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Abstract

Previous efforts in designing protein binding interfaces have focused on altering

binding specificities. These methods fall short, however, when applied to the design of

novel binding sites due to difficulties in accurately modeling protein backbones.  The

goal of this project is to create dimers from monomeric proteins.  We developed a special

docking algorithm that positions the member protein subunits to a plausible configuration

with respect to each other using parameters determined from known complex structures.

The docking procedure treats the proteins as rigid bodies and uses Fourier correlation

theorem and fast Fourier transform to efficiently search for dimers with the highest

interfacial surface complementarities.  Using the docked structures as scaffolds for design

and employing hydrophobic surface residues to drive dimer formation, we have

demonstrated two successful designs, one heterodimer and one homodimer, using protein

G and engrailed homeodomain respectively as the starting monomeric proteins.  The

designed dimers were characterized using circular dichroism, nuclear magnetic

resonance, analytical ultracentrifugation, and X-ray crystallography methods.  This is the

first report of computationally designed de novo protein homodimers generated using a

combination of protein docking and protein design tools.  These results suggest that this

strategy can be used to address the protein recognition problem, and is generally

applicable to creating novel binding sites with compatible binding partners.
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Computational Protein Design

Rational protein design refers in general to methods that follow the “inverse

folding” approach1.  Computational methods have proven to be particularly valuable and

have stimulated renewed interest in the field.  In this approach, sequences are threaded

onto an experimentally determined backbone, and the energies for each of the sequences

are computed according to a mechanical force field description of the system2.  The

design process starts with choosing a protein backbone scaffold, followed by renovating

the amino acid positions with discrete side-chain rotamers occupying statistically

significant conformational space.  Optimization algorithms such as dead-end elimination

(DEE) or Monte Carlo (MC) methods are then used to find a sequence or sequences that

will adopt the same fold when produced experimentally.

Protein design methods following this general scheme have been applied to

several systems to improve stability; however, these methods are now also being used to

create proteins with catalytic activity3,4 and altered binding specificities5-9.  Applications

have expanded to several areas, including: (1) assisting directed evolution studies by

suggesting focused libraries of reduced complexity, (2) improving native constructs by

enhancing stability, enzyme activity, or binding affinity/specificities, (3) exploring

unknown protein characteristics through extensive comparison between the wild-type and

designed models, (4) creating molecules with novel properties, and (5) providing a

“controlled” environment for testing the validity of bio-physical principles, theories, or

energy functions.  Previous successes in designing stable proteins have validated several

aspects of the computational protein design approach, such as the use of fixed backbones,

discrete rotamers, classical mechanics force field terms, and rigorously defined polar
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surface and hydrophobic core compositions, to name a few.  The development of protein

design algorithms is ongoing and far from perfect, but with the already-sophisticated

tools currently available, we can start investigating some of the most intriguing problems

in protein biochemistry.

Can we create self-associating protein oligomers from monomeric proteins using

protein design tools?  To address this question, we started with the simple model of

treating the binding interface as a hydrophobic core and performing designs on

heterodimer (Chapter 3) and homodimer (Chapter 4) models created by virtually docking

the coordinates of the monomers.  Through such efforts, we can explore the protein

recognition problem by creating dimers purely from computational calculations.

Computational Approaches to The Protein Recognition Problem

Protein recognition is one of the most intriguing problems in biology.  Proteins

bind to molecules of all sizes and shapes and have binding interfaces fine-tuned for their

substrates.  A fundamental understanding of the recognition process is, therefore, crucial

but extremely difficult to achieve.  However, it is essential that we have reasonable

models to describe the interactions.

Due to the importance of small molecules in drug discovery, various

computational methods have been developed to predict small molecule binding affinities

and ligand-receptor orientations10.  One of the most sophisticated docking programs,

DOCK, created by Kuntz et al.11 and improved over the years, uses spheres to describe

ligands and receptor cavities; by matching the sphere sets, ligand conformations and

orientations can be scored.  Although the shape matching features of methods like this
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can be scaled for protein-protein interactions, they are usually limited to local matches.

Most protein-small molecule (or protein-drug) docking algorithms focus on simulating

small ligands in the receptor environment.  Protein design methods complement small

molecule docking strategies by studying the recognition problem from a different

perspective.  Possible sequences for a receptor’s binding pocket can be computed for a

particular ligand based on known principles.  In other words, a protein receptor can be

“molded” around its ligand.  By focusing on the steric contacts and optimizing hydrogen

bonds, Looger et al. redesigned proteins with altered binding specificities, replacing their

wild-type ligands with small molecules of interest9.  As illustrated by this example,

protein design can be used to identify and test mechanisms that drive complex formation

and possibly to generate molecules with novel applications.

Protein-protein interactions, however, are less well characterized, despite

continuing efforts to thoroughly analyze protein-protein interfaces12-15.  The major

obstacle lies in the seemingly endless ways Nature utilizes amino-acid side-chains.

Furthermore, the problem is aggravated when backbone conformational changes are

involved.  Despite being a more complicated problem, the parallelism between methods

to study protein-protein and protein-small molecule interactions is clear.

Protein design methods can similarly complement docking approaches in studying

protein-protein interactions.  Computational design has been successful in both altering

binding specificities6 and creating novel molecules16 for a well characterized model

system like coiled-coils.  Several other systems have also been studied, and have recently

been reviewed by Kortemme and Baker17.  To make a protein complex design successful,

a few key points must be addressed.  First, high quality models must be available.  Since
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current protein design algorithms require high-resolution structures, the best starting

point is to use the backbones of experimentally determined crystal structures.  This is the

strategy used by several groups6,18, including ourselves19.  It is also possible to use

backbone models that closely resemble crystal structures as in the work of Chevalier et

al.8.

Second, negative design can be important.  Most protein design methods

explicitly consider only the folded state of a molecule, and implicitly account for the

unfolded state through energy function descriptions.  While this “single state” design

strategy simplifies the design problem for a monomer, it may not be adequate to describe

a system where multiple states are involved.  A more realistic description requires

optimization of the target state while taking into account other competing states.

Havranek and Harbury developed a strategy that takes into account the unfolded state, the

folded homodimer conformation, the folded heterodimer conformation and the

aggregated state of a dimeric coiled-coil model system; this strategy resulted in a

designed specificity that was confirmed by experimental results6.  A thorough design

effort should adopt a similar approach, as illustrated by Bolon et al.7, who found that

sequences favoring heterodimer formation were generated by optimizing the energy of

the heterodimer relative to that of the native homodimer sequence.  However, these

studies are usually too computationally demanding if more than a few residue positions

are to be optimized.

Third, the energy functions should be reasonably accurate.  This is where most of

the variability lies when comparing methods used by different research groups.  The

ability to computationally design protein side-chains is based on a subtle balance between
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the force field terms, and there are many different ways to describe the same

phenomenon.  This is especially true for the solvation models used in computational

design.  Various methods with different levels of accuracy are used depending on the

application, whether the consideration be speed, pair-wise decomposability, historical

success, etc.  For protein-protein interactions, hydrogen bonding and electrostatics terms

are found to be important20,21 in addition to solvation terms, which are considered most

critical.  Sometimes it is necessary to adjust the relative weights of the terms to achieve

desired results, as illustrated in Shifman and Mayo’s calmodulin designs; they found that

tweaking the electrostatic terms and applying bias towards inter-molecular interactions

yielded more successful results20.  Because the chemical moieties that line protein

interfaces vary greatly, extra care should be taken to address force field issues.

Last, since no current protein design algorithms can explicitly model water-

mediated hydrogen bonds, they should be avoided if possible until the required methods

become available.

One of the major drawbacks of the current computational approaches to the

protein recognition problem, for both docking algorithms and design algorithms alike, is

the inability to accurately predict or simulate backbone conformational changes.  For

docking algorithms, the most difficult predictions are for “unbound” situations.  Docking

algorithms are usually applied to two different kinds of problems, “bound” and

“unbound” cases.  The bound cases refer to the situations where the structures for both

the ligand and the receptor are known in the bound conformation, most likely from a co-

crystal of the complex.  In such cases, each member in the complex is separated

artificially for the subsequent docking tests.  The purpose of such an exercise is to
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reconstruct the crystal conformation, usually as a test of the validity of a docking

algorithm.  The unbound cases refer to situations where each member of a complex is

crystallized separately.  It is conceivable that for a docking algorithm to perform well in

unbound tests, conformational changes either on the side-chain or backbone level have to

be accounted for.

Three different kinds of conformational changes have been proposed22.  The first

comprises the fast, small-scale thermal fluctuations observed in proteins, such as an

ensemble of NMR structures.  The second involves the slow, hinge bending type of

domain movements.  The third results from disorder that cannot be observed in either

X-ray crystallography or NMR experiments; only upon complex formation, the

intrinsically disordered part of the protein shifts its equilibrium to achieve a population

time sufficient for detection by X-ray or NMR experiments.  Although rigorous

perturbation methods combined with molecular dynamics (MD) simulations can be used

to model conformational changes reasonably accurately23, they are not efficient for

docking studies.

Most docking methods available today do not handle conformational changes that

involve domain movements or induced fits.  Instead, proteins are treated as rigid bodies

and flexibility is implicitly included by using “soft” scoring potentials.  This will be

discussed in a later chapter.  In order to completely cover all possible binding sites on the

protein surface, all six degrees of rotational and translational freedom must be

considered.  At this stage, docking algorithms are required to make trade offs between

accuracy and speed.  With their limited ability to model protein flexibility, most docking

algorithms perform poorly in unbound cases.
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Design algorithms, on the other hand, have proven valuable in creating molecules

with altered interfaces, but fall short in creating novel binding sites.  Due to the

requirement of high quality backbones, design algorithms are largely limited by the

structures available in the Protein Data Bank (PDB24).  In an ideal scenario, design

algorithms would be able to evaluate the interface between any two molecules in contact

with each other and generate sequences that accommodate the conformation, given the

conformation is reasonable.  In reality, design algorithms can only be applied to known

complex structures.  Depending on the nature of the interface, there is the possibility that

a better answer could be obtained if some part the backbone were allowed to move, but

the tools required to explore this possibility are not yet available.

Generation of De Novo Protein Dimers

The body of this thesis presents a brand new approach to the protein recognition

problem.  We are interested in combining our powerful design tools with a docking

protocol to examine the possibility of creating novel dimers from scratch.  To this end,

we need to develop a docking algorithm that serves a different purpose.  Most docking

algorithms developed to date are for predicting complexes, with the idea of creating a

high throughput approach to identify possible complexes from unbound monomeric

structures.  Since the number of protein-protein complexes deposited in the PDB is

relatively low compared to that of single proteins, and experimental identification of

complexes are tedious and time consuming, it is necessary to use this type of computer

based algorithm to facilitate the discovery of associating molecules.  But for our purpose,

the docking algorithm is used to position the individual monomers to a plausible
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configuration while taking no information from surface side-chains.  The factors involved

in this docking process include: (1) a surface representation of the molecule, (2) a fast

search algorithm to screen dimer conformations, and (3) an evaluation procedure to

identify plausible targets.  These factors are discussed in detail in Chapter 2.

By combining both the docking and design strategies in creating self-associating

dimers, we examine the possibility of using a highly complementary hydrophobic surface

patch to achieve oligomer assembly.  Two successful design cases are presented, one

heterodimer and one homodimer, in Chapter 3 and Chapter 4, respectively.  Based on the

knowledge gained from these studies, we believe that our strategy, which combines

docking and design algorithms to address the protein recognition problem, is generally

applicable to creating novel binding sites with compatible binding partners.  The results

also suggest that using hydrophobic amino acids to drive dimer formation is physically

plausible.

However, designing protein oligomers with affinities comparable to naturally

forming complexes remains an astounding challenge.  Currently, we are also far from

being able to incorporate allostery – proposed to be one of the major reasons for the

existence of protein quaternary assembly25 – in our design efforts.  Over the years,

tremendous efforts have been focused on learning, rationalizing, and systematically

dissecting the binding interfaces found in crystal structures; studies include detailed

surveys, modeling, calculations, etc.  These efforts have gathered a vast amount of

knowledge about protein-protein recognition.  Attempts to apply this knowledge in

building artificially designed functional proteins, however, are just beginning.  With our
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small contribution to this mammoth problem, we hope to lay the first stone in building

the foundation for future studies.
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Chapter 2

Adapting a Fast Fourier Transform-Based Docking Algorithm

for Protein Design
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Abstract

Designing proteins with novel binding properties can be achieved by combining the

powerful tools originally developed independently for protein docking and protein

design.  For the docking component, we use 3D grids to represent the protein molecules

in space, and a fast Fourier transform-based algorithm to efficiently cover all translational

dimensions and search through all six degrees of freedom.  Proteins are modeled with a

reduced representation that approximates the side-chains with spheres defined by

experimentally determined atomic radii.  C2 symmetry related homodimers are used to

parameterize the docking algorithm, since their interfaces are more protein core-like and

can be modeled well by our protein design algorithms.  Imposing C2 symmetry also

reduces the search space and significantly improves computational efficiency.  The

fitness of the docked structures are evaluated based on their surface shape

complementarities.  The resulting docking algorithmn successfully predicted the wild-

type dimer conformations in 65 out of the 121 dimer test cases, with most of the

predictions exhibiting less than 1 Å RMSD compared to the wild-type.  The reduced

protein representation therefore appears to be a reasonable estimate and can be used by

our docking algorithm to position protein backbones in a plausible configuration for

dimer design.
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Surface Complementarity Between Two Molecules

The first step in our effort to generate de novo protein dimers involves the

creation of a docking algorithm.  The protein docking process described below is its most

basic form.

Input to the docking algorithm consists of the structures of two molecules, a

ligand and a receptor.  Their initial spatial orientation with respect to one another can be

random or assigned.  The two molecules are brought to intimate proximity, hence

“docked” to each other.  Specifically, one molecule is moved and the other is held

stationary.  The molecule being moved is first translated in steps of a specified distance

along the x, y, and z dimensions, until the steps cover all of the combined translations.

For each translational step taken, the algorithm evaluates the docked conformation based

on a scoring criterion. After exhausting all the translational steps, the molecules are

returned to their initial positions, rotated a fixed increment with respect to each other, and

the entire translational search is repeated.  Assuming 150 steps are required for each of

the translational axes and one degree increments are used for each of the rotational

angles, as many as 360  360   180  150  150  150 (7.8732  1013) steps may be

required to exhaustively search all possible rotational and translational degrees of

freedom. Using 150 steps in each translational dimension is reasonable if the two

molecules are about 50 Å along the longest axis and if the step size is 1 Å.

One of the most important factors in this process is the method used to evaluate

the fitness of the docked molecules.  The key to this question depends on how the

molecules are represented in space.  Because of the large number of search steps

involved, the molecular representations used for docking algorithms are usually not
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complicated. Although a complete molecular representation with all atom descriptions

and side-chain rotamers is the most accurate, it is impractical for docking searches.  The

simplest and most commonly used method describes the molecules as rigid bodies and

uses surface shape complementarity to score the docked structures.  Energy terms can

also be used, but these are usually limited to simple electrostatic and distance-restricted

hydrogen bond terms.  Molecular surface is a good way to describe rigid bodies for this

purpose.  A widely used method to calculate molecular surface was introduced by

Connolly in 1983. This approach rolls water probes on the surface of proteins and places

dots along the path to form a solvent-accessible surface1.  Other representations that are

also good approximations include treating protein surfaces as abstract concave and

convex points; an example of this is the surface sparse critical points method introduced

by Lin et al. in 19942.  The use of 3D grids is also very common among docking

algorithms, especially for the methods that use fast Fourier transform (FFT) for

translational searches.  In one case, proteins are represented as spherical harmonics3,4.

Each of these molecular representation methods has its advantages and

disadvantages, and in general, there is a trade-off between speed and accuracy.

Connolly’s method produces very accurate molecular surfaces, but the number of dots

generated for protein-protein docking searches is too large to be handled efficiently.  The

surface critical points method offers great docking speed, but does not capture

interactions in atomic detail.  Even though the 3D grid approach may require a large

number of grids to represent the molecules accurately, it can still be very fast when FFT

is used in the translational searches.  The 3D grid representation thus offers a good

balance between speed and accuracy.
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The molecular representation method chosen can also significantly affect the

physical model used to evaluate the docked dimers.  For example, electrostatic properties

of the protein surface can be embedded in the 3D grids and evaluated alongside surface

complementarities, thus facilitating the identification of favorable dimer conformations

by ruling out those with disfavorable electrostatic interactions5.

In our dimer design, the side-chains are explicitly designed in the subsequent

steps using the ORBIT protein design software.  The docking algorithm must therefore

generate a list of plausible dimer orientations based on a molecular representation that

builds estimated side-chains on a poly-alanine backbone.  A crystal structure is used as

the scaffold for each of the monomers, with the side-chains beyond the C  atom deleted.

To maintain the overall shape of the surface, the volume originally occupied by a side-

chain cannot be left empty.  Therefore, the most important criterion for our choice of a

molecular representation is its ability to estimate this void space relatively accurately and

easily.  In theory, it is possible to use the original side-chains in the docking process, then

subsequently replace them during design.  If we use this full side-chain representation,

however, we will need a very “soft” scoring function to allow surfaces to overlap, which

can lead to backbone clashing.  Since we are not allowing backbone flexibility, this kind

of clashing is strictly prohibited.  Moreover, because the side-chains on the surface of a

protein are usually longer than those found in the core, the use of full surface side-chains

in the docking process would make the creation of a hydrophobic interface difficult.  If

the two halves of a dimer are positioned implausibly far away from each other, the design

algorithm cannot make good sequence predictions for the interface.  The molecular

representation most suitable for our application is therefore one that allows easy
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“padding” in the side-chain voids while maintaining the topology of a potential binding

surface.  These requirements can be met using 3D grids.  Since our poly-alanine

representation of the backbone does not consider the chemical properties of the side-

chains, our docking algorithms uses a simple scoring function that only evaluates surface

complementarities.

3D Grid Discretization

We selected the 3D grid method to represent our protein molecules in space for

the purpose of evaluating surface shape complementarities.  In addition to being the best

molecular representation for the requirements mentioned above, this approach has the

distinct advantage of allowing the use of FFT for translational searches, which

significantly decreases the compute time.  Details on the use of FFT will be covered later

in this chapter.  Representing protein molecules with 3D grids requires a discretization

process where grid points are assigned as either part of the protein or part of the empty

space surrounding it.  The 3D grids in our implementation correspond to the members of

a one dimensional computer data storage array with each member representing a cubic

box in space, called a voxel (Figure 2-1).

Before voxel assignments can begin, the cubic 3D space must be defined.  This

includes specifying: (1) the size of the entire arena, (2) the resolution to be used for the

docking exercise, and (3) the number of array elements to be used.  The size of the arena

depends on the dimensions of the protein molecules to be discretized.  Because

calculations will be performed on every single one of the voxels, the arena size should be

as small as possible while leaving enough room for the proteins to move around each
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other along all three translational axes.  A good rule of thumb is to make each of the

dimensions of the arena three times the length of the protein’s long axis.  The length

across the arena must be large enough to simultaneously hold two copies of the mobile

protein (usually the smaller molecule) and one copy of the stationary protein, as this is

the minimum requirement for one molecule to see both sides of the other molecule by

translation.  Because one of the molecules is usually held stationary, if the size of the

arena fits only one copy of each molecule, some parts of the stationary molecule will

never be checked.  While a smaller arena is sometimes used when docking to a focused

region, it should never be allowed in a global docking search.

The resolution of a docking calculation is determined by the relationship

resolution =
size of the arena

number of equivalent grid points

and is not usually explicitly defined.  A smaller numerical value means a higher

resolution and a better approximation of the proteins by the 3D grids.  Since the size of

the arena is set by the size of the molecules, the resolution is usually limited by the

number of equivalent grid points, which is in turn dependent on the amount of physical

memory available on the computer.  The discretization process involves checking every

atom on the proteins against the grid boundaries.  Each grid boundary is evaluated in

turn, and if any part of its sides or edges falls within the van der Waals radii of an atom, a

value is assigned to the grid voxel (Figure 2-2).  It is convenient to use the 3D grid

representation for our purpose because we can easily make a projection of the atomic

radii and have grids assigned to the volumes that are originally taken up by the side-

chains (Figure 2-3).
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Structural Correlations

In order to evaluate the surface complementarities between the two molecules

represented by 3D grids, the two molecules must be discretized separately into two

storage arrays that cover the same arena.  For every round of rotational and translational

search, the array that contains information about the stationary molecule is not changed,

but the array that holds the mobile molecule is regenerated according to the molecule’s

new orientation and spatial position.  After being discretized, the proteins can be treated

as discrete functions (or signals), and the correlation between the two discrete functions

can be obtained by summing the products of the two signal amplitudes at each sampling

interval (Figure 2-4); the sampling interval can be time delay, position steps, or any

property that describes the two functions.  The correlations between two functions A and

B can also become a function of the same variable (Figure 2-4).  In our case, the

correlation between the two protein molecules discretized into 3D grids can be calculated

using the same principle.  Since our interest is in finding good correlations between the

surfaces of the two molecules, we can shape the individual discrete functions to achieve

this.

