ic, the NW is a zero-resistance conductor and the I-V characteristics of 

the circuit is uninfluenced by the NW. When the current in the circuit reaches Ic, the NW 

transits into the highly-resistive normal state, thus limiting the current to Ic and protecting 

the circuit. Unlike a standard fuse, this process is fully reversible, so an individual HTS 

NW could fulfill the function of an automatically recoverable current limiting device, 

which otherwise is complicated to build with semiconductor circuits. Such devices could 

be integrated with nanoelectronic circuits while occupying a very small footprint. The 

limiting current Ic may be varied via the working temperature, the NW dimensions, or 

numbers of the NWs used.  

 

3.5 Conclusion 

In this chapter, we have reported[1] for the first time the preparation and electrical 

properties of high-temperature superconductor nanowire arrays. We demonstrated that 

arrays of highly-ordered high-temperature superconductor nanowires can be produced 

down to w = 10 nm (<< λ) and up to 200 μm in length, achieving aspect ratios of >104.  
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Through four-point electrical measurements on the YBa2Cu3O7-δ nanowire arrays, 

we found high-temperature superconductivity is retained in these nanowires. All 

nanowires exhibit a superconducting transition above liquid nitrogen temperature, and a 

transition temperature width that depends strongly upon the nanowire dimensions. The w 

= 20 nm NWs become fully superconducting and are capable of carrying dissipationless 

current at pumped liquid nitrogen temperatures. For thinner nanowires, the transition 

temperature widths are significantly broadened to ~60 K, and complete superconductivity 

is achieved at ~20 and ~10 K for w = 15 and 10 nm nanowires, respectively. In high-

current measurements, voltage-jump steps are not observed due to the small quasiparticle 

diffusion length. 

We have also demonstrated for the first time the applicability of phase-slip 

theories in explaining the size effects in high-temperature superconductor nanowires. All 

experimental results are modeled satisfactorily using phase-slip theories that generate 

reasonable parameters. Furthermore, these nanowires can function as superconducting 

nanoelectronic components with broader working temperature ranges as compared to 

conventional superconductor nanowires. 
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Chapter 4  

 The Crossover from Two Dimensions to One 

Dimension in Granular Electronic Materials 

 
The contents presented in this chapter are based on K. Xu, L. Qin, and J. R. Heath, 

"The crossover from two dimensions to one dimension in granular electronic 

materials," Nature Nanotechnology, advanced online publication; digital object 

identifier: 10.1038/nnano.2009.81 (2009). (Ref. [1]) 

 

4.1 Introduction 

A particularly rich area of nanoscale science is the investigation of low-dimensional 

systems, such as two-dimensional (2D) thin films,[2] one-dimensional (1D) nanowires,[3,4] 

and zero-dimensional (0D) quantum dots (QDs).[5-7] In such systems, the electronic 

structure of the material and the statistical distribution of charge transport pathways are 

strongly influenced by the dimensionality. An equally rich area, but one that is more 

difficult to investigate, is the physics associated with dimensional cross-over. 

Granular electronic materials,[8] in principle, provide the flexibility for 

investigating such dimensional cross-overs. Granular electronic materials are solids 

comprised of densely-packed conductive nanoparticles (particles ~10 nm in diameter), 

and their electrical properties are determined by both the nature of the composite 

nanoparticles and by their packing arrangement.[8] Through separate control over the 
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constituent grains and over the grain organization, granular electronic materials provide a 

unique framework for manipulating and understanding solid-state electrical properties. In 

particular, because the constituent nanoparticle properties[9] are independent of how they 

are assembled, pure packing-arrangement effects, including dimensional effects, can be 

studied. 

Indeed, granular materials self-assembled from monodisperse, chemically 

synthesized colloidal QDs (sufficiently small nanoparticles exhibit charge and energy 

quantization and are often called QDs, referring to the quantum confinement in all three 

spatial dimensions)[5-7] into highly ordered 3D and 2D architectures[7,10-13] have provided 

a laboratory for investigating new physics, including, for instance, the long-range 

resonance transfer of electronic excitations in 3D QD solids[7] and the metal-to-insulator 

transition in 2D QD superlattices.[10,11] In contrast, attempts to assemble nanoparticles 

into ordered 1D (single-file nanoparticle arrays/chains) or quasi-1D granular structures 

have only achieved limited success,[14-19] largely due to the difficulty in obtaining 

continuously connected 1D superstructures. 

In this chapter, we describe[1] a novel method for the assembly of 5 nm and larger 

nanoparticles into granular solids that can be tuned continuously from 2D to 1D. We 

report on the electrical properties of the novel 1D granular solids, and systematically 

establish how electron transport through these systems evolves from the previously 

studied 2D limit to the strictly 1D limit. We find the electrical properties of 1D granular 

systems are fundamentally different from 2D systems. The energy barriers to transport 

increase in the 1D limit, in both the variable-range-hopping (low-voltage) and sequential-

tunneling (high-voltage) regimes. In the variable-range-hopping regime, we 
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experimentally determine the relevant dimensional factor that describes the 2D1D 

transition. In the sequential-tunneling regime, we find an unexpected relationship 

between the temperature, and the voltage at which the conductance becomes appreciable 

- a relationship that appears peculiar to 1D systems. These results are explained by 

extrapolating existing granular conductor theories to 1D. 

 

4.2 Assembly of quantum dots into one-dimensional and quasi-one-dimensional 

granular electronic materials 

We employed a template-directed approach to align QDs into densely packed 1D 

superstructures, utilizing surface interactions between nanopatterned substrates and QD 

solutions. Similar methods have been employed to fabricate ordered nano/micro sphere 

assemblies over the particle size range from microns to 50 nm.[20-22] In this study, ordered 

QD 1D assemblies were achieved by precisely controlling the widths of nanopatterned 

1D trenches (the templates), to within ~1 nm, utilizing QDs characterized by a narrow 

size distribution, and  controlling the QD/trench chemical interface.  

