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Abstract 
 

 

 A Regenerative Force Actuation (RFA) Network consists of multiple electromechanical 

forcing devices distributed throughout a structural system and actuated in such a way as to reduce 

the response of the structure when subject to an excitation.  The associated electronics of the 

devices are connected together such that they are capable of sharing electrical power with each 

other.  This makes it possible for some devices to extract mechanical energy from the structure, 

while others re-inject a portion of that energy back into the structure at other locations.  The 

forcing capability of an RFA network is constrained only by the requirement that in the aggregate 

the total network must always dissipate energy.   

 The electromechanical currents generated by RFA networks must be controlled to create 

the desired structural forces.  This control is facilitated by the alternation of a multitude of power-

electronic transistor switches in the electrical network.  In this study, a sliding-mode switching 

controller is proposed for realizing zero-error force command tracking.  It is shown that 

parameter uncertainty is a critical issue for force commands which require the network to operate 

near its optimum transmissive efficiency.   

 RFA networks can be used to create velocity-proportional damping forces in structures.  

However, unlike traditional structural damping, RFA networks have the ability to create non-local 

and asymmetric damping forces.  It is shown that this more generalized damping capability can 

lead to significant improvements in the forced response of a structure, as compared with 

traditional linear damping.    

 RFA networks may also be used for feedback control.  In this context, the forcing 

capability of the RFA network is constrained by its physical limitations.  In this study, a 

systematic method of nonlinear control design called “Damping-Reference” control is proposed, 

which guarantees a certain level of quadratic performance for the structural response.  Variants of 

the control law synthesis are proposed for quadratic regulation, stochastic control, and H∞ control 

contexts.  

 These ideas are illustrated in the context of earthquake engineering through a simulation 

example, involving a three-story structure with a two-actuator RFA network installed.  In this 

example, it is shown that the “power sharing” nature of the RFA network has a significant 

influence on the response. 
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Bu  : Force input matrix for Nominal System Model  

Cc  : Size parameter matrix for S(v).   

CS  : Capacitance of DC bus 

Dk  : Switch position for actuator k 

DR  : Switch position for dissipative interface 

D  : Switch position matrix  [D1 ... Dm  DR]T 

J  : Structural control system performance measure 

Kfk  : Actuator proportionality constant:  fek = Kfkik 

Kf  : diag{Kf1 ... Kfm} 

Kv  : Design parameter for DC bus voltage control 

N  : Structural force input matrix 

Pk  : Power flow for actuator k 

Q  : State weighting matrix for quadratic performance 

R  : Force weighting matrix for quadratic performance 
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S  : State-force weighting matrix for quadratic performance 
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f, fk   : Force vector with {f}k = fk = Total force of actuator k 

fe, fek   : Force vector with {fe}k = fek = Electromech. force for actuator k 

fe
*  : Electromechanical force command 

fmax, fkmax  : Force vector with {fmax}k = fkmax = Rated force of actuator k 

ik  : Stator current for machine k 

iR   : Current in resistor RR 
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iSk  : Current drawn from DC bus by actuator k 

iSR  : Current drawn from DC bus by dissipative interface 

lk  : Screw lead for actuator k 

m  : Number of actuators 

n  : Structural degrees of freedom 
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1/2u   
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x  : Electrical system state vector 

w  : Normalized structural system state vector for Nominal System Model 
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ηk  : Screw efficiency for actuator k 
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Chapter 1.  Introduction 
 

 

Growing attention in recent decades has been devoted to methods of active feedback 

control of buildings and bridges, to reduce their responses to earthquakes and winds.  

Considerable effort has been directed toward the design of force actuators for these structures, the 

development of sensory technology, and the synthesis of feedback control laws customized for 

these types of applications.  The resultant body of research devoted to these subjects is rich and 

vast (Fujino et al. 1996; Housner et al. 1997; Soong 1990; Spencer and Sain 1997; Spencer and 

Nagarajaiah 2003).  Feedback control affords certain advantages in the context of earthquake 

engineering, which motivate the continually growing interest in this field.  By using externally 

powered electrical or hydraulic devices to apply forces to structures, active forcing systems have 

been shown to greatly reduce the excitation of a building during seismic events, in comparison to 

simpler passive systems.  Part of this improvement is due to the availability of external power, 

and part is due to the use of sensory systems to formulate control actions based on global 

structural deformation characteristics. 

 The first commercial building equipped with an active control system, designed by the 

Kajima Corporation in 1989, is the Kyobashi Center, located in Tokyo (Ikeda et al. 2001).  Its 

control actuators consist of two hydraulic active mass drivers (AMDs) on the roof of the 11-story 

structure.  Together, the weight of these masses is approximately 1% of the structural mass.  One 

of these AMDs suppresses the lateral motion of the structure, while a secondary AMD suppresses 

torsional motion.  The system was designed to reduce vibrations due to moderate winds.  To date, 

this constitutes one of only four or five times that a fully active control system has been 

successfully installed in a commercial building (although several more implementations have 

been successfully applied toward the stabilization of pylons during the erection of bridges).  

There are many reasons for the failure of this technology to gain a foothold in the industry, not 

the least of which is the associated cost.  However, aside from expense, active structural control 

systems have two significant and fundamental disadvantages which diminish their likelihood of 

gaining acceptance in practice.   

The most fundamental disadvantage of active control is that it in general requires an 

external power supply.  This presents questions about both reliability and practicality.  In civil 

engineering applications, an active control system designed to protect a building during 

earthquakes would only be as reliable as its power source on which it depends.  But history has 
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shown that during earthquakes, the power grid is highly susceptible to destabilization and 

blackouts.  On the other hand, the power demands of active control systems for large buildings 

are typically too large to be met with local supplies.  Thus, active control systems are, by their 

very nature, inherently unreliable. 

 The second disadvantage of active control is that, by designing an actuator which may 

accept power from an external source, the system cannot be characterized as a “bounded-energy” 

system.  Questions therefore quickly arise concerning the stability-robustness of such systems.  

Although significant effort has been put toward alleviating this problem through the application 

of robust control theory, the nature of model uncertainty in civil engineering structures is such 

that significant concerns remain unresolved. 

One compromise between active and passive actuation is found in hybrid systems.  These 

consist of a combination of active and passive systems working in tandem.  Hybrid systems are 

more reliable, because the passive part of the actuator will still work in the absence of power.  

Extensive research over several decades has yielded many different designs for these systems 

(Soong 1990) and to date over 40 commercial buildings in Japan alone, as well as many more in 

China, Taiwan, and Korea have been equipped with some form of hybrid actuation (Ikeda 2004; 

Spencer and Nagarajaiah 2003).  

Another important emerging technology in structural control concerns low-power, high-

performance force actuators called semiactive devices (Symans and Constantinou 1999).  These 

devices are dissipative like passive devices, but possess fast-acting variable properties which may 

be “tuned” in real-time to optimize the dynamic response of the structure.  Despite their 

limitations, such devices exhibit some of the appealing traits of active systems, in that they are 

capable of real-time force control, although in a limited range.  Also, the parameters of a 

semiactive device situated in one location in the structure may be controlled based on the 

dynamic response of the entire structure.  The only power necessary for operation of semiactive 

systems is that which is needed for the sensors and control intelligence, and to tune the device 

parameters.  Typically these demands are orders of magnitude below the power flow capabilities 

of the devices. 

1.1:  Semiactive Forcing Systems  
A simple, but theoretical, example of a semiactive device would be the variable dashpot 

shown in Fig. 1.1.  The actuator accepts an input parameter γ, and for different values of γ, the 

relationship between the actuator velocity x&  and the actuator force f has a different shape.  The 

input parameter γ is formulated through some control system to be such that the resultant force f  
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Figure 1.1: Idealized semiactive damper 

 

will be of a desired magnitude.  This parameter corresponds to some property of the device which 

may be modified to yield the differing curves in Fig. 1.1.   

Perhaps the simplest example of a real semiactive device is the variable-orifice damper.  

In this case, the parameter γ  represents the size of the orifice through which the viscous fluid in 

the damper is forced to flow, due to the motion of the piston.  Theoretically, it requires no work to 

change the size of the orifice.  Rather, the orifice size simply controls the amount of energy 

dissipated by the surrounding mechanical system.  Therefore, if the device were ideal, there 

would be no power flow associated with parameter γ.  In actuality, of course, there is a small 

amount of work associated with γ, because there will be losses in the electromechanical system 

which changes the orifice size, but these losses are extremely small, in comparison to the power 

flow of the actuator.  This is a common trait of all semiactive actuators.  Their control parameters 

do not have significant power flow associated with them.  In fact, most semiactive devices, even 

ones which have force capabilities of over 10 tons, are capable of operating for extended periods 

of time using only a battery for a power supply. 

Semiactive actuation has received a fair amount of attention during the last decade 

because of its potential for reliable, low-power structural control.  There are two distinct 

advantages to semiactive control.  The first of these is that, for a structure which is open-loop 

stable (i.e., stable without control), the implementation of a control system employing semiactive 

actuators physically cannot destabilize the structure.  Thus, some questions concerning stability-

robustness vanish.  Secondly, semiactive actuators are unaffected by external power supply 

failures (as they operate on small, local, battery power) making them more reliable. 

These two properties, combined, result in a highly appealing actuator for use in systems 

requiring extremely high reliability, such as in civil engineering applications concerning seismic 

response reduction.   Also, these properties have made semiactive devices appealing in the area of 



 4 

automotive suspensions, where they have exhibited favorable, reliable performance, while 

consuming negligible power.   

1.1.1:  Semiactive Control of Civil Structures:  A Brief History 

Semiactive devices were first researched in the area of vehicular suspensions over 

twenty-five years ago (Croila and Abdel-Hady 1991; Karnopp et al. 1974).  In civil engineering, 

interest in these devices is a more recent phenomenon (Patten et al. 1994; Spencer 1996).  There 

have been many different types of semiactive devices proposed for civil engineering structures.  

The following is a short list of some of these investigations.  It is not intended to be a complete, 

exhaustive listing of the many contributions in this area.  For more thorough surveys, see 

(Spencer and Nagarajaiah 2003) and (Housner et al. 1997).   

 

• Variable Orifice Fluid Dampers:  In the civil engineering area, the ability of variable-orifice 

dampers to reduce the response of buildings subjected to seismic loads has been shown to be 

effective (Hrovat et al. 1983; Kurata et al. 1994; Liang et al. 1995; Mirzuno et al. 1992; 

Patten et al. 1994; Sack et al. 1994; Shinozuka et al. 1992; Symans and Constantinou 1996; 

Symans et al. 1994).  These results have concerned simulation and small-scale experiments.  

In addition, some full-scale experiments have also been done for a building (Kamagata and 

Kobori 1994; Kobori et al. 1993) and for a bridge (Feng and Shinozuka 1990; Kawashima et 

al. 1992).   

 

• Variable-Friction Dampers:  The idea behind variable-friction dampers is to control the 

friction force between two sliding objects by varying the pressure to the contact surface.  

Several different variants on this idea exist in the literature.  A variable-friction device was 

proposed by (Akbay and Aktan 1990; Akbay and Aktan 1991) and by (Kannan et al. 1995) in 

which the actuator is connected rigidly to the structure, with the pressure at the friction 

interface being controlled actively by controlling the slippage of the device.  A similar study 

was conducted by (Dowdell and Cherry 1994a; Dowdell and Cherry 1994b) and (Cherry 

1994), who also showed, analytically, that the such devices may be employed to reduce the 

inter-story drifts in excited buildings.  Another type of variable-friction device, a friction-

controllable fluid bearing, was studied by (Feng et al. 1993) and (Yang et al. 1994).  This area 

continues to see the proposal of new, novel devices (He et al. 2003; Nishitani et al. 2003). 
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• Controllable Tuned Liquid Dampers:  Normal tuned liquid dampers dissipate energy through 

the sloshing of a fluid in a tank, which is excited by the structure.  The fluid, and tank, are 

designed such that the sloshing effect resonates near the resonant frequency of the structure.  

Several studies (Kareem 1994; Lou et al. 1994; Yalla and Kareem 2003; Yeh et al. 1996) 

have been conducted which equip these dampers which semiactive characteristics. 

 

• Variable Stiffness Devices:  The idea of using a variable-orifice damper as an on/off 

variable-stiffness device was first proposed by (Kobori et al. 1993).  Since that time these 

researchers, and others at the Kajima Corporation in Japan, have developed the concept into a 

commercially-viable technology, which has been implemented in numerous buildings over 

the last decade (Kobori 2003; Yamada and Kobori 2001).  Various methods of structural 

control have been developed for these devices (Nasu et al. 2001).  One particular approach 

(Hayen and Iwan 1994), in which the main structure is interfaced with one or more secondary 

structural systems.   

 A device capable of continuously varying its stiffness has been proposed by (Nagarajaiah 

and Mate 1998).  Such a device may be characterized as semiactive, because the amount of 

power needed to vary this stiffness can be made much lower than the overall power flow of 

the stiffness system.  This device has been implemented in the capacity of a scale-model 

controllable TMD. 

 

• Controllable Fluid Dampers:  Controllable fluid dampers possess fluids with properties 

which may be influenced by the presence of magnetic or electric fields.  For these two cases, 

the dampers are called magnetorheological (MR) and electrorheological (ER) dampers.  

Rheological fluids (both kinds) were discovered in the 1940’s (Rabinow 1948; Winslow 

1947; Winslow 1949).  When the respective fields are applied to these fluids, their behavior 

changes from that of a low-viscosity fluid to more of a semi-solid, visco-plastic behavior.  

Thus, the application of such a fluid in a damper gives the ability to actively control the 

effective viscosity of the damper through electrical and magnetic fields.  Research on ER 

fluids has been quite extensive.  ER fluid dampers have been shown to be quite effective in 

civil engineering applications, as evidenced in (Ehrgott and Masri 1992; Ehrgott and Masri 

1994a; Ehrgott and Masri 1994b; Gavin et al. 1994a; Gavin et al. 1994b; Gordaninejad et al. 

1994; Leitmann and Reithmeier 1993; Makris et al. 1995; Masri et al. 1995; McClamroch and 

Gavin 1995).  Recent research in MR fluid dampers has demonstrated their use in the 

suppression of vibrations for civil structures, due to earthquake excitation (Dyke et al. 1996a; 



 6 

Dyke et al. 1996b; Dyke et al. 1996c; Spencer et al. 1996; Spencer et al. 1997).  In addition, a 

20-ton MR damper, discussed in (Carlson and Spencer 1996) and (Spencer et al. 1997), 

demonstrates that these devices can be scaled for civil engineering applications. 

 

 Semiactive devices are beginning to be implemented in commercial applications in Japan 

by the Kajima Corporation.  Notable among these implementations are four new buildings in the 

Siodome area of Tokyo, including the 38-story Siodome Tower, which have been designed with 

switching hydraulic dampers and feedback control systems.  Also, the 54-story Mori Tower, in 

the Roppongi area of Tokyo, has over 350 variable-orifice dampers installed. 

1.1.2:  Electromechanical Dissipation 

All of the semiactive devices thus far described dissipate energy through mechanical 

means.  For instance, the variable-orifice and the controllable fluid dampers dissipate energy as 

liquid passes through an orifice.  Likewise, the variable friction damper dissipates energy at the 

contact surface.  However, energy may also be dissipated through electrical means.  For instance, 

in the control of flexible structures with piezoelectric materials, research has shown that 

considerable reduction in vibration can be accomplished by the application of electrical RL shunt 

impedances across the terminals of the piezoelectric actuator (Hagood and von Flotow 1991).  

Such impedances store, and dissipate, electrical energy transduced by the piezoelectric material 

from the vibrating structure.  Such ideas were expanded to a semiactive framework by allowing 

the resistor to be controllable in real time, with favorable results (Edberg and Bicos 1991; 

Hollkamp and Starchville 1994).  This idea constitutes a kind of semiactive control. 

For civil engineering applications, the same concept may be applied.  However, because 

of the physical scale of civil structures, the piezoelectric materials used in lightweight, flexible 

aerospace structures cannot be employed.  Instead an electric motor, by operating as a generator, 

could be used to convert mechanical to electrical energy.  Then, this energy could be dissipated in 

an electrical network.  This idea has been applied to semiactive vehicle suspension design by 

Karnopp (1989).  Semiactive control through electrical dissipation has an advantage over 

mechanical methods in that such devices may also be operated as active devices if power is 

available.  A semiactive device which uses an electric motor to facilitate energy dissipation may 

be driven as an active device by a simple switch in the circuitry to which the machine is 

connected.  This would give such an actuator a versatility not attainable with most other 

semiactive devices.   
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Figure 1.2: A permanent magnet brushless DC machine (cutaway) 

 

A study by Nerves and Krishnan (1996) concluded that the optimal electromechanical 

actuator for use in civil structures is the permanent-magnet brushless DC (PMBDC) machine.  

Such a machine is shown in Fig. 1.2.  Mounted to the rotor of the machine are permanent magnets 

which provide a rotating magnetic field as the rotor spins.  The interaction of this magnetic field 

with the stator windings provides the avenue by which mechanical power on the machine shaft is 

converted to electrical power in the stator coils, and vice versa.  Currently, these machines are 

available commercially at power ratings in excess of 20kW, placing them in the right “ballpark” 

for civil structure applications.    

In Scruggs and Iwan (2003), these machines are used in the design of semiactive 

electromechanical devices for use in civil structures.  A basic schematic for such a device is 

illustrated in Fig. 1.3.  This conceptual diagram shows a rotational electric motor being used as a 

linear force actuator, by means of a linear-to-rotational converter consisting of a gear reduction 

and screw mechanism.  Two electrical circuits may be connected to the motor, depending on the  
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Figure 1.3: General approach for device with active/semiactive capability 
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positions of three switches.  The upper, “active” circuitry is connected to an external power 

source, and may be designed to actively drive the force actuator.  When the switches are in the 

"down" position, the motor is connected to the "semiactive" circuitry, consisting of a network of 

passive components (i.e., resistors, inductors, etc.) and transistors.   

In the semiactive mode of operation, the device uses the motor as a generator which 

converts mechanical energy to electrical energy, which in turn is dissipated in the network.  By 

controlling the transistors in the network, this energy dissipation can be regulated, using concepts 

from basic power electronics (Kassakian et al. 1991).  The transistors are used as “electronic 

switches,” as illustrated in Fig. 1.4.  By proper selection of the voltage Vg, the transistor 

resembles a mechanical switch in parallel with a diode.  As with actual mechanical switches, this 

mode of operation consumes very little power, even if the electric power flowing through the 

network is very high.  As these transistor switches (together with the sensors and control 

intelligence) constitute the only demand for an external power source, the system is semiactive.   

 In Scruggs and Iwan (2003), it was shown that the performance of such an 

electromechanical semiactive device is competitive with that of a similar-sized 

magnetorheological fluid damper, and that the rotational inertia of the device actually works to 

the benefit of the overall system performance. 

1.2:  Regenerative Force Actuation 
 In the last decade a separate class of actuator, first formally defined by Jolly and Margolis 

(1997a), has been proposed for use in structural control.  Called Regenerative Force Actuation 

(RFA), such devices are capable of two-way power flow, like active devices.  However, 

regenerative actuators possess energetic constraints which limit their capability in a way which 

makes them distinct from the devices discussed thus far.  Like semiactive systems, regenerative 

actuators have external power supply demands which are orders of magnitude below their power 



 9 

flow capabilities.  However, they have two characteristics which set them apart from semiactive 

devices: 

 

1) Power storage and reuse:  Semiactive devices must always remove energy from the 

mechanical system.  By contrast, RFA systems have the capability of storing at least a 

fraction of the energy they remove from the mechanical system, and of re-injecting that 

energy back into the mechanical system at a later time. 

2) Power coupling in actuation networks:  When multiple regenerative actuators are distributed 

throughout a structure, they may be capable of “sharing” power with each other.  For 

example, one device may remove energy from a mechanical system from one location, while 

another device simultaneously re-injects that energy back into the mechanical system at 

another location. 

 

 The advantage of RFA systems is that they, like their semiactive cousins, are a 

compromise between active and passive designs.  Many of the favorable power and reliability 

issues of semiactive actuators extend to regenerative ones.  However, regenerative actuators relax 

the constraints imposed on semiactive systems, giving these devices the potential to “push the 

envelope” for the level of performance achievable for energy-constrained control. 

 The concept of regenerative actuation have appeared in numerous areas of structural 

control, and there exist some differences as to exactly what qualifies an actuation system as 

“regenerative.”  These discrepancies arise from how the energy storage system is modeled (if it is 

included at all), whether multiple actuators are considered, and if so, whether they are allowed to 

share power.  In this section, a brief synopsis of some past contributions on this subject will be 

presented.  Then, the framework in which these devices will be considered for this study will be 

presented.  This framework is intended to be rather general, in the sense that it applies to systems 

with or without energy storage, and to arbitrarily large actuation networks.   

1.2.1:  Past Work 

Regenerative actuation is still quite new in structural control applications.  It has been 

examined in the context of automobile suspension systems using a hydraulic regenerative actuator 

(Jolly and Margolis 1997b) and an electromechanical regenerative actuator (Okada et al. 1997), in 

small, flexible structures, with the use of a piezoelectric actuator with an inductor for energy 

storage (Wang et al. 1996), and in civil structures with the use of an electric machine with a 

battery for energy storage (Nerves and Krishnan 1996). 
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Figure 1.5: Block diagram of an actuator subsystem 

 

In the area of vehicle suspensions, regenerative actuators are defined in (Jolly and 

Margolis 1997a; Jolly and Margolis 1997b) as a network of force actuators which has power-

coupled capability (i.e., trait 2 above) and which possesses a single, global, ideal energy storage 

device.  By “ideal,” the implication is that this storage device possesses no dynamics, has 100% 

efficiency, and has no upper limit on energy capacity.  In that study, both electrical and hydraulic 

designs are discussed.  The emphasis is on steady-state disturbance rejection problems, and the 

energetic constraints of the devices are handled by classifying linear feedback control laws for 

which, in steady-state or stationary excitation, the energy stored in the power supply tends to 

infinity. 

In civil engineering applications, regenerative actuators have received much less 

attention.  Nerves and Krishnan (1996) conducted investigations into this subject where, as in the 

aforementioned suspension research, this power supply is considered to be ideal.  A study 

conducted by Scruggs (1999) examined the implications of the fact that the energy storage system 

has a limited size, resulting in saturation and exhaustion of the supply system.  It is also important 

to mention that in the civil engineering area, studies with regenerative actuators have been limited 

to a single device with local energy storage.  The concept of power-sharing between actuators has 

yet to receive any significant attention. 

1.2.2:  A Generalized Approach 

The concept of regenerative actuation can be approached  as an extension of the 

electromechanical semiactive system discussed in the previous section.  Consider again the 

system depicted in Fig. 1.3, slightly revised in Fig. 1.5.  If terminals S-S’ are connected to an 

energy source instead of a resistor, the system in Fig. 1.5 is capable of two-way power flow.  The 

present study envisions the use of several such electromechanical systems (henceforth called 

actuator subsystems) as force actuators for use in structural vibration control.  With the terminals 

S-S’ of each machine subsystem connected in parallel, these subsystems are capable of sharing  
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Figure 1.6: Various Applications of Regenerative Actuation 

 

power with each other, through proper control of the electrical circuitry.  Thus, the electrical 

energy generated by one device may be converted back into mechanical energy by another.   

Remote energy storage and reuse is possible for this system.  The simplest way to 

accomplish this is by designing one of the actuation subsystems as a flywheel drive system.  

Thus, the energy storage device becomes just another degree of freedom in the mechanical 

system to which the RFA system is connected.   If an energy supply does not exist, or if it is 

saturated at its maximum storage level, excess electrical energy may be dissipated in a resistor 

bank, also connected to S-S’.   

In this context, RFA systems have many potential uses in the control of civil structures.  

Consider, for example, the possible implementations shown in Fig. 1.6.  In Fig. 1.6a, two 

machines are incorporated into a structure, one between the ground and first floor, and the other 

in the form of a mass driver on the roof.  If machine 1 were operated as a generator and machine 

2 as a motor, the system could deliver energy directly from the ground to the roof.  Or, as shown 

in Fig. 1.6b, one of the two machines could be mounted on the ground and made to drive a 

flywheel using energy withdrawn by the second machine.  In this way, machine 1 is used as an 

energy storage device.  Yet another possible configuration is the densely-actuated structure in 

Fig. 1.6c.  The capability of the actuators to share power allows for the structural vibration energy 

to flow in more complex patterns than for traditional damping systems. 

1.2.3:  The Ideal RFA Network 

A schematic diagram of an m-machine RFA network is shown in Fig. 1.7.  Each actuator 

subsystem undergoes a relative velocity vk.  The force vector is denoted by fe = {fe1...fem}T  
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Figure 1.7: Idealized Electromechanical Regenerative Actuation System 

 

and the corresponding relative velocity vector is v = {v1...vm}T.  For each actuator, the power 

injected into the structure is Pk = fekvk.  This mechanical power is converted from an electrical 

power VSiSk.  Ideally, this power conversion would be lossless and instantaneous, with fekvk being 

equal to VSiSk.  The terminals S-S’ of all the machines are connected in parallel, and referred to as 

the DC bus, with voltage VS.  Also connected to the DC bus is a “dissipative interface” which is 

used to dissipate excess electrical energy generated by the actuators.  This subsystem extracts 

current iSR from the DC bus, to produce a current iR through resistor RR.  Ideally, the dissipative 

interface would be lossless and instantaneous, with VSiSR equal to iR
2RR.   

As with the electromechanical semiactive device discussed in the previous section, this 

electrical network (i.e., inside the boxes labeled “electronic drive circuit” in Fig. 1.5 and 

“dissipative interface” in Fig. 1.7) is controlled by using transistors as electronic switches.  Thus, 

ideally, control of these electronic networks consumes negligible power. 

In Fig. 1.7, capacitor CS is not intended to store any significant amount of energy, and 

resistor RS is selected to be sufficiently large, such that the energy it dissipates is minimal.  

Therefore, in ideal steady-state operation, the aggregate power flow onto the DC bus is 

approximately zero, implying that 

 RR

m

k
SSk RiVi 2

1

−=∑
=

 (1.1) 

This in turn implies that 
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m

k
SSkVi  (1.2) 

Lossless power conversion further requires that iSkVS = fekvk so the above leads to the ideal 

regenerative actuation constraint,  

 0
1

≤=∑
=

vf T
e

m

k
kek vf  (1.3) 

For an ideal RFA network, the above relationship is the only constraint on the forces.  Of 

course, the power conversions in a real electromechanical system are not lossless.  The electrical 

system also possesses significant dynamics and limitations which must be modeled.  These issues 

constrain the system operation, producing realistic regenerative actuation constraints that are 

more restrictive and complex than the one in equation (1.3).  However, the above discussion 

illustrates the general concept of regenerative actuation. 

1.3:  Objectives & Scope of This Study  
 The focus of this study concerns the design, modeling, simulation, and control of RFA 

networks, such as the one in Fig. 1.7, and their implementation in structural control problems 

pertaining to earthquake engineering.  The ensuing chapters delve deeper into these concepts, 

following the outline below: 

 

Ch.2: System Modeling.  The design of a realistic RFA network, with arbitrary number of 

actuators and possible energy storage, is developed.  This leads to a physical model for 

the electrical dynamics of the RFA network, in which the inputs to the system are the 

linear velocity vector v, and the positions of the electronic switches in the network. 

Ch. 3: Capabilities of RFA Systems.  The theoretical forcing capability of the designed RFA 

network is examined, yielding a single constraint similar to Eq. (1.3), but accounting for 

internal electrical losses in the network, and practical limitations on the electrical states.  

Implications for systems with power storage are examined, which paint a more complex 

picture of the energy storage capability of these systems than the “ideal” supply 

assumptions of previous studies. 

Ch. 4: Switching Control.  An electronic control system is designed by which the switches in 

the network are toggled so as to bring about zero-error tracking for an electromechanical 

force command fe
*.  Robustness issues are addressed, and the final controller design is 



 14 

robust to parameter uncertainties and sensory time delay.  The transient characteristics of 

the closed-loop system are also examined. 

Ch. 5: The Structure-Actuator System.  The integration of the RFA network into a linear 

structural model is presented.  Also, a “nominal model” of the actuator-structure system, 

for use in the design and analysis of the structural feedback controller, are presented.  It is 

then shown that the RFA network may be viewed as a structural damping system, but 

where the damping capabilities are more general than those achievable with mechanical 

damping.  For instance, the damping forces may be non-local, and the resultant structural 

damping matrix may be asymmetric.  Scalar measures are defined, by which the 

performance of the RFA structural control system may be assessed, and these measures 

are used to optimize the linear damping for the RFA network.   

Ch. 6: Feedback Control Algorithms.  The development of “Clipped-Linear” feedback control 

is presented.  This approach to controller design is common for semiactive devices, and 

has been shown to yield favorable performance.  Here, it is extended to RFA networks, 

and several simple examples are given which examine its performance.  Its equivalence 

to Lyapunov-based control system design is also discussed. 