We adopted a scoring scheme similar to the one used by Katchalski-Katzir et al.,

where all voxels for the mobile molecule are assigned the value “1”, those for the

stationary molecule are assigned different values according to their locations, and voxels

that are not part of the protein are assigned “0”6.  The voxels associated with the

stationary protein are categorized as either core or surface, with the core covering the

space around the atoms defined by some radii, and the surface covering the space

between the core and 1.5 Å beyond the core.  For the stationary molecule, grid points
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corresponding to the surface are favored and given positive values (usually “1”) while the

ones in the core are penalized with negative values (usually “-15”) (Figure 2-5).  By

setting up the grid points this way, we can evaluate surface complementarity by counting

the number of overlapping surface voxels between the molecules.  Assuming “-15” is

used for the voxels in the core, fifteen overlapping surface voxels are required to offset

every voxel from the mobile molecule that penetrates the core of the stationary molecule.

When docking is carried out at a high resolution, where the interface consists of hundreds

of voxels, the use of a small penalty value such as “-15” allows slight penetration to the

core while maintaining a high level of correlation on the surface.  Therefore, the scoring

function is intrinsically “soft” when a small penalty is used.

The scoring function described above, however, is not the most appropriate one

for protein design purposes, since it provides no distinction between side-chain and

backbone penetrations.  Since a reduced representation of the surface side-chains is used

in our docking protocol, some penetration on the side-chain level is considered favorable,

as this will create more surface overlap and possibly make the designed interface more

viable.  Backbone penetrations, on the other hand, must be prohibited.  To account for

this, a third category of voxel scores was created.  In addition to having values of “0” (for

vacuum), “1” (for favorable surface) and “-15” (for unfavorable but allowed penetration),

a voxel can also be assigned the value of “-1000” if it falls within 1 Å of an atom center.

Although rarely needed, this third “hard shell” ensures no backbone clashes during

docking.

 If N is the number of grids used in each dimension, evaluating the correlation

between two molecules at a particular conformation using the method described above
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requires N3+(N3-1) calculations (N3 multiplications and (N3-1) additions).  To complete

an entire correlation map (correlation as a function of translations), the total number of

computational steps involved is on the order of N6.  Calculations of this size still take a

long time to finish, even on modern computers.  Fortunately, by using fast Fourier

transform, the problem can be reduced to N3Log2N
3.

Fourier Transform and Fast Fourier Transform

This section partly summarizes the material used in our program that is adapted from
“Numerical Recipes in C,” Cambridge University Press, Second Edition, Chapters 12
and 13, pages 496 - 546. 7

Fourier transform, named after Jean Baptiste Joseph Fourier (1768 – 1830), is

described as a continuous generalization of the complex Fourier series to none periodic

functions (when periodic boundary ).  It is widely used in the scientific and

engineering community as an efficient computational tool for data processing and has

several interesting properties.  Fourier transform converts the same function between the

time domain and the frequency domain,

h(t) = H( f )e 2 iftdf Eq. 2.1

H( f ) = h(t)e2 iftdt Eq. 2.2

where h(t) is the function that describes a physical process of some value h as a function

of time t, and H(f) is the function that describes the same physical process with its

amplitude H as a function of frequency f.  Here,

h(t) = Ff [H( f )](t) = H( f )e 2 iftdf Eq. 2.3

22



is the “inverse” (-i) Fourier transform, and

H( f ) = Ft
1[h(t)]( f ) = h(t)e2 iftdt Eq. 2.4

is the “forward” (+i) Fourier transform.  The “forward” and “inverse” transforms can be

used to convert the same function back and forth between the two different

representations, and h(t) and H(f) are described as a “transform pair,” denoted

h(t) H( f ).

In essence, Fourier transform decomposes a function into sinusoids of different

frequencies whose sum returns the original function.  Several interesting properties can

be obtained when operating the function or functions in the frequency domain, such as

convolution and correlation of two functions.  For protein docking purposes, we are

interested in the correlation theorem.

The correlation between two real functions h(t) and g(t) (with their Fourier

transform represented as H(f) and G(f), respectively) can be expressed as

C(t) = g( + t)h( )d Eq. 2.5

where C(t) is the correlation of h(t) and g(t) as a function of t.  The expression in Eq. 2.5

corresponds to this transform pair:

C(t) = g( + t)h( )d G( f )H( f ) Eq. 2.6

Since by definition, for real functions

H(-f) = H*(f)

where H*(f) is the complex conjugate of H(f), the expression in Eq. 2.6 can be written as

C(t) G( f )H*( f )
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The correlation of two real functions can be obtained simply by multiplying the Fourier

transform of one function with the complex conjugate of the Fourier transform of the

other.

In real applications, function h(t) is presented as data sampled at evenly spaced

intervals, and the approximation of the integral in Eq. 2.2 for this type of function is the

discrete Fourier transform (DFT):

H( fn ) = h(t)e2 ifntdt hke
2 ifntk

k= 0

N 1

= hke
2 ikn /N

k= 0

N 1

Eq. 2.7

  fn
n

N
, n =

N

2
,...,

N

2

where n defines the values at which each frequency will be evaluated, N is the total

number of sampling points, and  is the sampling interval.  Note that tk is also defined as

tk k ,

and as k is incremented in the summation, since

hk h(tk ) ,

Eq. 2.7 integrates over the entire data.  The discrete Fourier transform maps N complex

numbers into N complex numbers through N  N complex additions and multiplications.

The last term in this equation,

Hn hke
2 ikn /N

k= 0

N 1

Eq. 2.8

is referred to as the discrete Fourier transform of the N points hk.

The inverse transform has a strikingly similar form:

hk =
1

N
Hne

2 ikn /N

n= 0

N 1

Eq. 2.9
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The only differences between the “forward” and the “inverse” transforms are the

additional factor of 1/N and the change of the sign in the exponential term.

Discrete Fourier transform traditionally was computed by defining

W e
2 i

N Eq. 2.10

and thus Eq. 2.8 can be written as:

Hn W nk

k= 0

N 1

hk Eq. 2.11

The Fourier transform of the discrete data hk can then be obtained by multiplying the data

with a matrix whose elements are W’s to the power of the product of their indices.

Because W is actually periodic with period N, when N = 4, for example, the (2, 3)

element, W2  3 = W6 = W2.  An 8-point DFT can be written as:

H0

H1

H2

H3

H4

H5

H6

H7

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

=

W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0

W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7

W 0 W 2 W 4 W 6 W 0 W 2 W 4 W 6

W 0 W 3 W 6 W 1 W 4 W 7 W 2 W 5

W 0 W 4 W 0 W 4 W 0 W 4 W 0 W 4

W 0 W 5 W 2 W 7 W 4 W 1 W 6 W 3

W 0 W 6 W 4 W 2 W 0 W 6 W 4 W 2

W 0 W 7 W 6 W 5 W 4 W 3 W 2 W 1

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

h0
h1
h2
h3
h4
h5
h6
h7

 

 

 
 
 
 
 
 
 
 
 
 

Eq. 2.12

The resulting vector Hn with N elements can be obtained from the input vector hk with N

elements8.

The fast Fourier transform (FFT) relies on the clever trick proposed by Danielson

and Lanczos in 1942.  They demonstrated that a discrete Fourier transform of length N

can be rewritten as the sum of two transforms, one formed by the transform of even-

numbered points of the original data (with length N/2) and the other by the transform of

odd-numbered points (also with length N/2):
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Fk = Fk
even

+W kFk
odd Eq. 2.13

This is called the Danielson-Lanczos Lemma.  Instead of solving one complicated

transform, it reduces the problem to two simpler transforms.  Furthermore, this reduction

can be applied recursively, splitting up the even and odd transforms to the transforms of

their N/4 even-numbered data and N/4 odd-numbered data.  This can go all the way until

the data is subdivided down to transforms of length 1.  Each element of the resulting

vector Hn becomes a summation of the input array hk with some combinations of W’s as

the coefficients for each element in the hk array.

Because of this splitting of even and odd-numbered data, FFT is most efficient

when the data length N is an integer power of 2.  The bookkeeping on which combination

of W’s would go with which transform is dealt with by “bit-reversal”, which is a process

that involves swapping memory space in computers and can be done efficiently (Table 2-

1).  By using Danielson-Lanczos Lemma and bit-reversal, FFT has the advantage of

reducing the N2 calculations needed for obtaining a DFT to Nlog2N calculations.  The

improvement in speed is immense.  The matrix representation of the same problem in Eq.

2.12 is now shown bit-reversed and factored:
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W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0
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Eq. 2.13

where “.” represents zero8.  By comparing the last set of matrix multiplication in Eq. 2.13

to those in Eq. 2.12, it should be straightforward to see the advantage FFT provides, since

it is easier to multiply a vector by the three sparse matrices in Eq. 2.13 than the one dense

matrix in Eq. 2.12.  FFT reduces a problem of O(N2) complexity to O(Nlog2N).  In our

docking calculations where there are N grid points in each dimension, the data length is

N3 (for x, y, z dimensions), and therefore the problem is reduced from N6 to N3log2N
3.

Using the FFT correlation theorem to study protein docking was first introduced by

Katchalski-Katzir et al. in 19926.  The correlation map between two molecules can easily

be obtained by first applying FFT to both molecules, followed by multiplying the Fourier

transform of one molecule by the complex conjugate of the Fourier transform of the
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other, and finally inversely transforming the data.  The resulting correlation map contains

information about every translational step the mobile molecule can take and the

corresponding correlation for each of these moves.  Effectively, the FFT correlation map

covers all translational searches without having to physically move the mobile molecule

across the arena.  Instead of searching through all six rotational and translational degrees

of freedom by brute force, the docking algorithm must only explicitly define rotational

steps.

C2 Symmetry Related Dimers

Homodimers are dimers composed of identical subunits10.  They are by far the

most common type of protein assembly11 and are well represented in the Protein Data

Bank (PDB)9; about 30% of E. coli proteins are homodimers.  Although there are

exceptions such as hexokinase, most homodimers can be described by a single two-fold

axis of rotational symmetry, characterized by the symmetry group C2.  Due to the cyclic

nature of this type of assembly, each subunit contributes equally to form the binding

interface.  While C2 symmetry related homodimers are the simplest type of protein

assembly, their interfaces are still very diverse.  Many are obligatory dimers, as they are

permanent assemblies that self-associate upon folding.  Their highly coupled folding and

binding processes are largely the result of having protein core-like interfaces.  On

average, homodimer interfaces are more hydrophobic and bury twice as much surface

area as heterodimer interfaces10.  Their hydrophobic interfaces and symmetry make

homodimers especially suitable for design with ORBIT.  ORBIT uses a force field that

has been experimentally validated through the correlation of the calculated energies and
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stabilities of the designed proteins12.  A well-packed core often contributes significantly

to protein stability, and ORBIT models interactions in the core relatively accurately.

Homodimers are therefore plausible targets for (1) parameterizing our docking algorithm

so that the computationally docked molecules are likely to have interfaces that accept

hydrophobic residues and (2) redesigning the interfaces since we can treat them as

protein cores.

The use of symmetry offers several important advantages.  Most significantly, C2

symmetry can greatly reduce the search space required for the docking process, and by

imposing rotameric symmetry on the subunits, the complexity of the design can be

simplified.  Using FFT in conjunction with C2 symmetry in the matching stage provides

an additional reduction in computational steps.  All of these features were incorporated

into our docking algorithm.

Some of the reduction in search space results from redundancy associated with C2

symmetry.  This can be explained using a coordinate system composed of two symmetry

related coordinate systems as follows.  According to Euler’s rotation theorem, any

rotation can be described by a set of three angles called Euler angles.  There are many

conventions for the Euler angles; we can depict the concept simply by using the ZXZ

convention.  In this convention, the three Euler angles, , , , are defined as follows: 

is the first rotation ranging from 0 to 2  about the Z-axis,  is the second rotation ranging

from 0 to  about the x'-axis, and  is the third rotation ranging from 0 to 2  about the z'-

axis (Figure 2-6).  These three rotations are not commutative, and therefore must be

applied in this specific order.  The three angles are depicted in Figure 2-6 with a modified

coordinate system to illustrate the search space reduction associated with C2 symmetry.
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In a Cartesian coordinate system, to thoroughly explore the rotations of a rigid body with

respect to the coordinate system (or with respect to another rigid body in the case of

docking searches), the rotational space that must be covered is 2     2 , as defined by

the full ranges of the three Euler angles.  In Figure 2-6, the coordinate system shown can

be described as a combination of two separate coordinate systems, XYZ and Z, related

to each other by a two-fold (C2) symmetry about the Z-axis.  The quadrants covered by

the Z coordinate system are shaded.  By the definition of C2 symmetry, any point in

the XYZ coordinate system mirrors to a point in the Z system by a 180° rotation.  Due

to the 180° rotational symmetry with respect to the Z-axis, the ranges of  and  in this

XYZ, Z combined coordinate system are both reduced by half to 0    , 0    ,

while the range of  remains the same.  Rotations beyond the range of 0 to  are

redundant since the resulting positions can always be folded back to positions within the

range of 0 to , as illustrated by vectors x' and x''.  Vector x' is obtained by rotating vector

xo about the Z-axis by , and by C2 symmetry it mirrors to the vector x'', which can also

be obtained by rotating vector xo by  + .  Due to this redundancy, the range of  can be

reduced from 2  to , and this is also true for .

An additional reduction of rotational search space can be achieved when

translational searches are performed.  This concept is illustrated in Figure 2-7.  In order to

maintain the C2 symmetry, rotations performed on the subunits must be synchronized –

the same rotational operation must be performed on both molecules.  For clarity, the two

molecules in Figure 2-7 are set at a fixed distance from each other when they are rotated,

and the rotations are performed at their respective geometric centers about axes that are

parallel to the symmetry axis.  One of the properties of cyclic symmetry groups such as
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C2 is that the subunits are related by rotation about a symmetry axis and they are always

on a plane perpendicular to the symmetry axis.  As illustrated in Figure 2-7, when each of

the subunits of the C2 symmetry related dimer is rotated to a new C2 symmetry related

conformation, the rotational steps required to achieve this new conformation can always

be replaced by translations on this plane.  Therefore, when translational steps are

included in a docking search, rotations around the symmetry axis or any axis parallel to

the symmetry axis (defined by ) can be eliminated from the searches.  FFT, incidentally,

can replace explicit translational searches with an efficient computational process that

generates the translational correlation map.  As a result, to thoroughly search all possible

C2 related dimer conformations, we only need to cover    (the ranges of  and )

when FFT is used; the search space is reduced by a factor of 4 .

The computer memory required for discretizing the molecules can also be reduced

when docking C2 symmetry related dimers.  As described previously, the cyclic

symmetry requires the subunits of a C2 related dimer to be on the same 2D plane.  This

requirement eliminates the need to explore any translations parallel to the symmetry axis.

If the Z-axis is used as the symmetry axis for a pair of dimers, only translations along the

X- and Y-axis are required to produce dimers with preserved C2 symmetry.  The

dimension of the arena that is parallel to the symmetry axis can therefore be reduced to

the length of the long axis of the molecule instead of three times this length.  The FFT

implementation used in our docking algorithm, however, requires the number of grid

points along each dimension to be a power of 2, and thus it is convenient to simply

reduce the dimension parallel to the symmetry axis by a factor of 2.  The number of grid

points required for the search becomes half (Figure 2-8).  Assuming 1° is used as the
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rotational increment, docking a C2 related dimer is 1440 times faster than docking a

dimer with no symmetry (4  rotational search space reduction (Figure 2-6) times two-

fold grid point reduction (Figure 2-8) equals a total reduction of 8 ; for 1° rotational

increments, this equals 8  180 or 1440-fold reduction).

Determination of Practical Atomic Radii

Because the side-chains are truncated in our protein models, we approximate the

side-chain volumes with spheres centered at the C  atoms (Figure 2-3); the projection

distance from the C  atoms (atomic radii) should be chosen to ensure that the resulting

dimer interface retains enough space for side-chain placement.  We determined an

appropriate C  atomic radius by calculating the surface complementarity scores for

several high-resolution crystal structures of complexes in the PDB.  The molecules were

discretized in their native crystal conformations with the side-chains truncated, and

surface complementarities were calculated.  Initially, we tried several radii keeping a

uniform radius for all the atoms. However, complexes that had backbone-to-backbone

hydrogen bonds always clashed at these points.  It was obvious that a uniform radius was

inadequate, so we decided to parameterize the radii for each of the five atom types in our

poly-alanine model.  We tested a range of values for nitrogen, C , C , carboxyl carbon,

and oxygen.  The crystal structures of two high-resolution complexes were used: PDB

entries 1a7w and 1c9o (1.55 Å and 1.17 Å resolution, respectively). All possible

combinations of atomic radii within the following ranges were tested: nitrogen between

1.4 Å and 1.6 Å, oxygen between 1.3 Å and 1.5 Å, and all carbons (carboxyl carbon, C

and C ) between 1.7 Å and 2.4 Å.  A 0.05 Å increment was used to step across each of
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the ranges.  The resulting scores were sorted and the radii combinations that gave top

ranking scores were analyzed; about 50 to 100 radii combinations were collected.

This cutoff is somewhat arbitrary, since the correlation score can be very sensitive

to changes in radii for some atom types but not for others (Figure 2-9).  The level of

sensitivity is reflected in the “good radii” ranges shown in Table 2-2; a wider “good

radii” range indicates that the correlation score is less sensitive.  The values used for

subsequent docking tests were determined as follows.  If the radii ranges obtained from

both structures were about equal, as for atom types N and O, the smallest range value was

used.  If the radii ranges from the two structures matched poorly, as for atom types C, C

and C , the mean value of the smaller range was used.

The final atomic radii values obtained from the parameterizations (Table 2-2, last

column) were used to test the docking algorithm.  Two structures (PDB entries 1ecz and

1rfb) were chosen as test cases.  Both are interlocking homodimers, with 1ecz making

backbone-to-backbone contacts and 1rfb interacting mostly via side-chains.  The dimer

conformations predicted using the docking algorithm showed good agreement with the

crystal structures (Figure 2-10).  The result from docking 1ecz was particularly

encouraging, exhibiting a C  root mean square deviation (RMSD) of 0.45 Å.  The two

identical subunits in the 1ecz structure bind to each other by making backbone-to-

backbone hydrogen bonds through their carboxyl terminal tails.  Our successful

prediction for the 1ecz dimer suggests that the radii used for atom types N, O, C, and C

are plausible.  However, the task of parameterizing the C  atoms remains a challenge.

The dimer conformation predicted for the 1rfb structure showed a less promising C

RMSD of 2.38 Å when compared to the wild type crystal structure.  Closer examination
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revealed that the offset is likely due to the phenylalanine and tyrosine residues in the

interface.  Aromatic residues have relatively long side-chains and cannot be modeled well

by spheres.

The accuracy of three different sphere approximations is illustrated in Figure 2-

11.  A peptide chain with full atom van der Waals spheres is shown as our reference on

the left (a).  Poly-alanine approximations of the peptide chain using spheres of different

radii are shown in b, c, and d; hydrogen atoms are not included in these models.  When

standard van der Waals radii are used (b), the volume of the peptide is underestimated

(compared to a).  Better approximations are produced using a uniform all-atom radius of

2.15 Å (c) or our experimentally determined radii for each of the atom types (d).  We

concluded that modeling a peptide with spheres centered on the C  atoms results in fairly

good approximations for short side-chains, but falls short in estimating aromatic and

other long side-chains.

To test the general applicability of this conclusion, we parameterized the atomic

radii again using an expanded set of protein structures.  The results for atom types N, O,

C, and C  remained roughly the same as our initial results (in Table 2-2), but the “good

radii” for C  expanded to cover a broader range (1.8 ~ 2.55 Å vs. initial range of 2.15 ~

2.25 Å); we also noted that the optimal C  value for a given structure depends on the

types of amino acids in the interface (data not shown).  The mean value of this range,

2.15 Å, appears to be the right size for shorter non-polar side-chains, and is

coincidentally the same as the final value obtained in the first round of testing.  Another

interesting observation that can be made from this expanded test set relates to the radii

obtained for nitrogen and oxygen atoms.  For proteins with backbone-to-backbone

34



contacts, the sum of the optimal N and O radii is about 2.7 Å, which is the distance for a

hydrogen bond.  1ecz, one of our initial test cases, forms extensive hydrogen bonds

across the dimer interface; the N and O radii used in docking this dimer satisfy this

distance requirement and may explain the low RMSD observed.  The results from the

expanded test set generally confirmed our initial values, so we used the final atomic radii

(in Table 2-2) for all subsequent docking calculations.

Testing the Docking Algorithm

Even though our docking algorithm was developed to design novel dimers, it

contains all the basic components found in docking algorithms that use FFT as a search

tool and can be used as a stand-alone algorithm for predicting dimer conformations.

However, because of differences in the nature of the problems to be addressed, our

algorithm should not be compared to other general docking algorithms.  Protein docking

is an area of active research, and much progress has been made in developing algorithms

suited to this purpose13-25.  The trend is to model proteins with greater accuracy either

through implicit energy terms or explicit simulations; this includes the incorporation of

desolvation terms, electrostatic charges, side-chain flexibility, Monte Carlo simulations,

etc.  Our algorithm, on the other hand, relies largely on approximations, some of which

have no physical basis.  The biggest difference is in the handling of side-chains.  While

side-chains are very important in protein-protein interactions, our algorithm uses a

simplified poly-alanine model for the side-chains and doesn’t incorporate their chemical

properties in the calculations.  These approximations greatly reduce our chances of
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predicting the native conformation, especially if the driving forces are specific side-

chain-to-side-chain interactions instead of surface geometric complementarities.

To minimize these problems, we tested the appropriateness of our docking

algorithm by choosing test cases that utilize the same type of binding mechanism as core

residues, since our protein design algorithm models protein cores fairly well.  We

selected homodimers, since their interfaces are on average more hydrophobic and protein

core-like.  We used the 122 homodimers chosen by Bahadur et al.10, excluding one

structure (1alo), which would not be appropriate for protein design due to its

exceptionally large size.

