
Tools and Algorithms for Mobile Robot Navigation with
Uncertain Localization

Thesis by

Kristopher L. Kriechbaum

In Partial Ful�llment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Defended May 23, 2006)

ii

© 2006

Kristopher L. Kriechbaum

All Rights Reserved

iii

iv

Acknowledgements

I wish to thank my adviser, Joel Burdick, for his guidance, support, and constant patience.

I would like to thank Stergios Roumeliotis for teaching me all I know about Kalman �lters.

My thanks to the robotics group for their help and feedback. I would like to thank all

the members of the Caltech DARPA Grand Challenge team for providing me with such a

unique experience.

My good friends and o�cemates Lars Cremean and Jim Radford provided many worth-

while discussions, as well as much needed distractions. Many thanks to Michael Wolf,

Nicolas Hudson, Alexandros Ta
anidis, Mohamed El-Naggar, Joseph Klamo, and Timothy

Chung for the battles they provided. I also want to thank the Aero and SOPS soccer teams

for giving me an excuse not to work on the weekends, and the Caltech Club Soccer team

for giving me an excuse not to work evenings.

I would like to thank my family for their love and support, and Ophelia for the uncon-

ditional love that only a dog can give. Most of all, I would like to thank my wife, Maria,

for her continuous encouragement throughout my graduate career.

v

Abstract

The ability for a mobile robot to localize itself is a basic requirement for reliable long

range autonomous navigation. This thesis introduces new tools and algorithms to aid in

robot localization and navigation. I introduce a new range scan matching method that

incorporates realistic sensor noise models. This method can be thought of as an improved

form of odometry. Results show an order of magnitude of improvement over typical mobile

robot odometry. In addition, I have created a new sensor-based planning algorithm where

the robot follows the locally optimal path to the goal without exception, regardless of

whether or not the path moves towards or temporarily away from the goal. The cost of

a path is de�ned as the path length. This new algorithm, which I call \Optim-Bug," is

complete and correct. Finally, I developed a new on-line motion planning procedure that

determines a path to a goal that optimally allows the robot to localize itself at the goal.

This algorithm is called \Uncertain Bug." In particular, the covariance of the robot's pose

estimate at the goal is minimized. This characteristic increases the likelihood that the

robot will actually be able to reach the desired goal, even when uncertainty corrupts its

localization during movement along the path. The robot's path is chosen so that it can use

known features in the environment to improve its localization. This thesis is a �rst step

towards bringing the tools of mobile robot localization and mapping together with ideas

from sensor-based motion planning.

vi

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 Motivation . 1

1.2 Review of Prior Work . 2

1.3 Contributions of this Thesis . 5

1.4 Thesis Outline . 6

2 Background 8

2.1 Tangent Bug . 8

2.2 Kalman Filtering . 11

2.2.1 The Basics . 12

2.2.2 Kalman Filters and Robotic Localization 15

2.2.2.1 Localization of a Point Robot Using Landmarks 15

3 Weighted Scan Matching 21

3.1 Introduction . 21

3.2 The Weighted Range Sensor Matching Problem 25

3.2.1 The Measurement Model . 25

3.2.2 A General Covariance Model . 27

3.2.3 Displacement Estimation via Maximum Likelihood 28

3.2.4 The Algorithm and Its Initial Conditions 30

3.2.5 Covariance of the Displacement Estimation Error 31

3.3 Scan Matching Error/Noise Models . 33

vii

3.3.1 Measurement Process Noise . 33

3.3.2 Correspondence Error . 34

3.3.3 Measurement Bias E�ects . 37

3.4 Selection of Point Correspondences . 38

3.5 Estimating the Incidence Angle . 39

3.6 Experiments . 40

3.6.1 Robustness and Accuracy Comparisons 40

3.6.2 Multi-Step Runs . 47

3.6.3 Comparison of Computational Demands 50

3.6.4 Experiments with Bias Compensation 51

3.7 Conclusions . 52

4 Optim-Bug 54

4.1 Setup and De�nitions . 54

4.2 Optim-Bug Overview . 56

4.3 Shortest Path Properties . 59

4.4 Proof of Completeness . 60

4.5 Conclusion . 71

5 Path Optimization 72

5.1 The Localization Framework . 72

5.2 Cost Function . 75

5.3 Practical Optimization Approach . 76

5.4 Initial Condition Generation . 79

5.5 Results . 80

5.5.1 Robot Drives Past the Goal . 82

5.5.2 Robot Follows the Landmarks . 83

5.5.3 Examples with Obstacles . 84

5.6 Summary and Discussion . 85

6 Uncertain Bug 88

6.1 Setup and De�nitions . 89

6.2 Motivation and Background . 91

viii

6.3 The Uncertain Bug Algorithm . 92

6.3.1 E�ects of Uncertainty . 94

6.4 Uncertain Bug Algorithm Properties . 96

6.5 Simulation Results . 100

6.6 Discussion . 102

7 Conclusion 105

7.1 Summary of Contributions . 105

7.2 Future Directions . 106

A Weighted Scan Matching Derivations 107

A.1 Weighted Translation Solution . 107

A.2 Weighted Rotation Solution . 107

A.3 Covariance Estimation . 110

B Implementation Details 114

B.1 Obstacle Constraints . 114

B.1.1 The Constraint Equations . 116

C Shortest Path Properties 119

D Bounded Uncertainty Freespace 124

D.1 Goal Only . 124

D.2 Goal and One Landmark . 126

D.3 Goal and Multiple Landmarks . 128

Bibliography 129

ix

List of Figures

2.1 The local tangent graph, with the optional goal node, Tg, added. 9

2.2 A situation where the robot would switch into boundary following mode. . . 10

2.3 An example Tangent Bug sequence where the robot thinks it is at the goal,

but the error is large. 12

2.4 Setup of a Kalman �lter for mobile robot localization. 15

2.5 A three-step propagation example. This shows how the estimate error contin-

ues to grow. 19

2.6 A single-step propagation example showing multiple trials. 19

2.7 Example data illustrating using a landmark for localization. 20

3.1 Geometry of the range sensing process. The robot acquires dense range scans

in poses i and j. The circles represent robot position, while the x-y axes denote

the robot's body �xed reference frames. 22

3.2 Representation of the uncertainty of selected range scan points. 24

3.3 A) Experiments with initial displacement perturbations between scans taken

at a single pose. B) Closeup of robot pose with results. 42

3.4 A) Experiments with initial displacement perturbations between scans taken

at di�erent poses. B) Closeup of pose 2 with results. 44

3.5 A) Experiments with initial displacement perturbations in a non-static envi-

ronment. B) Closeup of pose 2 with results. 45

3.6 A) Experiments with initial displacement perturbations in a hallway environ-

ment. B) Closeup of pose 2 with results. 46

3.7 A) A 109-pose 32.8-meter loop path. B) Closeup of �nal path poses, shown

the covariance estimates of the weighted and unweighted algorithms. 48

3.8 A) 83-pose 24.2-meter loop. B) Closeup of �nal loop poses. 49

x

3.9 The bias �t function. 51

4.1 The current visibility sets, v(xk), shown at each location of a four-step path.

At x2, obstacle O2 is a blocking obstacle. 55

4.2 The total visibility set, Vtot, for the same four-step hypothetical example of

Figure 4.1. 56

4.3 A hypothetical example showing obstacle endpoints, tangent points, and their

associated goal-tangent lines. 60

4.4 Illustration for Lemma 4.1 showing that the total visibility set, Vtot grows at

each step. 62

4.5 At every step while navigating around a blocking obstacle, the robot always

sees a new segment of the obstacle boundary that is contiguous with a previ-

ously known segment. It may see additional boundary segments that are not

contiguous. 65

4.6 A hypothetical sequence of steps showing how Optim-Bug can oscillate back

and forth along a blocking obstacle. This also illustrates how a continuous

piece of the boundary segment is mapped out. 67

4.7 A hypothetical example where the robot is blocked by the same obstacle twice.

Portions of the obstacle in the robot's map are denoted by a darker color. . . 68

5.1 The environment setup assumed for the path planning process. The robot

starts at location xR and is instructed to travel to xg. L1, L2, L3, and L4 are

landmarks that the robot has knowledge of. The circles are obstacles that the

robot must avoid. 73

5.2 Sample measurement variance pro�le as a function of range. � = :1,
 = 10,

and rmax = 3. Note that the y-axis scale is logarithmic. 81

5.3 Example where the robot initially drives past the goal in order to use a land-

mark. For simplicity, the sensing range is plotted about the landmark - if the

robot moves inside of that circle, it is close enough to see the landmark. . . . 83

5.4 A multi-step path where the robot signi�cantly deviates from the shortest path

in order to use the landmarks. 84

5.5 An simple example with obstacles. 85

xi

5.6 The same landmark con�guration as that of Figure 5.4. Obstacles were placed

to block the original optimal path. 86

6.1 Setup assumed for the Uncertain Bug algorithm. The robot does not know

the position of obstacles in the environment. The robot's sensor has a �nite

sensing range, r. 90

6.2 Hypothetical example where the robot chooses a path that causes it to step

into an uncertainty obstacle. 95

6.3 Figure illustrating an extra termination condition for Uncertain Bug. The

next robot path is shown by the dashed line. The robot will follow the path

to the point labeled x2. 98

6.4 A simulation of Uncertain Bug. The Tangent Bug path is shown as the pink

dashed line. Final cost at the goal is 39% of the cost of the Tangent Bug path. 101

6.5 The planned path for steps 9 and 10. Note that when the robot sees the

obstacle, it re-plans the path, taking into account the new information about

the world. 102

6.6 A simulation of Uncertain Bug. The Tangent Bug path is shown as the pink

dashed line. Final cost at the goal is 32% of the cost of the Tangent Bug path. 103

B.1 A portion of the path where the robot passes by an obstacle. 115

B.2 Setup of a single line and circle. 115

C.1 A �xed endpoint variation. 120

D.1 Maximum size of covariance ellipse to �t inside circle with radius of �. 125

D.2 Set of points from which the goal can be reached with �max < �. The set is

the darkened box. 126

D.3 A bound on the set of points from which the goal could be reached with �max < �.127

D.4 Union of the multiple sets. 128

xii

List of Tables

3.1 Position and orientation error values for trials with no initial perturbations. . 41

3.2 Robustness and accuracy comparison statistics for trials with initial perturba-

tions. 41

1

Chapter 1

Introduction

1.1 Motivation

The ability for a mobile robot to localize itself is a basic requirement for reliable long

range autonomous navigation. This thesis introduces new tools and algorithms to aid in

robot localization and navigation. I introduce a new range scan matching method that

incorporates realistic sensor noise models. This method can be thought of as an improved

form of odometry. Results show an order of magnitude of improvement over typical mobile

robot odometry. In addition, I have created a new sensor-based planning algorithm where

the robot follows the locally optimal path to the goal without exception, regardless of

whether or not the path moves towards or temporarily away from the goal. The cost of

a path is de�ned as the path length. This new algorithm, which I call \Optim-Bug," is

complete and correct. Some of the ideas and issues from Optim-Bug are used to assist in

the discussion of the case where the robot does not have perfect positional knowledge.

Finally, I developed a new on-line motion planning procedure that determines a path

to a goal that optimally allows the robot to localize itself at the goal. This algorithm is

called \Uncertain Bug." In particular, the covariance of the robot's pose estimate at the

goal is minimized. This characteristic increases the likelihood that the robot will actually

be able to reach the desired goal, even when uncertainty corrupts its localization during

movement along the path. I assume that the robot has a number of (possibly uncertain)

landmarks available to aid in its localization process. The robot's path is chosen to exploit

these landmarks and use them for better localization. I also assume that the robot has

noisy odometry. Hence, the algorithm e�ectively �nds a balance between longer paths

that pass close to landmarks (thereby increasingly localization ability) and shorter paths

2

that introduce less odometry error. This method can also include any other localization

aids based on either proprioceptive (e.g., inertial navigation unit) or exteroceptive (e.g.,

laser scan matching algorithms [42]) whose operation can be modeled in a Kalman �lter

framework. In the simulations presented in this thesis, I focus strictly on the combination

of landmarks and on-board odometry.

Two highly desirable features of any planner are completeness and correctness. A path is

correct if it lies wholly within the freespace (i.e., the path does not intersect any obstacles).

Completeness means that the planner will generate a path to the goal if one exists, and will

terminate in a �nite amount of time. Essentially all of the complete and correct sensor-based

motion planning algorithms assume that the robot has perfect knowledge of its location at all

times (e.g., [11, 20, 38]). Over very short distances, this assumption may not be so bad, and

the robot will likely get close enough to the goal to be considered successful. Nonetheless,

even in moderately sized environments, the localization error may grow to the point that

the robot is lost for all intents and purposes. The �eld of simultaneous localization and

mapping (SLAM) provides many useful tools to help keep the robot's error low. However,

SLAM algorithms do not fully address the issue of navigation. It is the disconnect between

the navigation problem and the localization and mapping problem that I hope to bridge

with this work.

My path planning method takes into account the rich body of literature and accumulated

experience with using the Kalman �lter for localization. However, prior work in localization

and mapping has not fully addressed the problem of how to plan a correct path to a goal

while taking into account possible localization uncertainty. Instead, the primary focus has

been on incorporating newly discovered landmarks into a map, and localizing the robot by

using measurements of currently known landmarks [31, 50, 55].

1.2 Review of Prior Work

Some of the earliest complete and correct sensor-based motion planning algorithms are the

Bug algorithms by Lumelsky and Stepanov [38]. The Bug algorithms assume nothing more

than a point robot with a sensor that can detect whether or not the robot is touching an

obstacle. They prove that the robot will reach the goal after a �nite amount of time if the

goal is reachable. These algorithms are the origin of later \Bug"-like planners.

3

Kamon, Rimon, and Rivlin extended the Bug algorithms to the case of a sensor with

�nite range and a 360° �eld of view in Tangent Bug [20]. Tangent Bug produces locally

optimal paths. The paths are locally optimal in that they are the optimal paths given

the robot's limited knowledge of the environment. Laubach modi�ed the algorithm further

to the case of a sensor with a more limited �eld of view in Wedge Bug [26]. All of the

Bug-style algorithms are e�cient with respect to memory requirements. However, they all

require that the robot have perfect position knowledge at all times.

Roadmap methods, such as Choset's HGVG [11], take a di�erent approach to the prob-

lem. The roadmap captures interesting topological features of the environment, such as

the connectivity of two adjacent rooms. The roadmap can be more e�cient than other

approaches, such as building up a map in Cartesian coordinates. In all of these methods

the proof of convergence of the robot to the goal requires perfect dead reckoning for the

robot.

There are numerous methods available to keep the robot's position estimate accurate.

In some cases, they make the perfect dead-reckoning assumption tractable. Matching 2-D

range scans from separate robot positions has been proposed by Gonzalez and Gutierrez [17]

and Lu and Milios [36, 37]. Their scan matching algorithms all assume that the physical

sensor returns perfect range measurements. They also assume that the range scans at

di�erent robot positions sample the environment boundary at exactly the same point.

Any method of improved odometry will still su�er from the problem of a growing position

estimate error over time. To reduce the estimate error, methods using measurements of

external features must be used. Early works using Kalman �lters [19] for robot localization

were proposed by Moutarlier and Chatila [40], Cox [14], and Smith et al. [49, 50]. One

assumes that the robot is given the location of a number of landmarks or features in the

environment that the robot can recognize. Extensions to this include methods for the robot

to self-select landmarks and incorporate them into its map [31]. Other methods such as

particle �lters [16, 54] allow the tracking of non-Gaussian distributions. Using tools such

as a Kalman �lter for localization has become a standard method in mobile robotics.

Recent works have started taking the robot's localization capability and landmarks into

account as part of the path planning process. Lorussi, Marigo, and Bicchi [35] provided

an elegant and detailed solution to the problem of choosing the path of an exploring point

robot so as to optimize its ability to localize in the presence of two precisely known land-

4

marks. This method assumes that the landmarks are perfectly known, and does not consider

uncertain robot motion. It also does not incorporate movement towards a speci�c goal.

Briggs et al. [8, 9] use landmarks in the presence of signi�cant sensor uncertainty. They

formulate the expected shortest path problem as a Markov decision process. Their method

requires that the visibility graph of the landmarks be constructed beforehand. Each edge

of the visibility graph is augmented with information about the probability that the edge is

passable or not, i.e., the target landmark can be detected from the current landmark. Blei

and Kaelbling [7] take a similar approach, but they assume that the state of an edge is only

known with a certain probability. Neither approach considers localization capability along

the path.

Lazanas and Latombe [29, 30] have also developed algorithms for motion planning with

landmarks. They assume that landmarks are areas of perfect sensing and perfect motion

execution. When the robot is not within range of a landmark, it is assumed to have bounded

motion uncertainty. They use the idea of chaining together sequences of landmarks that the

robot can successfully reach. While their method allows uncertainty in the robot's motion,

their solution ignores any issues of localization or sensing uncertainty e�ects.

Other works have proposed using some function of a covariance matrix as a cost function.

Trawny and Barfoot [56] considered the best formations for a team of robots to maintain

localization ability when inter-robot communication is allowed. They use a cost function

equal to the determinant of the covariance matrix. Their method does not incorporate

external landmarks, but the robots use each other to perform localization.

Logothetis et al. [33, 34] propose using the trace of the target state error covariance as

the cost function in a target tracking problem. The aim of their approach is to �nd the

best paths for observers that can measure only the bearing to the target. They solve the

optimization problem using both dynamic programming and brute force enumeration over

all possible observer paths. Because it is a target tracking problem, there is no notion of a

�nal goal location.

Rezaei et al. [43] introduced a graph-based algorithm to plan the motion of a vehicle so

as to increase the overall information content in a discrete localization map. In particular,

they use a cost function that is equal to the trace of the covariance matrix. Odometry and

incorporation of multiple sensing modalities was not included in their work.

Lavalle et al. [27, 28] have developed some general methods for motion planning with

5

uncertainty|though their methods do not speci�cally take localization uncertainty into

account. They speci�cally address the problem of a changing environment, such as doors

that open and close according to some statistical process, but do not address sources of error

such as sensing and odometry [28]. Both of these methods use a dynamic programming

algorithm to compute robot plans.

Lambert and Fraichard [23] address the problem of navigating a car-like robot with

motion and sensing uncertainty. Their cost function is a combination of path length and a

measure of localization capability along the path. Their approach requires a prior map of

the environment. They �nd the features that are best for localization in di�erent regions

of the map. The regions of the map that share the same features are connected using a

roadmap. The shortest path is computed using the Dijkstra algorithm[13].

One of the most closely related prior works is the \coastal navigation" algorithm of

Thrun and coworkers [46, 47]. This work similarly formulated a cost function{based al-

gorithm to �nd paths that allow a robot to take advantage of a previously constructed

grid-based map of an environment. Their formulation resulted in a costly dynamic pro-

gramming (or policy iteration) solution. At �rst glance, the problem presented in this

thesis could be solved using dynamic programming. However, the structure my formulation

permits a simpli�cation of the solution to a more e�cient optimal control solution. In turn,

it can be practically solved using a simple collocation and gradient descent method.

1.3 Contributions of this Thesis

This thesis introduces a new algorithm to estimate a robot's planar displacement by weighted

matching of dense two-dimensional range scans. Based on models of expected sensor un-

certainty, the algorithm weights the contribution of each scan point to the overall matching

error according to its uncertainty. A maximum likelihood formulation is used to estimate

the optimal displacement between two consecutive poses. Uncertainty models that account

for e�ects such as measurement noise, sensor incidence angle, and correspondence error

are developed. This also gives a more realistic covariance of the displacement estimate

than is found in prior work. This work was done jointly with Samuel P�ster and Stergios

Roumeliotis.

With some modi�cations, the Tangent Bug algorithm can be recast within an optimiza-

6

tion framework. The original Tangent Bug does not always follow the shortest path to the

goal. A new algorithm that always follows the shortest path to the goal, given limited in-

formation about the world, is developed. This new algorithm is called Optim-Bug. I prove

that this new algorithm is complete and correct. Results and general ideas from Optim-Bug

are used to motivate discussion and development of an algorithm to handle the case of noisy

odometry and imperfect sensing.

An o�-line optimization method assuming complete knowledge of the environment that

computes the best path to minimize robot pose uncertainty at the goal is presented. By

minimizing the robot's expected position error covariance at the goal, I am maximizing the

possibility that the robot will be able to recognize the goal when its position estimate says

that it is at the goal. This optimization method is a �rst step towards bridging the gap

between sensor-based planning algorithms and localization and mapping techniques.

A main contribution of this work is a sensor-based planning algorithm called Uncertain

Bug, in which the robot is not assumed to have perfect dead-reckoning and prior knowl-

edge of the environment's geometry. Uncertain Bug also takes into account noisy sensor

measurements and uncertain landmark locations. Issues such as the choice of landmarks

for navigation, or algorithms to learn important landmarks [53], are not addressed in this

thesis.

The Uncertain Bug algorithm �nds the path to the goal that minimizes the expected

robot position uncertainty at the goal. It is assumed that if the robot can get \close enough"

to the goal, it will be able to recognize it and declare success. On the other hand, if no

paths exist that reach the goal within this threshold, the algorithm declares failure. An

interesting consequence of this threshold is that the robot may fail to reach the goal even

when an acceptable path existed from the start. In other words, the fact that the algorithm

chose one acceptable path over another means that it can no longer guarantee that it will

get close enough to the goal to recognize it.

1.4 Thesis Outline

Chapter 2 provides background material on Kalman �lters and the Tangent Bug algorithm.

It is assumed that the reader has some knowledge of Kalman �ltering, with main results

presented for the case of a mobile robot. Chapter 3 presents theory and results from a range

7

scan matching algorithm. The main improvement over previous techniques is that the new

algorithm takes into account the uncertainty of sensor measurements. Chapter 4 introduces

Optim-Bug, an algorithm that always follows the shortest path to the goal in an unknown

environment. It is shown that this new algorithm is complete and correct. Chapter 5

introduces the details of an optimization method used to �nd the path with the smallest

robot pose estimate covariance at the goal. Both results and details of the optimization

approach are presented. Finally Chapter 6 presents the Uncertain Bug algorithm. Uncertain

Bug plans the path with the least robot pose estimate uncertainty at the goal.

8

Chapter 2

Background

2.1 Tangent Bug

This section provides a short description of the Tangent Bug algorithm developed by Ishay

Kamon, Elon Rimon, and Ehud Rivlin in 1995 [20]. Much of the inspiration for Optim-Bug

and Uncertain Bug comes from the Tangent Bug algorithm. The aim of Tangent Bug is to

�nd a path through previously unknown terrain from the robot's current location to some

given goal location. The path must not intersect any obstacles (correctness). Moreover, the

algorithm must either reach the goal or determine that the goal is unreachable in a �nite

amount of time (completeness).

The robot starts at a location xR, and is commanded to move to a position of xg. The

robot is assumed to be equipped with an omnidirectional sensor with a maximum sensing

range of R. Tangent Bug makes use of the local tangent graph, or LTG. The LTG consists of

nodes at the robot's location and the endpoints of sensed obstacles, and edges between the

robot and the sensed obstacle endpoints. An optional node, Tg, is added at the intersection

between the line segment xRxg and the circle at xR with a radius of R. Tg is added if

and only if the line segment does not intersect any obstacles and d(xR; xg) > R. Tg is the

projection of the goal onto the visible set, and is added only if the straight-line path to the

goal is free. Figure 2.1 shows an example of what the LTG may look like. In this example,

the path to the goal within the robot's visible region is unobstructed, so Tg is added.

Tangent Bug operates in two modes: motion to goal (MtG) mode and boundary following

(BF) mode. During the motion to goal mode, the robot monotonically decreases its distance

to the goal. Boundary following is used to escape local minima in the distance to the goal

function. The robot is constantly sensing the environment and computing the LTG. The

9

LTG Edge
LTG Node

xg

xR

Tg

Figure 2.1: The local tangent graph, with the optional goal node, Tg, added.

LTG is then used to determine the next motion. Together with the switching conditions,

Tangent Bug guarantees that the robot will reach the goal, if it is reachable.

In MtG mode, the robot always moves closer to the goal. At each step, the robot

constructs the LTG. Next the LTG is searched to �nd the locally optimal direction along

which the robot should move. It is locally optimal in that it is the shortest path to the

goal, taking into account only the obstacle information that is available in the �nite sensing

range. MtG mode continues until the robot reaches the goal or the robot detects that it is

trapped within a local minimum of the distance to goal function. This situation is caused

by an obstacle blocking the robot's path. When this happens, the algorithm switches to

boundary following.

An alternative interpretation of the MtG mode is that of an optimal control problem.

Consider an optimal control problem where the system state (robot) starts at location xR,

with the goal of moving to state xg. The problem is to �nd the lowest cost path that moves

from xR to xg, where the cost of a path is de�ned as the total length of the path. Motion to

goal mode is equivalent to this optimal control problem when only the obstacle information

(constraints) in the current visibility set (denoted v(q)) is taken into account, and the robot

only executes the portion of the path inside v(q). The realization that Tangent Bug can be

10

xg

xR

Figure 2.2: A situation where the robot would switch into boundary following mode.

formulated as an optimal control problem motivates the algorithms in Chapters 4 and 6.

Boundary following mode is used to navigate around the blocking obstacle that prevents

the robot from making further progress towards the goal. The robot switches to BF mode

when there are no nodes of the LTG that are closer to the goal than its current position|it

is trapped in a local minima of the distance to goal function. An example of when BF mode

must be used is presented in Figure 2.2

When it switches to BF mode, the robot remembers dmin, the smallest distance to

xg from any point in the currently visible freespace at the start of the current boundary

following sequence. It also chooses a direction to follow the obstacle boundary. While

following the obstacle boundary, the LTG is continually updated and checked for the leaving

condition, a node that will move the robot closer to the goal than dmin. When such a

node is found, the robot moves to that node and switches back to motion to goal mode.

Of course, if the robot happens upon the goal while circumnavigating the obstacle, the

algorithm terminates. On the other hand, if the robot completes a loop around the obstacle

without satisfying the leaving condition, the goal is deemed unreachable and the algorithm

terminates.

Tangent Bug in summary:

1. Motion to goal: Choose the locally optimal path towards the goal, until

11

(a) The goal is reached. Stop.

(b) A local minimum of the distance to goal function d(�; xg) is detected. Go to

boundary following mode.

2. Boundary following: Pick a direction to move around the obstacle. Move around the

obstacle boundary while updating dmin, the closest encountered distance to the goal

so far, until

(a) the goal is reached. Stop;

(b) the leaving condition is met. Go to motion to goal mode;

(c) the robot detects that the goal is unreachable. Stop.

