
Discriminative vs. Generative Object Recognition:
Objects, Faces, and the Web

Thesis by

Alex Holub

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended April 30, 2007)

ii

c© 2007

Alex Holub

All Rights Reserved

iii

Acknowledgements

One adage that I have found true of completing a thesis: ”the thesis is a marathon not a

sprint”. As in a marathon the thesis can be both frustrating at moments and extremely

exhilarating at other moments. One must push through the lulls and embrace the apogees. I

feel extremely blessed to not only have had the chance to be at Caltech for my PhD, but also

to have worked in the the Vision Laboratory. The social and intellectual atmosphere were

amazing and I have made friendships which will last a lifetime. Students at Caltech have

the freedom to pursue their own ideas and research agendas, and they will find intellectual

peers among their colleagues who are equally as curious and motivated as they are. Every

effort is made to remove distractions from the lives of students and allow them to focus on

research and learning. There are undoubtedly few institutions in the world which can offer

so much to students.

As I begin to unfold the next chapter in my life, it becomes compelling to reflect back all

those years to when I began the marathon. My first project at Caltech was a collaboration

between Professor Pietro Perona and Professor Gilles Laurent and involved modeling locust

olfaction. My intellectual growth becomes apparent when I think of the difference between

how I approached research questions and new projects then, and how I approach them now.

A significant part of the growth I can attribute to Professor Perona. He taught me, among

other things, how to think about research questions, how to pick interesting and worthwhile

directions for research, how to convey complex ideas simply and clearly, and, above all, how

to think critically. He gave me confidence when I felt down, and gave me guidance when I

was stumbling. He is a mentor and a friend, and I would like to thank him for supporting

me and allowing me the freedom to grow and pursue ideas while in his lab.

During my PhD I had the opportunity to collaborate with numerous amazing re-

searchers, too numerous to completely mention here. But one collaborator (and in essence a

co-advisor) who stands out is Professor Max Welling. I thank him for investing time in me

iv

and for being one of the most exciting collaborators I have had a chance to work with. He is

full of ideas and has a contagious passion for research which can only inspire those around

him. In addition I would like to thank Dr. Michael C. Burl with whom I have recently

begun collaborating. Finally, I would like to thank a fellow graduate student with whom I

also began collaborating recently, Pierre Moreels. He has not only been a loyal friend for

the past years, but is also one of those people who it is truly enjoyable to work with.

Next I would like to briefly acknowledge and thank all those members of the lab who

have helped me over the years, from minor technical problems, to bringing me up to speed

on the latest technological gadgets. There were so many great moments we shared together,

and, the little community that is the Vision lab will be one of the things I miss most about

Caltech. Marco helped me stumble through numerous latex questions and his dry (and

pointed) sense of humor has brightened many late-nights in the lab. Marco is one of those

people who truly enjoys helping others and teaching others, and I can say that I personally

benefited a great deal from this proclivity. Claudio helped me with everything from writing

C-code to installing cable TV at my house. He was always willing to take time out of his

schedule to help in any way he could, and he would often spend hours helping me install

software and guiding my electronic purchases. Lihi acted as a ”big-sister” in the lab, reading

over papers and being supportive of whatever idea I had at the time. And I have also had

the pleasure of getting to know some of the newer additions to the lab. In particular,

Merrielle, who has a contagious smile and affable personality. She brightens up the lab

merely with her presence and makes one look forward to being in lab every day. And Ryan,

who is one of the brightest and knowledgable people I have met at Caltech, someone who is

always willing and excited to engage in a scientific conversation and is knowledgable about

a vast spectrum of things. Finally I would also like to thank Andrea, who has been a great

friend and confidant to me over the years. And I would like to thank all the others in the

lab, both from the past and the present, thank you!

I have been extremely fortunate to have made so many friendships at Caltech which

have made this one of the best periods of my life. I am not going to explicitly mention most

of these wonderful people here, but you know who you are, and you know how much I will

miss all of you. A special thanks goes out to Kimberly, who has been unfailingly supportive

of me for the past year, one of the craziest and most stressful of my life. I cannot express my

gratitude in words. My father, although far away in distance, has given me sage advice over

v

the years and has kept me grounded and given me the strength to shake off the unavoidable

setbacks inherent in any life. And my mother, who has been the rock in my life since I was

a young child and who I admire and respect more than anyone in this world.

Thank you all.

Alex Holub

vi

Abstract

The ability to automatically identify and recognize objects in images remains one of the

most challenging and potentially useful problems in computer vision. Despite significant

progress over the past decade computers are not yet close to matching human performance.

This thesis develops various machine learning approaches for improving the ability of com-

puters to recognize object categories. In particular, it focuses on approaches which are

able to distinguish between object categories which are visually similar to one another.

Examples of similar visual object categories are Motorcycles and Bicycles, and Lions and

Cougars. Distinguishing between similar object categories may require different algorithms

than distinguishing between different categories. We explore two common machine learning

paradigms, generative and discriminative learning, and analyze their respective abilities to

distinguish between different sets of object categories. One set of object categories which

we are exposed to on a daily basis are face images, and a significant portion of this thesis is

spent analyzing different methods for accurately representing and discriminating between

faces. We also address a key issue related to the discriminative learning paradigms, namely

how to collect the large training set of images necessary to accurately learn discriminative

models. In particular, we suggest a novel active learning which intelligently chooses the

most informative image to label and thus drastically reduces (up to 10×) the time required

to collect a training set. We validate and analyze our algorithms on large data-sets col-

lected from the web and show how using hybrid generative-discriminative techniques can

drastically outperform previous algorithms. In addition, we show how to use our techniques

in practical applications such as finding similar-looking individuals within large data-sets

of faces, discriminating between large sets of visual categories, and increasing the efficiency

and speed of web-image searching.

vii

Contents

Acknowledgements iii

Abstract vi

1 Introduction 1

1.1 The Information Age . 1

1.2 Learning and Computer Vision . 2

1.3 Discriminative and Generative Learning . 3

I Recognizing Faces 6

2 Googling for Jenifer Aniston 7

2.1 Abstract . 7

2.2 Introduction . 8

2.3 Overview . 10

2.3.1 Performance Metrics . 10

2.4 Feature Extraction and Representation . 12

2.4.1 Facial Feature Representation and Size 15

2.4.2 Evaluation of Face Subparts . 16

2.5 Data Sets . 17

2.6 Learning a Distance Metric . 17

2.6.1 The Relative-Rank Distance Metric 17

2.6.2 Creating Triplet Distances . 20

2.7 Results . 20

2.8 Experiments Using a Learned Distance Metric 20

viii

2.9 Experiments: Google Celebrity Search . 24

2.9.1 Google Image Search Results . 26

2.10 Discussion . 26

2.11 Appendix . 31

3 Finding Similar Faces 35

3.1 Abstract . 35

3.2 Introduction . 35

3.3 Obtaining Facial Similarity Data . 39

3.3.1 Synthetic Experiments using MDS 40

3.4 Data Collections . 41

3.5 Creating a Perceptual Mapping . 43

3.5.1 Facial Feature Representation . 43

3.5.2 Representing Ratings using ”Triplets” 45

3.5.3 Perceptual Map . 45

3.6 Experiments . 47

3.6.1 Creating Train and Test Sets . 47

3.6.2 Assessing Map Performance: Rank 50

3.6.3 Assessing Map Performance: Closest 50

3.6.4 Holistic vs. Feature-Based Recognition 51

3.7 Results . 51

3.8 Automatic Similarity Detection . 53

3.9 Discussion . 56

3.10 Appendix: Consistency of Raters . 56

3.10.1 Absolute Ratings . 56

3.10.2 Relative Ratings . 56

II Active Learning 60

4 Entropy-Based Active Learning 61

4.1 Abstract . 61

4.2 Introduction . 61

ix

4.3 Active Learning . 65

4.3.1 Minimum Expected Entropy . 66

4.3.2 Look-Ahead Estimate of Class Probabilities 68

4.3.3 Computational Cost . 71

4.3.4 Multiple Return Active Learning . 71

4.4 Experiments . 73

4.4.1 UCI Machine Learning Data Sets . 73

4.4.2 Web Image Searching . 75

4.4.2.1 Image Search Data Set . 75

4.4.2.2 Results . 75

4.4.3 Exploration Agent . 77

4.4.3.1 Open-World Learning Experiments 77

4.4.3.2 When Have Enough Images Been Labeled? 77

4.4.4 Performance Analysis . 79

4.5 Discussion . 80

4.6 Appendix 1: Alternative Active Learning Methods 82

4.7 Appendix 2: Pyramid Match Kernel . 82

III Comparing Generative and Discriminative Learning 83

5 Conditional Likelihood 84

5.1 Abstract . 84

5.2 Introduction . 84

5.3 Review of the Constellation Model . 87

5.3.1 Feature Detection and Representation 87

5.3.2 Shape Representation . 88

5.3.3 Generative Model . 88

5.4 Discriminative Model . 89

5.4.1 Model Testing . 92

5.4.2 Model Optimization . 92

5.5 Experiments . 93

5.5.1 Toy Example: PacMen . 93

x

5.5.2 Supervised Experiments . 94

5.5.3 Semi-Supervised Discrimination . 95

5.5.4 Generative/Discriminative System 95

5.6 Conclusion . 100

5.7 Appendix: Data Collection . 100

6 Fisher Kernels and Extensions 102

6.1 Abstract . 102

6.2 Introduction . 102

6.3 Generative Models . 107

6.3.1 The Constellation Model . 107

6.3.2 Interest-Point Detection . 109

6.3.3 Generative Model Learning . 109

6.4 Fisher Scores and Fisher Kernels . 110

6.4.1 Fisher Scores for the Constellation Model 112

6.5 Comparing Generative and Hybrid Approaches 114

6.5.1 Experiments on Caltech Data Sets 114

6.5.2 Background Classes . 118

6.6 Semi-Supervised Learning . 119

6.6.1 Caltech Faces-Easy Categories . 122

6.6.2 Results . 122

6.7 Combining Multiple Generative Models . 124

6.7.1 Leave-One-Out Span Bound . 129

6.8 Experiments with Combinations of Kernels 130

6.8.1 Feature Selection . 131

6.8.2 Model Selection . 133

6.8.3 Integrating Unlabelled Data and Kernel Combination – The Caltech

101 . 136

6.8.4 Integrating Unlabelled Data and Kernel Combination – The Graz

Data-Sets . 137

6.9 Discussion and Conclusions . 138

xi

Bibliography 140

1

Chapter 1

Introduction

1.1 The Information Age

Over the past century humanity has witnessed the emergence of the information age. Infor-

mation exists everywhere. We have unprecedented access to it via a variety of modalities.

Personal computers, whose memory systems were capable of holding at most kilobytes of

data decades ago are now capable of storing up to terabytes of information. However,

the information age is being driven only in small part by the increase in size of personal

computer storage devices. The main thrust for the information age has been the nearly

ubiquitous emergence of the internet and the World Wide Web (WWW or ”web”). The

internet allows personal computers, once isolated islands in the sea of humanity, to connect,

talk to one another, and share information, thereby making entire domains of knowledge

and media available literally at the click of a mouse. In 2005 it was estimated that there

were over 11.5 billion web-pages, up from 550 million in 2001 (this information was obtained

from the online encyclopedia wikipedia at http://www.wikipedia.com).

As the amount of information available to us increases at an exponential rate we face a

very real and pragmatic problem: how can we sift through all the information in order to

retrieve only the information we are interested in? It seems akin to the perennial aphorism

of finding a needle in a haystack. It is not practical, nor feasible, to have humans sort

and organize these vast repositories of information. One solution, being utilized more and

more is to use intelligent computer programs to search, mine, and extract the information

we require. Companies like Google, America Online, and Yahoo! are in the business of

providing the user with the information they require, and these companies are increasingly

relying on sophisticated algorithms to help them retrieve and provide the information. As

2

the sophistication of these algorithms increases, so does their reach into different media

modalities such as audio, video, and images.

This thesis explores how intelligent computer algorithms can be used to help process

visual information. In particular we are interested in processing information about object

categories contained in images. In the process we show how these techniques can be used to

help with some very real problems facing users of the web today, such as how to efficiently

search for images using the Google search engine, or how to recognize and find similar-

looking faces to a particular person.

1.2 Learning and Computer Vision

The earliest significant forays into computer vision can be dated to the late 1960’s. Since

then there has been a great deal of progress, although, notably, very few computer vision

algorithms are being used by the general public today. Most computer algorithms benefit

very specialized markets such as assembly line robotics or digital character recognition by

the postal service. Is computer vision ready to make the leap into the mainstream and

significantly impact society?

Recently researchers have begun to tackle one of the most interesting and potentially

useful problems in computer vision, namely how to automatically recognize and discriminate

between object categories contained in images. For example, if shown an image of a ”shoe”,

a computer should be able to discern that there is indeed a shoe in the image. These sorts of

algorithms could impact web search, surveillance, mobile robotics, and the organization of

visual information on our computers. Indeed, successful algorithms in the object recognition

domain seem to have the potential of fundamentally changing our society.

How might a computer be able to recognize the face of Tom Cruise in our personal photo

collection? There are two broad paradigms we could use to find Tom which we introduce

next. The first paradigm, which we call building a model, specifies, down to pixel precision,

what Tom looks like. This includes his prominent nose and his broad smile. At this point

we might be able to compare all the image on our computer and find the image which was

most correlated with the model of Tom we have specified. Of course we would also need to

specify every possible deformation of Tom’s face which occurs when he smiles, turns slightly

away from the camera, or when the pictures is taken in different lighting conditions. The

3

number of possible pixel combinations we need to specify sky-rockets and rapidly becomes

intractable.

The second paradigm we explore involves allowing the computer to learn all possible

deformations of Tom’s face. For example, consider presenting the computer with various

examples of Tom, taken under different conditions. If presented with enough examples it

could learn the typical deformations and then be able to recognize Tom in a new image.

The implementor of the algorithm must then provide two different kinds of information: (1)

an effective learning algorithm, and (2) the appropriate training examples of Tom’s face.

What is appealing about this ”learning” paradigm is that it is flexible. Once we have an

algorithm which can learn to recognize Tom, it should be able to learn a representations

for Julia Roberts, Brad Pitt, etc, provided we give it the appropriate training examples.

There are many approaches which combine aspects of both approaches by introducing

prior information into a learning approach. For instance one could imagine specifying

broadly the deformations possible, but learning the exact parameters for a particular face

via learning. In fact, most learning methods are parametric in nature, thereby implicitly

encompassing prior information via the parameters of the model.

In this thesis we focus on learning object categories. Our algorithms for learning im-

plicitly make use of prior information about what we expect to find in the images. For

instance, when recognizing and distinguishing between faces, we assume as a prior that we

will find eyes, a nose, and a mouth within the image. Nevertheless, the main thrust of our

approach is to use learning rather than hand-crafted prior models.

1.3 Discriminative and Generative Learning

Learning object categories from exemplar images seems like a great paradigm in the ab-

stract. However, as with most great ideas, the devil is in the details. How do we construct

algorithms which allow computers to learn representations of these object categories from

images? The field of Machine Learning is filled with algorithms and techniques for learn-

ing complex representations and models from training data. The choice of what learning

algorithm to use is somewhat dependent on the task which we would like the computer to

solve. One natural task in object recognition is to ask the computer to distinguish between

two objects. These two objects might be Airplanes and Bicycles, or John Kerry and George

4

Bush.

We can approach the problem of discriminating between categories with two general

philosophies. In the first, which is called generative learning, we learn that John Kerry

has two eyes, a nose, a mouth, and great head of hair. If we present the computer with

a novel image of John, we can identify him by these characteristics. However, given that

we have learned a very general model of John, if we presented the computer with an image

of George Bush as well, the computer might incorrectly indicate that John was contained

in the image, when, in reality it was an image of George. Another philosophy, called

discriminative learning aims at learning the differences between the categories. We noted

that John has a great hair, so if modeled this fact, namely that John has a better head of

hair than George, than, when presented with an image containing either George or John,

we should be able to tell them apart. These intuitions about discriminative and generative

learning are formalized in Section 6.2 and form the backbone of this thesis. In particular,

when should we utilize generative learning approaches versus using discriminative learning

approaches? In which situations is one beneficial and why?

Our intuition tells us that discriminative approaches might be most useful when our

object categories are quite similar to one another. After all, we would expect Bicycles and

Airplanes to have very few over-lapping features, while Bicycles and Motorbikes might have

many more features in common (such as wheels). One particularly interesting case of similar

categories are Human Faces. Faces are, at a pixel level, very similar to one another. Humans

are extremely adept at discriminating between different faces, presumably by recognizing

subtle differences in facial appearance. We begin this thesis by studying Face Recognition in

Part I. We construct complete systems capable of identifying and discriminating between

different faces and demonstrate our techniques on collections of face data which exhibit

large variations in appearance.

Our discussion and experiments on faces lead naturally to the issue of discriminative

and generative learning discussed above because faces are extremely similar to one another.

One inherent requirement of discriminative algorithms is how to obtain the labeled data

necessary to train the algorithms. By labeled data we are referring to example images of

John Kerry and George Bush which are necessary for learning. We approach the problem of

labeling images using algorithms which fall under the general category of ”Active Learning”

algorithms. Active Learning algorithms present the user with images to label which are the

5

most informative, thereby minimizing the total number of images which must be labeled.

Part II discusses various active learning approaches, and we present a novel method which

works effectively in reducing the number of images which are required to be labeled during

Google Image searches.

The final part of the thesis, Part III, is an in-depth analysis and comparison of generative

and discriminative learning techniques. We study when discriminative methods are more

useful for object recognitions, what benefits generative models provide, and suggest hybrid

generative-discriminative algorithms which combine the best of both worlds.

