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Abstract

A new methodology for calculating optimal effective linear parameters for use in

predicting the earthquake response of structures is developed. The methodology is

applied to several single-degree-of-freedom inelastic structural models subjected to

a suite of earthquake acceleration time histories. Separately, far-field and near-field

earthquakes are analyzed. Error distributions over a two-dimensional parameter space

of period and damping are analyzed through a statistical approach with optimization

criterion most applicable to structural design. Four hysteretic models are analyzed:

bilinear, stiffness degrading, strength degrading and pinching. Initial structural pe-

riods are analyzed in groups for several second slope ratios (α) at different levels of

ductility. It was discovered that as ductility increases, the accuracy of the effective

parameters decrease but the consequences of bad parameter selection become less

severe.

The new effective parameters are intended for use in displacement-based struc-

tural analysis procedures as used in Performance-Based Engineering. Of the several

procedures available, Nonlinear Static Procedures, such as the Capacity Spectrum

Method, are widely used by structural engineers because the nonlinear characteristics

of both structural components and the global structure are utilized without running a

nonlinear time history analysis. Effective linear parameters are used in the Capacity

Spectrum Method to calculate the expected displacement demand, or Performance

Point, for a structure. Because several sources of error exist within the Capacity Spec-

trum Method, an analysis that isolates the error from the effective linear parameters is

performed. The new effective linear parameters show considerable improvement over

the existing effective linear equations. The existing linear parameters are extremely
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unconservative at the lower ductilities and conservative at the higher ductilities. The

new parameters lead to a significant improvement in both cases.

A modification to the Capacity Spectrum Method is introduced to account for the

new effective linear period. Currently, the Capacity Spectrum Method uses the secant

period as the effective linear period. The modification preserves the basic Performance

Point calculation. Finally, a new, entirely graphical solution procedure using a Lo-

cus of Performance Points provides crucial insight into the effects of strengthening,

stiffening and increasing building ductility not available in the current procedure.
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Chapter 1

Background and Motivation

1.1 Introduction

This chapter will develop the equations of motion that will be used throughout the

study. Both inelastic and elastic systems will be used in the analysis. Approximate

solution techniques estimating the response of inelastic systems by effective linear

systems will be introduced. Previous approaches have employed several different

methodologies for developing effective linear parameters. Some of these methodologies

are briefly summarized.

The methodology proposed in this study (Chapter 2) has been developed in rela-

tion to its expected use within current engineering analysis procedures. A background

of the current engineering design procedure is presented to explain the context in

which the methodology will be applied. This study will improve a widely used anal-

ysis procedure by improving the approximate linear analysis employed within the

method. The method itself will be modified to allow the use of the new effective

linear parameters.

1.2 Single-Degree-Of-Freedom Structural Model

The equation of motion for the single-degree-of-freedom system in Figure 1.1(a) is

mẍ + f(x, ẋ) = −mü(t) (1.1)
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where m is the mass of the system and f(x, ẋ) is the general restoring force that is a

function of both displacement, x, and velocity, ẋ. The term f(x, ẋ) can be categorized

into two main types: linear or nonlinear.

For a linear system in Figure 1.1(b) the term f(x, ẋ) may be expressed as

f(x, ẋ) = kx + cẋ (1.2)

where k is the spring stiffness and c is the viscous damper coefficient.

m

x(t)

u(t)

f(x,x)⋅

(a) General oscillator

m

x(t)

u(t)

k
eff

c
eff

(b) Linear oscillator

Figure 1.1: Single-degree-of-freedom structural models

The solution to the linear differential equation of motion for a given base excita-

tion, ü(t), can be expressed in a Green’s Function approach as

x(t) = xou1(t) + ẋou2(t) +
1

m

∫ t

0

ü(τ)h(t− τ)dτ (1.3)

where xo and ẋo are the initial displacement and velocity, respectively, u1(t) is the dis-

placement response to a unit initial displacement, u2(t) is the displacement response

to a unit initial velocity and h(t) is the unit impulse response function with zero

initial conditions. Whether or not Equation 1.3 has an analytical solution is depen-

dent upon the form of the base excitation, ü(t). For any base excitation, numerical

integration procedures can be used to solve the integral in Equation 1.3.

There are many possible nonlinear forms of f(x, ẋ). One form is nonlinear elastic
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system in which f(x, ẋ) is an explicit function of displacement and velocity. An

example of a nonlinear elastic equation is

f(x, ẋ) = cẋ + g(x) where g(x) = a1x + a3x
3 (1.4)

Another form of nonlinear system is an inelastic system, also known as a hysteretic

system. In an inelastic system, f(x, ẋ) is a history dependent function of both the dis-

placement and velocity response. A bilinear hysteretic system is shown in Figure 1.2.

force

x

x
max

f
max

x
y

k
o

α k
o

K
sec

Figure 1.2: Bilinear force versus displacement curve

For many nonlinear systems, obtaining an analytical time history solution to Equa-

tion 1.1 will be impossible. Unlike for a linear system, a Green’s Function approach

will not work because superposition is not applicable to nonlinear systems.

Solutions for nonlinear systems subjected to arbitrary time dependent loading

functions are available only by numerical integration procedures. In this study, inelas-

tic systems will be subjected to earthquake acceleration time histories and numerical

integration procedures will be the solution approach.
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1.3 Approximate Solution Techniques

Approximate analytical methods are essential to analyzing nonlinear single-degree-

of-freedom and multi-degree-of-freedom problems. Before computers became readily

accessible, approximate techniques were the best option to solving these problems.

Today, numerical techniques make almost any nonlinear system solvable. However,

just because a system may be solvable numerically, doing so might not be practical

for a number of different reasons. For example, a system with a large number of

degrees-of-freedom may require an exorbitant amount of time to construct an accurate

computer model. Also, the enormous amount of output from such a model may be

impractical to analyze. Even for single-degree-of-freedom systems, the number of

different loading cases needed to be solved may be too large. This demonstrates that

there will always be a need for good approximate methods of analysis for nonlinear

systems.

One approximate analysis technique involves replacing the actual nonlinear sys-

tem with an equivalent linear system. The replacement linear system can then be

evaluated either analytically or numerically using Equation 1.3. Conclusions about

the characteristics of nonlinear system response may be postulated by analyzing the

linear system response. This is generically referred to as equivalent linearization.

The linear parameters obtained through the equivalent linearization analysis have

been designated by the subscript eff. The replacement differential equation of motion

may be expressed as

ẍ + 2ζeffωeff ẋ + ω2
effx = −ü(t) (1.5)

where

ωeff =
√

keff/m (1.6)

and

ζeff = ceff/2
√

keffm (1.7)
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The effective period is related to the effective frequency and stiffness by

Teff = 2π/ωeff = 2π
√

m/keff (1.8)

1.3.1 Equivalent Linearization Based on Assumed Response

One way to accomplish the equivalent linearization is to analytically minimize the

difference between the inelastic restoring force and the elastic restoring force [43].

This can be done by rewriting Equation 1.1 as

mẍ + ceff ẋ + keffx + ε(x, ẋ) = −mü(t) (1.9)

where

ε(x, ẋ) = f(x, ẋ)− ceff ẋ− keffx (1.10)

By selecting values for ceff and keff that minimize the difference term, ε(x, ẋ), in

Equation 1.10, that term can be ignored in Equation 1.9. The remaining linear

equation can be solved using Equation 1.3.

One possible approach to minimizing the difference is to minimize the the mean

square error, ε2, with respect to ceff and keff . This criteria is expressed as

∂ε2

∂keff

= 0 (1.11)

∂ε2

∂ceff

= 0 (1.12)

If the forcing function, ü(t), is a harmonic function of time, the steady-state

solution can be assumed to be of the form

x(t) = xmaxcos(ωt− φ) = xmaxcosθ (1.13)

where xmax is the maximum displacement amplitude, ω is the response frequency and

φ is the phase lag. Analyzing a single cycle of the steady-state response leads to the
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following equation for the mean square error

ε2 =
1

2π

∫ 2π

0

(f(xmax, θ)− keffxmaxcosθ + ceffωxmaxsinθ)2 dθ (1.14)

Applying the minimization criteria to Equation 1.14 yields

ceff = − 1

xmaxωπ

∫ 2π

0

f(xmax, θ)sinθ dθ (1.15)

and

keff =
1

xmaxπ

∫ 2π

0

f(xmax, θ)cosθ dθ (1.16)

Another way to determine equivalent linear stiffness and damping parameters

is through energy balance [19], [38], [43]. The energy dissipated by the hysteretic

system is equated to the energy dissipated by an equivalent viscous damper. Assume

the response to be of a harmonic form over one full cycle of response expressed as

x(t) = xmaxcos(ωt− φ) = xmaxcosθ (1.17)

Then, energy dissipated by a viscous damper over one cycle of response, E, can be

expressed as

E = 2π2ceffx
2
max/T (1.18)

where T is the period of cyclic motion.

For a bilinear hysteretic model seen in Figure 1.2, the energy dissipated over one

cycle of response, E, can be expressed as

E = 4xy(ko − αko)(xmax − xy) (1.19)

Equating energies from Equation 1.18 and 1.19 leads to

ceff = 2xy(ko − αko)(xmax − xy)T/(π2x2
max) for xmax ≥ xy (1.20)
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In Figure 1.2 the secant stiffness is labeled Ksec and can be expressed as

Ksec = ko(xy + α(xmax − xy))/xmax for xmax ≥ xy (1.21)

If the secant period, Tsecant, is assumed to be the period of structural response, then

keff = Ksec (1.22)

The secant stiffness can be related to the secant period by Equation 1.8. Substituting

Equations 1.8 and 1.21 into Equation 1.20 leads to the following expression for ceff

ceff =
4xy(ko − αko)(xmax − xy)

πx2
max

√
m

Ksec

for xmax ≥ xy (1.23)

1.3.2 Effective Parameter Approach for Determining Earth-

quake Response of Structures

Researchers have developed various different methods for use in linearizing inelastic

systems subjected to earthquake excitation. Most methods use the secant period as

the effective linear period.

The response ductility, µ, is defined as the ratio of the maximum displacement

response, xmax, divided by the yield displacement, xy, thus

µ =
xmax

xy

(1.24)

The effective parameter equations in this section will be expressed in terms ductility.

Also, the second slope ratio, α, will be defined as the ratio of the initial stiffness to

the post-yield stiffness as indicated in Figure 1.2.

1.3.2.1 Effective Damping Equations Using the Secant Period

If the secant period is used as the effective linear period as discussed in Section 1.3.1,

the ratio of the effective period (Teff ) to the initial linear period (To) can be expressed
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as
Teff

To

=

√
µ

1− α + αµ
(1.25)

Gulkan and Sozen [28] commented that the secant period equation and ceff from

Equation 1.23 when applied to earthquake response prediction, lead to smaller maxi-

mum displacement response predictions compared to maximum inelastic earthquake

response because of the large damping value. Incorporating shake table results of

small-scale reinforced concrete frames and simulation results using the Takeda hys-

teretic model [65], Gulkan and Sozen developed the following effective damping equa-

tion

ζeff − ζ0 (%) = 200(1− 1
√

µ
) (1.26)

where ζo is the nominal fraction of critical damping for the system.

Kowalsky [49], also using the secant period as the effective linear period and the

Takeda hysteretic model, developed the following effective damping equation

ζeff − ζ0 (%) =
100

π
(1− 1− α

√
µ
− α

√
µ) (1.27)

The current Capacity Spectrum Method [19], which this study is directed towards

improving, uses the secant period as the effective linear period along with the following

equation for effective damping coefficient

βeff (%) = κβ0 + 5 (1.28)

where βo is given by

β0 (%) = (
200

π
)
(µ− 1)(1− α)

µ + µα(µ− 1)
(1.29)

Equation 1.29 is equivalent to Equation 1.23 by using the relationship ceff = 2βoωeff .

Table F.7 contains the values of the factor κ.
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1.3.2.2 Two-Dimensional Minimization

In 1980, Iwan [42] proposed a set of effective linear parameters based on the response of

hysteretic systems to earthquake excitations. The methodology compared elastic ve-

locity spectra to inelastic velocity spectra. Effective linear parameters were obtained

by shifting the inelastic spectra in a manner that minimized the average absolute

value difference between the inelastic spectra and the linear spectra over a range of

periods. Using the stated procedure, the following relationships were obtained for the

effective linear parameters

Teff

To

= 0.121(µ− 1)0.939 + 1 (1.30)

ζeff − ζo (%) = 5.87(µ− 1)0.371 (1.31)

A summary of the effective linear parameters discussed above is shown in Fig-

ure 1.3.
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Figure 1.3: Summary of effective linear parameters from previous methodologies
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1.4 Performance-Based Engineering

Very little interest was taken in earthquake resistant building design until after the

1933 Long Beach earthquake. After that particular urban event, building codes be-

gan to be developed that required provisions on a lateral force analysis for new struc-

tures. These codes have evolved over the years but their main focus has never change

- preserve human life in a structure by preventing structural collapse. Very little

consideration has been given to other possible consequences of earthquakes on struc-

tures. Recently, as building design and construction procedures have improved, the

desire to predict the amount of expected damage from a seismic event has emerged.

Performance-Based Engineering (PBE) has been developed to predict intermediate

levels of building damage.

Consequences of earthquakes on buildings can be divided into three main cate-

gories: life safety, capital losses and functional losses [2]. Life safety deals with deaths

and injuries to both building occupants and passersby. Capital losses are the costs

associated with repairing damage to buildings or its contents. Functional losses are

losses of revenue or increased operating expenses after an earthquake. Performance-

Based Engineering attempts to take into account life safety, capital losses and func-

tional losses by defining Building Performance Levels that are directly related to these

three issues. Building Performance Levels combine both structural performance and

non-structural performance. A building component is considered structural if it is

load bearing or part of the lateral load resisting system. Non-structural components

are anything that is not structural.

There are four main Building Performance Levels. Each level is composed of

different structural and non-structral performances. The levels are:

� Operational Performance Level - There is limited structural damage. The struc-

ture is practically identical to the pre-earthquake state and occupation of the

building is not interrupted. Non-structural elements are generally in place and

functional. Minor disruptions may occur and some cleanup may be warranted.

� Immediate Occupancy Performance Level - There is limited structural damage,
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as in the Operational level. However, non-structural items are generally in place

but may have experienced damage.

� Life Safety Performance Level - Significant structural damage may have occured

but some margin exists before total or partial structural collapse. Typically,

major structural components are damaged and extensive repairs will have to

be made. The building is unsafe to occupy after the seismic event. Significant

non-structural damage may have occured but no collapse or falling of heavy

items occured.

� Structural Stability Performance Level - The structure is on the verge of expe-

riencing partial or total collapse but the vertical load carrying capacity of the

structure remains. Non-structural damage is not addressed in this performance

level.

The demand placed on a structure at a particular site can come from several

sources. The earthquake ground motion demand is defined as the engineering charac-

teristic of the shaking at a site for a given earthquake that has a certain probability

of occuring [2]. This demand is generally broken into three categories:

� Serviceability Earthquake - The ground motion with a 50% chance of being

exceeded in a 50-year period.

� Design Earthquake - The ground motion with a 10% chance of being exceeded

in a 50-year period.

� Maximum Earthquake - Maximum level of ground motion expected within the

known geologic framework due to a specified single event (median attenuation),

or the ground motion with a 5% chance of being exceeded in a 50-year period.

The representation of earthquake demand will be discussed in section 1.4.2.3. Wind

and tsunamis are non-ground motion demands which are not relevant to this study

but still exist and must be properly accounted for.
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1.4.1 Performance Objectives

A Performance Objective is the Building Performance Level for a specific level of Seis-

mic Demand. The Performance Objectives are all possible combinations of building

performance and seismic demand as presented in Table 1.1. There can be a single Per-

formance Objective or multiple Performance Objectives, one for different Seismic De-

mands. Performance Objectives may be assigned dependent upon the function of the

building, life expectancy of the structure, historical preservation issues, cost consid-

erations and other conditions or constraints. More stringent Performance Objectives

will typically result in higher costs. Choosing an Operational Building Performance

Level for the Maximum Earthquake demand will cost more than the Life Safety Level

for the Design Earthquake demand. The decision on the final Performance Objective

must take all these factors into account.

Building Performance Level

Seismic Demand Operational
Immediate
Occupancy

Life Safety
Structural
Stability

Servicibility EQ
Design EQ
Maximum EQ

Table 1.1: Performance Objectives for Performance-Based Engineering combine a
Building Performance Level with a Seismic Demand

1.4.2 Analysis Techniques

A number of guidelines for the analysis techniques required for determining the

building performance levels are contained in such documents as Applied Technol-

ogy Council-40 (ATC-40), Seismic Evaluation and Retrofit of Concrete Buildings and

Federal Emergency Management Agency (FEMA) 273, NEHRP Guidelines for the

Seismic Rehabilitation of Buildings. The documents contain both linear and nonlin-

ear analysis procedures. Currently, four types of procedures are available for building

analysis. They include the Linear Static Procedure (LSP), Linear Dynamic Procedure

(LDP), Nonlinear Static Procedure (NSP) and Nonlinear Dynamic Procedure (NDP).
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Each procedure will now be briefly summarized and further details are available in

FEMA 273.

� Linear Static Procedure - The building is modeled with all elements as linearly-

elastic. Displacements are calculated from a pseudo-static lateral load analysis

and are intended to represent the inelastic displacement demand that is expected

from the Design Earthquake. It may be shown that the internal forces calculated

will equal or exceed those values expected during the building response to the

Design Earthquake.

� Linear Dynamic Procedure - The building is modeled with all elements as

linearly-elastic. Displacements are calculated from either a time history analysis

or a modal spectral analysis and are intended to represent the inelastic displace-

ment demand that is expected from the Design Earthquake. For time-history

analysis, a suite of at least three ground motions must be used to account for the

variability of different ground motions. Modal spectral analysis is the summa-

tion of expected modal responses using displacements from a response spectrum

(Section 1.4.2.3) at the periods of the lower modes of the structure.

� Nonlinear Static Procedure - The building is modeled with the expected non-

linear characteristics of the individual elements. An incrementally increasing

lateral load profile simulates the expected inertial forces experienced during

the seismic demand (Section 1.4.2.2). This results in a push-over curve which

represents the structural capacity of the building. Earthquake demand is rep-

resented by a response spectrum (Section 1.4.2.3). Displacement demand is

calculated by either determining the Performance Point, as in the Capacity

Spectrum Method (Section F.1), or modifying the elastic response to determine

the Target Displacement, as in the Coefficient Method (Section F.2).

� Nonlinear Dynamic Procedure - The building is modeled with the expected non-

linear characteristics of the individual elements. Displacements are determined

using nonlinear time history analysis. It is suggested, but not required, to use
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more than one ground motion. Nonlinear response can be highly sensitive to

the ground motion characteristics so it would be wise to use a suite of ground

motions in the analysis.

1.4.2.1 Nonlinear Static Procedures

Nonlinear Static Procedures have become very popular for Performance-Based Engi-

neering analysis. The appeal to structural engineers is that without the running of

nonlinear time history analyses, displacement demands can be calculated which di-

rectly take into account the approximate nonlinear load-deformation characteristics

of the structural elements and the entire structure. Nonlinear time history analyses

can often be difficult to execute and interpret.

Nonlinear Static Procedures combine structural capacity, determined from a push-

over analysis (Section 1.4.2.2), with seismic demand, represented as a response spec-

trum (Section 1.4.2.3), in order to predict building response to earthquakes. Lateral

deformation values on the push-over curve can be associated with specific Building

Performance Levels. As commented in ATC-40 [19]: The process of defining lat-

eral deformation points on the capacity curve at which specific Building Performance

Levels may be said to have occurred requires the exercise of considerable judgment

on the part of the engineer. Figure 1.4 shows a push-over curve with displacements

associated with different Building Performance Levels.

The seismic demand experienced by a structure is represented by an Acceleration-

Displacement Response Spectrum (ADRS). Through a type of modal conversion

(Equations 5.1 and 5.2), the push-over curve is transformed into the capacity spectrum

changing from units of force and displacement to spectral acceleration and spectral

displacement. The capacity curve and seismic demand may now be drawn on the

same axes. For the Coefficient Method, only a 5% damped response spectrum is re-

quired. The linear displacement response of the structure is modified by a series of

coefficients accounting for hysteretic shape, inelastic amplification and other dynamic

features.