Similar to nearly all other complete and correct planners, Tangent Bug assumes that

the robot has perfect dead reckoning. That is, the robot knows exactly where it is in the

global reference frame at all times with no error. Any realistic system is bound to have

noisy odometry from low-quality hardware, noisy sensors, wheel slippage, and other factors.

No matter how small these errors are, they will grow without bound (as demonstrated in

Figure 2.5). Figure 2.3 depicts a sample run of the Tangent Bug algorithm. In this example,

the robot's odometry estimate is corrupted with Gaussian noise at each step. Although the

goal is relatively near, the �nal error is approximately 15% of the total distance traveled.

2.2 Kalman Filtering

This section discusses the Kalman �lter and its use in robotics. A Kalman �lter is an

estimator for a linear system that is corrupted by white Gaussian noise. It is assumed

that the reader has some familiarity with Kalman �lters, and only a short introduction to

Kalman �ltering is given in order to establish notation and key formulas. After the brief

introduction, results for the case of a mobile robot taking measurements of landmarks are

derived. These results are used extensively in later sections.

12

0 5 10 15 20 25

−10

−5

0

5

10

X

Y

Goal
True Path
Estimated Path
Obstacle

Figure 2.3: An example Tangent Bug sequence where the robot thinks it is at the goal, but
the error is large.

2.2.1 The Basics

A discrete-time Kalman �lter estimates the state x 2 Rn of a linear system whose evolution

is described by the discrete-time linear equation

x(k + 1) = Fkx(k) +Bku(k) +Gkwk (2.1)

from measurements z 2 Rm that are assumed to be related to the state by the equation

z(k + 1) = Hk+1x(k + 1) + vk+1: (2.2)

The random variables wk 2 R
p and vk+1 2 R

m are the process noise and the measure-

ment noise, respectively. They are assumed to be independent, white, and Gaussian noise

13

processes with the following properties:

E [wk] = 0; (2.3)

E
�
wkw

T
k

�
= Qk; (2.4)

E [vk+1] = 0; (2.5)

E
�
vk+1v

T
k+1

�
= Rk+1; (2.6)

where E [�] denotes the expectation operation. Note that the system and measurement

matrices, F 2 Rn�n; B 2 Rn�l; G 2 Rn�p, and H 2 Rn�m need not be constant. It is also

assumed that u(k) is known at each time step.

The Kalman �lter proceeds in two main steps, the propagation step and the update

step. The propagation step uses the system dynamics to predict a new state estimate

at the next time step. Since the system is noisy, this prediction will have some error

associated with it. The update step uses the measurements z to help correct the estimate.

Since measurements are also corrupted by noise, this correction will not make the estimate

perfect. Let x̂(k=j) be the estimate of the state at time k, using measurements up to time j.

The same convention will also be used to denote the dependence of the state covariance on

the time and measurement indices. The state x̂(k + 1=k) can be considered to be the prior

(before the measurement information is incorporated), while x̂(k+1=k+1) is analogous to

the posterior (after the measurement information has been used). The best estimate of the

state at the next time step assumes that wk takes its zero mean,

x̂(k + 1=k) = Fkx̂(k=k) +Bkuk: (2.7)

Because the real system is corrupted by the unknown noise, the estimate will always have

some error. Let the prior estimate error at time k + 1 be denoted by ~x(k + 1=k),

~x(k + 1=k) = x(k + 1=k)� x̂(k + 1=k): (2.8)

The covariance of the estimate error after the propagation step, denoted P (k + 1=k), is

14

given by

P (k + 1=k) = E
�
~x(k + 1=k)~xT (k + 1=k)

�
(2.9)

= FkP (k + 1=k)F T
k +GkQkGk: (2.10)

At every time step of system evolution, the estimate and the estimate error covariance are

propagated. If no measurements are incorporated to reduce the estimate error, the estimate

error covariance P (k+1=k) will grow without bound. The update step of the Kalman �lter

reduces the estimate error covariance.

In deriving the update equations, the goal is to �nd an equation that gives a posterior

estimate, x̂(k+1=k+1), as a combination of the prior, x̂(k+1=k), and a weighted di�erence

between a true measurement, z(k + 1), and a predicted measurement, Hk+1x̂(k + 1=k):

x̂(k + 1=k + 1) = x̂(k + 1=k) +Kk+1 (z(k + 1)�Hk+1x̂(k + 1=k)) : (2.11)

The quantity (z(k + 1)�Hk+1x̂(k + 1=k)) is termed the residual. The matrix K is the

Kalman gain, and is found by minimizing the posterior estimate error covariance. The

resulting K can be written in many forms. One such form is

Kk+1 = P (k + 1=k)HT
k+1S

�1
k+1; (2.12)

where the matrix Sk+1 2 R
m�m is the covariance of the residual (z(k + 1)�Hk+1x̂(k + 1=k)):

Sk+1 = E
h
(z(k + 1)�Hk+1x̂(k + 1=k)) (z(k + 1)�Hk+1x̂(k + 1=k))T

i
(2.13)

= Hk+1P (k + 1=k)HT
k+1 +Rk+1: (2.14)

The equation describing the posterior error covariance, P (k+1=k+1), can also take many

forms. One form is given by

P (k + 1=k + 1) = P (k + 1=k)�Kk+1Hk+1P (k + 1=k): (2.15)

There are many possible approaches to estimating the state if the system dynamics are

non-linear. In the most straightforward approach, the non-linear system is linearized about

15

the current mean and covariance. The matrices from the linearization are then used as

above. This is referred to as an Extended Kalman �lter, or EKF. For a thorough review of

Kalman �lters, the reader is referred to [39].

2.2.2 Kalman Filters and Robotic Localization

The following sections review the use of the Kalman �lter for mobile robot navigation. Fig-

ure 2.4 depicts the basic setup. The robot is located at position xR, and it can measure

the range d and/or the bearing � to each landmark, denoted xLi. The range and bear-

ing measurements allow the robot to calculate the relative position between itself and the

landmark.

d

xL2

xL3

xL4

xL1

xR �

Figure 2.4: Setup of a Kalman �lter for mobile robot localization.

2.2.2.1 Localization of a Point Robot Using Landmarks

In the case of a point robot operating in a Cartesian workspace, the motion model assumes

the robot has omnidirectional motion capabilities. The robot is given knowledge of the

location of N landmarks, as well as the covariances of these landmark locations. It is

assumed that the robot can solve the data association problem [22], i.e., the robot can

distinguish which landmark it is looking at. If this is not the case and the robot cannot tell

16

landmark A from landmark B, then multiple hypothesis methods must be used [6]. The

state vector x contains the positions of both the robot and all of the landmarks, i.e.,

x =
h
xR xL1 � � � xLN

iT
; (2.16)

where xR is the Cartesian position of the robot and xLi is the Cartesian position of the ith

landmark,

xR =

24xr
yr

35 and xLi =
24xLi
yLi

35 : (2.17)

The discrete time kinematic equation for the robot's movement model is

xR(k + 1) = xR(k) + V (k)�t; (2.18)

where �t is the time step between discrete motions, and V (k) represents the robot's velocity

at the kth time interval:

V (k) =

24vx(k)
vy(k)

35 ; (2.19)

and vx(k) and vy(k) represent the translational velocities at time step k in the x and y

directions, respectively. This model assumes that velocity is constant in between samples.

Using measurements via the robot's internal odometry, inertial navigation unit, GPS, scan-

matching [37, 42], or other means1, one can propagate the estimate of the robot's state with

the following equation:

x̂R(k + 1=k) = x̂R(k=k) + Vm(k)�t; (2.20)

where

Vm(k) = V (k) + wV (k) =

24vx(k)
vy(k)

35+
24wvx(k)

wvy(k)

35 (2.21)

1Some of the methods that provide additional input to the state estimation process may require that
additional states be added to the system state de�ned in Equation (2.16).

17

are the measurements of the robot's translational velocities. These are corrupted by inde-

pendent zero-mean white Gaussian noise wV (k) with covariance

Q(k) = E
�
wV (k)w

T
V (k)

�
=

24�2vx(k) 0

0 �2vy(k)

35 : (2.22)

The N landmarks are assumed to be in a �xed, but possibly uncertain, position, i.e.,

x̂Li(k + 1) = x̂Li(k); i = 1; :::; N; (2.23)

where x̂Li is the estimate of the ith landmark's position. By inspection, the F and G

matrices are

F = I(2N+2); (2.24)

G =

24 GR

02N�2

35 ;
GR =

24�t 0

0 �t

35 :
The zeros in the lower part of the G matrix re
ect the assumption that the landmarks are

�xed. The estimate error covariance matrix will assume a block structure:

P =

24PRR PRL

PLR PLL

35 ; (2.25)

where PRR is the 2� 2 covariance matrix of the robot's position error, PLL is the 2N � 2N

matrix of landmark position error covariances, and PRL = P T
LR are the cross-coupling error

covariances. It is not assumed that the landmarks are known perfectly, so PLL need not be

all zeros. Successive use of Equations (2.20) and (2.10) will propagate the estimate of the

robot and landmark states forward in time.

The robot can measure the relative position between itself and a landmark i at any

18

time:

z(k + 1) = xLi(k + 1)� xR(k + 1) + n(k + 1) (2.26)

=

24xLi � xr

yLi � yr

35 (k + 1) +

24nx
ny

35 (k + 1); (2.27)

where n(k + 1) is a zero-mean white Gaussian noise process with covariance

R(k + 1) = E
�
n(k + 1)n(k + 1)T

�
: (2.28)

The H matrix is then

H(k + 1) =
h
�I2 02�2(i�1) I2 02�2(N�i)

i
: (2.29)

With the H matrix, the Kalman gain (Equation (2.12)) can be computed. The Kalman

gain can then be used to update the state estimate and the estimate error covariance.

Figures 2.5 and 2.6 show representative data for the propagation of a Kalman �lter.

Figure 2.5 depicts a single movement sequence where the robot takes three steps. In this

speci�c run, the robot's position estimate from the �rst step is particularly bad. This

example was chosen to illustrate how large the errors can be. It also shows how the estimate

covariance grows after each step.

Figure 2.6 presents an example where the robot takes a single step 500 times from the

same starting position. Although the starting position and the true �nal positions are the

same for each trial, the noise values that corrupt the robot's velocity (Equation 2.21) are

di�erent for every run. Thus, the �nal estimates are all slightly di�erent. Figure 2.6 also

shows a zoomed-in view of all of the �nal estimates for the same 500 trials. If the number

of trials were increased, the �nal estimate average would move closer and closer to the

true �nal position. The 99.7 % covariance ellipse plotted in the �gure is the mean of the

covariances for all trials. As expected, most of the �nal estimates lie within this ellipse.

Figure 2.7 shows representative results from the use of the update step of a Kalman �lter

to localize the robot. In this example, the robot takes two steps. The sequence includes

both sensing noise and landmark positional uncertainty. After the �rst step, the landmark

is not within the robot's sensing range. Thus, the update step does not correct the robot's

19

−1 0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

X

Y

True Position
Position Estimate
99.7% Covariance Ellipse

Figure 2.5: A three-step propagation example. This shows how the estimate error continues
to grow.

−0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

X

Y

Start Position
Final Estimates

1.4 1.6 1.8 2 2.2 2.4 2.6

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

X

Y

True Final Position
Final Estimates
Final Estimate Average
99.7% Error Ellipse

Figure 2.6: A single-step propagation example showing multiple trials.

position estimate. One can see that both the pre-update and post-update estimates are

the same, and the 3� covariance ellipses are also the same. After the second step, however,

the robot is close enough to the landmark to use it for localization. Because of odometric

errors, the robot's pre-update estimate error is well over 0.5 units. After the update, the

absolute error in the estimate is greatly reduced, as is the estimate error covariance. The

20

update step also reduced the error covariance in the landmark position estimate (not shown

in the �gure). When using a Kalman �lter to localize a mobile robot, there is nothing

special about the robot relative to the landmarks. The robot can be thought of as a moving

landmark for which the dynamics are known.

0 1 2 3 4 5 6

−4

−3

−2

−1

0

1

X

Y

True Position
Pre−update Estimates
Post−update Estimates
Landmark True Position
Landmark Estimate
Sensor Range

Figure 2.7: Example data illustrating using a landmark for localization.

21

Chapter 3

Weighted Scan Matching

3.1 Introduction

This chapter introduces a weighted range sensor data matching algorithm to estimate a

robot's displacement between the con�gurations where dense two-dimensional range scans

are obtained. This novel algorithm takes into account several important physical phenomena

that a�ect range sensing accuracy that have been neglected in prior work. The experiments

in Section 3.6 show that this algorithm is not only e�cient, but appreciably more accurate

than non-weighted matching methods, such as that of Ref. [37]. Moreover, by computing

a more realistic covariance of the displacement estimates, the weighted matching algorithm

provides a better basis for fusion of these estimates with odometric and/or inertial mea-

surements [45]. The fused estimates can subsequently be used to support localization and

mapping tasks. This work was performed jointly with Samuel P�ster and Stergios Roume-

liotis.

To understand the content of this chapter and its contributions best, the basic prob-

lem, how the solution di�ers from previous ones, and the generality of this approach are

described. The focus is on mobile robots operating in planar environments. It is assumed

that the robot is equipped with a dense planar range sensor (e.g., a laser range scanner).

As discussed in Section 3.2.4, on-board odometry is useful, but not essential.

The robot starts at an initial con�guration, g1, and moves through a sequence of con-

�gurations, gi, i = 2; : : : ;m. Here gi 2 SE(2) denotes the robot's position and orientation

relative to a �xed reference frame, g0. It is assumed that at each pose, the robot measures

the range to the boundary of its nearby environment along rays that are separated by a

22

Measurements
Range

iuk

j
k+1uiuk+1j

k−1uiuk−1

αk
i

θk
i

yj
xj

θ
j
k

ku

δ
j
−

δi−

δj
+

β
β

Wall

x

yi

i

X

X α

Pose j

β β

j
k

Pose i

X

j
δi+

Figure 3.1: Geometry of the range sensing process. The robot acquires dense range scans
in poses i and j. The circles represent robot position, while the x-y axes denote the robot's
body �xed reference frames.

uniform1 angle, � (see Figure 3.1). As described below, various uncertainties in this range

measurement are accounted for.

Let the set of Cartesian coordinates of the ni scan points taken in the ith robot pose

be denoted by f~uikg, k = 1; : : : ; ni. The scan point coordinates are described in the robot's

body �xed reference frame. Typically, the Cartesian coordinate of the scan point is derived

from range data according to the expression

~uik =

24xik
yik

35 = lik

24cos �ik
sin �ik

35 ; (3.1)

where lik is the measured distance to the environment's boundary along the kth measuring

ray. The measuring ray is oriented in the direction denoted by �ik, where �
i
k is the angle

made by the kth measuring ray with respect to the x-axis of the body �xed reference frame

(see Figure 3.1).

The main goal is to accurately estimate the robot's displacement between poses by

matching range data obtained in sequential poses. This displacement estimate can be used

as the basis for a form of odometry, or fused with conventional odometry and/or inertial

measurements to obtain better relative robot pose estimates. In turn, these estimates can

1The extension to non-uniform angle � is straightforward.

23

support localization and mapping procedures. First, assume that the range scans at poses

i and j have a su�cient number of corresponding points to be successfully matched (see

Section 3.4). Let f~uik; ~u
j
kg for k = 1; : : : ; nij be the set of corresponding matched scan

point pairs, where nij is the number of corresponding pairs. From these pairs, the relative

displacement between poses i and j: gij = g�1i gj = (Rij ; pij); will be estimated where

Rij =

24cos�ij � sin�ij

sin�ij cos�ij

35 ; ~pij =

24xij
yij

35 ; (3.2)

i.e., the displacement between poses i and j is described by a translation, (xij ; yij), and a

rotation, �ij .

Next, the covariance, P ij , of the displacement estimate is calculated. This covariance has

two main uses. First, it re
ects the quality of the displacement estimates. Large diagonal

elements of the covariance matrix indicate increased uncertainty. Any localization process

should be aware of the level of con�dence in its computed pose estimates. Second, the

covariance is needed when combining displacement estimates with measurements provided

by other sensors. More accurate and realistic estimates of the contributing covariances lead

to more accurate overall estimates in a sensor fusion algorithm, such as a Kalman �lter.

This approach di�ers from prior work in that the contribution of each scan point to

the �nal displacement estimate is individually weighted according to that point's speci�c

uncertainty. The scan point uncertainties are estimated using sensor measurement noise

models, as well as models of speci�c geometric issues within the matching process itself.

Figures 3.1 and 3.2 illustrate these issues. Figure 3.1 depicts a situation where a range sensor

(e.g., a laser range �nder) samples points on a nearby wall. The boundary points sampled

in pose i are indicated by circles, and labeled by ~uik�1, ~u
i
k, and ~u

i
k+1. The nearby boundary

points sampled in pose j are indicated by X's and are labeled by ~ujk�1, ~u
j
k, and ~u

j
k+1. Prior

range matching methods (e.g., [14, 17, 57]) have made the simplifying assumption that

the range scans of di�erent poses sample the environment's boundary at exactly the same

points|i.e., point ~uik is assumed to be exactly the same point as ~ujk, etc. This assumption

is generally not true. Here, this correspondence error is modelled and its e�ect incorporated

into the matching algorithm.

As described in Sections 3.3.1 and 3.3.3, the range measurements are corrupted by

24

−6000 −4000 −2000 0 2000 4000
(mm)

Robot Pose

Scan Points
Selected Scan Points
100 x Point Covariance (3σ)

Figure 3.2: Representation of the uncertainty of selected range scan points.

noise and possibly a bias term that is a function of the range sensing direction, �ik, and

the sensor beam's incidence angle, �ik (Figure 3.1). Figure 3.2 shows the 95% con�dence

level ellipses associated with the covariance estimates (calculated using the methods that

are introduced later) of selected data points from an actual laser range scan. The wide

variation in uncertainties seen in Figure 3.2 strongly suggests that not all range data points

are of equal precision. Hence, the potentially large variability should be taken into account

in the estimation process. While the existence of these uncertainty sources has previously

been suggested [1, 2, 3, 5, 14], this algorithm is the �rst to explicitly model and account for

their e�ects within the estimation process. Some prior works have no explicit noise modeling

(e.g., [17]), or apply a uniform uncertainty to all contributing points. The most complete

existing methods, [5] and [36], employ statistical methods to calculate displacement estimate

uncertainty. These methods do not take sensor uncertainty models into account in the

displacement estimation process, and use an unweighted assumption for the contributing

points. Also, [5] and [36] do not use any speci�c sensor noise characteristics as a basis for

calculating uncertainty. Instead, they use a numerical sample of perturbations to extract

an estimate of covariance. Signi�cant improvements over previous unweighted methods

are demonstrated by developing physically based uncertainty models for each individual

point and incorporating these models in both the displacement estimation process and the

covariance calculation.

25

The basic principle behind this new approach generally applies to any case of dense

range data, such as sonars, infrareds, cameras, radars, etc. The basic weighted matching

formulation and its solution given in Section 3.2 are independent of any sensor speci�cs.

To use the general results, speci�c models of sensor uncertainty are needed. These detailed

sensor models are developed in Section 3.3. Since some of the assumptions underlying these

sensor models are best suited to laser range scanners, the application of the detailed sensor

model formulas is best suited to the use of laser scanners in indoor environments (though

they can be extended to structured outdoor environments). However, the general approach

of Section 3.2 should work for other range sensors and other operating environments with

reasonable modi�cations to the sensor models.

This chapter is structured as follows: Section 3.2 describes a general weighted point

feature matching problem and its solution. Section 3.3 develops correspondence and range

measurement error models. Sections 3.4 and 3.5 summarize the point pairing selection and

sensor incidence angle estimation procedures. Experiments in Section 3.6 demonstrate the

algorithm's accuracy, robustness, and convergence range. Direct comparisons with previous

methods (e.g., [36, 37]) validate the e�ectiveness of this approach.

3.2 The Weighted Range Sensor Matching Problem

This section describes a general point feature matching problem and its basic solution.

3.2.1 The Measurement Model

Let the sets of Cartesian range scan data points acquired in poses i and j be denoted by

f~uikg and f~u
j
kg, respectively. These measurements will be imperfect. Let f~rikg and f~r

j
kg be

the \true" Cartesian scan point locations. The measurements can generally be decomposed

into the following terms:

~uik = ~rik + �~uik +
~bik

~ujk = ~rjk + �~ujk +
~bjk; (3.3)

26

where �~uik and �~ujk represent noise or uncertainty in the range measurement process, and

~bik and ~bjk denote the possible range measurement \bias." These noise and bias terms are

discussed in more detail in Sections 3.3.1 and 3.3.3. The term �~uk is typically well modelled

by a zero-mean Gaussian noise process. The bias ~bk is an unknown o�set that can be

approximated by a term, 2 ~ok corrupted by a zero-mean additive Gaussian noise, �~bk [2].

The covariance of this noise component re
ects the level of con�dence in the value ~ok.

Contingent on this approximation, ~bik and ~bjk take the form

~bik = ~oik + �~bik;
~bjk = ~ojk + �~bjk: (3.4)

Let (~uik; ~u
j
k) be points that correspond in the range scans at poses i and j. As shown

in Figure 3.1, these points are not necessarily the same physical point, but the closest

corresponding points. Accounting for the fact that scan data is measured in a robot-�xed

frame, the error between the two corresponding points is

"ijk = ~uik �Rij~u
j
k � pij (3.5)

for a given displacement (Rij ; pij) between poses. Substituting Equation 3.3 into Equation

3.5 results in

"ijk = (~rik �Rij~r
j
k � pij)| {z }

(i)

+(�~uik �Rij�~u
j
k)| {z }

(ii)

+(~bik �Rij
~bjk)| {z }

(iii)

: (3.6)

A relative pose estimation algorithm aims to estimate the displacement gij = (Rij ; pij)

that suitably minimizes Equation 3.6 over the set of all correspondences. If the dense range

scans do sample the exact same boundary points, then ~rik � Rij~r
j
k � pij = 0 when Rij and

pij assume their proper values. However, ~rik and ~r
j
k generally do not correspond to the same

boundary point. Therefore, term (i) in Equation 3.6 is the correspondence error, denoted

by cijk :

cijk = ~rik �Rij~r
j
k � pij : (3.7)

The matching error "ijk for the kth corresponding point is also a function of: (ii) the error

due to the measurement process noise, and (iii) the measurement bias error.

2The value of ~ok can be determined by statistical analysis of measurement data.

27

For the sake of simplicity, the bias o�sets are ignored for now (i.e., assume that ~bik =

~bjk=0), but their e�ect will be considered again in Section 3.3.3.

3.2.2 A General Covariance Model

For subsequent developments, a generalized expression for the covariance of the measure-

ment errors is needed:

P ij
k

4
= E

h
"ijk ("

ij
k)

T
i

(3.8)

= E
h
(cijk + �~uik �Rij�~u

j
k)(c

ij
k + �~uik �Rij�~u

j
k)

T
i
;

where E[�] is the expectation operator. Recall that bias e�ects are ignored for now. P ij
k

captures the uncertainty in the error between corresponding range point pairs. Because the

range measurement noise is assumed to be zero mean, Gaussian, and independent across

measurements, E[�~uik(�~u
j
k)

T] = E[�~ujk(�~u
i
k)

T] = 0. Practically speaking, one would expect

that the range measurement noise of the kth scan point in pose i to be uncorrelated with

the measurement noise of the kth corresponding range point in pose j. Therefore, this is a

�ne assumption in practice.

The correspondence error, cijk , is a deterministic variable that is a function of the ge-

ometry of the robot's surroundings. However, since the geometry of the environment is

not assumed to be known ahead of time, a reasonable probabilistic approximation is made

to this term, which accounts for the fact that the geometry of the surroundings is un-

known a priori. In this probabilistic approximating model, the correspondence error and

sensor measurement error terms are independent. Therefore, E[cijk (�~u
i
k)

T] = E[cijk (�~u
j
k)

T] =

E[�~uik(c
ij
k)

T] = E[�~ujk(c
ij
k)

T] = 0. See Section 3.3.2 for a more detailed discussion.

Under these assumptions, the covariance of the matching error at the kth point corre-

spondence of poses i and j becomes:

P ij
k

4
= E

h
"ijk ("

ij
k)

T
i
= E

h
cijk (c

ij
k)

T
i
+ E

�
�~uik(�~u

i
k)

T
�

+ RijE
h
�~ujk(�~u

j
k)

T
i
RT
ij

= CP ij
k + NP i

k +Rij
NP j

kR
T
ij (3.9)

= Qij
k +RijS

ij
k R

T
ij (3.10)

28

where

CP ij
k = covariance associated with the approximating correspondence error model;

NP i
k = measurement noise covariance of the kth scan point in the ith pose;

NP j
k = measurement noise covariance of the kth scan point in the jth pose;

Qij
k

4
= CP ij

k + NP i
k;

Sijk
4
= NP j

k :

The matricesQij
k and Sijk represent the con�guration-independent and con�guration-dependent

terms of P ij
k . As shown below, the correspondence errors depend on the sensor beam's in-

cidence angle. The noise covariances will also be a function of the variables �ik, �
j
k, l

i
k, and

ljk. Thus, the covariance matrix P ij
k is expected to vary for each scan point pair (see Figure

3.2 for an illustration). It is not suitable to assume that P ij
k is a constant matrix for all

scan point pairs, as has been done in prior work (e.g., [36, 37]).

3.2.3 Displacement Estimation via Maximum Likelihood

A maximum likelihood (ML) framework is used to formulate a general strategy for estimat-

ing the robot's displacement from a set of non-uniformly weighted point correspondences.

Let L(f"ijk gjgij) denote the likelihood function that captures the likelihood of obtaining the

set of matching errors f"ijk g given a displacement, gij . Under the assumptions above, the

k = 1; : : : ; nij range pair measurements are independent3 and the likelihood can be written

as a product:

L(f"ijk gjgij) = L("ij1 jgij)L("
ij
2 jgij) � � � L("

ij
nij
jgij): (3.11)

Recall that the measurement noise is considered to be a zero-mean Gaussian process. Fi-

nally, as shown in Section 3.3.2, the correspondence noise can be approximated by a zero-

mean Gaussian process. Neglecting the bias o�set for the moment (see Section 3.3.3), the

3Possible dependencies of these measurements will be brie
y considered in Section 3.3.2. Generally, the
only e�ect that will lead to dependence is possible couplings in the correspondence error that arise if the
geometry of the environment is a priori known.

