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Chapter 8.  Optimal Control 
 

 

 An interesting attribute of an RFA network is its physically imposed performance 

minimum; i.e. the minimum J which is physically possible due to constraints (5.15a) and (5.15b), 

for a given acceleration input ag and initial condition w0.  Recall that in Chapter 4, J was 

optimized.  However, this optimization was performed assuming a constant-damping relationship 

between the states in and the control force (i.e., the matrix Z was assumed to be constant).  The 

Damping-Reference controllers proposed in the previous chapter are guaranteed to perform at 

least as well as the constant-Z control law, but clearly they are sub-optimal in comparison to the 

absolute minimum on J imposed by the physical constraints. 

 The goal of this chapter is to develop a method for calculating the physical limit on J, 

given the Nominal System Model (i.e. the structural dynamic model, RFA network properties Cc 

and fmax, and connectivity matrix N), initial condition w0, and acceleration input ag,  It should be 

emphasized that this discussion does not necessarily concern real-time feedback control.  Rather, 

the problem at hand is to solve for the optimal physically-realizable u, assuming that the entire 

earthquake record ag(t) is known a priori.   

As such, it is reasonable to ask what purpose this analysis might have.  Consider a 

scenario where actuators are being designed for a given structural application.  It is necessary in 

such a case to determine the number of actuators to be used, the types and ratings of machines to 

be used, the manner in which to distribute them about the structure, and so forth.  To measure the 

quality of a given configuration of devices in a given structure, a typical procedure would be to 

design the devices, design a feedback control law relating the structural deformation w to the 

control input u, and then see how the closed-loop system performs.  The problem with this 

approach is that it couples the assessment of the actuators with the assessment of the control law.  

This is inconvenient, because it is impossible to tell whether an actuation system is performing 

badly because the hardware is inadequate for the demands of the application, or because the 

control law is not using the existing hardware to its full potential.  If the situation is the former, 

then no amount of control law redesign will ever yield the desired level of performance.  If the 

situation is the latter, however, it may be that redesign of the control law could yield acceptable 

results.  By evaluating the optimal J for a set of earthquake records, or obtaining its statistics for a 

stochastic earthquake model, conclusions can be drawn about the quality of the actuation system 

hardware, which precede the design of the control law.  As such, an assessment of the optimal 
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performance is appealing because it allows for a more intelligent preliminary actuator hardware 

design. 

 The research reported in this chapter concerns the applications of fundamental optimal 

control theory, as applied to energy-constrained actuation systems.  Although the ideas are 

framed in the context of RFA networks, they are readily transferable to semiactive systems.  This 

problem has received some attention in a semiactive context, both in suspensions (Hrovat et al. 

1988; Tseng and Hedrick 1994) and in earthquake engineering (Yamada and Kobori 2001). 

The work in this chapter lays the foundation for this problem.  However, there remain 

some unresolved difficulties.  In particular, these stem from the fact that the optimization problem 

at hand is in general nonconvex.  Thus, the development begun in this chapter is left open-ended 

and, consequently, this material should be viewed more as a work in progress than as a finished 

product. 

8.1:  The Optimal Control Problem 

 Consider a solution to Eq. (5.13), over a time interval t∈[0,tf], with initial condition 

w(0)=w0 and acceleration ag∈C[0,tf].  Then clearly there is an affine relationship between 

functions w and u; i.e. 

 ( )( ) ( )0 0
0

( ) , . ; , e e ( ) ( )
t

t
g u a gt t a a dτ τ τ τ− 

= = + + 
 

∫A Aw W u w w B u B  (8.1) 

However, not all u∈ℜm×C[0,tf] satisfy u(t)∈U(w(t)) for t∈[0,tf], and the following definition 

characterizes the set of u for which this condition holds. 

 

DEFINITION:  For the dynamic system in (5.13), define Fu(w0,ag) ⊂ ℜm×C[0,tf] as 

 ( ) ( )( )( ){ }0 0, [0, ]  |  , . ; ,   ,   [0, ]m
u g f g fa C t t a t t= ∈ℜ × ∈ ∀ ∈w u u W u wF U  (8.2) 

An input u∈Fu(w0,ag) is called Feasible, given w0 and ag. 

 

Thus, Fu(w0,ag) is the largest set in ℜm×C[0,tf] of control inputs which are physically possible for 

the NSM. 

 With this terminology, the performance measure J is redefined in an equivalent form to 

that proposed in Chapter 4. 

 

DEFINITION:  The deterministic performance measure J : Fu(w0,ag) a ℜ+ is defined as 
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 ( ) ( ) ( )( ) ( )( )0 0
0

; , , , . ; , ;
ft

g g gJ a t t a a t dtφ= ∫u w u W u w  (8.3) 

where φ ≥ 0 is of the form 

 ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )
( )
( )
( )

1
1 2, ;

a
T T T

g g a
T T
a a a g

t
t t a t t t t a t t

a t
φ φ

  
   = +     
     

Q S Q w
u w w w u S R S u

Q S R
 (8.4) 

and where the following properties hold: 

 1 0w wφ∇ ⊗ ∇ ≥  (8.5a) 

 0>R  (8.5b) 

 0T− ≥Q SRS  (8.5c) 

where ∇w is the gradient with respect to w, and ∇w⊗∇w is the Hessian operator.  Together, these 

properties guarantee that φ is convex in u and semiconvex in {w,u}.   

 

Note that it has been assumed that R is positive definite.  Recall that this is true if the 

optimization weight of each story acceleration is nonzero and N is nondegenerate, or if additional 

weights have been added to R to favor small values of u. 

The constraints on u in Eq. (6.6) are such that Fu(w0,ag) is compact.  It follows from this 

observation, together with the fact that J is continuous and bounded, that there must exist a set of 

u∈Fu(w0,ag) for which J is minimal.  This set will be denoted as Uopt; i.e. 

 ( ) ( ) ( ) ( ){ }0 0 0 0,   |  ; , ; ,  , ,opt u g g g u gU a J a J a a= ∈ ≤ ∀ ∈u w u w u w u w% %F F  (8.6) 

In terms of these quantities, the optimal control problem statement can be given as follows: 

 

OPTIMAL CONTROL PROBLEM (OCP):  Find at least one uopt∈Uopt as defined in Eq. 

(8.6), and the associated optimal performance Jopt as defined in Eq. (8.3). 

 

 In Section 8.2, necessary conditions are derived for the solution of the theoretical OCP.  

It is shown that uopt must satisfy a nonlinear two-point boundary value problem, and 

characteristics of uopt are discussed.  However, satisfaction of this boundary value problem, on its 

own, is in general not sufficient to guarantee uopt yields the globally-optimal performance.  

Sufficiency for global performance minimization can be obtained through the derivation of the 

solution to the Hamilton-Jacobi-Bellman equation, discussed in Section 8.3.  However, the 

numerical demands for the derivation of this solution are prohibitive for all but the most simple 
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structural systems.  In Section 8.4, the OCP is numerically solved for free-vibrating SDOF 

systems, with one control actuator, and various performance measures.  Finally, Section 8.5 

summarizes the findings of this chapter, and discusses the next logical steps in the progression of 

this research. 

8.2:  Necessary Conditions for Local Optimality 

 To find necessary conditions for u∈Uopt, the calculus of variations is used.  The structure 

of this section is an application of the general optimal control problem with input-state 

constraints, which has been presented extensively in the literature (e.g. Kirk 1970; Stengel 1994).  

Because the proofs of the claims made in this section are somewhat lengthy, and because they are 

an application of a well-known body of theory, they have been relegated to an appendix. 

Eq. (8.6) yields a variational statement necessary for u∈Uopt, as 

 ( ) ( ) ( )0 0δ ; , 0 δ ,opt g u gU J a a∈ ⇒ ≥ ∀ + ∈u u w u u wF . (8.7) 

where δu is an infinitesimal variation.  Substituting (8.3) for J above gives 

 ( )( ) ( )( )ft

00
δ , . ; , , 0   adm. δopt gU t a t dtφ∈ ⇒ ≥ ∀∫u W u w u u  (8.8) 

where admissible variations in δu are those notated in (8.7).   

 The following lemma gives the implications of the variational statement in (8.8), making 

use of Lagrange multipliers to enforce the constraints on u.   

 

LEMMA 8.1:  A necessary condition for uopt is that there exist integrable functions p(t)∈ℜ2n, 

λ(t)∈ℜm, and λR(t)∈ℜ, over the interval t∈[0,tf] such that 

( ) ( )( ) ( ) ( ) ( )11 1
2 2( ) 2 ( ) ( ) ( ) ( )T T T T T

opt u R u u a gt t t t t t a t tλ −  = − − + + − + + ∈ u B w R I λ S RB w B p S wU  

  (8.9) 
where p satisfies the final-value problem 

 ( ) ( )1( ) ( ) ( ) ( ) ( ) ( ) ( )   ,   ( )T T
w R u opt a g ft t t t t t a t tφ λ= −∇ − − + − − =p w Qw S B u A p Q p 0&  (8.10) 

and where λ and λR must satisfy the following constraints for all t∈[0,tf]: 

 max( ) 0 ( )k k kt u t uλ > ⇒ =  (8.11a) 

 max( ) 0 ( )k k kt u t uλ < ⇒ = −  (8.11b) 

 ( )( ) 0   ,   ( ) ( ), ( ) 0R R optt t P t tλ λ≥ =u w  (8.11c) 

proof:  See appendix A8 
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 The dynamic states p, called the costate or adjoint system, constitute a set of Lagrange 

multipliers which constrain w to obey its differential equation, enforcing the constraint between w 

and u arising from equation (8.1).  The Lagrange multipliers λR and λ enforce conditions (5.15a) 

and (5.15b) respectively.  Constraint equations (8.11a-c) constitute a property called 

complementary slackness, which arises from the fact that the constraints in (5.15) are inequalities.  

Greater detail concerning these Lagrange multipliers is included in the proof to Lemma 8.1. 

To interpret the observations of Lemma 8.1, Lemma 8.2 below makes some conclusions 

regarding the uniqueness of the solutions to Eqs. (8.9) and (8.11c). 