The Capacity Spectrum Method is relatively intuitive in nature. The Capacity
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Figure 1.4: Building Performance Levels as determined for a capacity curve

Spectrum Method requires the representation of inelastic seismic demand by using

response spectra with varying amounts of damping. Inelastic response is characterized

by ductility (Equation 1.24). Effective linear parameter equations are used in the

Capacity Spectrum Method to assign damping for different levels of ductility. When

the demand and capacity ductilities are equal, the system is in a type of dynamic

equilibrium. The equilibrium point defines the expected performance of the structure,

referred to as the Performance Point. As seen in Figure 1.5, the intersection of the

demand and capacity will be the Performance Point for the structure.
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Figure 1.5: Performance Point calculation in the Capacity Spectrum Method
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This study will focus on improvement of the Capacity Spectrum Method. This

will be accomplished by improving the effective linear parameters used in the solution

procedure. Motivation came from a preliminary study by Iwan and Guyader [46] that

used the effective linear parameters developed by the 1980 Iwan study in place of the

current Capacity Spectrum Method effective linear equations (Section 1.3). The dis-

placement predictions using the Iwan equations showed a considerable improvement

over the current Capacity Spectrum Method equations. Using an effective period not

equal to the secant period was an important factor in this improvement.

1.4.2.2 Representing Structural Capacity: Push-over Analysis

Nonlinear static procedures use a push-over analysis to develop a representation of

structural capacity. The ability to perform a nonlinear static analysis must meet the

first fundamental requirement that extensive knowledge must be available about the

structure, components, connections and material properties. If this information is

unattainable, nonlinear static procedures must not be used to analyze the building.

With this knowledge of the building, an accurate computer model of the building

can be constructed. The model must take into account the expected load-deformation

characteristics of the components and connections. The load-deformation behavior

of the components and connections are adopted from cyclic laboratory testing. The

cyclic tests create hysteretic response loops from which a backbone curve is con-

structed. The backbone curve is the locus of turn around points from the cyclic test

data.

A horizontal load profile must be developed to deform the building model. The

load profile represents the expected inertial forces experienced in the structure during

an earthquake. Usually, the response of structures to far-field, random-like ground

motions is a resonance build-up in the fundamental mode. Therefore, a sensible choice

for the load profile is the first-mode shape. However, the response of the structure is

highly dependent upon the characteristics of the ground motion.

Push-over analysis should not be performed on structures in which the probable

inertial forces from the earthquake cannot be accurately represented. If higher modes
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of response are significant, a first-mode push-over profile would not be accurate.

Methods have been developed that attempt to use higher-mode load profiles to deform

building models [17], [33], [63]. Currently, guidelines for these methods are being

formulated for use in forthcoming design guidelines [20].

A case where the probable earthquake inertial forces would be misrepresented

by a first-mode profile is when the ground motion has a pulse-like character. The

response of the building in this case would not be of a resonance build-up but in-

stead a localized collection of damage from the sudden large ground displacement

pulse [7], [11], [12], [34], [36], [47]. For these ground motions, the load profile to rep-

resent earthquake inertial forces would need to be drastically different from any of

those currently proposed for analysis.

The horizontal load is applied in an incremental fashion and the sum of the lateral

force versus roof displacement is recorded at various levels of load. Figure 1.6 shows

an example of a push-over analysis using a triangular load profile.

δ
r

δ
r

F

Figure 1.6: Push-over load profile used to deform a building model and the resulting
capacity curve

The push-over results are dependent upon such factors as the load profile used,

the detail of the computer model, the solution algorithm of the software and the

ability of the software to account for P-4 effects [31], [35], [66]. P-4 is a geometric

nonlinearity in structures generated by gravity forces due to the displaced configura-
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tion. An inverted pendulum with a rotation spring is an example of such a geometric

nonlinearity. The differential equation of motion is of the form

Iθ̈ + Kθ −mgh sinθ = M(t) (1.32)

where K is the stiffness of the rotational spring and m is the mass of the pendulum

at a height h above point of rotation in the vertical configuration (θ = 0). For

the linearized case, the effective spring stiffness is K −mgh, thereby increasing the

rotational deflection of the system as compared to the case when gravity is assumed to

be “turned off” (i.e., gravity is equal to zero). Gravity forces must be included in the

push-over analysis to accurately represent the building response at all displacement

levels.

For the simple single-degree-of-freedom inverted pendulum, the inclusion of the

effects of gravity is relatively straight forward, especially in the static case. The

inclusion of gravity forces in structural analysis is not as straight forward. Iterative

techniques may be used to solve for equilibrium in the displaced configuration which

accounts for P-4 effects. The other nonlinearities that must be taken into account

are the decrease of rotational strength as axial force increases and the possibility of

buckling in axial force members. However, software codes that take all these factors

into account can be cost prohibitive.

The push-over curve is now a structural surrogate for the actual multi-degree-of-

freedom building model. The push-over will be the sole representation of the building

for the remainder of the analysis. It must be as accurate as possible. The push-over

curve represents the backbone of cyclic structural response. From the push-over curve

the value of the initial elastic period can be determined as well as an approximate

value for the second slope ratio, α.

The building must also be categorized as a certain hysteretic model type. The

backbone of cyclic response still leaves the question as to how the building will re-

spond during the cycles of response. The hysteretic shape may be bilinear for all

cycles of response or there may be stiffness degradation. Another option is pinching
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hysteretic response as may be found in concrete structures. Categorizing the model as

a certain hysteretic type is left up to the discretion of the engineer and often requires

considerable “engineering judgment”. Categorizing the model is further discussed in

Section 3.1.

1.4.2.3 Representing Seismic Demand: Response Spectra

Within the Capacity Spectrum Method, seismic demand is represented as response

spectra in acceleration versus displacement format. This is commonly referred to

as Acceleration-Displacement Response Spectra (ADRS). An example of the ADRS

format is shown in Figure 1.7. A nominal amount of viscous damping, ζo, may be

assumed for every building. Normal viscous damping ranges from 2% to 10%, as-

suming no supplemental damping devices or base isolation is present. The nominal

viscous damped response spectrum is the Design Spectrum which represents the lin-

ear response case. The seismic demand must be represented as a function of ductility

for application in the Capacity Spectrum Method. Through the effective linear pa-

rameters, damping is a function of ductility. Generally, higher levels of ductility are

represented by higher levels of damping. This study will produce new effective linear

equations which will substantially increase the accuracy of the demand representa-

tion. The increased accuracy of the demand will increase the overall accuracy of the

displacement prediction in the Capacity Spectrum Method.

Recall Equation 1.5. The Spectral Acceleration (SA) is defined as the maximum

absolute acceleration of a single-degree-of-freedom oscillator from an acceleration time

history analysis. This may be expressed as

Spectral Acceleration (SA) = max ∀t|ẍ(t) + ü(t)| (1.33)

Spectral Acceleration may also be expressed in terms of the displacement and velocity

response. Combining Equations 1.5 and 1.33 leads to

SA = max ∀t|2ζeffωeff ẋ(t) + ω2
effx(t)| (1.34)
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Figure 1.7: Spectral Displacement (SD) and Pseudo-Spectral Acceleration (PSA)
combined in an Acceleration-Displacement Response Spectra (ADRS)

The Spectral Displacement (SD) is defined as the maximum relative displacement of

a linear single-degree-of-freedom oscillator for an acceleration time history analysis.

This may be expressed as

Spectral Displacement(SD) = max ∀t|x(t)| (1.35)

Over a range of natural frequencies, ωeff , for a constant value of damping, ζeff , com-

binations of Spectral Displacement and Spectral Acceleration can be computed from

time history analyses. Plotting these combinations with displacement on the hori-

zontal axis and acceleration on the vertical axis and connecting them for sequential

ωeff values will form a curve. This curve is the Acceleration-Displacement Response

Spectrum.

The Pseudo-Spectral Acceleration (PSA) is defined as the Spectral Displacement

times the natural frequency squared

Pseudo-Spectral Acceleration (PSA) = SDω2
eff (1.36)
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Comparing Equations 1.34 and 1.36, it is seen that SA = PSA when ζ = 0 and

SA ≥ PSA when ζ > 0.

A radial line on the Acceleration-Displacement Response Spectrum has units of

inverse frequency squared (1/ω2
eff ). Using Equation 1.8, the period value associated

with a radial line is related to the slope of the line by

T =
2π√
slope

(1.37)

For plots of SA versus SD, Equation 1.37 may be expressed as

T = 2π

√
max ∀t|x(t)|

max ∀t|2ζeffωeff ẋ(t) + ω2
effx(t)|

(1.38)

For plots of PSA versus SD, Equation 1.37 may be expressed as

T = 2π

√
max ∀t|x(t)|

ω2
effmax ∀t|x(t)|

= 2π

√
1

ω2
eff

= Teff (1.39)

Therefore, on a plot of PSA versus SD, a radial line represents a constant value of

structural period for all values of damping. On plots of SA versus SD, this is not

guaranteed to be true.

For the Capacity Spectrum Method, it is necessary that radial lines on the ADRS

represent constant structural periods for a wide range of damping values. Therefore,

seismic demand must be plotted as PSA versus SD.
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Chapter 2

Methodology

2.1 Equations of Motion

Recall the equation of motion for the single-degree-of-freedom system in Figure 1.1

(Equation 1.1). When f(x, ẋ) represents a linear viscous damped system, the differ-

ential equation of motion may be expressed as

mẍlin + ceff ẋlin + keffxlin = −mü(t) (2.1)

Where ceff and keff are the viscous damping coefficient and spring stiffness, respec-

tively. For a given ground excitation, ü(t), the solution, xlin(t), may be computed

using a numerical solution procedure. For an inelastic system, the restoring force,

f(x, ẋ), may take a variety of forms as discussed in Section 1.2. The solution for the

inelastic system will be designated as xinel(t).

Many different approaches are available for making a comparison between the

displacement time histories xinel(t) and xlin(t). These include, but are not limited

to, a point by point comparison of the displacement, velocity or acceleration time

histories, comparing the number of zero displacement crossing or comparison of the

amplitude spectra from a Fourier Transform. However, to quantify a comparison,

there must be a value assigned to the amount of similarity or difference. Within

the framework of Performance-Based Engineering, the key performance variable is

the maximum relative displacement amplitude that a structure experiences from the
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demand earthquake. The relative displacement for the inelastic and linear single-

degree-of-freedom systems is xinel(t) and xlin(t), respectively.

The effective linear parameters obtained based on a comparison of displacement

values would not be appropriate to be used in a velocity or force-based design pro-

cedure. For example, the maximum velocities or accelerations from the linear solu-

tion should not be used as estimates for the maximum values of ẋinel(t) or ẍinel(t).

The maximum acceleration or maximum pseudo-acceleration would be a much better

comparison parameter for effective linear parameters intended for use in a force-based

approach.

The maximum displacement amplitude of the nonlinear time history xinel(t) will

be designated as Dinel and the maximum displacement amplitude of the linear time

history xlin(t) will be designated as Dlin. Previous methodologies for developing effec-

tive linear parameters are discussed in Section 1.3. Many approaches are based either

on the assumption of a steady-state harmonic response or have employed empirical

methods based on the earthquake response of both computer models and shake table

models. The effective linear parameters developed in this study will be used for es-

timating the response of structures subjected to earthquake excitations. Therefore,

using real earthquake time histories as the model inputs is most logical.

The methodology developed in this study employs a search over a two-dimensional

parameter space related to the linear system coefficients ceff and keff in Equation 2.1.

One can expect to find a combination or combinations of ceff and keff that have the

best maximum displacement match with an inelastic system, in some sense. The

terms ceff and keff will be replaced by the fraction of critical damping, ζeff , and the

natural period of oscillation, Teff . Using Equations 1.6 through 1.8, Equation 2.1 can

be expressed as

ẍ +
4πζeff

Teff

ẋ + (
2π

Teff

)2x = −ü(t) (2.2)

The system parameters ζeff and Teff completely describe the linear single-degree-of-

freedom system.
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2.2 Error Measure

In order to compare the maximum displacements, Dinel and Dlin, an error measure

will be defined. In engineering design, unconservative displacement predictions may

be less desirable than conservative predictions. Therefore, a fundamental require-

ment of any error measure is that it distinguish between a conservative displacement

prediction and a non-conservative displacement prediction. An error measure that

uses an absolute value of the difference between Dinel and Dlin would not satisfy this

requirement.

A simple error measure satisfying the above requirement is the ratio of the differ-

ence between the linear system maximum displacement, Dlin, and the inelastic system

maximum displacement, Dinel, to the inelastic system maximum displacement.

εD =
Dlin −Dinel

Dinel

(2.3)

Then, a negative value of εD reflects an unconservative displacement prediction while a

positive value reflects a conservative displacement prediction. εD might be considered

to have a positive bias as it ranges from −1 to ∞. However, for the range of systems

and excitations considered in this study, the slight positive bias in the statistical

distribution of εD is inconsequential.

For a given inelastic system and ground excitation, there will be a certain topology

of error, εD, as a function of linear system parameters Teff and ζeff as shown in

Figure 2.1. Note that there exists a nearly diagonal contour of zero error. For any

combination of Teff and ζeff lying along this contour there will be a perfect match

between Dlin and Dinel. For any specified ensemble of inelastic systems and ground

excitations, distributions of εD can be obtained for every combination of Teff and

ζeff . This is illustrated in Figure 2.2.

Sample distributions of εD at certain locations in the Teff , ζeff parameter space

are shown in Figures 2.3 through 2.5. The locations selected are in close proximity

to the optimal values of Teff and ζeff which will be defined later. Figure 2.3 shows
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Figure 2.1: Contour values of εD over the two-dimensional parameter space of Teff

and ζeff for a single combination of inelastic system and ground excitation
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Figure 2.2: Illustration of assembling εD error distributions at every combination of
Teff and ζeff over an ensemble
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Figure 2.3: Error distributions at selected combinations of Teff and ζeff for a few
members from the ensemble
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Figure 2.4: Error distributions at selected combinations of Teff and ζeff for about
half the members from the ensemble
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Figure 2.5: Error distributions at selected combinations of Teff and ζeff for the entire
ensemble

the histograms for a few members from the ensemble of systems and earthquake

excitations. As would be expected from such a small sample size, the histograms do

not have a smooth distribution. Figure 2.4 shows the histograms for about half of

the full ensemble. The histograms are beginning to show definite signs of a smooth

distribution. Figure 2.5 shows the histograms for the entire ensemble considered in

this study. As the ensemble size increases, it is observed that the error distributions

becomes much smoother.

The mean and standard deviation of the error distribution for every combination

of Teff and ζeff may be used to characterize the parameter space and will yield results

similar to those shown in Figure 2.6. Notice the similarity between the mean value

contour plot and the previous εD contour values in Figure 2.1. Contour lines run

generally in the same direction on both plots and there exists a contour with a zero

value. Whereas any point on the zero contour line in Figure 2.1 corresponds to zero

error, the zero contour in Figure 2.6 corresponds to a distribution of errors with a

zero mean value.

Many distributions in Figure 2.5 resemble a Normal distribution. Others more
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Figure 2.6: εD error distribution mean value contours and standard deviation contours
over the two-dimensional parameter space for the entire ensemble

resemble a Log-normal distribution. For combinations of Teff and ζeff in the param-

eter space closest to the optimal combination discussed later, the distributions more

closely resemble a Normal distribution. Therefore, the Normal distribution will be

used in the subsequent analysis.

The importance of using the standard deviation as well as the mean of the error

distribution is illustrated in the following example. Two probability density functions

are shown in Figure 2.7. For the more widely spread error distribution, the mean error

value is zero, while for the tighter distribution, the mean error value is −5%. Solely

in terms of the mean value, the widely spread distribution is more accurate than

the tighter distribution. However, a more insightful way to analyze the distributions

would be in terms of an acceptable range of error values. In this example, an ac-

ceptable range of error values could be chosen from −20% to 20%. The distribution

with the mean value of −5% would be both more accurate and precise compared

to the distribution with a mean value of 0%. Reliability is both the accuracy and

precision of some statistical measure. Clearly, in terms of the stated acceptable range

of error values, the −5% mean-valued distribution is much more reliable than the 0%

mean-valued distribution.
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Figure 2.7: Illustration of probability density functions of displacement error for a
Normal distribution

Let F be the probability that the error εD lies outside the range from a to b.

Then, F may be expressed as

F = 1− Pr(a < εD < b) (2.4)

If the distribution of εD is assumed to be Normal, F can be expressed as

F = 1−
∫ b

a

1

σ
√

2π
e
−(x−m)2

2σ2 dx (2.5)

where m is the mean value and σ is the standard deviation of the distributions of εD

values.

In Figure 2.8, F is graphed for three different combinations of a and b. The

selection of a and b are critical to the structure of F . It can be shown mathematically

that F is symmetric about the horizontal line through the average of a and b. Thus,

choosing a = −20% and b = 20%, implies F is symmetric about the 0% mean error

line. It is further noted that increasing the size of the desired range of error values

in a symmetric fashion makes the value of F decrease for a given mean and standard

deviation. The smaller the value of F , the more reliable the linear system prediction

to be within the range from a to b. For a given value of mean and standard deviation,

the reliability of the prediction increases as the range from a to b is widened.
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Figure 2.8: Contour plots of F for different values of a and b over a range of mean
and standard deviation values

In Figure 2.8, consider a vertical line of constant standard deviation over the range

of mean values on all three plots. Assume the constant standard deviation value to

be 20%. For the cases a = −20%, b = 20% and a = −30%, b = 30%, the minimum

value of F will occur at the 0% mean value. However, for the case with a = −10%

and b = 20%, the minimum value of F will occur at the 5% mean value. Thus, a

slight positive bias has been introduced into the location of the minimum value of F .

It has been determined that the most desirable range of error values, εD, from an

engineering design point of view is between −10% and +20%. This conclusion was

reached after consulting with several prominent structural engineers. This range of

error values will be referred to as the Engineering Acceptability Range (EAR). This

range takes into account the general desire for a more conservative design rather than

an unconservative design. That is, a 20% error is more acceptable than a −20% error.

2.3 Optimization Criterion

The optimum point in the Teff , ζeff parameter space is chosen to be the point that

minimizes the probability that the error, εD, will be outside the Engineering Ac-

ceptability Range. The Engineering Acceptability Criterion may therefore be defined
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as

FEAR ≡ 1− Pr(−0.1 < εD < 0.2) = minimum (2.6)

Figure 2.9 shows contours of FEAR as a function of Teff and ζeff . Also shown is

the optimal point over the two-dimensional parameter space which is denoted by a

square.
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Figure 2.9: Contours of FEAR over the Teff , ζeff parameter space. The optimum
point is marked by a square

The diagonal trend to the contours in Figure 2.9 can be explained by the following

physical reasoning. Consider the displacement response of a linear oscillator subjected

to an earthquake excitation. Decreasing the system damping will always increase the

displacement response. Generally speaking, decreasing the natural period will also

decrease the displacement response. Although this is not true in all cases, especially

for near-field ground motions, it is a general trend that by increasing period and

damping in the correct proportion, a nearly constant maximum displacement can be

achieved.

The size and shape of the contours in Figure 2.9 give insight into the ramifications

of using effective linear parameters different from the values at the optimal point. In

Figure 2.9, the contour closest to the optimum point has a value of 0.35 while the

minimum value of FEAR (FEARmin
) is 0.31. The gradient of the contours is more
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gradual along a line roughly from lower left to upper right. Therefore, if the effective

period is under-predicted, it is best to also have an under-predicted damping. If the

effective period is over-predicted, it is best to also have an over-predicted damping.

In the general direction from lower right to upper left, the gradient of the contours

is very large and the value of F quickly increases for relatively small changes in the

effective parameters. Over-predicting one parameter and under-predicting the other

can have serious repercussions on the reliability of the displacement prediction.

Figure 2.10 has points marked with an “X” that are in the general vicinity of

FEARmin
. These are the locations of the distributions shown in Figure 2.5. The

region near FEARmin
is the area of most interest. The points in the parameter space

not near FEARmin
are of less importance. Whether the error distributions at these

locations are Normal or Log-normal has little effect on the location of the optimal

point. The distributions closest to FEARmin
are approximately Normal. The effects of

this assumption can be investigated further in terms of the Engineering Acceptability

Range.