6

Part I

Recognizing Faces

7

Chapter 2

Googling for Jenifer Aniston

2.1 Abstract

How do we identify images of the same person in photo albums? How can we find images

of a particular celebrity via Google Image searches? Both of these tasks require solving

numerous challenging issues in computer vision. Among them are (1) finding the location

of individuals in images, (2) maintaining robustness to variability in pose, image quality,

lighting, occlusion, and scale, and (3) using an appropriate distance metric in order to

compare the detected individuals. Many of these issues have been worked on in isolation

within the computer vision community, however there exist few systems which combine all

components together into a complete system capable of being effective when confronted with

the variability of real images. In this work we aim to create a visual recognition system,

that, given a target image, is able to find all other images of that individual within a typical

photo collection or web search. Each individual is represented by a feature vector composed

of extracted patches around automatically detected facial key-points. We use a training set

of over 1000 images to generate a distance metric which combines and weights different

components of the feature vector to drastically increase recall performance. We analyze

different components of our system to provide insight into such as issues as: Which facial

features are most important for recognition? What representation for facial features is most

useful? Finally, we demonstrate our system on a large image-set of 99 individuals which

we collected from the web and show impressive ability to automatically detect images of the

same person.

8

all eye features 4.06
all eyebrow features 3.70
all mouth features 3.65
eyes tops 3.63
mouth sides 3.56
eyes outside 3.48
eyes bottoms 3.44
eyes inside 3.34
eyebrows inside 3.29
eyebrows outside 3.20
nose sides 3.10
all nose 3.00
mouth bottom 2.64
mouth top 2.61
nose center 2.28

random images 1.92

all features 4.48

 features

combination

 Top 25

 precision

c)

b) individual features

a) face parts

all eyes + all eyebrows 4.10

Figure 2.1: Which facial key-points are most useful? We rank the ability of different facial
key-points by themselves to recall images of the same person within a large image data-set (see
Section 2.6.1 for a more thorough description of the performance metric) (a) The performance of
different features on recall experiments. Corresponding number and color-code in panel c) indicates
the precision within the top 25 images, higher number is better. Recall performed only with:
eyebrows structure, eyes structure, nose structure and mouth structure. (b) Performance when a
face is characterized by a single individual patch (two in case of symmetry, e.g. both sides of the
mouth are included together). The same color scale is used for panel a) and b). (c) Scores of parts
and individual features. The set consisting of all parts performs best, followed by the eyes and
eyebrows structures. Overall all features related to the eyes and eyebrows perform well. ’Random
images’ is the baseline method that draws randomly 25 images and indicates the precision. This
experiment used 7 × 7 patches and raw intensity values, the ranking did not change significantly
when using 13 × 13 patches and image gradients. Note that we used an L1 distance to measure
similarity and did not apply a our learned distance metric for this comparison.

2.2 Introduction

The most common image searches on the web are celebrity pictures. This is, at the moment,

implemented by searching keywords, and it is thus susceptible to errors: many images

containing our favorite heroes are missed because they are not properly indexed. If we

could search images for known faces, no celebrity picture would be missed any longer. This

technology could, more in general, be useful for (1) searching the Web for an image of a

particular individual (e.g., searching for Brad Pitt on Google Image search), and (2) finding

all images of an individual within a personal photo collection (e.g., asking for all images

of Grandpa in your personal photo collection or MySpace pages). Note that this work was

done in collaboration with Pierre Moreels.

There has been significant previous work involving various aspects facial recognition

9

0

0.5

1

0

0.5

1

0

0.5

1

[]
Viola-Jones

face

detection

Rejection of

spurious

detections

using using

confidence

Confidence

Image

representation

as a vector

formed from

(gradients of)

features

patches

PROJECTION

 and

 PCA

Figure 2.2: Schematic of the facial identity finder algorithm, starting from a photo-album all the
way to an optimal representation in a new space. Notice that the whole process is automated: we
don’t require any hand-labeling of images. We do require that the faces be more or less in frontal
poses as the Viola and Jones detector as well as the Everingham feature detectors were trained on
frontal faces and frontal face features respectively.

and detection, and face recognition is one of the most studied fields in computer vision.

Many algorithms exist for detecting the location of a face in images including Rowley et

al.[RBK98], Schneiderman et al.[SK00] and the popular Viola and Jones [VJ01] detector

which is both fast and reliable. Once the face is detected, a feature representation must

be created in order to compare different faces. Both global, in which the entire face is

segmented and made into a feature vector, and local, in which only specific key-points

are used to create a feature vector, have been suggested. Global approaches, such as the

well-known Eigenface [TP91] technique which maps global representations for a face onto a

eigenbasis, tend to suffer from slight variations in alignment which can cause large differences

in feature representation. Local representations tend to have more success and have been

used by numerous authors including [EZ06]. In particular, the Everingham facial feature

detector [EZ06], which was trained on a large data-base of facial features seems to work

very well in practice.

Although there has been much previous work on facial representations and recognition,

most of the work has focused on controlled environment, well-segmented and/or aligned

images of faces. This includes the CMU Pie data-set and the Yale face data-set. There

has been relatively little work on faces in real scenes, although there are exceptions, most

notably [SSZ04, ESZ06] who work on finding images of actors in scenes and [BBE+04] who

10

use both text and images to automatically associate names to faces from news articles.

Furthermore, there is existing work on learning distance metrics and/or mapping func-

tions to place facial features in appropriate spaces to perform recall on. The most prominent

is the work using FisherFaces [BHK97] which uses a combination of Eigenfaces and Linear

Discriminant analysis to learn a linear mapping.

Finally, the psychological literature has made numerous interesting contributions re-

garding the cues which humans use to recognize faces. See [Sin02] for an excellent review,

which, among other observations, states that the eye-regions of faces are very useful for

facial recognition.

In this work, we utilize and extend some of this existing work, including the Viola and

Jones [VJ01] face-finder and the Everingham facial feature finder [ESZ06], and combine it

with novel methods for learning distance metrics in face space, to create a complete system

capable of accurately retrieving images of the same person in a challenging data-set of 99

individuals obtained from the Web (our individuals happen to be Celebrities). We report

performance results on numerous different tasks and compare our performance to other

existing methods.

Section 2.3 describes the general algorithm we employ. In Section 2.4 we describe the face

detector, the facial feature finder, and facial feature representations used. In Section 2.6.1

we show how to create an effective distance metric. Section 3.6 shows and compares results

of our complete system. We conclude in Section 2.10.

2.3 Overview

Figure 2.2 gives a schematic of our facial recognition system. First we find the face using

Viola and Jones. Next we remove spurious detections and extract a feature representation.

Finally we project the face into a new space using a learned mapping function. The resulting

feature representations should reflect facial identity, i.e. images of the same person will be

closer to one another than images of different people.

2.3.1 Performance Metrics

Here we introduce 3 performance metrics which mimic typical facial recognition tasks. The

three performance tasks which we consider are: (1) Given a target image of a particular

11

a)

b)

Figure 2.3: Two examples for the ‘Top 25 Precision’ retrieval task. We queried for Will Smith
(panel a) and for Owen Wilson (panel b) - the query images are showed in the top left with a blue
outline. In both cases the query returned 7 correct results (green outline) out of the 25 closest
matches after projection and PCA. It is important to remember that the category ‘Will Smith’ and
the category ‘Owen Wilson’ contain only 10 examples each, therefore a perfect answer would return
10 samples from the target category out of 25 results. This is to contrast with the ‘Google-images’
engine, where the target category typically contains hundreds of images for each celebrity.

identity, how often is the nearest neighbor to this target, actually the same individual? This

task would be useful in such applications as finding the most similar-looking celebrity to

a person. The rank of the best performing image of the target individual among nearest

neighbors, is termed Best Rank Distance. (2) Given a target individual, our goal is to find

12

a b

Figure 2.4: Example of the relative size of each patch. (a) Examples of 7 × 7 patches on a raw
intensity figure (this yielded the optimal performance for raw patch representations, see Figure 2.6).
(b) Example of gradient image and the size of extracted patches, 13 × 13 patches performed best
when using the gradient as a feature.

K images, among which images of the target individual are as frequent as possible. Think

of, for instance, a Google Image Search in which we would desire a high number of the

target individual within the top 25 returned images. This is the detection performance

with a recall of 25, we term it Top 25 Precision. Note that in our experiments we limit the

number of images of each single individual to 10, such that the highest value achievable by

Top 25 Precision would be 9. (3) The final metric concerns the rank distance between a

query image and the set of all other images of the same individual. This rank distance is

taken in the whole space of available images. In the optimal situation, this rank distance

would be one for each query image, as we would like all the images of the same celebrity to

be closer to one another than images of other people. We normalize this rank distance by

the total number of images and call this metric Average Rank Distance. For both (1) and

(2) we consider each celebrity individually and search for them among the Data-Set of 200

images. We use and compare the results from these metrics to evaluate the performance of

different representations and learned distance functions.

2.4 Feature Extraction and Representation

In order to detect faces we use the OpenCV [Int] implementation of the Viola and Jones

[VJ01] face detector. The output from the face detector is a set of bounding boxes which

identify the position of the face in the image. Most images from the ‘99-Celebrities’ data-set

(see Section 2.5) yield a single detection, however in 68 cases (out of 1266) it mistakenly

finds two or more faces.

Next, these bounding boxes are used as input for the impressive Everingham facial-

feature detectors [ESZ06]. This detector identifies the position of 19 facial features as well

13

a b
1 2 3 4 5 6 7 8 9 10111213141516171819

5

4

3

2

1

0

1

c
o

n
fi

d
e

n
c

e

Feature index

c
1 2 3 4 5 6 7 8 9 10111213141516171819

4

2

0

2

4

6

L
L

E

R
L

E

L
R

E

R
R

E

L
N

B
N

R
N

T
M

B
M

L
M

R
M

L
L

B

R
L

B

L
R

B

R
R

B

T
L

E

B
L

E

T
R

E

B
R

E

c
o

n
fi

d
e

n
c

e

Feature index d
1 2 3 4 5 6 7 8 9 10111213141516171819

0

2

4

6

8

10

12

c
o

n
fi

d
e

n
c

e
Feature index

Figure 2.5: Example of Viola and Jones detection and Everingham feature detectors. (a) The
Viola-Jones face detector found 3 ‘faces’ in the image. b-c-d) confidences associated to each feature
from each of the 3 detections. The following abbreviations are used: L=left, R=right, T=top,
B=bottom, B=eyebrow, E=eye, N=nose, M=mouth. Using our heuristic based on parts’ confidence,
the incorrect detections are rejected (in red - the detection on the forehead corresponds to confidence
scores in b., the detection on the tie corresponds to confidence scores in c.). The correct face is
accepted (shown in green)

as the confidence it has with these detections. The facial-features identified are shown in

Figure 2.4.

We used the following heuristic in order to discard spurious face detections: let CF be

the 19-dimension confidence vector for a face, C+ = max(CF, 0) be its positive component

and C− = −min(CF, 0) its negative component. We accept a face detection if
∑

k =

119C+ > 4 ∗ ∑
k = 119C−, and reject it otherwise. Using this method, we successfully

rejected all but 4 false face detections, and introduced only 4 new false rejects. Figure 2.5

shows an example of successful rejection of spurious matches on an image that generated 3

detections.

14

Image Set Total Number Images VJ Multiple Detection False Alarms
99 Celebrities 1066 68 4
BG Celebrities 200 15 0

Table 2.1: Table showing the size of our data-sets as well as the performance of the Viola and Jones
detections. (First Column) The two data-sets, both a set of 99 individual celebrities downloaded
from the web and a set of 200 other images also downloaded from the web. (Second Column) The
total number of images in each data-set. (Third Column) Total number of images for which the
Viola and Jones algorithm generated multiple detections. (Last Column) Number of remaining false
alarms after heuristic based to remove spurious detections (see Section 2.4).

15

3 5 7 9 11 13 15 17 19 21 23
0.2

0.25

0.3

0.35

0.4

size of patch side in pixels

P
e

r
fo

r
m

a
n

c
e

AVERAGE RANK DISTANCE

3 5 7 9 11 13 15 17 19 21 23
2

4

6

8

10

size of patch side in pixels
P

e
r
fo

r
m

a
n

c
e

BEST RANK DISTANCE

3 5 7 9 11 13 15 17 19 21 23
2.5

3

3.5

4

4.5

5

size of patch side in pixels

P
e

r
fo

r
m

a
n

c
e

TOP 25 PRECISION

INTENSITY L1 NORM

INTENSITY L2 NORM

GRADIENT L1 NORM

GRADIENT L2 NORM

Figure 2.6: Variation of our three performance criteria with size of the patches used for face
representation. We plot results for a simplified experiment for which no projection was performed,
L1 and L2 distances were used on the raw patches. We display results of the simplified experiment
both using image intensities and image gradients. X-axis: the size of patches extracted. Y-axis:
performance using various metrics. All experiments averaged over the set of 99 Celebrities (see
Section 3.6 for more details). (Left) Comparison using Average Rank Distance metric. (Center)
Comparison using Best Rank Distance. (Right) Comparison using Top 25 Precision. The best
performance is consistently obtained when using 7 × 7 patches in the case of raw intensity, and
13× 13 patches when using image gradients.

2.4.1 Facial Feature Representation and Size

For each detection accepted by the previous steps, we normalize the Viola-Jones bounding

box to a fixed size of 80 × 80 pixels. We rectify variations in orientation by aligning the

eye corners to a same position for all images. We characterize each feature in a face by a

patch of variable size extracted around the feature location. The set of patches describing

the facial features detected in each face are converted to a vector ~xi corresponding to image

i.

The choice of the size of the patches for feature representation is a trade-off. If patches

are too small, the representation is sensitive to artifacts in the image, and not discriminative

enough as the patch fails to capture enough of the local texture around the feature of

interest. Conversely, if the patches are too large, features include too much detail specific

to a particular image and have poor generalization properties. In this section, we investigate

the influence of the patch size on the recognition performance.

For this section and Section 2.4.2 only, for the sake of speed we did not optimize the

system with respect to a distance metric Φ nor reduce dimensionality with PCA. Rather,

16

we used the raw L1 and L2 distances between patches. As a consequence, the performance

reported in this experiment is lower than the results in Section 3.6. Figure 2.6 describes the

results of our experiments. The performance of patch sizes from 3× 3 pixels up to 23× 23

was computed for the three score measures defined. We computed the score with L1 and

L2 distances, both when sampling patches from the raw intensity image and when sampling

them from the gradient image. Overall, the best patch sizes when using raw image intensity

were 7 × 7 and 9 × 9 pixels, while larger patches performed better when using gradients

(13×13 and 15×15 performed best). Note that these patches are always extracted after the

image has been rectified for orientation and resampled to 80× 80 pixels. The overall best

performance was obtained with the L1 norm and gradient values. The superior performance

of gradient images is no surprise our images show a huge variability in lighting conditions

and gradient images some invariance with respect to lighting.

2.4.2 Evaluation of Face Subparts

One question that arises naturally is: Which features in the face are most important for

recognizing a specific person? In an attempt to answer this question, we investigated the

performance of various subparts of the face on a simplified experiment (see Figure 2.1).

Features were extracted using 7× 7 patches and intensity values. Faces were character-

ized by various combinations of features. One experiment focused on the sets of features

that form face parts: eyebrows, eyes, nose, and mouth. The other experiment focused on

individual features: outer corner of eyebrows, inner corner of eyebrows, top of the eyes,

outer corner of eyes, inner corner of eyes, bottom of the eyes, sides of the nose, tip of the

nose, top of the mouth, sides of the mouth and bottom of the mouth. For features which

occur symmetrically on both sides of the face, both left and right feature were included

together. For example, the left side of the mouth and the right side of the mouth were

included together.

Figure 2.1 shows the performance for the ‘Top 25 detection’ (see Section 2.3.1) criterion,

color-coded by decreasing performance. Panels a) and c) indicate that as expected, face

structures perform better than individual features. In particular, the most successful face

structures are the eyebrows and the eyes. This was the case both when considering face

parts and when considering individual features. Interestingly, this is consistent with the

human performance results from [Sea06], where Sinha reports that eyebrows are among the

17

most important features for the human face recognition task.

2.5 Data Sets

In creating our data-sets we attempted to mimic the actual statistics and variability encoun-

tered in real-world images contrary to more controlled data-set such as the CMU PIE face

data-set or the Yale Face data-set. In particular our faces contained the typical variability

found on the Web: large variations in lighting, not aligned, varying resolution (our resolu-

tion varied from about 100× 130 to about 500× 800). One caveat is that we attempted to

limit the amount of pose variability to roughly frontal images as can be seen in Figure 2.3.

We collected a data-set of 99 individuals from the Web which were mostly celebrities

as they tended to have a number of images available. Hence we call this data-set the 99-

Celebrity data-set. We ensured that each individual had a minimum of 10 images (although

some had as many as 16). We also collected a background set of 200 images which were

used to assess the performance of our system (see Table 2.1) for a description of the size of

the data-sets. Figure 2.3 shows the typical variability of our faces.

2.6 Learning a Distance Metric

In the previous section we have described how to automatically detect a face and extract

features of the face. We now take an additional step in suggesting that each component

of our feature vector should note be weighted equally, i.e. certain parts of the face may

be more important for recognition than other (Figure 2.1 suggests this is a reasonably

intuition as different facial features are better and worse for recognition). The natural

question arises, how do we weight these features? We proceed by learning a metric which

increases performance on recognition tasks.

2.6.1 The Relative-Rank Distance Metric

Our goal is to learn a distance metric between any two images such that images of the same

person are deemed close to one another, while images of different people are farther from one

another. More formally consider each celebrity indexed by c and all feature representations

~xc
i for an image i in class c. The following cost function follows naturally from our the

18

criteria just mentioned:

C =
∑

c

∑

i,j∈c

∑

k/∈c

Dist(~xi, ~xj)−Dist(~xi, ~xk) (2.1)

Qualitatively, if C is less than zero then we are doing well on average.

