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Abstract 

 

 Novel methods for spectroscopic probing of single-molecules are described that 

sense the optically induced, molecular dipole through the force/torque it generates on a 

submicron mechanical probe. The probe comprises a mechanical resonator with a high-Q 

mode of oscillation at frequency νh, to which is attached a nanoparticle with dipole 

moment p. This dipole is either the optically induced dipole of a metal nanoparticle 

irradiated at plasmon resonance, or the static dipole moment of a ferroelectric 

nanocrystal. The electric force or torque between the probe dipole and molecular dipole 

drives the motion of the resonator at the resonance frequency. Three novel optical 

scattering mechanisms, which encode the mechanical motion into the phase, amplitude, 

or polarization of the light scattered by the resonator are investigated and quantified. A 

novel single-molecule sensor will also be described that comprises a mechanical torsional 

resonator with an attached ferroelectric nanoparticle. The observable quantity is the shift 

in the oscillation frequency of the mechanical resonator as a molecule becomes polarized 

by the rf near-field of the ferroelectric particle. The ferroelectric particle couples 

electrostatically to a nearby nanoscale capacitor which is used to electrically drive and 

detect the resonant mechanical motion. Due to this coupling, the electric and mechanical 

coordinates, which specify the state of this electromechanical device, are no longer the 

eigenmodes of the system. This gives rise to interesting dynamical effects that are best 

analyzed using the Lagrange formulation of mechanics. Finally, we discuss experimental 

progress toward fiber-optic interferometric detection of submicron mechanical 

resonators. 
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Chapter 1.  Introduction 

 

In 1989 Moerner and Kador first demonstrated optically detected absorption 

spectroscopy of a single pentacene molecule embedded in a p-terphenyl host crystal 

cooled to 1.6 K.[1] In the time following this pioneering work, single-molecule 

spectroscopy has exploded into a field of intense research.[2] The crucial feature 

encompassing all single-molecule spectroscopy (SMS) experiments is that the same 

single molecule is spectroscopically monitored over the course of the experiment. 

Observation of the same molecule over the duration of the experiment allows one to infer 

the details of the instantaneous molecular configuration as well as the fluctuations in the 

local electronic environment of the molecule. These details of the state of the molecule 

and its local environment are encoded in the detected optical signal and cannot be 

revealed with conventional spectroscopic methods, which require measuring the response 

of an enormous number of nominally identical molecules in order to achieve an 

acceptable signal-to-noise ratio. Single-molecule spectroscopy experiments can therefore 

answer many fundamental scientific questions about the nature of the microscopic 

interactions between a molecule and its immediate host/solvent environment as well as 

detecting rare, short-lived molecular intermediates arising from chemical reactions and 

biochemical processes.[2] 

 The most sensitive optically detected single-molecule spectroscopy experiments 

count fluorescence photons emitted from an individual molecule. The highest signal-to-

noise ratios for SMS experiments are obtained for dye molecules with high fluorescence 

quantum yields. In general, molecules will possess other relaxation pathways to the 
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ground state that do not produce fluorescence. These pathways compete with 

fluorescence and limit the number of photons counted in a time interval T.  To understand 

how these pathways degrade the SNR for the single-molecule experiment we consider 

Figure 1.1, which shows a typical energy level diagram for a single molecule. In a typical 

experiment the molecule is excited from the ground state 1φ  to a higher lying state 3φ  

by absorption of a single photon at wavelength 13
13

cλ
ν

= . The molecule may then re-emit 

the same photon (dotted green arrow) or relax to the state 2φ . Once in the state 2φ , the 

molecule may reach the ground state by emitting a photon at wavelength 12
12

c
=λ

ν
, 

which is the spectroscopic signal of interest. This fluorescence process is represented by 

the straight red arrow in Figure 1.1. The molecule may also relax to the ground state by 

making multiple transitions within a manifold of vibrational states or by exciting phonons 

in the host. Both of these processes are represented by the purple squiggly arrow in 

Figure 1.1. These two mechanisms, however, may not be deleterious to the signal of 

interest, since fast relaxation to the ground state via these pathways will allow higher 

excitation laser powers before saturation is realized. Thus the photons lost to these 

mechanisms may be recovered by increasing the laser intensity at λ13. Another more 

problematic mechanism is fast relaxation into a “dark” triplet state denoted by Tφ . For 

this situation the molecule makes a fast transition from 2φ  to Tφ , where it becomes 

“trapped”. This mechanism, termed intersystem crossing (ISC), effectively turns the 

molecule off to further photon absorption for a time equal to the lifetime of the triplet 

state, which may be much longer than any radiative lifetime. This presents a serious 
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limitation to the number of photons emitted by the single molecule at wavelength λ12, in 

an observation time interval, T. 

 

 
 
Figure 1.1: A typical single-molecule fluorescence experiment. A single molecule is resonantly excited by 
laser irradiation at frequency ν13. Subsequently the molecule may re-emit a photon at the same frequency or 
make a transition to the lower lying excited state, 2φ . The molecule may then decay to the ground state, 

1φ , by emitting a photon with frequency ν12, which is the signal of interest. Alternatively, the molecule 
may reach the ground state through nonradiative decay mechanisms denoted by the squiggly arrow or may 
become trapped in a long-lived triplet state, Tφ . 
 

How does intersystem crossing affect the signal-to-noise ratio for the single-

molecule experiment? If we denote the rate of photon production in the presence of these 

various relaxation mechanisms as η , then the number of photons counted in the 

observation period T is ηT. Assuming Poisson statistics for the arrival time of the emitted 

photons, the dispersion in this number of counted photons is Tη , giving a signal-to-

noise ratio of η ηT T  = Tη . Therefore the higher the photon production rate, the 

higher the single-molecule signal-to-noise ratio. Note that this is fundamentally the best 

that one can do for the single molecule photon counting experiment, since other noise 

sources originating in the photon detection and amplifier circuitry have not been included 

and will only further degrade the overall experimental SNR from this best value. 

A goal of the methods described in this thesis is to beat this fundamental 

limitation on SNR, which arises from the observable being the radiation emitted by the 
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molecular transition. The novel methods described probe the molecule instead by sensing 

the force/torque that the optically induced molecular dipole produces on a nanoscale 

mechanical resonator. These methods will be quantitatively explored in this thesis and 

come under the collective name, Force-Detected Optical Spectroscopy (FDOS).[3] 

 

 
 
Figure 1.2: A diagram of the Force-Detected Optical Spectroscopy (FDOS) experiment. The imaging probe 
comprises a sharp metallic particle patterned at the end of a nanoscale mechanical resonator. The tip is 
positioned within a few nanometers of an isolated molecule on a surface. The linearly polarized optical 
fields Es and Ep generate a dipole moment μ in the molecule and a polarization P in the metal tip. The 
electric force between μ and P has a Fourier component at the mechanical resonance frequency, which 
drives the mechanical motion. This motion modulates the separation Z between the two closely spaced 
metallic nanospheres, which results in amplitude modulated scattering of a third optical field Ed at the 
mechanical resonance frequency ωh, thereby allowing detection of the mechanical motion. 
 

Figure 1.2 is a schematic of the first FDOS experiment proposed.[3] A submicron 

scale mechanical resonator fabricated from an optically transparent semiconductor 

material has a fundamental flexural mode of oscillation along the ẑ  direction with 

frequency ωh (radians/s). The entire probe assembly (blue structure) is moveable with 

piezoelectric positioners and active feedback electronics (not shown), so that the sharp 

metallic nanoparticle patterned at the end of the cantilever is positioned within a few 

nanometers from the surface of interest. Three linearly polarized laser fields, Es, Ep, and 

Ed, irradiate the probe/surface region. The fields, Es and Ep, originate from the same laser 

at the optical frequency ωs. To generate the field Ep the output of the excitation laser is 

first split into two beams. One of the beams is sent through an acousto-optic frequency 
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shifter where it is mixed with an rf acoustic wave at the resonator frequency ωh. This 

generates the field Ep at the frequency (ωs + ωh), which is then recombined with the field 

Es at the probe. These two excitation fields generate optical dipoles in the metallic probe 

at the frequencies ωs and (ωs + ωh). The laser frequency ωs is then scanned. When it is 

resonant with a two-level transition in a nearby surface-bound molecule (purple circle), a 

dipole μ is induced in the molecule at ωs. The force that this induced dipole generates on 

the probe is ( )1F Eμ= ⋅ ∇ , where E1 is the electric near-field generated by the probe 

dipoles. Since the force is in the form of a product, the time dependences of the probe 

dipoles and induced molecular dipole will mix to yield a dc force on the probe and an ac 

force at the mechanical frequency, thereby driving the harmonic motion of the resonator. 

 Optical interferometry is used to detect the motion of the resonator. However, 

since the dimensions of the mechanical resonator will generally be on the order of a few 

hundred nanometers, standard optical interferometry will be inefficient as the mechanical 

resonator will scatter light in all directions. We will now describe a novel transduction 

mechanism that boosts the efficiency of interferometric detection of the mechanical 

motion. The driven motion of the mechanical resonator is detected by scattering of a third 

field Ed at the optical frequency ωd. To enhance this scattering, we exploit the steep 

dependence of the resonant optical response on the separation between a pair of closely 

spaced metallic spheres. One of the spheres is attached to the resonator and the other is 

fixed to a rigid part of the probe assembly such that at mechanical equilibrium the 

spheres come within a few nanometers of touching one another. The optical frequency ωd 

of the detection field Ed is tuned to the plasmon resonance of the pair when at 

equilibrium. Motion of the resonator changes the center-to-center distance Z between the 
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two spheres, thereby shifting the plasmon resonance of the pair, which results in 

amplitude modulation of the scattered field at frequency ωh. Homodyne mixing of the 

scattered field with Ed at a square-law photo-detector (e.g., photodiode) results in a 

photocurrent at the mechanical frequency with an amplitude proportional to the 

amplitude of the driven mechanical motion. This is only one of several optical scattering 

techniques we have proposed where mechanical motion modulates the resonant plasmon 

scattering from nanoscopic metallic particles, allowing optical detection of high 

frequency mechanical resonators with sensitivity close to that set by Brownian motion 

noise. Later, we will quantitatively explore each of these detection schemes and evaluate 

the expected detection signal-to-noise. 

 In addition to providing spectroscopic information on the probed surface 

molecule, the FDOS method can determine the orientation of the single molecule on the 

surface, thereby providing imaging capability. To understand why this is so, we examine 

the Hamiltonian ( )intĤ t  that describes the interaction of the molecule with the field Es: 

( ) ( )( ) ( )12 1 2 2 1int s sĤ t E cos tμ ω= ⋅ + . 1.1 
 
In equation 1.1, sE  is the amplitude of the optical field at ωs, which is taken to be 

linearly polarized, and 12μ  is the (real) vector matrix element of the molecular dipole 

moment operator between the lower energy state 1  and the higher energy state 2  of 

the excited two-level transition. From this expression, we see that the magnitude of the 

interaction Hamiltonian depends on the angle between sE  and 12μ . This interaction will 

be maximized when the direction of polarization of the field Es lies along the direction of 

the transition dipole vector and is zero when it is perpendicular. In order to image the 
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molecule, the mechanical amplitude is observed as a function of the direction of the laser 

polarization while holding the frequency ωs of the excitation field constant. The laser 

frequency is then incremented and held fixed while the laser polarization is again varied. 

In this way, a plot is generated of the mechanical response as a function of the excitation 

frequency ωs and the two polar angles of the laser polarization. The global maximum of 

this plot occurs when ωs coincides with a molecular resonance and for the direction of the 

laser polarization that is parallel with the transition dipole. 

This description of the FDOS experiment has one approximation that we address 

now. It is assumed that the molecular response at frequency (ωs + ωh) is negligible. This 

will be valid if ωh/2π > Δν where Δν is the molecular linewidth for the two-level 

transition or if the polarization of the field at this frequency is orthogonal to the transition 

dipole. When both of these conditions are not satisfied then a molecular dipole will exist 

at (ωs + ωh) and produce a force on the probe at ωh due to its interaction with the probe 

dipole at ωs. The phase of this force relative to that previously described becomes 

important and in the worst case will lead to a complete cancellation of the force on the 

probe at the resonance frequency ωh. 

In order to circumvent this problem, radio frequency (rf) mechanical resonators 

must be used, allowing only ωs to be resonant for some transitions, since typical 

molecular linewidths range from hundreds of MHz to tens of GHz. Such high mechanical 

frequencies can only be attained when the mechanical resonator has submicron 

dimensions. To date, nanoscale resonators with mechanical frequencies near 1 GHz have 

been fabricated [4]; however, higher frequency structures may come at a cost of an 

increase in the mechanical damping rate due to dissipative mechanisms that become 



 8

increasingly important at the nanoscale.[5, 6] Later, we will show that the force 

sensitivity of the FDOS experiment is set by the mechanical damping rate and in order to 

measure the minute FDOS dipole forces requires as low a damping rate as possible. At 

this point, it is not clear if nanoscale mechanical resonators beyond about 1 GHz can be 

fabricated with attributes necessary for high signal-to-noise FDOS experiments. 

A more elegant way to solve the problem of cancellation of the force on the probe 

is to use the optical modulation scheme in Figure 1.3 where the single laser field Es with 

frequency ωs is sent through an acousto-optic frequency shifter. A sinusoidal voltage with 

angular frequency Ω is applied to the rf port of the frequency shifter to yield an output 

laser beam at frequency (ωs + Ω), which is then focused on the probe/sample region. The 

laser frequency is tuned so that (ωs + Ω) coincides with a molecular transition frequency. 

The top plot in Figure 1.3 shows the frequency modulation profile for the rf voltage 

applied to the frequency shifter. At time t = 0, the rf frequency is stepped up by δ/2 for a 

duration of T/2 where T is the oscillation period for the mechanical resonator, changing 

the frequency of the excitation field to (ωs + Ω + δ/2). The frequency step δ/2 is chosen to 

be greater than half the molecular linewidth so that the excitation field is shifted out of 

resonance with the molecule resulting in a negligible induced molecular dipole. In the 

next time interval of duration T/2, the rf frequency is shifted back to Ω thereby bringing 

the excitation field into resonance with the molecule, which results in a maximum 

induced dipole. In the third interval of T/2, the excitation field is shifted by δ/2 below the 

molecular resonance again resulting in a negligible response in the molecule. Finally in 

the fourth time interval, the excitation field is brought back into resonance with the 

molecule. This scheme results in a modulation of the amplitude of the induced molecular 
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dipole at the resonator frequency ωh as depicted in the lower plot of Figure 1.3. In the 

time periods when the molecular dipole is present, a net force is generated on the probe 

due to the interaction with the probe dipole. This force is at the mechanical resonance 

frequency thus driving the resonator to steady state. 

 

 
 
Figure 1.3: An optical modulation scheme that circumvents some experimental complications in the 
original FDOS experiment of Figure 1.2. The laser field Es is incident on an acousto-optic frequency shifter 
and a voltage at frequency Ω is applied to the rf port of the frequency shifter generating the excitation field 
at (ωs + Ω). The frequency of the rf voltage is step-modulated by ± δ/2 as illustrated in the upper plot. 
When the frequency (ωs + Ω) coincides with a molecular transition, a dipole is induced in the molecule 
whose amplitude is modulated as shown in the lower plot. The resulting force between the probe dipole and 
molecular dipole is at the mechanical resonance frequency thereby driving the mechanical resonator. 
 
 The modulation technique shown in Figure 1.3 has several advantages over the 

original FDOS method. First, only one excitation field is needed, which simplifies the 

experimental setup. Second, the period 2T of the modulation waveform shown in the 

upper plot of Figure 1.3 is arbitrary, which allows one to use low frequency mechanical 

resonators. Low frequency micron-scale resonators may have lower mechanical 

dissipation compared to high frequency nanoscale resonators since surface irregularities 

will become increasingly important in determining the mechanical dissipation at 
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nanoscale dimensions. Previously, Stowe et. al have demonstrated 5.6 aN Hz  force 

sensitivity using a micron-scale resonator with a resonance frequency of 1.7 kHz for use 

in magnetic resonance force microscopy (MRFM) experiments.[7] This demonstrated 

high force sensitivity suggests the use of such low frequency resonators in detecting the 

minute FDOS dipole forces. Also, because of their large size, standard fiber-optic 

interferometry [8] may be used to detect the motion of these micron-scale resonators. 

This greatly simplifies the experiment by eliminating the need for the plasmon enhanced 

detection mechanism. A final technical advantage of the modulation scheme in Figure 1.3 

is that any driving of the mechanical motion not due to dipole forces is avoided since the 

time dependence of the modulation waveform is at half of the mechanical frequency. 

 We now introduce variants on FDOS that will be explored in more detail in the 

following chapters. These methods use a nanoscale ferroelectric dipole patterned on the 

mechanical resonator to probe single molecules dispersed on a substrate or in solution. 

The main advantage of using a nanoscale ferroelectric as the probe is that the electrostatic 

dipole moment will be many orders of magnitude larger than the optically induced dipole 

in a metallic probe of the same volume. This will lead to larger forces and or torques on 

the mechanical resonator allowing higher experimental signal-to-noise ratios. The field of 

the molecule needed to drive the mechanical resonator through interaction with its static 

dipole moment will need to have Fourier components near the fundamental of the 

mechanical resonator. Such components are achieved by modulating the populations of 

the target molecule, in contrast to the previous method where the transition dipole figures 

into the force. The first electret-based experiment, named Electric Dipole Difference 

Imaging (EDDI), employs a microscale mechanical resonator with resonance frequency 
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in the range from 10 kHz to 1 MHz. Fiber-optic interferometry is used to detect the 

motion of such resonators, eliminating the need for the exotic scattering mechanisms 

required for optical detection of nanoscale resonators. The mechanical probe is very 

similar to that in Figure 1.2 except that the metallic probe nanoparticle is replaced by a 

nanoscale electret particle with a static dipole moment p. 

 Imaging and spectroscopy of single molecules on a surface is effected in the 

following way: Consider a molecule with diagonal matrix elements 11μ  and 22μ  of the 

dipole moment operator between a ground state 1 , and excited state 2 , respectively. 

Confining our attention to steady state driving of the molecule with optical excitation on 

resonance with the two-level transition, the dc component of the dipole induced in the 

molecule is dcμ  = 11 11ρ μ  + 22 22ρ μ  where ρii is the diagonal matrix element of the 

molecular density operator corresponding to the population of state i . The frequency of 

the excitation beam is modulated exactly in the way described in Figure 1.3 so that the 

dipole moment of the molecule is 11μ  in the time intervals when the excitation is shifted 

off of the molecular resonance. In this way, a time-dependent difference dipole, ( )μΔ t  = 

( )11 11ρ μt  + ( )22 22ρ μt  − 11μ , is generated at the mechanical resonance frequency. Using 

the normalization of the density operator, ρ11(t) + ρ22(t) = 1, this difference dipole may be 

written more simply as ( )μΔ t  = ( )( )22 22 11ρ μ μ−t , which more clearly shows that the 

modulation of the excited state population is responsible for the time dependence of the 

difference dipole. The force between the static probe dipole p and this difference dipole 

drives the resonant motion of the mechanical resonator. 
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Figure 1.4: a. A novel nanoscale device for detecting single molecules in solution. The device (shown on 
the left) consists of a nanoscale semiconductor beam possessing a radio frequency torsional mode about its 
axis. A ferroelectric probe particle is patterned at the center of the beam and sits within the gap between 
two nearby electrodes. An rf voltage applied across the electrodes produces a torque on the probe dipole 
thereby exciting the mechanical motion. Reciprocally, the motion of the resonator may be monitored by 
measuring the voltage across the electrodes induced by the mechanical oscillations. This whole 
electromechanical assembly sits directly underneath a submicron scale sample well into which a liquid 
sample of interest may be analyzed for its constituents. b. The mechanism by which molecules are detected 
by this mechanical device is illustrated in the picture on the right. Molecules in solution diffuse toward a 
binding site that preferentially binds a specific molecular component of the complex solution. The near 
electric field of the probe dipole polarizes the bound molecule and the energy of interaction between these 
two dipoles results in a shift in the mechanical resonance frequency. Monitoring the resonance frequency 
with millisecond time increments allows one to observe the dynamics of binding and unbinding events as 
well as the orientational and configurational state of the probed molecule. 
 