Arrays of SiO2 nanotrenches were fabricated using superlattice nanowire pattern 

transfer (SNAP)[23,24], which, as discussed in Chapter 2, translates the atomic control over 

the film thicknesses within a GaAs/AlxGa1-xAs superlattice into control over the width 

and spacing of nanotrenches. The nanotrench surfaces were chemically functionalized 

with hexamethyldisilazane. The resultant hydrophobic substrate was dip-coated in a 

toluene solution of QDs (Fig. 4-1a,b). A wetting meniscus was formed in the process.  
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Figure 4-1. Assembling quantum dots (QDs) into 1D and quasi-1D arrays. (a): 

Surface functionalization of silica nanowire/nanotrench arrays and the schematic 

diagram of a QD and its surface ligands. (b): The dip-coating method to fabricate QD 

arrays: 1D QD arrays are formed as the QD solution recedes along the nanotrench 

substrate. (c)-(f): Scanning electron microscope images of (c) 3-line, (d) 1-line, (e) 2-

line, and (f) 1.5-line (zigzag) QD arrays of 15 nm magnetite QDs. Scale bars: (c), 400 

nm, (d)-(f), 100 nm. 

Closest-packed QDs fill the nanotrenches (Fig. 4-1,c-f). Fig. 4-1c shows the 

fidelity of this technique: well ordered, 3-QD wide, closest packed structures are 

observed in each of the nanotrenches, with lengths of up to 1 mm. The QD solution coats 

the entire wafer during dip-coating, but only leaves a single layer of QDs deposited 

within the trenches under optimized experimental conditions – a result that likely arises 
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from the increased QD/surface interactions within the trenches. The packing pattern can 

be fine-tuned by either adjusting the trench width (Fig. 4-1c-f), or the QD size or shape 

(Fig. 4-2).  

 

Figure 4-2. Scanning electron microscope (SEM) images of assembled quantum 

dot (QD) arrays, using QDs of varied sizes and shapes. SEM images of (a) 1-line, (b) 

2-line, (c) 3-line arrays of 5 nm Au QDs. (d) 3-line arrays of 25 nm magnetite QDs. (e): 

1-line arrays of 40 nm cuboid magnetite QDs. Scale bars: (a), (b), (c), 100 nm; (d), (e), 

400 nm. 
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As shown in Fig. 4-2, our assembly method is independent of the specific material 

or shape of the QDs, and works well for trench widths of 5 nm and larger. However, we 

note that the assemblies presented in Fig. 4-2 are not intended for electrical 

measurements, and so went through significantly less optimization of experimental 

conditions than did the ones used for the electrical measurements as discussed in this 

chapter.  

The detailed fabrication processes are described below. 

A. SiO2 SNAP nanotrench array preparation. An array of Pt SNAP nanowires 

was obtained by e-beam evaporation onto the raised edges of a differentially etched edge 

of a epitaxially grown GaAs/AlxGa(1-x)As superlattice wafer (IQE, Cardiff, UK).[23] The 

array of Pt SNAP nanowires was transferred as an ink onto a 300 nm thick, thermally 

grown SiO2 layer on top of a silicon substrate. A thin (~10 nm) layer of heat-curable 

epoxy (EpoxyBond 110, Allied High Tech, Rancho Dominguez, CA) was used to 

securely bond the Pt nanowire array to the surface. The superlattice/nanowire 

array/epoxy/SiO2 substrate assembly was baked on a hot plate at 150 °C for 15 min, and 

the superlattice was then released by a wet etch in a H3PO4/H2O2/H2O (5:1:50 v/v, 4.5 h) 

solution, leaving a highly aligned array of Pt nanowires on the surface of the SiO2 

substrate. The Pt nanowire array served as the protective mask for a reactive-ion-etch 

(RIE) process to produce a highly ordered SiO2 nanowire/nanotrench array. A highly 

directional, 40 MHz Unaxis SLR parallel-plate RIE system was implemented to produce 

50 nm deep trenches in SiO2 using CF4/He (20/30 sccm, 5 mTorr, 40 W). The Pt 

nanowires were then dissolved in aqua regia (3:1 HCl:HNO3) at boiling temperature for 

30 minutes. The wafer was then rinsed with water and dried with nitrogen blow, and 
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heated in PRX-127 (Rohm & Haas LLC.) to remove residual epoxy and other possible 

organic contaminants. Eventually, a highly ordered, ultrahigh-density array of SiO2 

nanowires/nanotrenches is obtained with clean surface. The width of each nanowire is 

controlled by the thickness of the AlxGa(1-x)As epilayers in the starting superlattice wafer, 

while the width of each nanotrench is controlled by the thickness of the GaAs epilayers. 

The number of nanowires/nanotrenches in the array is controlled by the number of 

epilayers in the superlattice wafer. 

B. SNAP nanotrench array surface functionalization. The as-prepared nanotrench 

array wafer was heated in a piranha solution (3:1 H2SO4:H2O2) at 120 °C for about 10 

minutes, rinsed with water, and dried on a hot plate at 160 °C. The wafer was then 

surface-functionalized by exposure to a hexamethyldisilazane (Sigma-Aldrich) vapor 

within a sealed chamber. The resulting hydrophobic substrates formed a wetting 

meniscus contact with a toluene solution of QDs. 

C. QD solution preparation. QDs covered with oleic acid ligands are used in this 

study. All the magnetite QD solutions were purchased from Ocean Nanotech Inc. 

(Fayetteville, AR). For the 15 nm QDs, the as-purchased chloroform solution (48 mg/ml) 

was diluted 40 times with toluene toward a final concentration of 1.2 mg/ml. The diluted 

QD solution appeared dark gray and QDs were completely dispersed without any 

precipitates. The 25 nm and 40 nm magnetite QD solutions were prepared with the same 

protocol to a concentration of 1.5 mg/ml and 2.0 mg/ml, respectively. 5 nm Au QDs, 

which were a generous gift from Xingchen Ye in Christopher Murray lab in University of 

Pennsylvania, were dissolved in toluene at a final concentration of 5.0 mg/ml. 
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D. Assembling QDs into nanotrench arrays. The QD assembly step was performed 

by dip-coating a surface-functionalized SiO2 nanotrench array wafer in a toluene solution 

of QDs. The wafer, clamped by a pair of tweezers and fixed onto a syringe pump (NE-

1000 programmable syringe pump, New Era Pump Systems, Inc.), was slowly withdrawn 

from the QD solution at a finely controlled speed (~0.5 mm/min) set to the gears of the 

pump. The speed was optimized for the formation of a close-packed monolayer inside 

each nanotrench, as discussed below.  