Ch 7: A Simulation Example.  For the control system design approaches developed in Chapter 

6, a numerical example is shown which exhibits the performance of an RFA network for 

the actuator configuration shown in Fig. 1.6a, subject to earthquake loading.  The 

performances of several feedback controller designs are compared to each other, and to 

the uncontrolled case.  Characteristics arising from the non-ideal network realization are 

illustrated. 

Ch. 8: Optimal Control.  The constraints on the RFA network result in a physical limitation on 

the achievable performance for the system.  The derivation and study of this physical 

limit is useful in the design of RFA networks for particular applications.  This chapter 

presents some ideas on the use of optimal control theory to derive this performance limit.  

However, there are basic questions in this analysis which remain unanswered, and 

consequently, the results presented here are merely preliminary. 

Ch. 9: Conclusions and Future Research.  Conclusions are drawn for this study, and the 

numerous avenues for future research are discussed. 

 

 It must be emphasized that this type of actuator design is fairly new, and this study is a 

preliminary investigation into its application to civil engineering.  Therefore, the focus will be on 

fundamental ideas, and not on theoretical subtlety or technological nuance.  It is nowhere claimed 
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in this analysis that the designs presented herein are optimal for a given application, or that they 

represent concepts which could be carried directly into practical implementation without 

modification or refinement.  Rather, an effort was made to strike a comfortable balance between 

theoretical tractability and technological realism. 

 This study relies on simulation data to justify theoretical claims, and does not report on 

any laboratory study or prototype development.  The reason for this is simply that the components 

used in the design of the system are all available commercially, and extremely detailed models for 

their behavior already exist.  It was thus deemed more important to focus on an assessment of the 

general potential of these devices for use in a variety of structural control applications, rather than 

on a specific experimental demonstration. 

 



 16 

Chapter 2.  System Modeling 
 

 

 The RFA network in Fig. 1.7 is quite general.  It is not stated how the electromechanical 

conversion is accomplished in each actuator subsystem, or how the current iR is regulated through 

the dissipative interface.  This chapter constitutes one description of how such an RFA network 

might be constructed, along with a derivation of a dynamic model of its behavior.   

For each actuator in the network, the proposed design of the actuator subsystem is shown 

in Fig. 1.5.  The linear-to-rotational conversion converts the linear force fk to a torque Tk.  The 

machine converts the mechanical energy to electrical energy, and vice versa.  Finally, the power 

electronics interface the terminals of the machine with the DC bus.  This system has nontrivial 

dynamic behavior due to dissipation, inductances in the stator coils, etc.  The DC bus subsystem 

also has dynamics, because of its capacitance CS.  Its inputs are the currents from the machine 

subsystems and the dissipative interface.  The dissipative interface subsystem has dynamic 

behavior as well, and must be controlled to properly regulate the current iR flowing through its 

resistor.   

The approach of this chapter is to model and discuss each subsystem in Fig. 1.7 (i.e., the 

actuator subsystems, DC bus, and dissipative interface) separately.  For each, its hardware design 

will be presented, and its dynamic model derived.  Then, at the end of the chapter, the dynamic 

description of the entire network is presented. 

2.1:  The Actuator Subsystems: Electromechanical Conversion 
 All actuator subsystems are assumed to be assembled from the same types of 

components; i.e., the same types of linear-to-rotational conversions, motors, etc.  However, these 

components may have different parameters for each subsystem.  As they all obey the same 

fundamental laws, their descriptions may be generalized.  For convenience, the notation of 

subsystem number (i.e., fek) will be dropped (i.e., fe) with the tacit implication that such 

expressions apply to all the subsystems in the network.   

2.1.1: Mechanical Modeling 

The mechanical interface of the machines with the structure is accomplished through 

linear-to-rotational conversions, related by 
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 ωlv =  (2.1) 

where l, called the lead of the conversion, has units of m/rad.  For the purposes of this analysis, 

the efficiency of the screw conversion will be considered the same in both directions of operation, 

and will be denoted by η.  Other attributes of the conversion, such as backlash and axial play, are 

considered negligible in this analysis. 

 The shaft torque T is related to the linear force f through the lead and the efficiency.  For 

convenience, define h(Tω) as 

 ( )




≤
≥

=
0:1
0:

ωη
ωη

ω
T
T

Th  (2.2) 

Then f can be expressed as 

 ( )T
l
Thf ω

=  (2.3) 

Note that h(Tω) is equal to h(fv). 

 For machines in the network used to excite flywheels, there is obviously no linear-to-

rotational conversion.  However, it will be inconvenient to continually make distinctions between 

linear and rotational actuators in the mechanical system.  Thus, flywheels will be incorporated 

into the general framework by designating η=1 and choosing an arbitrary l for these subsystems.  

Unless otherwise stated, no distinction will be made between these and other actuator subsystems. 

A cross-section schematic for a brushless DC machine is shown in Fig. 2.1.  The stator of 

the machine is made up of copper windings surrounded by an iron core.  Mounted to the rotor of 

the machine are permanent magnets (the heavy black lines in the figure) which provide a rotating 

magnetic field as the rotor spins.  The interaction of this magnetic field with the stator windings 

provides the avenue for electromechanical power conversion, and results in an electromechanical 

torque Te, applied to the shaft.   
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Figure 2.1: Cross-section of a BDC machine 

 

The angular velocity of the rotor shaft is denoted by ω, and the resultant angular 

displacement is θ.  Let the torsional viscous friction coefficient and rotational inertia of the rotor 

be denoted by B and J, respectively.  Then, the resultant total torque T transmitted to the shaft 

may be expressed as 

 ωω BJTT e −−= & .  (2.4) 

Defining fe as 

 lTf ee /=  (2.5) 

the mechanical dynamics of the machine can be described in terms of the linear motion variables 

as 

 ( ) 







−−= v

l
Bv

l
Jffvhf e 22

& . (2.6) 

In the ensuing analysis, it will be convenient to work directly with fe rather than f, with the 

understanding that they are related through Eq. (2.6).  

2.1.2: Electrical Modeling 

Concerning the electrical dynamics, the stator of the machine is wound with three distinct 

coils called the phases, denoted as a, b, and c.  At the ends of the coils for which the current is 

shown to flow into the machine are terminals, or lines, at which voltages may be applied.  The 

other ends of the coils, denoted by the labels a’, b’, and c’, are connected together at the so-called 
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neutral node, labeled as n.  The corresponding line-to-neutral voltages applied to the terminals are 

van, vbn, and vcn.   

 With the stator coils connected as described, the electrical dynamics of the stator currents 

may be represented by the equivalent circuit shown in Fig. 2.2.  For instance, the a-phase current 

ia satisfies the differential equation 

 
dt
di

LRiev a
aanan ++=   (2.7) 

In the figure, R and L are the resistance and effective inductance, respectively, for each stator coil.  

The equivalent voltage sources ean, ebn, and ecn, called the back EMF voltages, result from 

magnetic induction between the rotor and stator fields.  These voltages are related to the 

mechanical dynamics of the rotor.  Through its angular velocity and position, this relationship is 

described by the periodic, trapezoidal functions Ka, Kb, and Kc, shown in Fig. 2.3.  Using these 

functions, ean is  

 ( )ωθaan Ke =   (2.8) 

Analogous expressions follow for the b and c phases. 

The electromechanical force fe, due to the stator currents, can be found by equating the 

electrical power flow iaean+ibebn+icecn (into the back EMF voltages) to the resultant mechanical 

power delivered by the actuator, equal to fev.  This gives 

 
( )

( )ccbbaa

cncbnbanae

iKiKiK
l

veieieif

++=

++=
1   (2.9) 

where Ka, Kb, and Kc become functions of linear displacement, through parameter η.  With fe thus 

defined, Eqs. (2.1) through (2.9) fully describe the dynamics of each actuator subsystem. 
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Figure 2.2: BDC equivalent circuit 
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Figure 2.3: Trapezoidal back-EMF functions 

 

2.2:  The Actuator Subsystems: Electronic Conversion 
The objective is to use the machine as a force actuator; i.e., to excite currents ia, ib, and ic 

in such a way that fe tracks some desired force fe
*.  By Eq. (2.9), this implies that the three stator 

currents have to be controlled to track a set of commands ia
*, ib

*, and ic
* such that 

 ( )**** 1
ccbbaae iKiKiK

l
f ++=  (2.10) 

However, there are three currents, and one desired force, so Eq. (2.10) is not enough to determine 

three unique current commands (i.e., the problem is overdetermined).  Two additional, 

independent relations for the current commands are necessary. 

 One of these relations is immediate.  Because the three coils connect at the neutral node 

n, the currents must always sum to zero.  Therefore, for successful current tracking, it must 

always be the case that 

 0*** =++ cba iii  (2.11) 

The other relation arises from convenience rather than necessity.  Consider again the 

trapezoidal back-EMF waveforms in Fig. 2.3.  Define a current command i* to be related to the 

three stator current commands as shown in Fig. 2.4 below.  Note that this set of current 

commands always meets Eqs. (2.10) and (2.11).  Defined as such, Eq. (2.10) becomes 

 ** iKf fe =  (2.12) 
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Figure 2.4: Current commands 

 

where  

 lKK f /2 0=  (2.13) 

 Eq. (2.12) is convenient because the relationship between fe
* and i* is proportional and 

time-invariant.  Through Fig. 2.4, it determines uniquely the current commands ia
*, ib

*, and ic
* as a 

function of fe
*.  It is also an l∞-optimal solution to Eqs. (2.10) and (2.11) for {ia

*,ib
*,ic

*}, and thus 

yields the maximum amount of force for a given current level. 

2.2.1: Drive Circuitry 

 The drive circuitry is an electronic network connected to the terminals of the machine 

that provides the means of controlling the stator currents.  It interfaces the machine terminals with 

the DC bus voltage VS, as was shown in Fig. 1.5.   

Terminals a, b, and c are connected to a six-transistor drive circuit which interfaces with 

VS, as shown in Fig. 2.5.  The dynamics of the circuit are influenced by the on/off switching 

ability of the transistors.  By firing the transistors on and off, the stator currents can be raised and 

lowered.  Thus, by proper concurrent timing of these firings, the currents can be controlled.   

 In order to render a tractable model for the electrical dynamics, the traits of the transistors 

and diodes will be approximated.  The diodes are modeled by a nonzero forward conduction 

voltage VD and infinite reverse breakdown voltage.   

Because they are operated as electronic switches, the transistors can be approximated as 

in Fig. 2.6, where Vgs is the gate-source voltage, used to switch the transistor “on” and “off.”  The 

impedance between the gate and source is typically quite high.  Thus, switching the transistor  
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Figure 2.5: Transistor bridge 

 

on and off requires very little current ig, even if the current ids is quite large.  As a result, the gate 

drive circuitry which excites the voltage Vgs typically consumes very little power. 

Fig. 2.6 is an approximate model.  Among other characteristics, it ignores dissipation 

which occurs as the transistor turns on and off. 

 With the transistor approximation in Fig. 2.6, the transistor bridge circuitry may be 

approximated by the switching system in Fig. 2.7. 

2.2.2: H-Bridge Switching Logic 

A system of control logic must be determined for these transistors in order to control the 

stator currents so as to track the commands illustrated in Fig. 2.4.   

Consider that for any rotor angle θ in Fig. 2.4, one stator current command is always 

zero.  Suppose that at some time t, θ(t)∈AR1.  Thus, ia
*=0.  Under the condition that 

 )()( ττ vKV fS >  (2.14) 

for τ>t, the current ia(τ) = 0 is a stable equilibrium point if neither transistor T1 or T4 is activated.  

Thus, it is possible to achieve tracking for the zero-current phase by not firing either of its 

corresponding transistors.   
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Figure 2.6: Transistor approximations 
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Figure 2.7: Approximate transistor bridge 

 

If θ ∈AR1 for all time, the schematic in Fig. 2.5 can then be simplified by removing the 

a-phase circuitry, because it is known that ia = 0.  Similarly, if θ ∈AR4 for all time, the simplified 

schematic would look the same.  Furthermore, for θ in any angle range for all time, the resultant 

schematics differ only in their transistor assignments.  The schematic Fig. 2.8 could then be used 

to accurately model its behavior, by keeping track of which transistors T1-T6 assume the roles of 

T1S, T2S, T3S, and T4S in the various angle ranges, as shown in the accompanying table.  The 

relationships between i and the actual stator currents ia, ib, and ic also differ for different angle 

ranges.  The relationships of these three currents to i, for all six angle ranges, are the same as for 

the current commands shown in Fig. 2.4.  The relation of i to the force fe is therefore also the 

same, i.e., 

 iKf fe =  (2.15) 

 The operation of the 6-transistor drive in Fig. 2.5 follows from this rationale.  For θ in a 

given angle range, four of the transistors take on the roles of T1S through T4S, while the other  

 

  1S 2S 3S 4S i= 
AR1 5 2 3 6 ic , -ib 

AR2 1 4 3 6 ia , -ib

AR3 1 4 5 2 ia , -ic 
AR4 3 6 5 2 ib , -ic 
AR5 3 6 1 4 ib , -ia

AR6 5 2 1 4 ic , -ib 

2R2L
ic , -ib
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–
Kfv
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T6SD6ST2SD2S

  1S 2S 3S 4S i= 
AR1 5 2 3 6 ic , -ib 

AR2 1 4 3 6 ia , -ib

AR3 1 4 5 2 ia , -ic 
AR4 3 6 5 2 ib , -ic 
AR5 3 6 1 4 ib , -ia
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Figure 2.8: Simplified bridge 
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two (corresponding to the zero-current phase) remain switched off.  When θ  transits from one 

angle range to another, these transistor assignments change.   

After such a transition, one stator coil will demagnetize (i.e., its current will drop to zero) 

and another one will become activated.  For example, a transition from AR1 to AR2 results in ib 

dropping to zero and ia rising to i.  Because of the inductance of the stator coils, this 

magnetization/demagnetization process is not instantaneous, but rather occurs over a brief time 

period following the transition.  These dynamics are not reflected in Fig. 2.8, and result in a 

pulsation in i during the transition.  This phenomenon (which is the electrical equivalent of the 

mechanical commutation of the rotor in a traditional DC motor) will be considered negligible in 

this analysis.  It has been shown elsewhere that its effect is so minimal in similar applications, 

and its inclusion greatly complicates the dynamic system description.  Thus, Fig. 2.8 will be used 

as the dynamic model of the actuator subsystem. 

 The simplified 4-transistor bridge shown in Fig. 2.8 is called an H-Bridge, because of its 

geometrical shape.  This type of motor drive is very common, and there exist several variations in 

the methods by which transistors T1S through T4S are used to control the currents.  Here, only one 

of these is illustrated.   

Consider the case where the current i satisfies 

 ( )iVRivKV swfS sgn2 ++>  (2.16) 

where 

 TDsw VVV +=  (2.17) 

If this inequality holds, then the circuit in Fig. 2.8 is equivalent to the one in Fig. 2.9, if the switch 

position S1 related to T1S and T2S by 

i S1 T1S T2S 

>0 1 on off 
>0 2 off off 
<0 1 off off 
<0 2 off on 

 

and if S2 is related to T3S and T4S by an analogous relationship.  

 Control of the bridge circuitry amounts to controlling the positions of switches S1 and 

S2.  The switching logic used here is bistate, and is represented by the variable D, which can be 

either 1 or −1.  Its relation to the switch states is 
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Figure 2.9: Approximate ideal-switch circuitry 

 

 




==−
==

=
1  S2  2,  S1:1
2  S2  1,S1:1

D  (2.18) 

With this definition, the differential equation for the current i may be written as 

 ( ))sgn(2
2
1 iVRivKDV
L

i
dt
d

swfS −−−=  (2.19) 

or, using Eq. (2.15),  

 ( )( )eswfefSfe fVKRfvKDVK
L

f
dt
d sgn2

2
1 2 −−−=  (2.20) 

If Eq. (2.16) is true, then for D = 1, dfe/dt is positive and for D = −1, it is negative.  Thus, 

fe can be raised or lowered through these switches, and through proper alternation of D, its value 

may be made to track a command fe
*.   

Eqs. (2.6) and (2.20) constitute a reasonable dynamic model for an actuator subsystem, 

under the assumption that VS satisfies Eqs. (2.14) and (2.16).  In developing a switching control 

algorithm for the RFA network, VS must be explicitly controlled to ensure that these conditions 

are satisfied. 

2.3:  The Electrical Network 
The various machines in the network are connected, both to each other and to the 

dissipative interface, through the voltage VS.  This is shown in Fig. 2.10, assuming the general 

case of m machines.  This electrical bus is called a DC link, to imply that the voltage VS is a DC 

voltage that “links” several disparate electrical systems together.  DC links are common in many 

power electronic systems, where different parts of the system may operate at different DC 

voltages, or are AC subsystems.  They provide an avenue for power to flow from one part of the  
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Figure 2.10: Machine interconnections 

 

network to another.  The purpose of the capacitor CS is to filter out high-frequency voltage noise 

which arises due to the switching of the transistor bridges.  The resistor RS is present to provide 

some light damping to the dynamics of the voltage VS.  It is designed to be large, and typically 

dissipates much less energy than RR. 

 The differential equation for VS may be expressed as 

 





 −−−−−= S

S
SRSmS

S
S V

R
iii

C
V

dt
d 1...1

1  (2.21) 

Current iSR is the current drawn from the DC bus by the dissipative interface.  Currents iSk, 

k∈{1..m}, are the currents shown in the simplified schematic in Fig. 2.9, for each machine 

subsystem.  These currents are related to the respective ik currents through their switch position 

Dk, as 

 kkSk iDi =  (2.22) 

Therefore, using Eq. (2.15), Eq. (2.21) may be rewritten in terms of the ik currents as 

 







−−−−−= S

S
SRem

fm

m
e

fS
S V

R
if

K
Df

K
D

C
V

dt
d 1...1

1
1

1  (2.23) 

 The circuit for the dissipative interface is shown in Fig. 2.11a, consisting of an inductor, a 

transistor, a diode, and the resistor RR.  The amount of energy dissipated is controlled through the 

transistor.  As with the transistor bridge circuitry used to control the machines, the  
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Figure 2.11: Dissipative circuitry (a) and switching approximation (b) 

 

transistor and diode in Fig. 2.11a may be replaced by a switch.  This is shown in Fig. 2.11b.  For 

simplicity, it will be assumed that 

 swRTRDR VVV ==  (2.24) 

If the two voltages differ, the behavior of the system is not fundamentally altered, but the system 

description is more complicated. 

 To describe the behavior of the system, define the switching variable DR to be 

 


=

2position in  SR:0
1position in  SR:1

RD  (2.25) 

Defined as such, DR may be used to describe the differential equation for the circuit as 

 ( )( )RswRRRSR
R

R iViRVD
L

i
dt
d sgn1

−−=  (2.26) 

For constant VS, the value of iR is limited by 

 














 −

∈
R

swRS
R

R
VVi  , 0max,0  (2.27) 

Because of this, it can be concluded that DR = 1 will make iR increase, and DR = 0 will make it 

decrease.  By switching between these two states, the current can be controlled to be anything 

within its possible range.  Furthermore, the power dissipated by the circuit is equal to RRiR
2, so by 

controlling the value of iR, the dissipation by circuit may be varied.   
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2.4:  Total Electronic System Model 

2.4.1:  The Electrical State Space 

 A description of the entire electrical network can now be expressed as a single (m+2)-

order differential equation.  This equation is a collection of Eqs. (2.20) for the forces {fe1...fem}, 

Eq. (2.23) for the DC bus voltage VS, and Eq. (2.26) for the dissipative current iR.  The switches 

enter the equation through the D terms; i.e., D1 through Dm for the machines, and DR for the 

dissipative element.   

 Define the state vector x and switch position vector D as 

 [ ] [ ]T
Rm

T
SR

T
e DDDVi L1        == Dfx  (2.28) 

Then, the differential equation can be expressed as 

 ( )( )xSH vxDAxAΔx ~−+=&  (2.29) 

with the following definitions 
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The vector vsw is determined by the direction of current flowing through the switches, and by the 

switch conduction voltages.  Mathematically, it contributes to the system differential equation 

like a velocity offset. 

The total forces f  can be related to this system and the mechanical system, through Eq. 

(2.6).  For the entire system, this equation may be represented as 

 ( )[ ]vJLvBLfvfHf &AAe
22, −− −−=  (2.30) 

where 

 ( ) ( ) ( ){ } { }
{ } { }mAmA
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,...,,...,
,...,,,...,,,
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11111
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==
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LvfH  (2.31) 
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Note that this equation is nonlinear, because of the efficiency factors.  Also, depending on how 

the actuators are distributed throughout the mechanical system, dv/dt will depend on f as well.  

Thus, a closed-form expression for Eq. (2.30) requires information about the mechanical system. 

2.4.2:  Electrical Time Constants 

 For the purposes of this analysis, the time constants of the electrical network will all be 

designed to be equal to τ.  Thus, 

 τ=== SSRRkk CRRLRL  (2.32) 

Note that the inductances Lk will include the inductances of the stator coils themselves, as well as 

supplemental inductors connected to the terminals of each machine.  The value of τ should be 

designed to be significantly smaller than the time constants of the mechanical system, so that 

there is minimal coupling between electrical and mechanical dynamics.  In other words, the ideal 

RFA network would appear to have instantaneous dynamics, from the point of view of the 

mechanical system. 

2.4.3:  Distinguishing between Linear and Rotational Actuators 

 As was mentioned in Section 2.1, Eq. (2.28) makes no distinction between linear 

actuators, and those exciting flywheels.  In controlling the electronic circuitry, this distinction is, 

for the most part, immaterial.  However, where it is necessary to distinguish between these two 

groups, the vectors fel and fl will refer to the linear electromechanical force vector, and total linear 

force vector, respectively.  Similarly, the vector vl will be used to refer to the vector of linear 

actuator velocities.   

 For this analysis, it will be assumed throughout that at most one flywheel exists in the 

network, and that this flywheel has electromechanical and total torques Tefw and Tfw, respectively, 

and a rotational velocity of ωfw.  

 With these distinctions, the conventions for fe, f, and v will be 

 
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Chapter 3.  Capabilities of RFA Networks 
 

 

 The description of the system dynamics, given by Eq. (2.29), does not explicitly state 

which operating points (i.e. which forces fe at a velocity v) the system is capable of producing.  

Clearly, there are some operating points that are possible, and others that are not.  Eq. (1.3) 

implies that, even if the network were ideal, its limitations would constrain the forces it could 

achieve. 

 In this chapter, realistic constraints on operating points for the RFA network will be 

derived and discussed.  Indeed, they are somewhat more complicated than the ideal limitation of 

(1.3).  In the discussion, losses in the stator resistances, losses in the switches, and the required 

lower bound on VS in Eqs. (2.14) and (2.16) render a more complex picture of the system’s 

capability. 

 It is important to note that the overarching focus in this chapter is independent of any 

control algorithm that might be designed to control the switch position vector D.  The limitations 

discussed here are intrinsic, physical limitations on the behavior of the system, resulting from the 

parameters of the hardware used in the design.  However, this discussion may be framed in a 

control context, as a study to find the set of equilibrium points x0 for which there exists a switch 

control algorithm such that x is stable about x0 at a given velocity v.  This set of x0 in turn gives a 

resultant set of possible steaty-state force equilibria fe
0, for a given v. 

It will be assumed that v may be viewed as essentially constant from the point of view of 

the electrical system dynamics.  This assumption is justified by the observation that the 

bandwidth of the electrical system will typically be at least an order of magnitude higher than that 

of the mechanical system. 

3.1:  Switching Equilibrium 
 The switch positions {D1...Dm} can be either 1 or –1, and DR can be either 1 or 0.  Thus, 

D lies in a set of 2m+1 possible vectors.  The set of these vectors shall be referred to as D; i.e. 

 { }1
1 | {0,1} , { 1,1} , {1.. }m

m kD D k m+
+= ∈ℜ ∈ ∈ − ∈DD  (3.1) 

For a switch position D to bring x to equilibrium about x0 at constant velocity v, in the traditional 

sense, it would have to satisfy 
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 ( )0 , , =x x v D 0&  (3.2) 

Using Eq. (2.29), D must therefore satisfy 

 ( ) 0( )H S x+ − =A A D x v 0%  (3.3) 

For each D∈D Eq. (3.3) has a unique solution for x0, because AH+AS(D) is nonsingular.  So in 

general, Eq. (3.2) is only possible for 2m+1 values of x0.  Thus, due to the switching nature of the 

control input, a weaker conception of equilibrium must be used for this type of system.  This 

issue is common to all dynamic switching systems, and there are two common approaches to its 

resolution. 

3.1.1: Approach 1:  Duty Cycle-Based Switching 

Assume that each switch position goes through a cycle with period Ts.  During each 

cycle, the switch starts at position one, toggles to position 2, and at the end of the cycle returns to 

position 1.  Let the average of D over one cycle be denoted as d.  Assuming the value of d 

changes very little from one cycle to the next, it may be viewed as a continuous function of time, 

i.e., d(t).  The components of d(t) are called the duty cycles or duty ratios of the switches.  Under 

the assumtion that d(t) varies slowly over any duration Ts, the dynamics of the system may be 

closely approximated by a “switch-averaged” model.  This model is the same as Eq. (2.29), 

except that D is replaced with continuous-time functions d(t).  It then becomes possible to say 

that, for equilibrium of the switch-averaged system, the state x0 must be such that there exists an 

admissible d such that 

 ( ) 0( )H S x+ − =A A d x v 0%  (3.4) 

The admissible region for d is a prism in ℜm+1 with vertices coincident with D.  This region maps 

to a region in x0 space, constituting the set of equilibria possible for the system.  Further, it can be 

shown that all these equilibria are asymptotically stable for v constant. 

 This duty-cycle-based approach is appealing for switching systems because it allows for 

the control input to be viewed as a continuous signal.  This, in turn, allows for the system to be 

linearized about an operating point, and thus for the control algorithm for d to be designed 

through linear control system theory.  However, this approach is not taken in this study, for the 

simple reason that the switching control algorithm proposed here for RFA networks, which will 

be discussed in the following chapter, is based on sliding-mode control theory and does not 



 32 

involve linear system analysis.  However, it is acknowledged that a duty cycle-based approach to 

RFA network analysis and design may lead to superior switching controller designs.   

3.1.2:  Approach 2:  Lyapunov-Based Switching 

This second apporach to the analysis of equilibrium for switching systems, which will be 

used here, involves Lyapunov analysis.  Basically, the goal is to determine the set of x0 values for 

which there exists a switching control algorithm D = F(x) such that in the closed-loop system, x 

is stable about x0 in the Lyapunov sense.  It is tentatively assumed that the switches in the 

network have negligible switching transition times, and that they may alternate infinitely rapidly.  

Consequences of physical limitations on switch operation will be addressed in the next chapter. 

 

DEFINITION: (Switching Equilibrium): For the system in (2.29), let v be assumed constant, and 

let D be determined by a memoryless feedback law D = F(x).  It is assumed that F : ℜm+2 a D is 

continuous almost everywhere in ℜm+2.  Then the system is in switching equilibrium about a point 

x0 if there exists a function U : ℜm+2 a ℜ+ such that U(x) is a Lyapunov function; i.e.  

 ( ) 00   ,   0   ,   0dU dUU
dt dt

≥ ≤ = ⇔ =x x x  (3.5) 

Such a state x0 will be called a switching equilibrium point (s.e.p.) 

 

Thus, switching equilibrium is characterized by an ever-shrinking neighborhood, inside 

which x−x0 must lie.  Note that switching equilibrium points are always stable, by definition.   

This notion of equilibrium is more relaxed than the one defined by Eq. (3.2) because it 

allows for discontinuities in F(x) at x0, thus allowing for x& to be discontinuous at x=x0.  In general, 

it is nontrivial to prove stability for feedback systems with such discontinuities because there may 

be sliding modes in the system dynamics on which D is undefined.  However, it can be shown 

that for all F(x) functions proposed in this study, the dependency of dU/dt on Di vanishes 

wherever Di is undefined.  Thus, Eq. (3.5) can be interpreted in the Lyapunov stability sense, 

without ambiguity. 

3.2:  Stability of Operating Points 
 Although not stated as such, some necessary conditions for x0 to be in switching 

equilibrium for a given v were derived in Chapter 2.  Specifically, these are Eqs. (2.14), (2.16), 

and (2.27).  If they do not hold, the transistor switches cannot be controlled to determine the signs 
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of the derivatives of fe.  It is also clear that, in switching equilibrium, energy should be conserved; 

i.e. the aggregate amount of electrical power generated by the machines should equal the amount 

dissipated in the network.  Mathematically, this requires that 

 0 0 0 0T T
H x− =x A x x v%  (3.6) 

So, using physical arguments, Eqs. (2.14), (2.16), (2.27) and (3.6) are necessary for x0 to 

be a s.e.p.  It will now be shown that these equations are also sufficient.  This will be done by 

construction; i.e. by proposing a candidate Lyapunov function U, and showing that a switch 

position control law F(x) exists which yields switching equilibrium about x0 if it satisfies these 

conditions.  