 

LEMMA 8.2:  For the conditions of Lemma 8.1, the following are true: 

a) There exists a unique mapping U:ℜ2n×ℜ2n a ℜm such that 

  ( )( )( ) ( ), ( );opt gt t t a t=u U w p  (8.12) 

Specifically, uopt is related to w and p by 

  ( )
( )( )

( ) ( ) ( ) ( ) ( ) ( ){ }1
2arg min T T T T

opt u a g
t

t t t t t t a t
∈

 = + + + 
u w

u u Ru u Sw B p S
U%

% % %  (8.13) 

b) There exists a mapping ΛR : ℜ2n×ℜ2n a ℜ such that 

  ( ) ( ) ( ) ( )( ), ;R R gλ t Λ t t a t= w p  (8.14) 

This mapping is bounded for all {w(t),p(t)}∈ {ℜ2n−N(Bu
T)}×ℜ2n, where N(.) denotes the null 

space of the operator.  The mapping is unique for almost all {w(t),p(t)}.   

c) The product ΛRU is bounded for all {w(t),p(t)}∈ ℜ2n×ℜ2n and is unique for almost all 

{w(t),p(t)}. 

proof:  See appendix A8 

 

Note that if ua is defined as 

 1 T
a u a ga−  = − + + u R Sw B p S  (8.15) 

Then, Eq. (8.13) can be restated by completing the square, as 

 ( )
( )( )

( ) ( )arg minopt a
t

t t t
∈

= − R
u w

u u u
U%

%  (8.16) 

Thus, the optimal control consists of the instantaneous clipping action, described in Chapter 6, 

operating on a signal which is linear in w and p.  Thus, the optimal control is a Clipped-Linear 

controller.  Because the vector p(t) depends on future values of ag, the linear term (and therefore 



 

 

 

210 

the controller) is noncausal.  Note that the Clipped-Linear controllers from Chapter 6 can be 

viewed as approximations of the optimal controller, where the quantity Pw(t) is an approximation 

of the noncausal p(t) term.  However, it is in general difficult to quantify the error of this 

approximation without solving the OCP directly. 

 From the observations in Lemmas 8.1 and 8.2, it can be concluded that uopt = U(w,p;ag) 

must be a solution to the differential equation 

 

( )
( )

( )
( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( ), ; , ;

a
gTT

w a

u
g R g

u

t t
a t

tt t

t t a t Λ t t a t

φ
        

= + +         −∇ −− −       
  

+ +    −−   

0w w BA 0
wp p QQ A

0B
U w p U w p

BS

&

&
 (8.17) 

with boundary conditions 

 ( ) ( )00 , ft= =w w p 0  (8.18) 

Thus, the optimal control uopt must admit a solution to the nonlinear two-point Boundary Value 

Problem (BVP) described above.  

 Observations a and c of Lemma 8.2 imply that the derivatives of {w,p} are finite; i.e. that 

w and p are differentiable.  However, these conditions do not imply that w and p are smooth.  

Rather, their derivatives may possess discontinuities where the values of λR(t)u(t) or λ(t) “jump” 

from one value to another.  Here, no claim is made as to the continuity of λR(t)u(t) and λ(t).   

 The observations in Lemmas 8.1 and 2 make it possible to present the theorem below, 

which is the main result of this development. 

 

THEOREM 8.3:  The optimal structural response for an RFA network yields solutions 

w∈ℜ2n×C[0,tf] and p∈ℜ2n×C[0,tf] to the nonlinear two-point boundary value problem stated in 

Eq. (8.17).  Furthermore, uopt is uniquely determined from w and p.   

proof:   The existence of a solution {w,p} follows immediately from the facts that Fu(w0,ag) is 

compact and J is convex in {u,W(u)} (thus guaranteeing that a minimal u exists) and because the 

conditions of Lemma 8.1 are necessary for any extremal u.  The rest of the proof follows 

immediately from Lemma 8.2.   

 

Theorem 8.3 does not state that the solution to the boundary-value problem is unique.  It 

merely states that there exists an optimal control uopt, which satisfies the conditions of the BVP.  

There may be other solutions which are locally optimal in J, but which do not yield the global 

minimum.  Because J is a convex functional, proof that the extremal control is unique (i.e. that 

there is exactly one u satisfying the constraints of the two-point BVP) would be sufficient to 
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ensure that the necessary conditions discussed above yield a global minimum.  However, this is in 

general difficult to prove, because of the role of λR(t) in the differential equation.  If the BVP has 

multiple solutions, then the fact that Fu(w0,ag) is a nonconvex domain implies that there may be 

multiple local minima on its boundary, despite the convexity of J.  This will be discussed in 

greater detail in the next section. 

Because of these issues, direct application of these concepts to the derivation of the 

optimal performance remains an unsolved problem.   

8.2.1:  Comparisons with Related Optimal Control Problems 

 For systems with different types of constraints on u, analogous optimal control problems 

can be solved.  Two related problems relevant to the present study are those for semiactive and 

active control systems.   

 

Optimal Semiactive Control 
Analogies can be drawn to the optimal control of semiactive systems, in which the active 

feedback and clipping action operations also appear, although customarily presented in a different 

way (Karnopp 1983; Margolis 1983; Tseng and Hedrick 1994).  If the same actuators used in the 

RFA network were operated as semiactive devices (i.e. if they were not allowed to share power 

with each other), then a BVP for uopt could be developed which is analogous to the one presented 

in equation (8.17).  Mathematically, the difference between the OCPs for semiactive and RFA 

systems would be that for semiactive systems, constraint (5.15a) would be changed to 

 ( ) ( ){ } { }2 0     ,     1..T
k u kk

u t t u k m+ ≤ ∀ ∈B w  (8.19) 

to reflect the fact that each uk must dissipate electrical energy independently of the others.   

It can then be shown that the optimal control for semiactive systems must satisfy 

equations analogous to Lemma 8.1, except that Eq. (8.9) would become 

( ) ( ) ( ) ( ) ( )
1

1 1
2 2

1

ˆ ˆ( ) 2 ( ) ( ) ( ) ( )
m

T T T T T T
u Rk k k u u a g

k
t t t t t t a t tλ

−

=

   = − − + + − + + ∈    
∑u B w R e e λ S RB w B p S wU

  (8.20) 

and the differential equation for p would be 

( )1
1

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )   ,   ( )
m

T T T
w Rk k k u a g f

k
t t t t t t a t tφ λ

=

 = −∇ − − + − − = 
 

∑p w Qw S e e B u A p Q p 0&  (8.21) 
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where êk is the unit vector in direction k, and λRk(t), k∈{1..m}, are Lagrange multipliers which 

enforce constraint (8.19).  Similarly to Eq. (8.11c), each of these multipliers must satisfy the 

complementary slackness condition 

 { }( ) { }20 , 0 , 1..T
Rk Rk k k u k
λ λ u u k m≥ + = ∈B w  (8.22) 

With Eqs. (8.20) and (8.21) substituted for (8.9) and (8.10) respectively, the optimal u for 

the semiactive system can be described as a BVP in the same way as for the RFA network.  

Conclusions similar to Lemma 8.2 can also be drawn, and u(t) can be expressed in the manner of 

Eq. (8.16), with the same ua(t).  However, for the semiactive system, the region of admissible u(t) 

values would be a subset of U(w(t)), and the minimization in Eq. (8.16) would be taken over this 

subset. 

Because of the similarity of the OCPs for semiactive and RFA systems, many of the 

conclusions drawn in this section are applicable to both.  In fact, the majority of the theory 

developed in this chapter may be applied to the semiactive OCP with minimal changes. 

 

Optimal Unconstrained (i.e. Active) Control 
 The results derived here for RFA and semiactive systems can also be related to the 

classical results for unconstrained optimal control and regulation.  As the absence of constraints 

on u implies an external power source for the control system, these results apply to ideal active 

control systems.   

 It is possible to present Eq. (8.17) in an alternate format which is more explicit in its 

illustration of how the Lagrange multipliers influence the BVP.  It follows from Lemma 8.2 that 

there exists a unique λ(t) vector for almost all {w(t),p(t)}.  Thus, the multipliers λ(t) and λR(t) 

may both be viewed as feedback functions of w(t) and p(t).  Using Eq. (8.9), the BVP may then 

be written as 

( )( ) ( )
( )

( )( ) ( )( ) ( )( ) ( ) 0

( )
( )    ,   (0)   ,  ( )

( ) wp R w a R g R f

tt
λ t t λ t a t λ t t t

tt λ
  

= + + + = =  
   

ww
F f w F F λ w w p 0

pp
&

&

  (8.23) 

where 

 
( )

( ) [ ] ( )

1
2

1 1 1 1
4 2 2 2

1 1 1
2 21

2

2

T
u u

wp R T T T T T
u u u u u u

Tu T
R u u R T

u u u

λ

λ λ−

 −
=  − − + + − + 

−    + + − +    −   

A B B 0
F

Q B RB B S SB A B B
B 0 0

R I S RB B
S B R B B 0

 (8.24a) 
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 ( )( ) ( )( )1

0
w T

w
t

tφ
 

=  −∇ 
f w

w
  (8.24b) 

 ( )
( )

( )( )

1

1

2

2
a u R a

a R
a R u R a

λ
λ

λ λ

−

−

 − +
=  

− + + +  

B B R I S
F

Q S B R I S
 (8.24c) 

 ( ) [ ] 12u
R R

R u

λ λ
λλ

−− 
= + + 

B
F R I

S B
  (8.24d) 

This form of the BVP is useful because it shows explicitly the way in which the Lagrange 

multiplier λR(t) modifies the differential equation.  It can be viewed as a time-varying parameter 

that modifies the matrices above.  If constraints (5.15a) and (5.15b) were not enforced, this would 

be equivalent to fixing λR=0 and λ=0 in the above problem, in which circumstance the matrices 

above would become 

 ( )
1 1

1 10
T T

u u u
wp T T T

u

− −

− −

 − −
=  − + − + 

A B R S B R B
F

Q SR S A SR B
 (8.25a) 

 ( )
1

10 a u a
a

a a

−

−

 −
=  − + 

B B R S
F

Q SR S
  (8.25b) 

and so in this case, the BVP becomes 

 ( )
( )
( )

( )( ) ( ) 0

( )
0 0 ( )   ,   (0)   ,  ( )

( ) wp w a g f

tt
t a t t

tt
  

= + + = =  
   

ww
F f w F w w p 0

pp
&

&
 (8.26) 

This BVP is a classical result of optimal active control, and it can be readily shown that there 

exists exactly one solution if conditions (8.5a-c) are met.  In the particular circumstance that fw = 

0 (i.e. if the optimization function involves only quadratic terms in w) then Eq. (8.17) becomes a 

linear differential equation, and the problem reduces to the Linear Quadratic (LQ) Control 

problem.   