29

above assumptions imply that L(f"ijk gjgij) takes the form

L(f"ijk gjgij) =

nijY
k=1

e�
1

2
("ij
k
)T (P ij

k
)�1"ij

k

2�
q
detP ij

k

=
e�M

ij

Dij
; (3.12)

where

M ij =
1

2

nijX
k=1

("ijk)
T (P ij

k)�1"ijk ; (3.13)

Dij =

nijY
k=1

2�

q
detP ij

k : (3.14)

The optimal displacement estimate is the one that maximizes the value of L(f"ijk gjgij)

with respect to displacement. One can use any numerical optimization scheme to obtain

this displacement estimate. Note, however, that maximizing Equation 3.12 is equivalent to

maximizing the log-likelihood function:

ln[L(f"ijk gjgij)] = �M ij � ln(Dij): (3.15)

From a numerical point of view, it is often preferable to work with the log-likelihood func-

tion.

Before discussing the solution to this estimation problem, this formulation is compared

with prior work. Most prior algorithms that take an \unweighted" approach to the displace-

ment estimation problem assume that all of the covariance matrices P ij
k are uniformly the

2�2 identity matrix. Consequently, the maximization of the log-likelihood function reduces

to a standard least-squares problem. However, as Figure 3.2 and experiments in Section

3.6 show, such a simplistic covariance approximation for all data points is typically not a

theoretically sound one. Although [57] allowed for a scalar weighting term, no guidance was

provided on how to select the value of the scalar.

The weighted estimation problem has some inherent structure that leads to e�ciency in

the maximization procedure. Appendix A.1 proves that the optimal estimate of the robot's

translation can be computed using the following closed form expression:

30

Proposition 3.1. The weighted scan match translational displacement estimate, p̂ij, is

p̂ij = Ppp

nijX
k=1

�
(P ij

k)�1(~uik � R̂ij~u
j
k)
�
; (3.16)

where R̂ij = R̂ij(�̂
�
ij) is the estimated rotational matrix calculated with the current estimate

of the orientation displacement �̂ij, and Ppp is given by the formula

Ppp =

 nijX
k=1

(P ij
k)�1

!�1
: (3.17)

An exact closed form expression for estimating the rotational displacement �ij does

not exist. Nonetheless, there are two e�cient approaches to computing this estimate. In

the �rst approach, the translational estimate of Equation 3.16 is substituted into Equation

3.12 (or equivalently, into Equation 3.15). Since the resulting expression is a function of

the single variable, �ij , the estimation procedure reduces to numerical maximization over a

single scalar variable, �ij , for which there are many e�cient algorithms.

Alternatively, one can develop the following second order iterative solution to the non-

linear estimation problem (Appendix A.2):

Proposition 3.2. The weighted scan match rotational displacement estimate is updated as

�̂+ij = �̂�ij + ��̂ij, where

��̂ij ' �

Pnij
i=1 p

T
k (P

ij
k)�1JqkPnij

k=1 q
T
k J(P

ij
k)�1Jqk

; (3.18)

where

J =

24 0 �1

1 0

35 ; qk = R̂ij~u
j
k

pk = ~uik � p̂ij � R̂ij~u
j
k

: (3.19)

Using various experimental data, this approximation has been found to agree with the

exact numerical solution up to �ve signi�cant digits. Furthermore, it is computationally

more e�cient to implement.

3.2.4 The Algorithm and Its Initial Conditions

Propositions 3.1 and 3.2 suggest an iterative algorithm for estimating displacement. An

initial guess �̂�ij for �ij is chosen. A translation estimate p̂ij is computed using Proposition

3.1. This estimate can be used with an exact numerical optimization procedure or with

31

Proposition 3.2 to update the current rotational estimate �̂�ij . The improved �̂+ij is the basis

for the next iteration. The iterations stop when a convergence criterion is reached.

The initial guess, �̂�ij , will usually be derived from an odometry estimate. However,

odometry is not necessary for the method to work. An open loop estimate of the robot's

displacement based on the known control inputs that generate the displacement will often

provide su�cient accuracy for an initial guess. It is shown in Section 3.6.1 that the algo-

rithm's performance is not hampered by large errors in the initial value of the displacement

used as a seed for the algorithm. Note that if odometry does provide the initial guess, there

will be no correlation between the estimate arising from the scan matching algorithm and

the odometry estimate since the accuracy of the latter is not considered in the estimation

process. This simpli�es subsequent fusion of these estimates, which may be desired for some

applications.

An iterative algorithm is preferred for two reasons. First, non-linear ML problems

are suited to iterative computation. Second, the correct correspondence between point

pairs cannot be guaranteed in the point correspondence problem (see Section 3.4). This is

especially true in the �rst few algorithm iterations, where some inaccurate initial pairings

are unavoidable. The iterative approach allows for continual readjustment of the point

correspondences as the iterations proceed.

3.2.5 Covariance of the Displacement Estimation Error

Letting ~pij = pij � p̂ij ; ~�ij = �ij � �̂ij (i.e., ~pij ; ~�ij are the translational and the rotational

displacement error estimates), a direct calculation yields the following:

Proposition 3.3. The covariance of the displacement estimate is

P ij =

24 Ppp Pp�

P�p P��

35 =

24 Ef~pij ~p
T
ijg Ef~pij ~�

T
ijg

Ef~�ij ~p
T
ijg Ef~�ij ~�

T
ijg

35

32

with

Pp� =
1

rT

 nijX
k=1

(P ij
k)�1

!�1 nijX
k=1

�
(P ij

k)�1Jqk

�
; (3.20)

P�p = P T
p�; (3.21)

P�� =
1

rT
; (3.22)

rT = �

nijX
k=1

qTk J(P
ij
k)�1Jqk; (3.23)

and Ppp is given by Equation 3.17.

The proofs for Proposition 3.3 are given in Appendix A.3. For a given sensor, one must

derive appropriate uncertainty models, which are then substituted into the above procedure.

Note 1: The matrix �J (P ij
k)�1 J = 1

det(P ij
k
)
P ij
k in Equation 3.23 is a positive de�nite

matrix. Therefore P�� is a positive number.

Note 2: From Equations 3.22 and (3.23), for bounded covariance (k(P ij
k)�1k < K ; 0 <

K <1):

lim
k~uj

k
k!1

P�� = lim
kqkk!1

P�� = 0:

This result leads to the following corollary:

Corollary 3.4. Matching of distant features (in the limit features at in�nite distance from

the current location) minimizes the expected error in the orientation displacement estimate.

In the limit, the relative orientation error is zero.

Note 3: Since all matrices P ij
k ; k = 1; : : : ; nij , in Equation 3.17 are positive de�nite,

the covariance of the translational estimate, Ppp, can be written as

(Ppp)
�1 =

nijX
k=1

(P ij
k)�1 > (P ij

k)�1 ,

Ppp < P ij
k ; k = 1; : : : ; nij : (3.24)

Here the notation X > Y indicates that the di�erence X � Y is a positive de�nite matrix.

Equation 3.24 leads to the following corollary:

33

Corollary 3.5. Let U ij = mink=1;:::;nij P
ij
k denote the minimum covariance over all corre-

sponding point pairs. The translational covariance estimate, Ppp, given by Equation 3.17 is

bounded above by U ij: Ppp < U ij.

This corollary states that the covariance of the translational estimate will always be less

than the best single covariance associated with any corresponding point pair.

3.3 Scan Matching Error/Noise Models

In order to derive explicit expressions for the covariances of Equation 3.10, this section

develops models for the errors inherent in the range scan matching process. Most of the

models are quite general, though a few assumptions are made at some points that are most

appropriate for laser range scanners.

3.3.1 Measurement Process Noise

Many range sensing methods are based on the time of
ight (e.g., ultrasound and some

laser scanners) or modulation of emitted radiation [2, 3]. The circuits governing these

measurement methods are subject to noise. These e�ects can often be well modelled in a

simple way, enabling the computation of the covariance contributions, NP i
k, and

NP j
k . The

computation of NP i
k is focused on, as the one for NP j

k is completely analogous.

Recall the polar representation of scan data, Equation 3.1. Let the range measurement,

lik, be comprised of the \true" range, Lik, and an additive noise term, "l: l
i
k = Lik + "l. The

noise, "l, is assumed to be a zero-mean Gaussian random variable with variance �2l (see e.g.,

Ref. [2] for justi�cation of this assumption). Also assume that error or uncertainty exists

in the measurement �ik. That is, the actual scan angle di�ers from the reported or assumed

angle of the scan snapshot. Thus, �ik = �i
k+"�, where �

i
k is the \true" angle of the k

th scan

direction, and "� is again a zero-mean Gaussian random variable with variance �2� . Hence:

~rik = Lik

24 cos�i
k

sin�i
k

35 = (lik � "l)

24 cos(�ik � "�)

sin(�ik � "�)

35 : (3.25)

For small "�, "l (which is a good approximation for most laser scanners), expanding Equation

34

3.25 and using the relationship �~uik = ~uik � ~r
i
k yields

�~uik = (lik)"�

24� sin �ik

cos �ik

35+ "l

24cos �ik
sin �ik

35 : (3.26)

Assuming that "� and "l are independent, then

NP i
k = E[�~uik(�~u

i
k)

T] =
(lik)

2�2�
2

24 2 sin2 �ik � sin 2�ik

� sin 2�ik 2 cos2 �ik

35
+

�2l
2

242 cos2 �ik sin 2�ik

sin 2�ik 2 sin2 �ik

35 : (3.27)

The quantities �ik and lik are the ones measured by the laser scanner.

3.3.2 Correspondence Error

Here, the correspondence error described in Section 3.2.1 is analyzed, and a probabilistic

approximation to this error is derived. The derivation assumes that the sensor beam strikes

an environmental boundary that is locally a straight- line segment (Figure 3.1). However,

this derivation can be extended to other boundary geometries, or it can serve as an excellent

tangent approximation for moderately curved boundaries.

We �rst develop a formula for the maximum possible correspondence error that can occur

due to the fact that the exact same boundary points are not sampled in two successive range

scans. Consider how nearby scan points will be matched in the vicinity of points ~uik and ~u
j
k

in Figure 3.1. Let

�i+ = jj~uik+1 � ~uikjj; �i� = jj~uik � ~uik�1jj (3.28)

denote the distance to the adjacent scan points (from pose i's scan) near the candidate

matching point ~uik (see Figure 3.1). Similarly, let �j+ = jj~ujk+1 � ~u
j
kjj and �

j
� = jj~ujk � ~u

j
k�1jj

denote the distances to the adjacent scan points (from pose j's scan) near the candidate

matching point ~ujk. The maximum distance (or error) between any pair of points that are

chosen to be in correspondence will be half of the minimum distance between adjacent scan

points. If the error is greater than this value, the point will be matched to another point,

or it will not be matched at all. On average, this error will be the minimum of (�i++ �i�)=4

35

or (�j+ + �j�)=4. Simple geometric analysis of Figure 3.1 shows that

�i+ + �i�
4

=
lik sin�

4

�
1

sin(�ik + �)
+

1

sin(�ik � �)

�
=

lik sin�

2

�
sin�ik cos�

sin2 �ik � sin2 �

�
: (3.29)

Substituting j for i yields the analogous formula for (�j+ + �j�)=4.

We now propose a probabilistic model for the correspondence errors, and develop explicit

formulas for its �rst two moments. For simplicity, and without loss of generality, let the

robot be situated so that �i+ + �i� < �j+ + �j� (i.e., the correspondence error is de�ned by

pose i). Recall the correspondence error formula of Equation 3.6: cijk = ~rik � Rij~r
j
k � pij .

Letting x be the position along the boundary relative to ~uik, the correspondence error is

locally a function of x. With no correspondence error, x = 0. Since the correspondence

error is locally collinear with the boundary's tangent, let �ijk = cijk � tk be the projection of

cijk onto the unit boundary tangent vector, tk, at ~u
i
k. The vector tk is positive pointing from

~uik to ~uik+1. Hence, �
ij
k is a signed quantity, and cijk = �ijk tk. The expected value (mean) of

the error in the interval x 2 [��i�; �
i
+] is

E[�ijk] =

Z �i+

��i
�

�ijk (x)P(x)dx; (3.30)

where P(x) is the probability that the kth scan point from pose j will be located at x.

It is assumed that the geometry of the robot's surroundings is not previously known.

Therefore, it is not possible to know a priori the probabilistic distribution of the corre-

spondence errors, P(x). The reasonable assumption that P(x) has an a priori uniform

probability is made. That is, the scan point ~ujk that is matched to ~uik could lie anywhere

in the interval [��i�; �
i
+] with no preferred location. Hence P(x) = 1=(�i+ + �i�). Realizing

that �ijk (x) = x in the interval [��i�; �
i
+], evaluation of Equation 3.30 yields

E[�ijk] =
(�i+)

2 � (�i�)
2

�i+ + �i�
= �i+ � �i�

= �2
lik sin

2 � cos�ik
sin2 �ik � sin2 �

: (3.31)

Note that when the incidence angle is not normal (�ik 6= 90o), the mean is non-zero. How-

36

ever, since the mean is proportional to sin2 �, this term is negligible when the magnitude of

� is small. Hence, the correspondence error can be considered to be a zero-mean quantity

when � is small (this holds for the experiments described in Section 3.6). To compute the

variance of the correspondence error (using the zero-mean assumption),

E[(�ijk)
2] =

Z �i+

��i
�

x2

�i+ + �i�
dx =

(�i+)
3 + (�i�)

3

3(�i+ + �i�)
: (3.32)

Letting �ik = �ik + �ik, and keeping the above results in mind, the covariance of the corre-

spondence error, CP i
k of Equation 3.10, can be found as

CP i
k = E[cijk (c

ij
k)

T] = E[(�ijk)
2]tkt

T
k (3.33)

=
(�i+)

3 + (�i�)
3

3(�i+ + �i�)

24 cos2 �ik cos �ik sin �
i
k

cos �ik sin �
i
k sin2 �ik

35 :
Note that this expression is a function of the sensor beam's incidence angle, �ik. Section 3.5

discusses how to estimate this quantity from the range scan data.

Because we do not want to assume prior knowledge of the environment's geometry, the

correspondence errors are considered to be independent. This assumption is conservative in

that no structure in the environment beyond the immediate geometry of the local point pairs

is assumed. It would be possible to predict subsequent correspondence errors along a wall (or

other regular geometric structure) given the knowledge that the subsequent corresponding

point pairs did indeed come from the same exactly straight wall. With a proper line �tting

method (e.g., see [41]), the correlations between correspondence errors could be estimated

from the line �tting method's uncertainty model.4

In general, knowing that adjacent corresponding pairs lie along a common wall will sig-

ni�cantly reduce the magnitude of Equation 3.32, which in turn will lead to lower variances

for most of the points along the wall. In this case, the correspondence error variance be-

comes dominated by the uncertainty in the wall's geometry, which in turn is a function of

the line �tting method. These e�ects can �t easily within this framework if desired, leading

to even better displacement estimates and tighter estimate covariances. However, a conser-

vative approach is taken where we do not assume that the robot's surrounding geometry is a

4In the case of correspondence error correlations, the likelihood model of Equation 3.11 will no longer
take a product form. The form of the likelihood model in this case will depend upon the line �tting method.

37

priori known. Moreover, since the reduction in uncertainty will only occur for points along

one line (or other geometric feature), in even modestly complex environments, the amount

of precision to be gained by using this approach is unlikely to be worth the complexity of

implementing these more advanced methods.

3.3.3 Measurement Bias E�ects

Range measurement bias is an artifact of some range sensing methods (e.g., see [2]). Since

bias models will strongly depend upon the given range sensing method, it is not possible to

give a complete summary of bias models for common sensing methods. Instead, a general

approach is considered for calculating the e�ect of bias on the displacement estimate.

To analyze the bias e�ect, let ~"ijk
4
= "ijk +~oijk , where ~o

ij
k = ~oik�Rij~o

j
k is the total constant

bias o�set e�ect at the kth correspondence, and "ijk is the previously de�ned matching error

(that ignored the constant bias term). Incorporating the bias o�sets, the likelihood function

takes the form

L(f~"ijk gjgij) =

nijY
k=1

e�
1

2
(~"ij
k
�~oij

k
)T (~P ij

k
)�1(~"ij

k
�~oij

k
)

2�
q
det ~P ij

k

(3.34)

where ~P ij
k is the covariance matrix with bias uncertainty taken into account:

~P ij
k = ~Qij

k +Rij
~Sijk R

T
ij ; (3.35)

where ~Qij
k = Qij

k + BP
i
k and ~Sijk = Sijk + BP

j
k, with

BP i
k = E[�~bik(�

~bik)
T] and BP j

k =

E[�~bjk(�
~bjk)

T]. That is, the covariance formula is updated to include uncertainty in the

bias term. To obtain these results, it is again assumed that the bias noise is uncorrelated

with the range measurement noise and the correspondence error (since variance in bias is

typically a function of the variability of the surface properties, rather than measurement

noise).

Following the derivations that lead to Proposition 3.1, one can show that the translation

estimate in this case is

p̂ij = ~Ppp

nijX
k=1

�
(~P ij

k)�1(~uik � R̂ij~u
j
k + ~oijk)

�
: (3.36)

38

Formulas analogous to Equation 3.18 can be derived for the orientation estimate as well.

The previous covariance formulas take the same structure, with Qij
k and Sijk modi�ed to ~Qij

k

and ~Sijk (i.e., to include possible bias uncertainty terms). Clearly, Equation 3.36 shows that

bias e�ects can in
uence the displacement estimate. However, bias models can be used to

compensate for bias e�ects in the estimate.

3.4 Selection of Point Correspondences

The focus of this work is to improve displacement estimation via more accurate consider-

ations of the noise and uncertainty inherent in the estimation process. However, the dis-

placement estimation process depends upon the ability to successfully match corresponding

points from range scans taken in adjacent poses. In order to isolate the bene�ts of the

weighted estimation method, we use a very simple \closest-point" rule similar to the one in

[37].

Given two scan sets f~uikg and f~ujkg, the outliers are removed in the �rst step. These

are the points visible in one scan, but not in the other (see [37] for details). After removing

the outliers, correspondences between scan point pairs in the two poses are found. For

every point in pose i, we search for a corresponding scan point in pose j that satis�es a

range criterion: The corresponding point must lie within a given distance: jj~uik � ~ujkjj <

d. If no points in pose j satisfy this criterion, then the point is marked as having no

correspondence. The parameter d is initially set at a value de�ned by the error in the initial

translation estimate (e.g., the estimated odometry error). Thereafter, to speed convergence,

d is monotonically reduced to a value whose order is the maximum point error predicted by

the noise model.

It is also possible to establish point correspondences based on a chi-squared analysis of

point pairs using the detailed sensor noise models already computed in this method. Though

this approach shows promise, in experimental tests we chose to isolate the estimation ben-

e�ts of this work. Because unweighted scan-matching methods lack the uncertainty models

to perform a chi-squared based point correspondence determination process, presented re-

sults use the \closest-point" method for all tests, as this leads to the fairest comparison

procedure.

39

3.5 Estimating the Incidence Angle

The correspondence error model of Section 3.3.2 assumes knowledge of each scan point's in-

cidence angle. While any method of incidence angle estimation can be used, we have chosen

a method that estimates the local geometry of the scan points using a Hough transform.

The Hough transform [15] is a general pattern detection technique that is used to determine

an estimate of the supporting line segment about a point. The incidence angle can then

be estimated from the con�guration of the line segment. In the general Hough transform

line �nding technique, each scan point fxk; ykg is transformed into a discretized curve in

the Hough space. The transformation is based on the parametrization of a line in polar

coordinates with a normal distance from the line to the origin, dL, and a normal angle, �L:

dL = xk sin(�L) + yk cos(�L): (3.37)

Values of �L and dL are discretized with �L 2 f0; �g and dL 2 f�D;Dg where D is the

maximum sensor distance reading. The Hough space is comprised of a two-dimensional hash

table of discrete bins, where each bin corresponds to a single line in the scan point space.

For each scan point, the bins in Hough space that correspond to lines passing through that

point are incremented. Peaks in the Hough space correspond to lines in the scan data set.

As the bins in the Hough space are incremented, we maintain a history of the contributing

scan point coordinates in the bin, so that when a peak is determined to represent a line,

the contributing set of points can be recovered. The incidence angles can then be estimated

for every point in the line.

The algorithm is only precise up to the level of discretization chosen for the line param-

eters. Both computational complexity and the memory needed for the hash table grow with

�ner discretization so it is important to establish a reasonable balance between precision

and computing resources. For implementation, a line angle measurement precise to the

nearest degree is assumed to be adequate for incidence angle estimation. Discretization in

distance was set to 10 mm, though this choice of this value is less signi�cant as only the

orientation of the �t lines is used.

The Hough transform is not limited only to straight line detection. It can also be used

to detect and �t simple curves such as circles and ellipses and even arbitrary shapes [4].

The tangent vectors to these curves (and subsequently the incidence angle) can then easily

40

be estimated from the transform. For most indoor environments the line �tting method is

su�cient to determine incidence angles. More accurate line �tting methods (e.g., [41] and

references therein) can be used to get more accurate estimates of incidence angle, but the

extra computation is typically not balanced by su�ciently better estimation accuracy.

For points that are not found to be clustered into a line, no incidence angle estimate is

calculated. These points are weighted only according to the computed measurement noises

such that the covariance of the matching error at the kth point correspondence of poses i

and j from Equation 3.9 becomes

P ij
k

4
= NP i

k +Rij
NP j

kR
T
ij ; (3.38)

where the correspondence covariance estimate CP ij
k has been dropped.

3.6 Experiments

This method was implemented on a Nomadics 200 mobile robot equipped with a Sick LMS-

200 laser range scanner. This sensor measures the range to points in a plane at every half

degree over a 180-degree arc, as seen in Figure 3.2. For the purpose of comparison, an

unweighted least-squares scan matching algorithm analogous to that of Lu and Milios [37]

was implemented also, and hereafter called the \UWLS." Both the weighted and unweighted

estimation algorithms used the same point correspondence algorithm so that the comparison

could fairly focus on the relative merits of both estimation schemes. Section 3.6.1 compares

the robustness and accuracy of the algorithms in four di�erent environment geometries.

Section 3.6.2 compares results from two longer runs. Section 3.6.3 presents the estimated

computational costs of the algorithms, while Section 3.6.4 experimentally explores bias

compensation. All experiments used the values � = 0:5o, �l = 5 mm, and �� = 10�4

radians obtained from the Sick LMS-200 laser speci�cations.

3.6.1 Robustness and Accuracy Comparisons

The experiments reported in this section focus on two aspects of estimation performance:

the robustness with respect to errors in the initial displacement estimate that seeds the

iterations of the algorithm; and the accuracy of the displacement estimates. A more robust

41

Unperturbed Trial: Unperturbed Trial:
Final Error in Final Error in
Position (mm) Orientation (mrad)

Test Weighted UWLS Weighted UWLS

Fig 3.3 0.19 1.33 0.23 8.8
Fig 3.4 1.5 3.6 0.43 1.4
Fig 3.5 2.5 9.8 0.57 16.0
Fig 3.6 1.8 4.1 0.0334 0.31

Table 3.1: Position and orientation error values for trials with no initial perturbations.

Percentage of Converged Trials: Converged Trials:
1525 Perturbed Average Error in Average Error in
Trials Converged Position (mm) Orientation (mrad)

Test Weighted UWLS Weighted UWLS Weighted UWLS

Fig 3.3 91.0% 64.9% 0.63 1.8 0.79 8.6
Fig 3.4 82.0% 56.9% 1.8 6.0 0.67 2.6
Fig 3.5 95.5% 31.2% 2.5 11.1 0.57 16.0
Fig 3.6 75.1% 3.0% 3.1 14.5 0.0392 0.47

Table 3.2: Robustness and accuracy comparison statistics for trials with initial perturba-
tions.

algorithm can successfully recover from a wider range of errors in the initial displacement

guess. In practice, such errors in the initial displacement estimate come from large odometry

errors, or might arise in the absence of odometry when the initial guess is provided by an

open loop estimate of the robot's motion response.

To test for robustness, each algorithm was run through multiple trials with the same pair

of scans, each time only perturbing the initial displacement guess. Some initial guesses were

su�ciently poor that the algorithm converged to an erroneous solution. An estimate was

deemed successful when the true measured displacement lay within the 3� deviation range

as de�ned by the algorithm's calculated covariance (the UWLS covariance was calculated

using the formula given in [36]). The initial displacements ranged from 0 to 600 mm at

8 radial directions (every �=4 radians) at increments of 200 mm in position, and ranged

from �0:6 to 0.6 radians in orientation, at increments of 0.02 radians. For each of the

25 discrete initially perturbed positions, 61 initially perturbed orientations were used to

generate 1525 unique initial condition perturbations. These perturbations were added to

the true displacement to create initial conditions for the 1525 trials for each algorithm and

each environmental condition described below.

We also compare the overall accuracy of each algorithm's displacement measurement.

42

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000
(mm)

Robot Pose
A

Even Scan Points
Odd Scan Points
Perturbed Initial Displacements

−4 −2 0 2 4 6
(mm)

 Closeup : Robot Pose B

989 estimates (64.9%)
converge to within 3σ
of true displacement

Unweighted

1388 estimates (91.0%)
converge to within 3σ
of the true displacement

Weighted

Initially unperturbed
unweighted estimate

Initially unperturbed
weighted estimate

True Zero Displacement
Unweighted Displacement Estimates
Weighted Displacement Estimates
Unweighted Covariance (3σ)
Weighted Covariance (3σ)

Figure 3.3: A) Experiments with initial displacement perturbations between scans taken at
a single pose. B) Closeup of robot pose with results.

The true displacements are measured by hand with an uncertainty of less than 2 mm in

displacement and 0.002 radians in orientation. We ran this robustness and accuracy test

over four di�erent scan pairs.

Single-Pose Test

The �rst experiment shown in Figure 3.3 tests for robustness and accuracy while isolating

the e�ects of the modeling of the point correspondence error (Section 3.3.2). In this test,

two scans were taken from the exact same robot pose (i.e., the robot was not moved between

scans), with one scan comprised only of the even scan points and the second scan comprised

only of the odd scan points. In this way, correspondence errors are arti�cially introduced

into the two scans.

The two scans and the initially perturbed positions are shown in Figure 3.3A. The

43

displacement estimates of the successfully converged estimates are shown in Figure 3.3B.

