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Abstract

We developed a “two-way” calibration technique for studying clustered events, par-

ticularly their mechanisms and rupture directivities. First, we demonstrate that the

magnitude 4 events with known source mechanisms can be used to calibrate the path

effects on the short-period (0.5-2 sec) P waves, so that the corrected P waves can be

modeled for determining focal mechanisms of the smaller events within the cluster.

The correction is formulated in terms of a station-specific “Amplitude Amplification

Factor” (AAF), whose origin is mainly due to the site effect. Second, we show that the

smaller events with radiation pattern corrections provide excellent empirical Green’s

functions (EGFs) for investigating the detailed rupture processes of the magnitude 4

events. In particular, we applied our methods to the 2003 Big Bear sequence. Our

main results indicate that (1) Short-period (0.5-2 sec) P waves can be used for de-

termining focal mechanisms of events as small as M ∼ 2, provided necessary path

calibration. (2) Magnitude 4 events display various detailed rupture processes.

A new technique CAPloc to retrieve full source parameters of small seismic events

from regional seismograms is developed, which include origin time, epicenter location,

depth, focal mechanism, and moment magnitude. Despite rather complicated propa-

gation effects at short periods, a simple localized 1-D model can well explain signals

of periods 3–10 sec if we break the three-component records into different segments

and allow differential time shifts among them. These differential time shifts, once

established from a calibration process or a well-determined tomographic map, can be

used together with P wave travel times to refine an event’s location. In Chapter 3, we

tested whether our new method could produce satisfactory results with as few as two

stations, so that we can improve source estimates of poorly monitored events with

sparse waveform data. We conducted the test on 28 events in the Tibetan plateau.

The focal mechanisms and locations determined from only two stations agree well

with those determined from a whole PASSCAL array. In particular, our new method
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produces better locations than ISC, with the average mislocation error reduced from

∼16 km to ∼5 km. We also tested whether an event’s depth and mechanism can

be determined separately from its epicenter relocation in a two-step approach. We

find that the two-step approach does not always give the correct solution, but the

reliability of a solution can be evaluated using a reduced chi-square value.

We use 49 Tonga-Fiji events recorded at the broadband TriNet array, southern

California to develop a pure path upper-mantle shear velocity model. At the epicen-

tral distances of 70◦–95◦, multi-bounce S waves up to S5, including the guided waves,

such as “G-phase”, are observed. Since these S wave multiplets bottom out at dif-

ferent depths, simultaneously modeling their differential travel times and waveforms

provides strong constraints on the radial velocity structure. We parameterize the

velocity model according to a priori information from the previous oceanic models,

so that we can take a grid-search approach, to fully investigate possible interdepen-

dencies among the model parameters. This also allows us to well resolve the main

characteristics of the model. We use both the SH and SV components with the

synthetics constructed by a reflectivity code. Our preferred model PAC06 contains

a fast lid (Vsh = 4.78 km/sec, Vsv = 4.58 km/sec) ∼60 km thick. The underlying

low velocity zone (LVZ) is prominent with the lowest velocities Vsh = 4.34 km/sec,

and Vsv = 4.22 km/sec. Besides the 406 km and 651 km discontinuities, PAC06 also

has a small (∼1%) velocity jump at ∼516 km. We consider these main features of

PAC06 to be well determined, since PAC06 explains a large data set from various

events. Therefore, it is ideally suited for comparing with mineralogical models.
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Chapter 1

General Introduction

Seismicity in southern California has been some of the highest in the world, which

provides a natural laboratory for studying different types of earthquakes in a variety

of tectonic settings. The era of broadband seismometers in southern California began

in 1991. However, the broadband stations were rather sparse in the early years.

Since 1999, the number of stations has increased rapidly, due to the beginning of

the modern, dense, digital broadband network–TriNet. At the time of writing this

manuscript, TriNet comprises over 150 three-component broadband stations.

The major advantages of having broadband, high dynamic range data have been

well demonstrated in the early efforts of modeling these records. First, the broadband

records enable one to identify a large number of arrivals by their frequency content,

which greatly helps in understanding the velocity structure. Second, the broadband

instruments of high dynamic range enable on-scale recordings of motions spanning

several orders of magnitude, which allows one to relatively separate the source and

propagation effect by simultaneously examining main shock and aftershocks. How-

ever, due to poor station coverage, these early studies were limited to certain paths

and events. Moreover, the waveform modeling was mainly conducted at relatively

long periods (>5 sec).

The rapid expansion of the TriNet array has afforded applications of the earlier de-

veloped techniques a much larger data set. Such an example is given in Fig. 1.1, where

we have retrieved the source parameters of 159 earthquakes that occurred between

1998 and 2004 with the so called “cut and paste” source estimation technique (e.g.,

Zhao and Helmberger , 1994; Zhu and Helmberger , 1996). In particular, we break an

entire record into Pnl and surface wave segments, and model them separately. Since

differential time shifts between the principal crustal arrivals are allowed, accurate
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Figure 1.1: The depths and focal mechanisms of 159 recent southern California events.
The detailed source parameters are given in appendix A.
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source estimates could be achieved with imperfect Green’s functions. Correspond-

ingly, a byproduct from the source inversion is the path-specific phase delays of Pnl

and surface waves.
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Figure 1.2: The phase delays of the surface waves at the two stations PAS (left) and
GSC (right) from all the events shown in Fig. 1.1. Positive values indicate the data
are slower than the synthetics while negative values mean the opposite.

Fig. 1.2 displays the Love and Rayleigh wave phase delays at two stations PAS

and GSC from the events in Fig. 1.1. Note the good coverage and the stability of

the time shifts along similar paths, which indicates these phase lags provide useful
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path calibration. An application of such path calibration for locating and modeling

a regional event with sparse waveform data is detailed in chapter 3 of this thesis,

where the new technique is developed and tested on the poorly monitored Tibetan

plateau. However, the method is rather suited for studying historic events in southern

California. The two stations PAS and GSC are of particular interest since they have

been the sites for seismometers since the 1950s and the early long-period analog

records from these stations are being digitized for source inversions.

Although retrieving source mechanisms of magnitude ∼3.5 or above events has

become a routine process with redundant waveform data from the dense TriNet array,

smaller events can hardly be addressed by such long period (>5 sec) inversions due

to the poor signal to noise ratio. Besides, the second-order source characteristics

of the magnitude 4 events, such as fault finiteness and rupture directivity, remain

unresolved in the long-period frequency band. However, these are the key parameters

for understanding the physics of earthquakes.

An effective way to address these problems is to model waveform data at shorter

periods. However, the unmodeled structural effect often gets overwhelming, where

one has to face the inherent trade-offs between source complexity and structural

heterogeneity. Under such circumstances, analyzing clustered events of different sizes

provides a practical way to “separate” the source from the structural effect. Fig. 1.3

displays a typical comparison between the records at the same station GSC from three

clustered events. These events are all from the 2003 Big Bear sequence. The records

from the two smaller events are dominated by noise in the long-period (5∼20 sec)

frequency band, but all the three events display very similar signals in the higher

frequency bands. This implies propagation stability along the path. Although what

has caused the complexity is unclear, the most important information conveyed in

Fig. 1.3 is the possibility of a “two-way” calibration process. First, we can use the

magnitude 4 event with the known source mechanism to calibrate the path effect on

short-period records, so that smaller events can be studied. Second, the smaller events

can provide perfect empirical Green’s functions for studying the detailed rupture

process of the big event. Chapter 2 of this thesis details such a technique with the
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application to the 2003 Big Bear sequence. Although we only address events with

magnitudes 2 and above, the same methodology has a potential for even smaller

events (see Fig. 1.3).

20 25 30
Time, sec

Freq: 2-8Hz

Freq: 0.5-2Hz

Freq: 0.05-0.2Hz

Event: 13938812 (ML:4.61) GSC  ∆=109.77 km;   Az=1.66

20 25 30
Time, sec

Freq: 2-8Hz

Freq: 0.5-2Hz

Freq: 0.05-0.2Hz

Event: 13937632 (ML:2.41) GSC  ∆=109.50 km;   Az=1.97

20 25 30
Time, sec

Freq: 2-8Hz

Freq: 0.5-2Hz

Freq: 0.05-0.2Hz

Event: 13939108 (ML:1.78) GSC  ∆=109.35 km;   Az=1.97

Figure 1.3: Comparison of the records from three clustered, but different-sized events
at station GSC. For each event, the four traces shown from top to bottom are the orig-
inal vertical component broadband record, and the filtered records featuring different
frequency bands.

Although not addressed in this thesis, modeling regional broadband waveform

data can cast light on resolving fine-scale crustal complexities. For example, we

display in Fig. 1.4 a profile of broadband Pnl waves along a corridor from Big Bear
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(triangles) are given to the right.

to San Diego. Although the waveforms become quite similar at long periods (>5 sec),

they display large discrepancies at shorter periods, which indicates fine-scale crustal

heterogeneities beneath the stations. Note the rapid changes in the combination of

Pg, Pn, and PmP from station to station. To model these records requires accurate

identification of the complicated arrivals, where a profile from clustered events as

shown in Fig. 1.5 can greatly facilitate the effort.

Chapter 4 addresses an application of the teleseismic data recorded at TriNet.

In particular, we modeled the multi-bounce S waves and developed a pure path

upper-mantle shear velocity model for the corridor connecting the Tonga-Fiji source

region to southern California. In this study, the broadband nature of the records

has enabled extensive observations of the triplications or interferences of the higher

order S multiplets, which provide a tight constraint on the details of the velocity

structure. Moreover, the dense array produces coherent seismograms and greatly
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Figure 1.5: The vertical component records at station DPP from the clustered events
of the 2003 Big Bear sequence. The traces are ordered with the separations between
P and PmP (measured by waveform cross correlation) increasing from top to bottom.
Note the Pn phase changes sign for the thrust events due to the radiation pattern
effect.
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facilitates identifications of the subtle triplicated branches.
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Chapter 2

A Waveform Cluster Analysis–Application

to the 2003 Big Bear Sequence

2.1 Introduction

Unmodeled structural heterogeneity presents great difficulty in determining accurate

locations and mechanisms of seismic events. Recently, the relative location of earth-

quakes has taken a quantum jump in resolution as differential travel time measure-

ments between “similar” event pairs are effectively used to minimize the structural

heterogeneity effect, and waveform cross-correlation methods substantially reduce

measurement errors (e.g., Waldhauser and Ellsworth, 2000; Schaff et al., 2004). The

relocated events reveals fine fault images at depth with unprecedented resolution,

which enables people to estimate fault zone width, to identify large voids in seismicity

for future hazard assessment, to study repeating earthquakes and to learn foreshock

and aftershock behaviors (e.g., Waldhauser and Ellsworth, 2002; Schaff et al., 2002;

Zanzerkia et al., 2003). Moreover, the seismicity-defined planes, when associated

with high quality focal mechanisms, can resolve the primary and auxiliary fault plane

ambiguity, and provide unique information on deformation and stress states (e.g.,

Waldhauser and Ellsworth, 2002; Prejean et al., 2002; Kilb and Rubin, 2002; Shearer

et al., 2003). However, discrepancies between focal planes and seismicity planes are

widely noted in these studies, particularly in diffuse zones of deformation. To deter-

mine whether this is due to inaccurate focal mechanisms or whether the seismicity

plane actually differs from the slip plane as suggested by Shearer (1998), requires

reliable focal mechanisms of the clustered events. Moreover, in cases of complicated

fault geometry, estimates of fault finiteness or directivity are highly desired.
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Accurate source mechanisms of seismic events with Mw ∼ 3.5 or greater can

be easily determined from long-period (>5 sec) inversions of complete broadband

waveforms (e.g., Zhu and Helmberger , 1996; Liu et al., 2004), even if only sparse

data are available (e.g., Tan et al., 2006). However, the same strategy becomes less

effective when applied to smaller events due to very low signal to noise ratio (SNR).

These smaller events are particularly important to image small scale variations of

stress field spatially and temporally due to their prevalence and frequent occurrence,

whose mechanisms are generally obtained with focal plots from P -wave polarities

(e.g.,FPFIT by Reasenberg and Oppenheimer , 1985; Hardebeck and Shearer , 2002).

Since only the binary up or down of the P -wave first motions counts in these methods,

a dense sampling of the focal sphere is required to form a reliable solution.

Adding amplitude information provides a way to relax the requirement on station

coverage, although several corrections must be made for event magnitude, geometrical

spreading, attenuation and station site effects. Early work based on simple calcula-

tion demonstrated the feasibility of determining an earthquake focal mechanism using

short-period amplitude ratios of P and S waves or their absolute amplitudes (e.g.,

Kisslinger , 1980; Kisslinger et al., 1981; Ebel and Bonjer , 1990). A later result by

Rau et al. (1996) showed the improvement on the focal mechanism solutions of adding

SH/P amplitude ratios as constraints over using P -wave polarities alone, when the

attenuation effects were appropriately corrected. Nakamura et al. (1999) also re-

ported success in recovering a large set of spatially coherent focal mechanisms in

Japan using absolute amplitudes of P and S waves with an “amplitude station cor-

rection function”, although the resulted misfit reduction was not satisfactory. They

attributed the large misfit error to short-wavelength crustal heterogeneity. The re-

cent work of Hardebeck and Shearer (2003), however, raised some concern, where

they reported considerable “noise” in the observed S/P ratios for the “similar” event

clusters in Northridge and Anza region, California, which limited the usefulness of

the S/P ratios in determining focal mechanisms. More work is therefore needed to

understand the propagational distortion on P or S waves and to use this information

for improving focal mechanism determination.
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Event: 13937632 (ML:2.41) GSC  ∆=109.50 km;   Az=1.97

Figure 2.1: This figure compares the waveforms from two events of different magni-
tudes indicating the strength of both events in the short-period (0.5 to 2 Hz) band
where the calibration will be made. The strong second arrival after the direct P wave
is the Moho reflection PmP .

Our strategy in this study is to analyze spatially clustered events; moreover, rather

than focus on short-period amplitude measurements, we pay attention to broadband

waveforms. Figure 2.1 gives an example of the broadband records at the same station

(GSC) for two events of different sizes (ML:4.61 vs. 2.41). The two events are located

within ∼50 m of each other using hypoDD (Chi and Hauksson, 2006). The record

of the smaller event is contaminated by noise in the long-period (5-20 sec) frequency

band; however, the two events display very similar signals in the higher frequency

band (0.5-2 sec). This implies propagational stability along the path, although how

much of the complexity is caused by the entire path vs. locally near the station site
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is not known. The frequency band of 0.5-2 sec is shorter period than those used in

waveform cross-correlation for travel time measurements (e.g., Schaff et al., 2002).

However, it proves optimal for understanding structure and radiation pattern effect

on waveforms from different-sized events, since small events with ML down to ∼2.0

still have good SNR, while detailed rupture processes of bigger events are filtered

out. Analyzing clustered events of different sizes is a practical way to “separate”

the structure and source effect, in that the bigger events (Mw > 3.5) with source

mechanisms well determined from long-period inversions can be used to study the

structural effect and probably calibrate paths for determining focal mechanisms of

smaller events. Conversely, the smaller events with known focal mechanisms provide

excellent empirical Green’s functions (EGF) for retrieving rupture processes of the

bigger events.

The purpose of this study is to demonstrate such a “two-way” calibration process

using waveform data from an event cluster. We select the 2003 Big Bear sequence

(see Fig. 2.2) as the example, since there are several events with well-determined

long-period solutions. Because these events occurred in the center of the southern

California TriNet array, they were generally well recorded. Also note in Fig. 2.2 a

number of other seismic zones suitable for such a waveform cluster analysis. In the

following, we will begin with a brief review of the long-period (>5 sec) inversions for

retrieving reliable source parameters of magnitude 3.5 or above events. Then we will

focus on the short-period (0.5–2 sec) path calibration and derive a source inversion

algorithm of short-period P wave waveforms with appropriate amplitude corrections.

The results will be discussed in the remaining sections, featuring different aspects,

including the stress inversion, seismic moment–magnitude scaling, source duration

and stress drop, and rupture directivity.

2.2 Long-period inversions

Six events in the cluster (Fig. 2.2) have adequate SNR for long-period inversions of

complete seismograms. The method we use is the “cut and paste” source estimation
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Figure 2.2: Earthquakes in the year 2003 (circles) along with the broadband TriNet
stations (triangles). An enlarged Big Bear region is included with the mechanisms of
events larger than Mw > 3.5.

technique by Zhu and Helmberger (1996). The Green’s functions are computed with

a reflectivity code (Zhu and Rivera, 2002), assuming the 1D southern California (SC)

model (Dreger and Helmberger , 1993). One of the advantages of this technique is

that it allows differential time shifts between different phase groups, mainly the Pnl

and surface waves; hence, accurate source estimates can be obtained with imperfect

Green’s functions. Recently, Tan et al. (2006) (Chapter 3 of this thesis) enhanced the

technique for sparse data sets by introducing an adaptive weight between Pnl and

surface waves. However, since we generally have such a dense coverage with over 100

stations here, we simply weight Pnl waves by 2 over the surface waves following Zhu
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and Helmberger (1996).

The depths and focal mechanisms of the six events are displayed in Fig. 2.2.

Among them, the main shock (13935988) was also investigated by Liu et al. (2004)

using a 3D model. Their result of the source parameters agree well with ours. Some

selected waveform fits for this event are displayed in Fig. 2.3, where those from the

thrust aftershock (13936812) are also included for comparison. It is worth mentioning

that the waveform data distinguish the pure thrust (13936812) from the strike-slip

mechanism (13935988). However, the first motion focal mechanisms of the two events

both contain a significant strike-slip component (Hauksson, 2000). We also performed

the inversions using Pnl or surface waves alone. The results with these data subsets

agree very well with the solutions using both Pnl and surface waves, which indicates

the robustness of the resolved source parameters, and also the data redundancy, with

over 100 stations. The latter warranted our effort in the next two sections to use a

further reduced data set of only the direct P waves. As we will see, about 10 stations

would suffice for the task.

A byproduct from the long-period waveform inversion is the phase delays of the

Pnl and surface waves plus the corresponding cross-correlation (cc) coefficients sam-

pling different paths. The phase delays are measured by waveform cross-correlation

as the time shifts of the synthetics relative to the observations, where a positive shift

means data is slower (see Fig. 2.3). For an example, we display in Fig. 2.4(a) the

Love wave phase delays and the cc values from the main shock 13935988. Note in

Fig. 2.4(a) a large number of paths show cc values above 90, while the poorer fits

mainly occur when the geological boundaries are encountered, such as the paths into

the Los Angeles basin and the Imperial Valley. These complex paths (cc < 90) are of

great interest for understanding sharp structural heterogeneities; however, we simply

discarded them in the inversion of source mechanisms.



15

B B S _ 4 5

0 .0 1 .4

8 1

1 .4

9 7

1 .6

9 1

1 .6

9 3

2 .0

8 9

B L A _ 5 0

0 .0 1 .2

9 5

1 .2

9 5

2 .2

9 0

2 .2

8 8

1 .8

9 7

H E C _ 7 4

0 .0 1 .8

8 3

1 .8

9 0

1 .8

8 4

1 .8

9 0

1 .4

9 8

A G A _ 8 5

0 .0 1 .4

9 6

1 .4

9 7

3 .8

6 3

3 .8

0

2 .0

9 7

P L S _ 9 1

0 .0 1 .8

9 1

1 .8

9 1

2 .2

8 9

2 .2

8 2

2 .0

9 7

G S C _ 1 1 0

0 .0 1 .2

8 9

1 .2

8 6

2 .0

9 4

2 .0

9 1

2 .0

4 2

V C S _ 1 1 8

0 .0 0 .8

9 5

0 .8

9 8

2 .2

8 5

2 .2

7 0

1 .2

9 3

D A N _ 1 4 0

0 .0 1 .6

8 3

1 .6

9 3

3 .6

7 8

3 .6

9

2 .0

9 4

S L A _ 1 8 0

0 .0 1 .6

7 1

1 .6

8 5

3 .4

9 0

3 .4

8 4

2 .2

9 1

T E H _ 1 8 0

0 .0 1 .2

8 6

1 .2

9 0

4 .0

8 2

4 .0

8 3

1 .6

9 7

P n l V P n l R V e rtic a l. R a d ia l T a n g .

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

0 5 1 0 1 5 2 0

4 .9 3

4 .9 7
p n l+ su r
d e p th =  6 .4

1 3 9 3 5 9 8 8

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0
4 .9 0

4 .9 3

4 .9 7

4 .9 8

4 .9 9

su r
d e p th =  6 .5

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

4 .9 2

4 .9 8
p n l
d e p th =  6 .5

Pnl Only

Surface Wave

Only

Pnl and 

Surface Waves

B B S _ 4 5

0 .0 1 .0

8 0

1 .0

9 4

1 .2

7 2

1 .2

8 1

1 .4

8 6

B L A _ 5 0

0 .0 1 .0

9 3

1 .0

9 5

1 .6

8 1

1 .6

8 1

1 .2

9 8

H E C _ 7 5

0 .0 0 .6

9 1

0 .6

9 8

1 .0

9 0

1 .0

8 6

1 .0

9 8

A G A _ 8 5

0 .0 0 .8

9 7

0 .8

9 8

1 .2

9 3

1 .2

7 2

1 .2

9 1

P L S _ 9 0

0 .0 1 .2

8 5

1 .2

3 4

2 .0

9 2

2 .0

3 3

1 .4

9 5

G S C _ 1 1 0

0 .0 0 .6

9 4

0 .6

9 6

1 .6

8 4

1 .6

8 1

1 .4

6 3

V C S _ 1 1 8

0 .0 0 .6

9 2

0 .6

9 4

1 .2

9 3

1 .2

8 8

0 .8

9 2

D A N _ 1 4 0

0 .0 0 .8

5 9

0 .8

5 1

3 .0

8 9

3 .0

7 4

1 .2

9 2

S L A _ 1 8 0

0 .0 0 .8

8 1

0 .8

9 1

2 .8

8 0

2 .8

6 9

2 .0

8 8

T E H _ 1 8 0

0 .0 0 .6

7 9

0 .6

9 2

2 .2

7 7

2 .2

8 5

1 .0

9 5

P n l V P n l R V e rtic a l. R a d ia l T a n g .