The structures of the 121 dimers were downloaded in their biological unit

coordinates from the PDB26.  The protein coordinates were processed to clean up any

naming and numbering discrepancies, and the subunits were separated into individual

files.  For each docking calculation, we loaded the coordinates of just one of the subunits

(usually the subunit designated as chain A), and created the other subunit by duplicating

and rotating the loaded coordinates by 180° about the x-axis.  Except for orientation, the

two subunits were thus identical to each other.  The rotational search space was sampled

with 1° increments over 180° for both the y- and the z-axes.  Depending on subunit size,

the number of grids used for the arena was either 128 or 256 in the y and z dimensions,

and half this number in the x dimension.  All tests were carried out at 1 Å docking

resolution.

Docking searches and surface complementarities were calculated for each of the

121 dimers; coordinates for the 50 best-correlated docked conformations were generated

for each dimer and compared to the coordinates of the wild type.  RMSDs were evaluated
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between all the C  atoms from both subunits of the docked conformations and their

corresponding C  atoms on the wild-type structures.  The results are shown in Table 2-3;

RMSDs are only listed if less than 3 Å.  From the top 50 docked structures for each

dimer, the rank with the lowest RMSD (best match) is listed along with the first rank with

a RMSD < 3 Å.  The buried interface surface area contributed by one of the subunits

(reported as B/2) and the ratio of this surface area to the number of residues in the subunit

(Area/Res) are also reported.  The 121 dimers tested are sorted according to Area/Res in

Table 2-4 along with indications of hits (shown with “+”) and misses (shown with “.”).

A dimer is considered to be a hit if there is at least one docked dimer in its top 50

conformations with an RMSD < 3 Å.

We achieved 65 successful predictions (hits) out of 121 test cases, slightly above

50%.  While there are no docking benchmarks focusing exclusively on homodimers, our

results are comparable to the few homodimer docking cases reported previously, in which

three of five test cases were within the top 50 ranked structures5.  The ranks produced by

our simple surface complementarity scoring scheme, however, do not always correlate

with the RMSDs of the models.  In several cases, the closest match to the wild-type

conformation does not receive the highest correlation score.  The best match is predicted

as the top rank in only four cases (1ajs, 1tox, 1trk and 1vfr).  This is not surprising since

we are using a reduced model of the proteins.  Since all four cases use backbones

extensively to achieve binding specificity, it appears that only dimers with these

properties are correctly ranked by our scoring scheme.  The inability to rank models

correctly is a problem that plagues all docking algorithms, and most research groups
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develop sophisticated scoring functions that include the properties of the side-chains to

ameliorate this problem.

It should be noted that for our purpose the ranking does not significantly affect

our results.  We are interested in identifying all distinct dimer configurations for de novo

protein design, and as long as the interface is plausible it is not necessary to recover the

wild-type binding sites.  When testing our docking algorithm, however, it is important to

recover the wild-type binding sites (regardless of their reported ranks) and to obtain good

matches when they are identified because these two factors directly check the validity of

our atomic radii.  As shown in Table 2-3, 45 of the 65 successfully docked dimers have

RMSDs less than 1 Å, indicating that our reduced protein models are reasonable

approximations.  We found that we can reliably reproduce most of the wild-type dimers

that have backbone-to-backbone interactions across the interface, namely the hydrogen

bond pairing between two intermolecular -strands (Figure 2-12).  Examples of dimers

making -sheets across the dimer interface are shown at the top (A), and similar to the

1ecz test case described earlier, our practical atomic radii capture these hydrogen bonds

well.  However, for the helical proteins shown at the bottom (B), the overall dimer

conformations are recovered, but the docked molecules are slightly offset from the wild-

type configurations.  The distances between the backbones of the docked 1rop dimer are

too close, again indicating that the C  radius used for this particular type of dimer is not

large enough.  Furthermore, because the docking algorithm searches for the highest

complementarity between the dimers, inter-digitation between the spheres representing

side-chains on the surface of a helix is preferred over stacking the spheres head-on.
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Ironically, this feature is why we see hydrogen bonds positioned correctly even without

the use of an explicit hydrogen bond definition.

The interface area-to-residue ratios (reported as Area/Res in Tables 2-3 and 2-4)

illustrate another interesting point.  These ratios are used as a rough measure of the

relative size of the interface in the context of the entire subunit.  Sorting the 121 dimers

according to this ratio reveals that our docking success rate is much higher for dimers that

bury relatively large surface areas compared to those that do not.  For example, our

success rate is 70% for dimers with Area/Res > 7.5 (60 of the 121 dimers listed) vs. 50%

for the entire set.  This may be explained by the fact that larger proteins have more

competing sites on their surfaces that could provide good docking correlation scores.  By

reporting only the top 50 docked dimers in our tests, the rank listings may not be deep

enough to include the wild-type conformations; these larger proteins are therefore more

likely to be “misses.”  For example, the 1aor dimer crystal structure shows a highly

complementary interface, but because this protein is relatively large (605 residues), our

docking algorithm does not pick up the wild type conformation in the top 50.  Other

docking algorithms severely penalize the competing sites (“false positives”) by

incorporating biochemical data or electrostatic terms in the scoring function, features we

can’t include given that our protein model does not include side-chains.  It would be

interesting to see how these other docking algorithms perform on our data set.

In summary, our docking algorithm performs reasonably well in docking the 121

homodimers.  Most of the matches have less than 1 Å RMSD from wild-type, indicating

that the atomic radii used for the backbones and the reduced side-chains on the C  atoms

are reasonable.  There is about a 50% success rate in finding the wild-type conformations
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in the entire docking set, but the success rate is significantly higher for dimers that form

relatively large interfaces with respect to their amino-acid chain length.

Conclusions

In this chapter, we describe the development of a docking algorithm specialized in

generating dimer configurations for protein design purposes.  To position the backbones

correctly for protein design and to avoid bias toward the wild-type sequences, the wild-

type side-chains are not considered in the docking process.  The strategies employed

include the use of 3D grids to represent the protein molecules in space, and spheres to

approximate the side-chains.  The spheres are defined by atomic radii, which are

determined experimentally using known high-resolution dimer structures.  Established

FFT correlation methods are employed to efficiently cover all translational dimensions

and search through all six degrees of freedom, and surface shape complementarities are

used to score the fitness of the docked structures.  Because C2 symmetry related

homodimers tend to bury more surface area and use more hydrophobic amino acids in the

interface, their interfaces are more protein core-like and can be modeled well by our

protein design algorithms.  We therefore parameterized our docking algorithm using C2

symmetry related homodimers as test cases.  Imposing C2 symmetry also allowed us to

make modifications that significantly improve computational efficiency.  The resulting

docking algorithm performed reasonably well in the 121 test cases used to validate the

experimentally determined atomic radii.  These results suggest that the reduced protein

side-chain representation employed by our algorithm is a reasonable estimate, and the
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shapes defined by this representation can be used to position the protein backbones to a

plausible dimer configuration for dimer design.
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Table 2-1. Example of Bit Reversal†

Index k
In numerical order 0 1 2 3 4 5 6 7
In binary 000 001 010 011 100 101 110 111
In binary bit-reverseda 000 100 010 110 001 101 011 111
In bit-reversed numerical order 0 4 2 6 1 5 3 7

a The binary bits are reversed with respect to the row above it.
† Starting from the numerical value of an index k, the bit-reversal process entails the reordering of 
index values in their binary format.
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Table 2-2. Atomic Radii Determined from Iteration Cycles

atom type 1a7w 1c9o final values usedb

N 1.4~1.6 1.4~1.55 1.4
O 1.3~1.45 1.3~1.35 1.3
C 1.7~1.8 1.7~2.55 1.75
CA 2.15~2.4 2.3~2.4 2.35
CB 2.15 2.2~2.25 2.15c

b Lower bound from the ranges of good atomic radii is used

a The range is determined from the radii combinations that gave the best 200 docked scores. 

c The C  atomic radii between 1.9 Å to 2.6 Å should be tested. The suggested value of 2.15 Å is 
only good for certain cases.

ranges of good atomic radiia
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Table 2-3. Docking Results

PDB Residues Long axis (Å)a
Rank* RMSD* Rank* RMSD* B/2 (Å)d Area/Res.e

12as 327 72.3 — — — — 1989 6.1
1a3c 166 55.6 — — — — 853 5.1
1a4i 285 64.9 — — — — 1353 4.7
1a4u 254 63.1 7 0.291 1 0.656 2547 10.0
1aa7 158 47.7 — — — — 1125 7.1
1ad3 446 124.8 4 0.314 1 0.533 3936 8.8
1ade 431 81.4 17 2.452 17 2.452 2708 6.3
1af5 126 60.5 — — — — 856 6.8
1afw 390 72.7 31 0.333 1 0.558 2400 6.2
1ajs 412 100.9 1 1.124 1 1.124 3401 8.3
1amk 250 59.0 50 0.072 1 0.532 1477 5.9
1aor 605 79.3 — — — — 1180 2.0
1aq6 245 60.9 33 0.716 28 1.097 2232 9.1
1auo 218 53.8 — — — — 662 3.0
1b3a 67 104.0 — — — — 763 11.4
1b5e 241 67.3 2 0.156 1 0.156 2581 10.7
1b67 68 60.5 44 0.537 44 0.537 1607 23.6
1b8a 438 107.4 — — — — 4391 10.0
1b8j 448 81.7 22 0.309 1 0.348 3794 8.5
1bam 200 61.7 — — — — 745 3.7
1bbh 131 54.3 — — — — 771 5.9
1bd0 381 95.0 8 0.699 8 0.699 3091 8.1
1bif 432 85.9 — — — — 858 2.0
1biq 339 77.3 15 0.408 1 1.324 3004 8.9
1bis 146 54.9 16 2.563 16 2.563 1495 10.2
1bjw 381 84.5 25 0.501 2 0.795 2938 7.7
1bkp 278 65.8 — — — — 2206 7.9
1bmd 326 65.8 14 0.311 13 0.312 1564 4.8
1brw 433 82.0 — — — — 1083 2.5
1bsl 323 68.7 5 1.38 5 1.38 1918 5.9
1bsr 124 67.8 13 0.975 3 0.997 1888 15.2
1buo 121 86.3 13 0.259 2 0.536 1972 16.3
1bxg 349 67.3 — — — — 1041 3.0
1bxk 341 79.2 — — — — 1286 3.8
1cdc 96 69.5 2 0.621 1 0.638 3918 40.8
1cg2 389 113.4 — — — — 1298 3.3
1chm 401 88.3 23 0.525 1 0.655 3171 7.9
1cmb 104 53.1 6 1.494 1 1.9 1797 17.3
1cnz 363 89.5 11 1.565 11 1.565 2447 6.7
1coz 126 51.5 — — — — 1050 8.3
1csh 435 88.9 34 0.033 1 0.343 5057 11.6
1ctt 294 65.8 45 0.385 1 0.632 1990 6.8
1cvu 551 146.0 14 1.2 3 1.282 2436 4.4
1czj 110 54.4 — — — — 829 7.5
1daa 277 70.2 15 0.448 15 0.448 2193 7.9
1dor 311 75.9 30 0.368 16 1.326 2189 7.0
1dpg 485 102.8 — — — — 2293 4.7
1dqs 381 77.3 4 0.844 3 1.843 1640 4.3
1dxg 36 31.7 21 0.326 21 0.326 729 20.3
1e98 210 55.2 — — — — 770 3.7
1ebh 436 78.8 43 0.799 23 2.481 1784 4.1
1f13 722 126.8 — — — — 2556 3.5
1fip 73 55.2 23 0.55 4 0.658 1836 25.2

Best match to wild-typeb First rank with rmsd < 3 Åb Interfacec
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Table 2-3. (Continued)

PDB Residues Long axis (Å)a
Rank* RMSD* Rank* RMSD* B/2 (Å)d Area/Res.e

1fro 176 68.1 3 0.151 1 0.203 3505 19.9
1gvp 87 54.4 5 1.5 5 1.5 908 10.4
1hhp 99 52.8 2 0.056 2 0.056 1599 16.2
1hjr 158 63.7 — — — — 962 6.1
1hss 111 45.1 44 1.4 11 1.624 1101 9.9
1hxp 340 78.1 22 0.259 1 0.5 3402 10.0
1icw 69 43.4 47 0.898 47 0.898 954 13.8
1imb 273 60.4 36 1.706 9 2.573 1623 5.9
1isa 192 60.1 — — — — 920 4.8
1ivy 452 77.8 — — — — 1601 3.5
1jhg 101 59.1 — — — — 2207 21.9
1jsg 111 60.2 — — — — 794 7.2
1kba 66 47.7 28 2.286 28 2.286 498 7.5
1kpf 126 45.8 5 0.31 3 0.358 1867 14.8
1lyn 125 61.9 — — — — 948 7.6
1m6p 146 53.3 37 1.143 9 1.282 1025 7.0
1mkb 171 58.0 2 0.46 1 0.799 1605 9.4
1mor 366 70.0 50 0.513 21 1.401 2540 6.9
1nox 200 72.3 10 0.397 1 0.741 3033 15.2
1nse 416 84.0 — — — — 2736 6.6
1nsy 271 68.9 19 0.486 19 0.486 2592 9.6
1oac 719 109.3 — — — — 7149 9.9
1opy 123 52.5 28 0.249 23 0.58 1048 8.5
1pgt 209 58.3 15 2.808 15 2.808 1238 5.9
1pre 449 131.0 29 0.844 17 1.272 2300 5.1
1qfh 212 98.5 — — — — 2264 10.7
1qhi 304 68.5 23 0.713 8 2.149 1714 5.6
1qr2 230 75.8 — — — — 1947 8.5
1r2f 283 73.4 48 2.601 36 2.635 1746 6.2
1reg 122 105.3 — — — — 659 5.4
1rfb 119 63.7 9 1.28 1 1.752 2650 22.3
1rpo 61 53.4 44 0.704 1 1.084 1405 23.0
1ses 421 136.3 — — — — 2211 5.3
1slt 133 42.7 — — — — 536 4.0
1smn 241 54.8 26 0.999 1 1.552 866 3.6
1smt 98 77.2 34 0.267 1 0.3 1970 20.1
1sox 463 81.3 — — — — 1404 3.0
1tc1 175 57.7 — — — — 1540 8.8
1tox 515 94.7 1 0.026 1 0.026 3721 7.2
1trk 678 105.6 1 0.371 1 0.371 4476 6.6
1uby 348 78.1 12 2.564 6 2.576 2168 6.2
1utg 70 46.6 44 1.263 9 2.391 1485 21.2
1vfr 217 72.6 1 0.368 1 0.368 3431 15.8
1vok 192 73.4 — — — — 1577 8.2
1wtl 108 58.6 — — — — 698 6.5
1xso 149 47.0 — — — — 662 4.4
2arc 161 56.0 — — — — 765 4.8
2ccy 127 53.9 — — — — 792 6.2
2hdh 286 74.4 — — — — 1524 5.3
2ilk 155 78.0 8 0.314 1 0.745 4542 29.3
2lig 157 89.1 — — — — 1686 10.7
2mcg 215 77.7 — — — — 1646 7.7
2nac 374 75.5 — — — — 3789 10.1

Best match to wild-typeb First rank with rmsd < 3 Åb Interfacec
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Table 2-3. (Continued)

PDB Residues Long axis (Å)a
Rank* RMSD* Rank* RMSD* B/2 (Å)d Area/Res.e

2ohx 374 77.8 — — — — 1718 4.6
2spc 106 118.3 — — — — 2508 23.7
2sqc 623 84.8 — — — — 809 1.3
2tct 198 77.1 45 1.198 45 1.198 2675 13.5
2tgi 112 75.6 — — — — 1262 11.3
3dap 320 79.9 — — — — 2661 8.3
3grs 461 79.1 — — — — 3302 7.2
3sdh 145 49.7 — — — — 873 6.0
3ssi 108 56.6 36 0.824 22 2.878 866 8.0
4cha 239 55.5 — — — — 1026 4.3
4kbp 424 79.4 24 2.793 24 2.793 1478 3.5
5csm 250 69.6 25 2.13 9 2.962 2007 8.0
5rub 436 86.0 — — — — 2859 6.6
8prk 282 56.8 — — — — 969 3.4
9wga 170 62.3 2 0.132 1 0.139 2293 13.5

b Only the molecules from the highest 50 correlation scores are considered.
c Per subunit

e The interface area contributed by each subunit divided by the number of residues per subunit.

* — means no match within 3 Å rmsd from the top 50 ranked molecules

d Data in this column are taken from Bahadur et al., PROTEINS: Structure, Function, and Genetics 
53:708-719 (2003)

a The long axis of a molecule is determined by two times the distance from its geometric center to the 
furthest atom.

Best match to wild-typeb First rank with rmsd < 3 Åb Interfacec
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Table 2-4. The Area/Residues Ratios and Docking Hitsa

PDB Area/Resb Hitc
PDB Area/Resb Hitc

PDB Area/Resb Hitc

2sqc 1.3 . 1hjr 6.1 . 1aq6 9.1 +

1aor 2.0 . 1afw 6.2 + 1mkb 9.4 +

1bif 2.0 . 1r2f 6.2 + 1nsy 9.6 +

1brw 2.5 . 1uby 6.2 + 1hss 9.9 +

1bxg 3.0 . 2ccy 6.2 . 1oac 9.9 .

1sox 3.0 . 1ade 6.3 + 1hxp 10.0 +

1auo 3.0 . 1wtl 6.5 . 1b8a 10.0 .

1cg2 3.3 . 5rub 6.6 . 1a4u 10.0 +

8prk 3.4 . 1nse 6.6 . 2nac 10.1 .

4kbp 3.5 + 1trk 6.6 + 1bis 10.2 +

1f13 3.5 . 1cnz 6.7 + 1gvp 10.4 +

1ivy 3.5 . 1ctt 6.8 + 1qfh 10.7 .

1smn 3.6 + 1af5 6.8 . 1b5e 10.7 +

1e98 3.7 . 1mor 6.9 + 2lig 10.7 .

1bam 3.7 . 1m6p 7.0 + 2tgi 11.3 .

1bxk 3.8 . 1dor 7.0 + 1b3a 11.4 .

1slt 4.0 . 1aa7 7.1 . 1csh 11.6 +

1ebh 4.1 + 1jsg 7.2 . 9wga 13.5 +

4cha 4.3 . 3grs 7.2 . 2tct 13.5 +

1dqs 4.3 + 1tox 7.2 + 1icw 13.8 +

1cvu 4.4 + 1czj 7.5 . 1kpf 14.8 +

1xso 4.4 . 1kba 7.5 + 1nox 15.2 +

2ohx 4.6 . 1lyn 7.6 . 1bsr 15.2 +

1dpg 4.7 . 2mcg 7.7 . 1vfr 15.8 +

1a4i 4.7 . 1bjw 7.7 + 1hhp 16.2 +

2arc 4.8 . 1chm 7.9 + 1buo 16.3 +

1isa 4.8 . 1daa 7.9 + 1cmb 17.3 +

1bmd 4.8 + 1bkp 7.9 . 1fro 19.9 +

1pre 5.1 + 3ssi 8.0 + 1smt 20.1 +

1a3c 5.1 . 5csm 8.0 + 1dxg 20.3 +

1ses 5.3 . 1bd0 8.1 + 1utg 21.2 +

2hdh 5.3 . 1vok 8.2 . 1jhg 21.9 .

1reg 5.4 . 1ajs 8.3 + 1rfb 22.3 +

1qhi 5.6 + 3dap 8.3 . 1rpo 23.0 +

1bbh 5.9 . 1coz 8.3 . 1b67 23.6 +

1amk 5.9 + 1qr2 8.5 . 2spc 23.7 .

1pgt 5.9 + 1b8j 8.5 + 1fip 25.2 +

1bsl 5.9 + 1opy 8.5 + 2ilk 29.3 +

1imb 5.9 + 1tc1 8.8 . 1cdc 40.8 +

3sdh 6.0 . 1ad3 8.8 +

12as 6.1 . 1biq 8.9 +

b The interface area contributed by each subunit divided by the number of residues per subunit.
c Only the top 50 correlation score ranked dimers are considered.  "+" means there is at least one docked
dimer with an RMSD less than 3 Å to the wildtype.  "." means there is no match.

a Sorted by the Area/Res ratio of each PDB entry in ascending order.
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Figure 2-1.  3D grid space represented by memory array.  For discretizing protein
molecules, a 1D array was created to represent the entire 3D cubic space shown in this
figure.  Array indices start from the corner, but the actual origin of the coordinate system 
is in the center.  Each array element represents a "box" in space, as represented by the 
yellow box in the upper left corner.  The cubic shape is distorted for visualization clarity.
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1 Å

Figure 2-2.  Discretizing proteins into 3D grids.  The van der Waals spheres of a short
protein backbone are shown to illustrate the discretization process.  The distances
between each atom and the grid boundaries are evaluated.  A grid voxel is assigned to an
atom if any of its sides or edges falls within the atomic radii of the particular atom.  The
2D view of a single 1 Å grid layer is shown.  Highlighted in orange are the grids assigned 
as part of the protein molecule.  Notice some of the atoms have no grid voxels assigned to
them, as they are off this plane and will be covered by a different grid layer.  Resolution
will improve if a smaller grid size is used.