Let us consider the distance Dist(~xi, ~xj). Now we assume that we can learn some

arbitrary mapping function φ(~xi) which projects each feature vector from RP → RQ. The

we can rewrite our distance function using the kernel, Dist(φ(~xi), φ(~xj)). The L1 and L2

distances between mapped feature vectors are written as follows:

L1 : Dist(φ(~xi), φ(~xj)) =
Q∑

r=1

∣∣φ(~xi)− φ(~xj)
∣∣ (2.2)

L2 : Dist(φ(~xi), φ(~xj)) =

√√√√
Q∑

r=1

(
φ(~xi)φ(~xj)

)2 (2.3)

The above mapping φ can be an arbitrary function. However, if we consider φ to be a

linear function (i.e. a matrix Φ) and we let M = ΦΦt, then we can re-write the squared L2

distance as:

L2 : Dist(φ(~xi), φ(~xj)) = (~xi − ~xj)tM(~xi − ~xj) (2.4)

Now consider again Equation 2.1. We would like to minimize this function. We proceed by

using the conjugate gradient method which requires that the derivatives of the cost function

w.r.t. Φ for the L1 and L2 distances.

For the L2 distance, we consider the simpler task of computing derivatives of the squared

cost function w.r.t. M = ΦΦt:

∂
∂M (Dist2L2

(φ(~xi), φ(~xj))) (2.5)

= ∂
∂M

(
(~xi − ~xj)tM(~xi − ~xj)

)
(2.6)

= (~xi − ~xj)tM(~xi − ~xj) (2.7)

19

For the L1 distance, the component (p0, q0) of the derivative is

∂

∂Φp0q0

∑
p

∣∣ ∑
q

Φpqaq

∣∣ =
∂

∂Φp0q0

∣∣∑
q

Φp0qaq

∣∣ (2.8)

= aq0 · sign(
∑

q

Φp0qaq) = aq0 · sign((Ma)p0) (2.9)

where we used the simplifying notation a = xi − xj . This can be written as the product of

two vectors:

∂

∂M

(
DistL1(Mxi −Mxj)

)
=

sign(y1)

.

.

.

sign(yQ)

(xi − xj)t (2.10)

where y = M(xi − xj) = Ma. Note that there is a measure zero set when the derivative is

undefined, namely when Φ(vecxi) = Φ(~xj). If all feature vectors ~x are unique this can only

be satisfied when Φ is not full rank. We never encountered this situation in practice.

Finally consider again Equation 2.1. Depending on the task at hand we may want to

change how much we penalize the difference, U = Dist(~xi, ~xj) − Dist(~xi, ~xk), when it is

violated. For instance if we are interested in the Closest Rank Image we may not want to

penalize heavily inequalities which result in large positive values of U, while, on the contrary

if we are interested in the Average Rank Distance we would want to penalize large positive

values of U. We can include a non-linearity into our cost function with this desired behavior.

C(x) = e
x
α (2.11)

Increasing the value of α reduces the influence of large positive values of U while decreasing

α increases the influence of large U values. We ran experiments using various values of α

shown in Figure 2.7.

The cost function is optimized using the conjugate gradient algorithm and usually con-

verges after 100 iterations. We restart the algorithm multiple times (3×) to avoid local

minima.

20

0 1 2
0.15

0.16

0.17

0.18

0.19

0.2

0.21

Avg Rank Dist

Log
10

 ALPHA

Av
g

Ra
nk

 D
ist

0 1 2
2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

Best Rank Dist

Log
10

 ALPHA

Be
st

 R
an

k
Di

st

Figure 2.7: The effect of varying the steepness of the slope for our exponential cost function
C on two different performance metrics. (Left) Effects on Average Rank Distance Metric. Note
that decrease in performance as we increase α. (Right) Effects on Best Rank Distance. Note that
performance increases as we increase α. Increasing α results in the optimization giving equal weight
to incorrect relative distances which are very far from one another and very close to one another.
This intuition is consistent with the results shown in the plot. Results shown from using an L1
metric on 7× 7 extracted intensity patches.

2.6.2 Creating Triplet Distances

Now consider again Equation 2.1 and the process of optimizing the function. Which images

to we assign as being close and which images are farther from one another? Consider a

celebrity c and all images i of this celebrity. We enforce that images of the same celebrity, j

are always closer to one another than to images of other celebrities which are indexed by k.

By enforcing this criteria we generate a large list of ‘triplets’ of the form [ijk] which specify

that image ~xi and ~xj should be closer to one another than image ~xi and ~xk. This list of

triplets is then used to optimize our cost function.

2.7 Results

We evaluate the performance of our complete system on the two data-sets described in

Section 2.5. We use the three performance criteria described in Section 2.3.1. We refer the

readers to Figure 2.3 to get a sense for the difficulty of the data-set being used. We did not

perform any preprocessing on these images.

2.8 Experiments Using a Learned Distance Metric

We conducted numerous experiments using our learned distance metrics. We compared

this performance to both the raw feature representations as well as FisherFaces. In all

21

20 40 60 80
0

2

4

6

8

10

12

Num Celeb Train

To
p

25
 P

re
ci

si
on

Top 25 Precision

20 40 60 80
0

2

4

6

8

10

12

Num Celeb Train

Be
st

 R
an

k
D

is
ta

nc
e

Best Rank Distance

Map (Test)
Map (Train)
Raw L1
Fisher

Figure 2.8: Effects of the number of individuals (celebrities) used for training on performance.
(Left) Top 25 Precision metric. Results averaged over all celebrities in the test set. An L1 distance
metric is optimized using 7 × 7 intensity patches. The x-axis is the number of individuals used
for training (×10 this number of images are used for training). The y-axis is the precision of the
top 25 returned celebrities. Note that the maximum achievable value is 9. Green line is the raw L1
performance of these features before mapping. Black line is the performance of FisherFaces [BHK97]
when trained using the same number of celebrities. Dotted red line is the performance on the train
set of individuals. Solid red line is the performance on the test set of individuals. Note that we
are over-fitting: we expect the solid and dotted red lines to converge when we are not over-fitting.
Our distance metric is out-performing both the raw L1 distance as well as FisherFaces when we
train with 85 individuals. (Right) Same as left plot but using the Best Rank Performance metric.
Lower is better. Again we see over-fitting, but our distance metric still far outperforms the baseline
methods despite over-fitting. In this case best performance would be 1, which occurs when identical
celebrities would always be neighboring one another.

experiments we initially projected our features down to 100 PCA dimensions, and our

mapped feature space always contained 50 dimensions, i.e. Φ was a matrix of dimensionality

50× 100. We use an α = 1 for these experiments.

In Figure 2.8 we varied the number of celebrities we train with in order to understand

the asymptotic properties of learning with our distance metric. These plots have two main

take-home messages: (1) Our learned distance metric performs well when compared to using

either the raw features or FisherFaces (both techniques are widely used in the literature).

(2) We are over-fitting as indicated by the distance between the training and test error,

indicating that if we trained with more individuals (i.e. collected more celebrities) we

may be able to increase performance even further. The over-fitting is the results of the

large number of parameters in the projection matrix Φ (5000) and the rather limited set

of individuals we train with (we train with up to 85 individuals and a total of about 150

images).

In Figure 2.9 we compare the performance of various feature sets (4 of them) using

22

Average Rank Best Rank Top 25
Random Best Feature Random Best Feature Random Best Feature

0.5 0.13 (.25) L1 I 9 2.7 (4.2) L2 I 9 1.92 5.8 (4.8) L1 I 7

Table 2.2: The best mapping functions. Rand: performance if we chose random images. Best: the
performance of our best mapping algorithm. In parantheses the performance without mapping, i.e.
on the raw feature vectors. Feat: the feature set used. L1/L2: the distance metric used. I: intensity
features. 7/9 the size of the patches used. E.g. 7: 7× 7 patches.

23

I (7x7) I (9x9) G (13x13) G (15x15)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Feature Set

Av
g

Ra
nk

 D
is

ta
nc

e

Avg Rank Dist Comparison (L1)

Raw L1
Fisher
Map (Test)

I (7x7) I (9x9) G (13x13) G (15x15)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Feature Set

Av
g

Ra
nk

 D
is

ta
nc

e

Avg Rank Dist Comparison (L2)

Raw L2
Fisher
Map (Test)

Figure 2.9: Comparison of the Average Rank performance metric. X-axis is 1 of 4 different feature
representations: 7×7 Intensity patches, 9×9 Intensity patches, 13×13 Gradient patches, and 15×15
Gradient patches. These were chosen as they performed the best in Figure 2.6. First column is the
raw L1 distance performance before learning the mapping. Second column is the performance using
FisherFaces. Last columns is the performance using our mapping. We outperform the other metrics
in every feature set tried here. Notably gradients perform worse here relative to intensities, see text
for a discussion. (Bottom) Same plot as above but using the L2 distance to optimize the mapping
and to compute the raw distance. The same trends seem to hold. α = 1 for these experiments.
Results averaged over 3 iterations.

both L1/L2 distances. We note that using Gradient features yielded the high performance

in Figure 2.6, i.e. prior to mapping. While in our experiments using the mapping Φ

the intensity yielded the best performance. This is most likely due to the large size of

the gradient feature vectors used compared to the size of the feature vectors used with only

intensity (the intensity patches extracted were smaller than the gradient patches extracted).

Indeed if we analyze the variance of the PCA coefficients obtained when projecting to 100

dimensions, we find that the gradient vectors encompass about 90% of the variance while

the intensity vectors encompass about 65% of the variance. The plots in Figure 2.9 indicate

that this loss of information has detrimental effects on performance. Note that due to

over-fitting, increasing the projected space of PCA dimensions above 100 results in worse

24

performance as well. If the number of parameters which must be optimized in our map Φ,

we will suffer from over-fitting.

In Table 2.2 we show which mappings perform best on all three performance metrics.

We also note the large performance gains achieved over not using the mapping, i.e. using

only the extracted feature vector ~x in the variance performance metrics.

2.9 Experiments: Google Celebrity Search

Consider if would like to search for a particular celebrity using Goolge image search. Cur-

rently Google image-search only utilizes the text around each image to find similar images:

the information in the actual image is completely ignored!. In this section we show how

to extend the tools we developed in the previous sections to increase the efficiency of the

Google image searches, in particular when searching for famous people. The reason we

concentrate on famous people is that there tend to be many images of them returned for a

Google image search.

Our data-set consists of the fist 250 images returned by Google image-search for 20

different celebrities. Many of the returned results do not actually contain the celebrity of

interest. In order to evaluate our approach we rate each of the returned faces for each

celebrity using the following criteria:

1. If the image contains the celebrity of interest in a roughly frontal view (+/−20 degrees

from frontal).

2. If the image contains the celebrity but in a strange pose or under heavy occlusion (for

instance with a football helmet).

3. If the image does not contain the celebrity of interest.

How can we filter these returned images so that we have a higher precision of our returned

results?

We proceed as follows: First we use Viola and Jones (VJ) [VJ01] to automatically detect

a face in the image. For those faces for which VJ found a face we then determine whether

there are appropriate features using the confidence measure described in Section 2.4. Next

we project all faces which pass both VJ and the confidence test into a face space using a

map trained on 85 celebrities as described in Section 3.6. At this point we have a subset

25

Num Good = 43

Similarity (GoogleTomCruise)

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Figure 2.10: How similar are different faces? We performed a Google image-search for ‘Tom Cruise’.
We filtered out the images which did not contain a face and for which we had low confidence on
features (as described in Section 2.9). We extract features automatically around facial key-points.
We calculate the L1 distance between all remaining images. We sort the images such that images
which have been labelled as having a ‘Good’ face have indices 1-43 while images which do not have a
face are labelled with indices 44-71. Note the faint block structure (with a darker block indicating a
stronger similarity). This plot indicates that ‘Good’ images have a high correlation with one another,
such that if we could somehow select images with high correlation we might be able to return the
celebrity of interest (presumably the celebrity of interest occupies the largest block).

of the images, each containing a valid face detection which we have projected into a space

which provides some invariance.

Figure 2.10 indicates that if we cluster these remaining faces, the largest, most coherent

cluster, should contain ‘Good’ images of our celebrity. How do we cluster? Consider that we

have N available images. We seed our clustering algorithm by finding the set of K images

which have the smallest average distance between them. We then proceed by greedily adding

new images to the cluster that have the minimum average distance between all the images

already contained in the cluster. This method, although simple, produces good results in

practice. We typically set K = 3 for our experiments and N is typically in the range of

50-100. We note some changes in performance when setting K = 2 although the qualitative

results when viewing the returned images look comparable.

26

2.9.1 Google Image Search Results

We would like to compare the performance of our algorithm with the raw results returned

from Google. As described above we have searched for celebrities on Google and returned

the top results. Figures 2.11, 2.15, 2.16, and 2.17 illustrate both the raw returned results

from Google as well as the returned results after our algorithm is applied. These figures

give us a qualitative feel for how well our algorithm is performing and it seems as though

we increase the effectiveness of our search drastically in these cases (other celebrities have

similar results). It is also obvious from these returned results that there are many duplicates

found which ideally would be removed from the returned results although were not for

these experiments to highlight the differences in the quality of returned results between the

different techniques.

How can we quantify performance? In particular how much does our perceptual map

buy us at the end in terms of an increase in precision? Does it buy us anything at all? In

Figure 2.12 we describe the precision criteria we use when evaluating the returned results for

‘Nick Lachey’. Notice that overall using our algorithm with the mapping at the end yields

the highest precision performance. We show the same plots for all searched celebrities in

Figure 2.13. Note that these performances are all based on user ratings: they may not

reflect the overall quality of the algorithm accurately. In Figure 2.14 we compare directly

the performance before and after the perceptual map averaged over all experiments and we

see that the map does indeed perform better than not using the map. We also show how

well the map compares to using the raw returned images from Google and here we see a

very large increase in performance.

2.10 Discussion

We demonstrate impressive recognition results on a challenging data-set of facial images.

In particular we show how to use our system to dramatically increase the efficacy of search-

ing for images of a particular celebrity online. There are numerous avenues for further

exploration which include other cues used for facial recognition. For instance the hair is a

very useful feature as shown remarkably well in [Sin02] where one confuses Al Gore for Bill

Clinton by mapping the hair from one to the other. In addition, the work could be extended

to encompass larger variations in pose by learning a more powerful distance metric. Our

27

Figure 2.11: Google Image Search: Mario Lopez. (Top) Raw returned results from Google. (Bot-
tom) Returned results after our algorithm. Note that there seems to be more consistency in the
returned results on the bottom. Returned results are row-wise.

28

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GoogleNickLachey

Returned Image

P
re

ci
si

on

Google Raw
VJ Filter
Single Det
Single Det (Group)
Single Det (Group, Map)

Figure 2.12: Precision using different recall criteria when Googling for ‘Nick Lachey’ (a famous
pop singer). X-axis: the number of images recalled. Y-axis: the precision of those recalled images,
how many of the recalled images have been labelled as ‘Good’. Blue line: raw Google performance.
Notice that this has the worst recall. Red Line: recall after all images that do not contain at leat
one face which passed our confidence test. This tends to perform slightly better. Purple: precision
when we only consider images where there is a single VJ detection which passed the confidence test.
Magenta: precision after we perform grouping on the same set as purple. Green: precision after we
apply a mapping trained on a distinct set of 85 celebrities. Note that Green performs the best in
terms of precision, which is substantiated by the subjective experience of viewing Figure 2.17. The
solid black dots on each line indicate the maximum number of ‘Good’ examples for each condition.

29

GoogleBarryManilow GoogleBillClinton GoogleBillCosby GoogleBradPitt

GoogleByronScott GoogleDavidLeno GoogleGerardDepardieu GoogleJacquesChirac

GoogleJeanReno GoogleJoeMontana GoogleJohnMcCain GoogleJustinTimberlake

GoogleKobeBryant GoogleMarioLopez GoogleMartinShort GoogleMikeMeyers

GoogleNickLachey GoogleRonaldReagan GoogleSteveYoung GoogleTomCruise

Figure 2.13: Same as Figure 2.12 but for all 20 searched celebrities. Note that in general our
algorithm does much better than the baseline.

30

0 5 10 15 20 25 30 35 40 45 50
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Returned Image

P
re

ci
si

o
n

Comparison: Raw vs Map

Raw Returns
Map

0 5 10 15 20 25 30 35
0.55

0.6

0.65

0.7

0.75

Returned Image

P
re

ci
si

on

Comparison: Pre−Map vs Map

Pre−Map
Map

Figure 2.14: Detailed comparison of different precisions averaged over all celebrities. (Left) Com-
parison of the raw precision by typing in a celebrity name. Here we see a dramatic increase in
precision performance. (Right) Comparison of precision before and after the mapping. Note the
increase in performance when using the mapping compared to not using any mapping. These plot
is averaged over all celebrities shown in Figure 2.13.

31

current system was only trained on more-or-less frontal poses, presumably we could also

train our system on facial images which exhibit more pose variability. Finally, it would

be interesting to examine if our system can be trained to learn other ideas such as facial

similarity. This idea of finding perceptually similar faces will be pursued in the next section.

2.11 Appendix

Here we show more examples of both the raw returned results from Google searches and

the results after we have applied our algorithm and the perceptual mapping. Figures 2.15,

2.16, and 2.17 all illustrate these results.

32

Figure 2.15: Google Image Search: Bill Clinton.

33

Figure 2.16: Google Image Search: Jean Reno.

34

Figure 2.17: Google Image Search: Nick Lachey.

35

Chapter 3

Finding Similar Faces

3.1 Abstract

Automatically determining facial similarity is a difficult and open question in computer

vision. The problem is complicated both because it is unclear what facial features humans use

to determine facial similarity and because facial similarity is subjective in nature: similarity

judgements change from person to person. In this work we suggest a system which places

facial similarity on a solid computational footing. First we describe methods for acquiring

facial similarity ratings from humans in an efficient manner. Next we show how to create

feature vector representations for each face by extracted patches around facial key-points.