 

Figure 4-3. Additional scanning electron microscope images for (a): d ~5 nm Au 

QDs assembled in ~50 nm deep trenches at a dip-coating speed that is slightly higher 

than the optimal speed. Blue arrows point to missing particles. (b): d ~5 nm Au QDs 

assembled at a still higher dip-coating speed. (c): 15 nm magnetite QDs assembled at a 

dip-coating speed that is slightly higher than the optimal speed. (d): 15 nm magnetite 

QDs assembled at the optimized speed. Blue arrow points to a defect (missing particle). 

E. Dip-coating speed optimization. The number of layers inside each nanotrench 

can be controlled by adjusting the concentration of the QD solution and the dip-coating 



66 

speed. For example, for the 1D assembly of d~5 nm Au QDs, when the number of layers 

inside each nanotrench was controlled to be slightly below 1, defects were observed as 

missing particles in the arrays (blue arrows in Fig. 4-3a). When a higher dip-coating 

speed was used, the QD coverage was further reduced, and the submonolayer coverage 

resulted in discontinued QD 1D lines inside the nanotrenches (Fig. 4-3b). For all the QD 

arrays fabricated for electrical measurements, the QD concentration and dip-coating 

speed were carefully optimized to keep the number of layers inside each nanotrench to be 

as close to 1 as possible. We typically begin with higher dip-coating speeds, at which 

clear submonolayers of QDs form in the nanotrenches (Fig. 4-3c). We then gradually 

reduce and optimize the dip-coating speed to achieve close-packed monolayers inside 

each nanotrench. Once optimized, the speed is stable and can be applied to multiple 

SNAP nanotrench arrays. For QD arrays assembled at the optimized speed, sparse defects 

(missing particles) indicate that there are no additional QDs beneath the QD arrays (Fig. 

4-3d). These sparse defects, however, are not expected to affect our measurements, due to 

the large number of parallel channels. 

F. Annealing of magnetite QD arrays. All assembled magnetite QD arrays were 

annealed to form a conductive phase.[25-27] The wafer with QD arrays was heated up to 

400 °C and annealed at the temperature for 60 minutes under the protection of ultra-high 

purity argon in a tube furnace (Linderberg, Model 54233), and then cooled down to room 

temperature overnight. The annealed QD arrays kept their original shape and arrangement 

as confirmed by scanning electron microscopy.  

G. Fabricating electrodes to contact the QD arrays. Metallic contact electrodes 

were patterned across the annealed QD arrays using electron-beam lithography. Two 
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parallel electrodes (30 nm thick Ti and 150 nm thick Au), separated by a designed 

distance (from 50 nm to 500 nm), were precisely positioned across QD arrays according 

to alignment markers that were patterned on the wafer in an earlier step. The two 

electrodes were then connected to two large (150 µm × 150 µm) Au pads from opposite 

directions (Fig. 4-6a), so the measured current is transmitted through a well-defined 

number of QD arrays. The pads were then wire-bonded to a chip carrier.  

H. Temperature and magnetic field dependent electrical measurements. All 

electrical measurements were carried out in a Magnetic Property Measurement System 

(MPMS-XL, Quantum Design Inc.) with standard DC techniques using a Keithley 6430 

sub-femtoamp remote sourcemeter. 

 

4.3 Electrical properties in the low-voltage, variable-range-hopping regime 

The assembly method typically generates >100 identically packed parallel QD 

arrays. This enabled us to carry statistical numbers of temperature-dependent electrical 

and magneto-transport measurements. The insulating SiO2 trench walls prevent electrical 

crosstalk between adjacent QD arrays. Magnetite QDs, used as our model system, are 

half-metallic, and strong magnetoresistance effects have been reported in magnetite QD 

films .[25] 

To characterize how the 2D1D cross-over influences the electrical properties of 

granular electronic systems, we investigated a single QD size (15 nm), and varied the 

trench widths to control the number of QDs across the width of each array. Quasi-1D 

arrays with 3 (Fig. 4-1c), 2 (Fig. 4-1e), and 1.5 (zigzag structure, Fig. 4-1f) QDs across 



68 

the width, as well as 1D linear arrays (Fig. 4-1d) were studied and compared with a close-

packed QD monolayer film. Elteto et al. found that quasi-1D QD arrays as narrow as 

four-QD wide are electronically similar to full 2D arrays[16]. 

 

Figure 4-4. Measured resistance per array at room temperature as a function of 

array length for quasi-1D and 1D QD arrays with different widths. (a): Plotted on 

linear scales. (b): Plotted on logarithmic scales. The number of QDs across the width of 

each array is label in the graph. 1D zigzag arrays are labeled as 1.5 QD. 

We fabricated a number of devices, each contacting 50 to 400 parallel, identically 

packed 1D or quasi-1D arrays (Fig. 4-6a), and plotted the measured resistance per array 

as a function of array length (Fig. 4-4). A linear dependence is observed, indicating that 

the device transport properties are dominated by the QD arrays with negligible 

contribution from contacts. In addition, consistent trends are found for different 

arrangement of QD arrays: data from arrays with the same designed number of QDs 

across the width of each array follow the same linear trend, whereas much larger 

resistance per array is found as the number of QDs across is reduced. Due to the large 
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number of parallel channels, defects, such as missing particles, are not expected to affect 

the measurements at the array lengths reported here.  

 

Figure 4-5. Magnetoresistance response of the QD arrays. (a): Magnetoresistance at 

an applied magnetic field of 5 T, as a function of temperature. (b): Magnetoresistance at 

200 K, as a function of applied magnetic field. Magnetoresistance is defined by the 

percentage change of resistance when an external magnetic field is applied. The 

number of QDs across the width of each array is label in the graph. 1D zigzag arrays are 

labeled as 1.5 QD. 

We have also measured the magnetoresistance (MR) response of all magnetite 

QD arrays investigated in this study. MR is defined by the percentage change of 

resistance when an external magnetic field is applied. Large negative MR is found for all 

devices (Fig. 4-5), and similar temperature trends are found for all devices. This verifies 

that the electrical properties measured in our experiments arise from the magnetite QD 

arrays, since positive and much smaller MR is expected for conductance through non-

magnetic materials. Reduced MR is found for quasi-1D and 1D arrays comparing to the 

QD film, possibly due to surface effects.[26,28]  
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Figure 4-6. Low-bias conductance measurement of the QD arrays. (a): Scanning 

electron microscope image of a typical device used in the electrical measurements, 

which contacts 160 parallel 1D QD arrays. Scale bar: 1 μm. (b): Temperature-dependent 

conductance at low voltage bias. The number of QDs across the width of each array is 

labeled in the graph. 1D zigzag arrays are labeled as 1.5 QD. Inset: ln(G)-T-1/2 slopes of 

the QD arrays, plotted as a function of the dimensionality of the system. n is the number 

of QDs across the width of each array. 