The second electret-based variant on FDOS, shown in Figure 1.4, is a device 

proposed to study single biologically relevant molecules in their native environment via 

their electrostatic interactions with the ferroelectric probe particle. A perspective view of 

the device is shown in Figure 1.4 a. The resonator consists of a nanoscale semiconductor 

beam fixed at both ends to the bulk substrate and possesses a fundamental mode of 

torsion about the axis of the beam with a resonance frequency in excess of 100 MHz. A 

nanoscale ferroelectric probe particle is patterned at the center of the beam where the 

torsional modeshape is at a maximum. The ferroelectric particle has a static dipole 

moment p that points in the direction normal to the top surface of the beam and resides in 

the gap of two closely spaced metal electrodes. A sample well with submicron 
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dimensions fabricated in a second semiconductor wafer is located directly above the 

resonator-electrode assembly and bonded to the device wafer. The space that the 

resonator-electrode assembly resides in is evacuated to submillitorr pressures in order to 

minimize air damping of the resonator. 

Figure 1.4 b is a cut-away side view of the device depicting the way in which 

single molecules in solution are detected by the mechanical resonator. A liquid sample 

containing dissolved molecules of a molecular species of interest is dispersed onto the 

sample wafer. A binding site (thin red line) patterned to the bottom of the well lies 

directly above the ferroelectric particle and consists of a molecular monolayer that 

preferentially binds only one particular molecular species in the multi-component 

solution. The wall separating the sample well and resonator-electrode assembly is a few 

tens of nanometers thick, which allows the probe particle to be in close proximity to any 

molecules that bind to the molecular monolayer. The electric field of the probe dipole 

polarizes a molecule bound to the monolayer and the resulting dipole-dipole interaction 

creates a shift in the resonance frequency of the mechanical resonator. Furthermore, the 

intrinsic electrostatic coupling of the probe dipole to the electrodes allows electrical 

driving and detection of the motion of the resonator. 

The experimental apparatus of Figure 1.5 is used to electrically excite and detect 

the motion of the single-molecule binding sensor of Figure 1.4. A voltage pulse centered 

at the unperturbed mechanical resonance is generated by the rf pulse generator and 

travels to the electrodes via a transmission line of characteristic impedance Z0. A 

matching network is included between the line and the device so as to efficiently couple 

power from the low impedance transmission line to the much higher device impedance. 
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The electric field generated by this pulse is nominally orthogonal to the probe dipole and 

generates a torque on the resonator driving it to a detectably large amplitude. 

 

 
 
Figure 1.5: Experimental apparatus for driving and detecting the single-molecule sensor of Figure 1.4. The 
rf generator creates a voltage pulse centered at the unperturbed mechanical resonance frequency. The pulse 
travels to the device electrodes via a transmission line and impedance matching network to excite the 
resonant mechanical motion. Immediately afterwards, the rf switch is triggered, which connects the line to 
the input of a low noise voltage amplifier. The output of the amplifier is mixed down in frequency and 
digitized by the computer. The raw data is then Fourier transformed to yield the “instantaneous” 
mechanical frequency. 
 
In the time after the voltage pulse, the rf switch is triggered and connects the transmission 

line to the input of a low noise rf preamplifier. The voltage induced across the electrodes 

resulting from the oscillatory decay of the mechanical motion is amplified with a gain of 

G, mixed down to a convenient frequency, and finally digitized by the computer. The raw 

data is then Fourier transformed thereby giving the mechanical frequency spectrum. The 

maximum of this spectrum corresponds to the “instantaneous” mechanical resonance 

frequency. This experiment is repeated many times in regular time intervals to yield a 

record of the mechanical resonance frequency as a function of time. The time step for this 

experiment is typically 2τ where τ is the “ringdown” time of the mechanical resonator. As 
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an example a 900 MHz resonator with a Q of 10,000 gives a time resolution of 

approximately 3.5 μs allowing one to probe dynamics on microsecond timescales. 

The magnitude of the observed frequency shift depends on how far away the 

molecule is from the probe dipole and on the instantaneous orientation of the molecule 

relative to the probe, since the molecular polarizability is, in general, anisotropic. This 

experiment gives information on when binding/unbinding events occur as well as 

allowing one to track the trajectory and orientation of the molecule as it diffuses toward 

and away from the binding site. Repeating this experiment many times allows one to 

construct a histogram of the time an individual molecule spends at the binding site, which 

allows kinetic and thermodynamic parameters of the binding process to be extracted. 

An important application of this novel, single-molecule binding sensor is in high-

throughput, parallel-sensing of many different molecular species in a heterogeneous 

solution (e.g. blood). For this application, an MxN rectangular array of these devices 

fabricated on a single semiconductor wafer is employed. The device located in the i th 

row and j th column has a unique resonance frequency ωij which allows it to be 

distinguished from all the other members of the array. Tuning of the resonance frequency 

may be effected, for example, by incrementing the length of the resonator beam, holding 

all other dimensions fixed, as one moves along a single dimension of the array (i.e. row 

or column). Furthermore, the binding site associated with the i,j th resonator selectively 

binds a specific molecule of interest. 

Impedance matching to the transmission line may be effected by using a “T” 

network as discussed in Chapter 4, and for the network optimized for operation at a 

device resonance of 950.5 MHz, we find a 40% power transfer efficiency to the device 
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and reasonably flat power transfer to devices with resonance frequencies spanning a 30 

MHz band centered at 950.5 MHz. These results imply that many devices connected in 

parallel may be matched to the transmission line by the same network. It is important to 

note that switching the devices into and out of the circuit is unnecessary since the parallel 

impedance is dominated by the i,j th device when operating near the frequency ωij. As an 

example, for a typical parallel analysis the resonator array may span a total bandwidth of 

say, 200 MHz, thus requiring seven discrete matching networks (30 MHz bandwidth for 

each network). The bandwidth for the device simulated in Chapter 4 is approximately 120 

kHz, which gives an array of 1,667 distinguishable devices over the 200 MHz band. 

For a group of devices connected to a particular matching network, an rf pulse is 

applied simultaneously exciting all of the devices. In the following time period, the 

ringdown waveform is digitized and Fourier transformed to give the “instantaneous” 

frequency spectrum for this group of resonators. For this parallel array, only a single 

pulse generator and digitizer are required; and since the devices are addressable in the 

frequency domain, individual electrical connections to each device are not required. 

These attributes allow a dramatic reduction in the amount of hardware needed for parallel 

chemical analysis. To emphasize this aspect, we consider the leading, competing 

technology which employs a parallel array of semiconductor nanowires, where the 

binding molecules are covalently attached to the surface of the wire.[9, 10] The 

conductivity of each nanowire is monitored as molecules in solution bind and unbind to 

the chemically modified wires. For this method, each sensor requires separate conducting 

leads and its own channel on a multi-channel digitizer. The required hardware and 

electrical connections increase as the number of devices in the array thus making 
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massively-parallel chemical analysis difficult and expensive. Furthermore, nanowire 

sensors are restricted to detecting bound-molecules possessing a net charge whereas the 

sensor of Figure 1.4 is more widely applicable, since it is sensitive to both the 

polarizability and the net charge of the bound-molecule. 

 Due to the electrostatic coupling between the mechanical resonator and capacitor 

electrodes, the novel device of Figure 1.4 is a resonant electronic element similar in 

nature to a piezoelectric crystal. This device may therefore be incorporated into radio 

frequency communications electronics as an ultrasmall mass, low loss, resonant element 

that could potentially replace macroscopic components such as inductors and crystal 

oscillators.[11] This would result in transceivers ideal for cell phone, military, and space 

exploration applications, where low power consumption and small mass are critical 

design considerations. 

 

References 

 

1. Moerner, W.E. and L. Kador, Optical-Detection and Spectroscopy of Single 
Molecules in a Solid. Physical Review Letters, 1989. 62(21): p. 2535−2538. 

2. Moerner, W.E. and D.P. Fromm, Methods of single-molecule fluorescence 
spectroscopy and microscopy. Review of Scientific Instruments, 2003. 74(8): p. 
3597−3619. 

3. Weitekamp, D.P. and B.M. Lambert. Force Detected Optical Spectroscopy. In 
American Physical Society National Meeting, 2000. Minneapolis, MN. 

4. Huang, X.M.H., et al., Nanodevice motion at microwave frequencies. Nature, 
2003. 421(6922): p. 496−496. 

5. Yasumura, K.Y., et al., Quality factors in micron- and submicron-thick 
cantilevers. Journal of Microelectromechanical Systems, 2000. 9(1): p. 117−125. 

6. Cleland, A.N. and M.L. Roukes, Noise processes in nanomechanical resonators. 
Journal of Applied Physics, 2002. 92(5): p. 2758−2769. 

7. Stowe, T.D., et al., Attonewton force detection using ultrathin silicon cantilevers. 
Applied Physics Letters, 1997. 71(2): p. 288−290. 



 18

8. Rugar, D., H.J. Mamin, and P. Guethner, Improved Fiber-Optic Interferometer for 
Atomic Force Microscopy. Applied Physics Letters, 1989. 55(25): p. 2588−2590. 

9. Patolsky, F. and C.M. Lieber, Nanowire nanosensors. Materials Today, (April 
2005): p. 20−28. 

10. Wang, W.U., et al., Label-free detection of small-molecule-protein interactions by 
using nanowire nanosensors. Proceedings of the National Academy of Sciences. 
102(9): p. 3208−3212. 

11. Weitekamp, D.P. and B.M. Lambert, Mechanical Sensors of Electromagnetic 
Fields. 2004: Patent #: US 6,835,926 B2. 

 
 



 19

Chapter 2. Engineering and Design Considerations for FDOS 

Experiments 

 

 In Chapter 1 we introduced two novel methods for imaging and spectroscopy of 

single molecules that rely on measuring the forces on a mechanical harmonic oscillator 

which are generated by the electric interactions between an optically induced molecular 

dipole and probe dipole bound to the mechanical resonator. In this chapter, we will be 

concerned with engineering considerations for FDOS and EDDI experiments. For FDOS 

we first solve for the conditions that maximize the induced transition dipole of the 

molecule and we then turn to geometric optimizations of the metallic probe and 

mechanical resonator subject to laser heating constraints and other physical restrictions. 

Expressions are derived for the dipole force and Brownian noise force on the resonator as 

functions of the geometric design parameters. We examine the scaling of these 

expressions with respect to the design parameters to find a geometry that gives the best 

signal-to-noise ratio given the various physical constraints. Finally, we will examine 

spectroscopy of single molecules using the EDDI technique and give realistic numerical 

examples for FDOS and EDDI single-molecule spectroscopy and imaging experiments. 

The probed molecule is approximated as a two-level system with ground state 1  

and excited state 2 , that are separated in energy by an amount 0ω . Choosing the zero 

of energy to lie halfway between the energies of the ground and excited states, the 

Hamiltonian describing the interaction of the molecule with the laser field is 

( ) ( ) ( )( ) ( )0
122 2 1 1 1 2 2 1

2 s sĤ t E cos tω μ ω= − + ⋅ + , 2.1 
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where sE  is the amplitude of the linearly polarized laser field Es at angular frequency ωs 

and the vector 12μ  is the real, off-diagonal matrix element of the dipole moment operator. 

The first term in equation 2.1 is the unperturbed molecular Hamiltonian and the second 

term represents the energy of coupling of the molecule to the electric field Es. 

The quantum statistical state of the molecule at time t is specified by the density 

operator ( )ˆ tρ , which is written in the two-level molecular basis as 

( ) ( )
2

1
ij

i , j

ˆ t t i jρ ρ
=

= ∑ , 2.2 

 
where ( )11 tρ  and ( )22 tρ  are, respectively, the populations of states 1  and 2  at time t 

and ( )12 tρ  = ( )21 tρ ∗  is the coherence between the two states. For a good discussion of 

the density operator the reader is referred to Chapter 2 of reference [1]. The unitary time 

evolution of ( )ˆ tρ  is governed by the Hamiltonian ( )Ĥ t  in equation 2.1; however, 

coupling of the molecule to its environment gives rise to dissipation, which is included 

into the formalism through the decay rates Γ  and Γ ′ . We define Γ  to be the rate of 

decay of the population difference ( ) ( )( )22 11t tρ ρ− . Furthermore the coherence ( )12 tρ  

decays with a rate of 
2
Γ Γ ′+ , where Γ ′  is the decay rate arising from “pure dephasing” 

mechanisms that interrupt the phase of the molecular wavefunction while conserving 

populations.[2] It is more convenient for our purposes to define the time constants 

1
1T
Γ

=  and 2
2
2

T
Γ Γ

=
′+
, where it is seen that T2 satisfies the inequality T2 ≤ 2T1. 
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 Given the Hamiltonian of equation 2.1 along with the damping times T1 and T2, 

the response of the molecule to the excitation field Es is found by solving the optical 

Bloch equations, which are a set of three, coupled, first-order differential equations 

describing the time development of the components ( )ij tρ  of the molecular density 

operator. The derivation of the optical Bloch equations will not be given here; however 

the interested reader is referred to references [2] and [3] for a full exposition. In steady 

state, the expectation value of the induced molecular dipole moment is [2] 

( )
( )( )

12 2

i tA , e c.c.
t

ω

μ μ
Δ Ω +

= , 2.3 

 
where ( )A ,Δ Ω  is given by [2] as 

( ) 2
2 2 2 2

1 2 2

2
1 4

T iA , T
TT T

⎛ ⎞Δ +
Δ Ω = Ω ⎜ ⎟+ Ω + Δ⎝ ⎠

. 2.4 

 

In equation 2.4, 12
2

sEμ ⋅
Ω =  is the so-called Rabi frequency, which describes the strength 

of interaction between the molecule and the laser field and Δ = ωs – ω0 is the frequency 

detuning of the laser field from the molecular resonance frequency. 

 To achieve the highest signal-to-noise ratio in an FDOS experiment, it is crucial 

that one maximize the optically induced molecular dipole moment. The only 

experimental parameters at our disposal are the amplitude and polarization direction of 

the excitation field. Clearly we want the direction of the laser polarization to be parallel 

with the direction of the transition dipole moment 12μ . Saturation of the molecular 

transition is a direct consequence of the damping time constants T1 and T2 and results in 

an optimum laser intensity above which the amplitude of the induced dipole decreases. 
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To find this optimum laser intensity we solve for the value of the Rabi frequency that 

maximizes the magnitude of the complex function ( )A ,Δ Ω . From equation 2.4 we find 

( )
2 2

2 2
2 2 2

1 2 2

2 1
1 4

T T
A ,

TT T
Ω +Δ

Δ Ω =
+ Ω + Δ

 2.5 

 

and setting 
( )A ,∂ Δ Ω

∂Ω
 = 0 we find the optimum value of the Rabi frequency to be 

( )1 2opt ,T ,TΩ Δ : 

( )
2 2

2
1 2

1 2

1
4opt

T,T ,T
TT

+ Δ
Ω Δ = . 2.6 

 
Using this result in equations 2.5 and 2.3 we find the optimized amplitude of the dipole 

moment to be 

2
12

14max
T
T

μ μ= . 2.7 

 
The force F between the probe dipole P and molecular dipole μ is 

( )1F Eμ= ⋅ ∇ , 2.8 
 
where 1E∇  is the gradient tensor of the electric field 1E  of the probe dipole evaluated at 

the position of the surface-bound molecule. The expression for 1E , given in SI units with 

ε0 = 8.85 x 10 -12 (C 2/N·m2), is [4] 

( ) ( )( )1 3
0

1 3
4

ˆ ˆE r P r r P
rπε

= ⋅ − . 2.9 

 
In equation 2.9, the origin of the coordinate system is taken to be at the location of the 

probe dipole and the position vector ˆr rr=  from the probe dipole to the molecule is 

expressed in Cartesian coordinates as i iˆr x e=  where x1 = x , x2 = y, x3 = z and iê  are the 
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Cartesian unit vectors. The summation convention for expressions with repeated indices 

will be used throughout. In Cartesian coordinates, the electric field gradient tensor is 

1
1k

j k
j

Eˆ ˆE e e
x

∂
∇ =

∂
 where 

5 2
0

1 53
4

m m jkk
j j m mk k kj

j

P x x xE
P x P x P x

x r r
δ

πε
⎡ ⎤∂

= − + + +⎢ ⎥∂ ⎣ ⎦
. 2.10 

 
To solve for the force between the molecule and the metallic probe in an FDOS 

experiment requires finding the optically induced probe dipole and molecular dipole for a 

given set of experimental conditions and using these in equation 2.8. We have found the 

conditions under which the molecular dipole is maximized and now consider 

optimizations of the probe/resonator assembly to maximize the force on the mechanical 

resonator. 

The metallic probe is modeled as a prolate (cigar shaped) ellipsoid of revolution 

with a semi-major axis of length a and a semi-minor axis of length b. The linearly 

polarized excitation field Ep at optical frequency ωp is approximated as a uniform plane 

wave over the volume of the probe. The problem of electromagnetic scattering from 

small metallic particles was first investigated by Mie [5] and the exact solution involves a 

complicated expansion in vector normal modes (see [6, 7]). If the dimensions of the 

particle are much smaller than the wavelength of the excitation light, the electrostatic 

approximation may be used in which only the first term of the normal mode expansion is 

retained. In this approximation, the component of the dipole moment along the j th 

principal axis of the particle generated by the incident field Ep is [7] 

( ) ( ) ( ) j p j p p j pP Eω α ω ω= , 2.11 
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where ( ) p j pE ω  is the component of the field Ep along the j th principal axis and 

( )j pα ω  is the polarizability of the particle along the j th axis in the electrostatic 

approximation, which is given in MKS units by [7] 

( ) ( ) ( ) ( )
( ) ( ) ( )( )0

p m p
j p m p

m p j p m p

V
L

κ ω κ ω
α ω ε κ ω

κ ω κ ω κ ω

−
=

+ −
 ≡ ( )0 p jVf ,Lε ω . 2.12 

 
In equation 2.12, ( )pκ ω  and ( )m pκ ω  are, respectively, the dimensionless bulk dielectric 

constant for the metal particle and the medium surrounding the particle at the optical 

frequency ωp, and 24
3V abπ=  is the volume of the ellipsoidal probe. Furthermore, we 

have defined the dimensionless function ( )p jf ,Lω  as the factor in the polarizability in 

equation 2.12 that depends on the excitation frequency through the dielectric constants 

and the dimensionless depolarization factor Lj associated with the j th axis. The 

depolarization factor is given by [7] 

( ) ( )( )

2

22 2 202j

j

ab dqL
q a q b qξ

∞

=
+ + +

∫ , 2.13 

 
where ξj = a or b. In what follows, we will be interested in the geometry where the 

polarization vector of the excitation field is aligned along the major axis of the particle. 

Performing the integration in equation 2.13 we find the analytical expression for La to be 

2 2 2

3 2
2

2

1 1 12 1 ln 1 1 1 1

12 1
/aL

η η η

η
η

⎡ ⎤⎛ ⎞ ⎛ ⎞
− − + − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦=
⎛ ⎞
−⎜ ⎟

⎝ ⎠

, 2.14 

 
where the aspect ratio η of the particle is equal to a/b. 



 25

We will show in the following paragraphs that dissipation of electromagnetic 

energy as heat is governed by the imaginary part of α, which is seen in equation 2.12 to 

arise from the complex nature of the dielectric constants. In addition to intrinsic losses of 

the probe material, another loss mechanism, known as radiation damping, is considered. 

This is the damping due to the fact that the optically induced probe dipole radiates 

electromagnetic energy. Taking radiation damping into account, the polarizability of the 

particle, denoted ( )R.D.
j pα ω  becomes [8] 

( ) ( )
( )3

3
0

1
6

j pR.D.
j p

p j pi
c

α ω
α ω

ω α ω
πε

=
⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

. 
2.15 

 
 The magnitude of the induced probe dipole in equation 2.11 will be limited by 

laser heating of the probe, which will create undesirable temperature dependent shifts in 

the mechanical resonance frequency. Therefore, a thermal conductivity analysis is needed 

in order to assess the maximum allowable excitation intensity. For the case where the 

field Ep lies along the major axis of the particle, the power W dissipated as heat in the 

metallic probe is given by [2] 

2
p

a aW Re iE P
ω ∗⎡ ⎤= − ⎣ ⎦ , 2.16 

 
where the subscript a denotes the long axis of the particle and Ea, the total electric field 

inside the particle, is the vector sum of the incident field and the field due to the induced 

dipole. Expressed in terms of the incident field we have [7] 

0

R.D.
a a

a p p
m

LE E E
V

α
ε κ

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
. 2.17 
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Assuming that κm is real (negligible optical absorption in the beam material) we use 

equation 2.17 and the fact that Pa = R.D.
aα Ep to arrive at the expression for the power 

dissipated as heat: 

( )2

2
p R.D.

a pW Im E
ω

α⎡ ⎤= ⎣ ⎦ . 2.18 

 
The probe-resonator design used in the rest of this chapter is shown in Figure 2.1. 