Finally we show how to use the acquired similarity ratings to learn functional mapping

which project facial-feature vectors into Face Spaces which correspond to our notions of

facial similarity. We use different collections of images to both create and validate the Face

Spaces including: perceptual similarity data obtained from humans, morphed faces between

two different individuals, and the CMU PIE collection which contains images of the same

individual under different lighting conditions. We demonstrate that using our methods we

can effectively create Face Spaces which correspond to human notions of facial similarity.

3.2 Introduction

Humans naturally perceive the similarity between different objects. Humans are especially

sensitive to facial similarity and it has been suggested that individuals seek partners with

similar facial attributes [Hin89]. Facial similarity is particularly useful in social situations

such as determining familial relationships or dating preferences. The goal of this work is

to place facial similarity on a solid computational footing. We suggest to learn functions

36

Face Space

Figure 3.1: Example of typical Face Space. Perceptual ratings from 130 images were used to
generate a linear map. RDMAP = 100, DPCA = 200. MDS was performed to embed projected
faces into a 2D space. Notice that some areas do not conform well to notions of similarity, such as
the upper right of the space. Other areas contain groups of similar-looking faces (these areas are
highlighted by enlarged images), such as ‘Asian’, and ’Men with Beards and Sunken Eyes’. Overall
the map seems todo a good job of creating a metric space which preserves notions of facial similarity.
A version of this work appeared in [HhLP07].

37

which map measured facial features to metric spaces in which similar looking faces are near

one another.

While there is a vast amount literature devoted to facial recognition, judging similarity

is a more subtle and difficult topic. Our challenges include: (A) obtaining reliable facial

similarity judgments from human observers, (B) developing ‘objective’ approaches to simi-

larity to supplement measurements from humans, and (C) automatically mapping measured

facial features to a space where the natural metric predicts human similarity judgments.

Within the psychological literature there have been numerous studies on how to create

metric spaces for faces which reflect perceptual notions of similarity (see for instance [Ash92]).

Multi-Dimensional Scaling (MDS) [Kru64] is often used to embed faces into a metric space

based on perceptual judgements of facial similarity. Within these embedded metric spaces,

faces which appear similar are nearby one another and thus these spaces are often referred

to as Faces Spaces. These methods have two major drawbacks: (1) MDS methods are not

useful when presented with new faces as MDS does not create an explicit mapping function,

(2) The faces used were always in standard poses and constant lighting conditions and do

not exhibit the same statistical variations found in real-world images.

The computer vision community has a long history of mapping faces into lower dimen-

sional representations for recognition, such as the ‘unsupervised’ Eigenface and ‘supervised’

FisherFace [BHK97] methods. More recently LeCun et al. [CHL06] proposed an interesting

supervised non-linear mapping using contrastive divergence learning and a convolutional

neural network which they apply to numerous data-sets in addition to face data-sets. The

goal of our work is to explore in a principled manner the creation of facial similarity spaces

which reflect perceptual notions of similarity. We generate explicit maps from extracted

facial features and use mostly real-world images and demonstrate our techniques using

real data obtained both from the web and personal photo collections. Figure 3.2 gives an

overview of our proposed algorithm.

The paper is organized as follows: In Section 3.3 we describe and compare methods

for effectively obtaining facial similarity data. In Section 3.4 we describe the various data-

collections used. In section 3.5 we show how to use this training data to construct explicit

functional mappings from feature space to face spaces. Finally, in Sections 3.6 and 3.7 we

will present and discuss our experiments.

38

Extracted
Features

Feature
Vector

Perceptual
Mapping

Facial Similarity

Space

Similar Not Similar

Facial Similarity Training Data

Extracted
Features

Feature
Vector

Perceptual
Mapping

Facial Similarity

Space

Similar Not Similar

Facial Similarity Training Data

Similar Not Similar

Facial Similarity Training Data

Figure 3.2: Outline of proposed facial similarity algorithm. Patches are extracted from the eyes
and mouth and converted to a feature vector. A mapping function is generated using perceptual
similarity training data which is used to project the feature vectors to a metric space which reflects
human similarity judgements.

39

Figure 3.3: (Left) Relative Rating experiment. Subjects are asked to select which of the 24 faces
are most similar to the target face located on top. (Right) Subjects are asked to rate, from 1-7, how
similar the two faces are. Subjects were given a precise definition of each numerical value, from (7)
’Same Person’ to (1) ’Completely Different’.

3.3 Obtaining Facial Similarity Data

A difficult requirement inherent in creating and evaluating a facial similarity space is acquir-

ing large amounts of facial similarity data in an efficient manner. It is desirable that: (1)

the similarity measurements be obtained quickly, (2) the measurements be accurate, and (3)

the ratings be collected on a large set of faces. Authors have suggested numerous methods

for comparing and rating the similarity of faces (see for instance [Rho88] or [HEZP05]) and

here we evaluate variants of two common paradigms which we call Absolute and Relative

rating methods. Figure 3.3 describes and compares both the methods.

We compared the two rating methods by asking 5 subjects to rate the facial similarity

of 127 face images: 100 ‘random’ face images and 9 sets of 3 images of the same person

(the images of the same were photos of minor celebrities). We included images of the same

person in order to ensure that each subject was accurately performing the rating tasks (i.e.

that when the subjects were presented with two images of the same individual, they would

indicate that these images were very similar to one another). It took subjects on average

3s to make an absolute rating and 12s to make a relative rating.

We wish to understand how consistent subjects were in assessing facial similarity. That

is, if the subject were asked to make the same similarity judgement 2× would they make

the same judgement? For space considerations we have included the analysis of consis-

tency within the Supplementary Materials, but note that consistency within a subject was

slightly higher than consistency between subjects. However, consistency between subjects

was surprisingly high.

40

3.3.1 Synthetic Experiments using MDS

Which method, the relative or absolute rating method, is more efficient in creating Face

Spaces? The relative method yields relative rating information: e.g., FaceA is closer to Face

B than Face A is to Face C. The absolute method gives the absolute distance between two

faces as judged by the subject: e.g. Face A and B are distance 2 apart. How can we compare

the efficiency of these two rating methods? We proceed by using Multi-Dimensional Scaling

(MDS) [Kru64] on both relative and absolute rating data.

First we generate a set of synthetic vectors, where each vector represents a face. From

this synthetic data we generate artificial absolute and relative ratings. We then use these

artificial ratings to re-create the original vector space using MDS. Next we describe the

steps more explicitly.

(Step 1) Generate a random set of N vectors of dimensionality D. Each vector represents

a face and the perceptual information available to the subject. (Step 2) Generate the

pairwise distances between all vectors which correspond to perceptual distances between

faces. (Step 3a) Absolute Measurements: distances are discretized into 7 discrete values,

[1..7]. An absolute measurement is indicated by the discrete value between two vectors.

I.e. if vector (image) A and B are 2 apart, then this corresponds to an absolute rating of 2

between these two vectors (images). (Step 3b) Relative Measurements: Randomly generate

25 images and set one as the target image as in Figure 3.3. Sort the remaining images by

their Euclidean distance to the target image and chose the closest Euclidean image.

From the Supplementary Material we know that subjects are not always consistent in

their ratings (i.e when presented with the same set of faces they will not always make the

same similarity judgement). We add appropriate noise to the synthetic analysis to ensure

that the synthetic responses have the same amount of uncertainty as the subject responses.

Once the sets of absolute and relative ratings have been generated from the synthetic

data we perform MDS on both sets of of ratings. For the relative ratings we assign a distance

of 1 and 2 to close and far images respectively. We use the Sammon [Sam69] stress criteria

for creating the MDS spaces which penalizes most points which are measured as being close

to one another (i.e. faces which are perceptually similar) and which are far apart in the

41

2 4 6 8 10 12 14 16 18 20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number MDS Dimensions

R
an

k
Pe

rfo
rm

an
ce

Nearest Neighbor Ranks

Abs (Ratings=500)

Rel (Ratings=125)

Abs (Ratings=2000)

Rel (Ratings=500)

2 4 6 8 10 12 14 16 18 20
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number MDS Dimensions

R
an

k
Pe

rfo
rm

an
ce

Farthest Neighbor Ranks

Abs (Ratings=500)

Rel (Ratings=125)

Abs (Ratings=2000)

Rel (Ratings=500)

Figure 3.4: Synthetic comparison of Absolute and Relative measurements using MDS. (Top) Nearest
Neighbors. For a vector (image) A we find the nearest neighbor to A (let this be B). These two
vectors (images) are embedded into an MDS space which is created using a set of either absolute
or relative ratings. We then calculate the rank distance of these two vectors in the embedded MDS
space: r = rank(A,B). The y-axis is the average rank distance between all images in the MDS
space. The best possible performance would be a value of 1 as this would indicate every nearest
neighbor in the original space was a nearest neighbor in the embedded space. A lower rank distance
is better. Solid lines: absolute ratings, dashed lines: relative ratings. Different colors indicate
different numbers of acquired ratings. The number of absolute/relative ratings were chosen such
that they took an equivalent amount of time. The dimensionality of the embedded space is varied
on the x-axis. (Bottom) Farthest Neighbor. Same as top but instead of looking at the rank of the
closest point we look at the rank of the furthest point. In this case larger ranks r indicate that
the MDS embedding is performing better. 200 random vectors of dimensionality 10 were generated
for these experiments. Relative ratings seem to re-create the vector space more effectively over all
parameter initializations.

embedded space. Explicitly it minimizes the stress E , where

E =
∑

k 6=l

[d(k, l)− d′(k, l)]2

d(k, l)
(3.1)

and d(k, l) and d′(k, l) is the distance between points k and l in both the original and

embedded space respectively. Other stress functions yielded qualitatively similar results.

Figure 3.4 compares the two rating techniques and we find relative ratings re-create the

original target space more accurately than absolute ratings.

3.4 Data Collections

We wish to create a Face Space by training a mapping function using a set of perceptual

training data. After the perceptual space has been generated we would like to evaluate its

performance. We use 4 different collections of images, shown in Figure 3.5, to evaluate and

create Face Spaces. We describe each below:

42

Figure 3.5: Different data collections used to train perceptual mappings. (Top Row) Images from
two individuals from the PIE collection, note the controlled variations in lighting but little pose
variation. (Middle Row) Images of two celebrities, they exhibit some pose, lighting, and facial
affect variations. (Bottom Row) Example of three sets of morphed images, center is the morphed
image, the sides are the images used to generate the morph. Note that the morphed image appears
perceptually similar to the faces used to generate the morph, making this collection useful for training
a perceptual similarity map.

Collection Num Sets Total Num Images
Perceptual - 180

Celebrity Morphs - 52
Celebrity 62 400

PIE 10 270

Table 3.1: Different data collections and the number of images/sets of images in each collection.

43

Perceptual Measurements We collect perceptual data from subjects by asking two sub-

jects (one Caucasian male and female US native) to rate the similarity of 180 face images

using the relative rating technique shown in Figure 3.3.

CMU Pie Collection We selected 10 unique individuals from the CMU PIE Collec-

tion [SBB03] and used 27 frontal poses for each individual, which contain variations in

lighting and some facial emotions in a controlled environment.

Celebrity Images We wished to obtain multiple images of individuals in more diverse

lighting and pose conditions than available in the PIE collection. For this we downloaded

62 sets of images from the web. Each collection had between 3-11 images. These individuals

tended to be Celebrities.

Celebrity Morphs1 We wish to artificially create similar faces using a morphing program.

We randomly chose two images of different individuals from our celebrity collection and

morphed the images together. We chose the perceptual middle point of the morph when

the morph face looked equally similar to the two faces (see Figure 3.5 for examples of

the morphs). The generated morphs do indeed look very similar to the two faces which

generated them.

3.5 Creating a Perceptual Mapping

Next we discuss how to use to create an explicit mapping from features extracted from face

images to a space which conforms to facial similarity.

3.5.1 Facial Feature Representation

First we describe how to obtain a feature (vector) representation for each face. We manu-

ally annotated points at the corners and above/below the eyes and mouth. We note that

automatic detectors for these particular facial locations have been shown to be successful

on similar data [EZ06], but for this study we preferred more controlled data. We extracted

patches around both eyes and the mouth at the size shown in Figure 3.6 and resized them

to be 17×24 and 25×14 respectively. The patches were combined into one vector and used

to represent each face. Each patch was normalized to have zero mean and unit variance.

We also conducted experiments which included the area around the nose, but found no

1We used the program FaceMorpher Multi by Luxand Development to create facial morphs.

44

Figure 3.6: Examples of the average visual features extracted from a set of faces. Note the relatively
large size of the extracted feature.

45

noticeable change in performance. The dimensionality of all feature vectors was reduced to

DPCA = 200 dimensions using PCA which typically encompassed > 99% of the variance.

We also experimented using kPCA with an RBF kernel to reduce dimensionality and found

no noticeable change in performance.

3.5.2 Representing Ratings using ”Triplets”

In Section 3.3 and Figure 3.3 we discussed how to obtain relative facial similarity measure-

ments. Here we discuss how to represent relative measurements so they can be used to

optimize a perceptual map. Each relative rating tells us that the image which is picked (i.e.

Image B) is more similar to the target Image A than any other image in the set of 24 images,

indexed C. We can represent this information using a triplet [A,B, C]. For any triplet, the

subject has indicated that D(A,B) < D(A, C) where D is some perceptual distance metric

used by the subject. It is easy to see that each relative rating generates 23 such triplets.

We can represent data collections containing images of the same person, such as the

Celebrities and PIE collections, using triplets as well. We consider that images of each

individual are more similar to one another than to any of the other images in any collection.

In this case, in the triplet [A,B, C], A and B are images of the same person and C is an

image of a different individual. For example if we have 2 images of the same individual,

and 100 images of other individuals, we can generate 2 ∗ 100 = 200 triplets.

We follow similar logic for the morphed images. In this case the morphed image is similar

to both of the individuals used to generate the morph, but dissimilar to other individuals.

For instance, if we generate a morph from two individuals where we have 2 images of each

individual, as well as 100 images of other people, we can generate 4 ∗ 100 = 400 different

triplets.

3.5.3 Perceptual Map

How can we generate a perceptual map which projects the feature vectors extracted in

Section 3.5.1 to a space conforming to our notions of similarity? Explicitly, we would like

a mapping f which takes feature vectors representing each face of dimensionality DPCA

and projects them into a space of dimensionality DMAP such that f : RDPCA → RDMAP ,

where DMAP is typically 100. Results are not particular sensitive to small changes in the

dimensionality of DMAP: we found qualitatively similar results for DMAP = 50− 200. Here

46

we assume a linear map, although the framework is applicable to any differentiable function

f . We can represent our mapping function as ~y = f(~x), or, since we are assuming a linear

map, ~y = M~x, where M is a matrix of RDMAP ×RDPCA , and ~x is a feature representation

for a face, and ~y is the projected representation after the linear map.

Consider a particular triplet t = [A,B, C] as described in the previous section. Now

consider a feature representation for the images A,B, C which we denote by ~a,~b,~c. For

a particular triplet, we would like that the distance between ~a and ~b be less than the

distance between ~a and ~c in the projected space. Thus we would like a cost function which

penalizes inequalities when the following is true: D(M~a,M~b) > D(M~a,M~c) where M is

the projection matrix to be optimized. We use the squared L2 metric to calculate distances

in the projected space and penalize inequalities using:

St = ||M~at −M~bt||2 − ||M~at −M~ct||2 (3.2)

St = (~at −~bt)P (~at −~bt)t − (~at − ~ct)P (~at − ~ct)t (3.3)

Where P = M tM . The mapping is linear, so the derivative of the penalty term w.r.t. the

linear mapping is a matrix and can be written as:

∂St

∂P
= (~at −~bt)t(~at −~bt)− (~at − ~ct)t(~at − ~ct) (3.4)

and if we impose an exponential cost function, Ce and sum over all triplets t:

Ce =
∑

t

exp(
−St

β
) (3.5)

∂C
∂M

=
1
β

∑
t

exp(
−St

β
)
∂St

∂M
(3.6)

where β controls the sensitivity of the penalty (we usually set to β = 1 for our experiments),

i.e. the steeper the exponential distribution (smaller β), the more we penalize triplets in

which the inequality is not respected. We considered other cost functions including a sigmoid

function, Cs:

Cs =
∑

t

Sig(−St) (3.7)

where Sig(x) = 1
1+exp−x . We also considered the cost function proposed by the authors

47

Exponential Sigmoid Rank [BCB98]
20 Celeb Train .25± .04 .25± .03 .27± .04
40 Celeb Train .2± .03 .21± .03 .23± .04
60 Celeb Train .17± .04 .18± .05 .20± .04

Table 3.2: Comparison of different cost functions when different numbers of celebrities are used for
training. Rank performance on celebrity data-sets shown, see Figure 3.9 for details on calculating
rank performance. Lower is better. Averaged over 20 iterations. The exponential cost seems to
perform the best.

of [BCB98] derived from the statistical estimate of the rank correlation between two vari-

ables. We found the exponential cost function to, in general, yield slightly better results

for most simulations (see Table 3.2 for a comparison of different cost functions). In addi-

tion we experimented using a non-linear one-layer Radial Basis Function network as our

mapping function. These mappings exhibited severe problems with over-fitting due to the

large number of parameters in our map and the relatively small amount of training data

available and hence we used the linear map M for our experiments.

We optimize the map using the conjugate gradient algorithm. We initialize the matrix

M at multiple starting points to avoid local minima and chose the experiment resulting in

the lowest cost. We find that convergence usually occurs after 100 iterations. We witnessed

only minor fluctuations in cost due to local minima during optimizations.

3.6 Experiments

In the previous sections we described how to acquire perceptual judgements efficiently and

how to generate a perceptual map. In this section we describe our experiments. First,

we explicitly indicate how we divide up our training and test set of data so as not to

contaminate training data with test data.

3.6.1 Creating Train and Test Sets

Perceptual Ratings: We collected relative ratings on 180 face images which we call this set

E . For training, we selected a subset E as a train set and found all the triplets indexing these

training images. The test set consisted of the remaining images and the triplets associated

to those test images.