The results of the two runs with unperturbed initial guesses are shown with boldfaced

markers, along with the 3� uncertainty boundary of these estimates (shown as dashed

ellipses). Of the 1525 runs with initial displacement perturbations thie weighted algorithm

converged successfully in 91.0% of the cases while the UWLS algorithm was successful

in 64.9% of the cases. The average error for successful weighted estimates was 0.63 mm

and 0.00079 radians while the average error for successful UWLS algorithm estimates was

1.8 mm and 0.0086 radians. The error for the case when the initial displacement guess

is unperturbed is 0.19 mm and 0.00023 radians for the weighted algorithm and 1.33 mm

and 0.0088 for the UWLS algorithm. Though the true displacement between the poses

is exactly zero (since the scans were taken at the same robot pose), due to the even/odd

nature of the scans no two corresponding scan points sample the exact boundary points of

the environment. The e�ect of this correspondence error on the UWLS algorithm can be

visualized in the presence of three distinct local minima in Figure 3.3B. This multi-modal

result surrounding the value is often seen in UWLS algorithm robustness test results.

Two-Pose Test

Figure 3.4 shows results from initial condition robustness testing on two scans taken in our

lab with true position and orientation displacements of 683 mm and 0.467 radians. Figure

3.4A shows the robot poses and scans under consideration, as well as the initial perturbed

displacement guesses. Figure 3.4B shows the results obtained by starting the algorithms

from the 1525 di�erent initial displacement perturbations. The weighted algorithm success-

fully converged in 82:0% of the cases while the UWLS algorithm was successful in 56:9%

of the cases. The average error for successful weighted estimates was 1.8 mm and 0.00067

radians while the average error for successful UWLS algorithm estimates was 6.0 mm and

0.0026 radians. The error for the case when the initial displacement guess is unperturbed

is 1.5 mm and 0.00043 radians for the weighted algorithm and 3.6 mm and 0.0014 for the

UWLS algorithm.

Two-Pose Test With IntraScan Changes in the Environment

Figure 3.5 shows the results of the same type of testing performed on a pair of scans in

which the environment changed between scans. Note that the horizontal double wall on

44

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000
(mm)

Pose 1

Pose 2

A

Pose 1 Scan Points
Pose 2 Scan Points
Perturbed Initial Displacements

−280 −278 −276 −274 −272 −270 −268 −266 −264
(mm)

Pose 2

 Closeup : Pose 2 B
868 estimates (56.9%)
converge to within 3σ
of true displacement

Unweighted

1252 estimates (82.0%)
converge to within 3σ
of the true displacement

Weighted

Initially unperturbed
unweighted estimate

Initially unperturbed
weighted estimate

True Pose 2 Displacement
Unweighted Displacement Estimates
Weighted Displacement Estimates
Pose 2 Measurement Covariance (3σ)
Unweighted Covariance (3σ)
Weighted Covariance (3σ)

Figure 3.4: A) Experiments with initial displacement perturbations between scans taken at
di�erent poses. B) Closeup of pose 2 with results.

the lower left side of the �gure is actually a table at almost exactly laser height. The �rst

scan sampled the wall behind the table while the second scan sampled the front edge of the

table due to small changes in
oor geometry. The additional nearby obstruction to the left

of the robot was caused by a person who moved between the two scans. The range points

associated with these non-repeating objects represent 29:2% of the total number of scan

points.

For the 1525 trials with di�erent initial displacement perturbations, the weighted algo-

rithm was successful in 95:5% of the cases, while the UWLS algorithm was successful in

31:2% of the cases. The average error for successful weighted estimates was 2.5 mm and

0.00057 radians while the average error for successful UWLS algorithm estimates was 11.1

45

−6000 −5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000
(mm)

Table at Laser Height

Moving Person
Pose 1

Pose 2

A

Pose 1 Scan Points
Pose 2 Scan Points
Perturbed Initial Displacements

−110 −105 −100 −95 −90 −85 −80
(mm)

Pose 2

 Closeup : Pose 2 B

476 estimates (31.2%)
converge to within 3σ
of the true displacement

Unweighted

1456 estimates (95.5%)
converge to within 3σ
of the true displacement

Weighted

Initially
unperturbed
unweighted
estimate

Initially
unperturbed
weighted
estimate

True Pose 2 Displacement
Unweighted Displacement Estimates
Weighted Displacement Estimates
Pose 2 Measurement Covariance (3σ)
Unweighted Covariance (3σ)
Weighted Covariance (3σ)

Figure 3.5: A) Experiments with initial displacement perturbations in a non-static environ-
ment. B) Closeup of pose 2 with results.

mm and 0.016 radians. The error for the case when the initial displacement guess is un-

perturbed is 2.5 mm and 0.00057 radians for the weighted algorithm and 9.8 mm and 0.016

for the UWLS algorithm. These results show that this method's emphasis on weighting

each scan point results in superior robustness to the presence of a signi�cant number of

non-corresponding range points.

Two-Pose Test in a Hallway

Figure 3.6 shows the results of analogous testing done in a nearly symmetrical hallway.

In a perfectly symmetrical hallway with no discernible details along the walls, no scan-

based algorithm can e�ectively correct initial displacement errors in the direction along the

hallway's main axis. In this test, a single door is open at a slight angle on the left side of the

hallway. The presence of this feature allows for possible scan matching convergence. For the

46

−1000 0 1000
(mm)

Pose 1

Pose 2

A

Pose 1 Scan Points
Pose 2 Scan Points
Perturbed Initial Displacements

174 176 178 180 182 184
(mm)

Pose 2

 Closeup : Pose 2 B

46 estimates (3.0%)
converge to within 3σ
of true displacement

Unweighted

1145 estimates (75.1%)
converge to within 3σ
of true displacement

Weighted

Initially
unperturbed
unweighted
estimate

Initially
unperturbed
weighted
estimate

True Pose 2 Displacement
Unweighted Displacement Estimates
Weighted Displacement Estimates
Pose 2 Measurement Covariance (3σ)
Unweighted Covariance (3σ)
Weighted Covariance (3σ)

Figure 3.6: A) Experiments with initial displacement perturbations in a hallway environ-
ment. B) Closeup of pose 2 with results.

set of 1525 initial displacement perturbations, the weighted algorithm successfully converged

in 75:1% of the cases while the UWLS algorithm was successful in only 3:0% of the cases.

The average displacement estimate error for the successful weighted estimates was 3.1 mm

and 3:92 � 10�5 radians while the average error for successful UWLS algorithm estimates

was 14.5 mm and 0.00047 radians. The error for the case when the initial displacement

guess is unperturbed is 1.8 mm and 3:34 � 10�5 radians for the weighted algorithm and

4.1 mm and 0.00031 radians for the UWLS algorithm. In e�ect, the weighted algorithm

better uses the hallway's small non-symmetries to correct the position estimation along the

hallway axis. This signi�cantly better performance is primarily due to the approach of

47

modeling the correspondence errors, which discounts the contributions along the hallway's

axis (since there is very low certainty in that direction). Instead, the small asymmetries

are e�ectively accentuated. Conversely, in the UWLS algorithm the contributions of the

non-symmetries are e�ectively lost, resulting in very poor correction of position errors along

the hallway. The plots of the uncertainty ellipses in Figure 3.6B also show how only the

weighted algorithm's calculated covariance re
ects a greater uncertainty in the direction

parallel to the hallway, as would be expected.

3.6.2 Multi-Step Runs

The above results showed not only the improvement in robustness of the weighted algorithm

over the UWLS algorithm, but also a signi�cant improvement in the overall accuracy of the

successful �nal displacement estimates. This improvement in accuracy is best seen in longer

runs with multiple displacement estimates added end to end.

Long Run with Accurate Odometry

Figure 3.7 shows a 32.8-meter loop path consisting of 109 poses with the �nal pose the same

as the starting pose. Because of the di�culty of hand measuring each pose, only the initial

and �nal positions are compared. For each step the current and previous scans are processed

by each algorithm with odometry supplying the initial guess, and updated displacement and

covariance estimates are calculated. In order to maintain statistical independence in the

estimates, two scans were taken at each pose, with scan 1 used to match with the pose behind

and scan 2 used to match with the pose ahead. In practical applications, such a dual scan

procedure would not be necessary, as a Kalman �lter could incorporate the scans while

accounting for the correlation between successive displacement estimates. However, that

approach is not used here so that we can focus directly on the properties of the displacement

estimate, and not worry about the impact of the �lter on the results.

In order to close the loop, the second scan taken at the last pose is matched with the

�rst scan taken at the initial pose. Therefore a perfect series of displacement estimates

added tip to tail would result in exactly a zero overall displacement estimate. For the

run shown in Figure 3.7, the �nal odometry error is 1.817 meters and 0.06 radians. The

�nal UWLS algorithm error is 0.271 meters and 0.021 radians while the �nal weighted

algorithm error is 0.043 meters and 0.0029 radians. The ratio of the �nal translation error

48

Figure 3.7: A) A 109-pose 32.8-meter loop path. B) Closeup of �nal path poses, shown the
covariance estimates of the weighted and unweighted algorithms.

to total path length is 5:54% for odometry, 0:82% for the UWLS algorithm, and 0:131%

for the weighted algorithm. Perhaps more importantly, as shown in Figure 3.7B, the �nal

covariance calculation for the weighted algorithm clearly encompasses the true �nal pose

within the 3� bounds, while the covariance calculation of the UWLS algorithm does not.

49

Figure 3.8: A) 83-pose 24.2-meter loop. B) Closeup of �nal loop poses.

Long Run with Inaccurate Odometry

The improvement of the weighted algorithm over the UWLS algorithm is even more pro-

nounced in the presence of poor odometry estimates. Figure 3.8 shows an actual run where

one of the odometry readings was substantially corrupted as the robot rolled over a door

jamb when heading into the room in the upper right hand corner of the plot. This path

is a 24.2-meter loop consisting of 83 poses with the scans taken and loops closed as in the

previous path. For the path shown in Figure 3.8 the �nal odometry error is 1.040 meters

and 0.354 radians. The �nal UWLS algorithm error is 0.919 meters and 0.200 radians while

50

the �nal weighted algorithm error is 0.018 meters and 0.013 radians. The ratio of the �nal

translation error to total path length is 4:30% for odometry, 3:80% for the UWLS algorithm,

and 0:074% for the weighted algorithm.

3.6.3 Comparison of Computational Demands

Both algorithms were implemented in Matlab, and their computational demands were an-

alyzed using the Matlab Pro�ler on a desktop computer with a Pentium 4, 1.80GHz CPU

with 512M RAM. Within each iteration, computation is divided between the point corre-

spondence phase (which usually consumes the bulk of the computation) and the estimation

phase. The number of iterations required to reach convergence also a�ects the overall cost

of computation.

In the 109 steps of run 1 shown in Figure 3.7, the correspondence method used on

both algorithms comprises 81:0% of the total UWLS algorithm computation time of 0.112

seconds/iteration and 44:3% of the weighted algorithm computation time of 0.205 sec-

onds/iteration. For the relatively low initial odometry errors in run 1, the UWLS algorithm

converges in an average of 12.78 iterations for an average computation time of 1.43 seconds

per displacement while the weighted algorithm converges in an average of 10.36 iterations

with a total average computation time of 2.12 seconds per pose displacement. For larger

initial odometry errors, especially in orientation, the di�erence in iterations to convergence

increases to the point where the weighted algorithm is actually faster than the UWLS al-

gorithm. For the data shown in Figure 3.4, when the orientation error is greater than 0.2

radians the UWLS algorithm converges in an average of 42.98 iterations for an average

computation time of 4.81 seconds per displacement while the weighted algorithm converges

in an average of 22.60 iterations for an average computation time of 4.63 seconds per dis-

placement.

In summary, experiments show that in real world indoor environments, the weighted

method provides signi�cantly greater estimation accuracy and robustness as compared to

an unweighted approach without a signi�cant increase in computational cost. Clearly, the

computational demands in the estimation phase are larger for the weighted algorithm (as

compared to an unweighted algorithm). However, since the computations required by the

estimation part of the algorithm account for only a small portion of each iteration, and the

algorithm often converges in fewer iterations compared to the UWLS algorithm, the total

51

0 10 20 30 40 50 60 70 80
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

angle (degrees from normal)

bi
as

 (
m

m
)

1.5m
3m
4.2m

Figure 3.9: The bias �t function.

run time is reduced.

3.6.4 Experiments with Bias Compensation

For completeness, we also implemented the bias compensation scheme of Section 3.3.3. In

order to implement this scheme, we experimentally determined the laser's range bias in a

controlled laboratory setting, and �t a functional relationship to the experimental data. For

experiments, a white paper target was placed at a known distance from the sensor. The

center beam of the laser was aligned so as to be normal to the axis of rotation of the target.

A total of 100 range measurements were recorded for every 10 degrees of rotation up to 80

degrees from the normal. This process was repeated for nominal ranges of approximately

1.5 m, 3 m, and 4.2 m. Ref. [58] provides a more detailed characterization of this speci�c

laser. The data provided there could be used to build a more detailed model as compared

to the one given below.

This experiment showed that the bias for this particular laser sensor is a function of both

distance and incidence angle. A function was �t to these data, which was then employed to

determine the bias, br (in mm), in the measurement given the reported distance, r (in mm),

from the laser sensor and the angle from normal, � (in radians), from the Hough transform.

Figure 3.9 shows both the data collected and the �tting function. The bias function is given

52

by

br(r; �) = �14 + 0:004r � 0:035e4:9�: (3.39)

When this bias model was incorporated in the WLSM estimation process, the resulting

position estimates were almost unchanged. Over the 21.8-meter, eight-step path described

in [42], the incorporation of the bias term resulted in an improvement of only 1.8 mm or

0.0082% in the �nal position estimate. There are two reasons for such a small contribution

from the bias term. First, as can be seen in Figure 3.9, this laser's bias is quite small

and relatively constant (�1 cm) for angles up to 60 degrees from normal. This excellent

behavior is certainly due in part to pre-processing that occurs inside the sensor itself. Most

of the corresponding points processed by the WLSM algorithm are recorded at angles within

the 60° range. At larger incidence angles, range points are usually sparsely distributed on

surfaces far from the sensor and are usually rejected by the matching algorithm since they

cannot be paired with the required level of con�dence. Even if these points are included,

their associated matching covariance is large enough to make their e�ective contribution

negligible. Moreover, symmetries in the environment result in mutual cancellation of the

bias e�ect introduced by points found in opposite directions. Nevertheless a similar process

for estimating the bias can be used and can provide improved accuracy in the case of

lower-quality distance measuring sensors that experience signi�cant bias.

3.7 Conclusions

This chapter introduced a new method for estimating robot displacement based on dense

range measurements. In particular, the e�ects of di�erent error and noise sources on the

convergence and accuracy properties of these motion from structure algorithms were inves-

tigated. Experiments showed that careful attention to the details of error modeling can

signi�cantly enhance overall displacement and covariance estimation accuracy.

The �rst part of the chapter gave a general formulation of the displacement estimation

problem using weighted point pair correspondences. A general solution to the estimation

problem and formulas for the covariance of the displacement estimate were then derived.

The application of these results then depends upon explicit error models, and general models

for range measurement noise, bias error, and correspondence error were presented. Although

parts of this analysis were mainly aimed at planar laser range sensors, the methods can likely

53

be extended to algorithms for non-planar laser scanners [32, 18], where detailed uncertainty

modeling has not been considered, and other range sensors such as stereo cameras, radar,

ultrasound, etc. These techniques should also be useful for methods that use both planar

laser range �nders and cameras to estimate three-dimensional motion parameters [52, 48].

The speci�cs of this analysis must be modi�ed to incorporate the appropriate error/noise

models for each particular sensor.

The accurate displacement estimates a�orded by this method can be fused with odom-

etry estimates [45] to provide better robot localization capability. Similarly, the improved

displacement estimation a�orded by this method should in the future lead to more accurate

map making and localization procedures.

54

Chapter 4

Optim-Bug

This Chapter gives a description and convergence results for the Optim-Bug algorithm.

Like Tangent Bug, Optim-Bug is a complete and correct planner that assumes perfect

dead reckoning. Detailed simulations are not presented, because ideas from Optim-Bug are

primarily intended to help introduce the Uncertain Bug algorithm in Chapter 6. Section

4.1 de�nes the terminology used in the examples and in the proof of completeness. Section

4.2 summarizes the Optim-Bug algorithm, and Sections 4.3 and 4.4 provide more details

and the proof of convergence and completeness.

The Tangent Bug algorithm chooses the locally optimal path while it is in motion to

goal (Mtg) mode. The path is locally optimal (instead of globally optimal) because the

robot does not have complete information about the environment. Recall that the second

mode of operation for Tangent Bug is boundary following (BF) mode. If the cost of a

path is de�ned as the path length, then the paths generated while in MtG mode are the

exact optimal solutions given present knowledge about the world and ignoring knowledge of

previous obstacles. However, the paths chosen while in BF mode are not optimal solutions.

Now consider an algorithm where the robot operates in a single mode: it always follows

the locally optimal path to the goal, regardless of whether or not that path moves towards

or temporarily away from the goal. The cost of a path is de�ned as the path length. This

algorithm is called \Optim-Bug."

4.1 Setup and De�nitions

This section introduces some of the concepts and terminology that will be used later in

Optim-Bug's proof of convergence. Let C denote the con�guration space of the robot|the

55

set of all possible con�gurations the robot can take [25]. It is assumed that the environment

is populated with a �nite number of compact obstacles whose boundaries are smooth. The

freespace is de�ned as the complement of the obstacles' points:

F = C n [iOi; (4.1)

where the Oi are the physical obstacles. F is the closure of freespace, which is the freespace

plus the obstacle boundaries. Let xk denote the robot's con�guration at time k:

xk = x(tk): (4.2)

It is also assumed the robot is equipped with an omnidirectional range sensor with a max-

imum sensing range of R. Let v(xk) be the current visibility set at con�guration xk:

v(xk) =
�
q j q 2 F ; kq � xkk < R; q(1� t) + xkt 2 F 8t 2 [0; 1]

	
: (4.3)

This is the region contained in freespace centered at xk, and bounded by the robot's sensing

range R. The boundary of the current visibility set consists of circular arcs with radius R

and the sensed obstacle boundaries from robot location xk. Figure 4.1 shows a sequence of

hypothetical steps of the Optim-Bug algorithm. At each robot location, the visibility set is

labeled.

xg

v2

v3
v4

v5

xR

xs

v1

O4
O2

O1

O3

x2

Figure 4.1: The current visibility sets, v(xk), shown at each location of a four-step path.
At x2, obstacle O2 is a blocking obstacle.

A blocking obstacle is de�ned as an obstacle that the robot encounters that blocks the

56

straight-line path to the goal. That is, if the condition

Oi

\
v(xk) 6= ;; xg(1� t) + xkt 2 Oi (4.4)

is true for some t 2 [0; 1] at step k, then obstacle Oi is a blocking obstacle. In Figure 4.1,

obstacle O2 is a blocking obstacle from robot location x2 because it lies between the robot

and the goal.

The total visibility set, Vtot(xk), is the union of all the v(xk) for all robot con�gurations

up to time k:

Vtot(xk) =
k[
i=1

v(xi): (4.5)

Figure 4.2 shows the total visibility set for the example of Figure 4.1 (which consists of �ve

robot positions). The total visibility set, Vtot(xk), contains all of the environment that the

robot has seen up to time k, and therefore has a memory of.

xg

Vtot

Figure 4.2: The total visibility set, Vtot, for the same four-step hypothetical example of
Figure 4.1.

4.2 Optim-Bug Overview

There are two main di�erences between Tangent Bug and Optim-Bug. The �rst di�erence

is that Optim-Bug has only one mode|that of �nding the shortest path to the goal given

its current knowledge of the world. In the version presented here, Optim-Bug requires more

memory than Tangent Bug does, because it must remember all obstacles seen up to the

current con�guration.

57

To allow this single mode of operation, it is necessary for Optim-Bug to build up a map

of the environment as it moves along, remembering the location of any portions of obstacles

that it has seen. This memory is needed for two reasons. First, it removes the necessity

for a boundary following mode. Tangent Bug has a boundary following mode in order to

eliminate the need for a memory of obstacles it has seen. Second, the memory allows the

robot to detect when the goal is completely enclosed inside an obstacle, and thus declare

failure.

Figure 4.1 depicts a short hypothetical sequence of executed steps of Optim-Bug, il-

lustrating the required memory of obstacle locations and geometries. The robot starts at

location xs, while the goal is at xg. At the point shown in the �gure, it has taken four steps

to location xR. During these consecutive steps, it has seen and remembered the darkened

portion of the obstacles. The unknown obstacle parts are shown in a lighter color. It is

assumed that the obstacles block sensing of other obstacles, so the known obstacles are

modeled as thin walls.

At the beginning of each new step, the known portions of the obstacles are used as

constraints in the optimization process. As long as the goal is believed to be reachable, the

shortest length path is computed at each step. Once the shortest path is found, the robot

follows this path until it reaches the edge of its total visibility set. In the example, this

would be the boundary of the overlapping gray discs. Once it has stepped to the boundary

of the total visibility set, the robot takes its next view of the environment, thereby adding

the newly viewed area to its map. This process continues until the robot arrives at the

goal, or the goal is determined to be unreachable. In summary, one step of the Optim-

Bug algorithm proceeds as follows, assuming the robot starts at xk and Vtot(xk) has been

computed:

� While the goal is still reachable:

1. Compute the shortest length path to the goal based on Vtot(xk) (i.e., taking into

account currently known and previously seen obstacles).

2. Follow the path to the boundary of the total visibility set (position xk+1, or to

the goal if it is within the current visibility set. If the robot has reached the goal,

terminate with success; Otherwise, compute the new visibility set, v(xk+1).

3. Add the newly viewed region, v(xk+1), to the map: Vtot(xk+1) = Vtot(xk)
S
v(xk+1).

58

4. If there is no path that reaches the goal without intersecting an obstacle, termi-

nate with failure. This means that the goal is inside an obstacle.

With perfect information, i.e., no odometry and sensing errors, Tangent Bug is likely a

more practical algorithm than Optim-Bug. It requires very little memory, and in many cases

the paths generated by Tangent Bug and Optim-Bug will be quite similar. As shown below,

in the case of non-convex obstacles, Optim-Bug can temporarily oscillate back and forth

on an obstacle boundary, while Tangent Bug chooses a more uniform path. Optim-Bug's

memory requirements are greater, as the robot must remember the location of every obstacle

it has seen. However, in complex environments, Optim-Bug may have some advantages. It

is also likely that the extension of Optim-Bug to 3-D is relatively straightforward, whereas

the 3-D version of Tangent Bug is quite cumbersome.

Recall the assumption of an omnidirectional range sensor. In most realistic situations,

such a sensor would sense only at discrete angles around the robot. If the angular dis-

cretization is small enough and all obstacles are large relative to this angular separation,

the sensor could be considered to be continuous. However, it may be desirable to implement

a local obstacle avoidance scheme if the angular discretization is large, or if obstacles are

small relative to the angular separation. In these situations the sensor could miss detecting

an obstacle. Because Optim-Bug always follows the path to the boundary of Vtot, a local

obstacle avoidance scheme would mitigate these issues.

This discussion of Optim-Bug will be used to help motivate the structure of Uncertain

Bug in Chapter 6. Uncertain Bug uses an optimization framework that is di�erent from

Tangent Bug. The cost function used in Uncertain Bug is di�erent than that of Optim-Bug,

but some of the general issues are the same. The robot always seeks feasible paths that are

optimal in the context of known information. As long as a feasible path exists, the robot

will continue to attempt to reach the goal. If and when the robot �nds that no feasible

paths exist, it can conclude that the goal is unreachable from its current state and declare

failure.

At a high level, the proof for Tangent Bug uses a relatively simple Lyapunov-based

method. During the motion to goal mode, the robot always decreases the distance from

itself to the goal. In boundary following (BF) mode, the robot is allowed to increase this

distance temporarily, but it cannot switch out of BF mode until it has reached a point

59

nearer to the goal than the closest it could have been when it started BF mode. Thus, the

robot is always making progress towards the goal (in MtG mode) with the exception of a

�nite number of switches into BF mode. Since the robot only leaves BF mode when it is

again closer to the goal, the trend is that the robot is always moving closer to the goal.

Consequently, the distance from the robot to the goal converges to zero, since there are

only a �nite number of obstacles. Of course, if the robot stays in BF mode long enough

to completely circumnavigate an obstacle, then the goal is unreachable and the algorithm

terminates.

The proof methodology for Optim-Bug is slightly di�erent. In the following section, it

is shown that the shortest paths follow lines that are either straight lines or are tangent

to the currently known obstacles. Then it is shown that there are a �nite number of such

paths. Finally, the algorithm is structured so that in a �nite number of steps, the robot

must reach a straight-line path to the goal, or conclude that the goal is unreachable.

4.3 Shortest Path Properties

First, let us consider the properties of optimal paths, because these properties are needed

for the proof of convergence and completeness. Let �(t) be a smooth path in F . Below,

the necessary conditions for the shortest path in a freespace bounded by smooth curves are

stated. Shortest paths consist of segments that are either:

1. a straight line from the robot to the goal in freespace, or

2. tangent to the convex hull of obstacles.

In general the formula for the length of a smooth path �(t) : [a; b] ! R
k (using the

Euclidean norm) is given by

l(�) =

Z b

a

k _�(t)kdt: (4.6)

Appendix C gives details on the proof of these conditions. In addition, such features are

well established in the visibility graph literature.

60

4.4 Proof of Completeness

Let a goal-tangent line be a straight-line segment that passes through the goal and is tangent

to an obstacle boundary. A tangent point is a point on an obstacle where the tangent line is

tangent to the obstacle. A true goal-tangent is de�ned to be a goal-tangent that lies entirely

in the closure of freespace. If a goal-tangent is not a true goal-tangent, it is de�ned to be

a false goal-tangent. An obstacle endpoint is a point where an obstacle boundary intersects

the boundary of the total visibility set. Figure 4.3 shows an example obstacle con�guration

and its associated goal-tangent lines, tangent points, and obstacle endpoints.

Obstacle endpoint

Tangent Point

xg

xR

T1

T2

T3

Figure 4.3: A hypothetical example showing obstacle endpoints, tangent points, and their
associated goal-tangent lines.

As described in the algorithm overview, the robot is commanded to follow the optimal

path to the boundary of the total visibility set, Vtot, at each step. If the straight-line path to

the goal is clear, the robot will follow it to the boundary of Vtot. When the robot encounters

a blocking obstacle, the optimal path will be tangent to the known obstacle boundaries, i.e.,

the portion of the obstacles that lie in Vtot(xk). The path planned from xk will always pass

through an obstacle endpoint of the current blocking obstacle because of the properties of

the shortest paths. Moreover, the robot will always move to, and end its current iteration

at, one of the obstacle endpoints in the presence of a blocking obstacle. In practice, it

is assumed that the robot will move � away from the obstacle boundary at the obstacle

endpoint. It is also assumed that the robot's sensing range is greater than this distance,

i.e., R > �.