 The state of the system x can be described relative to x0 as 

 0 δ= +x x x  (3.7) 

If condition (2.14) holds, then it follows from Eq. (2.29) that the dynamics of δx are governed by 

the equation 

 ( ) ( ) 0δ ( ) δ ( )H S H S x= + + + −x Δ A A D x Δ A A D x Δv& %  (3.8) 

Let the candidate Lyapunov function U be defined as 

 11 δ δ
2

TU −= x Δ x  (3.9) 

Then the derivative of U is 

 ( )( )1
0δ δ δ δ ( )T T T

H H S x
d U
dt

−= = + + −x Δ x x A x x A A D x v& %  (3.10) 

The first term on the right-hand side is quadratic, and negative-definite.  It represents the damping 

in the system due to the resistances in the stator coils, and in resistors RS and RR.  For δx 

sufficiently small, the effect of this quadratic term in the above derivative is negligible in 

comparison to the effect of the second term, which is linear in δx.  Thus, an operating point x0 

may be held in switching equilibrium if 

 ( )( )( ) 0~δ,δ 02 ≤−+∋∈∃ℜ∈∀ +
xSH

Tm vxDAAxDx D  (3.11) 

 To more easily analyze the implications of the condition in Eq. (3.11), let δx be 

decomposed into two vectors, as 
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1 1

δ m

m

q +

× +

 
= +  

 

I
x x q

0
 (3.12) 

Note that the mapping from δx to {q1,q2} is invertible, so long as VS
0 > 0.  With δx decomposed 

as such, Eq. (3.11) becomes 

 [ ]( ) ( )( )0 0 1
1 2 1 2( ) 0      ,   T T m

H S xq q ++ + − ≤ ∀ ∈ℜ ∈ℜx q I 0 A A D x v q%  (3.13) 

yielding two sufficient conditions for switching equilibrium as 

 ( )( )0 0
1 1( ) 0     T

H S xq q+ − ≤ ∀ ∈ℜx A A D x v%  (3.14a) 

 [ ] ( )( )0 1
2 2( ) 0     T m

H S x
++ − ≤ ∀ ∈ℜq I 0 A A D x v q%  (3.14b) 

 Consider condition (3.14a).  Recognizing that quadratic expressions are identically zero 

for skew matrices, it can be simplified to 

 ( )0 0 0
1 10     T T

H xq q− ≤ ∀ ∈ℜx A x x v%  (3.15) 

If (3.6) holds, this expression is identically zero.  Now, consider condition (3.14b).  Substituting 

components of the vectors and matrices gives 
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 
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 

− − +  

q
M

 (3.16) 

For a given q2, there must exist a D∈D such that its components yield an inner product in Eq. 

(3.16) which is less than or equal to zero.  Because q2 is arbitrary, this requirement is satisfied if 

and only if 

 ( )0 0 02 sgnmax k
ek swk ek fk k Sk fk

R f V f K v VK
+ + ≤  (3.17a) 

 ( )0 0 00 sgnR R swR R SR i V i V≤ + ≤  (3.17b) 

These equations are equivalent to (2.16) and (2.27), respectively. 

Thus, (2.14), (2.16), (2.27) and (3.6) are necessary and sufficient conditions for x0 to be a 

s.e.p.   
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3.3:  Force Capability  
 With the assumption that v may be treated as a slowly-varying parameter, we now use the 

analyis of the stability of operating points x0 from Section 3.2 to find the resultant implications 

for the forces fe
0 achievable at a given velocity v.   

3.3.1:  The Region of Feasible Forces 

The Region of Feasible Forces is the region in fe
0-space of electromechanical forces for 

which switching equilibrium is possible at a given v.   In this section, its mathematical expression 

is derived.  This expression is analogous to Eq. (1.3) for the ideal RFA network. 

 

DEFINITION: (Region of Feasible Forces):  The Region of Feasible Forces, denoted S(v), is 

defined as 

 ( ) { }0 0 0 2 1 0 0 0 0   ,   and  :       a s.e.p.
Tm m m T

e R S e R SS i V i V+ +  = ∈ℜ ∃ ∈ℜ ℜ ℜ ∋ =  v f F x fa  (3.18) 

Furthermore, its boundary is denoted as ∂S(v). 

 

The equations determining S(v) are (2.14), (3.17) and (3.6).  Combining Eqs. (3.17b) and 

(3.6) to eliminate iR
0 gives 

 
{ } ( )

0 0 02
0 0 2 0max ,0S swR TS S

S e f f e
R S S

V V V VV
R R R

−
 −

− + ≤ + ≤ −  
 

f K R f v%  (3.19) 

Combining Eqs. (3.17a) and (2.14) gives a lower bound for VS
0 as 

 { }1 0 0max ,  f f f e SV−

∞ ∞
+ ≤K v K v K Rf%  (3.20) 

Combining Eqs. (3.19) and (3.20) to eliminate VS
0 gives the equation for S(v) as 

 ( ) { }220 2 0 1 01 max ,  T
e f f e f f f e

SR
− −

∞ ∞
+ ≤ − +f K R f v K v K v K Rf% %  (3.21) 

 It is useful to interpret Eq. (3.21) graphically.  To do this, first define 

 1 2
c f f

−=C R K  (3.22) 

and consider the case where ||v||>>||vsw||.  In this case, ≈v v% .  Assuming also that RS is extremely 

large, Eq. (3.21) is approximately 
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 ( )0 1 0 0T
e c e

− + ≤f C f v  (3.23) 

or, by completing the square 

 ( ) ( )1 0 1 02 2
T T

c e c c e c
− −+ + ≤C f v C C f v v C v  (3.24) 

The region described by the expression above is an ellipsoid in fe-space, centered at −Ccv/2.  For 

m = 2, this ellipse is shown in Fig. 3.1.   

Note that the center of S(v) increases linearly with the magnitude of the velocity vector, 

v.  Also of interest are its principal axes.  For the jth direction, the size of the principal axis is 

 
( )22

1 16

m
fj fk k

k j k

K K v
R R=

∑  

Thus, the dimensions of S(v) increase linearly with velocity magnitude.  Also, notice that the 

boundary of the operating region intersects the origin.  At this intersection, the tangent to the 

boundary is orthogonal to v.   

 Consider the case where the direction of v is fixed, as its magnitude is varied.  For a fixed 

force range, plots of ∂S(v) are shown in Fig. 3.2.  As ||v|| becomes large, ∂S(v) approaches the 

ideal plane boundary expressed by Eq. (1.3).   
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Figure 3.1: Approximate S(v) for m = 2, for arbitrary velocity vector v 
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Figure 3.2: ∂S(v) in region of interest for increasing ||v|| 

 

3.3.2:  Secondary Attributes of the Region of Feasible Forces 

 To get a more realistic picture of S(v), let RS be finite, causing the term on the right-hand 

side of Eq. (3.21) to be nonzero.  Assuming again that ≈v v% , Eq. (3.21) can be conservatively 

approximated by 

 ( ) ( )220 2 0 1 0
2 2

1T
e f f e f f f f e

SR
− −+ ≤ − + +f K R f v K v K v K R f  (3.25) 

or, equivalently, 

 ( ) ( )( )0 1 0 2T T
e c e c

−+ + + ≤ −f I Ξ C I Ξ f Ψv v C Ξv  (3.26) 

where 

 
( ) ( )1 2

f SR
−

=

= + +

Ξ R

Ψ I Ξ I Ξ
 (3.27) 

Completing the square gives 

 ( )( ) ( )( ) ( )1 0 1 0 22 2 8
T T

c e c c e c
− −+ + + + ≤ − +C I Ξ f Ψ v C C I Ξ f Ψ v v C Ξ Ψ v  (3.28) 

 For the RFA network to be effective, RS>>Rk for k∈{1..m}.  Thus, it is the case that Ξ2 ≈ 

0, Ψ ≈ I+Ξ, and Ψ2 ≈ I+2Ξ.  If these approximations hold, then Eq. (3.28) may be very closely 

approximated by 
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Figure 3.3: S(v) for finite RS 

 

 ( ) ( )( ) ( )1 0 1 02 2 2 6
T T

c e c c e c
− −+ + + ≤ −C f v C I Ξ C f v v C I Ξ v  (3.29) 

Thus, the result of finite RS is a slight “shrinking” of the elliptical operating region, as shown in 

Fig. 3.3.  This shrinking approximately preserves the elliptic shape of the boundary.   

 Now, removing the remaining approximation, let ≠v v% .  Then Eq. (3.28) becomes 

 ( ) ( )( ) ( )1 0 1 02 2 2 2 4
T T T

c e c c e c c
− −+ + + ≤ − −C f v C I Ξ C f v v C I Ξ v v C Ξv% % % %  (3.30) 

This impacts Fig. 3.3 by shifting the center of the ellipse, depending on which quadrant of fe-

space contains the boundary point.  This “shifting” phenomenon is shown in Fig. 3.4.  The 

principal axes of these various ellipses will also be different sizes.  For ||v|| large, this effect is 

subtle, but at low ||v|| it dominates.  Most importantly, it presents a finite velocity below which 

S(v) vanishes (except for the origin).  This constraint on the system can be expressed as 

 ( ) { }max 1 Sk swkk
v v ≤ ⇒ =v 0  (3.31) 

where v = {v1 .. vm}T and vsw = {vsw1 .. vswm}T.  When the components of v just above the critical 

condition in Eq. (3.31), S(v) is highly distorted.  As ||v|| increases along a given direction, the 

operating region approaches its elliptical shape in Fig. 3.3. 

3.3.3:  Force Ratings 

 Each machine k∈{1..m} has a rated current, ik max, which cannot be exceeded without 

resulting in thermal damage.  This results in an effective force rating fk max for each actuator.  

Unlike the physical limitations resulting in S(v), the limitations arising from these force ratings 

are not implied by the system description in Eq. (2.29).  Rather, any control intelligence which  
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Figure 3.4: Distortion of S(v) for low ||v||, due to switching losses 

 

uses this system must explicitly impose limits on the forces which the system may be commanded 

to achieve. 

3.4:  Effect of Energy Storage on Force Capability 
 The concept of the Region of Feasible Forces is independent of the possible existence of 

flywheel energy storage in the RFA network.  If a flywheel exists, it is simply treated as another 

degree of freedom in the mechanical system, as discussed in the previous chapter.  As defined in 

Eq. (2.33), the linear forces fel and fl are augmented with the flywheel torques Tefw and Tfw, to 

obtain fe and f.  Similarly, the linear velocity vector vl is augmented with the flywheel rotational 

velocity ωfw to obtain v.   

 Separating the flywheel variables from the linear actuator variables in Eq. (3.24) gives 

 ( ) ( )1 0 1 0 2
2

8
2 2 4

T fwT
cl el l cl cl el l l cl l fw fw fw

tfw

R
T T

K
ω− −+ + ≤ − −C f v C C f v v C v  (3.32) 

with Ccl appropriately defined.  Define the power flow PE as 

 2
2

2 fw
E fw fw fw

tfw

R
P T T

K
ω= − −  (3.33) 

This is the electrical power generated by the flywheel minus the dissipation incurred in 

transmission to the rest of the network.  The value of Tfw which maximizes PE, subject to the 

condition that |Tfw| ≤ Tfwmax, is equal to 

 ( )
2

maxmax  , sgn
4

tfw
fw fw fw fw

fw

K
T T

R
ω ω

  = −  
  

 (3.34) 



 40 

Defining ωfwc as 

 max2

4 fw
fwc fw

tfw

R
T

K
ω =  (3.35) 

PE therefore has an upper bound, PE
max, dictated by 

 

( )

2
2

max
2 2

22

:
8

:
8 8

tfw
fw fw fwc

fw
E

tfw tfw
fw fw fwc fw fwc

fw fw

K
R

P
K K
R R

ω ω ω

ω ω ω ω ω


≤

= 
 − − ≥


 (3.36) 

This upper bound on PE signifies that the flywheel has a limit to how much power it can deliver 

to the rest of the system, which depends on the flywheel torque rating and rotational velocity.   

The discussion above can be framed directly in terms of flywheel energy storage.  The 

energy stored in the flywheel is 

 21
2fw fw fwE J ω=  (3.37) 

Define quantities τE and Efwc as 

 
2

max21
22 2

4
  ,  

2
fw fw fw

E fwc fw fwc
tfw fw E

R J T
E J

K J
τ ω

τ
= = =  (3.38) 

Then PE
max is 

 
( )

max

2

1 :

1 1 :

fw fw fwc
E

E

fw fw fwc fw fwc
E E

E E E
P

E E E E E

τ

τ τ

 ≤= 
 − − ≥


 (3.39) 

A graph of PE
max vs. Efw is shown in Fig. 3.5.  This illustrates that, as Efw becomes larger, the 

ability of the flywheel to deliver power to the DC bus becomes hampered, due to the torque rating 

Tfw max.   

 It is interesting at this point to consider the region in fel-space of linear forces which are 

possible at a given linear velocity vl, and given an amount of energy Efw stored in the flywheel.  

This region will be called Sl(vl,Efw).  Using Eqs. (3.39) and (3.32), an approximate expression for 

Sl(vl,Efw) (which neglects switching and DC bus losses) can be found as 

 ( ) ( ) ( )1 0 1 0 max2 2
T T

cl el l cl cl el l l cl l E fwP E− −+ + ≤ +C f v C C f v v C v  (3.40) 
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Figure 3.5: Upper bound on PE, as a function of the flywheel energy Efw 

 

Illustrations of the boundary ∂Sl are shown in Fig. 3.6, for increasing values of Efw, for the 

region of fel-space bounded by the maximum force ratings of the linear actuators.  For all Efw, Sl 

retains its elliptical shape, as well as its center.  As Efw grows, the principle axes of Sl increase 

uniformly, expanding the ellipsoidal region.  For Efw extremely large, the system becomes capable 

of realizing any linear force fel within ratings.   

Thus, we arrive at the expected conclusion that, with sufficient energy storage, RFA 

networks behave the same as fully active forcing systems.  However, as stored energy increases, 

the transition from energy-constrained operation to fully-active operation is gradual.  This is 

because, for energy from the flywheel to be delivered to the DC bus, some energy must be 

dissipated in the flywheel stator coils.  There is a maximum rate at which energy can be drawn 

from the flywheel, above which the energy dissipated in transmission exceeds the energy 

extracted from the flywheel.  Operation above this level effectively has negative efficiency, and 

reduces the size of Sl.  Such operation is therefore undesirable. 

 The effect of dissipation in the switches and RS can be incorporated into Eq. (3.40) for 

Sl(vl,Efw) in a manner analogous to that of the previous section for S(v).  The most significant 

change resulting from this, aside from distortions to Sl similar to those for S(v), is that the 

flywheel back EMF must overcome the switch conduction voltage Vfwsw before power delivery to 

the DC bus can take place.  This modifies PE
max to the expression 

 
( )

max

2

1 :

1 1 :

fw fw fwc
E

E

fw fw fwc fw fwc
E E

E E E
P

E E E E E

τ

τ τ

 ≤= 
 − − ≥


 (3.41) 

where 

 { }2
max 0  ,  fw fw swfwE E E= −  (3.42) 
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Figure 3.6: Effect of flywheel energy storage on Sl 

 

and where Eswfw is the minimum stored energy necessary to overcome switching losses, i.e.,  

 
2

22
fw swfw

swfw
tfw

J V
E

K
=  (3.43) 

There is therefore a ciritcal energy that must be stored in the flywheel before it may deliver any 

energy to the DC bus.   

3.5:  A Two-Machine Example 
Consider a two-machine system, with parameters listed in Table 3.1.  The two machines 

have identical electrical properties, and identical rotational mechanical properties.  The model for 

these machines corresponds to a particular Kollmorgen motor, which was analyzed in (Pillay 

and Krishnan 1989).  This machine has a power rating of about 150W, and would not be of 

sufficient size for a full-scale Civil Engineering application.  However, its size is appropriate for 

application in scale-model experiments.  The screw leads for the two machines are more than an 

order of magnitude apart.  Such a configuration would be useful for an application in which 

machine 1 is used as an inter-story actuator (for which the velocities would be quite low) and in 

which machine 2 is used to excite a secondary structure, or a mass damper (for which the 

velocities would be significantly higher.   
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Table 3.1:  Example Actuator Parameters 
R1, R2 .29Ω 
L1, L2 5.9mH 
Kt1, Kt2 0.37N/A 
B1, B2 0.0001N-m-s 
J1, J2 0.0002265N-m-s2 

f1 max 830N 
f2 max 276N 
l1 0.0013m/rad 
l2 0.004m/rad 
η1, η2 0.9 
Vsw1, Vsw2 1.4V 
CS 40µF 
RS 500Ω 
LR 20mH 
RR 1Ω 

 

The electrical network was designed such that τ = 0.02.  The actual inductances of the 

stator coils are 0.365mH, and the remaining inductance being supplied externally.  The switch 

conduction voltages Vsw1 and Vsw2 are equal to twice the conduction voltage of a diode.   

3.5.1:  Force Capability for an RFA Network with m=2 

Figure 3.7 shows the analytical ∂S(v) for a given direction of v, and for various values of  

 { }max k swkk
v vξ =  (3.44) 

Note that the size of the regioin grows very quickly as ξ rises above its critical value.  The values 

of vsw1 and vsw2 are 0.49 cm/s and 1.5 cm/s, respectively.  It is clear that for ξ>2, the system has 

significant dissipative capability, and that for ξ>5, the power-sharing capability becomes very 

pronounced.  As ξ grows further, the boundary looks similar to that of the ideal RFA network.  

For large values of ξ, however, the losses incurred in resistor RS will distort the boundary as 

shown in Fig. 3.3.  However, this effect is largely a secondary phenomenon, and has little impact 

on the system in the practical range of velocities for which the system is designed. 

 Fig. 3.7 can be interpreted from the perspective of power flow and energy.  For a force fe 

in the quadrant opposite from the one containing v, both actuators generate electrical energy, 

which is dissipated by the network.  For fe in one of the other two possible quadrants of the 

feasible force region, one actuator is generating electrical energy, which the network uses to drive 

the other actuator.  It is operation in these regions which is not possible for passive and 

semiactive devices. 
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Figure 3.7: S(v), within maximum force ranges, for various values of ξ 

 

For different directions of v, the plots look similar, except that the ellipses are distorted in 

a different way for low v.  Fig. 3.8 shows these boundaries for v2=0, with v1 growing.  This plot 

emphasizes one of the appealing features of RFA networks.  Although v2=0, fe2 may still be quite 

large if v1 is nonzero, and may be of either sign.   
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Figure 3.8:  S(v), within maximum force ranges, for various values of ξ 
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Figure 3.9:  Force capability of an equivalent m-actuator semiactive system for various ξ 

 

3.5.2:  Comparison with a 2-Actuator Semiactive System 

It is interesting to compare the forcing capability of an RFA network to that of a m-

actuator semiactive system, constructed from the same machines and mechanical components.  

Such semiactive acutators were discussed in the introductory chapter.  Each semiactive device 

can be viewed as an RFA network with only one machine.  Fig. 3.9 shows the force capability of 

2 such semiactive devicesA comparison between Figs. 3.7 and 3.9 illustrates the force capability 

which is gained by RFA devices.  For ξ low, the difference is slight.  For larger velocities, it is 

pronounced. 

3.5.3:  Force Capability of a Linear Actuator with Energy Storage 

 Consider a modified RFA network, using the machines and parameters in Table 1, but 

with the revision that machine 1 will now be used to drive a remote flywheel.  A graph of the 

range of fe2, for a given flywheel energy Efw, may then be constructed.  This is shown in Fig. 3.10.  

For Efw<Eswfw the flywheel energy does not affect the range of force capability of fe2.  As Efw 

increases above Eswfw, this range expands at the upper and lower boundaries for a given v2.  Note 

the depenency of the force range on  v2.  As v2 increases in magnitude, the lower boundary 

increases as well.   However, interestingly, the upper boundary becomes smaller as v2 increases.  

Thus, as the velocity of the linear actuator beomes greater, its range of opposing force becomes  
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Figure 3.10: Sl(v2), within maximum force range, for increasing flywheel energy storage Efw 

 

greater while its range of contributing force becomes less.  This phenomenon is not taken into 

account in most studies concerning actuators with ideal regenerative power supplies.   
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Chapter 4.  Switching Control 
 

 

 For a given actuation velocity v, the previous chapter characterized S(v), the Region of 

Feasible Forces for the system.  The approximately elliptical shape of the boundary of this region 

arises from losses in the electrical system.  The development assumed that v was a slowly-varying 

parameter, compared to the electrical dynamics. 

 In this chapter, a feedback controller is developed which facilitates zero-error tracking for 

a force command fe
*, assuming fe

*∈S(v).  This controller relates the switch position vector D to 

the electrical state vector x.  Following the development of the controller, the dynamics of the 

closed-loop system are studied, and it is verified that the time constants associated with these 

dynamics are much smaller than those of the associated mechanical system, justifying the 

assumption that v is slowly varying. 

 The design of this controller is challenging for several reasons.  Obviously, the fact that 

the system is nonlinear complicates the design.  However, the greater challenge arises from the 

fact that the closed-loop performance of the system must be robust to parametric uncertainty in 

the electrical network.  Thus, zero-error tracking is desired, even though it is assumed that the 

system parameters are not known precisely.   

This problem is made more complicated by the fact that, because of this system 

uncertainty, the boundary ∂S(v) is also uncertain.  Thus, a fe
* which is in the nominal (i.e., 

modeled) S(v) may be outside the physical S(v).  In this circumstance, force tracking is physically 

impossible.  The controller should be designed to be robust, such that in these circumstances, the 

system equilibrates to a value of fe which is on the boundary of the actual S(v), and somehow 

“close” to the fe
* command. 

As an added complication to the control system design, the switches have a maximum 

frequency at which they can operate.  The approach taken in this chapter is to design the 

switching controller first without considering this constraint.  Then, the controller design is 

modified to accommodate switching frequency limitations. 

4.1:  Introduction 
 In Section 3.2, it was shown that the following equations are necessary and sufficient 

conditions for a state x0 = [fe
0T iR

0 VS
0]T to be a switching equilibrium point.  
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 { }1 00 ,max f f f eSV −

∞ ∞
+≥ K v K v K Rf%  (4.1a) 

 ( ){ }RswRSR RVVi −≤≤ 00 ,0max0  (4.1b) 

 ( ) ( ) 0~ 0020010 =++++−
RRswRRSSfec

T
e iRViRVvfCf  (4.1c) 

 Let the vector x*={fe
*T, iR

*,VS
*}T be a desired set point for the state of the system.  

Assuming x* satisfies expressions (4.1a-c), it is a feasible operating point for the system.  Define 

the deviation δx as 

 *δ xxx −=  (4.2) 

Then it is a straight forward procedure to design a switching control rule to drive δx to zero.  To 

see this, define q1 and q2 by 
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Then it follows from Eq. (3.16) that the control law 
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where 
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brings about switching equilibrium about x*.   

 It can be shown that the above approach, when implemented, equilibrates at q2=0 if 

inequalities (4.1a) and (4.1b) hold for x*.  However, for q1=0 in equilibrium, x* must be selected 

such that Eq. (4.1c) holds.  Because (4.1c) is an equality constraint, the set of x* satisfying this 

equation has measure zero in ℜm+2, and varies with system parameters.  Thus, the controller in 

Eq. (4.4) requires perfect knowledge of the system parameters in order to accomplish its zero-

error tracking objectives.   

If tracking fails then q1 is nonzero, resulting in tracking failure for all the states, including 

the force vector fe.  A more appealing controller would track fe and VS in the presence of system 

uncertainties (if physically possible), while adjusting iR such that the equality (4.1c) holds in 

equilibrium.  In this chapter, a control system is proposed which does not explicitly track a 

commanded value of iR.  Instead, the switching controller equilibrates the system at a value of iR
0 
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necessary to bring about desired behavior in fe and VS.  Thus, the control system treats iR as a 

“slack” variable.   

4.2:  Design Goals for Switching Control 
 Clearly, the first and most fundamental design goal for the switching controller is that fe 

should track its command fe
*.   

To ensure that this happens, VS must be controlled to ensure that condition (4.1a) holds.  

To conservatively account for system uncertainties, the command VS
* is assigned as  

 { }* 1 *max ,S v f f f eV K −

∞ ∞
= +K v K v K Rf%  (4.6) 

where Kv>1 is a design parameter (a typical value might be 2).  However, it may not be possible 

for VS
0 = VS

* in equilibrium, because the upper bound of (4.1b) for iR
0 may not be satisfied.  

However, because iR
0 is considered to be uncertain, it is impossible to explicitly enforce condition 

(4.1b).  Recognizing that it is acceptable for VS
0>VS

* (i.e., it does not affect the inequality in 

(4.1a)), this problem can be accommodated by requiring that the switching controller yield a 

value of VS
0 which has a lower bound of VS

*, rather than requiring VS
0=VS

*. 

 The fact that Kv>1 in Eq. (4.6) implies that the lower bound for VS
0 is more conservative 

than condition (4.1a).  Thus, the region of fe
* commands for which VS

0≥VS
* and fe

0=fe
* is therefore 

a subset of S(v), which will be denoted as SKv(v); i.e., 

 ( ) ( ){ }* * 1 * * *2 *  |   , 0m T T
Kv e e c e e S e SS V R−= ∈ℜ + + ≤v f f C f f v v f%  (4.7) 

Note that SKv(v)=S(v) when Kv =1.  Because RS is quite large, the difference between SKv and S is 

typically subtle. 

 With these definitions, we can formally state the design goals for the feedback controller.  

The controller will be of the form 

 ( )*, ; ,e S eV=D F f f v  (4.8) 

where F is a memoryless function of fe and VS, but not of iR.  Furthermore, F also depends on the 

command fe
* and v (and therefore on VS

* through Eq. (4.6)).  The closed-loop performance of the 

controller must meet the following requirements: 
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(D1):  Design requirement 1 

In closed loop, fe
0=fe

*whenever fe
*∈SKv(v).   

(D2):  Design requirement 2 

In closed loop, VS
0 ≥VS

* whenever fe
*∈SKv(v). 

 

4.3:  Quasi-Lyapunov Switching Control 
 To restate the design goals from Section 4.2 in a more tractable way, define 

 
*

*

δ

δ

SSS

eee

VVV −=

−= fff
 (4.9) 

and define the function U1 as 
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T
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where hvs(.) is the Heaviside step function. Fig. 4.1 shows a contour map of U1 in a cross section 

of {δfe,δVS}-space with coordinates δVS and aTδfe, where a is an arbitrary vector in ℜm.  The 

contour map looks similar for any a.  Consider that if the switch position vector D is related to δfe 

and δVS such that the derivative of U1 has the property 
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δ,δ   ,   0
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UU
dt
d

VU
dt
d m

Sef
 (4.11) 

then the {δfe,δVS} trajectory is guaranteed to approach the set H as t→∞., where H is defined as 

 { }{ }0δ,δδ,δ ≥=ℜ×ℜ∈= Se
m

Se VVH 0ff  (4.12) 

Thus, for large t, the system would behave approximately as if confined to H.  This would result 

in satisfaction of design requirement D1.   

A control system satisfying Eq. (4.11) would also guarantee that δVS≥0 as t→∞.  

However, it does not guarantee that VS stabilizes about an equilibrium VS
0.  Thus, the equilibrium 

condition 

 ( )0 0δ 0  |   δ δ   as  S S SV V t V t∃ ≥ → → ∞  (4.13) 

must also be imposed on the controller.   
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Figure 4.1: Cross section contour of U1 

 

The theorem below shows that it is possible to choose a feedback law F such that 

conditions (4.11) and (4.13) are true.   

 

THEOREM 4.1:  For any fe
*∈SKv(v), design goals D1 and D2 are met by the feedback law  
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and there exists a unique δVS
0 ≥0 satisfying (4.13) for the closed-loop system.  Furthermore,  

 ( ) ( )[ ] ( ) ( ) ( )[ ] 0  ,   0δ0δ0δδδ
2121211 >+≤ −−− tRVett SSec

T
e

t
ec

T
e fCffCf τ  (4.15) 

where τ is the universal electrical time constant assigned in (2.32). 

proof:  See Appendix A4. 

 

Qualitatively speaking, Theorem 4.1 states that the F in (4.14) achieves zero-error 

tracking between fe and fe
*, and equilibrates VS at a value VS

0 ≥ VS
*, with VS

* specifically defined 

by Eq. (4.6).  For all fe
* in SKv(v), the values of δfe(t) decay to zero, bounded from above by 

(4.15). 

There are subtleties concerning the performance of the switching controller in (4.14) 

which require some more attention.  There are essentially two issues of importance. 

 

Robustness to Uncertainty for Commands Near ∂S 

Note that Eq. (4.14) does not depend explicitly on the system parameters.  (Although the 

system parameters are needed to compute VS
*, the conservative multiplicative factor Kv makes the 
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force-tracking controller insensitive to parameter uncertainty.)  So the controller in Eq. (4.14) is a 

parameter-independent feedback controller that yields zero-error tracking if fe
*∈SKv(v).   