The conductance (G) of the QD arrays was studied at low (<100 mV) applied 

voltage bias as a function of temperature (T) (Fig. 4-6b). A linear dependence was found 

for all arrays when G is plotted on a logarithmic scale against T-1/2, in agreement with 

previous studies on 2D and 3D QD assemblies.[25,29-32] Such behavior is commonly 

ascribed[29-32] to the Efros-Shklovskii variable range hopping (ES-VRH),[33] or super-
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exchange,[34] transport mechanisms, although recent studies have also suggested 

alternative mechanisms,[8,32] e.g., elastic and inelastic cotunneling.[8,35,36] We employ the 

ES-VRH model to explain our data because that model has been the most widely used 

and permits the broadest comparison of our results against the literature. 

 

Figure 4-7. The temperature-dependent conductance data obtained on five 

different 1D zigzag (1.5 QD) array devices. The slopes of each set of data are labeled 

in the graph.  

Precisely controlled assembly helps to reveal trends in our G-T data: similar 

ln(G)-T-1/2 slopes were found for devices with the same designed numbers of QDs across 

the width of each array. For example, for 1D zigzag (1.5 QD) arrays, we have performed 

temperature-dependent conductance measurement on five different devices, and the full 

dataset is re-plotted with different colors in Fig. 4-7. Consistent results [in particular, the 

ln(G)-T-1/2 slopes, as labeled in the graph] are observed for different devices. We have 

presented the ln(G)-T-1/2 slopes obtained from the five sets of data in the inset of Fig. 4-

6b, but only plotted three sets of the conductance data in Fig. 4-6b due to the overlapping 
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between data obtained from different devices. On the other hand, notably (up to ~60%) 

steeper slopes were observed as the QD assemblies cross over from 2D to 1D (Fig. 4-6b 

inset).  

The steeper ln(G)-T-1/2 slopes indicate an increasing energy barrier for charge 

transport accompanies the 2D-1D crossover. According to VRH,[33,37] the charge 

transport efficiency is determined by the optimal hopping network, which in turn is 

determined by competition between the hopping distance and the number of available 

energy levels at a given distance. ES-VRH predicts a linear ln(G)-T-1/2 relationship:[33] 

])/(exp[~)( 2/1
0 TTTG  ,    T0 = βDe2/κa,  (1) 

where e is the electron charge and κ is the dielectric constant. a is the localization length, 

which characterizes the decay length of electronic wave functions, and in QD arrays is 

approximately the size of each QD.[30,31] The coefficient βD depends on the system 

dimensionality, D, and should increase as D is reduced; establishing a (percolating) 

hopping network becomes increasingly difficult with reducing dimensions, and so the 

energy barrier for conductance is higher. For 3D and 2D cases, theory and simulations 

indicate[38,39] β3 ~2.8, and β2 ~6.5. No theoretical investigation of β1 has been reported. 

Our data allow for an experimental determination of β1. The consistent trend of the ln(G)-

T-1/2 slopes suggests that βD increases progressively as the array evolves from 2D to 1D. 

For the 1D linear arrays, the absolute value of the ln(G)-T-1/2 slope is increased to 360 

K1/2 from 230 K1/2 in 2D. Consequently, assuming similar localization lengths for 1D and 

2D arrays, this suggests β1/β2 ~(360/230)2=2.45 and β1~16. This result is plausible, 

considering a 2.3-fold (6.5/2.8) increase in βD is found for 2D systems compared to 3D 

systems. 
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4.4 Electrical properties in the high-voltage, sequential-tunneling regime 

 

Figure 4-8. Electrical properties of the QD arrays at high voltage. (a): I-V curves of a 

QD 1D linear array device measured at various temperatures. (b): Differential 

conductance (dI/dV) as a function of voltage and temperature for 1D linear arrays with 

varied lengths. White areas indicate regions in which the differential conductance is 

higher than the upper limit of the color scale. Gray areas indicate unmeasured regions in 

which the current level would be higher than the upper compliance of current (~20 nA) 

set to protect the devices. (c): Threshold voltage as a function of temperature for the 

three devices in (a). Inset: extrapolated threshold voltage at 0 K as a function of length. 

(d): Differential conductance as a function of voltage and temperature for a 1D zigzag 

QD array device, a quasi-1D device with 2 QDs across the width of each array, and a 2D 

QD monolayer film. The color scale shown in (b) applies to the 1D zigzag and quasi-1D 

devices, whereas the expanded scale in (d) applies for the QD film device. Gray areas 

indicate unmeasured regions. 
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At low temperature, conductance due to the thermally activated hopping 

processes falls below the detection limit at low bias voltages. On the other hand, high 

bias voltages can overcome the Coulomb blockade and result in measurable conductance 

through sequential tunneling between nearest-neighbor particles. This different 

mechanism of conductivity should yield different dimensional/geometric effects. 

Fig. 4-8a presents the I-V curves measured on a 1D linear QD array device at 

different temperatures. As the temperature is lowered from room temperature, a gap of 

low current opens up at low voltages,[15,32,40,41] and a finite threshold voltage Vt is 

required for the onset of appreciable (>5×10-12 Ω-1) conductance. To further characterize 

how the electrical properties evolve for all temperatures, we present in Fig. 4-8b the 

differential conductance dI/dV measured on three 1D linear array devices as a function of 

both V and T, from which the Vt–T relationship can be readily identified (Fig. 4-8c). 

Vt is found to be directly proportional to the length of the assembly, L, both for 

1D linear arrays (Fig. 4-8c) and zigzag arrays (Fig. 4-9). This result was predicted:[42,43] 

Vt, the overall energy barrier for charge transport, is proportional to the number of 

tunneling barriers in the conduction path, which is in turn proportional to L. This 

contrasts with the low-voltage VRH conductance, in which the relevant energy barrier for 

charge transport (T0) only depends on the localization length and the dimensionality of 

the system (Eq. 1). As a result, similar ln(G)-T-1/2 slopes are found for different devices 

with the same numbers of QDs across the width of each array, regardless of L (Fig. 4-6b). 
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Figure 4-9. Additional data on the electrical properties of the 1D zigzag QD arrays 

at high voltage. (a): Differential conductance (dI/dV) as a function of voltage and 

temperature for 1D zigzag arrays with varied lengths. Gray areas indicate unmeasured 

regions in which the current level would be higher than the upper compliance of current 

(~20 nA) set for the protection of the devices. (b): Threshold voltage as a function of 

temperature for the three devices in (a). Inset: extrapolated threshold voltage at 0 K, as 

a function of length. 