8.2.2:  Optimal Damping, Revisited 

 Recall Eq. (5.16), which related u(t) to w(t) through the matrix Z.  It was shown that if Z 

satisfied the relation in Eq. (5.20), then u(t) would be guaranteed to satisfy constraint (5.15a).  In 

that analysis, Z was constrained to be constant in time, but clearly any control input 

 ( ) ( ) ( ) ( )( )1 1
2 2   ,   T

ut t t tσ= − − ≤u Z B w Z I  (8.27) 

will result in satisfaction of (5.15a) over the entirety of the interval [0,tf].  
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 From this perspective, the matrix Z(t) becomes the control signal, and the system 

differential equation can be written as 

 ( ) ( ) ( ) ( ) ( )T
u u a gt t t t a t= − +w Aw B Z B w B&  (8.28) 

This variable-structure differential equation has a form which is often called bilinear (Mohler 

1970) because it is linear in state and control variables independently, but nonlinear in both.   

By the same reasoning used in the previous chapter, for situations where constraint 

(5.15b) may be taken for granted (i.e. for problems where w is small or where R is large), it 

follows that u∈Fu(w0,ag) if and only if constraint (5.15a) holds over [0,tf].  In light of this fact, the 

following observation relates the analysis of Chapter 4 to the optimal control problem studied in 

this chapter. 

 

LEMMA 8.4:  If constraint (5.15b) is disregarded, then  

( ) ( ) ( ) ( ) ( ) ( )( )1 1
0 2 2,    |    and    ,   0,m m T

u g u fa t t t t t t tσ×∈ ⇔ ∃ ∈ℜ = − − ≤ ∀ ∈   u w Z u Z B w Z IF   

  (8.29) 

proof: See appendix A8. 

 

 Another way of stating the above lemma is that for the domain of Z(t) expressed by Eq. 

(8.27) and with w(t) constrained by Eq. (8.2), the mapping from Z(t) to u(t) has a range space 

equal to Fu(w0,ag).  Thus, if constraint (5.15b) is disregarded, the OCP may be viewed as an 

optimization of the time-varying damping matrix Z(t), and the optimal u implies at least one 

corresponding optimal Z; i.e. Zopt.  If (5.15b) is disregarded, this implies that λ=0, and the most 

general condition for Zopt(t) is 

 ( )( ) ( ) ( ) ( ) ( )1 1 1
2 22 ( ) ( )T T T T T

R u u a g opt ut t t a t t tλ −  + − + + =  −   R I S RB w B p S Z I B w  (8.30) 

where the value of the Lagrange multiplier λR(t) can be interpreted as constraining Zopt(t)−½I to a 

maximum singular value of ½.   Note that, as there are m2 unknowns for Zopt(t) and only m 

equations, there are in general an infinite number of damping matrices yielding optimality.  This 

differs from semiactive control systems, where the diagonality constraint on Zopt(t) results in a 

one-to-one relationship between Zopt and uopt∈Uopt. 

Consider Z(t) and u(t) related by 

 ( )
( ) ( )

( ) ( )1 T
T T

u

t t t
t t

 −
=  

 
Z u u

u B w
 (8.31) 
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Note that this relationship results in a feasible Z(t) if u(t) is feasible.  It can be concluded that if 

u∈Fu(w0,ag), then there exists a feasible Z which is symmetric for all t∈[0,tf].  Resultantly, the 

effect of any constant asymmetric damping matrix, as studied in the previous chapter, can always 

be replicated by a time-varying symmetric matrix.  Thus, the idea of “skew damping” is not 

meaningful for RFA networks, in the deterministic time-varying sense.  Furthermore, it can be 

concluded from the above that there always exists a time-varying, symmetric optimal damping 

matrix.   

8.3:  Global Performance Minimization 

8.3.1:  Gradient Methods 

 The most common approach to the derivation of uopt involves asymptotic gradient-based 

methods (Stengel 1994).  In order for this approach to be meaningful in this context, it must be 

shown (or assumed) that all inputs u corresponding to local minima yield the same J.  Otherwise, 

it is possible that the method will converge to a local minimum in Fu(w0,ag) which is not globally 

optimal.  In general, these assurances are hard to make for RFA networks.   

 In the simplest application of a gradient-based method to this problem, the regenerative 

constraint (5.15a) is first converted to a penalty function.  To do this, the Lagrange multiplier λR 

is set to zero and φ is augmented to 

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ){ }1, ; , ; max 0, ,g gt t a t t t a t P t tε εφ φ= +u w u w u w  (8.32) 

where ε is a small positive constant.  Consider that if u(t)∈U(w(t)), then φε=φ.  However if 

u(t)∉U(w(t)), this results in φε>φ.   The integration of φε gives an augmented performance Jε.  As 

ε is made arbitrarily small, the addition of the penalty function to the performance measure 

therefore results in an arbitrarily large Jε for u∉Fu(w0,ag), while u∈Fu(w0,ag) will result in Jε=J.   

 For a given ε, the optimal control u is found as follows.  Starting from initial guess for u, 

gradient methods operate by iteratively re-solving for successive, more favorable u functions.  

For iterative cycle k, let the input function be uk.  With this input, wk is solved through Eq. (8.1).  

Then, the corresponding costate vector pk is solved.  With the penalty function above, and λR=0, 

the differential equation for pk becomes 

( ) ( )( ) ( )
( ) ( )( )

( ) ( ) ( )1

hvs ,k kT T
k w k k u k k a g

P t t
t t t t t a tφ

ε
   = −∇ − − + − −  
 

u w
p w Qw S B u A p Q&   

  (8.33) 
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where hvs[.] is the Heaviside step function.  With final condition pk(tf)=0, this equation can be 

solved.  With uk, wk, and pk known, it is then possible to find the sensitivity of Jε to uk.  Defining 

the Hamiltonian as 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ), ; T
g u a gt t a t t t t a tε εφ= +  + +  w u p Aw B u BH  (8.34) 

it can then be shown (see proof to Lemma 8.1) that, for an infinitessimal perturbation δu, 

 ( )( )
0

ft

uJ t dtε εδ δ= ∇ ⋅∫ uH  (8.35) 

It follows that the designation of uk+1 as 

 { }
max

1 satk k u εβ+ = − ∇
u

u u  H  (8.36) 

for β positive and small, should reduce the value of Jε.   

 Thus, by repeating the above-described iteration, the value of uk will converge upon a 

local minimum as k→∞.  By repeating this process for successively small ε, using the previous 

optimized u as the initial guess for the next ε value, the resultant optimal u will correspond to a 

local minimum in Fu(w0,ag) as ε→0.   

 The gradient method is an intuitive way of minimizing the functional J in the feasible 

input space.  It also has the appealing feature that, as the size of the system becomes large, it 

requires small computational and data storage resources in comparison to some other methods.  

However, as mentioned, it works on the assumption that either there is exactly one u∈Fu(w0,ag) 

corresponding to a minimum in J, or at least that all local minima in Fu(w0,ag) yield the same J.   

8.3.2:  Nonconvexity 

 The conventional wisdom concerning proofs of global optimality concerns convex 

analysis.  It is a well-known fact that a locally optimal solution of a convex function J(u,w), over 

a convex domain {u,W(u;w0,ag)}, exists and is unique.  Thus, under these circumstances, it is 

immediate that any u yielding a local minimum also yields the global minimum.   

For the problem at hand, it can be readily proven that J(u,w), constrained to the domain 

{u,W(u;w0,ag)}, is convex.  This follows directly from properties (8.5a-c).  Furthermore, because 

the system differential equation is linear, the set {u,W(u;w0,ag)} is a convex domain for 

u∈ℜm×C[0,tf].  Thus, if the admissible inputs u were unconstrained, the optimization problem 

would become convex, the BVP would have a unique solution, and thus uopt would be unique. 

However, the constraint u∈Fu(w0,ag) must also be enforced, and Fu(w0,ag) is nonconvex 

on {u,W(u;w0,ag)}.  This can be shown by observing that condition (5.15a) is equivalent to  
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 ( ) ( )
( )
( )

1
2

1
2

0
T

T T u

u

t
t t

t
   

  ≤    
  

uI B
u w

wB 0
 (8.37) 

The boundary of the region in {u(t),w(t)} space created by this inequality is hyperbolic.  This 

becomes clear when the above is rewritten in the equivalent form 

 ( ) ( )
( )
( )

1
2

1 1 1
2 2 2

0
T

T T u
T

u u u

t
t t

t
        ≤        −     

I 0 uI 0 I B
u w

B B w0 I 0 B
 (8.38) 

To show that Fu(w0,ag) is nonconvex on {u,W(u;w0,ag)}, consider that for two feasible 

trajectories {u1,w1} and {u2,w2}, the linearity of the differential equation implies that a weighted 

average of u1 and u2 (i.e. u=α1u1+α2u2 with α1,2>0 and α1+α2=1) results in a similarly weighted 

trajectory (i.e. w=α1w1+α2w2).  If at some time t both control-input trajectories 1 and 2 lie on the 

boundary expressed by the inequality above, then it follows from the nonconvexity of this 

boundary that for some weighted average of the two trajectories, the above condition may be 

violated. 

 The nonconvex nature of the optimization problem means that there may be local minima 

on the boundary of Fu(w0,ag) which are not global minima.  Gradient-based methods of numerical 

computation for the uopt may therefore yield erroneous results.  (It is worth noting that this is also 

true, although seldom observed, for the semiactive optimal control problem.)   