61

Axiom 4.1. At an obstacle endpoint, the obstacle boundary is transverse to the boundary

of Vtot.

If an obstacle boundary were not transverse to the boundary of Vtot at an obstacle

endpoint, it would imply that the obstacle boundary point was still within the boundary of

Vtot, with its location further along @Vtot. If that were the case, then the robot would see

that part of the boundary, and the obstacle endpoint would be in a di�erent location. A

non-generic case can occur if the obstacle boundary has an in
ection point that lies on the

boundary of Vtot. Any small perturbation of the robot position or the obstacle location will

eliminate this case, so it is assumed that it will not occur.

Lemma 4.1. The total visibility set, Vtot, grows with each robot step.

Proof. Assume the robot has moved to xk+1 from xk. Let Ik+1 be the intersection of the

current visibility set at xk+1 and the previous total visibility set:

Ik+1 = Vtot(xk)
\
v(xk+1): (4.7)

In other words, Ik+1 is the part of the robot's environment known at step k that can still

be seen at step k + 1. Let Dk+1 be de�ned as

Dk+1 = v(xk+1) n Ik+1: (4.8)

Dk+1 is the \new" part of the world seen by the robot at step k+1. Dk+1 must be non-empty

for this Lemma to be true.

By de�nition of the Optim-Bug algorithm, the robot always follows the shortest path to

the edge of the total visibility set at each step. The properties of the shortest path dictate

that the next robot con�guration, xk+1, will lie either in freespace at the boundary of Vtot,

or at an endpoint of a sensed obstacle boundary. Recall the assumption that in the case

of a blocking obstacle, the robot maintains some small distance, �, away from the obstacle

boundary. It is also assumed that the robot sensing range, R, is greater than �.

The boundary of Vtot consists of circular arcs of radius R. If xk+1 lies in F , then the new

visibility set, v(xk+1) must contain some newly seen area. Thus, the robot sees a previously

unseen part of the environment, and Dk+1 6= ;.

62

Newly viewed area

Vtot(xk)

xk+1v(xk+1)

�
�

@Oi

Figure 4.4: Illustration for Lemma 4.1 showing that the total visibility set, Vtot grows at
each step.

If xk+1 lies � away from an obstacle endpoint, the robot will still see some new region

of the environment, and Dk+1 6= ;. Since R > �, 9 some � > 0 such that a ball of radius �

centered at the obstacle endpoint will lie inside v(xk+1). Because the obstacle boundary is

transverse to the boundary of Vtot(xk), the ball must contain some newly seen area. Figure

4.4 depicts this graphically.

Thus, the total visibility set grows with each robot step.

When the robot encounters a blocking obstacle, the properties of the optimal path dic-

tate that the path will be tangent to the convex hull of obstacles. The robot is \navigating"

around a blocking obstacle until it reaches a point where the optimal path is no longer

tangent to that particular obstacle boundary. This will happen if the robot reaches the goal

or reaches a goal-tangent.

Lemma 4.2. While navigating around a blocking obstacle, the robot's next step will always

take it to an endpoint of a known obstacle boundary segment.

Proof. The properties of the optimal path (See Appendix C) imply that the optimal path

will be tangent to the convex hull of the known obstacle boundaries in Vtot(xk), where xk

is the current robot con�guration.

63

The Optim-Bug algorithm dictates that the robot's next step will follow the optimal

path to the edge of Vtot(xk). Either the path will be a straight line towards the goal, in which

case there is no blocking obstacle, or the path must be tangent to the blocking obstacle.

Known obstacle boundary endpoints lie on the edge of Vtot(xk).

Therefore, when navigating around a blocking obstacle, the robot's next step will take

it to an endpoint of a known obstacle boundary segment.

Once the robot has stepped to one of the obstacle endpoints, the shortest path will

continue to follow the obstacle boundary or its convex hull until it reaches a tangent point.

At a tangent point, the optimal path departs the obstacle boundary and follows the as-

sociated goal-tangent line. At that point, the robot is no longer navigating around that

particular blocking obstacle, although it may re-encounter it later. The goal-tangent line is

a straight-line path to the goal by de�nition, so the cycle starts all over again. The robot

will follow the goal-tangent line until it either:

� reaches the goal,

� encounters another blocking obstacle,

� re-encounters a locally non-convex portion of the same obstacle.

Let @Oi denote the boundary of obstacle i. Let @O denote the boundary of all obstacles,

i.e.,

@O =
[
i

@Oi: (4.9)

Let the boundary of Oi be parameterized by s 2 R. The parameter, s, is similar to an arc-

length parameter that de�nes the distance along the obstacle boundary from some starting

point where s = 0. However, s does not need to be an arc-length parameter. The parameter,

s, increases in a clockwise direction around the obstacle. The actual location of s = 0 on the

boundary is of no consequence. Let xi(s) denote the boundary point on @Oi at a distance

s.

Let Si (a; b) denote a continuous boundary segment of obstacle Oi from s = a to s = b,

i.e.,

Si (a; b) = fsjx(s) 2 @Oi; sa � s � sbg : (4.10)

64

Let Bik denote the set of continuous intervals of the boundary of obstacle Oi seen up to step

k, i.e.,

Bik =
�
Si1 (a; b) ; S

i
2 (c; d) ; : : : S

i
j (�; �)

	
; (4.11)

where j is the number of segments of Oi seen up to step k.

Lemma 4.3. Assume the robot has encountered Oi as a blocking obstacle at step p. While

navigating around Oi, the robot will always see at least one new portion of the blocking

obstacle boundary that is contiguous with a previously known segment.

Proof. When the robot �rst encounters Oi at step p, it will see at least one boundary seg-

ment, though it may see more. If more than one segment is seen, without loss of generality,

let Si1 (�; �) be the segment whose endpoint is contained in the optimal path computed at

xp.

The properties of the optimal path dictate that the next robot step will pass through

either xi(�) or xi(�). The properties of the Optim-Bug algorithm dictate that while navi-

gating around a blocking obstacle, the next robot step will end at one of these points (see

Lemma 4.2). Without loss of generality, assume that the robot moves to xi(�) at step p+1.

See Figure 4.5 for a graphical interpretation.

Because it is a known obstacle endpoint, the point xi(�) is necessarily on the boundary

of the total visibility set. Even though the robot will move to a point � away from xi(�),

the robot will see a new segment of the blocking obstacle boundary because R > � and

because the obstacle boundary is transverse to @Vtot. Without loss of generality, let this

new segment be Si2 (�;
). Because the robot is at xi(�), the point s = � on @Oi must be

within the current visibility set and lie on the new segment, i.e.,

� < � <
: (4.12)

Thus, the new segment Si2 (�;
) must overlap the old segment, Si1 (�; �) (see Figure 4.5).

At step p+2, the robot could move to either xi(�) or xi(�) (See Figure 4.5). Regardless

of which of these two points the optimal path passes through, the same analysis applies as

the robot continues to navigate around the blocking obstacle.

Therefore, the robot will always see at least one new blocking obstacle boundary segment

that is contiguous with a previously known segment. In particular, the new segment will

65

be contiguous with the current blocking segment. Because the s = 0 point on the obstacle

boundary can be arbitrarily assigned, this point can always be chosen such that the above

inequalities hold.

xp

xp+1 s

�

�

�

Figure 4.5: At every step while navigating around a blocking obstacle, the robot always
sees a new segment of the obstacle boundary that is contiguous with a previously known
segment. It may see additional boundary segments that are not contiguous.

Proposition 4.4. From the time that the robot �rst encounters a blocking obstacle, it will

map a contiguous segment of the boundary until a goal-tangent point is contained in the

blocking segment, assuming there exists a goal-tangent point on the blocking obstacle. The

goal-tangent will be reached in a �nite number of steps.

Proof. The optimal paths will be tangent to the known obstacle boundaries and the goal.

Therefore, the optimal path will depart from the blocking obstacle's boundary at a goal-

tangent point. Once a goal-tangent point lies in a known boundary segment, the robot

will no longer keep moving to the endpoints of known obstacle boundaries. Instead, it will

follow the goal-tangent path.

By Lemma 4.3, the robot will always see a new segment of the blocking obstacle bound-

ary at each step that is contiguous with the previously explored boundary segment.

66

Thus, if it exists, a goal-tangent point on the blocking obstacle boundary will eventually

be contained in the newly mapped boundary segment. The robot may still continue to see

a continuous portion of the blocking obstacle as it follows the goal-tangent, but it is not

required for the algorithm. As shown below, a goal-tangent will not exist only when the

goal is not reachable.

Because the new boundary segment the robot sees is of �nite size, and because the

obstacle boundaries have a �nite size, the robot will reach the goal-tangent in a �nite

number of steps.

If the obstacle is larger than the robot's sensing range, the robot may oscillate back

and forth along the obstacle boundary as it continually �nds and follows the shortest path.

Figure 4.6 shows a hypothetical sequence of steps where the robot oscillates back and forth

along an obstacle boundary until it reaches a tangent point. The process of moving along

the obstacle until a tangent point is reached will take a �nite amount of time. At each

step, as the robot moves to an obstacle endpoint, it learns and maps a new portion of the

obstacle boundary.

Recall that as the robot follows a goal-tangent path that emanates from the boundary

of the ith blocking obstacle it will encounter one of the following three conditions:

1. The robot reaches the goal.

2. The robot encounters a new blocking obstacle.

3. The robot re-encounters the same blocking obstacle at a new unexplored boundary

segment. This will occur if the ith blocking obstacle is non-convex.

In some ways situations 2 and 3 are treated similarly. It may not initially be possible for

the robot to know whether the newly encountered blocking obstacle is indeed a new obstacle

or a previously encountered one of which it has partial knowledge. The newly encountered

blocking obstacle could be a portion of a non-convex obstacle that the robot has already

seen, as shown in Figure 4.7. The robot is �rst blocked by the obstacle at location xs. The

shortest path takes the robot along the boundary until it reaches goal-tangent T2. The

robot continues along T2 until it is blocked again. At this point the robot will search back

and forth along the obstacle boundary until it reaches T1.

Proposition 4.5. Goal-tangents are not revisited.

67

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

... Step 11

xg

xg

xg

xg

xg

xg

xg

xg

Figure 4.6: A hypothetical sequence of steps showing how Optim-Bug can oscillate back
and forth along a blocking obstacle. This also illustrates how a continuous piece of the
boundary segment is mapped out.

68

Robot path

xR

T1

T2

T3

xs xg

Figure 4.7: A hypothetical example where the robot is blocked by the same obstacle twice.
Portions of the obstacle in the robot's map are denoted by a darker color.

Proof. By de�nition, a goal-tangent will pass from a point tangent to an obstacle boundary

to the goal. If the goal-tangent the robot is following is not blocked, the robot will reach

the goal along that goal-tangent and terminate with success.

If the goal-tangent that the robot is following is blocked, the robot will encounter a

blocking obstacle along that goal-tangent line. Once the robot sees the segment of the

blocking obstacle, Si (a; b) and places it in its map, no path to the goal can lie along that

goal-tangent line, since it would intersect the obstacle segment. Thus, the robot will never

follow that particular goal-tangent again.

Lemma 4.6. 9 only a �nite number of goal-tangent lines.

Proof. Let �i(s) be a map from the ith obstacle boundary length parameter s to the angle

subtended by the line from xg to xi(s), with respect to the x-axis of a �xed global reference

frame. Because @Oi is assumed to be smooth, �i(s) is smooth.

Goal-tangent points for Oi will be local extrema of the function �i(s). Because �i(s) is

smooth, and s lies in a bounded interval, �i(s) will have a �nite number of local extrema,

and each obstacle will have a �nite number of goal-tangents. Because it is assumed that

there are a �nite number of obstacles in the environment, there are a �nite number of

goal-tangent lines.

69

Proposition 4.7. If the goal is not located inside an obstacle, i.e., the goal is reachable,

the algorithm will �nd a true goal-tangent after a �nite amount of time.

Proof. Let G be the set of goal-tangents, i.e.,

G = fgig ; i = 1; : : : ; N; (4.13)

where gi is the ith goal-tangent, and N is the number of goal-tangent lines. G can be

divided into two exclusive sets|the set of true goal-tangents, Gtrue, and the set of false

goal-tangents, Gfalse:

Gtrue =
�
gtruek

	
; k = 1; : : : ; Ntrue; (4.14)

Gfalse =
n
gfalsek

o
; k = 1; : : : ; Nfalse: (4.15)

By de�nition of the true and false goal-tangents,

Gtrue
\
Gfalse = ;: (4.16)

Lemma 4.6 implies that G has a �nite number of elements, so Gtrue and Gfalse must also

have a �nite number of elements.

When the robot starts out, it may or may not be on a goal-tangent. If it is, and it is on

g 2 Gtrue, it will reach the goal on that particular goal-tangent. If it starts out on g 2 Gfalse,

then by Proposition 4.4 it will reach a new goal-tangent after a �nite number of steps. This

new goal-tangent could be in Gtrue or Gfalse, and the process will continue. If the robot does

not start out on a goal-tangent, Proposition 4.4 implies that it will �nd one after a �nite

number of steps.

Gfalse is a �nite set. The algorithm will continually �nd new elements in G. By Propo-

sition 4.5, goal-tangents are not revisited. Either the robot will �nd a g 2 Gtrue, or it must

exhaust all elements in Gfalse, thereby eventually reaching a g 2 Gtrue after a �nite number

of steps.

Once a goal-tangent line has been explored and found to be blocked, the robot will never

follow that goal-tangent again. If the goal is reachable, at least one of the goal-tangent lines

must be wholly contained within the freespace. Because there are a �nite number of goal-

70

tangents and the robot spends a �nite amount of time to transition from a blocking obstacle

to a goal-tangent, Optim-Bug will reach the goal in a �nite amount of time if the goal is

reachable. In the worst case, the robot will explore all of the goal-tangent lines.

If the goal is not reachable, the robot will detect that the goal is enclosed in an obstacle.

Recall that Optim-Bug assumes perfect odometry and sensing, so the robot's map that is

built during its exploration will also be perfect. In the failure case, it is not necessarily true

that the robot will explore all of the goal-tangent lines before declaring failure.

Proposition 4.8. If the goal is inside an obstacle Oi, i.e., the goal is not reachable, then

the robot will circumnavigate Oi in a �nite number of steps, indicating failure. In other

words, no boundary segments of Oi will be unseen.

Proof. Assume that the goal is inside obstacle Oi. There may or may not exist goal-tangents

depending on the shape of the obstacle.

If Oi does not have any goal-tangent lines (e.g., it is convex), interpretation of Proposi-

tion 4.4 means that the robot will completely circumnavigate the obstacle without �nding

any goal tangent lines. Furthermore, this means that it will map out the entire boundary

of the obstacle as one continuous segment.

IfOi does have goal-tangent lines, by Proposition 4.4 the robot will map out a continuous

segment until it reaches one of the goal-tangents (e.g., if the goal were inside the obstacle of

Figure 4.7, there could still be goal-tangent lines). Because the goal is inside the obstacle,

any goal-tangent (even those that are tangent to other obstacles) will necessarily be blocked.

In this case, the boundary of Oi will not be mapped out in one contiguous segment.

Since the algorithm always �nds a new contiguous piece of obstacle boundary at each

step (Lemma 4.3), it will determine that the disconnected segments are all part of the same

obstacle in a �nite number of steps.

Theorem 4.9. Optim-Bug is complete.

Proof. According to Proposition 4.8, if the goal is not reachable the robot will determine

this and declare failure in a �nite number of steps.

If the goal is reachable, the robot will �nd a true goal-tangent in a �nite number of steps

by Proposition 4.7. According to Lemma 4.6, there are only a �nite number of goal-tangent

lines, and once a goal-tangent line is found to be blocked it is never revisited (Proposition

4.5).

71

Thus, Optim-Bug will determine if the goal is reachable or not and terminate in a �nite

amount of time.

In some sense, there is a list of goal-tangents that the robot can check o� one by one

as it �nds them to be blocked. In the worst case, it will end up checking all of the blocked

goal-tangents before it �nds one of the goal-tangents that reaches the goal.

4.5 Conclusion

This chapter presented the Optim-Bug algorithm, a complete and correct planner. Optim-

Bug is based on �nding and following the shortest path in the environment. Optim-Bug

assumes a point robot with a sensor that has a �nite range. Like Tangent Bug, Optim-

Bug requires perfect dead-reckoning. Optim-Bug requires the robot to keep a memory of

obstacles it has seen. Optim-Bug may prove to extend well to higher dimensions. There is

a 3-D version of Tangent Bug [21], but the proof of completeness is non-intuitive.

One possibility for improvement is in eliminating the requirement that Optim-Bug re-

member the location of every obstacle it has seen. If one placed a bound on the size of

obstacles in the robot's environment, it seems that an obstacle could be removed from the

robot's memory once the robot had moved a certain distance away from it. If the robot

could \be done" with an obstacle and guarantee that it would never see that obstacle again,

it could reduce the overall memory requirements of the algorithm.

Chapter 6 presents the Uncertain Bug algorithm, which does not require the robot to

have perfect dead-reckoning. It uses an optimization framework that is similar to Optim-

Bug's, but uses a di�erent cost function. Some of the analysis performed in this chapter

will help motivate similar analyses of the Uncertain Bug algorithm.

72

Chapter 5

Path Optimization

This chapter describes an optimization procedure used to �nd the path that a robot can

follow in order to minimize its positional uncertainty at the goal. The optimal path is de�ned

as the path that has the least robot pose uncertainty at the goal. This procedure will �nd

the entire path from the robot's current location to the goal while avoiding obstacles. In

Chapter 6, this optimization method is modi�ed to �t into a sensor-based motion planning

algorithm. Although I will talk about the optimal path, it is possible that the path generated

by the algorithm is only a local optimal, as opposed to the globally optimal, solution. The

presence of obstacles in the environment, and the non-linearity of the cost function make it

practically di�cult to �nd the globally optimal solution.

5.1 The Localization Framework

This section describes the general localization framework that is assumed for this planning

method. I use a standard Kalman �ltering approach as described in Section 2.2.2 to track

the covariance of the robot state and to perform localization. The covariance of the �lter

will play a central role in the path planning method. As in Section 2.2.2, assume that the

robot is given the location of N landmarks, as well as the covariances of these landmark

location estimates. The environment is populated with a �nite number of obstacles. The

robot's task is to plan a collision-free path from its current position to the goal location,

xg, a point speci�ed in the global reference frame. This setup is shown in Figure 5.1.

A brief summary of the setup from Section 2.2.2: The state vector x contains the

73

L1

L4

xg

L2

xR

L3

Figure 5.1: The environment setup assumed for the path planning process. The robot starts
at location xR and is instructed to travel to xg. L1, L2, L3, and L4 are landmarks that the
robot has knowledge of. The circles are obstacles that the robot must avoid.

positions of both the robot and all of the landmarks, i.e.,

x =
h
xR xL1 � � � xLN

iT
; (5.1)

where xR is the Cartesian position of the robot and xLi is the Cartesian position of the ith

landmark, i.e.,

xR =

24xr
yr

35 and xLi =
24xLi
yLi

35 : (5.2)

For the range and bearing observation model presented previously (Equation (2.27)),

the measurement of landmark i is

zi(k + 1) = xLi(k + 1)� xR(k + 1) + ni(k + 1); (5.3)

74

where ni(k + 1) is a zero-mean white Gaussian noise process with covariance

Ri(k + 1) = E[ni(k + 1)ni(k + 1)T]: (5.4)

The measurement noise need not be the same for each landmark. Range-dependent

variations are allowed in the noise model in order to accommodate many realistic sensing

situations (see Equation (5.16) below). Although all examples presented use the range

and bearing measurements, this formulation allows for any type of measurements. At each

measurement update, the robot takes a measurement of every landmark, so the entire

measurement vector and measurement covariance are given by

z(k + 1) =
h
zT1 � � � zTN

iT
; (5.5)

R(k + 1) = diag (R1; R2; :::; RN) : (5.6)

Note that in reality, not all landmarks may be visible from a given robot pose due to

limitations in sensing range. These e�ects can be incorporated into the sensor uncertainty

model (see Fig. 5.2 for an example).

The measurement matrix, H, for the measurement of all landmarks is

H(k + 1) =
h
HT

1 HT
2 � � � HT

N

iT
; (5.7)

where the Hi (the individual measurement Jacobians) are given by Equation (2.29).

As described in later sections, the primary concern is to minimize the robot's estimated

pose covariance at the goal. This makes it unnecessary to track explicitly the robot's

position estimate for a given path. Therefore the state update will not be used in �nding

the optimal path, but the covariance update (equation (2.15) will be used. In order to avoid

needless computation of the Kalman gain matrix K, the following form of the covariance

update is used:

P (k + 1=k + 1) = P (k + 1=k)� P (k + 1=k)HTS�1HP (k + 1=k); (5.8)

where the S matrix is described in Equation (2.14).

75

5.2 Cost Function

A primary concern is having the robot reliably reach a given goal position. For example, the

robot may be able to recognize it has reached the goal only when it is within a certain range,

�, of the goal. This would imply that minimizing the uncertainty of the robot's position at

the goal should be a primary objective. I choose a norm on the robot pose covariance at

the goal as the cost function of the optimization problem, i.e.,

J = jjPRR(M=M � 1)jj; (5.9)

where M is the number of steps the robot has taken to reach the goal from a given starting

position. Any norm can be chosen, each having its own interpretation. I use the Frobenius

norm, which for a matrix A is de�ned to be:

jjAjjF =
q
trace(AAT) (5.10)

=

sX
i

�2i ; (5.11)

where the �i are singular values of the matrix A. The Frobenius norm yields good numerical

behavior because it does not involve any non-smooth max or min operations. It also has

an intuitive interpretation. In this case the matrix A = PRR is symmetric and positive

de�nite, so its singular values are the same as its eigenvalues. Consequently, this norm

provides the least-squares minimization of the principle values of the robot's positional

uncertainty ellipse.

With the cost function chosen, the optimization problem is de�ned below. Let
(t) be

a robot path from the start to the goal, i.e.,
(0) = xR(0) and
(tm) = xg . Let F denote

the closure of freespace, the area of the environment not occupied by obstacles. De�ne the

feasible path set, P, as the set of paths that lie entirely in F :

P =
�

 j
(t) 2 F 8t 2 [0; tm]

	
: (5.12)

76

The problem is to �nd the lowest-cost feasible path:

min

(t)2P

J(
(tM)) (5.13)

subject to _
(t) = u: (5.14)

The following sections describe the method to solve this optimization problem.

5.3 Practical Optimization Approach

Conceptually, given the Kalman �lter framework described in Section 5.1, one could parametrize

the robot's path in terms of the velocity control inputs. Given a sequence of control inputs,

the covariance of the state estimate can be found by the application of the Kalman �ltering

equations given in Section 2.2. The robot's covariance can be propagated along the pro-

posed path by use of Equation (2.10). Wherever the robot stops to perform a measurement

of the landmarks, Equation (2.15) would be used to calculate the the robot's new position

estimate error covariance. Using the landmarks will reduce the robot's position estimate

error covariance. Because the robot has a �nite sensing range, it must be near enough to the

landmarks to be able to use them for localization. The robot could perform this landmark

measurement at every time step, or at a smaller number of positions along the path. The

controls can then be varied throughout their feasible space to �nd the lowest-cost path,

using the cost function given by Equation (5.9). As described below, I choose a slightly

di�erent and more practical parametrization that yields the same e�ect.

Because of the position-dependent measurement model, it is more convenient to parametrize

the optimization problem in terms of robot positions, or waypoints, instead of the open loop

command velocities V . A collocation approach is chosen where the robot path is discretized

into a small number of waypoints. AnM step robot path will haveM �1 waypoints, which

are denoted by

U =
h
U1 U2 � � � UM�1

i
; (5.15)

where Ui is a single waypoint on the robot path, speci�ed as the Cartesian location (xi; yi).

There are a few reasons why the path is discretized into a small number of waypoints

as opposed to �nding the continuous path. The �rst is a computational concern. Because

I use a gradient descent method, the time required to minimize an initial guess grows

77

larger and larger as the number of degrees of freedom is increased. The second reason is

a more practical one. The waypoints are the locations where the robot will stop, take a

measurement of landmarks, and perform an update to re-localize itself. A realistic robot

would likely use sensors such as lasers or cameras to �nd the landmarks. The image or

scan processing required to pick out the landmarks and solve the correspondence problem

is much greater than the processing required to propagate a step of odometry. Assuming

that the robot can continually process image or scan information at high rates is unrealistic.

It would be natural to parametrize the cost function in terms of the control inputs V .

However, such a parametrization would require parametrizing the measurement covariance

matrix R in terms of the control inputs as well, or assuming that the matrix is constant.

Assuming that the matrix R is constant everywhere is an unreasonable assumption. While

the measurement noise may be relatively constant in a region around a particular landmark,

any real sensor is bound to have a limit to its range. One way to alleviate this problem is to

make the measurement noise a function of the landmark being measured and the position

of the robot, e.g.,

Ri(k + 1) = f (xR(k + 1);xLi(k + 1)) : (5.16)

This functional form allows for many di�erent assumptions for the measurement noise.

Practically useful forms for Ri would include quadratic or exponential dependence on the

sensing range to Li. An exponential dependence provides a particularly convenient way to

include limitations in sensing range while keeping the cost function smooth. Many common

sensors, such as a laser scanner, have a �nite sensing range. Within the sensing range,

the process noise is relatively constant [1]. However, modeling the noise as a rapidly rising

exponential outside of that range e�ectively incorporates a limited sensing range.

Making an assumption such as (5.16) allows the Kalman �lter update step (Equation

(2.15)) to be parametrized in terms of the robot's path. To keep a consistent set of variables,

the propagation step (Equation (2.10)) is modi�ed to use the same optimization variables.

Making the assumption that the variance in the robot's velocity is proportional to its

velocity, i.e.,

�v = �V; (5.17)

where � is a proportionality constant, changes the variables of the propagation step to be

the path waypoints. By substituting Equations (2.24) into Equation (2.10), the covariance

78

propagation equation takes a somewhat simple form:

P (k + 1=k) = P (k=k) + �t2

24 Q(k) 02�2N

02N�2 02N�2N

35 ; (5.18)

where Q(k) is as in Equation (2.22). With (5.17) substituted in, the robot's portion of the

covariance matrix propagation step is

PRR(k + 1=k) = PRR(k=k) + �t2

24�2v2x(k) 0

0 �2v2y(k)

35 : (5.19)

Using the fact that

vx(k)�t = xR(k + 1)� xR(k);

vy(k)�t = yR(k + 1)� yR(k);

Equation (5.19) simpli�es to

PRR(k + 1=k) = PRR(k=k) + �2�P (k + 1); (5.20)

where the covariance propagation increment �P (k + 1) is de�ned as

�P (k + 1) =

24(xR(k + 1)� xR(k))
2 0

0 (yR(k + 1)� yR(k))
2

35 : (5.21)

The robot is implicitly constrained to seek the goal during the �nal step. Hence, the �nal

propagation increment is

�P (M) =

24(xg � xR(M � 1))2 0

0 (yg � yR(M � 1))2

35 :
The �rst propagation increment �P (0) is similar, but is a function of the robot's starting

location, x0.