(1,1) (1,5)

(4,1) (4,5)
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T
ef

f

Figure 2.10: Locations of εD error distributions

If the Engineering Acceptability Criterion (Equation 2.6) was applied to the error

distributions before making any assumptions about them, contours similar to those

seen in Figure 2.11 would result. This figure shows the percentage of occurrences of
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εD outside the Engineering Acceptability Range. εD without any assumptions about

the distributions will be referred to as the raw data. Assuming the distributions of

εD to be Normal results in contours of FEAR as seen in Figure 2.9. Assuming the

distributions of εD to be Log-normal results in contours of FEAR as seen in Figure 2.12.
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Figure 2.11: Percentage of occurrences of εD outside the Engineering Acceptability
Range over the Teff , ζeff parameter space. This will be further referred to as the
contours of the raw data

Figure 2.13 shows the 0.35 valued contour of FEAR for the raw data, distributions

assumed as Normal and distributions assumed as Log-normal. FEARmin
from the Log-

normal assumption is outside the 0.35 contour from the raw data while FEARmin
from

the Normal assumption is well inside the 0.35 contour from the raw data. Clearly,

the 0.35 contour from the Normal distributions is more representative of the contours

from the raw data than the same contour from the Log-normal distributions.

Any assumptions made upon the data should not significantly change the location

of the smallest valued contours. The region of the smallest valued contours is most

critical to the selection of the minimum point. Therefore, the best assumption is that

the distributions are Normal. However, it must be emphasized that this has only been

determined in reference to the Engineering Acceptability Range. For a desired range

of error values not near zero, the Normal assumption should not be used without
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further investigation.

2.4 Nature of the Systems Considered

The ensemble discussed thus far has been a loosely defined combination of inelastic

systems and ground motions. From Equation 1.1, an inelastic system is dependent

upon the form of the nonlinear restoring force, f(x, ẋ). All nonlinear restoring forces

used in this study will be hysteretic in nature. The differential equation of motion

for a nonlinear system with nominal viscous damping, ζo, may be expressed as

mẍ +
4πζo

To

ẋ + f(x, ẋ) = −mü(t) (2.7)

The term f(x, ẋ) is dependent not only upon the current displacement and velocity

but also upon the displacement and velocity time history. Hysteretic systems have

been chosen for this study because they best represent the response of buildings

to earthquake motions. In laboratory testing, individual structural elements and

assemblages have hysteretic response to cyclic loading. Buildings, which are composed

of many structural elements and assemblages, also respond in a hysteretic manner

when cycled into the inelastic range. An extensive discussion of the hysteretic systems

used in this study is presented in Section 3.1.

All hysteretic systems considered will have a clearly definable value for the initial

elastic period, To. The value of To is directly related to the elastic slope, ko on the

force-deflection curve as

To = 2π
√

m/ko (2.8)

All hysteretic systems considered have a clearly definable location on the force-

deflection curve where the initial slope changes. This is called the yield point. The

force associated with the yield point is the yield force, fy, and the corresponding dis-

placement is the yield displacement, Dy. The yield displacement, in conjunction with

the maximum nonlinear system displacement, Dinel, defines the response ductility, µ,
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as

µ =
Dinel

Dy

(2.9)

The ductility may be calculated only after a time history analysis has been performed

for a given system with a given yield displacement.

2.5 Determining the Effective Linear Parameters

The full explicit functional dependence of εD may be indicated as follows

εD(
Teff

To

, ζeff − ζo, α, µ, HYST) =
Dlin(Teff , ζeff )−Dinel(To, ζo, α, µ, HYST)

Dinel(To, ζo, α, µ, HYST)
(2.10)

The maximum displacement of the nonlinear system, Dinel, is a function of initial

period, To, linear viscous damping, ζo, second slope ratio, α, response ductility, µ, and

hysteretic model, denoted “HYST”. The linear system response, Dlin, is a function

of the two linear system parameters: period, Teff , and damping, ζeff . It is desired to

find effective linear parameters that are applicable over a range of To and ζo values.

Therefore, multiple values of To and ζo will be included in the same ensemble. The

two-dimensional Teff , ζeff parameter space is transformed into the Teff/To, ζeff − ζo

parameter space.

For a single hysteretic model, second slope ratio and ductility, groups of linear

periods may be formed as indicated in Section 3.2. The nominal linear viscous damp-

ing values are discussed in Section 3.5.2. The Engineering Acceptability Criterion is

applied to the error distributions over the Teff/To, ζeff − ζo parameter space and the

optimum combination of Teff/To and ζeff − ζo, is determined. Next, the ductility

value is changed, and the entire process is repeated. The ductility values used in

this study range from 1.25 to 6.5 at an increment of 0.25. This range of ductili-

ties is believed to be most applicable to engineering design. Push-over curves with

ductilities greater than 6.5 are unlikely, especially with the inclusion of P-4 effects

which increase lateral deformations for gravity load carrying elements as discussed in

Section 1.4.2.2.
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The optimum values of Teff/To and ζeff − ζo may be graphed as functions of

ductility. Then, these results can be fitted with an analytical expression. Figure 2.14

shows the discrete optimum values of Teff/To and ζeff − ζo versus ductility and a

curve fitted to them. The detailed curve fitting procedure is in Section 3.4.
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Figure 2.14: Example of optimal effective linear parameters - discrete points and the
curve fitted to the data

A 3-D representation of FEARmin
+ 10% as a function of ductility is shown in

Figure 2.15. FEARmin
is marked by a square on each 2-D face. The cone starts at the

coordinate ζeff = ζo and
Teff

To
= 1, corresponding to the elastic case in which FEAR =

0. As the ductility increases, FEARmin
also increases. Therefore, the reliability of the

effective linear parameters is inherently worse as ductility increases. Projected on the

back and bottom faces of the graph are 2-D representations of FEAR + 10%. A 2-D

view might lead one to believe the region of FEAR + 10% is a square when in fact it

is an oval shape with a distinct orientation as seen in Figure 2.9.

2.6 Observations

The choice of displacement response error makes any scaling of the earthquake accel-

eration time histories unnecessary. Multiplying the acceleration time history by two
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will double the value Dlin. However, it will also double the value Dinel for a given

value of ductility and hence, the value of εD will remain constant. If the inelastic

systems had been parameterized by yield force instead of ductility, this would not be

the case.

Instead of categorizing the nonlinear systems by ductility, the strength reduction

factor, R, could have been used. The strength reduction factor is defined as the ratio

of the maximum elastic restoring force, flinmax , divided by the nonlinear yield force,

fy. That is,

R =
flinmax

fy

(2.11)

A graph of ductility versus strength reduction factor gives insight into why ductility

has been chosen to characterize the system strength over strength reduction factor.

Figure 2.16 shows R versus µ for a particular hysteretic system for the period range

Tshort subjected to a suite of ground motions. The mean value of the strength reduc-

tion factor as a function of ductility is below the line R = µ which corresponds to

the Equal Displacement Rule (Dinel = Dlin). Although it is not possible to calculate
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the mean value line of ductility as a function of R, the trend in the data implies

that it would be far below the line of the mean value of R as a function of µ. The

distribution of ductilities may extend to extremely large values even for a strength

reduction factors as low as 2 to 3. Time histories would have to be run to values of

ductility that are unrealistic in most structures in order to obtain a full distribution

of ductilities. The ensembles for constant values of R would include extremely large

values of ductility that are not attainable. This implies that the variance of R for a

given value of µ is much greater than the variance of µ for a given value of R. This

makes the analysis for constant R values less reliable than using constant ductility.
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Figure 2.16: Strength reduction factor versus ductility for a sample of time history
analyses of a single hysteretic model for period range Tshort and a single value of
second slope ratio
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2.7 Evaluating the Effective Linear Parameters within

the Framework of the Capacity Spectrum Method

Performance-Based Engineering proposes two Nonlinear Static Procedures: the Ca-

pacity Spectrum Method (Section F.1) and the Coefficient Method (Section F.2). The

popularity of Nonlinear Static Procedures has increased because these techniques di-

rectly take into account the expected load-deformation characteristics of both the

building elements and the entire structure without performing a nonlinear time his-

tory analyses. The nonlinearity of the structure is incorporated into the methods

through a push-over analysis (Section 1.4.2.2). The push-over analysis transforms

the multi-degree-of-freedom model into a load-deformation curve, or capacity curve.

In the Capacity Spectrum Method, the capacity curve is approximated as an equiva-

lent bilinear system. The bilinear system is then approximated as an equivalent linear

system using effective linear parameters.

The Capacity Spectrum Method incorporates both structural capacity and seismic

demand (Section 1.4.2.3) to determine a point where the demand and capacity are

equal, referred to as the Performance Point. This is the expected displacement in the

structure. The accuracy of the Capacity Spectrum Method will be evaluated using a

new error measure. For a given ground motion, the Performance Point Error, εDpp ,

is defined as the difference between the displacement at the Performance Point and

the maximum inelastic displacement divided by the maximum inelastic displacement.

This can be expressed as

εDpp(α, µ, HYST) =
Dlin(Teff (To, α, µpp), ζeff (ζo, α, µpp))−Dinel(To, ζo, α, µ, HYST)

Dinel(To, ζo, α, µ, HYST)
(2.12)

Error statistics will be created by combining all To and ζo values for a hysteretic

model, second slope ratio and ductility.

Several sources of error are introduced by the Capacity Spectrum Method. Errors

may arise in both the determining of structural capacity and seismic demand. To

evaluate the error from the equivalent linear parameters, all other sources of error
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must be eliminated or determined to be negligible.

In determining the structural capacity, two sources of error exist: the capacity

spectrum calculation and the hysteretic classification. A large source of error may

come from representing a multi-degree-of-freedom building model by a single-degree-

of-freedom system as discussed in Section 1.4.2.2. This source of error is eliminated

by considering only single-degree-of-freedom structures.

The second source of error in determining the structural capacity is the hysteretic

classification. Classifying a building as a specific hysteretic classification is discussed

in Section 3.1. However, the process of determining the hysteretic model is removed

because the actual hysteretic model is known apriori. Therefore, both sources of error

associated with the structural capacity have now been removed.

In determining the seismic demand, error is introduced in determining the design

spectrum and demand spectra (Section 1.4.2.3). In practical application, the design

spectrum will be developed to represent several possible seismic events over some

length of time. A design spectrum that represents several events is generally smooth

and conservative. However, the error associated with using a design spectrum different

from the earthquake response spectrum is eliminated by using the earthquake response

spectrum as the design spectrum. Demand spectra are calculated using the effective

linear parameters. The only remaining source of error in the Capacity Spectrum

Method is the error associated with the effective linear parameters.

2.8 The Modified Acceleration-Displacement Re-

sponse Spectrum

The conventional Capacity Spectrum Method uses the secant period as the effective

linear period in determining the Performance Point. The effective linear periods

developed in this study are very different from the secant period. Therefore, the

conventional Capacity Spectrum Method will be modified in some fashion to enable

the use of the effective parameters developed in this study.
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The solution is to modify the seismic demand. The demand spectrum, in Acceleration-

Displacement Response Spectrum (ADRS) format (Section 1.4.2.3), will be reshaped

by the modification factor. Every value of acceleration at every displacement will be

multiplied by the ratio of the secant stiffness of the capacity spectrum to the effective

stiffness. Alternatively, the modification factor can be expressed as the square of the

ratio between the effective period and secant period. An example of this is shown in

Figure 2.17.
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Figure 2.17: Application of the modification factor to the Acceleration-Displacement
Response Spectrum (ADRS) creating the Modified Acceleration-Displacement Re-
sponse Spectrum (MADRS)

The modification factor, M, is defined as

M = Asec/Aeff (2.13)

Aeff is the maximum acceleration obtained by the intersection of the ADRS and the

radial line representing Teff . Asec is the value of acceleration corresponding to the

intersection of the MADRS and the radial line representing the Tsec. Aeff and Asec

may be expressed as

Aeff = Deff (
2π

Teff

)2 (2.14)



43

Asec = Deff (
2π

Tsec

)2 (2.15)

Substituting Equations 2.14 and 2.15 into Equation 2.13 yields an alternative expres-

sion for the modification factor

M = (
Teff

Tsec

)2 = (
Teff

To

To

Tsec

)2 (2.16)

The Modified Acceleration-Displacement Response Spectrum (MADRS) can now

be used in combination with the capacity spectrum to determine the Performance

Point as shown in Figure 2.18. Through the implementation of the modification

factor, the Performance Point appears to occur at the secant period, when in fact it

occurs at the effective period which is less than the secant period.
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Figure 2.18: Procedure for determining the Performance Point using the Modified
Acceleration-Displacement Response Spectrum (MADRS)

Additional insight can be gained into the Performance Point by creating a Locus

of Performance Points. MADRS (demand spectra) must be computed for a range of

ductility values. Mark the intersection of each MADRS with the corresponding secant

period line from the capacity spectrum. Connect all points of intersection to create a

Locus of Performance Points. The Performance Point is the intersection of the Locus

of Performance Points and the capacity spectrum. This is shown in Figure 2.19. From
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the information generated by this procedure, it can be seen how the location of the

Performance Point will change for small variations in either the capacity spectrum or

demand spectra. A more detailed procedure is discussed in Section 5.1.
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Figure 2.19: Procedure for determining the Performance Point using the Locus of
Performance Points
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Chapter 3

Effective Linear Parameters

3.1 Hysteretic Models

For all the hysteretic models used in this study, the differential equation of motion is

mẍ +
4πζo

To

ẋ + f(x, ẋ) = −mü(t) (3.1)

The inelastic systems were subjected to a sinusoidal acceleration history and Fig-

ures 3.1 through 3.4 show the response of the different hysteretic models graphed

as force (f(x, ẋ)) versus displacement (x). The properties of the different hysteretic

systems are explained in Sections 3.1.1 through 3.1.5.

3.1.1 Bilinear Hysteretic Model (BLH)

The bilinear hysteretic model (BLH) is shown in Figure 3.1. The force versus dis-

placement diagram has two slopes: the initial linear stiffness, ko, and the post-yield

stiffness, αko. The point where the slope changes from the initial linear stiffness to

the post-yield stiffness is the yield point of the structure. The second slope ratios,

α, considered in this study are 0, 2, 5, 10 and 60%. The initial linear stiffness is

regained immediately after all velocity reversals. The positive yield point and the

negative yield point are always separated by a constant amount of force and displace-

ment. Yielding of the positive yield point causes translation of the negative yield

point and vice verse.
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3.1.2 Stiffness Degrading Model (KDEG)

The stiffness degrading model (KDEG) is shown in Figures 3.1 and 3.2. Second slope

ratios of 0, 2, 5, 10 and 60% are considered. This particular model was initially

developed by Riddell and Newmark [62]. The force versus displacement diagram has

a decreasing stiffness as ductility increases. Once nonlinear response has occurred,

a zero-force crossing will always change slope and head directly to the yield point.

Translation of the positive yield point has no effect on the location of the negative

yield point and vice verse. Figure 3.2 shows a harmonic response sequence. The first

nonlinear excursion is experienced from point 1 to point 2. Then, on a velocity reversal

the stiffness changes back to the initial linear stiffness until the force becomes less

than zero at point 3. The stiffness then decreases so that the response heads directly

toward the negative yield point (point 4). The response continues through points 5,

6, 7 and 8.
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Figure 3.2: Stiffness degrading (KDEG) hysteretic properties and yield force versus
ductility plot for the original model by Riddell and Newmark and the modified model
used in this study

In this study, the original Riddell and Newmark model has been modified for

in-cycle velocity reversals as shown in Figure 3.2. The first velocity reversal after a

zero force crossing will always retain the initial stiffness but a second velocity reversal
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without a zero force crossing will head directly to the previous yield point. Both

models follow the same sequence from points 1 to 7. For a velocity reversal at point

7, the original model goes back to point 6, then to point 8. The modified model used

in this study goes from point 7 directly to point 8 for a velocity reversal at point

7. This subtle feature has been added so that the relationship between the response

ductility and the yield force does not behave unrealistically. In the original model, a

slight change in yield force can change a double reversal with no zero crossing into

a single reversal with a zero crossing. This can cause the response ductility to jump

wildly for cases at large ductilities.

An example is shown in Figure 3.2. The time histories revealed that a change

in the initial yield force level of less than 0.1% could triple the response ductility.

However, this happens very rarely due to the fact that it is accentuated only when

the current response ductility is much larger than the ductility at which the double

reversal occurs. This is directly related to the slope of the line from point 7 to point 6

and the slope of the line from point 7 to point 8. If the difference in these two slopes

is large, there is a possibility that the wild jump in response ductility may occur.

It is believed that this modification has only a slight effect on any of the response

statistics that will be presented in this study.

3.1.3 Strength Degrading Model (STRDG)

A strength degrading model (STRDG) is shown in Figure 3.1 This model was de-

veloped by using a negative second slope ratio of −3% and −5% for the stiffness

degrading model with the strength degradation occurring within a cycle of response.

Strength degradation can occur in two ways, in-cycle or out-of-cycle as seen in Fig-

ure 3.3. Out-of-cycle degradation models calculate the amount of strength and stiff-

ness degradation as a function of the hysteretic energy dissipated and the peak de-

formation in previous cycles. These types of models can never exhibit a negative

post-yield stiffness.

An in-cycle degradation model was chosen for this study because it was desired
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Figure 3.3: Hysteresis loops of strength degrading models with in-cycle and out-of-
cycle degradation

to have a hysteretic model push-over curve the same as the building push-over curve.

This occurs for any non-negative second slope ratio model. To be consistent, it was

decided to have it also occur for the negative second slope ratios.

3.1.4 Pinching Hysteretic Models (PIN)

Pinching hysteretic models (PIN) are shown in Figure 3.4. Models PIN1 and PIN2

were developed by Iwan and Gates [41], [44]. The models consist of a combination

of linear and Coulomb slip elements. The schematic of the three element system

is also shown in the figure. The model consists of an elastic spring with stiffness

ke, an elastic-plastic element with stiffness ks with yield force fs and a grouping of

Coulomb slip elements with stiffness kc that both yields in tension (cracking force, fb)

and compression (crushing force, fc). The elastic spring element and elasto-plastic

element together form a bilinear hysteretic system. The inclusion of the Coulomb slip

elements make the model a pinching hysteretic model. The nominal stiffness of the

system is defined as ko which is obtained by setting the crack strength equal to zero

(fb = 0). The second slope ratios considered are 2, 5, 10 and 60%.

Three parameters describe the PIN systems: β, γ and δ (Equations 3.2) through 3.4).

The Coloumb slip elements determine the energy dissipated in a cycle of response
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which is the area enclosed by the hysteresis loops. The hysteretic energy dissipated

by PIN1 is less than the hysteretic energy dissipated by PIN2. Increasing β in PIN2

will increase the hysteretic energy dissipated and eventually the hysteresis loops will

be the same as the bilinear model. Ductility, µ, is measured as xmax/xs.

β = ks/kc (3.2)

γ = xs/xc =
fs/ks

fc/kc

= fs/fc ∗ 1/β (3.3)

δ = fb/fc (3.4)

Model β γ δ

PIN1 0.2 1.0 0.0
PIN2 1.0 1.0 0.0

Table 3.1: System parameters for pinching hysteretic models

3.1.5 Push-over Backbone Model (PB)

The stiffness degrading model has been modified so that the second slope ratio varies

as a function of ductility as shown in Figure 3.1. This model will be referred to as the

push-over backbone model (PB). A push-over curve commonly obtained by structural

engineers is one that does not have a clearly defined yield point or a constant second

slope ratio. The nonlinear static procedures require a bilinear approximation for

the capacity curve. However, if a model such as the push-over backbone was used

to represent a building push-over curve exactly, then there would be no need for a

bilinear approximation.

The push-over backbone model also shows that the new methodology will work

for any type of hysteretic model. Effective linear parameters may be obtained so long

as the model is definable by some response quantity, such as ductility or strength

reduction factor.
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3.1.6 Hysteretic Classification

Once a push-over curve has been obtained, there still exists the question as to how the

building will behave during the inelastic cycles of response. Answering this question

is left to the judgment of the engineer by examination of the structural plans, or in

the case of a retrofit, an inspection of the existing building [3].

Most new construction with a well designed lateral force resisting system should

be categorized as a bilinear hysteretic system (BLH). The lateral resisting system

should be free from any non-structural elements that may effect its performance. For

example, non-structural elements should not be constructed such that they will effect

the stiffness of the building upon failure.