53



Figure 2-3.  Estimating side-chain volumes by spheres.  The full atomic details of side-
chains beyond Cβ are not considered.  Instead, a sphere centered at Cβ is used to 
approximate the volumes taken up by the original side-chains.
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Figure 2-4.  Correlation between two functions.  The correlation between two
functions A and B can be visualized as a correlation map.  By moving one function (in 
this case, B) against the other (A) and evaluating the correlation between the two for each 
step, a correlation map that contains information about both the correlations and the steps 
can be obtained.
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Figure 2-5.  Scoring scheme for discretized molecules.  Gray spots are assigned the
value of "0".  The favorable surface layer is shown in purple covering 1.5 Å outside of
the core layer, and has a value of "1."  The core layer is shown in red, and has a value of
"-15" to penalize penetration into this layer.  (Figure created by John J. Love)
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Figure 2-6.  Rotational search space reduction with C2 symmetry related dimers. 
Two symmetry related coordinate systems are shown: XYZ and ξηZ.  By the definition
of C2 symmetry, any point in the XYZ coordinate system mirrors to a point in the ξηZ
system by a 180° rotation.  The rotation of a rigid body with respect to a regular XYZ 
coordinate system can be described using three Euler angles, φ, θ, ψ, over the ranges of 0
≤ φ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π.  Due to the 180° rotational symmetry with respect to the 
Z axis, the ranges of φ and ψ in this XYZ, ξηZ combined coordinate system are both
reduced by half to 0 ≤ φ ≤ π, 0 ≤ ψ ≤ π, while the range of θ remains the same.  Rotations 
beyond the range of 0 to π are redundant since the resulting positions can always be
folded back to positions within the range of 0 to π, as illustrated by vectors x' and x''.
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30° 30°

A

B C

Figure 2-7.  Translational equivalence.  For any dimeric conformation obtained by 
rotational manipulations around the symmetry axis, the same conformation can be 
obtained by translational moves along the axes perpendicular to the symmetry axis.  A. A 
pair of C2 symmetry related dimers in its initial position.  B. Each subunit of the dimer is 
rotated by 30° to a new C2 symmetry conformation.  C. The same conformation as in B 
can be obtained by two translational moves from the initial position (A).
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VS.

Docking with no symmetry Docking with C2 symmetry

Figure 2-8.  Memory space reduction.  Computer memory can be reduced by half when
docking C2 symmetry related dimers.  When docking dimers with no symmetry
restriction, the arena must be large enough to allow complete searches on all sides of the
proteins; when C2 symmetry is imposed, translational searches along the dimension 
parallel to the symmetry axis are not required to maintain the C2 symmetry.  This
dimension can therefore be reduced to the length of the long axis of the molecule rather 
than three times the length.  Since our FFT implementation requires grid points along
each dimension to be a power of 2, we simply reduce the dimension parallel to the 
symmetry axis by a factor of 2.  The number of grid points (and the memory) required for 
the search therefore becomes half. 
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Figure 2-9.  Atomic radii determination.  Correlation scores from radii iteration cycles
are plotted against C  and C  radii as an example of how the good radii ranges are
determined.  The correlation scores are sensitive to changes in C  and C  radii, as
evidenced by the narrow distribution around a single atomic radius.
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RMSD: 0.45RMSD: 2.38

A B

Figure 2-10. Comparison between wild-type and computationally docked 
conformations.  Molecule colored in pink is held stationary during docking; the best 
docked conformation (in green) is compared with the wild-type conformation (in red).  A. 
The two monomers of a 1rfb homodimer are docked to each other.  The RMSD between 
the wild-type and the docked product is 2.38 Å.  Positions that are phenylalanines in the 
wild-type structure are colored in blue; tyrosines are in cyan.  B. The two monomers of 
1ecz are docked to each other; the docked product has an RMSD of 0.45 Å compared to 
the wild-type.
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Figure 2-11.  Accuracy of three different sphere approximations of the same peptide
chain. Carbons are in green, nitrogens in blue, oxygens in red, and hydrogens in white.
a. Peptide chain with full atom van der Waals spheres (reference).  b. Poly-alanine model
using standard van der Waals radii; peptide volume is underestimated.  c. Poly-alanine
model  using a uniform radius of 2.15 Å for all the atoms.  d. Poly-alanine model using
experimentally determined radii for each of the atom types. Hydrogens are not included
in models b, c, and d. Modeling a peptide with spheres centered on the C  atoms gives
fairly good approximations for short side-chains, but falls short in estimating aromatic
and other long side-chains.
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1gvp 1kpf
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Figure 2-12.  The types of amino acids in the interface influence the docking results.  
Wild-type conformations are shown in magenta and docked conformations are shown in 
green. For each of the dimers, one of the subunits of the docked structure was 
superimposed on the corresponding wild-type subunit (shown here on the left); the 
overlapping or offset portions of the docked structure relative to the wild-type can be 
seen by the amount of green displayed. A. Proteins that use backbone hydrogen bonds in 
the interface to form cross-dimer β-sheets. B. Helical proteins that primarily use side 
chain-side chain interactions to form the interface.  Even though the overall dimer 
configurations are correctly identified in the examples in B, the dimer conformations are 
more closely reproduced for the molecules in A.
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Chapter 3

A De Novo Designed Protein/Protein (Heterodimer) Interface*

*Adapted from manuscript prepared by Possu Huang, John J. Love and Stephen L. Mayo.

(to be submitted)
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ABSTRACT

The goal of this work was to redesign a small monomeric protein (Protein G) such

that it self-assembled into a dimer complex of specific structure. The first step in driving

de novo self-assembly was the computational docking of the proteins together in a

predefined orientation. To achieve this goal we modified an established docking

algorithm, the Geometric Recognition Algorithm (GRA). The GRA treats the molecules

as rigid bodies and rigorously assesses interfacial surface complementarity as a function

of translational and rotational position. This process is computationally intensive yet was

rendered tractable by utilizing the Fourier Correlation Theorem. Upon obtaining the

optimal intermolecular atomic coordinates the two molecules were treated as one and a

suite of highly developed protein design algorithms, which utilize advanced molecular

mechanics force fields, was used to computationally repack the interfacial side-chains in

a manner analogous to the cores of well folded proteins. Total gene synthesis was used to

introduce the mutations and physically produce the redesigned proteins. The extent and

specificity of binding were confirmed with analytical ultracentrifugation and

heteronuclear NMR.
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INTRODUCTION

Molecular self-assembly is the spontaneous association of molecules into stable,

structurally well-defined complexes joined by noncovalent bonds. All major cellular

processes depend on the precise, highly specific self-assembly of proteins into functional

complexes. In addition, extracellular protein/protein interactions (e.g., growth

factor/receptor and antibody/antigen interactions) are also highly specific and governed

by the same physical parameters that drive protein folding. Understanding and controlling

these parameters is a major goal of protein biochemistry. To date, much progress has

been made in this area by analyzing the large body of data collected on natural protein

interfaces1-9 and references therein. The field of protein design is uniquely positioned to

complement these efforts with an inverse approach, i.e., instead of predicting how native

complexes form we can explore the essential binding parameters by driving the de novo

self-assembly of previously monomeric proteins. Moreover, the ability to direct a

designed protein to bind a target protein in a site-specific manner has potential

therapeutic as well as technological applications.

Advances in protein/protein interface design have thus far come primarily from

directed evolution methods in which diverse libraries of proteins are physically generated

and screened for candidates that either bind a target protein in vivo or an immobilized

target in vitro10. These methods include, for example, two-hybrid screens, yeast surface

display, phage display, mRNA display and ribosome display3,11-15. Though highly

effective, these methods have inherent limitations due to the practical considerations

associated with the physical generation of protein libraries as well as limiting in vivo

factors (e.g., transformation efficiency). These limitations prevent library diversity from
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exceeding a complexity of ~1014. More importantly, directed evolution methods do not

result in the designed protein forming a site-specific complex with the target protein (i.e.,

the binding site on the target cannot be decided beforehand and is therefore

indiscriminate). Conversely, computational protein design methods can screen virtual

libraries of much larger complexity (e.g., ~1080)16 and the binding of the designed protein

to the target protein results in a complex of specific structure.

Computational protein design methods have recently made significant progress

towards engineering novel protein interfaces. Chevalier et al. generated an artificial

endonuclease by fusing two domains from different endonucleases followed by

reengineering of the newly formed interface17. They combined computational redesign

and an in vivo protein-folding screen to create an endonuclease with novel sequence

specificity and, upon solving the crystal structure of the engineered endonuclease, proved

the accuracy of the protein interface redesign algorithm. To explore binding specificity at

protein/protein interfaces, the simplest interface, the heptad repeat of well-studied coiled-

coil of GCN418, was redesigned using both positive and negative design features19.

Homodimers of coiled-coils were successfully generated and thus indicate that, in the

context of heptad repeats, a multistate framework is necessary for engineering specificity

and selecting against undesired competitor conformations. Finally, an extensive redesign

of the interface between the protein calmodulin and a bound peptide (derived from

smooth muscle myosin light chain kinase) revealed the importance of emphasizing

intermolecular versus intramolecular interactions during the computational design and

optimization of interfacial residues20,21. Additionally, it was discovered that the best

redesigned calmodulin variant showed an increase in binding specificity relative to wild-
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type calmodulin and that the increase was not due to increased binding to the peptide but

instead due to decreased binding to alternative targets.

Here we report the de novo design of a heterodimer interface that was generated

by docking the 1 domain of the streptococcal Protein G to itself in a structurally specific

fashion followed by mutation of specific interfacial side-chains so as to drive complex

formation. The 56 amino acid Protein G domain (Figure 3-1) was chosen because it

expresses well in E. coli, it is monomeric and well behaved in solution, it has been

extensively redesigned and biophysically analyzed22 and its small compact structure has

been determined to high resolution23,24. In addition, the functional use of full-length

streptococcal Protein G to immunoprecipitate IgG antibodies provides natural evidence

that the 1 domain has the ability to form multiple intermolecular contacts. Crystal

structures of single 1 domains in complex with the constant Fc region of two different

IgG antibodies (i.e., 1FCC and 1IGC) revealed that the 1 domain does indeed bind in a

distinct manner to different proteins25-27 and is thus a reasonable candidate for de novo

docking.

The overall de novo docking process naturally divides into two steps. The first

step entails the computational docking of the backbone coordinates of the two proteins

together in a general starting orientation. After choosing the general starting orientation

local rotational and translational space is rigorously searched to determine the specific

intermolecular orientation that corresponds to the docked complex of highest surface

complementarity (i.e., within the context of the general starting orientation). To obtain

the positional backbone coordinates that correspond to the docked complex of highest

surface complementarity we modified an established geometric recognition algorithm28,29
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and used it to rigorously assess surface complementarily of two Protein G monomers as a

function of intermolecular position. Even though we had dictated the general starting

orientation, and thus did not need to search all rotational and translational space, a high-

resolution calculation of the correlation function was still desired and consequently

remained computationally intensive. We therefore implemented the Fourier correlation

theorem (FCT) originally described in28. The FCT reduces the number of translational

calculations (i.e., ~N6) down to an order of N3 log2 (N
3)30,31.

In the second step of the design process the two docked proteins were treated as

one and a suite of highly advanced protein design algorithms were used to

computationally mutate and repack the side-chains at the protein-protein interface in a

manner similar to that observed in the cores of well-folded proteins. The algorithms used

have previously been applied to protein design and stabilization and are contained in the

ORBIT (optimization of rotomers by iterative techniques) suite of algorithms16,22,32-34.

Since symmetry restraints were not imposed during the first step of the docking process,

the second step resulted in a pair of protein monomers that had different sets of mutations

and therefore resulted in the formation of a heterodimer complex (the protein monomers

are referred to herein as monomer-A and monomer-B). The designed mutant monomers

were each physically generated and purified and complex formation was confirmed by

analytical ultracentrifugation and heteronuclear NMR.
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RESULTS

Computational Docking

A modified version of a geometric recognition algorithm (GRA) was used to

computationally dock Protein G to itself in a structurally specific manner. The GRA, in

its original form, has been traditionally used to dock proteins together in an attempt to

predict the quaternary structures of dimeric complexes28,29. Surface complementarity is

assessed with the GRA by projecting the molecules into a 3-dimensional grid of N x N x

N points where they are represented by the following discrete functions:

1 surface of molecule
molecule al,m,n  =   core of molecule

 0 outside the molecule

1 inside of molecule
molecule bl,m,n  =  0 outside the molecule

Matching of complementary surfaces is then accomplished by computing the

following correlation function:

Correlation Function: Eq. 3-1

Protein Discretization: To illustrate the modifications to the GRA necessary for

de novo docking a general description of the original discretization process is provided.

The means by which the two molecules are discretized is as follows - the atomic

coordinates for molecule al,m,n are centered in a 3-dimensional grid and held stationary.

Each grid point is then assigned a value based on its proximity to molecule al,m,n atoms. If

a grid point falls within 1.8 Å of a molecule al,m,n atom it is assigned the value  (i.e., -15)
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and if a grid point falls between 1.8 Å and 3.3 Å of an atom it is given a value of +1. This

process effectively digitizes the structure of the protein into a 3-dimensional grid where

grid points located within the core of the protein (i.e., ) are assigned a value of -15 and

those on the surface a value of +1, thus creating a surface layer around the stationary

molecule with a thickness of 1.5 Å. For the second protein, molecule bl,m,n, if a grid point

falls within 1.8 Å of an atom it was given a value of +1 (there is no surface layer for

molecule bl,m,n). All other grid points that are not in proximity to the corresponding

protein atoms are assigned a value of zero.

At the end of the discretization process each molecule is individually represented

by a 3-dimensional array of digitized values. The coordinates for molecule bl,m,n are

translated through the grid and at each shift vector position they are discretized and the

correlation value assessed. The correlation value is calculated by obtaining the product of

the corresponding array elements for each molecule and summing the products over the

entire grid (equation 1). If the translational shift vector is such that molecule bl,m,n is not in

proximity to molecule al,m,n then all non-zero values for each molecule are multiplied

against zero values from the other and the correlation appropriately sums to zero. At

various points within the grid the translational shift vectors are such that molecule bl,m,n

will penetrate and significantly overlap molecule al,m,n. To penalize against this physically

unrealistic interaction the product of the corresponding grid point values from both

molecules (i.e., –15 for molecule al,m,n and +1 for molecule bl,m,n) is negative and,

depending on the extent of penetration, will sum to a large negative correlation. Finally

when the surfaces of both proteins are in favorable proximity to one another the product

of the surface layer values of molecule al,m,n (+1) and the non-zero values of molecule
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bl,m,n (+1) is positive and thus sum to a positive correlation. At the end of the entire

calculation the intermolecular position that corresponds to the highest correlation is the

orientation of highest surface complementarity.

Assessment of de Novo Docking Parameters: To not bias the docking results

with wild-type residues it was necessary to prune all side chains to the C  atoms

(excluding glycines) and therefore it was not possible to use the GRA in its original form.

Use of the original discretization parameters (without side chains) would result in a dimer

complex with unrealistically small interfacial volume (i.e., the monomers within the

dimer complex would be too tightly packed). Unrealistically small interfacial volume

would not be conducive for the side chain selection process performed in the subsequent

step. Therefore the docking parameters listed above were reassessed and recalculated for

the case in which the wild-type side chains were pruned to the C  atom. To ascertain

optimal discretization values an extensive analysis was performed on the crystal

structures of a number of natural complexes. The goal of which was to extract from the

natural complexes optimized parameters that would provide proper interfacial volume for

successful side chain selection.

Eighteen Brookhaven Protein Data Bank files that contain the coordinates of

protein complex structures, and comprise twenty-three unique protein interfaces, were

analyzed for the purpose of extracting de novo docking parameters (see Materials and

Methods for PDB entry codes). All complexes were projected and centered into a 3-

dimensional grid where one protein (or protein pair) was treated as molecule al,m,n and the

other as molecule bl,m,n. Many of the PDB structures analyzed consisted of

antibody/antigen complexes and, when present, the antibody light chain and heavy chain
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were treated as one protein while the antigen was treated as the other. The intermolecular

positions of both molecules were held constant (i.e., positioned as found in the crystal

structures) and prior to discretization all side chains were pruned to the C  atoms. For the

discretization analysis the surface skin thickness of molecule al,m,n was kept constant and

the same as that described above for natural docking (i.e., 1.5 Å). The primary parameter

varied in this analysis was the radial distance within which a grid point is assigned the

non-zero values of either -15 for molecule al,m,n or +1 for molecule bl,m,n (for natural

docking with full side chains the radial distance used was 1.8 Å). While the position of

each molecule was held stationary the radial distance was varied from 1.5 Å to 3.5 Å in

0.05 Å increments. At each increment the molecules were discretized and fast Fourier

transform (FFT) and non-FFT correlations calculated. The distances for each complex

that corresponded to the largest correlation were statistically analyzed and resulted in an

average value of 2.05 Å ±0.48 Å. Due to the relatively large variance in the values for the

different complexes a series of Protein G/Protein G GRA/FCT-derived dockings were

separately calculated with radial distances of 2.00, 2.05, 2.10, 2.15 and 2.20 Å. The

resulting docked complexes were analyzed with 3-dimensional molecular visualization

tools (e.g., GRASP, molmol, POV-Ray) and it was concluded that the complex that

corresponded to the 2.15 Å radial distance had optimal interfacial volume.

Generation of the Starting Orientation: The overall goal of this project was to

engineer a dimer complex of specific structure (as opposed to an indiscriminately formed

complex). Therefore we chose to dock Protein G to itself in an orientation in which the

surfaces of the -helices were packed against one another. To generate two monomers

oriented helix-face to helix-face the Protein G backbone coordinates were centered in a
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square grid (64 Å per side) and rotated so that the average plane of the -sheet was

approximately parallel to the x-y plane. The coordinates were further rotated so that long

axis of the -helix was roughly parallel to the y-axis and then translated 12 Å in the

negative z-dimension resulting in the -sheet surface positioned near to and relatively

flush with the rear wall of the grid. This monomer was held stationary and is therefore

referred to a monomer-A. The second monomer (monomer-B) was generated by copying

the coordinates of the first, rotating them 180° about the y-axis, and then translating them

in the positive direction along the z-axis so that the helices from both monomers faced

one another. In addition, the second monomer was rotated 180° about the z-axis causing

it to be flipped head-to-tail relative to monomer-A (Figure 3-2).

An additional modification to the GRA is related to the fact that, in the case of de

novo docking, not all degrees of rotational freedom must be searched. Therefore, from the

general translational starting position described above, the starting rotational position was

generated by rotating monomer-B 45º about all three principle axes. To obtain the

correlations as function of rotational position, a triple-nested loop was used to rotate

monomer-B 90º about each axis (in 5º increments) and the modified GRA-FCT algorithm

was used to calculate the correlation at each increment resulting in 5,832 separate

correlation calculations. The top 15 correlations for each rotational position were stored

and rank ordered upon completion to obtain the specific rotations and translational shift

vectors that corresponded to the dimer complex of highest surface complementarity.

Docking Results: The rotations and translational shift vectors that correspond to

the top 1000 complexes were used to generate PDB files containing coordinates of the

docked complexes without side chains (except for the C  atoms). Total buried surface
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areas and interfacial volumes were measured and gap indices calculated for the top 1000

complexes. The gap index is defined as the interfacial volume divided by the total buried

surface area 7,8. Programs used to measure these parameters were modified to handle

proteins with truncated side chains. No discernable trend in the gap indices, as a function

of docking scores, was observed (data not shown) although there were slight trends

towards lower buried surface areas and lower interfacial volumes as a function of

decreased docking score.

The complexes that corresponded to the top 50 docking scores were analyzed with

3-dimensional molecular visualization tools and it was concluded that the top scoring

complex was the best candidate for the next step. A correlation map that corresponds to

the rotational values of this complex is provided in the supplemental material and its

structure is depicted in Figure 3-3. The coordinates of this docked complex were fed into

the second overall step of the de novo docking process - the side chain selection process.

Interfacial Side Chain Selection via the ORBIT Suite of Algorithms

The ORBIT algorithms were used to mutate and repack residue positions located

at the interface of the top docked complex. For the first step in this process the RESLASS

algorithm (which classifies residues as core, boundary or surface based on their position

in the molecule) was used to determine which residues are buried (or partially buried) in

the complex relative to the free monomers. 15 positions, previously classified as surface

or boundary, were reclassified as core and 7 surface positions were reclassified as

boundary (Table 3-1). ORBIT was used to assess the energy of and select primarily

hydrophobic side-chains for the 15 interfacial core positions and hydrophilic side-chains
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for the 7 reclassified boundary positions. Due to potentially favorable interfacial

proximity 2 additional surface positions were included in the calculation. Figure 3-4

illustrates the side chains that were selected for by the ORBIT algorithms for the 24

calculated positions. The total redesign resulted in a 20-fold mutant (12 for monomer-A

and 8 for monomer-B, 4 remained wild-type). Upon complex formation (with mutant side

chains) the combined total buried surface area is ~1560 Å2 (~76% of which is

hydrophobic).

Protein Expression Levels and Thermal Stability

The genes for both monomers were synthesized with standard molecular biology

methods, expressed in bacteria and purified to homogeneity. Interestingly, the protein

expression levels for the two proteins, determined after HPLC purification, differed

substantially with monomer-A expressing at levels similar to wild-type Protein G (i.e.,

~40 mg/L) and monomer-B at levels 10-fold lower (i.e., ~4 mg/L). This finding may be

related to the different thermal stabilities of each monomer and variable proteolytic

resistance during bacterial expression.