The goal of Chapter 6 will be to show how to incorporate these ideas into a true sensor-

based motion planning algorithm. To do this, the algorithm must incorporate sensing of

79

obstacles. It is assumed that obstacles block sensing of other obstacles, but not sensing

of landmarks. One way to handle obstacles in the optimization process is to use them as

constraints. Tangent Bug can be thought of in this way, where the cost function is simply

the path length, and the viewable obstacles are state constraints. Another possibility would

be to augment the cost via a penalty-function [51] for violating the constraints. I choose

the former, i.e., the path cannot intersect any obstacles. For all simulations, the obstacles

are simply modeled as circles. For illustration purposed, speci�c formulas for incorporating

disk obstacles as constraints are included in Appendix B.

The optimization problem can now be de�ned in more detail as follows: Given a start

location, a goal location, and the number of path steps M , �nd the set of waypoints

[U1; U2; : : : UM�1] that minimize the cost function J ([U]), as de�ned in (5.9). There are

multiple methods one could use to minimize the cost function. One possibility is minimiza-

tion via enumeration [24]. If the waypoints were discretized into a grid with CU cells, the

cost of every path of M steps could be calculated. This would be guaranteed to yield the

minimum cost path, but it has computational cost of O(CM�1
U) [24]. Even for a 20�20 grid,

which is quite small, there are 64 million paths with three waypoints. To keep computation

times to a minimum, a gradient descent method is used. Of course, using gradient descent

will only �nd a local minimum of the cost, not necessarily the global minimum. A separate

step is required to identify all of the locally minimal paths.

5.4 Initial Condition Generation

Using a gradient descent method to solve the optimization problem implies that the solution

will only be a local optimum, and not necessarily the globally optimal solution. Which

locally optimal solution is converged upon is highly dependent on the initial conditions. To

improve the chance of �nding the global optimal, the algorithm �rst generates a number of

initial conditions that take \di�erent" paths through the environment. Each of these initial

conditions is optimized in turn, and in the end the one with the lowest cost is chosen.

I propose and use a simple heuristic to generate a variety of initial conditions. First, the

local tangent graph (LTG) at the robot's start location is constructed. This construction

ensures that there are paths that leave on both sides of physical obstacles in the robot's

vicinity. To generate one set of initial paths, a path is constructed that goes from the robot's

80

start position to an LTG node, then to a landmark, and �nally to the goal. These paths

can be thought of as ones that detour to take advantage of the landmarks. This is repeated

for all combinations of LTG nodes and landmarks. If there are n nodes in the LTG and m

landmarks, this �rst set will contain n�m initial paths.

Another set of paths is created that goes directly from the robot's current position to a

landmark, to a second landmark, then directly to the goal. This set of paths is similar to

the �rst set, but it is not constrained to pass near an obstacle.

A third set of paths is created that goes from the robot start, to an LTG node, then

directly to the goal. These paths can be thought of as taking the direct route around an

obstacle to the goal. This second set will contain n initial paths. In many situations,

multiple initial conditions will converge to the same solution (within numerical accuracy).

There are many other options that one could use to create more initial conditions.

Instead of initial paths that visit only two landmarks, paths that visit m landmarks could

be generated. Because the robot has complete knowledge of the obstacles, creating the LTG

with a larger sensing radius than the robot's sensor has could be used to create initial paths

that \weave" around di�erent sides of obstacles. A completely di�erent construct, such as

the generalized Voronoi graph [10] could be used also to create initial paths that pass on

di�ering sides of obstacles. Of course, the more initial conditions that have to be optimized,

the slower the overall algorithm will become.

5.5 Results

To illustrate the performance of this method, this section presents a sequence of simulation

results that involve di�erent numbers of waypoints, landmarks, and obstacles. These simu-

lations model a point robot with an on-board landmark sensor whose uncertainty model has

an exponential dependence on the range to the landmark. Speci�cally, the range-dependent

measurement variance follows the form:

�2i (k + 1) = � + exp (
(ri(k + 1)� rmax)) ; (5.22)

81

0 0.5 1 1.5 2 2.5 3 3.5
10−1

100

101

102

103

Range

M
ea

su
re

m
en

t V
ar

ia
nc

e

Figure 5.2: Sample measurement variance pro�le as a function of range. � = :1,
 = 10,
and rmax = 3. Note that the y-axis scale is logarithmic.

where � and
 are chosen to give a realistic pro�le, rmax is the sensor's maximum useful

range, and ri is the range to the landmark Li, i.e.,

r2i (k + 1) =
h
xR � xLi

iT h
xR � xLi

i
: (5.23)

The parameter � can be thought of as the nominal measurement variance, while
 a�ects

how quickly the exponential increases. Then the matrix Ri(k + 1) is simply

Ri(k + 1) =

24�2i (k + 1) 0

0 �2i (k + 1)

35 : (5.24)

An example of this pro�le is shown in Figure 5.2. It can be seen that as the measurement

range increases past rmax, the noise variance increases dramatically. From the perspective

of using the measurement in a Kalman �lter, the landmark becomes invisible. This model

allows the sensor's �nite range to be taken into account, while maintaining continuity of

the variance.

82

The following results consider di�erent scenarios where the robot goes out of its way

to use the landmarks. For all examples, the initial covariance of the robot is zero, and all

landmarks have initial covariances of

PLiLi =

24:1 0

0 :1

35 : (5.25)

Additionally, the value of the base measurement variance for Equation (5.22) � = :1, the

sensor range rmax = 3, and the multiplier
 = 10. Finally, the odometry noise proportion-

ality constant � = 0:15. These are all reasonable numbers for a real mobile robot.

All simulations were implemented in Matlab using the fmincon function to perform

the minimization of the cost function. The fmincon function �nds the minimum of a

constrained non-linear multi-variable function. The computer used for all simulations is a

2.8GHz Pentium 4 processor with 1.5 GB of RAM.

5.5.1 Robot Drives Past the Goal

The �rst example consists of only a single landmark with no obstacles. The landmark is

located so that it is out of the sensor's e�ective range for all points along the straight-line

path to the goal. The simulation result (Figure 5.3) illustrates the utility of using the

landmark in the path planning process. If the robot were to take the straight line path to

the goal, it would not get close enough to the landmark to use it for localization. However

the path that minimizes the cost takes a detour to use the landmark. The �nal cost for the

detouring path is 0.075. For comparison purposes, the �nal cost for the straight line path

(in this case the shortest path) is 0.09. While this is not a large decrease in the cost, it

illustrates the value of using this method in even simple situations.

For this simple example, there were three initial conditions generated. The time required

to optimize all initial conditions was 0.73 seconds. It is interesting to note that the path only

goes close enough to the landmark to enter the region where the sensing noise is relatively

constant. There is no need to drive all the way to the landmark, as doing so would only

increase the cost due to the extra odometric error.

83

Figure 5.3: Example where the robot initially drives past the goal in order to use a landmark.
For simplicity, the sensing range is plotted about the landmark - if the robot moves inside
of that circle, it is close enough to see the landmark.

5.5.2 Robot Follows the Landmarks

The second example shown in Figure 5.4 consists of a scenario with multiple landmarks and

no obstacles. There are four waypoints for this example. There were 31 initial conditions

generated for this example, and a total run time of 39.5 seconds. The cost for the optimized

path is 0.049, and the cost for the straight-line path is 0.09. Thus, there is a substantial

reduction in �nal uncertainty when landmarks are taken into account.

Except for the two landmarks nearest the goal, the other landmarks in this example are

far enough apart that no two landmarks can be seen at once by the robot. Because of this,

the optimal path takes short steps from one landmark to the next. Another interesting

result is the location of the third waypoint. It lies in an area where multiple landmarks are

within the sensing range. Incorporating measurements from multiple landmarks during an

update allows for a greater reduction in the estimate error than using just one landmark.

It makes sense that these multi-view regions are optimal locations for an update.

84

Figure 5.4: A multi-step path where the robot signi�cantly deviates from the shortest path
in order to use the landmarks.

5.5.3 Examples with Obstacles

Obstacles are used as constraints during the optimization process. The results from Ap-

pendix B were implemented to incorporate disk obstacles into the simulation. Figure 5.5

shows an example with some obstacles in the environment. It is similar to Figure 5.3 in

that there is a landmark nearby, but past the goal. The cost for the optimized path using

the landmarks for localization is 0.039, while the cost of the shortest path is 0.091. This

example had 31 initial conditions, and the total run time was 299.6 seconds. As in the �rst

example, the robot does not go directly to the goal, but �rst uses the landmark L5 near

the goal. This time, the optimal path also passes by the landmark L1 to further reduce

the expected uncertainty at the goal. This example demonstrates that even in the presence

of obstacle constraints, the optimization procedure still �nds a low-cost path through the

environment.

Figure 5.6 shows results for the same landmark con�guration as that of Figure 5.4, but

with obstacles in the environment. The cost of the optimized path using the landmarks

85

Figure 5.5: An simple example with obstacles.

is 0.056, while the cost of the shortest path is 0.093. There were 31 initial conditions for

this example, with a total runtime of 121 seconds. The obstacles were placed such that

they blocked the original optimal path. As the �gure shows, the optimal path still follows

the trail of landmarks, but it also closely skirts the obstacle boundaries. The optimization

procedure uses the landmarks for localization, while still attempting to keep the path as

short as possible.

5.6 Summary and Discussion

This chapter presented an optimization method that minimizes the robot's expected pose

uncertainty at the goal. This o�-line method assumes full knowledge of all obstacles in

the environment. Simulation results clearly show the utility of explicitly using landmarks

as part of the path planning process. This allows the robot to \go out of its way" to use

landmarks to aid in its localization. Path length is traded o� with localization capability.

One of the weaknesses of this method is its reliance on good initial guesses. Because

86

Figure 5.6: The same landmark con�guration as that of Figure 5.4. Obstacles were placed
to block the original optimal path.

the method is based on a gradient descent approach, the algorithm may end up missing a

lower-cost path because none of the initial guesses lie within the basin of attraction for that

particular local minimum. The heuristic described in Section 5.4 performs reasonably well

most of the time, but of course it is not perfect.

An interesting possibility for the future would be to understand better the properties of

the cost function. There are an in�nite number of paths that go from the robot's current

position to the goal and pass through a particular point. The robot is only interested in the

\best" path that passes through a particular point, though. The surface de�ned by the cost

of the best path through a particular point may have properties that could be exploited to

more e�ciently solve the problem.

However, this is just the �rst step towards bridging the gap between the �elds of sensor-

based motion planning and SLAM. In order to make this method a fully sensor-based

algorithm, the full knowledge assumption must be removed. The robot will have to use its

on-board sensors to incrementally build up its knowledge of the world, and appropriately

87

replan its path. The following chapter presents one algorithm to do this, called Uncertain

Bug.

88

Chapter 6

Uncertain Bug

This chapter presents the Uncertain Bug algorithm. Uncertain Bug is a sensor-based mo-

tion planner that incorporates knowledge of landmarks and takes into account the robot's

localization ability and uncertainty along a path. Uncertain Bug makes heavy use of the

optimization procedure presented in Chapter 5. The main di�erence between the setup for

Uncertain Bug and the setup for the optimization procedure presented in Chapter 5 is that

the robot does not have prior knowledge of the location of any obstacles in its environment.

The localization uncertainty that the cost function captures comes about from numerous

sources. One source is the robot's imperfect odometry. The robot may be integrating

accelerations and angular rates from a gyro to estimate its position. Or it may be counting

the number of ticks on an encoder. Regardless of how the robot performs its odometry,

it will be an imperfect estimate whose uncertainty grows with distance traveled. Another

source of localization error is the landmarks. When the robot uses the landmarks to localize

itself, the landmark's positions will be known imprecisely. Even if the landmarks were

known perfectly, any realistic sensing process will return an imperfect measurement of the

landmark positions.

The basic problem setup is discussed in Section 6.1. A description of the Uncertain Bug

algorithm is given in Section 6.3, with particular attention given to the e�ects of uncertainty

on the motion planning process. Properties of the algorithm are given in Section 6.4, and

simulation results are presented in Section 6.5.

89

6.1 Setup and De�nitions

Before explaining the Uncertain Bug algorithm the basic setup of the problem is described,

which parallels that of the optimization method presented in Chapter 5. Pertinent details

and important di�erences are presented in this section, but other similar aspects are left

out for brevity. Please see Chapter 5 for the complete setup.

The position of the robot with respect to the global reference frame will be denoted by

xR. The robot is modeled as a point moving in a plane, so

xR =

24xr
yr

35 : (6.1)

The robot is instructed to move from its current position to some goal con�guration, which is

speci�ed in the global coordinate system. The goal con�guration will generally be speci�ed

as an (x; y) pair in the plane, i.e.,

xg =

24xg
yg

35 : (6.2)

Before starting its task, the robot is given the position of N landmarks. The Cartesian

position of the ith landmark in the global reference frame is denoted by xLi:

xLi =

24xLi
yLi

35 : (6.3)

The location of the landmarks may be uncertain, and the robot is equipped with a sensor

capable of making noisy measurements of the landmark positions and detecting obstacles.

This sensor has a �nite sensing range, R, unless otherwise noted. For particulars on the

landmark measurements, see Sections 5.1 and 2.2.2.

The state of the entire system is simply the state of the robot and all landmarks:

x =
h
xR xL1 � � � xLN

iT
: (6.4)

The estimate of the state is not assumed to be perfect. It is assumed that the robot is

equipped with an estimator such as a Kalman �lter (See Section 2.2) that can provide

estimates of the state as well as the state estimate error covariance. The estimate error

90

L1

L4

xg

L2

L3

xR

r

Figure 6.1: Setup assumed for the Uncertain Bug algorithm. The robot does not know the
position of obstacles in the environment. The robot's sensor has a �nite sensing range, r.

covariance will have a block structure:

P =

24PRR PRL

PLR PLL

35 ; (6.5)

where PRR is the 2� 2 covariance matrix of the robot's position error, PLL is the 2N � 2N

matrix of landmark position error covariances, and PRL = P T
LR are the cross-coupling error

covariances. It is not assumed that the landmarks are known perfectly, so PLL need not be

all zeros. The robot is assumed to have initial covariances for all landmark locations.

While the cost function used for Tangent Bug and Optim-Bug is the robot's total path

length, Uncertain Bug uses a cost function that aims to minimize the expected positional

uncertainty at the goal:

J = jjPRR(M=M � 1)jj; (6.6)

where M is the number of steps the robot has taken to reach the goal, and PRR(M=M � 1)

is the covariance of the robot position estimate error at step M , given all measurements up

to step M � 1. Also recall that the norm is the Frobenius norm (See Equation 5.11).

It is assumed that if the robot is closer than a distance of � to the goal, it will be able

91

to identify the goal and the algorithm will terminate with success. Presumably, when the

robot is within � of the goal, it could use a local feedback algorithm such as visual servoing

to guide its �nal adjustments. This assumption places a limit on the (expected) maximum

magnitude of the robot's position estimate error covariance at the goal. In order to decide

whether or not a given path meets this criteria, some level set of the robot's covariance

matrix is chosen, and the assumption made that the robot will lie in that set. For example,

one could pick the 3� level, which translates to a 99.7% chance that the robot will be in

that region. Let Ug denote the maximum dimension of the robot's covariance ellipse for a

particular level set, i.e.,

Ug = c max
i

p
�i (PRR(M=M � 1)); (6.7)

where c is a parameter that describes which particular level set is chosen, and �i (PRR) is

the ith eigenvalue of the matrix PRR. I generally choose c = 3, although any other level

could be chosen. If a particular path reaches the goal with Ug < �, the path is said to be

feasible, or has acceptable uncertainty.

6.2 Motivation and Background

Algorithms such as Tangent Bug and Optim-Bug are useful because of their completeness

property. But their assumption of perfect dead-reckoning makes them di�cult to implement

in realistic situations and renders any proof of convergence unworkable in practice.

Thrun's coastal navigation approach is one step towards combining the path planning

problem with localization methods [46, 47]. They model the information content of all

con�gurations in the environment, including the possibility that measurements could be

corrupted (by a previously unknown moving obstacle, not just the statistical process noise).

However, the coastal navigation approach requires a prior map of the environment in order

to create this \information map."

One would like to be able to show that if there is a path from the start location to the

goal, then the robot will �nd this path and reach the goal even in the presence of uncertain

robot positions and noisy sensor measurements. Unfortunately it is not necessarily the case

that the robot can reach the goal (even if the goal is reachable) with uncertain position

92

measurements. The robot must learn about the location of obstacles in the environment.

When encountering new information, the robot must often make choices between multiple

alternative paths. It may make a choice that causes it to fail to be able reach the goal with

some given level of positional uncertainty. For example, if the robot had chosen to go \left"

around an obstacle instead of \right," it would have reached the goal successfully. This

issue is discussed in more detail in Section 6.3.1.

6.3 The Uncertain Bug Algorithm

The goal of the Uncertain Bug algorithm is to �nd a path through an a priori unknown

environment so that the robot reaches the goal with acceptable uncertainty, even in the

presence of sensing and localization errors. This section presents a short overview of the

Uncertain Bug algorithm, followed by more detailed discussion. Uncertain Bug has a sin-

gle mode of operation|that of computing the optimal path to the goal and following it.

Uncertain Bug uses the path optimization procedure from Chapter 5, but does so in an

incremental manner. Because the robot does not know a priori the location of any obstacles

in the environment, it must re-calculate its path when it encounters a new obstacle and

gains more information about the world. In summary, the main step of the Uncertain Bug

algorithm operates in the following manner:

1. Take a view of the world, i.e., compute the current visibility set v(xk) and then update

the total visibility set Vtot with the newly gathered information.

2. Calculate the optimal path to the goal (using the optimization procedure presented

in Chapter 5), taking into account knowledge of the environment obtained so far.

Practically, this optimization step proceeds through these steps:

(a) Generate a number of initial guesses.

(b) Minimize the cost of each initial guess.

(c) Check the cost of all of the optimized initial guesses. If none of them reaches

the goal with Ug < �, the goal cannot be reached from the current position with

acceptable uncertainty. Terminate with failure. Additional termination criteria

are discussed below.

93

3. Follow the optimal path to the edge of the total visibility set, or to the goal if the

path is contained within the current visibility set. If the robot is within a distance of

� the goal, terminate with success. If not, continue.

Uncertain Bug is similar to Optim-Bug in that it always computes the optimal path to

the goal at each step given currently available information. But in Uncertain Bug, the aim is

to minimize the robot's expected position estimate error covariance at the goal. Uncertain

Bug relies heavily on the optimization approach of Chapter 5. Recall that this optimization

process required knowledge of all obstacles in the environment. The obstacles are used as

constraints|the path cannot intersect any obstacle. In Uncertain Bug, the robot only takes

into account the obstacles that it has seen from its starting position to its current position.

As in the Optim-Bug algorithm, the robot must remember the locations of the obstacles

it has encountered in the environment. This is simply a binary obstacle map, where a

position is either impassable (an obstacle) or passable (freespace). This memory requirement

is due to the nature of the optimization process|the obstacles are used as constraints in the

path optimization process. The obstacle information stored in the map will also be subject

to uncertainties. Issues that arise from map errors are discussed in Sections 6.4 and 6.6.

It is assumed that when the robot is moving within Vtot, it uses a local obstacle avoidance

scheme to miss any collisions that could arise due to the obstacle location and navigation

uncertainty. As the robot sees more and more of the world, it can more accurately calculate

the optimal path to the goal, or determine that the goal is unreachable.

Similar to Tangent Bug and Optim-Bug, the robot will never take a step beyond the

region of the world that it currently knows about. It will only follow the current optimal

path to the extent of its current knowledge. After that step, the robot will learn more

information about the world that will allow it to make a more accurate calculation of the

optimal path to the goal. In some cases, the optimal path will not change at all. In other

cases the robot will see an obstacle that blocks the optimal path it calculated in the last

time step. This new information will be incorporated into the robot's map, which is then

used to �nd a new feasible path to the goal, if one exists.

94

6.3.1 E�ects of Uncertainty

Recall that the main idea is for the robot to reach the goal reliably. This is the motivation for

the choice of the cost function. One way to visualize the e�ects of localization uncertainty

on the motion planning process is through level sets of Ug. Consider a surface in R
3 where

the height of the surface is equal to the value of Ug for the optimal path from that point

to the goal. Recall that � is the acceptable uncertainty at the goal. Choosing a particular

value of � can be thought of as slicing through the uncertainty surface with a plane at a

height of �. For any point where Ug � � is a con�guration from which the robot could not

reach the goal with acceptable uncertainty.

If the robot knew the entire world geometry ahead of time, it could calculate the exact

shape of this surface and immediately report whether or not it could reach the goal with

acceptable uncertainty from its start location. But because it does not know the obstacle

con�guration, it can only make a guess at what the surface looks like, given its current

knowledge. As it moves through the environment and learns more information about the

obstacle con�guration, the shape of the surface that is based on available knowledge will

change as some paths become inaccessible because they are blocked by physical obstacles.

As previously noted, any point on this surface where Ug � � is a point where the

robot cannot reliably reach the goal within the given distance threshold. Connected regions

where Ug � � can be thought of as uncertainty obstacles, because they are regions of the

con�guration space that the robot must avoid. If the robot ever steps into an uncertainty

obstacle, it can no longer guarantee that it will reach the goal with acceptable uncertainty,

and must report failure. It may seem that the algorithm should just make sure that it

never ventures into one of these uncertainty obstacles. Unfortunately, the geometry of the

uncertainty obstacles is a function of the geometry of physical obstacles that may lie far

ahead of the robot and outside of its current knowledge. The di�culty is that because the

robot doesn't know the uncertainty obstacle con�guration, it may not know it has stepped

into one until it is too late.

Consider a scenario where there is one obstacle in the environment, but outside of the

robot's initial sensing range. Also assume that the con�guration of the landmarks is such

that there are only two locally optimal paths that reach the goal with Ug < �, but one of

these paths passes through the obstacle. This setup is shown in Figure 6.2. Because the

95

xg

L1

xR

xStart

L2

2

1

Figure 6.2: Hypothetical example where the robot chooses a path that causes it to step into
an uncertainty obstacle.

robot does not know about the obstacle from its start position, it picks the path with the

smallest cost. Assume that it chooses the path that intersects the obstacle, which is
1 in

the �gure. A few steps later, the obstacle enters the robot's sensing range. At that point,

the robot realizes that the path it was following no longer reaches the goal with acceptable

uncertainty because of the added path length needed to circumnavigate the obstacle. In

addition, it has accrued enough uncertainty that it can no longer re-route to the other path

and still reach the goal with acceptable uncertainty. So the robot will not know that it is

stepping into an uncertainty obstacle until it has already done so. Thus, it is not generally

possible to guarantee completeness of the algorithm. The strongest statement that can be

made about convergence is that the algorithm will halt in a �nite amount of time.

An interesting property of these uncertainty obstacles is that they will only grow in size

as the robot learns more about the environment. They will never become smaller. Let F�

denote the region of freespace from which the robot can reach the goal with Ug < �, i.e,

F� = fq j q 2
(t);
(t) 2 P�g ; (6.8)

where P� is the set of all paths that reach the goal with acceptable uncertainty,
(t) is a

particular path, and q 2 R2 is a robot con�guration. Let UO denote the set of uncertainty

96

obstacles. The uncertainty obstacles are the parts of freespace not in F�, i.e.,

UO = F n F�: (6.9)

With no obstacles in the world, F� could be calculated exactly from the start. It would be a

function of landmark locations, sensing uncertainty, and odometric uncertainty. But as the

robot learns about the location of more obstacles, the set of available con�gurations q in F�

will be reduced. Going back to the surface analogy, it is as if more and more con�gurations

end up above the level set of Ug = �.

6.4 Uncertain Bug Algorithm Properties

The following proofs of the properties of the Uncertain Bug algorithm will assume that the

goal is not placed inside an obstacle, i.e., the goal is physically reachable. Discussion of

what happens when the goal is inside an obstacle follows in Section 6.6.

To be able to say anything concrete about the algorithm, one must make certain as-

sumptions about the performance of the underlying optimization process. The optimization

process must return a feasible path if one exists. Practically speaking, this means that the

optimization process is implemented perfectly. Of course in reality this may be di�cult.

Because the optimization process uses a gradient descent method, if there is not an initial

condition generated that lies in the basin of attraction of the global minimum, that path

will be overlooked.

Axiom 6.1. Given Vtot(xk), the optimization algorithm of Chapter 5 will return a locally

optimal, feasible path if one exists, or return with failure.

Success or failure of Uncertain Bug depends on the size of the robot's covariance at

the goal. If the robot's method for tracking this covariance is faulty, then the robot may

think that a path is feasible when in fact it is infeasible. So it must be assumed that this

covariance re
ects the true estimate error covariance. This means that all of the parameters

that a�ect the estimate such as the odometry noise, the sensing noise, and the landmark

position estimate covariances are correct.

Axiom 6.2. The robot's covariance estimate is correct.

97

If the covariance estimate is conservative, i.e., it always bounds the true estimate, then

this could cause the robot to prematurely terminate with failure even if there still exists a

path to the goal with Ug < �. However, if the covariance estimate is overcon�dent, then the

robot may think that the goal is still reachable with acceptable uncertainty when it is not.

One can assume that freespace is bounded, as could be the case in an o�ce-like envi-

ronment or the surface of Mars (which is large, but still bounded). On the other hand, a

few intuitive arguments can be used to place a tighter bound on F�.

Lemma 6.1. Let there be N landmarks, each at a location (Lix; Liy), in a bounded set.

The landmark positions are imperfect. The robot is modeled as a point operating in R2

with a position of (xR; yR), and is equipped with a sensor with a �nite range, R. The

robot's odometry is assumed to be such that the variance in its velocity is proportional to

the velocity, i.e., �v = �V . The goal is at a position of (gx; gy).

Under these conditions, the region of freespace from which the robot can reach the goal

with Ug < � is bounded.