Any existing construction that has a well designed lateral load resisting system

with structural elements that are well detailed and constructed properly should prob-

ably be categorized as stiffness degrading (KDEG). The condition of the lateral load

resisting system must be determined through investigation of the structural plans or

an inspection of the building. The year in which the building was constructed and the

material of construction will have an impact on this categorization. Older buildings,

particularly those built before 1970, should be examined very carefully since it was

the 1971 San Fernando Earthquake that motivated many changes in structural de-

sign. Existing concrete buildings must be well detailed to fit in this category. Design

and detailing of concrete buildings changed significantly after the structural failures

experienced at such buildings as the Olive View Hospital in Sylmar due to the 1971

event. New construction with slightly questionable lateral load resisting elements

may conservatively be categorized as stiffness degrading.

Buildings with poor existing lateral force systems should be categorized as a pinch-

ing hysteretic model. The components making up the lateral resisting system may

be poorly detailed or are expected to have very poor hysteretic response properties.

The two pinching models (PIN1 and PIN2) reflect different amounts of dissipated

hysteretic energy. For a building that is poorly designed but has a large amount of

redundancy, perhaps the PIN2 model with less degradation is best. Also, a building
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with a large amount of seismic mass may be categorized as PIN2. Any other poorly

designed existing building should be categorized as PIN1. Conservatively, all poorly

designed existing buildings may be categorized as PIN1 for the analysis.

3.2 Ground Motions and Structural Period Groups

3.2.1 Far-field Motions and Structural Periods

Twenty-eight far-field ground motion records from the CIT-SMARTS database [64]

were used in this study. Each record was obtained by rotating the two perpendicu-

lar components to the maximum ground velocity direction. These ground motions

represent a broad range of free-field motions varying in earthquake magnitude, soil

conditions and epicentral distance. To avoid records possibly effected by soil-structure

interaction, no records from building basements were used in this study. All far-field

records are listed in Section G.1.
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Figure 3.5: Groupings of initial periods, To

For the far-field analysis, the groups of linear structural periods are shown in Fig-

ure 3.5. The overall period range is from 0.1 sec to 4.0 seconds. Tall is over the entire

range while Tlong and Tshort each account for half of Tall. The Tshort range is further

subdivided into Tshort−low and Tshort−high. The period range deemed most applica-

ble to the analysis of buildings is the Tshort range. This period range covers low to
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mid-rise structures that are commonly analyzed by nonlinear static procedures. Long

period structures, like high-rise buildings, may have higher mode effects that require

special consideration and may not be good candidates for analysis by a nonlinear

static procedure as discussed in Section 1.4.2.2. Results for far-field motions will be

for the Tshort period range unless noted otherwise.

3.2.2 Near-field Motions and Structural Periods

A suite of 14 near-field motions was also obtained from sources at the California

Institute of Technology. The near-field motions were analyzed in the orientations

received. The motions have been parameterized by an effective pulse period from

the velocity time history, Tp, defined as the time required for one complete cycle in

the velocity time history. A complete velocity cycle is defined as starting from zero

velocity to a peak, then to the opposite peak, then back to zero. This is an idealized

requirement as most records will not have a smooth, complete cycle velocity pulse. If

a complete pulse cycle is not present, the pulse period is estimated from the fragment

of the pulse seen in the record. Consider a velocity history containing a single-sided

pulse (from zero to a max, then back to zero). The time for that single-sided pulse

must be doubled to give an estimate for a complete pulse cycle. In all near-field

records considered, there exists at least part of a distinct velocity pulse.

The need to parameterize near-field ground motions by a pulse period is discussed

by several researchers [7], [22], [36], [39], [51]. Within the context of this study, it is

especially important because a building will be represented by an equivalent single-

degree-of-freedom system through the push-over analysis. Response of a building

in a mode different from the load profile used in the push-over analysis will make

the capacity curve representation inaccurate. Values of To/Tp (ratio of initial linear

period to pulse period) much greater than 1.0 make the single-degree-of-freedom

approximation unreliable as traveling wave phenomenon may occur [36], [39]. To

stay away from this range, the hysteretic systems are analyzed for To/Tp values from

0.1 to 1.2 with an increment of 0.1. The ground motions and their Tp values are given
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in Section G.2. The structural periods are grouped into two categories, one with

periods much less than the pulse period (To/Tp ≤ 0.7) and one with periods centered

around the pulse period (0.8 ≥ To/Tp ≥ 1.2).

3.3 Optimum Effective Linear Parameter Calcula-

tion

The methodology presented in Chapter 2 for determining effective linear parameters

is applied to all hysteretic models and second slope values seperately. A nominal

visocous damping value of 5% is used for all nonlinear time history analyses. The use

of other damping values will be discussed in Section 3.5.2.

Refer to Figure 3.6. Consider the bilinear hysteretic model with a second slope

ratio of 2%. For a ductility of 1.25, the maximum inelastic time history displacement,

Dinel, is computed for a range of To values and a suite of ground motions. For a given

value of To and ground motion, Dinel is compared to the entire two-dimensional grid

of Dlin values from linear time histories with varying combinations of period, Teff ,

and damping, ζeff . The values of damping range from 5% to 30% at an increment of

0.25%. The linear period values are chosen such that the values of Teff/To range from

0.9 to 2.2 at an increment of 0.02. A two-dimensional grid of εD values result for every

combination of To and ground motion. The two-dimensional grids are combined such

that at every coordinate ζeff − ζo, Teff/To there exists a distribution of εD values.

As discussed in Chapter 2, the distributions are assumed to be Gaussian. Fig-

ure 3.7 shows typical examples of mean and standard deviation contour plots of εD.

Computing the value of FEAR (Equation 2.6) at every combination ζeff − ζo, Teff/To

is extremely time consuming. However, not all values of FEAR need to be computed.

Due to the structure of the mean and standard deviation contours, along each mean

contour, there exists a location of minimum standard deviation. These combinations

of mean and standard deviation comprise the “eligible points” at which evaluation

of FEAR will be necessary. FEARmin
over the eligible points will identify the optimal
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combination of ζeff − ζo and Teff/To.
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Due to the structure of FEAR as seen in Figure 2.8 (Equation 2.6) and the trend

of the eligible points, not all mean values need to be checked. Only mean values

of (a + b)/2 and less must be examined. Mean values larger than (a + b)/2 need

not be checked because as the mean increases, so does the standard deviation. This

guarantees a larger value of FEAR. However, as the mean value decreases from (a +

b)/2, the minimum standard deviation also decreases. Combinations of mean and

minimum standard deviation are overlayed on a plot of FEAR, as seen in Figure 3.8.

The minimum value, FEARmin
, is marked by a square.

3.4 Analytical Expressions for the Effective Linear

Parameters

The optimal effective period and effective damping values determined at discrete val-

ues of ductility from 1.25 to 6.5 will be fit with an analytical expression. The optimal
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Figure 3.8: Minimum functional value of FEAR (FEARmin
) and a shaded region of

FEARmin
+ 10%

effective period and damping values for far-field motions are shown in Figure 3.9 for

the bilinear hysteretic model and Figures 3.10 through 3.12 for the stiffness degrading

and pinching hysteretic models. For near-field motions, optimal values for the bilinear

model are presented in Figures 3.13 and 3.14 while the stiffness degrading model ef-

fective linear parameters are shown in Figures A.1 and A.2. Both the effective period

and the effective damping will be expressed as continuous functions of ductility, µ.

This is most easily achieved by fitting a curve to the effective period and damping

points.

From observations on many sets of optimal points, a linear trend in both the

effective period and damping was present for ductilities greater than 4.0 for far-field

ground motions and 3.0 for near-field ground motions. Those optimal points were fit

with a straight line. The value of the linear fit at µ = 4.0 was used as a constraint

on the fit of optimal points at the lower ductilities. Another constraint was that

the curve must originate from the point µ = 1, Teff/To = 1 for effective period and

from the point µ = 1, ζeff = ζo for effective damping. The optimal points for µ < 4

were fit with a cubic function without the linear term because the optimal points

had a distinct double curvature trend. There was no linear trend present in the
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optimal points at the smaller ductilities. All data fitting was done by a least squares

approach that minimized the absolute error difference between the optimal point and

the analytical expression.

Insight into the sensitivity of the optimal point was discussed in Section 2.6 and

is further discussed here. The shaded region in the Figure 3.8 represents the area

surrounded by the line of eligible points and the curve of the minimum value of

FEAR plus a percentage increase. This region transformed back to the ζeff − ζo and

Teff/To parameter space results in an oval shape. Contours of FEARmin
+5, 10, 15 and

20% are shown in Figure 3.15. This reveals the increased sensitivity of the optimal

parameters at the lower ductilities. At larger ductilities, the optimal point is less

sensitive to deviations from the optimal point.

The general form of the equations for far-field motions is assumed to be

ζeff − ζo = A(µ− 1)2 + B(µ− 1)3 for µ < 4.0 (3.5)

ζeff − ζo = C + D(µ− 1) for 4.0 ≤ µ ≤ 6.5 (3.6)

Teff

To

− 1 = E(µ− 1)2 + F(µ− 1)3 for µ < 4.0 (3.7)

Teff

To

− 1 = G + H(µ− 1) for 4.0 ≤ µ ≤ 6.5 (3.8)

Coefficients are in Table 3.2 for period range Tshort.

For the near-field motions, the general form of the equations is assumed to be

ζeff − ζo = A(µ− 1)2 + B(µ− 1)3 for µ < 3.0 (3.9)

ζeff − ζo = C + D(µ− 1) for 3.0 ≤ µ ≤ 6.5 (3.10)

Teff

To

− 1 = E(µ− 1)2 + F(µ− 1)3 for µ < 3.0 (3.11)

Teff

To

− 1 = G + H(µ− 1) for 3.0 ≤ µ ≤ 6.5 (3.12)

Coefficients are in Table 3.3.
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Figure 3.9: Effective parameters for bilinear hysteretic system (BLH) - far-field mo-
tions. Conv. CSM - conventional Capacity Spectrum Method, Structural Behavior
Type B (ATC-40). New Appr. - new approach implemented in this study. Second
slope ratios, α, as indicated
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Figure 3.10: Effective parameters for stiffness degrading system (KDEG) - far-field
motions. Conv. CSM - conventional Capacity Spectrum Method, Structural Behavior
Type C (ATC-40). New Appr. - new approach implemented in this study. Second
slope ratios, α, as indicated
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Figure 3.11: Effective parameters for pinching hysteretic system (PIN1) - far-field
motions. Conv. CSM - conventional Capacity Spectrum Method, Structural Behavior
Type C (ATC-40). New Appr. - new approach implemented in this study. Second
slope ratios, α, as indicated
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Figure 3.12: Effective parameters for pinching hysteretic system (PIN2) - far-field
motions. Conv. CSM - conventional Capacity Spectrum Method, Structural Behavior
Type C (ATC-40). New Appr. - new approach implemented in this study. Second
slope ratios, α, as indicated
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Figure 3.13: Effective parameters for bilinear hysteretic system (BLH) - near-field
motions with To/Tp ≤ 0.7. Conv. CSM - conventional Capacity Spectrum Method,
Structural Behavior Type A (ATC-40). New Appr. - new approach implemented in
this study. Second slope ratios, α, as indicated
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Figure 3.14: Effective parameters for bilinear hysteretic system (BLH) - near-field
motions with 0.8 ≤ To/Tp ≤ 1.2. Conv. CSM - conventional Capacity Spectrum
Method, Structural Behavior Type A (ATC-40). New Appr. - new approach imple-
mented in this study. Second slope ratios, α, as indicated
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Figure 3.15: Contours of FEARmin
+5, 10, 15 and 20% over a range of ductility values,

µ

3.4.1 Analytical Expressions for the Modification Factor, M

Data for the modification factor (Equation 2.16) can be plotted and fit with a curve.

The data fitting procedure is the same as in the previous section except that the cubic

has been replaced with a quadratic and the linear trend begins at µ = 2.

M = 1 + I(µ− 1) + J(µ− 1)2 for µ < 2.0 (3.13)

M = K + L(µ− 1) for 2.0 ≤ µ ≤ 6.5 (3.14)

3.5 Discussion of Effective Linear Parameters

The effective linear parameter equations can only accurately be applied to ductilities

less than or equal to 6.5. This range can probably be extended to a ductility of 10

without much sacrifice in accuracy. Beyond a ductility of 10, the equations should
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not be used. For application at extremely large ductilities, more analysis must be

performed. The linear trend in effective parameters above a ductility of 4 will not

continue at extremely large values of ductility.

The analysis has revealed that the secant period is not a good choice for the effec-

tive linear period. For each of the different models, second slope ratios and structural

period groupings, the secant period clearly overestimates the effective period deter-

mined in this new methodology. As mentioned in Section 2.3, an over-prediction of the

effective period means that the effective damping value should also be over-predicted.

The modified equivalent viscous damping approach employed in the Capacity

Spectrum Method over-estimates the effective damping at lower ductilities in all cases.

The effect of this will be seen in the error evaluation (Section 4.3) and discussed further

at that time. It was revealed through personal communications that the modification

factor, κ, used in the conventional Capacity Spectrum Method was introduced by

the authors in an effort to “protect the innocent” from the absurdly high damping

values obtained from equivalent viscous damping. For the bilinear model, Figure 3.9,

the damping values are still considerably higher than the effective damping values

calculated in this study. The stiffness degrading model damping is over-predicted at

the lower ductilities and then under-predicted at the higher ductilities. The same is

evident for the pinching hysteretic models.

The use of different ranges of initial periods, optimization criterion and nominal

damping values will have an effect on the resulting optimal effective linear parame-

ters. The bilinear and strength degrading models with α = 10% were analyzed to

investigate the effects of these parameters.

3.5.1 Effect of Period Range and Optimization Criterion on

Effective Linear Parameters

For period ranges Tall and Tshort, four optimization criterion were investigated. The

criterion was set for different combinations of a and b in Equation 2.6. The central

value (or average) of a and b is denoted “c” and the range of a to b is denoted
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Figure 3.16: Effective parameters for bilinear model (BLH), initial period group Tall,
second slope ratio (α) of 10% and several optimization criterion - far-field motions

“r”. Hence, the combination a = −20% and b = 20% will be denoted c0r40. Other

combinations include c0r60, c10r40 and the Engineering Acceptability Criterion is

c5r30. Figures 3.16 and 3.17 show the results of the bilinear and stiffness degrading

systems for the Tall period range. Figures 3.18 and 3.19 show the results for period

range Tshort.

In all cases, there is minimal change in the effective period as the minimization

criteria changes. Referring back to Figure 3.7, the optimal effective period should not

change for different criterion because the line of eligible points is roughly horizontal.

The effective damping results do change for the different optimization criterion. Cri-

terion with a central value of zero (c0r40 and c0r60) have higher values of effective

damping than the criterion with a mean of 5% (c5r30) or a mean of 10% (c10r40).

As the criterion changes from c0 to c10, the effective damping drops which reflects

the increasing level of conservatism in the criterion.

In all graphs the effective damping for c0r40 and c0r60 are practically identical.

Therefore, the size of the range will not effect the optimal point if the range is larger

that some value. Consider the size of the range decreasing. In a limiting case, the

criterion c0r0 forces the selection of the optimal point to be on the zero mean contour.
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Figure 3.17: Effective parameters for stiffness degrading model (KDEG), initial period
group Tall, second slope ratio (α) of 10% and several optimization criterion - far-field
motions

0 1 2 3 4 5
0

5

10

15

20

µ−1

ζ ef
f−
ζ 0

c0r40
c5r30
c0r60
c10r40
CSM SBT B

0 1 2 3 4 5
0

0.25

0.5

0.75

1

µ−1

T
ef

f/T
0−

1

Figure 3.18: Effective parameters for bilinear model (BLH), initial period group
Tshort−low, second slope ratio (α) of 10% and several optimization criterion - far-field
motions
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Figure 3.19: Effective parameters for stiffness degrading model (KDEG), initial period
group Tshort−low, second slope ratio (α) of 10% and several optimization criterion -
far-field motions

Likewise, the criterion c5r0 forces the selection of the optimal point to be on the 5%

mean contour. The approximate value of the range when it no longer influences the

optimal point is about 15. The optimal point for c5r15 should roughly be the same

as for any criteria with c5 and r > 15.

Figure 3.20 and 3.21 show the results for bilinear (BLH) and stiffness degrading

systems (KDEG) for all five far-field period groupings evaluated with the c0r40 cri-

teria. The effective damping is lowest at the higher ductilities for period range Tlong.

In the two figures, several curves cross each other. One observation is that in the

effective damping plots, the line for Tall is generally between the lines for Tlong and

all the other lines for the lower period groupings. Therefore, the inclusion of longer

periods decreases the effective damping.

3.5.2 Effect of Nominal Damping Values (ζo) on Effective

Linear Parameters

The sensitivity of the analysis to the nominal viscous damping value, ζo, has also been

explored. All results presented thus far reflect analysis with a single nominal viscous
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Figure 3.20: Effective parameters for bilinear model (BLH), several initial period
groups and a second slope ratio (α) of 10% - far-field motions
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tial period groups and a second slope ratio (α) of 10% - far-field motions
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damping value of 5%. The 5% is compared to the exact same analysis for 2% and 7%

nominal damping. Figures A.3 and Figure A.4 show the results of the analysis for

the bilinear (BLH) and stiffness degrading (KDEG) models. There is little difference

in the BLH model while the KDEG model has only a slight difference in the effective

damping with ζo = 2% having a slightly lower effective damping and ζo = 7% having

the highest effective damping. It is concluded that the analysis with ζo = 5% is a good

approximation for the results that would be obtained if 2, 5, and 7% were combined

together. Therefore, the effective linear parameter equations developed in this study

can be used for any building with a nominal viscous damping of less than or equal to

10% (ζo ≤ 10%).

3.6 Conclusions

Based on the procedures to determine the effective linear parameters, the following

conclusions can be drawn:

1. The effective parameters obtained in this study accurately reflect the differences

in the hysteretic models The effective linear period for the stiffness degrading

model is longer than the bilinear model. This is expected because period elon-

gation will occur more quickly in the stiffness degrading model. As ductility

increases, less time is spent vibrating at the initial stiffness in the stiffness

degrading model (Figure 3.1). A similar observation can be made about the

pinching hysteretic systems. The pinching model PIN1 has equivalent parame-

ters with smaller damping than the PIN2 model. This is expected because more

energy is dissipated by a cycle of PIN2 hysteresis loop than the PIN1 hysteresis

loop as seen in Figure 3.4. Accordingly, PIN2 has equivalent parameters more

similar to the bilinear model than PIN1. This is expected because the hysteresis

loops for PIN2 are more similar to BLH than PIN1.

2. The third order equation used to fit the lower values of ductility is reasonable.

At low ductilities, the percentage difference between the effective parameters
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from the new methodology and the conventional Capacity Spectrum Method is

greatest. The small increment of ductility used in the present study has revealed

important details about the local variations in the effective parameters, espe-

cially at the low ductilities. The sensitivity to parameter selection is greatest

at the lower ductilities which validates the use of the higher order data fitting

equations. Accurate predictions at low ductilities are essential in structural

analysis. Unconservative displacement prediction at low ductility values can be

the deciding factor to forego a building rehabilitation. The current Capacity

Spectrum Method low ductility displacement predictions are unconservative as

will be shown in Section 4.3.

3. The trend in the effective parameters as a function of second slope value (α) from

the new methodology are different from the conventional Capacity Spectrum

Method. In the conventional Capacity Spectrum Method formulation, both the

effective period and effective damping decrease as α increases. The largest value

of each parameter occurs at α = 0%. Results from the new methodology do

not show this trend for low values of α. The bilinear model reflects a slight

increase in effective damping as α goes from 0% to 10%. This can be explained

by the wandering effect found in elasto-plastic systems (BLH with α = 0%) as

discussed by Paparizos and Iwan [59]. Bilinear hysteretic systems with a zero

second slope ratio exhibit a long period “wandering” motion when excited by

earthquake motions containing frequencies near the effective natural frequency

of the system. A non-zero second slope ratio works as a centering mechanism

that gives the system some memory as to its original equilibrium position. The

prediction for the bilinear system with small alpha values less reliable compared

to increased alpha values.