The mechanical resonator comprises a semiconductor beam of length L with a rectangular 

cross-section of area A. Using standard MEMS and NEMS fabrication techniques [9-11], 

the resonator structure is defined and chemically etched from the bulk substrate. Two 

modes of mechanical oscillation are of interest, the “diving board mode”, where the free 

end oscillates in the ẑ  direction and the “wiper mode”, where the end oscillates along the 

x̂  direction. The metallic probe is patterned at the end of the beam such that a large 

fraction of the surface area of the probe is in intimate contact with the beam. This allows 

for efficient transport of heat from the metal particle to the beam so that the temperature 

gradient between the two may be neglected. Furthermore, we assume that only the metal 

probe particle absorbs the incident radiation and that the surface delineating the resonator 

from the substrate is at the ambient temperature Ta, which will usually be taken to be 300 

K. 
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Figure 2.1: Probe-resonator geometry considered for FDOS imaging and spectroscopy of single molecules 
on a surface. The resonator is a beam of length L and cross-sectional area A fabricated from the 
semiconductor substrate with modes of linear oscillation in the z and x direction. The metallic probe 
particle is patterned at the end of the beam and is partially embedded in the beam so as to ensure good 
thermal contact with the mechanical resonator. It is assumed that the temperature of the beam at the 
dividing surface between the resonator and substrate is at the ambient temperature Ta. 
 

The thermal current density ( )J y,t  (watts/m2) and absolute temperature ( )T y,t  

of the beam at position y and time t obey the energy continuity equation, which in one 

dimension is [12] 

( ) ( )
0V

J y,t T y,t
C

y t
∂ ∂⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦+ =

∂ ∂
, 2.19 

 
where VC  is the heat capacity per unit volume of the beam material and the position 

coordinate y is measured from the center of the metallic probe as shown in Figure 2.1. 

The relation between the thermal current density and the temperature is given by [12] 

( ) ( )T y,t
J y,t

y
γ
∂ ⎡ ⎤⎣ ⎦= −

∂
, 2.20 

 
where γ is the thermal conductivity of the beam material in watts/(m·K). In steady state 

(denoted by the subscript s.s.), ( )T y,t
t

∂
∂

 = 0, which implies that at any point along the 

length of the beam the absorbed power W is equal to the power flow ( )s.s.J y A  of 
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thermal energy past the cross-sectional area A. This condition along with equation 2.20 

gives a first-order differential equation for the steady state temperature along the beam: 

( )s.s.T y
W A

y
γ

∂ ⎡ ⎤⎣ ⎦= −
∂

. 2.21 

 
The solution of equation 2.21, given the boundary condition ( )s.s.T y L=  ≡ Ta, is 

( ) ( )s.s. a
WT y L y T

Aγ
= − + . 2.22 

 
At the beam center, defining ( )0s.s.T  ≡ Tp, we have 

p a
WLT T

Aγ
= + . 2.23 

 
Using equation 2.18 we arrive at the value of the excitation field that results in a 

temperature rise ΔT = Tp − Ta of the probe: 

( ) 2
p R.D.

p a

A TE T
L Im

γ
ω α

Δ
Δ =

⎡ ⎤⎣ ⎦
. 2.24 

 
For a fixed optical frequency, there exists an optimum aspect ratio for the probe 

particle such that aα  in equation 2.12 is maximized. This condition is known as the 

plasmon resonance. In the following we will optimize the shape of the probe so as to 

satisfy the plasmon resonance condition for the two cases where the probe is fabricated 

from silver or gold. 

Figure 2.2 plots the real and imaginary parts of the bulk dielectric constant κ = κ1 

+ iκ2 for silver and gold versus the excitation wavelength from 400 nm to 1600 nm. 

These data were generated from the experimentally recorded values of the complex index 

of refraction ñ = n + ik of reference [13], where κ1 = n2 – k2 and κ2 = 2nk. 
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Figure 2.2: Plots of the real part κ1 and imaginary part κ2 of the complex dielectric constant for silver (plots 
a and b) and gold (plots c and d). These plots were derived from the experimentally measured data of the 
complex index of refraction ñ = n + ik of reference [13] with κ1 = n2 – k2 and κ2 = 2nk. 
 

To find the maximum value of aα  at each wavelength requires maximizing the 

magnitude of the function ( )p af ,Lω  of equation 2.12 with respect to variations in La. 

Equivalently, we may minimize the magnitude squared of the denominator of ( )p af ,Lω  

since the numerator is a complex number that is independent of La. Characterizing the 

external medium by κm = 1, then for the k th wavelength data point λk of Figure 2.2 we 

have 

( ) ( ) ( )
( )( ) ( )

1 2

1 2

1
1 1

k k
ak

a ak k

i
f ,L

L iL
κ ω κ ω

ω
κ ω κ ω

− +
=

+ − +
, 2.25 

 
where ωk = 2πc/λk and c = 3.0 x 10 8 (m/s) is the speed of light. Taking the derivative with 

respect to La of the magnitude squared of the denominator of equation 2.25 and setting 

this equal to zero, we solve for the optimum value of the depolarization factor as 
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2
1

1

1
2 1

opt
aL κ

κ κ
−

=
− +

. 2.26 

 
We find the optimized aspect ratio ηopt of the probe particle at each wavelength by 

substitution of opt
aL  into equation 2.14 and numerically solving the resulting 

transcendental equation. Also when opt
aL  is substituted into equation 2.25, the optimized 

function ( )opt opt
akf ,Lω  is purely imaginary and given by 

( ) ( )2 2
1 2

2

1opt opt
akf ,L i

κ κ
ω

κ
− +

= . 2.27 

 
The optimized aspect ratio ηopt and the magnitude of the function ( )opt opt

akf ,Lω  are 

plotted in Figure 2.3 for silver and gold at each wavelength data point of Figure 2.2. 

At first thought, it may seem unnecessary to optimize the aspect ratio of the probe 

so as to be at plasmon resonance since one may just increase the excitation field to obtain 

a larger probe dipole. However, the heating analysis assumes that only the probe particle 

absorbs the radiation. Since the field Ep can be focused at best to a diffraction-limited 

spot size, the volume of the substrate irradiated by the laser spot will be many orders of 

magnitude larger than the volume of the probe particle. Thus at some power of the 

excitation field, absorption by the resonator and surrounding substrate will be a non-

negligible contribution to the heating. To minimize this effect it is therefore crucial to 

optimize the shape of the probe such that it has a plasmon resonance at the frequency of 

operation. 
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Figure 2.3: Plots of the optimized aspect ratio and the corresponding dimensionless function f for a silver 
(plots a and b) and gold (plots c and d) ellipsoidal probe using the dielectric data in Figure 2.2. In the 
visible to near I.R. wavelength range, a silver probe has a much larger resonant polarizability compared to a 
probe fabricated from gold. 
 
 

 
 
Figure 2.4: Relative enhancement factor of the resonant polarizability for an optimized silver probe versus 
an optimized gold probe of the same volume. Over the wavelength range shown, the enhancement factor 
has a minimum value of approximately four at a wavelength of 1400 nm and peaks to approximately 54 at a 
wavelength of 500 nm. 
 

In Figure 2.4 the ratio opt
Agf / opt

Auf  is plotted, providing a quantitative measure of 

the relative enhancement in the resonant polarizability for a shape-optimized silver probe 
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versus an optimized gold probe with the same volume. From this we conclude that silver 

is the better material of choice over gold for the metallic probe, giving a factor of four 

enhancement in the near I.R. region and peaking to approximately 54 in the visible 

region. 

Although silver has a greater polarizability enhancement over gold a major 

drawback to using silver as the probe material is that it oxidizes easily in air to form 

Ag2O whose dielectric properties are very different from those of silver. If one is to use 

silver as the probe material, it is prudent to always keep the probe in an inert environment 

(e.g., vacuum, N2 atmosphere). If the probe is to be used in air, surface modification of 

the silver probe with organic ligands may be necessary to stabilize the probe against 

oxidation.[14, 15] However, chemical surface modifications in general will change the 

plasmon resonance properties, therefore, additional measurements are required to 

determine the shift of the resonance and the change in the dissipation relative to an 

unmodified silver particle. 

We now examine the dependence of the coherent FDOS force and noise force on 

the dimensions of the mechanical resonator to arrive at a practical resonator design that 

maximizes the signal-to-noise ratio. We consider the geometry of Figure 2.1 and take the 

mechanical resonator to be fabricated from aluminum nitride. Aluminum nitride has one 

of the largest thermal conductivities (140 watts/(m·K)) of the known semiconductor 

substances and is therefore an ideal substance for efficient heat transport along the length 

of the resonator.[16] In addition, laser heating due to absorption by the resonator material 

is minimized over the wavelength range considered in figures 2.2−2.4 since the bandgap 

of this material occurs at 6.2 eV (λ = 200 nm).[17] 
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To obtain numerical values for the dipole force on the probe we consider the 

geometry where P is induced along the ẑ  direction and μ is along the x̂  direction. From 

equations 2.8 and 2.10, the x-component of the dipole force, which drives the “wiper 

mode” of mechanical motion, is 

2

5 2
0

1 3 5
4

x
x

E P zxF z
x r r

μμ
πε

⎡ ⎤∂
= = − +⎢ ⎥∂ ⎣ ⎦

 2.28 

 
and taking the probe to be directly above the molecule this force simplifies to 

4
0

3
4x

PF
z

μ
πε

= . 2.29 

 
For a shape-optimized probe at a particular wavelength substitution of equations 2.12 and 

2.27 into 2.15 gives the radiation damped polarizability of the particle denoted, R.D.
optα : 

( )
( )
( )

0

3

31
6

opt opt
akR.D.

opt k opt opt
ak k

V f ,L
i

V f ,L

c

ε ω
α ω

ω ω

π

=
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

, 
2.30 

 
where V = 34

3
optbπ η . Using equation 2.24 we find the induced probe dipole Pa = 

R.D.
optα Ep(ΔT): 

( )
( )2 R.D.

opt kopt
k

k

T AP
L

γ α ω
ω

ω

Δ
= . 2.31 

 
The closest distance of approach between the end of the ellipsoidal probe and the surface-

bound molecule is denoted R0. This distance is taken large enough so that the damping of 

the mechanical motion due to interactions with the surface is negligible compared to the 

intrinsic mechanical damping of the resonator. Therefore, the distance of the probe dipole 
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from the molecular dipole is z = a + R0 = ηopt b + R0, so that the dipole force in equation 

2.29 is 

( )
( )8

0 0

23
4

R.D.
opt k

x opt
k

T AF
L b R

γ α ω Δμ
πε ω η

=
+

. 2.32 

 
For the resonator geometry of Figure 2.1, the mechanical resonance frequency of 

the “wiper mode” (linear oscillation along x̂ ) is given by [18] 

3

31
2 0 23

AlN
h

E I
. mL

ν
π

=  2.33 

 

where EAlN = 330 GPa [16] is the elastic modulus of AlN, 41 w
12

I =  is the area moment 

of inertia of the square cross section of the beam with side length w, and 2wAlNm Lρ=  is 

the mass of the beam with ρAlN = 3260 (kg/m3) [16] the density of AlN. 

Ideally, the noise in the FDOS experiment is set by Brownian motion of the 

mechanical resonator. At absolute temperature T and in a measurement bandwidth Δν 

centered at the mechanical resonance frequency ωh the root-mean-square noise force on 

the resonator is 

4 Beff h
x

m k T
F

Q
ω

ν= Δ , 2.34 

 
where meff, the effective motional mass of the resonator, is 0.23m for the wiper mode, kB 

= 1.38 x 10 -23 (J/K) is Boltzmann’s constant and Q is the quality factor of the mechanical 

resonance. For a derivation of equation 2.34 see Appendix A. Using equation 2.33, the 

noise force may be written 

( )
3 2

1 4 20 23
/

/ B
x AlN AlN

k T AF . E
Q L

νρ Δ
= . 2.35 
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For the driving scheme illustrated in Figure 1.3, the dipole force is a square wave 

with average value 2xF  and a peak-to-peak value of xF . The Fourier component of this 

force at the resonator frequency, νh = ωh /2π, is 2 xF π , giving a signal-to-noise ratio of 

( )
( )

( )1 4 82 1 2
0 0

2 6 1
4 0 23 / /

B

R.D.
opt kx

F opt
x kAlN AlN

Q TFSNR
F k T. E A b R

γ α ωμ
π ω νπ ε ρ η

Δ
= =

Δ +
. 2.36 

 
The dipole force and SNR decrease steeply as the width b of the particle gets 

larger. Therefore it is critical to make the probe particle as small as possible. However, 

there are physical limits to how small we can make the probe. If the dimensions of the 

probe are too small (i.e., b less than ~ 10 nm) [19], then scattering of the conduction 

electrons off of the surface of the probe will become a non-negligible source of damping, 

which must then be included along with the intrinsic loss and radiation loss already 

considered.[19] Furthermore, trapping of conduction electrons by surface states is another 

damping mechanism that becomes increasingly important as the size of the particle 

decreases. The dependence on the cross-sectional area of the beam is less critical since 

the coherent force depends on the cross-sectional area as A 1/2 and the noise force goes as 

A 3/4 thereby partially canceling out in the SNR. The coherent force and noise force scale 

in the same way on the length of the resonator beam so that the SNR is independent of 

the length L. This fact allows one the freedom of varying the length of the beam so as to 

tune the mechanical resonance frequency to a convenient value. 

As a numerical example, we consider a 7 micron long AlN beam with a 40 nm 

side length. Using equation 2.33 we find the mechanical resonance frequency to be 1.4 

MHz. If we assume Q = 1000 then using equation 2.35 the noise force on the resonator at 
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T = 300 K is 3.5 x 10 −17 νΔ  (Newtons). The probe is taken to be a 20 nm wide (b = 10 

nm) silver ellipsoid with an aspect ratio that is optimized at each wavelength for plasmon 

resonance as shown in Figure 2.3. Using the data in Figure 2.3 and equation 2.24 we may 

find the value of the excitation field at each wavelength that generates a temperature rise 

ΔT = 1° C in the probe, and the corresponding dipole (equation 2.31) induced in the 

shape-optimized probe. These results are plotted in Figure 2.5 where the induced plasmon 

dipole has a maximum value of 9.5 x 10 −27 C·m at λ = 1.6 microns and a minimum value 

of 3.8 x 10 −28 C·m at λ =  400 nm. 

 

 
 
Figure 2.5: Plots of the excitation field that produces a 1° C temperature rise in the Ag probe and the 
corresponding optical dipole induced in the shape-optimized probe as a function of the excitation 
wavelength. 
 

Let us consider detecting a chromophore with a transition dipole matrix element 

12μ  = 0.1 Debye in the x̂  direction. We consider the scheme of Figure 1.3 where there is 

only one excitation field. Since the probe dipole and molecular dipole are orthogonal to 

one another we may simultaneously optimize the probe and molecular responses by 

adjusting the amplitude and the polarization direction of the single excitation field E so 

that the projection along ẑ  equals ( )1pE T CΔ =  and the projection along x̂  corresponds 
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to the optimum Rabi frequency of equation 2.6. Furthermore, the optical response of the 

probe along x̂  will be negligible compared to the response along ẑ  since the probe is not 

at plasmon resonance along its short dimension. We will take the limit where pure 

dephasing mechanisms are absent, i.e., T2 = 2T1, which represents a best case scenario. 

For the optimum value of the Rabi frequency, the magnitude of the induced molecular 

dipole is 12μ / 2  = 0.071 Debye. For a shape-optimized silver probe located directly 

above the molecule and taking R0 = 20 nm, the force at the 1.4 MHz mechanical 

resonance and SNR in a 1 Hz bandwidth are plotted in Figure 2.6 vs. the excitation 

wavelength. 

 

 
 
Figure 2.6: Plots of the dipole force on the resonator at the mechanical resonance generated by a 0.071 
Debye induced molecular dipole and the SNR in a 1 Hz bandwidth. The Brownian noise force only 
depends on the parameters of the mechanical resonator and has a value of 3.5 x 10 −17 (N) in the 1 Hz 
measurement bandwidth. 
 

Recently, the transition dipole moment of ~ 30 nm diameter InGaAs/GaAs 

quantum dots was measured with cavity ringdown optical absorption and found to be 8.8 

x 10 −29 C·m = 26.3 D at λ = 1.151 microns.[20] We now would like to evaluate the SNR 

for imaging and spectroscopy of these quantum dots by FDOS. We take R0 = 35 nm, 

which is the sum of a 20 nm distance of closest approach and the 15 nm radius of the dot. 
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The peak force is 7.05 x 10 −18 N and occurs at x = 0 giving a SNR of 0.20 in a 1 Hz 

bandwidth. Plotted in Figure 2.7 is a constant-height line scan along the x-direction with 

y = 0 of the force due to the transition dipole of the quantum dot. The imaging resolution 

for this experiment is seen to be 100 nm FWHM. 

 

 
 
Figure 2.7: A plot of the resonant force on the probe generated by the optically induced transition dipole of 
a single InGaAs/GaAs quantum dot. The probe is scanned at constant height (R0 = 35 nm) in the x-direction 
holding y = 0. At x = 0, the force has a maximum value of 7.05 x 10 −18 N, which gives a peak SNR of 0.20 
in a 1 Hz measurement bandwidth. The imaging resolution is defined as the full width at half maximum 
(FWHM) of the force profile plotted above and is 100 nm. 
 
 We now turn to the case of EDDI imaging and spectroscopy of a single molecule 

with a ground state dipole 11μ  and excited state dipole 22μ  in interaction with a static 

electret moment on the probe. The force at the resonator frequency is generated by 

modulating the excited state population ( )22 tρ  as in the scheme of Figure 1.3. The total 

force on the resonator is therefore given by 

( ) ( )( ) ( )22 22 11 1EDDIF t t Eρ μ μ= − ⋅ ∇ , 2.37 
 
where 1E∇  is the gradient tensor of the electric field of the electret dipole. We will again 

consider the probe dipole to be oriented along ẑ  and take 22μ  and 11μ  to both be along x̂  

so that the x-component of the EDDI force at the resonator frequency ωh is 
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, 2.38 

 
where iiμ  is the magnitude of the corresponding dipole moment and 22

ssρ  is the optically 

induced, steady state population of the excited state. 

 We use the optical Bloch equations to evaluate the excited state population in 

steady state 22
ssρ , which is [2] 

2
1 2

22 2 2 2
2 1 2

41
2 1 4

ss TT
T TT

ρ
⎛ ⎞Ω

= ⎜ ⎟+ Δ + Ω⎝ ⎠
. 2.39 

 
As a function of the Rabi frequency, 22

ssρ  does not have a local maximum and simply 

asymptotes to the value 0.5 as Ω → ∞. In the following, we will take 22
ssρ  to be 0.05. This 

conservative value ensures that a low enough laser power is used so as to avoid photo-

degradation of the molecule and/or probe. 

As an example of difference dipole detection, we take the data of El-Kamary and 

Rettig [21] who studied three different coumarin laser dyes (labeled I, II, and III) and 

found the difference dipole Δμ between the ground and excited states for each molecule 

to be 5.61 D, 8.11 D, and 13.40 D, respectively.[21] 

Consider imaging an isolated molecule of coumarin I since this has the smallest 

difference dipole. Given R0, the distance of closest approach of the spherical probe, the 

maximum force on the resonator occurs when the radius of the probe is 3R0. We will take 

R0 = 20 nm which sets the radius of the probe to be 60 nm. We will use the 1.4 MHz 

resonator from before with the ferroelectric sphere patterned at the end of the resonator 

beam. The probe is made of the material lead zirconate titanate (PZT) and has a 

polarization of 0.35 C/m2. Recall that for this resonator, the Brownian noise force in a 1 
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Hz bandwidth centered at the resonance frequency is 3.5 x 10 −17 N. In Figure 2.8 a 

constant-height, one-dimensional line scan of the force is plotted along the x-direction 

with y = 0. The peak dipole force of 1.24 x 10 −13 N occurs at x = 0, which gives a peak 

SNR of 3543 in a 1 Hz measurement bandwidth. Also, it can be seen that the imaging 

resolution for this experiment is 46 nm FWHM. 