 In this section, Hamilton-Jacobi-Bellman theory is discussed, which circumvents 

problems arising from the nonconvex nature of the optimization.  However, in exchange for this 

favorable attribute, this method presents other more practical difficulties.  It involves numerical 

quadrature on the system state space, and therefore requires the assembly and manipulation of 

arrays which grow geometrically with the state number and grid resolution.  Specifically, if each 

state dimension is allocated nw grid points, then the resultant grid size will be nw
2n.  Thus, if a 

reasonable resolution is given for nw (say, 100) then the grid size grows with the number of 

degrees of freedom like 10,000n.  It is therefore only usable for systems with very few degrees of 

freedom (i.e. 2 or 3).   

8.3.3: Sufficient Conditions for Global Optimality 

 Even for problems which involve optimization over nonconvex domains, a sufficient 

condition for global optimality may be found in the Hamilton-Jacobi-Bellman equation for the 

optimal performance, Jopt.  This equation starts from an intuitive reasoning.  Let Jopt be the 

performance evaluated over an optimal trajectory {w,u}, for an initial condition w0 and time 

interval [0,tf].  Let ts∈(0,tf) and let w(ts)=ws.  Then it follows that the trajectory {w,u} over [ts,tf] is 

the solution to the OCP over this interval, given initial condition ws.   
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This line of reasoning gives rise to the definition of a function V(ws,ts), which is equal to 

the optimal performance over the interval [ts,tf], with initial condition ws.  Theorem 8.5 below 

states that, because of the above reasoning, V must satisfy a partial differential equation (PDE) 

which is sometimes called the recurrence relation. 

 

THEOREM 8.5: (Hamilton-Jacobi-Bellman)  If the function V(ws,ts) is a solution to the PDE 

 ( )( ) ( ) ( )s s s s s s s s s, , ; ,g u a g
s

V t a V t a t
t

φ∂
= − − ∇  + +  ∂ wu w w Aw B u w B  (8.39) 

with the boundary condition 

 ( )s , 0fV t =w  (8.40) 

and where us is defined as a solution to 

 ( )
( )

( ) ( )
s

s s s, arg min , ;s g w s u a g st a V a tφ
∈

 = + ∇  + +   
u w

u w u w Aw B u B
U%

% %  (8.41) 

then 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )s 0 s,    ,   0 . ,.u a g optt t t t a t U= + + = ⇒ ∈w Aw B u w B w w u w&  (8.42) 

and 

 ( ) ( )0 0, ,0opt gJ a V=w w  (8.43) 

proof: The proof is standard.  For examples, see (Stengel 1994) or (Kirk 1970). 

 

 In this particular problem, the expression for us is 

 ( )
( )

( ) ( )
s

1
s s s s s s s, arg min ,T T T

a g u wt a t V t−

∈
 = + + + ∇  Ru w

u w u R S w S B w
U%

%  (8.44) 

Note that this is the clipping action operation from equation (8.16), where p = ∇w
TV.   

In general, there is no closed-form solution to Eq. (8.39), and it must be solved 

numerically for the optimal trajectory.  In the appendix to this chapter, a simple numerical 

approach for this optimization is presented.  In the next section, Eq. (8.39) is solved for SDOF 

systems in free vibration, for the infinite-horizon case (i.e. tf→∞).  First, however, several 

corollaries are presented, concerning the characteristics of V(ws,t).   
 

COROLLARY 8.6:  Let constraints (8.5a-c) hold for R, S, Q, and φ1, and assume A is stable  

Then the function V(ws,t) is continuous in both arguments. 

proof: see appendix A8. 
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This observation allows for V(ws,t) to be optimized for discrete points in {ws,t} space, 

with the understanding that values of V in the neighborhood of these grid points may be closely 

approximated through interpolation, for a sufficiently fine grid. 

 

COROLLARY 8.7:  Assume constraints (8.5a-c) hold for R, S, Q, that φ1=0.   Then if constraint 

(5.15b) is ignored, the solution to V is homogeneous; i.e. 

 ( ) ( )2, ; , ;s g s gV t a V t aβ β β=w w  (8.45) 

proof: If constraint (5.15b) is disregarded then the system differential equation may be written in 

bilinear form.  The differential equation is then linear in ag and ws, given Z(t).  If the performance 

measure is quadratic, then it follows that the measure of performance uniformly scales 

quadratically with simultaneous scaling of ws and ag.   

 

This corollary is useful for a number of reasons.  In studies involving the free response to 

initial conditions (i.e. where w0≠0 and ag = 0) it leads to the conclusion is that the optimal control 

scales with the magnitude of the initial condition.  It follows that all the cross-section contours of 

V in w0-space will be of similar shape.   

 

COROLLARY 8.8:  For the free-vibration case with A stable, the value of V(ws,t) is stationary as 

tf→∞ and V(ws,t) is stable in reverse-time.  

proof: see appendix A8 

 

Thus, for the infinite-horizon case, if a performance function J(w0) can be found which obeys  

 
( )

( ) ( ) [ ]{ }
0

s 0 0 0 s0 min ,
s

uJφ
∈

= + ∇ +
u w

u w w Aw B u
U

 (8.46) 

then J(w0) is the optimal performance for initial condition w0 and in general, V(ws,t)=J(ws) for all 

t.   
 As a consequence of this corollary, the optimal infinite-horizon control for the RFA 

network, in free-response, could be implemented exactly in real-time by a time-invariant 

nonlinear control law, if the above equation could be solved for J.  By evaluating the gradient of 

J, the optimal control force could be obtained as a feedback function of w(t).  Of course, this 

assumes that an analytical solution can be found for J above, or that it is practical to employ a 

numerical “table-lookup” feedback approach.  It may be that either or both of these options are 

untrue, depending on the application. 
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 It also follows from Corollary 8.8 that for the infinite-horizon free-vibration case, the 

positive-definiteness of φ implies that J(w) is a Lyapunov function for the optimally-controlled 

system; i.e.  

 ( )( )
( ) ( )

( ) ( )( ), 0
opt

opt
t t

d J t t t
dt

φ
=

= − ≤
u u

w u w  (8.47) 

Thus, the optimal control for the free-vibration case can be viewed as a specific kind of 

Lyapunov-based feedback control.   

8.4:  Example: SDOF Free Vibration  
 The examination of optimal control for SDOF systems is convenient because the 

mechanical system is simple enough that data on the optimal response (i.e. J, uopt, v, etc.) can be 

easily represented and interpreted graphically. This example considers the free vibration of a 

SDOF system with one actuator.  Note that, because there is only one actuator, the RFA 

“network” reduces to a single, semiactive device. 

It is straight-forward to show that any such system, with appropriate scaling, can be 

represented by a nondimensionalized Nominal System Model 

 gu aBAww +=&  (8.48) 

with state space matrices 

 
0 1 0

, ,
1 2 u

q
q Nζ

     = = =     − −     
w A B

&
 (8.49) 

and where the RFA network constraints are 

 2 0u Nqu+ ≤&  (8.50) 

 1u ≤  (8.51) 

Note that the actuator for this system may be viewed as a variable-damping system with a 

maximum viscosity N, a minimum viscosity of 0, and a force saturation.   

The parameters ζ and N are the only free parameters.   Throughout this example, ζ will 

be taken as 0.001.  The value of N will be varied for different cases.   

Recall the expression for φ in Eq. (8.4).  Because this is a free-vibration example, ag=0 

and consequently, the terms Qa, Sa, and Ra may be assumed to be zero.  Only quadratic 

performance will be considered, so φ1=0 for this example.  This gives φ as 
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 T
Tu

R u
φ     =         

Q S w
w

S
 (8.52) 

In these examples, two performance measures will be considered; mean-square drifts and mean-

square accelerations. 

For the free vibration case, Corollary 8.8 dictates that V(ws,t) is stable in reverse-time.  

Thus, the case for tf→∞ can be solved by starting from the final condition V(tf) = 0 and 

integrating Eq. (8.39) in reverse-time until convergence is reached.  The resultant equilibrium for 

V is equal to the optimal performance Jopt(ws), for arbitrary initial condition ws. 

Recalling Eq. (8.41), it follows that 

 ( )
( )( )

( )( ) ( )( ) ( )( ){ }arg min ,opt u
u t

u t u t J t t uφ
∈

= + ∇ ⋅ +
w

w w Aw B
U%

% %  (8.53) 

Thus, for free vibration, the gradient of J is solved and used to derive an optimal control law.   

8.4.1:  Displacement Optimization 

 Consider the case where φ, as in Eq. (8.52), is such that 

 
1 0 0

, , 0
0 0 0

R   = = =   
   

Q S  (8.54) 

This case corresponds to displacement regulation.  For Q, S, and R as above, the solution to J(ws) 

can be solved, and the feedback relationship in Eq. (8.53) derived.  Here, this will be done first 

for the small-vibration case (where w(t) is small enough that the force vector does not saturate) 

and then for the large-vibration case.   For these cases, it will be assumed that N=1.  Later, the 

effect of larger N values will be discussed. 

 

Small-Vibration Case 
Solutions for the optimal {w,u} trajectory were derived for the following initial 

conditions. 

 
0.1 0 0.1 0

, , ,
0 0.1 0 0.1

−       = = = =       −       
w w w w   (8.55) 

For these four trajectories, the hysteresis curve {q(t),u(t)} is shown in Figure 8.1.  Note that at 

any given time, |u(t)| ∈ [0, | ( ) |Nq t& ].  As such, Figure 8.1 also shows the trajectory for 

{q(t), ( )Nq t− & }.  From the plot, it is clear that the optimal u alternates discontinuously between 0 

and ( )Nq t& .  This is not surprising because R=0 in this example.  It is interesting to note that the  
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Figure 8.1:  q vs. u (solid) and Nq− &  (dashed) for small-vibration displacement regulation 

 

optimal hysteresis loop for optimal quadratic displacement regulation does not maximize the 

energy dissipation.   