For the 1D arrays, a linear Vt-T relationship is observed at low T, but at high T and 

low V, a pronounced sublinear Vt-T relationship is found (Fig. 4-8b,c).  This indicates that 

more thermal energy is required to overcome the remaining energy barriers for charge 

transport. Linear Vt-T relationships have been previously observed, up to the temperature 

that Vt drops to 0, in 2D QD assemblies[40,41] and quasi-1D chains of irregular 

nanoparticles,[15] and explained by theory.[43,44] The sublinear Vt-T relationship we find 

has not been previously predicted or observed. Our results (Fig. 4-8, Fig. 4-9, and Fig. 4-

10) indicate that this phenomenon is peculiar to 1D QD arrays: the sublinearity is 

pronounced in both the 1D linear and zigzag arrays, barely seen in 2-QD-wide quasi-1D 

arrays, and not observed at all in wider quasi-1D QD arrays or 2D QD films.  
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Figure 4-10. Temperature dependence of the threshold voltage. (a): Experimental 

threshold voltage-temperature dependence measured on different QD array devices. 

The threshold voltages are normalized to the extrapolated values at 0 K. The number of 

QDs across the width of each array is labeled in the graph. 1D zigzag arrays are labeled 

as 1.5 QD. (b): Theoretical threshold voltage-temperature dependence. Black and 

purple lines are for 2D and 1D cases, respectively. The green line is for an intermediate 

case with pc = 0.71, corresponding to 2-QD-wide quasi-1D arrays (Supplementary 

Information). t is the normalized temperature: t = bkBT/∆Emax. Inset: probability 

distribution for ∆E in tunneling events. 

     This novel sublinear Vt-T relationship can be explained by extrapolating the 

theory discussions of Jaeger et al.[41,43] Consider the case when the coupling capacitance 

between QDs is negligible compared to C0, the capacitance of an individual QD. When 

an electron tunnels from a QD to its nearest neighbor, the energy change for the system, 

ΔE, falls into the range of [−ΔEmax, ΔEmax], where ΔEmax = e2/C0, and a triangle-shaped 

distribution of the probability density, P(ΔE), is expected (Fig. 4-10b inset).[41] A finite 

temperature broadens the energy levels of the QDs, and conduction barriers are removed 
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for neighboring QDs satisfying |ΔE| < bkBT, where b ~2.4 characterizes the extent of 

thermal broadening of the Fermi-Dirac distributions in QDs.[43] When the fraction of 

conduction barriers being removed, p(T), reaches the bond percolation threshold of the 

lattice, pc, a continuous path with all barriers removed emerges, and Vt(T) drops to 0. The 

Vt-T relationship is thus modeled as Vt(T)/Vt(0) = 1−p(T)/pc.
[43] 

  Previous studies[41,43] have considered the 2D case, where pc~0.347 is small due to 

the existence of multiple possible pathways. Only 34% of all the conduction barriers need 

to be overcome for Vt(T) to drop to 0 (the shaded area in the Fig. 4-10b inset). In this 

region, P(ΔE) is effectively constant, so the same increment of temperature results in the 

removal of the same number of conductance barriers. As a result, a linear Vt-T 

relationship is observed. 

  By contrast, 1D lattices have only a single pathway available for tunneling 

conductance (pc=1), and so every tunnel barrier must be overcome for current to flow. 

Because P(ΔE) is considerably smaller for larger |ΔE|, smaller numbers of barriers are 

removed for an equal temperature increase at higher T. In particular, since P(ΔE) drops 

towards zero when |ΔE| approaches ΔEmax, the last small fraction of barriers that keep Vt 

from dropping to 0 are especially difficult to overcome. This explains the sublinear 

dependence of Vt on T we find at high temperature and low bias.  

By integrating P(ΔE) from −bkBT to bkBT, we have plotted the theoretical Vt-T 

relationship (Fig. 4-10b). The results satisfactorily capture our experimental data (Fig. 4-

10a) for the 2D and 1D cases, and support our observation that the sublinearity is peculiar 
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to truly 1D QD arrays: pc drops rapidly below 1 for quasi-1D arrays; for 2-QD-wide 

arrays, pc~0.71, and the sublinearity becomes much less noticeable (Fig. 4-10b). 

Here the calculation of the bond percolation threshold, pc, for 2-QD-wide quasi-

1D arrays was carried out using computer simulations. The model system was a 2-QD-

wide quasi-1D array 15 QDs in length, arranged in a close-packed triangle lattice (Fig. 4-

11 inset), similar to those investigated in our experiment. A Monte-Carlo method was 

used to randomly add in connecting bonds between neighboring sites, until a fully 

connected pathway was formed from the left end of the array to the right end. pc was then 

calculated as the number of connecting bonds used divided by the number of all possible 

bonds.[45] ~500,000 rounds of simulation were carried out, and the resultant distribution 

of pc is plotted in Fig. 4-11, yielding pc = 0.71±0.19 (95% confidence).  

 

Figure 4-11. Computer simulation results of the bond percolation threshold for 2-

QD-wide quasi-1D arrays. Inset: the model system used for the simulation. 



79 

Similar Vt-T behaviors were observed for 1D linear and zigzag arrays, because 

they are topologically equivalent for percolation in the tunneling regime, i.e., each QD 

has two nearest neighbors for charge tunneling. In contrast, in the VRH regime, the 

zigzag arrangement allows for an increase in the density of hopping pathways, and 

therefore appreciably smaller βD and ln(G)-T-1/2 slopes are found relative to the linear 

arrangement (Fig. 4-6b inset). 

 

4.5 Conclusion 

The described[1] approach for assembling arrays of monodisperse quantum dots 

permits the electron transport properties of granular systems to be characterized across 

the 2D-1D dimensional cross-over. The electrical properties of 1D granular systems are 

significantly different from 2D systems, due to the single available transport pathway in 

one dimension. The energy barriers to transport increase in the 1D limit, in both the 

variable-range-hopping (low-voltage) and sequential-tunneling (high-voltage) regimes. In 

the variable-range-hopping regime, we experimentally determine the relevant 

dimensional factor that describes the 2D1D transition. In the sequential-tunneling 

regime, we find an unexpected relationship between the temperature, and the voltage at 

which the conductance becomes appreciable - a relationship that appears peculiar to 1D 

systems. These results are explained by extrapolating existing granular conductor theories 

to 1D. 