Celebrity/Pie Images: Of the 62 sets of celebrities we chose a subset to train with and

48

0 50 100

0.1

0.12

0.14

0.16

0.18

0.2

Num Images Train

N
u

m
 C

lo
s
e

 F
a

c
e

s

Train: Percepual
Percep Perf (Map)
Percep Perf (Pre−Map)
Baseline

0 10 20 30 40 50

0.1

0.12

0.14

0.16

0.18

0.2

Num Morphs Train

N
u

m
 C

lo
s
e

 F
a

c
e

s

Train: Morphs
Percep Perf (Map)

0 10 20 30 40 50

0.1

0.12

0.14

0.16

0.18

0.2

Num Celebs Train

N
u

m
 C

lo
s
e

 F
a

c
e

s

Train: Celebs
Percep Perf (Map)

0 5 10

0.1

0.12

0.14

0.16

0.18

0.2

Num PIE Train

N
u

m
 C

lo
s
e

 F
a

c
e

s

Train: PIE
Percep Perf (Map)

Figure 3.7: How accurately can we reproduce human perceptual judgements? We train mappings
using 4 different collections of images (the training collection used to create the mapping is indi-
cated in the title of each sub-plot). x-axis: clockwise from the top left, number of images for which
perceptual data was acquired, the number of morph images, the number celebrity individuals, and
the number of pie individuals used to train the mapping. y-axis: performance on human percep-
tual measurements using the metric described in Section 3.6.3. Higher is better. Red line is the
performance expected by chance. The best performance is obtained when the map is trained with
perceptual data (about 4× better than baseline performance), although morphed images perform
well as well. Training a mapping using either the Celebrity and PIE data-sets results in poor per-
formance: these collections do not seem appropriate for training mappings which predict human
perceptual judgements.

49

Pie Before Map Pie After Map

Figure 3.8: Distance between PIE individuals before and after mapping. Note the tighter clusters
after the mapping, the right image, than before the mapping, the left image. This mapping was
generated by training on 54 sets of Celebrities, no PIE images were used for training the map.
(Left) The blue stars represent non-PIE images. Each color represents a single PIE individual, and
each dot represents 1 of 27 different images of this person under different with different lighting
and facial affects. The embedding was generated using MDS on the PCA reduced representations
of each feature vector. (Right) The same set of points after being mapped into face space and
embedded using MDS. Pictures indicate the identity of each cluster. Note that each PIE individual
is now clustered in a particular area of space and that the points representing each individual are
now closer to one another. The mapping has learned invariance to lighting and facial affect. This
is somewhat remarkable considering that the map was trained on only Celebrities and generalized
similarity information across data-sets to the PIE images.

50

the remainder was used as a test set. 120 additional images from the set E were used as

‘far’ images, e.g. in the triplet [A,B, C], A and B referenced an image of the same celebrity

while C indexed one of the images from the set E . For PIE experiments, we used 10 sets of

PIE people in a paradigm identical to the Celebrity Images.

Celebrity Morphs: Each morph image was generated from two celebrity images and the

triplets, [A,B, C] were generated such that A corresponded to the morphed image, B to an

image of a celebrity from which the morph was generated, and C an image from E . We used

morphs and their associated celebrities for training and the rest of the images for testing.

3.6.2 Assessing Map Performance: Rank

How should we measure performance before and after the perceptual mapping(s)? Since

the learned map M can scale the space arbitrarily, a Euclidean distance metric is not

appropriate. We chose instead to measure performance using the rank between images.

The rank r between two images is the number of images in between two images. Consider

a set of N face images. Let nc
i indicate that image i is of celebrity c. Finally let M c be the

number of images of celebrity c in the set N . We can measure the average rank of celebrity

c as:

rc =
1

M c(M c − 1)×N

∑

i,j∈c,i6=j

rank(~nc
i , ~n

c
j) (3.8)

3.6.3 Assessing Map Performance: Closest

We would also like to quantify the performance of the perceptual ratings obtained from

humans. This is a bit trickier thank using the rank distance. We proceed as follows. For

each image A, find the 10% closest L2 distance images. Now consider all triplets of the

form [A,B, C]. Calculate the percentage of times B is in the set of closest images. The

higher this percentage, the better the metric space is at predicted perceptual judgements.

By chance we would expect on average 10% of triplets to have an image B in the top 10%

closest images (a perfect map would yield roughly 19%). See Figure 3.7 for experiments

evaluated using this performance metric.

51

3.6.4 Holistic vs. Feature-Based Recognition

There has been some debate in the psychological community between whether humans

recognize faces by processing the whole face at once (holistic processing) or whether they

proceed by analyzing individual features (feature-based processing) [NGOL06]. Within the

computer vision community both methods have been utilizes, with holistic Eigenface [TP91]

and Fisherface [BHK97] methods competing with more local feature-based methods [EZ06].

In this work we initially performed experiments using a global representation based on

performing a 3D warp of the face and extracting the entire warped face into a feature vector

(this work was done in conjunction with Mark Everingham and Andrew Zisserman of Oxford

University, not published). We found that the global representations performed inferior, in

general, to feature-based representations. However, it is not entirely clear whether the

inferior performance was due to the artifacts generated by the 3D warp or due to the

holistic nature of the face representation. (Note that we only performed affine 2D warps on

extracted features for the feature-based approach).

One interesting note is that although we chose to use a local feature based approach, the

optimal patch-sizes for these features overlapped one another significantly (see Figure 3.6

). Smaller features, only centered on a small region of the face and not overlapping one

another were inferior, in general, to larger features which covered large swaths of the face

and overlapped significantly with one another (see Figure 2.6). Small patch sizes might

not accurately represent such notions as facial adiposity or the relative positions of features

to one another. In a sense, these are global characteristics of the face. These experiments

suggest that utilizing a mixture of both local and global cues seems to result in the strongest

overall performance.

3.7 Results

The different collections of data exhibit different statistical variations as shown in Figure 3.5.

Not surprisingly, we found that a mapping had the highest success when tested on the same

collection as it was trained with (see Figures 3.7 and 3.9): the map learned robustness to

the statistical variations within the training data-set which it generalized to the testing set.

Figure 3.1 shows a nice example of a Face Space generated using perceptual data.

There are several interesting observations from our experiments: (1) Training using the

52

0 20 40
0.15

0.2

0.25

0.3

0.35

0.4
Train: Celeb

Num Celebs Train

A
vg

 R
an

k
C

el
eb

Celeb Perf (Map)
Fisher
Celeb Perf (Pre−Map)

0 2 4 6 8
0.15

0.2

0.25

0.3

0.35

0.4
Train: PIE

Num PIE Train

Celeb Perf (Map)

0 20 40
0.15

0.2

0.25

0.3

0.35

0.4
Train: Morphs

Num Morphs Train

Celeb Perf (Map)

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

Num Celebs Train

A
vg

 R
an

k
P

IE

PIE Perf (Map)
Fisher
PIE Perf (Pre−Map)

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Num PIE Train

PIE Perf (Map)

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

Num Morphs Train

PIE Perf (Map)

Figure 3.9: Rank performance of both the Celebrity and PIE collections after training mappings
using different data. (Top Row) Rank performance of the celebrity collection. X-axis: the number of
celebrities/PIE individuals/morphs used for training. Y-axis: the rank performance on the celebrity
data-set (lower=bettter). Training with celebrities results in the best performance. Dotted red line is
the rank performance before the mappings are applied. Green line is the performance when we train
a mapping using Fisher Linear Discriminants (see [BHK97]). Fisher seems to yield slightly worse
performance when compared to our mapping. Note that increasing the number of individuals used for
training yields better rank performance as the mapping over-fits less and generalizes more. (Bottom
Row) Same but measuring rank performance on the PIE data-set. Training on PIE individuals
results in the best performance. For both the top and bottom row, training on the same data-set
as one tests on yields the best performance. Training using morph images seems to create good
mappings for both PIE and Celebrity collections. Note that we create distinct train/test sets for all
experiments (see Section 3.6.1). All results averaged 25 times.

53

morphed images generated Face Spaces which predicted user similarity judgements well

(although not as well as training on facial similarity judgements from subjects). However

training using either the Celebrity or PIE collections did not generalize to good performance

on the human data. The latter two collections exhibit mostly variations in lighting and

facial affect and the variability inherent there did not generalize to facial similarity. (2)

Our performance curves, although leveling out, do not seem to have saturated, indicating

that by acquiring more training data we might be able to improve performance further (see

Figures 3.7 and 3.9. (3) The Celebrity collection generalized well to the PIE collection

although the PIE did not generalize well to the Celebrity collection (Figures 3.8 and 3.9).

Presumably the PIE collection, which was obtained in a highly controlled environment, did

not exhibit enough variability to generalize to the other collections.

3.8 Automatic Similarity Detection

In this section we combine the automatic detection techniques described in the previous

chapter with the idea of learning a similarity metric described in this chapter. In particular

we automatically detect the face, validate that it is a face using the Everingham face model

(reject false detection faces), extract features, and finally map the features into a space

using a learned similarity metric. Figure 3.11 shows results for a particular query. The

results are, in general, strong, with the first closest returned faces containing faces which

look similar to the target face. Note that this is a completely automated procedure for

finding similar faces such that the user must only take a picture of an individual and run

the program to find similar faces. No marking of facial features is necessary.

When did our algorithm yield poor performance? We found experimentally that when

the data-base contained relatively few examples of a specific type of face, such as ”old-Indian

men”, the results poor. There were simply not enough faces near the target face and thus

the algorithm returned relative nonsense. On the other hands, in dense areas of the space

such as ”young-white-males” the algorithm performed quite well, often returned many very

accurate and similar examples.

54

target 5.3849 5.9855 6.0736

6.2493 6.6804 6.7535 6.8463

A) B) C)

D)

Figure 3.10: Overview and example of automatic facial feature detection and mapping of facial
similarity. A) Initial VJ detections of faces. B) Filtered faces using feature validation procedure,
Green is the accepted face, red are rejected faces. C) The detected inner facial features. D) The
most similar faces to the target faces. Titles are the L2 distances of each face from the target face.
Note that the first results are all young Indian men as is the target image. As we move farther away
the results become less consistent.

55

target 5.954 6.3962 6.4092

6.5258 6.5689 6.5918 6.7827

target 6.8965 8.6187 8.8505

8.9433 9.5686 9.6387 10.1637

Figure 3.11: Two more examples of target faces and the closest identified faces in the data-base.
(Top) The target face is a young Caucasian male and the returned results are nearly all young
Caucasian males. (Bottom) The query image is a young asian male and the returned results are
nearly all young asian males. The results are impressive in that there was not labeling of the images
in any way. The algorithm automatically detected and extracted facial features and mapped these
features to a space which obeys our notions of facial similarity.

56

3.9 Discussion

We have shown how to construct and evaluate facial similarity spaces which mimic human

perceptual judgements on real data. In addition we show the flexibility of the approach:

training the mapping with different data-collections results in different Face Spaces. This

work takes the first steps towards creating metrics and mappings for faces which correspond

to human perceptual judgements.

3.10 Appendix: Consistency of Raters

We wish to measure the consistency of our subjects during both the relative and absolute

rating methods. We had 5 subjects rate images using the relative method and a different

set of 5 subjects rate images using the absolute method.

3.10.1 Absolute Ratings

Recall that during an absolute rating subjects are required to choose a number from 1 to

7 indicating how similar two faces are to one another. Figure 3.12 shows the number of

times each rating was chosen by each subject. The right-skew in the distribution indicates

that subjects are more likely to say faces are dissimilar than similar. In order to assess

how consistent subjects were we interleaved trials in which subjects were shown the same

two images and required to assess their similarity. If subjects are perfectly consistent they

will always indicate the same similarity number (from 1 to 7) between the images. If they

are not consistent they will indicate a different number. Figure 3.13 shows results across 5

subjects for both the condition when they see the hair of the faces and when they do not.

We note that subjects seem to be reasonably consistent in rating the similarity of images,

and they are even reasonably consistent across subjects.

3.10.2 Relative Ratings

We would like to analyze consistency for relative ratings as well. How should we proceed?

Again we have inter-leaved trials where the subject sees the same set of faces and must

choose which, from a set of 24 faces, is most similar to a target face. We have a total

of 10 sets of images which we repeat 4 times as in the absolute experiments. For one set

of images consider each of the 4 trials. The subject may pick 4 different images as being

57

0 5 10
0

100

200

300

400
Hair, Subj=1

Co
un

t

Rating
0 5 10

0

100

200

300
Subj=2

Co
un

t

Rating
0 5 10

0

50

100

150

200
Subj=3

Co
un

t

Rating

0 5 10
0

50

100

150
Subj=4

Co
un

t

Rating
0 5 10

0

50

100

150
Subj=5

Co
un

t

Rating

0 5 10
0

50

100

150

200
No Hair, Subj=1

Co
un

t

Rating
0 5 10

0

50

100

150
Subj=2

Co
un

t

Rating
0 5 10

0

50

100

150
Subj=3

Co
un

t

Rating

0 5 10
0

100

200

300
Subj=4

Co
un

t

Rating
0 5 10

0

50

100

150

200
Subj=5

Co
un

t

Rating

Figure 3.12: What was the distribution of ratings for the absolute rating task? (Top Set) Faces
shown with hair. Each plot is a different subject. The x-axis is the particular rating chosen. The
y-axis is the number of times this rating was chosen. Note the right-skew distribution. Subjects
were not equally likely to chose any particular rating. Subjects were most willing to say faces were
very dissimilar (rating 1). (Bottom Set) Same when images were shown without hair.

58

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 All
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Absolute Ratings: Hair

Subject

St
d

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 All
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Absolute Ratings: No Hair

Subject

St
d

Figure 3.13: (Top) Results when subjects are shown images with hair. There were a total of 10
unique pairs of faces which were repeated 4 times. The order in which faces were shown to subjects
was the same. The repeat pairs were interleaved among a total set of 514 trials. We measured the
standard deviation (std) in the responses of each subject to the repeated pairs. A low std indicates
that the subjects are consistent, they always chose the same number. We averaged the std across
all pairs and plot the results as the first 5 bars. The last bar indicates the std across all subjects
and gives an idea to inter-subject consistency. Here the mean score of each subject is subtracted
from each score and the std is taken across all subjects. Although there does seem to be some
inter-subject variability it does not appear to be extremely drastic. (Bottom) Same as top but when
the subjects are shown images without hair. Note that there does not seem to be an appreciable
decline in performance.

59

0 5
0

1

2

3

4
(Hair), Subj 1

C
o

n
si

st
en

cy

0 5
0

1

2

3

4
Subj 2

0 5
0

1

2

3

4
Subj 3

0 5
0

1

2

3

4
Subj 4

0 5
0

1

2

3

4
Subj 5

0 5 10 15
0

5

10

15

20
All

0 5
0

1

2

3

4
(NoHair), Subj 1

C
o

n
si

st
en

cy

0 5
0

1

2

3

4
Subj 2

0 5
0

1

2

3

4
Subj 3

0 5
0

1

2

3

4
Subj 4

0 5
0

1

2

3

4
Subj 5

0 5 10 15
0

5

10

15

20
All

Figure 3.14: (Top Set) Results when subjects are shown images with hair for relative rating rating
experiments. The consistency of the 5 subjects in the relative rating scheme. Perfect performance
would be indicated by a single bar of height 4: the subject always picks the same image during the
relative experiment. The final bar plot indicates how consistent subjects are between each other. In
this case the maximum would be a 16 (4 subjects ×4 interleaved experiments. Again we see that
subjects are reasonably consistent between themselves: different subjects tend to pick the same faces
as being most similar to the target. (Bottom Set) Same as top but when the hair is not shown. The
results between hair and no hair conditions seem consistent.

similar, or may consistently pick the same image as being similar. The latter case is, of

course, preferable. To graphically illustrate performance, we consider the number of unique

groups which each subject selects. In the first case there would be 4 groups, while in the

latter there would be only a single group. We then look at the cardinality of these groups

and sort them in decreasing order. Figure 3.14 shows results averaged over the 10 sets of

repeated trials. Note that subjects seem to be reasonably consistent in their choice of the

most similar face.

60

Part II

Active Learning

61

Chapter 4

Entropy-Based Active Learning

4.1 Abstract

Most methods for learning object categories require large sets of labeled training data. How-

ever, obtaining sufficient labeled training data can be a difficult and time-consuming en-

deavor. We have developed a novel, entropy-based “active learning” approach which makes

significant progress against this problem. The main idea is to sequentially acquire labeled

data by presenting an oracle (the user) with unlabeled images that will be particularly infor-

mative when labeled. Active learning chooses the order in which the training examples are

acquired, which, as shown by our experiments, can significantly reduce the overall number

of training examples required to reach near-optimal performance. At first glance this may

seem counter-intuitive: how can the algorithm know whether a group of unlabeled images

will be informative, when, by definition, there is no label directly associated with any of the

images? Our approach is based on choosing an image to label that maximizes the expected

amount of information we gain about the set of unlabeled images. The technique is demon-

strated in several contexts, including improving the efficiency of web image-search queries

and open-world visual learning by an autonomous agent. Experiments on a large set of

140 visual object categories taken directly from text-based web image searches show that our

technique can provide large improvements (up to 10x reduction in the number of training

examples needed) over baseline techniques.

4.2 Introduction

There are many situations in computer vision where the cost of obtaining labeled data is

extremely high. Consider the problem of obtaining sufficient training data to build recog-

62

R
a

n
d

o
m

 S
e

le
c

ti
o

n
A

c
ti

v
e

 L
e

a
rn

in
g

S
e

le
c

ti
o

n

C
la

s
s

if
ie

r

R
e
s

u
lt

s

Figure 4.1: Web image search for category ‘Cougar’. The user is allowed to label images
to refine the image search query. (Top) Images the user needs to label in passive learning
(randomly choosing images for the user to label) in order to achieve 82% of maximum
performance. (Middle) Images sequentially selected by active learning for the user to label.
The blue boxes indicate images the user has marked as ‘Good’. Note that the user is
required to rate over 4× fewer images when active learning is used compared to passive
learning. In this example, the user prefers images that show the head of a cougar. (Bottom)
The top 8 returns of the resulting classifier trained using the active learning images. Blue
boxes indicate images which are ‘Good’ according to the user. Figure 4.2 shows similar
performance gains for 137 image search categories.