To assure that fe
*∈SKv(v), knowledge of the system parameters is required.  Satisfaction 

of this condition may be guaranteed if bounds are known on the system uncertainty, by requiring 

that fe
*∈SKv(v) for any perturbations in the uncertain system parameters which lie in an admissible 

set.  This approach, while technically valid, would restrict the force capability of the RFA system 

by conservatively approximating ∂S(v).  A better approach is to ensure that when fe
*∉SKv(v), the 

system naturally equilibrates to a force fe
0 which is somehow “close” to fe

*.  It will be shown that 

the controller in Eq. (4.14) has arbitrarily bad robustness properties for fe
*∉SKv(v) but arbitrarily 

near ∂SKv(v).  The controller needs to be enhanced to be robust in such circumstances.  One 

method for doing this is presented in Sections 4.4 and 4.5. 

 

Switching Frequency Limitations 

There is a maximum frequency at which the switches in the system may be made to 

operate, above which the transient behavior and the high rate of dissipation in the switches during 

transition become prohibitive.  The controller in Eq. (4.14) does not account for this limitation.  If 

not explicitly addressed in the design, the resultant effect of switching delay, called “chattering”, 

can have unanticipated and highly undesirable consequences.  Here, the problem is remedied in a 

standard way, by imposing hysteresis bands for the saturation function in  Eq. (4.14).  This issue 

is addressed in Section 4.6. 

4.4:  System Uncertainty and Its Consequences 
 Uncertainty in the system arises from several factors.  The parameters of the system 

cannot be known precisely, and may change with time.  For instance, the Kf constants for each 

machine may vary, depending on the machine temperature, and the amount of current it is 

conducting.  There may also be some uncertainty in the velocities arising from measurement error 

and, more importantly, from the time delay between measurement and control decisions.   

 To formalize the discussion, a mathematical description of the system uncertainty is 

needed.  For the purposes of this analysis, the uncertainty will be treated as a deviation in the 

velocity vector.  Let the nominal values of v and v~ be v0 and 0
~v , respectively, and assume 

additive uncertainty of the form 

 
vvv
vvv
~δ~~
δ

0

0

+=
+=

 (4.16) 
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where the uncertainties have some known error bound 
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 (4.17) 

It will also be convenient to assume that the uncertainty obeys the proportional bound 
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00
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c

T
c
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≤
vCv

vCv  (4.18) 

Design requirements D1 and D2 assume that inequalities (4.1a) and (4.7) hold.  With the 

bounds in inequality (4.17), condition (4.1a) may be conservatively ensured by the re-assignation 

of VS
* as 

 ( ) ( ){ }* 2 *
max maxmax δ , δS v f f f f eV K −

∞ ∞
= + + +K v v K v K R f v% %  (4.19) 

Henceforward, VS
* will be taken to be equal to the above, and it will consequently be assumed 

that condition (4.1a) always holds.   Given this assumption the ensuing analysis examines the 

consequences of fe
*∉SKv(v).  

4.4.1:  Sensitivity of Switching Equilibrium to Uncertainty 

 For the closed-loop system with the controller defined in Eq. (4.14) and VS
* defined as in 

Eq. (4.19), the departure of fe
0 from fe

* can be found as a function of velocity uncertainty.  It is 

assumed that, even if fe
*∉SKv(v), the condition fe

*∈SKv(v0) holds; i.e., a force command is never 

given that the nominal system cannot realize.  Given this, Theorem 4.2 below characterizes the 

consequences of uncertainty on the tracking error of the controller in Theorem 4.1. 

 

THEOREM 4.2:  If fe
*∉SKv(v) but fe

*∈SKv(v0), and if the velocity uncertainty obeys the inequality 
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then the global equilibrium for the system with the controller (4.14) is 
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where 
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proof:  See Appendix A4 

 

Consider the expression for the equilibrium value of α in Eq. (4.22).  Assume that fe
* is 

on ∂SKv(v0).  Then Eq. (4.22) can be expressed as 
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*
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Using the bound in Eq. (4.18), α0 is bounded by 
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 (4.24) 

Consider force commands near the ideal regenerative boundary in fe-space (i.e., commands where 

fe
* is nearly orthogonal to v).  These commands correspond to operating states where there is little 

dissipation in the system, and where the electrical energy generated by the actuators is nearly 

equal to the energy injected back into the mechanical system.  This type of operation is one of the 

great advantages of regenerative actuation.   However, for these operating points, the denominator 

in the above expression is small, and can be much smaller than the numerator, resulting in 

arbitrarily bad tracking. 
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Figure 4.2: Consequences of model error on tracking 
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Figure 4.3: Example sliding-mode trajectories in Sz1 without equilibrium (a)  

and with equilibrium (b). 
 

 In the circumstance where Eq. (4.20) is satisfied, the equilibrium vector δfe
0 is collinear 

with fe
*.  Resultantly, fe

0 and fe
* are collinear with a proportional magnitude of (α0+1).  For fe

* 

near the ideal regenerative plane, this is illustrated in Fig. 4.2.  For fe
* commands arbitrarily close 

to the regenerative plane, tracking becomes arbitrarily bad.   

4.4.2:  Dynamics about Equilibrium 

Consider that when δVS<0, the control operator in Eq. (4.14) has a null space, 

characterized by the subspace 

 
*

*

δ

δ

SS

ee

VV α

α

=

= ff
  (4.25) 

Vector components of {δfe,δVS} in this subspace of ℜm+1 do not affect the determination of D.   

It can be shown that for a region Sz1 defined by 
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the switching controller drives the system states to this subspace, on which the dynamics exhibit a 

sliding mode.  An example of a sliding mode is illustrated in Fig. 4.3.  The idea is that the 

trajectory of {δfe(t),δVS(t)} moves in the state space so as to intersect the subspace defined by Eq. 

(4.25), referred to a sliding surface.  The switch positions D are discontinuous across this surface, 



 56 

so this intersection occurs in finite time.  Following intersection, the trajectory of the system is 

confined to this subspace, until it leaves Sz1.  During this time, the trajectory appears to “slide” on 

these surfaces as if constrained. 

 It follows that if the equilibrium of the system is inside Sz1, then the dynamics of the 

system about this equilibrium point can be described by considering the system to be constrained 

to the subspace defined by Eq. (4.25), thus reducing the order of the differential equation for the 

system from m+1 to 1.  It will now be proven that if fe
*∉SKv(v), the equilibrium of the system lies 

within such a region Sz1, if the velocity uncertainty obeys the inequality in Eq. (4.20). 

 

THEOREM 4.3:  If the conditions of Theorem 4.2 are met, the switching algorithm in Eq. (4.14) 

produces a region Sz1 in {δfe,δVS}-space which includes {δfe
0,δVS

0}, in which the trajectory of the 

system slides on the surface described by Eq. (4.25).  On the sliding surface, the system dynamics 

are described through the α(t) coordinate in Eq. (4.25), which is governed by the differential 

equation 

 ( )01 α
τ

−−= αα&  (4.27) 

where τ is the universal electrical time constant assigned in (2.32). 

proof:  See Appendix A4. 

 

 It is highly desirable to have good tracking near the ideal regenerative plane.  Certainly, 

tracking that is so bad that the equilibrium vector is not even in Sz1 is undesirable.  One simple 

reason for this is that it signifies that the percent error in tracking is greater than (Kv-1)/Kv.  For a 

typical Kv value (say, 2) this is unacceptable.  For practical reasons as well, it is important to keep 

the system equilibrium in Sz1.  If the system exits Sz1, this signifies that the DC bus voltage has 

collapsed below the threshold given by condition (4.1a), which results in the failure of the 

transistor circuits to work properly.  This modifies the dynamics of the system in undesirable 

ways. 

 What is desirable is a way of compensating for the model uncertainty to bring the system 

to an equilibrium point nearby, as shown in Fig. 4.4.  While this would not yield zero-error 

tracking (which is impossible if fe
*∉SKv(v)) it would yield much closer tracking than that of Fig. 

4.2.  Such a controller is presented in the next section. 
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Figure 4.4: Desired compensative behavior for robust performance 

 

4.5:  Controller Redesign for Robustness 

To provide some robustness to uncertainty in ∂SKv(v), consider Fig. 4.5.  Control law F is 

as in Eq. (4.14).  The feedback compensator F2, in the outer loop, is designed to adjust fe
*, to get 

*
ef , based on the tracking error α.   

For the design of F2, it is assumed that the system is confined to its sliding surface as in 

Eq. (4.25).  Thus, its dynamics are described by a single variable α.  Strictly speaking, this is only 

true if α obeys the inequality in Eq. (4.22).  It is assumed that in closed-loop, the compensator 

presented here has sufficiently good performance such that this is true.  The controller is 

presented in the following theorem. 
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Figure 4.5: Feedback compensation for uncertainties 
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THEOREM 4.4:  Let the system be constrained as in Eq. (4.25), and assume that the velocity 

uncertainty satisfies the upper bound in Eq. (4.18).  For a given fe
* and v0, define the function 

( )γβ ,*
ef  as 
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where γ is related to β∈[-1,0] through 
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with θ defined as 
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Then the feedback controller 

 { } { }αθβ Kr ,0min0 , 1max −+=  (4.31) 

is stable for K<<1.  Furthermore, the differential equation for the closed-loop system for α<0 is 
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where q>0 is  
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and where ∆1 and ∆2 are uncertain constants with |∆1|≤1 and |∆2|≤1.   

proof:  See Appendix A4 

 

 The controller in Theorem 4.4 adjusts fe
* by rotating the command toward the vector 

0
~vCc− , while leaving the quantity *1*

ec
T

e fCf −  constant, with the degree of adjustment being in 

accordance with α.  This is illustrated in Fig. 4.6.  This particular way of adjusting fe
* is appealing 

because the resultant closed-loop differential equation for α is linear for all α satisfying  
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Figure 4.6: Adjustment of fe

* by compensator 

 

the inequality (4.22).  It is therefore easier to make generalized statements about the tracking 

error and bandwidth of the closed-loop system. 

 

Improvement in Tracking Error 

 Let the equilibrium points of the uncompensated and compensated systems be α0 and 0α  

respectively.  Then, by Eq. (4.32), the two are related by 
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For fe
* near ∂S(v) and for RS large,  
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and Eq. (4.34) may therefore be approximated as 
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1
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θ
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qK−
=  (4.36) 

Note that, because θ < 0, tracking of α is always improved for the compensated system. Using 

Eq. (4.33), with the assumption that ∆1=∆2=0, this improvement in tracking has a lower bound of 
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Thus, the tracking is improved for the system.  Note that for θ small, this improvement can be 

quite significant. 

 

Closed-Loop Transient Characteristics 

 From Eq. (4.32), it is clear that time constant associated with the compensated system is 

 
( )( )

ττ

1

2**1*

*1*
00

~~
1

−

−

−















+
+= qK

RV SSec
T

e

ec
T

ec
T

fCf

fCfvCv
 (4.38) 

For RS large, this is approximately 
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Thus, by the same reasoning that gave the lower bound on the tracking error,  

 ( ) ( )( )211 1 1 r Kτ θ θ τ−> + + −  (4.40) 

Thus, for fe
* small in comparison to v0, the bandwidth of the compensated system 

becomes very large.  In reality, this is impractical, because this controller would require a digital 

implementation, and therefore be required to operate well below a sampling frequency.    The 

value of τ must be limited to some minimum value minτ .  This limits the practical magnitude of 

K as a function of θ.   

4.6:  Switching Frequency Limitations  
 There is a limit to how fast switches may be made to alternate.  There is also a finite 

delay time necessary to sense the feedback signals, process them, and produce a switch position 

vector D.  However, if the switching rule in Eq. (4.14) were ideally implemented, the switches 

would alternate infinitely rapidly, to keep the system state precisely at its equilibrium x0.  If the 

switches can only be made to alternate at a certain maximum frequency, then x(t) cannot be kept 

precisely at x0, but will “ripple” about this commanded value.  This is illustrated in Fig. 4.7.   

 Usually, these switching limitations are characterized by a maximum switching 

frequency fs or by its inverse, the minimum switching period, Ts.  This switching period consists  
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Figure 4.7: Illustration of switching noise 

 

of the minimum time duration in which a switch may be made to alternate from position 1 to 

position 2, and then back again.   

This lower limit on switching period, and the resultant rippling phenomenon in the 

closed-loop dynamics of x(t), is also called “chattering” and “switching noise.”  If not explicitly 

addressed, it could lead to such undesirable effects as low-frequency, nonperiodic oscillations in 

x(t).  In the context of structural control, this is highly undesirable.  Accepting that some ripple is 

unavoidable in such switching systems, the frequency content of this ripple in the fe vector should 

be concentrated near the maximum switching frequency fs. 

4.6.1:  Hysteretic Switching 

This section illustrates a way of implicitly prescribing the switching frequency, using 

control hysteresis.  There are other ways of handling the problem, such as explicit duty cycle 

regulation.   

Define the hysteretic function hys(u,∆u) as 

 ( )
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


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∆≥
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:1
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,hys  (4.41) 

Fig. 4.8 illustrates how this function is related to its input.  The hysteresis switching controller 

then amounts to a modification of Eq. (4.14) to 
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Figure 4.8: Input/output of hys(u/r) 
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where VS is sent through a low-pass filter with a bandwidth well below fs, to get the smoothed 

voltage SV̂ .  Note that in steady-state, 

 *ˆˆδ SSS VVV −=  (4.43) 

is equal to αVS
*.  Thus, the value of α, for α<0, is sensed through the voltage VS.  The vector ∆f 

contains the amplitudes of the force ripples, and the voltage ∆VS is the magnitude of the voltage 

ripple.     

 Using the above switching logic, instead of Eq. (4.14), the various components of x will 

ripple about their equilibrium positions as discussed.  The frequency of the ripple in x, and the 

neighborhood in x-space in which the trajectory is confined in steady state, are determined by ∆f 

and ∆VS.  Note that as these quantities decrease, the corresponding hysteresis boxes such as the 

one in Fig. 4.8 get smaller and smaller.  As these quantities go to zero, the controller in Eq. (4.42) 

becomes the one in Eq. (4.14).   

Note that the hysteretic switching function for VS has an offset, so that the DC bus 

voltage ripple will have a positive offset of ∆VS, as illustrated in Fig. 4.9.  The reason for this 

offset is that it guarantees that VS will not violate Eq. (4.1a) during any part of its switching cycle.  

This becomes important for operating points with large forces, because the ripple amplitude on  
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Figure 4.9: Ripple and DC offset of VS in steady-state 

 

the DC bus can be quite large in these cases.  Because RS is considered to be quite large, this 

added offset in the average value of VS does not significantly hamper the force capability of the 

system.   

4.6.2:  Determining Appropriate Hysteresis Bands 

 The switching period Ts for a hysteretic function is the time that it takes for the trajectory 

in Fig. 4.8 to make a loop around the hysteresis box.  If the value of ∆u in the figure is known to 

be the worst-case peak amplitude for ripple at a period of Ts, then the cyclic period for the 

hysteresis loop has a lower bound of Ts, and thus an upper bound for the switching frequency, fs.   

 To find ∆fk, the approach used here is to solve for the maximum ripple magnitude of 

force fek, operating over a switching period t∈[0,Ts], during which the average value is 

 ( ) *1 e
avg

ek ff α+=  (4.44) 

Assume that fek(0)=fek(Ts)=fek
avg and assume that Dk(0)=1.  During this period, the derivative of fek 

is 
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If the switching period is very short, this is approximately equal to 
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The boundary conditions at t={0,Ts} then require that Dk transition from 1 to –1 at  
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and the resultant peak amplitude of fek over the interval is thus 

 
( ) ( )
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ekkkfkSfk
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2~ˆ 222
+−

=∆  (4.48) 

This is the value of the hysteresis amplitude used in the control algorithm. 

 For the DC bus voltage, a similar procedure could be used to find ∆VS.  However, this 

procedure is computationally cumbersome.  An alternative approach starts with the pragmatic 

observation that, because RS is very large, a large-amplitude ripple in VS does not significantly 

hamper system performance, so long as VS is consistently above VS
* over the entire switching 

cycle.  Thus, the approach here designates 

 *2.0 SS VV =∆  (4.49) 

This typically results in a ripple frequency for VS which is well below fs when VS>VS
*.   

4.6.3:  Summary of the Switching Controller 

 The overall operation of the switching controller in Fig. 4.5 consists of a number of 

computations.  First, a command fe
* must be issued, and the corresponding VS

* must be computed.  

It must then be checked that fe
*∈SKv(v0).  The value of α is sensed through VS, and fe

* is adjusted 

through Eq. (4.28).  Then, Eq. (4.48) is used to determine the force hysteresis bands.  Finally Eq. 

(4.42) is used to determine each switch position.   

In light of this large computational burden, it is important to note that the computations 

which involve high-frequency feedback quantities are limited to the hysteretic function in Eq. 

(4.42), which likely can be implemented using simple analog electronics.  The computations for 

the robust controller discussed in Section 4.5 involve only parameters which vary with time 

constants well above Ts.  This is important because the hysteresis operation must operate at an 

extremely high information bandwidth to be effective.  Consider, as an example, a case where Ts 

= .05ms (i.e., fs = 20kHz).  Such a switching period is not unreasonable.   For the hysteretic 

operation in Eq. (4.42) to work, it must be able to process information at several decades above 

this frequency.   

The replacement of the switching controller in Eq. (4.42) for that in Eq. (4.14) results in a 

dynamic system significantly less tractable, from an analytical point of view.  In the last section, 

some conclusions were derived concerning the ideal switching controller’s stability properties, 

and a nonlinear compensator was developed.  Here, the dynamics are more complicated, and an 

in-depth analysis of the exact effects of hysteretic switching on the system dynamics is not 
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pursued here.  Rather, it will simply be taken for granted that, for small hysteresis bands, the 

above controller is approximately the same as the ideal one discussed in earlier sections, and that 

its performance should thus be very similar.   

4.7:  The Two-Machine Example (Revisited) 
 To demonstrate the performance of the controlled electrical system, simulations are 

performed for the two-machine system discussed at the end of the last chapter.  The switching 

control system is fully described by parameters Kv, K, and Ts which for these examples were 

made equal to 2, 0.25, and 50µs, respectively.   

The first example is a demonstration of the ability of the control system to stabilize, and 

hold in steady-state, various operating points on the boundary of S(v).  To do this, a simulation is 

performed which controls the system about the boundary of S(v) for velocity vectors of common 

direction but varying size, as was shown in Fig. 3.7 for the theoretical case.  The force command 

fe
* is swept around the analytical boundary of S(v), at a rate well inside the bandwidth of the 

closed-loop system.  The commanded forces were limited to ±fmax.  The simulations were done 

repeatedly for different velocity magnitudes, and along the same direction as in Fig. 3.7.  

The results are shown in Fig. 4.10.  Several important points can be ascertained from this 

plot.  First of all, the approximate elliptical shape of the boundary can be seen, especially as ||v|| 

grows.  For very small ||v|| the elliptical shape is distorted, due to the losses in the switches.  Also, 

note the ripple in the force fe as it tracks fe
*.   

A second example illustrates the transient characteristics of the actuation system, with v 

as in Fig. 4.10 and with ξ=5.   Simulations are performed in which the forces are brought to their 

commanded values, where the initial conditions for the electrical quantities are all zero.  Two 

cases are presented; one with fe
* far inside S(v), and another with fe

* just beyond the boundary of 

S(v). 

For the first case, the force command is 

  fe
*=[−f1max  –f2max]T (4.50) 

which lies far inside S(v), as shown in Fig. 4.11.   Simulation results for the force response of the 

closed-loop system is also shown in the figure.  Several attributes of this plot deserve attention.  

First, note that the forces rise to their commanded values along the direction of fe
*, as expected, 

and that the system reaches switching equilibrium in finite time (about 12ms in this example).  

Also note that the switching ripple in the forces.  The switching frequency was designed to be 

about 20kHz, well outside the bandwidth of the system dynamics.   
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Figure 4.10:  Tracings of ∂SKv(v) for various magnitudes of v 
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Figure 4.11: Transient response to force command (4.50) 
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Figure 4.12: Transient response to force command (4.51), with and without the robust controller 

 

 A more interesting simulation concerns the behavior of the system when a command is 

issued near ∂S(v).  For this command, let  

 fe
*=[–200N , 50N]T (4.51) 

which lies just past this boundary.  The force response for the system is shown in Fig. 4.12, for 

two cases; K=0 and K=0.25.  These simulations illustrate the value of the robust controller in the 

improvement of force tracking. Note that in the case of K=0, the system settles on a switching 

equilibrium point along the direction of fe
* as predicted.  This equilibrium point is around α 

=−0.5; near the lower boundary of the Sz1 region.  For K=0.25, the tracking error is significantly 

improved.  With larger values of K, the responses are even better.   

 It is interesting to also consider the responses of VS and iR for this case.  These signals are 

shown in Fig. 4.13.  Note that, in both cases, iR=0 for the duration.  This is expected, because the 

force command is on the boundary of S(v), and the system is therefore operating at the maximum 

possible efficiency.  The response for VS follows the same basic shape as that of the forces.  For 

K=0, VS settles at slightly above half its commanded value, whereas the switching equilibrium is 

significantly higher for K=0.25. 
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Figure 4.13: Responses of electrical quantities to force command (4.51) 
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Appendix A4 

A4.1:  The y-Space System Description 

 For the mathematical analysis of the system, it will be useful to use the coordinates y for 

the primary system, obtained through the dilation 
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Similarly, it will be useful to refer to yR state 

 RRR iLy 2/1=  (A4.2) 

In these coordinates, the differential equation for the primary system can be expressed as 
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and where s and s~  are the normalized velocity vectors 
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Note that τ is the universal time constant of the electrical system in Eq. (2.32).  The γk terms are 

also time constants, with values 
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Note that BD(y) has the important orthogonality property 

 ( ) 1   ,   +ℜ∈∀= mT
D y0yyB  (A4.6) 

The corresponding differential equation for yR is  
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where  

 swRRswR VLs 2/1~ −=  (A4.8) 

Commands VS
* and fe

* map to a commands yS
* and yf

*, with the resultant equation for yS
* 

taking the form 

 ( ){ }
∞∞ += *1* ~,max fvS Ky ysGGs τ  (A4.9) 

Constraints fe
0∈SKv(v) and |fe

0|≤fmax map to the constraints yf
0∈SyKv(s) and |yf

0|≤yfmax in the y-

coordinates.  The region SyKv(s) is described by 
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 The y-space system representation is convenient because it effectively normalizes the 

system states.  The only quantities which enter into the differential equation for y are the vector 

itself, yR, s, and the set of time constants {τ, γ1...γm, γR}.   

 

A4.2:  Switching Control Theorems        

The proofs to these theorems are done in the y-space, to simplify the mathematics.  It is straight 

forward to show that the proofs transfer into the x coordinates in a manner consistent with the 

theorem statements in Chapter 4. 

 

THEOREM 4.1:  For any yf
*∈SyKv(s), design goals D1 and D2 are met by a feedback law F 

characterized by  
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where the equilibrium value of yS satisfies yS
0≥yS

*.   Furthermore, the transient behavior of the 

system satisfies 

 ( ) ( ) 22 0δδ yy τt
f et −≤  (A4.12) 

proof: 
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For design goals D1 and D2 to be met, it is sufficient to prove that conditions (4.11) and (4.13) 

are true.  Condition (4.11) will be addressed first.  Because the feedback law F in (4.14) is 

memoryless, the switching logic can be divided into two scenarios.  Scenario 1 is the case where 

δyS<0 while scenario 2 is where δyS≥0.  For convenience, these two sets in δy-space will be called 

S1 and S2 respectively.  To ease the notation, U1 will be normalized as τU1 from Chapter 4.   

 

Condition (4.11):  δy ∈ S1  

 U1 has the derivative 
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Eq. (A4.13) is equivalent to 
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For δy∈ S1, DR = 0, so Eq. (A4.14) is 
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Consider the following transformation and its inverse. 
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In these coordinates, (A4.15) becomes 
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Since it is assumed that yf
*∈SyKv(s),  
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and since z2=δyS/yS
*<0 for δy∈S1, Eq. (A4.17) implies that 
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The above derivative is minimized by the switching control logic 

 ( )1sgn zD −=f  (A4.20) 

Using the inverse transformation in (A4.16), this switching rule can be expressed in terms of δyfs, 

as in Eq. (4.14).  Because VS
* obeys equality (4.19), the first term on the right-hand side of Eq. 

(A4.19) is negative-definite; i.e., 
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giving the conclusion that 
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Condition (4.11):  δyfs ∈ S2  

 The time derivative of U1 is equal to 
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which is minimized by 

 ( )ff yD δsgn −=  (A4.24) 

In a manner similar to the observation made in (A4.21), equality (4.19) ensures that, for δyS>0, 
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yielding the conclusion that  
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This observation, together with (A4.22), yield the conclusion that condition (4.11) holds for the 

entire δy space.  These equations also yield the inequality 
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it can be concluded that U1(t) has the upper bound 

 ( ) ( ) τteUtU −≤ 011  (A4.28) 

Using again the fact that δyf
Tδyf ≤ U1 ≤ δyTδy gives the bound in (A4.12). 

 

Condition (4.13): 

Define  
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Using the orthogonality property in (A4.6), and recognizing that δyf=0 on H, gives 
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Because it is assumed that yf
*∈SyKv(s), define P* ≥0 as 
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Insertion in (A4.31) gives 
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If δy∈H then dyf/dt=0 so 
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Combining (A4.34) and (A4.31) gives 
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For yS>yS
* (implying DR=1) Eq. (A4.35) for yS and Eq. (A4.7) for yR give the system 
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This differential equation is stable, and the equilibrium point is the solution to the quadratic 

equation 
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However, the differential equation is only valid for yS>yS
*.   When yS is constrained yS

* (i.e., when 

yS=yS
* and the derivative of yS in Eq. (A4.37) is negative), the switch position DR is undefined, 

and resultantly (A4.37) ceases to hold.  However, note that  

 ( ) ( ) swRRRSRS syPyyyy
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 (A4.38) 

Equating yS=yS
* in Eq. (A4.38) gives the derivative of yR in this circumstance.  Thus we have that 
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It is straight forward to show that the derivative of (yS-yS
0)2+(yR-yR

0)2 is negative-definite for both 

(A4.37) and (A4.39), therefore implying that the two differential equations yield a unique 

equilibrium point. 

♦ 

 

THEOREM 4.2:  If yf
*∉SyKv(s) but yf

*∈SyKv(s0), and if the velocity uncertainty δs obeys the 

inequality 
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then the global equilibrium for the system with the controller (4.14)  is 

 ( ) *00 1 yy α+=  (A4.41) 

where 
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proof: 

Define U as 
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Eq. (A4.44) is equivalent to 

 

( ) ( )

( ) ( )

( ) ( )( ) ( ) RRSS
R

fD
T

v
T

T

Dyyy

U
dt
d

*0*0*0

*0*0

*0*0

δ11δ

~11δ

δδ1

α
γ

αα

α
τ

α

αα
τ

−−+−+







 ++−−+

+−−=

DyByy

sByyy

yyyy

 (A4.45) 

which obeys the inequality 
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Using the transformation from (A4.16),  
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But the second term is identically zero, by definition of α0, so 
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For the control law in (4.14), Df is assigned such that 
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Because yf
*∉SyKv(s), α0<0.  Together with the relationship between s and s~ , this leads to the 

observation that 
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It follows from Eq. (4.19) for the conservative assignation of VS
* that 

 0      11 0 ≤⇒>+ dtdUK vα  (A4.52) 

But, because yf
*∈SyKv(s), 
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Eqs. (A4.52) and (A4.53) give the expression in (A4.40) as a sufficient condition for dU/dt < 0 

♦ 

 

THEOREM 4.3:  If the conditions of Theorem 4.2 are met, the switching algorithm in (4.14) 

produces a region Sz1 in δy-space which includes δy0, in which the trajectory of δy(t) slides on the 

surfaces described by (A4.41).  On the sliding surface, the system dynamics are described by 

(A4.41), in which α(t) is a dynamic variable, governed by the differential equation 
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proof: 

Consider the following coordinate transformation and its inverse. 
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In these coordinates, the differential equation of δz1 can be expressed as   
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where DR=0 is assumed.  Define the quadratic function Uz1 as 
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which has the time derivative 
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Noting the properties 
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Eq. (A4.58) can be written as 
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It is useful to note that the switching rule (4.14) also minimizes the derivative of Uz1 for arbitrary 

δy∈S1.  This implies that it minimizes the second term on the right-hand side of (A4.60).   

Assume that  δy0∈Sz1 and consider that 
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Thus, Eq. (A4.60) becomes 
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But for a sliding mode to exist, Eq. (4.38) must be negative definite.  The conditions for this to be 

true are the same as those in the proof to Theorem 4.2, yielding the result that Eq. (A4.62) is 

negative definite if 
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which is equivalent to the inequality in (A4.42) from Theorem 4.2.   
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If the system is constrained as in Eq. (A4.41), then the differential equation for the 

constrained system can be derived by observing that 
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For any point other than α=−1, the differential equation for α is therefore 
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thus proving Eq. (A4.54). 