Harnessing related approaches to characterize other, equally rich transport 

phenomena, such as thermal conductance, represents an exciting future challenge. In 
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Chapter 6, we will further discuss how similar assembly methods can be tailored to 

produce ordered 2D arrays of quantum dots. 
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Chapter 5  

The Emergence of a Coupled Quantum Dot Array 

in a Silicon Nanowire Gated by Ultrahigh Density 

Top Gate Electrodes 

 
The contents presented in this chapter are based on the experimental part of K. Xu, 

J. E. Green, J. R. Heath, F. Remacle, and R. D. Levine, "The emergence of a 

coupled quantum dot array in a doped silicon nanowire gated by ultrahigh density 

top gate electrodes," Journal of Physical Chemistry C, 111, 17852-17860 (2007). (Ref. 

[1]) 

 

5.1 Introduction 

Sufficiently small (<100 nm) particles exhibit charge quantization like natural atoms. 

Such “artificial atom”[2,3] finite fermion systems are often called ‘‘quantum dots’’ (QDs), 

referring to the quantum confinement in all three spatial dimensions. The charge transport 

properties of QD systems are characterized by single-electron charging and resonant 

tunneling through the quantized energy levels of the QDs.[2-5] As single-electron devices, 

QDs represent an ultimate limit.[6,7] They can also serve as building blocks to form 

complex superstructures with intriguing properties (cf. discussions in Chapter 4). 

Coupled QD systems,[8-11] in particular double QDs,[12,13] have also been investigated, 

often as platforms for the realization of solid state quantum bits.[14] For these 
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experiments, gate electrodes are utilized to both spatially confine and to control the 

coupling between the QDs.  

Lithographically patterned (field-confined) QDs[2-5] are relatively large (>~100 

nm) structures. While this implies weak quantization effects and therefore the need for 

ultra-low temperature measurements, such QDs are readily integrated into device 

platforms, and electrical contacts to the QDs are intrinsically established. By contrast, 

chemically synthesized (spatially confined) QDs,[15,16] while challenging to incorporate 

into device platforms, are significantly smaller, and so are characterized by much larger 

energy level spacings and can be interrogated at higher temperatures. In Chapter 4, we 

have demonstrated a method to align chemically synthesized QDs into one-dimensional 

and quasi-one-dimensional arrays that can be relatively easily incorporated into device 

platforms.[17]  

A compromise between these two classes of devices are QDs defined within 

single-wall carbon nanotubes[18] and semiconductor nanowires (NWs).[19,20] Here, the 

size of the QD is defined by tunnel barriers at the source and drain contacts to a 

nanowire-based field-effect transistor. Smaller QDs have been achieved by utilizing 

intrinsic[21,22] or induced[23] defects in nanotubes, or barrier heterostructures intentionally 

introduced during the axial growth of the NWs.[24,25] Recently, coupled double QD 

systems defined by local gates have been reported in InAs NWs[26] and carbon 

nanotubes.[27] However, these systems have involved relatively large gate electrodes and 

electrode spacings (>100 nm).[26-28] Narrower and more closely spaced gates, in 

combination with true size-confined NWs, would help enhance quantization effects of the 

system, as well as the coupling strength between QDs. 
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Silicon [in particular, silicon on insulator (SOI)] is, in principle, an attractive 

material for QD experiments due to its highly developed fabrication technology and the 

potential integration of QD devices with conventional electronics circuits.[7,29] Previous 

approaches towards building QD systems on SOI substrates have mainly focused on 

obtaining NWs from lithography followed by etching procedures to reduce the NW 

width.[30-35] Single-electron effects have been observed in devices fabricated using this 

method, but the results disagree with the designed device geometry. The etching 

processes introduce defects and surface roughness that lead to the random formation of 

QDs within the nanostructure and irreproducible transport characteristics. For example, 

Coulomb blockade diamonds in conductance maps, which are considered a signature of 

single-electron charging, are typically not obtainable because the change of signal in 

consecutive scans can be much larger than the gate influence.[35] Electrostatically defined 

systems have resulted in highly controllable and reproducible coupled double QDs along 

NWs,[28] but the lithography step employed to pattern the gate electrodes limits the 

spacing between the gates (and hence the length of each QD) to be relatively large (~100 

nm). This leads to very small charging energy scales (on the order of 1 meV) and 

correspondingly low coupling strengths for the QDs.[28] 

We report[1] here on the investigations of Si NW-based coupled QD systems. We 

utilized the superlattice nanowire pattern transfer (SNAP) method[36,37] to produce high-

quality Si NWs as a template for investigating coupled QDs. We also utilized SNAP to 

pattern an array of high density metal nanowire top gate electrodes (nanowire gate array; 

NWGA). This novel combination of geometric confinement from the width of the 

underlying Si NW and the electric field confinement from the ultrahigh-density NWGA 
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has for the first time allowed for the controlled formation of a concatenated 1D array of 

small (17 nm) quantum dots coupled in series along the length of the underlying Si NW. 

As a result, reproducible Coulomb blockade is observed with much larger energy scales 

(on the order of 10 meV), and full characterization of devices are achieved at readily 

attainable liquid helium temperatures (~4 K). The regularity of the Coulomb blockade 

diamonds in differential conductance maps is shown to be closely related to the regularity 

of the NWGA. The gate capacitance of each QD, as calculated from the Coulomb 

blockade diamonds, is in agreement with those calculated from the geometry of each QD 

as defined by top gate electrodes. The QD size effect is examined by varying the width of 

the underlying Si NWs. In addition, grouping of Coulomb blockade diamonds resulting 

from the coupling of QDs was observed in a device with three evenly spaced top gate 

electrodes. These results demonstrate that coupled QDs in series can be defined along the 

underlying Si NW by an array of ultrahigh-density SNAP top gate electrodes.  

 

5.2 Fabrication of Si nanowire-based coupled quantum dot devices 

The fabrication process flow is shown in Fig. 5-1. The starting structures were 

single-crystal Si NWs defined by patterning a 30 nm thick silicon-on-insulator (SOI) 

substrate with a 250 nm thick buried oxide (<100> orientation; Simgui, Shanghai, China). 