Proof. Given the setup described above and further described in Sections 5.1 and 6.1, F� is

bounded by the union of the squares given by the following inequalities:

max (jLix � xRj; jLiy � yRj) <
R

3�
(6.10)

max (jgx � xRj; jgy � yRj) <
�

3�
(6.11)

That is, if any of the inequalities are violated, then the robot is guaranteed to not be in F�.

Derivations of these conditions are given in Appendix D.

Lemma 6.2. At each step, the robot will see a new part of the world, i.e., Vtot will grow,

or the algorithm will terminate with failure due to localization errors.

Proof. The proof follows that of Lemma 4.1 for Optim-Bug, with an additional termination

condition caused by localization errors. The robot is assumed to have moved to xk+1 from

xk.

By de�nition of the algorithm, the robot will always follow the current optimal path to

the edge of Vtot. Although the robot is assumed to move a distance of � (not necessarily

the same � within which the robot must reach the goal), because the sensing range, R, is

98

greater than �, there will be a �nite-sized region of F that the robot will view for the �rst

time.

As long as the termination criteria discussed below is not violated, the robot is guaran-

teed to see a new part of the environment, and as such Vtot will grow at each step.

If the additional uncertainty accrued by moving from xk to xk+1 is greater than R� �,

then it cannot be guaranteed that the robot will see a new part of it's environment at step

k + 1. When this occurs, the algorithm must terminate with failure.

Otherwise, by analysis of Lemma 4.1, the robot will see a new portion of the environment.

This additional termination condition can be illustrated as follows: Consider an example

where the robot has mapped a relatively large Vtot. Recall that the algorithm dictates that

the robot will always follow the optimal path to the edge of Vtot. If at the next step the

robot drives a long distance across Vtot, the localization errors accrued from that step alone

could become large enough such that the algorithm cannot guarantee that the robot will

see a new part of F .

xg

xR

L2

x2

O1

O2

L1

Vtot

Figure 6.3: Figure illustrating an extra termination condition for Uncertain Bug. The next
robot path is shown by the dashed line. The robot will follow the path to the point labeled
x2.

A hypothetical scenario where this condition could arise is illustrated in Figure 6.3. The

next robot path is shown by the dashed line. By de�nition of the algorithm, the robot will

step to location x2. If any dimension of the covariance ellipse grows by a value of more than

R� �, then that means it would be possible for the robot's true position to lie at the center

99

of one of the past visibility sets, vk, in which case the robot will not see a new part of the

environment.

Proposition 6.3. Uncertain Bug will not terminate with failure unless no feasible path to

the goal exists from the robot's current position, xk, or localization errors are too large to

continue.

Proof. By Axiom 6.1, the optimization algorithm will return a feasible path to the goal if

one exists, or return with failure. This guarantees that the robot will always get a new

path if the goal is still reachable with Ug < �. Alternatively, the algorithm will return with

failure if a path does not exist.

Therefore, Uncertain Bug will not terminate with failure unless no feasible path exists,

or the localization errors are too large to continue.

Proposition 6.4. Uncertain Bug will terminate in a �nite amount of time.

Proof. If the robot knew the con�guration of all obstacles prior to starting, it could imme-

diately calculate whether or not there exist any feasible paths to the goal. But Uncertain

Bug does not assume prior knowledge of obstacles|the robot must map the obstacles as it

attempts to reach the goal.

Because of Lemma 6.1, the total area that the robot could map out is �nite. Because

of Lemma 6.2, the robot will see a new portion of this bounded area at every step.

In the worst case, the robot will explore all of F� before determining that the goal is

reachable or not. This will occur in a �nite amount of time, because the robot sees a new,

�nite-sized portion of F� at every step. The robot will reach the goal before mapping all of

F�, or terminate after a �nite number of steps because all of F� has been seen and no path

to the goal exists with acceptable uncertainty.

Therefore Uncertain Bug will terminate after a �nite amount of time.

Two di�erent termination scenarios can occur as a result of errors introduced into the

map. These errors are directly caused by the robot's positional error. However, the map

errors only a�ect cases where the optimal path is very near the threshold of Ug > �. If the

optimal path has Ug � �, small errors in the map will not a�ect it greatly enough.

In one case, the robot may think the goal is not reachable with acceptable uncertainty

because an obstacle placed (incorrectly) in the map blocks any path with Ug < �. If the

100

obstacle were placed correctly in the map, the robot would determine that the goal is still

reachable with acceptable uncertainty. In this case, Uncertain Bug will still terminate in a

�nite amount of time. Although the goal is reachable with Ug < �, the robot has no way of

knowing this. The map it builds is the best information it has available.

A second situation can occur where the robot thinks the goal is still reachable with

acceptable uncertainty when it is not. In this case, the errors in the map lead the robot to

be overcon�dent. The robot continues following the optimal path to the goal (which has

Ug > �), but will eventually discover new information that leads it to conclude the goal is not

reachable with acceptable uncertainty. For example, the robot's local obstacle avoidance

scheme could cause it to drive farther than expected. Thus, the robot will eventually

determine that the goal is not reachable with acceptable uncertainty. Although errors in

the map can cause undesirable termination, Uncertain Bug will terminate in a �nite amount

of time.

6.5 Simulation Results

Simulations have been performed using the optimization algorithm as presented in Section

5. Recall that this method uses gradient descent to optimize a number of initial conditions.

The initial guesses are created using the heuristic described in Section 5.4. Representative

results are presented to illustrate performance of the algorithm. For all simulations, the

value of �, the odometry noise parameter, was set at 0:15. Recall that an exponential model

for the sensing noise is used in order to help keep the cost function smooth. See Sections

5.3 and 5.5 for details. For these sensing noise parameters, � = 0:1, and
 = 10. All initial

landmark covariances were set to diag(0:1; 0:1). The robot's sensing range is 3 units. Note

that in all plots, landmarks have a circle of a radius equal to the robot's sensing range

plotted around them. So if the robot lies within the circle, then it can see the landmark.

Recall that it is assumed that obstacles block sensing of other obstacles, but that obstacles

do not block sensing of landmarks.

Figure 6.4 shows a complete simulation run of Uncertain Bug with two obstacles and

three landmarks in the environment. The robot does not know about the obstacles when it

begins. For this example, the robot requires 17 steps to reach the goal. The �nal cost at the

goal is only 39% of the cost of the Tangent Bug path, i.e., the robot reaches the goal with

101

Figure 6.4: A simulation of Uncertain Bug. The Tangent Bug path is shown as the pink
dashed line. Final cost at the goal is 39% of the cost of the Tangent Bug path.

much less positional uncertainty than Tangent Bug. Because the path is chosen to exploit

the landmarks for better localization, the robot has a much reduced position estimate error

at the goal.

Figure 6.5 shows detailed results from the ninth and tenth steps along the robot's path

to the goal. When the robot plans step number 9, it does not know about the obstacle.

Because of this, the optimal path from the robot's start position for step 9 passes through

the obstacle. Upon executing step 9, the obstacle is within the robot's sensing range.

This obstacle is incorporated into the robot's map, and the new plan takes this obstacle

into account. Step 10 appropriately avoids the obstacle, while still attempting to use the

landmarks for an improved position estimate at the goal.

Figure 6.6 shows results from a simulation run of Uncertain Bug with nine obstacles in

the environment. The �nal cost of the Uncertain Bug path is only 32% of the cost of the

Tangent Bug path. As in previous examples from Chapter 5, the robot makes use of the

landmark near the goal (L5). It may seem that the robot should follow the locally shortest

path (the Tangent Bug path) to landmark L1, as opposed to the path it chooses. In this

102

Figure 6.5: The planned path for steps 9 and 10. Note that when the robot sees the obstacle,
it re-plans the path, taking into account the new information about the world.

example, there was no initial condition generated that passed between the obstacles like the

locally shortest path does.

6.6 Discussion

This chapter presented a new sensor-based motion planning algorithm called Uncertain Bug.

Uncertain Bug aims to minimize the expected robot position estimate error covariance at

the goal, in order to improve the chances that the robot will be able to move close enough

to the goal to recognize it. Given the assumptions presented, Uncertain Bug is guaranteed

to terminate in a �nite amount of time. Unfortunately, it is not possible to guarantee that

103

Figure 6.6: A simulation of Uncertain Bug. The Tangent Bug path is shown as the pink
dashed line. Final cost at the goal is 32% of the cost of the Tangent Bug path.

the robot will reach the goal using Uncertain Bug, even if a path to the goal exists.

If the goal is not physically reachable, i.e., it lies inside of an obstacle, Uncertain Bug will

still terminate in a �nite amount of time. The fact that that map itself is uncertain makes

this situation much more di�cult to recognize than in the case of perfect dead-reckoning

(such as Tangent Bug or Optim-Bug). To guarantee that the goal is enclosed in an obstacle,

the robot would need to drive an extra distance around the obstacle. This extra distance

would be on the order of the robot's positional uncertainty. In e�ect, the robot would be

making sure that it has seen enough \overlap" in the obstacle boundary to be certain that

the obstacle is closed around the goal. If the robot had the capability to recognize features

on obstacles, then it could verify that it had circumnavigated an obstacle by identifying the

same feature.

This type of algorithm that takes the robot's localization capability into account as part

of the planning process would be useful in wide-ranging situations. For robotic planetary

exploration, a rover may have a small number of landmarks from either an overhead satellite

or from a rover that has navigated the same area in the past. Another scenario is that of

underwater navigation. Underwater environments typically have a sparse number of features

104

that can be used for localization. Both of these examples could beni�t from an algorithm

such as this.

While I have outlined the di�erent termination conditions, the robot could still continue

seeking the goal once some of the termination criteria are met. The termination conditions

that deal with the size of the robot's uncertainty do not guarantee that there is not a

path that reaches the goal, just that there is no path that reaches the goal with acceptable

uncertainty. It is entirely possible that the robot could continue planning paths to the goal,

\get lucky," and �nd the goal. Of course, the robot could also continue for an indeterminate

amount of time while trying to do this.

Further insights could be gained into the properties of the algorithm if one considered

the limit as uncertainty goes to zero. Of course, if there is no uncertainty, the cost func-

tion will be zero everywhere. The current cost function implicitly encodes path length, as

longer paths will accrue more odometric uncertainty. This analysis could require adding an

independent path-length parameter to the cost function to account for this.

Another possible extension of this work would be to determine if there are cases where

completeness could be guaranteed. Is there some single (or a small number) parameter that

describes the di�erent values of the noise (odometry, sensing, landmark) that can be used

to prove completeness? For example, if one can place a worst-case bound on the maximum

level of positional uncertainty in the environment, what other conditions need to be met to

be able to guarantee that the robot will reach the goal if the goal is in fact reachable?

105

Chapter 7

Conclusion

7.1 Summary of Contributions

I have developed and presented new tools and algorithms for mobile robot navigation. The

weighted scan-matching method of Chapter 3 can be used as a much improved form of

odometry. Optim-Bug, presented in Chapter 4, is a complete and correct sensor-based

motion planning algorithm. Chapters 5 and 6 describe a method to �nd the path that

minimizes the robot's position error at the goal, and an associated sensor-based algorithm,

Uncertain Bug, that uses this optimization method.

The weighted scan-matching algorithm is a new method for estimating robot displace-

ment based on dense range measurements. In particular, I investigated the e�ects of dif-

ferent error and noise sources on the convergence and accuracy properties of these motion

from structure algorithms. Experiments showed that careful attention to the details of error

modeling can signi�cantly enhance overall displacement and covariance estimation accuracy.

Optim-Bug is a complete and correct sensor-based planner. The algorithm is based on

�nding and following the shortest path in the environment. Optim-Bug assumes a point

robot with a sensor that has a �nite range, and requires that the robot have perfect dead-

reckoning. It also needs the robot to keep a memory of obstacles it has seen. Optim-Bug is

guaranteed to reach the goal in a �nite amount of time if it is reachable, or terminate in a

�nite amount of time if the goal is not reachable.

My path optimization method minimizes the robot's expected pose uncertainty at the

goal. This o�-line method assumes full knowledge of all obstacles in the environment.

Simulation results show the utility of explicitly using landmarks as part of the path planning

process. This allows the robot to \go out of its way" to use landmarks to aid in it's

106

localization. Path length is traded o� with localization capability.

Uncertain Bug is a new sensor-based motion planning algorithm that takes the robot's

localization capability into account when planning the path. The algorithm aims to mini-

mize the expected robot position estimate error covariance at the goal, in order to improve

the chances that the robot will be able to move close enough to the goal to recognize it.

Uncertain Bug is guaranteed to terminate in a �nite amount of time. Unfortunately, it is

not possible to guarantee that the robot will reach the goal using Uncertain Bug, even if a

path to the goal exists.

7.2 Future Directions

This thesis suggests continued research into many areas related to mobile robot navigation.

As presented, Optim-Bug assumes the robot is operating in a planar environment. Optim-

Bug's approach of always following the shortest path given current information may extend

well to higher dimensions. In higher dimensions, the goal-tangent lines would become

surfaces that are tangent to obstacles and the goal. Instead of building up an obstacle one

segment at a time, the robot would map out the obstacle one \patch" at a time.

The path optimization approach of Chapter 5 is heavily dependent on the initial con-

ditions. Better understanding of the cost function, as well as the \path space" that the

optimal solution lies in could provide insight into choosing better initial conditions, or

using something di�erent from gradient-descent.

One possible approach to this would be to �nd if there is an uncertain analog to the goal-

tangent lines. In Optim-Bug, it is known that the optimal paths follow goal-tangent lines.

In the uncertain case, the optimal paths are generally not tangent to obstacle boundaries.

If there were a construct similar to the goal-tangents, they could be exploited to improve

the algorithm performance, and perhaps even prove completeness in some situations.

It is unfortunate that Uncertain Bug is not guaranteed to reach the goal. Perhaps there is

a single parameter or small family of parameters that, under certain situations, can be used

to guarantee that the robot will reach the goal, even in the presence of odometric, sensing,

and landmark uncertainties. For example, if one places a bound on the maximum robot

positional uncertainty in the environment, would that allow completeness to be proven?

107

Appendix A

Weighted Scan Matching

Derivations

A.1 Weighted Translation Solution

Recall the log-likelihood formula of Eq. (3.15). Since Dij is independent of xij and yij ,

the necessary condition for an extremal in the log-likelihood function with respect to the

variable pij = [xij yij]
T is

rpij (M
ij) = 0 ,

nijX
k=1

rpij

�
("ijk)

T (P ij
k)�1"ijk

�
= 0 ,

2

nijX
k=1

h�
rpij ("

ij
k)

T
�
(P ij

k)�1"ijk

i
= 0 ,

�2

nijX
k=1

h
I (P ij

k)�1"ijk

i
= 0 ,

nijX
k=1

h
(P ij

k)�1(~uik �Rij~u
j
k � pij)

i
= 0:

Rearranging this formula results in Eq. (3.16).

A.2 Weighted Rotation Solution

Given an initial estimate of the translational displacement p̂ij , the rotational displacement

can be derived by maximizing the likelihood function in Eq. (3.12), or equivalently, the

108

log-likelihood function in Eq. (3.15) with respect to �ij = �, i.e.,

@M ij(�)

@�
= 0: (A.1)

Instead of directly computing the gradient of M ij with respect to �, we calculate it as

follows:
@M ij(�)

@�
=
@M ij(�̂+ ��)

@(��)

@(��)

@�
=
@M ij(��)

@(��)
; (A.2)

where we used the relation

� = b�+ ��)
@�

@(��)
= 1: (A.3)

Here we derive an exact expression for the quantity M ij as a function of ��. From the

Taylor series expansion for the functions sin and cos we have

cos� = cos b�� 1

1!
sin b� ��� 1

2!
cos b� ��2 + � � �;

sin� = sin b�+ 1

1!
cos b� ��� 1

2!
sin b� ��2 � � � �:

Substituting in Eq. (3.2), the rotational matrix Rij can be written as

Rij(�) =

�
I +

1

1!
J���

1

2!
I��2 �

1

3!
J��3 + :::

�
R̂ij(b�);

where J is de�ned in Eq. (3.19). The error "ijk between two corresponding laser points,

de�ned in Eq. (3.5), can be described as a function of the orientation error ��:

"ijk = ~uik � pij �Rij~u
j
k (A.4)

= ~uik � pij � R̂ij~u
j
k �

1

1!
JR̂ij~u

j
k��

+
1

2!
R̂ij~u

j
k��

2 + � � �:

109

The covariance matrix for the matching error at the kth point correspondence of poses i

and j in Eq. (3.10) can also be described as a function of ��:

P ij
k (��) = Qij

k + eSijk + (J eSijk � eSijk J)��
� (eSijk + J eSijk J)��2 � 2

3
(J eSijk � eSijk J)��3

+
1

3
(eSijk + J eSijk J)��4 + � � �; (A.5)

where

eSijk = R̂ij(�̂)S
ij
k R̂

T
ij(�̂):

The inverse Iijk (��) = (P ij
k (��))�1 of the covariance matrix can be computed using Taylor

series expansion as

Iijk (��) = I
ij(0)
k (0) + I

ij(1)
k (0)��+

1

2!
I
ij(2)
k (0)��2 + ::: (A.6)

with

I
ij(n)
k (0) =

@n(Iij(��))

@(��)n

������
��=0

;

where

I
ij(0)
k (0) = (P ij

k (0))�1 = (P ij
k)�1 = (Qij

k + eSijk)�1;
I
ij(1)
k (0) = �(Qij

k + eSijk)�1(J eSijk � eSijk J)(Qij
k + eSijk)�1;

I
ij(2)
k (0) = 2I

ij(1)
k (0)P ij

k (0)I
ij(1)
k (0) + 2(eSijk + J eSijk J):

110

By substituting from Eq.s (A.4), (A.6) to Eq. (3.13) we have:

M ij =
1

2

nijX
k=1

fpTk I
ij
k (0)pk

+
h
�2pTk I

ij
k (0)Jqk + pTk I

ij(1)
k (0)pk

i
��

+
h
pTk I

ij
k (0)qk � qTk JI

ij
k (0)Jqk

� 2pTk I
ij(1)
k (0)Jqk +

1

2
pTk I

ij(2)
k (0)pk

�
��2

+ ::: g; (A.7)

where

pk = ~uik � pij � R̂ij~u
j
k; (A.8)

qk = R̂ij~u
j
k; (A.9)

kpkk << kqkk: (A.10)

Note that there has been no approximation made up to this point. Eq. (A.7) is a complete

expression of the cost function Mij , expressed as an in�nite series of terms polynomial in

the orientation estimation error ��. In order to minimize this function, we approximate

it after considering a limited number of terms. For small errors in the initial orientation

estimate (�� < �=6), a second-order approximation is su�cient when a large number of

point correspondences are available. Higher-order approximations are necessary as the

number of point correspondences decreases.

By substituting Eq. (A.7) in Eq. (A.2) and employing Eq. (A.10)1 we derive the

expression for the orientation displacement error of Eq. (3.18).

A.3 Covariance Estimation

Here we consider the estimation problem where nij measurements Z = [ZT
1 ::: ZT

nij
]T (with

Zk = [(~uik)
T (~ujk)

T]T) are processed to derive an estimate of a vector � of the motion

1Eq. (A.10) expresses the fact that the point correspondence errors are very small compared to the
distances to these points.

111

parameters

�̂ =

24 p̂ij

�̂ij

35 =

24 hp(Z)

h�(Z)

35 = h(Z) (A.11)

with the expressions for functions hp and h� given by Equations (3.16) and (3.18). A

�rst-order approximation of the error in the estimate of the parameter vector �̂ is given by

"
b�
= rT

Zh(Z) "Z =

nijX
k=1

rT
Zk
h(Zk) "Zk (A.12)

with

rT
Zh(Z) =

h
rT
Z1
h(Z) ::: rT

Znij
h(Z)

i
(A.13)

and

rT
Zk
h(Z) =

24 rT
Zk
hp(Z)

rT
Zk
h�(Z)

35 : (A.14)

Note that

Ef"
�̂
g = EfrT

Zh(Z) "Zg = rT
Zh(Z) Ef"Zg = ~03�1:

The covariance of the estimate b� is

P ij = P
b�
= Ef"

b�
"T
b�
g = rT

Zh(Z) PZ rZh
T (Z); (A.15)

where

PZ = Ef"Z"
T
Zg =

26664
PZ1 : 0

: :

0 : PZnij

37775 (A.16)

112

and

PZk = Ef"Zk"
T
Zk
g = Ef

24 �~uik

�~ujk

35h (�~uik)
T (�~ujk)

T

i
g

=

24 Qij
k 0

0 Sijk

35 : (A.17)

Substituting from Equations (A.13) and (A.16) in Equation (A.15) yields

P
b�

=

nijX
k=1

rT
Zk
h(Z) PZk rZkh

T (Z)

=

nijX
k=1

24 rT
Zk
hp(Z)

rT
Zk
h�(Z)

35PZk �rZkh
T
p (Z) rZkh

T
� (Z)

�

=

24 Ppp Pp�

P�p P��

35 : (A.18)

For �; � 2 fp; �g each of the previous sub-matrices can be written as

P�� =

nijX
k=1

rT
Zk
h�(Z)PZkrZkh

T
� (Z) (A.19)

=

nijX
k=1

�
(rT

~ui
k
h�) Q

ij
k (r~ui

k
hT�)

+ (rT

~u
j
k

h�) S
ij
k (r

~u
j
k

hT�)
�
;

where we substituted from Eq. (A.17) and the relation

rT
Zk
h�(Z) =

�
rT
~ui
k

h�(Z) rT

~u
j
k

h�(Z)

�
:

113

In order to derive the expressions for the covariance sub-matrices we compute the following

quantities from Equations (3.16) and (3.18):

rT
~ui
k
hp =

 nijX
m=1

(P ij
m)�1

!�1
(P ij

k)�1; (A.20)

r
~u
j
k

hp = �

 nijX
m=1

(P ij
m)�1

!�1
(P ij

k)�1 R̂ij ; (A.21)

rT
~ui
k
h� ' �

1

rT
qkJ(P

ij
k)�1; (A.22)

rT
~ui
k
h� ' �

1

rT
qkJ(P

ij
k)�1 R̂ij ; (A.23)

with

P ij
k = Qij

k + R̂ijS
ij
k R̂

T
ij ;

qk = R̂ij~u
j
k;

rT = �

nijX
k=1

qTk J(P
ij
k)�1Jqk :

In Equations (A.22) and (A.23) we employed the approximation made in Eq. (A.10). The

interested reader is referred to [44] for the details of these derivations.

By substituting Equations (A.20) through (A.23) in Equation (A.19) the sub-matrices

of the covariance matrix for the estimated motion vector �̂T = [p̂Tij �̂ij] in Eq. (A.18) can

now be computed. The �nal expressions are given by Equations (3.17){(3.22).

114

Appendix B

Implementation Details

B.1 Obstacle Constraints

A requirement for any useful motion planning algorithm is that the paths it generates

are correct, i.e., the paths are contained wholly within the freespace. In other words, the

algorithm should not generate paths that intersect obstacles. To maintain correctness, the

optimization method must have some knowledge of all the obstacles that the robot knows

about. We choose to incorporate the obstacles as constraints in the optimization process.

For simulation purposes, we assume that all obstacles are circles. This was chosen as

a tradeo� between simplicity of implementation and accuracy. However, this assumption

does not preclude complex situations. A union of circles can well approximate virtually any

obstacle.

Since the path is speci�ed as a number of waypoints, one constraint is that none of

these waypoints lies inside any obstacle. Additionally, if we assume that the robot moves in

straight lines between consecutive waypoints, there must be an additional constraint that

prevents these line segments from intersecting the obstacles. Figure B.1 shows a simple

example with one obstacle. The center of the obstacle is at location xc with radius R. The

robot steps from waypoint xi�1 to xi, then on to xi+1. The constraint is as follows: Each

path segment cannot intersect the circle. Any numerical optimization scheme will require

that the constraint be written as c(x) < 0. c(x) is a column vector, where each row of c

describes a single constraint equation as a function of x, the variables being optimized.

First consider a single line and a single circle. The circle is de�ned as above, and the

115

R
xc

xi�1

xi

xi+1

Figure B.1: A portion of the path where the robot passes by an obstacle.

line is de�ned by the points x1 and x2. The parametric equation for a line is

x = x1 + t(x1 � x2); (B.1)

where t is the parameter, and x is any point on the line. The point on the line that is

closest to the circle is also closest to the center of the circle. Call this point closest to the

circle xd, and call the distance from the center of the circle to this point dc. See Figure B.1

for a graphical explanation. The point xd will lie on a line that passes through xc and is

x1
dc

xd

x2

R
xc

Figure B.2: Setup of a single line and circle.

perpendicular to the line de�ned by x1 and x2. We can write this as the dot product of

these lines being equal to zero. To constrain xd to the line de�ned by x1 and x2, we can

use (B.1). This gives us three equations and three unknowns (the two components of the

116

point xd and the parameter td). These equations are

(x2 � x1) � (xc � xd) = 0; (B.2)

x1 + td(x2 � x1) = xd: (B.3)

Equation (B.3) is actually two separate equations, one for each component. It is not too

di�cult to solve these three equations for xd and td. Note that we will end up with equations

for xd and td as functions of x1, x2, and xc. This is exactly what we want, as x1 and x2 are

the variables of the optimization problem we are trying to solve.

The equation for td is

td =
x1(1)(x1(1)� x2(1)) + x1(2)(x1(2)� x2(2)) + (�x1(1) + x2(1))xc(1) + (�x1(2) + x2(2))xc(2)

(x1(1)� x2(1))2 + (x1(2)� x2(2))2
:

(B.4)

Inspection of this equation leads to a slightly more compact form:

td =
x1 � (x1 � x2) + (x2 � x1) � xc

kx1 � x2k2
: (B.5)

Once td is known, it is trival to substitute it back into (B.3) and �nd xd.

B.1.1 The Constraint Equations

Now that we have functions for the variables of interest, we can write down what the

constraints themselves are. If dc > R, then the line segment (in fact the entire line) does

not intersect the circle. If on the other hand dc < R, the line does intersect the circle, but

it is still possible that the segment that we care about does not. Adding in the constraint

that the segment endpoints must lie outside the circle, i.e.c

d(x1; xc) > R; (B.6)

d(x2; xc) > R; (B.7)

where d(�; �) is the Euclidean distance between arguments further reduces the cases where

the segment intersects the circle, but not yet completely. If the parameter td lies between

zero and one, then the closest point on the line is also on the segment of interest. So

restricting td to be greater than one or less than zero will fully constrain the segment to be

117

outside the circle.