♦ 

 

THEOREM 4.4:  Let the system be constrained as in (A4.41), and assume that the velocity 

uncertainty satisfies the upper bound in (4.18).  Define the function ( )* ,f β γy  as 
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where 
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and where γ∈[0,1] is related to β ∈[-1,0] through 
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Then the feedback controller 
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is stable for K<<1, and the differential equation for the closed-loop system for α<0 is 
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where q>0 is  
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and where ∆1 and ∆2(α) are uncertain constants with |∆1|≤1 and |∆2|≤1.   

proof: 

With the definitions above, the differential equation may be written 
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Using the uncertainty bound in (4.18), there exists ∆1 with |∆1| ≤ 1 such that 

 1 0 2δT
n r≤ ∆s s s% % %  (A4.73) 

Furthermore, it is straight forward to show that for −β<<1 
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so 
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So there exists ∆2 with |∆2| ≤ 1 such that 
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Thus, the control law in (A4.69) yields the closed-loop differential equation as (A4.70) for β 

small.  To prove stability, it is sufficient to prove that q≥0.  Observing that 
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it follows that 
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Chapter 5.  The Actuator-Structure System 
 

 

 In the preceding chapters, the development and characterization of RFA networks has 

been presented.  In Chapter 2, a dynamic model for the actuation system was derived in which the 

switch position vector D is the control input.  The electrical system dynamics are influenced by 

these control inputs and the actuation velocity vector v, giving the differential equation for the 

electrical states.  In Chapter 3, the force capability of the system was characterized.   This led to 

definition of the Region of Feasible Forces, denoted S(v), which is the region in fe-space of forces 

which may be sustained in switching equilibrium for a given v.  The developments in Chapter 3 

also led to the maximum force limit |fe|≤fmax, which arises because of the maximum current 

ratings of the electric machines.  Chapter 4, dealt with the dynamics of the electrical network, and 

developed a way of controlling D, so as to bring about tracking between fe and a command fe
*.  A 

feedback switching rule was derived which is effective at bringing about zero-error force tracking 

when fe
*∈S(v), and which is also robust to uncertainty in the boundary ∂S(v).   

 With these developments, a method has been illustrated by which an RFA network such 

as that described in Chapter 1 might be constructed.  Along the way, the characterization of the 

device system has led to a more realistic description of the capabilities and limitations of the these 

systems than that described by Eq. (1.3).   

At this point, the focus is turned to the integration of an RFA network into a structure.  

Several specific issues are addressed.  First, the physical model for the electromechanical system 

is presented, which includes the structural and electrical dynamics, as well as the mechanical 

properties of the rotor shaft and screw conversion of each machine.  Next, the “nominal model” 

of the overall system is presented.  This model is the one which will be used in the ensuing 

mathematical development for the purposes of system analysis and design.  It is a simplified 

version of the physical model, which is necessary in order to permit a reasonable theoretical 

treatment of the control problem, while still retaining the most fundamental characteristics of the 

actuators. 

The third section of this chapter concerns the use of the RFA network to realize an 

effective linear structural damping.  This mode of operation falls short of utilizing the full forcing 

capability of the system, because it effectively constrains fe to obey the linear velocity feedback 

law fe=−Cv, with constraints on C to ensure that fe∈S(v).  However, this formulation is useful 

because that it provides some physical insight into the capabilities of RFA networks, and also 
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because it can, in some circumstances, be used to significantly enhance the performance of the 

structural response. 

This chapter also contains a discussion of performance measures, and addresses the 

question of the degree to which a particular C improves the structural response.  A typical 

performance measure would somehow weigh inter-story drifts against absolute accelerations and 

structural energy dissipation.  In this and the following chapters, both deterministic and stochastic 

responses will be studied, and performance measures are thus presented for both cases. 

 A method is presented for the determination of the matrix C which yields optimal 

stochastic performance.  This method is derived in a general framework using the nominal model.  

Several examples are given for different actuation systems, distributed throughout a three-story 

structure, subjected to stationary white-noise base excitation.  Examples for three actuator 

configurations are presented and discussed, and together illustrate the versatility of these systems. 

5.1:  The Physical Model 
 Consider an arbitrary n-DOF base-excited shear structure equipped with an RFA system.  

The response of such a structure is governed by 

 S S S S ga+ + = − +M q C q K q M G Nf&& &  (5.1) 

where q is the structural displacement vector relative to the base, ag is the base acceleration, and f 
is the m-vector of actuator forces.   

 The forces f are said to be degenerate if the matrix N has rank less than m (i.e., if N has a 

nontrivial null space).  Here, it will be assumed that the actuation system is nondegenerate.  The 

matrix N also relates the actuation velocities v to the structural velocities, q& , through  

 T=v N q&  (5.2) 

The adjoint participation of N in (5.1) and (5.2) is sometimes called the reciprocity relation. 

 Using Eq. (2.30), f is related to the electromechanical force vector fe, and to the structural 

dynamics, through 

 ( ) 2 2, T T
e A A

− − = − − f H f v f L B N q L J N q& &&  (5.3) 

where 

 
( ) ( ) ( ){ } { }

{ } { }
1 1 1 1

1 1

, diag  , ... , diag  , ... , 
diag  , ... , diag  , ... , 

m m m m

A m A m

h f v h f v l l
B B J J

= =
= =

H f v L
B J

 

Thus, the response of the structural system can be expressed as 
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2 2( , ) ( , ) ( , )T T
S A S A S S g ea− −   + + + + = − +   M NH f v L J N q C NH f v L B N q K q M G NH f v f&& &  (5.4) 

This equation, together with the dynamic description of the electrical system, fully characterizes 

the actuator-structure model. 

 For the purposes of this analysis, it will be assumed that at most one flywheel exists, 

characterized by an angular displacement θfw, and electromechanical torque Tefw.  The combined 

flywheel rotor and shaft has viscosity Bfw and inertia Jfw.  The total torque applied to the flywheel 

shaft is thus 

 fw efw fw fw fw fwT T B Jθ θ= − −& &&  (5.5) 

The dynamic description in (5.4) can be augmented to include flywheel dynamics, by appending 

θfw to the q vector.  Similarly, Tfw is appended  to the f vector, as 

      
fw efs fw fw fw fwT B Jθ θ θ

   
→ →   − −   

q f
q f & &&  (5.6) 

The system matrices in (5.4) can be extended to accommodate this new mechanical degree of 

freedom.  Specifically, the substitutions to be made to the matrices in the system are given below. 

  ,   ,   ,   , 
0 0 0

( , )
  ,   , ( , )   , 

1 0 1 1

A AS S S
S S S A A

fw fwB J
        → → → → →        

         
       → → → →       
       

B 0 J 0M 0 C 0 K 0
M C K B J

0 00 0 0
N 0 G H f v L 0

N G H f v L
0 0

(5.7) 

For the remainder of this study, the discussion is immaterial to the existence of a flywheel degree 

of freedom, unless otherwise mentioned. 

5.2:  The Nominal System Model  
 Eq. (5.4), together with the electrical dynamics of fe, constitutes the physical model of the 

system.  This model, while suitable for simulation, has characteristics which make it cumbersome 

for the purposes of system analysis.  It contains the low-frequency dynamics of the structure as 

well as the switching dynamics of the electronics, which occur at frequencies four or five decades 

higher.  This results in a system model which is rather slow in simulation.  The model also 

includes nonlinearities, some of which make dynamic system analysis unnecessarily difficult.  

Left unaddressed, these issues will make the analysis of RFA networks in the coming chapters 

significantly more complicated. 

In order for an analytical treatment of RFA networks to be practical, a simplified model 

of the structure-actuator system must be developed which balances realism with tractability.  This 
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will be called the Nominal System Model (NSM).  It is desirable that the NSM contain the most 

fundamental traits of the electromechanical system, but it should be simple enough that a 

mathematical analysis of the system is not overly cumbersome.   Toward this end, several 

approximations are made for the NSM: 

 

• Lossless screw conversions:  Note that H(f,v)≈I for high-efficiency conversions.  This 

approximation will be made for the NSM, because it allows for the mechanical system to be 

represented as a linear differential equation.  If this approximation is not made, then Eq. (5.3) 

does not, in general, have a closed-form solution for f, due to the fact that f contributes to the 

accelerations q&&  in (5.3). 

• Lossless electronic switches:  This assumption is equivalent to assuming that the 

semiconductor switches in the electrical system are ideal.  It has been shown that the 

influence of semiconductor losses on S(v) is only significant for small ||v||.  However, the 

inclusion of these effects greatly complicates the expression for S(v).  If these effects are 

neglected, the boundary ∂S(v) is described by a simple quadratic equation. 

• No electrical parameter uncertainty or time delay:  The effect of parameter uncertainty on 

the electronic control system’s ability to track a force command was discussed at length in 

Chapter 4.  The switching controller was designed to be robust to such uncertainties.  As their 

inclusion would greatly complicate the NSM, such effects are ignored here. 

• Instantaneous electrical dynamics:  This assumption is equivalent to assuming that the 

electronic control system can instantaneously realize any force; i.e., fe
*=fe.  Because the 

electrical time constants are explicitly designed to be much smaller than the mechanical time 

constants, this assumption is deemed reasonable. 

 

 It is important to emphasize that these assumptions will be used only for the purposes of 

system analysis and controller design.  Clearly, the true physical model is a more accurate 

description of the system behavior.  Thus, the transient simulations presented in Chapter 7 will be 

done using this physical model. 

 The simplified model resulting from these assumptions is a linear mechanical system.  

The viscosity and inertia of the rotor may be reflected into the structural damping and inertia, to 

obtain the system description 

 SA SA S S g ea+ + = − +M q C q K q M G Nf&& &  (5.8) 

where 

 2 2T T
SA S A SA S A

− −= + = +M M NL J N C C NL B N  (5.9) 
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The system above incorporates the mechanical dynamics of the rotor shafts with the structural 

dynamics, leaving fe as the control input to the system.  Note that the combined mass and 

damping matrices, MSA and CSA, retain symmetry with the inclusion of the rotor inertia and 

viscosity, because L, JA, and BA are diagonal.  However, MSA does not in general retain 

diagonality. 

 Because the electrical dynamics are assumed to be negligible, the above equation 

constitutes a complete description of the dynamics of the NSM.  Because there is no distinction 

between fe
* and fe in the nominal model, both will be referred to as fe to ease the notation.   

With the assumptions outlined above, the constraint fe∈S(v) becomes 

 1 0T T T
e c e e

− + ≤f C f f N q&  (5.10) 

and the constraints on maximum force are 

 maxe ≤f f  (5.11) 

It will be convenient in the course of this analysis to convert Eq (5.8) to a system of first-

order differential equations, and to normalize the system states and forces.  Introducing the 

coordinate vector w and the normalized force vector u as 

 
1/ 2

1/ 2SA
c e

SA

−   = =   
  

M 0 q
w u C f

0 M q&
 (5.12) 

the system state-space description can be represented as 

 u a ga= + +w Aw B u B&  (5.13) 

where 

 

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2

SA SA

SA S SA SA

SA SA
u a

SA c SA S

− −

− −

     
=      − −     

       
= =       

       

M 0 0 I M 0
A

0 M K C 0 M

M 0 0 M 0 0
B B

0 M NC 0 M M G

 (5.14) 

The constraints on u are then 

 ( ), : 0T T T
uP = + ≤u w u u u B w  (5.15a) 

 max≤u u  (5.15b) 

Together, Eqs. (5.13) and (5.15) constitute the NSM, parameterized by A, Bu, Ba, and umax. 
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5.3:  Effective Damping of the RFA Network 

 Consider a feedback control regime in which u is related to w through a m×m feedback 

matrix Z, as 

 T
u= −u ZB w  (5.16) 

where the values of Z may be controlled.   Through Eq. (5.15a), it is then clear that a constraint 

exists on the matrix Z, as 

 ( ) 0T T T
u u− ≤w B Z Z Z B w  (5.17) 

Assuming that the actuation system is nondegenerate, the necessary and sufficient condition for 

this relation to hold for all w is that 

 
1 1
2 2

0
0

T

T T

− ≤

⇔ − − ≤

Z Z Z
Z Z Z Z

 (5.18) 

Completing the square,  

 ( ) ( )1 1 1
2 2 4 0T− − − ≤Z I Z I I  (5.19) 

which is true if and only if the following maximum singular value condition holds. 

 ( )1 1
2 2σ − ≤Z I  (5.20) 

Satisfaction of Eq. (5.20) implies that u, as related to v in Eq. (5.16), satisfies constraint (5.15a). 

 If it can be assumed that w is sufficiently small, or Z is somehow additionally constrained 

such that u does not violate Eq. (5.15b), then this “velocity feedback” approach fully 

characterizes the RFA network capability for the NSM.  This approach can be useful for a 

number of reasons.  For some applications, such a formulation leads to a static feedback law (i.e., 

Z constant and pre-designed) which yields high performance in closed-loop.  Such an 

implementation has certain advantages, in that it does not place large demands on control 

intelligence, and affords an implementation which requires no structural sensors.  Also, if Z is 

constant then the closed-loop system is linear, which expedites an analysis of the structural 

response.   

 Equally important is the physical insight which may be gained from this approach.  Let 

the feedback relation in (5.16) be expressed in the fe coordinates, as 

 1 2 1 2
e c c= −f C ZC v  (5.21) 

Thus, this approach establishes an effective linear structural damping relation.  While it may at 

first seem frivolous to use such advanced technology merely to apply linear damping to a 

structure, several characteristics make this approach intriguing.   
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5.3.1:  Non-local Damping 

 Note that, when incorporated into the NSM differential equation, the total system 

damping matrix becomes 

 1 2 1 2 T
SA c c+C NC ZC N  (5.22) 

The Z term above has the potential to have a very large band, even if the band of CSA is quite 

small.  Physically, the significance of this is that the RFA network is capable of creating the 

effect of viscous dampers which interface remote locations in the structure.  By contrast, consider 

the case with the actuators removed, and replaced with mechanical viscous dampers.  In this 

circumstance, the influence of these dampers on the structural differential equation could still be 

expressed in terms of Z, but the locally-dissipative nature of the dampers would constrain Z to be 

diagonal. 

 As an example, consider a structure with two actuators.  Let the Z matrix be described as 

 11 121 2 1 2

12 22
c c

c c
c c

− − 
=  

 
Z C C  (5.23) 

Let the structure be a simple n-DOF base-excited shear structure with n>2.  Let actuator 1 be 

placed between floors p1 and p1+1 and actuator 2 placed between floors p2 and p2+1, where the 

floor number increases from the base and p2>p1+1.  Then the N matrix is 

 0 1 1 0
0 1 1 0

T− =  − 
N L L

L L
 (5.24) 

and the contribution of the actuators to the overall structural damping matrix is therefore 

 

11 11 12 12

11 11 12 12

12 12 22 22

12 12 22 22

c c c c
c c c c

c c c c
c c c c

 
− − 

 − − 
 
 − −
 − −
  

0 0 0 0 0
0 0 0
0 0 0 0 0
0 0 0
0 0 0 0 0

 (5.25) 

 This damping configuration has a physical interpretation, as illustrated in Fig. 5.1.  Note 

the distribution of negative damping as well as positive damping.  The fact that Z is positive 

definite (as implied by (5.20)) ensures that the total supplemental damping matrix is positive 

definite.  Furthermore, it is easy to show that if a damping matrix with a given c12 meets 

constraint (5.20), then the matrix with −c12 also meets the constraint.  The damping configuration 

in Fig. 5.1 illustrates that RFA networks enable not only local damping between the degrees of 

freedom at which each individual device is attached, but also non-local damping between remote 

degrees of freedom. 
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Figure 5.1:  Effective damping configurations for Eq. (5.25) 

5.3.2:  RFA Stacks 

Another interesting potential use of RFA networks involves the specific circumstance of 

the above characteristic, where the two actuators share a degree of freedom.  In this case, again 

using the terminology in Eq. (5.23) for the equivalent damping, except that p2=p1+1, the overall 

supplemental damping is shown in Fig. 5.2.  Note that if the cross-term c12 is small, this looks like 

inter-story damping.  As c12 becomes larger, however, the structural damping becomes more 

interesting. 

 Condition (5.20) is equivalent to the conditions 

 2 11 22
12 11 22

11 22

, 0 1
c c

c cc c c
C C

≤ ≤ + ≤  (5.26) 

Note that for c11 and c22 sufficiently small, the designation of c11=c22=−c12=c is admissible.  This 

designation results in the effective cancellation of the inter-story dampers in Fig. 5.2, leaving an 

effective damper c between stories 1 and 3.   

This logic may be applied to stacks of more than two devices, creating the effect of 

dampers which connect remote degrees of freedom directly.  They are therefore capable of 

producing so-called “Groundhook” damping (i.e., damping between the base of a structure and a 

degree of freedom at a level much higher in the structure.)  However, it should be noted that such 

an implementation would require many devices, which could be rather impractical.  Also, as the  

2

1

c22–c12

c12

c11–c12

22

11

c22–c12

c12

c11–c12

 
Figure 5.2:  A simple stacked RFA system 
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Figure 5.3: Quasi-Skyhook Damping 

 

number of devices increases, the maximum c for which the Z constraint is satisfied becomes 

smaller, because the electrical system incurs greater transmissive power losses as the size of the 

network increases. 

5.3.3:  Quasi-Skyhook Damping 

 Consider that the rotational dynamics of a flywheel are mathematically equivalent to the 

linear dynamics of a mass, relative to the inertial reference frame.  This is illustrated in Fig. 5.3a, 

where the screw lead lfw is arbitrary.  Thus, Z as in Eq. (5.23) couples the linear motion of a 

structural degree of freedom with the rotational motion of a flywheel, this is conceptually 

equivalent to the indirect interfacing of the structure with the inertial reference frame, as 

illustrated in Fig. 5.3b.   

 It is widely recognized that, by establishing a direct damping relationship between a base-

excited structural system and the inertial reference frame, the absolute acceleration of the 

structure can be greatly reduced.  This approach is commonly referred to as “Skyhook” damping.   

For the configuration in Fig. 5.3b, the damping connection to the inertial reference frame 

is indirect (i.e., it interfaces an ancillary mass with the structure and the inertial reference frame, 

rather than providing a direct connection).  This configuration will therefore be called “Quasi-

Skyhook” damping.  Its optimal use to reduce accelerations in civil structures is still not 

completely understood.  An analogous concept has been recognized in the aerospace applications 

where a piezoelectric actuator, interfaced with a capacitive shunt, may be used to achieve the 

same kind of effect.   

5.3.4:  Skew Damping 

 There is an additional aspect to the velocity feedback relation in (5.16) that is worthy of 

discussion.  Note that in the development of Eq. (5.16), Z is not required to be symmetric.  From 
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Eq. (5.22), the implementation of an asymmetric Z results in an asymmetric structural damping 

matrix.  Structural vibration theory with asymmetric stiffness, damping, and mass matrices has 

received some attention over the years (e.g. (Adhikari 1999; Caughey and Ma 1993; Inman 

1983)).  Asymmetric damping matrices show up in many systems with gyroscopic forces.  Also, 

active control systems with linear velocity feedback may also be thought of as creating 

asymmetric (as well as possibly non-positive definite) damping matrices.   

 The physical meaning of “skew damping” in the context of general structural vibrations 

may be interpreted as a circulation of mechanical energy throughout the structure.  Although this 

has no direct analogy in the context of traditional structural dynamics, it may nonetheless be 

framed in the context of passive vibrations.  It corresponds to the direct transmission of energy 

through a structure.   

 Let Z be decomposed into symmetric and skew-symmetric components, as 

 , ,T T
H S H H S S= + = = −Z Z Z Z Z Z Z  (5.27) 

Then the symmetric component has a physical interpretation discussed in previous subsections, 

where symmetry was tacitly assumed.  The skew-symmetric component of Z has no energy 

dissipation associated with it.  To see this, consider that the rate of energy dissipation of the 

effective damping is 

 
( )1 2 1 2

1 2 1 2

T T
e c H S c

T
c H c

= +

=

f v v C Z Z C v

v C Z C v
 (5.28) 

where it has been observed that quadratic operations on skew matrices are identically zero.   

 The direction of the power flow for each device depends on the instantaneous structural 

velocity, and the choice of ZS.  As an example, consider again a two-actuator system.  Let 

 1 2 1 20
0S c c

c
c

− − =  − 
Z C C  (5.29) 

Then the electrical power generated by actuator 1 is cv1v2.  Likewise, the electrical power 

generated by actuator 2 is −cv1v2.  Thus, the circulation of mechanical energy in this system is 

illustrated in Fig. 5.4.   

 The constraint on Z in inequality (5.20) results in a coupling of constraints on ZH and ZS.  

If ZH=0, the only value of ZS satisfying the inequality is ZS=0.  Physically, this is because the 

RFA network is not 100% efficient, and dissipates some electrical energy during transmission.  

Thus, a Z with a significant skew component also requires a significant symmetric component to 

overcome the losses in the network.  However, the norm of Z−½I is bounded, so there is a limit 

to how large both these matrices can be. 
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Figure 5.4:  Circulation of mechanical energy due to skew damping 

 

 Skew damping matrices are particularly interesting for systems containing flywheel 

energy storage.  In this case, the power flow between the structure and the flywheel can manifest 

itself in a skew damping relationship.  In the design of Quasi-skyhook damping systems, for 

example, it will be shown that the stochastic-optimal Z matrix is the sum of diagonal and skew 

matrices. 

5.4:  Measures of Performance 
 Clearly, the characteristics of the structural response will vary with the choice of Z.  

Some responses will be more “favorable” than others.  For instance, some responses will have 

smaller maximum inter-story drifts, structural energy dissipation, absolute accelerations, etc.  It is 

useful to quantify this level of favorability, or performance, of a given Z.  Let the functional J be 

this measure of performance, with the convention that lower J values denote better performance.   

5.4.1:  Deterministic Response 

 Let w(t) be the structural response for a given Z and for initial condition w0 and 

excitation ag(t), over the time interval [0,tf].  Define J as 

 ( )( ) ( ) ( )( )0
0

; . , ; ,
ft

g gJ a t a t dtφ= ∫Z w w Z  (5.30) 

where φ :ℜ2n a ℜ is positive-definite and continuous.  Through an appropriate definition of φ, 

such a performance measure can take on many different physical interpretations.  This study 

concentrates on three special cases: 

 

• Mean-square accelerations:  Let a(t) be the vector of absolute floor accelerations at time t 

and consider the case 
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( )

( ) ( )

2
2

21 2 1

2

( ); , ( ) ( )

( ) ( )

g

T
SA u u SA S g

t a t t

t a t

φ

− −

=

 = − + − 

w Z a

0 M A B ZB w I M M G
 (5.31) 

Then J is equal to the mean-square acceleration over the duration t∈[0,tf]. 

• Maximum Drifts:  Let d(t) be the inter-story drift vector at time t, which is related to w(t) 

through 

 1/ 2

1
1 1( ) ( )

1 1
SA n nt t−

×

  
−  =   

  −  

0
d M 0 w

0
O O

 (5.32) 

Suppose that “good performance” is measured by the ability of Z to keep each drift dk below 

some threshold dkth.  Let 

 ( )2

1
/

n
p

k kth
k

d dφ
=

= ∑  (5.33) 

where p is a positive integer.  Then for p large,  

 ( ) ( )2

{1.. }
( ) max ( ) p

k kthk n
t d t dφ

∈
≈w  (5.34) 

and consequently, J is very large if |dk(t)|>dkth for k∈{1..n}, t∈[0,tf], and very small otherwise.  

On the other hand, if p=1, then J is a measure of the mean-square drifts. 

• Energy Dissipation:  Let φ be equal to ( ) ( )T
St tq C q& & , i.e., 

 ( ) 1/ 2 1/ 2( ) ( ) ( )T

SA S SA

t t tφ − −

 
=  

 

0 0
w w w

0 M C M
 (5.35) 

then J is equal to the total energy dissipated by the structural elements during the time 

interval t∈[0,tf], and the performance of Z is measured by its ability to reduce this structural 

energy dissipation.  Note that this measure of performance may also be viewed as favoring 

low mean-square relative velocities. 

 

Of course, J can be taken as any linear combination of the above.  For the purposes of 

this study, φ(w(t);Z,ag) will be assumed to be the weighted, linear combination  

 ( ) 2 2

1
; ,

n
p T

g ak k dk k E S
k

a q a q d qφ
=

 = + + ∑w Z q C q& &  (5.36) 

where qak, qdk, and qE are nonnegative weighting functions.  With the matrices Q, R, S, Qa, Sa, 

and Ra properly defined, the above can be expressed as 
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( ) ( )

( )

1

1

; ,
a

T T T
g g a

T T
a a a g

T T T T T T
T u u u u a u a

g T T T
ga a u a

a a
R a

a
aR

φ φ

φ

  
   = +     
     

   − − + −
 = +      −   

Q S Q w
w Z w w u S R S u

Q S

wQ B Z S SZB B Z RZB Q B Z S
w w

Q S ZB

 (5.37) 

where the non-quadratic function φ1(w) constitutes the drift terms in (5.34) if p>1. 

 The matrix R is equal to  

 
11/ 2 1 1 1/ 2aT

c SA SA c

an

q

q
− −

 
=  

  
R C N M M NCO  (5.38) 

Because the scalar weights must all be nonnegative, it follows that R is nonnegative-definite.  It 

will often be convenient to assume that R is nonsingular.  This is the case if N nondegenerate and 

each qak is nonzero.  Note that if R is large, then values of Z yielding small structural 

accelerations are favored.  This effectively assigns favorability to smaller values of Z.  

Qualitatively speaking, a larger R matrix results in optimal values of Z which produce smaller u 

values. 

5.4.2:  Stochastic Response 

 It is also useful to have measures of performance for the stationary response to stochastic 

excitation.  In such case, define J as  

 ( ) ( ) ( )( )
0

1lim ; ,
f

f

t

gt
f

J t a t dt
t

φ
→∞

 
=  

  
∫Z w Z  (5.39) 

where ag is modeled as white noise with power spectral density Φ0, which is passed through a 

filter belonging to H2.  Thus, ag satisfies the state-space equation 

 0 0a a a

g a a

a
a

= +
=

w A w B
C w

&
 (5.40) 

where Aa is asymptotically stable.  For the dynamic modeling of the system, these filter states can 

be augmented to the w state space; i.e., 

 
a

 
→  

 

w
w

w
(  (5.41) 

where the differential equation for the system then becomes 
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0

0 0

a a u

a

u

a

a

    = + +    
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= + +

A B C 0B
w w u

0 A B0

Aw B u B

( (&

( ( ((
 (5.42) 

With this terminology, Eq. (5.39) is equivalent to  

 ( ) ( )[ ]0 0; ; ,J E φΦ = ΦZ w Z(  (5.43) 

 In the stochastic performance assessment, it will be assumed that φ is quadratic (i.e., that 

p=1 in the drift performance function) and thus it may be expressed as 

 
( )0; ,

T T T T T T
T u u u u a a u a a

T T T T T T
a a a a u a a a

T T T T T T
u u u u

R
φ

 − − + −
Φ =  − 

 = − − + 

Q B Z S SZB B Z RZB Q C B Z S C
w Z w w

C Q C S ZB C C

w Q B Z S SZB B Z RZB w

( ( (

( ( (( ( ( (( (
 (5.44) 

Note that cross-terms between the states and a0 do not show up in the above expression because 

there are no feed-through terms in the state-space expression for ag.   

 It is worth noting that for φ quadratic as above, the value of J is the same as that of the 

deterministic case, with ag(t)=Cawa(t), and where a0(t)=Φ0
1/2 δ(t).  This is a direct consequence of 

Parseval’s Theorem.  Thus, the stochastic optimization of J also yields the optimal Z for the 

deterministic impulse response optimization, with the same φ.  Also, note that, because the 

system is linear, the system differential equation is homogeneous.  Thus, for φ quadratic, the 

optimal Z solution is invariant for any scalar multiple of ag(t) and Φ0 for the deterministic and 

stochastic cases respectively. 

5.5:  Stochastic-Optimal Effective Damping 

 Consider the stochastic measure of performance.  Define ( )Q Z%  as  

 ( ) T T T T T
u u u u= − − +Q Z Q B Z S SZB B Z RZB

( ( (( ( ( (
%  (5.45) 

Then the goal is to find Z which minimizes 

 TJ E  =  w Qw( (%  (5.46) 

 For a given Z, the differential equation for the system is then 

 ( ) 0 0a= +w A Z w B
(( (%&  (5.47) 

where 

 ( ) T
u u= −A Z A B ZB

( ( (
%  (5.48) 
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and where it has been assumed that the constraint |u|≤umax is not violated.  The covariance matrix 

for the system state space is 

 TE  =  Φ ww( (  (5.49) 

For a0 modeled as white noise with spectral density Φ0, the stationary solution of Φ obeys the 

Lyapunov equation 

 T= + +0 AΦ ΦA W% %  (5.50) 

where 

 0 0 0
T= ΦW B B

( (
 (5.51) 

With these definitions, J can be restated as 

 trJ  =  QΦ%  (5.52) 

using the fact that compatible matrix multiplication inside the trace argument is commutative. 