 Consider that for the parameters in Eq. (8.54), Eq. (8.53) is equivalent to 

 ( )
( )( )

( ){ }arg minopt u
u t

u t J u
∈

= ∇ ⋅
w

B
U%

%  (8.56) 

This minimization is 

 ( ) ( ){ } ( )( ){ }
1

sat hvs T
opt u u uu t t J t= − ∇ ⋅B w B B w  (8.57) 

where hvs(.) is the Heaviside step function.  For behavior near the origin, the finite value of N 

prohibits u from saturating at ±1, so the optimal control force is rather simple: 

 ( ) ( ) ( )hvsopt
Ju t Nq t q t
q

∂ 
= −  ∂ 

& &
&

 (8.58) 

The nature of this optimal control force is equivalent to an on/off damper with viscosity N2.  

Because J depends on position as well as velocity, the switching of the damper on and off 

constitutes full-state feedback.   

 Figure 8.2 shows the four trajectories in w-space, together with contour plots of the 

performance measure J.  Note that the contours of J are approximately elliptical, implying that J 

is approximately quadratic.  Because J is homogeneous, the system state space can be partitioned 

into sectors characterized by different control regimes.  Figure 8.2 shows these sector boundaries.  

In the smaller regions, u=0, while in the complimentary regions, u= ( )Nq t− & .  Because u changes  
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Figure 8.2:  Sectors in state space separating different optimal control regimes,  

for small-vibration displacement regulation 
 

discontinuously across these boundaries, they are called switching surfaces.  Note that one 

switching surface is aligned with the 0q =& axis, while the other is coincidental with the 

locus / 0J q∂ ∂ =& . 

 Thus, for optimal displacement regulation, it is not actually necessary to know J 

explicitly to implement the optimal control force uopt, only the sector boundaries.   

The derivation of the switching surfaces for this case (and any other homogeneous SDOF 

case corresponding to R=0) turns out be analytically tractable in the context of bilinear control, as 

originally investigated by Mohler (1973).   

However, for any RFA network with m>1, the optimal control is no longer so simple.  

There are not switching surfaces, but rather a continuously-varying control input on the elliptical 

boundary P(u,w)=0.  Thus, for m>1, the simplicity of displacement regulation vanishes. 

 

Large-Vibration Case 
 When initial condition w0 is large enough such that the maximum force limit affects the 

optimal response, the characteristics of J change.  It is no longer true that J is homogeneous in w-

space, and this complicates the relationship of the optimal control to the states.  Consider that the 

expression for the optimal force, for large signals, becomes 

 ( ) ( ){ } ( )
1

sat hvsopt
Ju t Nq t q t
q

∂ 
= −  ∂ 

& &
&

 (8.59) 
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Figure 8.3:  Boundaries in state space separating different optimal control regimes,  

for large-vibration displacement regulation with N=1 
 

As with the small-signal case, the state space can be broken up into several regions, as shown in 

Figure 8.3.  Clearly, the switching surface boundaries for large vibrations are nonlinear.  For large 

oscillations, the  control force “switches on” earlier in each cycle, because constraint (8.51) 

effectively limits the maximum damping capability. 

 

Effect of Larger N on Response 
 As N is made larger, the maximum viscosity of the actuator becomes greater, and the 

region in w-space corresponding to homogeneous behavior becomes smaller.  Figure 8.4 shows 

state trajectories, switching surfaces, and performance for N=2.  It is clear that for this larger N, 

the optimally-controlled system exhibits a sliding mode on the switching surface where 

/ 0J q∂ ∂ =& , as the trajectory decays.  For intersections of the switching surface for larger w, the 

trajectory does not slide on the surface.  This is because of the limitation |u|≤1, which effectively 

works to reduce the influence of u, in comparison to the stiffness force.  Note that for this 

example, the optimal sliding surface is nonlinear.  Also note that J is clearly nonquadratic, even 

for small vibrations. 

8.4.2:  Acceleration Optimization 

 A similar analysis to the above can be conducted for acceleration optimization.  For this 

case, the performance measure is characterized by 
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Figure 8.4:  Boundaries in state space separating different optimal control regimes,  

for large-vibration displacement regulation with N=2 
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1 2
, ,

2 4 2
N

R N
N

ζ
ζ ζ ζ

−   = = =   −   
Q S  (8.60) 

As for the previous example, the small-vibration case is analyzed first, then the case with large 

vibrations. 

 

Small-Vibration Case 
 Analogous to Figure 8.1 for the displacement optimization case, Figure 8.5 shows {q,u} 

trajectories for the acceleration-optimization case.  Note that, unlike in the previous examples, u 

varies continuously between its maximum allowable magnitude and zero.  This is not surprising, 

because R≠0 for this example.  It is interesting that the optimal force departs from its maximum 

value on the trailing edge of each half-cycle for this case, compared to the leading edge in the 

displacement optimization. 

 As with the displacement optimization, some analysis of the expression for the optimal 

control force sheds some light on the relationship between J and u.  For acceleration optimization, 

φ depends on u as well as the system states.  For acceleration regulation, Eq. (8.53) is 

 ( )
( )( )

( )( ){ }2arg min 2 T
opt u

u t
u t Ru J t u

∈
= + ∇ ⋅ +

w
B w S

U%

% %  (8.61) 

which has the solution 
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Figure 8.5:  q vs. u (solid) and Nq− &  (dashed) for small-vibration acceleration regulation 

 

 ( )
( )( )

( )( ) ( ) ( )( ){ }{ }1 1
2 2

1sat hvsT T T T T
opt u u ut

u t J t t J t
R

= − ∇ + ∇ +
w

B S w w B B S w
U

 (8.62) 

Again, if the maximum force is ignored, this is equivalent to 

( ) ( ) ( ){ } ( ) ( )( ){ } ( )( )1 1 1
2 2min , hvs sgnT T T T T T T

opt u u u u uRu t J t t t J t t= − ∇ + ∇ +B S w B w w B B S w B w
  (8.63) 

Defining 

 ( ) ( ) ( )1 1 2
2a

Ju t q t q t
N q

ζ∂ 
= − − − ∂ 

&
&

 (8.64) 

Eq. (8.63) can be written simplified to 

 ( ) ( ) ( ){ } ( ) ( ){ } ( )( )min , hvs sgnopt a au t u t Nq t q t u t q t= − −& & &  (8.65) 

As in the displacement optimization example, the homogeneity of J yields sectors in state space 

inside of which different conditions hold.  For the example at hand, these sectors are illustrated in 

Figure 8.6.   

 In the displacement optimization example, the division of the state space into sectors 

fully characterized the relationship of the optimal control force to the states, because this force 

was of a “bang-bang” nature.  In this example, however, sectors with u=ua still require knowledge 

of J to find the optimal control force.  Thus, implementation of such an optimal controller would 

require explicit knowledge of J, or at least /J q∂ ∂ & . 
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Figure 8.6:  Sectors in state space separating different optimal control regimes,  

for small-vibration acceleration regulation 
 

Large-Vibration Case 
 Similarly, the optimal force for acceleration regulation, given by Eq. (8.65), can be 

modified to include effects of the maximum force limit.  This modification gives 

 ( ) ( ) ( ){ } ( ) ( ){ } ( )( )min 1, , hvs sgnopt a au t u t Nq t q t u t q t= − −& & &  (8.66) 

Graphically, this is shown in Figure 8.7.  The jagged shapes of the boundaries is due to the finite 

spacing of the state-space grid and the influence of edge extrapolation.   As in the displacement 

example, Figure 8.7 shows that for large vibrations, the effect of the maximum force constraint is 

to “bend” the switching surfaces toward the q& axis.   

 Figure 8.8 shows a similar plot for N=2.  Unlike the displacement example, this example 

does not exhibit sliding modes.  Rather, the value of u varies continuously as it transitions from 

one region to the next.   
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Figure 8.7:  Boundaries in state space separating different optimal control regimes,  

for large-vibration acceleration regulation with N=1 
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Figure 8.8:  Boundaries in state space separating different optimal control regimes,  

for large-vibration acceleration regulation with N=2 
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8.5:  Some Final Comments 
 As mentioned in the introduction, the material presented in this chapter is somewhat 

inconclusive.  The examples in Section 8.4 are instructive and support our intuition concerning 

the “best way” to damp out SDOF vibrations to achieve different performance objectives.  

However, these methods are too computationally costly to be applied to practical applications 

with dozens of degrees of freedom.   

In order to find the optimal physically-attainable performance in such cases, asymptotic 

convergence algorithms almost surely should be used.  In the literature, studies of optimal 

semiactive controllers for suspension systems and civil structures have invariably relied on 

gradient algorithms to arrive at a numerical solution for the optimal control law.  However, issues 

concerning global optimality are absent from the literature. 
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Appendix A8 

LEMMA 8.1:  A necessary condition for uopt is that there exist p∈ℜ2n×C[0,tf], λ∈ℜm×C[0,tf], and 

λR∈ℜ×C[0,tf] such that 

( ) ( )( ) ( ) ( ) ( )11 1
2 2( ) 2 ( ) ( ) ( ) ( )T T T T T

opt u R u u a gt t t t t t a t tλ −  = − − + + − + + ∈ u B w R I λ S RB w B p S wU   

  (A8.1) 

where p satisfies the final-value problem 

       ( ) ( )1( ) ( ) ( ) ( ) ( ) ( ) ( )   ,   ( )T T
w R u opt a g ft t t t t t a t tφ λ= −∇ − − + − − =p w Qw S B u A p Q p 0&  (A8.2) 

and where λ and λR must satisfy the following constraints for all t∈[0,tf]: 

 max( ) 0 ( )k k kt u t uλ > ⇒ =  (A8.3a) 

 max( ) 0 ( )k k kt u t uλ < ⇒ = −  (A8.3b) 

 ( )( ) 0   ,   ( ) ( ), ( ) 0R R optt t P t tλ λ≥ =u w  (A8.3c) 

Proof:   
The variational statement in Eq. (5.9) is equivalent to  

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
0

δ , 0   δ ,δ   , adm. δft T
u a gt t t t t a t t dtφ + + + − ≥ ∀ ∀ ∫ w u p Aw B u B w w p u&  

  (A8.4) 

where p(t) is a vector of Lagrange multipliers which constrain w(t) such that it equals 

W(t,u;w0,ag).   Define the Hamiltonian as 

 ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), , , , T
g u a gH t t t a t t t t t t a tφ= + + +w p u w u p Aw B u B  (A8.5) 

and (A8.4) is 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )
0

δ , , , 0   δ ,δ   ,  adm. δft T
gH t t t a t t t dt− ≥ ∀ ∀∫ w p u p w w p u&  (A8.6) 

Taking the variation inside the integral gives 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0

δ δ δ δ   0    

                                                                                                             δ ,δ ,  

f
f

t TT T
t H H Ht t t t t t t dt

 ∂ ∂ ∂    + + + − + ≥     ∂ ∂ ∂      
∀

∫p x p w w p u
w p u

w p

& &

adm. δ∀ u

 (A8.7) 

 Next, consider the function 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )max max

, , , ,

                     ,
U L R

T T
R U L

G t t t t t

t P t t t t t t

λ

λ= + − + − −

w u λ λ

u w u u λ u u λ
 (A8.8) 
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where λR(t)∈ℜ.  Lagrange multipliers λU(t), λL(t)∈ℜm have all elements ≥ 0, and are related to 

λ(t) through 

 ( ) ( ) ( )U Lt t t= −λ λ λ  (A8.28) 

Note that Eq. (A8.28), together with restrictions (A8.3a) and (A8.3b), establishes a one-to-one 

relationship between {λU(t), λL(t)} and λ(t).  