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

0 5 1 0 1 5 2 0

4 .2 2

4 .2 6

4 .3 0

p n l+ su r
d e p th =  5 .5

1 3 9 3 6 8 1 2

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0
4 .1 4

4 .2 7

4 .2 7

4 .1 8

4 .1 9

su r
d e p th =  5 .6

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

4 .2 5

4 .2 7

4 .3 2

p n l
d e p th =  5 .4

Pnl Only

Surface Wave

Only

Pnl and 

Surface Waves

Depth, km

Depth, km

Figure 2.3: Comparison of the modeling results for two events with distinctly different
focal mechanisms. The hypocenters of the two events are within 0.5 km. Over 100
records, 10 shown here, sample the entire radiation pattern. The two rows of numbers
below the traces are the time shifts of the synthetics relative to the observations and
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surface waves respectively.



16

-120˚ -118˚ -116˚ -114˚

34˚

36˚

10 20 30 40 50 60 70 80 90 100
Cross-Correlation

-120˚ -118˚ -116˚ -114˚

34˚

36˚
Love Wave

13935988 (Mw=5.0)

-2.1 -1.2 -0.3 0.6 1.5 2.4 3.3 4.2 5.1

Time Shift, sec

(a)

-120˚ -118˚ -116˚ -114˚

34˚

36˚

10 20 30 40 50 60 70 80 90 100
Cross-Correlation

-120˚ -118˚ -116˚ -114˚

34˚

36˚
Love Wave

13938812 (Mw=4.2)

-2.1 -1.2 -0.3 0.6 1.5 2.4 3.3 4.2 5.1

Time Shift, sec

(b)

-120˚ -118˚ -116˚ -114˚

34˚

36˚

10 20 30 40 50 60 70 80 90 100
Cross-Correlation

-120˚ -118˚ -116˚ -114˚

34˚

36˚
Love Wave

13936812 (Mw=4.3)

-2.1 -1.2 -0.3 0.6 1.5 2.4 3.3 4.2 5.1

Time Shift, sec

(c)

Figure 2.4: Love wave phase delays derived from three clustered events, 13935988, 13938812, and 13936812 (top) together with
corresponding cross-correlation values (bottom).
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Figure 2.5: Comparison of the differential Love wave phase delays between the two
events 13935988 and 13938812 (left), 13936812 and 13938812 (right).

Zhu et al. (2006) and Tan et al. (2006) demonstrated that the surface wave phase

delays could be turned into tomographic maps or used as empirical path-specific

corrections for locating and determining the source mechanism of a regional event

with a very sparse data set. Occasionally, the phase delays can also be indicative of

source complexity. Such an example is given in Figs. 2.4 and 2.5, where the Love wave

phase delays derived from the three clustered events are compared. The three events

(see Fig. 2.2) are located within 1 km × 1 km × 1 km. Two of them (13935988

and 13938812) are strike-slip events, while the third (13936812) is a pure thrust

event. The Love wave phase delays from the three events display similar azimuthal

variations. Although there is some scatter, the phase delays from the main shock

13935988 are consistently larger than those from the two aftershocks by over 0.5 sec.

The discrepancy becomes more clear when we calculate their differences at the same

stations (Fig. 2.5). The lack of obvious azimuthal patterns of these differential phase

delays confirms that the events are well located relative to each other. The scatter

is mainly due to fine-scale features in the observed Love wave waveforms of major

frequencies of ∼ 8–16 sec. It tends to be smaller when the two events of similar source

mechanisms are compared, suggesting it might be caused by 3D propagation effects

excited differently for different source types.
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Figure 2.6: Comparison of the selected broadband records (vertical component, ∆ <
100 km) from the main shock 13935988 (Mw ∼ 5.0) and the aftershock 13938812
(Mw ∼ 4.2). Plotted are the normalized amplitudes. In the left panel, the records
from both events are aligned on their hand-picked first P arrival. In the right panel,
the main shock records are shifted as determined by waveform cross-correlation, with
the exact time shifts given after the station names.



19

Similar discrepancies between the phase delays from the main shock and the af-

tershocks are also observed for the Pnl and Rayleigh waves. In addition, Liu et al.

(2004) noted unusually large time shifts were required to fit data with 3D synthetics

when they studied the main shock source mechanism, which they simply attributed

to an origin time problem. Besides a possible origin time offset, Fig. 2.6 reveals some

more interesting contribution when we examine the broadband records directly. Note

the two events compared in Fig. 2.6 have similar source mechanisms. However, there

is always considerable mismatch between the major arrivals from the two events when

we align the records on the first P arrival. The waveform cross-correlation suggests

a small precursor embedded in the main shock rupture, which becomes invisible at

long periods, but still causes time shifts. The apparent azimuthal pattern of the time

shifts determined by waveform cross-correlation suggests that the mainshock rupture

propagated towards the southeast on the NW-SE fault plane. However, future efforts

are warranted to study the detailed rupture process.

This example underlines the importance of understanding the source process be-

fore we can calibrate the propagation effect, even at long periods. Therefore, the main

shock (13935988) is discarded for the following short period investigation. Moreover,

its long rupture time cannot be ignored in the frequency band 0.5–2 Hz.

2.3 Short-period path calibration

The idea of using magnitude 4 events with known source parameters to calibrate

regional paths has been introduced earlier by Song and Helmberger (1998), where they

attempted to build pseudo Green’s functions by perturbing individual generalized ray

responses from a 1D model. Here we restrict our attention to short-period (0.5-2 sec)

P waves, since we plan to use these P waves (mainly Pg and Pn phases) for determining

focal mechanisms of smaller events. Moreover, they are the parts of the seismograms

that are most easily isolated and understood in terms of crustal complexity. For

example, we compare in Fig. 2.7 the observed P waves (black) and the synthetics

(red) for a strike-slip event (13938812). To avoid the waveform complexities that are
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Figure 2.7: P wave comparison between the data (black) and synthetics (red) for a
strike-slip event (13938812) on the vertical (left) and radial (right) components.

not easily explained at some stations, we simply discard them and concentrate on

the high quality fits with cross-correlation values larger than 90. This resulted in a

loss of about 1/3 of the recording stations; however, we still have good azimuthal

coverage. A smoothed version of the SC model (Fig. 2.8) is used to calculate the

synthetics with a reflectivity code (Zhu and Rivera, 2002), in order to simplify the

high-frequency triplications associated with the layered boundaries. This smoothed

SC model does produce an overall better fit to the observations. However, at long

periods (e.g., >5 sec), the differences between the synthetics from the two models are

hardly discernible. For simplicity, a 0.2 sec triangular-shaped source time function

has been assumed, which fits the observed P -wave waveforms at most stations.

The discrepancies between the observed P waves and the synthetics (Fig. 2.7) are

mainly manifested as amplitude differences. To quantify these, we define the function



21

0

5

10

15

20

25

30

35

40

D
ep

th
,k

m

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

Vs, km/sec

0

5

10

15

20

25

30

35

40

D
ep

th
,k

m

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

Vs, km/sec

Figure 2.8: Comparison of the layered SC model from Dreger and Helmberger (1993)
(solid line) and the smoothed one (dotted line) used in this study.

of “Amplitude Amplification Factor” (AAF) as

AAF =

√

∫

u2(t)dt
∫

s2(t)dt
, (2.1)

where u(t) and s(t) are the data and synthetics, respectively. It appears in Fig. 2.7

that the most anomalous AAFs occur at stations in the extended Los Angeles Basin.

Particularly, these stations are consistently characterized by large AAFs (>1) on the

vertical component, but small AAFs (<1) on the radial component. This discrepancy

between the vertical and radial components has been noted by many previous inves-

tigators (e.g., Savage and Helmberger , 2004). They attributed it to a low velocity

layer beneath the stations that bends the rays to be nearly vertical approaching the

surface, hence greatly reducing the P wave strength on the radial component. There
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is also a tendency for the radial-component P waves to become broader and arrive

late. Besides the “soft rock” sites in the basins, similar features are also observed

at some other stations, even “hard rock” sites (e.g., GSC). However, the P wave

radiation pattern is unfortunately blurred due to the laterally varying AAFs. So

the AAFs have to be appropriately corrected before we can use these short-period

P waves for determining focal mechanisms. Moreover, there are two key questions

we need to answer: are the AAFs simply due to structural distortions independent

of source mechanisms? and, secondly, are the AAFs relatively stable for the whole

cluster?
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Figure 2.9: Comparison of the AAFs derived from the strike-slip event (13938812)
and the thrust event (13936812) for the same stations. Shown are their log
log(AAF6812/AAF8812) and linear AAF6812/AAF8812 ratios vs. azimuth. The circles
are for the vertical component while the triangles for the radial.

The few events in the cluster with known source mechanisms from long-period in-

versions enable us to address these questions. The three events (9069997: 1998/10/27,

01:08:40.6; 9070083: 1998/10/27, 15:40:17.1; 9105672: 1999/09/20, 07:02:49.2) that

occurred within the cluster in the past are also included (see Fig. 2.11 (a)). As an

example, we compare the AAFs derived from a strike-slip event (13938812) and the

distinctly different thrust event (13936812) (Fig. 2.9). Although there is some scatter,

the ratios between the AAFs at the same stations tend to follow a straight line, which

supports the argument that the AAFs are independent of the source mechanism. The
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Figure 2.10: The averaged amplitude amplification factors (AAF s) for the vertical
(left) and radial (right) components derived from the eight calibration events along
with the standard deviations.

few outliers are mainly due to the P wave nodes of the events. The small offset of ∼ -

0.15 in log(AAF6812/AAF8812) implies that the AAFs derived from the thrust event

(13936812) are consistently smaller than those from the strike-slip event (13938812)

by a factor of ∼ 30%, which suggests that the thrust event might have a relatively

longer, but lower-amplitude source time function. Experiments indicate that the ob-

served offset in log(AAF6812/AAF8812) can be reconciled by simply assuming a 0.4 sec

triangular source time function in constructing the synthetics for the thrust event.

The longer source duration also fits the observations slightly better. This again un-

derlines the importance of understanding seismic source complexities in calibrating

the structural effect. However, since fairly good agreement without significant offsets

is observed when we compare the AAFs derived from the other events with those from
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the strike-slip event 13938812, the simple triangular source time function of 0.2 sec

might present a safe approximation in the selected 0.5-2 sec frequency band. There

are a few possible causes of the scatter, including small errors in the events’ loca-

tions, source mechanisms, the rupture complexities as well as small-scale structural

heterogeneity.

To summarize the comparisons, we calculate the averages and deviations of the

AAFs derived from all the eight events as

log(AAF ) =
1

8

8
∑

i=1

log(AAFi) (2.2)

s2
log(AAF ) =

1

8 − 1

8
∑

i=1

(log(AAFi) − log(AAF ))2. (2.3)

Particularly, the AAFs derived from the thrust event (13936812) have been corrected

with the ∼ -0.15 offset in log(AAF6812/AAF8812) with respect to the rest of the events.

However the correction hardly made a difference, simply because the offset itself is

not significant compared with the scatter in the AAFs. The results are displayed in

Fig. 2.10. The stations shown all have AAF estimates associated with high quality fits

(cc ≥ 90) from at least three events. The larger deviations observed at the few stations

might suggest more complicated local structure beneath the sites. However, the small

deviations associated with most stations indicate the stability of the propagational

effect from the whole cluster. Hence, the structural effect on the short-period (0.5-2

sec) P waves can be appropriately corrected.

2.4 Short-period inversions

Our strategy of using P waves to determine focal mechanisms is to invert the short-

period (0.5-2 sec) P -wave waveforms. Since the process is highly nonlinear, we take

a similar grid-search approach as in the long-period inversion, where we minimize the
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Figure 2.11: Comparison of focal mechanisms derived from (a) complete long-period
waveform inversions (including both Pnl and surface waves), (b) P waves only, and
(c) P waves with the AAF -corrections. Note the remarkable agreement between (a)
and (c).

L2 norm of the misfit between the data and synthetics:

e = ‖u(t) − AAF · s(t)‖. (2.4)

The AAFs are taken from Fig. 2.10 to correct the structural effect. As a validation

test, we first apply the approach to the eight calibration events (Fig. 2.11(a)) with

the known focal mechanisms from the long-period inversions. This is also the best

check of how well the P -wave waveforms can constrain focal mechanism.

For each event, only the stations that show stable AAFs (slog(AAF ) < 0.20) in

Fig. 2.10 are utilized. Moreover, to avoid possible up-going and down-going phase

interference at the crossover distance (∼ 150 km), we also discarded the few stations

with 130 < ∆ < 170 km. We invert the P -wave waveforms from both the vertical and

radical components, although they basically carry the same constraints. The depths

of the events are set at their long-period solutions. However, almost the same focal

mechanisms are obtained when we move the events up or down by 1 km due to the

poor sensitivity of P waves to event depth. The inversion results show remarkable

agreement with the events’ known mechanisms (Fig. 2.11). Particularly, the small
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variations in the focal mechanisms of the strike-slip events are accurately recovered.

To demonstrate the importance of the AAF corrections in Eq. 2.4, we also con-

ducted the inversions without them using the same stations (Fig. 2.11(b)). Although

the thrust event remains a thrust, there are significant differences in the solutions

of the strike-slip events compared to Fig. 2.11(a). Moreover, the inversions with the

AAF corrections produce significantly reduced uncertainties with the resolved fault

parameters (e.g., Fig. 2.12, event 13936432). The magnitudes of the events, however,

are less biased, since the AAFs have nearly the opposite signs on the vertical and

radial components (Fig. 2.10).

The above results have demonstrated the effectiveness of using the P -wave wave-

forms in constraining focal mechanisms. However, there is a more important question:

what is the minimum number of stations that are needed to ensure an accurate mech-

anism? The station coverage generally gets poorer as an event becomes smaller and it

is for these smaller events that improvements on focal mechanism determination are

most needed. Therefore, before we routinely apply the approach to the smaller events

of the cluster, we simulate the situation of expected poorer station coverages by using

data from only subsets of stations for the calibration events. Four such tests for event

13936432 are shown in Fig. 2.13. In each test, 500 samples of randomly chosen sta-

tions of a certain number are used to constrain the event’s focal mechanism, and the

resulting P - and T -axes are compared with the known values. When only five stations

are used, where the primary azimuthal gaps are generally larger than 150◦, there is

severe scatter in the obtained P - and T -axes. However, significant improvements are

observed with the addition of more stations. As the number of stations increases

to 10, the obtained P - and T -axes are much more clustered. In particular, about

80% of the P -axes are within 15◦ of the known value, while the T -axes show slightly

more scatter with more than 60% within 15◦ of the known value. Furthermore, when

there are fifteen or more stations used, uncertainties of the obtained P - and T -axes

can be taken as 15◦ with ∼ 90% confidence. Similar conclusions are reached with

the other events. These tests provide important benchmarks to assess accuracy of

the focal mechanisms when we apply the approach to the smaller events. However,
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Figure 2.12: (top) The resulting P wave waveform fits on the vertical component from
the short-period inversions without (left) and with AAF corrections (right) for the
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they might represent a raised threshold of the minimum number of stations that are

indeed required, since the available stations are unevenly distributed azimuthally (see

Fig. 2.10).

We then apply the approach to the smaller events with ML down to 2.0 within the

cluster. The magnitude threshold is chosen to ensure adequate SNR in the selected

frequency band (0.5-2 sec). We use the event depths determined by Chi and Hauksson

(2006) plus a +1 km static correction, since their depths for the bigger events are

consistently shallower by ∼1 km than those determined from long period waveform

inversions. This discrepancy is mainly due to the different velocity models used in

the two studies. However, it produces nearly invisible effect on the resolved focal

mechanism solutions. Fig. 2.14 displays the obtained focal mechanisms of 83 events,

together with the long-period solutions of 9 bigger ones (including the main shock).

We consider the uncertainties of the strike, dip and rake angles of these solutions

to be within 15◦ with 90% confidence, since these are the events with either over 15

stations effectively used in the inversion or over 10 stations with the largest azimuthal

gap ∆ϕ ≤ 90◦. Such a restriction disqualifies about 20 events (the open circles in

Fig. 2.14), most of them contaminated by the coda of other events.

It appears in Fig. 2.14 that the whole sequence is dominated by strike-slip events.

There are thrust and normal events, but they only occupy a rather small percentage.

This overall pattern of source mechanisms is consistent with earlier reports in this

region (e.g., Hauksson et al., 1993). We plot the events at their refined locations

by Chi and Hauksson (2006) with a double-difference approach. The clear northwest-

trending swath of seismicity is probably associated with the mainshock (13935988)

rupture. However, the seismicity does not collapse onto a single fault; there are mul-

tiple fault segments (Chi and Hauksson, 2006). There is, in general, good correlation

between the seismicity lineations and focal planes. In particular, most of the deeper

events (> 6.0 km) to the south show northwest-striking nodal planes consistent with

the seismicity trend, which might indicate that the ruptures are indeed on a single

fault plane. To the north, the shallower events display larger variations in the focal

mechanisms; quite a few events have nodal planes that depart significantly from the
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Figure 2.13: The four panels of this figure display the comparison between the ob-
tained P - and T -axes with the known values (open circle) for event 13936432, when
we randomly chose a certain number of stations in the inversion.
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general northwest trend. This implies complexity in the fault zone. Another small,

but interesting feature in Fig. 2.14 is the sharp rotation of fault plane, such as implied

by the two events 13936416 and 13943624. These two events are located almost at the

same spot (Fig. 2.14), however, their focal mechanisms clearly show a ∼30◦ difference

in strike of the fault plane, which is reliably recovered by the waveform inversion (see

Fig. 2.15). Note in Fig. 2.15 the obviously different P -wave radiation patterns for

the two events. Besides, polarity reversals are observed at a few stations, such as

HEC, SVD and BBR. This kind of change in fault plane geometry indicates there are

crossover faults or fracture zones at depth, which is useful in mapping detailed fault

structure.
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Figure 2.14: Map containing 92 events with mechanisms and moments (size of beach balls). The event locations are from Chi
and Hauksson (2006) with a double-difference approach. Note the general NW-SE trend of seismicity, consistent with the main
shock rupture. The two events (13936416 and 13943624) highlighted by red will be compared in Fig. 2.15.
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Figure 2.15: Comparison of P -wave waveform fits from the short-period inversions
between the two events, 13936416 (left) and 13943624 (right), located almost at
the same spot (see Fig. 2.14). Note the different azimuthal variations of P wave
amplitudes for the two events. Besides, polarity reversals are observed at a few
stations, such as HEC, SVD, and BBR.

2.5 Stress inversion

An important application of earthquake focal mechanism is to infer the stress field, or

crustal deformation at depth (e.g., Hauksson, 1994; Hardebeck and Hauksson, 2001a).

Resolving the spatial and temporal variations in the stress field, especially after a

large earthquake, is probably the key step before we can understand the occurrence
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of the aftershocks. Although there are different stress inversion methods using focal

mechanisms (e.g., Gephart and Forsyth, 1984; Michael , 1984, 1987), the two common

basic assumptions are that (1) the stress field is homogeneous, i.e., a constant tensor

for the sampled region, and (2) An earthquake slips in the direction of the shear

stress acting on the fault plane. Hence, the objective of a stress inversion is to

minimize the discrepancy between the shear stress direction and the slip direction on

the fault planes for all the events in a data set, where the minimum misfit provides

a natural way to examine the uniform stress field hypothesis (e.g., Michael , 1991).

Of the resolved deviatoric stress tensor, however, only the orientations of the three

principal stress axes, namely, the maximum (σ1), intermediate (σ2), and minimum

(σ3) compressive stresses, plus their relative magnitude (φ = (σ2 − σ3)/(σ1 − σ3)) are

determined, because only geometrical information is used.

A reliable stress inversion requires adequate focal mechanism diversity, since a sin-

gle focal mechanism or a set of similar focal mechanisms can only constrain the quad-

rants containing the maximum and minimum principal stresses (McKenzie, 1969).

However, it is generally rather difficult to distinguish real diversity in the focal mech-

anisms from their large uncertainties. Particularly, a stress inversion can be mis-

leading if the apparent variations of the focal mechanisms are mostly due to their

uncertainties. Moreover, the uncertainty of a stress inversion, although it can be

assessed from the known focal mechanisms in a statistical sense (e.g., Hardebeck and

Hauksson, 2001b), might be unrealistic, since the complex uncertainties of individual

focal mechanisms are difficult to propagate into the stress inversion. To address these

issues, various methods have been developed where P -wave first motion observations

are directly used to invert for stress rather than the derived focal mechanisms (e.g.,

Rivera and Cisternas, 1990; Abers and Gephart , 2001). Among them, Abers and

Gephart (2001) gave the resolved stress tensor with more complete uncertainties.

Abers and Gephart (2001) applied their method in southern California using first

motion data from the SCEC catalog, where they found typical uncertainties in stress

orientation exceeded 20◦-30◦ at the 95% confidence level. This implies that previously

reported small stress rotations of 20◦ or less (Hauksson, 1994; Hardebeck and Hauks-
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son, 2001a, e.g.,) using derived focal mechanisms from similar first motion data may

not be resolvable. Abers and Gephart (2001) attributed the relatively large uncer-

tainties in their stress estimates to the poor constraint of first motion data on focal

mechanisms. Therefore, better-constrained focal mechanisms are required to detect

small spatial or temporal variations of the stress field.

Here we present the stress inversion of 92 focal mechanisms (see Fig. 2.14) deter-

mined by comprehensive waveform modeling. We use the method developed by Michael

(1984), since Hardebeck and Hauksson (2001b) demonstrated that this method pro-

duces accurate stress orientations with reasonable uncertainty estimates from known

focal mechanisms. The actual fault planes for the strike-slip events are selected as the

northwest-striking, right-lateral planes (denoted by purple lines in Fig. 2.14), which

is consistent with the general seismicity trend. For the few thrust events, the south-

dipping planes are assumed. To account for the fact that some fault planes might

be incorrectly picked, we assume 10% of the fault planes are picked incorrectly in

calculating the uncertainties of stress orientation with bootstrapping. In general, the

erroneous choices of fault planes most likely change the shape of the stress ellipsoid

and the size of the uncertainty ranges (Michael , 1987). Fig. 2.16(a) and (b) display

the selected fault planes and the resolved stress. The average misfit angle β of ∼15◦

validates the uniform stress tensor assumption (Michael , 1991). The maximum com-

pressive stress σ1 is horizontal, trending ∼N3◦ W. The intermediate stress axis σ2

is closest to vertical, and the relative stress magnitude φ ∼ 0.6 is consistent with

the dominance of strike-slip faulting (see Fig. 2.14). The fact that σ2 deviates from

vertical with 95% confidence, however, warrants further study, since it might imply

the modulation of a weak thrust fault at depth, such as the North Frontal Thrust,

which did not seem to be active in earlier studies (e.g., Hauksson, 1994).