63

nizers for thousands of image categories; clearly, one needs to be as efficient as possible when

confronted with such a large number of categories and images. By intelligently choosing a

subset of the images to label, we may be able to dramatically reduce the cost of obtain-

ing an adequate labeled training set. As shown in Figure 4.2, similar issues arise when

performing text-based searches for a particular object class. A basic search may return a

high percentage of images that do not match the target concept. If we could refine these

searches by acquiring user input, we could drastically increase the precision of the returned

results. However, since user time is precious, it is critical that we attempt to squeeze as

much information as possible from a minimum amount of feedback. Finally, consider an

autonomous agent traversing a world and encountering new object classes. The agent is

allowed to query an oracle (e.g. a human) regarding information found in the world, but,

as the oracle’s time is valuable, we would like to keep the number of queries to a minimum

(e.g., consider a Mars rover, which must consume precious resources and time to query hu-

man ‘oracles’ back on Earth). Note that this portion of the thesis was done in collaboration

with Michael C. Burl.

In this chapter we employ active learning to more quickly and efficiently learn visual

object categories. In general active learning paradigms have 4 key components: (1) a set of

labeled training examples, (2) a set of unlabeled examples for which labels can be obtained

at some cost, (3) an oracle (e.g., a human) that can provide correct labels, and (4) a

methodology for deciding which unlabled examples to request labels for given the current

state of knowledge. Typically, this process occurs iteratively so that unlabled examples

are selected and then labeled by the oracle. Given the new information from the oracle,

additional unlabled examples are selected for labeling. Colloquially, we refer to the image

selected for labeling at each interation as the “Most Informative Unlabeled Point” (the

MIUP). This formulation of active learning is similar to that described in [MN98].

The main question in active learning is determining how to select the next image to

label given what is currently known. Many heuristics have been developed; one of the most

common is to choose examples which are the “most confused” with respect to the current

classifier being used. For instance a confused point might be the point which lies closest to

the decision surface separating two classes. Tong and Koller [TK00] develop this idea for

Support Vector Machines (SVMs) by looking at the closest point to the current separating

hyperplane. This idea has been further developed for image retrieval experiments [TC01].

64

Song et al. [SOS] take a different approach to selecting the most-confused point by generating

numerous viable classifiers based on the known labels and choosing the point to label as the

one that is most-confused by these classifiers. The authors of [FJ04] compare yet another

“most confused” point approach and apply it to image retrieval experiments.

Relevance feedback, a related method, has been studied for content-based image retrieval

(CBIR) systems since the mid-1990’s. Many of these techniques focus on learning similarity

measures between images or on weighting the importance of low-level features such as shape,

color, and texture in defining the user’s target concept. See [ZH03] for a review.

We take a different approach to active learning in the hopes of improving performance

and improving the flexibility of the active learning approach. In fact, given the multitude

of image classifiers available, we would like our active learning approach to be agnostic

w.r.t. the underlying image classifier being used. We suggest to choose MIUP which results

in acquiring the most information about the unlabeled images, or, expressed another way,

which minimizes the expected uncertainty of the unlabeled set of images. Our algorithm, in

the same spirit as [SOS], generates numerous viable classifiers in order to identify the MIUP

and is well-defined for any underlying classifier being used (in this paper we demonstrate

the technique on SVMs, Nearest Neighbor, and Kernel Nearest Neighbor classifiers).

65

0 50 100
0

10

20

30

40

50

60

70

80

Num Imgs Labeled (Entropy)
Nu

m
 Im

gs
 L

ab
ele

d
(R

an
d)

Entropy vs Rand

−5 0 5
0

5

10

15

20

25

30

35

40
Mean=2.74 (Median=2.27)

Log
2
 (s

rand
 / s

ent
)

Figure 4.2: Comparison of Minimum Expected Entropy (MEE) active learning against

passive learning (random sampling) over 137 categories of image search data (see an example

category in Figure 4.2). (Left) Scatter plot showing the number of labeling rounds to reach

85% of asymptotic maximum performance for MEE (x-axis) versus random sampling (y-

axis). Points above the diagonal indicate that MEE reaches near-optimal performance

with fewer labeling rounds than passive learning. Each point represents a different object

category and is the result of averaging over 50 experiments for the category. All experiments

used an unlabeled pool of 250 images. (Right) Histogram of the log2 speedup (multiplicative

improvement) of MEE versus passive learning. We indicate the mean and median increase

in performance in title, i.e., a mean of 4, indicates that on average active learning reached

target performance 4× faster than random learning.

In Section 4.3 we describe our algorithm. In Section 4.7 and the types of features we

extract. In Section 4.4, we describe the data-sets used and show that our technique provides

substantial speedup over competing methods on a large set of 137 image categories. We also

consider the important question of deciding automatically when enough labeled data has

been acquired. Finally in Section 4.5, we conclude and discuss implications of this work.

Two technical appendices are included, which provide a brief overview of the Lazebnik

Spatial Pyramid Match Kernel [LSP06] (used as the underlying classification method in

our experiments) and several alternative active learning approaches that were tested.

4.3 Active Learning

We formalize our discussion of active learning as follows. Suppose we have a set of N

images with each image belonging to one of L possible classes. Initially we assume that

the class labels for all images are unknown. Active learning begins by choosing one or

66

more of the N images; these images are presented to an oracle that provides the correct

class label(s). In subsequent rounds, the active learning algorithm considers both the the

currently labeled images and the remaining unlabeled images and chooses additional images

from the unlabeled set that would be particularly informative if their labels were known.

Let U (t) be the pool of unlabeled images at the start of round t and let L(t) be the

corresponding pool of labeled images. Initially, we have U (0) containing all N images and

L(0) = ∅. For simplicity of notation, we will assume that one unknown image is to be

chosen in each round and assigned a label, although see Section 4.3.4 for a discussion of the

multi-return case.

To admit both deterministic and random algorithms, we suppose that an active learning

algorithm outputs an (M × 1) vector w that specifies a probability distribution over the

images in the unlabeled pool, where M is the number of unlabeled images available in the

current round. A deterministic algorithm simply sets all the elements of w to zero, except

for one element which is set to 1. (This element is then guaranteed to be picked.) Random

sampling (equivalent to passive learning) sets w to 1/M · 1, where 1 is an (M × 1) vector

of ones. Given w, the oracle chooses an image according to this distribution and returns

its label. This process leads to new labeled and unlabeled sets for the next round.

L(t+1) = L(t) ∪ {x(t), y(t)} (4.1)

U (t+1) = U (t) \x(t) (4.2)

where x(t) ∈ U (t) is the example chosen in round t and y(t) is its label assigned by the oracle.

4.3.1 Minimum Expected Entropy

The usual goal with active learning is to learn, as quickly as possible, a decision function

g(·) that accurately assigns class labels y to test images x. However, given the uncertain-

ties involved (even the form of the underlying class-conditional probability distributions is

unknown), it is difficult to directly optimize this criterion. Instead, we have developed a

novel active learning approach that attempts to sequentially minimize the expected entropy

(uncertainty) of the labels for the unlabeled images given the current labeled set.

Let H(·) represent the entropy of a set of images. In round t, we want to choose the

image that produces the maximum reduction in entropy (equivalently, maximum gain in

67

information) once its label is known.

x(t) = arg max
x

H
(
U (t)|L(t)

)
−H

(
U (t+1)|L(t+1)

)
(4.3)

Since only the second term depends1 on x), we can instead solve the following minimization:

x(t) = arg min
x

H
(
U (t+1)|L(t+1)

)
(4.4)

There is a problem with our formulation so far. In both Equations 4.3 and 4.4, we have an

entropy conditional on L(t+1), which presumes we know the label that the oracle will assign

to x. Since this label information is unknown before we consult the oracle, H (U (t+1)|L(t+1)
)

cannot be calculated. To resolve this issue, we instead compute an entropy conditional

on each possible result the oracle might give for the label of x. We then average these

conditional entropies weighted by the probability that x takes on a particular label to

generate an expected entropy:

Hx =
L∑

j=1

P (Y =j|L(t)) · H
(
U (t+1)|L(t)∪{x, j}

)
(4.5)

where Y is a random variable representing the label of x. The Minimum Expected Entropy

(MEE) algorithm chooses the image that results in the minimum value for Hx.

x(t) = arg min
x

Hx (MEE) (4.6)

The main difficulty in implementing MEE is to estimate H (U|L). (The superscripts

that indicate the epoch number have been dropped to simplify the notation.) This quantity

is the joint entropy over the random variables Yk representing the labels of the unlabeled

images conditional on L. The joint entropy, of course, depends on the full joint probability

distribution over the vector of Y variables, which is difficult to estimate. Therefore, we

make use of the subadditivity property of entropy:

H (Y1, Y2, . . . , YM |L) ≤
M∑

k=1

H (Yk|L) (4.7)

to replace the joint entropy by a sum over the individual (marginal) entropies; this new

1The dependence is implicit; x is the new image from U (t) to be labeled.

68

quantity serves as an upper bound for the joint entropy. (The bound is tight if the Yk’s are

independent.)

To estimate H(Yk|L), we simply need to know the probability distribution over the

possible label values that Yk can take, then the entropy is given by:

H(Yk|L) = −
L∑

l=1

P (Yk = l|L) · log2 P (Yk = l|L) (4.8)

Estimation of the label probabilities is discussed in the next subsection. Algorithm 4.3.1

provides a pseudocode summarization of the Minimum Expected Entropy approach.

for each round t do
for each unlabeled image xi ∈ U (t) do

for each possible class label j ∈ {1, . . . , L} do
Estimate P

(
Yi = j|L(t)

)

for each unlabeled image xk ∈
(U (t)\xi

)
do

for each possible class label l ∈ {1, . . . , L} do
Estimate P

(
Yk = l|L(t) ∪ {xi, j}

)
end for

end for
Calculate conditional entropy Hj

end for
Combine conditional entropies Hj for j = 1, . . . , L into an expected entropy Hxi

end for
Set w to δi∗ where xi∗ yields lowest expected entropy.

end for

4.3.2 Look-Ahead Estimate of Class Probabilities

Here we consider how to estimate class probabilities for the unlabeled images given a set

of labeled images L when we have classifiers, such as kernel nearest neighbor or SVM, that

only return hard class decisions2. The key idea is to use a one step look-ahead scheme

to construct a committee of classifiers. The predictions of the committee are then used to

derive the desired label probabilities. The look-ahead step considers each of the M currently

unlabeled images in U and each possible value for its class label. Let {xm, n} be a look-

ahead image and its hypthesized label. Next we construct a classifier from L ∪ {xm, n}.
Repeating this process for each unlabeled image and each possible value for its label yields

M · L classifiers, which we apply to each of the images in U .
2Although the SVM hyperplane distance can be used to construct pseudo-probabilities as in [Pla00], this

approach cannot be applied to other types of classifiers.

69

Order Chosen

1

2 3

4

5

Next Point Chosen

E

M
C

Figure 4.3: (Left) Illustration of minimum expected entropy (MEE) active learning for a
set of N = 20 points from L = 2 classes. The numbers show the order in which MEE
presents points to the oracle with the colored circles showing the resulting label. With its
first four queries, MEE visits each of the “clusters” providing for the quickest reduction in
the uncertainty of the labels of the other points. This experiment was run using a Nearest
Neighbor classifier. (Right) Comparison of different active learning approaches. The red
and green points are currently labeled, while the black points are unlabeled. The dotted line
shows the SVM hyperplane found with the current set of labeled points. The next query
to the oracle is shown for three different active learning approaches: (E) MEE, (C) closest
to the current hyperplane as in [TK00], and (M) most confused point based on lookahead
estimates for the label probabilities. Observe that MEE chooses a point that sits next to
many other unlabeled points and is in a relatively unexplored region of space. Note that
our MEE framework allows us to use any underlying classifier: Nearest Neighbor classifiers
are used in the left figure while SVMs are used in the right.

70

The classifier results can be collected into a block-structured matrix B consisting of L

blocks by L blocks with each block being an (M×M) matrix. (As usual, L is the number of

class labels and M is the number of currently unlabeled images.) The (l, n) block contains

an indicator matrix of 0’s and 1’s. The (k, m) position within a block is a 1 if the classifier

trained with L ∪ {xm, n} says that example xk belongs in class l. We can then use B to

write:

P(Yk = l) =
1
M

·B ·P(Ym = n) (4.9)

(The notation is such that the probability vectors P(·) on the LHS and RHS are stacked up in

“label-major” order.) The RHS probability vector acts like a prior probability on the labels

of points. The LHS is analogous to a posterior, re-estimated after we see the predictions

of the committee of look-ahead classifiers. This equation can be understood from either a

histogram viewpoint or an expectation viewpoint. From the histogram viewpoint, we are

accumulating the probability that a classifier selected randomly from the committee says

“1” to the event (Yk = l). From the expectation viewpoint, we are computing over the entire

committee an expectation for the binary-valued classifier confidence in the event (Yk = l).

(This duality exists because the expectation of a binary-valued random variable E[X] is the

same as P (X = 1).)

From Equation 4.9, we can obtain an estimate for the class probabilities by taking

P (Ym = n) = 1/L ·1 on the RHS and multiplying by 1/M ·B. In principle, this process can

be iterated to refine the probabilities. In the limit, the probabilites satisfy the solution of a

fixed point problem p = 1/M ·Bp. Solving this equation amounts to finding the eigenvector

of B/M corresponding to eigenvalue 1. (Since the (1×M ·L) vector 1T is a left eigenvector

of B/M with (left) eigenvalue 1, we know that there exists a right eigenvector of B/M with

eigenvalue 1.) Although the iterative and fixed point approaches are elegant, in practice we

have found from a limited set of experiments that a single iteration of Equation 4.9 with

uniform probabilities on the RHS yields better results. We are still studying this issue,

but believe the main cause is that Equation 4.9 does not adequately reflect the possibility

that look-ahead classifiers trained from a finite amount of data are simply wrong. Iterating

causes the estimation procedure to develop unwarranted certainty about the class labels.

71

4.3.3 Computational Cost

The minimum expected entropy algorithm described above, although intuitively appealing,

is somewhat expensive computationally. In particular, the algorithm is O(L3N3) where N

is the number of unlabeled images and L is the number of classes. A typical run on 2Ghz

Pentium using N = 250 and L = 2 and a combination of Matlab and C code takes about

30 minutes. (Due to the cubic dependence on N , using fewer images takes far less time.)

It is interesting to consider how the benfits of active learning change with the size of

the pool of unlabeled images. Figure 4.4 addresses this point and shows that increasing

the pool tends to constantly increase the performance of Entropy-based active learning over

random sampling.

Given the benefit of increasing pool size, it is useful to consider methods of reducing

the computational cost. One possibility is to consider only a fixed number of images M

when calculating the expected entropy for a particular images, such that we reduce the

O(L3N3) to O(L3NÑ2) for some constant Ñ < N . In particular, we randomly sample a

set M unlabeled images from the entire pool of unlabeled images to compute the entropy

with. Figure 4.5 illustrates the effects of this sub-sampling of the unlabeled pool and

shows that performance tends to drop off fast when subsets are used. There are many other

possible methods for increasing speed and we leave these open as topics for further research.

However we note that we were able to easily run experiments using 250 unlabeled images

and a non-optimized code.

4.3.4 Multiple Return Active Learning

So far, we have viewed active learning as presenting a single image (or a probability distri-

bution w for selecting a single image) to the oracle for each round of labeling. In practice,

however, it will often be preferrable to return a set of informative images rather than the

single most informative image. Consider the web image search application. Here, the inter-

action with the user would be cumbersome if they were asked to label only a single image

at a time; instead, it would be better to ask the user to label a set of images at once. There

are also technical reasons for returning multiple images at once as illustrated in Figure 4.6.

Analogous to greedy forward feature selection algorithms, single-return active learning picks

three images that do not cover the space as well as if the three images were picked at once

72

0 50 100 150 200 250
−10

0

10

20

30

40

50
Changing Number Unlabelled

Number Unlabelled Points

Ite
rs

 (R
an

d
−

En
tro

py
)

bat
cactus
comet
goose

Figure 4.4: Results from four categories showing how the difference in time (iterations)
required for random and MEE to reach 85% of maximum performance varies as the size of
the unlabeled pool is increased. The relative advantage of active learning is clearly more
pronounced when the unlabeled pool is larger.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5
Subsampling CD

Iteration

Te
st

 P
er

fo
rm

an
ce

Entropy 5
Entropy 100
Entropy 250
Random

Figure 4.5: Here we consider the effects of only using a subset of the available images to
compute the entropy. X-axis: the number of images labeled. Y-axis: performance on a
separate test set of data. There are a total of 250 unlabeled images available, and each
line represents using a subset of those points. Red represents randomly choosing images.
Note that performance falls off quickly as less images are used to compute entropy, i.e. best
performance results from using all 250 images in the unlabeled pool. Results shown are
using the category ‘CD’, but are typical of other categories as well.

73
Comparison: Single Return Comparison: Multiple Return

1

2

3

1

1

1

Figure 4.6: (Left) Single-return active learning applied three times. (Right) Multi-return
active learning applied once with subsets of size 3. Clearly, the multi-return approach is
able to generate a more optimal covering of the space.

as a unit.

Multi-return active learning using the minimum expected entropy principle requires only

a minor modification to Algorithm 4.3.1. In particular, the loop over unlabeled images (xi)

is replaced by a loop over subsets of unlabeled images of size s. For each subset, we consider

the Ls possible assignments of labels to the elements in the subset and compute an expected

entropy as before. The subset that results in the lowest expected entropy is then presented

to the oracle for labeling. Exhaustively considering all subsets of size s in each active

learning round is clearly only feasible for small s; howver, given that the information value

of a proposed subset can be easily evaluated (using the expected entropy), other heuristics

can be incorporated to focus consideration onto a smaller number of promising subsets.