The variation of Eq. (A8.8) is 

 
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )max max

δ δ , δ

         , δ δ δ

T
R U L

T T
R U L

G t t P t t t t t

P t t t t t t t

λ

λ

= + −

+ + − + − −

u w λ λ u

u w u u λ u u λ
 (A8.9) 

Consider that if λU(t), λL(t), and λR(t) are constrained to zero as in Eqs (A8.3a-c), then (A8.9) 

becomes 

 ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )δ δ , δT
R U LG t t P t t t t tλ= + −u w λ λ u  (A8.10) 

Furthermore, if the inequalities in Eqs. (A8.3a-c) hold as well, then 

 ( ) ( ) ( )δ 0   adm. δT
U t t t≤ ∀λ u u  (A8.11a) 

 ( ) ( ) ( )δ 0   adm. δT
L t t t≤ ∀λ u u  (A8.11b) 

 ( ) ( ) ( )( ) ( )δ , 0   adm. δRλ t P t t t≤ ∀u w u   (A8.11c) 

So, consequently, 

 ( ) ( )0δ ( , )      δ 0   [0, ] u g fa G t t t+ ∈ ⇒ ≤ ∀ ∈u u wF  (A8.12) 

Or, equivalently, 

 ( ) ( )ft

0 0
δ ( , )     δ 0 u ga G t dt+ ∈ ⇒ ≤∫u u wF  (A8.13) 

 Now, consider the expression 

 ( )
0

ft
J J G t dt= + ∫%  (A8.14) 

In light of the constraints in (A8.3a-c), G(t)=0, and thus J% = J.  The statement 

 δ 0    δ ,δ ,δ ,   admissible δ ,δ ,δU L RJ λ= ∀ ∀u w p λ λ%  (A8.15) 

implies that J% is extremal in u, w, p, and the admissible values of λU, λL, and λR.  But consider 

that the variation of J% is 
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

0

0

max max

δ δ

δ δ

2 δ

δ δ δ

f

f

t

t TT

R u

T
T

U L R u

T T T T T
U L u R

J t t

H Ht t t t t t

H t t t t t t

t t t t t t t t t dt

λ

λ

λ

=

 ∂ ∂  + + + + −    ∂ ∂   

∂  + + − + +  ∂ 


− + − − + + 


∫

p w

B u p w w p
w p

λ λ u B w u
u

u u λ u u λ u u u B w

%

& &

  (A8.16) 

However, because variations in δw, δp, and δu are independent of each other, and because δλU, 

δλL, and δλR are independent, so long as they are constrained to admissible variations, Eq. 

(A8.16) implies that necessary conditions for a extremum in J% are 

( )ft =p 0  (A8.17a) 

( ) ( ) ( )R u
H t t tλ∂

+ + =
∂

B u p 0
w

&  (A8.17b) 

( )H t∂
− =

∂
w 0

p
&  (A8.17c) 

( ) ( ) ( ) ( ) ( )2 T
U L R u

H t t t t tλ∂
 + − + + = ∂

λ λ u B w 0
u

 (A8.17d) 

( )[ ] ( ) ( )max δ 0   adm. δT
U Ut t t− = ∀u u λ λ  (A8.17e) 

( )[ ] ( ) ( )max δ 0   adm. δT
L Lt t t− − = ∀u u λ λ  (A8.17f) 

δ 0   J = ⇔%  

 
 ( ) ( ) ( ) ( ) ( ) ( )δ 0   adm. δT T T

u R Rt t t t t tλ λ + = ∀ u u u B w  (A8.17g) 

where it has been recognized that δw(0)=0, because it is assumed that the initial condition w0 is 

fixed. 

 Consider equation (A8.17c).  Inspection of the Hamiltonian expression in (A8.5) verifies 

that this term imposes the constraint that an extremum in J% requires that x obey its differential 

equation. 

 Consider conditions (A8.17e-g), dealing with the δλU, δλL, and δλR variations.  For these 

terms to be zero for all admissible variations (which is required for δJ% = 0), either their arguments 

must be zero, or the variations are constrained to zero.  Because of the constraints on λU(t), λL(t), 

and λR(t) in equations (A8.3a-c), it follows that  
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( )[ ] ( ) ( )
( )[ ] ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

max

max 0

δ 0   adm. δ   ,  [0, ]

δ 0   adm. δ   ,  [0, ] ( , )
δ 0   adm. δ   ,  [0, ]

T
U U f

T
L L f u g

T T T
u R R f

t t t t t

t t t t t a
t t t t t t t tλ λ

− = ∀ ∀ ∈
− − = ∀ ∀ ∈ ⇔ ∈
 + = ∀ ∀ ∈  

u u λ λ

u u λ λ u w
u u u B w

F   

  (A8.18) 

Thus, these three terms constrain any solution to δJ% = 0 such that u∈Fu(w0,ag). 

 Furthermore, in light of Eqs. (A8.13) and (A8.14), it is true that 

 ( ) 0δ 0      δ 0   δ ( , )u gJ J a= ⇒ ≥ ∀ + ∈u u wF%  (A8.19) 

Thus, the optimization of J% yields a solution to the variational statement, and gives a solution for 

the input u which meets the constraint u∈Fu(w0,ag).   

 For J defined as in Eq. (5.4), the Hamiltonian H is 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

1 2 2

                    

T T T T T
a g a g

T
u a g

H t t t t t t t t a t t a t

t t t a t

φ= + + + + +

+ + +

w w Qw u Ru u Sw w Q u S

p Aw B u B
 

  (A8.20) 

With this definition of H, Eq. (A8.17a) and (A8.17b) yield the boundary condition and 

differential equation for p, respectively, while (A8.17d) yields the expression for u(t).   

♦ 

 

LEMMA 8.2:  For the conditions of Lemma 1, the following are true: 

a) There exists a unique mapping U:ℜ2n×ℜ2n a ℜm such that 

  ( )( )( ) ( ), ( ); gt t t a t=u U w p  (A8.21) 

Specifically, u is related to w and p by 

  ( )
( )( )

( ) ( ) ( ) ( ) ( ) ( ){ }1
2arg min T T T T

u a g
t

t t t t t t a t
∈

 = + + + 
u w

u u Ru u Sw B p S
U%

% % %  (A8.22) 

b) There exists a mapping ΛR : ℜ2n×ℜ2n a ℜ such that 

  ( ) ( ) ( ) ( )( ), ;R R gλ t Λ t t a t= w p  (A8.23) 

which is bounded for all {w(t),p(t)}∈ {ℜ2n−N(Bu
T)}×ℜ2n, where N(.) denotes the null space 

of the operator.  This mapping is unique for almost all {w(t),p(t)}.   

c) The functional product ΛRU is bounded for all {w(t),p(t)}∈ ℜ2n×ℜ2n and is unique for almost 

all {w(t),p(t)}. 



 

 

 

234 

Proof: 

part a) 
 Equation (A8.17d) may be re-written as 

 ( ) ( )δ 0   δ
TH G t t∂ ∂ + = ∀ ∂ ∂ 

u u
u u

 (A8.24) 

Together with equations (A8.13) and (A8.14), this statement is equivalent to  

 ( ) ( ) ( ) ( )( )
T

δ 0   ,   adm. δ    ,   H t t t t∂  ≥ ∀ ∈ ∂ 
u u u w

u
U  (A8.25) 

It is clear that the value of u(t) satisfying equation (A8.25) must yield a minimum in the 

Hamiltonian, over the domain U(w(t)).  This interpretation of the optimal u(t) is Pontryagin’s 

Minimum Principle, and leads directly to Eq. (A8.22).  It is easy to show that U(w(t)) is a 

semiconvex domain, and that H is convex in u(t).  Thus, the minimum of H over U(w(t)) is 

unique. 

part b) 
 The proof that equation (A8.22) has a solution implies that for all {w(t),p(t)}, there exist 

λ(t) and λR(t) which satisfy equation (A8.1).  However, it does not guarantee that they are unique.  

Equation (A8.1) may be re-written as 

 [ ]
( )
( )R

t
tλ

 
= −  

 

λ
α I β  (A8.26) 

where 

 
( )

( )
( ), ( ), ( ), ( ) , ( )

   ,   2 ( ), ( ) ( )
g

T
u

t t t t a t

H t t t∂
= = +

∂ w p U w p

α β U w p B w
u

 (A8.27) 

are known for given w(t) and p(t), due to the uniqueness of the mapping U.  Taking the 

pseudoinverse of (A8.26), the Lagrange multipliers must satisfy 

 
1( )

( ) 1
T

T
R

t
q

tλ
− −      = − + +          

λ I β
I ββ α

β
 (A8.29) 

where q is an unknown scalar variable.   