For all the hysteretic models used in this study, a fundamental requirement

is that the effective linear parameters must approach zero as the second slope

ratio, α, approaches 100% (the elastic case). Indeed that is the trend as seen

in Figure 3.22. The case of α = 60% is graphed for each hysteretic system.
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4. For near-field motions, the difference between the effective parameters obtained

for period groups To/Tp ≤ 0.7 and 0.8 ≤ To/Tp ≤ 1.2 for both the bilinear

(Figures 3.13 and 3.14) and stiffness degrading models (Figures A.1 and A.2) is

substantial. The effective period and effective damping values for the lower pe-

riod range are higher than for the second period range. This reflects the dynamic

amplification of systems with initial linear periods near the pulse period of the

ground motion. Comparing bilinear to stiffness degrading for the period range

To/Tp ≤ 0.7 reveals similar effective period values but the stiffness degrading

model has lower effective damping. Over the period range 0.8 ≤ To/Tp ≤ 1.2,

both models have similar effective damping values while the KDEG model has

longer effective period values. This is expected in relation to the hysteretic

properties of the bilinear and stiffness degrading systems. The stiffness degrad-

ing model should have lower effective damping which increases displacement

response and a longer effective period reflects the degraded stiffness.
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Figure 3.22: Summary of analytical expressions for effective period and damping for
bilinear (BLH), stiffness degrading (KDEG) and pinching hysteretic models (PIN1
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Model T Range α A B C D

BLH Tshort 0% 3.1922 −0.6598 10.5687 0.1156
BLH Tshort 2% 3.3338 −0.6405 9.3792 1.1101
BLH Tshort 5% 4.1504 −0.8260 10.1243 1.6428
BLH Tshort 10% 5.0731 −1.0826 11.6899 1.5791
KDEG Tshort 0% 5.1261 −1.1090 12.1052 1.3622
KDEG Tshort 2% 5.3031 −1.1722 11.2724 1.6023
KDEG Tshort 5% 5.6420 −1.2962 10.1820 1.8661
KDEG Tshort 10% 5.3056 −1.2203 8.8425 1.9861
STRDG Tshort −3% 5.2749 −1.1635 13.9824 0.6924
STRDG Tshort −5% 5.6014 −1.2944 13.6407 0.6080
PIN1 Tshort 2% 3.4226 −0.7156 5.6695 1.9379
PIN1 Tshort 5% 3.3888 −0.7083 5.6711 1.9015
PIN1 Tshort 10% 3.3443 −0.7438 5.5659 1.4835
PIN2 Tshort 2% 5.2207 −1.2100 9.7038 1.5378
PIN2 Tshort 5% 4.9926 −1.1225 9.3702 1.7518
PIN2 Tshort 10% 4.7203 −1.0514 10.0604 1.3451
PB Tshort NA 5.6683 −1.4363 12.8666 −0.2112

Model T Range α E F G H

BLH Tshort 0% 0.1108 −0.0167 0.2794 0.0892
BLH Tshort 2% 0.1034 −0.0142 0.2107 0.1125
BLH Tshort 5% 0.1145 −0.0178 0.1777 0.1240
BLH Tshort 10% 0.1262 −0.0224 0.1713 0.1194
KDEG Tshort 0% 0.1725 −0.0317 0.1673 0.1767
KDEG Tshort 2% 0.1756 −0.0335 0.1637 0.1708
KDEG Tshort 5% 0.1809 −0.0366 0.1472 0.1640
KDEG Tshort 10% 0.1652 −0.0338 0.1419 0.1440
STRDG Tshort −3% 0.1801 −0.0331 0.2128 0.1716
STRDG Tshort −5% 0.1950 −0.0379 0.1843 0.1825
PIN1 Tshort 2% 0.2057 −0.0412 0.1507 0.1963
PIN1 Tshort 5% 0.2034 −0.0417 0.1367 0.1898
PIN1 Tshort 10% 0.1990 −0.0430 0.1581 0.1575
PIN2 Tshort 2% 0.1962 −0.0405 0.1730 0.1660
PIN2 Tshort 5% 0.1820 −0.0365 0.1704 0.1604
PIN2 Tshort 10% 0.1680 −0.0338 0.1923 0.1361
PB Tshort NA 0.1691 −0.0344 0.1115 0.1609

Table 3.2: Coefficients for effective linear parameters, Equations 3.5 through 3.8 -
far-field motions
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Model To/Tp α A B C D

BLH ≤ 0.7 0% 5.3509 −0.6585 14.2863 0.9247
BLH ≤ 0.7 2% 5.8839 −0.9319 13.7141 1.1830
BLH ≤ 0.7 5% 5.9374 −0.9363 13.2440 1.5075
BLH ≤ 0.7 10% 5.8275 −0.8033 14.4054 1.2391
BLH 0.8− 1.2 0% 7.6765 −2.5650 8.7491 0.7183
BLH 0.8− 1.2 2% 8.1399 −2.8236 8.8092 0.9407
BLH 0.8− 1.2 5% 9.2608 −3.2721 7.8295 1.5184
BLH 0.8− 1.2 10% 8.2566 −2.7253 7.1819 2.0212
KDEG ≤ 0.7 0% 6.0326 −1.4557 8.4089 2.0378
KDEG ≤ 0.7 2% 4.5814 −0.7036 8.7527 1.9719
KDEG ≤ 0.7 5% 4.7285 −0.7445 9.3875 1.7854
KDEG ≤ 0.7 10% 4.2641 −0.4745 10.5459 1.3574
KDEG 0.8− 1.2 0% 6.3745 −1.9620 5.8949 1.9534
KDEG 0.8− 1.2 2% 6.3093 −1.9220 5.8588 2.0013
KDEG 0.8− 1.2 5% 6.4361 −2.0071 5.6345 2.0266
KDEG 0.8− 1.2 10% 6.3825 −2.0085 5.3001 2.0809

Model To/Tp α E F G H

BLH ≤ 0.7 0% 0.1703 −0.0245 0.2391 0.1230
BLH ≤ 0.7 2% 0.1741 −0.0284 0.2170 0.1260
BLH ≤ 0.7 5% 0.1714 −0.0293 0.1887 0.1311
BLH ≤ 0.7 10% 0.1599 −0.0251 0.2010 0.1189
BLH 0.8− 1.2 0% 0.3052 −0.1125 0.2616 0.0294
BLH 0.8− 1.2 2% 0.3329 −0.1251 0.2586 0.0363
BLH 0.8− 1.2 5% 0.3717 −0.1440 0.2215 0.0569
BLH 0.8− 1.2 10% 0.3307 −0.1222 0.1497 0.0976
KDEG ≤ 0.7 0% 0.2124 −0.0484 0.1269 0.1676
KDEG ≤ 0.7 2% 0.1827 −0.0341 0.1394 0.1595
KDEG ≤ 0.7 5% 0.1834 −0.0354 0.1550 0.1475
KDEG ≤ 0.7 10% 0.1700 −0.0300 0.1941 0.1228
KDEG 0.8− 1.2 0% 0.2909 −0.0918 0.1905 0.1191
KDEG 0.8− 1.2 2% 0.2932 −0.0942 0.1648 0.1274
KDEG 0.8− 1.2 5% 0.2844 −0.0909 0.1603 0.1249
KDEG 0.8− 1.2 10% 0.2793 −0.0911 0.1500 0.1194

Table 3.3: Coefficients for effective linear parameters, Equations 3.9 through 3.12 -
near-field motions
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Model T Range α I J K L

BLH Tshort 0% −0.8114 0.4133 0.6247 −0.0229
BLH Tshort 2% −0.7767 0.3769 0.6028 −0.0026
BLH Tshort 5% −0.7571 0.3889 0.6190 0.0127
BLH Tshort 10% −0.7053 0.3612 0.6206 0.0353
KDEG Tshort 0% −0.7614 0.4286 0.6557 0.0114
KDEG Tshort 2% −0.7452 0.4254 0.6611 0.0192
KDEG Tshort 5% −0.7208 0.4208 0.6715 0.0284
KDEG Tshort 10% −0.6799 0.4124 0.6988 0.0336

Table 3.4: Coefficients for modification factors, Equations 3.13 and 3.14 - far-field
motions
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Chapter 4

Validation of the Effective Linear
Parameters

4.1 Introduction

Evaluation of the errors associated with the use of effective linear parameters will be

done on two levels. The first level will compare the displacement of the linear sys-

tem obtained with the effective period and damping at the inelastic system response

ductility to the inelastic system displacement for a given ground excitation. This will

be referred to as the Displacement Response Error. The second level will compare

the displacement of the linear system obtained with the effective period and damping

at the Performance Point ductility to the inelastic system displacement for a given

ground excitation. This will be referred to as the Performance Point Error.

The Performance Point Error is the key evaluator of the effective linear parame-

ters within the framework of Performance-Based Engineering. In engineering design,

the response ductility is an unknown quantity. Therefore, the Displacement Response

Error is not directly applicable to Performance-Based Engineering. The Performance

Point will be predicted by the Capacity Spectrum Method. The Performance Point

Error directly evaluates the accuracy of the Performance Point prediction. All errors

will be calculated for both the effective parameters developed from the new method-

ology and the effective parameters used in conventional Capacity Spectrum Method.

The conventional Capacity Spectrum Method uses the secant period as the effective
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linear period (Equation 1.25) and the effective damping from Equation 1.28.

Two procedures are proposed to calculate the Performance Point ductility for a

bilinear capacity curve and given ground excitation. These procedures were devel-

oped from a research perspective. A procedure more appropriate for application in

structural design is provided in Section 5.1.

4.2 Displacement Response Error

The effective linear parameter equations are evaluated by using the predicted linear

displacement for the ductility of the inelastic system. Define the Displacement Re-

sponse Error as the ratio of the difference between the linear displacement at the

effective period and damping and the inelastic displacement to the inelastic displace-

ment

εDeff
(α, µ, HYST) =

Dlin(Teff (To, α, µ), ζeff (ζo, α, µ))−Dinel(To, ζo, α, µ, HYST)

Dinel(To, ζo, α, µ, HYST)
(4.1)

The Displacement Response Error is graphically represented in Figure 4.1.

The maximum inelastic displacement may be rewritten as the yield displacement

times ductility

Dinel(To, ζo, α, µ, HYST) = µDy(To, ζo, α, µ, HYST) (4.2)

Therefore, define the effective ductility as the linear displacement for the effective

period and damping at the ductility of the inelastic system divided by the yield

displacement

µeff (Teff (To, α, µ), To, ζeff (To, α, µ) =
Dlin(Teff (To, α, µ), ζeff (ζo, α, µ))

Dy(To, ζo, α, µ, HYST)
(4.3)

Substituting Equations 4.3 and 4.2 into Equation 4.1, the Displacement Response

Error may now be alternatively expressed as the ratio of the difference between the
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Figure 4.1: Combining the time history hysteretic response (left) with the displace-
ment prediction from the effective linear parameters (right) to form the Displacement
Response Error, εDeff

effective ductility and the response ductility to the response ductility

εDeff
(α, µ, HYST) =

µeff (Teff (To, α, µ), To, ζeff (To, α, µ), ζo, α, µ, HYST)− µ

µ
(4.4)

Results for the far-field ground motions are presented in Table 4.1 while results for

the near-field ground motions are presented in Tables D.1 and D.2. These results are

presented as a mean and standard deviation of the distribution over all the ductility

values combined. In all cases the “NEW” effective linear parameters developed in

this study have a mean value closer to zero and often substantially smaller standard

deviation.

Figures B.1 through B.3 show the results for the bilinear hysteretic model (BLH)

as a surface plot of ductility versus second slope ratio for both far-field and near-field

ground motions. For the far-field motions, results show a big improvement in the

low ductility range for all hysteretic models in the range of errors from −10% to 20%

and also from −20% to 40%. At the lower ductilities is where the effective damp-
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ing equations from the new methodology and the conventional Capacity Spectrum

Method are most different, as mentioned in Section 3.5. This is where the biggest

improvement has occurred in the Displacement Response Error. Similar observations

are made for the stiffness degrading and pinching hysteretic models but their color

contour plots are omitted.

4.3 Performance Point Error

The Displacement Response Error (εDeff
) required the use of the time history duc-

tility. In engineering design, the time history ductility will be an unknown quantity.

Define the Performance Point Error as the ratio of the difference between the linear

displacement at the effective period and damping evaluated at the Performance Point

ductility and the inelastic displacement to the inelastic displacement

εDPP
(α, µ, HYST) =

Dlin(Teff (To, α, µPP ), ζeff (ζo, α, µPP ))−Dinel(To, ζo, α, µ, HYST)

Dinel(To, ζo, α, µ, HYST)
(4.5)

Similar to the formulation of the Displacement Response Error, the Performance

Point Error may be alternatively expressed as

εDPP
(α, µ, HYST) =

µPP (Teff (To, α, µPP ), To, ζeff (To, α, µPP ), ζo, α, µ, HYST)− µ

µ
(4.6)

where µPP is the Performance Point ductility.

The procedures used to calculate the Performance Point employ an incremental

search algorithm. The search starts at a ductility of 40 and decreases at an increment

of 0.1 ending at a ductility of 1.1. The capacity spectrum is assumed to have infinite

ductility capacity. Although it was stated in Section 3.5 that the effective linear

parameter equations should only be used for ductilities less than 10, the extension to

a ductility of 40 was done in this evaluation because an inaccurate large answer is more

important than a non-convergent answer. The Performance Point Errors distributions
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will not be analyzed by a mean value and standard deviation because the distributions

are not Normal. Extremely large values need not be accurate because they are already

outside of a desired range of values near zero. In this specific evaluation, it is more

important to extend the analysis to high ductilities instead of being recorded as non-

convergent cases. For other evaluations, extending the equations to large values of

ductility may not be acceptable.

There is no guarantee that there will be a Performance Point for a given system and

ground excitation. When no Performance Point is determined, the case is recorded

as non-convergent. There are several possible explanations for a non-convergent case

but it is better explained within the context of the New Performance Point Solution

Procedure in Section 5.1.

There is also a possibility of multiple Performance Points for a given system and

ground motion. When a multi-valued case is encountered, the most conservative

prediction for the Performance Point is recorded and the case is recorded as multi-

valued.

4.3.1 Procedure A

Calculation of the Performance Point will be done by tracking the intersection points

of the capacity curve and the family of MADRS associated with the range of ductilities

from 1.1 to 40. The ductilities associated with the demand spectra will be the demand

ductilities, µdemand. Refer to Figure 4.2. A single demand spectrum will most likely

result in one or more intersection with the capacity spectrum. These intersections

occur at a displacement which when divided by the yield displacement result in the

capacity ductility, µcapacity. For a family of demand spectra (from a range of demand

ductilities), a Locus of Combinations of µcapacity, µdemand will result. The Performance

Point ductility is the ductility at which the Locus of Combinations crosses the line

where the demand and capacity ductilities are equal.
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Figure 4.2: Performance Point solution scheme - procedure A

4.3.2 Procedure B

A solution procedure that does not require the calculation of the MADRS is also

available. Procedure B is shown pictorially in Figure 4.3. The demand ductilities are

inserted directly into the effective parameter equations. The response of each linear

system is calculated and divided by the yield displacement of the inelastic system,

resulting in a range of capacity ductilities. The Performance Point ductility is the

ductility at which the Locus of Combinations crosses the line where the demand and

capacity ductilities are equal. In this approach the Performance Point ductility can

be expressed as the solution to the following transcendental equation

µpp =
Dlin(Teff (To, α, µpp), ζeff (ζo, α, µpp))

Dy(To, ζo, α, µ)
(4.7)

The relationship between µeff (Equation 4.3) and the Locus of Combinations from

this procedure is shown in Figure 4.3(b). The figure reflects a case where εDpp < εDeff

but this is by no means guaranteed to occur in every case.
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Figure 4.3: Performance Point solution scheme - procedure B

4.3.3 Problems Associated with α < 0

The secant period (Equation 1.25) will approach infinity for large ductilities and a

negative second slope ratio, α. Consequently, the modification factor used to con-

struct the MADRS approaches infinity (Equation 2.16). Procedure A, which uses the

modification factor, is limited in the largest value of ductility at which the incremen-

tal search can begin. Procedure B, which uses the effective period, experiences this

problem when evaluating the conventional Capacity Spectrum Method because the

secant period is the effective period in the conventional Capacity Spectrum Method.

For these cases,the incremental search began at a ductility of 20.

4.3.4 Comparing Procedure A and B

For procedures A and B, the Loci of Combinations are almost completely different.

The only points the Loci have in common are the Performance Points as illustrated

in Figure 4.4. However, there is another important difference between procedures
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A and B relating to the Locus of Combinations. The Locus from procedure A can

be multiple-valued in both µdemand and µcapacity. An example of this is shown in

Figure 4.5. A single µdemand value can have multiple µcapacity values and vice verse.
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Figure 4.4: Comparing Locus of Combinations - procedures A and B

Procedure B is formulated such that it is possible to be multi-valued only in

µcapacity. Each µdemand will have a single µcapacity while a single value of µcapacity may

have several µdemand values associated with it. This has implications when searching

through the Locus of Combinations for the Performance Point. The double multi-

valued nature of procedure A makes it difficult to implement a reliable search algo-

rithm while procedure B requires a simple search algorithm. Procedure A creates a

Locus of Combinations that cannot be sorted into ascending or descending order be-

cause of the possible double multi-valueness. The Loci from procedure A in Figure 4.5

are plotted as discrete points and not lines for this reason.
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Figure 4.5: Example of the possible multi-valued nature of both µdemand and µcapacity

for procedure A

4.4 Discussion of Performance Point Error Results

Performance Point Error results for the bilinear (BLH) model subjected to both

far-field and near-field motions are shown in Figures 4.6 through 4.8. The stiffness

degrading (KDEG) and pinching models (PIN1 and PIN2) far-field analysis results

are shown in Figures C.1 through C.3. Results for far-field motions are also presented

in Tables 4.1 through 4.3 and near-field results in Tables D.1 through D.6.

The incremental search method employed in procedures A and B started at a

ductility of 40 and choosing the most conservative performance point prediction in any

multi-valued case will skew the error statistics to the positive side. The distribution

of the Performance Point statistics is not Normally distributed. The presentation

of the results in terms of mean and standard deviation values averaged over the

entire ductility range will be highly effected by the large outliers present in the study.

Looking at the data in terms of errors occurring within certain ranges helps filter out

the outliers and gives a better representation of the data set.

One way to limit the large outliers would have been to start the incremental search
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Figure 4.6: Performance Point Error results for bilinear hysteretic system (BLH) - far-
field motions. CSM - conventional Capacity Spectrum Method, Structural Behavior
Type B (ATC-40). NEW - new approach implemented in this study. Second slope
ratios, α, as indicated
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Figure 4.7: Performance Point Error results for bilinear hysteretic system (BLH) -
near-field motions with To/Tp ≤ 0.7. CSM - conventional Capacity Spectrum Method,
Structural Behavior Type A (ATC-40). NEW - new approach implemented in this
study. Second slope ratios, α, as indicated
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Figure 4.8: Performance Point Error results for bilinear hysteretic system (BLH) -
near-field motions with 0.8 ≤ To/Tp ≤ 1.2. CSM - conventional Capacity Spectrum
Method, Structural Behavior Type A (ATC-40). NEW - new approach implemented
in this study. Second slope ratios, α, as indicated



92

at a ductility of 12 or 15. This would essentially add some “engineering judgment”

to cases with large ductility predictions. One aspect not incorporated into this study

is what happens when a large ductility prediction occurs. In engineering design, a

large ductility prediction may lead to the decision to rehabilitate the building. In this

case, the large ductility prediction has lead to a different structure and the original

structure no longer exists.

As mentioned in Section 3.6, the effective linear parameters for models PIN1 and

PIN2 have the proper relationship to the BLH model. The same is true for the

Performance Point Error. Results for PIN2 more closely resemble the results for BLH

than do the results for PIN1 which has more degradation.

The improvement in the Performance Point Error is most evident at the lower

ductility values. This agrees with the observation that the effective parameters are

most different at the lower ductility values. The conventional Capacity Spectrum

Method is unconservative at lower ductility values but the new effective parameters

drastically improve that situation.

4.4.1 Effect of Ground Motion Database Selection on Per-

formance Point Errors

An additional set of 80 far-field ground motions was obtained in conjunction with the

ATC-55 Project (Section F.3). The motions are a conglomerate of four sets of twenty

records. One set from each site class B, C, D and E as defined by UBC-97. The ATC

motions were run on the bilinear and stiffness degrading models with second slope

ratios of 0, 2, 5 and 10%. Results for the bilinear system are shown in Figures 4.9

and 4.10. Results for the stiffness degrading system are shown in Figures C.4 and C.5.