 In order to minimize J over the set of admissible Z, it is useful to first find an expression 

for the gradient of J with respect to Z.  Noting that the derivative and trace operations commute, 

 tr ij

ij ij

J
Z Z

 ∂ ∂ = + 
∂ ∂  

QU Q Φ
%

%  (5.53) 

where 

 ij
ijZ= ∂ ∂U Φ  (5.54) 

Taking the derivative of (5.50), Uij is the solution to 

 
T

ij ij T

ij ijZ Z
 ∂ ∂ = + + + 

∂ ∂  

A A0 AU U A Φ Φ
% %

% %  (5.55) 

Next, note that if Uij satisfies the above, and if the matrix U  is defined as the solution to 

 T= + +0 A U UA Q% % %  (5.56) 

then it is a fact (see (Dorato et al. 1995) for proof) that 

 { }tr tr
T

ij

ij ijZ Z
  ∂ ∂ = +   ∂ ∂   

A AU Q U Φ Φ
% %

%  (5.57) 

Thus, 

 tr
T

ij ij ij ij

J
Z Z Z Z

  ∂ ∂ ∂ ∂ = + +   ∂ ∂ ∂ ∂   

A A QU Φ Φ Φ
% % %

 (5.58) 
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But 

 T T
u u i j

ij ijZ Z
∂ ∂

= − = −
∂ ∂

A B ZB b b
% ( (

 (5.59) 

where bi is the ith column of uB
(

; i.e., 

 [ ]1...u m=B b b
(

 (5.60) 

So 
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{ } { }
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T
i j

T
u u ij

Z Z
  ∂ ∂ + = − +   ∂ ∂   

= − + −

= − −

= −

= −

A AU Φ Φ U b b Φ Φb b

Ub b Φ UΦb b

b ΦUb b UΦb

b UΦb

B UΦB

% %

( (

 (5.61) 

Also, note that 

 

( ){ } ( ){ }

{ } { } { }
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tr tr
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T T T T T
u u u u

ij ij

T T T T T
u u u u
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T T T
u u u
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Z Z

Z Z Z

Z Z

∂ ∂
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∂ ∂

∂ ∂ ∂
= − − +

∂ ∂ ∂
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 (5.62) 

It follows that 

 

( ){ }

{ } { }
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2
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u u u
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Z Z

Z Z
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 (5.63) 

Thus, inserting Eqs (5.63) and (5.61) into (5.58), the gradient of J with respect to Z is found 

through three equations: 

 

{ }
( ) ( )

( ) ( ) ( )

2 T T T
u u u u u

T

T

J∂
= − − +

∂
= + +

= + +

B UΦB S ΦB RZB ΦB
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0 A Z Φ ΦA Z W

0 A Z U UA Z Q Z

(( ( ( ( (

% %

% % %

 (5.64) 
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 If Z is on the interior of the admissible set given by (5.20), then the gradient (5.64) must 

be zero for it to be the optimal solution.  If Z lies on the boundary of the admissible set, then at 

least one singular value of Z−½I is equal to ½.  Let the singular value decomposition be 

 1
2

T− =Z I UΛV  (5.65) 

where U and V are unitary and Λ is diagonal and contains the singular values.  In this case, the 

derivative of J(Z), for the optimal solution, may be greater than zero in the directions of the 

singular values of Z−½I equal to ½.   

 This observation leads to a numerical method, similar to the one proposed by (Skelton et 

al. 1991), which may be used to determine the optimal Z.  For a matrix Zk, the gradient of J is 

determined by solving the three equations in (5.64).  Then, a matrix Zus is found which yields a 

lower J through  

 us k
Jε ∂

= −
∂

Z Z
Z

 (5.66) 

where ε is a small constant.  The singular value decomposition of the new matrix Zus−½I is then 

found, and the diagonal values of Λus are limited to ½, to get Λk+1.  Transforming back to the 

original basis gives Zk+1.   

Repetition of this operation converges upon a value of Z which is a local minimum of J.  

It is important to note that this gradient method tacitly assumes the existence of exactly one 

minimum.  Because the admissible set of Z is compact, it is known that there is at least one 

minimum.  However, there may be several local minima, and this analysis on its own does not 

resolve this issue.  The development of more reliable convergence algorithms for Z constitutes an 

item requiring further research.  Of particular interest is the prospect of placing this problem in 

the context of Linear Matrix Inequality methods (Camino et al. 2003), which have yielded 

consistent convergence algorithms for similar structural optimization problems by breaking the 

problem into multiple nested convex optimizations. 

5.6:  Examples 

5.6.1:  Example 1:  Tuned Mass Damper with RFA Interface 

To illustrate how the concept of effective damping may be put into practice, consider the 

structure-actuator system in Fig. 5.5a. The machines in this example are those in the examples 

from Chapters 3 and 4, with Machine 1 corresponding to the inter-story actuator with a lead of  
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Figure 5.5:  Example actuation configurations 

 

1/650 m/rad, and Machine 2 corresponding to the mass driver with a lead of 1/70 m/rad.  The Cc 

matrix for these machines is equal to 

 
99.7 0 kNs

0 1.16 mc
 =  
 

C  (5.67) 

The goal is to design Z for optimal stochastic performance.   

For the structural model, a simplified version of the Benchmark Structure studied in 

(Spencer et al. 1998) is used.  Let zi and zd be the displacement of story i and the mass damper, 

respectively, relative to the ground.  The vector q is then 

 [ ]1 2 3
T

dq q q q=q  (5.68) 

The structural matrices (including the mass driver degree of freedom) are 

5
175 50 0 0 12 6.84 0 0

50 100 50 0 6.84 13.7 6.84 010 98.30 50 50.2 .2 0 6.84 6.87 .034 .01
0 0 .2 .2 0 0 .034 .034

Ns N kg
m mS S S

− −
− − −

− − − −
− −

   
    = = =       

   

I 0
0C K M  (5.69) 

The structure is lightly damped, with damping ratios below 1% for all modes.  The natural 

frequencies for the main structure are 5.5, 15.8, and 23.6Hz.  This model represents a 158cm-high 

laboratory test structure, which is a scale model of a prototype building.  The scaling between the 

model and prototype structures is 1:60 for force, 1:206 for mass, 1:5 for time, 4:29 for 

displacement, and 7:2 for acceleration.   

 The mass damper has a natural frequency and damping ratio of 5.5Hz and 0.1%, 

respectively.  The N matrix for this example is 
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1 0 0 0
0 0 1 1

T
 =  − 

N  (5.70) 

 The white noise signal a0 has spectral density Φ0.  Because the system is linear and the 

performance measure is a simple quadratic, the optimal value of Z will be the same for arbitrary 

values of Φ0.  Thus, this value will be normalized to unity.  The spectral characteristics of the 

disturbance correspond to the Kanai-Tajimi spectrum (Kanai 1957; Tajiimi 1960), with 

 2
0 0 02

0 0

0 1 0
2

2 1a a ω ζω
ω ζω

     = = =     − −   
A B C  (5.71) 

In (Housner and Jennings 1964), it was shown that ω0=15.4rad/s and ζ=0.64 resembles a realistic 

earthquake spectrum.  Here, these values are used, with ω0 scaled by a factor of 5 to 77Hz, to 

reflect the time-scaling of the structural model.  

 Four measures of performance, enumerated as Cases 1 through 4, will be examined in 

this example.  Characterized by their weights, the nonzero weights for these cases are as follows. 

Case 1: qd1 = qd2 = qd3 = (0.001m)-2 

Case 2: qa1 = qa2 = qa3 = (4m/s2)-2 

Case 3: qE = 1 

Case 4: qd1 = qd2 = qd3 = (0.001m)-2  ,   qa1 = qa2 = qa3 = (4m/s2)-2 

Thus, Case 1 optimizes mean-square drifts, Case 2 the mean-square accelerations, and Case 3 the 

structural energy dissipation.  Case 4 is a balance between Cases 1 and 2. 

 Results for these cases is shown in Table 5.1.  For each case, three solutions were 

computed for Z.  One solution is the optimal Z, derived using the procedure described in Section 

5.5.  For the second solution, Z is further constrained to be symmetric.  A comparison between 

these two solutions gives some indication of the benefits of skew damping for each case.  For the  

 

Table 5.1:  Z Optimization results for Example 1 
 asymmetric solution symmetric solution diagonal solution 

Case Z J Z J Z J 
0.224 0.0059 0.517    -0.396 0.209 0 1 -0.236 0.0856 15.7 -0.396    0.535 17.1 0 0.0259 18.1 

0.0685 0.0209 0.0960   -0.0251 0.0959 0 2 -0.154 0.0837 13.5 -0.0251    0.0330 15.0 0 0.243 15.5 

0.102    0.0981 0.189    -0.0363 0.181 0 3 -0.208    0.202 2.45 -0.0363    0.171 2.60 0 0.141 2.63 

0.129    0.0201 0.173    -0.0534 0.149 0 4 -0.192    0.0781 32.1 -0.0534    0.123 35.5 0 0.0222 36.1 
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third solution, Z is constrained to be diagonal.  A comparison of this solution to the other two 

gives some indication of the degree to which non-local damping improves the system response. 

 The results show a clear improvement in performance of the asymmetric and symmetric 

solutions over the diagonal solution.  However, in all cases, the asymmetry of Z is responsible for 

the most improvement in performance.  Physically, the nondiagonality of the optimal matrix 

solutions for all four cases makes sense, because both accelerations and drifts can be reduced by 

the delivery of energy from the base to the roof.  However, the fact that the optimal solutions are 

all significantly asymmetric implies that there is benefit to be gained from the circulation of 

energy through the structure. 

Fig. 5.6 shows the convergence of these solutions, as a function of iteration number, for 

cases 1 through 4.  It is interesting that the asymmetric solution converges very quickly and 

abruptly, while the symmetric solution tends to converge more slowly, and the diagonal solution 

slowest.  However, this makes sense in the context of the convergence algorithm, which 

constrains the change of Z by confining it to a symmetric or diagonal structure.  It is also 

interesting to note that the symmetric and asymmetric solutions tend to start out very close to 

each other in the optimization, diverging later in the refinement process.  This may indicate that 

the symmetric characteristics dominate the performance characteristics for highly sub-optimal 

choices of Z, with the skew component only becoming relevant for high-performing choices. 

5.6.2:  Example 2:  Tuned Mass Damper with Quasi-Skyhook Damping 

 For the next example, consider the case where an actuator used to excite a mass damper 

on the roof of the three-story structure is interfaced with a remote flywheel, as shown in Fig. 5.5b.  

For this case, the screw lead for actuator 1 (the one on the roof) is designated to be 1/70 m/rad.  

Thus, the Cc matrix is 

 
1157 0 Ns

0 0.236 mc
 =  
 

C  (5.72) 

and the N matrix is 

 
0 0 1 1 0
0 0 0 0 1

T− =  
 

N  (5.73) 

For this example, the optimal solutions are shown in Table 5.2.  Note that in all four 

cases, the performance is drastically improved when Z is permitted to be asymmetric.  The 

symmetric solutions are equal to the diagonal ones.  Thus, this example illustrates clearly the 

benefit of asymmetric damping for improving the structural response.  Note that the optimal Z  
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Figure 5.6:  Convergence of Z for cases 1-4 (clockwise from top left) and for asymmetric (black), 

symmetric (gray) and diagonal (dotted) solutions 

 

values are similar for the four cases.  Also note that in all four cases, the symmetric solution is 

equal to the diagonal solution, and the asymmetric solution is a diagonal matrix plus a skew 

matrix.   

All four cases exhibit an interesting phenomenon.  For all cases, the performance J is the 

same for a given Z, and for the same value of Z with all the off-diagonal components negated.  

Thus, the optimal Z is always non-unique for all cases where Z is nondiagonal.  This observation, 

which was found empirically, illustrates that in some circumstances J may possess multiple 

minima.  In this particular circumstance, the problem is a moot point, because the two known  
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Table 5.2:  Z Optimization results for Example 2 
 asymmetric solution symmetric solution diagonal solution 

Case Z J Z J Z J 
0.0011      0.0333 0.0311    0 0.0311 0 1 -0.0333 0.0114 182 0 × 

384 0 × 
384 

0.0012 0.0340 0.0334 0 0.0334 0 2 -0.034 0.0110 122 0 × 207 0 × 207 

0.0012 0.0343 0.0333 0 0.0333 0 3 -0.0343 0.0128 31.8 0 × 54.5 0 × 54.5 

0.0011 0.0335 0.0318 0 0.0318 0 4 -0.0335 0.0113 304 0 × 591 0 × 591 

 

optimal values of Z produce the same J.  However, this may not be the case in general, and this 

example motivates the need for more sophisticated global optimization routines for Z. 

5.6.3:  Example 3:  Densely Actuated Structures 

 For the final example, consider a case where an actuator is placed in between each floor 

of the structure, as shown in Fig. 5.5c.  Thus, m=3 for this case.  The screw leads for the actuators 

were all chosen as 1mm/rad, and the resultant Cc matrix is thus 

 5 Ns2.36 10
m

× I  (5.74) 

The N matrix is 

 
1 1 0
0 1 1
0 0 1

− 
 = − 
  

N  (5.75) 

 For this configuration, Table 5.3 shows the resultant data for the four cases.  Note that for 

Case 1 (i.e., the drift minimization case) the optimal Z is equal to I.  Physically, this makes sense, 

because it says that the way to minimize drifts is to make the viscous damping in the structure as 

large as possible.  For Case 2, the results are more interesting.  The improvement afforded by 

allowing Z to be symmetric (but not diagonal) is slight.  It is interesting, however, that an 

improvement of approximately 10% is achieved by allowing Z to be asymmetric.  Thus, it is 

apparent that in such densely-actuated configurations, significant improvement can be gained 

through asymmetric damping.  For Case 3, the improvements are rather slight.  This, again, 

makes physical sense.  Note that the diagonal elements of Z in these cases are rather large (i.e., 

close to 1).  Because energy dissipation is proportional to mean-square relative velocities, it is 

reasonable that these velocities, like the drifts, can be optimally reduced with extremely large  
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Table 5.3:  Z Optimization results for Example 3 
 asymmetric solution symmetric solution diagonal solution 

Case Z J Z J Z J 
 1 0 0  1 0 0  1 0 0  

1 0 1 0 0.517 0 1 0 0.517 0 1 0 0.517 
 0 0 1  0 0 1  0 0 1  
 0.0285       -0.132 0.0324  0.150      -0.278 -0.0731  0.0458 0 0  
2 0.0488       0.104 -0.172 5.36 -0.278 0.835 0.232 5.95 0 0.113 0 5.96 
 0.0091    0.0372    0.0650  -0.0731    0.232 0.112  0 0 0.140  
 0.858        0.319 0.142  0.793    0.311 0.1382  1 0 0  
3 -0.329       0.876 -0.0134 0.0134 0.311    0.390    0.0872 0.0146 0 1 0 0.0157 
 -0.116       -0.0842 0.979  0.138    0.0872    0.2979  0 0 1  
 0.354       -0.213 0.207  0.279 -0.210 0.2442  0.179 0 0  
4 0.0422    0.0915    0.0969 10.8 -0.210       0.615 -0.3675 11.0 0 0.221 0 11.0 
 0.214       -0.185 0.130  0.244       -0.368 0.3253  0 0 0.317  

 

supplemental viscous damping.   Recall that Case 4 combines the objectives of Cases 1 and 2.  It 

is interesting to note that J for Case 4 is significantly higher than the sum of the optimal J values 

for Cases 1 and 2.  This implies a rather severe tradeoff between minimizing drifts and 

accelerations.   

5.7:  Further Thoughts on Effective Damping 
 As mentioned, the approach outlined in this chapter is useful because of its convenient 

physical interpretation.  It also yields a comparatively simple analytical solution for the response 

of the system.  Although the approach outlined in Sections 5.5 and 5.6 involves stochastic system 

analysis, an equivalent analysis could be performed for the deterministic damping case.  Results 

will be identical for the optimization of the impulse response. 

 There are a number of disadvantages to this approach, however, which limit its appeal.  

Most notably, its constraint of Z to a constant matrix falls short of using the full capabilities of 

the RFA network.  Specifically, this approach, which effectively limits the structural control 

system design to a linear velocity feedback system, does not allow for the feedback of velocities 

of non-actuated degrees of freedom, or position feedback.  This may limit the appeal of this 

approach for practical implementation.   

 Additionally, the constant matrix Z will result in a violation of the constraint |fe|≤fmax if 

the actuation velocities are sufficiently large.  This problem can be resolved implicitly by making 

R larger (i.e., increasing the lowest singular value of R) and thus adding weight to values of Z 

that produce large forces.  However, this approach does not explicitly address the maximum force 

constraint.  Increasing R will depreciate the performance of the resultant Z.  A better approach 

would be one that would be able to adjust Z in real time, to accommodate this maximum force 
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constraint, and in accordance with the global deformation of the structure.  This is discussed in 

greater detail in Chapter 6, giving rise to a class of controllers called “Damping Reference” 

controllers. 
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Chapter 6.  Feedback Control Algorithms 
 

 

As a consequence of their physical constraints, it is clear that for open-loop-stable 

systems controlled by RFA networks, the closed-loop system is always stable.  Therefore, the 

usual stability-robustness issues in control system design do not apply to these problems, and 

closed-loop performance is the only analytical measure by which the quality of different 

controllers can be compared.   

 In the Chapter 5, the measure of performance J was optimized over the subset of 

normalized forcing functions u∈ℜm×C[0,tf] for which there exists a constant matrix Z such that u 

and w (the structural state vector) satisfy the linear relation in Eq. (5.16).  By requiring Z to be 

constant, the resultant set of u over which the optimization was performed is a small subset of the 

entire set of feasible control inputs.  The optimal J evaluated over the constant-Z domain is 

deceptive from this point of view, because much lower values may be physically possible with a 

less constrained control parameterization.  In particular, a lower J may be possible if controllers 

are considered which relate u to all the system states, rather than just the actuation velocities. 

 This chapter concerns the development of simple, practical feedback controllers for free 

and forced vibration.  The goal is to design controllers which require minimal computation and 

data storage for implementation, but which still have favorable performance characteristics.  The 

discussion will be limited to full-information, memoryless feedback controllers; i.e. 

 ( ) ( ) ( ), gt a t tw ua  (6.1) 

and the performance measure will be considered to be quadratic, with infinite horizon. 

Consider the proposition of a family of causal, nonlinear, feedback controllers 

parameterized by some finite-dimensional vector θ.  Furthermore, suppose that the subset of 

feasible controller parameters in this family is characterized by the condition  θ ∈ Θ, where Θ is 

some convex set.  Then it is straight-forward to consider the parametric optimization problem 

 ( ){ }0arg min , ;opt gJ a
∈Θ

=
θ

θ w θ  (6.2) 

However, even this problem is fraught with difficulty.  It is nontrivial, for instance, to prove a 

convex relationship between θ and J.  Even more fundamentally, the nonlinear system description 

makes it difficult to derive explicit analytical expressions for J(w0,ag;θ).   
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Due to these difficulties, the route taken here is to further relax the problem statement 

through the use of inequalities.  Instead of seeking θ∈Θ which minimizes J(ws,ag;θ), the 

procedure will instead be to first establish that for all θ∈Θ, there is a guaranteed upper 

performance bound, i.e., 

  ( ) ( )0 0, ; , ;g U gJ a J a≤w θ w θ  (6.3) 

where JU is a closed-form expression of the arguments.  Then, the optimization problem of 

minimizing JU over Θ becomes more tractable.   

However, there are still lingering convexity issues for the optimization of JU over Θ, and 

these issues are not completely resolved in the present analysis.  Also, the tightness of bound 

(6.3) is in general difficult to prove, i.e., it is difficult to find w0, ag, and θ for which the equality 

holds in Eq. (6.3).   

 It should be noted that the research presented here represents a “scratching of the surface” 

on systematic feedback controller optimization for energy-constrained structural actuation 

systems, and that the ideas proposed here, unless otherwise stated, are equally relevant to RFA 

and semiactive systems.  The analysis in this chapter makes many assumptions concerning the 

problem statement which simplify the problem; most notably the assumption of quadratic 

performance measures.  There is so much more work which remains to be done in this area that it 

would be foolish to suggest that the work presented here constitutes the final word on the subject.   

It is also important to note that there have been many ad hoc controller designs which 

have been proposed over the years for energy-constrained actuation systems.  Yamada and 

Kobori (2001) provide a thorough retrospective on the current state of this subject in Earthquake 

Engineering.  The general analysis presented here simplifies down to some of these methods for 

specific design choices.  Most notable among these are Clipped-Optimal methods (Dyke et al. 

1996; Karnopp 1983; Margolis 1983), Lyapunov-based methods (Gavin 2001; Leitmann 1994; 

Leitmann and Reithmeier 1993), Energy minimization approaches (Zhang and Iwan 2002), and 

Steepest Gradient (Tseng and Hedrick 1994) methods, all of which are ultimately based on 

quadratic performance measures.  The attempt here has been to unify these approaches under a 

common umbrella, and to illustrate that in many circumstances an equivalency exists between 

two or more of them.  It should be noted that considerable effort has been made in other control 

synthesis approaches for energy-constrained actuators which are not considered here; most 

notably Sliding Mode Control (Kim and Wang 1993; Singh et al. 1997). 

Finally, it should be mentioned that the ideas discussed in this chapter, from the point of 

view of general control theory, are rather common.  The methods employed here are similar to 
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“Guaranteed-Cost” quadratic control system designs, which have been investigated for many 

years (Chang and Peng 1972).  However, while Guaranteed-Cost control concepts are usually 

proposed as a way of handling system uncertainty, they are here used as a way to handle actuator 

nonlinearities.  The ideas here may also be viewed in the context of fixed-structure optimal 

control theory (Dorato et al. 1995).  Indeed, one of the clear avenues for future research involves 

the application of Linear Matrix Inequality (LMI) methods, which are very useful in Fixed-

Structure control optimization, to the design of control laws investigated here. 

 The information in this chapter is organized as follows.  First, the free-vibration case (i.e. 

ag=0, w0≠0) is addressed.  It is shown that many controllers which have been proposed for 

semiactive systems (and which are here extended to RFA networks) belong to a family of 

feedback laws which will here be called Clipped Linear controllers.  For a subset of controllers in 

this family called Damping Reference controllers, simple expressions exist for JU, and it is shown 

how the clipped-linear controller parameters can be optimized over this family to minimize JU.  

This procedure is a specific application of sub-optimal, nonlinear quadratic regulator design. 

Then, an analogous procedure is conducted for the forced-vibration case, for two 

different disturbance models.  First, ag is assumed to be white noise, and the system is assumed to 

be in stationary excitation.  For this model, it is shown that Damping-Reference controllers yield 

an upper bound on the expectation of a quadratic function of the states and control.  This 

procedure is a specific application of sub-optimal, nonlinear stochastic control.  Next, the 

deterministic case is treated, in which it is shown again that Damping-Reference controllers can 

also be designed to yield a simple expression for JU which depends only on the mean-square 

value of ag and a quadratic function of w0.  This procedure is a specific application of sub-

optimal, nonlinear H∞ control.   

 The chapter ends with some discussion concerning many ongoing and future research 

topics in this area. 

6.1:  Clipped-Linear Controllers for Free Vibration 
 The Nominal System Model from Chapter 5 is of the form 

 u a ga= + +w Aw B u B&  (6.4) 

where u∈U(w(t)); i.e. 

 ( ) ( )( ) ( ) ( ) ( ) ( ) 0, ≤+= ttttttP T
u

TT wBuuuwu  (6.5a) 

and 
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 max≤u u  (6.5b) 

 

DEFINITION:  Define the set U(w(t))∈ℜm as  

 ( )( ) ( ) ( ) ( )( ) ( ){ }max |  , 0 ,  {1.. }m
k kt t P t t u t u k m= ∈ℜ ≤ ≤ ∀ ∈w u u wU  (6.6) 

Thus, u(t)∈U(w(t)) if and only if (6.5a) and (6.5b) are satisfied.   

 

For free vibration with quadratic performance measures, the expression from Chapter 5 for the 

deterministic performance J(w0) is  

 ( ) ( ) ( ) ( )
( )0

0

T T
T

t
J t t dt

t

∞
   =        ∫
wQ S

w w u
uS R

 (6.7) 

6.1.1:  The Generalized Clipped Linear Controller 

 Let K be an arbitrary matrix such that A+BuK is stable, and let P=PT>0 be the solution to 

the Lyapunov equation 

 ( ) ( ) ( )T T T T
u u+ + + + + + + =A B K P P A B K Q SK K S K RK 0  (6.8) 

Noting that 

 ( ) ( ) ( ) ( ){ }0 0
0

2T T T
u dτ τ τ τ τ

∞

 = − + + ∫w Pw w A P PA w w PB u  (6.9) 

along any asymptotically stable {w,u} trajectory, it follows that 

  

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ){ }0 0 0
0

2T T T T T
uJ dτ τ τ τ τ τ τ

∞

 = + + + + + + ∫w w Pw w A P PA Q w w PB S u u Ru

  (6.10) 

Combining Eqs. (6.7) and (6.10) gives 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2
0 0 0

0

T
CL CLJ dτ τ τ τ τ

∞

= + − − −∫ R R
w w Pw u K P w Kw K P w  (6.11) 

where subscript “R” denotes the Euclidean norm with respect to weighting matrix R, and 
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 ( ) 1 T T
CL u

−  = − + K P R B P S  (6.12) 

The integrand in Eq. (6.11) is minimized by the feedback function 

 ( )
( )( )

( ) ( )arg min CL
t

t t
∈

= −
Ru w

u u K P w
%

%
U

 (6.13) 

Eq. (6.13) will be called the Clipped-Linear (CL) control law.   

Define ua as  

 ( ) ( ) ( )tt CLa wPKu =  (6.14) 

Then, Eq. (6.13) can be restated simply as 

 ( )
( )( )

( ) R
wu

uuu tt a
t

−=
∈

~minarg
~ U

 (6.15) 

Thus, u is related to w through two consecutive operations.  The first step consists of the linear 

feedback function ua, while the second consists of “clipping” ua to accommodate the constraints 

of the feasible force region.  These two steps will be called the active feedback signal and the 

clipping action respectively. 

It turns out that several of the popular control algorithms which are used for energy-

constrained systems are variants of Eq. (6.13).  They differ by the choice of Q, R, and S 

performance matrices, as well as the K matrix chosen.  Of course, different choices result in 

different closed-loop system characteristics.  There are some special cases for the choice of K 

which have some physical and practical significance.   

 

Circumstances Arising from Singular R 

The development of the CL control law above assumed that R was nonsingular.  

However, this may not be the case for some performance measures.  In particular, the case where 

S = 0 and R = 0  simplifies Eq. (6.8) for P to 

 ( ) ( )T
u u+ + + + =A B K P P A B K Q 0  (6.16) 

and the control law in Eq. (6.13) to 

 
( )( )

( ){ }arg min T T
u

t
t

∈
=

u w
u u B Pw

%

%
U

 (6.17) 

This expression is equivalent to a control law which minimizes the derivative of wT(t)Pw(t) at 

each time t.  Such controllers are common in Lyapunov-based and sliding-mode approaches.  
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6.1.2:  Clipped-Optimal Control 

 Consider the case where K is chosen to be equal to KCL(P).  Insertion of the above into 

Eq. (6.8) gives an algebraic Riccati equation for P, the solution of which will be denoted Po; i.e. 

 ( ) ( ) ( )1 1 1 1TT T T T
u o o u o u u o

− − − −− + − + − − =Q SR S A B R S P P A B R S P B R B P 0  (6.18) 

The resultant solution for K=KCL(Po) will be denoted Ko.  Equating K=Ko results in a 

simplification of Eq. (6.11) to 

 ( ) ( ) 2
0 0 0

0

T
a oJ dτ τ

∞

= + −∫ R
w w P w u K w%  (6.19) 

Note that the integrand is positive definite.  If u(t) were not constrained U(w(t)) (i.e. if the control 

force were fully active) then the integrand would be minimized uniquely to zero by equating 

u(t)=Kow(t).  This is the classical result for the active optimal full-information LQR controller.  

The optimization with u(t) constrained to U(w(t)) must yield a higher value for J than the 

unconstrained optimization, yielding the lower bound 

 ( ) ( ) ( )( ) 000 wPww wu o
T

ttJ ≥∈U  (6.20) 

As expected, this lower bound says that no controller will perform better than the unconstrained 

optimal controller.   

 A popular design technique for energy-constrained controllers, called Clipped-Optimal 

(CO) control, implements the CL control law with P=Po; i.e. 

 ( )
( )( )

( )arg min o
t

t t
∈

= −
Ru w

u u K w
%

%
U

 (6.21) 

As such, the clipped-optimal controller attempts to approximate the active lower bound of J, 

through the point-by-point minimization of the integrand in Eq. (6.19).  This lower bound can be 

matched if and only if Kow(t)∈U(w(t)) at all times.  Because the force constraints were not 

incorporated into the derivation of Ko, there is in general no reason to expect that this will be the 

case. 

 The appeal of clipped-optimal control lies in its simplicity and intuitiveness.  By 

replicating as closely as possible the optimal active feedback control law at all times, subject to 

the forcing constraint u(t)∈U(w(t)), the performance of the resultant constrained control system 

should hopefully resemble the active controller’s performance.  The difficulty with clipped-

optimal control is the fact that it does not possess a useful upper bound for J, as in Eq. (6.3).  
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Thus, although it is known that clipped-optimal controllers deviate from the unconstrained 

optimal performance, it is unclear how large that deviation can theoretically be, without explicitly 

solving for the response trajectory for a given w0.   