 

 
 
Figure 2.8: A plot of the resonant force on the probe for EDDI imaging of the 5.61 D difference dipole of 
coumarin I of reference [21]. The probe is scanned at constant height (R0 = 20 nm) in the x-direction 
holding y = 0. The peak force is 1.24 x 10 −13 N giving a SNR of 3543 in a 1 Hz bandwidth. An imaging 
resolution of 46 nm FWHM is predicted for this experiment. 
 
 Vibrational spectroscopy using EDDI is an important application for determining 

the chemical identity of the single, surface-bound molecule. For many organic molecules 

a difference dipole of 0.01 debye between the ground state and an excited vibrational 

state is typical.[22] For detecting this 0.01 debye difference dipole, we use the same 

experimental arrangement as for imaging of the coumarin I molecule. For the probe 

located directly above the molecule, we calculate a SNR of 6.32 in a 1 Hz measurement 

bandwidth. 

Since the probe dipole is static, there is less laser heating concern with EDDI than 

with FDOS. The absorption of the incident light by the electret is potentially limiting at 

some wavelengths, but is not pursued here. In Chapter 1 we considered a micron scale 
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resonator with a 1.7 kHz resonance frequency possessing a force sensitivity of 5.6 

aN/ Hz .[23] Such a resonator would be advantageous for EDDI detection of molecules 

with very small difference dipoles. Additionally, standard fiber-optic interferometry may 

be used to detect the mechanical motion since the dimensions of the resonator are larger 

than the focused laser spot size.[24] 

In summary, we have explored the design details for single-molecule FDOS 

spectroscopy and imaging experiments. We have discussed optimizing the molecular 

response so that the induced dipole moment is maximized. Also, we have used the 

electrostatic approximation to obtain analytical formulas for the plasmon resonance 

condition of a metallic ellipsoidal probe particle allowing us to find the optimum aspect 

ratio for a specified probe material at a particular wavelength. Laser heating due to 

absorption in the probe is a concern and influences the design of the resonator in order to 

obtain as high a signal-to-noise ratio as possible. As a cautionary note, the electrostatic 

approximation underlies our SNR estimates of single-molecule FDOS spectroscopy and 

imaging experiments. To make more accurate predictions, one could simulate the optical 

response of the probe with finite element methods or measure the optical scattering from 

a single particle to determine the plasmon resonance frequency and linewidth. 

Spectroscopy and imaging of a typical molecular dipole by FDOS yields quite 

low signal-to-noise ratios (see Figure 2.6) and thus a large amount of signal averaging is 

required for these experiments. However, FDOS imaging and spectroscopy of quantum 

dots seems promising, where a peak SNR of 0.2 in a 1 Hz measurement bandwidth and 

an imaging resolution of 100 nm is predicted. This suggests the use of FDOS to probe 

quantum confined structures such as quantum dots and quantum wells, which are finding 
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important technological applications. Greater generality of the method would follow from 

improvements in force sensitivity and heat dissipation that may come about with the 

development of smaller resonators. 

Finally we discussed imaging and spectroscopy of single molecules that possess a 

difference dipole between the ground and excited state with the EDDI method. In this 

method, an electret probe dipole is used to sense the modulated difference dipole of the 

molecule. Due to the fact that the electret probe dipole is many orders of magnitude 

larger than the optically induced probe dipole in FDOS experiments, the EDDI method 

gives much larger forces on the resonator allowing faster single-molecule detection. As 

an example we consider detecting a single coumarin molecule with a difference dipole of 

5.61 D. For this experiment, a peak signal-to-noise ratio of 3,543 in a 1 Hz bandwidth 

and an imaging resolution of 46 nm is predicted. Single-molecule vibrational 

spectroscopy seems practical at lower sensitivity. 
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Chapter 3. Optical Detection of Submicron Mechanical Resonators 

 

In Chapter 2 we evaluated the force sensitivity for FDOS and EDDI single-

molecule imaging and spectroscopy. To obtain any information from these experiments 

requires observation of the motion of the resonator and in this chapter we will consider 

optical detection via fiber-optic interferometry. Fiber-optic interferometry has been used 

to observe the motion of AFM cantilevers providing an unprecedented displacement 

sensitivity of 5.5 x 10-4 Å / Hz .[1] The effectiveness of this method relies on achieving 

a high collection efficiency of the light reflected by the resonator so that it may 

coherently interfere with the reference beam at the photo-detector. This method is well 

suited for resonators with dimensions greater than or equal to the mode diameter of the 

fiber-optic, which is typically a few microns. However, submicron-sized resonators will 

scatter light in all directions thereby diminishing the light that gets collected by the fiber. 

To extend the applicability of fiber-optic interferometry to submicron-scale resonators 

requires a scheme to enhance the scattered signal from the resonator. In this chapter we 

will explore plasmon enhanced fiber-optic detection of the submicron-scale resonators 

proposed for FDOS and EDDI imaging and spectroscopy. This method exploits the light 

scattering at plasmon resonance from a metallic nanoparticle attached to the mechanical 

resonator. Motion of the resonator modulates the phase, amplitude, or polarization of the 

scattered light resulting in an interference signal with a Fourier component at the 

mechanical resonance frequency. We will consider detecting resonators with linear and 

torsional modes of oscillation and compare the intrinsic Brownian noise that is encoded 
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into the optical signal to the shot noise of the reference field and current noise in the 

transimpedance amplifier. 

 

 
 
Figure 3.1: Schematic of a fiber-optic interferometer used to optically detect the motion of submicron 
mechanical resonators. The laser diode (L.D.) generates the detection light with power PL at frequency ωd, 
which is launched into fiber #1 of the 2x2 fiber-optic coupler. A fraction f of the initial power propagates 
down fiber #2 and the rest is absorbed by the beam dump. At the end of fiber #2, a reflected wave Er is 
generated at the glass-air interface, which serves as the reference field of the interferometer. The 
transmitted field Ed is focused at the mechanical resonator by the lensed face and excites the plasmon 
resonance of the metallic nanoparticle attached to the resonator. The motion of the resonator results in 
phase, amplitude, or polarization modulation of the electric field Es scattered by the metallic nanoparticle. 
The scattered field is collected by the lensed face and interferes with the reference wave at the photodiode 
(P.D.) to yield a photocurrent at the mechanical resonance frequency proportional to the amplitude of the 
mechanical motion. Inclusion of optics before optical mixing at the photodiode allows for manipulation of 
the polarization of the reference and scattered fields. 
 

Figure 3.1 is a schematic of a typical fiber-optic interferometer. A diode laser 

launches light at frequency ωd and with power PL into fiber #1 of a 2x2 fiber optic 

coupler. A fraction f of this power is sent to fiber #2 and the other fraction (1 f− ) is 

coupled to fiber #3 and absorbed by the beam dump. Fiber #2 is terminated in a lensed 

face where part of the incident laser field EL is reflected back into the fiber and serves as 

the reference field Er of the interferometer. The transmitted field Ed is focused by the 

lensed face onto the submicron mechanical resonator exciting the plasmon resonance of 
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the metallic nanoparticle attached to the resonator. The motion of the resonator is 

encoded into the phase, amplitude, or polarization of the field Es scattered by the metallic 

nanoparticle. A fraction of this scattered light is collected by the lensed face and travels 

to fiber #4 along with the reference field. Before interfering, the reference and scattered 

fields are transmitted through polarizing optics and then focused onto the photodiode. 

The Fourier component of the photocurrent at frequency ωh is proportional to the 

amplitude of mechanical oscillation. 

 In what follows, all optical powers will be given in terms of the laser power PL. 

The power Pd transmitted out of fiber #2 is 

( )1 LdP f r P= − , 3.1 
 
where r is the power reflection coefficient for the lensed face, which is taken to be 0.04. 

The amplitude dE  of the linearly polarized detection field Ed is related to this power by 

[2] 

0

2
d d

d
E P

c Aε
= , 3.2 

 
where Ad is the cross-sectional area of the beam at the focal point of the lensed face. The 

reference power rP ′  that reaches fiber #4 is 

( )1r LP rf f P′ = − . 3.3 
 

To evaluate the scattered power collected by the lensed face, we consider the 

Poynting vector ( )S r  for the electromagnetic power radiated by the induced optical 

dipole of the metal nanoparticle [2] 
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where the position vector r  is measured relative to the location of the plasmon dipole 

and p  is its vector amplitude. The electromagnetic power crossing a differential area ΔA 

with normal vector n̂  is then given by 

( ) AˆP S r n⎡ ⎤Δ = ⋅ Δ⎣ ⎦ . 3.5 
 
We will consider the axis of the lensed fiber to be oriented orthogonally to the dipole axis 

since for this geometry, the Poynting vector (and power flow) is maximized at the lensed 

face. Integrating equation 3.5 over a cone of angle 2θa where θa is the angle of acceptance 

of the lensed fiber, gives the total power collected by the lensed fiber: 

( ) ( )
24

2 3
032

d
a a

p
P

c
ω

θ σ θ
π ε

=  3.6 

 
with 

( ) 4 5 1 3
3 4 12a a acos cosσ θ π θ θ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
. 3.7 

 
 Finally, the scattered power ( )aP θ′  directed to fiber #4 is 

( ) ( ) ( )1a aP f Pθ θ′ = − . 3.8 
 
 

Detection of Linear Oscillations 

 

We will now consider two different scattering mechanisms to detect the motion of 

submicron resonators possessing a linear mode of oscillation. 
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Figure 3.2: Encoding of linear mechanical oscillations through amplitude- or phase-modulated optical 
scattering. Two metallic spheres, both of radius R come within a few nanometers of touching. One is 
patterned to the top face of the resonator and the other to a stationary support above the resonator beam. 
The mechanical motion changes the center-to-center distance Z between the spheres, thereby modulating 
the amplitude of the optically induced dipole of the pair and resulting in amplitude modulation of the 
scattered field. A simpler scheme involves only the single sphere attached to the resonator, which simplifies 
the fabrication. For this case, the motion of the resonator changes the position of the sphere relative to the 
plane wave detection field Ed, thereby modulating the phase of the induced dipole and the resulting 
scattered light. 
 
Figure 3.2 shows a picture of the type of resonator considered in Chapter 2 for FDOS and 

EDDI. To detect the mechanical motion a metallic sphere is patterned and partially 

embedded in the top surface of the resonator near the free end of the beam. Directly 

above this, an identical sphere is embedded in a stationary support beam such that the 

spheres come within a few nanometers of touching. The motion of the resonator changes 

the center-to-center distance Z between the spheres thereby modulating the polarizability 

of the aggregate resulting in amplitude modulation of the scattered field. 

Additionally, for the case where the top sphere and support structure are absent, a 

modulated signal will still exist since motion of the resonator will change the position of 

the sphere leading to phase modulation of the scattering, which we will discuss first. 
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a.) Phase-Modulated Scattering 

 

For the phase modulation mechanism denoted by a subscript φ  the dipole induced 

in the single metal sphere on the resonator is 

( ) ( )R.D.
dsp t E z tφ α= ⎡ ⎤⎣ ⎦ , 3.9 

 
where the plane wave detection field Ed is evaluated at the instantaneous position ( )z t  of 

the sphere. The radiation damped polarizability R.D.
sα  of the sphere is given by [3] 

3
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ω α
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=
⎛ ⎞
−⎜ ⎟
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, 
3.10 

 
with sα  the polarizability of the metallic sphere in the electrostatic approximation [4] 
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ε ω
α πε

ε ω
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, 3.11 

 
where R is the radius of the sphere. Note that the plasmon resonance condition occurs 

when Re[ε] = − 2, which depends only on the type of metal used to fabricate the sphere. 

 To detect mechanical oscillations along ẑ  we must orient the lensed fiber along 

this direction, therefore the functional form for the detection field is 

( )
( ) ( )

2

d d d d

d d

i k z t i k z t

E z,t E e eω ω− − −⎛ ⎞+⎜ ⎟=
⎜ ⎟
⎝ ⎠

, 3.12 

 
where the real vector amplitude dE  lies in the x-y plane and kd = 2π/λd = ωd/c. For 

driving of the resonator at the resonance frequency νh the coordinate of the sphere is 

( )
2

h h

s

i t i t
z t D z e eω ω−⎛ ⎞+

= + Δ ⎜ ⎟⎜ ⎟
⎝ ⎠

, 3.13 
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where zΔ  is the amplitude of oscillation and D is the equilibrium position of the sphere 

measured from the face of the lensed fiber. Inserting this into equation 3.12 and assuming 

that zΔ  << 2dλ π , the optically induced dipole may be written as a sum of three 

frequency components, ( )p tφ  = ( )dp tφ  + ( )p tφ+  + ( )p tφ− , where 

( )
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2
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d d

sd d
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3.14 

 
 

b.) Amplitude-Modulated Scattering 

 

For the amplitude-modulation mechanism the axis of the lensed fiber must be 

oriented in the x-y plane so that the electric field vector dE  is along ẑ . For this 

arrangement, the total dipole induced in the pair of spheres is 

( ) ( ) ( )d
R.D.
pairAp t Z t E tα= ⎡ ⎤⎣ ⎦ , 3.15 

 
where the subscript A denotes the amplitude modulation mechanism. The electrostatic 

polarizability of the pair of spheres in a local field approximation is [5] 
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where Z is the center-to-center distance between the spheres and 

( ) 3
0

2
4

G Z
Zπε

= . 3.17
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For the time dependence given in equation 3.13, we again find that the optically induced 

dipole has frequency components at ωd and ωd ± ωh 

( ) [ ]
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3.18 

 
where 0Z  is the equilibrium distance between the centers of the spheres and D is the 

distance from the face of the lensed fiber to the symmetry axis of the pair. 

For the phase- and amplitude-modulation mechanisms, the strength of the 

detection field is limited by heating of the resonator. From the thermal analysis of 

Chapter 2 an expression was derived for the amplitude of the electric field that generates 

a temperature rise ΔT of the resonator: 

( ) 2
d R.D.

jd

A TE T
L Im

γ
ω α

Δ
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. 3.19

 
Using equations 3.2 and 3.1 we find the corresponding laser power ( )LP TΔ : 
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Δ =
− ⎡ ⎤⎣ ⎦

. 3.20

 
 For detection of linear oscillations, the polarization of the scattered field is 

parallel to the reference field therefore no polarizing optics are needed after fiber # 4. The 

photocurrent is proportional to the square of the total electric at the photodiode, which is 

the sum of the signal and reference electric fields. These two fields are mixed at the 

photodiode to yield a dc photocurrent, which depends on the phase difference between 
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the two fields, and an ac photocurrent at the resonator frequency ωh. In practice, the 

reference field generated by the reflection from the end of the lensed fiber will be much 

larger in magnitude than the scattered fields. Therefore, the main contribution to the 

photocurrent involves products of the form r sE E⋅ , where rE  is the amplitude of the 

reference field at the photodiode and sE  is the amplitude of one of the frequency 

components of the scattered field. After some lengthy algebra and keeping terms only of 

the form r sE E⋅ , the photocurrent ( )i t  is expressed in terms of the reference power rP ′  

and the sideband power P+′  at the photodiode as [6] 

( ) ( )2 4r r rd d h
d

ei t P P P cos P P cos tη φ ω
ω +

⎛ ⎞′ ′ ′ ′ ′= + +⎜ ⎟
⎝ ⎠

. 3.21

 
In equation 3.21, e = 1.61x10 −19 (C), is the electron charge, and η is the quantum 

efficiency of the photodiode, which is the probability that an absorbed photon generates a 

free conduction electron. Also, we have used the fact that P+′  = P−′ . The phase difference 

dφ  between the reference and scattered waves at frequency ωd is 

4
R.D.

R.D.d
d

ImD ArcTan
Re

απφ
λ α

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟= +
⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠

. 3.22

 
From the second term in equation 3.21, dφ  is seen to modulate the dc level of the 

photocurrent. This interference term may therefore be used in a feedback loop to stabilize 

the gap between the fiber and resonator against long term drifts. 

 In addition to the coherently driven motion, the random thermal motion of the 

resonator becomes encoded as noise in the optical signal. To calculate the root-mean-

square noise dipole at the “sideband” frequencies (ωd ± ωh) we simply replace Δz and ΔZ 



 53

in equations 3.14 and 3.18 with the rms value of the amplitude fluctuations Z . In 

Appendix A we derived the spectral density ( )z hG ν  of amplitude fluctuations at 

resonance. Multiplying the spectral density by the measurement bandwidth Δν and taking 

the square root we obtain Z : 

3

4 B

h

k TQZ
M

ν
ω

= Δ . 3.23

 
 From the form of equation 3.21 we find the rms noise Bi  in the photocurrent due 

to Brownian motion of the resonator to be 

4
rB

d

ei P Pη
ω +

′ ′= , 3.24

 
where P+′  is the rms noise power at the photodiode scattered into a single sideband. 

Using equations 3.3, 3.6, and 3.8 we evaluate this noise for modulation mechanism j as 

( ) ( )2

2 3
0

14
32 L

a
B, j d

rf fei P
c
σ θη ω

π ε
−

= jP , 3.25

 
where jP  is the rms amplitude of the induced noise dipole for the phase- (j = φ ) and 

amplitude- (j = A) modulation mechanisms. From equations 3.14 and 3.18 we see that 

this amplitude depends linearly on the magnitude of the detection field, which may be 

expressed in terms of the laser power using equations 3.1 and 3.2. Finally, using 3.20 and 

3.23 we find the explicit expressions for the photocurrent noise due to Brownian motion 

for the two detection mechanisms: 

( ) ( )
( )

2

2 3

1
1

R.D.
d B sda

B, R.D.
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A Tr f A k TQei
c r M L Imφ
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Δ−
= Δ

− ⎡ ⎤⎣ ⎦
 3.26

 
and 
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( ) ( )
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2
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1
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paira

B,A
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r f A k TQe A Ti
c r M ZL Im

ασ θη γν
π ω α

∂− Δ
= Δ
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Photocurrent noise due to Brownian motion of the resonator is not the only noise 

source in the detection scheme. We must also include shot noise (dominated by that of 

the reference field) and current noise in the photodiode transimpedance amplifier. In a 

measurement bandwidth Δν the contribution of shot noise to the total noise in the 

photocurrent is [6] 

22 r
shot

d

e Pi η ν
ω

′
= Δ . 3.28

 
 

c.) Numerical Examples for Detecting Linear Oscillations 

 

For phase-modulation detection of linear oscillations, we will use a 40 nm 

diameter Ag sphere irradiated at the plasmon resonance of 354 nm. For both the phase- 

and amplitude-modulation mechanisms, the laser power corresponding to a 1° 

temperature rise of the plasmon particle(s) is found from equation 3.20. The fiber-optic 

coupler has r = 0.04, f = 0.5, θa = 20° [7] and the mode diameter of the laser beam at the 

focus is 2.5 microns.[7] The New Focus model 1801 photoreceiver with a 125 MHz 

bandwidth, quantum efficiency of 0.7 at 354 nm, and a noise current of 0.66 pA in a 1 Hz 

measurement bandwidth is assumed for detection of the reference and scattered fields.[8] 

In Figure 3.3a the Brownian, shot, and amplifier noise currents in a 1 Hz measurement 

bandwidth are plotted versus the width w of a 5 micron long AlN resonator beam of 

square cross-section, where a Q of 1000 is assumed at 300 K. It can be seen that 
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Brownian noise of the resonator is the largest component of the photocurrent noise for the 

range of widths plotted. The total photocurrent noise is toti  = 2 2 2
ampB, shoti i iφ + +  and for w 

= 150 nm is 1.15 pA/(Hz)1/2, which is a factor of 1.5 times larger than the Brownian 

contribution at mechanical resonance. In Figure 3.3b the resonator frequency is plotted 

versus the width of the AlN beam and is 10 MHz for w =  150 nm. 

 

 
 
Figure 3.3: Noise contributions and resonator frequency for detection of the linear mode of mechanical 
oscillation of a submicron resonator via phase-modulated scattering from a 40 nm diameter silver sphere 
irradiated at plasmon resonance, λd = 354 nm. a. Brownian, shot, and amplifier contributions to the 
photocurrent noise in a 1 Hz detection bandwidth plotted versus the width w of a 5 micron long AlN 
resonator beam of square cross-section (Q = 1000 @ 300 K). b. The mechanical resonance frequency 
plotted versus the width of the beam. 
 