The error results obtained from the additional ground motions show very good cor-

relation with the 28 CIT ground motions used in the optimization procedure. The

28 CIT motions have slightly better error results, as would be expected, but not by

any substantial amount. The effective parameter equations developed in this study

are only slightly biased towards the data from which they came. They work equally
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well over an independent set of ground motions when compared to the conventional

Capacity Spectrum Method effective parameter equations.
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Figure 4.9: Performance Point Error results for bilinear model (BLH) with second
slope ratio of 0% - two far-field ground motion databases

4.4.2 Effect of Changing the Engineering Acceptability Range

The bilinear (BLH) and stiffness degrading (KDEG) models with a second slope ratio

of 2% were examined to investigate the effect of different Engineering Acceptability
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Figure 4.10: Performance Point Error results for bilinear model (BLH) with second
slope ratio of 5% - two far-field ground motion databases
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Ranges. The different intervals all have a range of 30 (r30) but different center values

ranging from 0 (c0) to 25 (c25). Increasing the center value of the interval puts a

positive bias in the parameter selection which can clearly be seen in the Performance

Point Error statistics. BLH results are shown in Figure 4.11. KDEG results are

shown in Figure C.6.

The bias from the conservative Engineering Acceptability Ranges cannot always be

seen in the range from −10% to 20% but can definitely be seen in the extreme positive

and negative ranges In the graphs of errors less than −20% or greater than 40%, the

effects of changing the Engineering Acceptability Range is very apparent. The mean

and standard deviation of the Performance Point Error distributions are also shown in

the same figures. The mean and standard deviation of the Performance Point Errors

also increase as the Engineering Acceptability Range central value increases.

4.4.3 Locus of Performance Points from the UBC Design

Spectrum

Performance point displacements (Dpp) have been parameterized for different values

of initial linear period, To, and second slope ratio, α, for the UBC Design Spectrum

(Section F.1). The equations are [47]

Dpp(To, µpp, α) =



2.5

4π2
T 2

eff Ca SRA(µpp, α) Teff < T
′
1

Teff

4π2
Cv SRV(µpp, α) T

′
1 < Teff < T

′
2

0.32

4π2
T 2

eff Nv SRV(µpp, α) T
′
2 < Teff

where Ca, Cv, Nv, SRA and SRV are parameters from the UBC Spectrum.

Recall the strength reduction factor, R, from Equation 2.11. Dividing the numer-
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ing Acceptability Range for bilinear model with second slope ratio of 2% - far-field
motions
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ator and denominator by the initial linear stiffness results in

R =
Dlinmax

Dy

(4.8)

Equation 4.8 may alternatively be expressed as

R(µpp, To, α) =
Dpp(µpp = 1, To, α)

Dpp(µpp, To, α)/µpp

(4.9)

Figures 4.12 through 4.15 show the Loci of Performance Points for the bilinear

(BLH) and stiffness degrading model (KDEG) for different values of initial linear pe-

riod, To and a second slope ratio of 0%. The same is shown in Figures E.1 through E.4

but for α = 5%.

For a consistent R value, the KDEG model always has a larger Performance Point

ductility than the BLH model. The stiffness degrading system displacements should

be larger than the bilinear system displacements because the KDEG hysteresis loops

dissipate less energy in a cycle compared to the BLH hysteresis loops.

The conventional Capacity Spectrum Method (CSM) was shown to be unconser-

vative for both the Displacement Response Error and the Performance Point Error

at lower ductilities. The Locus of Performance Points reveals that this has been cor-

rected. The lower ductility values have an increase in the displacement predictions

for the new effective parameters.

Another problem with the conventional CSM is that unrealistically large ductil-

ities are predicted for large R values. For the ductility range from 5.25 to 6.5, the

conventional CSM is extremely conservative as seen in the tabular data presentation.

The Loci reveal that the new effective parameters give lower ductility predictions at

these large R values.

4.5 Conclusions

Based on the analysis of the equivalent linear parameters, the following conclusions

can be drawn:
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Figure 4.14: UBC Locus of Performance Points for stiffness degrading system (KDEG)
with α = 0% - far-field motions
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Figure 4.15: Strength reduction factor, R, versus Performance Point ductility, µpp,
from Figure 4.14
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1. For all models, the probability of the Performance Point Error (εDpp) lying

within the Engineering Acceptability Range is much higher for the new approach

than for the current Capacity Spectrum Method (CSM), especially at the lower

ductilities. The sensitivity to effective parameter selection is greatest at the

lower ductilities as discussed in Section 3.4. This validates the use of higher

order curve fitting at the lower ductilities to help capture local variations in the

effective parameters.

2. At low values of ductility, the conventional Capacity Spectrum Method ap-

proach is extremely unconservative. A building that should be rehabilitated

may be determined to not need an upgrade from the conventional Capacity

Spectrum Method approach. Within the framework of Performance-Based En-

gineering, where Performance Objectives (Section 1.4) are very precise, accurate

prediction at the lower ductility values is extremely important in terms of Im-

mediate Occupancy and Operational Building Performance Levels.

3. Solution procedures A and B are not recommended for use in engineering design.

Solution procedures A and B both incorporate an incremental step method and

are designed to analyze a large number of systems and ground motions. Both

schemes were developed for research purposes and both are not very practical to

implement on capacity curves that are not bilinear. A detailed solution proce-

dure will be introduced in Section 5.1 that has been created for implementation

as an engineering design tool.

4. The use of separate equations for different period ranges in the near-field anal-

ysis is justified by the Performance Point Errors. Breaking the analysis up onto

the period ranges To/Tp ≤ 0.7 and 0.8 ≤ To/Tp ≤ 1.2 has a significant effect

on the accuracy of the equations. The single equation in the conventional CSM

is extremely inaccurate for both period ranges. The current CSM equations

are worse for structural periods near the pulse period than for periods below

the pulse period. The new approach shows great improvement in both period
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ranges. This validates the use of different equations for different near-field pe-

riod ranges.

5. The Performance Point Errors reveal that the equations developed in this method-

ology are a significant improvement over the current CSM equations currently

being used. The methodology, which was formulated for minimizing the Dis-

placement Response Error, has resulted in an improvement to the Performance

Point Error. It would be best to optimize over the Performance Point Error but

that is impossible. The Performance Point Error analysis requires an equation

for the effective linear parameters. This would result in an optimization over an

infinite number of lines, not discrete data points as was done in this method-

ology. The best that can be done is to change the optimization criterion and

examine the error statistics as was done in Section 4.4.2.
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εDeff
εDpp

Model Eqn. α mean STD mean STD N/C mult

BLH NEW 0% −3.23 24.61 6.02 64.37 0.04 4.89
BLH CSMstrB 0% −6.11 30.50 25.07 143.39 4.37 1.44

BLH NEW 2% −2.11 22.51 1.37 33.07 0.04 2.91
BLH CSMstrB 2% −3.51 28.45 26.96 124.96 2.61 0.54

BLH NEW 5% −1.31 20.47 1.30 27.94 0.02 1.96
BLH CSMstrB 5% −0.49 26.46 20.88 78.29 2.09 0.24

BLH NEW 10% −0.34 18.28 2.02 24.85 0.01 0.93
BLH CSMstrB 10% 2.09 23.99 16.79 49.89 1.85 0.09

KDEG NEW 0% 0.66 16.62 15.59 94.77 0.02 6.66
KDEG CSMstrC 0% 17.80 27.89 80.69 174.16 2.94 4.30

KDEG NEW 2% 0.78 16.14 12.49 80.08 0.06 5.43
KDEG CSMstrC 2% 17.01 26.47 67.13 144.28 1.39 1.88

KDEG NEW 5% 0.93 15.40 10.29 72.08 0.03 4.33
KDEG CSMstrC 5% 18.22 25.93 59.97 111.76 0.58 1.39

KDEG NEW 10% 1.23 14.42 5.94 39.71 0.06 2.72
KDEG CSMstrC 10% 20.28 25.74 49.84 66.57 0.53 0.90

STRDG NEW −3% 0.42 17.37 8.14 50.38 0.17 8.30
STRDG CSMstrC −3% 19.56 30.72 60.69 110.27 11.01 10.34

STRDG NEW −5% 0.24 17.87 9.95 54.62 0.24 9.78
STRDG CSMstrC −5% 21.01 33.17 83.53 147.30 12.77 20.47

PIN1 NEW 2% −0.09 17.51 14.31 94.13 0.16 10.25
PIN1 CSMstrC 2% 2.48 21.51 30.81 118.60 1.09 3.69

PIN1 NEW 5% 0.27 16.78 13.59 86.65 0.17 9.30
PIN1 CSMstrC 5% 3.16 20.55 23.06 84.04 0.83 2.82

PIN1 NEW 10% 0.67 15.82 9.91 61.89 0.16 7.68
PIN1 CSMstrC 10% 3.78 19.36 15.56 44.55 0.75 2.04

PIN2 NEW 2% −0.03 17.14 10.92 75.50 0.09 5.75
PIN2 CSMstrC 2% 12.79 26.19 56.71 137.44 1.48 2.27

PIN2 NEW 5% 0.36 16.01 8.42 57.59 0.08 4.92
PIN2 CSMstrC 5% 14.29 25.09 50.32 104.50 0.78 1.54

PIN2 NEW 10% 0.75 14.69 6.01 39.98 0.07 3.58
PIN2 CSMstrC 10% 15.69 23.91 40.44 59.84 0.66 0.94

PB NEW NA 0.31 17.59 58.40 190.70 0.22 20.24

Table 4.1: Summary of Displacement Response Error (εDeff
) and Performance Point

Error (εDPP
) over the entire range of ductilities (1.25 : 0.25 : 6.5) for period range Tlow

- far-field ground motions. CSMstrB/C - conventional Capacity Spectrum Method
for Structural Behavior Type (str) indicated. NEW - new approach implemented in
this study. N/C - Non-convergent cases. mult - multiple solutions
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εDpp µ = µ = µ =
Model Eqn. α Range 1.25-3.0 3.25-5.0 5.25-6.5

BLH NEW 0% -10% to 20% 47.72 26.76 25.27
BLH CSMstrB 0% -10% to 20% 19.20 18.93 16.88

BLH NEW 5% -10% to 20% 54.64 37.68 40.00
BLH CSMstrB 5% -10% to 20% 24.69 28.26 27.02

KDEG NEW 0% -10% to 20% 62.34 42.01 41.37
KDEG CSMstrC 0% -10% to 20% 32.88 22.90 22.41

KDEG NEW 5% -10% to 20% 65.16 45.71 47.29
KDEG CSMstrC 5% -10% to 20% 35.11 24.80 23.13

STRDG NEW −5% -10% to 20% 59.04 34.80 32.08
STRDG CSMstrC −5% -10% to 20% 28.17 16.23 14.70

PB NEW NA -10% to 20% 64.13 28.26 23.54

BLH NEW 0% -20% to 40% 74.31 49.17 45.24
BLH CSMstrB 0% -20% to 40% 39.33 31.88 31.82

BLH NEW 5% -20% to 40% 81.96 65.51 65.65
BLH CSMstrB 5% -20% to 40% 47.52 47.50 48.57

KDEG NEW 0% -20% to 40% 86.12 67.79 66.58
KDEG CSMstrC 0% -20% to 40% 57.77 41.61 41.85

KDEG NEW 5% -20% to 40% 88.86 73.73 74.29
KDEG CSMstrC 5% -20% to 40% 60.47 47.92 44.49

STRDG NEW −5% -20% to 40% 83.01 60.13 57.74
STRDG CSMstrC −5% -20% to 40% 49.78 31.07 30.12

PB NEW NA -20% to 40% 84.42 50.45 41.70

Table 4.2: Summary (in %) of Performance Point Error (εDPP
) for three separate

ductility ranges - far-field ground motions. CSMstrB/C - conventional Capacity
Spectrum Method for Structural Behavior Type (str) indicated. NEW - new approach
implemented in this study
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εDpp µ = µ = µ =
Model Eqn. α Range 1.25-3.0 3.25-5.0 5.25-6.5

BLH NEW 0% ≤ −20% 16.94 36.36 37.77
BLH CSMstrB 0% ≤ −20% 41.54 42.10 37.80

BLH NEW 5% ≤ −20% 12.59 26.16 24.08
BLH CSMstrB 5% ≤ −20% 34.58 26.74 18.96

KDEG NEW 0% ≤ −20% 5.89 20.31 21.70
KDEG CSMstrC 0% ≤ −20% 8.64 8.26 6.25

KDEG NEW 5% ≤ −20% 5.07 16.92 16.58
KDEG CSMstrC 5% ≤ −20% 7.05 5.67 4.40

STRDG NEW −5% ≤ −20% 7.66 24.11 26.19
STRDG CSMstrC −5% ≤ −20% 9.93 8.93 7.20

PB NEW NA ≤ −20% 4.40 20.33 25.92

BLH NEW 0% ≥ 40% 8.62 14.46 16.99
BLH CSMstrB 0% ≥ 40% 11.23 23.93 27.71

BLH NEW 5% ≥ 40% 5.40 8.33 10.27
BLH CSMstrB 5% ≥ 40% 12.14 25.76 32.47

KDEG NEW 0% ≥ 40% 7.88 11.90 11.73
KDEG CSMstrC 0% ≥ 40% 30.78 47.52 48.36

KDEG NEW 5% ≥ 40% 6.00 9.33 9.14
KDEG CSMstrC 5% ≥ 40% 31.07 46.38 50.86

STRDG NEW −5% ≥ 40% 9.17 15.60 15.48
STRDG CSMstrC −5% ≥ 40% 32.30 46.03 45.00

PB NEW NA ≥ 40% 11.12 29.04 31.88

Table 4.3: Summary (in %) of Performance Point Error (εDPP
) for three separate

ductility ranges - far-field ground motions. CSMstrB/C - conventional Capacity
Spectrum Method for Structural Behavior Type (str) indicated. NEW - new approach
implemented in this study
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Chapter 5

New Capacity Spectrum Method
of Analysis

5.1 Detailed Performance Point Solution Proce-

dure for Application by Structural Engineers

A detailed version of the Performance Point solution procedure proposed in Section 2.8

is now provided. The solution procedure introduced in this section is intended for

implementation by structural engineers. The procedures A and B presented in Sec-

tion 4.3 are most suitable for an automated implementation with a bilinear capacity

spectrum. Those procedures were developed from a research point of view which

required the analysis of a large number of capacity spectra and ground motions. The

only desired information was the Performance Point ductility value.

The new Performance Point solution procedure is designed to work for any shape

of capacity spectrum. It will also give substantially more insight into the sensitivity

of the Performance Point prediction. The procedure is intended to be a structural

engineering analysis tool for building design and evaluation. Beyond just a Perfor-

mance Point prediction, the procedure will reveal how changes in either the capacity

or demand will effect the prediction. This new procedure also rigorously reveals cases

when there are multiple Performance Point solutions and is intended for implemen-

tation in a completely graphical nature. It contains steps that can both be done

by hand analysis (with paper and pencil) or implemented on a computer (Excel or
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Matlab). The engineer can implement the steps in any medium desired but must

understand that a hand analysis will likely be less accurate than one performed on a

computer.

1. For a building designed on a specific site, a computer model of the structure is

constructed as discussed in Section 1.4.2.2. A push-over analysis is performed

on the computer model using the first mode shape load profile. A load-deflection

curve is obtained from the push-over analysis. The building must also be clas-

sified as a hysteretic system - BLH, KDEG, PIN1 or PIN2. This is discussed in

Section 3.1. Assume a nominal viscous damping value (ζo) of 5% unless other

information is obtained that leads to a different value.

Commentary: The effective parameter equations have been developed for build-

ings with ζo ≤ 10%. Buildings with supplemental damping devices or base iso-

lation should not be analyzed by this procedure.

2. Convert the push-over curve into a capacity spectrum using the following equa-

tions

Spectral Acceleration = Force ãTMã/(ãTMĨ)2 (5.1)

Spectral Displacement = Displacement ãTMã/(ãTMĨ) (5.2)

where ã is the fundamental lateral mode shape, M is the mass matrix for the

horizontal degrees of freedom and Ĩ is the identity vector.

3. On the capacity spectrum, fit a bilinear approximation for several values of post-

yield displacement, d∗. This requires the determination of a yield point (dy, ay)

and an end point (d∗, a∗) for each bilinear approximation. Use Equations 5.3

through 5.5 to calculate the initial period, To, ductility, µ, and second slope

ratio, α. Record these values in Table 5.1.

To = 2π
√

ay/dy (5.3)

µ = d∗/dy (5.4)
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α = [(a∗ − ay)dy]/[(d∗ − dy)ay] (5.5)

(d∗, a∗) (dy, ay) To µ α Teff ζeff Tsec M

Table 5.1: Table of values calculated during the solution procedure

T
o

a
y

d
y

d
µ=2

d
µ=3

d
µ=4

d
µ=5

d
µ=6

PSA

SD

(a) Bilinear capacity spectrum

(d
*
,a

*
)

(d
y
,a

y
)

PSA

SD

(b) Curved capacity spectrum

Figure 5.1: Capacity spectrum shapes

Commentary: Two examples of capacity curves are shown in Figures 5.1.

Figure 5.1(a) is a bilinear capacity spectrum and therefore To and (dy, ay) will

not change for different levels of ductility. Figure 5.1(b) shows a rounded ca-

pacity spectrum which requires separate bilinear approximations for each point

(d∗, a∗) . A bilinear approximation is necessary because the equivalent parameter

equations have been developed from models with constant second slope ratios.

4. Use the values in Table 5.1 to calculate Teff and ζeff using the equations in

Section 3.4. For second slope ratios, α, not equal to the discrete values in
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Section 3.4, use linear interpolation. Record the values of Teff and ζeff in

Table 5.1.

5. Calculate the modification factor, M , for the different values of ductility and

second slope ratio from the equations in Section 3.4. For second slope ratios, α,

not equal to the discrete values in Section 3.4, use linear interpolation. Record

the values of Teff and ζeff in Table 5.1.

T
o

d
y

dµ=2
dµ=3

dµ=4
dµ=5

dµ=6

Tµ=2

Tµ=3

Tµ=4

Tµ=5

Tµ=6

PSA

SD

Figure 5.2: Bilinear capacity spectrum with secant period lines

Commentary: The modification factor can also be calculated as M = (
Teff

To

To

Tsecant
)2.

The secant period ratio, Tsecant/To, can be calculated from bilinear approxima-

tions made on the capacity spectrum using the equation Tsecant/To = 2π
√

a∗/d∗.

Figure 5.2 shows the secant period lines drawn onto the bilinear capacity spec-

trum.

6. Obtain a design spectrum for the nominal amount of damping (ζo) and demand

spectra for all ζeff values in Table 5.1.

Commentary: The approach to this step will depend on the design spectrum.

The UBC design spectrum can easily be calculated for any value of damping

using the procedure presented in Section F.1. Substitute ζeff for βeff in equa-

tion 1.28. A site-specific spectra from a ground motion consultant may also be
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used. The design spectrum for the nominal amount of damping (ζo) and other

larger amounts of damping will be needed. Increments of 5% up to about 25%

should be fine. An example is shown in Figure 5.3. Ductility values are associ-

ated with effective damping values in Table 5.1. Linear interpolation should be

used for intermediate damping values.

ADRS for ζ=5%,10%,20% and 30%

ADRS for µ=2,3,4,5 and 6

PSA

SD

(a) ADRS for a range of ζ values and for different
levels of ductility from Table 5.1

Design Spectrum (ζ=5%)

ADRS for µ=2,3,4,5 and 6

PSA

SD

(b) ADRS for a range of ductility values

Figure 5.3: Family of Acceleration-Displacement Response Spectra (ADRS)

7. Multiply each ADRS by its corresponding modification factor. This results in

the family of MADRS curves as shown in Figure 5.4.

8. Along the capacity spectrum, draw radial lines from the origin through the

d∗, a∗ points associated with the different values of ductility along the capacity

spectrum. Each radial line represents the secant period for the corresponding

ductility value. Mark the point of intersection of each radial line with the

appropriate MADRS.

9. The Locus of Performance Points is obtained by connecting the points of inter-

section from Step 8.
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ADRS for µ=2,3,4,5 and 6

MADRS for µ=2,3,4,5 and 6

PSA

SD

Figure 5.4: Family of Modified Acceleration-Displacement Response Spectra
(MADRS) after Step 7

10. The Performance Point is the intersection of the capacity spectrum and the

Locus of Performance Points as seen in Figure 5.5.