4.4 Experiments

There are three key sets of experiments we performed. The first is the UCI Machine Learning

data-sets. The second is inspired by Figure 4.2 and involves increasing the precision of web

image searches. This is essentially a two-category task, discriminating images that match

the target concept from those that do not. The last set of experiments considers many (up

to 10) categories and is inspired by an autonomous agent exploring a world.

4.4.1 UCI Machine Learning Data Sets

We chose to experiment first on standard machine learning data-sets, namely the UCI

Machine Learning Data-sets. We directly compare entropy-based learning to learning using

random sampling.

74

0 5 10
0

2

4

6

8

10

12

14
Wine

R
a
n
d
o
m

0 10 20
0

5

10

15

20

Glass

Entropy
0 5 10

0

2

4

6

8

10

12

14
Breast

0 5 10
0

2

4

6

8

10
Pima

Figure 4.7: Experiments on UCI data-sets. Each column is a box-plot for a different
UCI set. Performance is measured by the number of iterations required to reach 85%
of maximal performance. Maximal performance was computed by training a classifier on
all training samples. NN classifier used. We randomly sampled 120, 75, 75, 50 training
examples for the Wine, Glass, Pima, and Breast classes respectively for each experiment.
An unseen set of 50 test samples was used. Box-plots over 20 experiments. Performance
was measured by taking the average performance across the main diagonal of the confusion
table for the testing data. X-axis, number iterations for entropy-based sampling, Y-axis
number iterations for random sampling. Values above the main diagonal indicate that
entropy-based active-learning reached 85% performance before random learning. Box-plots
show 25 and 75 quartiles and indicate the total spread of the data. The red dot indicates
the median number of iterations to reach 85% performance. Active learning tends to reach
higher performance more quickly than random sampling for these data-sets. Active learning
also tends to have a tighter variance indicating more consistency across experiments.

Categories # Images Good Bad
137 30277 93 (82/134) 178 (56/402)

Table 4.1: Table detailing the large collection of images obtained from web image searches. The
total number of categories, the total number of images, the mean and min / max number of images
in each of the categories labeled as ‘Good’ and the same for ‘Bad’.

In the experiments, we randomly divide a set of UCI data into a training and test set.

The algorithm selects points for labelling from the training data. At each iteration the

algorithm selects a single point for labelling from the set U of unlabelled training data.

This point is added to the set of training points used to train the classifier. The random

algorithm selects a random point from U for labelling. The test set is used to evaluate the

performance of the classifier at each iteration. Figure 4.7 contains box-plots for 4 different

UCI sets. Note that our active learning algorithm performs very favorably when compared

to random sampling.

75

4.4.2 Web Image Searching

Consider again Figure 4.2 in which the user typed ‘Cougar’ into an image search engine.

The idea is that the user must label a set of images in order to refine the search as most

of the returned images do not contain the category of interest. In this case active learning

can provide a drastic increases in speed by choosing the MIUP. In this section we explore

experiments designed to mimic just such situations.

4.4.2.1 Image Search Data Set

Our goal in this set of experiments was to mimic as closely as possible a real image search

on the web. We collected images returned from actual text-based web image searches with

Google and PicSearch. In order to obtain comprehensive statistics we collected images

using 137 keywords. We next asked 3 sorters to label the images as one of three classes:

‘Good’, ‘Ok’, ‘Bad’. The ‘Good’ images contain images of the class of interest while the

‘Bad’ images do not contain the object of interest 3. We removed all duplicate images

using software which first extracts features using the Lowe Difference of Gaussian detector

and SIFT descriptors [Low04] and then compares these sets of features across all images in

the category. If there are more than 100 good matches between two images, the images are

considered to be identical and one is removed. For our experiments we only used images from

the ‘Good’ and ‘Bad’ categories. This is the largest data-set of its type to our knowledge.

Table 4.1 gives some statistics on the data-set we collected. The full set of category names

are too numerous to list here.

4.4.2.2 Results

Our experiments were conducted as follows. For each category we combined the ‘Good’

and ‘Bad’ images into a single large pool. From this pool we randomly selected a set of 75

testing images. The rest of the images were used as the pool of unlabeled data for active

learning. We then followed Algorithm 4.3.1 and iteratively chose images to label using MEE

active learning. We also considered alternative approaches including: (1) random sampling

(passive learning) choosing a image, (2) choosing the most confused image, and (2) choosing

the unlabeled image with highest kernel density (see Appendix 1 for an overview of these

alternative-methods. In all cases, kernel nearest neighbor using the Spatial Pyramid Match
3We will make both the positive images and negative images publicly available pending acceptance.

76

0 50 100
0

10

20

30

40

50

60

70

80

Num Imgs Labeled (Entropy)

Nu
m

 Im
gs

 L
ab

ele
d

(M
CP

)

Entropy vs MCP

−5 0 5
0

5

10

15

20

25

30

35

40

Mean=2.92 (Median=2.20)

Log
2
 (s

rand
 / s

ent
)

0 50 100
0

10

20

30

40

50

60

70

80

Num Imgs Labeled (Entropy)

Nu
m

 Im
gs

 L
ab

ele
d

(P
ar

ze
n)

Entropy vs Parzen

−5 0 5
0

5

10

15

20

25

30

35
Mean=2.27 (Median=1.59)

Log
2
 (s

rand
 / s

ent
)

Figure 4.8: Comparison of MEE active learning with: (top) choosing the Most Confused
Point and (bottom) the Maximum Unlabeled Density (sampling where there is the highest
density of unlabeled points.

Kernel of Lazebnik [LSP06] was used as the classifer in our experiments (see Appendix 2

for an overview of [LSP06] for full details).

How do we quantify performance? In these experiments we are interested in the precision

for the top 25 closest images. In other words what percentage of the 25 closest returned

images are in the ‘Good’ class? Let pmax be the maximum possible performance on the test

set (this occurs when all images in the initial unlabeled pool get labeled). Now consider

the number of images, si, i ∈ (0, 1, 2, 3) which need to be labeled to achieve 85% of pmax

where i indexes over the various active learning methods. Results showing the performance

of MEE active learning versus the alternative methods are presented in Figures 4.2 and 4.8.

Note that MEE significantly outperforms all of these competing methods. In fact we reach

85% of pmax up to 10× faster using MEE to pick the MIUP when compared to random and

perform on average close to 3× better than random on these data-sets.

77

4.4.3 Exploration Agent

The next set of experiments looks at multiple classes. We motivate this experiment by

considering an agent travelling through a real or virtual world (for instance a mobile robot

exploring the environment or a web-crawler). This agent will be confronted with a slew of

visual information. With minimal supervision can the agent discover and learn to recognize

multiple categories of objects? Given that there is a considerable cost associated with

obtaining a label for any particular image (e.g., the agent must ask a human observer

whose time is precious), for which images should the agent request labels?

4.4.3.1 Open-World Learning Experiments

In these experiments, the unlabeled pool contains examples from numerous object cate-

gories. Initially our agent has no knowledge of the world and assumes there is only a single

object class. The agent chooses informative images via active learning and asks an oracle to

label these images; the oracle returns the true label of the unknown image. As new classes

are encountered the agent updates its knowledge of the number of classes which exist in its

world (i.e., the number of classes L) increases.

Here, we use a slightly different criteria from the Image Search experiments to assess

performance. Consider that in this scenario the agent is seeking to build the best classifiers

for visual categorization, and thus we consider the classification performance on a separate

set of test data.

Our experiments were conducted as follows. First we selected the Good examples from

L different categories. From these we randomly choose a set of N images to form U , the

pool of unlabeled examples. The rest of the images are used as a test set with which to

evaluate the performance of our algorithm.

4.4.3.2 When Have Enough Images Been Labeled?

A natural question which arises is: when has the agent learned enough about the environ-

ment? Or, phrased another way, when should the agent stop querying the oracle? Our

MEE framework allows us to estimate the entropy H(t) after each active learning iteration

and hence the amount of information gained after each active learning iteration can be ap-

proximated by: I(t) = H(t)−H(t−1). In Figure 4.4.3.2 we consider the relationship between

I(t) and the performance gains on the test set. In particular we note a strong relationship

78

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Entropy Iters

Ra
nd

 It
er

s

Entropy vs Rand (Mult−Class)

3/200
4/200
5/150
5/200
10/150

Figure 4.9: Similar to Figure 4.2 but showing multi-class experiments. Each point represents
an experiment indicated by the legend. The legend indicates two numbers: the first is the
number of classes used and the second is the size of the pool of unlabeled data. Each point
is the average over 25 iterations, where each iteration involves choosing a random set of
categories and training data for each category.

79

10 8 6 4 2 0
0

0.1

0.2

0.3

0.4

Expected Entropy Slope
R

e
m

a
in

in
g
 P

o
s
s
ib

le
 P

e
rf

Stopping Criteria?

42 44 46 48 50 52 54 56 58 60 62
0

0.5

1

1.5

2

2.5

3

Num. Iters to Reach 0.05 Slope

C
o
u
n
t

Histogram

Figure 4.10: Can we use MEE to determine when to stop learning? (Left) Scatter plot.
X-axis: the slope of the MEE at a particular iteration t. Y-axis: the remaining performance
gain possible at the same iteration t (the difference between the current performance and
the maximum possible performance). Dotted black line is a regression over all the points.
A steep entropy slope correlates with large potential increases in performance, indicating
we should keep learning. A shallow entropy slope (near zero) correlates with little potential
for performance increase indicating we should stop sampling images. (Right) Histogram
for different 5 class 200 unlabeled image experiments. The x-axis is the time taken to
reach a particular slope value less than .05. Since it takes different experiments longer to
reach a shallow slope, and from the left figure we see that a shallow slope indicates very
little potential for performance increase, we can label substantially fewer images for some
experiments using MEE as a stopping criteria.

between the change in information and the change in performance of the system. This

allows us to utilize MEE to estimate when we have acquired sufficient information about

the unlabelled images.

4.4.4 Performance Analysis

In this section we examine the statistics of the categories when entropy-based learning does

well or poorly relative to random sampling. We analyze the data post-hoc, i.e. can we

understand why the algorithm performed better or worse than random sampling based on

the statistics of the data? Figure 4.4.4 analyzes some properties which seem to correlate with

how well active learning will do on a particular set of images. We notice that active learning

tends to outperform random sampling when the size of the proportion of good examples

decreases. This is due, in part, to the use of our performance metric which measures the

precision of the top recalled results. If more ‘good’ images are labelled the precision should

increase. The other observation is that when the ‘Good’ images are more clustered relative

to the ‘Bad’ images, we notice that active learning outperforms random sampling more

80

significantly. It seems that active learning shines when there are tight clusters within the

good data-set. These results follow some of the results shown in Figure 4.3 which show

active learning sampling from clusters sequentially.

4.5 Discussion

We have developed a novel ”active learning” algorithm that enables hundreds of complex

object categories to be recognized with a minimal amount of labeled training data. Our

approach uses a principled, information-theoretic criteria to select the most informative

images to be labeled. The technique is well-defined for any underlying classifier (kernel

nearest neighbor, SVM, etc.), extends naturally to multi-class and multi-return settings, and

can automatically determine when enough labeled training data has been acquired to insure

near-maximal recognition performance. Against passive learning and a variety of alternative

active learning approaches, our method consistently achieves near-maximal performance

with one-half to one-third the number of training and in some cases the improvement is 10x

or more.

There are other potential methods for active learning which we have not explored in

this thesis. For instance, in this work we take the point of view of minimizing the expected

entropy of the unlabelled points. We could instead use alternate metrics for picking which

point to label next including the point which results in the largest change in labels if it were

labelled one way or another. This is, for a Nearest Neighbor classifier, very similar to the

Parzen window approach suggested above, which, in comparison to active learning, does

very poorly. Another point of view would be to chose the point to label which, if labelled

one way or another, results in the largest change in the parameters of the model. Since we

did not analyze parametric methods much in this thesis (i.e. SVMs, Neural Networks, etc),

but instead concentrated on non-parametric methods (i.e. Nearest Neighbor), we did not

explore active learning methods of this sort. Related to this, using an SVM, it might be

possible to look at the change in the number of Support Vectors (SVs) as an indication of

how stable a classifier is. This information could be used in addition to the classification

performance to calculated the probability of a classifier existing. For instance a classifier

which results in a large number of new SVs might be less probably than one which results

in no change or a decrease in the number of SVs.

81

0.2 0.3 0.4 0.5 0.6 0.7

0.95

1

1.05

1.1

1.15

Fraction of Good Examples

Ra
tio

: T
ig

ht
ne

ss
 o

f G
oo

d
vs

. B
ad

Ent Win=Green, Rand Win=red, Equal=Blue

0.2 0.3 0.4 0.5 0.6 0.7

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

CD Homer−Simpson

House−fly

ak47

american−flag

backpack

baseball−bat

baseball−glove

bat

bathtub

bear

billiardsblimp

boom−box

bowling−ball

bowling−pin

boxing−glove

bulldozerbutterfly

cactus

calculator

camel

cannon canoe

cereal−box

chess−board

chimp

cockroach

coffin

coin

comet

computer−monitor

computer−mouse

conch

cormorant

covered−wagon

diamond−ring

dice

dog

drinking−straw

dumb−bell

eiffel−tower

elk

eyeglasses

fern

fire−hydrant

fire−truck

flashlight

floppy−disk

fried−egg

frisbee

frog

frying−pan

galaxy

giraffe

goat
goose

gorilla

grapes
grasshopper

greyhound
hamburger

hammock

harmonica

harp

harpsichord

head−phones

hibiscus

horse

hot−dog

hot−tub

hourglass

human−skeleton

hummingbird ice−cream−cone

iguana

ipod
iris

jesus−christ

joy−stick

keyboard knife

ladder

light−house

lightning

mailbox

mandolin
mattress

megaphone

microscope

microwave

mushroom mussels

necktie

ostrich

palm−pilot

paperclip

penguin
pram

praying−mantis

pyramid

raccoon
refrigerator

riflesaddle school−bus
sextant

sheet−music

skateboard

skunk
skyscrapersnail

snake

sneaker

soda−can

spaghetti

spider
spoon

sushisushi

sword

tambourine
tennis−ball

tennis−racket

toad

toaster

tomato

tombstone
top−hat

tripod

tuning−fork

Figure 4.11: Analysis of the statistics of the categories active learning performed well on
and which it performed poorly on relative to random sampling. (Top) The color of the dot
indicates whether active learning was beneficial or not. Green dots indicate active learning
was useful, red dots indicate that random sampling did better and blue dots indicate that
the performance was about the same for the two methods. The size of the dot indicates how
much better active learning (green dots) or random (red dots) did compared to the other
method. I.e. a large green dot indicates that active learning is doing much better than
random learning. The x-axis shows the proportion of good examples, i.e. farther to the left
indicates that there are fewer good examples: a value of .2 indicates that 20% of the images
were labelled as good. The y-axis measures how tight the cluster of good images is relative
to the cluster of bad images. For each image we look at the average distance between the
closest 3 images in the good cluster to the closest 3 images in the bad cluster. We take the
average ratio of these two numbers over all the images. A higher number indicates that the
good images are moor clustered than the bad images. What do we observe in this plot? We
notice that as the fraction of good images increases, the relative increase of active learning
over random sampling also increases (more green dots are on the left). We also notice that
as the tightness of the good clusters increases relative to the bad cluster, the performance
of active learning also increases. (Bottom) The category labels for the points shown above.

82

4.6 Appendix 1: Alternative Active Learning Methods

It is useful to compare the MEE approach to other active learning approaches. We chose

two methods to compare against: (1) the Most-Confused-Point (MCP) and (2) Maximum

Unlabeled Density (MUD). MCP follows the spirit of [TK00] by choosing the image which is

most confused between the different classes. To calculate the image that is most confused,

we follow the paradigm of Section 4.3.2 to estimate class probabilities for each image. The

image which is most confused based on these probability estimates is then selected.

The MUD technique estimates a probabilty density p(x|U) over the unlabeled points

using the Parzen Window kernel density estimation technique. The unlabeled point with

the maximum associated probability density is selected for labeling, i.e.,

x(t) = arg max
j

∑

i

1
N

K(xj , xi) (4.10)

where i and j are indices for unlabeled images. The MUD technique is comparable to

clustering the unlabeled data and choosing a point near the center of the most prominent

cluster. The drawback of this idea is that it does not distinguish between a high density of

unlabeled points and a high density of unlabeled points whose labels are uncertain. Both

of these alternative approaches are compared to MEE in Figure 4.8.

4.7 Appendix 2: Pyramid Match Kernel

The Spatial Pyramid Matching algorithm of Lazebnik et al. [LSP06] as it currently yields

strong performance on similar object categories to those used in this paper (see [GHP07])

and is fast. For each image, we extract a set of SIFT features [Low04]. 10,000 features are

chosen at random from a training set of images in order to form a vocabulary of M = 200

words (clusters), and the vocabulary is used to map each subsequent feature to one of the

200 words. Next the image is split into a 4×4 grid and the number of times each of the 200

features is found in each of the 16 bins is counted. The matching kernel is computed using

the above set of 4× 4×M histograms. In this context matching means finding the number

of common elements in any two bins. If the counts in two bins are n1 and n2 the match is

min(n1, n2). Matching is computed using both spatial information and the appearance.

83

Part III

Comparing Generative and

Discriminative Learning

84

Chapter 5

Conditional Likelihood

5.1 Abstract

Here we explore the relative merits of generative and discriminative learning techniques

for object recognition. Visual recognition algorithms learn models from a set of training

examples. Generative learning, where each model is trained to represent the data of the

corresponding category, is popular both because it creates explicit models of the object classes

and because the algorithms are relatively easier to optimize. However, generative models

are prone to confusion when confronted with images from similar classes. We study a

discriminative approach which maintains the power of generative learning by creating explicit

class models, while simultaneously focusing on features unique to each class. We conclude

by proposing a multi-class object recognition system which initially trains object classes in

a generative manner, then identifies subsets of similar classes with high confusion, and

finally trains models for these subsets in a discriminative manner to realize classification

performance gains.