In general, there is good agreement between the resolved stress state and previous

reports with earlier data sets in the same region (e.g., Hauksson, 1994; Hardebeck and

Hauksson, 2001a). However, detailed comparisons for inferring temporal variations

of the stress field are not appropriate, since the focal mechanisms are determined at

a different level of accuracy. For example, we conduct the same inversion procedure
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(b)

φ ' 0.76, β = 21.6 ± 16.9
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Figure 2.16: (a) The selected fault planes (lines) together with the slip directions
(stars) from the focal mechanisms of this study are plotted on a stereonet. The red
stars indicate a normal fault component, while the blue crosses indicate a thrust
component. (b) The stress field inverted from the slip data shown in (a). Displayed
are the three principal stress axes of the maximum (1), intermediate (2) and minimum
(3) compressive stresses plus their uncertainties with 95% confidence. (c) and (d) are
for the focal mechanisms determined by Hauksson (2000) with the same inversion
procedure.
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using the first motion focal mechanisms determined by Hauksson (2000) for the same

events. The results are given in Fig. 2.16(c) and (d). We use the same fault plane

selection criterion and still assume 10% of the fault planes are incorrectly picked for

an uncertainty estimate. Considering the larger variations of the first motion focal

mechanisms, which has complicated the fault plane selection, this might underes-

timate the stress uncertainty. The resolved stress (Fig. 2.16(d)) shows compatible

features as seen in Fig. 2.16(b). However, the relative stress magnitude φ has a larger

value of ∼0.76, indicating the faulting regime is a combination of strike-slip and nor-

mal faults. The larger uncertainties in the stress orientations are mainly due to the

larger errors in the dip and rake angles of the focal mechanisms, which has blurred the

discrepancy between σ2 and vertical in Fig. 2.16(b). This underlines the importance

of well-constrained focal mechanisms in resolving fine features of the stress field.

2.6 Seismic moment (M0) vs. ML

Quantification of an earthquake size has been one of the oldest problems in seismol-

ogy. The earliest effort started as Richter (1935) introduced the local magnitude

scale ML in southern California based on 1 Hz waves recorded by a Wood-Anderson

seismograph at an epicentral distance of 100 km. Although the old Wood-Anderson

seismographs have been replaced by the modern instruments of higher dynamic ranges

and broader bandwidths, ML remains widely used. There are, however, severe intrin-

sic limitations on ML, because it is based on limited instrumental measurements over

a fixed frequency band. Furthermore, ML is not easily related to physical character-

istics of the earthquake source. In contrast, the seismic moment M0 and the moment

magnitude Mw (Hanks and Kanamori , 1979) are fundamentally superior in that they

are defined based on a well accepted shear dislocation source model and can be esti-

mated from the amplitudes of seismic radiations recorded by all suitable seismographs

(Bakun, 1984).

Since the early 1970’s, the scaling relation between M0 and ML has been an

important aspect of earthquake studies. Hanks and Boore (1984) summarized ear-
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lier results in central and southern California. They suggested that the observed

differences in the log(M0) – ML relations between central and southern California

were not a geographic reality, but resulted from the preponderance of different sized

events that form the bulk of the two data sets. As a proof, they presented theo-

retical evidence for the continuous curvature of log(M0) vs. ML in the magnitude

range of 0 < ML < 7.0 based on stochastic simulations of high-frequency ground mo-

tions (Boore, 1983). They attributed the non-linear scaling factor between log(M0)

and ML to a complex interaction in the frequency domain, resulting in three essential

bandwidths:

(i) f0 � fs log(M0) ∼ 3.0ML

(ii) fs � f0 < fmax log(M0) ∼ 1.5ML

(iii) f0 > fmax log(M0) ∼ 1.0ML,

(2.5)

where fs is the natural frequency of the standard Wood-Anderson torsion seismo-

graph (1.25 Hz), fmax is a high-frequency cutoff (15 Hz) and f0 is the earthquake

corner frequency. The significant departure from the usually assumed or theoretically

expected log(M0) ∼ 1.5ML relationship occurs for both large (f0 � fs) and small

(f0 > fmax) events. For large events, it is because the ML measurement suffers the

high-frequency falloff of the source spectrum, while for small events, it implies the

ML dependence on M0 is insensitive to stress drop. The later results of Bakun (1984)

in central California, Vidal and Mungúia (1991) in the Peninsular Ranges of Baja

California and Abercrombie (1995) with recordings in the deep Cajon Pass borehole

are compatible with the results of Hanks and Boore (1984) (see Table 2.1). Instead

of the seismic moment M0, Ben-Zion and Zhu (2002) studied the scaling between the

potency P0 (P0 = M0/µ) and ML in order to sidestep assumptions on source material

rigidity µ. They assembled a large data set, including 418 events (3.5 < ML < 6.0)

with seismic moments determined by inverting broadband waveforms (Zhu and Helm-

berger , 1996) and the 18 events from the borehole data set (Abercrombie, 1995). They

found significant change in slope when attempting linear least-squares fits between

log(P0) and ML for the two data sets respectively, and a quadratic scaling relation

better explained a few bigger events (ML > 6.0) (Table 2.1). They also suggested a
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Table 2.1: Seismic moment (M0) – Local magnitude (ML) relations
Study Relation # of events
Bakun (1984) log(M0) = 1.5ML + 16 3 ≤ ML ≤ 6 40

log(M0) = 1.2ML + 17 1.5 ≤ ML ≤ 3.5 59
log(M0) ∝ (2/3 − 1)ML 0.5 ≤ ML ≤ 1.5 23

Vidal and Mungúia (1991) log(M0) = 1.11ML + 17.32 2 ≤ ML ≤ 4 72
log(M0) = 1.63ML + 14.87 4.0 ≤ ML ≤ 6.8 24

Abercrombie (1995) log(M0)(N · m) = 1.0ML + 9.8 1 ≤ ML ≤ 4 18
Ben-Zion and Zhu (2002) log(P0) = 1.0ML − 4.72 1 ≤ ML ≤ 3.5 18
P0 = M0/ν(cm · km−2) log(P0) = 1.34ML − 5.22 ML > 3.5 418
Prieto et al. (2004) log(M0) ∝∼ 3/2ML 1.8 ≤ ML ≤ 3.4 over 400
This study log(M0) = 1.12ML + 17.29 2.0 < M0 < 5.0 92

log(M0) = 1.13ML + 17.47 ML > 3.5 161
log(M0) = 1.57ML + 15.43 ML > 4.5 31

The seismic moment M0 is in dyn · cm, otherwise, as indicated.

possible alternative explanation of the non-linearity in log(P0) – ML scaling based on

their simulations of earthquake patterns with strong heterogeneities (e.g., Ben-Zion

and Rice, 1993). There is, however, a pitfall in their analysis due to the lack of data

points within 2.0 < ML < 3.5, which also hinders their further clarification of the

true moment–magnitude relation. Recently, Prieto et al. (2004) analyzed a cluster of

over 400 events (1.8 < ML < 3.4) recorded by the Anza seismic network and obtained

a larger log(M0) – ML scaling factor of ∼3/2.

Here we are presenting the log(M0) – ML relation for the 92 events (2.0 < ML <

5.0) within the cluster that we have studied (Fig. 2.17). The large number of events

within 2.0 < ML < 3.5 fit well in the magnitude gap of the Ben-Zion and Zhu

(2002) data. Besides, our moment estimates of this size of events are more reliable

than the previous studies, since we have removed the radiation pattern effect, and

the AAF corrections we incorporated in the inversion (see Eq. 2.4) eliminated the

structural effect. The least-squares fit of log(M0) = 1.12ML + 17.29 explains all the

data points (black symbols) spanning three orders of magnitude (2.0 < ML < 5.0),

except for only a few outliers (Fig. 2.17). The slope of 1.12 is consistent with the

results of Bakun (1984), Vidal and Mungúia (1991), and Hanks and Boore (1984).

The fact that the slope is slightly bigger than that derived for the borehole data
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Figure 2.17: M0 vs. ML relationship. The 92 events within the Big Bear cluster from
this study are displayed as black symbols. Color-coded in depth are the bigger events
throughout southern California since 1999 determined from long period inversions.

set (mainly 1.0 < ML < 2.0) (Abercrombie, 1995; Ben-Zion and Zhu, 2002) might

imply a gradual transition. However, to confirm the robustness of the slope change

requires more observations with ML < 2.0. We group the events according to their

different fault types following Frohlich (1992) and find no obvious dependence on fault

types of the log(M0) – ML relation. For comparison, we also include in Fig. 2.17 159

events with ML > 3.5 throughout southern California between 1999 and 2004 (color

coded symbols). The seismic moments of these events are determined by inverting

long-period complete seismograms as we have discussed in section 2.2. Details of the

source parameters of these events are given in Appendix A. Although the linear least-

squares fit gives a similar slope of 1.13, the scatter is apparently larger. No obvious
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event depth dependence of the log(M0) – ML relation is observed. The slope of 1.13

is smaller than the result of Ben-Zion and Zhu (2002); however, it is in agreement

with the result of Clinton et al. (2006). We also separate the 31 events with ML > 4.5

and obtain a significantly larger slope of 1.57 with the linear least-squares fit, which

supports the argument of the continuous log(M0) – ML curvature by Hanks and Boore

(1984).

2.7 Source duration and stress drop

Physical dimension is one of the basic parameters for describing the static properties

of an earthquake source. From it, the seismic moment M0 and an assumed fault

geometry, the static stress drop ∆σ can be estimated (Kanamori and Anderson,

1975). Particularly for small events without surface break, there are mainly two ways

of estimating source dimension: from the source duration by directly measuring the P -

wave pulse width (e.g., Frankel and Kanamori , 1983; Jones and Helmberger , 1998) or

from the corner frequency by analyzing the source spectrum(e.g., Abercrombie, 1995;

Prieto et al., 2004). Since the stress drop scales with the cube of source duration

or corner frequency, a tenfold error in the stress drop can easily be resulted from

the errors in source duration or corner frequency estimates. This has rendered the

fundamental questions regarding the stress drop of small events (M < 5) controversial,

such as whether stress drop is a constant with seismic moment, and whether stress

drop varies with tectonic setting or depth. In the previous sections, we have been

assuming a simple 0.2 sec triangular source time function for the whole cluster, which

in fact can hardly be resolved in the frequency band of 0.5–2 sec. Here we will

investigate the source durations of the individual events with a procedure, where we

attempt to equalize the energy content across different frequency bands between data

and synthetics (Zhao and Helmberger , 1996; Song and Helmberger , 1997; Jones and

Helmberger , 1998). This approach of estimating source duration is more efficient than

directly measuring source pulse for a large data set, while simpler than analyzing

source spectra. The resulted source durations are model-dependent, and possibly
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biased by various factors, such as crustal attenuation, rupture directivity and source

complexity. However, considering the compact size of the cluster, the relative source

durations of most events are reliable. A good correlation has been found between the

source durations via this approach and those determined by directly measuring the

P -wave pulse widths, except for an offset (Song and Helmberger , 1997). The offset,

however, is expected because the synthetics do not contain scattering as the data do,

especially at high frequencies.

In detail, we search through the source time functions of a range of durations

from 0.02 sec up to 0.4 sec. For simplicity, a triangular shape is assumed. With each

source time function, we calculate the ratio between the data d(t) and synthetics s(t)

of the energy contrast over short-period “sp” and long-period “lp” frequency bands:

r =

∫

d2(t)spdt
∫

d2(t)lpdt
/

∫

s2(t)spdt
∫

s2(t)lpdt
, (2.6)

and the best source duration is found when r approximates unity. In the previous

applications of the approach, where intermediate-sized events (M > 4) were ad-

dressed, the extended Pnl waves were used (e.g., Song and Helmberger , 1997; Jones

and Helmberger , 1998). However, here we restrict the calculation on the direct P

waves by choosing a 2 sec window centered on the first P -arrival. Besides, the fre-

quency band of 2–20 Hz for short period and 0.5–2 sec for long period are selected

which are suited to the events’ sizes.

The obtained source durations are displayed in Fig. 2.18, where the value for each

event is the average over several tens of stations. We performed simple iterations

on the result in an attempt to separate possible “station terms” due to propagation

effects. We solve for the events’ durations (τis) and the stations’ corrections (cjs) in

each run as

τi =

∑ni

j=1(tij − cj)

ni

, (2.7)

cj =

∑N
i=1(tij − τi)

N
. (2.8)
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The ni in Eq. 2.8 is the number of available stations for an event i, and N is the

number of total events. The tijs are the individual measurements for an event i at a

station j. However, fairly small station corrections resulted and the scatter in Fig. 2.18

remained nearly the same, which might suggest that the scatter is mainly a source

reality. Note the source durations we obtain here represent “a lower bound”, since

Song and Helmberger (1997) reported that the durations via such energy comparisons

are systematically smaller than those from direct measurements. The apparent slope

between the logs of source duration and seismic moment appears significantly smaller

than “1/3” of a constant stress drop, which could be caused by the inadequate “Q”

structure in the velocity model (Qα = 2Qβ = 1200). Particularly, our experiments

with reduced “Q” values have produced larger slopes between the logs of source

duration and seismic moment. Hence, the slope in Fig. 2.18 is not capable of rejecting

the earthquake self-similarity hypothesis or the “constant stress drop” model.

We group the events in Fig. 2.18 according to their depths, and find the deeper

events (> 6 km) consistently have larger durations, hence, lower stress drops than

the shallower events. Since the events’ depths correlate well with their geographic

locations (see Fig. 2.14), such a tendency is also observed in the map view of the stress

drops (Fig. 2.19). The stress drops in Fig. 2.19 are calculated assuming a circular

fault following Jones and Helmberger (1998) as

∆σ(bar) =
1.84 × 10−22M0(dyncm)

τ 3
. (2.9)

Particularly, we compare the broadband records from two events (13938228 and

13937696) of a similar size, but different stress drops (Fig. 2.20). The P wave pulse

widths from the event 13938228 are consistently larger than those from the event

13937696, which suggests that the contrast between their source durations is robust.

What has caused the variation of the stress drop in Fig. 2.19 is intriguing, since it

can hardly be attributed to the structural or attenuation effects, considering the com-

pact size of the whole cluster. Recently, Li and Zhu (2006) reported well-constrained

Landers fault zone (FZ) structure from modeling the waveform data of the after-
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Figure 2.18: Source durations vs. seismic moments for the 2003 Big Bear sequence.
The triangles are for the deeper events in the south (≥ 6 km), with the circles for the
shallower events in the north (see Fig.2.14). The lines of constant stress drops of 1,
10, 100 and 1000 bars are plotted from top to bottom. The outlier (event 13936432)
of apparently the largest stress drop will be further discussed later. Also labeled are
the two events 13937696 and 13938228 compared in Fig. 2.20.

shocks. They reported a low-velocity FZ of 250-340 m in width with a 45% reduction

in seismic wave velocities. If we assume the crustal density is relatively uniform, the

shear wave velocity reduction would imply a sharp drop in the crustal rigidity or

strength in the fault zone. Correspondingly, earthquakes that occur in pre-existing

fault zones would tend to have lower stress drops.
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tendency that larger events have higher stress drops is possibly due to the inadequate
”Q” structure in the velocity model.
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Figure 2.20: Comparison of the broadband displacement records from the event
13937696 (black) and 13938228 (red). Shown are the stations where we are able
to accurately measure the on-set of P waves, by which the records are aligned. Note
the P -wave pulse widths from the event 13938228 (red) are consistently larger than
those from the event 13937696. This supports the duration contrast between the two
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2.8 Rupture directivity

A direct consequence of rupture propagation on a fault plane is the azimuthal de-

pendence of the observed source time function (STF). In brief, if a seismic station is

located along the rupture propagation direction, the STF is narrower and has a higher

amplitude. For a station located such that the rupture is propagating away from it,

the STF will be spread out and have a smaller amplitude (Lay and Wallace, 1995).

Retrieving such an azimuthal pattern of the STFs, however, is not easy, due to the

difficulty in separating the STFs from the entanglement of propagational effects. The

problem becomes even more severe for small events (M < 5), where a typical STF

length drops below ∼0.5 sec, and the analysis has to be conducted at high frequencies

(> 2Hz).

Instead of using inaccurate Green’s functions from an inadequate velocity model,

Hartzell (1978) early demonstrated the feasibility of modeling the strong ground

motion of a large earthquake using records from its own aftershocks as Green’s func-

tions. This empirical Green’s function (EGF) approach assumes the large event and

the EGF events occur at a similar location and have a similar focal mechanism, so

that they share nearly the same propagational effect, and a linear scaling between

their source terms exists at the same stations. Therefore, the relative source time

functions (RSTFs) of the large event can be obtained by simply deconvolving the

EGFs from the records of the event. These relative estimates, however, can equal

to the true values if the source duration of the EGF event is short enough to ap-

proximate a delta function. Since the early 1990’s, the EGF method has been widely

used to retrieve source parameters and rupture processes of both large (e.g., Hough

and Dreger , 1995) and small (e.g., Lanza et al., 1999; Venkataraman et al., 2000;

McGuire, 2004) earthquakes, where the deconvolution technique was the main means

of extracting RSTFs.

In this section, we will take the magnitude 2 events as EGFs to investigate the rup-

ture processes of the larger strike-slip events (Mw > 3.5) within the cluster. Rather

than using deconvolution, we propose an alternative approach of forward modeling to
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retrieve the RSTFs. Let d(t) and g(t) be the records from a large event (Mw > 3.5)

and the associated EGF event at the same station, which can be related by the relative

source time function, RSTF (t) of the large event as:

d(t) = g(t) ∗ RSTF (t). (2.10)

Assuming a simple trapezoidal shape of RSTF (t) according to the 1D Haskell model

(Haskell , 1964), where a RSTF (t) can be parameterized as the convolution of two

boxcars, featuring the rise time τ1 and the rupture time τ2, we can solve for the

RSTF (t) in a grid search manner by minimizing the misfit defined as:

e = ‖d(t) − ∆M0g(t) ∗ RSTF (t)‖, (2.11)

whereRSTF (t) = τ1(t) ∗ τ2(t). (2.12)

Here the parallels denote the L2 norm. ∆M0 is an amplitude scaling factor to account

for the two events’ difference in size and radiation pattern.

We first use the event 13937492 to illustrate the whole process, which is also the

smallest (Mw ∼ 3.5) among our analyzed events. The event has a nearly pure strike-

slip focal mechanism, and we have chosen a smaller event (13937632, Mw ∼ 2.5),

which has almost the same focal mechanism (see Fig. 2.14) for the EGFs. The two

events are located within 500m × 500m × 500m by Chi and Hauksson (2006). We

conducted the grid search to minimize “e” in Eq. 2.12 in the parameter space of

0.02–0.2 sec for τ1 and 0.02–0.4 sec for τ2 with a step of 0.02 sec. A bandpass filter of

0.5–6Hz was applied to avoid rather small-scale rupture heterogeneities. Although we

could solve for τ1 and τ2 at each station separately, we took τ1 as a common parameter

and obtained its best value (0.08 sec) when the summation of misfit errors from all

the stations was minimized (Fig. 2.21(a)). The corresponding τ2s for the individual

stations are displayed in Fig. 2.21(b), where τ2 reaches a pronounced minimum at an

azimuth of ∼ 140◦. The azimuthal variation of τ2 indicates that the rupture is on the

NW striking plane and propagates unilaterally towards the southeast. To estimate
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Figure 2.21: (a) The summation of misfit errors as defined in Eq. 2.12 from all the
stations vs. rise time τ1. The best estimate of τ1 occurs where the total misfit error
approaches the minimum, in this case, 0.08 sec. (b) The τ2s corresponding to a 0.08
sec τ1 vs. azimuth. The color of the squares denotes the waveform cross-correlation
between the records from the main event (13937492) and the EGF event (13937632)
convolved with the RSTFs. The color of the inner circles denotes the station distances.
The uncertainties of the τ2s are estimated by a 10% decrease in variance reduction.
The solid line indicates the least-squares fit of the unilateral rupture towards SE
on the NW striking fault plane (the black arrows) following Eq. 2.13. (c) The τ2s
corresponding to a 0.02 sec τ1 vs. azimuth.
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the fault length (fl) and rupture velocity (Vr), we fit the observed azimuthal pattern

of τ2 with the calculated values from the simple 1D model:

τ2 =
fl

Vr
{1 −

Vr

vp
[cos(ϕ − φ)cos(λ) − sin(ϕ − φ)sin(λ) ∗ cos(δ)]}, (2.13)

where we have assume the rays are essentially taking off horizontally from the source.

ϕ in Eq. 2.13 is the station azimuth, while φ and δ are the strike and dip of the rupture

plane. λ is the rake of the rupture propagation direction. Here we simply assumed

the rupture propagates horizontally, i.e., λ = 0◦ or 180◦. Any vertical component of

rupture directivity, however, can hardly be resolved on a nearly vertical fault plane

(Eq. 2.13), since we did not make distinctions between up-going and down-going rays.

The least-squares fit from this simple model well explains the azimuthal pattern of τ2

(Fig. 2.21(b)). We color-coded the stations with their distances; however, we found

no obvious dependence of τ2 on station distance, which implies no significant vertical

rupture directivity. We obtain a fault length of ∼ 0.5 km and a relatively large

rupture velocity of ∼ 3.5 km/sec (Fig. 2.21(b)). However, the constraint on them

is weak, simply due to the large scatter near the τ2 minimum. Besides, there are

trade-offs between the fault length, rupture velocity and the rise time. Taking these

into account, we obtain the lower bounds of the fault length (∼ 0.4 km) and rupture

velocity (∼ 2.7 km/sec) with the 0.02 sec rise time (Fig. 2.21(c)).
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The azimuthal variation of the rupture time for event 13937492 can also be vi-

sualized directly in the waveforms (Fig. 2.22). The selected stations well sample the

whole azimuthal range. Apparently, the stations GSC and ALP that are located op-

posite from the rupture propagation direction require the largest rupture times. On

the contrary, those stations located along the rupture propagation direction, such as

BEL and SLR, display significantly shorter source time functions. Note in Fig. 2.22

that the minimum rupture times, such as for the stations BEL and SLR, are mainly

resolved from amplitude comparisons, due to the high frequency cutoff (6 Hz) we

have applied. This also explains the relatively large scatter near the τ2 minimum in

Fig. 2.21.