Commentary: If necessary, at any time go back to step 2 and choose a differ-

ent end point for the capacity spectrum (d∗,a∗) and repeat the analysis. Choosing

d∗ to be the smallest or largest displacement in Table 5.1 will help to check if

multiple solutions exist. Choosing d∗ near the Performance Point predicted in

Step 10 will help give a more accurate answer.

5.2 Observations on the New Solution Procedure

Based on the New Capacity Spectrum of Analysis presented in Section 5.1 the fol-

lowing observations can be made:

1. The new procedure is completely graphical for extremely transparent applica-

tion. Figure 5.5 shows the culmination of all the steps in the new Performance

Point solution procedure. The more bilinear approximations used in step 2, the

more points will make up the Locus of Performance Points. At anytime, a new

line can be added to Table 5.1 and the Locus of Performance Points can be
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dµ=6

Tµ=2
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Tµ=5

Tµ=6

Locus of Performance Points

Performance
Point

PSA

SD

Figure 5.5: Graphically determining the Performance Point after Step 10

refined and improved.

2. The graphical nature of the new solution procedure allows the sensitivity of

the Performance Point prediction to be directly observable. At the end of

the analysis, the engineer should take a step back and ask the question as to

what would happen to the Performance Point if the capacity spectrum changed

slightly. If the strength of the capacity spectrum were increased or decreased,

what would happen to the Performance Point. This issue deals with the angle

of intersection of the Locus of Performance Points and the capacity spectrum.

The angle of intersection is directly observable in this procedure.

3. The new solution procedure also reveals whether it would be beneficial to go

back and add more lines to Table 5.1. If the Locus of Performance Points is

nearly vertical, there would be no need to go back and add another iteration.

Loci of Performance Points for a bilinear capacity spectra using the UBC design

spectrum are graphed in Section 4.4.3.

4. While the conventional Capacity Spectrum Method solution procedures in ATC-

40 make no mention of it, the possibility of multiple Performance Point solutions
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can clearly be seen in the new procedure. The Performance Point is at the in-

tersection of the capacity spectrum and the Locus of Performance Points which

might occur once, several times or even not at all. Extending the Locus of

Performance Points to ductilities beyond the first intersection of the Locus and

the capacity spectrum can clearly reveal the possibility of another intersection

point. Multiple Performance Points should require serious attention. A con-

servative approach is to use the Performance Point at the largest displacement.

Another approach is to modify the capacity spectrum so that there are not

multiple solutions. This would require performing a retrofit procedure on the

structure.

5. The new procedure can clearly give insight into the effects of strengthening,

stiffening and increasing ductility capacity on a case by case basis in a ex-

tremely efficient manner. The same can be said about changes in the demand

spectra. A change on the demand side is perhaps less practical since the en-

gineer generally accepts the demand side either as the UBC spectrum or from

the recommendation of a ground motion specialist. If the Locus of Performance

Points were slightly different, how would that effect the Performance Point so-

lution. This deals with the angle of intersection between the capacity spectrum

and the Locus of Performance Points.

6. The new solution procedure can be applied to any type of design spectrum. The

only requirement is that demand spectra for the necessary values of damping are

obtainable. The procedure is equally effective on any shape of design spectrum.

The conventional Capacity Spectrum Method procedures were developed to be

used in conjunction with the UBC design spectrum. The spectral reduction

equations directly involve the UBC spectrum. The factors SRA and SRV are

only applicable to the UBC-shaped spectrum. See Section F.1 for more details.
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Effective Linear Parameters
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Figure A.1: Effective parameters for stiffness degrading system - near-field motions
with To/Tp ≤ 0.7. Conv. CSM - conventional Capacity Spectrum Method, Structural
Behavior Type B (ATC-40). New Appr. - new approach implemented in this study.
Second slope ratios, α, as indicated
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Figure A.2: Effective parameters for stiffness degrading system - near-field motions
with 0.8 ≤ To/Tp ≤ 1.2. Conv. CSM - conventional Capacity Spectrum Method,
Structural Behavior Type B (ATC-40). New Appr. - new approach implemented in
this study. Second slope ratios, α, as indicated
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Figure A.3: Effective parameters for bilinear model (BLH) with ζ0 = 2%, 5% and 7%
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Appendix B

Displacement Response Error
Results
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Figure B.1: Displacement Response Error results for bilinear hysteretic system (BLH)
- far-field motions. CSM - conventional Capacity Spectrum Method, Structural Be-
havior Type B (ATC-40). NEW - new approach implemented in this study. Second
slope ratios, α, as indicated
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Figure B.2: Displacement Response Error results for bilinear hysteretic system (BLH)
- near-field motions with To/Tp ≤ 0.7. CSM - conventional Capacity Spectrum
Method, Structural Behavior Type A (ATC-40). NEW - new approach implemented
in this study. Second slope ratios, α, as indicated
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Figure B.3: Displacement Response Error results for bilinear hysteretic system (BLH)
- near-field motions with 0.8 ≤ To/Tp ≤ 1.2. CSM - conventional Capacity Spectrum
Method, Structural Behavior Type A (ATC-40). NEW - new approach implemented
in this study. Second slope ratios, α, as indicated
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Appendix C

Performance Point Error Results
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Figure C.1: Performance Point Error results for stiffness degrading system (KDEG) -
far-field motions. Conv. CSM - conventional Capacity Spectrum Method, Structural
Behavior Type C (ATC-40). New Appr. - new approach implemented in this study.
Second slope ratios, α, as indicated
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Figure C.2: Performance Point Error results for pinching hysteretic model (PIN1) -
far-field motions. Conv. CSM - conventional Capacity Spectrum Method, Structural
Behavior Type C (ATC-40). New Appr. - new approach implemented in this study.
Second slope ratios, α, as indicated
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Figure C.3: Performance Point Error results for pinching hysteretic model (PIN2) -
far-field motions. Conv. CSM - conventional Capacity Spectrum Method, Structural
Behavior Type C (ATC-40). New Appr. - new approach implemented in this study.
Second slope ratios, α, as indicated
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Figure C.4: Performance Point Error results for stiffness degrading model (KDEG)
with second slope ratio of 0% - two far-field ground motion databases
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Figure C.5: Performance Point Error results for stiffness degrading model (KDEG)
with second slope ratio of 5% - two far-field ground motion databases
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Figure C.6: Sensitivity of Performance Point Error results to changes in Engineering
Acceptability Range for stiffness degrading model (KDEG) with second slope ratio
of 2% - far-field motions



136

Appendix D

Tabular Form of Displacement
Response Error and Performance
Point Error Results

Model - BLH εDeff
εDpp

Eqn. To/Tp α mean STD mean STD N/C mult

NEW < 0.7 0% −0.46 19.14 11.10 58.72 0.14 4.92
CSMstrA < 0.7 0% 1.76 27.39 62.25 208.72 9.23 1.35

NEW 0.8− 1.2 0% −1.52 23.53 −1.39 22.51 0.00 0.06
CSMstrA 0.8− 1.2 0% −23.61 21.61 −22.95 23.32 2.47 0.00

NEW < 0.7 2% 0.19 17.70 9.69 49.85 0.23 3.53
CSMstrA < 0.7 2% 0.58 24.48 57.49 150.03 2.32 0.28

NEW 0.8− 1.2 2% −0.84 21.75 −0.78 20.67 0.00 0.00
CSMstrA 0.8− 1.2 2% −23.03 20.07 −22.15 20.98 2.21 0.00

NEW < 0.7 5% 0.71 16.20 8.61 42.64 0.14 2.78
CSMstrA < 0.7 5% 0.19 21.63 28.76 78.21 2.13 0.14

NEW 0.8− 1.2 5% −0.12 19.40 −0.06 18.30 0.00 0.00
CSMstrA 0.8− 1.2 5% −21.21 18.51 −20.29 18.90 1.95 0.00

NEW < 0.7 10% 1.64 14.67 9.54 40.13 0.05 2.41
CSMstrA < 0.7 10% 0.28 18.44 16.42 49.87 1.99 0.05

NEW 0.8− 1.2 10% 1.14 16.19 1.12 15.69 0.00 0.00
CSMstrA 0.8− 1.2 10% −18.19 16.02 −17.13 16.90 1.62 0.00

Table D.1: Summary (in %) of Displacement Response Error (εDeff
) and Performance

Point Error (εDPP
) over the entire range of ductilities (1.25 : 0.25 : 6.5) for bilinear

model (BLH) - near-field ground motions, CSMstrA - conventional Capacity Spec-
trum Method for Structural Behavior Type A (strA) indicated. NEW - new approach
implemented in this study. N/C - Non-convergent cases. mult - multiple solutions
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Model - KDEG εDeff
εDpp

Eqn. To/Tp α mean STD mean STD N/C mult

NEW < 0.7 0% 1.05 14.60 50.22 170.57 0.0 12.11
CSMstrB < 0.7 0% 13.03 25.43 93.76 209.49 9.28 2.50
CSMstrC < 0.7 0% 33.14 30.41 156.17 226.93 9.55 4.22

NEW 0.8− 1.2 0% 1.46 15.98 1.47 15.48 0.0 0.06
CSMstrB 0.8− 1.2 0% −12.18 17.48 −11.21 18.15 0.91 0.00
CSMstrC 0.8− 1.2 0% 3.04 20.21 5.96 22.60 0.13 0.19

NEW < 0.7 2% 1.19 14.13 41.42 144.35 0.09 11.69
CSMstrB < 0.7 2% 10.82 23.02 98.33 216.08 2.41 1.16
CSMstrC < 0.7 2% 30.67 27.63 146.90 256.24 5.57 2.97

NEW 0.8− 1.2 2% 1.69 15.15 1.76 14.90 0.0 0.06
CSMstrB 0.8− 1.2 2% −12.31 16.64 −11.23 17.02 0.71 0.00
CSMstrC 0.8− 1.2 2% 3.36 19.45 5.91 21.50 0.13 0.00

NEW < 0.7 5% 1.38 13.46 33.00 126.48 0.09 9.32
CSMstrB < 0.7 5% 9.05 20.48 55.12 99.29 0.79 0.56
CSMstrC < 0.7 5% 29.51 25.22 132.03 183.53 0.88 2.55

NEW 0.8− 1.2 5% 1.87 14.17 1.96 14.00 0.0 0.06
CSMstrB 0.8− 1.2 5% −11.78 15.66 −10.55 16.15 0.58 0.00
CSMstrC 0.8− 1.2 5% 5.15 19.02 7.82 21.73 0.13 0.00

NEW < 0.7 10% 1.82 12.59 17.76 69.92 0.37 7.10
CSMstrB < 0.7 10% 7.61 17.74 33.90 60.71 0.70 0.19
CSMstrC < 0.7 10% 28.40 22.75 91.33 106.00 0.14 1.48

NEW 0.8− 1.2 10% 2.00 12.90 2.17 12.91 0.0 0.06
CSMstrB 0.8− 1.2 10% −9.90 14.83 −8.46 16.01 0.58 0.00
CSMstrC 0.8− 1.2 10% 8.47 19.01 11.82 23.30 0.13 0.13

Table D.2: Summary (in %) of Displacement Response Error (εDeff
) and Performance

Point Error (εDPP
) over the entire range of ductilities (1.25 : 0.25 : 6.5) for stiffness

degrading model (KDEG) - near-field ground motions. CSMstrB/C - conventional
Capacity Spectrum Method for Structural Behavior Type (str) indicated. NEW - new
approach implemented in this study. N/C - Non-convergent cases. mult - multiple
solutions
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εDpp µ = µ = µ =
Model Eqn. α Range 1.25-3.0 3.25-5.0 5.25-6.5

BLH NEW 0% -10% to 20% 46.05 34.57 24.66
BLH CSMstrA 0% -10% to 20% 19.39 16.45 18.03

BLH NEW 5% -10% to 20% 49.62 43.62 42.69
BLH CSMstrA 5% -10% to 20% 22.96 23.21 22.45

KDEG NEW 0% -10% to 20% 47.96 27.17 30.61
KDEG CSMstrB 0% -10% to 20% 27.17 13.27 19.56
KDEG CSMstrC 0% -10% to 20% 21.56 13.52 15.31

KDEG NEW 5% -10% to 20% 51.66 32.53 33.84
KDEG CSMstrB 5% -10% to 20% 27.68 21.81 27.55
KDEG CSMstrC 5% -10% to 20% 23.34 17.98 17.69

BLH NEW 0% -20% to 40% 70.15 58.16 43.37
BLH CSMstrA 0% -20% to 40% 36.61 31.51 34.18

BLH NEW 5% -20% to 40% 73.98 66.96 62.76
BLH CSMstrA 5% -20% to 40% 45.15 41.33 48.81

KDEG NEW 0% -20% to 40% 75.26 58.04 56.80
KDEG CSMstrB 0% -20% to 40% 58.04 30.10 36.39
KDEG CSMstrC 0% -20% to 40% 34.69 27.30 26.19

KDEG NEW 5% -20% to 40% 78.44 65.82 64.29
KDEG CSMstrB 5% -20% to 40% 49.87 41.58 52.89
KDEG CSMstrC 5% -20% to 40% 37.50 31.89 30.61

Table D.3: Summary (in %) of Displacement Response Error (εDeff
) and Performance

Point Error (εDPP
) over three separate ductility ranges for BLH and KDEG - near-field

motions with To/Tp ≤ 0.7. CSMstrA/B/C - conventional Capacity Spectrum Method
for Structural Behavior Type (str) indicated. NEW - new approach implemented in
this study
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εDpp µ = µ = µ =
Model Eqn. α Range 1.25-3.0 3.25-5.0 5.25-6.5

BLH NEW 0% ≤ −20% 14.29 25.00 35.88
BLH CSMstrA 0% ≤ −20% 34.18 30.61 26.36

BLH NEW 5% ≤ −20% 12.12 18.62 23.64
BLH CSMstrA 5% ≤ −20% 30.61 26.40 19.05

KDEG NEW 0% ≤ −20% 7.27 16.84 16.33
KDEG CSMstrB 0% ≤ −20% 16.84 14.80 9.35
KDEG CSMstrC 0% ≤ −20% 3.57 0.13 0.17

KDEG NEW 5% ≤ −20% 7.27 13.65 14.29
KDEG CSMstrB 5% ≤ −20% 16.71 12.24 4.25
KDEG CSMstrC 5% ≤ −20% 3.44 0.00 0.00

BLH NEW 0% ≥ 40% 15.18 16.84 20.75
BLH CSMstrA 0% ≥ 40% 18.75 30.87 28.91

BLH NEW 5% ≥ 40% 13.56 14.41 13.44
BLH CSMstrA 5% ≥ 40% 18.75 32.14 31.80

KDEG NEW 0% ≥ 40% 17.47 27.13 26.87
KDEG CSMstrB 0% ≥ 40% 25.13 45.66 43.37
KDEG CSMstrC 0% ≥ 40% 54.21 62.24 62.42

KDEG NEW 5% ≥ 40% 14.03 20.54 21.43
KDEG CSMstrB 5% ≥ 40% 31.38 46.05 42.86
KDEG CSMstrC 5% ≥ 40% 58.67 67.35 67.69

Table D.4: Summary (in %) of Displacement Response Error (εDeff
) and Performance

Point Error (εDPP
) over three separate ductility ranges for BLH and KDEG - near-field

motions with To/Tp ≤ 0.7. CSMstrA/B/C - conventional Capacity Spectrum Method
for Structural Behavior Type (str) indicated. NEW - new approach implemented in
this study
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εDpp µ = µ = µ =
Model Eqn. α Range 1.25-3.0 3.25-5.0 5.25-6.5

BLH NEW 0% -10% to 20% 58.93 28.39 30.95
BLH CSMstrA 0% -10% to 20% 13.75 18.75 21.19

BLH NEW 5% -10% to 20% 64.64 40.18 46.90
BLH CSMstrA 5% -10% to 20% 13.75 18.57 23.57

KDEG NEW 0% -10% to 20% 71.25 52.14 52.86
KDEG CSMstrB 0% -10% to 20% 26.61 34.82 48.81
KDEG CSMstrC 0% -10% to 20% 52.50 50.89 54.29

KDEG NEW 5% -10% to 20% 74.64 61.07 67.38
KDEG CSMstrB 5% -10% to 20% 28.04 39.64 50.00
KDEG CSMstrC 5% -10% to 20% 57.50 55.18 57.14

BLH NEW 0% -20% to 40% 89.28 69.46 68.57
BLH CSMstrA 0% -20% to 40% 31.07 34.64 45.00

BLH NEW 5% -20% to 40% 94.28 80.00 75.00
BLH CSMstrA 5% -20% to 40% 35.89 38.93 47.14

KDEG NEW 0% -20% to 40% 97.68 91.96 90.95
KDEG CSMstrB 0% -20% to 40% 54.82 58.39 73.81
KDEG CSMstrC 0% -20% to 40% 86.25 79.64 80.95

KDEG NEW 5% -20% to 40% 98.39 93.75 95.00
KDEG CSMstrB 5% -20% to 40% 60.36 65.18 78.57
KDEG CSMstrC 5% -20% to 40% 88.75 88.04 81.67

Table D.5: Summary (in %) of Displacement Response Error (εDeff
) and Perfor-

mance Point Error (εDPP
) over three separate ductility ranges for BLH and KDEG -

near-field motions with 0.8 ≤ To/Tp ≤ 1.2. CSMstrA/B/C - conventional Capacity
Spectrum Method for Structural Behavior Type (str) indicated. NEW - new approach
implemented in this study
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εDpp µ = µ = µ =
Model Eqn. α Range 1.25-3.0 3.25-5.0 5.25-6.5

BLH NEW 0% ≤ −20% 7.86 25.89 29.52
BLH CSMstrA 0% ≤ −20% 62.32 63.57 51.67

BLH NEW 5% ≤ −20% 3.39 18.21 22.62
BLH CSMstrA 5% ≤ −20% 58.75 59.82 50.00

KDEG NEW 0% ≤ −20% 1.07 7.86 9.05
KDEG CSMstrB 0% ≤ −20% 42.32 39.64 23.81
KDEG CSMstrC 0% ≤ −20% 8.39 12.32 6.67

KDEG NEW 5% ≤ −20% 0.54 5.54 4.52
KDEG CSMstrB 5% ≤ −20% 37.68 33.39 19.76
KDEG CSMstrC 5% ≤ −20% 5.71 3.93 5.00

BLH NEW 0% ≥ 40% 2.86 4.64 1.90
BLH CSMstrA 0% ≥ 40% 0.00 1.61 3.33

BLH NEW 5% ≥ 40% 2.32 1.79 2.38
BLH CSMstrA 5% ≥ 40% 0.00 1.25 2.86

KDEG NEW 0% ≥ 40% 1.25 0.18 0.00
KDEG CSMstrB 0% ≥ 40% 0.36 1.96 2.38
KDEG CSMstrC 0% ≥ 40% 5.50 8.04 12.38

KDEG NEW 5% ≥ 40% 1.07 0.71 0.48
KDEG CSMstrB 5% ≥ 40% 0.36 1.43 1.67
KDEG CSMstrC 5% ≥ 40% 5.18 8.04 13.33

Table D.6: Summary (in %) of Displacement Response Error (εDeff
) and Perfor-

mance Point Error (εDPP
) over three separate ductility ranges for BLH and KDEG -

near-field motions with 0.8 ≤ To/Tp ≤ 1.2. CSMstrA/B/C - conventional Capacity
Spectrum Method for Structural Behavior Type (str) indicated. NEW - new approach
implemented in this study
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Appendix E

Locus of Performance Points from
the UBC Spectrum



143

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

S
pe

ct
ra

l A
cc

el
er

at
io

n 
(g

)

Spectral Displacement (cm)

T
o
=0.4,0.8,1.2 and 1.6 sec

µ=1 to 8

Conv. Appr.
New Appr.

Figure E.1: UBC Locus of Performance Points for bilinear hysteretic system (BLH)
with α = 5% - far-field motions
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Figure E.2: Strength reduction factor, R, versus Performance Point ductility, µpp,
from Figure E.1
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Figure E.3: UBC Locus of Performance Points for stiffness degrading system (KDEG)
with α = 5% - far-field motions
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Figure E.4: Strength reduction factor, R, versus Performance Point ductility, µpp,
from Figure E.3
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Appendix F

Existing Nonlinear Static
Procedures

F.1 Conventional Capacity Spectrum Method

The Capacity Spectrum Method as explained in ATC-40 [19] is summarized below.