 The standard practice with Clipped-Optimal control design is one of trial-and-error.  A 

common design technique would be to start with Q, R, and S matrices which correspond to some 

desired performance (i.e. accelerations, drifts, etc.).  Typically, these matrices will yield bad 

performance for the Clipped-Optimal controller, because they will require the controller to 

produce forces which require external power.  So then, the controller is modified by changing K 

directly, or by modifying the Q, S, and R matrices to somehow favor more dissipative forces.   

6.1.3:  Damping-Reference Control 

 Suppose constraint (6.5b) is disregarded, as has been done on occasion in previous 

chapters, due to assumptions that u is regulated implicitly either through the size of R or through 

assumptions of small w.  In this case, any K which can be described by 

 ( )1 1
2 2,T

u σ= − − ≤K ZB Z I  (6.22) 

will result in Kw(t)∈U(w(t)), ∀w(t).  Using the above parameterization, a choice for Z gives a 

solution for P, which will be called Pz, found through 

 ( ) ( ) ( )TT T T T T T T
u u z z u u u u u u− + − + − − + =A B ZB P P A B ZB Q SZB B Z S B Z RZB 0  (6.23) 

The solution for Pz is such that w0
TPzw0 is the performance for u(t) = Kw(t); i.e. the application of 

the constant damping matrix Z.  The CL control law with P = Pz gives the expression 

    ( )
( )( )

( ) ( ) ( ) ( ) ( ){ }22
0 0 0

0

minT T
z CL z u CL zJ d

τ
τ τ τ τ

∞

∈
= + − − − −∫ R Ru w

w w P w u K P w ZB w K P w
%

%
U

 (6.24) 

But, because K as defined in Eq. (6.22) always results in a feasible u, the integrand in the above 

equation is always less than zero.  Thus,  

 ( )0 0 0
T

z zJ= ⇒ ≤P P w w P w  (6.25) 

It is therefore clear that a given choice of K, as parameterized by Z in Eq. (6.22), results in an 

upper bound on performance in Eq. (6.24), equal to the performance with linear damping matrix 

Z.  Thus, this control algorithm is called Damping-Reference (DR) control. 

 Recalling the discussion in introduction to this chapter, the set of Z obeying the 

constraint in Eq. (6.22) constitutes a family of control laws (i.e. for a given performance metric, Z 
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fully characterizes the CL control law).  In the terminology of the introduction, the parameter 

vector θ contains the elements of Z, and the parameter set Θ constitutes those θ vectors for which 

Z is feasible.   

 

Optimization of Z 

The next step is to find the Z which optimizes (i.e. minimizes) the upper bound for a 

particular initial condition w0.  Here, this will be done for w0 resulting from an impulsive 

disturbance.  The optimization at hand is the deterministic analog of the stochastic optimization 

of Z performed in Chapter 5.   

An impulsive acceleration ag = δ(t), results in an initial condition w0 = Ba.  We wish to 

minimize the quantity 

 { }T T
a z a z a atr=B P B P B B  (6.26) 

over the admissible Z domain, subject to the constraint that Z and Pz be related by Eq. (6.23).  

But  

 { } ( ){ }T T T T
z a a u u u utr tr= − − +P B B Φ Q SZB B ZS B Z RZB  (6.27) 

where Φ satisfies the Lyapunov equation 

 ( ) ( )TT T T
u u u u a a− + − + =Φ A B ZB A B ZB Φ B B 0  (6.28) 

The procedure described in Chapter 5 optimizes the quantity on the right-hand side of Eq. (6.27), 

subject to Lyapunov equations (6.23) and (6.28) for Pz and Φ respectively.  Here, the 

optimization is the same problem statement, and therefore the result will be identical.   

 The gradient of the performance, with respect to Z, was found as Eq. (5.64), repeated 

here as 

 ( ) ( )2T T T T
a z a u z u u

∂
= − − +

∂
B P B B P S RZB ΦB

Z
 (6.29) 

Thus, using the same numerical procedure employed in Chapter 5, Z (and therefore Pz) can be 

optimized.  Then, through implementation of the clipped-linear control algorithm with P = Pz, the 

closed-loop system will have optimized upper bound on performance. 
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Relation to Steepest-Gradient Control 

 In a semiactive context, DR controllers can be implemented in a manner similar to that 

described above.  However, for semiactive devices, the feasible region analogous to U(w) is more 

restrictive.  Consequently the Z domain, over which the upper performance bound is optimized, 

would be constrained to diagonal Z matrices satisfying the singular value constraint in Eq. (6.22).    

 This kind of approach was implemented for a semiactive suspension system by (Tseng 

and Hedrick 1994), and given the name “Steepest-Gradient” control.  The name is derived from 

the fact that the control algorithm makes the integrand in Eq. (6.24) as negative as possible, thus 

maximizing the rate of descent of the quantity J(w(t))−wT(t)Pzw(t).  Here, this idea has been 

generalized to arbitrarily-large systems, and extended to RFA constraints. 

 

Relation to Maximum-Dissipation and Free Reference Control 

 The special circumstance of DR controllers with Z = 0 reduces to a control system which 

is guaranteed to perform better than the structural system in the absence of control.  This 

approach has been investigated in various forms by many researchers, and is here called “Free-

Reference” control.  This method reduces to maximum energy dissipation controller design, with 

certain choices for Q, S, and R.   

Free-Reference control has an appealing trait, in that its guaranteed performance is still 

valid in the presence of constraint (6.5b), which was ignored in the development of the DR 

controller above.  The specifics of this controller design are discussed in the appendix to this 

chapter.  However, it was found that in general the performance of this controller was not 

competitive with DR and CO controllers. 

6.1.4:  Relationship to Lyapunov-Based Controllers 

 Define V(w(t),t), evaluated along a given {w,u} trajectory, as  

  ( )( ) ( ) ( ) ( )
( )

, T T
T

t

V t t d
τ

τ τ τ
τ

∞
   =        ∫
wQ S

w w u
uS R

 (6.30) 

Note that V(w(0),0)=J(w0), and that V(w(t),t) is in general equal to the performance of the closed-

loop system for initial condition w(t).  Clearly, V is a Lyapunov function for the closed-loop 

system, and therefore ( )( ), 0V t t ≤w& .   

For any of the CL controllers discussed in the previous sections, it is true that 



 114 

 ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
,T

CL CL
d t t V t t t t t t
dt

= + − − −
R R

w Pw w u K P w Kw K P w&  (6.31) 

But for DR controllers, the right-hand side is always negative-definite (assuming constraint (6.5b) 

is ignored) so for these controllers,  

 ( ) ( )( ) ( )( ), 0T
z

d t t V t t
dt

≤ ≤w P w w&  (6.32) 

 ( ) ( ) ( )( ),T
zt t V t t≥w P w w  (6.33) 

Thus, these controllers provide an upper bound for V(w(t),t), and yield a quadratic Lyapunov 

function for the closed-loop system.  As such, these controllers are equivalent to Lyapunov-based 

controller designs.   

 Recall from Section 6.1.2 that the matrix Po establishes a lower bound for J(w0) equal to 

w0
TPow0.  Thus, for V(w(t),t), it follows that 

 ( )( ) ( ) ( ), T
oV t t t t≥w w P w  (6.34) 

Thus, the matrix Po establishes a lower bound for V(w(t),t).  While the upper bound in Eq. (6.33) 

only exists for DR controllers, the lower bound in Eq. (6.33) exists for any CL controller.   

6.1.5: Characteristics of the Clipping Action 

The clipping action in Eq. (6.15) is equivalent to the variational statement 

 ( ) ( ){ } 02δ max =++−++− wBuuuuuλRuuRuuRuu T
u

TT
R

T
a

T
aa

TT λ  (6.35) 

where Lagrange multiplier λR is constrained by 

 ( ) 0,0,0 ≤+≥=+ wBuuuwBuuu T
u

TT
RR

T
u

TT λλ  (6.36) 

and Lagrange multiplier vector λ is constrained by 

 ( ) 0,0,0 maxmax ≤−≥=− iiiiii uuuu λλ  (6.37) 

But evaluation of the variational statement in Eq. (6.35) gives  

 ( ) 0RuλwBuIR =−′+++ a
T
uRR 2

1
2
1 λλ  (6.38) 

where λ′i = sgn(ui) λi.    
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Figure 6.1: Clipping actions for diagonal (a) and nondiagonal (b) R matrices 

 

Implications of R diagonal 

To determine which configurations yield a diagonal R matrix, recall the expression for R 

in Eq. (5.38).  It is nondiagonal for this formulation only if multiple columns of N have nonzero 

entries on the same row.  This corresponds to actuator configurations where two or more 

actuators share a common degree of freedom, such as stacked actuation systems.  In cases where 

actuators do not share degrees of freedom, it is reasonable to assume that R is diagonal for 

measures of performance that weigh accelerations against drifts. 

If R is diagonal, Eq. (6.38) can be rewritten as 

 ( ) ( ) ( ) ( )[ ]{ }ttt a
T
uRR RuwBIRu

u
−+−= − λλ 12sat

max

 (6.39) 

where sat(.) is the element-by-element saturation function with bounds at ±umax.  Otherwise, the 

clipping action can take on a somewhat non-intuitive role in the modification of ua.  This is 

illustrated in Fig. 6.1, where the lighter lines represent surfaces of equal ||u(t)-ua(t)||R values.  For 

diagonal R, the clipping action behaves like a saturation function, whereas for nondiagonal R, it 

can give more complicated results. This observation is relevant to both RFA and semiactive 

systems.   

 

Implications of R=rI 

 The case R=rI, where r is a positive scalar, is not an unreasonable outcome of the 

acceleration weighting scheme if no two actuators share a degree of freedom.   Then the 

expression for the optimal control in Eq. (6.38) simplifies to 
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Figure 6.2: Clipping action for R = rI, for several different ua(t) 

 

 ( ) ( ) ( )





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−

+
= t

r
t

r
rt T

u
R

R
a

R
wBuu

u 2
1

2
2

2
sat

max λ
λ

λ
 (6.40) 

Using the definition 

 
R

R

r λ
λ

α
2

2
+

=  (6.41) 

Eq. (6.40) becomes 

 ( ) ( ) ( ) ( ){ }ttt T
ua wBuu

u 2
11sat

max

αα −−=  (6.42) 

The value of α(t) can be found as 

 { }0,~max αα =  (6.43) 

where α% is a solution to 

 ( ) ( ) ( ){ } ( ) ( ) ( ){ } ( )
max max

2
1 1
2 2

2
sat 1 sat 1 0

TT T T
a u a u uα t α t α t α t t− − + − − =

u u
u B w u B w B w% % % %  (6.44) 

It is straight-forward to show that Eqs. (6.43) and (6.44) yield at least one solution α(t)∈[0,1] for 

all w(t) and ua(t), and that the solution is unique for almost all w(t) and ua(t).   

Eq. (6.42) has a useful graphical interpretation, because in this case the clipping action 

simplifies to a kind of nested saturation process.  Consider Fig. 6.2, which shows several different 

values of ua(t) for a given w(t), and the resultant clipped inputs u(t).  In each case, note that the 

clipping action consists of the saturation of a line segment starting at ua(t) and ending at  
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Figure 6.3: Succession of optimal u(t) values for singular control case 

 

−½Bu
Tw(t) (i.e. the center of S(v(t)) when mapped into u(t)-space).  The saturation of this end 

point is always feasible.  Thus, the clipping action consists of the following steps.  If the 

saturation of ua(t) is inside U(w(t)) (such as the example in quadrant 3 in the figure) then this 

saturated vector is u(t).  If not, then the point of minimum distance along the line from ua(t) to 

−½Bu
Tw(t) (i.e. the minimal α(t) coordinate) is found for which the saturated vector lies on the 

feasible boundary (such as the examples in quadrants 2 and 4), and this vector is u(t). 

 

Implications of R→0 

 It is also interesting to observe the effects of a choice of optimization weights resulting in 

an R matrix which is very small (e.g. a case where the drifts are weighed much more heavily than 

the accelerations).  In the limit as R→0, this leads to a phenomenon which is generally called 

“singular” optimal control.  For such a weighting scheme, Eq. (6.38) becomes Eq. (6.17).  

Because this is an optimization of a linear function, there is no minimum on the interior of 

U(w(t)), and the resultant u(t) will always lie on the boundary of U(w(t)).  Thus, u becomes 

reminiscent of a “bang-bang” type of signal in the absence of explicit acceleration regulation.  

However, unlike bang-bang controllers, the time derivative of u(t) is finite and nonzero during 

periods when u(t) is on the boundary P(u(t),w(t)) = 0, as illustrated in Fig. 6.3.  Here, dt is some 

small increment in time, and the figure shows relevant vectors at t-dt, t, and t+dt.  The u(t) vector 

varies continuously in this case, lying on the boundary corresponding to P(u(t),w(t))=0 at each 

time. 

 

Computational Issues 

For CL controllers to be of any practical use, they have to be computationally-tractable.  

But the control law in Eq. (6.13) consists of a minimization over the domain U(w(t)).  It is 

important to investigate the practicality of performing this minimization; i.e., to determine if it 

can at least be performed in a computationally-finite number of steps.  In the appendix to this 
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chapter, an algorithm is proposed for resolving the clipping action for arbitrary positive-definite 

R.  For clipping actions involving singular R matrices, the proposed routine can be applied with 

the augmented weighting matrix R+εI, for ε>0 arbitrarily small.  It may also be generalized to 

explicitly accommodate the singular case, although that is not done here. 

In the literature, the clipping action has almost universally been treated as a simple 

element-by-element saturation at the minimum and maximum feasible force values; a much less 

computationally-intensive procedure.  For semiactive systems, where U(w(t)) has a prismatic 

boundary, this corresponds to the clipping action of the CL control law in Eq. (6.13) if and only if 

R is diagonal.  In the case of RFA networks, the concept of element-by-element saturation does 

not really make sense, because U(w(t)) has ellipsoidal as well as planar boundaries. 

6.1.6:  Examples 

 For the purpose of illustration, a simple demonstration of CL controller synthesis 

techniques will now be given.  The structural model and actuation configurations from Example 1 

of Chapter 5 will be used again here.  This example concerns the three-story shear structure, with 

two actuators; one between the base and the first story, and the other between the third story and a 

hybrid mass damper.  It should be mentioned that for these simulations, the Nominal System 

Model will be used.    

It will be assumed that ag(t) = A0δ(t), where A0=0.01m/s2.  The strength of this impulse is 

small enough that constraint (6.5b) is effectively irrelevant, because the regenerative constraint 

(6.5a) will typically not produce a boundary large enough to intersect with the maximum force 

boundaries.  As such, the simulation results will be homogeneous for A0 below that value for 

which u violates Eq. (6.5b). 

Two performance measurement cases will be considered, which measure mean-square 

drift and mean-square acceleration respectively.  As in Chapter 5, the quadratic performance 

measures are constructed through scalar weights qdk, qak, and qE.  For each of the clipped-linear 

control synthesis techniques, the controller is fully determined from the Q, R, S, and K matrices.  

For a given weighting scheme, Q, R, and S follow directly from Eq. (5.36).  Different synthesis 

methods (i.e. CO and DR) will result in different choices for K.  However, these methods arrive 

at K through systematic means, as described in the previous subsections.   

At the risk of creating confusion, the data pertaining to these examples will be presented 

in terms of the physical quantities (i.e. the force vector fe, structural positions q, and so on) with 

the tacit understanding that these quantities relate to the normalized quantities of the Nominal 

System Model (i.e. normalized force vector u, state vector w, and so on) through the Eq (5.12).   
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Example 1:  Drift Regulation 

 For the drift minimization case, the weights qak, and qE are equal to zero.  The drift 

weights are assigned such that the performance measure is 

 ( )( ) ( )( ) ( )( ){ }2 2 26
1 2 3

0

10 0.5 1.5 2J d t d t d t dt
∞

= + +∫  (6.45) 

Thus, priority is given to minimization of the second- and third-story drifts, over the first-story.  

There is no weight given to the drift of the mass damper.   

From these weights, the appropriate Q, S, and R matrices can be found.  In this case, R 

and S will be zero, because these matrices depend only on acceleration weights.  However, the R 

matrix will be adjusted to 

 
2

1max
2

2 max

f
f

ε
−

−

 
=  

 
R  (6.46) 

where ε = 10-2.  This value of ε is small enough to have only a negligible impact on the evaluation 

of J.  However, it does make the problem computationally more straight-forward because it 

establishes a clipping action which is continuous in its arguments.  

From these matrices, the P matrices corresponding to CO and DR control designs (i.e. Po 

and Pz) are found from Eqs. (6.18) and (6.23) respectively.  For the DR controller, Pz is optimized 

as described in the previous section.  The computation of the P matrices completes the synthesis 

of the CL control law.  In addition to these two control laws, the optimal constant-Z (CZ) case 

will also be examined.  All three control implementations are compared to the uncontrolled case 

(i.e. u = 0). 

 Response data is shown in Table 6.1.  The table shows not only the performance metric J, 

but also the maximum quantities for drift, acceleration, and force magnitudes for all controllers.  

From this data, the most interesting fact is that the controllers perform almost equally, even 

though their maximum drift data is quite different.  In the case of the DR controller, the 

maximum drifts have a pattern which roughly corresponds to the qdk weights; i.e. the drifts with 

higher weights had lower responses.  However, the CO controller does not exhibit this effect at 

all.  Also, note the large accelerations for the first story, and the mass damper, in comparison to 

the uncontrolled case.  Clearly, because the controllers were not designed to regulate 

accelerations, they take liberties with extremely large forces (and thus accelerations) in order to 

reduce the drifts.  In the CZ case, however, the forces and accelerations are more comparable 
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with the uncontrolled case, suggesting that the high quantities arising in the CO and DR cases are 

from the implementation of the clipping action. 

 Transient plots are shown in Figs. 6.4 through 6.12 for impulse responses with these 

controllers.  For each controller, transient plots are shown for the drifts and accelerations, as well 

as the actuator velocity vector v and force vector fe.  The CO and DR controllers yield similar 

shapes for the drift responses, but the DR controller manages to obtain slightly better suppression 

characteristics for drifts 2 and 3 during the first few oscillations of the system.  Despite the 

somewhat similar shapes for the three story drifts, the mass damper drift is drastically different 

for the CO and DR controllers, with the CO controller resulting in almost twice the maximum 

drift of the DR controller.  Although the drift of the mass damper was not weighed in the 

performance expression, these different drift histories are indicative of the way in which the RFA 

network is being utilized by the different control algorithms.  In the CO and DR cases, the mass 

damper is excited a great deal, but the DR case obtains better performance with much less motion 

of the mass.   

 Consider the responses for the CZ controller, shown in Fig. 6.10.  By contrast with the 

other two controller cases, the responses here show a strong, undamped presence of the third 

structural mode.  The implementation with constant Z does not yield a great deal of suppression 

in the third mode.  This fact will become even more apparent in the forced vibration examples 

discussed in the next section. 

 The actuation power flows P1 and P2, as well as the total power PT, are shown in Figs. 

6.5, 6.8, and 6.11.  All controllers exhibit a pronounced power-sharing behavior, to one degree or 

another.   

 

Table 6.1: Impulse Response Data for Drift Regulation 
 CO DR CZ No control 

d1  (mm) 0.094 0.135 0.113 0.192 
d2  (mm) 0.114 0.0932 0.0953 0.0827 
d3  (mm) 0.102 0.082 0.0858 0.0706 
d4  (mm) 1.58 0.857 1.14 0.469 

a1  (m/s2) 2.19  2.56 0.280 0.223 
a2  (m/s2) 0.558 0.423 0.446 0.447 
a3  (m/s2) 0.709 0.554 0.585 0.485 
a4  (m/s2) 5.96 6.05 1.52 0.279 

f1  (N) 493 578 62.8 − 
f2  (N) 46.6 49.1 12.5 − 

J   0.00145 0.00141 0.00152 0.0573 
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Figure 6.5:  Power flows for Example 1, with CO controller 
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Figure 6.6:  V(w(t)) (dark) and its lower bound (light) for Example 1 with CO control 
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Figure 6.8:  Power flows for Example 1, with DR controller 
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Figure 6.9:  V(w(t)) (dark) and its bounds (light) for Example 1 with DR controller 
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Figure 6.11:  Power flows for Example 1, with constant Z 
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Figure 6.12:  Comparison of V(w(t)) for CO (dashed) and DR (solid) controllers for Example 1 
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Table 6.2:  Impulse Response Data for Acceleration Regulation 
 CO DR CZ No control 

d1  (mm) 0.186 0.170 0.130 0.192 
d2  (mm) 0.0805 0.107     0.0950 0.0827 
d3  (mm) 0.0686    0.0782     0.0826 0.0706 
d4  (mm) 0.857 0.4578 0.277 0.469 

a1  (m/s2) 0.213     0.297 0.185 0.223 
a2  (m/s2) 0.389     0.338     0.381 0.447 
a3  (m/s2) 0.482     0.532 0.564 0.485 
a4  (m/s2) 2.50 3.88 1.36 0.279 

f1  (N) 87.6    79.7    55.2 − 
f2  (N) 17.4 31.8 11.1 − 

J   0.0143 0.0159 0.0186 0.362 
  

For each controller, the Lyapunov function V(w(t)) discussed in Section 6.1.4 is also 

shown.  Recall that V(w(0)) = J(w0).  The lower bound for V in Eq. (6.34) is shown and, in the 

case of the DR controller, the upper bound in Eq. (6.32).  These plots are similar for the two 

controllers, which are compared in Fig. 6.12.  Note that although J(w0) is smaller for the DR 

controller, this comes at the price of a slower decay for V(w(t)).  Thus, DR control achieves a 

lower J by reducing the drifts early in the response, in exchange for larger drifts later.  

 

Example 2:  Acceleration Regulation 

 For acceleration regulation, a similar analysis can be performed.   For this example, 

weights qdk and qE are zero, and weights qak are assigned such that 

 ( ) ( ) ( ){ }2 2 2
1 2 3

0

J a t a t a t dt
∞

= + +∫  (6.47) 

Thus, the accelerations for the three main stories are weighed equally in the performance 

assessment, and the acceleration of the mass driver is not weighed at all.  For this case, the 

appropriate Q, R, and S matrices are nonzero and R is nonsingular.   

 Response data for the controllers is shown in Table 6.2.  The CO and DR controllers 

perform comparably with each other, although in this case the CO controller yields superior 

performance.  This brings about an important point concerning these controllers.  The appeal of 

the DR controller synthesis is that it yields a guaranteed upper bound on performance.  However, 

the theory leading to the controller design does not prohibit the possibility that, for a given set of 

circumstances, there may be many other CL feedback control laws which will out-perform it.  
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However, as will be shown in the next section, the same CO control law performs less favorably 

in other circumstances. 

Comparisons of the controllers’ abilities to produce low maximum accelerations yield 

mixed conclusions.  The DR controller does better for story 2, while the CO controller does better 

for stories 1 and 3.  Both controllers result in similar maximum forces.  The maximum of |fe1(t)| is 

higher for the CO case, while the maximum of |fe2(t)| is higher for the DR case.  However, as the 

design objective was to minimize mean-square acceleration quantities, the maximum 

accelerations shown in Table 6.2 do not give an adequate illustration of the behavior of different 

controllers.   

 Consider the transient response plots for this example, shown in Figs. 6.13-6.21.  From 

these plots, the disparity between the performances of the DR and CO controllers becomes more 

understandable.  Following the impulse, the two controllers respond very differently during the 

first oscillation of the structure, and the DR controller incurs much larger initial accelerations in 

the first story.  Alternatively, the CO controller yields a response in which the higher modes are 

much more evident in the accelerations, and this behavior works to the benefit of the controller in 

this circumstance.  It is interesting to note that, while the CO controller does out-perform the DR 

controller, the response quantities for the DR controller die out much more quickly.  In particular, 

note the decay of the accelerations for the CO controller, which exhibit a large amount of high-

frequency oscillation, especially in the motion of the first story. 

This observation is reflected in the V(w(t)) functions for the CO and DR controllers, 

compared in Fig. 6.21.  It is clear from this plot that, although the DR controller yields a higher 

value of J(w0) (=V(w0,0)), the value of V(w(t),t) decays much more quickly, indicating that the 

accelerations die out much more rapidly.  Thus, the DR controller yields higher accelerations at 

the outset of the disturbance, in exchange for lower accelerations later. 

 

Conclusions 

 As with many nonlinear systems, it is difficult to make generalized conclusions about the 

merit of different controllers by examination of a few examples.  However, there are some 

general observations which do follow from the two examples above.  First of all, it is clear that it 

is not difficult to find examples where other controllers (notably, the CO controller) produce 

somewhat better performance in comparison to the DR controller.   However, the appeal of DR 

control is consistency.  Because there are guaranteed upper bounds on performance, it can be 

stated with full confidence that for any example, DR control performs better than a certain 

quadratic bound.     
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Figure 6.14: Power flows for Example 2, with CO controller  
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Figure 6.15:  V(w(t)) (dark) and its bounds (light) for Example 2 with CO control  
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Figure 6.17: Power flows for Example 2, with DR controller  
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Figure 6.18:  V(w(t)) (dark) and its bounds (light) for Example 2 with DR control  
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Figure 6.20: Power flows for Example 2, with constant Z 
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Figure 6.21:  Comparison of V(w(t)) for CO (dashed) and DR (solid) controllers for Example 2 

 



 135 

6.2:  Clipped-Linear Controllers for Forced Response 
Many control system design methods have been proposed for reducing the forced 

response of structures using semiactive devices.  However, by far the most common method is 

Clipped-Optimal stochastic (CO-S) control.   

This method is similar to the free-response CO controller discussed in the previous 

section, but is applied to systems in stationary stochastic excitation.  For full-information 

noiseless feedback, the control synthesis yields the same feedback law.  The general approach is 

to design a stochastic-optimal linear active feedback law, and then clip the control signal to the 

admissible space U(w(t)).  As with the CO controller for free response, CO-S control system 

design is largely an ad-hoc method, in which the original Q, S, and R matrices used in the design 

are adjusted until the linear stochastic controller produces forces which tend to be dissipative. 

For many applications, CO-S control tends to yield favorable performance, and is a 

useful tool for the design of simple controllers.  However, it has a disadvantage in that there are 

no guaranteed performance bounds.   

In this section, it is shown that, as with the free-vibration case, there exist Damping-

Reference control synthesis methods which yield control laws which are similar to those for CO-

S control, but which do have quadratic bounds on performance.  However, naturally, the bounds 

of the response will be functions of the input characteristics.   

 

Performance Measures 

In the free-vibration case, the performance metric J was defined as in Eq. (6.7).  In the 

forced response case, the measure of performance will be treated in two different ways, 

depending on the nature of the input disturbance.  Different performance measures will be 

proposed for stationary white-noise excitation and for deterministic excitation (with ag∈L2[0,∞)).  

These two cases are addressed in Sections 6.2.1 and 6.2.2.  The former development is an 

application of nonlinear stochastic LQ control, while the latter is an application of nonlinear H∞ 

control. 

Both performance measures involve a measure of the “smallness” of the quadratic 

quantity 

 ( ) ( ) ( ) ( )
( )
( )
( )

a
T T T

g a
T T
a a a g

t
t t t a t t

R a t
φ

  
   =     
     

Q S Q w
w u S R S u

Q S
 (6.48) 
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However, it is necessary that this measure be treated differently for the two cases. 

 

Case 1:  Controller Designs for Stochastic Excitation 

 Consider the case where ag is white noise with intensity Φa.  For this case, controllers are 

sought which yield a low expectation for φ.  However, φ must first be modified such that this 

problem is well-posed.   

It will be assumed that the feedback controller does not contain feed-through terms for ag 

(i.e. that u(t) and ag(t) are uncorrelated at time t).  Consequently, the following expectations are 

true for stationary excitation: 

 2, ,g g gE a E a E a   =   = → ∞     u 0 w 0  (6.49) 

The fact that E[ag
2] = ∞ implies that the design of controllers for the minimization of E[φ] is an 

ill-posed problem for Ra≠0.  But consider that, because ag(t) is uncorrelated with u(t) and w(t), the 

ag terms are effectively decoupled from the u and w terms in the expectation of Eq. (6.48).  The 

quadratic terms involving Qa, Sa, and Ra may therefore be ignored in the synthesis of the 

controller, because they do not influence the controller parameters.  Thus, controllers are sought 

which yield good performance based on the metric 

 T T
TJ E Eφ

     =   =             

Q S w
w u

S R u
 (6.50) 

 It will be shown that Damping-Reference stochastic (DR-S) controllers yield an upper 

bound on performance of the form 

 a aJ v≤ Φ   (6.51) 

where va is a function of the controller parameters.  Furthermore, it will be shown that va can be 

optimized over the set of all DR-S controllers, to tighten the bound above. 

 

Case 2:  Controller Designs for Deterministic Excitation 

 In this case, the measure of performance is simply an extension of the performance 

measure from Section 6.1; i.e. 