In the following, we will briefly discuss the results for the few other events that we

have investigated. Another example of unilateral rupture, event 13936596, is given in

Fig. 2.23. Although there is some scatter, the obtained rupture time displays system-

atic azimuthal variation, and reaches a well-developed minimum at ∼ 210◦(Fig. 2.23(a)).

Such an azimuthal pattern of τ2 suggests a unilaterally propagating source on the

northeast-striking fault plane towards the southwest. The least-squares fit of the τ2s

with Eq. 2.13 produces a fault length of ∼0.4 km and a large rupture velocity, ap-

proximately 3.8 km/sec, though the constraints on them are weak. We compare in

Fig. 2.23(b) the source time functions of event 13936596 relative to event 13938500

by projected landwebber deconvolution (PLD) (e.g., Lanza et al., 1999). Although

the exact durations of the RSTFs are rather subjective due to the sidelobes in the

RSTFs, the stations within the azimuthal range of ∼140◦–300◦ display distinctly

shorter source durations, consistent with the forward modeling result (Fig. 2.23(a)).

Event 13936076 (Fig. 2.24) appears a “doublet” when compared to a smaller

event 13936344 with a similar focal mechanism. In particular, the records from event

13936076 consistently display doubled pulses of those from event 13936344. Such

discrepancies can not be due to structural effects, since the two events are closely

located (within 500 m). Moreover, the azimuthal stability strongly suggests a source

effect. As shown in Fig. 2.24, the simple source time function “stf1” composed of

two subevents well explains the observed P -wave waveforms from event 13936076
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Figure 2.23: (a) The rupture time vs. azimuth corresponding to the best τ1 estimate
of 0.04 sec for event 13936596. (b) The source time functions (RSTFs) of event
13936596 relative to the EGF event 13938500 obtained by deconvolution. The short
bars marking the onsets of the RSTFs indicate the durations of the RSTFs. The
traces are color-coded by cross-correlation.



53






Main event
13936076(Mw:3.84)

EGF event
13936344(Mw:2.82)

Rupture Plane
(NE-SW)

Directivity: Unilateral 0.0 0.1 0.2 0.3 0.4

Time, sec

stf0

stf1

stf2

EGF*stf1

Data (13936076)

EGF*stf2

EGF*stf0

0.0 0.5 1.0 1.5 2.0

Time,sec

GSC ∆:109.4
Az:  2.2

2.58e-03
2.74e-03

SHO ∆:183.3
Az: 16.5

5.58e-03
5.57e-03

NBS ∆: 58.1
Az: 27.6

1.92e-02
8.73e-03

MCT ∆: 75.3
Az: 97.4

1.88e-03
1.88e-03

BLA ∆: 50.7
Az:122.6

2.95e-03
3.01e-03

DNR ∆: 85.6
Az:166.1

3.26e-03
3.01e-03

0.0 0.5 1.0 1.5 2.0

Time,sec

SLR ∆: 53.8
Az:174.6

5.44e-03
4.19e-03

MSJ ∆: 57.4
Az:190.8

4.05e-03
4.41e-03

MLS ∆: 74.0
Az:242.3

1.45e-02
1.19e-02

CHN ∆: 84.2
Az:245.5

8.59e-03
6.81e-03

WLT ∆:106.9
Az:251.7

2.45e-02
2.82e-02

CPP ∆: 92.7
Az:252.4

2.56e-02
2.80e-02

0.0 0.5 1.0 1.5 2.0

Time,sec

PDU ∆: 75.6
Az:253.5

2.04e-02
1.55e-02

PAS ∆:123.0
Az:261.6

3.46e-03
2.46e-03

BFS ∆: 74.8
Az:263.4

7.51e-03
6.91e-03

MWC ∆:111.6
Az:265.0

3.48e-03
3.72e-03

CHF ∆:108.1
Az:271.3

7.72e-03
7.06e-03

TA2 ∆: 76.4
Az:275.7

2.13e-02
2.20e-02

0.0 0.5 1.0 1.5 2.0

Time,sec

VCS ∆:117.9
Az:279.4

8.25e-03
3.80e-03

ALP ∆:139.2
Az:287.6

8.05e-03
4.46e-03

LKL ∆: 95.4
Az:290.6

1.12e-02
7.34e-03

ADO ∆: 59.5
Az:296.0

1.61e-02
9.94e-03

VTV ∆: 51.6
Az:301.8

2.55e-02
1.30e-02

RRX ∆: 63.4
Az:347.9

8.58e-03
5.58e-03

2.96e-03

4.67e-03

1.03e-02

1.23e-03

2.53e-03

2.09e-03

3.22e-03

4.65e-03

1.07e-02

6.09e-03

2.48e-02

2.85e-02

1.60e-02

2.93e-03

5.93e-03

1.80e-03

7.75e-03

1.59e-02

4.30e-03

4.00e-03

5.96e-03

9.66e-03

9.59e-03

4.76e-03

Figure 2.24: The waveform comparison between the records from event 13936076 and
the associated EGF event 13936344. The four traces for each station, from top to
bottom, are the EGF record convolved with source time function “stf1”, the record
from event 13936076, the EGF record convolved with “stf2” and the EGF record
convolved with the single pulse source time function “stf0” respectively. Note the
double-pulse source time function “stf1” applies well to most stations. However, the
few stations (circled) that are located to the southwest end of the NE-striking fault
plane require larger separations between the subevents.
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for most of the stations. However, the few stations (circled in Fig. 2.24) within a

certain azimuthal range clearly prefer the larger separation between the subevents as

in the source time function “stf2”. Such azimuthal discrepancy is robust although

the details of the subevents, or their “exact” separation are not well resolved due

to the intrinsic trade-offs between them. The easiest interpretation suggests rupture

propagation towards the northeast on the NE-striking fault plane (Fig. 2.24). The

details of the rupture process for event 13936076 still warrant further study.

Event 13938812 has the largest magnitude among the studied events. However,

it does not display any clearer signal of a unilaterally propagating rupture than we

have seen for event 13937492 (Fig. 2.21) or 13936596 (Fig. 2.23). Figure 2.25(a)

shows the τ2 estimates for this event from the forward modeling approach. The rise

time τ1 has been assumed to be 0.10 sec, which minimized the total misfit error

from all the stations. Although the azimuthal variation in τ2 is considerably smaller

compared to the typical unilateral ruptures (event 13937492 or 13936596), it is sys-

tematic and well resolved. In particular, τ2 reaches a well defined minimum at ∼215◦.

Moreover, the relative source time functions (RSTFs) obtained from deconvolution

provide complementary evidence (Fig. 2.25(b)), where the durations of the RSTFs

display a similar azimuthal pattern as the τ2s in Fig. 2.25(a). We first fit the τ2s

with a unilaterally propagating rupture towards the southwest on the NE-striking

fault plane (the dashed line) following Eq. 2.13. The least-squares fit well explains

the general azimuthal trend of τ2, though some details are missed, such as for the

couple of stations near the predicted τ2 maximum. The resulted rupture velocity of

∼1.0 km/sec suggests very slow rupture propagation, while the small fault length

(0.17 km) implies considerable vertical dimension of the ruptured area or high stress

drop. We also investigated the other interpretation of a bi-lateral rupture, where the
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Figure 2.25: (a) The rupture time τ2 corresponding to the best τ1 estimate of 0.10 sec
from the forward modeling approach vs. azimuth for event 13938812. The solid line
indicates the least-squares fit of a bi-lateral rupture, while the dashed line stands for
the unilateral rupture. The black arrows denote the NW-striking fault plane for bi-
lateral rupture while the gray arrows denote the NE-striking fault plane for unilateral
rupture. (b) The source time functions (RSTFs) of event 13938812 relative to the
EGF event 13937632 obtained by deconvolution.
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τ2s can be predicted as

τ2 = max(τ
(1)
2 , τ

(2)
2 ), where

(2.14)

τ
(1)
2 = Ra ·

fl

Vr
{1 −

Vr

vp
[cos(ϕ − φ)cos(λ) − sin(ϕ − φ)sin(λ) ∗ cos(δ)]},

(2.15)

τ
(2)
2 = (1 − Ra) ·

fl

Vr
{1 −

Vr

vp
[cos(ϕ − φ)cos(−λ) − sin(ϕ − φ)sin(−λ) ∗ cos(δ)]}.

(2.16)

“Ra” introduced in Eq. 2.16 is a length ratio indicating where the rupture has initi-

ated between the two ends. The least-squares fit of a bi-lateral fault (the solid line)

produces equally well fit to the τ2s as the unilateral fault (Fig. 2.25), since the fits are

mainly controlled by the data points with azimuths over ∼150◦. The resulting fault

length becomes compatible (0.41 km) with the event’s size, while the rupture velocity

remains rather slow (∼1.5 km/sec). To make a distinction between the unilateral

fault and bi-lateral fault in Fig. 2.25 mainly depends on the observations within the

azimuthal range of ∼0◦–120◦. We prefer the unilateral rupture, since we did not

observe any significant decrease in τ2 within that particular azimuthal range when

we used other events for EGFs; instead, higher τ2s were common. Besides, the τ2

minimum at ∼215◦was well defined in all these experiments. The detailed rupture

process, and particularly the vertical extent of the ruptured area needs further study.
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Figure 2.26: The rupture time τ2 corresponding to the best τ1 estimate of 0.04 sec
from the forward modeling approach vs. azimuth for event 13939856. The solid line
indicates the least-squares fit of a bi-lateral rupture, while the dashed line stands for
the unilateral rupture. Note the bi-lateral rupture explains the azimuthal pattern of
τ2 much better. (b) The source time functions (RSTFs) of event 13939856 relative to
the EGF event 13951288 obtained by deconvolution.
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Figure 2.27: The selected waveform fits (Vertical P waves) between the records from event 13939856 (black) and the “synthetics”
(red) constructed with EGFs from event 13951288. The relative source time functions (RSTFs) are given to the left. Plotted
are the absolute amplitudes, except that a scaling factor of 1/4, 1/4, 1/3 and 1/3 has been applied to the stations JVA, PDU,
TA2 and VTV respectively for display purposes. The obtained best RSTFs for the stations are circled. Note the apparent
azimuthal pattern of the RSTFs.
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The rupture time estimates for event 13939856 display large azimuthal variations

(Fig. 2.26), which are in fact well resolved in the waveform comparisons (Fig. 2.27).

The azimuthal pattern of τ2 suggests either unilateral rupture on the NW-striking

fault plane, propagating towards the southeast, or the bi-lateral rupture on the NE-

striking fault plane, though the bi-lateral rupture explains the azimuthal trend of τ2

better. However, the resulting fault length (∼1.2 km) and the extremely large rupture

velocity (∼6.5 km/sec) from the bi-lateral fault cause some concerns. Moreover, such

an azimuthal pattern is hardly discernible in the durations of the relative source time

functions by deconvolution. Similar results have been obtained when we use other

events for EGFs, suggesting the reality of event 13939856. Further study is therefore

needed to clarify the discrepancy and explore the detailed rupture process of this

event.

The rupture time estimates for event 13936432 display no systematic azimuthal

variation (Fig.2.28(a)). In fact, the τ2s tend to approximate a constant value (∼0.07 sec),

although there is some scatter. Such a uniform τ2 is well confirmed when we di-

rectly compare the records from event 13936432 to the EGFs from event 13937200

(Fig. 2.29). Note the effectiveness of a uniform source time function in explaining

the records from event 13936432 sampling the whole azimuthal range. Besides, the

relative source time functions (RSTFs) of event 13936432 obtained by deconvolution

(Fig. 2.28(b)) also suggest the lack of rupture directivity. Consequently, we are not

able to resolve the primary and auxiliary fault plane ambiguity for event 13936432.

However, a note worthy feature for this event (Fig. 2.28) is its relatively short source

duration (∼0.15 sec). This discovery is consistent with the measurement by energy

ratio comparison (Fig. 2.18), where event 13936432 appears an outlier due to its short

source duration, implying high stress drop of the event.

We summarize the inferred rupture directivities of our studied events in Fig. 2.30

together with the time evolution of the whole sequence. The main shock (13935988)

that was discussed earlier (Fig. 2.6) has also been included. Apparently, unilateral

ruptures dominate in Fig. 2.30. The inferred rupture planes have provided clear

evidence for crossover faults at depth. There is in general good agreement between
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Figure 2.28: The rupture time τ2 corresponding to the best τ1 estimate of 0.07 sec
from the forward modeling approach vs. azimuth for event 13936432. The black
and gray arrows indicate the strikes of the two fault planes. (b) The source time
functions (RSTFs) of event 13936432 relative to the EGF event 13937200 obtained
by deconvolution.
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Figure 2.30: Time evolution of the 2003 Big Bear sequence for the first day after
the main shock (a) and the first 50 days (b). Event locations are from Chi and
Hauksson (2006) with a double-difference approach. Labeled according to their oc-
currence in time are the events that we have investigated for rupture directivity. The
arrows indicate the strikes of the ruptured fault planes plus the rupture propagation
directions.
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the rupture planes and the seismicity lineations, except for the events 13936076 and

13938812. However, there is little correlation between rupture propagation and the

aftershock activities, except for the main shock.

2.9 Conclusions

In this chapter, we developed a “two-way” calibration technique for studying clustered

events, particularly their mechanisms and rupture processes. First, we demonstrate

that the magnitude 4 events with known source mechanisms can be used to calibrate

the path effects on the short-period (0.5-2 sec) P waves, so that the corrected P

waves can be modeled for determining focal mechanisms of the smaller events within

the cluster. The correction is formulated in terms of a station-specific “Amplitude

Amplification Factor” (AAF), whose origin is mainly due to the site effect. Second,

we show that the smaller events with radiation pattern corrections provide excellent

empirical Green’s functions (EGFs) for investigating the detailed rupture processes

of the magnitude 4 events. In particular, we applied our methods to the 2003 Big

Bear sequence. Our main results indicate that (1) Short-period (0.5-2 sec) P waves

can be used for determining focal mechanisms of events as small as M ∼ 2, provided

necessary path calibration. (2) Magnitude 4 events display various detailed rupture

processes.
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Chapter 3

Locating and Modeling Regional

Earthquakes with Two Stations

3.1 Abstract

We developed a new technique CAPloc to retrieve full source parameters of small seis-

mic events from regional seismograms, which include origin time, epicenter location,

depth, focal mechanism, and moment magnitude. Despite rather complicated propa-

gation effects at short periods, a simple localized 1-D model can well explain signals

of periods 3–10 sec if we break the three-component records into different segments

and allow differential time shifts among them. These differential time shifts, once

established from a calibration process or a well-determined tomographic map, can be

used together with P wave travel times to refine an event’s location. In this study, we

tested whether our new method could produce satisfactory results with as few as two

stations, so that we can improve source estimates of poorly monitored events with

sparse waveform data. We conducted the test on 28 events in the Tibetan plateau.

The focal mechanisms and locations determined from only two stations agree well

with those determined from a whole PASSCAL array. In particular, our new method

produces better locations than ISC, with the average mislocation error reduced from

∼16 km to ∼5 km. We also tested whether an event’s depth and mechanism can

be determined separately from its epicenter relocation in a two-step approach. We

find that the two-step approach does not always give the correct solution, but the

reliability of a solution can be evaluated using a reduced chi-square value.
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3.2 Introduction

Rapid characterization of a seismically recorded event has been one of the major

themes of seismic monitoring. An efficient and accurate way to retrieve the hypocen-

ter, mechanism, origin time and size of a seismic event is important for understanding

tectonic processes, and responding to earthquake hazards, as well as discriminating

nuclear explosions from natural earthquakes.

Classic methods assume a good seismic velocity model and use travel times of

certain seismic phases, usually the direct P and/or S wave, to locate an event’s

hypocenter, and phase polarities for determining the focal mechanism. Consequently,

the accuracy of the solutions depends on the station coverage, since most velocity

models used are good only for a global average. In that sense, large events with

magnitude greater than ∼5.5, which are readily recorded globally, are usually well

determined. However, a much larger population of smaller events, where only limited

regional data (∆ <10◦) have adequate signal-to-noise ratio (SNR), are more prone to

biases caused by structural heterogeneity.

A reinforced regional seismic network allows enough redundancy to average out

some of the local complications. The implementation of TriNet with over 150 broad-

band stations in southern California is such an example, where an event’s origin

time, hypocenter, mechanism and size are well determined and reported on the Inter-

net within minutes (Hauksson, 2001). Similar real-time systems have been developed

in recent years in other seismically active regions to monitor seismic activity for

rapid notification and damage assessment (e.g. Teng et al., 1997; Okada et al., 2004).

In addition, temporarily deployed dense local seismic networks have provided rare

opportunities to retrieve reliable regional source parameters in some geologically in-

teresting, but remote areas (e.g. Leitner et al., 2001; Langin et al., 2003). However,

although these well-determined regional events prove useful to constrain the thermal

structure and understand the active tectonics, a substantial increase in their number

is needed to further explore spatial and temporal variations. Therefore, a reliable

method is needed to extract accurate source parameters from sparse recordings of
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poorly monitored events. These could be historical events that occurred before the

modern era of dense instrumentation in southern California, or those in some remote

areas, such as Southeastern Asia or the Middle East. Our method will also support

the verification of the Comprehensive Nuclear Test-Ban Treaty (CTBT), which re-

quires accurate location determination of global seismicity with a fixed teleseismic

network (Kennett and Ringdal , 2001).

Better utilizing a limited data set becomes the major concern in developing such a

method. Efforts are basically divided into two categories, focusing on accurate source

location and focal mechanism, respectively. Tremendous work has been done to better

locate a seismic event in the context of the CTBT. Various strategies include devel-

oping new techniques for more accurate travel time measurements, utilizing travel

times together with slowness and azimuth information (e.g. Bondár and North, 1999;

Bondár et al., 1999; Uhrhammer et al., 2001), implementing better regional velocity

models (e.g. Kremenetskaya et al., 2001), and deriving various source-specific station

corrections (e.g. Yang et al., 2001a,b; Ryaboy et al., 2001). At the same time, rather

than focusing on travel times of impulsive body wave phases, Yacoub (1996) reported

locations of 16 nuclear explosions that were well determined by using arrival times of

the maximum Rayleigh wave energy estimated over a narrow frequency band of 17–

23 s, in the same manner as P -wave travel times are used. Similar experiments and

results were reported later by Stevens et al. (2001). The improvement on epicenter

location from various validation tests is encouraging. Accurate depth determination

is, however, still an open issue.

On the other hand, modeling regional seismograms provides the only opportunity

to constrain an event’s source mechanism accurately when a reliable first motion

focal plot cannot be constructed. Early work by Langston (1981) showed that the

relative amplitudes of P , SH and SV waveforms from a WWSSN station are sufficient

to discriminate between fault types. With the development of modern broadband

seismic instrumentation and the success in modeling broadband records, Dreger and

Helmberger (1993) demonstrated the feasibility of retrieving stable source orientations

using long period body waves (mainly Pnl and Sn) from a couple of early southern
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California broadband stations. Their work paralleled that of Fan and Wallace (1991)

in New Mexico. Surface waves also prove useful in source mechanism determination as

demonstrated by several authors addressing different periods ((Thio and Kanamori ,

1995, 10–50 s); (Romanowicz et al., 1993, 15–50 s); (Ritsema and Lay , 1993, >50 s)).

However, the methods using surface waves alone require some azimuthal sampling

around the source, which makes them less effective in cases, in which only a few

stations are available. A step forward in using both body and surface waves was

made in the so-called “cut and paste” method (CAP) (Zhao and Helmberger , 1994;

Zhu and Helmberger , 1996), where body wave and surface waves from entire records

are separated and modeled with differential time shifts between them allowed. This

method desensitizes the timing between the principal crustal arrivals; hence, accurate

source estimates could be achieved with imperfect Green’s functions.

Here, based on an expansion of the CAP method, we present a joint effort to

determine both event locations and focal mechanisms using complete 3-component

regional seismograms. We call the new method CAPloc to distinguish it from the

original CAP. The basis of the method lies in the fact that, as the waveforms of ma-

jor seismic arrivals constrain an event’s source depth and orientation, their differential

travel times define the epicenter location. To put the method into practice requires

calibration of the regional paths. In an earlier study, Zhu et al. (2006) conducted

an effective calibration process with a temporary PASSCAL array on the Tibetan

plateau. We will validate our method by demonstrating its ability to recover essen-

tially the same source parameters derived from a well-distributed array with only two

fixed stations.

3.3 Methodology

Let u(t) be a recorded seismogram with instrument response removed. The corre-

sponding synthetics s(t) for a double-couple source can be expressed as a summation

of contributions from three fundamental faults, namely, vertical strike slip, vertical
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dip slip and 45◦ dip slip:

sj(t) = M0

3
∑

i=1

Aij(φ − ϕ(θ, ξ), δ, λ)Gij(h, ∆(θ, ξ), t), (3.1)

where j = 1, 2, 3 denotes the vertical, radial and tangential component, respec-

tively (Helmberger , 1983). The Gijs are the Green’s functions, and the Aijs are

the radiation coefficients. M0 is the scalar moment. ϕ and ∆ are the station az-

imuth and distance. The unknowns, h (depth), φ (strike), δ (dip) and λ (rake), which

describe the source depth and orientation, together with θ (event latitude) and ξ

(event longitude), which define the epicenter location, can be obtained by solving the

equation

u(t) = s(t). (3.2)

Since there are only limited unknowns and all of them are confined within a certain

range of values, it is straightforward and convenient to solve the equation in a grid

search manner.

However, solving Eq. 3.2 with an entire regional record is problematic. First,

regional records are usually complicated by 3-D path and site effects. In particu-

lar, different portions of the records, e.g., the body wave (Pnl) and surface waves,

which sample different parts of the crust, require different adjustments on the 1-D

Green’s functions over different frequency bands. Secondly, whole-waveform inversion

is easily dominated by the strongest signals, usually the surface waves. To overcome

these difficulties, we expand the original CAP source estimation technique (Zhao and

Helmberger , 1994; Zhu and Helmberger , 1996), which breaks an entire record into Pnl

and surface wave segments to be modeled separately.