In summary there are three separate cases, one of which must be satis�ed for the line

segment to lie outside the obstacle. The �rst is that the entire line lies outside the circle:

dc > R: (B.8)

The second and third cases are that the line intersects the circle, but both of the segment

endpoints lie outside the circle and the closest point on the line to the circle center does

not lie between the segment endpoints. There are two separate cases here, the �rst being

d(x1; xc) > R;

d(x2; xc) > R; (B.9)

td < 0:

and the second case is

d(x1; xc) > R;

d(x2; xc) > R; (B.10)

td > 1:

These sets of constraint equations will constrain the segment to lie outside the circle. But

we only need one of the three sets to be true at any time. If (B.8) is true, then we do not

need to check (B.9) and (B.10). In a logical sense, we want to OR the constraints together,

and check that the outcome is true. So it will be necessary to write this group of seven

equations as a single constraint.

Condensing this group of AND's and OR's into a single equation can be done with max

and min operations. For example if we want to require that

a > 0 AND b > 0; (B.11)

then to write this as one constraint c(x) > 0, it becomes

min(a; b) > 0: (B.12)

118

If the constraint must be speci�ed as c(x) < 0,

max(a; b) < 0: (B.13)

On the other hand if the constraint is

a > 0 OR b > 0; (B.14)

we can write it as

max(a; b) > 0 (B.15)

to express the constraint as c(x) > 0. To write our speci�c constraints as one equation, we

start with

R� dc < 0 OR

max(R� d(x1; xc); R� d(x2; xc); td) < 0 OR

max(R� d(x1; xc); R� d(x2; xc); 1� td) < 0 ;

(B.16)

Where the equations have been reorganized to be of the form c(x) < 0. Matlab's fmincon

requires the non-linear inequality constraints to be written in this form. To �nally combine

them all together, we have

min(c1; c2; c3) < 0; (B.17)

where

c1 = R� dc; (B.18)

c2 = max(R� d(x1; xc); R� d(x2; xc); td); (B.19)

c3 = max(R� d(x1; xc); R� d(x2; xc); 1� td): (B.20)

119

Appendix C

Shortest Path Properties

Let �(t) be a smooth path in the free con�guration space F . Our goal in this section is to

establish the following necessary condition for the shortest path in a freespace containing

objects with smooth boundaries:

Necessary Condition: Let F � R
k be bounded by polygonal c-obstacles. Let �(t) be

the shortest path in F connecting qinit to qgoal. Let the path be parametrized such that

k _�(t)k = 1 for all t.

1. If �(t) passes at t = 0 through an interior point of the freespace, �(t) must be a

straight line in a neighborhood about t = 0.

2. If �(t) passes at t = 0 through a vertex d0 of a c-obstacle CBi, �(0) = d0, then

the path's acceleration, ��(0), must be antipodal to the generalized gradient of the

distance function dst(d; CBi) at d0,

��(0) = ��� for some � 2 @dst(d0; CBi);

where � � 0 is a non-negative scalar, @f(�) is the generalized gradient of f(�), and

dst(x; S) is the distance between the point x and the set S, de�ned as

d(x; S) = min
q2S

kx� qk: (C.1)

Remark: It can be shown that dst(d;S) is continuous and Lipschitz. Consequently it is

di�erentiable almost everywhere. In the interior of S its gradient vector is always

zero. At points d outside S that have a unique closest point d� in S its gradient

120

is rdst(d;S) = (d � d�)=kd � d�k. At points on the boundary of S its generalized

gradient is the convex combination of zero and the outward normals to the smooth

patches comprising the boundary in a small neighborhood about this point [12].

The basic tool used by calculus of variations is the following variation of a path:

De�nition 1. Let �(t) : [a; b] ! F � R
k be a smooth path. A variation of �(t) is a

smooth map (t; s) : [a; b] � (��; �) ! F such that (t; 0) = �(t) (� > 0 is some �xed

positive constant). It is �xed endpoint variation if (a; s) = �(a) and (b; s) = �(b) for

all s 2 (��; �).

Figure C.1 shows the image of a typical variation. It is a smooth (not necessarily

homeomorphic!) image of the rectangle [a; b]� (��; �) � R2, whose backbone curve is �(t).

For �xed s, the path parametrized by t:

�s(t) � (t; s) (s held constant) (C.2)

is a smooth path that runs \parallel" to �(t). As s is varied, a collection of curves �s(t) is

generated. This family can be interpreted as a \curve of curves" in a suitably de�ned (1-

dimensional) manifold whose \points" are curves connecting �(a) to �(b). In this manifold

�(s) � �s(t) is a smooth path passing through the point corresponding to the backbone

curve �(t) at s = 0.

α(.. 0)

α(t)

a b

ε

−ε

Ψ

s

t
α(

α(

a)

b)
@dst(d,CB)

Figure C.1: A �xed endpoint variation.

The Jacobian matrix of (t; s) is the k � 2 matrix D (t; s). We will need the following

121

two coordinate vector �elds along (t; s), which are exactly the columns of D (t; s):

E1(t; s) � D (t; s)

241
0

35 =
@ (t; s)

@t
; (C.3)

E2(t; s) � D (t; s)

240
1

35 =
@ (t; s)

@s
: (C.4)

The vector �eld E1(t; s) is tangent to the curve �s(t) (s constant). In particular, at s = 0,

E1(t; 0) = _�(t) (C.5)

is the tangent along �(t). The other vector �eld, E2(t; s), is tangent to curves resulting

from tracing (t; s) for �xed t. They run in a direction transversal to the backbone curve

�(t). In particular, at s = 0, E2(t; s) gets a special name:

X(t) = E2(t; 0); (C.6)

and is called the variation vector �eld. Note that for a �xed endpoint variation X(a) =

X(b) = 0.

In general the formula for the length of a smooth path �s(t) : [a; b] ! R
k (using the

Euclidean norm) is given by

l(�s) =

Z b

a

k _�s(t)kdt (C.7)

=

Z b

a

kE1(t; s)kdt: (C.8)

When evaluted on a family of curves, smoothly parametrized by s, l becomes a smooth

real-valued function of s, assigning to every s in (��; �) the length of �s(t).

The basic idea of the calculus of variation is as follows: If �(t) is the shortest path in the

family �s(t), s = 0 must be a stationary point of l(�s). That is, the derivative
d
ds

��
s=0

l(�s)

must be zero. Let us now compute the derivative d
ds
l(�s) at s = 0. First we have

d

ds

����
s=0

l(�s) =

Z b

a

d

ds

����
s=0

kE1(t; s)kdt: (C.9)

122

Using the chain rule,

d

ds

����
s=0

kE1(t; s)k =
1

kE1(t; s)k

����
s=0

E1(t; s) �
d

ds

����
s=0

E1(t; s): (C.10)

The coe�cent is unity since kE1(t; 0)k = 1. Now observe that

d

ds

����
s=0

E1(t; s) =
d

ds

����
s=0

@

@t
 (t; s) (C.11)

=
@

@t

@

@s

����
s=0

 (t; s) (C.12)

=
d

dt
X(t): (C.13)

Substituting _X(t) for d
ds

��
s=0

E1(t; s) and _�(t) for E1(t; 0) in the integral gives

d

ds

����
s=0

l(�s) =

Z b

a

_X(t) � _�(t)dt (C.14)

=

Z b

a

�
d

dt
(X � _�)�X � ��

�
dt (C.15)

= (X � _�)jt=b � (X � _�)jt=a �

Z b

a

(X � ��) dt: (C.16)

The �rst two terms vanish for �xed endpoint variation. The resulting formula,

d

ds

����
s=0

l(�s) = �

Z b

a

(X � ��) dt; (C.17)

is called the �rst variation of the path-length integral.

The necessary condition Z b

a

(X � ��) dt = 0; (C.18)

it can be shown, is satis�ed by the shortest path �(t) only if the integrand X(t) � ��(t) is

zero for all t. Let us now sketch how this implies the necessary condition stated at the

beginning.

Let �(t) be the shortest path. First let us see why ��(0) = 0 (i.e., a straight line) about

every interior point. Let �(0) be an interior point of F . If ��(0) 6= 0, it is possible to

construct a variation of the form

 (t; s) = �(t)� s�(t)��(0); (C.19)

123

where �(t) is a smooth real-valued function that is exactly unity at t = 0, and decays

smoothly to zero away from t = 0 (a bump function). Note that at t = 0 we have that

X(0) � ��(0) = �k��(0)k2 < 0: (C.20)

This means that �(t) has a neighboring curve, �s(t) for some small �xed s > 0, whose length

is smaller than the length of �(t). The same idea applies when �(0) = d0 is a boundary point.

If ��(0) is not antipodal to the generalized gradient @dst(d0;S), it is possible to construct

a variation (t; s) of �(t), whose variation vector �eld X(t) points into the halfspace of

directions pointing away from ��(0), so that

X(0) � ��(0) < 0: (C.21)

This implies the existence of a neighboring curve in F of shorter length.

124

Appendix D

Bounded Uncertainty Freespace

What is the set of points from which the robot can reach the goal from with Ug < �? The

following sections show that this set is bounded. The exact shape of the boundary is not

determined, but a bound is placed on the extremes of this region.

D.1 Goal Only

First consider the case where there are no landmarks. The robot has to rely on its odometry

alone for localization. In this case the robot's uncertainty will continue to increase as it

moves.

For the simple point robot model that is assumed here, and under the assumption that

the variance of the robot velocity is proportional to the velocity, i.e., �v = �V , it is known

that

PRR(k + 1=k) = PRR(k=k) + �2

24(xR(k + 1)� xR(k))
2 0

0 (yR(k + 1)� yR(k))
2

35 : (D.1)

In the best case the robot will start out with a perfect estimate of its pose, i.e., PRR(0) =

02�2. If the initial covariance is non-zero, then the bounds will be \smaller." An explicit

limit can be placed on how large the robot's covariance can grow in this case before it

terminates with failure. Requiring the robot to get to within � of the goal translates to

a limit on the maximum size of the covariance matrix. Further assuming that the robot's

true position will always be within the 3� ellipse of the position estimate error covariance,

125

�

3�max

Figure D.1: Maximum size of covariance ellipse to �t inside circle with radius of �.

then an upper limit on the maximum variance exists:

3�max < �: (D.2)

Graphically, the inequality looks like Figure D.1. The 3� covariance ellipse has to �t inside

the circle of radius �.

If the robot takes one step from its starting location to the goal, its covariance after

that step will be

PRR(1=0) = �2

24(gx � xR(0))
2 0

0 (gy � yR(0))
2

35 ; (D.3)

where g =
h
gx gy

iT
is the goal position. The length of the axes of the covariance ellipse

are proportional to the eigenvalues of the covariance matrix, namely,

�i =
p
�i; (D.4)

where �i is the variance along the ith direction, and �i is the corresponding eigenvalue. In

this case the covariance matrix is diagonal, so the eigenvalues are just the diagonal elements

126

g
2�
3�

Figure D.2: Set of points from which the goal can be reached with �max < �. The set is the
darkened box.

themselves. Therefore,

�max = �max (jgx � xR(0)j; jgy � yR(0)j) : (D.5)

Equation (D.2) can be re-written as

3�max (jgx � xR(0)j; jgy � yR(0)j) < �; (D.6)

max (jgx � xR(0)j; jgy � yR(0)j) <
�

3�
: (D.7)

These constraint equations can be interpreted as requiring
h
xR(0) yR(0)

i
to lie inside a

square centered at g with side length 2�
3� . Figure D.2 shows this graphically.

D.2 Goal and One Landmark

Now consider the case where there is one landmark in the environment. Extension of these

results to the case of multiple landmarks can be found in a later section. Again, this is

only placing bounds on the set of points the robot could reach the goal from, not explicitly

�nding the set.

This problem can be broken down into �nding subsets of the entire set. First, one can

�nd the set of points from which the robot can reach the goal by relying on odometry

alone. This set was found in Section D.1. The set of points from which the robot can start

127

2R
3�

L

2�
3�

g

Figure D.3: A bound on the set of points from which the goal could be reached with
�max < �.

and reach the landmark reliably is also needed. If the robot starts too far away from the

landmark (or the goal), it will become \lost" before it even reaches the landmark and has

a chance to localize itself. The landmark can be thought of as an intermediate goal. This

is analagous to the case of reaching the goal, but instead of requiring that the robot get

within �, the requirement is that the robot get within R of the landmark. R is the robot's

sensor range, and it must get at least that close to the landmark to be able to use it for

localization. The union of these two sets contains the set of all possible points that the

robot could start and reach the goal from. If the robot starts anywhere outside this union,

it will not be able to reach either the goal or the landmark before its uncertainty exceeds a

level where it can no longer guarantee that it will �nd the goal or the landmark.

To �nd the set of points from which the robot can reach the landmark with uncertainty

< R, � is replaced with R and g is replaced with L (the landmark position) in Equation

(D.7). This analysis yields the result

max (jLx � xR(0)j; jLy � yR(0)j) <
R

3�
: (D.8)

Figure D.3 shows the union of these two sets.

128

L3

2R
3�

L2

L1

2R
3�

2R
3�

2�
3�

g

Figure D.4: Union of the multiple sets.

D.3 Goal and Multiple Landmarks

The case of multiple landmarks is a straightforward extension of the single-landmark case.

The union of all of the sets de�ned by each landmark and the set de�ned by the goal is

taken. If the robot starts anywhere outside this union, then it cannot reach the goal or a

landmark without exceeding an uncertainty threshold that guarantees that it will be able to

see the landmark (goal) when it thinks it has arrived there. Figure D.4 shows an example

of this set with three landmarks. Note that the subsets de�ned by an individual landmark

need not be the same size. If for some reason the robot can sense one landmark at a di�erent

range than another, then the boxes could be di�erent sizes. Again, this set is not the set

of points that the goal can be reached from with Ug < �, but it does contain it.

129

Bibliography

[1] M.D. Adams. Lidar design, use, and calibration concepts for correct environmental

detection. IEEE Trans. Robotics and Automation, 16(6):753{761, Dec. 2000. 3.1, 5.3

[2] M.D. Adams and P.J. Probert. The interpretation of phase and intensity data from

AMCW light detection sensor for reliable ranging. Int. J. of Robotics Research,

15(5):441{458, Oct. 1996. 3.1, 3.2.1, 3.3.1, 3.3.3

[3] M.C. Amann, T. Bosch, M. Lescure, R. Myllyl�a, and M. Rioux. Laser ranging: a

critical review of usual techniques for distance measurement. Opt. Eng., 40(1):10{19,

Jan. 2001. 3.1, 3.3.1

[4] D. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern

Recognition, 13(2):111{122, 1981. 3.5

[5] O. Bengtsson and A.J. Baerveldt. Localization in changing environments| estimation

of covariance matrix for th IDC algorithm. In Proc. IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, pages 1931{7, Maui, Hawaii, Oct. 2001. 3.1

[6] S.S. Blackman. Multiple hypothesis tracking for multiple target tracking. IEEE

Aerospace and Electronic Systems Magazine, 19(Issue 1, Part 2):5{18, Jan. 2004. 2.2.2.1

[7] D.M. Blei and L.P. Kaelbling. Shortest paths in a dynamic uncertain domain. In Proc.

of the IJCAI Workshop on Adaptive Spatial Representations of Dynamic Environments,

1999. 1.2

[8] A. Briggs, C. Detweiler, D. Scharstein, and A. Vandenberg-Rodes. Expected shortest

paths for landmark-based robot navigation. In Proc. of the Fifth Int. Workshop on the

Algorithmic Foundations of Robotics, December 2002. 1.2

130

[9] A. Briggs, C. Detweiler, D. Scharstein, and A. Vandenberg-Rodes. Expected shortest

paths for landmark-based robot navigation. Intl J. of Robotics Research, 23(7-8):717{

728, July-August 2004. 1.2

[10] H. Choset and J. Burdick. Sensor based planning, part I: The generalized Voronoi

graph. In Proc. IEEE Int. Conf. on Robotics and Automation, volume 2, pages 1649 {

1655, May 1995. 5.4

[11] H. Choset and J.W. Burdick. Sensor based exploration: the hierarchical generalized

Voronoi graph. Int. J. of Robotics Research, 19(2):96{125, Feb 2000. 1.1, 1.2

[12] F. H. Clarke. Optimization and nonsmooth analysis. Wiley, 1983. C

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,

Second Edition. MIT Press, 2001. 1.2

[14] I.J. Cox. Blanche|an experiment in guidance and navigation of an autonomous robot

vehicle. IEEE Trans. on Robotics and Automation, 2:193{204, 1991. 1.2, 3.1, 3.1

[15] R.O. Duda and P.E. Hart. Use of hough transform to detect lines and curves in pictures.

Communications of the ACM, 15(1):11{15, 1972. 3.5

[16] D. Fox, W. Burgard, and S. Thrun. Active markov localization for mobile robots.

Robotics and Autonomous Systems, 25:195{207, 1998. 1.2

[17] J. Gonzalez and R. Gutierrez. Mobile robot motion estimation from a range scan

sequence. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 1034{9, New

York, NY, Apr. 20-25 1997. 1.2, 3.1, 3.1

[18] A.E. Johnson and A. Miguel San Martin. Motion estimation from laser ranging for

autonomous comet landing. In Proc. IEEE Int. Conf. on Robotics and Automation,

pages 1788{1795, San Francisco, CA, Apr. 24{28 2000. 3.7

[19] R.E. Kalman. A new approach to linear �ltering and prediction problems. Transactions

of the ASME{Journal of Basic Engineering, 82(Series D):35{45, 1960. 1.2

[20] I. Kamon, E. Rimon, and E. Rivlin. Tangentbug: A range sensor based navigation

algorithm. Int. J. of Robotics Research, 17(9):934{953, Sept. 1998. 1.1, 1.2, 2.1

131

[21] I. Kamon, E. Rimon, and E. Rivlin. Range-sensor-based navigation in three-

dimensional polyhedral environments. Int.l J.l of Robotics Research, 20(1):6{25, Jan-

uary 2001. 4.5

[22] T. Kirubarajan and Y. Bar-Shalom. Probabilistic data association techniques for target

tracking in clutter. Proc. of the IEEE, 92(3):536{557, Mar 2004. 2.2.2.1

[23] A. Lambert and T. Fraichard. Landmark-based safe path planning for car-like robots.

In Proc. IEEE International Conference on Robotics and Automation, 2000. 1.2

[24] R.E. Larson and J.L. Casti. Principles of Dynamic Programming. 1978. 5.3

[25] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,

1991. 4.1

[26] S.L. Laubach. Theory and Experiments in Autonomous Sensor-Based Motion Planning

with Applications for Flight Planetary Microrovers. PhD thesis, California Institute of

Technology, 1999. 1.2

[27] S.M. LaValle and S.A. Hutchinson. An objective-based framework for motion planning

under sensing and control uncertainties. Int. J. Robotics Research, 17(1):19{42, Jan.

1998. 1.2

[28] S.M. LaValle and R. Sharma. On motion planning in changing, partial predictable

environments. Int. J. Robotics Research, 16(6):775{805, December 1997. 1.2

[29] A. Lazanas and J.C. Latombe. Landmark based robot navigation. Algorithmica,

13(5):472{501, May 1995. 1.2

[30] A. Lazanas and J.C. Latombe. Motion planning with uncertainty, a landmark approach.

Arti�cial Intelligence, 76(1-2):287{317, July 1995. 1.2

[31] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking geometry

beacons. IEEE Trans. on Robotics and Automation, 7(3):376{382, June 1991. 1.1, 1.2

[32] Y. Liu and M.A. Rodriques. Accurate registration of structured data using two over-

lapping range images. In Proc. IEEE Int. Conf. on Robotics and Automation, pages

2519{24, Washington D.C., May 11{15 2002. 3.7

132

[33] A. Logothetis. EM Algorithms for State and Parameter Estimation of Stochastic Dy-

namical Systems. PhD thesis, University of Melbourne, Victoria, Australia, August

1997. 1.2

[34] A. Logothetis, A. Isaksson, and R. J. Evans. An information theoretic approach to

observer path design for bearings-only tracking. In Proc. of the 36th Conference on

Decision and Control, pages 3132{3137, San Diego, CA, USA, December 1997. CDC.

1.2

[35] F. Lorussi, A. Marigo, and A. Bicchi. Optimal exploratory paths for a mobile rover.

In Proc. of the IEEE Int. Conf. on Robotics and Automation, 2001. 1.2

[36] F. Lu and E. Milios. Globally consistent range scan alignment for environment map-

ping. Autonomous Robots, 4:333{349, 1997. 1.2, 3.1, 3.2.2, 3.6.1

[37] F. Lu and E. Milios. Robot pose estimation in unknown environments by matching 2D

range scans. J. of Intelligent and Robotic Systems, 20:249{275, 1997. 1.2, 2.2.2.1, 3.1,

3.1, 3.2.2, 3.4, 3.6

[38] V.J. Lumelsky and A.A. Stepanov. Path-planning strategies for a point mobile automa-

ton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2:403{430,

1987. 1.1, 1.2

[39] P. S. Maybeck. Stochastic Models, Estimation, and Control. Academic Press, Inc.,

1979. 2.2.1

[40] P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for mobile robot

location and environment modelling. In Proc. International Symposium on Robotics

Research, pages 85{94, Tokyo, August 1989. 1.2

[41] S. P�ster and J. W. Burdick. Weighted line �tting algorithms for mobile robot map

building and e�cient data representation. In Proc. IEEE Int. Conf. on Robotics and

Automation, Taipei, Taiwan, Sept. 2003. 3.3.2, 3.5

[42] S.T. P�ster, K.L. Kriechbaum, S.I. Roumeliotis, and J.W. Burdick. Weighted range

sensor matching algorithms for mobile robot displacement estimation. In Proc. IEEE

Int. Conf. on Robotics and Automation, Washington, D.C., May 2002. 1.1, 2.2.2.1,

3.6.4

133

[43] S. Rezaei, J. Guivant, J. Nieto, and E. M. Nebot. Simultaneous information and global

motion analysis (\SIGMA") for car-like robots. In Proc. of the IEEE Int. Conf. on

Robotics and Automation, 2004. 1.2

[44] S.I. Roumeliotis. Dense range feature matching: weighted ro-

tational displacement estimation. Technical report, C.I.T., 2001.

http://robotics.caltech.edu/�stergios/tech reports/tr wlsm orientation.pdf. A.3

[45] S.I. Roumeliotis and J. Burdick. Stochastic cloning: A generalized framework for

processing relative state measurements. In Proc. IEEE Int. Conf. on Robotics and

Automation, pages 1788{1795, Washington D.C., May 11-15 2002. 3.1, 3.7

[46] N. Roy, W. Burgard, D. Fox, and S. Thrun. Coastal navigation|mobile robot navi-

gation with uncertainty in dynamic environments. In Proc. of the IEEE Int. Conf. on

Robotics and Automation, 1999. 1.2, 6.2

[47] N. Roy and S. Thrun. Coastal navigation with mobile robots. In Proc. of Conference

on Neural Information Processing Systems, 1999. 1.2, 6.2

[48] P.W. Smith, N. Nandhakumar, and C.H. Chien. Object motion and structure recovery

for robotic vision using scanning laser range sensors. IEEE Trans. on Robotics and

Automation, 13(1):74{80, Feb. 1997. 3.7

[49] R.C. Smith and P. Cheeseman. On the representation and estimation of spatial uncer-

tainty. Int. J. of Robotics Research, 5(4):56{68, 1986. 1.2

[50] R.C. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in

robotics. Autonomous Robot Vehicles, pages 167{193, 1990. 1.1, 1.2

[51] R.F. Stengel. Optimal Control and Estimation. Dover, 1994. 5.3

[52] S. Takahashi and B.K. Ghosh. Motion and shape identi�cation with vision and range.

IEEE Trans. on Robotics and Automation, 47(8):1392{6, Aug. 2002. 3.7

[53] S. Thrun. Bayesian landmark learning for mobile robot localization. Machine Learning,

3(1):41{76, Oct. 1998. 1.3

[54] S. Thrun. Particle �lters in robotics. In Proceedings of the 17th Annual Conference on

Uncertainty in AI (UAI), 2002. 1.2

134

[55] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent mapping

and localization for mobile robots. Machine Learning, 31:29{53, 1998. 1.1

[56] N. Trawny and T. Barfoot. Optimized motion strategies for cooperative localization of

mobile robots. In Proc. of the IEEE Int. Conf. on Robotics and Automation, 2004. 1.2

[57] A.C. Victorino, P. Rives, and J. Borrelly. A relative motion estimation by combining

laser measurement and sensor based control. In Proc. IEEE Int. Conf. on Robotics and

Automation, pages 3924{9, Washington D.C., May 11{15 2002. 3.1, 3.2.3

[58] C. Ye and J. Borenstein. Characterization of a 2-d laser scanner for mobile robot

obstacle negotiation. In Proc. IEEE Int. Conf. on Robotics and Automation, pages

2512{2518, Washington D.C., May 11{15 2002. 3.6.4

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Review of Prior Work
	Contributions of this Thesis
	Thesis Outline

	Background
	Tangent Bug
	Kalman Filtering
	The Basics
	Kalman Filters and Robotic Localization
	Localization of a Point Robot Using Landmarks

	Weighted Scan Matching
	Introduction
	The Weighted Range Sensor Matching Problem
	The Measurement Model
	A General Covariance Model
	Displacement Estimation via Maximum Likelihood
	The Algorithm and Its Initial Conditions
	Covariance of the Displacement Estimation Error

	Scan Matching Error/Noise Models
	Measurement Process Noise
	Correspondence Error
	Measurement Bias Effects

	Selection of Point Correspondences
	Estimating the Incidence Angle
	Experiments
	Robustness and Accuracy Comparisons
	Multi-Step Runs
	Comparison of Computational Demands
	Experiments with Bias Compensation

	Conclusions

	Optim-Bug
	Setup and Definitions
	Optim-Bug Overview
	Shortest Path Properties
	Proof of Completeness
	Conclusion

	Path Optimization
	The Localization Framework
	Cost Function
	Practical Optimization Approach
	Initial Condition Generation
	Results
	Robot Drives Past the Goal
	Robot Follows the Landmarks
	Examples with Obstacles

	Summary and Discussion

	Uncertain Bug
	Setup and Definitions
	Motivation and Background
	The Uncertain Bug Algorithm
	Effects of Uncertainty

	Uncertain Bug Algorithm Properties
	Simulation Results
	Discussion

	Conclusion
	Summary of Contributions
	Future Directions

	Weighted Scan Matching Derivations
	Weighted Translation Solution
	Weighted Rotation Solution
	Covariance Estimation

	Implementation Details
	Obstacle Constraints
	The Constraint Equations

	Shortest Path Properties
	Bounded Uncertainty Freespace
	Goal Only
	Goal and One Landmark
	Goal and Multiple Landmarks

	Bibliography