The SOI substrate was doped with boron by thermal diffusion of a spin-on dopant (Boron 

A, Filmtronics, Butler, PA) to a level of ~ 18105 cm-3,[38] as determined by four-point 

resistivity measurements. This process generates a gradient of dopant atoms through the 

thickness of the SOI wafer, effectively limiting the conducting part of the Si layer to the 

top 10 nm of its 30 nm thickness.[39] 
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Figure 5-1. Process flow for the fabrication of a Si nanowire-based coupled 

quantum dot device. (A): An array of ~17 nm wide Si nanowires (NWs) with 50 nm 

spacing is prepared using SNAP. (B): An electron-beam-defined, ~50 nm wide aluminum 

mask is put down to protect one single Si NW. (C): The single Si NW is sectioned out 

and contacted with source/drain leads. (D): A SiO2 layer is deposited on top as the 

dielectric layer. (E): An array of ultrahigh-density titanium NWs is fabricated on top of the 

dielectric layer in perpendicular to the single Si NW, serving as the nanowire gate array.  

The wider Si NWs (40 nm wide, 30 nm thick) investigated in this study were 

patterned using electron-beam lithography (EBL), while the narrower nanowires (17 nm 

wide, 30 nm thick) were obtained by sectioning out a single NW from an array of SNAP 

Si NWs: an array of ~17 nm wide Si NWs with 50 nm spacing were patterned from the 

SOI using SNAP (Fig. 5-1A),[36,37] and an EBL-defined, ~50nm wide aluminum mask 

was put down to protect one single Si NW in the array (Fig. 5-1B). All other NWs were 

etched away with reactive ion etching (RIE). 
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NWGA

   

     

Figure 5-2. Si nanowire-based coupled quantum dot devices. (A): Schematic 

drawing of the side view of the device. The nanowire (NW) is contacted by source and 

drain electrodes, and gated by the nanowire gate array (NWGA) on the top. (B): 

Scanning electron micrograph of a device with an e-beam defined 40 nm-wide 

underlying Si NW and three top gate NWs. The contour of the underlying Si NW is 

highlighted with red dashed lines. Scale bar: 200 nm. (C): Five Ti/Pt contacts made to 

one single Si NW sectioned out from an array of ~17 nm wide Si NWs, corresponding to 

the structure drawn in Fig. 5-1C. Scale bar: 500 nm. (D): The same structure after 

dielectric layer and NWGA are fabricated on top, resulting in four full devices each 

corresponding to the structure drawn in (A) and Fig. 5-1E, with different source/drain 

distances and hence different numbers of top gate NWs. 

 A B 

 C D
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 Metallic contacts (Ti/Pt, 20nm/30nm) were established to the Si NWs by EBL 

(Fig. 5-1C)  to generate source-drain channels that varied in length from 100 to 300 nm. 

The device was annealed in forming gas (5% H2 in N2) at 475 °C for 5 min to promote 

low-barrier source/drain contacts.[38] A dielectric layer (silicon oxide, 15 nm) was then 

deposited on top of the device (Fig. 5-1D), followed by a 35 nm titanium layer. An array 

of ultrahigh-density platinum SNAP NWs[36] with ~17 nm width and 33 nm pitch was 

glued down on top of the titanium layer, perpendicular to the underlying single Si NW. 

RIE was used to transfer the platinum pattern into the titanium layer, which serves as the 

NWGA to define QDs along the underlying Si NW (Fig. 5-1D and Fig. 5-2A). Note that 

the titanium NWs over the source and drain leads are not expected to affect the transport 

properties of the device: metallic contacts do not respond to a gate voltage.  

The number of SNAP top gate electrodes across the underlying Si NW (and hence 

the number of QDs in series) is varied from device to device (3 to ~10) and controlled by 

the source-drain length, as SNAP wires of the same pitch (33 nm) are always used to 

define the top gate electrodes. All gate electrodes were shorted together: independent 

control of the different gate electrodes, which would constitute a non-trivial fabrication 

procedure,[39] is not attempted for the study reported here. Representative micrographs of 

the devices are given in Fig. 5-2. 

 

5.3 Electrical measurement results 

Electrical measurements were first carried out on devices with e-beam defined 

~40 nm wide underlying Si NWs. Fig 5-3a shows such a device with about four top gate 

electrodes across the underlying Si NW, with modest disorder of the NWGA in the Si 



91 

NW region. Even for devices in which the NWGA exhibited significant disorder, 

reproducible Coulomb blockade diamond diagrams were readily measured. Such 

reproducibility is demonstrated in the sdVI  / - VNWGA - Vsd plots of Fig 5-3b and c, 

which were obtained by scanning the gate voltage from low to high and from high to low, 

respectively. The comparable sizes of the diamonds suggest the formation of QDs of 

comparable sizes along the NW, while irregularities of the diamonds are attributed to the 

inevitable small variation of the sizes of the QDs due to the irregularity of the NWGA. 

 

Figure 5-3. Electrical measurement results on a device with an e-beam defined ~40 

nm wide underlying Si nanowire. (a): Scanning electron micrograph of the device. The 

contour of the underlying Si nanowire is highlighted with red dashed lines. Scale bar: 

200 nm. (b): Coulomb blockade map ( sdVI  / - VNWGA - Vsd plot) of the device recorded at 

4.3 K, obtained when scanning the gate voltage from low to high. (c) The same plot 

obtained when scanning the gate voltage from high to low.  

Another 40nm-wide device with relatively ordered NWGA is reported in Fig. 5-

4AB. Diamonds of similar energy scales were again observed. For comparison, we also 

performed measurements on a 40nm-wide device with a significantly disordered NWGA, 

as shown in Fig. 5-4CD. Reproducible Coulomb blockade was still observed, with 

diamond-like features in the sdVI  / - VNWGA - Vsd plot. In contrast to the results of Fig. 

sdVI  /
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5-3 and Fig 5-4B, however, the sizes of the diamonds in this disordered device varied 

significantly, and diamond structures exhibited significant overlap with one another. 

These results were suggestive that QDs of varying sizes had been defined in series along 

the silicon NW, in agreement with the observed structure of that specific device.  