We use the chi-square χ2
w as our object function:

χ2
w =

ePnl

σ2
Pnl

+
eSur

σ2
Sur

, (3.3)
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where the waveform misfit errors

ePnl = ‖uPnl(t) − sPnl(t − ∆T )‖, (3.4)

eSur = ‖uRayleigh(t) − sRayleigh(t − ∆T − δtRayleigh)‖

+ ‖uLove(t) − sLove(t − ∆T − δtLove)‖. (3.5)

Here ‖‖ denotes the L2 norm. ∆T is the time shift to align synthetics with data on the

first P arrival. The δtRayleigh and δtLove are the path-specific timing corrections for the

synthetic Rayleigh and Love wave segments with respect to the first P arrival, which

can be derived from a simple calibration process as discussed by Zhu et al. (2006) or

using a well-determined tomographic map. These δts account for the deviations of

real crustal structure from the 1-D model. They are a prerequisite for an accurate

epicenter relocation. If we set them as free parameters to be determined by waveform

cross-correlation in the grid search, the source depth and orientation can still be

determined but not the epicenter location, since the mislocation errors are absorbed

by these time shifts.

The parameters σ2
Pnl and σ2

Sur in Eq. 3.3 are the variances of waveform residuals

of Pnl and surface waves. They measure how well the velocity model can explain the

observed waveforms. We distinguish Pnl and surface waves, because they sample the

velocity structure differently. Since σ2
Pnl and σ2

Sur are usually not known a priori, we

conduct a series of trial grid searches with a range of σSur/σPnl ratios to minimize

χ′2
w = σ2

Surχ
2
w =

σ2
Sur

σ2
Pnl

ePnl + eSur. (3.6)

The best σSur/σPnl ratio is selected when the misfit errors of Pnl and surface waves

are “equal”:
1

νSur

eSur

σ2
Sur

=
1

νPnl

ePnl

σ2
Pnl

. (3.7)

Here, νPnl and νSur are the numbers of measurements from Pnl and surface wave

waveform data, respectively. Since an individual data point on a seismogram strongly

correlates with its neighbors, we count every duration of the dominant period as one
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independent “data point”.

By using Eq. 3.7 and Eq. (4.26) of Bevington and Robinson (2003), σ2
Pnl and σ2

Sur

can then be estimated a posteriori from the misfit errors of Pnl and surface waves at

the best solution:

σ2
Pnl =

νPnl + νSur

νPnl + νSur − m

ePnl

νPnl
, (3.8)

σ2
Sur =

νPnl + νSur

νPnl + νSur − m

eSur

νSur
, (3.9)

where m is the number of unknown source parameters.

Thus, the relative weight between Pnl and surface waves in our new CAPloc is

adaptive as compared to a fixed value in the original CAP (Zhu and Helmberger ,

1996). Later we will show that a static weighting factor of Pnl to surface waves is

not appropriate, especially when few stations are used.

We can place an additional constraint on the event location by minimizing P wave

travel-time residuals

χ2
t =

1

σ2
t

N
∑

n=1

(

∆Tn −
1

N

N
∑

n=1

∆Tn

)2

, (3.10)

where σ2
t represents the variance of the residuals. Provided that structural effects

on these travel-time residuals can be corrected by a path calibration or tomographic

study, σ2
t mainly measures uncertainty in picking P wave arrivals. The average of the

travel-time residuals, 1
N

∑N
n=1 ∆Tn, implies an offset in the event’s origin time.

We simply search through the whole parameter space of all the unknowns h, φ, δ,

λ, θ and ξ, and determine the best solution of the source parameters where

χ2 = χ2
w + χ2

t , (3.11)

is minimized. However, since the waveforms of Pnl and surface waves are mainly con-

trolled by source depth and orientation, while their travel times only depend on event

location, we can also separate the whole parameter space into two subspaces of (h, φ,



71

δ, λ) and (θ, ξ), and conduct two grid searches separately on them. The first one is to

determine source depth and orientation with an event’s preliminary epicenter location

by minimizing χ2
w, where δtRayleigh and δtLove are set as free parameters determined

by waveform cross-correlation to account for both event mislocation and structural

effects. Then, using the obtained source depth and mechanism, a second grid search

is conducted for a better epicenter location, where the surface wave segments are

no longer allowed to float, but fixed with predetermined time shifts from either path

calibration or seismic tomography. Compared to the one-step approach, this two-step

approach has the advantage of requiring less computation time. However, as might

be predicted, a wrong source depth or mechanism from the first step could lead to a

wrong relocation. In the next section, we will test both approaches.

3.4 Applications

3.4.1 Data

The Tibetan plateau was chosen as our test bed mainly based on two considerations.

First, Tibet itself is a seismically active, but poorly monitored region with a sparse

short-period network plus a couple of modern broadband instruments. Second, Zhu

et al. (2006) obtained useful calibration information for various regional paths on

the plateau using data collected by a temporary PASSCAL experiment in 1991–

1992 (Owens et al., 1993). Moreover, the events they have studied with locations,

depths, and mechanisms well determined from the whole PASSCAL array are ideal

for testing the validity of our new method. Fig. 3.1 displays locations of over 50

earthquakes investigated by Zhu et al. (2006). The average relocation offset with

respect to the ISC locations is ∼16 km, excluding the two events mislocated by ISC

by over hundreds of kilometers. The offsets generally correlate well with the ISC

station coverage: smaller offsets are associated with better coverage.

To test our method, we choose two fixed stations, LHSA and TUNL, and the

28 events that were recorded by both. The two stations were separated by over
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Figure 3.1: Temporary stations (inverted triangles) of the 1991-1992 PASSCAL ex-
periment on the Tibetan plateau are displayed with 53 recorded earthquakes. The
circles represent the events’ ISC locations, and the stars represent their relocations
using the full array by Zhu et al. (2006). The filled stars indicate the 28 events se-
lected in this study, which were recorded by both stations LHSA and TUNL (solid
triangles). Labeled are their Julian day numbers.

five hundred kilometers, so they provide nearly independent constraints for all of

the selected events. Furthermore, they are the sites of two permanent broadband

seismic stations in Tibet. Therefore, our study will benefit future earthquake source

determination in the region. Using the same two stations for all the events can avoid

possible biases in data selection and ensure a fair assessment of our method.

Three-component seismograms of an event 330b located between the two stations

are displayed in Fig. 3.2 as an example. The data are shown in different frequency

bands. Note that one advantage of having broadband waveform data is that several
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crustal phases can be well recognized when the waveforms are examined in differ-

ent frequency bands. For example, while the long-period Pnl waves are weak, the

short-period P waves are strong and useful for picking P wave arrival times and po-

larities. Different bandpass filters, 3–20 s for Pnl and 10–50 s for surface waves, are

chosen mainly based on previous waveform modeling results. For example, Zhu and

Helmberger (1996) found that allowing short-period energy (∼ 3–20 s) into the Pnl

window helped resolve the depth phases. Surface waves at short periods are heavily

influenced by shallow crustal structures, but they are stable over a lower frequency

band of 10–50 s (see also Ritsema and Lay , 1993). Although we have examined other

frequency ranges, the filters applied on the records shown in Fig. 3.2 proved optimal,

thus were used throughout this study.

In the following, we will apply the two approaches of our method to the selected

28 events using the two stations and compare the results with those determined from

the whole PASSCAL array (Zhu et al., 2006). We use the same 1-D Tibetan velocity

model (T93) by Zhu et al. (2006) to facilitate the use of the path calibration they

developed. The Green’s functions are computed using a reflectivity code (Zhu and

Rivera, 2002) with a 5 km interval in both depth and distance.

3.4.2 The one-step approach

We first test the one-step approach, where the source depth, mechanism and epicenter

location are simultaneously determined in one grid search. The target parameter

space of strike, dip, rake and depth is chosen as 0◦–360◦, 0◦–90◦, -90◦–90◦, and 0–

40 km, respectively. For each event, we search the epicentral area of a 1◦×1◦ square

surrounding its ISC location. A searching step of 10◦ is used for the fault parameters,

5 km for the depth and 0.05◦ for both the latitude and longitude since our Green’s

functions are computed with a 5 km interval. The time shifts of Rayleigh and Love

waves, i.e., δtRayleigh and δtLove, are fixed to the corresponding empirical-path-specific

corrections (EPSCs) established by the relocated events (Zhu et al., 2006). However,

to account for the discreteness of the finite grid size, we allow the δts to vary within
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Figure 3.2: Three-component records from event 330b at the two stations, LHSA
(left) and TUNL (right), are displayed in different frequency bands. The top trace
of each component displays the broadband velocity record with an arrow on the
vertical (Z) component indicating the onset of P wave. The following traces are the
integrated displacements without filtering and with bandpass filters, 0.05–0.3 Hz and
0.02–0.1 Hz. The time windows of the Pnl and surface waves are determined by the
epicentral distance using apparent velocities of P (6.5 km/s), S (3.8 km/s), Rayleigh
(3.1 km/s), and Love (3.4 km/s) waves, as indicated by the dashed lines.
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±0.5 s of the assigned values, as determined by waveform cross-correlation during

the grid search. This is equivalent to assuming a 0.5 s uncertainty in the calibration

result.

The whole procedure is illustrated in Figs. 3.3 and 3.4 with two events 222 and

104 as examples. We try a range of σSur/σPnl ratios from 0.0 to 10.0 in the grid

searches to minimize χ′2
w in Eq. 3.6, and the best σSur/σPnl ratio is selected when

Eq. 3.7 is satisfied. Quite different σSur/σPnl ratios, 1.6 for event 222 and 7.6 for

event 104, are obtained (Figs. 3.3 and 3.4). The solutions of source parameters in the

vicinity of the best σSur/σPnl ratio appear rather stable. However, different depths,

mechanisms, and epicentral locations are produced when the σSur/σPnl ratio departs

significantly from the best value. Consequently, the resulting waveform fits change.

For event 222 (Fig. 3.3), as a σSur/σPnl ratio of 4.0 over weights the Pnl waves, a

shallower source of ∼5 km deep and northwestward by ∼15 km is produced compared

to that with the best σSur/σPnl ratio (1.6). Although the Pnl waves are slightly

better fitted, the larger σSur/σPnl ratio reduces the weight on the surface waves and

causes apparently poorer Rayleigh wave waveform fits. Event 104 (Fig. 3.4) requires

a much larger σSur/σPnl ratio of 7.6. A small σSur/σPnl ratio, such as 2.0, leads to a

deeper source and a slightly changed mechanism. Though the waveform fits of surface

waves remain similar, the larger σSur/σPnl ratio puts more weight on the Pnl waves

and subsequently improves the Pnl waveform fit at station LHSA, where the cross-

correlation coefficients between the observed and synthetic Pnl waves are increased

from 22/38 to 71/78 (Fig. 3.4). This underlines the importance of the adaptive

weighting scheme between Pnl and surface waves in our CAPloc method. Since Pnl

and surface waves provide nearly independent constraints in source characterization,

and their amplitude ratio is a useful depth indicator, using both Pnl and surface

waves is more effective and desired, particularly when few stations are used. An

inappropriate relative weight between Pnl and surface waves, such as the static Pnl

weight used in the original CAP by Zhu and Helmberger (1996), can easily cause an

imbalance between the two, thus losing the constraint from the weaker component as

shown in both Fig. 3.3 and 3.4. The large variation in σSur/σPnl ratios obtained for
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Figure 3.3: One-step grid-search results for Event 222. (a) The best solutions of
source parameters with different σSur/σPnl ratios. (b) The waveform misfit error as

a function of σSur/σPnl ratio. The crosses and circles display
σ2

Sur
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respectively. The best σSur/σPnl ratio is chosen when the two are equal (indicated
by the black arrow). (c) The waveform fits from the solution with the best σSur/σPnl

ratio (1.6) are displayed in the upper panel. In the lower panel, we show those from
the solution with a different σSur/σPnl ratio of 4.0. The Pnl waves are plotted with
the scaling factor of σSur/σPnl. The numbers below the traces are the differential time
shifts in sec determined by cross-correlation (cc) and the corresponding cc coefficients.
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Figure 3.4: One-step grid-search results for Event 104. See the captions of Fig. 3.3
for details.

different events (see Table 3.1) is mainly due to the rather limited azimuthal coverage

of the two stations.

We estimate the variances σ2
Pnl and σ2

Sur using the best σSur/σPnl ratio from

Eqs. 3.8 and 3.9. Then we add in the P -wave travel time constraint (Eq. 3.10) to

find the best combination of source depth, mechanism and epicenter location that

minimizes χ2 in Eq. 3.11. A σ2
t value of 0.09 s2 is used by assuming an uncertainty of

0.3 s in reading P -wave arrival times. The results for all the 28 events are summarized

in Table 3.1, and the details of 20 events are displayed in Fig. 3.5, where we choose

two events from each event cluster as representatives. We use the reduced chi-square
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χ2/ν (Fig. 3.5) to estimate the uncertainties of the source parameters, where ν =

νSur +νPnl−m. The number of unknown parameters m equals 7 in our case, since we

solve for h, φ, δ, λ, θ, ξ and the moment magnitude M0 (see Bevington and Robinson,

2003). We choose a threshold of χ2/ν ≤ 1.2. If the minimum value of χ2/ν exceeds

1.2, such as for event 349, there is a conflict between fitting both the waveform data

and the P -wave travel times, suggesting an unreliable solution (denoted by “n/a” in

Table 3.1). This is not surprising, considering the low SNR of surface waves from

both stations for this event. Besides, for a few events, 325, 330a, 360, 104, and 143, a

secondary solution exists (listed in Table 3.1 with a “?”), which corresponds to a local

minimum of χ2/ν ≤ 1.2. The existence of a secondary solution implies a trade-off

between event location and mechanism, which is mainly due to the loose constraint

from noisy Rayleigh waves at both stations.

In summary, the comparison between the two-station solutions from the one-

step approach and the array solutions shows remarkable consistency for both source

locations and focal mechanisms. Specifically, the average offset between the two-

station locations and the whole-array locations is ∼5 km.

3.4.3 The two-step approach

The above results from the one-step approach have demonstrated the ability of our

new method to recover essentially the same source parameters by a distributed array

using only two stations. However, this approach is a time-consuming process. It takes

approximately one day on a Pentium-IV PC to find the location and focal mechanism

for one event with the parameter ranges and searching steps we chose. An expedited

alternative is the two-step approach, where we separate the single grid search into

two, one for the source depth and mechanism, the other for the epicentral location.

With the same source parameter space and the searching steps, the computation time

required by the two-step approach drops by a factor of ∼ 9.
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Figure 3.5: Results of the one-step approach for 20 events. Contours show the reduced chi-
square χ2/ν values with the 1.2 contour in the white color. For each event, the epicenter with
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)

is indicated by the white star, together with the obtained focal mechanism.
The depth of the event is indicated by the color of the “beach ball”. In the case of existence
of a secondary solution, it is denoted by a smaller gray star, as shown for event 325, 360,
104, and 143. Also shown for comparison are the events’ ISC locations (black crosses) and
the array determined solutions (red stars) by Zhu et al. (2006).
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We first search for an event’s depth and mechanism assuming its ISC location,

where the δtRayleigh and δtLove are set as free parameters to account for the location

error and the structural effect. We follow a similar procedure as in the one-step

approach to achieve the best relative weight between Pnl and surface waves. The ob-

tained best σSur/σPnl ratios are close to their counterparts from the one-step approach

(see Table 3.1). However, discrepancies are revealed when we compare the depth and

mechanism solutions with those determined by the whole array in Table 3.1. Besides,

quite a few events have local minima with χ2
w/ν ≤1.2, as shown in Fig. 3.6 for event

242. These local minima are given in Table 3.1 with a “?”. Existence of these local

minima is mainly due to cycle-skipping of the surface waves. However, a large number

of them would indicate a poorly constrained solution, which could be caused by low

SNR of the waveform data, an inappropriate velocity model, or a large event location

error. It is worth mentioning that the three events, 242, 328 and 076, that appear

to have the most number of local minima (>5, see Table 3.1) also have the largest

errors in their ISC locations with respect to their relocations by Zhu et al. (2006).

In fact, if we simply discard these solutions with a large number of local minima,

the two-station solutions basically agree with the array solutions, even though they

systematically have larger uncertainties.

We then take the obtained source depths and mechanisms to relocate the events,

where the surface-wave segments are not allowed to float. The relocation results are

summarized in Table 3.1, and Fig. 3.7 displays the details for the same 20 events

shown in Fig. 3.5. Quite a few events in Fig. 3.7, such as 210, 242, 336, 360, 365,

076, 109, 143 and 155, show a minimum χ2/ν value exceeding 1.2, which indicates

the relocations with the assumed depth and mechanism fail to explain the travel

times of P and surface waves. The discrepancies are due to the phase shifts of the

synthetic surface waves from the fixed source depth and mechanism. Therefore, we

mark such relocations as unreliable (denoted by “n/a” in Table 3.1). Correspondingly,

the adopted source depths and mechanisms are also questionable.

For the relocations we trust (χ2/ν ≤ 1.2) in Fig. 3.7, their offsets with respect

to the array locations are generally less than 10 km. Moreover, the adopted source
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w/ν values displayed at the top.

depths and mechanisms also agree well with the array solutions. Trade-offs between

source depth, mechanism and epicenter location are rarely observed, except for events

239, 252, 325 and 023. However, the offset between an unreliable relocation and the

array location generally exceeds 20 km, and the assumed source depth and mechanism

also differ from the array solution. So, the two-step approach does not always give the

correct solution, but the reliability of a solution can be evaluated by the reduced chi-

square value. Also note the uncertainties of the relocations (the χ2/ν = 1.2 contour)

are systematically underestimated, since the correlation of the epicenter location with

the source depth and mechanism has not been taken into account. If we discard the

unreliable relocations, the two-step approach actually improves the locations of 15

events with an average mislocation error reduction from ∼16 km in their initial ISC
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Figure 3.7: Results from the two-step approach for the same 20 events in Fig. 3.5.
See Fig. 3.5 for details.
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locations to ∼7 km.

3.5 Discussion and conclusions

In this paper, we developed a new technique, CAPloc, to simultaneously determine

source mechanism and location of a small regional event using complete 3-component

seismograms. A similar effort was attempted by Tajima et al. (2002) using long

period whole waveforms (20–50 mHz). Our method is superior in that both Pnl

and surface waves are modeled to provide better constraints on source depth and

orientation. Moreover, fitting differential travel times between P and surface waves

helps eliminate the influence of a wrong event origin time. To take full advantage

of both Pnl and surface waves, we introduced an adaptive weighting scheme. The

relative weight between Pnl and surface waves is derived from the variances of their

waveform residuals to balance their contributions. An appropriate weight of Pnl to

surface waves is important, especially when few stations are available. We tested two

approaches of CAPloc. They are essentially the same, in that the entire records are

modeled with the separations between the P and surface waves adjusted from known

calibration information. However, the two-step approach, though it requires much

less computer time, is vulnerable in determining the source depth and mechanism

using only two stations. The one-step approach better accounts for the trade-offs

between an event location and mechanism; hence it gives better results.

The empirical-path-specific corrections (EPSCs) are essential to the success of the

method, and their uncertainties directly affect the uncertainty of the source location.

Since an event location is mainly constrained by the differential travel times between

the P and surface waves, a 0.5 s uncertainty in the EPSCs would be mapped into an

uncertainty of ∼3 km in the events’ epicentral distances. For the optimal case where

the two stations differ in azimuth by ∼90◦, the event location could be well constrained

within a radius of ∼3 km. Otherwise the uncertainty range of the epicenter location

tends to be elongated, suggesting a poorer constraint in a certain direction (e.g.,

Fig. 3.5 and 3.7). Note the relatively large uncertainties of the epicenter locations are
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due to the discrete Green’s functions with a distance interval of 5 km. Since we use

the closest Green’s function for each station, a 2.5 km error in the epicentral distance

could result. This suggests that a denser Green’s function library should be used,

or the distance error of the Green’s functions should be corrected to achieve better

location precision.

We assume a fixed 0.5 s uncertainty in the EPSCs. However, considering their

possible variations over the spatial parameter space, especially the 3-D hypocenter

space in the one-step approach, the 0.5 s uncertainty may represent a lower bound.

Moreover, the uncertainties of the EPSCs might vary for different paths, depending

on the goodness of the velocity model and how well the events for the calibration

purpose are determined. A high resolution tomographic map will enable timely EPSC

predictions plus better controlled uncertainty estimates, which will be pursued in a

future effort.

We restrict ourselves to using data from only two stations to demonstrate that the

complete 3-component seismograms from as few as two stations suffice in determining

both location and mechanism of a regional event. However, additional arrival-time or

first-motion polarity data of short-period stations, if available, can be incorporated

easily into the approach. Adding arrival times can help constrain the event loca-

tion. Moreover, polarities could be quite useful in narrowing the uncertainties of a

focal mechanism solution, even if waveform data from only one station are available.

Fig. 3.8 gives such an example for event 330b, where we use station TUNL alone to

retrieve the source depth and orientation. We obtain a well-defined depth of 9.6 km,

which agrees with the two-station as well as the array solutions. However, the focal

mechanism is poorly constrained (Fig. 3.8A). Fig. 3.8B shows the remarkable im-

provement by adding the polarities from some other stations, where the first P wave

motion is easily discernible. Similar results are obtained when we use another station

or another event.