 For the amplitude-modulation mechanism, we consider two Ag spheres 20 nm in 

diameter that are separated by 2 nm at mechanical equilibrium. The plasmon resonance 

for this aggregate is at λd = 368 nm, which is also the wavelength at which the derivative 

0ZZα∂ ∂  is maximized. The parameters characterizing the fiber-optic interferometer are 

the same as in the phase-modulation example above and the model 1801 photoreceiver 

[8] is again assumed for detection of the optical fields. The Brownian shot and amplifier 

contributions to the photocurrent in a 1 Hz measurement bandwidth are plotted in Figure 

3.4a versus the beam width for a 4 micron long AlN resonator with Q = 1000 at 300 K. 
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The amplifier noise increases for higher optical modulation frequencies and has a 

maximum value of 4 pA [8] in a 1 Hz measurement bandwidth over the range of 

mechanical frequencies plotted in Figure 3.4b. For a beam width of 400 nm, the 

corresponding resonance frequency is 41 MHz and the total noise current is 9.8 pA which 

is a factor of 1.14 times larger than the Brownian contribution. 

 

 
 
Figure 3.4: Noise contributions and resonator frequency for detection of the linear mode of mechanical 
oscillation of a submicron resonator via amplitude-modulated scattering from a pair of 20 nm diameter 
silver spheres irradiated at plasmon resonance, λd = 368 nm. a. Brownian, shot, and amplifier contributions 
to the photocurrent noise in a 1 Hz detection bandwidth plotted versus the width w of a 4 micron long AlN 
resonator beam of square cross-section (Q = 1000 @ 300 K). b. The mechanical resonance frequency 
plotted versus the width of the beam. 
 
 

Detection of Torsional Oscillations 

 

 Shown in Figure 3.5 is a nanoscale beam of length L width w and height h 

possessing a fundamental mode of angular displacement θ(y, t) measured relative to the 

ẑ  axis: 

( ) ( )hy,t cos t sin y
L
πθ θ ω ⎛ ⎞= Δ ⎜ ⎟
⎝ ⎠

. 3.29
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The amplitude of the angular displacement at the center of the beam is Δθ and the 

oscillation frequency ωh is given by [9] 

h
p

GJ
L I
πω = , 3.30

 
where G is the shear modulus (N/m2) for the beam material and J, the torsional constant 

(m4) is given by [9] 
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1 0.63 0.052
3

wh h hJ
w w

⎛ ⎞⎛ ⎞ ⎛ ⎞= − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
, 3.31

 
where w ≥ h. Furthermore, Ip, the polar moment of inertia per unit length (kg·m) is 

( )2 21
12pI wh w hρ= + , 3.32

 
where ρ is the mass density of the material (kg/m3). 

 

 
 
Figure 3.5: Optical detection of the torsional mode of oscillation of a submicron mechanical resonator. The 
wavelength λd of the detection field is tuned to the plasmon resonance for the long axis of the metallic 
nanoparticle patterned at the center of the resonator beam. The polarization of the incident field Ed is 
oriented along the nonresonant, short axis of the particle, thereby minimizing laser heating. Torsion of the 
beam about ŷ  changes the orientation of the particle relative to the polarization of the detection field, 
thereby inducing a dipole along the long axis of the particle with an amplitude proportional to the angle of 
torsion. 
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At the center of the beam, where the mode shape is maximum, a metallic ellipsoid 

is patterned on a platform with its long axis perpendicular to the beam axis. The detection 

light propagates along the length of the beam ( ŷ  direction) with the polarization vector 

oriented along the short axis of the particle ( ẑ  direction). The polarizability tensor for the 

metallic particle is expressed as 

( ) R.D. R.D.
a bˆ ˆ ˆ ˆx x z zα θ α α′ ′ ′ ′= + , 3.33

 
where R.D.

aα  and R.D.
bα  are the components of the polarizability tensor along the long axis 

and short axis, respectively. The unit vectors x̂′  and ẑ′  define the principal axis system 

and are related to the lab frame unit vectors by 

ˆ ˆ ˆx x cos z sin
ˆˆ ˆz x sin z cos

θ θ
θ θ

′ = −
′ = +

. 3.34

 
Using equation 3.34 we find the polarizability tensor expressed in the lab frame 

( ) ( ) ( )R.D. R.D.
a bˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆxx xz zx zz xz zxα θ α θ θ α θ θ≈ − − + + + , 3.35

 
where the small angle approximation has been made and terms of order θ 2 and higher are 

dropped. For the detection field aligned along ẑ  we find the induced dipole to be the sum 

of dipoles at ωd and (ωd ± ωh): 

( )
( )

2

d d
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Pd b d

i k D t
c.c. ˆp t E ze ω

α
−⎛ ⎞+⎜ ⎟=
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ω ωα θ

±
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⎝ ⎠
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3.36
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where the subscript P denotes the polarization-modulation mechanism and αΔ  = R.D.
bα  - 

R.D.
aα . The root-mean-square noise dipole is found from equation 3.36 by replacing the 

driven angular amplitude Δθ by the rms value 

3

4 B

h

k TQ
I

θ ν
ω

= Δ  3.37

 
of thermal fluctuations in the angular coordinate, where I = IpL/2 is the moment of inertia 

of the torsional resonator. 

 Since the scattered field is orthogonal to the reference field, it is necessary to 

project both fields onto a single axis so that interference may occur at the photodiode. 

Therefore, a linear polarizer is placed in front of the photodiode with transmission axis 

oriented at angle ψ with respect to the polarization direction of the reference field. With 

the polarizer in line, the reference power at the photodiode will be 2
rcos Pψ ′  and the 

scattered power will be ( )2
asin Pψ θ′ , where rP ′  and ( )aP θ′  were given by equations 

3.3 and 3.8, respectively. Following the same steps as above and taking into account that 

the heat dissipation is improved by the attachment of the beam to the substrate at both 

ends, we arrive at the Brownian photocurrent noise for the polarization-modulation 

mechanism: 

( ) ( )
( )

2 2 2

3

14
1

Ba d
B,P R.D.

h b

r f cos sin A k TQe A Ti
c r I L Im

σ θ ψ ψη γν α
π ω α

− Δ
= Δ Δ

− ⎡ ⎤⎣ ⎦
. 3.38

 
To approach Brownian motion-limited optical detection, it is necessary to 

maximize the Brownian contribution to the photocurrent. From equation 3.38 we see that 
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the polarizer angle must be set to 45°, since this maximizes the function cos sinψ ψ . 

Finally, the shot noise contribution is found from equation 3.28 to be 

( )2 22 1 L
shot

d

e rf f cos P
i

η ψ
ν

ω
−

= Δ . 3.39

 
 

Numerical examples for detection of torsional motion 

 

 As an example of detecting torsional motion, we consider a 5 micron long x 100 

nm wide AlN beam and assume a Q of 1000 at 300 K for the torsional mode. At the 

center of the beam is a 20 nm wide x 83 nm long silver ellipsoid with plasmon resonance 

along the long axis at λd = 549 nm. The parameters characterizing the fiber-optic 

interferometer are the same as above, however the photodetector is taken to be the model 

1601 by New Focus with a 1 GHz bandwidth, quantum efficiency of 0.7 at 549 nm, and 

current noise of 9.3 pA in a 1 Hz bandwidth.[8] The polarizer angle ψ is set to 45°, so as 

to maximize the Brownian photocurrent. In Figure 3.6a the Brownian and shot 

contributions to the photocurrent noise in a 1 Hz measurement bandwidth are plotted 

versus the height h of the AlN beam. For each value of the height, the laser power is 

adjusted so as to produce a 1° temperature rise of the resonator. For h = 35 nm the 

Brownian and shot contributions are equal with a value of 20 pA giving a total 

photocurrent noise of ( ) ( )2 22 20 9 3.+  = 29.8 pA, which is a factor of 1.49 times larger 

than the Brownian contribution. The mechanical resonance frequency is plotted in Figure 

3.6b versus the height of the beam. For h = 35 nm where the Brownian and shot noises 

are equal, the corresponding resonance frequency is 587 MHz. 
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Figure 3.6: Noise contributions and resonator frequency for detection of the torsional mode of mechanical 
oscillation of a submicron resonator via polarization-modulated scattering from a 20 nm wide x 83 nm long 
silver ellipsoid irradiated at plasmon resonance, λd = 549 nm. a. The Brownian and shot contributions to the 
photocurrent noise in a 1 Hz bandwidth plotted against the height h of a 5 micron long x 100 nm wide AlN 
resonator beam (Q = 1000 @ 300 K). The amplifier noise of 9.3 pA is not shown since it is well below the 
other noise levels. b. The mechanical resonance frequency plotted versus the beam height h. 
 
 In conclusion, three optical scattering mechanisms have been investigated for use 

in enhancing interferometric detection of the motion of submicron mechanical resonators. 

In all of these, a metallic nanoparticle attached to the resonator is irradiated at plasmon 

resonance. Motion of the resonator modulates the phase, amplitude, or polarization of the 

plasmon dipole resulting in optical scattering at the “sideband” frequencies (ωd ± ωh). A 

fiber-optic interferometer is used to excite the plasmon resonance and to efficiently 

collect the scattered light. The reference and scattered fields mix at the photodiode 

resulting in a photocurrent with a frequency component at the mechanical resonator 

frequency. 

 We have seen in Chapter 2 that Brownian (thermal) motion of the mechanical 

resonator sets a fundamental limit on how small a driven amplitude we may practically 

detect. In the plasmon detection schemes discussed, Brownian motion becomes encoded 

as an optical noise source at the sideband frequencies appearing as a source of 
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photocurrent noise. If the optical detection scheme were noiseless, then we would only 

record the optically encoded Brownian motion of the resonator. However shot noise of 

the reference field and electronic amplifier noise are also present and degrade the 

sensitivity of the optical detection scheme. Here, we have plotted the photocurrent noise 

versus a single geometric parameter of the mechanical resonator so as to find a range of 

designs for which the optical detection scheme approaches the ideal of being Brownian 

motion-limited. For detection of resonators with a linear mode of oscillation the phase-

modulation scheme allows detection of mechanical frequencies up to 10 MHz, at which 

point the total photocurrent noise is a factor of 1.5 times larger than the Brownian 

contribution. The amplitude-modulation mechanism allows extension of this range to 

mechanical frequencies of about 40 MHz with the total noise at this frequency being a 

factor of 1.14 times larger than the Brownian noise. Finally, the polarization-modulation 

mechanism is quantified for detection of torsional oscillations up to approximately 600 

MHz. At this upper limit, the total photocurrent noise is a factor of 1.5 times larger than 

the Brownian contribution. 

 Amplifier noise tends to get worse the higher the mechanical frequency to be 

detected. For example, the current noise spectral density for the New Focus model 1801 

amplifier is 0.66 pA/ Hz  for frequencies below about 15 MHz and increases by about a 

factor of 10 at 80 MHz.[8] One way to minimize the amplifier noise is now outlined, 

which will allow even higher frequency detection without this noise mechanism 

dominating. The initial laser beam is split into two beams before launching into the fiber-

optic coupler. The reference beam goes through an electro-optic modulator driven by an 

rf voltage at frequency δ before it impinges on the photodiode. The other beam is 
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launched into the coupler in the usual way and excites the plasmon resonance of the 

metallic nanoparticle. Interference of the scattered field and reference field will result in a 

Fourier component of the photocurrent at frequency (νh – δ), where δ is chosen such that 

this difference frequency lies in a frequency range where amplifier noise is minimized. 

As an example, the New Focus model 2151 Femtowatt photoreceiver has a current noise 

of 8 fA/ Hz  and a 750 Hz bandwidth.[8] Therefore, δ is chosen to be, at most, 750 Hz 

away from νh. Another advantage of this scheme is that the strength of the reference field 

is not limited by laser heating therefore, a much stronger reference field may be used, 

which will boost the size of the Brownian contribution to the photocurrent noise. 
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Chapter 4. A Novel Nanoscale Device for Single-Molecule 

Sensing 

 

For many biologically relevant molecules, such as proteins, the nature of the 

solvent environment can have dramatic effects on the three-dimensional structure of the 

molecule, drastically altering its biochemical functionality.[1, 2] To draw conclusions 

about the function of such molecules requires studying them in their native environment. 

In Figure 1.4 of Chapter 1, we introduced a novel electromechanical device that can non-

invasively probe the structure and dynamics of single biological molecules in solution. 

Briefly, the device consists of a semiconductor beam with a torsional mode of oscillation 

about its axis at frequency νh. At the center of the beam a nanoscale ferroelectric particle 

with static dipole moment p is patterned. The ferroelectric particle resides in the gap of 

two nearby electrodes that are used to excite the motion of the mechanical resonator, as 

well as to detect the decaying mechanical oscillations via the voltage induced across the 

electrodes. The electrostatic interaction energy between the ferroelectric dipole and a 

nearby molecule in solution gives rise to a shift in the frequency of the mechanical 

resonator. This frequency observable is dependent upon the position and orientation of 

the molecule with respect to the probe dipole. 

In Chapter 1 we discussed how this device could be used as a single-molecule 

binding sensor and detailed the experimental apparatus and procedure for monitoring the 

shift in the mechanical resonance frequency with submillisecond resolution. In this 

chapter, we quantify the physics that underlies the interaction between the probe dipole 

and molecule. Numerical examples of the frequency shift will be given for typical 
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biological molecules in an aqueous environment and will be compared to the minimum 

detectable frequency shift that arises from the Brownian motion of the mechanical 

resonator. Furthermore, the electrostatic interaction between the probe dipole and the 

electrodes couples the electric and mechanical degrees of freedom of this device. To 

derive the dynamics of this device, we use Lagrange’s equations for θ, the angle of 

torsion at the center of the beam and q, the charge on one electrode of the nanoscale 

capacitor. The steady state solutions to the resulting coupled differential equations are 

evaluated, which allows us to derive the device impedance. Impedance matching 

solutions are described so as to efficiently couple power to and from the device. Proposed 

applications of this novel device for both binding sensors and radio frequency 

communications will be presented. 

 

Single-Molecule Sensor Physics 

 

In Appendix B, we derive the electrostatic energy of interaction between the 

probe dipole and molecule: 

( ) ( ) ( )1; ; ;
2m i m mik kU r E r E rθ α θ θ= − , 4.1 

 
where ikα  are the Cartesian components of the totally symmetric molecular polarizability 

tensor expressed in the laboratory coordinate system. Summation over the repeated 

indices i and k is implied. It should be noted that the ikα  are implicit functions of the 

instantaneous orientation of the molecule since, at any instant of time, the orthogonal 

transformation that relates the principal axes of the molecule to the laboratory axes 
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depends on the Euler angles that describe the molecular orientation. Also, ( );j mE r θ  is 

the component of the electric field of the probe dipole along the j th laboratory axis, 

which depends parametrically on θ and is to be evaluated at the instantaneous position of 

the molecule mr . 

In what follows, we will need the electric field of the probe evaluated at the center 

of the molecule [3], 

( ) ( ) ( )3
0

1 ˆ ˆ; 3
4m m m

m
E r p r r p

r
θ θ θ

πε
⎡ ⎤= ⋅ −⎡ ⎤⎣ ⎦⎣ ⎦ , 4.2 

 
with 

( ) ( )ˆ ˆz cos x sinp pθ θ θ= + . 4.3 
 

For small angular displacements, we may expand the components of the electric 

field in a Taylor series out to second order in θ: 
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Inserting equation 4.4 into 4.1 and keeping terms only up to second order in θ we find 
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⎡ ⎤∂ ∂⎛ ⎞+ +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥≈ − ⎢ ⎥⎛ ⎞∂ ∂∂ ∂⎢ ⎥+ + +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

. 4.5 

 
The first term in equation 4.5 is a constant with respect to the mechanical coordinate and 

contributes nothing to the dynamics of the resonator. The second term, being linear in θ, 

represents a constant torque on the resonator, which simply changes the equilibrium 

coordinate of the resonator. The final term, being proportional to 2θ , changes the 

mechanical spring constant thereby shifting the resonance frequency. 
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We now consider detecting a biological molecule modeled as an isotropic sphere 

of radius R with dimensionless dielectric constant κ immersed in an aqueous solution 

with dielectric constant κw. The molecular polarizability is given by [4] 

3
04

2
w

w
w

R κ κα πε κ
κ κ
⎛ ⎞−
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. 4.6 

 
Using equations 4.2 and 4.3 we may find an explicit expression for the term proportional 

to 2θ  in the interaction energy of equation 4.5, thus 

( )
2

2

0
3

3;
2 4m

m

p
U r

z
θ α θ

πε
⎛ ⎞
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⎝ ⎠

. 4.7 

 
The interaction energy of equation 4.7 is added to the mechanical potential energy UM: 

21
2 tMU k θ= , 4.8 

 
to give the total electromechanical energy: 
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, 4.9 

 
where kt (J) is the unperturbed spring constant of the torsional resonator. We identify the 

term in brackets in equation 4.9 as the modified spring constant tk  (J) of the mechanical 

resonator, which arises from the electrostatic coupling to the molecule: 
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. 4.10 

 
Furthermore, the unperturbed mechanical resonance frequency is given by  

1
2

t
h

k
I

ν
π

= , 4.11 
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where I (kg·m2) is the moment of inertia of the beam. In analogy with equation 4.11, we 

find the shifted frequency hν  of the torsional resonator: 
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As a numerical example, we take κw = 78 and consider a 10 nm diameter 

biological molecule with κ = 2. The ferroelectric particle is taken to be a 400 nm tall x 

200 nm diameter cylinder of the ferroelectric material lead zirconate titanate (PZT) with a 

polarization of 0.35 C/m2. For a 1 micron long aluminum nitride beam of rectangular 

cross-section, 280 nm x 200 nm, the unperturbed mechanical frequency νh is 950.5 MHz. 

This frequency results from both the elastic restoring torque and the electrostatic coupling 

of the ferroelectric probe with the nearby conductors, which is treated below in the 

Lagrangian analysis of this device. For the molecule located 100 nm away from the top 

surface of the ferroelectric cylinder (center-to-center distance zm = 300 nm), the shift in 

the mechanical frequency is calculated to be −4.23 kHz. The minimum detectable 

frequency shift δ in a measurement bandwidth Δν is given by [5] 

( )
2

T

2
hh

t

G
k

νν
δ ν

θ
= Δ , 4.13 

 
where ( )T hG ν  is the spectral density of torque fluctuations on the resonator, which is 

derived in Appendix A and 2θ  is the mean square driven amplitude of the resonator. A 

mechanical Q of 10,000 is assumed which sets a measurement bandwidth Δν = νh/Q of 95 

kHz. For a driven amplitude of 1°, we have that 2θ  = 
21

2 180
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 (rads 2) and find the 
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minimum detectable frequency shift to be 11.4 Hz, which gives a SNR of 370 for 

detecting the 4.23 kHz frequency shift due to the presence of the polarizable molecule. 

 

Lagrangian Analysis of the Device 

 

 Due to the electrostatic coupling between the probe dipole and drive/detection 

electrodes, this device is a system of two coupled degrees of freedom. The dynamical 

nature of this device may be fully understood using Lagrange’s equations. Figure 4.1 

shows a side view of the device where the angle θ of torsion about the axis of the beam 

and the charge q on one of the electrodes are taken as the generalized coordinates, which 

fully specify the electromechanical configuration of the device. 

 

 
 
Figure 4.1: The instantaneous configuration of the device is specified by the torsional angle θ of the 
mechanical beam and the amount of charge q on one of the electrodes. The Lagrangian formulation for 
mechanical systems is then used to arrive at the two coupled differential equations for the system 
coordinates q and θ. The equations are solved in steady state for driving by the time harmonic voltage 
source Φ(t) of amplitude Φ(ω). From this, the device impedance is found. 
 

The Lagrangian, L = T – U, is defined as the difference between the total kinetic 

energy T and total potential energy U.[6] The total potential energy is the sum of the 
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mechanical spring energy and the electric field energy. The electric field energy 

( ),EU qθ  is given by [3] 

( ) ( ) ( )30,  ; , ; ,
2E

all
space

U q d r E r q E r qεθ θ θ= ⋅∫ , 4.14 

 
where the electric field is a sum of three contributions: 

( ) ( ) ( ) ( ); , ; ; ;q pE r q E r q E r E rθ θ θ′= + +  4.15 
 
In equation 4.15, ( );pE r θ  is the field of the isolated ferroelectric particle. Its functional 

form at large distance is the dipole field given by equation 4.2. Its value at the electrodes 

is evaluated numerically for a cylindrical particle using a model of uniform electric 

polarization. This field will induce charge redistribution on the surface of the electrodes 

so that the electric field is everywhere normal to the surfaces. The field generated by this 

induced charge is denoted ( );E r θ′ . With the dipole and conductors in electrostatic 

equilibrium for a given value of θ, we imagine placing an excess of charge +q on one 

conductor and –q on the other. This charge will distribute on the conductors in exactly the 

same configuration as if the dipole were absent, thus generating the purely capacitive 

field ( );qE r q . Expanding these fields in a Taylor series out to second order in q and θ 

results in an electrostatic energy function of the form  

( ) 2 2
0 1 2 3 4 5,EU q q q qθ α α α α θ α θ α θ= + + + + + . 4.16 

 
The expansion coefficients will later be evaluated for a specific design using finite 

element simulations.  