Introduction of the specific mutations that resulted in the unique monomer-A and

monomer-B amino acid sequences altered the physical properties of each monomer

relative to wild-type Protein G. Standard thermal melts (monitored with circular

dichroism) were performed on both monomers (data not shown) and it was determined

that the 12 mutations that resulted in the monomer-A sequence inadvertently stabilized it

to a hyperthermophile (i.e., Tm > 100º C) while the 8 for monomer-B proved to be

destabilizing, resulting in a Tm ~ 37°C (the Tm for wild-type Protein G is ~87º C). It is
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unclear as to why the monomer-A mutations resulted in a protein variant with a Tm > 100º

C but, according to published results, it is fairly clear that the Y45A mutation introduced

in monomer-B is the most likely cause of its reduced Tm. A short C-terminal fragment of

wild-type Protein G is known to form a -hairpin under physiological conditions. To

understand the cooperative folding of the -hairpin, structural stabilities were determined

for eight different alanine substituted peptides35,36. The measured thermodynamic

parameters indicated that the nonpolar residues Tyr 45 and Phe 52 and the polar residues

Asp 46 and Thr 49 are crucial for -hairpin folding and therefore also crucial for the

stability of the complete 1-domain. In the monomer-B sequence only one of these

destabilizing positions were mutated from wild-type (i.e., Y45A) and therefore it is most

likely this mutation that resulted in reduced thermal stability.

Analytical Ultracentrifugation

Sedimentation equilibrium experiments were performed on the de novo designed

dimer complex. Runs were carried out at 28,000, 40,000 and 48,000 rpm, at 20º C on free

monomer-A, free monomer-B and the monomer-A/monomer-B complex. Global

nonlinear least-squares analysis of the data from the lowest speed in the initial run was

consistent with weak dimerization, with a putative Kd of  ~300 µM (data not shown). A

complete global analysis of the data at all speeds and concentrations could not

conclusively show that dimerization was occurring, as monomer B alone showed

evidence of nonideality. Although there are difficulties in the analysis of this data, the

initial results indicated that dimerization was occurring, in agreement with preliminary
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1D NMR analysis. We therefore pursued multidimensional heteronuclear NMR analysis

on the de novo complex.

NMR Spectroscopy

NMR spectra of wild-type Protein G are well dispersed and exhibit homogeneous

line widths and peak shapes that are indicative of a globular, well-folded protein. Well-

dispersed peak shapes were observed in preliminary NMR spectra collected at 20º C on

both designed monomers while free in solution, although the monomer-B peaks were not

quite as sharp or homogeneous as those for monomer-A. These findings indicate that both

monomers adopt the general tertiary fold of Protein G but monomer-B may be more

mobile and dynamic in accordance with its lower thermal stability relative to monomer-A

and wild-type Protein G.

Chemical shift perturbation analysis of preliminary 1D NMR spectra on non-

isotopically labeled monomer-A in the presence of unlabeled monomer-B indicated

successful complex formation. Isolated peaks in the upfield aliphatic region for

monomer-A were shifted in the presence of monomer-B in comparison to the spectrum of

free monomer-A (data not shown).

To further confirm successful complex formation monomer-A was selectively

labeled with 15N and 2D [1H, 15N] HSQC spectra were collected on two different samples

- one sample contained free 15N-monomer-A while the other contained both 15N-

monomer-A and an equimolar quantity of unlabeled monomer-B (Figure 3-5). For the

heteronuclear experiments monomer-A was isotopically labeled because of its superior

expression levels relative to monomer-B. In a manner similar to the 1D analysis, complex
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formation was confirmed by chemical shift perturbation of a number of [1H, 15N] peaks.

In addition to the observed chemical shift perturbations a number of peaks also

broadened to the point where they were no longer detectable.

To ascertain whether the monomers were associating in the target orientation it

was necessary to determine the [1H, 15N] assignments of the peaks that had shifted and

broadened upon complex formation. To accomplish this we determined the complete

backbone [1H, 15N] resonance assignments of free 15N-monomer-A by analyzing 3D-[1H,

15N]-NOESY-HSQC and 3D-[1H, 15N]-TOCSY-HSQC collected on the free monomer.

The assigned 2D-[1H, 15N]-HSQC peaks of free 15N-monomer-A were

qualitatively compared to those of the spectra in the presence of equimolar amounts of

unlabeled monomer-B. With few exceptions (Y3, K13 and A48) the peaks that exhibited

chemical shift perturbations mapped in close proximity to the putative interface of the

target orientation (Figure 3-6).
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DISCUSSION

Computational Docking with the Modified GRA

The goal of the computational docking calculations was to obtain the Protein

G/Protein G dimer orientation of highest surface complementarity in the context of a

general starting orientation. A number of factors were necessarily taken into account

when choosing the starting orientation of the dimer complex. When viewed down its long

axis the overall structure of Protein G is roughly triangular in shape (Figure 3-1). The

tertiary structure consists of an -helix that overlays and packs against a four-stranded -

sheet. One vertex of the overall triangular shape is formed by the outer surface of the -

helix while the other two vertices consist of the edges of the -sheet. For the general

starting position we chose to dock either of two helical faces against one another (i.e., the

-sheet surface was not considered as a possible interfacial surface). This general

orientation was chosen because amino acid positions on or near the surface of the -helix

have been shown to be relatively permissible to mutation without inducing gross tertiary

structural perturbations22,37.

Although we had dictated the general starting orientation, and therefore did not

need to search all rotational and translational space, there was still a need to rigorously

search local space to find the optimal surface-to-surface geometric fit. To accomplish this

we modified a well-established algorithm used extensively in the field of native protein

docking; the geometric recognition algorithm (GRA)28,29. The GRA treats the two

molecules as rigid bodies and uses surface complementarity as the criteria for goodness

of fit. Traditionally, it has been used to dock the crystal structures of single proteins

together that are known to form complexes in solution. The goal of which is to predict the
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structure of the actual protein/protein complex as it would exist in solution. Initially the

use of the GRA led to modest success due to the fact that only purely geometric factors

were used to assess the multitude of docked candidate complexes28. It was recognized

that physical chemical factors also needed to be taken into account when assessing the

validity of docked candidates29.

Our approach differed from that described above in that we used the GRA solely

in the first step of the design where it was used to dock the protein molecules together

(and where only shape complementarity is used as the criteria for goodness of fit). It is in

the second step (i.e., side chain selection using the ORBIT suite of design algorithms)

that physical chemical forces were explicitly calculated to determine the optimal set of

mutated interfacial amino acids. To insure the success of the second step it was necessary

to modify the GRA from its originally published form. A main function of the first step

was to determine the intermolecular positions of the two Protein G monomers in which

the greatest set of amino acid positions are in proximity across the de novo interface. In

addition, the docking calculations must result in a complex with interfacial spacing

conducive to side chain selection. We did not want to bias the results with wild-type

Protein G side chains and therefore all side chains were pruned down to the C  atoms

(excluding glycines). Due to this fact that it was necessary to reevaluate the docking

parameters originally described for native docking28,29. To this end a series of natural

complexes were extensively analyzed and parameters unique to de novo docking

extracted. The primary outcome of the analysis was that the radial distance used to assign

core values for both molecule al,m,n and molecule bl,m,n was increased from 1.8 Å to 2.15

Å; an increase that reflects the loss of the side chain atoms. Further analysis revealed that
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the optimal the skin layer thickness for molecule al,m,n was that described for native

docking (i.e., 1.5 Å). Using these values, in combination with the other modifications

described above, Protein G was docked to itself and resulted in a dimer complexes of

high surface complementarity.

In an attempt to ascertain whether the highest docking score corresponded to the

best candidate for interfacial side chain selection the top 1000 complexes (without side

chains) were generated and subjected to additional analysis. The gap index, which is

calculated by dividing the interfacial volume by the total buried surface area, was

determined for the top 1000 complexes. No discernable trend in the gap indices, as a

function of docking scores, was observed. Not surprisingly there were slight trends

towards lower buried surface areas and interfacial volumes as a function of decreased

docking score. These results reflect the fact that, for the top 1000 scores, there are only

minor differences in the structural characteristics of the complex interfaces. This may be

related to the translational and rotational resolution used or to the fact that, aside from

gross tertiary structure features, the surfaces of both molecules (especially with truncated

side chains) are relatively featureless and therefore comparatively homogeneous. In

addition, the surface layer thickness of molecule al,m,n, set to 1.5 Å to allow for interfacial

plasticity, may act to further attenuate the features of both molecules and thus reduce the

calculated differences in the interfacial characteristics. Regardless, the complex that

corresponds to the top docking score exhibited excellent geometric fit between the

docked molecules as illustrated in Figure 3-3. The coordinates of this complex were used

in the next step – the interfacial side chain selection process.
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Interfacial Side Chain Selection via the ORBIT Suite of Design Algorithms

An integral step in the de novo docking process entailed the use of the ORBIT

suite of protein design algorithms16. The primary function of the ORBIT algorithms is to

return a mutated protein sequence optimized for a given three-dimensional backbone

structure38. They employ an unbiased, quantitative design method based on the physical

chemical properties that determine protein structure and stability39.

The coordinates of both monomers from the top docked complex obtained in the

first step were treated as a single protein and fed into the second step where interfacial

residue positions were mutated and repacked in a manner similar to that observed for the

cores of well-folded proteins. The rationale for this approach is based in the fact that

natural interfaces have physical characteristics that are similar to protein cores.

Examination of the crystal structures of protein-protein complexes provided strong

evidence that hydrophobic residues play a principal role for in protein-protein

association7-9. For example, alanine scanning performed on the receptor for human

growth hormone revealed a central hydrophobic region, dominated by two tryptophan

residues, that accounted for more than three-quarters of the binding free energy4. In

general, and depending on the degree of association, it has been observed that protein

interfaces are more hydrophobic than protein exteriors, yet are slightly more polar than

protein interiors. This is probably due to the need to promote association without greatly

destabilizing the unassociated monomers7-9. In the calculated de novo complex

approximately 76% of the buried surface area is hydrophobic.

In addition to the general hydrophobicity of natural interfaces, the interface area

per subunit (Ai) calculated for crystal structure complexes was found to range from 368
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Å2 to 4746 Å2, which represents 6.5% - 29.4 % of the total exposed surface area per

subunit7,8.

Ai is defined as: Ai = ([Asa + Asb] – Asab) / 2

where Asa and A sb denote the total surface area of each disassociated subunit and Asab

denotes the total surface area of the subunits associated in a dimer. The total buried area

upon complex formation for the de novo calculated complex is approximately 1,560 Å2

and therefore Ai = 780 Å2. This represents 22.8% of the total exposed surface area per

subunit for the de novo complex; a percentage well within the range described above.

Modest Affinity as Measured by Analytical Ultracentrifugation

A complete analysis of the analytical ultracentrifugation runs performed on each

of the separate monomers and the monomer-A/monomer-B complex was not possible due

to the fact that free monomer-B exhibited evidence of nonideality. Even though this was

the case, global nonlinear least-squares analysis of the data from the lowest speed in the

initial run was consistent with modest dimerization, with a putative Kd of  ~300 _M (data

not shown). Subsequent NMR analysis and determination of the thermal stabilities of

both monomers revealed a potential cause for the nonideal behavior observed for

monomer-B (see below).

Thermal Stability and Fiber Formation

Thermal stability was measured with CD temperature melts for both monomers.

The 12 mutations that resulted in the monomer-A sequence stabilized it to a

hyperthermophile (i.e., Tm > 100º C) while the 8 for monomer-B proved to be
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destabilizing, resulting in a Tm ~ 37° C (the Tm for wild-type Protein G is ~87º C).

Interestingly, at the concentrations required for NMR studies, monomer-B alone was

observed to form macroscopic fibrils in the NMR tube (Figure 3-7). This, in itself, was

not surprising, since many proteins upon destabilization can be induced to form fibers40-45.

What is interesting is that in the presence of monomer-A no monomer-B fibrils were

observed. This finding provided macroscopic evidence that a complex does indeed form

between these designed proteins and also provided an excellent model system for

studying protein-based fibril inhibition. A more extensive analysis of monomer-B

fibrilliation, monitored with electron microscopy and thioflavine-T fluorescence,

confirmed that monomer-A does completely block monomer-B fiber formation and most

likely does so by binding to and stabilizing the correctly folded form of monomer-B

(manuscript in preparation). The fact that free monomer-B is prone to self-association,

giving rise to visible fibers, provides a likely explanation for the nonideal behavior

observed for monomer-B during the analytical ultracentrifugation analysis.

Interface Site Mapped on Monomer-A surface with NMR Spectroscopy

To determine if the monomers were binding in the general target orientation

multidimensional NMR spectra were collected on free 15N-monomer-A and compared to

spectra collected on 15N-monomer-A in complex with an equimolar amount of unlabeled

monomer-B.

A 2D-[1H, 15N] HSQC spectrum of free 15N-monomer-A (Figure 3-5, panel a)

contains the expected number of backbone amide peaks (~55), exhibits significant

dispersion and is quite homogeneous in line width and peak intensity. The observed
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homogeneous line widths indicate that monomer-A has a relatively compact, stable and

well-folded structure which in good agreement with the measured Tm for monomer-A (Tm

> 100º C). In addition, the homogeneous line widths indicate that monomer-A is

tumbling at rate appropriate for its molecular weight (~6200 D) and, in agreement with

analytical ultracentrifugation results, is monomeric even at relatively high NMR

concentrations (i.e., between 1 and 2.5 mM). In contrast, line widths in the 2D-[1H,15N]

HSQC spectrum of the 15N-monomer-A in complex with unlabeled monomer-B are

broader and not nearly as homogeneous as that for free monomer-A (Figure 3-5, panel b).

This behavior is indicative of a change in the NMR relaxation properties usually

associated with a decrease in the tumbling rate caused by an increase in the apparent

molecular weight of the molecule. The broader, less homogeneous peaks provide indirect

evidence that a dimeric complex does form between monomer-A and monomer-B. In

addition, the chemical shifts of a subset of peaks shifted upon complex formation and

some peaks were rendered completely non-observable. The peaks rendered non-

observable are probably the result of exchange broadening due to fluctuations between

two or more states on a microsecond-millisecond time scale and imply that the complex

may experience a relatively rapid exchange between free and bound states. This

explanation appears likely especially in light of the modest binding affinity measured

with analytical ultracentrifugation (Kd ~300 µM).

To ascertain if monomer-B was binding at the targeted surface of monomer-A it

was necessary to determine the complete backbone [1H, 15N] resonance assignments of

free 15N-monomer-A by analyzing 3D-[1H, 15N] NOESY-HSQC and 3D-[1H, 15N]

TOCSY-HSQC collected on free monomer-A. Complete backbone assignments were
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made for free 15N-monomer-A which enabled the assignment of the peaks that shifted and

broadened upon complex formation. Almost all the peaks that exhibited chemical shift

perturbation corresponded to interfacial residue positions (Figure 3-6). The three

exceptions (i.e., Y3, K13 and A48) may be due to a number of factors such as the

observed changes in relaxation parameters described above for monomer-A or they could

represent an alternative binding mode that may be sampled to a lesser degree.
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Conclusion

This initial attempt at the de novo docking of a normally monomeric protein to

itself proved to be successful at generating a structurally specific dimer complex, albeit

with a modest dissociation constant (~300 µM). The GRA was successfully modified and

adapted to rigorously search local rotational and translational space of two protein

monomers (with truncated side chains) and return a complex docked in the confines of a

general starting orientation. The coordinates of the docked complex were treated as one

protein and the ORBIT suite of protein design algorithms were used to mutate and repack

interfacial side chains with the goal of selecting a sequence that would ultimately drive

complex formation. Protein interactions between the two monomers were confirmed with

analytical ultracentrifugation, fiber inhibition and heteronuclear NMR spectroscopy. The

fact that the binding affinity is modest, combined with the associated exchange

broadening of interfacial NMR peaks, precludes structure elucidation by

multidimensional NMR. Work is currently underway to improve the binding affinity with

additional rounds of docking and ORBIT-based interfacial side chains selection.
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MATERIALS AND METHODS

Computational Docking

The algorithm used to dock the backbone (plus C  atoms) of Protein G to itself is

a modified version of that originally described in 28 and 29. The necessary modifications

are described in detail in the Results section. The algorithm, complete with modifications,

was implemented using the C programming language. All real 3-dimensional discrete

Fourier transforms (both forward and inverse), that were implemented to significantly

reduce the complexity of the docking calculations, are those described in Numerical

Recipes in C46.

The entry codes of the 18 PDB files used to extract de novo docking parameters

are - 1ATN, 1BRS, 1DQJ, 1DZB, 1FCC, 1FDL, 1HRP, 1IGC, 1JHL, 1JTO, 1LPA,

1MLC, 1NCD, 1VFB, 2BTF, 2JEL, 3HFL, 3HFM.

The arrays used for docking were N x N x N points with N = 128. The grid was

square with each side spanning 64 Å resulting in a translation resolution of 0.5 Å. The

coordinates of molecule bl,m,n were rotated 90º about all three principle axes and the

correlation calculated for every 5º increment resulting in 5,832 separate correlations. The

top 15 correlations were stored for each rotational position and the total of all scores were

rank ordered to obtain the highest score. The rotational and translational shift vectors that

corresponded to the highest score were used to generate a dimer complex that was used in

the interfacial side chain selection process.
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Interfacial Side Chain Selection (ORBIT)

Standard ORBIT design parameters were used.

Protein Expression and Purification

Synthetic DNA oligos were used for recursive PCR synthesis of the genes for

monomer-A and monomer-B. One modification to the ORBIT selected sequence was

made: position 28 of monomer-A was changed from tryptophan to tyrosine so as to

reduce the hydrophobicity of regions that were not fully buried at the interface. The genes

were cloned into pET-11a (Novagen) and recombinant protein was expressed by IPTG

induction in BL21(DE3) hosts (Invitrogen). The proteins were isolated using a

freeze/thaw method 47 and purification was accomplished with reverse-phase HPLC using

a linear 1% min-1 acetonitrile/water gradient containing 0.1% TFA. The yield of purified

protein from expression in rich media was ~4 mg/L of bacterial growth for monomer-B

and ~40 mg/L for monomer-A. Labeled monomer-A protein, for NMR studies, was

prepared with standard M9 minimal media using 15N-ammonium sulfate (2 g/L). Protein

purity was verified with standard SDS-PAGE and reverse phase HPLC and the correct

molecular weight was confirmed by mass spectrometry.

Analytical Ultracentrifugation

Sedimentation equilibrium experiments were conducted in a Beckman XL-I

Ultima analytical ultracentrifuge equipped with absorbance optics. Runs were carried out

at 28,000, 40,000 and 48,000 rpm, at 20º C. Three separate solutions consisting of

different concentrations for both free proteins plus the complex were prepared to achieve
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OD280 readings of approximately 0.15, 0.25 and 0.4. The protein concentrations were ~36

µM, ~60 µM and ~96 µM in a total volume of 110 µl containing 50 mM NaCl and 50

mM NaPi (pH~6.5).

NMR Spectroscopy

NMR spectra were collected at 293 K on a Varian UnityPlus 600 MHz

spectrometer equipped with an HCN-triple-resonance probe with triple-axis pulse field

gradients. Protein concentrations were ~1.5 mM in 50 mM sodium phosphate, pH ~6.5.
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Table 3-1. Amino Acid Sequence for Wild-Type Protein-G and the
ORBIT Selected Sequences for Monomer-A and Monomer-B

        1        10        20        30        40        50
        |        |         |         |         |         |
   WT – MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE
                       c c  ss  c  cc scc scs
Mon-A – MTYKLILNGKTLKGEFTAEAEDAALAEYIFRALAKAQGVDGEWTYDDATKTFTVTE
                             scc  cs  c   c    s  c c s
Mon-B – MTYKLILNGKTLKGETTTEAVDIATAADVFAQYAADNGVKGEWTADEATKTFTVTE

c = core, s = surface, bold = a mutated position, underline = calculated position that is wild-type
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Figure 3-1.  Secondary Structure of the 1 Domain of Protein G. A ribbon diagram
illustrating the relatively simple secondary structure arrangement of the 1 domain of the
Streptococcal Protein G. An -helix overlays and packs against a -sheet made up of four
strands. The triangular prism shaped bars are meant to illustrate the global triangular
shape of the 1 domain where the -helix makes up one vertex and the edges of the -
sheet the other two.
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Figure 3-2.  General Starting Orientation. A ribbon diagram illustrating the general
starting orientation used in the first step of de novo docking, i.e., application of the
modified GRA to computationally dock the Protein G backbones together in the context
of the general starting orientation. A solvent accessible surface was generated around
each monomer with the program MSMS 48 and used to create the ghosted image of the
actual surface of the backbone atoms. The figure on the left (a) corresponds to monomer-
A while that on the right (b) corresponds to monomer-B.

a b
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Figure 3-3.  GRA Docking Results, the Top Docked Complex.  A GRASP surface
image 49 of the docked complex that exhibited the highest surface complementarity (i.e.,
the highest GRA docking score). Image a, a top down view of that shown in b, illustrates
the tight geometric fit between the monomers where protruding knobs from one monomer
(generated, for example, by the C  atoms) fit into the holes (or concave compressions) on
the other. The arrow in image b points to the interface between the two monomers and is
meant to draw attention to the high degree of interdigitation exhibited at the dimer
interface. The coordinates of this docked complex were used in the next step of the
computational docking process, i.e., ORBIT-based side chain selection.

a b
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Figure 3-4. Side Chain Selection Results. This image only displays the side-chains (as
balls and sticks) of the 24 positions for which ORBIT was used to select for interfacial
side chains. The total redesign resulted in a 20-fold mutant with 12 mutations for
monomer-A (a) and 8 for monomer-B (b) (ORBIT selected wild-type amino acids for 4
positions). Upon complex formation the mutant monomers bury ~1560 Å2 of surface area
(~76% of which is hydrophobic).

a b
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Figure 3-5. [1H, 15N] HSQC Spectra. (a) [15N, 1H] HSQC spectrum of uniformly
enriched 15N-monomer-A alone and (b) with equimolar quantities of unlabeled-B. The
15N-monomer-A peaks that are non-observable or exhibit chemical shift perturbations
upon complex formation are labeled red. For peaks that shifted, or were rendered non-
observable, the original peak positions from (a) are illustrated with a black crossed box in
(b). (Figure on previous page)
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Figure 3-6. Chemical Shift Perturbations Mapped to the Surface of Monomer-A.
The program GRASP 49 was used to generate the above images where chemical shift
perturbations are mapped onto the surface of 15N-monomer-A. Monomer-B is depicted as
a gray backbone worm with interfacial side-chains colored red. On the monomer-A
surface, residues that have [15N, 1H]-HSQC peaks that are not detectable in the complex
are colored dark blue and those that exhibit chemical shift changes are colored lighter
blue. The image on the left (a) corresponds to the interface of the putative target
orientation while that in (b) is the surface of -sheet of monomer-A (i.e., b is a 180º
rotation relative to a).