 The solution to u(t) will dictate that some of the Lagrange multipliers are zero, and some 

not.  Consider that 

 
max

2 2

( ) 0 ( )

( ) 0 ( )
k k k

T
R u

t u t u

t t

λ

λ

≠ ⇒ =

≠ ⇒ =β B w
 (A8.30) 

If all the above are satisfied, this implies that 
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 [ ] 2
1max max max 2 , ... , ( )T

m uu u t± ± = −B w u  (A8.31) 

where the components of the row vector on the left can individually be positive or negative.  

Thus, the set  of w(t) values which result in multiple solutions for λ(t) and λR(t) is confined to 2m 

subspaces; a set of measure zero in ℜ2n.   

 Note that if β=0, then the equations for λR(t) and λ(t) decouple in equation (A8.26).  If 

P(u(t),w(t))=0 for the case of β=0, then λR(t) can be any positive number.  But in this 

circumstance, Bu
Tw(t)=0, and consequently, U(w(t))={0}.  From equation (A8.1), it is then clear 

that in order to satisfy u(t)∈ U(w(t)), λR(t) must be infinitely large.  This proves the non-

boundedness assertion in the lemma, and henceforward, attention is concentrated on the case 

where β≠0.   

 Assuming at least one multiplier to be zero (i.e. assuming (A8.31) does not hold), let the 

vector ( )tλ% be a truncated vector, containing only the nonzero Lagrange multipliers for which the 

conditions in (A8.30) apply, and define the full-column-rank G such that 

 
( )

( )
( )R

t
t

tλ
 

= 
 

λ
Gλ%  (A8.32) 

The fact that a solution exists implies that 

 [ ]( )∈α I β GR   (A8.33) 

Noting that [I  β]G has full column rank for almost all β, and therefore almost all {w(t),p(t)}, 

solutions to λ(t) and λR(t) are uniquely found for almost all {w(t),p(t)} as 

 
1( )

( )
T T

T T T
R

t
tλ

−
      =       

      

λ I β I
G G G G α

β β β β
 (A8.34) 

If [I  β]G is column-rank-deficient, then it has a null space and the solution is thus non-unique.  

part c) 

 If λR(t)≠0, then P(u(t),w(t)) = 0.  So 

 ( ) ( ) ( ) ( )T T T
ut t t t= −u B w u u  (A8.35) 

or, with some rearranging, 

 
2 21 1

2 22 2
( ) ( ) ( )T T

u ut t t+ =u B w B w  (A8.36) 

Using equation (A8.1),  

 [ ] ( )11 1
2 2( ) ( ) 2 ( ) ( ) ( ) ( )T T T

u R u ut t t t t tλ −  + = − + − + − u B w R I λ S RB w B p  (A8.37) 
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It can also be shown that 

 [ ] ( )11 1
2 22 2

( ) ( ) 2 ( ) ( ) ( )T T T
u R u ut t t t tλ −  + ≤ + + + u B w R I S RB w B p  (A8.38) 

Combining (A8.36) and (A8.38) gives 

 [ ] ( )11 1
2 22 2

( ) 2 ( ) ( ) ( )T T T
u R u ut t t tλ −  ≤ + + + B w R I S RB w B p  (A8.39) 

from which it can be concluded that 

 ( )1
2 22

( ) ( ) ( ) ( )T T T
R u u ut t t tλ ≤ + +S RB w B p B w  (A8.40) 

So 

 ( ) 21
22 2

2

( )
( ) ( ) ( ) ( )

( )
T T

R u u T
u

t
t t t t

t
λ ≤ + +

u
u S RB w B p

B w
 (A8.41)  

But, from (A8.36), 

 2 2
( ) ( )T

ut t≤u B w  (A8.42) 

Thus, equation (A8.41) implies that 

 ( )1
22 2

( ) ( ) ( ) ( )T T
R u ut t t tλ ≤ + +u S RB w B p  (A8.43) 

♦ 

 

LEMMA 8.4:  If the maximum force constraint (5.15b) is disregarded, then  

( ) ( ) ( ) ( ) ( ) ( )( )1 1
0 2 2,    |    and    ,   0,m m T

u g u fa t t t t t t tσ×∈ ⇔ ∃ ∈ℜ = − − ≤ ∀ ∈   u w Z u Z B w Z IF   

  (A8.44) 

Proof:   
The sufficiency of this statement is evident by observing that the relation of u to w in (8.27) 

implies that (5.15a) is always satisfied.  Necessity may be observed by construction.  For a given 

u∈Fu(w0,ag), define z and α such that  

 ( ) ( ) ( ) ( )T T
ut t t t= −u z z B w  (A8.45) 

from which it can be ascertained that 

 ( )
( ) ( )

( )1
T T

u

t t
t t

 
 = ±
 − 

z u
u B w

 (A8.46) 

Constraint (5.15a) then implies that 
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 ( ) ( ) ( ) ( )2 24

22
T T T
u ut t t t ≤ −  B w z z B w  (A8.47) 

The Cauchy-Schwartz inequality gives 

 ( ) ( ) ( ) ( ) 22
T T T

u ut t t t≤z B w B w z  (A8.48) 

Thus, from the above two equations, 

 ( ) 2
1t ≤z  (A8.49) 

Because z(t)zT(t) is symmetric,  

 

( )( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )

1 1
2 2

1
2

1
2

1
2

1 1
2 21

T

T

T

T

t t t

t t

t t

t t

σ σ

λ

λ

− = −

= −

= −

= −

≤ − =

Z I z z I

z z I

z z

z z

 (A8.50) 

Thus, if u∈Fu(w0,ag), then the above choice for Z always meets the constraints. 

♦ 

 

COROLLARY 8.6:  Let constraints (8.5a-c) hold for R, S, Q, and φ1, and assume A is stable  

Then the function V(ws,t) is continuous in both arguments. 

Proof:  
For convenience in this proof, the dependency on disturbance input ag and the final time tf will be 

dropped from all expressions.   

Let ws1 be an initial condition at time t, and let {w1
*(t),u1

*(t)} be the optimal trajectory 

from this initial condition over the time interval [t,tf]. Then V(ws1,t) is equal to the optimal 

performance, J(u1
*;ws1).  Let ws2 be some other initial condition and suppose that that there exists 

a control input u2∈Fu(ws2) such that 

 ( ) ( )*
2 2 1 1 2 1; ;s s s sJ J≤ + ∆ −u w u w w w  (A8.51) 

where ∆ is positive and finite.  Likewise, let {w2
*,u2

*} be the optimal trajectory starting from ws2 

at time t, giving V(ws2,t) equal to J(u2
*;ws2).  Suppose that there exists a control input u1∈Fu(ws1) 

such that 

 ( ) ( )*
1 1 2 2 2 1; ;s s s sJ J≤ + ∆ −u w u w w w  (A8.52) 

But  



 

 

 

238 

 ( ) ( ) { }*; ; , 1,2k sk k skJ J k≥ ∈u w u w  (A8.53) 

It follows that if both Eq. (A8.53) and (A8.52) are true, then 

 ( ) ( )2 1 2 1, ,s s s sV t V t− ≤ ∆ −w w w w  (A8.54) 

For ||ws2−ws1|| arbitrarily small, the above yields the conclusion that V is continuous in ws.  But 

from the PDE for V, continuity in ws implies continuity in t.  Thus, for this proof, it is sufficient to 

show that for any ws1 and ws2, there exists a u2 such that Eq. (A8.51) holds. 

 For convenience, let s be defined as Bu
Tw.  Then at an arbitrary time, the optimal control 

signal u1
* is known to be feasible; i.e. 

 ( ) ( ) ( ) ( )* *
1 1 1 1 0T Tt t t t+ ≤u u u s  (A8.55) 

 ( )*
1 maxt ≤u u  (A8.56) 

For the w2 trajectory, let the sub-optimal control input u2 be defined in terms of u1
* as 

 ( ) ( )[ ] ( )*
2 11t t tα= −u u  (A8.57) 

where α(t)∈[0,1] is adjusted such that u2(t) meets the regenerative constraint; i.e., 

 2 2 2 2 0T T+ ≤u u u s    (A8.58) 

Note that the restrictions on α(t) ensure that if u1
*(t) satisfies Eq. (A8.56), then u2(t) satisfies the 

same constraint.  Inserting Eq. (A8.57) into (A8.58), α(t) is required to satisfy 

 
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )

( )[ ] ( ) ( ) ( ) ( )

2 * * *
1 1 1 2 1

* * * *
1 1 1 1

1

1 0

T T

T T

t t t t t t t t

t t t t t

α α α

α

   − + − −   
 + − + ≤ 

u u u s s

u u u s
 (A8.59) 

But inequality (A8.55) is known to hold, so Eq. (A8.59) is conservatively satisfied by  

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )2 * * *
1 1 1 2 11 0T Tt t t t t t t tα α α   − + − − ≤   u u u s s  (A8.60) 

Eq. (A8.60) has two roots corresponding to values of α(t) for which the equality holds exactly.  

One of these is always α(t)=1, corresponding to u2(t)=0.  The other is 

 ( ) ( )
( ) ( )

( ) ( )
*

*1
2 1* *

1 1

T

T

t
t t t

t t
α  = − 

u
s s

u u
 (A8.61) 

If the value above is less than zero, the α(t)=0 is guaranteed to satisfy inequality (A8.60).  Thus, 

the control input  
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 ( )
( ) ( ) ( )

( ) ( )
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 (A8.62) 

is such that u2∈Fu(ws2).  The resultant differential equation for w1
*−w2 is  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )
* *

* * * *1 1
2 1 1 2 1 2 1* *

1 1

hvs
T

T Td
u udt T

t t
t t t t t t t

t t
 

     − = − − −      
 

u u
w w A u s s B B w w

u u
 

  (A8.63) 

where hvs(.) is the Heaviside step function.  The structure of A is such that the second term in the 

brackets in Eq. (A8.63) contributes supplemental damping to the differential equation.  Thus, if A 

is asymptotically stable, then Eq. (A8.63) is as well.  The resultant performance J(u2;ws2) is 

 ( ) ( ) ( )( )2 2 2 2; ,
ft

s
t

J t t dtφ= ∫u w u w  (A8.64) 

But φ is convex and positive-definite, so 
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 (A8.65) 

Finally, because φ is a bounded, polynomial function, and the difference w2(t)-w1
*(t) decays 

exponentially, the second integral is bounded by a norm on ws2−ws1. (The appropriate norm will 

depend on the polynomial powers used in φ).  Thus, Eq. (A8.65) implies Eq. (A8.51), completing 

the proof. 