The potential and kinetic energies of the mechanical oscillator are, respectively, 

denoted UM and TM: 
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21
2 tMU k θ= ,  21

2MT Iθ= , 4.17 

 
where the dot over a quantity denotes the time derivative. The effects of mechanical 

dissipation are included through the Rayleigh dissipation function defined as [6] 

21
2

F Iγθ= , 4.18 

 
where γ = ωh/Q is the decay rate of the total mechanical energy with ωh the unperturbed 

mechanical resonance frequency and Q the quality factor. Here we have not included 

dissipation due to polarization currents in the conductors. This effect is modeled in 

Appendix C and found to be a negligible source of damping for the geometry considered. 

The Lagrange equations of motion for both coordinates are [6] 

( )L L Fd f t
dt χχ χ χ

∂ ∂ ∂
− + =

∂ ∂ ∂
, 4.19 

 
where χ = q, θ and fq(t) is the externally applied voltage Φ(t), and fθ (t) is the externally 

applied torque τ(t). Making use of equations 4.16, 4.17, and 4.18 we may evaluate the 

Lagrange equations yielding two coupled differential equations in the generalized 

coordinates 

 a) ( )1 3 22 q tα α θ α+ + = Φ  

b) ( ) ( )5 3 42 tI I k q tθ γθ α θ α α τ+ + + + + = . 
4.20 

 
For this device, the externally applied torque τ(t) is zero. Taking the voltage 

across the electrodes to be of the form   

( ) ( )( )0
1 . .
2

i tt c ce ωωΦ = Φ +Φ + , 4.21 

 
where Φ(ω) is the amplitude of the applied voltage and Φ0 the dc offset, the steady state 

solution to the differential equations above will have the form 
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( ) ( )( )0
1 . .
2

i tq t q q c ce ωω= + +  

( ) ( )( )0
1 . .
2

i tt c ce ωθ θ ω θ= + + , 
4.22 

 
where q(ω), θ(ω), q0, and θ0 are complex numbers. Inserting these expressions into 

equations (4.20a and b) and setting the coefficients of like complex exponential functions 

equal we obtain the following four equations: 

 a) ( ) ( ) ( )1 32 qα ω α θ ω ω+ = Φ  

b) ( )( ) ( ) ( )2
5 32 0tI iI k qω γω α θ ω α ω− + + + + =  

c) 1 0 3 0 2 02 qα α θ α+ + = Φ  
d) ( )5 0 3 0 42 0tk qα θ α α+ + + = . 

4.23 

 
Solving equations 4.23 for the amplitudes q(ω) and θ(ω) we find 

a) ( )
( )
( )

( )
2

5

2 2
1 5 3

2

2 2
t

t

k I iI
q

k I iI

α ω γω
ω ω

α α ω γω α

⎡ ⎤+ − +⎣ ⎦= Φ
⎡ ⎤⎡ ⎤+ − + −⎣ ⎦⎣ ⎦

 

b) ( )
( )

( )3
2 2

1 5 32 2 tk I iI
αθ ω ω

α α ω γω α
−

= Φ
⎡ ⎤⎡ ⎤+ − + −⎣ ⎦⎣ ⎦

. 
4.24 

 
We may also solve for q0 and θ0, but they will be of no consequence in what follows. The 

electrical impedance of the device is defined as ( ) ( ) ( )Z qω ω ω= Φ  and from equation 

4.22 we see that ( ) ( )q i qω ω ω= . Therefore we find 

( )
( ) ( )( )

( )( ) ( )
( ) ( )

22 2 2 22
3

22 22 2 22 2

1 r a

aa

Z i
CI

ω ω ω ω γωα γω
ω ω ω γωω ω γω

− − +
= −

− +− +
, 4.25 

 

where 
2

3t
r

k C
I
αω

′ −
=  and t

a
k
I

ω
′

=  with tk ′≡ 52tk α+  and C = ( )11 2α  is the 

capacitance of the electrodes. Later, we will see that at the frequency rω , the device 

impedance is minimized and at the frequency aω , it is maximized. In analogy to the 
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internal motion of piezoelectric crystals rω  is called the resonance frequency and aω  is 

the anti-resonance frequency.[7] 

The impedance function derived above neglects the possible dielectric response of 

the ferroelectric particle. We will now give arguments for why this is a reasonable 

approximation. For simplicity, let us consider the electrodes to approximate a parallel 

plate capacitor so that the field Eq is uniform and points along the x̂  direction in Figure 

4.1. For a spherical ferroelectric particle with an isotropic dielectric tensor, the induced 

polarization will lie along the direction of Eq and will be independent of θ. The torque on 

the particle is qp E× , where p  is the total dipole moment of the particle (ferroelectric + 

induced). Since the induced dipole is always parallel with Eq the only contribution to the 

torque is from the ferroelectric dipole. 

One effect of the dielectric response will be to increase the static capacitance and, 

from equation 4.25, this will simply decrease Im[Z(ω)] and lower the resonance 

frequency. For the case of a material with an anisotropic dielectric tensor or anisotropy 

due to a nonspherical shape, the first-order correction will be a capacitance that is a 

function of θ. Making a Taylor expansion in θ of the capacitance introduces higher order 

terms proportional to 2q θ , 2 2q θ , etc., ... in the energy function ( ),EU qθ  and for small 

displacements, these terms will be negligible. 

As a final reason for neglecting the dielectric response of the electret, bulk 

ferroelectric materials consist of a large number of regions called domains in which the 

polarization is uniform. The polarization from domain to domain is oriented in different 

directions resulting in a macroscopic, average dipole moment of zero. Upon application 

of an electric field, the polarization in each domain will feel a torque and tend to align 
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along the field direction resulting in a large dielectric response.[8] For the proposed 

device, however, the polarization of the ferroelectric nanoparticle is established by 

application of an intense electric field and, since the particle is of nanoscale dimensions, 

it may only contain one or a few domains. Therefore, the dielectric response at zero 

applied field will be much smaller than in a bulk ferroelectric. 

Another effect in bulk ferroelectrics that becomes less problematic for nanoscale 

structures is that charge impurities in the lattice will migrate in the field of the static 

dipole and tend to cancel it out.[9] As an example, we consider a cylinder of ferroelectric 

material with radius r height h and fixed aspect ratio ξ = h/(2r). If the impurity density is 

denoted by η then the total number of impurity charges is nimpurity = πr2hη = 2πr3ξη. The 

total number of bound surface charges on the top face is nbound = Pπr2/e where P is the 

polarization of the cylinder and e the electron charge. The ratio nimpurity / nbound = 2eξηr/P 

scales as r. Therefore, for some small enough sized cylinder the impurity charge will be 

negligible. For a 200 nm diameter by 400 nm tall PZT cylinder where P = 0.35 C/m2 

there are 69,000 positive, bound charges on the top face of the cylinder. For an impurity 

density of η = 1017/cm3 (a relatively high impurity concentration), there will be about 

1,300 impurity charges giving nimpurity / nbound = 0.02. Therefore even for this high 

impurity level, the bound charges dominate the impurity charges at this size. This scaling 

argument shows why nanoscale devices can make use of the permanent electric dipole of 

ferroelectric crystals, a property that is not stable at larger scale, due to impurity motion. 

However, poling of the electrically neutral crystal to establish the static dipole must be 

done in vacuum and the device must remain in an evacuated environment to increase its 
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lifetime between poling operations, since charged particulates in the air will stick to the 

ferroelectric nanoparticle and cancel out the net dipole moment over time. 

 

Finite-Element Device Simulations 

 

 The finite-element electrostatic simulation program Maxwell 3D [10] was used to 

simulate the device shown in Figure 4.2. The device geometry consists of a 200 nm in 

diameter x 400 nm tall PZT cylinder centered on a 1 micron long x 280 nm wide x 200 

nm thick AlN beam. For this beam, kt = 5.77 x 10−10 (J) and I = 1.06 x 10−29 (kg·m2), 

which gives an unperturbed mechanical resonance frequency of 1.18 GHz. 

 

 
 
Figure 4.2: Dimensions of the device simulated by the finite element, electrostatics program Maxwell 3D 
[10]. The resonator is a 1 micron long AlN beam clamped at both ends to the substrate with a rectangular 
cross-section 280 nm wide x 200 nm tall. The ferroelectric cylinder measures 400 nm tall x 200 nm in 
diameter models polarized PZT. At mechanical equilibrium, there is a 50 nm gap between each gold 
electrode and the ferroelectric cylinder. 
 
In what follows, we will assume the device to have a mechanical Q of 10,000 giving a 

damping rate of γ = 7.39 x 105 (s−1). The gold electrodes are 1 mm x 1 mm x 500 nm tall 

and are symmetrically arranged about the PZT cylinder. At θ = 0 degrees, the electrode-

to-PZT gap is 50 nm on each side. The PZT cylinder was modeled as two circular disks 
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of equal and opposite charge separated by 400 nm. The corresponding surface charge is 

+/-1.1 x 10−14 C on the upper/lower surface of the cylinder respectively. 

Because of the symmetrical nature of this geometry, it can be shown that the 

expansion coefficients, 2α  and 4α  of ( ),EU qθ , are identically zero. The remaining 

coefficients were found via the numerical simulations. Since 1α  is simply related to the 

capacitance of the electrodes with the ferroelectric absent, we numerically solve for the 

field energy of the isolated electrodes with a charge of 1 x 10−14 C on one electrode and 

an equal but opposite amount of charge on the other. To find the other coefficients, we 

numerically solve for the field energy with different combinations of q and θ. The size of 

the boundary box where the electric potential is set to zero was made large enough so that 

negligible error was introduced into the numerical estimates of the coefficients. 

Table 4.1 displays the numerical values of the field energy for different values of 

q and θ along with the least-squares fit for the expansion coefficients of the electric 

potential energy ( ),EU qθ . 

Simulation Conditions Simulated Electrostatic Energy (J) 
Electrodes with no PZT,  q = 1x10−14 C 7.698x10−13 

q = 0 C, θ = 0 degree 1.182x10−11 
q = 0 C, θ = 1 degree 1.179x10−11 

q = 1x10−14 C, θ = 1 degree 1.260x10−11 
q = 1.5x10−14 C, θ = 2 degree 1.355x10−11 

Least-Squares Fit to Expansion Coefficients 
0α  = 1.18x10−11 J,  1α = 7.70x10+15 J/C2,  3α  = 225 J/C,  5α  = − 9.84x10−11 J 

 
Table 4.1: A compilation of the simulation conditions and the corresponding electrostatic energies found by 
finite-element calculations along with the least-squares fit to the expansion coefficients in equation 4.16. 
 

Using the expansion coefficients of Table 4.1 in equations 4.24a and b we may 

plot the response of the system coordinates versus the driving frequency. In Figure 4.3a, 

the magnitudes of the electric current and amplitude of the mechanical resonator are 

plotted as functions of the driving frequency for Φ(ω) = 1 mV. A resonance in both the 
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current and torsional amplitude occurs at 950.5 MHz, which corresponds to the resonance 

frequency for this device.  

The phases of the current and angular amplitude are plotted in Figure 4.3b. The 

torsional coordinate θ is in phase with the driving voltage below the resonance frequency 

and goes −90 degrees out of phase at νr, as expected for a harmonic oscillator. Due to the 

electromechanical coupling, however, the behavior of θ deviates from the harmonic 

oscillator where, slightly above νr, the phase undergoes an abrupt change to +90 degrees 

and approaches 0 degrees for frequencies well above resonance. In contrast, the phase for 

a harmonic oscillator is continuous as one sweeps through resonance and approaches 

−180 degrees for frequencies well above resonance. 

 

 
 
Figure 4.3:  a. The magnitude of the electric current and angular amplitude for the simulated device plotted 
versus the frequency of the driving voltage. The driving voltage Φ(ω) was set constant at 1 mV. Both the 
current and mechanical coordinate have a resonance at νr = 950.5 MHz. b. The phase of the electric current 
and mechanical coordinate plotted versus the driving frequency. 
 

In a similar manner, the current is 90 degrees out of phase with the driving 

voltage for frequencies below νr, which is characteristic of a capacitor. Above resonance, 

the phase of the current shifts 180 degrees and thus the device appears inductive. Finally, 

the current undergoes another 180 degree phase shift at approximately 954.6 MHz, which 

corresponds to the anti-resonance frequency for the device. 
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In Figure 4.4, the real and imaginary parts of the electrical impedance of the 

device are plotted. At the anti-resonance frequency, the impedance is maximum and 

undergoes an abrupt phase shift. For both the molecular sensor and radio frequency filter 

and oscillator applications, the device is operated near the resonance frequency where the 

magnitude of the impedance is minimized. The inset shows a magnified view of the 

impedance near resonance where, at resonance, the imaginary part is zero and the real 

part is 36.6 kΩ. 

 

 
 
Figure 4.4: The real and imaginary parts of the electrical impedance Z for the simulated device as a 
function of driving frequency. At the resonance frequency, the imaginary part is zero and the real part is 
approximately 37 kΩ. The magnitude of the impedance is maximized at the anti-resonance frequency. For 
both the molecular sensor and electrical filter applications, the device is operated at the resonance 
frequency. 
 

In addition to molecular sensing, this device has potential uses as a resonant 

element in radio frequency electronic transmitters and receivers. Due to the narrowband 

electrical response at νr, one may envision replacing bulky quartz oscillators and high-

loss LC filters with this nanoscale device resulting in lower mass and lower power 

electronic modules ideal for portable communications and military and space 

applications. In order to function as a useful electronic element, the high device 



 79

impedance requires transformation into the characteristic impedance of the antenna or 

other waveguide structures to which it is connected. Also, as discussed in Figure 1.5, 

when used as a molecular sensor, impedance matching to the transmission line is 

necessary so as to efficiently couple power into and out of the device. We therefore turn 

to the important problem of matching the device impedance to a transmission line with 

characteristic impedance Z0. To effect this transformation we consider using the “T” 

network shown in Figure 4.5, which is adapted from reference [11]. 

 

 
 
Figure 4.5: In order to efficiently couple electric power to and from the device requires transforming the 
device impedance into the characteristic impedance of the transmission line that drives it. To effect this 
transformation, we consider using the “T” network shown above. It consists of three purely reactive 
elements, two with impedance Zα  and the third with impedance Zγ  where Zγ  = Zα

∗ . 
 

The impedance Ztot seen from the transmission line is 

( ) ( )
( )tot

Z Z Z
Z Z

Z Z Z
γ α

α
γ α

ω
ω

ω
+⎡ ⎤⎣ ⎦= +

+ +
, 4.26 

 
where Zα  and Zγ  are purely reactive and Z Zα γ

∗= . To match to the characteristic 

impedance Z0 of the line we must have ( )tot rZ ω  = Z0. Thus we find the condition at 

resonance to be 

( )2

0 rZ Z Zγ ω= . 4.27 
 
We will take the solution Zγ  = ( )0 ri Z Z ω  so that Zγ  corresponds to an inductor and 

Zα  corresponds to a capacitor. At resonance, the device impedance has the purely 
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resistive value of 36.6 kΩ and taking Z0 = 50 ohms (e.g., standard BNC cable) we find 

that Zγ  = i(1352) Ω. This corresponds to a 0.226 mHenry inductor and a 0.124 pF 

capacitor at the resonance frequency of 950.5 MHz. For a commercially available surface 

mount inductor the resistance at 900 MHz is 56Ω [12] and is included in series with the 

inductor. The “T” network expressed with lumped elements is shown in Figure 4.6. 

 

 
 
Figure 4.6: The components of the “T” network for matching the 36.6 kΩ device impedance at νr = 950.5 
MHz to a transmission line with a characteristic impedance of 50 Ω. The 56 Ω resistor accounts for the 
losses in the matching inductor at this frequency. 
 
 We now would like to evaluate the performance of this matching network in 

terms of power transfer efficiency to the device. From the differential equations 

describing transmission lines, the steady-state voltage ( ),V x t  and current ( ),I x t  at 

position x along the line at time t may be written 

( ) ( ), . .
,

2

i tV x c c
V x t

e ωω +
=   and  ( ) ( ), . .

,
2

i tI x c c
I x t

e ωω +
= , 4.28 

 
where 

( ), i x i xx V VV e eβ βω + −
−= +   and  ( )

0

,
i x i xV Vx

Z
e eI

β β
ω + −

− −
= , 4.29 

 
and LCβ ω=  where L  and C  are, respectively, the inductance and capacitance per 

unit length of the line.[13] The complex amplitudes V+  and V−  describe voltage waves 
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traveling toward and away from the matching network, respectively, and are fixed by the 

boundary conditions at the two ends of the line. At x = 0, where the network is connected 

to the line, the familiar relation between voltage and current is ( )0,V ω  = 

( ) ( )0,totZ Iω ω . Using equation 4.29 and defining the voltage reflection coefficient, 

( )ωΓ  = V− /V+ , we find 

( ) ( )
( )

1
1

tot

tot

Z
Z

ω
ω

ω
−

Γ =
+

, 4.30 

 
where ( )totZ ω  = ( )totZ ω / 0Z . Using Kirchoff’s rules we find the complex power that 

flows from the transmission line as 

( ) ( ) ( ) ( ) ( )( )20, 0,
1 2 Im

2trans
I

P P i
V ω ω

ω ω ω+

∗

= = − Γ + Γ⎡ ⎤⎣ ⎦  4.31 

 
and the complex power that flows into the device as 

( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

2
2

0

1 2 Redevice
Z Z

P P
Z Z Z Z

γ

γ α

ω ω
ω ω ω

ω ω ω+= + Γ − Γ⎡ ⎤⎣ ⎦+ +
, 4.32 

 
where P+ , the total power propagated down the transmission line, is given in terms of the 

amplitude V+  by 

2

02
V

P
Z
+

+ = . 4.33 

 
Taking the real part of equations 4.31 and 4.32 gives the time-averaged electric 

power dissipated as heat, which is the relevant quantity when analyzing for the steady-

state power transfer efficiency. The imaginary part indicates the time-averaged amount of 

stored electric vs. magnetic energy, which is not of interest here.[13] 
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For the network of Figure 4.6, we plot in Figure 4.7 the fraction of the incident 

power P+  that is transmitted (equation 4.31) and the fraction that is transmitted to the 

device (equation 4.32). At the resonance frequency of 950.5 MHz, most of the incident 

power is transmitted with approximately 13% reflected back toward the excitation source. 

At resonance, approximately 40% of the incident power is delivered to (and dissipated in) 

the device. Off resonance the transmitted power is nearly 100% and is due to the fact that 

the 56 ohm resistance of the matching inductor nearly matches the characteristic 

impedance of the line. 

 

 
 
Figure 4.7: Power transfer efficiency for the matching network of Figure 4.6. At the resonance frequency of 
950.5 MHz approximately 40% of the incident power P+ is delivered to the device and 13% is reflected 
back toward the voltage source. The remaining 47% is dissipated in the 56 Ω resistor in series with the 
inductor. 
 

For the molecular sensor application, the matching network of Figure 4.6 is used 

in both the excitation and detection of the motion of the mechanical resonator (see Figure 

1.5). Therefore, we need to evaluate the power coupling efficiency from the device to the 

voltage amplifier at the other end of the line. To do this, one uses Kirchoff’s laws to find 

the voltage and current at the input to the amplifier, which is assumed to have an input 

impedance of Z0. We will not reproduce the lengthy calculation here; however, it turns 

out that nearly 50% of the power generated by the device is delivered to the amplifier and 

the rest is absorbed by the resistance of the matching inductor. The power transfer is 
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better in the reverse direction because a reflected wave does not exist at the impedance-

matched input to the amplifier. 