K13

A48

a b
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Figure 3-7. Macroscopic Monomer-B Fibers. This image is a photograph of the fibers
that were observed to grow in an NMR tube that contained free unlabeled monomer-B.
The concentration of monomer-B for NMR analysis was approximately 1.5 mM. Fibers
were observed to spontaneously form in the NMR tube after approximately three days.
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Chapter 4

Computational Design and Experimental Characterization of

De Novo Homodimers
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ABSTRACT

C2 symmetry related homodimers are the simplest form of self-associating protein

oligomers.  The goal of this project is to see whether we can generate novel protein

homodimers through the combined use of a protein docking algorithm and a protein

design algorithm.  For this purpose, we developed a specialized docking algorithm that

examines all possible homodimer conformations and rank orders them based on their

surface complementarities.  During the docking process, amino acid side-chains are

pruned to C , and the remaining atoms are represented by spheres with experimentally

determined radii to estimate the volume originally taken up by the side-chains.  A docked

dimer scaffold was chosen for the subsequent design step.  We fine-tuned interfacial

hydrophobicity by adjusting the penalty for polar surface area burial.  Two engrailed

homeodomain variants carrying the designed interface were experimentally constructed

and characterized by CD, NMR, analytical ultracentrifugation, and X-ray crystallography

methods.  The results suggest that we have successfully created proteins that can self-

assemble into dimers.
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INTRODUCTION

In the most fundamental processes of life, protein molecules interact with each

other and with other constituents of the living cell through highly regulated and specific

binding and dissociation events.  Cellular biochemistry is largely carried out by proteins

and their functional amino acid moieties.  The most striking examples of protein-protein

interactions are found in antibodies, which bind numerous targets mainly through six

short cannonical loops with variable amino acid composition.  The twenty amino acids

found in natural proteins have different properties; some are hydrophobic, some are

hydrophilic, and each has a particular shape and size.  The variations among the amino

acid side-chains allow for the diversity observed in protein binding interfaces.  The

simplest dimers, C2 symmetry related homodimers, are the most abundant protein

assemblies found in nature, and their binding interfaces are more hydrophobic than other

types of dimers.  It is plausible that hydrophobicity drives dimer formation in naturally-

ocurring protein dimers, and that this phenomenon might be relevant to computational

protein design.

Previous successes in protein design benefit largely from the practice of assigning

amino acid positions to surface, boundary and core categories based on the amount of

burial.  This practice effectively partitions the protein into a well-defined hydrophobic

interior and polar exterior, and increases the likelihood of a successful design by reducing

the complexity of the calculation.

We are interested in generating novel protein homodimers starting from a

monomeric protein crystal structure.  Borrowing from the same methods used for protein

core redesigns, we employed hydrophobicity as the driving force for the design.  We
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developed a specialized docking algorithm that finds the most geometrically

complementary homodimers among all possible homodimer configurations.  Designing

hydrophobic interfaces using dimer scaffolds that bury the most surface area partially

mimics the homodimers found in nature; in addition, this procedure helps to reduce the

problem size.  The physical and chemical principles we follow are well established, but to

our knowledge, this is the first dimer design effort that incorporates docking and design

algorithms.
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RESULTS

Modeling C2 Symmetry Related Homodimers

Our strategy of designing novel protein homodimers from monomeric proteins

requires a modeling step in which the monomeric protein crystal structure is positioned

against a copy of itself by a two-fold symmetry operation to form the dimer scaffold.  To

achieve this, we developed a fast Fourier transform (FFT)-based docking algorithm

parameterized against known high-resolution homodimer structures.  The

parameterization consists of (1) a reduced representation of the amino acid side-chains

that uses spheres on the C  atoms instead of an all-atom description, (2) a set of

experimentally determined atomic radii for the backbone atoms that is validated against

known homodimer crystal structures, and (3) a 3D grid discretization strategy that

emphasizes rigid protein backbones.  The reduced side-chain representation ensures the

proper spacing between the two docked subunits and smoothes the protein surface to

reduce noise in the docking searches.  Similarly, the use of experimentally determined

atomic radii (including the radius used for the C  spheres) favors docked dimer

configurations that bury interface volumes similar to those buried by natural homodimers.

Because our protein design methodology does not allow backbone flexibility, strong

penalties are incorporated in our docking algorithm’s scoring function to exclude docked

molecules with overlapping backbones.

The surface complementarities of all possible C2 related homodimer

conformations are evaluated through FFT correlation calculations, originally developed

to predict protein complexes from their unbound members1.  A list of possible dimers are

generated and ranked according to their surface complementarity scores.  High-scoring
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dimers can then be parsed into clusters, each containing only dimers of the same

conformation.  These clusters of distinct dimer conformations are then visually inspected

to identify the most plausible conformation as our design target.

We chose the Drosophila engrailed homeodomain structure (PDB code: 1enh) as

our starting monomer because of its helical structure and the availability of several

thermally stable variants2,3.  The helical structure offers several possible binding faces

and is easier to stabilize with protein design than -sheet structures.  From the top 200

docked engrailed homeodomain dimers, we obtained 11 distinct dimer conformations.

One of them was chosen as our final design scaffold based on the relative orientation of

the helices, the amount of buried surface area, and the topology of the interface.  Despite

being ranked second in the docking correlation scores, the selected dimer conformation

has the flattest and most tightly arranged interface.  In this particular conformation, helix-

1 and helix-2 from each of the subunits form a novel parallel helix bundle (Figure 4-1).

This four-helical bundle resembles a naturally occurring coiled-coil in that it has a similar

interhelix distance.  The two helix-1 helices in the docked dimer are separated by 10 Å,

similar to the 9.8 Å found in a coiled-coil dimer4,5.  However, the helices in the engrailed

homeodomain structure are straight, so there is no superhelical structure in our model.

This homodimer model created by docking two engrailed homeodomain monomers is the

template used in all the subsequent design steps.

Design Strategies

We use the ORBIT (Optimization of Rotamers by Iterative Techniques) protein

design tools to generate the amino acid sequences for the dimers.  Several details
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regarding the designed proteins must be considered.  We are testing the idea of

generating novel protein homodimers with hydrophobic dimer interfaces, using

hydrophobicity as the main driving force for self-association.  This procedure creates a

hydrophobic patch on the surface of a soluble monomeric protein; however, this

unshielded hydrophobic surface is destabilizing and usually results in molten globules

and insoluble aggregates.  Explicitly accounting for these unfavorable states through

negative design is impractical for our system, due to the number of residues involved.

Instead, we optimize the positive design under the premise that explicitly defining more

favorable features for the target state will decrease the probability of population by an

alternate state (Figure 4-2).  By optimizing sequences for the dimer conformation, we

design sequences that can follow an alternate folding pathway in the free-energy

landscape.  Instead of falling into the undesired states, these proteins could self-associate

to minimize exposure of the hydrophobic surface area, forming a dimer consisting of two

properly folded subunits.

A balance must be maintained between the polar and hydrophobic amino acids in

the interface.  We achieved this by tweaking a parameter used in our surface area based

solvation term ( p, see below).  Our solvation model is described by the equation:

Eas npAnp,b + npAnp,e + pAp,b Eq. 4-1

where the atomic solvation energy (Eas) consists of a benefit term for burial of nonpolar

amino acids ( npAnp,b) and penalty terms for polar amino acid burial ( pAp,b) and nonpolar

amino acid ( npAnp,e) exposure.  Each of these terms contains a solvation energy factor ( )

and a surface area component (A), because atomic solvation is proportional to solvent-

accessible surface area6.  The value of p sets the magnitude of penalties for burying
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polar atoms, and by adjusting this factor we can fine-tune the hydrophobicity of the

interface (Table 4-1).  Previously, we used a different type of solvation penalty to avoid

burial of polar residues in the core; it penalized buried hydrogens that do not participate

in hydrogen bonds.  However, in initial dimer designs, penalizing polar hydrogens in the

interface resulted in overpopulation of aromatic amino acids.  We therefore decided to

use p to fine-tune hydrophobicity.  In Table 4-1, the first interfacial design ID1, with a

p of 0.02, buries two aspartic acids (Asn10 and Asn13) without satisfying all the

potential hydrogen bond donors and acceptors.  We increased p until the hydrophobicity

of the interface improved.  ID3 shows a reasonable balance between the polar and

hydrophobic contents in the interface and was subsequently used as the sequence for the

interface.

The sequences predicted for the interface, ID1, ID2 and ID3, shown in Table 4-1,

were designed on the background of a thermostable variant of engrailed homeodomain,

SC13.  The interfacial positions were selected based on their locations in the modeled

dimer and the unbound monomer structures.  Residues were first categorized into surface,

boundary, and core classes for both structures, based on their C  and C  distances from

the surface.  Positions with classifications that switched from surface (in the monomer) to

core or boundary (in the dimer) were considered interfacial positions.  Design

calculations were run to optimize the interface and core residues of the two subunits

simultaneously in the dimer conformation.  During the design process, amino acid and

rotameric symmetry were imposed such that the equivalent positions on the two subunits

would always remain identical.  We found that the sequences obtained at the interface are

sensitive only to the relative positions of the subunits and are indifferent to the sequences
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comprising the rest of the structure (referred to as background sequences).  We obtained

identical interfacial sequences with two different engrailed homeodomain backgrounds

when the same docked dimer model was used (data not shown).

Because amino acids at the interfacial positions are mostly surface residues on the

wild-type structure and do not have strong interactions with the protein core, the designed

interface can be easily grafted to different structural backgrounds.  For this purpose, side-

chain placement calculations were performed to ensure the compatibility of the designed

interface with the protein backgrounds.  The stable backgrounds used were reported

previously by Marshall et al., and these sequences show exceptional thermostability and

NMR chemical shift dispersions2,3.  Sequences derived from engrailed homeodomain

mutants SC1 and NC3-Ncap were used in our design to host the designed binding

interface (ID3).  Two sequences, one derived from SC1 (C2G2) and the other from NC3-

Ncap (C2G2CAP) were constructed and characterized experimentally (Figure 4-3).

C2G2 is derived directly from SC1 as a result of the interface design.  The design

calculation for constructing the interface included the ten positions in the interface as

well as those classified as core, for a total of 19 positions; these were optimized under a

different set of parameters from those used originally to generate the SC1 sequence.  The

sequence for the core is therefore modified in the context of the dimer interface.  Four

mutations from SC1, namely L7Y, L29V, I35L, L39Y, were suggested by ORBIT, and

these are all mutations for core positions.  Except for the modified core and the surface

hydrophobic patch (the ID3 mutations), C2G2 shares the same surface and boundary

sequences with SC1.
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The C2G2CAP sequence was generated by grafting the ID3 design to NC3-Ncap.

NC3-Ncap is also a stable and well-behaved engrailed homeodomain variant with a

reported G of unfolding of 5.6 kcal/mol.  By grafting the interface sequence to a

different host, we can test whether dimer formation is influenced by factors other than the

interface sequence itself.

Assessment of the Designed Model

The most favorable design, ID3, has a protein core-like interface with

hydrophobic amino acids at positions 13, 14, and 17 burying over ninety percent of their

surface areas.  Although the polar amino acid, threonine, at position 10 is 98.8% buried, it

can potentially make a hydrogen bond with its symmetry related threonine from the other

subunit to not only avoid energetic penalty but also to contribute to binding specificity

(Figure 4-4).  Among the favorable features found in this design, the phenylalanines at

position 17 are the most striking; the exchange between the two phenylalanines from the

two subunits create a knob-and-hole fit between the two molecules (Figure 4-5).  The

core of the interface is composed of six hydrophobic amino acids (three from each

subunit), which form the basis of surface complementarity.

Two other favorable design features involve arginines forming salt-bridges and

C-terminal capping hydrogen bonds across the dimer interface (Figure 4-6).  Our

designed hydrophobic interface is surrounded by three arginines (Arg9, Arg25, Arg32)

and one aspartic acid residue (Figure 4-7).  Arginine at position 25 forms two hydrogen

bonds with the carbonyl oxygen of residue 16, capping the C-terminal of helix-1 from the

binding partner.  A cross-dimer salt-bridge is found between an arginine and an aspartic
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acid at position 32 and 12 respectively.  Electrostatics and helix-dipole driven

interactions like these are highly specific and in the case of C-terminal capping

interactions can be energetically favorable and stabilizing7.

Characterization of the Designed Proteins

To test the validity of the design, sequences C2G2 and C2G2CAP were

synthesized, expressed, purified and characterized experimentally.  C2G2 is expressed as

inclusion bodies in the E. coli cytoplasm, and its solubility is highly dependent upon pH

(Figure 4-8) while C2G2CAP is readily soluble in aqueous buffers.  At near neutral pH,

the solubility of refolded C2G2 is less than 30 µM.

Far-ultraviolet (UV) circular dichroism (CD) was used to measure the secondary

structure content of the two designed variants, and the characteristic minima at 208 nm

and 222 nm of an engrailed homeodomain were preserved, suggesting that C2G2 and

C2G2CAP maintain the helical fold (Figure 4-9).  However, the thermal denaturation

curves for the two proteins (Figure 4-9B and Figure 4-9D) show that the two proteins

have different stabilities and thermodynamic characteristics.  In Figure 4-9B, the thermal

denaturation curve for C2G2 shows two transitions.  Comparison of the curve in Figure

4-9B with Figure 4-9A, in which the far-UV wavelength scan is monitored over the entire

course of the thermal denaturation, reveals that the helical structure disappears during the

first transition, and the signal becomes more -sheet-like.  The first derivative of the

melting signal suggests an inflection point for the first transition at approximately 39 °C.

The -sheet-like CD signals at high temperatures are not from irreversible amyloid

aggregates because the thermal denaturation curve can be reproduced from the same
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transition is unknown, we cautiously follow the thermal denaturation curve and perform

all other analyses on C2G2 at 10 °C.

For C2G2CAP, on the other hand, even at 99 °C the protein does not lose all of its

secondary structure, as illustrated in Figure 9C; the minima at 208 and 222 nm are

retained over the course of the experiment.  Due to the lack of a well-defined post-

transition, the melting temperature (Tm) is approximated by taking the first derivative of

the data; it is about 70 °C.  Analyses of C2G2CAP were carried out at room temperature

(25 °C).

It should be noted that mutations were introduced to C2G2’s core by using p

instead of polar hydrogen burial penalties in the solvation parameters; therefore, the

drastic loss of stability compared to its background variant, SC1, is likely due to changes

in the protein core and not the hydrophobic interface.  This idea is supported by the fact

that C2G2CAP, whose core remains the same as that of NC3-Ncap, largely retains its

thermostability; the small interaction energies observed between the interface and the

core also suggest that the interface is not interfering with core packing.

Despite being thermostable, C2G2CAP shows dynamic characteristics when

examined by NMR spectroscopy.  C2G2CAP’s 1D proton line shapes are broadened and

its 2D N15-proton HSQC shows only a fraction of the peaks (Figure 10).  These results

suggest that many factors can contribute to conformational heterogeneity, and one of the

possibilities is self-association.  The broadened line widths and missing peaks, however,

hinder structure determination by NMR; therefore, X-ray crystallography was used

instead.
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Self-association Properties of the Designed Proteins

Our designed proteins should prefer a dimeric assembly in solution as they were

created by energetically optimizing the interface for a dimeric conformation.

Sedimentation experiments were carried out to examine the hydrodynamic properties,

oligomeric states, and in the case of self-assembly, binding constants of the two designs.

Sedimentation velocity data modeled by finite element solutions to the Lamm equation

with maximum entropy regularization provide information for the size distribution of the

sample.  We use the program SEDFIT, written by Schuck, for this analysis8.  Due to the

small molecular weight of the proteins, sedimentation experiments were carried out at

relatively high rotor speeds.  For velocity sedimentation monitored by absorbance optics,

the data were collected at rotor speeds of 48,000 rpm, and for those monitored by

Rayleigh interference optics, rotor speeds of 60,000 rpm were used.

In Figure 4-11, the continuous distribution of sedimentation coefficients, c(s), is

shown for both C2G2 and C2G2CAP with a monomeric engrailed homeodomain variant

(NC0) as a control.  Because the s-values reported for the weight averaged monomers and

dimers are independent from changes in loading concentration, the monomer and the

dimer are in slow equilibrium; the time-scale for monomer-dimer exchange is slow

compared to their sedimentation rates.  Although the c(s) model should only be used for

discrete non-interacting species, due to the slow equilibrium observed, the monomer and

the dimer can thus be fitted as discrete species.

Reported in Figure 4-11 for the experimental conditions at 10 °C, the peaks at 0.8

Svedberg (S) correspond to monomeric engrailed homeodomain species, and the
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existence of peaks at around 1.2 S (shown in Figure 4-11 for C2G2CAP as an unresolved

peak shoulder) indicates that there are dimers.  The dimer species were further confirmed

by fitting the data with the continuous molar mass distribution model, c(M), suggesting

that the species with the higher molecular weight is twice the mass of the monomer.  The

unresolved second peak for C2G2CAP is the result of the equilibrium between the

monomer and the dimer, because the dimer species is clearly resolved when using

interference optics to monitor the sedimentation time course of C2G2CAP at a higher

loading concentration (Figure 4-12).  The increase in loading concentration shifts the

equilibrium to favor dimer formation.  In Figure 4-12, the ratios of the monomer, dimer,

and higher order oligomer concentrations to the total loading concentration are 27%, 72%

and 1%, respectively; fitting s-value ranges from 1 S to 8 S includes all observed species

in the sample.

The size-distribution results obtained from sedimentation velocity experiments

indicate successes in designing self-associating dimers.  For both C2G2 and C2G2CAP,

the AUC experiments provide strong evidence for dimer formation from purified

monomers.  Based on the loading concentrations in the sedimentation velocity

experiments and the resulting monomer-dimer distributions, it can also be concluded that

C2G2 forms tighter binding dimers than those of C2G2CAP since a higher loading

concentration is required in order to detect C2G2CAP dimers.

We further characterized the designs with sedimentation equilibrium experiments

in order to determine the oligomeric states and the association/dissociation constants.

Sedimentation equilibrium data were collected from three loading concentrations at three

speeds.  The concentration gradients established at equilibrium for C2G2 can be
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described by non-linear least squares fitting with monomer and dimer components, and

the dissociation constant (Kd) is determined as 12.2 µM (Figure 4-13 and Table 4-2).

For C2G2CAP, however, the data fit poorly to either a single-state or a two-state

model, but fit to the monomer-dimer-tetramer (M-D-Tet) model.  Fitting the data with

the M-D-Tet model is plausible because when floating the reduced buoyant molecular

weight ( ) during the fitting process, the fitted  value remains close to the theoretical 

for C2G2CAP.  Although the overall fit of the equilibrium sedimentation data is good

with the M-D-Tet model, the concentrations of the component monomer, dimer, and

tetramer species extrapolated from the fit disagree with the distribution obtained from

sedimentation velocity experiments.  Specifically, in Figure 4-12, there are significant

amounts of the monomer and dimer in the c(s) distribution (27% monomer, 72% dimer,

1% oligomer, mentioned previously), but this is not reflected in the M-D-Tet fit.  In the

M-D-Tet equilibrium fit, the tetramer species dominates over the monomer species, and

this is not observed in the c(s) distributions.  The M-D-Tri model, however, captures the

concentration profiles for each of the components, but it does not fit the data as well as

the M-D-Tet model.  The M-D-Tri model fits are shown in Figure 4-14 with the M-D-Tet

model for comparison.  The difference in the size-distributions observed in the

equilibrium and velocity experiments is significant, but in either the M-D-Tet or the c(s)

distribution fits, the dimer remains the dominant species (Figure 4-14 and Table 4-3).

Further tests are needed to precisely determine the cause of the differences in the AUC

experiments; our current knowledge of the Kd is shown in Table 4-3.
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Initial X-ray Diffraction Results

The X-ray diffraction data was collected at the SSRL synchrotron to 1.8 Å

resolution, and the diffraction pattern of one of the frames is shown in Figure 4-15.  The

peaks were indexed with DENZO and SCALEPACK9, suggesting that C2G2CAP is in

the space group R32.  There is one molecule in each of the asymmetric units, and the

initial molecular replacement solutions indicate that C2G2CAP proteins are in C3

arrangement as trimers (Figure 4-16).  But due to the relatively high Rfree (47%), we will

need to refine the structure further or obtain experimental phases to finalize the structure.
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DISCUSSION

The specialized docking algorithm developed to model C2 symmetry related

protein dimers from monomeric proteins was used to generate the dimeric backbone

model for protein design.  One of the resulting dimer conformations from docking the

crystal structure backbone of the engrailed homeodomain was used because of its high

surface complementary and properly positioned helices.  The helices from the two

subunits stack to form the interface.  Although the helices are in parallel arrangements,

there is no resemblance to known coiled-coils.  Taking the docked dimer structure as the

scaffold for protein design, the ORBIT protein design programs were used to design the

binding interface using hydrophobicity as the main driving force for self-association.  We

generated and characterized two designs experimentally, and our designed proteins self-

assemble to form dimers.