 ( ) ( )0
0

, gJ a t dtφ
∞

= ∫w  (6.52) 
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For this case, DR controllers will be designed which yield a worst-case upper bound on 

performance of the form 

 ( ) ( )2
0 0 0

0

, T
g U a gJ a v a t dt

∞

≤ + ∫w w P w  (6.53) 

Because this problem is essentially a simple nonlinear application of H∞ methods, these 

controllers will be called DR-H∞ controllers.  The optimization of va over all DR-H∞ controllers 

remains an item for future work.  

 

Stochastic vs. Deterministic Design 

 DR-H∞ controllers are appealing because they provide a simple quadratic upper bound on 

the worst-case performance in forced excitation.  However, the acceleration input producing this 

worst-case scenario may not be very probable.  For instance, earthquake excitations are almost 

invariably broadband signals which resemble filtered noise, with time-varying filter parameters.  

Thus, as with linear systems, H∞-based designs may produce overly-conservative controllers.  

Consequently, they may yield less-favorable performance “on average,” as compared with 

stochastic controllers.   

 On the other hand, stochastic controller designs have the opposite problem.  By assigning  

controllers based only on the expected value of φ in stationary response, there is no explicit 

attention given to the size of the tails of the distribution of φ.  Thus, some controllers which yield 

favorable values for E[φ] may yield unfavorable higher moments in the response distribution.  In 

some applications, this may not be an issue.  However, in the design of controllers for structural 

engineering, where the focus is on reducing the probability of failure, the tails of the distribution 

for φ may be of great importance, and DR-S controllers are not well-equipped to handle this.   

6.2.1:  Clipped-Linear Stochastic Control 

 In this section, the performance of controllers is measured by Eq. (6.50).  The 

development of the Clipped-Linear control law for the stochastic case closely mirrors that of the 

free-vibration case.  Thus, the equations below are analogous to Eqs. (6.4) through (6.13).   

 Define 

 , ,T T T
u uw wE E E     = = =     Φ uu Φ uw Φ ww  (6.54) 

Then stationary excitation implies that 
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 T T T T
w w u uw uw u a a a+ + + + Φ =AΦ Φ A B Φ Φ B B B 0  (6.55) 

and the optimization of Eq. (6.50) is equivalent to the minimization of  

 { }2w uw uJ tr= + +QΦ SΦ RΦ  (6.56) 

Let arbitrary matrix K be such that A+BuK is stable, and let P be related to K by Eq. 

(6.8), repeated here as 

 ( ) ( ) ( )T T T T
u u= + + + + + + +0 A B K P P A B K Q K S SK K RK   (6.57) 

It follows that 

 ( ) ( ) ( ){ }0 T T T T
w u u w wtr= + + + + + + +Φ A B K P P A B K Φ Q K S SK K RK Φ  (6.58) 

Combining Eqs. (6.58) and (6.55) gives 

 

( ){ }0 T T T T T T T T
u uw uw u a a a w u u w wtr= + + Φ − − − + + +PB Φ Φ B P PB B Φ K B P PB KΦ Φ Q K S SK K RK   

  (6.59) 

which is equivalent to 

 ( ) ( )2 2 T
CL CL a a aJ E E= − − − + ΦR Ru K P w Kw K P w B PB  (6.60) 

where KCL(P) is defined as in Eq. (6.12), repeated here as 

 ( ) 1 T T
CL u

−  = − + K P R B P S  (6.61) 

The generalized Clipped-Linear stochastic (CL-S) controller attempts to make the first norm in 

Eq. (6.60) small through point-by-point minimization in time, resulting in the same control law as 

in Eq. (6.13), repeated here as 

 ( )
( )( )

( ) ( )arg min CL
t

t t
∈

= −
Ru w

u u K P w
%

%
U

 (6.62) 

 Thus, for a given choice of K, the CL control laws for the impulse response and 

stochastic forced response case are the same.  There is also an equivalence for Clipped-Optimal 

and Damping Reference control methods in these two cases as well, as discussed below. 
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Clipped-Optimal Stochastic Control 

 Consider the case where u is unconstrained and where K=KCL(P), giving rise to the same 

Riccati equation in Eq. (6.18) with solution P = Po.   As with the free-vibration case, Eq. (6.60) 

would be minimized uniquely through the assignation u=KCL(Po)w, giving the full-information 

optimal unconstrained stochastic controller.   

Now, consider the case where u is constrained such that u(t)∈U(w(t)).  If the CL-S 

control law is implemented with P = Po then Eq. (6.60) yields a lower bound on the expected 

performance; i.e. 

 ( ) 2 T
CL o a o a aJ E= − + ΦRu K P w B P B  (6.63) 

As with the free-vibration case, it is in general difficult to find a closed-form upper bound for the 

norm in the above expression.   

 

Damping Reference Stochastic Control 

 As in the free-vibration case, if the CL-S control law is implemented with K assigned as 

in Eq. (6.22) with Z chosen such that Kw is guaranteed to be feasible and with P = Pz as found 

from Eq. (6.23), then the inequality  

 ( ) ( ) ( ) ( ) ( ) ( )2 2
CL z z CL zt t t t− ≤ −R Ru K P w K w K P w  (6.64) 

holds at all times.  Consequently, taking the expectation of both sides and inserting in Eq. (6.60), 

it follows that  

 T
a z a aJ ≤ ΦB P B  (6.65) 

So the DR-S control provides a quadratic upper bound on the expected performance in stationary 

excitation.  In reference to Eq. (6.51), va = Ba
TPBa. 

 As with the free-vibration DR controller, Z can be optimized to tighten the bound in Eq. 

(6.65); i.e. to minimize Ba
TPzBa.  This minimization is identical to the optimization process 

discussed in Section 6.1.4, as well as in Chapter 5.  In fact, the upper bound in Eq. (6.65) is 

identical to the stochastic performance for a constant Z matrix, as studied in the examples of 

Chapter 5.  Thus, this control synthesis guarantees improvement over the constant-Z solutions, in 

stationary response. 
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Conclusions 

 It is a well-known fact that for linear controllers, there is a duality between their 

impulsive and stochastic behavior.  From the above analysis it is clear that this duality extends to 

the performance bounds of CL controllers.  Furthermore, it is clear that the optimal Z matrices for 

the DR impulsive and stochastic controllers are identical.    

6.2.2:  Clipped-Linear H∞ Control  

 Now, consider the measure of performance in Eq. (6.52).  For any P>0, it is true that 

 ( ) ( ) ( ) ( ) ( ) ( ){ }0 0
0

2 2T T T T T
u a ga dτ τ τ τ τ τ τ

∞

 = − + + + ∫w Pw w A P PA w w PB u w PB (6.66) 

along any stable {w,u,ag} trajectory.  Subtracting Eq. (6.66) form Eq. (6.52) gives 

( )

( ) ( ) ( )
( )
( )
( )

0 0 0

0

, T
g

T
u a a

T T T T
g u a

T T T
a a a a g

J a

a d
R a

τ
τ τ τ τ τ

τ

∞

=

   + + + +
    + +    
   +   

∫

w w Pw

Q A P PA PB S PB Q w
w u S B P R S u

Q B P S

 (6.67) 

Define KCL and KCLa as 

 ( ) 1 T T
CL u

−  = − + K P R B P S  (6.68) 

 1
CLa a

−= −K R S  (6.69) 

Then Eq. (6.67) can be expressed as 

 

( ) ( ) ( ){
( )[ ] ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) }

0 0 0
0

2

2

2

,

2

T T T
g

T
a a g a g

CL CLa g

CL CLa g

J a

a R a

a

a d

τ τ

τ τ τ

τ τ τ

τ τ τ

∞

 = + + + 

+ + +

+ − −

− +

∫

R

R

w w Pw w Q A P PA w

w PB Q

u K P w K

K P w K

 (6.70) 

For arbitrary K and Ka with A+BuK stable, Eq. (6.70) is equivalent to 
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( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

11 12
0 0 0

0 12 22

2

2

, T T
g g T

g

CL CLa g

CL a CLa g

J a a
aQ

a

a d

τ
τ τ

τ

τ τ τ

τ τ τ

∞     = +     
    

+ − −


− − + − 



∫

R

R

wQ Qw w Pw w
Q

u K P w K

K K P w K K

% %

% %

 (6.71) 

where 

 ( ) ( ) ( )11
T T T T

u u= + + + + + + +Q A B K P P A B K Q K S SK K RK%  (6.72a) 

 ( ) ( )12
T T

a a a a u a a= + + + + +Q K RK K S SK Q P B K B%  (6.72b) 

 22
T T T

a a a a a a aQ R= + + +K RK K S S K%  (6.72c) 

If u is chosen so as to instantaneously minimize the integrand in Eq. (6.71), the result is 

the Clipped-Linear control law for forced vibration, given as 

 ( )
( )( )

( ) ( ) ( ) 2
arg min CL CLa g

t
t t a t

∈
= − −

Ru w
u u K P w K

%

%
U

 (6.73) 

The CL control law above is the same as that for the free-vibration case except that it contains an 

additional term in the norm which is proportional to the input ag.  This feed-forward term 

represents an instantaneous opposition to ag by the controller.  As with the free-vibration case, 

different choices of K (along with Ka) will result in different closed-loop behavior.  

 Combining Eqs. (6.71) and (6.73) gives J as 
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We are interested in designing the controller parameters (i.e. K and Ka) such that the above has 

an upper bound which is a function only of w0 and ag, as in Eq. (6.53).   

To do this, first consider that if P is chosen such that 

 2
11 12 12

Tγ −= −Q Q Q% % %  (6.75) 

for some γ > 0, then Eq. (6.74) becomes 
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 (6.76) 

Because the first term is negative-semidefinite, J has the upper bound 
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To convert Eq. (6.77) into the form of Eq. (6.53), it is necessary that K be chosen such 

that  

 
( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 2
min CL CLa g CL a CLa gt

t a t t a t
∈

− − ≤ − − −
R Ru w

u K P w K K K P w K K
%

%
U

 (6.78) 

Through a similar process to that described in Section 6.1.4, DR-H∞ controllers may be 

constructed which yield the inequality in Eq. (6.78), assuming that constraint (6.5b) is not 

violated.   

Supposing again that constraint (6.5b) can be taken for granted, let K and Ka be 

 ( )1 1
2 2,T

u σ= − − ≤K ZB Z I  (6.79a) 

 a =K 0  (6.79b) 

Then Kw(t)+Kaag(t) ∈ U(w(t)) for all t.  In this circumstance, Eq. (6.82) may be used to find the 

P corresponding to Eq. (6.79).  Specifically, the equation for this value of P, which will be called 

Pz, is  
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(6.80) 

If the CL control law is implemented, then this implies that 
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 ( ) ( ) ( )22
0 0 0

0

, T
g z gaJ a a dR τ τγ

∞

≤ + + ∫w w P w  (6.81) 

Thus, the DR-H∞ controller ensures a worst-case upper bound on J, as a function only of 

w0 and the norm of ag.  In this sense, it yields a kind of robust performance.  Referring to Eq. 

(6.53), we have the desired performance bounds, with PU = Pz, and va =Ra+γ 2. 

 

Optimizing γ, given Z 

Consider the case where w0=0.  In this circumstance, Eq. (6.81) is only an expression of 

ag, and γ  reflects the magnification of ag in the upper bound.  As γ is decreased this bound is 

tightened  However, γ cannot be assigned to be arbitrarily small.  Rather, a minimum γ=γopt exists 

for which Eq. (6.75) has a solution P for which P=PT > 0. 

Eq. (6.75) can be expanded to give the algebraic Riccati equation 

 ( ) ( ) ( ) ( )2 2 2 2TT T T Tγ γ γ γ− − − −+ + + + + + =Q KK A BK P P A BK P BB P 0% % %% % % % % % % %  (6.82) 

where 

 ,T T T
u= + + + = +Q Q K S SK K RK A A B K% %   

 ,T T
a a a a u a a= + + + = +K K RK K S SK Q B B K B% %   

One of the many results of the Bounded-Real Lemma (Green and Limebeer 1995) is that Eq. 

(6.82) has a solution P=PT > 0 if and only if the matrix 

 2 T T
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H γ −   
 = +    −− −   

BA 0 K B
KQ A

% %
% %

% % %
 (6.83) 

has no eigenvalues on the imaginary axis.  It is worth noting a few traits of H.  However, the 

discussion will be kept brief and qualitative.    

The matrix H has the Hamiltonian property, such that if λ is an eigenvalue then so is −λ*.  

Thus, the eigenvalues of H are symmetric across the imaginary axis in the complex plane.  It is 

instructive to think about the loci formed by the paths of these eigenvalues in the complex plane, 

as γ is varied.  Note that the first matrix in the summation, on its own, has negative-real 

eigenvalues if A%  is stable.  But the second matrix in the summation has nonzero eigenvalues 

equal to those of T T−K B B K% % % % ; a skew-symmetric matrix.  Thus, the second term has purely 

imaginary eigenvalues.  It follows that as the value of γ is decreased there will come a point 
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where the corresponding loci of eigenvalues for H will reach the imaginary axis.  The critical 

value of γ at this point is the minimum γ for which a solution exists.  Thus, there is an optimal γopt 

for which Eq. (6.75) is a valid expression for P=PT>0, and therefore an optimal (i.e. minimal) 

amplification of ag in Eq. (6.77), resulting in a minimally-conservative approximation for J.  This 

optimal value may be found through a standard numerical root-finding algorithm, such as the 

bisection algorithm.  

 

Optimizing γ  and Z 

 A lingering issue is the optimization of Z.  The above development was for general 

feasible Z.  But clearly some choices for Z will yield lower values of γopt than others.  There is 

therefore some benefit to finding the Z for which γopt is minimum.  The DR-H∞ controller, 

implemented with Z=Zopt, could therefore yield the tightest quadratic performance bound.  The 

optimization of Z is a problem requiring further work, and is currently being investigated in an 

LMI framework. 

 

Clipped-Optimal H∞ Control? 

 In the impulse and stochastic response cases, CO controllers were presented.  As a final 

thought on H∞ methods, we consider the question of whether a useful analogy exists for CO-H∞ 

control.  It general, the answer is “no.”  The usefulness of H∞ methods lies in the worst-case upper 

bound for the gain of a closed-loop system, and CO-H∞ methods cannot ensure any worst-case 

upper bound.  Thus, the main appeal of H∞ methods is lost when the clipping action is imposed on 

the linear active H∞ control law.   

6.2.3:  Stochastic Forced Response Examples 

 The structural system studied in the examples in Section 6.1.6 was subjected to an 

impulsive acceleration.  In this example, we examine the same system subjected to a stationary 

white-noise excitation.  For this excitation, ag will be assumed to have intensity Φa = 10-4 m2/s3.  

This intensity is small enough that in stationary response, for all controllers, constraint (6.5b) is 

seldom violated, because constraint (6.5a) is dominant.  Thus, as for the free-vibration example, 

constraint (6.5b) can be ignored. 

As in section 6.1.6, two examples will be presented, corresponding to drift and 

acceleration reduction.  For both examples, simulations were conducted which calculate the 
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stationary response of the nominal system to uncorrelated noise, with a time duration of 500s.  

From this data, distribution functions for system response quantities were approximated.   

However, the most revealing analysis for the stationary response of these controllers lies 

in their spectral characteristics.  Consider y(t), a vector function of the response described by 

 ( ) ( ) ( ) ( )y uy ay gt t t a t= + +y C w D u D  (6.84) 

With appropriate definitions of Cy, Duy, and Day, y(t) can be related to Eq. (6.48) through 

 ( ) ( ) ( )T T
ay ay gt t a tφ = −y y D D  (6.85) 

Let the power spectral density matrix of y be denoted Syy(ω).  Then it follows that for stochastic 

performance assessment, 

 ( )( ){ }T
ay ay aE tr dφ ω ω

∞

−∞

  = − Φ  ∫ yyS D D  (6.86) 

Thus, the optimization of Eq. (6.50) can be interpreted as an average reduction in the PSD of y.  

This context turns out to be the most convenient for revealing the differences between different 

controllers.   

The simulation data was used to approximate the PSD Syy.  This approximation was 

performed in MATLAB, through a built-in routine which employs Welch’s averaged 

periodogram method.    

 For these examples, four feedback controllers are compared; DR-H∞, DR-S, and CO-S, 

and CZ control.  For the CZ and DR-S controllers, the Z matrix was optimized to minimize the 

bound in Eq. (6.65).  For the DR-S controller, this optimized Z gives the corresponding Pz matrix 

through Eq. (6.23).  With the Pz matrix found, the CL control law is fully parameterized for the 

DR-S controller.  This same Z was used for the DR-H∞ controller design.  For this particular Z, 

the optimal (i.e. minimum) γ was found and the corresponding Pz was found through Eq. (6.80).  

However the Z matrix itself was not optimized to yield a global minimum γ  (i.e. over the set of 

admissible Z).  As mentioned, the reason for this is that the optimization of Z for the absolute 

minimization of γ is an item requiring further research.  Note that, although the DR-H∞ controller 

is not optimized, it does minimize the upper bound on performance with reference to a given Z.   
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Example 1:  Drift Reduction 

 Simulation data for E[φ ] is shown Table 6.3, for all controllers as well as the 

uncontrolled case.  Corresponding distributions forφ are shown in Fig. 6.22.  Note that the CO-S 

and DR-S controllers perform very comparably, with a difference of about 1.5% in performance.  

The stochastic performance of the DR-H∞ controller is much higher, but this is to be expected 

because the controller was optimized for an upper bound on worst-case, not stochastic, 

performance.  For this example, all three of these controllers perform better than the constant-

damping case.   

Fig. 6.23 shows distributions for power flows P1, P2, as well as the distribution for the 

total power flow PT, for the controllers.  While these distributions are very close for the CO-S, 

DR-S, and DR-H∞ cases, it is evident that the DR-H∞ controller exhibits a great deal more power 

flow for the second actuator (the one corresponding to the mass driver on the top story).  Also, 

note that the distribution for P2 is skewed slightly to the left of the origin for the DR-H∞ 

controller, indicating that on average, this actuator is removing energy from the structure.  By 

contrast, the CO-S and DR-S distributions for P2 are skewed slightly to the right, indicating that 

they are, on average, injecting energy into the structure.   

 The spectral densities for the controllers are shown in Fig. 6.24.  First, consider the 

comparison of the DR-S and CO-S controllers.  The CO-S controller tends to improve on the CZ 

case by reducing the spectral content of y for frequencies below the first mode.  This comes at the 

expense of increased spectral content in the frequency range of the second and third mode.  The 

DR-S controller, on the other hand, does better at suppressing the spectral content for the higher 

modes, but at the expense of larger spectral content below the first mode.  The spectral content of 

the system response with the DR-H∞ controller is reminiscent of linear H∞ controllers.  The 

controller does better at reducing the maximum frequency response of the entire spectrum, but 

does not yield favorable suppression uniformly.  In particular, it leads to a pronounced increase in 

the spectral content near the higher mode, in comparison to the DR-S and CO-S controllers.   

 

Table 6.3:  Evaluations of E[φ ] for Various Controller Designs 
 CO-S DR-S DR-H∞ CD No control 
Ex. 1 (×10-3) 1.34 1.35 1.50 1.51 57.6 
Ex. 2 (×10-3) 18.2 15.1 16.0 18.6 364 
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Figure 6.22:  Distributions forφ for Example 1 
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Figure 6.23:  Distributions for power flow quantities for Example 1 
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Figure 6.24: Spectral densities for Example 1 

 

Example 2:  Acceleration Reduction 

 Now, consider the case where mean-square accelerations are used as the performance 

measure.  From Table 6.3 the DR-S controller out-performs the CO-S controller by about 20%.  

This is also illustrated in Fig. 6.25, which shows the performance distributions for the various 

controllers.  It is interesting that these same controllers, in the impulse response case, yielded the 

opposite conclusions.  The performance of the DR-H∞ controller is above the DR-S, but well 

below the CO-S and CZ cases.   

The power flow distributions, shown in Fig. 6.26, show that for all controllers, P1 is 

skewed to the left, indicating that the actuator between the base and first story is extracting more 

energy from the structure than it is injecting.  However P2 is fairly even, indicating that on 

average, the actuator exciting the hybrid mass damper delivers just as much energy to the 

structure as it extracts.  Thus, as in Example 1, the control systems all take advantage of the 

power-sharing nature of RFA networks.   

 The spectral density of y, shown in Fig. 6.27, provides more information concerning the 

discrepancy in the performances of the different controllers.  In the first mode, the CO-S 

controller actually performs better than the other controllers.  However its performance for the 

second and third  modes is comparably poor, and this inadequacy at higher frequencies leads to 
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its unfavorable performance.  These qualitative observations are harmonious with those made for 

the free-vibration case, where it was noted that for acceleration reduction, the CO-S controller 

yields responses with more significant high-frequency content.  The spectral content of the DR-

H∞ controller yields a maximum response magnitude, near the first mode, which is higher than 

that of the DR-S controller.  Clearly, this would not be the case for a linear system, because in 

that circumstance, the H∞ controller should optimize this maximum response.  
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Figure 6.25:  Distributions forφ for Example 2 
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Figure 6.26:  Distributions for power flow quantities for Example 2 

 

0 20 40 60 80 100 120 140 160 180

10
-4

10
-3

CZ
COS
DRS
DRH∞

ω (rad/s)
0 20 40 60 80 100 120 140 160 180

10
-4

10
-3

CZ
COS
DRS
DRH∞

ω (rad/s)  
Figure 6.27:  Spectral densities for Example 2 
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6.3:  Further Comments 
 The research reported in this chapter had several motivations.  Originally, the goal was 

simply to unify many of the methods of semiactive control system design under a common 

approach, and to extend them to accommodate the constraints of RFA networks.  Clipped-

Optimal and Damping-Reference controllers have both been studied elsewhere, in various 

equivalent forms, for semiactive systems.  The general consensus is that they are both reasonable 

techniques for the design of simple controllers for energy-constrained systems.  In the extension 

of these ideas to RFA networks, the examples shown in this chapter also imply this.  In general, 

they both “tend” to yield favorable performance. 

However, in some applications, it is desirable to work with controller designs which yield 

some guarantees on performance.  Thus, the motivation for this research became the development 

of control synthesis methods for energy-constrained actuation systems which guarantee a certain 

level of performance, and yield a simple control law.  For RFA networks as well as semiactive 

systems, Damping Reference Controllers accomplish this.  It has been shown that these methods 

can be used in both a stochastic and deterministic setting. 

 However, as mentioned in the introduction, the work presented here is hardly the “final 

word” on this subject.  Rather it is merely the simplest approach to the design of RFA and 

semiactive systems with guaranteed quadratic cost.  There are a great many avenues which can be 

explored, toward the development of controllers which guarantee an even tighter bound on 

quadratic performance, or which generalize the measure of “performance” to a broader class of 

functionals.  In Chapter 9, some specific areas of possible further research are discussed in greater 

detail. 
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Appendix A6 

A6.1:  An Algorithm for Resolving the Clipping Action 

We wish to minimize the quantity 

 2
Rbu +  (A6.1) 

over all u satisfying the constraints  

 ( ) 0, ≤+= suuusu TTP  (A6.2) 

 maxuu ≤  (A6.3) 

If u=−b satisfies constraints (A6.2) and (A6.3), then it is the only solution.  In the circumstance 

that this value of u does not meet the constraints, the clipping action must be characterized.  The 

algorithm detailed below assumes that u=−b violates either Eq. (A6.2) or (A6.3), or both.  

Equivalently, we wish to solve Eq. (6.38) for feasible u, λ, and λR values.    

Vector u is said to belong to a particular saturation state, Ns, depending on which of its 

forces are maximized at ±umax.  For each ui, it has three saturation states; lower saturation (i.e. ui = 

−uimax), no saturation (i.e. −uimax<ui<uimax) and upper saturation (i.e. ui = uimax).  Thus, if u∈ℜm 

then there are 3m saturation states Ns.   

The proposed algorithm works by systematically considering each saturation state until it 

finds one which yields a solution.  Thus, it consists of a loop which could repeat from 1 to 3m 

times, depending on how many Ns states are tried before the correct one is reached.  Each time 

through the loop, the algorithm assumes Ns to be true, and then checks for consequential 

violations in the necessary conditions.  Because it is known that Eq. (6.38) has a unique minimum 

in the feasible u-space (given that R is nonsingular), Eqs. (6.36), (6.37) and (6.38) are necessary 

and sufficient conditions for u to be the solution.  Thus, the algorithm stops as soon as it finds a 

saturation state in which Eqs. (6.36), (6.37) and (6.38) are harmonious.  Because it is known that 

a solution exists, the algorithm is guaranteed to find the solution (eventually). 

More computationally-efficient algorithms exist if R is diagonal or scalar.  First, the 

general algorithm is presented.  Then, simplifications to the algorithm for diagonal and scalar R 

are discussed. 
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1.  Case for General R: 

The steps below are repeated for different Ns, until a solution is reached. 

 

Step 1:  Ns, b, s, λR a u′, λo 

 Let the number of unsaturated forces for Ns be p≤m.  Then u can be expressed as 

 o
sus maxuDuDu +′=  (A6.4) 

where u′ is the vector of unsaturated forces (i.e. forces for which |ui|<uimax) and o
maxu contains 

only those maximum force levels corresponding to the saturated forces.  For this 

parameterization, the matrices Dus and Ds have exactly one nonzero component in each column, 

and have the characteristic that 

 IDDIDD == s
T
sus

T
us ,  (A6.5) 

For a given scenario, the Lagrange multiplier vector λ may be expressed as 

 o
sλDλ ='  (A6.6) 

where λo is the vector of absolute-valued Lagrange multipliers for the saturated forces only.  

Substitution of the above quantities into Eq. (6.38) gives 
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 (A6.7) 

There are two general possibilities for this equation to result in a feasible u for a given Ns.  Either 

λR=0 and P(u,s)≤0, or else λR≥0 and P(u,s)=0.  Steps 2 and 3 check these cases, respectively.   

 

Step 2:  Ns, b, s, λR=0 a Feasible u? 

Assuming λR=0, solutions to u′ and λo can be found directly from Eq. (A6.7) as 
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 (A6.8) 

If these solutions result in satisfaction of the constraints then case Ns is the valid case, and the 

solution has been found.  Specifically, the three conditions to check are 

 ( ) ( ) maxmax
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 (A6.9) 
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Otherwise, saturation state Ns, with λR=0, cannot yield the solution. 

 

Step 3:  Ns, b, s, P(u,s)=0 a Feasible u? 

Now, we replace the assumption that λR=0 with the assumption that u′ is feasible, i.e., 
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Let T be the diagonalizing similarity transformation such that 
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Then Eq. (A6.7) can be expressed as 
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where 

 ( ) ( ) ( ){ }RpRR diag λβλβλ ,...,1=B  (A6.15) 

and 
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Note that βi ∈[0,1].  Define  
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and 
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and Eq. (A6.12) can be expressed as 
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 ( ) 02 =+θλ φBφ R
T  (A6.19) 

which is equivalent to the polynomial expression 
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The above root equation must be solved to get λR.  Note that only positive solutions are valid, so 

if there is no positive root, the case Ns cannot be valid.  By inspection of Eq. (A6.16), we see that 

for λR positive, each element in B decreases uniformly with λR.  Thus, there can be at most one 

positive root.  Furthermore, it follows that exactly one positive root exists if and only if −ϕTϕ<θ .  

If the positive root exists, then λR can be found uniquely, and λo can in turn be found from Eq. 

(A6.7).   

 If the resultant λR root, when inserted in Eq. (A6.7), results in u feasible, then the solution 

has been found.  The items to check are 
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where λR and u′ are found through Eqs. (A6.20) and (A6.14) respectively.  If any one of these 

conditions is violated, then P(u,s)=0 cannot be the case for saturation state Ns. 

 

Step 4:  Is Ns the correct saturation state? 

 If Steps 2 and 3 did not yield feasible u, then Ns cannot be the correct saturation state.  In 

this circumstance, the algorithm is repeated for the next Ns.  If either Steps 2 or 3 yield a solution, 

then this is the only solution, and the algorithm can be aborted, without trying the remaining Ns.  

 

2.  Simplifications for Diagonal R: 

 For R diagonal, the above can be simplified somewhat.  Equation (A6.7) becomes 
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Note that in the case of λR = 0, these equations become 
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implying that for λR = 0, force saturation occurs element-by-element, as 
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So the case with λR=0 (i.e. Step 2) can be checked only once at the outset of the algorithm, 

because the saturation state Ns implied by λR=0 can be inferred directly from Eq. (A6.26).   

 Also note that for diagonal R, ϕ in Step 3 is simplified to  

 ( ) ( )sbDbsφ 2
1,, −= T
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However, the roots of the 2p-order polynomial in Eq. (A6.20) must still be solved in order to get 

the solution for λR.   

 

3.  Simplifications for R = rI: 

 In this circumstance, in addition to the simplifications in Step 2 for diagonal R, things 

simplify considerably for Step 3, because the βi  factors all become equal, for any λR.  Thus, 

B(λR) = β(λR)I, and the polynomial in Eq. (A6.20) simplifies to the simple quadratic 
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and the solution may be found readily in closed-form as 
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Also note that, if α = 1−β, then u′ may be expressed as 
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Resultantly, u can be expressed for arbitrary α as 
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Thus, the solution to u is such that the term in the brackets of Eq. (A6.31) lies on a line between b 

and ½s. 

 