♦ 

 

COROLLARY 8.8:  For the free-vibration case with A stable, the value of V(ws,t) is stationary as 

tf→∞ and V(ws,t) is stable in reverse-time.  

Proof:  
Let ws be an arbitrary initial condition at time t.  Let the corresponding optimal trajectory over the 

interval [t,tf] be {u*,w*}.  Let the optimal trajectory over the interval [t,tf+∆t] be denoted {u∆,w∆}.  

Then  
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( ) ( ) ( )( )
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and 

 ( ) ( ) ( )( )*, , [ , ];s f s f f f fV t t V t J t t t t+ ∆ ≤ + + ∆w w 0 w  (A8.67) 

where 0(t) is shorthand for the input function u(t)=0.  Thus, 

 ( ) ( ) ( )( )*0 , , [ , ],s f s f f f fV t t V t J t t t t≤ + ∆ − ≤ + ∆w w 0 w  (A8.68) 

As ∆t goes to zero,  

 ( ) ( )( )*,
0 ,s

f
f

V t
t

t
φ

∂
≤ ≤

∂
w

0 w  (A8.69) 

If A is stable, then the optimally-controlled system is also stable, and resultantly w*(tf)→0 as 

tf→∞. 

♦ 
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Chapter 9.  Summary and Future Work 
 

 

9.1:  Summary  
 It has been the intent in this research to “map out” the major issues at the heart of 

regenerative actuation.  As such, the material in this study has taken form as a collection of 

connected problems.  

 The most basic issue regarding these systems is the question of how to build them.  

Setting aside the many technologically nuanced challenges, there are a few fundamental issues.  

In Chapters 2 and 3, a possible realization of an arbitrarily large RFA network was presented.  

This realization is probably the simplest design which can be applied to networks of arbitrary size 

and configuration.  However, it may be that there are other realizations which are more practical 

or realistic.  For instance, there may be some benefit to using a more elaborate electrical network 

to interface the various actuators.   However, such ideas clearly would add significant complexity 

to the dynamic analysis. 

 One of the challenges concerning the electronic control of these networks is that they 

have to operate minimum dissipation, in order to take full advantage of their forcing capability.  

The electronic controller proposed in Chapter 4 represents the approach that yielded the best 

results, in this context.  Based on sliding-mode control, its performance is fairly robust to 

uncertainties in system parameters when operating at near-maximum efficiency.  As the 

development and examples in Chapter 4 illustrated, it turns out that ensuring this robustness is 

one of the great challenges associated with these systems. 

 In Chapter 5, RFA networks were placed in the context of mechanics.  It was shown that 

they can be viewed as providing an effective damping to a mechanical system, but where the 

nature of this damping, and its relationship to the device configuration, is more general and 

abstract than in other dissipative systems.  In particular, the concept of the RFA network 

imposing an asymmetric damping matrix on the structural differential equation is both intuitive 

and useful from a control point of view.  In the investigation of memoryless control laws in 

Chapter 6, the motivation was toward controllers with guaranteed performance bounds.  It was 

shown that, through the relation of a certain class of controllers to the damping characteristics 

studied in Chapter 5, the so-called “Damping-Reference” controller can be guaranteed to yield 
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performance in stationary and stochastic response which is at least as good as that achieved with 

optimal linear damping.   

 The simulations in Chapter 7 have several uses.  First, of course, they illustrate the 

response of the structure-actuator system to earthquake excitation.  But a fair amount of general 

information can be obtained concerning the coupling between the electrical and mechanical 

dynamics, as well as the role of the transistor switches in the response.   

 As a parting thought, Chapter 8 discussed the application of optimal control to these 

actuation systems, for which the goal is the derivation of the best possible performance over all 

control inputs, causal or otherwise, which are physically feasible.  It is clear that this subject 

requires further analysis.  The lingering issues concerning the nonconvex nature of the 

optimization, and the resultant dubiousness of asymptotic convergence methods, have impeded 

progress in this area.  It may very well be that this optimization problem can be proved to have a 

unique, global minimum, thus allaying the concerns voiced in Chapter 8.  However, this remains 

to be shown. 

9.2:  Future Work 
 There are essentially three main areas which constitute the next logical steps in the 

development of RFA networks into a viable technology.   

9.2.1:  Experimental Validation 

 Thus far, the development of the theoretical tools necessary for the proper use and control 

of RFA networks has outweighed the need for experimental validation.  Because these devices 

are assembled from such common components, they really do not require “cutting edge 

technology” for implementation.  This is in stark contrast to many other devices which have been 

proposed for civil structure control, many of which require a completely custom design and 

fabrication.  However, now that the theoretical aspects of these systems have been adequately 

mapped out, it is time to build a laboratory experiment and demonstrate the concept.   

 In scale-model demonstrations, there is little doubt that commercial electronic, 

mechanical, sensory, and control hardware will be adequate for this undertaking.  However, at the 

full-scale, there may be practical limitations to what commercial hardware can do in this context.  

Typical high-power commercial motor drives are not built for this kind of actuation (i.e., at such 

low velocities and high forces) and their designs may turn out to be rather sub-optimal.  It is 

therefore interesting to contemplate the development of novel, custom-built motors which are 

developed expressly for such applications.   
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9.2.2:  Actuation Configurations 

 In this study, only three basic structural configurations for RFA networks were 

considered, as shown in Fig. 1.6.  All three of these were analyzed in Chapter 5 in the context of 

linearly-damped stationary stochastic response.  However, in the remaining chapters only 

configuration “a” was considered.  This was necessary in order to focus the analysis.  However, it 

may be that there are many other configurations yielding interesting results. 

 Especially, the analysis of RFA configurations involving remote energy storage (i.e., 

configuration “b”) require further investigation.  Presently, the most effective use of remote 

energy storage devices in vibration suppression is still not completely understood.  Intuitively, 

there are clearly many benefits to storing and reusing energy in the context of forced vibration 

suppression.  In addition to the possible improvement in drift and acceleration response which 

may be possible with energy reuse, there are also energy management issues which may make 

this kind of configuration appealing.  Specifically, the storage of energy extracted from the 

structure, rather than the dissipation of that energy as heat, may be beneficial for practical 

reasons, such as thermal considerations.   

 There are also other configurations which have not been addressed at all in this analysis, 

which may yield very interesting results.  For instance, an RFA network used to control vibration 

in two or three spacial dimensions, rather than the one-dimensional examples considered here, 

would be able to facilitate power sharing between actuators operating in different directions and 

at different locations. 

9.2.3:  Control Synthesis 

 In this study, a variety of methods were investigated for the synthesis of control laws for 

RFA networks.  However, these methods were all rather simple, and may not be ideal for this 

application.  There a number of interesting avenues for the pursuit of more sophisticated control 

algorithms for energy-constrained actuation systems.  Two of the more promising of these are 

briefly discussed below. 

 

Receding Horizon Control 

 Receding Horizon control techniques (Clarke et al. 1987; Mayne et al. 2000) involve the 

repeated re-solving of the optimal control problem (as discussed in Chapter 5) in real-time.  

Assuming the dynamics of the structure are sufficiently slow, it is not unreasonable to assume 

that with current computing technology, it may be possible to solve the optimal control problem 
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at time t over a window [t,t+T], and arrive at uopt(t;T), in a negligible amount of time.  If this is 

the case, it then becomes possible to iteratively re-solve for uopt(t;T) in real-time, using updated 

state information.  For a horizon time T sufficiently large, this procedure results in a control force 

which closely approximates the infinite-horizon optimal control uopt(t;∞).  However, because the 

control force is solved in real-time, the approximate solution to uopt is effectively “adjusted” to 

account for system uncertainty.   

 Thus, the appeal of Receding Horizon control is that it effectively makes it possible to 

approximate, very closely, the optimal control.  If implemented, this kind of control would 

therefore ensure that the actuation system is yielding performance which is very close to the 

optimal physically-attainable performance.  These controllers have attracted some attention the 

area of structural control (Gluck et al. 2000; Huang and Betti 1999; Inaudi et al. 1992; Mei et al. 

2001; Yang and Beck 1995).  However, Receding Horizon controllers are computationally 

expensive, and in order to be appealing, there are some issues which must first be resolved.   

 In Chapter 8, it was mentioned that the optimal control problem, for energy-constrained 

systems, is an optimization over a nonconvex domain.  Although it is very likely that this issue 

can somehow be resolved, at the present time the solution to this problem is elusive.  If a 

Receding Horizon controller is to iteratively solve for a solution uopt, this process would likely 

require a convex optimization framework.   

 Also, the fact that the future disturbance is unknown makes Receding Horizon control 

more difficult.  Even in a stationary stochastic setting, this problem is nontrivial. 

 

Probabilistic Control Synthesis 

 It turns out that typical structural control system design goals for Civil Engineering 

applications are somewhat ill-matched with quadratic performance measures.   The ultimate 

performance measure for civil applications concerns failure probability, in the face of both 

disturbance and parameter uncertainty.  With disturbances modeled as random inputs and 

uncertainties modeled by probability distributions, the aspects of the response statistics relating to 

failure probability usually concern information far in the tails of the response distributions.  Thus, 

controllers designed to yield favorable “average” responses may not inspire a lot of confidence.  

Additionally, because parameter uncertainty is typically modeled by continuous distributions 

rather than by compact sets in parameter space, much of the existing H∞ robust control theory 

does not seem well-suited to the problem.   

The ideal control synthesis tool for Civil Engineering applications would find the 

controller minimizing the probability of the first-passage of a set of failure thresholds, in a given 
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period of time, and given distribution functions on structural parameters.  This problem is not 

totally new.   In Civil Engineering, it has been investigated for linear active control systems with 

digital FIR controllers by (May and Beck 1998; Yuen and Beck 2003).  There has also been some 

general work in the area of probabilistic robust control conducted by (Marrison and Stengel 1995; 

Stengel et al. 1995).  However, at present there have not been any such attempts to extend this 

problem to energy-constrained actuation systems. 
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