In summary, this study addresses the issue of modeling small regional events that

are poorly monitored. A magnitude threshold of ∼3.5 is anticipated for the frequency

band we currently use. We demonstrate that regional seismograms from as few as two
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Figure 3.8: The focal mechanism solution using station TUNL only (A), and station
TUNL plus first-motion polarities from additional stations USHU, AMDO, ERDO,
BUDO, and SANG (B). A σSur/σPnl ratio of 2.2 is used. The waveform misfit errors
normalized by the minimum value are shown in the left. The best solution is denoted
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The corresponding waveform fits are shown at right, together with the predictions for
the three stations, LHSA, USHU, and MAQI.
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stations suffice to determine both source location and mechanism provided that we

have path calibration information. For the 28 events tested, the two-station solutions

agree well with those determined from the whole PASSCAL array. In particular, we

improve the events’ ISC locations with an average mislocation error reduction from

∼16 km to ∼5 km.
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Table 3.1: Source parameters of epicentral location,

depth and focal mechanism in Tibet

ISC Array Solution Two-station Solutions

by Zhu et al. (2006) One-step Approach Two-step Approach

ID lat./long. ∆x lat./long. h/φ/δ/λ/Mw lat./long. ∆x h/φ/δ/λ/Mw
σSur

σP nl

lat./long. ∆x h/φ/δ/λ/Mw
σSur

σP nl

199 30.37/94.83 12 30.42/94.71 5/160/21/-71/4.1 30.43/94.70 2 6.1/167/20/-58/4.0 0.2 30.43/94.70 2 6.7/168/19/-58/4.0 0.2

201 30.39/94.81 3 30.42/94.81 5/170/23/-63/4.0 30.44/94.78 4 6.1/180/30/-50/3.9 0.2 30.44/94.78 4 6.9/180/28/-50/3.9 0.2

? 15/39/66/64

204 30.33/94.83 10 30.41/94.78 5/157/21/-70/4.0 30.44/94.74 5 6.9/172/21/-43/4.0 0.2 30.44/94.74 5 7.0/189/29/-29/4.0 0.2

? 15/50/70/90

210 30.34/94.82 15 30.42/94.69 5/161/23/-71/4.0 30.44/94.70 2 5.6/180/27/-54/4.0 0.3 n/a 11.6/ 42/49/ 34/4.0 0.3

? 15/114/64/-37; 5/29/81/-49; 5/90/10/40;

5/210/50/-10

211 30.37/94.81 9 30.43/94.74 5/161/21/-71/3.9 30.43/94.75 1 6.5/180/26/-49/3.8 0.4 n/a 14.8/128/52/ 9/3.9 0.4

? 5/99/21/-38; 10/80/20/-60; 20/70/60/50

222 33.87/92.19 11 33.97/92.18 10/252/83/ 2/4.7 34.01/92.11 7 10.7/249/83/ 3/4.7 1.6 34.01/92.12 7 10.6/248/81/ 6/4.7 1.4

239 34.18/92.03 27 34.37/91.84 9/256/66/ -8/4.1 34.36/91.83 1 10.2/252/55/-16/4.2 1.4 34.41/91.76 9 7.2/249/42/-18/4.2 1.6

242 34.57/97.19 34 34.60/97.56 5/ 96/69/-15/4.0 34.61/97.54 3 5.3/ 88/52/-44/4.1 1.0 n/a 6.5/211/49/ 42/4.0 1.0

? 20/201/88/-21; 5/24/56/36; 5/268/64/-58;

5/82/42/-64; 25/227/72/-34

252 28.84/95.00 17 28.69/94.94 21/241/29/ 12/4.3 28.69/94.85 9 22.8/262/19/ 37/4.4 1.6 28.69/94.84 9 23.4/282/10/ 58/4.4 1.6

323 32.48/93.65 16 32.49/93.82 8/ 21/38/-89/4.0 32.52/93.75 7 11.5/ 22/41/-84/3.9 1.2 32.52/93.75 7 10.8/ 19/41/-81/3.9 1.3

? 15/62/53/19; 5/30/50/-50

325 33.74/90.24 32 34.02/90.14 5/251/60/-16/4.5 33.97/90.22 9 7.3/ 84/80/ 6/4.4 4.0 33.96/90.23 11 8.8/ 75/81/ -7/4.5 3.2

? 33.94/90.33 12.2/78/81/5

328 34.01/88.72 21 34.04/88.94 5/221/31/-67/4.1 34.07/88.97 4 5.6/239/37/-50/4.1 1.8 34.07/88.97 4 6.5/238/39/-49/4.1 1.9

Continued on next page. . .
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Table 3.1 – continued from previous page

ISC Array Solution Two-station Solutions

by Zhu et al. (2006) One-step Approach Two-step Approach

ID lat./long. ∆x lat./long. h/φ/δ/λ/Mw lat./long. ∆x h/φ/δ/λ/Mw
σSur

σP nl

lat./long. ∆x h/φ/δ/λ/Mw
σSur

σP nl

? 15/228/63/-28; 5/70/50/-40; 20/72/59/32;

35/269/83/51; 5/220/70/20

329 34.01/88.81 8 34.02/88.89 5/222/33/-64/4.3 34.03/88.92 3 5.7/229/34/-61/4.2 2.8 n/a 7.2/ 79/70/-36/4.2 2.8

? 5/240/50/-40; 20/68/59/29; 10/270/70/10

330a 33.88/88.86 13 33.99/88.92 5/211/32/-72/4.2 33.98/88.94 2 6.0/229/37/-61/4.1 2.6 n/a 7.2/ 89/89/-23/4.1 2.4

? 33.94/89.04 15.5/259/77/22 ? 25/232/72/24; 15/230/70/-20; 10/90/60/20

330b 34.09/94.26 6 34.14/94.27 11/286/63/-21/4.4 34.15/94.24 3 9.1/299/77/-19/4.5 2.2 34.15/94.24 3 8.5/299/78/-19/4.5 2.2

? 5/127/69/32

336 32.16/94.75 20 32.10/94.56 10/ 43/73/-74/4.1 32.09/94.53 3 11.5/ 43/73/-80/4.1 1.4 n/a 13.7/263/69/ 56/4.1 1.4

? 10/41/75/-80

348 33.92/88.84 13 34.04/88.83 5/212/30/-72/4.8 34.08/88.83 4 5.7/230/39/-50/4.7 4.0 34.08/88.83 4 6.2/228/39/-48/4.7 4.0

? 15/69/75/-24; 20/70/58/27; 15/250/70/20

349 30.03/93.88 13 30.14/93.88 8/211/69/ -9/4.0 n/a n/a 6.4/ 38/72/ 18/4.1 1.2

? 5/220/60/20

351 33.96/88.98 17 34.04/88.83 5/222/24/-61/4.2 34.03/88.84 2 6.5/239/28/-42/4.2 3.2 n/a 8.7/224/50/-18/4.2 3.2

? 5/239/28/-43; 20/79/47/35; 10/40/50/-10

360 30.96/99.60 11 30.92/99.50 10/300/78/ 8/4.1 30.93/99.42 8 7.3/ 82/53/-83/4.1 2.8 n/a 20.4/240/89/-32/4.1 2.0

? 30.94/99.52 7.1/298/77/4

365 30.81/99.57 15 30.91/99.67 12/294/67/ -2/4.2 30.88/99.67 4 11.0/ 3/ 7/ 15/4.2 2.8 n/a 16.1/ 70/74/ 37/4.2 1.9

002 33.94/88.85 19 34.09/88.76 5/221/30/-56/4.4 34.10/88.80 4 6.4/236/41/-39/4.3 2.4 34.09/88.80 4 7.0/227/36/-44/4.3 2.4

? 10/232/53/-7; 20/75/52/13; 5/10/60/-90;

10/70/60/-20

023 34.55/93.16 6 34.52/93.21 5/280/67/ 43/4.2 34.48/93.33 12 5.7/270/79/ 42/4.3 0.8 34.59/93.03 19 0.0/ 89/83/-10/4.1 0.7

? 5/109/31/41; 5/280/70/50

Continued on next page. . .
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Table 3.1 – continued from previous page

ISC Array Solution Two-station Solutions

by Zhu et al. (2006) One-step Approach Two-step Approach

ID lat./long. ∆x lat./long. h/φ/δ/λ/Mw lat./long. ∆x h/φ/δ/λ/Mw
σSur

σP nl

lat./long. ∆x h/φ/δ/λ/Mw
σSur

σP nl

076 34.30/86.27 23 34.50/86.33 9/ 63/68/-29/4.2 34.51/86.31 2 10.8/ 69/72/-33/4.3 4.4 n/a 11.0/ 79/52/ 53/4.3 4.4

? 10/70/70/-40; 10/260/70/10; 10/230/40/-

50; 15/340/70/30; 15/320/50/-50

104 31.95/88.31 24 31.75/88.22 5/227/49/-23/4.5 31.73/88.28 6 8.2/230/70/-13/4.5 7.6 31.75/88.27 4 7.1/223/48/-30/4.4 6.8

? 31.74/88.43 20.1/222/87/24 ? 20/229/79/27; 5/60/60/-10; 5/360/50/-80

109 36.09/92.56 18 36.07/92.76 5/ 92/60/ 7/4.3 36.10/92.75 4 6.0/ 93/56/ 22/4.3 2.0 n/a 6.7/253/70/ -9/4.3 1.8

? 5/80/60/10

143 30.72/99.63 20 30.89/99.70 5/299/44/-52/4.0 30.89/99.69 1 7.0/301/34/-53/4.0 1.8 n/a 20.3/ 33/82/ -5/4.2 1.2

? 30.94/99.60 12.1/8/42/78

155 33.90/88.91 7 33.96/88.94 8/ 30/48/-79/4.2 33.94/89.02 8 11.2/ 27/39/-77/4.1 1.8 n/a 11.0/ 84/58/ 25/4.1 1.8

? 5/79/68/-40; 5/260/50/-20; 20/270/80/30

The ∆xs are the epicentral offsets in km with respect to the array locations. The unreliable solutions are denoted as “n/a” and

the smallest local minima up to five are given following a “?” sign.
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Chapter 4

Trans-Pacific Upper Mantle Shear

Velocity Structure

4.1 Introduction

Seismic velocity structure provides the most important constraint on modeling the

mineralogical composition and dynamics of the Earth’s interior. Of particular interest

is the oceanic upper mantle structure, due to its large departure from a global average

(e.g., PREM by Dziewonski and Anderson (1981)). The origin of the characteristic

high velocity lid, prominent low-velocity zone (LVZ) and the general lack of 220 km

discontinuity has warranted a large number of investigations from the mineralogical

point of view. The recent work by Stixrude and Lithgow-Bertelloni (2005) suggested

a solid-state LVZ, which is the natural consequence of a thermal boundary layer and

the effects of pressure and temperature on the elastic wave velocity of subsolidus

mantle assemblages. The properties atypical of the mantle, such as partial melt

and bound water, would be permissible, but not required. However, the quantitative

comparison of their “null” hypothesis with seismological models revealed discrepancies

in the negative velocity gradient, the absolute value of velocity in the LVZ, and the

high velocity gradient below the LVZ. To reconcile these discrepancies forced them

to examine variants of the “null” hypothesis as well as include the effects of partial

melt, attenuation, and anisotropy.

Such mineralogical studies have been matched in seismology. In particular, the

last decade has seen the remarkable progress of seismic tomography, mostly driven by

the advancement of theory and computational power, where global 3-D models have

spanned the entire depth range of the Earth’s mantle and achieved lateral resolution
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of less than 1000 km (Romanowicz , 2003). However, many oceanic areas remain

unsampled or poorly resolved in most high resolution P velocity models. The other

type of long wavelength velocity models based on surface waves generally have good

coverage across the oceans, but most of them lack radial resolution. The current

generation of global models, therefore, is not capable of resolving the hypotheses

regarding the layering of the oceanic upper mantle. Instead, “pure path” regional

models can provide significant information complementary to the tomographic models

(Gaherty et al., 1999).

Although there is increasing evidence for short-length scale variations in litho-

spheric thickness across plate boundaries where subduction has occurred or is occur-

ring (e.g., Melbourne and Helmberger , 2001), structures away from plate boundaries

display much smoother lateral variations of smaller scale, where simple corridors ap-

pear one dimensional (1-D). Here we will investigate one such strip that runs nearly

across the central Pacific ocean connecting the Tonga-Fiji source region to TriNet,

southern California. Cross sections from global tomographic models display laterally

homogeneous features along this corridor, where the largest anomalies are associated

with adjustments made to eliminate the 220 km discontinuity in the reference model

PREM (Dziewonski and Anderson, 1981). The plate history along the corridor is

relatively simple, with the sea floor developed by the spreading of the ancient Pacific-

Farallon ridge. The lithospheric age spans a relatively wide range from approximately

100 Ma near the source region to ∼20 Ma approaching the California coastal line,

where the lithosphere is about 50 km thick (Melbourne and Helmberger , 2001). Pure

surface wave study by Nishimura and Forsyth (1989) indicated progressive increase of

lithosphere thickness with increasing plate age, qualitatively mimicking isotherms of

theoretical thermal cooling models. However, their results solely from fundamental-

mode surface wave data are debatable, due to their poor vertical resolution. In

contrast, Gaherty et al. (1999) suggested little age dependence of the lithosphere

thickness when they compared regional models of the old Pacific ocean (100-125 Ma)

and the younger Philippine Sea (15-50 Ma), where the transitions from the high veloc-

ity lid to the underlying LVZ (the G discontinuity) were mainly determined from ScS
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reverberation observations (Revenaugh and Jordan, 1991b). They interpreted the G

discontinuity mainly as a compositional boundary rather than a thermal boundary.
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Figure 4.1: Comparison of PA5 (red) developed by Gaherty and Jordan (1996) for
the corridor from Fiji-Tonga to Hawaii with our preferred model PAC06 (black).

The whole corridor has been included in an early 2-D study from Tonga to New-

foundland (Graves and Helmberger , 1988), where multi-bounce S waves from a single

event were modeled with a 2-D WKB code and the emphasis was given to the sharp

transition across the Pacific–North America boundary. More recently, Gaherty and

Jordan (1996) investigated the older half of the corridor from Tonga-Fiji to Hawaii
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with a combined data set of ScS reverberations and measured frequency-dependent

(10-45 mHz) phase delays for body and surface waves recorded on the island stations

KIP and HON. Their 1-D radial-anisotropic model (PA5) features a high velocity lid,

a prominent LVZ, and a high-gradient zone extending to the 410 km discontinuity

(Fig. 4.1).

In this study, we use a novel data set of broadband seismograms from the dense

TriNet array in southern California. At the epicentral distances of 70◦–95◦, multi-

bounce S waves up to S5 sampling over the upper mantle triplication range are

observed, including the guided waves from shallow events transversing the LVZ, such

as the G phase. Simultaneously modeling the move outs of all these S wave multiplets

that bottom out at different depths produces strong constraints on the radial velocity

structure.

Because velocity anomalies localized to a single leg of a multiple bounce phase

will be mapped into the whole path, we interpret our model as an effective average

along the corridor. However, it well explains record sections from a large number

of events at different depths, spanning a distance range of 70◦–95◦. Moreover, the

fair agreement between our model and PA5 developed for the older half path with

different data and methods (Gaherty and Jordan, 1996) (Fig. 4.1) indicates a rela-

tively simple, uniform structure along the corridor, which proves particularly useful

for mineralogical investigations.

4.2 Data

Since early 1999, when the southern California TriNet array was expanded into a

dense broadband network with over 120 stations, hundreds of large events (M > 5.5)

that occurred in the Tonga-Fiji seismic zone have been recorded. Among them, we

selected 49 events (Fig. 4.2), whose seismic sources are relatively simple, and whose

multi-bounce phases are rich. We assumed the event locations and origin times from

Harvard CMT solutions (see Table 4.1 for the events discussed here) (Dziewonski

et al., 1981). However, the exact event locations and origin times are not critical, since
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Figure 4.2: The source-receiver geometry is displayed on a sea-floor age map.

we model differential times between S multiplets, and the effects of event location or

origin time become second order (Grand and Helmberger , 1984b).

Due to the small aperture of TriNet, a single event provides limited lateral cov-

erage. However, the problem gets well compensated as we study a large number

of events spanning a wide distance range of 70◦–95◦ (Fig. 4.3). Moreover, model-

ing multiple events of different mechanisms, at different depths, provides an effective

way to eliminate contaminations of source effects on the velocity structure. Particu-

larly within the studied distance range, both SSS and S4 become triplicated by the

410 km and 660 km discontinuities. A sketch of their triplication patterns is displayed

in Fig. 4.4.

We rotated the original horizontal-component (N-S and E-W) data into radial

(SV ) and tangential (SH) motions, although we generally found the SV waves on

the vertical component to be the most useful for modeling purposes. An example of

the tangential records from a shallow event (9533473) is displayed as a distance cross
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section in Fig. 4.5, where the various S wave multiplets are labeled. The dense array

produces coherent seismograms, which warrants a simple stacking procedure and

facilitates identification of triplications or phase interference. At the shown distance

range (∼82◦–87◦), SSS is triplicated due to the 660 km discontinuity, resulting in a

forward branch (S3
ef) turning below the discontinuity and a shallower backward branch

(S3
cd). S4 contains more complexity, in that the triplications are interfering with the

shallow guided waves. The apparent interference in Fig. 4.5, however, is mainly due

to the guided waves that are most sensitive to different shallow depths, since the

amplitude of S4 is much smaller due to the radiation pattern effect. Modeling such

guided waves at their natural frequencies (> 10 sec) provides powerful constraints on

the shallow part of the velocity model. However, the whole group becomes simpler

and the so called “G-phase” when filtered to longer periods (> 30 sec), which is

normally used in tomographic studies.

Table 4.1: Source parameters of the Tonga-Fiji events

used in this study (from Harvard’s CMT catalog)

Event ID Date Origin Time Location Depth Mw FM ∆ corr.

Lat./Long. (km) (stk/dip/rake) (km)

13980540 2003/07/27 02:04:15.6 -21.09/-176.12 216 6.6 294/22/-3 -30

9942373 2003/09/02 18:28:10.9 -15.14/-172.92 15 6.4 210/28/171 –

9982833 2004/02/12 13:47:35.9 -19.41/-172.80 12 5.7 213/26/96 -60

10100677 2005/05/18 10:27:15.0 -15.22/-172.69 12 6.2 144/33/48 –

9927909 2003/07/03 06:21:57.3 -21.46/-173.80 16 5.9 192/24/83 -70

9685024 2000/01/08 16:47:30.2 -16.84/-173.81 162 7.2 79 / 8/-13 –

9658105 2001/05/26 10:57:31.0 -20.25/-177.65 414 6.3 134/68/-176 –

9648517 2001/04/28 04:50:1.9 -18.07/-176.68 367 6.8 106/16/161 –

9533473 2000/02/25 01:44:5.2 -19.55/174.17 17 7.1 315/74/169 –

9026350 1997/10/14 09:53:32.7 -21.94/-176.15 166 7.7 257/17/-30 -50

9687900 2000/01/09 21:54:44.8 -18.78/174.52 18 6.4 49 /83/0 –

9564185 2000/09/14 15:00:2.3 -15.59/-179.92 15 6.2 154/77/176 –

9743493 2002/01/03 10:17:49.6 -17.84/167.82 20 6.6 359/30/97 –

9792597 2002/06/17 21:26:33.9 -12.49/166.25 44 6.6 163/38/81 –

9611653 2001/01/09 16:49:37.9 -14.90/167.11 115 7.0 183/44/160 –

9557761 2000/08/09 22:56:4.9 -16.88/174.54 15 6.4 281/82/4 –

Continued on next page. . .
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Table 4.1 – continued from previous page

Event ID Date Origin Time Location Depth Mw FM ∆ corr.

Lat./Long. (km) (stk/dip/rake) (km)

14170576 2005/08/06 09:56:19.3 -19.57/-175.35 218 6.6 266/33/-24 –

14132616 2005/03/19 15:02:47.9 -20.60/-173.58 18 6.1 199/27/85 –

9557029 2000/08/03 01:09:48.6 -11.93/166.17 51 6.6 169/40/87 –

∆ corr. applies to the events that appear mislocated as discussed in section 4.3.3. The correction is

simply an average distance shift for all the stations from a particular event.
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Figure 4.3: Schematic ray paths of multi-bounce S waves at epicentral distances of
70◦–95◦used in this study.

4.3 Waveform modeling

Our modeling effort involves matching the differential travel times between multi-

bounce S waves and simulating their waveforms, particularly the waveforms of the

higher-order multiplets, S3 and S4, plus shallow guided waves, which are triplicated

or interfering in the upper mantle. Since the different multiplets have their own

turning depths, simultaneously modeling their travel times provides unique estimates

of velocity at various depths. Moreover, finer-scale structures can be inferred by

simulating their subtle triplication or interference patterns.
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Because of the complexity in the waveforms to be modeled, we take a “trial and

error” approach which has proven effective in previous similar studies (e.g. Grand and

Helmberger , 1984b; Melbourne and Helmberger , 2002). In addition, we parameterize

the velocity model as a composite of a high velocity lid, a negative-gradient zone,

a positive-gradient zone and the transition zone, according to a priori information

from previous oceanic models (e.g. Grand and Helmberger , 1984a; Gaherty and Jor-

dan, 1996). This simple parameterization enables us to efficiently investigate possible

interdependencies among the thicknesses, average velocities and gradients of the sub-

layers in a grid-search manner, and hence to resolve the main characteristics of the

model.

We construct full synthetics with a reflectivity code (Zhu and Rivera, 2002) while

we use generalized ray theory to help identify individual arrivals in cases where am-

biguity exists. We model both the SH (tangential) and SV (vertical) components



98

82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

86.5

D
is

ta
nc

e,
 d

eg
re

e

1400 1600 1800 2000 2200
Time, sec

S SS SSS G+S4

9533473 (2000/02/25)

2000 2200
Time, sec

SNCC(1)

PHL(1)

SCI(4)

CIA(4)

SMS(12)

PAS(12)

CPP(8)

TA2(9)

LUG(6)

LRL(6)

SWS(6)

MPM(3)

HEC(1)

GLA(3)

SHO(2)

MTP(2)

NEE(1)
S3ef G+S4

S3cd
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with a uniform approach, which enabled us to address the discrepancy due to seismic

anisotropy directly.

We started with the attenuation model developed by Ding and Grand (1993)

for the East Pacific Rise (EPR) using multi-bounce S waves. This model has proved

effective in a later study by Melbourne and Helmberger (2002) for EPR events recorded

at TriNet. However, we found that nearly doubled Q values in the upper 200 km of

the model are required to explain the progressive amplitude decay of the S multiplets

(see Table 4.2). This adjustment is reasonable considering Ding and Grand (1993)’s

Q model, sampling one of the hottest structures on the Earth, was probably a lower

bound.

For example, we display the waveform comparison between the data shown in

Fig. 4.5 and the synthetics from our best SH model PAC06sh (Fig. 4.6). We align

both the data and synthetics on SS to minimize the source region complexity, since

SS has a take off angle close to those of the higher-order multiplets, while the direct S

wave leaves the source at a much steeper angle (see Fig. 4.3). The whole cross section

is nicely reproduced with the simple 1-D model (Fig. 4.6), particularly the waveforms

of the guided waves overriding the S4 triplications. There is a slight tendency for

the coastal stations to be matched better than the in land ones, such as hec, gla,

dan, mtp and nee. Moreover, the time lags of the synthetic “G + S4” waves relative

to the observations are systematically increasing with station distance (Fig. 4.6(c)).

This “unmodeled” feature is consistent with the lithospheric thickness change across

the Pacific-North America boundary reported by Melbourne and Helmberger (2001).

Similar sharp transitions are also seen in recent tomographic models (e.g., Tanimoto

and Sheldrake, 2002). The major discrepancy of the comparison in Fig. 4.6 is the time

lags of the synthetic S phases (∼ 5 sec) relative to the observations. We attribute this

advancement of the observed S waves to the fast slabs in the source region, mainly

because the same problem does not exist for the deeper events.