In one implementation of this device as a band-pass filter in radio frequency 

communications, an array of devices each with a different resonance frequency would be 

used so as to span a particular communications band. Then, to access a particular channel 

in this band, the resonator corresponding to the frequency of the channel would be 

switched in line with the antenna and subsequent amplifiers. In order to reap the benefits 

of the ultrasmall mass of these devices, it is necessary to match as many of the elements 

in the array as possible with the same network. The network of Figure 4.6 is optimized 

for maximum power transfer to a device with a resonance frequency of 950.5 MHz. In 

Figure 4.8, the power transfer characteristics of this network are evaluated for devices 

with resonance frequencies lying in a 30 MHz band centered at 950 MHz. For a single 

device connected to the network, we evaluate at the resonance frequency the fractional 

power, Ptrans(ωr)/P+, transmitted from the line and the fractional power, Pdevice(ωr)/P+, 

delivered to the device. These two quantities are plotted in Figure 4.8 as a function of the 

resonance frequency of the device. Over the 30 MHz band, the power transferred to the 

device is fairly flat and for a device with a 935 MHz resonance frequency, the power 

transfer is reduced by 11% relative to a device with a resonance frequency of 950.5 MHz. 

Additionally, at the extremes of this band, the power reflected from the network is only 

8% higher relative to the power reflected for a device at 950.5 MHz. 
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Figure 4.8: For a single device connected to the network of Figure 4.6, the fractional power transmitted 
(blue curve) and fractional power delivered to the device (red curve), evaluated at the resonance frequency 
of the device, are plotted versus νr. 
 

In conclusion, we have proposed a novel, nanoscale, electromechanical device for 

noninvasive probing of single molecules in their native environments. One important use 

of this device is toward the study of the kinetics of the binding/unbinding of a single 

biological molecule to its corresponding receptor molecule as illustrated in Figure 1.4. 

The experimental observable is the shift in the mechanical resonance frequency due to 

the presence of the nearby polarizable molecule. For a fairly large biomolecule, 10 nm in 

diameter in aqueous solution, a frequency shift of 4.23 kHz is predicted for the molecule 

situated 100 nm from the top surface of the ferroelectric probe. Brownian noise sets a 

limit on how small of a frequency shift may be observed, and for the 950.5 MHz torsional 

resonator described above, the minimum detectable frequency shift is 11.4 Hz, where the 

measurement bandwidth is taken to be the natural bandwidth of the resonator. This yields 

an experimental signal-to-noise ratio of 370, which is more than adequate to detect 

individual binding events on the millisecond time scale typical of reversible recognition 

chemistry. Since the frequency shift scales with the volume, smaller proteins will also be 

accessible. 
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This device is a coupled electromechanical system, the dynamical nature of which 

may be understood using the Lagrange formulation of mechanical systems. Taking the 

coordinates to be q, the charge on a single electrode and θ, the angle of torsion of the 

mechanical resonator, we solve the resulting coupled differential equations for the 

behavior of these variables for steady-state driving at frequency ω. Finite element 

electrostatic simulations were performed for a concrete device geometry and at the 

resonance frequency of 950.5 MHz it is found that both the current and angular amplitude 

display resonant behavior. Additionally, the electrical impedance of this device is purely 

real at the resonance frequency and has a value of 36.6 kΩ. Due to its narrowband 

electrical response near resonance, this device may be used as an electrical 

filter/oscillator in radio frequency communications architectures. However, the large 

device impedance at resonance is far from the characteristic impedances of rf 

transmission lines and antennas, which lie in the range of ~ 50–300 Ω. For maximum 

power transfer to and from the device, it is necessary to match the device impedance to 

the characteristic impedance of the waveguide or antenna to which it is attached. 

Impedance matching is also an issue for the device being used as a molecular sensor 

since power is delivered to and from it via a waveguide. A low loss “T” network 

consisting of two capacitors and one inductor allows for a reasonable power transfer of 

about 40% to the device from the waveguide. This network is capable of matching 

devices with resonance frequencies spread out over a bandwidth of 30 MHz centered at 

950 MHz with at most 11% reduction in power transfer. This is useful for 

implementation in low-mass rf architectures where multiple resonators whose resonance 

frequencies span the band are matched to the line by the same network. 
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The strategy of coupling many active devices to a single transceiver is highly 

relevant in the context of binding sensor applications, allowing many distinct devices 

(possibly with different molecule-specific binding sites) to be simultaneously excited and 

detected with a single rf transceiver. In effect, the array associates with each binding site 

a unique, spectrally resolved rf channel. Accessing many channels with a single 

broadband transceiver reduces the parts count dramatically, while allowing simultaneous 

measurement of many devices. This is a fundamental advantage over proposals for 

electrical detection of binding by quasi-dc resistance or voltage changes induced by 

binding to electrical nanodevices. In contrast to the present proposal, these low frequency 

methods require separate detection electronics for each sensor being simultaneously 

observed. 

As a final note, in the above analysis we considered a specific resonator with a 

950.5 MHz resonance frequency; however, the equations in this chapter are general and 

may be applied to torsional resonators with arbitrary resonance frequencies. 
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Chapter 5.  Experimental Apparatus 

 

 In this chapter we will discuss experimental work toward optical detection of 

nanoscale mechanical resonators using a home-built fiber-optic interferometer apparatus. 

Figure 5.1 shows a detailed picture of the instrument, which comprises a precision, 

motorized x-y translation stage that is bolted to a mechanically stiff, stainless steel frame. 

Directly above this, a z-translation stage, used for vertical positioning of the detection 

fiber-optic, is bolted to the top plate of the frame. A 1.5 in. x 1.5 in. square access hole is 

milled out of the top plate, allowing the fiber to reach the device chip and providing 

reasonable visual access of the fiber-sample region. Attached to the x-y stage is a 

rectangular, aluminum frame whose top surface is a thin plate. Fine vertical control of the 

sample position is effected by a piezoelectric actuator centered inside of this frame. The 

actuator fits snugly inside the frame, and when a voltage is applied to the piezoelectric, a 

force is generated on the thin plate, creating a slight mechanical deformation in the 

vertical direction. The device chip is glued to a second piezoelectric, which is attached to 

the top surface of this plate. This second actuator is used to excite the mechanical motion 

of the submicron resonators fabricated on the device chip. The stainless steel frame sits 

on the top of an aluminum baseplate. Several holes are drilled in the baseplate to 

accommodate O-ring sealed, vacuum feedthroughs. A 12 inch diameter, O-ring sealed, 

glass bell jar encloses the volume occupied by the steel frame and feedthroughs, so that 

the entire apparatus may be operated in an evacuated environment ranging from milli-torr 

down to microtorr pressures. The two surfaces of the baseplate are polished in the regions 

where O-ring seals exist in order to ensure leak-free operation. 



 89

 
 
Figure 5.1: A block diagram of the home-built fiber-optic interferometer apparatus. 
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All vacuum O-rings are lightly coated with a thin layer of Apiezon high vacuum grease. 

In an effort to isolate the interferometer from mechanical vibrations in the laboratory, the 

entire vacuum baseplate is centered on a 2 foot x 1.5 foot x 1.5 inch thick aluminum plate 

that is suspended from a wooden frame by several bungee cords. The wood frame sits on 

top of a massive laser table with foam rubber spacers inserted between the feet of the 

frame and the surface of the table. 

 The optical radiation for the fiber-optic interferometer is supplied by a 1.4 mW 

laser diode (Thorlabs P/N LPS-SMF28-1310-FC) with an output wavelength of 1308 nm. 

Under normal operation, 16 mA of current is run through the laser diode by a home-built, 

battery powered current source. The laser light is launched into one arm of a 2 x 2 fiber- 

optic coupler (Thorlabs P/N 10202A-50-FC) where 50% of the incident power is coupled 

to the detection arm leading to the device chip. The other half of the power is sent to a 

beam dump (not shown in Figure 5.1) where it is absorbed. The light reflected by the 

sample is collected by the same fiber and travels to the photodetector where it interferes 

with the reference beam generated by the reflection from the glass/air interface at the end 

of the detection fiber. 

The photodetector used is the Thorlabs D400FC and consists of an FC coupled 

InGaAs PIN photodiode with a responsivity R of approximately 0.8 A/W at 1308 nm. 

The diode is reverse biased by a miniature 12 V battery and the entire detector is enclosed 

in an aluminum housing to shield it from stray electrical signals. The photocurrent output 

of the detector is an SMA electrical connector, which is connected directly to the BNC 

input of the current amplifier via an SMA to BNC adapter. The reason for connecting the 

photodetector directly to the input of the amplifier is that stray electrical pickup was 
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observed even when a short section of shielded cable was used. Direct connection to the 

amplifier solved this problem. The transimpedance (current) amplifier is the Melles-Griot 

model 13AMP005 whose characteristics are shown in Table 5.1. This amplifier has five 

user selectable gain settings where the gain is determined by the value of the feedback 

resistor RTIA. 

RTIA (V/A) 3 db bandwidth rms input noise 
current 

noise spectral 
density (pA/ Hz ) 

103 5 MHz 100 nA 45 
104 1.25 MHz 12 nA 11 
105 300 kHz 1.5 nA 2.7 
106 75 kHz 180 pA 0.66 
107 15 kHz 32 pA 0.26 

 
Table 5.1: Characteristics of the Melles-Griot 13AMP005 transimpedance amplifier used to amplify the 
photocurrent signal of the fiber-optic interferometer. 
 
 The output of the current amplifier is the voltage Vamp, which is proportional to 

the photodiode current Ipd by Ohm’s law, Vamp = RTIAIpd. The voltage signal from the 

amplifier is “Tee-d” where one leg is fed to the input of the interferometer feedback 

circuit and the other leg is sent to the 50 ohm input of an anti-aliasing, low pass filter. 

The output waveform of the filter is then digitized by a computer. 

 Figure 5.2 shows a circuit diagram of the home-built, constant current source for 

the laser diode. Four, 12V car batteries are connected in series and provide voltage levels 

of 0V, ±12V, and ±24V. This circuit is powered by the ±24V supplies where each supply 

voltage is connected to ground via a 100 μF electrolytic capacitor so as to filter out 

electrical noise pickup from the batteries and cables leading to the circuit. 

We now detail the theory of operation of this current source. The resistors R1 and 

R2 form a voltage divider that determines the voltage VA at the positive input of the op-

amp 
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1 2
ccA

RV V
R R

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

. 5.1 

 
Through negative feedback, the op-amp equalizes the voltages at the positive and 

negative inputs which sets the voltage to be VA at the emitter of the pnp transistor. The 

current IE that flows through the transistor is determined by the voltage drop across RE: 

cc A
E

E

V VI
R
−

= . 5.2 

 
The transistor current flows through the laser diode and makes its way to ground through 

the 0–25 mA current meter. The current through the laser is adjusted by the variable 

resistor, R1, to the desired setting on the current meter (typically ~ 16 mA). 

 

 
 
Figure 5.2: Circuit diagram of the constant current source for the laser diode. 
 

In the laser housing is a photodiode that “sees” a small fraction of the output laser 

light. This photodiode monitors the optical power output of the laser and can be used in a 

feedback loop to reduce amplitude noise of the laser. In our experimental setup, we 

simply use it to monitor the optical power, where the photocurrent is read out on the 0–1 
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mA current meter placed in series with the photodiode. As a protective measure, two 10 

mF electrolytic capacitors are connected in parallel with the laser diode to provide a low 

impedance path for fast current transients, which could otherwise destroy the laser diode. 

For interferometric detection of the motion of micron and submicron mechanical 

resonators, the cleaved end of the detection fiber is positioned in the vertical direction to 

within 50 microns of the device chip. Due to the interference between the reference wave 

and the wave reflected by the device chip, the voltage signal at the output of the 

transimpedance amplifier has the form 

( ) 4
2 2

V V V V dV d cos π
λ

− + − ++ − ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 5.3 

 
where d is the width of the gap between the end of the fiber and the surface of the device 

chip and λ is the wavelength of the laser light. This function is plotted in Figure 5.3 

versus the dimensionless variable d/λ. 

 

 
 
Figure 5.3: Interference waveform of the voltage output of the transimpedance amplifier as a function of 
d/λ. 
 
For sensitive interferometry, it is essential to operate the interferometer at nominal gap 

widths where the slope of the voltage waveform plotted above is maximized. These 
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points occur for widths d = mλ/8, (m = 1, 3, 5, 7, …). Even if one were to carefully 

position the fiber with the vertical translation stage to one of these values, over time the 

width d would vary due to thermal expansions and/or contractions of the steel support 

frame and other structures. Active feedback is therefore needed to keep the width of the 

gap locked. The circuit of Figure 5.4 performs this task. All op-amps in this circuit are 

powered by ±18V generated by six 6V lantern batteries connected in series. The ground 

of the lantern battery array is connected to the ground of the car battery array. 

 

 
 
Figure 5.4: Feedback circuit for locking the interferometer to the sensitive portion of the interference 
waveform. 
 
Referring to Figure 5.4, the set point voltage Vset is adjusted between 0 and –1.5V using 

the 20 kΩ potentiometer. For the best displacement sensitivity, Vset is adjusted to lie 
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halfway between V+ and V− as shown in Figure 5.3 and is sent to the input of voltage 

follower I. The photodiode voltage Vpd from the output of the transimpedance amplifier 

is sent to the input of voltage follower II. The outputs of I and II are then sent to the 

inputs of differential amplifier III, the output of which is the error signal (Vset − Vpd). The 

time integral of the error signal, scaled by the factor −(RintCint)-1, is generated by the 

integrator IV and gets amplified by V with a gain of 2 11 R R+ . An offset voltage Voffset 

lying between 0 and 18V is input into voltage follower VI and is added to the amplified, 

integrated signal by VII. The sign change, introduced by the adder, is undone by 

inverting amplifier VIII whose output is the voltage sent to the z-feedback piezoelectric. 

To understand how this interferometer feedback circuit stabilizes the width of the 

gap, consider Figure 5.3 where the desired gap is d0. At a later time the gap changes to d0 

+ Δd, which generates an error signal with a negative polarity. The integrator introduces 

another negative sign creating a positive voltage that becomes amplified. The result is 

that Vpiezo is positive thereby expanding the feedback piezoelectric, which decreases the 

gap back toward d0. Similarly, for a displacement of −Δd, the error signal would be 

positive, which becomes negative after the integrator. The voltage sent to the piezo in this 

case is negative, causing the piezo to contract, thereby increasing the gap back toward d0. 

The single-pull double-throw (SPDT) switch is a safety feature that allows one to 

disable the output of the feedback circuit by simultaneously disconnecting the integrator 

input from the differential amplifier and shorting the capacitor Cint so that the output of 

the integrator is sent to 0V. Disabling the feedback circuit is safe electrical practice when 

the experimenter has to make manual adjustments of the gap or some other part of the 

apparatus. Also if the interferometer becomes “unlocked” due to a jarring of the 
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apparatus, the feedback circuit is disabled and the system is allowed to come to rest 

before the feedback is restored. Mode hopping of the laser diode creates intensity 

fluctuations that can also unlock the interferometer. For this case, the feedback is 

disabled and the FC coupler from the laser is serviced until mode hopping is eliminated. 

The performance of the fiber-optic interferometer is evaluated in Figure 5.5, 

which plots the interferometer noise spectrum (pm/ Hz ) versus frequency. 

 

 
 
Figure 5.5: Experimentally measured noise spectrum for the feedback stabilized fiber-optic interferometer. 
 
This noise spectrum was generated in the following way: The detection fiber was aimed 

at a silicon substrate with V+ = − 0.155 V and V− = − 0.505V. The set point voltage was 

adjusted to the midpoint of −0.330V. The digitization rate was 12 kHz setting a Nyquist 

frequency of 6 kHz. The low pass filter before the digitizer was set to 6 kHz to suppress 

artifacts due to aliasing. A single time-domain scan of the feedback-locked voltage output 



 97

of the transimpedance amplifier consisted of 2048 points where 646 total scans were 

acquired. Each time-domain scan was Fourier transformed and the power spectrum 

computed. The 646 resulting power spectra were averaged to yield the noise spectrum in 

Figure 5.5. The spacing between adjacent frequency points in Figure 5.5 is 12kHz/2048 = 

5.86 Hz. 

 In Figure 5.5 it can be seen that many spikes exist in the noise spectrum. These 

are of unknown origin, however could be due to electrical pickup and laser intensity 

noise. At the time when this spectrum was acquired, neither the laser diode current circuit 

nor the interferometer feedback circuit had power supply filter capacitors so that 

electrical pickup is a very likely explanation for the appearance of these spikes. 

Additionally, these measurements were taken at atmospheric pressure where sound waves 

in this frequency range could be contributing to the noise. Operation of the interferometer 

in vacuo should decrease the intensity of some of these spikes. The sensitivity of the 

interferometer appears to have a baseline of 0.4 pm/ Hz , shown as the dashed blue line 

in Figure 5.5. The interferometer is at its quietest in the frequency range from 4 kHz to 

5.5 kHz. 

 Figure 5.6 shows the mechanical frequency spectrum of a triple-paddle resonator, 

fabricated at the Micro Devices Laboratory at the Jet Propulsion Laboratory (JPL) in 

Pasadena, CA. The inset is a drawing of the resonator (blue), which measures 

approximately 150 microns in length and consists of two large “wing” paddles and a 

“head” paddle at the end. The resonator structure is attached to the stationary base (gray) 

by a thin “neck” and freely hangs a few microns above the parent silicon substrate 

(yellow). The 7th mechanical mode of this structure has a frequency of approximately 1 
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MHz and a Q of ~ 90,000. For this mode, the wings oscillate 180° out of phase with each 

other about the axis perpendicular to the neck. Meanwhile, the head executes torsional 

oscillations about the axis of the neck. This mode is of interest because of its high value 

of Q. 

  

 
 
Figure 5.6: The frequency spectrum, measured by fiber-optic interferometry, of the lowest mechanical 
mode of a triple-paddle resonator fabricated at the Micro Devices Laboratory at JPL. 
 

The fiber-optic interferometer apparatus described in this chapter was used to 

optically detect the lowest mode of this structure, namely, out-of-plane flapping. The 

device chip was glued to the excitation piezo and the measurements were taken with the 

entire interferometer apparatus in a vacuum of 150 mtorr. The excitation frequency was 

scanned and the output of the transimpedance amplifier was sent to a lock-in amplifier. 

The voltage amplitude data, taken from the lock-in, was appropriately transformed to the 

driven amplitude in nanometers. The experimental data are shown as the red points in 

Figure 5.6. This data set was fit to a harmonic oscillator resonance profile, shown as the 
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blue curve. From this fit, the resonance frequency is found to be 45.075 kHz and the 

mechanical Q is 844. 

 In this final chapter, we have described a scanning fiber-optic interferometer 

apparatus for optical detection of the motion of micron scale and nanoscale mechanical 

resonators. For controlled, low-noise operation of the interferometer, two battery 

powered op-amp circuits were constructed, a constant current source for the diode laser 

and an interferometer feedback circuit. The noise spectrum of the feedback stabilized 

interferometer was experimentally measured for frequencies from dc to 6 kHz and was 

found to contain a large number of spurious narrowband spikes. These noise signals are 

attributed to electrical pickup in the power cables leading to the control circuitry, acoustic 

room noise, and amplitude fluctuations in the output of the laser diode. To lessen these 

noise sources, power supply filter capacitors were included in the two circuits and 

interferometry experiments were done in vacuum, unfortunately the noise spectrum was 

not measured after these changes were implemented. Preliminary observations were 

made, with the fiber-optic interferometer, on the lowest mechanical mode of a 150 

micron long, triple-paddle resonator in a vacuum of 150 mtorr. We were able to map out 

the resonance curve for this mode and found it to have a resonance frequency of 45.075 

kHz and a Q of 844. These preliminary results hold promise for interferometric detection 

of submicron-scale mechanical resonators. Finally, the author wishes to thank Dr. Kyung-

Ah Son and Dr. Thomas George at JPL for graciously providing the triple-paddle 

resonator samples. 

 

 



 100

Conclusions 

 

In conclusion, we have presented three novel experiments to image and 

spectroscopically probe single molecules using micron- and submicron-scale mechanical 

resonators. Force Detected Optical Spectroscopy (FDOS) and Electric Dipole Difference 

Imaging (EDDI) experiments rely on detecting the motion of the mechanical resonator, 

driven by the time-dependent forces between the optically induced molecular dipole and 

probe dipole. Geometric optimizations of the mechanical resonator and metallic probe 

were examined in detail for FDOS. For an optimized probe geometry at a particular 

optical wavelength, the magnitude of the coherent dipole force is ultimately limited by 

laser absorption and heating of the probe. The dipole force is compared to the Brownian 

noise force on the resonator to arrive at the fundamentally best signal-to-noise ratio for 

these experiments. An example of FDOS detection of a single quantum dot yielded a 

peak SNR of 0.2 in a 1 Hz measurement bandwidth. The situation improves for EDDI, 

where the probe is an electret nanoparticle and the resonant mechanical motion is driven 

by the force between the electret probe and the modulated difference dipole of the single 

molecule. Much higher SNRs are realizable for EDDI, since the permanent dipole of the 

electret is several orders of magnitude larger than the optically induced probe dipoles in 

FDOS. As an example, EDDI detection of the 5.6 Debye difference dipole of a particular 

coumarin molecule gives a predicted SNR of 3,500 in a 1 Hz measurement bandwidth. 