1. A building designed on a specific site is obtained. A computer model of the

structure is constructed as discussed in Section 1.4.2.2. A push-over analysis is

performed on the computer model using the first-mode shape load profile. A

load-deflection curve is obtained from the push-over analysis.

2. Convert the push-over curve into a capacity spectrum using the following equa-

tions

Spectral Acceleration = Force ãTMã/(ãTMĨ)2 (F.1)

Spectral Displacement = Displacement ãTMã/(ãTMĨ) (F.2)

where ã is the fundamental lateral mode shape, M is the mass matrix for the

horizontal degrees of freedom and Ĩ is the identity vector.

3. Use Table F.1 to determine the Structural Behavior Type (SBT), which is not

independent of the expected ground motion at the site. Structural Behavior

Type depends on both engineering judgment and shaking duration expected on

the site. Near-fault sites are categorized as short shaking duration while far-field

sites are categorized as long shaking duration.
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Essentially Average Poor
Shaking New Existing Existing
Duration1 Building2 Building3 Building4

Short Type A Type B Type C
Long Type B Type C Type C

Table F.1: Structural Behavior Type (Table 8-4 in ATC-40)

4. Determine the Seismic Source Type from Table F.2. The Seismic Source Type

is a function of the Seismic Source Description and Seismic Source Definition.

Seismic Source Definition
Seismic
Source
Type

Seismic Source Description
Max Moment
Magnitude, M

Slip Rate,
SR(mm/yr)

A
Faults that are capable of produc-
ing large magnitude events that
have a high rate of seismic activity

M ≥ 7.0 SR ≥ 5

B All other faults not in type A or C NA NA

C

Faults that are not capable of pro-
ducing large magnitude events and
that have a relatively low rate of
seismic activity

M < 6.5 SR < 2

Table F.2: Seismic Source Type (Table 4-6 in ATC-40)

5. Determine the Soil Profile Type from Table F.3. Formulas for calculating the

average shear wave velocity, the Standard Penetration Test (SPT) coefficient N

and the average undrained shear strength are provided in ATC-40.

6. Determine the Seismic Zone Factor (Z) is determined. Z = 0.075, 0.15, 0.20, 0.30

and 0.40 for zones 1, 2A, 2B, 3 and 4, respectively, in accordance with the

California Building Code (CBSC 1995).

1See section 4.5.2 of ATC-40 for criteria
2Buildings whose primary elements make up an essentially new lateral system and little strength

or stiffness is contributed by non-complying elements.
3Buildings whose primary elements are combinations of existing and new elements, or better than

average existing systems.
4Buildings whose primary elements make up non-complying lateral force systems with poor or

unreliable hysteretic behavior.
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Avg Soil Properties for top 100 feet of site

Soil Pro-
file Type

Soil Profile
Name and
Generic
Description

Shear Wave
Velocity,
vs (ft/sec) [m/s]

SPT,
N (blows/ft)
[or NCH for
cohesion-less
soil layers]

Undrained
Shear
Strength,
su (psf)

SA Hard Rock vs > 5000[1524] Not Applicable

SB Rock
2500[762] < vs ≤
5000[1524]

Not Applicable

SC

Very Dense
Soil and Soft
Rock

1200[366] < vs ≤
2500[762]

N > 50 su > 2000

SD Stiff Soil
1200[366] < vs ≤
2500[762]

15 ≤ N ≤ 50
1000 ≤ su ≤
2000

SE Soft Soil
600[183] < vs ≤
1200[366]

N < 15 su < 1000

SF Soil Requiring Site-Specific Evaluation

Table F.3: Soil Profile Type (Table 4-3 in ATC-40)

7. Determine Near-Source Factors from Table F.4.

Seismic Distance to Known Seismic Source
Source ≤ 2 km 5 km 10 km > 15 km
Type NA NV NA NV NA NV NA NV

A 1.5 2.0 1.2 1.6 1.0 1.2 1.0 1.0
B 1.3 1.6 1.0 1.2 1.0 1.0 1.0 1.0
C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table F.4: Near-Source Factors, NA and NV (Table 4-5 in ATC-40)

8. Compute Seismic Coefficients CA and CV from Tables F.5 and F.6, respectively.

The factor ZEN is the multiplication of the Seismic Zone Factor (Z) and the

Near-Source Factors (either NA or NV ) and the following values for E: 0.5

for the Serviceability Earthquake, 1.0 for the Design Earthquake, 1.25 for the

Maximum Earthquake in zone 4 and 1.5 for the Maximum Earthquake in zone

3.

9. Construct the 5% damped Acceleration-Displacement Response Spectrum (ADRS)



148

Soil Profile Shaking Intensity, ZEN
Type = 0.075 = 0.15 = 0.20 = 0.30 = 0.40 > 0.40

SB 0.08 0.15 0.20 0.30 0.40 1.0 ZEN
SC 0.09 0.18 0.24 0.33 0.40 1.0 ZEN
SD 0.12 0.22 0.28 0.36 0.44 1.1 ZEN
SE 0.19 0.30 0.34 0.36 0.36 0.9 ZEN
SF Site-Specific Geotechnical Investigation Required

Table F.5: Seismic Coefficient, CA (Table 4-7 in ATC-40)

Soil Profile Shaking Intensity, ZEN
Type = 0.075 = 0.15 = 0.20 = 0.30 = 0.40 > 0.40

SB 0.08 0.15 0.20 0.30 0.40 1.0 ZEN
SC 0.13 0.25 0.32 0.45 0.56 1.4 ZEN
SD 0.18 0.32 0.40 0.54 0.64 1.6 ZEN
SE 0.26 0.50 0.64 0.84 0.96 2.4 ZEN
SF Site-Specific Geotechnical Investigation Required

Table F.6: Seismic Coefficient, CV (Table 4-8 in ATC-40)

as seen in Figure F.1. This is the Design Spectrum for the analysis. This spec-

trum is adopted from the Uniform Building Code (UBC), so it will be referred

to as the UBC Design Spectrum.

10. Using the equal displacement approximation or information from previous iter-

ations, choose a point along the capacity spectrum to be the expected Perfor-

mance Point. Fit a bilinear curve for the capacity spectrum that ends at the

expected Performance Point. The bilinear curve has an initial linear stiffness

up to the yield point, then a post-yield stiffness. (dy, ay) is the yield point and

(dpi, api) is the expected Performance Point. Use Equations 1.28 through F.6 to

calculate the Spectral Reduction Factors SRA and SRV . Apply SRA and SRV to

the UBC Design Spectrum as seen in Figure F.1 to create a Demand Spectrum

associated with a level of ductility where µ = dpi/dy.

βeff (%) = κβ0 + 5 (F.3)
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Structural
Behavior
Type

Min
SRA

Min
SRV

β0 (%) κ

β0 < 16.25 1.0
A 0.33 0.50 16.25 < β0 < 45 1.13− 0.13(β0/16.25)

β0 > 45 0.77
β0 < 25 0.67

B 0.44 0.56 25 < β0 < 45 0.845− 0.175(β0/25)
β0 > 45 0.53

C 0.56 0.67 any value 0.33

Table F.7: Damping Modification Factor, κ (Table 8-1 and 8-2 in ATC-40)

β0 = (
200

π
)(

ay

api

− dy

dpi

) = (
200

π
)
(µ− 1)(1− α)

µ + µα(µ− 1)
(F.4)

SRA =
3.21− 0.68 ln(βeff )

2.12
(F.5)

SRV =
2.31− 0.41 ln(βeff )

1.65
(F.6)

The corner period T1 and other important periods are calculated as follows:

T1 = 0.4CV /CA (F.7)

T ′
1 = (

SRV

SRA

)T1 (F.8)

T2 = T ′
2 = CV /(0.32NV ) (F.9)

11. The design spectrum and the capacity curve should now intersect. The Perfor-

mance Point is obtained when the Design Spectrum ductility and the capacity

spectrum ductility are within a tolerance of approximately 5 percent. This will

be an iterative process.
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Figure F.1: Illustration of the conventional Capacity Spectrum Method

F.1.1 Observations

The Capacity Spectrum Method is based upon the linear response at the secant

period. There is no secant period equation in ATC-40 but the solution procedure

uses the secant period as the effective linear period as seen in Figure F.1.

The Capacity Spectrum Method, as presented in ATC-40, is based upon the use

of the UBC Design Spectrum. Exchanging a site-specific spectrum in place of the

UBC Design Spectrum and using the Spectral Reduction Factors, SRA and SRV , is

not possible. The factors and the corner periods (T1, T ′
1, T2 and T ′

2) are designed

to work for the UBC spectrum. Discontinuities occur when applied to a non-UBC

spectrum.

One can think of the UBC Design Spectrum as consisting of four major parts: the

plateau at low periods (2.5CA), radial period line T1 (T ′
1), radial period line T2 (T ′

2)

and the constant acceleration line at long periods (0.32NV ). The Cv/T portion of the

curve is guaranteed to fit due to the formulation of these four major parts. However,

due to the interconnectedness of the equations for the Demand Spectra, only three
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of these four major parts can be specified. In Figure F.1, it is noted that the corner

period on the inelastic demand spectrum, T ′
1, is where the reduction factors SRA and

SRV are joined. These two factors do not have the same value. The continuity of the

reduced UBC spectrum comes from the value of the corner frequency T ′
1. Applying

the factors SRA and SRV to a non-UBC spectrum will result in a discontinuity along

the radial line T ′
1.

F.2 Coefficient Method

The Coefficient Method as explained in FEMA 273 [2] and FEMA 356 [4] is briefly

summarized below.

Coefficients can be used to modify the linear response of a system to predict the

inelastic system response. The predicted inelastic system displacement is the Target

Displacement. The equation for the Target Displacement, δt, in FEMA 273 is

δt = C0C1C2C3δelastic (F.10)

where C0 is the factor relating Spectral Displacement to roof displacement (similar to

Equation 1.35 in the Capacity Spectrum Method), C1 is the factor to relate expected

maximum inelastic displacements to displacements calculated for linear elastic re-

sponse, C2 is the factor for hysteretic shape and C3 is the factor for P-4 effects. The

elastic displacement, δelastic, is the spectral displacement at the elastic fundamental

period of the building, Te.

δelastic = SD(Te) (F.11)

Te is equivalent to To in the current study. This term is equivalent to what will

be called To in the current study. Spectral Displacement can be related to Pseudo-

Spectral Acceleration by

SD(Te) = PSA(Te)
T 2

e

4π2
g (F.12)

Figure F.2 shows an example of the Coefficient Method. The Target Displacement, δt,
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is directly comparable to the Performance Point in the Capacity Spectrum Method.
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Figure F.2: Illustration of the Coefficient Method

The coefficients used in the coefficient method are functions of several variables.

Most notably, the coefficients are functions of the fundamental elastic period of the

building, Te, and a parameter , R, described in FEMA 273 as the ratio of the elastic

strength to the calculated yield strength coefficient. The equation for R is as follows

R =
PSA(Te)

Vy/W

1

Co

(F.13)

where Vy is the yield strength for a bilinear approximation to the capacity curve, W

is the weight of the building. This is different from the Capacity Spectrum Method

where most coefficients are a function related to ductility. A discussion about ductility

versus strength reduction factor is presented in Section 2.6.

F.3 ATC-55 Project

The Applied Technology Council is currently developing the ATC-55 document: Eval-

uation and Improvement of Inelastic Seismic Analysis Procedures. This document will

improve upon the current ATC-40 document: The Seismic Evaluation and Retrofit

of Concrete Buildings. The new optimal effective linear parameters and the new
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performance point solution procedure developed in this study have recently been ac-

cepted for the improved equivalent linearization procedure in ATC-55. Still to be

performed is a comparison of the accuracy of the Capacity Spectrum Method to the

Coefficient Method. The project management committee has proposed a procedure

for this comparison which will be performed in the coming months. Recommenda-

tions about both Nonlinear Static Procedures will be made based upon the results

from the comparison.
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Appendix G

List of Ground Motions

G.1 Far-field Motions

Orientated to the maximum velocity direction
May 18 1940—Imperial Valley —El Centro —341.69531 —032 47 43N —115 32 55W —032 44 00N —115 27 00W —

6.5— 50— 4—S00E—A001.1 —S90W—A001.2

Jul 21 1952—Kern County —Pasadena-Caltech-Athenaeum —-52.06366 —034 08 20N —118 07 17W —035 00 00N

—119 02 00W — 7.2— 50— 4—S00E—A003.1 —S90W—A003.2

Jul 21 1952—Kern County —Taft-Lincoln School Tunnel —175.94533 —035 09 00N—119 27 00W—035 00 00N—119

02 00W— 7.2— 50— 4—N21E—A004.1 —S69E—A004.2

Jul 21 1952—Kern County —Santa Barbara-Court House —128.61136 —034 25 28N—119 42 05W—035 00 00N—119

02 00W— 7.2— 50— 4—N42E—A005.1 —S48E—A005.2

Jul 21 1952—Kern County —Hollywood Storage-Basement —-54.07431 —034 05 00N —118 20 00W —035 00 00N

—119 02 00W — 7.2— 50— 4—S00W—A006.1 —N90E—A006.2

Jul 21 1952—Kern County —Hollywood Storage-P.E. Lot —-58.10266 —034 05 00N—118 20 00W—035 00 00N—119

02 00W— 7.2— 50— 4—S00W—A007.1 —N90E—A007.2

Mar 22 1957—San Francisco —Golden Gate Park —-102.80478—037 46 12N—122 28 42W—037 40 00N—122 29

00W— 5.3— 50— 4—N10E—A015.1 —S80E—A015.2

Mar 10 1933—Long Beach —Vernon CMD Building —-151.51968—034 00 00N—118 12 00W—033 35 00N—117 59

00W— 6.4— 50— 4—S08W—B021.1 —N82W—B021.2

Dec 30 1934—Lower California —El Centro-Imperial Valley —-179.14079 —032 47 43N —115 32 55W —032 12 00N

—115 30 00W — 7.1— 50— 4—S00W—B024.1 —S90W—B024.2

Oct 31 1935—Helena, Montana —Carrol College —143.46764 —046 35 00N—112 02 00W—046 37 00N—111 58

00W— 5.5— 50— 4—S00W—B025.1 —S90W—B025.2

Apr 13 1949—Western Washington —Seattle-Distr. Engs. Office —66.50983 —047 33 34N—122 20 31W—047 06

00N—122 42 00W— 6.5— 50— 4—S02W—B028.1 —N88W—B028.2

Apr 13 1949—Western Washington —Olympia-Hwy. Test Lab —-274.62964—047 02 00N—122 54 00W—047 06

00N—122 42 00W— 6.5— 50— 4—N04W—B029.1 —N86E—B029.2

Apr 29 1965—Puget Sound —Olympia-Hwy. Test Lab —-194.33553—047 02 00N—122 54 00W—047 24 00N—122

18 00W— 6.4— 50— 4—S04E—B032.1 —S86W—B032.2

Jun 27 1966—Parkfield —Cholame-Shandon Array No. 5 —-425.68188—035 42 00N—120 19 42W—035 54 00N—120

54 00W— 5.8— 50— 4—N05W—B034.1 —N85E—B034.2

Jun 27 1966—Parkfield —Cholame-Shandon Array No. 8 —-269.60083—035 40 18N—120 54 00W—035 54 00N—120

54 00W— 5.8— 50— 4—N50E—B035.1 —N40W—B035.2
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Jun 27 1966—Parkfield —Cholame-Shandon Array No. 12 —-63.17204 —035 38 12N—120 24 12W—035 54 00N—120

54 00W— 5.8— 50— 4—N50E—B036.1 —N40W—B036.2

Jun 27 1966—Parkfield —Temblor-California No. 2 —-340.80957—035 45 07N—120 15 52W—035 54 00N—120 54

00W— 5.8— 50— 4—N65W—B037.1 —S25W—B037.2

Feb 09 1971—San Fernando —Pacoima Dam —-1148.0606—034 20 06N—118 23 48W—034 24 00N—118 23 42W—

6.3— 50— 4—S16E—C041.1 —S74W—C041.2

Feb 09 1971—San Fernando —8244 Orion Blvd.-1st Floor —-249.95506—034 13 16N—118 28 16W—034 24 00N—118

23 42W— 6.3— 50— 4—N00W—C048.1 —S90W—C048.2

Feb 09 1971—San Fernando —250 E. First St.-Basement —122.73148 —034 03 01N —118 14 26W —034 24 00N

—118 23 42W — 6.3— 50— 4—N36E—C051.1 —N54W—C051.2

Feb 09 1971—San Fernando —445 Figueroa St.-Sub Basement —147.09689 —034 03 12N —118 15 24W —034 24

00N —118 23 42W — 6.3— 50— 4—N52W—C054.1 —S38W—C054.2

Feb 09 1971—San Fernando —Hollywood Storage-Basement —148.24088 —034 05 00N —118 20 00W —034 24 00N

—118 23 42W — 6.3— 50— 4—S00W—D057.1 —N90E—D057.2

Feb 09 1971—San Fernando —Caltech-Seismological Lab —-188.59351—034 08 55N—118 10 15W—034 24 00N—118

23 42W— 6.3— 50— 4—S00W—G106.1 —S90W—G106.2

Feb 09 1971—San Fernando —Caltech-Athenaeum —-107.25090 —034 08 20N —118 07 17W —034 24 00N —118 23

42W — 6.3— 50— 4—N00E—G107.1 —N90E—G107.2

Feb 09 1971—San Fernando —Caltech, Millikan Lib.-Basement —-197.99080—034 08 12N—118 07 30W—034 24

00N—118 23 42W— 6.3— 50— 4—N00E—G108.1 —N90E—G108.2

Feb 09 1971—San Fernando —Jet Propulsion Lab-Basement —207.76753 —034 12 01N—118 10 25W—034 24

00N—118 23 42W— 6.3— 50— 4—S82E—G110.1 —S08W—G110.2

Feb 09 1971—San Fernando —Palmdale Fire Station —136.24686 —034 34 40N—118 06 45W—034 24 00N—118 23

42W— 6.3— 50— 4—S60E—G114.1 —S30W—G114.2

Feb 09 1971—San Fernando —15250 Ventura Blvd.-Basement —220.57425 —034 09 14N—118 27 50W—034 24

00N—118 23 42W— 6.3— 50— 4—N11E—H115.1 —N79W—H115.2

G.2 Near-field Motions

Tp is the visually estimated velocity pulse period
ARL1 Jan 17 1994—Northridge —Arleta-Fire Station (CDMG)—336.3000 —034 23 60N —118 43 90W —034 21 50N

—118 53 80W — 6.7— 50— 4—N90E—ARL.1 (Tp = 1.0)

NHL1 Jan 17 1994—Northridge —Newhall-LA County Fire Stn. (CDMG)—-583.7000 —034 38 70N —118 53 00W

—034 21 50N —118 53 80W — 6.7— 50— 4—N90E—NHL.1 (Tp = 0.75)

PAR1 Jan 17 1994—Northridge —Pardee Station (SCE)—484.70000 —034 44 00N —118 58 00W —034 21 50N —118

53 80W — 6.7— 50— 4—S00E—PAR.1 (Tp = 1.0)

SCSE2 Jan 17 1994—Northridge —Sylmar Converter Stn.-East (LADWP)—807.70000 —034 31 20N —118 48 10W

—034 21 50N —118 53 80W— 6.7— 50— 4—N72W—SCSE.2 (Tp = 1.25)

KOB 1995 Kobe Earthquake (max peak velocity direction) N35W (Tp = 1.0)

LUC 1992 Landers Earthquake (max peak velocity direction) N80W (Tp = 5.0)

RRS 1994 Northridge Earthquake (max peak velocity direction) S33W (Tp = 1.25)

SCH 1994 Northridge Earthquake (max peak velocity direction) S10W (Tp = 1.5)

TAK 1995 Kobe Earthquake (max peak velocity direction) N49W (Tp = 1.75)

SKR Turkey Earthquake N-S Direction (Tp = 2.5)

GBZ Turkey Earthquake Transverse Direction (Tp = 5.0)
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YPT Turkey Earthquake Longitudinal Direction (Tp = 4.0)

T030 Chi-Chi Earthquake E-W Direction (Tp = 4.0)

ERZ Erzinchan Earthquake (max peak velocity direction) (Tp = 2.0)