By contrast, we display in Figs. 4.7 and 4.8 the waveform fits for the same event

9533473 shown in Fig. 4.6 with the preliminary Earth reference model (PREMsh)

(Dziewonski and Anderson, 1981) and the path average of a typical tomographic
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Figure 4.6: (a) Waveform comparison between the SH data (black) from event
9533473 and the synthetics with PAC06sh (red). Time axis is relative to the event
origin time. (b) The source parameters of the event from Harvard’s CMT catalog. (c)
The gray circles are the time delays of the synthetic S multiplets relative to the ob-
servations measured by waveform cross correlation. The black ones are the residuals
after the synthetics and data are aligned on SS.
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model S20RTS by Ritsema et al. (1999). Because S20RTS was developed mainly

with Rayleigh wave dispersion data, we extrapolated the SH counterpart of the path

averaged S20RTS assuming the same anisotropy as in the reference model PREM.

The comparison between PREM, the path average of S20RTS and our preferred model

PAC06sh is given in Fig. 4.9. Moreover, to correct the crustal effect in PREMsh and

S20RTSsh, we have replaced their thick crust (∼21 km) with the much thinner one

(∼6 km) in our model PAC06sh. As a consequence, the underlying mantle layers in

the two models have been thickened to conserve the overall travel time. The synthetics

from PREMsh and S20RTSsh with their original thick crust are compared with data

in Appendix B. As shown in Fig. 4.7, PREM failed to predict both the interference

pattern of the guided waves and their travel times. The tomographic model (S20RTS)

containing a well developed LVZ produces the two interfering branches; however, their

travel times plus their separations are apparently off. These comparisons suggest

strong dependence of the guided waves on the shallow part of the model, which we

will explore in the next section.

Although there is some redundancy, the selected 49 events contain extensive sam-

pling of SSS and S4 triplications (Fig. 4.4), plus their interference with the guided

waves for shallow events. Therefore, they provide the most stringent constraint for

different depth ranges of the model. For example, as the guided waves traversing the

LVZ provides a means of estimating the shallow part of the model, the triplications

of SSS or S4 mainly constrain the transition zone. In the following, we will give

typical examples of the events that we use to refine the velocity structure at different

depths, where we will also address representative sensitivity tests in an attempt to

quantify the model resolution. Our discussion will be restricted to the tangential

(SH) component alone, since the adequate SV observations are rather limited.

4.3.1 Lid and LVZ

The velocity in the shallow part of the model, such as the Lid or the low velocity

zone (LVZ) has the most effect on the differential travel times of the multi-bounce
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S waves, since the higher-order multiplets systematically spend more time traveling

there. Moreover, the shallow radial structure largely controls the waveforms of the

guided waves traversing the LVZ. However, its influence becomes significantly less

on the triplication patterns of SSS or S4. In particular, it can hardly change the

time separations between the triplicated branches, except for a small overall shift.

This allows us to separate the effect of the shallow part from that of the underlying

transition zone when modeling the records. The transition zone, however, mainly

controls the triplications.

The shallow events (depth < 50 km) are the most suitable for determining the

Lid and LVZ structure, since they generate the most guided waves. Moreover, their

seismograms are relatively simple without obvious depth phases. Fig. 4.10 displays a

composite cross section of four shallow events together with synthetics overlain from

our preferred SH model PAC06sh. The four events have different source mechanisms,

however, their records are well explained with a single model, suggesting the source

effects on the velocity structure are eliminated. The radial structure of the Lid and

LVZ heavily shapes the waveforms of the guided waves tunneled in the LVZ. However,

such influences are rather difficult to quantify or predict, since they generally involve

both timing and phase changes in the complex waveform pockets. Therefore, we

have parameterized the model as a composite of three simple layers (the lid, negative

gradient zone and a positive gradient zone) and deliberately conducted extensive “grid

searches” for the basic parameters, such as thickness, average velocity and gradient

of each sublayer. Our preferred model PAC06sh produces the best waveform fits to

the observations. The basic characteristics of PAC06sh include a 60 km thick high

velocity lid (Vsh = 4.78 km), a prominent LVZ with the lowest velocity of 4.34 km/sec

at the depth of ∼160 km, and a high gradient (∼0.002 sec−1) zone underneath. There

is small room for trade-offs among the model parameters, but not much. In the next

few figures (Figs. 4.11 to 4.14), we will compare the waveform fits for the composite

cross section as shown in Fig. 4.10 with the perturbed lid, G discontinuity, and the

high gradient zone respectively, where the apparently increasing waveform misfits

with the perturbations suggest the robustness of these features.
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Figure 4.11: The waveform fits from Fig. 4.10 with our preferred SH model PAC06sh

(a) are compared to those from the perturbed models, particularly of a thinner lid
(b) and (c). The perturbed models are shown in red with PAC06 in black. We
display only the guided waves from the composite cross section in Fig. 4.10, since the
tested perturbations have little effect on the earlier arrivals. Time axis is reduced by
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Figure 4.12: The waveform fits from Fig. 4.10 with our preferred SH model PAC06sh

(a) are compared to those from the perturbed models, particularly of a thicker lid (b)
and (c). The perturbed models are shown in red with PAC06 in black. We display
only the guided waves from the composite cross section in Fig. 4.10, since the tested
perturbations have little effect on the earlier arrivals. Time axis as in Fig. 4.11.
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Figure 4.13: The waveform fits with our preferred SH model PAC06sh (b) are com-
pared to those from the perturbed models, particularly of a smaller velocity jump at
“G” discontinuity (a) and a larger one (c). The perturbed models are shown in red
with PAC06 in black. We display only the guided waves from the composite cross
section in Fig. 4.10, since the tested perturbations have little effect on the earlier
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Figure 4.14: The waveform fits with our preferred SH model PAC06sh (a) are com-
pared to those from the perturbed models, particularly of higher velocities in the
high gradient zone (HGZ) (b) and lower velocities in the HGZ (c) The perturbed
models are shown in red with PAC06 in black. The perturbations are mainly used
to investigate possible trade offs between the velocities of the first two layers and the
HGZ. We display only the guided waves from the composite cross section in Fig. 4.10,
since the tested perturbations have little effect on the earlier arrivals. Time axis as
in Fig. 4.11.
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4.3.2 Transition zone

The transition zone comprising the two major mantle discontinuities plays the most

significant role in shaping the triplication patterns, since the triplicated branches

travel nearly the same paths except in the vicinity of the discontinuities. Therefore,

modeling the separation, the cross over and the relative amplitudes of the triplicated

branches provides tight constraints on the transition zone (e.g. Grand and Helm-

berger , 1984b; Melbourne and Helmberger , 1998). In this study, we widely observe

the triplications of the higher-order multiplets SSS and S4. Among them, those of

S4 are mainly from intermediate and deep events, where the guided waves are well

suppressed. We started with a trial structure for the transition zone from the tectonic

North America model (TNA) (Grand and Helmberger , 1984b) (Fig. 4.15), and used

a large number of the observed triplications to examine the details. We let the TNA

model stand unless modifications were required to better explain our observations,

since the transition zone structure of TNA is particularly well constrained with good

sampling of all the triplicated branches due to both the 410 km and 660 km disconti-

nuities. The resulting transition zone structure in our preferred model PAC06 turned

out to be very similar to that of TNA, and the major difference is that PAC06 has

a small velocity jump (∆Vs ∼ 1%) at approximately 516 km. Although we did not

observe clear triplications due to such a small discontinuity, it is needed mainly to

explain the amplitudes of the triplicated “cd” branches (Fig. 4.4) that bottom out

within the transition zone.

Our model PAC06 inherited a ∼406 km discontinuity from TNA. The velocity

jump, however, is smaller (∼4%), mainly due to the generally larger velocities in the

shallower part of the model (see Fig. 4.15), which are required to explain the differ-

ential travel times between the multiplets and the guided waves. We have conducted

various tests on the fine structures of the discontinuity, to examine the exact depth,

velocity jump and sharpness of the discontinuity. However, these fine-scale features

cannot be well resolved with our data set. In particular the synthetics constructed

with the perturbations produce nearly equal waveform fits to most of the observations.
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This is because our data set does not contain sampling of the 410 km triplications as

good as those addressed in Melbourne and Helmberger (1998) or Song et al. (2004).
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Figure 4.15: Comparison of PAC06 with the earlier pure path upper-mantle mod-
els, TNA, SNA (Grand and Helmberger , 1984b) and ATL (Grand and Helmberger ,
1984a), developed by modeling similar multi-bounce S wave data sets.

However, the radial structure within the transition zone is well determined, par-

ticularly, the average velocity gradient and the ∼1% velocity jump at approximately

∼516 km. The constraint is mainly from modeling the relative behavior of the “cd”

and “ef” branches (see Fig. 4.4). Figure 4.16 gives such an example, where we com-

pare selected SSS waveform fits with our preferred model PAC06 and the perturbed
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Figure 4.16: The selected SSS waveform fits from four shallow events (10100677,
9982833, 9564185 and 9533473 from the bottom to top) with our preferred model
PAC06sh and the perturbed models (a). The perturbations are particularly con-
centrated in the transition zone (b), which is the most sensitive to the triplicated
branch SSScd. Both the data (black) and synthetics (red) are aligned on SSSef ,
and the normalized amplitudes by the maxima on the records are plotted. Note the
different behavior of the synthetic SSS from the perturbed models, in particular, the
amplitude contrast between SSSef and SSScd.
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ones. The data shown are all selected from shallow events to avoid complications

caused by the depth phases. As the distance increases, SSScd systematically moves

backwards relative to the forward branch SSSef . Although there are small pertur-

bations on the individual observations, the stability of the triplication pattern indi-

cates little significant lateral variation along the path. Our model PAC06 accurately

produces both the differential times and relative amplitudes between the triplicated

branches SSSef and SSScd (Fig. 4.16), while the perturbed model “A” with a similar

gradient, but no 516 km velocity jump, significantly over-predicts the amplitudes of

the backward branch SSScd. On the contrary, the bigger 516 km discontinuity in the

perturbed model “B” (Fig. 4.16) exaggerates the triplication in SSScd, and causes

SSScd to fade away beyond 82◦. Also in Fig. 4.16, we included two models “C” and

“D” with different velocity gradients. As the larger gradient in model “C” tends to

suppress the “cd” branch, model “D” with the smaller gradient produces the mag-

nified and advanced SSScd. We have also investigated the depth resolution of the

small discontinuity in the transition zone of PAC06. Varying the discontinuity depth

mainly changes the position of the triplication on the “cd” branch. Although there is

some uncertainty, a depth of approximately 516 km proved the best estimate.

PAC06 contains a slightly shallower 651 km discontinuity and a faster high gra-

dient zone right below the discontinuity compared to TNA (see Fig. 4.15). These

features were well examined with our data. Synthetic experiments showed signifi-

cant advancement of the “ef” branches, particularly of SSS and S4 by the elevated

discontinuity and faster high gradient zone, which however, were required by our

observations.

4.3.3 Summary: SH component

In the previous sections, 4.3.1 and 4.3.2, we mainly concentrated on the derivation

of the model, where we showed complete waveform comparisons only for a small

fraction of the studied events. Although we will not add more such comparisons here,

we summarize the overall fit of the differential travel times between the S multiplets
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for all the events in Fig. 4.17. We use differences between synthetics and data of the

differential travel times, ∆TS−SS, ∆TSSS−SS and ∆TSSSS−SS (Fig. 4.17). To calculate

these timing differences, we have measured the time lags between the synthetics and

data for S, SS, SSS and S4 respectively by waveform cross correlation. In cases for

which SSS or S4 is triplicated, the emphasis has been given to the early branch. The

alignment of synthetics and data on SS has eliminated possible origin time problems.

Moreover, we have also applied event mislocation corrections (see Table 4.1) for the

few events that displayed relatively large, systematic discrepancies in the differential

time measurements. In particular, the observed higher-order multiplets from these

events are increasingly faster or slower than the synthetic predictions, which can be

easily explained by the events’ mislocation error. The data points in Fig. 4.17 are

color-coded by the depths of the events, while the overlain waveform comparisons for

the selected events are given in Appendix B.

The most apparent anomaly in Fig. 4.17 occurs for ∆TS−SS, where large negative

values of ∆TS−SS up to ∼-7 sec are observed. This implies that the observed direct

S waves are faster than the model would predict. We attribute the anomaly to the

fast slab effects (see the earlier discussion of Fig. 4.6). Although this warrants further

investigation, there are two main lines of evidence that favor our argument. First,

nearly all the problematic events are shallow or slightly deeper, sampling a particular

distance range (∼80◦–85◦). Moreover, most of these events are located along the

complex New Hebrides subduction slab (see Appendix B). Secondly, the upper mantle

structure is not an effective modifier on the differential travel times between S and the

higher-order multiplets. Another note worthy feature in Fig. 4.17 is the linear trend

for ∆TS4
−SS, where ∆TS4

−SS systematically increases from the westernmost coastal

stations to the easternmost in land ones. Such a tendency becomes particularly

obvious when the guided waves are involved for the shallow events, due to the sharp

transition from fast oceanic lithosphere to thick continental crust across the Pacific–

North America boundary.
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Figure 4.17: S wave multiplets’ differential times, particularly ∆TS−SS, ∆TSSS−SS and
∆TSSSS−SS, between the data and synthetics. A positive value implies the separation
between the multiplets on the data is smaller than that on the synthetics, while
a negative value suggests the opposite. The data points from different events are
color-coded by the events’ depths.
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4.3.4 SV component

The above discussion was restricted to the transverse (SH) component, while in this

section, we will address the SV wave observations. We will particularly focus on the

vertical component, since it generally produces better signal to noise ratios than the

radial component. The greatest difficulty in modeling the SV waves is caused by the

SV –P wave coupling. The problem can get overwhelming, especially when the SV -

coupled PL waves are developed, and mainly controlled by the crustal waveguide for

continental paths (e.g. Helmberger and Engen, 1974). However, although we widely

observe the energy leakage of SV waves into P waves in this study, their coupling

effect is not significant, which implies that the shallow oceanic structure is more

uniform. For an example, we display the cross section of the vertical component from

a shallow event in Fig. 4.18, where the multi-bounce SV waves are easily recognized

and labeled. Among them, S4 is the strongest due to the constructive interference

of the triplicated branches at the sampled distance range (see Fig. 4.4). On the

SV records, even S5 can be clearly observed, since the Rayleigh waves are much

slower. As we will address later in this section, these S5 waves that bottom out from

approximately 300 km deep provide a good constraint on the depth extent of the

observed seismic anisotropy.

Many investigators have reported radial anisotropy (or transverse isotropy) from

surface wave studies in the upper mantle beneath the Pacific ocean (e.g., Ekström

and Dziewonski , 1998). However, it is not appropriate for us to contrast the SH and

SV observations directly, since the multi-bounce SH and SV waves contain different

phase shifts from the bounce points and the station-side receiver functions. One way

to bypass the problem is to compare the SV observations with the synthetics from our

well-constrained SH model (Fig. 4.18). Since there is some contamination of SS, we

have chosen to align the synthetics and data on S3 instead. The alignment resulted in

a large shift of over 20 sec for the synthetics relative to the data, which cannot easily be

attributed to an origin time problem, since the observed direct S waves are apparently

advanced by about that amount. Moreover, the higher-order multiplets S4 and S5
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Figure 4.18: The selected waveform fits for the vertical component of a shallow event
9792597 (see Table 4.1) with our preferred SH model PAC06sh. The data are shown
in black with synthetics in red. We chose to align the synthetics and data on “S3”,
since there is some contamination on “SS”. Labeled are the S wave multiplets up to S5

that can be easily recognized. Note the synthetics have been shifted by approximately
20 sec for such an alignment. However, that is about the amount the observed direct
S waves are advanced. Moreover, the higher-order multiplets S4 and S5 are delayed
on the data relative to the synthetics.
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Figure 4.19: The selected waveform fits for the vertical component of the same event
as shown in Fig. 4.18 with our preferred SV model PAC06sv.The data are shown
in black with synthetics in red. We aligned the synthetics and data on “S3”, which
resulted in an average shift of ∼ 2 sec for the synthetics relative to the data. Note
the nice fits for all the labeled S wave multiplets.
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Figure 4.20: The comparison of the waveform fits for the same event as shown
in Fig. 4.19 with the perturbed SV models, Model I in (a) and Model II in (b).
The model perturbations are mainly to investigate the depth extent of the observed
anisotropy (V sv < V sh). Note in particular the synthetic S5 is advanced with
perturbed Model I, while slowed by Model II.
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are progressively slower than the synthetic predictions. In particular, the observed S5

are delayed by over 10 sec relative to the synthetics. All these discrepancies suggest

the SV model is slower than the SH counterpart, especially in the shallow part, such

as the Lid or LVZ, since the higher-order multiplets increasingly spend more time

there.

We have concentrated on the shallow part in deriving the SV model due to the

lack of good triplication data in the SV observations. The same structure below the

406 km discontinuity as in the SH model is assumed. Besides, we intended to retain

the well-constrained features in the SH model, such as the Lid thickness and the

large “G” discontinuity, in parameterizing the SV model. These features, however,

are not well resolved with the SV data. Figure 4.19 displays the waveform fits for

the same observations as shown in Fig. 4.18, with our preferred SV model PAC06sv.

The comparison between the SV and SH model is given in Fig. 4.20(c). PAC06sv

accurately produces both the waveforms and travel times of the SV wave multiplets

(Fig. 4.19).

PAC06sv features slower velocities than the SH model down to a depth of approx-

imately 300 km (Fig. 4.20(c)). Although there is some trade off between the Lid and

LVZ velocities for the SV model, the depth extent of anisotropy (Vsv < Vsh) is well de-

termined, where the major constraint is attributed to the S5 turning at approximately

300 km deep. For an example, we display in Fig. 4.20 the waveform comparisons with

two trial models, where the anisotropy is confined to the top ∼170 km (Model I) or

extends to the 406 km discontinuity (Model II). The perturbations have little effect

on the deeper phases, such as S4, S3, SS or S, since their travel times are conserved.

However, the influences on S5 are significant, because S5 travels nearly flat at about

300 km deep; thus it is rather sensitive to the velocity perturbations there. Our exper-

iments with various perturbed models suggest significant anisotropy (∆Vsh−sv > 1%)

extending below 220 km depth.
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4.4 Results and discussions

In this study, we concentrated on resolving the upper mantle layering by constructing

simple models with as few parameters as possible. In particular, if a linear gradient

between two depths proved effective in explaining most observations, we did not

add any other posterior constraints. Our preferred 1D model, PAC06 (Table 4.2),

however, provides excellent fits to both the waveforms and travel times of the observed

S wave multiplets from a large number of events.

Table 4.2: Model PAC06

Depth (km) Vsh (km/sec) Vsv (km/sec) Qs
0.2 1.00 1.00 20
0.2 3.20 3.20 20
6 3.20 3.20 20
6 4.78 4.58 160
66 4.78 4.58 160
66 4.51 4.31 100
163 4.34 4.22 100
303 4.64 4.64 120
406 4.86 4.86 160
406 5.02 5.02 180
516 5.22 5.22 180
516 5.28 5.28 180
651 5.54 5.54 180
651 6.01 6.01 310
736 6.22 6.22 310
900 6.33 6.33 310

Figure 4.1 displays the interesting comparison between the model PAC06 from

this study and the model PA5 developed by Gaherty and Jordan (1996) for the

older half of the corridor from Fiji-Tonga to Hawaii. In their study, Gaherty and

Jordan (1996) mainly utilized relatively long period (> 25 sec) body and surface waves

plus the ScS reverberations (e.g. Revenaugh and Jordan, 1991b) for determining

the discontinuities. Although PA5 samples relatively old oceanic lithosphere (100-

125 Ma), while our studied path covers a wider range from 125 Ma to ∼10 Ma at the

receiver side, the two models display remarkable agreement (Fig. 4.1), which suggests

that the whole path is highly uniform. In particular, PAC06 and PA5 both contain a



123

high-velocity lid of ∼60 km with a large Lid-LVZ boundary (the “G” discontinuity).

There is no clear evidence of a progressively thinning lithosphere as the crustal age

gets younger. Also the sharp “G” discontinuity contradicts the smeared transitions

predicted from theoretic thermal cooling models. However, they favorably support

the argument by Gaherty et al. (1999) that the “G” discontinuity rather represents a

compositional boundary than a solely thermal boundary. A note worthy discrepancy

in the comparison is that PA5 has a faster lid, with a slower high-gradient zone

(HGZ) below ∼160 km compared to PAC06. Future work is needed to quantify

how much difference there is a reality. However, as we have seen earlier (Fig. 4.14),

the velocity contrast between the shallower part and the HGZ is well constrained in

PAC06. The biggest discrepancy between PAC06 and PA5 occurs around the 660 km

discontinuity, where the major constraints for PA5 were from the ScS reverberations.

PAC06 contains radial anisotropy down to a depth of ∼300 km, which is consistent

with the results from previous studies (e.g. Nishimura and Forsyth, 1989; Ekström and

Dziewonski , 1998). The shallow cutoff (∼160 km) of anisotropy in PA5 is probably

mainly an artifact from the model parameterization. The anisotropy of Vsh > Vsv in

the lid can be attributed to the lattice preferred orientation (LPO) in olivine when

the lid was formed (e.g. Nicolas and Christensen, 1987), since the studied path is

consistently oblique to the ancient spreading direction. The anisotropy in the LVZ

could be caused by the preferred orientation of melt-filled pockets (e.g. Schlue and

Knopoff , 1977) or shearing in the asthenosphere due to mantle flow or plate motions

(e.g. Zhang and Karato, 1995; Montagner and Tanimoto, 1991). However, due to the

limited azimuthal sampling, the anisotropy in PAC06 only represents a projection of

the full (3D) anisotropy onto the particular path.

Figure 4.15 compares PAC06 to the earlier pure path models developed with

similar multi-bounce S wave data, particularly, TNA, SNA for the North America

shield (Grand and Helmberger , 1984b) and ATL featuring the old Atlantic (∼ 70–

150 Ma) (Grand and Helmberger , 1984a). Except for SNA, the other three models

all contain a well-developed LVZ. Moreover, the high gradient zone (HGZ) beneath

the smallest velocities in the LVZs appear unique for the oceanic paths, in contrast
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with the continental model SNA. The steep gradient in the HGZ is intriguing, since

it cannot be easily explained with a subadiabatic thermal gradient or decreasing

partial melt with depth. However, a depth-dependent increase in the amount of

pyroxenite could produce such an enhanced velocity gradient, though a plausible

dynamical picture is absent (e.g. Stixrude and Lithgow-Bertelloni , 2005). Also note

in Fig. 4.15 the lowest velocities in the LVZ migrate upward below the ridges (TNA)

and downward beneath the old oceans (ATL). This might suggest that possible flows

in the LVZ are not confined within a certain depth range.