Designing interfaces using model backbones generated by an approximated

docking method has not been attempted before, and in order to achieve the design

objectives, several important assumptions must be made (Figure 4-2).  We have no

knowledge of other competing states; also, we do not know a priori whether a sequence

exists in sequence space that could adopt the docked dimer conformation.  Furthermore,

certain published methods to deal with negative designs are not applicable due to the

relatively large number of positions involved10,11.  By carefully selecting our design

backgrounds and interface design parameters, we were able to design self-associating

dimers by optimizing only the positive design states.  The significantly reduced solubility

and stability of C2G2, compared to its background protein, SC1, could potentially be due

to our failure to capture the aggregated state, since no negative designs are explicitly

123



considered.  This should be further investigated by grafting the sequence for the binding

interface to SC1 without including the modified protein core.  The results from such a

study would indicate whether interfaces should be treated differently from protein cores

and would help determine if the use of p throughout the design positions is appropriate.

Our success with C2G2CAP is indicated by AUC experiments, but a detailed assessment

of the designed interface still requires confirmation from X-ray structures.

The disagreement between the velocity and equilibrium AUC experiments should

be addressed.  Obtaining Kds from sedimentation equilibrium experiments is more robust

than integrating curves from velocity experiments, but fitting equilibrium data can have

difficulties when multiple equilibrium states are considered.  The size-distribution

observed from the sedimentation velocity experiments suggests that C2G2CAP forms

mostly dimers, and this is in agreement with the sedimentation equilibrium results.  Non-

linear least squares fitting of the equilibrium exponentials in our case may not have

sufficient information in discriminating the relative concentrations of the monomer and

the tetramer, but despite the difficulties in analyzing the AUC experiments, the dimer is

the dominant species in the equilibrium.

Conclusion

We report the first computationally designed de novo protein homodimers using a

combination of protein docking and protein design tools.  The greatest uncertainty in such

an undertaking is the quality of the dimer model, because the rotamer selection criterion

in the protein design algorithm is very sensitive to changes in backbones.  In spite of the

approximate nature of our docking algorithm in using reduced backbones for docking,

124



our protein design algorithm was able to predict a sequence that is plausible for the

particular dimer conformation.  Both proteins with the designed interface sequence self-

assemble into dimers, each with a different affinity that is, in the first order

approximation, inversely correlated with their thermal stabilities.  The strategy of

combining docking and design algorithms for generating novel oligomers should be

applicable to a broader range of structures.  Even if the dimer conformation is not

completely novel, the docking procedure facilitates exploration around the local binding

site for alternative conformations.  We have described a general method for creating

novel dimers.
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MATERIALS AND METHODS

Generation of Dimer Models

The specialized docking algorithm for generating C2 related homodimers by

docking the backbone of a monomeric protein to itself, and the parameterization of the

reduced backbone representation used in the docking process are described in detail in

Chapter 2.  The procedure for generating the engrailed homeodomain dimer is described,

in addition to the description given in the Results section, as follows.  The arrays used for

the docking calculation were 64 by 128 by 128 in length for each of the x, y and z

dimensions.  Each element of the arrays corresponds to a 1 Å3 cube in space.  The

backbone of the wild-type engrailed homeodomain crystal structure (PDB code: 1enh)

was first centered in the space represented by the 3D grids (the initial state), duplicated to

generate the coordinates of the binding partner, which was in turn rotated 180° about the

x-axis, followed by docking using FFT correlations.  After each round of translational

evaluation, the docking program returns to the initial state, and the centered backbone

coordinates are rotated by 1° increments about the y- and the z-axes (following the rules

described in Chapter 2 for docking C2 related dimmers) before a subsequent round of

coordinate duplication and translational evaluation take place.  The top 20 correlations

were stored for each rotational position and the final list of all correlations were ranked.

The top 200 conformations generated from the ranked list were clustered based on their

structural similarities to 11 distinct dimer conformations, and each of the dimers were

visually inspected to pick out the final candidate, which in this case, is the conformation

with the second highest correlation score.
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Computational Protein Design

The positions on the docked dimer were categorized into core, boundary and

surface classes.  When compared with the wild-type classifications, the positions with

classifications that switched from surface to core, surface to boundary, or boundary to

core in the context of the dimer conformation were included in the design; this covers

positions on either subunit.  For all of the design positions except for position 13 and 29,

the following types of amino acids were allowed: Ala, Val, Leu, Ile, Phe, Tyr, Trp, Asp,

Asn, Glu, Gln, Lys, Ser, Thr, His, Arg.  Position13 and 29 allow everything listed above

but Glu and Lys.  The rotamer conformations on the equivalent positions for each of the

subunits were linked, so not only was the symmetry in amino acid identity reserved but

also the exact rotamer for each of the equivalent positions.  For positions not included in

the design calculations, their wild-type conformations were left unaltered.

The following lists all the positions designed as “core” positions: 10, 13, 14, 17,

25, 32, 7, 11, 29, 33, 35, 39, 40, 43, 44.  Those designed as “boundary” positions are: 9,

16, 18, 28.  The difference between designing positions as “core” and as “boundary” is in

the multiplication factors used for the different residue classes when computing their

solvent-accessible surface areas12.

The rotamer library used for the interface design is based on the backbone

dependent library by Dunbrack and Karplus13.  We used rotamers that cover the discrete

conformations reported by Dunbrack and Karplus and their 1 and 2 dihedral angle

expansions for all amino acid types except for Gln, Glu, Arg, and Lys – no expansions

were used for these amino acids (it is called the e2QERK0 library).
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The rotamer optimization procedure for the designed positions involves using the

HERO and FASTER algorithms in sequential order14,15.  The pairwise rotameric

interaction energy matrix was first reduced by HERO until HERO stalled without

converging, and the remaining portion was optimized by FASTER to completion.

Gene Synthesis

The DNA primer sequences used to construct C2G2 and C2G2CAP were

designed using the PRImer DEsign (PRIDE) program written by Po-Ssu Huang, which

automatically produces primer sequences for recursive PCR total gene synthesis

purposes16.  Each of the genes was constructed from four overlapping DNA oligos.  The

synthetic DNA oligos were purchased from Sigma-Genosys and Integrated DNA

Technologies, Inc.  The sequences of the constructed genes were verified by DNA

sequencing performed by the Caltech DNA sequencing facility.  The genes were cloned

into BL21(DE3) host strain for IPTG induced expression.

Expression and Purification

The proteins were expressed by IPTG induction at the late log phase of growth for

4 hours at 37 °C in LB media.  The C2G2 protein was expressed in the inclusion bodies

from the BL21(DE3) hosts (Stratagene), and was extracted from the cells by using the

EmulsiFlex-C5 homogenizer (Avestin) followed by solubilization by the addition of 8M

guanidine hydrochloride (Sigma-Aldrich).  After extensive centrifugation and filtration,

the solubilized C2G2 in guanidine hydrochloride was purified directly with reverse-phase
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HPLC (C8) using a linear 0.5 % min-1 2%/95% blend acetonitrile gradient in the presence

of 0.1% Trifluoroacetic acid (TFA) as the pairing ion.

C2G2CAP was expressed in the soluble portion of the cell extract, and was

isolated by the freeze-thaw method17 between dry ice ethanol slurry and 42 °C water bath.

The same 0.5 % min-1 gradient was used for purification on the reverse-phase HPLC C8

column (Vydac).  For the 2D NMR HSQC studies, C2G2CAP was expressed in standard

M9 minimal media using 15N-ammonium sulfate (2g/L).

The masses of the purified C2G2 and C2G2CAP were confirmed by mass

spectrometry using the matrix-assisted laser desorption ionization time-of-flight

(MALDI-TOF) method, and the purity of the samples were verified by standard SDS-

PAGE.  The protein concentrations were determined by measuring the optical density of

guanidine chloride denatured sample at 280 nm, using extinction coefficients determined

from Tyr and Trp contents.  The extinction coefficients for C2G2 and C2G2CAP at 280

nm are 13520 and 11120 (M cm)-1 respectively.

Refolding of C2G2

Lyophilized C2G2 was refolded by solubilization in 8M guanidine hydrochloride,

followed by buffer exchange.  The refolding conditions for C2G2 were based on the

FoldIt screen (Hampton Research).  The solubilized C2G2 in guanidine hydrochloride

was first rapidly diluted 50 to 100 fold into the stabilization buffer containing 55 mM

MES, 220 mM sucrose, 275 mM L-Arginine, 150 mM NaCl and 440 mM KCl, followed

by dialyzing against the final refolding buffer containing 55 mM MES, 150 mM NaCl

and 440 mM KCl, until at least one million fold dilution of the L-Argining and sucrose
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components was achieved.  The refolded sample was concentrated by putting dry PEG

800 over the dialysis tubing to draw the buffer out by osmosis.  For CD and AUC

experiments, NAP-25 columns were used to exchange the buffer to 50mM sodium

phosphate, 150 mM sodium chloride, pH 6.2.

Circular Dichroism

The circular dichroism data for measuring the secondary structure contents and

thermal stabilities of the proteins were collected on an Aviv 62A DS spectropolarimeter.

The C2G2 thermal melting curve shown in Figure 9 was collected at a protein

concentration of approximately 12 µM in a 0.1 cm pathlength cuvette using 2 °C

increment from 1 °C to 99 °C.  The C2G2CAP curve was collected with a protein

concentration of approximately 16 µM in a 1 cm pathlength cuvette, using also 2 °C

temperature steps.  At each temperature the samples were equilibrated for two minutes

before the wavelength scans between 200 and 250 nm were collected.  The signal

averaging time at each wavelength was one second.  The Tm was defined as the

temperature where the maximum of the first derivative of the signal occurs.  For all of the

CD experiments, 50mM sodium phosphate and 150 mM NaCl buffer at pH 6.2 was used.

NMR experiments

NMR spectra were collected at 4, 10, or 25 °C on a Varian UnityPlus 600 Mhz

spectrometer.  Protein concentrations were ~12 µM for C2G2 1D spectra and ~750 µM

for C2G2CAP experiments.  Buffer used for these experiments contains 50 mM sodium

phosphate, pH 6.2.
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Analytical Ultracentrifugation

Protein samples were analyzed on an XL-I analytical ultracentrifuge equipped

with an AnTi60 rotor (Beckman Coulter).  For sedimentation velocity experiments, two-

channel epon-filled centerpieces were used, and the cells were torqued to 130 lb-inch for

experiments running at rotor speeds of 60,000 rpm.  For C2G2 velocity experiments, the

data were acquired at 230 nm, 10 °C, in continuous scanning mode and at rotor speeds of

48,000 rpm.  For C2G2CAP velocity experiments, the data were acquired at 10 or 25 °C

using either absorbance optics at 230, 250 or 280 nm or Rayleigh interference optics in

continuous scanning mode (in the cases where interference optics were used, data were

collected at 5 minute intervals) and at rotor speeds of 48,000 or 60,000 rpm.  The

sedimentation boundaries were fitted to the continuous distribution of sedimentation

coefficient, c(s), model using SEDFIT8.  Data were fitting using 100 sedimentation

coefficient increments in the range of 0.1 to 5 S for 10 °C runs and 1 to 8 S for 25 °C

runs.  Time invariant noises and baseline offsets were also corrected.  Maximum entropy

regularization confidence level of 0.95 was used in all of the size-distribution analysis.

Sedimentation equilibrium experiments were carried out in 6 channel epon-filled

centerpieces.  For C2G2, the sedimentation equilibrium experiments were carried out

using three loading concentrations (13 µM, 6.5 µM, 3.25 µM) at three rotor speeds

(30,000, 35,000 and 48,000 rpm) monitored at 230 nm using absorbance optics.  For

C2G2CAP, the equilibrium sedimentation data were collected using also three

concentrations (0.6 mM, 0.2 mM, 0.066 mM) at three rotor speeds (48,000, 54,000 and

60,000 rpm) monitored with Rayleigh interference optics.  We subtracted both the

machine blanks (during data collection) and water blanks from the interference data
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before fitting.  Sedimentation equilibrium data were fitted with the program

WinNONLIN (v1.06), and the fitting statistics were listed in Table 4-2 and Table 4-3.

The theoretical reduced buoyant molar masses, , were calculated using the SEDNTERP

(v1.08) program.

Crystallization and Data Collection

C2G2CAP crystals were grown under the following buffer conditions: 0.2 M

calcium chloride dihydrate, 0.1 M HEPES – Na (pH 7.5), 28% v/v Polyethylene Glycol

400 at 4 °C.  Mixing 2 µl of C2G2CAP in 10 mM Tris and 100 mM NaCl at pH 7.6 with

2 µl of the crystallization buffer above in sitting drops forms microcrystals initially, but

large crystals will eventually grow from the drops.  Crystals of space group R32 (a =

69.242 Å, b = 69.242 Å, c = 69.222 Å) was obtained and was flash frozen in liquid

nitrogen before mounting on X-ray diffractometers.  Native crystal data were collected to

1.8 Å resolution at the SSRL synchrotron ( 40556 collected reflections, 10930 unique

reflections, 94.9 % complete; Rmerge = 4.7).  Diffraction data were analyzed using DENZO

and SCALEPACK9.
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Table 4-1. Design of The Dimer Interface

P 9 10 13 14 16 17 18 25 28 32
ID1 0.02 R N N L W F D R W S
ID2 0.03 - - - - - - - - - -
ID3* 0.04 - T L - L - - - - R

* The interface used in the experimentally characterized dimers

Designed Positionsa

a The postions whose residue classifications change from exposed to buried (surface to 
core) and from exposed to partially buried (surface to boundary) are considered 
interfacial postions and are redesigned.
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Table 4-2. C2G2 Sedimentation Equilibrium Analysis
Fix/Float 

a Modelb SRVc a

Exp. Molar 

Mass (Da)d
LnK2 Kd (µM)e

Float M-D 3.21E-03 0.7105 6174.96 0.8140 0.4972 1.123 12.22 16.77 8.97
Fix M-D 3.23E-03 0.7628 0.3179 0.0140 0.6218 20.07 27.20 14.81

a Reduced buoyant molecular weight.
b M-D refers to the monomer-dimer equilibrium model.
c Squre root of variance (or RMSD) of the fit.

e Dissociation constant determined from LnK2.  

95% conf. 
Interval

95% conf. 
Interval

d Experimental molar mass determined from  by the SEDNTERP program for data taken at 10 °C, 30,000
rpm.
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Table 4-3. C2G2CAP Sedimentation Equilibrium Analysis

Table 4-3 (continued)

Fix/Float 
a Modelb SRVc a

LnK2 Kd (µM)d

Fix M-D-Tet 1.77E-02 1.832 1.13 0.96 1.30 30 35 25
Float M-D-Tet 1.77E-02 1.733 1.53 1.34 1.72 20 24 16
Fix M-D-Tri 2.26E-02 1.832 -0.46 -0.66 -0.27 145 177 120

Float M-D-Tri 1.76E-02 2.532 -1.44 -1.59 -1.27 384 449 327

95% conf. 
interval

95% conf. 
interval

Fix/Float 
a Modelb

LnK3 LnK4
Fix M-D-Tet -0.39 -0.64 -0.13
Float M-D-Tet 0.68 0.18 1.17
Fix M-D-Tri -0.56 -0.69 -0.43

Float M-D-Tri -4.00 -4.28 -3.72

a Reduced buoyant molecular weight.
b M-D refers to the monomer-dimer equilibrium model.
c Squre root of variance (or RMSD) of the fit.
d Dissociation constant determined from LnK2.  

95% conf. 
interval

95% conf. 
interval
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Figure 4-1. The engrailed homeodomain structure based dimer.  The dimer shown is
generated by docking engrailed homeodomain structure (PDB code: 1enh) to itself with
C2 symmetry.  The dimer interface is formed between the four helices, helix-1 and helix-
2 from each of the subunits.
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Figure 4-2. Energy diagram for comparison between different associative states.
States indicated with an "*" have hydrophobic patches.  Fm is the folded monomer. F*

m is
the folded but destabilized monomer with a surface hydrophobic patch. F*

d is the folded
dimer with a designed hydrophobic interface.  The relative energies between these states
and the unfolded/aggregate/molten globule states are illustrated with energies a, b, c, d,
and e. Solid lines indicate those states that can be modeled explicitly, and a dash line is
shown for the state that is not explicitly considered. In our design model, the hydrophobic
patches are designed on the background of a stable monomeric variant, and thus a is
sufficiently deep to accomodate the destablizing effects introduced by the surface patch.
Therefore, a > c.  We avoid the undesirable states under this assumption. By introducing
a modeled F*

d state, where e > b since the exposed hydrophobic surface areas are buried,
we optimize e to indirectly maximize d. This strategy drives dimer formation by
positively designing both a and e and assumes that the destabilization of F*

m caused by
the exposed hydrophobic patch indirectly optimizes d.
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Figure 4-3. Sequence alignment for SC1, C2G2, NC3-Ncap and C2G2CAP. The
locations of the three helices in the engriled homeodomain structure are shown below the
C2G2CAP sequence.  Residue classifications as either core (c), boundary (b) or surface
(s) are shown at the bottom.
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Figure 4-4. Thr 10 burial.  The 2-fold symmetry related threonines (Thr10) in the center 
of the dimer interface forms a buried hydrogen bond.
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Figure 4-5. The phenylalanine pocket.  The exchange of phenylalanines at the interface
between the subunits creates a highly complementary hydrophobic core.
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Arg 25Arg 25

Arg 32Arg 32

Asp 12Asp 12

Figure 4-6. C-terminal capping and salt bridges. Arginines (Arg 25) from each member 
molecule form C-terminal helical caps across the dimer interface. There are also two
pairs of surface salt bridges between the arginines and aspartic acids (Arg 32 and Asp 
12). Only one is shown for each interaction type.
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Figure 4-7. The designed interface.  Positions with polar residues are highlighted in
yellow, and those with hydrophobic residues in green.  The hydrophobic residues form
the core of the interface and are surrounded by polar residues shielding the core from
solvent.
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Figure 4-8. Base titration of C2G2. The solubility of C2G2 at different pHs is measured
by titrating NaOH. At 1 mM protein concentraion, C2G2 is highly soluble at low pH (pH
2.6 to 3.8).  At pH around 3.9 to 4.8, C2G2 is partially soluble and forms a clear but
viscous gel. At pH beyond 4.8, the solubility is very low, with most of the proteins
precipitated out of the solution.
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Figure 4-9. Thermal denaturation of C2G2 and C2G2CAP. A. CD wavelength scans 
of C2G2 as a function of temperature. B. Thermal denaturation of C2G2 monitored by 
CD at 222 nm. C. CD wavelength scans of C2G2CAP as a function of temperature. D. 
Thermal denaturation of C2G2CAP monitored by CD at 222 nm.
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Figure 4-10. N15-H1 HSQC spectrum of C2G2CAP. There are 51 residues in
C2G2CAP but only about 40 peaks are shown. This is likely due to dimer formation since 
the folding of the molecule is confirmed by X-ray crystallography.
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Figure 4-11. The c(s) distribution of C2G2 and C2G2CAP at 10 °C.  The size-
distribution analysis of C2G2 and C2G2CAP shows a peak at ~0.8 S corresponding to the 
monomer and a higher molecular weight species sedimenting at ~1.2 S.  The relative 
molar mass of the two peaks is confirmed by fitting the data to c(M) model suggesting a
2:1 ratio. This is strong evidence of dimer formation.
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Figure 4-12. The c(s) distribution of C2G2CAP at 25°C.  The loading concentration of 
C2G2CAP is 2.5 mg/ml.  The dimer species becomes a more prominant peak when 
compared with Figure 4-11 due to the higher loading concentration.  Integrating the area 
under the peaks suggests that ~27% are monomer, ~72% dimer and ~1% higher order 
oligomer (possibly tetramer).
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Figure 4-13.  Sedimentation equilibrium of C2G2.  The concentrations of the monomer 
and dimer species that constitute the concentration exponentials are shown at the top, and 
the fitting residuals are shown in the center.  At the bottom are the fitting residuals for all 
of the datasets (three concentrations, three speeds).
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Figure 4-14. Sedimentation equilibrium of C2G2CAP.  Data fitting to both M-D-Tri 
and M-D-Tet models are shown.  M-D-Tri fits are on the left, and M-D-Tet fits are on the 
right.  Both fits show reasonable residuals when the reduced buoyant molar mass was 
allowed to change, but M-D-Tet fits the data best (as illustrated by the statistics in Table  
4-3).  M-D-Tri model is shown here for comparison between the different species 
concentration ratios obtained from equilibrium and velocity sedimentation experiments.  
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Figure 4-15.  Diffraction pattern from synchrotron X-ray source.  Data were
collected at the SSRL synchrotron to 1.8 Å resolution.  From the diffraction map, the
crystal is indexed by DENZO to space group R32 (see text for details).
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A B

Figure 4-16. Preliminary X-ray crystallography results.  A. The current best molecular 
replacement solution suggests a trimer arrangement of C2G2CAP.  B. The crystal packing 
of our current model.
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Appendix

Designing Good Primers with PRIDE*
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Abstract

The PRIDE (PRImer DEsign) program can be used to design good primers for gene

construction with the two-step recursive PCR method described at the end of this

appendix.  The sequence of the protein to be made is input, along with the number of

primers desired and the restriction enzymes to be used for the 5′ and 3′ cloning sites.  The

primers are designed so that the overlaps are all the same length and have the same

number of GC pairs.  This gives a similar degree of annealing at all overlaps and allows a

single optimal annealing temperature to be used for all the primers.  The program checks

for multiple occurrences of the restriction sites and warns the user of terminal nonspecific

annealing or if primer dimers are likely to form.  Primer sequences are regenerated or

modified or the user can rerun the program until all requirements are met.  The final

primer sequences can be printed out at the end along with an estimate of the cost.