Single-molecule vibrational spectroscopy using EDDI is also promising, since typical 

difference dipoles between molecular vibrational levels are of the order 0.01 D, giving 

SNRs of order 10 in a 1 Hz bandwidth. 
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Three novel optical scattering mechanisms were proposed to enhance fiber-optic 

interferometric detection of submicron resonators. The motion of the resonator modulates 

the phase, amplitude, or polarization of the optical scattering from plasmon nanoparticles 

bound to the resonator. For each mechanism, Brownian motion of the resonator becomes 

encoded as an optical noise source, which is compared to the shot noise of the reference 

field and amplifier noise. Calculations suggest that optical detection of linear modes of 

oscillation is nearly Brownian-motion limited for mechanical frequencies up to about 40 

MHz. Mechanical frequencies up to 600 MHz may be detected near the Brownian limit 

for torsional modes of oscillation. 

A novel, nanoscale device for detecting single biological molecules in solution 

was proposed, where electrostatic interactions between the electret probe and polarizable 

molecule create a shift of the mechanical frequency of the resonator. This shift is 

monitored over the course of the experiment to give information on the position and 

orientation of the molecule with microsecond time resolution. As an interesting 

application, the kinetics of binding and unbinding of a protein molecule to its 

corresponding receptor molecule may be studied with this device. Due to the coupling of 

the electrical and mechanical degrees of freedom, this device also has applications as a 

resonant element for low-mass radio frequency transceivers. 

Finally, a scanning, fiber-optic interferometer apparatus was built for detecting 

the motion of micron- and submicron-sized mechanical resonators. Measurements were 

made of the noise of this instrument from dc to 6 kHz. Toward the goal of detecting 

nanoscale resonators, measurements were made with this instrument, on the lowest 

frequency mode of a 150 micron long, triple-paddle resonator. 
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Appendix A.  Derivation of Harmonic Oscillator Noise Spectral 

Densities from the Correlation Function 

 

Consider a one-dimensional harmonic oscillator described by the generalized 

coordinate ξ, which is measured relative to the equilibrium configuration. The coordinate 

ξ could be, for example, the familiar linear displacement of a mass on a spring or the 

angle of torsion about the axis of an elastic beam. As a concrete example we consider a 

linear harmonic oscillator comprised of a spring of force constant k (N/m) to which is 

attached a mass M (kg) with a linear position coordinate y (m) measured relative to the 

equilibrium position. The results of this appendix, however, will be equally valid for a 

generalized coordinate ξ describing the state of the oscillator with a generalized inertia 

Mξ and generalized spring constant kξ. The equation of motion for the linear harmonic 

oscillator is [1] 

( ) ( ) ( ) ( )2
h

F t
y t y t y t

M
γ ω+ + = , A.1 

 
where ωh = k M  (radians/s) is related to the natural frequency νh (Hz) of the harmonic 

oscillator by ωh = 2πνh and γ  (s -1) is the damping constant, which is related to the 

frequency and quality factor of the oscillator by h Qγ ω= . On the right hand side of 

equation A.1, F(t) is the net external force on the oscillator, which for our purposes is the 

sum of an imposed driving force and a random force due to microscopic thermal 

processes that bring the oscillator to thermal equilibrium at temperature T (K). 
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For the case where the driving force is zero the coordinate y(t) will be a random 

variable due to the presence of the fluctuating thermal forces. To derive the statistics of y 

we consider the correlation function ( )yG τ  [2] 

( ) ( ) ( )1
2y

t

t t
G lim y t y t dt

t
τ τ

→∞
−

′ ′ ′= +∫ , A.2 

 
which gives a measure of how strongly future values of y depend on the present value. 

We now proceed to find the spectral density ( )yG ν  of the fluctuations of y(t), 

which is the Fourier transform of the correlation function.[2] For stationary, ergodic 

processes ( )yG τ  is a symmetric function of τ [2] so that the spectral density may be 

written [3] 

( ) ( ) ( )
0

4 2y yG G cos dν τ πντ τ
∞

= ∫ . A.3 

 
For a harmonic oscillator at absolute temperature T the correlation function is [3] 

( ) ( ) ( )2 2
2yG y cos sine

γ τ γτ ω τ ω τ
ω

− ⎛ ⎞′ ′= +⎜ ⎟′⎝ ⎠
  , A.4 

 
where 2y  is the mean-squared oscillator amplitude and 2 2 4hω ω γ′ = − . Inserting 

A.4 into A.3, we find 

( )
( )

2 2

22 2 2 2

4 h
y

h

y
G

γ ω
ν

ω ω γ ω

⎛ ⎞
⎜ ⎟=
⎜ ⎟− +⎝ ⎠

, A.5 

 
where ω = 2πν. 

From the Weiner-Khintchine theorem, the contribution ( )2
1y ,ν νΔ  to the mean 

squared displacement 2y  in the frequency interval [ ( )1 2ν ν−Δ , ( )1 2ν ν+ Δ ] is [2] 
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( ) ( )
1

1

2
1

2

2

yy , G d

νν

νν

ν ν ν ν

Δ+

Δ−

Δ = ∫ , A.6 

 
where 

( )2

0
yy G dν ν

∞

= ∫ . A.7 

 
Also, the equipartition theorem states that 

2 21 1
2 2 BhM y k Tω = , A.8 

 
where kB is Boltzman’s constant. Using A.8 in A.5, the spectral density ( )yG ν  may be 

written 

( )
( )22 2 2 2 2

4 1Bh
y

h h

k T
G

MQ Q

ω
ν

ω ω ω ω

⎛ ⎞
⎜ ⎟=
⎜ ⎟− +⎝ ⎠

, A.9 

 
and at the mechanical resonance frequency this reduces to 

( ) 3

4 B
y h

h

k TQG
M

ν
ω

= . A.10 

 
We may now find the spectral density of force fluctuations on the oscillator. 

Taking a Fourier transform of equation A.1, we find the transfer function ( )f ω  between 

the Fourier component of the force ( )F ν  and the Fourier component of the displacement 

( )y ν  at frequency ν: 

( ) ( ) ( ) ( ) ( )2 2
hF M i y f yν ω ω γω ν ω ν= − + = . A.11 

 
The spectral density of force fluctuations ( )FG ν  is then related to ( )yG ν  by [3] 
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( ) ( ) ( ) ( ) ( )22 2 2 2 2 2
y yF hG f G M Gν ω ν ω ω γ ω ν⎡ ⎤= = − +⎢ ⎥⎣ ⎦

, A.12 

 
and at the mechanical resonance frequency we have 

( ) 4 Bh
F h

M k T
G

Q
ω

ν = . A.13 

 
 We will also need the spectral densities for a torsional mechanical resonator with 

angular coordinate θ (radians), moment of inertia I (kg·m2), and torsional spring constant 

kt (N·m). In analogy with A.10 and A.13, at the mechanical resonance frequency we find: 

( ) 3

4 B
h

h

k TQG
Iθ ν
ω

=  A.14 

 
and 

( )T
4 Bh

h
I k T

G
Q
ω

ν = , A.15 

 
where the subscript T denotes torque. 
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Appendix B. The Energy of a Polarizable Object in an External 

Electric Field 

 

 The force on a dipole ( )p r  located at position r  due to the electric field ( );E r θ  

of the electret probe is 

( ) ( ) ( ); ;F r p r E rθ θ⎡ ⎤= ∇⎣ ⎦⋅ . B.1 
 
This is true regardless of the nature of the dipole (i.e., fixed or induced). In the following, 

we will show that this force is conservative for the case where the orientation of the 

polarizable particle and θ are held fixed with respect to the laboratory frame. For a 

conservative force, it is sufficient to show that it may be written as the gradient of a scalar 

function of position; this function is then identified as the negative of the potential energy 

of the particle. 

Evaluating ( );E r θ∇  in Cartesian coordinates yields the tensor expression 

( ) ( ) ( );
ˆ ˆ ˆ ˆ; ; j
i j j i j

i i

E r
E r e E r e e e

x x
θ

θ θ
∂∂ ⎡ ⎤∇ = =⎣ ⎦∂ ∂

, B.2 

 
where summation over the repeated indices i and j is assumed. Evaluating equation B.1 

gives 

( ) ( ) ( );
ˆ ˆ ˆ; j

i jk k
i

E r
F r p r e e e

x
θ

θ
∂

= ⎡ ⎤⎣ ⎦ ∂
⋅  

( ) ( );
ˆ j

jk ki
i

E r
p r e

x
θ

δ
∂

=
∂

 

( ) ( );
ˆj

i j
i

E r
p r e

x
θ∂⎛ ⎞

= ⎜ ⎟⎜ ⎟∂⎝ ⎠
. 

B.3 
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Since ( );E r θ  is an electrostatic field, it may be written as the gradient of a 

potential function ( );r θΦ : 

( ) ( );
ˆ; m

m

r
E r e

x
θ

θ
∂Φ

= −
∂

. B.4 

 

From this it follows that 
( );j

i

E r
x
θ∂

∂
 = ( )2 ;

i j

r
x x

θ∂ Φ
−

∂ ∂
 and since ( );r θΦ  is a “regular” 

function we have the property 

( ) ( )2 2; ;

i j j i

r r
x x x x

θ θ∂ Φ ∂ Φ
=

∂ ∂ ∂ ∂
, B.5 

 
which implies 

( ) ( ); ;j i

i j

E r E r
x x
θ θ∂ ∂

=
∂ ∂

. B.6 

 
Using these facts, equation B.3 may now be written as 

( ) ( ) ( );
ˆ; i

i j
j

E r
F r p r e

x
θ

θ
⎛ ⎞∂

= ⎜ ⎟⎜ ⎟∂⎝ ⎠
. B.7 

 
In the following, for notational simplicity functions of r  and θ  are implied and 

the arguments are suppressed. Note that the polarizability tensor does NOT depend on 

position. For a particle described by a linear, anisotropic polarizability tensor with 

Cartesian components ikα , the components of the induced dipole are related to the 

electric field of the probe through 

i ik kp Eα= , B.8 
 
so that equation B.7 becomes 
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ˆi
jik k

j

EF E e
x

α
⎛ ⎞∂

= ⎜ ⎟⎜ ⎟∂⎝ ⎠
. B.9 

 
Now, using the fact that 

( )ik i k
ik

j j j

E E EEE E
x x x

∂ ∂∂
= +

∂ ∂ ∂
, B.10 

 
we may rewrite equation B.9 as 

( ) ˆ ˆk i k
ik j ik i j

j j

E E EF e E e
x x

α α
∂ ∂

= −
∂ ∂

. B.11 

 
Since the indices are summed over without restrictions, we may interchange their roles in 

the second term of equation B.11 transforming it into ˆi
jki k

j

EE e
x

α ∂
∂

. Since the 

polarizability is a symmetric tensor (i.e., kiα  = ikα ), this term becomes ˆi
jik k

j

EE e
x

α ∂
∂

 and, 

upon adding equations B.9 and B.11, we find 

( ) ˆ2 ik
jik

j

E E
F e

x
α

∂
=

∂
. B.12 

 
Also, the components of the polarizability tensor are independent of position and 

therefore may be factored inside the derivative giving 

( ) 1ˆ;
2j iik k

j
F r e E E

x
θ α∂ ⎛ ⎞= ⎜ ⎟∂ ⎝ ⎠

 

1
2 iik kE Eα⎛ ⎞= −∇ −⎜ ⎟

⎝ ⎠
. 

B.13 

 
Equation B.13 expresses the fact that the force on a particle with a linear, anisotropic 

polarizability tensor is equal to minus the gradient of a scalar function of position (i.e., 
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( );F r θ  = ( );U r θ−∇ ) and is therefore conservative. The function ( );U r θ  is the 

potential energy of the particle, which from B.13 is 

( ) ( ) ( )1; ; ;
2 iik kU r E r E rθ α θ θ= − . B.14 
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Appendix C. Ohmic Dissipation of the Induced Polarization 

Currents in the Electrodes of the Single-Molecule Binding Sensor 

Device 

In this appendix we estimate the Ohmic losses in the electrodes of the single 

molecule sensor of Figure 1.4, which arise from the finite penetration of the rf field of the 

electret probe. The damping due to this mechanism will then be compared to the familiar 

frictional damping of the mechanical resonator. 

 

 
 
Figure C.1: A simplified model of the device in Figure 1.4 used in the estimation of Ohmic losses in the 
nanoscale electrodes. The electrodes are approximated to be gold spheres of radius R since the polarization 
for this shape is simply related to the internal electric field. Torsion of the mechanical resonator by angle θ 
gives rise to a component of the ferroelectric dipole and a corresponding rf electric field along the x 
direction, which drives electric currents in the metal electrodes and gives rise to Ohmic dissipation. 
 

A simplified picture of the device of Figure 1.4 is shown in Figure C.1, where the 

drive/detection electrodes are taken to be gold spheres of radius R. Motion of the 

torsional resonator at the mechanical resonance frequency generates a component of the 

dipole moment along the x direction whose electric field drives currents in the nearby 

conductors generating Ohmic dissipation. 
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We first calculate the dissipated power due to viscous damping of the resonator. 

For the mechanical resonator characterized by the angular coordinate θ, the damping 

torque is 

  
mechT Iγθ= , C.1 

 
where I is the moment of inertia of the resonator, γ  =  ωh /Q is the damping rate of the 

mechanical energy due to friction, and ωh (radians/s) is the resonance frequency with Q 

the quality factor of the torsional mode. The mechanically dissipated power is then given 

as 

2
mech mechP T Iθ γθ= = . C.2 

 
For harmonic time dependence of the angular coordinate 

( ) ( )
2

i t i te et
ω ω

θ θ ω
−⎛ ⎞+

= ⎜ ⎟
⎝ ⎠

, C.3 

 
where the amplitude θ (ω) is taken to be real, we evaluate the time derivative of θ (t): 

( ) ( )
2

i t i te et i
ω ω

θ ωθ ω
−⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

. C.4 

 
Inserting this into equation C.2 we obtain the mechanically dissipated power 

( ) ( ) ( )
22

1 cos 2
2mech

I
P t t

γω θ ω
ω

⎡ ⎤⎣ ⎦= −⎡ ⎤⎣ ⎦ , C.5 

 
of which, only the dc part is of interest since this is equal to the time-averaged dissipated 

power denoted here by brackets : 

( ) 22

2mech

I
P

γω θ ω⎡ ⎤⎣ ⎦= . C.6 
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 We now calculate the electrical dissipation in the nearby conductors, where we 

make the approximation that the field of the electret is uniform over the volume of the 

electrodes and has the value equal to that of the field evaluated at the center of each 

electrode. This is an enormous simplification of the problem, but should give us an order-

of-magnitude estimate of the electrical damping. With these approximations, the free 

current density J, the polarization P, and the total electric field E inside the electrodes are 

uniform, which results from the assumed spherical shape of the electrodes. The continuity 

equation for electric charge is expressed as 

( )ˆ ˆJ n P n
t

∂
⋅ = ⋅

∂
, C.7 

 
where n̂  is the outward pointing unit vector at an arbitrary point on the surface of one of 

the electrodes and the surface charge density is ˆP n⋅ . Since equation C.7 must hold at 

every point on the surface, we deduce the relationship between the free current density 

and the polarization within the volume of the electrode: 

PJ
t

∂
=

∂
. C.8 

 
The total electric field inside each electrode is given by 

( )a PE E Eθ= + , C.9 
 
where ( )aE θ  is the applied field of the electret and PE  the electric field of the induced 

polarization, which for a spherical shape is 

03P
PE
ε

= − . C.10 

 
Given the time dependence for θ (t) in equation C.3, the most general form for the 

polarization is 
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( ) ( ) ( )( )*
0

1
2

i t i tP t P e P e Pω ωω ω −= + + , C.11 

 
where ( )P ω  is the complex amplitude and 0P  the real dc polarization. Expanding the 

applied field out to first order in θ  and making use of equation C.10 we find 

( )
00

0
3

a
a

E PE E θ
θ ε

∂
≈ + −

∂
, C.12 

 
and inserting equation C.11 into C.12 gives 

( ) ( )0

0 0 0

. .
0

3 6

i t
a

a
P e c cP EE E

ωω
θ

ε ε θ
⎛ ⎞ + ∂

≈ − − +⎜ ⎟ ∂⎝ ⎠
. C.13 

 
The term in parentheses in equation C.13 is the total dc electric field inside the conductor, 

which must be zero. Therefore we arrive at the relation between 0P  and ( )0aE  

( )0 03 0aP Eε= . C.14 
 
The constitutive relation between the free current density and total electric field is 

( ) ( )J t E tσ= , C.15 
 
where σ  is taken to be the dc conductivity of the metal in (Ω·m)−1. Using equations C.8 

and C.11 we have 

( ) ( ) ( )( )*

2
i t i tiJ t P e P eω ωω ω ω −= − . C.16 

 
Using C.13 and C.16 in equation C.15 along with the time harmonic form (equation C.3) 

for the angular coordinate allows us to solve for ( )P ω  in terms of ( )θ ω : 

( ) ( ) ( )0

0

3
3 aP E

i
ε σω θ ω

σ ε ω
⎛ ⎞ ′= ⎜ ⎟⎜ ⎟+⎝ ⎠

, C.17 
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where 
0

a
a

EE
θ

∂′ ≡
∂

.  

The electrically dissipated power is 

( ) ( )22 v v
V V

eP d J E d J J
σ

= ⋅ = ⋅∫ ∫  

= 2V J J
σ

⋅ , 
C.18 

 
where the integration is done over the volume V of a single electrode. The factor of 2 

comes about since there are two identical electrodes. Using C.16 we find 

( ) ( ) ( ) ( ) ( )( )
2

*22 . . 2
4

i t
e

VP t P P e c c P Pωω ω ω ω ω
σ

= − ⋅ + − ⋅ , C.19 

 
and again, we are only interested in the dc power denoted with brackets : 

( ) ( )
2

*
e

VP P Pω ω ω
σ

= ⋅ . C.20 

 
Finally, using equation C.17, we obtain the desired expression for the power dissipated as 

Joule heating in the electrodes: 

( )
( )

( )
2 2 20

2
0

3
1 3e aP V E

ε ω σ
σ θ ω

ε ω σ

⎡ ⎤
′= ⎡ ⎤⎢ ⎥ ⎣ ⎦+⎢ ⎥⎣ ⎦

. C.21 

 
The oscillating ferroelectric dipole generates the time-dependent part of the 

applied field, which to first order in θ  is 

( ) 3
0

2 x̂
4aE

D
μθθ

πε
≈ , C.22 

 
from which we find 

3
0

2 x̂
4aE

D
μ

πε
′ = . C.23 
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We compare these two sources of dissipation for the simulated device of Chapter 

4, which comprised a 200 nm diameter by 400 nm tall PZT cylinder (μ = 4.4 x 10−21 C·m) 

centered on a 1 micron long x 280 nm wide x 200 nm tall aluminum nitride beam. The 

resonance frequency of this mechanical resonator is 950.5 MHz and a Q of 10,000 is 

assumed. For a 1 degree angular amplitude of motion, the mechanically dissipated power 

is calculated from equation C.6 to be 42 nW. The electrodes are taken to be gold spheres 

(σ = 3.6 x 107 (Ω·m)−1) with a radius of 250 nm. The distance of closest approach of the 

PZT cylinder to each electrode is taken to be 50 nm, so that D = 400 nm. Again, for a 1 

degree angular amplitude of motion at 950 MHz, using equations C.21 and C.23 we find 

the power dissipated as Joule heating to be 21 fW. For this example we see that the 

dissipation due to friction is 2 x 106 times larger than the Ohmic losses. Therefore we 

find that Ohmic losses are completely negligible for this design. Also, examining 

equations C.6 and C.21 we see that the power dissipated by each of these mechanisms 

scales as the square of the driven mechanical amplitude, making their ratio independent 

of the amplitude of mechanical motion. 
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