Compared to the other models, PAC06 contains a velocity jump at ∼516 km

(Fig. 4.15). This is in good agreement with global stacks of SS precursors (Shearer ,

1990, 1993) or ScS reverberations (Revenaugh and Jordan, 1991a). The small velocity

jump at the discontinuity is consistent with the β − γ transition in (Mg, Fe)2SiO4 of

the mineralogical models (e.g. Rigden et al., 1991).

4.5 Conclusion

In this study, we developed a pure path shear velocity model PAC06 along the corri-

dor from Tonga-Fiji to California. The model contains a fast lid (Vsh = 4.78 km/sec,

Vsv = 4.58 km/sec) ∼60 km thick. The underlying low velocity zone (LVZ) is promi-

nent with the lowest velocities Vsh = 4.34 km/sec, and Vsv = 4.22 km/sec. Besides

the 406 km and 651 km discontinuities, PAC06 also has a small (∼1%) velocity jump

at ∼516 km. We consider these main features of PAC06 to be well determined, since

PAC06 explains a large data set from various events. Therefore, it is ideally suited

for comparing with mineralogical models.
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Appendix A

Source Parameters of 159 Southern

Califonia Events (1998.4-2004.10)

SCSN Fault Parameters

Event id origin date-time lat/lon h mb FM:φ/δ/λ h Mw

10964587 2001/07/14,17:30:39. 36.02/-117.87 3.7 3.8 81/88/12 5.1 4.4

10972299 2001/07/19,20:42:36. 34.27/-117.46 10.9 3.8 92/62/56 9.8 3.8

10992159 2001/07/20,12:53:07. 35.99/-117.88 3.4 4.4 80/79/-20 5.1 4.1

12887732 2002/05/02,06:00:15. 35.71/-118.08 3.1 3.8 218/80/9 5.1 3.6

13657604 2002/06/14,12:40:46. 36.69/-116.34 7.0 4.9 212/29/-92 10.6 4.5

13692644 2002/07/25,00:43:15. 34.16/-117.43 6.5 3.7 229/69/-16 6.5 3.6

13917260 2002/12/10,21:04:00. 32.23/-115.80 7.0 4.8 42/51/-42 7.2 4.6

13945908 2003/03/11,19:28:17. 34.36/-116.13 3.9 4.6 47/81/-6 8.2 4.3

14065544 2004/06/15,22:28:48. 32.33/-117.92 10.0 5.3 234/72/-31 17.1 5.0

3298170 1998/03/06,05:54:21. 36.07/-117.62 1.1 4.5 71/85/9 9.0 4.4

3298292 1998/03/11,12:18:51. 34.02/-117.23 14.9 4.5 236/66/-79 17.4 4.2

3317364 1999/05/14,10:52:35. 34.03/-116.36 1.8 4.2 61/84/10 4.5 4.1

3319204 1999/08/01,16:27:18. 37.40/-117.09 6.0 4.0 92/75/-3 9.2 4.8

7112721 1998/10/01,18:18:15. 34.11/-116.92 4.4 4.6 229/73/34 7.0 4.3

7177729 2000/02/14,09:57:42. 34.80/-116.37 2.3 4.4 98/90/38 5.0 4.0

7179710 2000/02/28,23:08:42. 36.07/-117.60 0.2 4.2 217/70/4 4.2 4.2

9038699 1998/01/05,18:14:06. 33.95/-117.71 11.5 4.3 40/83/34 9.9 3.9

9044494 1998/03/06,05:47:40. 36.07/-117.64 1.8 5.2 228/77/-24 7.7 5.0

9044650 1998/03/06,07:36:35. 36.06/-117.65 2.1 4.4 220/74/-18 9.8 4.2

9045109 1998/03/07,00:36:46. 36.08/-117.62 1.7 5.0 69/89/-6 6.3 4.7

9058934 1998/07/02,03:39:50. 36.95/-117.53 6.0 4.8 242/81/-11 3.4 4.7

9064093 1998/08/16,13:34:40. 34.12/-116.93 6.2 4.8 47/90/-35 6.7 4.5

9064568 1998/08/20,23:49:58. 34.37/-117.65 9.0 4.4 109/36/91 10.6 4.1

9069997 1998/10/27,01:08:40. 34.32/-116.84 5.9 4.8 43/73/-15 7.0 4.4

9070083 1998/10/27,15:40:17. 34.32/-116.85 4.3 4.1 51/79/-21 5.6 3.8

9075803 1999/01/13,13:20:55. 32.71/-115.92 10.5 4.4 219/90/-30 8.2 4.2

9087073 1999/05/15,13:22:11. 37.53/-118.82 6.0 5.4 28/70/36 5.0 5.5

9090617 1999/06/03,21:36:28. 37.53/-118.80 0.0 4.4 188/58/16 3.8 4.2

Continued on next page. . .
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9095528 1999/07/11,18:20:46. 35.73/-118.48 5.7 4.3 -1/36/-66 5.6 4.2

9096656 1999/07/19,22:09:27. 33.63/-116.72 14.1 4.2 57/52/33 14.9 3.8

9098566 1999/08/01,16:06:20. 37.53/-116.97 6.0 5.9 78/40/-39 8.5 5.7

9098867 1999/08/02,05:40:26. 37.42/-117.06 6.0 4.1 81/56/-18 7.3 4.1

9105672 1999/09/20,07:02:49. 34.32/-116.85 2.8 4.1 51/83/-22 5.5 3.9

9106250 1999/09/26,16:15:37. 37.44/-117.04 6.0 4.5 99/30/-49 5.8 4.2

9109131 1999/10/16,16:08:24. 34.68/-116.31 0.8 4.0 241/67/-30 3.9 3.9

9109254 1999/10/16,17:38:48. 34.43/-116.25 0.0 4.9 261/32/10 6.5 4.6

9109287 1999/10/16,18:01:57. 34.70/-116.29 3.6 4.3 83/79/-28 3.6 4.0

9109636 1999/10/16,22:53:41. 34.71/-116.36 6.0 4.5 250/76/-21 8.8 4.1

9110685 1999/10/17,16:22:48. 34.35/-116.14 0.2 4.2 49/82/-3 5.3 4.1

9113909 1999/10/21,01:25:42. 34.87/-116.40 3.2 4.2 111/70/15 5.2 4.0

9114763 1999/10/22,12:40:52. 34.34/-116.21 9.5 4.2 75/79/8 15.9 3.8

9114812 1999/10/22,16:08:48. 34.87/-116.41 0.9 5.0 90/84/22 4.0 5.0

9114858 1999/10/22,16:48:23. 34.83/-116.38 4.2 4.1 262/80/16 4.2 3.8

9119414 1999/11/03,03:27:56. 34.84/-116.36 7.0 4.1 82/78/-17 5.9 3.9

9120741 1999/11/07,06:47:49. 34.79/-116.29 5.1 4.0 100/87/-20 6.8 4.0

9122706 1999/11/14,14:20:09. 34.84/-116.41 6.3 4.4 81/82/-13 7.3 4.3

9130422 1999/12/23,14:30:54. 34.59/-116.27 7.4 4.0 100/69/14 9.2 3.8

9140050 2000/02/21,13:49:43. 34.05/-117.25 15.0 4.3 272/82/-1 17.7 4.2

9151000 2000/05/18,09:41:37. 35.10/-118.30 6.8 3.9 31/75/40 7.5 3.7

9151609 2000/05/23,04:42:43. 36.32/-118.07 1.7 3.9 81/69/-39 9.2 3.9

9152038 2000/05/27,03:35:34. 35.78/-117.65 0.8 4.0 79/77/-26 3.5 3.8

9155518 2000/06/26,15:43:07. 34.78/-116.30 4.3 4.5 282/87/-18 7.3 4.4

9169867 2000/12/02,08:28:07. 34.27/-116.78 3.4 4.0 41/77/-7 5.9 3.8

9171679 2000/12/24,01:04:21. 34.92/-119.02 13.9 4.4 22/90/-22 17.1 4.1

9613229 2001/01/14,02:26:14. 34.28/-118.40 8.8 4.3 121/40/72 8.8 4.2

9613261 2001/01/14,02:50:53. 34.29/-118.40 8.4 4.0 79/58/33 7.6 3.9

9627721 2001/02/10,21:05:05. 34.29/-116.95 9.1 5.1 205/76/4 8.4 4.7

9627953 2001/02/11,00:39:15. 34.29/-116.94 8.1 4.2 198/46/-12 7.8 3.8

9644345 2001/04/14,14:51:22. 35.99/-118.33 5.6 3.8 181/51/-84 4.9 4.1

9652545 2001/05/14,17:13:30. 34.23/-117.44 8.7 3.8 50/49/-1 7.1 3.7

9653349 2001/05/17,21:53:45. 35.80/-118.04 8.7 4.2 214/80/-26 10.8 4.0

9653493 2001/05/17,22:56:45. 35.80/-118.05 8.4 4.1 212/74/-38 12.1 4.1

9655209 2001/05/23,19:10:34. 34.02/-116.76 14.4 3.8 31/67/43 16.8 3.7

9666905 2001/07/03,11:40:48. 34.26/-116.76 3.3 3.9 43/55/13 6.2 3.8

9674049 2001/07/17,12:07:26. 36.01/-117.86 7.0 4.8 259/90/-11 5.6 5.1

9674097 2001/07/17,12:25:18. 36.04/-117.87 5.6 4.1 30/47/-75 5.3 4.1

Continued on next page. . .
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9674213 2001/07/17,12:59:59. 36.02/-117.88 0.4 4.7 243/71/-23 3.2 4.9

9686565 2001/07/28,01:09:29. 36.06/-117.87 1.7 4.0 49/63/-29 3.2 4.0

9689717 2001/08/02,16:21:18. 37.22/-117.79 10.1 3.7 2/22/-92 10.3 4.0

9716853 2001/10/28,16:27:45. 33.92/-118.27 21.1 4.0 110/74/81 15.8 3.8

9718013 2001/10/31,07:56:16. 33.51/-116.51 15.2 5.1 221/80/-48 17.0 5.0

9735129 2001/12/14,12:01:35. 33.95/-117.75 13.8 4.0 40/82/-26 8.3 3.7

9742277 2002/01/02,12:11:28. 33.38/-116.43 12.6 4.2 46/90/21 14.7 4.0

9753485 2002/01/29,05:53:28. 34.36/-118.66 14.2 4.2 94/66/85 13.1 4.3

9753497 2002/01/29,06:08:01. 34.37/-118.66 14.4 3.8 74/58/71 11.6 3.9

9753949 2002/01/29,20:23:07. 34.36/-118.67 12.6 3.6 61/70/85 10.2 3.8

9774569 2002/03/30,13:50:51. 33.19/-116.73 9.3 3.8 68/77/13 10.3 3.7

9775765 2002/04/05,08:02:56. 34.52/-116.29 5.6 4.4 331/43/-63 4.7 4.1

9805021 2002/07/31,08:31:47. 34.57/-116.44 3.0 3.7 137/60/61 8.5 3.5

9818433 2002/09/03,07:08:51. 33.92/-117.78 12.9 4.8 29/87/-6 7.6 4.3

9826789 2002/09/21,21:26:16. 33.22/-116.11 14.6 4.3 58/86/-12 12.8 4.0

9828889 2002/09/28,10:34:47. 35.95/-117.30 3.7 4.1 252/56/20 6.4 4.0

9829213 2002/09/28,18:11:29. 35.95/-117.31 3.5 4.0 246/69/18 5.9 3.8

9854597 2002/10/29,14:16:54. 34.80/-116.27 4.6 4.8 84/80/-10 7.6 4.5

9882325 2003/01/25,09:11:02. 35.32/-118.66 5.6 3.9 182/26/-42 3.5 4.1

9882329 2003/01/25,09:16:10. 35.32/-118.65 5.6 4.5 200/50/-34 3.9 4.3

9915709 2003/05/14,22:47:18. 33.75/-116.02 8.2 3.9 262/43/-36 7.4 3.6

9930549 2003/07/15,06:15:50. 34.62/-116.67 7.6 4.2 186/71/30 10.0 3.8

9941081 2003/08/27,06:02:22. 34.40/-118.65 17.9 3.9 263/87/-72 15.8 3.9

9966033 2003/12/20,16:35:23. 37.18/-117.86 9.3 4.0 230/59/-36 8.8 4.0

9983429 2004/02/14,12:43:11. 35.04/-119.13 12.1 4.3 72/38/87 12.9 4.5

3320884 1999/10/21,01:57:38. 34.86/-116.39 3.5 5.0 69/90/32 4.9 4.5

3320940 1999/10/22,20:16:01. 34.87/-116.40 1.3 4.1 250/65/-29 5.9 3.8

3320954 1999/10/22,20:17:30. 34.86/-116.39 2.9 4.2 110/63/37 3.3 4.0

3321590 1999/10/21,01:54:34. 34.87/-116.39 1.0 5.1 68/84/6 5.4 5.0

7210945 2000/12/27,00:27:14. 32.73/-118.07 6.0 4.0 265/89/-62 11.6 4.0

9109442 1999/10/16,20:13:37. 34.69/-116.28 1.3 4.6 81/71/-23 4.9 4.3

9141142 2000/02/29,22:08:05. 36.09/-117.60 0.1 4.0 223/82/-20 3.8 4.0

10023841 2004/06/29,10:20:43. 36.07/-117.90 5.3 3.7 70/77/34 8.1 3.7

10970835 2001/07/17,12:22:19. 36.03/-117.88 1.9 3.6 80/89/-36 7.0 3.9

13813696 2002/09/17,15:00:05. 33.50/-116.78 16.0 3.7 227/59/3 21.0 3.5

14000376 2003/10/29,23:44:48. 34.27/-118.75 13.8 3.6 238/58/43 9.2 3.6

14072464 2004/07/09,04:43:45. 32.51/-115.74 5.5 3.7 226/79/-50 7.7 3.7

14079184 2004/07/28,20:19:42. 34.13/-117.45 6.4 3.8 226/90/-20 5.2 3.6
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3320951 1999/10/22,16:51:36. 34.82/-116.39 2.6 3.7 258/68/-26 5.2 3.6

3321426 1999/11/03,02:55:05. 34.80/-116.28 4.5 3.8 291/90/10 5.6 3.8

3324595 1999/10/22,11:34:23. 34.60/-116.27 0.0 3.8 151/44/88 5.9 3.7

7180136 2000/03/02,15:00:34. 36.08/-117.60 0.4 3.9 41/87/21 3.5 4.0

9045697 1998/03/08,15:28:41. 36.08/-117.62 1.1 3.9 58/82/-11 5.6 3.7

9059586 1998/07/05,16:25:14. 36.94/-117.54 6.0 3.7 251/23/9 4.7 3.9

9075784 1999/01/13,10:02:05. 32.72/-115.92 10.0 3.8 227/83/-36 8.8 3.8

9085734 1999/05/05,02:17:46. 34.07/-116.37 1.8 3.6 69/61/-12 2.6 3.6

9086693 1999/05/14,08:22:07. 34.03/-116.36 1.4 3.9 232/87/-12 4.8 3.9

9093975 1999/06/29,12:55:00. 34.01/-118.22 9.5 3.8 102/58/63 6.1 3.7

9094270 1999/07/01,12:43:07. 35.09/-118.31 6.9 3.8 34/74/31 9.0 3.6

9096972 1999/07/22,09:57:24. 34.40/-118.61 11.3 4.0 291/58/66 10.5 3.8

9109496 1999/10/16,21:10:50. 34.67/-116.34 2.9 3.9 257/72/-47 4.8 3.8

9114042 1999/10/21,05:47:38. 34.53/-116.27 0.0 3.8 179/40/92 6.2 3.6

9114612 1999/10/22,05:54:01. 34.70/-116.36 3.0 3.7 282/69/-63 5.9 3.5

9114775 1999/10/22,13:43:14. 34.85/-116.40 4.2 3.8 247/71/-29 3.7 3.6

9116921 1999/10/26,22:59:36. 36.45/-117.90 0.0 3.9 228/89/-26 4.4 4.0

9128775 1999/12/13,13:20:16. 34.10/-117.01 3.3 3.8 216/70/13 5.2 4.0

9147453 2000/04/16,01:15:57. 34.80/-116.27 4.1 3.8 279/71/8 6.5 3.6

9148510 2000/04/25,18:36:07. 33.16/-115.64 4.9 3.7 57/90/-36 6.5 3.8

9150059 2000/05/10,23:25:42. 33.16/-115.64 4.0 3.9 61/79/-34 12.0 4.0

9151375 2000/05/21,06:27:37. 34.29/-116.87 5.9 3.6 48/90/-22 7.7 3.5

9152745 2000/06/02,14:24:14. 33.18/-115.60 1.8 3.5 17/62/-61 11.4 3.8

9153800 2000/06/12,03:15:02. 34.68/-116.36 7.3 3.9 261/66/7 8.7 3.6

9154179 2000/06/14,22:39:27. 32.87/-115.51 8.8 3.6 249/60/-27 16.1 3.9

9158503 2000/07/26,03:01:46. 32.15/-115.11 6.0 3.8 121/77/14 14.3 3.9

9163702 2000/09/20,16:10:33. 36.05/-117.87 2.8 3.7 70/64/-41 2.4 3.7

9164821 2000/10/01,04:46:19. 32.12/-115.15 6.0 3.9 22/29/-31 11.7 3.9

9165019 2000/10/03,02:44:02. 35.78/-117.65 3.6 3.5 39/71/-57 6.2 3.5

9165761 2000/10/12,16:51:19. 34.56/-118.90 25.7 3.9 84/68/79 7.8 3.8

9627557 2001/02/10,17:50:22. 33.82/-116.15 8.2 3.9 69/90/-21 9.0 3.7

9642941 2001/04/08,01:25:28. 36.02/-117.81 3.6 3.8 51/60/-47 3.3 3.9

9646589 2001/04/23,16:33:48. 36.02/-117.88 4.8 3.5 71/83/-17 5.4 3.7

9653293 2001/05/17,20:47:58. 35.80/-118.04 5.6 3.6 240/66/-32 9.5 3.7

9671933 2001/07/14,17:30:28. 36.03/-117.88 2.7 3.6 263/89/-13 7.7 4.3

9673577 2001/07/16,15:55:28. 36.02/-117.88 2.9 3.5 242/68/-46 3.3 3.6

9674093 2001/07/17,12:22:28. 36.03/-117.86 5.5 3.8 258/78/-38 7.5 4.0

9674205 2001/07/17,12:56:31. 36.03/-117.88 2.7 3.7 250/79/-36 5.3 3.8

Continued on next page. . .
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9674653 2001/07/17,14:59:50. 36.03/-117.88 2.6 3.7 267/82/-21 4.3 3.7

9688025 2001/07/30,23:34:17. 36.05/-117.88 2.8 3.7 21/37/-58 5.2 4.0

9688709 2001/08/01,03:05:15. 35.99/-117.88 3.5 3.6 72/77/-25 3.9 3.9

9734033 2001/12/11,21:40:35. 34.11/-116.72 9.3 3.6 218/57/-2 6.9 3.8

9817605 2002/08/31,16:24:33. 33.05/-115.61 14.2 3.8 311/67/-27 9.9 3.8

9827109 2002/09/23,08:13:16. 32.18/-115.38 7.0 3.6 30/71/-21 11.3 3.8

9875657 2003/01/02,16:11:37. 35.32/-118.66 3.6 3.6 150/31/-70 6.6 3.8

9875665 2003/01/02,16:15:44. 35.31/-118.66 3.6 3.6 213/55/-10 5.2 3.7

9915909 2003/05/15,17:58:02. 35.84/-118.11 10.7 3.6 241/48/-23 15.8 3.5

9994573 2004/03/28,07:20:02. 36.18/-118.16 7.7 3.8 173/66/-63 7.2 3.7

13935988 2003/02/22,12:19:10. 34.31/-116.85 1.2 5.4 41/79/-21 6.3 5.0

13936812 2003/02/22,19:33:45. 34.31/-116.85 3.0 4.5 90/46/90 5.3 4.3

13936432 2003/02/22,14:16:08. 34.32/-116.86 4.2 4.1 21/72/-28 5.5 3.8

13938812 2003/02/25,04:03:04. 34.32/-116.84 2.7 4.6 44/84/-11 4.8 4.2

13936596 2003/02/22,16:12:16. 34.31/-116.85 4.3 3.9 28/86/-18 5.9 3.7

13939856 2003/02/27,05:00:21. 34.30/-116.84 4.6 4.0 37/80/-21 6.2 3.8

14095628 2004/09/29,22:54:54. 35.39/-118.62 3.5 5.0 202/72/-2 8.6 4.9
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Appendix B

More Waveform Comparisons along

Tonga-Fiji, California Corridor

The waveform comparisons for more events studied in Chapter 4 are displayed here,

where representative events of various source types, at different depths are selected.

For each event, the subfigure (a) displays the overlain waveform comparison, (b)

shows the source parameter, and the measured time lags of the S multiplets are given

in (c). The last two figures are the waveform comparisons for event 9533473 as shown

in Fig. 4.6 with the preliminary earth reference model (PREM), and the path average

of the tomographic model S20RTS containing a thick crust (∼ 21 km).
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Figure B.1: Event 9026350.
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Figure B.2: Event 13980540.
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Figure B.3: Event 9942373.
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Figure B.4: Event 10100677.
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Figure B.5: Event 9927909.
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Figure B.6: Event 9658105.
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Figure B.7: Event 9648517.
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Figure B.8: Event 9564185.
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Figure B.9: Event 9743493.
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Figure B.10: Event 9611653.
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Figure B.11: Event 14170576.
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Figure B.12: Event 14132616.
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Figure B.13: Event 9685024.
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Figure B.14: The selected waveform fits for event 9533473 as shown in Fig. 4.6 with
the preliminary Earth reference model (PREMsh) containing a thick crust (∼21 km).
Both the data (black) and synthetics (red) are aligned on SS.
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Figure B.15: The selected waveform fits for event 9533473 as shown in Fig. 4.6 with
the path average of a typical tomographic model S20RTS by Ritsema et al. (1999)
containing a thick crust from PREM (∼21 km). Both the data (black) and synthetics
(red) are aligned on SS.
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