 

Figure 5-4. Comparison of data obtained on devices with different degrees of 

irregularity of top gate electrodes. (A): Scanning electron micrograph of a device with 

an e-beam defined ~40 nm wide underlying Si nanowire (NW) and very little irregularity 

of top gate electrodes, especially for the underlying Si NW region. The contour of the 

underlying Si NW is highlighted with red dashed lines. Scale bar: 200 nm. (B): sdVI  / - 

VNWGA - Vsd plot of the device recorded at 4.5 K. (C): Scanning electron micrograph of a 

device with an e-beam defined ~40 nm wide underlying Si NW and highly irregular top 

gate electrodes. The contour of the underlying Si NW is highlighted with red dashed 

lines. Scale bar: 200 nm. (D): sdVI  / - VNWGA - Vsd plot of the device recorded at 4.5 K. 

sdVI  /

sdVI  /
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The properties of the QDs in these 40nm-wide devices can be obtained from the 

Coulomb blockade diamond diagrams as shown in Fig. 5-3, Fig. 5-4, and Fig. 5-6.[4,5,20] 

The addition energy Eadd can be directly measured from the maximum in Vsd for the 

conductance gap of the diamonds, ΔVsd ~10 mV. This 10 meV addition energy is 

reflected in the gate voltage domain by the distance between consecutive diamonds, or 

the width of each diamond in Vg, which is estimated to be ΔVg ~30 mV. The gate 

coupling factor can therefore be calculated as: α = ΔVsd/ΔVg = Cg/C= 0.33, where Cg and 

C are the gate capacitance and total capacitance of each QD, respectively. This α value is 

close to those reported for systems with similar dimensions.[20]  

The gate capacitance Cg of each dot can be calculated from ΔVg assuming 

charging energy U = e2/C is the dominant component of Eadd compared to the other 

component ΔE, the single-particle energy difference between consecutive quantized 

energy levels of the QD. This assumption should be valid for the dimension discussed 

here, and leads to:[20] 3.5~
gsdadd

22
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CCg   aF. This value is in 

good agreement with the gate capacitance calculated from the geometry of each QD as 

defined by top gate electrodes, Cg’ = 4.7 aF, indicating that the QDs in this system are 

really defined by the NWGA.  

QD size effects were examined by comparing the above data with the results 

obtained from devices with narrower underlying Si NWs. Fig. 5-5A shows the Coulomb 

blockade diagram of one of the devices shown in Fig. 5-2D, with a ~17 nm wide 

underlying Si NW, and Fig. 5-5B shows the data on another device with a ~20 nm wide 

underlying Si NW. Diamonds of similar sizes were obtained with a certain amount of 
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overlapping structure for both devices, in agreement with the observed modest disorder 

of the NWGA (Fig. 5-2D). Note the change of the (Vsd) energy scale for these plots as 

compared with those of Fig. 5-3 and Fig. 5-4. The addition energy Eadd directly measured 

from the maximum in Vsd for the conductance gap of the diamonds (Fig. 5-5A) is 30~40 

mV for the device with ~17 nm wide underlying Si NW, more than double the value 

obtained on devices with ~40 nm wide underlying Si NWs (10~15mV). This is consistent 

with the formation of smaller QDs along the SNAP Si NWs. The addition energy for the 

device with a ~20 nm wide underlying Si NW is estimated from Fig. 5-5B to be 25~30 

mV, a little smaller than the ~17 nm device, and about twice that of the ~40 nm devices, 

again in agreement with the size of each individual QD defined by the device geometry. 

  

Figure 5-5. Coulomb blockade maps (∂I/∂Vsd - VNWGA - Vsd plots) of two devices with 

SNAP-defined underlying Si NWs, measured at 4.5 K. (A): Measured from a device 

with a ~17 nm wide underlying Si NW (Fig. 5-2D); (B): Measured from a device with a 

~20 nm wide underlying Si NW.  

Grouping of Coulomb blockade diamonds resulting from the coupling of QDs 

was observed in a device with three evenly spaced top gate electrodes (Fig. 5-6). A 

micrograph of the device is presented in Fig. 5-2B. Very little disorder of the NWGA is 

observed in the Si NW region of this device, and this allows for the formation of three 

 B  A sdVI  /
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QDs of nearly identical sizes that electronically couple with each other. In the sdVI  / - 

VNWGA - Vsd plot, Coulomb blockade diamonds of similar sizes appear to be arranged into 

groups of three, as marked out by dotted frames in Fig. 5-6. The observed structures are 

reminiscent of previous studies on lithographically patterned coupled QD systems, in 

which three coupled QDs gave rise to conductance peaks that were arranged into groups 

of three.[9] However, we were able to observe such effects in Si at much higher 

temperatures (4.3 K vs. 15 mK). 

 

Figure 5-6. Coulomb blockade map (∂I/∂Vsd - VNWGA - Vsd plot) of a device with 40 

nm wide underlying Si NW and three highly-ordered top gate NWs (Fig. 5-2B), 

recorded at 4.3 K. Coulomb blockade diamonds of similar sizes appear to arrange into 

groups of three, as marked out by dotted frames. 

 

5.4 Conclusions 

In this chapter, we have reported[1] the electrical characteristics of Si nanowires 

gated by arrays of very closely spaced nanowire gate electrodes. This novel combination 

of geometric confinement from the width of the underlying Si nanowire and the electric 

field confinement from the ultrahigh-density top gates has allowed for the controlled 

sdVI  /
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formation of a concatenated 1D array of small quantum dots coupled in series along the 

length of the Si nanowire. Experiments were reported for two widths of Si nanowires: 40 

nm and 17 nm, and for a varying number of gate electrodes, all spaced at a pitch of 33 

nm. Reproducible confinement and inter-dot coupling effects are observed with large 

energy scales (~10 meV), and clear Coulomb blockade diamond features were obtained at 

liquid helium temperatures when the conductance is plotted in the plane of the source-

drain and gate voltages. The regularity of the Coulomb blockade diamonds in differential 

conductance maps is shown to be closely related to the regularity of the top gate 

electrodes. The gate capacitance of each QD, as calculated from the diamond diagrams, is 

in agreement with those calculated from the geometry of each QD defined by top gate 

electrodes. In addition, grouping of Coulomb blockade diamonds resulting from the 

coupling of QDs was observed in a device with three evenly spaced top gate electrodes. 

These results demonstrate that coupled QDs in series can be defined along the underlying 

Si nanowire by an array of ultrahigh-density top gate electrodes.  
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