155



How PRIDE Works

The user specifies the sequence of the protein to be made in an ASCII file.  The

number of primers desired and the restriction enzymes to be used for the 5′ and 3′ cloning

sites are specified interactively by answering the prompts or via an input file (see

Specifying the Parameters below).  The program takes the protein sequence input,

translates it into a corresponding DNA sequence, then adds the GC clamps, the START

codon (N-terminal methionine), the STOP codon (TAA), and the sequences for the

restriction enzymes specified at the 5′ and 3′ ends to generate an initial full length

sequence for the insert.  This is then divided up into the specified number of primers.

The overlapping regions are designed first so that they are exactly 22 nucleotides

long and have a GC content of exactly 10.  This is done by checking for GC content, and

either changing the third position of a degenerate codon to G or C if possible until there

are 10 or shifting the location of the overlap region.  This gives a similar degree of

annealing at all overlaps and allows a single optimal annealing temperature to be used for

all the primers.

Once the overlapping regions are set, the sequences of the nonoverlapping regions

are randomized.  That is, the program generates these sequences by randomly selecting

the DNA codon corresponding to each amino acid from a set of degenerate codons

preselected for good expression (> 15% occurrence) in the specified host (E. coli) (see

Table A-1 below).  Instead of always using the same codon for a given amino acid (e.g.

the one with the highest occurrence rate), randomization increases the diversity of the

primers thereby decreasing the chances of nonspecific annealing.  You can specify your

own random number seed for this process or have the program choose one for you.
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The program then checks for multiple occurrences of the specified restriction sites

and repeats the randomization until any multiples are eliminated.  If a restriction site is

found in an overlapping region, an error message is output and the program is aborted.

The final primer sequences are then listed, aligned at the overlaps.  The program

checks these for terminal nonspecific annealing and the possibility of primer dimer

formation.  If more than three terminal base pairs match, these are indicated in the output

along with a warning.

The possibility of primer dimer formation is indicated with a primer dimer score.

Each GC pair counts 3, each AT pair counts 2, and a geometrical sum is used to account

for the number of consecutive matches.  A higher score is worse.  Scores greater than 42

are listed in the output with a warning.  The user should always look at the alignment to

make sure that matches outside the overlap region are not likely to compete with the

overlap region.  If so, the program should be rerun using a different random number seed

or a different number of primers.  If desired, the user can print out a listing of the final

primer sequences and an estimate of their cost with and without PAGE purification.

Creating the Protein Sequence File

The file containing the amino acid sequence of the protein to be made is in ASCII

format and can be created or modified using a text editor.  The amino acids are specified

starting from the N-terminus using the standard 1-letter abbreviations (all uppercase).

Non natural amino acids cannot be used.  N-terminal methionine, a STOP codon, and GC

clamps will be added automatically, so do not include these when specifying your protein

sequence.  Currently, the protein sequence length is limited to 500 amino acids
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(minimum length is 8). The protein sequence file for protein G, for example, should

begin as follows:

>  TTYKLILN.....

If running the program on an SGI machine (e.g., corona), make sure to remove

any new line characters in the file.  Put the sequence file in a convenient place in your

home directory.

Specifying the Parameters

The PRIDE parameters may be specified interactively by answering the following

prompts:

1.  Name of the protein sequence file (include path if needed).

2.  Number of primers desired (even integer).

3.  Restriction enzyme for the 5′ end: (1) HindIII, (2) NdeI, (3) BamHI, (4) Pst1.

4.  Restriction enzyme for the 3′ end: (1) HindIII, (2) NdeI, (3) BamHI, (4) Pst1.

5.  Random number seed (integer or 0).

6.  Printout for ordering desired (y or n). If yes (y), then:

7.  Name of the printout for ordering file. This file lists the final primer

sequences, their cost, and the final random number seed (which may have

been incremented by the program).

8.  Primer group name. A numerical identifier will be appended to the group

name to identify each primer (e.g., group_name-1, group_name-2, etc.).
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The parameters may also be specified in an input file created previously.  They

must be listed in the order given above, each one on a new line, left justified.  Details on

how to choose the number of primers, restriction enzymes, and random number seed are

given below.

Number of Primers

The value for the number of primers (#primers) must be even and should be

chosen so that the length of each primer (including the overlaps) is less than 100 (less

than 80 is preferred).  The number of primers can be calculated from the following:

primer_length = midsection + (2 × overlap) ≤ 100

primer_length = full_length + [overlap × (#primers – 1)
#primers

full_length = full length of the insert

= (3 × #residues) + 5′terminal_length + 3′terminal_length)

5′terminal_length = 5′cloning_site_length + GCclamp = 6 + 6 = 12

3′terminal_length = 3′cloning_site_length + GCclamp = 6 + 6 = 12

overlap = 22

Restriction Enzymes

The Mayo lab is currently using two vectors, pET11-M and pET11a.  Three

unique cutting sites are available for pET11-M (HindIII, PstI, and Bam HI), and two

unique cutting sites are available for pET11a (NdeI and Bam HI).  You can choose a

single restriction enzyme for both the 5′ and 3′ ends of your insert, or you can specify two

different ones.  In general, it is better to pick two different enzymes.  Make sure they are

specified in the proper order.
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Restriction Enzyme Recognition Sequence

(1) HindIII 5′   A▼AGCTT   3′, 3′   TTCGA▼A   5′

(2) NdeI 5′   CA▼TATG   3′, 3′   GTAT▼AC   5′

(3) BamHI 5′   G▼GATCC   3′, 3′   CCTAG▼G   5′

(4) PstI 5′   CTGCA▼G   3′, 3′   G▼ACGTC   5′

Enter the appropriate number (1, 2, 3, or 4) in response to the prompt.  The enzyme to be

used at the 5′ end is specified first, followed by the 3′ end.  The following is

recommended:

Vector 5′ end 3′ end

pET11-M HindIII PstI

pET11a NdeI Bam HI

Random Number Seed

You can have the program choose the random number seed used to select the

codons for the non-overlapping regions (a different one each time), or you may specify

your own random number seed.  Using your own seed ensures that you will get the same

results if you decide to run the program again.  Enter your own favorite random number

seed (integer) or enter 0 to have the program choose one for you.

Running PRIDE

Currently, ra does not include a C++ compiler, so PRIDE cannot be run on ra.  It

should therefore be run on corona.  Log in to corona and go to the directory containing

the protein sequence file to be used.  To run PRIDE interactively, enter the UNIX

command:

~possu/bin/PRIDE
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and answer the prompts.  The results will automatically be displayed on the screen.  If

you have created an input file, specify that it be read in.  The PRIDE results may also be

saved in an output file:

~possu/bin/PRIDE < input_file > output_file

You can specify that the job be run in the background by including two “&“ as follows:

~possu/bin/PRIDE < input_file >& output_file &

Looking at the Output — the Primer Dimer Report

PRIDE generates an output file that does the following (see Sample PRIDE

Output File below):

1. Echoes input for first five parameters.

2. Lists overlap scan results for each set of primers, including the number of

positions with fixed nucleotide identity and the number of positions with

optional nucleotide identities.

3. Notes when all primer overlaps achieve GC content of 10.

4. Lists randomization process for non-overlaps.

5. Lists number of restriction sites found for the two restriction enzymes chosen.

If there is more than one occurrence for an enzyme, randomization is repeated

and the random number seed is incremented by 1.

6. Lists sequences of the final primers (aligned at the overlaps if screen is wide

enough to view it).

7. Reports any nonspecific annealing and primer dimers found.

161



You should always look at the alignment to make sure that matches outside the

overlap region are not likely to compete with the overlap region.  If so, the program

should be rerun using a different random number seed or number of primers. If specified,

the printout for ordering file is output.  This file lists the sequences of the designed

primers, their estimated cost, and the final random number seed.
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Sample PRIDE Output File

The following PRIDE output was obtained for a protein G variant.

*************************************************

*

*RECURSIVE PCR PRIMER DESIGN PROGRAM

*a software to make our life a little bit easier

*

*-by possu@caltech, 2000

************************************************

Please enter your filename:pgb

Please enter the number of primers desired:4

You have 55 residues in your target sequence

TYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE

starting magical reverse translation....

your sequence is 165 nucleotides long.

Which enzyme would you use for your 5' end cloning site:

(1) HindIII

(2) NdeI

(3) BamHI

(4) Pst1

And your selection:1

Which enzyme would you use for your 3' end cloning site:

(1) HindIII

(2) NdeI

(3) BamHI

(4) Pst1

And your selection:3

Please enter your favorite random number seed (or enter 0 for system pick):1234

Setting nucleotide overlap to be 22

----

shifting = 0

primer 1 and 2

You have 7 A.

You have 1 T.

You have 4 C.

You have 4 G.

You have 0 ATG.

You have 2 AG.

You have 4 CT.

----

163



shifting = 0

primer 2 and 3

You have 7 A.

You have 3 T.

You have 2 C.

You have 3 G.

You have 2 ATG.

You have 3 AG.

You have 2 CT.

----

shifting = 0

primer 3 and 4

You have 6 A.

You have 2 T.

You have 1 C.

You have 7 G.

You have 0 ATG.

You have 1 AG.

You have 5 CT.

You have 7 A.

You have 1 T.

You have 4 C.

You have 4 G.

You have 0 ATG.

You have 2 AG.

You have 4 CT.

8 = init count

9

10

congratulations, your oligoe 1 design is now done with no sweat.

==============

You have 7 A.

You have 3 T.

You have 2 C.

You have 3 G.

You have 2 ATG.

You have 3 AG.

You have 2 CT.

5 = init count

6

7

You have 7 A.

You have 3 T.

You have 4 C.

You have 3 G.

You have 2 ATG.
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You have 3 AG.

You have 0 CT.

7 = init count in second round check

8

9

10

congratulations, your oligoe 2 design is now done with no sweat.

==============

You have 6 A.

You have 2 T.

You have 1 C.

You have 7 G.

You have 0 ATG.

You have 1 AG.

You have 5 CT.

8 = init count

9

10

congratulations, your oligoe 3 design is now done with no sweat.

==============

randomization... making your oligoes unique!

0 = random7

0 = random7

0 = random6

1 = random7

1 = random7

1 = random6

1 = random7

0 = random6

1 = random5

0 = random5

1 = random7

0 = random5

2 = random5

0 = random7

0 = random5

1 = random7

1 = random7

0 = random5

0 = random7

0 = random5

0 = random7

1 = random6

0 = random7

0 = random7

0 = random7

0 = random5

1 = random7

0 = random6
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HindIII occured 1 time(s) in your sequence.

BamHI occured 1 time(s) in your sequence.

primer design finished, printing results:

GGCGGCGCAAGCTTATGACCTACAAACTGATTCTGAACGGTAAGACCCTGAAAGGTGAAACCACTA

TGGGACTTTCCACTTTGGTGATGACTTCGACATCTACGTCGCT

GGCGACTCTTCCAAAAGTTCGTT

CGCTGAGAAGGTTTTCAAGCAATACGCAAACGATAACGGTGTAGACGGTGAATGGACCTATGATGA

TGCCACTTACCTGGATACTACTGCGTTGGTTCTGGAAGTGGC

ATTGACTTATTCCTAGGGCCATCGA

primer 1 has undesired 3' annealing with 2 at x offset = 9.

But polymerases do not extend this type of primer dimers, skipping....

matchsumupper = 44 y_upperstart = 0

Primer dimer is likely to happen for upper primer 1 and primer 2

  GGCGGCGCAAGCTTATGACCTACAAACTGATTCTGAACGGTAAGACCCTGAAAGGTGAAACCACTA->

    |     | |   |    ||||  |     |     | |  |   |    |||||       | |

<-TGGGACTTTCCACTTTGGTGATGACTTCGACATCTACGTCGCTGGCGACTCTTCCAAAAGTTCGTT

matchsumlower = 44 x_lowerstart = 0

Primer dimer is likely to happen for lower primer 1 and primer 2

  GGCGGCGCAAGCTTATGACCTACAAACTGATTCTGAACGGTAAGACCCTGAAAGGTGAAACCACTA->

    |     | |   |    ||||  |     |     | |  |   |    |||||       | |

<-TGGGACTTTCCACTTTGGTGATGACTTCGACATCTACGTCGCTGGCGACTCTTCCAAAAGTTCGTT

matchsumlower = 45 x_lowerstart = 1

Primer dimer is likely to happen for lower primer 1 and primer 2

  GGCGGCGCAAGCTTATGACCTACAAACTGATTCTGAACGGTAAGACCCTGAAAGGTGAAACCACTA->

    |   | ||| | |   |         | |   ||         | |||| | |     | |  |

 <-TGGGACTTTCCACTTTGGTGATGACTTCGACATCTACGTCGCTGGCGACTCTTCCAAAAGTTCGTT

matchsumlower = 212 x_lowerstart = 44

Primer dimer is likely to happen for lower primer 1 and primer 2

  GGCGGCGCAAGCTTATGACCTACAAACTGATTCTGAACGGTAAGACCCTGAAAGGTGAAACCACTA->

                                              ||||||||||||||||||||||

                                            <-TGGGACTTTCCACTTTGGTGATGACTTCGACATCTACGTCG

CTGGCGACTCTTCCAAAAGTTCGTT

matchsumupper = 44 y_upperstart = 1

Primer dimer is likely to happen for upper primer 1 and primer 3

But polymerases do not extend this type of primer dimers, skipping....

primer 1 has undesired 3' annealing with 4 at x offset = 12.

But polymerases do not extend this type of primer dimers, skipping....

primer 2 has undesired 3' annealing with 3 at x offset = 21.

But polymerases do not extend this type of primer dimers, skipping....

matchsumupper = 48 y_upperstart = 1

Primer dimer is likely to happen for upper primer 2 and primer 3

But polymerases do not extend this type of primer dimers, skipping....

matchsumupper = 212 y_upperstart = 44
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Primer dimer is likely to happen for upper primer 2 and primer 3

But polymerases do not extend this type of primer dimers, skipping....

matchsumlower = 44 x_lowerstart = 1

Primer dimer is likely to happen for lower primer 2 and primer 3

  TTGCTTGAAAACCTTCTCAGCGGTCGCTGCATCTACAGCTTCAGTAGTGGTTTCACCTTTCAGGGT->

   |  |   |   |   ||| ||    |  | |   |   | |        |   | | |||   |

 <-AGTAGTATCCAGGTAAGTGGCAGATGTGGCAATAGCAAACGCATAACGAACTTTTGGAAGAGTCGC

matchsumlower = 44 x_lowerstart = 8

Primer dimer is likely to happen for lower primer 2 and primer 3

  TTGCTTGAAAACCTTCTCAGCGGTCGCTGCATCTACAGCTTCAGTAGTGGTTTCACCTTTCAGGGT->

            | | |     |  || | |  |  || | |   ||    || |  | |   |   |

        <-AGTAGTATCCAGGTAAGTGGCAGATGTGGCAATAGCAAACGCATAACGAACTTTTGGAAGAGTCGC

matchsumlower = 46 x_lowerstart = 10

Primer dimer is likely to happen for lower primer 2 and primer 3

  TTGCTTGAAAACCTTCTCAGCGGTCGCTGCATCTACAGCTTCAGTAGTGGTTTCACCTTTCAGGGT->

             | |  |  |      |  | |||||| | | |    | |  |     || |

          <-AGTAGTATCCAGGTAAGTGGCAGATGTGGCAATAGCAAACGCATAACGAACTTTTGGAAGAGTCGC

matchsumlower = 46 x_lowerstart = 13

Primer dimer is likely to happen for lower primer 2 and primer 3

  TTGCTTGAAAACCTTCTCAGCGGTCGCTGCATCTACAGCTTCAGTAGTGGTTTCACCTTTCAGGGT->

               |  |||  ||||  | || |  |  |  |  ||  | || |   || |  |

             <-AGTAGTATCCAGGTAAGTGGCAGATGTGGCAATAGCAAACGCATAACGAACTTTTGGAAGAGTCGC

primer 2 has undesired 3' annealing with 4 at x offset = 39.

But polymerases do not extend this type of primer dimers, skipping....

matchsumlower = 45 x_lowerstart = 2

Primer dimer is likely to happen for lower primer 2 and primer 4

  TTGCTTGAAAACCTTCTCAGCGGTCGCTGCATCTACAGCTTCAGTAGTGGTTTCACCTTTCAGGGT->

     |    ||     ||  |  | |||  |    ||     | |||   |  | |   | | ||

  <-TGCCACTTACCTGGATACTACTGCGTTGGTTCTGGAAGTGGCATTGACTTATTCCTAGGGCCATCGA

primer 3 has undesired 3' annealing with 4 at y offset = 18.

  CGCTGAGAAGGTTTTCAAGCAATACGCAAACGATAACGGTGTAGACGGTGAATGGACCTATGATGA->

                                                   |            ||||

                                               <-TGCCACTTACCTGGATACTACTGCGTTGGTTCTGGAAGT

GGCATTGACTTATTCCTAGGGCCATCGA

matchsumlower = 49 x_lowerstart = 2

Primer dimer is likely to happen for lower primer 3 and primer 4

  CGCTGAGAAGGTTTTCAAGCAATACGCAAACGATAACGGTGTAGACGGTGAATGGACCTATGATGA->

      |   |      | |  |  |||||| | | | |      |    |||||     |      |

  <-TGCCACTTACCTGGATACTACTGCGTTGGTTCTGGAAGTGGCATTGACTTATTCCTAGGGCCATCGA

matchsumlower = 212 x_lowerstart = 44

Primer dimer is likely to happen for lower primer 3 and primer 4

  CGCTGAGAAGGTTTTCAAGCAATACGCAAACGATAACGGTGTAGACGGTGAATGGACCTATGATGA->

                                              ||||||||||||||||||||||

                                            <-TGCCACTTACCTGGATACTACTGCGTTGGTTCTGGAAGTGGC

ATTGACTTATTCCTAGGGCCATCGA

Do you need a printout for ordering? (y/n):y
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please enter output filename:pgb.out

Primer group name:pgb

Output finished.

Sample Printout for Ordering File

The following printout for ordering was obtained after running PRIDE on a

protein G variant.

pgb-1

5'-GGCGGCGCAAGCTTATGACCTACAAACTGATTCTGAACGGTAAGACCCTGAAAGGTGAAACCACTA-3'

66mer

0.55 dollars/base * 66mer = 36.3

pgb-2

5'-TTGCTTGAAAACCTTCTCAGCGGTCGCTGCATCTACAGCTTCAGTAGTGGTTTCACCTTTCAGGGT-3'

66mer

0.55 dollars/base * 66mer = 36.3

pgb-3

5'-CGCTGAGAAGGTTTTCAAGCAATACGCAAACGATAACGGTGTAGACGGTGAATGGACCTATGATGA-3'

66mer

0.55 dollars/base * 66mer = 36.3

pgb-4

5'-AGCTACCGGGATCCTTATTCAGTTACGGTGAAGGTCTTGGTTGCGTCATCATAGGTCCATTCACCGT-3'

67mer

0.55 dollars/base * 67mer = 36.85

total cost without PAGE purification = 145.75

total cost with PAGE purification = 325.75

primers generated with random number seed:1234
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Two-step Recursive PCR

The primers designed with PRIDE should give good results when used with the

following two-step recursive PCR method.  Since all the primers have the same overlap

length (22 bp) and the same GC content, a single annealing temperature can be used

during gene synthesis:

Tanneal = Tm (overlap) − 5 ˚C

= 64 ˚C− 5 ˚C

= 59 ˚C

Step 1:  Gene Synthesis

♦ 4 pmol of each oligo

♦ 0.25 mM dNTPs

♦ 2.5 U Pfu

♦ Pfu buffer

♦ 100 µl total volume

♦ 25 cycles:

30 sec at 95 ˚C

30 sec at Tm (overlap) − 5 ˚ C=  59 ˚C

2 min at 72 ˚C

final 10 min extension at 72 ˚C
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Step 2: Amplification of Full Length Product

♦ 10 ml of the first reaction

♦ 50 pmol of each amplification oligo

♦ 0.25 mM dNTPs

♦ 2.5 U Pfu

♦ 100 ml total volume

♦ 30 cycles:

30 sec at 95 ˚C

30 sec at 45-50 ˚ C

2 min at 72 ˚C

final 10 min extension at 72 ˚C
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Table A-1.  DNA Codons Used for E. coli

A   R   N   D   C   Q   E   G   H   I   L   K   M   F   P   S   T   W   Y   V
Ala Arg Asn Asp Cys Gln Gly Glu His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
GCA CGC AAC GAC TGC CAA GAA GGC CAC ATC CTG AAA ATG TTC CCA TCC ACC TGG TAC GTA
  G   T       T   T   G   G   T   T   T       G       T   G   T   T   T   T  G
  T
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	Text1: *Adapted from ORBIT manual, Chapter 18, written by Marie Ary