5.2 Introduction

Humans can easily recognize and distinguish thousands of visual categories. The best

computer algorithms achieve only a fraction of human performance in terms of both the

number of classes recognized and the accuracy in distinguishing between those classes. The

impressive performance of the human system can be ascribed in part to our ability to

recognize the overall appearance of objects, as well as detect subtle differences between

very similar object class categories, such as the difference between male faces and female

faces or bicycles and motorcycles.

85

0

10

20

30

40

50

60

70

80

90

100

110

SIMILAR

DIFFERENT

P
e

rc
e

n
t

C
o

rr
e

c
t

Figure 5.1: (Left) Examples from two very different categories, motorcycle and airplane, and two
very similar categories Bush and Kerry. Right, discrimination performance using a generative model
for Motorcycle vs. Airplane (left) and Bush vs. Kerry (right). Airplanes and motorcycles are much
easier to discriminate using a generative approach. Chance performance indicated by the dotted
line.

86

Object recognition algorithms can be roughly grouped into two separate learning paradigms:

generative [Web00, FPZ03, Low04, SK00] and discriminative [VJ01, KH03, OFPA, TMF04].

Generative object recognition algorithms create object class models using only the data of

the class to be modelled. These are well suited for modelling large numbers of object cate-

gories [LFP06] as they easily allow for the introduction of new object classes. However, by

not taking into account the statistics of similar classes, these models can perform poorly

when presented with either a large number of object categories, or several similar object

categories. Discriminative object recognition techniques generally utilize the data from all

object classes to create an explicit decision boundary separating the classes of interest. Such

techniques tend to outperform their generative counterparts but suffer from both increased

computational complexity and the lack of explicit object class models. Our goal is to take

advantage of both generative and discriminative learning methods in order to create explicit

models of object class categories while maintaining discriminative power.

In this paper we use a principled probabilistic approach to extend the generative ’Con-

stellation Model’ [Web00, FPZ03] framework for creating object class models in a dis-

criminative setting. Utilizing a generative framework in conjunctive with a discriminative

cost function has been previously proposed by other authors [Jeb01, Bou03, RH97] and is

generally referred to as maximizing the Conditional Likelihood (CL). These studies do not

observe substantial gains in using CL over generative approaches on traditional learning

systems data-sets1. One of the objectives of this study was to assess the performance of

discriminative methods in visual object recognition.

We conclude by proposing a general object recognition system which utilizes the relative

merits of both generative and discriminative learning. In this system, models are initially

trained in a generative fashion. Then, subsets of classes with high confusion are identified,

indicating that these classes are similar. The subsets with high confusion are then trained

in a discriminative manner.

This paper is organized as follows, first we will review the generative approach to the

Constellation Model. We will then outline our discriminative learning approach. Finally, we

will show examples of both generative and discriminative models and illustrate the system

which utilizes both techniques.

1Among others, the UCI data-sets.

87

5.3 Review of the Constellation Model

Our approach to object class modelling builds on earlier work by Weber et al. [Web00] and

more recently that of Fergus et. al. [FPZ03]. In this framework, an object is modelled

by a ’constellation’ of several parts, with each model containing information on both the

appearance and relative position of each part. In these experiments we use a simplified

version of these ideas which utilizes three independent parts. We use gaussian probability

densities to represent the variations in appearance and shape of these components. The

parameters for our models are learned by extracted interesting features from a set of training

images and using these features to maximize a model representation.

5.3.1 Feature Detection and Representation

Interesting locations, known as features or interest points, must be identified within all im-

ages. We accomplish feature detection using either supervised or semi-supervised learning.

For supervised learning, we manually select registered regions of images for learning. In

semi-supervised learning, the feature detection process is accomplished using the Kadir and

Brady [KB01] detector2.

For supervised learning, we manually register 9 features for use by our learning algo-

rithm: left eye, right eye, left hairline, right hairline, center hairline, nose tip, left mouth,

right mouth, chin (9 features). When features were missing or occluded we chose the clos-

est position in the image as our feature. A constant scale was assumed for all supervised

features across all images.

We automate the feature selection process by using a feature detector in semi-supervised

learning. The Kadir and Brady feature detector returns the positions, scales, and relative

saliency of interest points within an image. The detector is well tuned for detecting circular

regions within images, including eyes and wheels. The interest points with the highest

saliency are used as features for learning. Figure 5.2 shows examples of detected features.

In order to construct an appearance representation for the salient points, we extract

11 × 11 pixel patches centered on the Kadir and Brady features. For semi-supervised

learning we first scale the size of the patch extracted to correspond to the scale of detection

2Note the departure from the terminology of [FPZ03] and [LFP06] who consider their algorithms
’unsupervised’. This distinction becomes particularly important with the advent of purely unsupervised
object learning algorithms, i.e. [FPZ04]

88
SUPERVISED KADIR + BRADY KADIR + BRADY

Figure 5.2: (Left) Examples of features selected manually for Schwarzenegger. Nine total features
are selected. (Center) The same image but with features found using the Kadir and Brady detector.
The 15 most salient features are shown.

and then sub-sample the patches to 11×11 matrices. We reduce the number of appearance

parameters to be optimized by performing PCA on all patches from every image. We select

the first K principal components for our appearance models, where K is typically 10. We

use a matrix, Ac
i , of size F ×K to represent the appearances of all features within image

i of class c, where F is the number of features used. F typically ranges from 25-30 for

semi-supervised learning.

5.3.2 Shape Representation

We construct a shape model to represent the variations in position for each model part.

We record the positions of all interest points within an image i for class c in the variable

Xc
i . We attempt to find the optimal mean and variance of gaussian densities for the shape

model. The positions of our all model parts are relative to the first part. By conditioning

on the first model component, the shape model becomes invariant to translations.

5.3.3 Generative Model

Here we present a generative framework which obtains maximum likelihood estimates for

parameter values of each object class. Our goal is to find a set of model parameters θc where

c is a particular class of objects, which optimizes the appearance and relative positions of

the patches extracted from images in that class. θc represents both the means and diagonal

variance components. Consider a set of object classes ranging from 1..C and indexed by c

along with the images belonging to each class, ranging from 1..Nc and indexed by i. We

have extracted both appearance, Ac
i , and shape, Xc

i , information from each image Ic
i . We

assume that the shape and appearance models are independent of one another and that the

images are I.I.D. The log likelihood of the training images given a particular parameter set

89

θ is:

∑

i∈c

log(p(Ic
i)) =

∑

i∈c

log(p(Ac
i |θc)· (Xc

i |θc)) (5.1)

The maximum likelihood estimate will find the value of θc which optimizes the expression

above. Given a particular image Ii
c, we have obtained a set of interest points as described

above. We must assign an interest point to a particular model component. Since we do

not a priori know which interest point belongs to which model component, we introduce

a hypothesis variable h which maps interest points to model parts. We order the interest

points in ascending order of x-position. This results in a total of
(

F
M

)
unique combinations

of interest points to parts and each hypothesis h will assign a unique interest point to each

model part3 We marginalize over the hypothesis variable to obtain the following expression

for the log likelihood for a particular class:

=
∑

i∈C

log(
∑

h

p(Ic
i , h|θc)) (5.2)

=
∑

i∈C

log(
∑

h

p(Ac
i , h|θc)p(Xc

i , h|θc)) (5.3)

The generative approach can lead to difficulties when attempting to distinguish between

similar object categories. Fig. 5.3 shows several images from two similar classes, Bicycles and

Motorbikes, and the corresponding locations of the best hypothesis. The relative positions

and appearance of the parts seem similar between the two classes, possibly leading to

confusion during classification tasks.

5.4 Discriminative Model

Here we consider a discriminative formulation for learning object categories. We consider the

log conditional likelihood of all the classes given all the data. As for the generative model,

we assume that our models can be described by a parameter vector θc. By maximizing the

Conditional Likelihood expression (CL), we are maximizing the probability that each image

3One of the major limitations of the constellation model is the computational cost induced by the com-
binatorial explosion relating the number of interest points used and the number of model components.

90

Figure 5.3: Examples of generative Bicycle and Motorcycle models. The circles indicate the posi-
tions of the best hypothesis. The generative models tend to model the wheels of the classes.

91

(represented by Ic
i) belongs to its own label (c):

log(
∏
c

∏

i∈C

p(c|Ic
i)) = (5.4)

∑
c

∑

i∈C

{
log(p(Ic

i |c)) + log(p(c))− log(p(Ic
i))

}

Next we expand the partition function p(Ic
i) which corresponds to the probability of

a data-point from the current class belonging to any of the other classes. We index the

’competing’ classes by g. Furthermore, we remove the prior probability of a class, p(c), as

it is independent of the parameter we are optimizing, θc. We obtain:

∑
c

∑

i∈C

{
log(p(Ic

i |θc))︸ ︷︷ ︸
ML

− log
(∑

g

p(Ic
i)|θg)p(g)

)

︸ ︷︷ ︸
PartitionFunction

}
(5.5)

The equation for maximizing CL consists of two terms, the first is the maximum likeli-

hood term used in the generative approach, from which we subtract the second term, the

partition function. Intuitively, the expression maximizes the probability of data belonging

to its own class label, while simultaneously minimizing the probability that the data was

generated by any of the class labels. Finally, we note that the relative strength of the ML

and CL terms can be weighted using a term α, thereby allowing for a continuum between

purely ML and purely CL models:

∑
c

∑

i∈C

{
log(p(Ic

i |θc))︸ ︷︷ ︸
ML

−α · log
(∑

g

p(Ic
i)|θg)p(g)

)

︸ ︷︷ ︸
PartitionFunction

}
(5.6)

Where α = 0 is a an entirely ML approach and α = 1 a pure CL approach. Varying the

value of α is useful for clearly illustrating the relative merits of generative and discriminative

techniques. All our object models used a complete discriminative model with α = 1 unless

otherwise specified.

Returning to the Motorcycle and Bicycle classes (Fig. 5.4), we notice that the model

parts tend to represent the body of the classes rather than the wheels. The features along

92

Figure 5.4: Examples of discriminative Bicycle and Motorcycle models. The best hypotheses tend
to model the body of both the bicycle and motorcycle classes.

the body seem intuitively to provide more discriminative power.

5.4.1 Model Testing

The performance of both the generative and discriminative models can be assessed by

presenting a novel test image, Ic
i and calculating the probability of this test image being

generated by any given class: p(Ic
i |θ∗c), where θ∗c is an optimized ML or CL model. If the

highest probability model corresponds to the class label for that image, the image is correctly

classified. Note that finding the highest probability class using a discriminative decision,

namely the class which has the maximum p(Ic
i |θ∗c)p(c)/p(Ic

i) or log(p(Ic
i |θ∗c))− log(p(Ic

i)), is

equivalent to the approach above as the partition function, p(Ic
i), is the same for all classes.

5.4.2 Model Optimization

We wish to maximize the expressions for both the generative and discriminative approaches

derived above. We use the Expectation Maximization [DLR76] (EM) algorithm to optimize

the generative models. Learning was terminated after 100 iterations had been reached.

The conjugate gradient algorithm was used to optimize the CL models. Conjugate gradient

require the derivative of the CL expression with respect to each parameter of the model.

Learning was terminated when either the gradient at a particular iteration was below a

threshold or the maximum number of iterations was reached. We chose random initial

starting conditions to initialize both optimization routines.

By varying the value of α we can explore how the computational cost changes as the

model becomes more discriminative (see Figure 5.5). We notice that the purely discrimina-

93

0 0.5 1
0

1

2

3

4

5

6

7

Alpha

L
o

g
 T

im
e

(M
in

u
te

s)

Optimization Time

POLITICIANS
CATS
POLITICIANS (EM)
CATS (EM)

0 0.2 0.4 0.6 0.8 1

30

40

50

60

70

80

Alpha

P
e

rc
e

n
t

C
o

rr
e

c
t

Performance vs. Alpha

POLIT Test
POLIT Train
CATS Test
CATS Train

Figure 5.5: (Left) Optimization time as a function of α. At α = 0 we have a pure generative
approach and α = 1 is a pure discriminative approach. Time scale in log base 10 minutes. The CL
models take longer to optimize, 6× longer for the Politicians data-set and 10× longer for the Cats
data-set. Results shown for both a 9 interest points, 100 train supervised ’Politicians’ data-set and
20 interest points, 150 train Cat Species data-set. The red and blue stars indicate the time taken
to optimize both sets of classes using the EM algorithm. (Right) Train and Test performance as a
function of α for the Politicians data-set (black curves) and the Cat Species data-set (green curves).
Increasing the discriminative power increases the performance as well as the amount of over-fitting
as measured in the difference between the train and test performance.

tive function seems to be optimized over a more complicated energy landscape as the time

for optimization increases significantly. There seems to be a steep increase in computational

time when moving from α = .9 to α = 1, indicating that it might be more computationally

favorable to not use the fully discriminative learning model. We compared both the per-

formance and optimization time between the conjugate gradient algorithm with α = 0 and

the EM algorithm. We noted that the EM algorithm was slightly faster (Figure 5.5) but

did not yield noticeably higher performance.

5.5 Experiments

We performed numerous experiments comparing the Conditional Likelihood approach with

the Maximum Likelihood approach. First we show examples on a toy-data-set of ”PacMen”

examples in order to give the reader some intuition for the differences between the generative

and discriminative paradigm compared here.

5.5.1 Toy Example: PacMen

To clearly illustrate the benefits of CL over ML we have constructed data-sets consisting

of various rotated PacMen. Each class contains 3 PacMen, with two of three PacMen

94

#1

C
L

A
S

S
 1

#1

C
L

A
S

S
 2

#2

MAXIMUM LIKELIHOOD

#2

#3

#3

#4

#4

#5

#5

#1

#1

#2

CONDITIONAL LIKELIHOOD

#2

#3

#3

#4

#4

#5

#5

Figure 5.6: Features selected from PacMen classes. (Left) Features selected for a 1 component
model using ML. The red triangles indicate the most likely feature selected. Top row are the selected
features for Class 1, bottom row are the selected features for Class 2. We show the features found
for 5 different runs of the algorithm. There seems to be no bias towards selecting any particular
PacMan. (Right) Same as above but using CL optimization. The algorithm consistently picks out
the unique PacMan in each class.

being the same in both classes and each class containing one uniquely rotated PacMan (the

middle PacMan is unique to each class). We would expect CL to extract features which

are consistent within the class but unique between the classes and thus chose to represent

the middle PacMan. ML, lacking the knowledge of the PacMen in other classes, shows no

bias towards the unique PacMan and thus performs poorly on models containing only 1

and 2 components. Both models have perfect classification performance for 3-part models.

Figure 5.6 illustrates the results for a 1 component model.

5.5.2 Supervised Experiments

We initially compared generative and discriminative learning using a supervised data-set of

Politicians in order to obtain a better understanding of their relative differences independent

of the inconsistencies due to feature detectors. The Politicians data-set consists of images

of John Kerry, George Bush, Arnold Schwarzenegger, and Bill Clinton. Each data-set

contained about 150 images of which typically 100-120 were used for training. The resolution

was around 200×200. See the appendix for information on data collection. Examples of the

models found for a typical parameter setting are shown in Fig. 5.7. The highest likelihood

hypotheses, as indicated by the circles in part (C) of Fig. 5.7, show that the ML learning

95

results in parts which model features within the face, while CL learning mostly results in

models of the hair-line. The discriminative models appear to have found a more powerful

set of features for discriminating between the classes as indicated by the higher classification

performance of these models. In Fig. 5.10 we show the effects on performance of varying

the number of training images on ML and CL models.

5.5.3 Semi-Supervised Discrimination

We performed experiments on 2 semantically related sets of classes using semi-supervised

learning, Bikes (Motorbikes, Bicycles), and Cat Species (House Cat, Tiger, Lion, Cougar).

The Cat classes contained about 230 images each with 200 being used for training, while

the Bikes sets have about 450 images each with 370 being used for training. We used a

maximum of 30 interest points per image. The Cats data-set often contains very similar

looking images which make the discrimination task particularly difficult. Figures 5.8 and 5.9

compare ML and CL generated models for these sets of classes. In general, the CL models

are more variable between classes than the ML models. Furthermore, we notice substantial

improvements for both groups during discriminative training, with the Cats groups show-

ing roughly a 20% increase on average across all 4 classes and the Bike set showing a 15%

increase across 2 classes to reach about 90% performance. However, discriminative learning

resulted in significant over-fitting and thus required many training examples to reach this

performance level. The increased performance comes at a cost, namely many training ex-

amples. We also compared discriminative and generative performance on two very different

classes, namely Airplanes and Human Faces. Here we do not notice significant changes

in performance, indicating that discriminative learning may not be useful when the object

classes of interest come from very different categories. Fig.5.10 compares the performance

as a function of the number of training examples for all semi-supervised models.

5.5.4 Generative/Discriminative System

The previous sections indicate that discriminative learning can result in substantial per-

formance gains over generative learning, but that these gains come at the price of both

increased computational resources and large numbers of training examples. This suggests a

natural system for training large numbers of object categories, namely initially train mod-

els in a generative fashion, identify areas of high confusion between classes, and train these

96

(A)

0 100 200
−100

0

100
CLINTON

0 100 200
−100

0

100
BUSH

0 100 200
−100

0

100
ARNE

0 100 200
−100

0

100
KERRY

0 100 200
−100

0

100
CLINTON

0 100 200
−100

0

100
BUSH

0 100 200
−100

0

100
ARNE

0 100 200
−100

0

100
KERRY

(B)

50 0 50 100 150 200
2

3

4

5

6

7

8

9

10
PART 2

Lo
g

V
ar

Mean
50 0 50 100 150 200

2

3

4

5

6

7

8

9

10
PART 2

Lo
g

V
ar

Mean

(C)

K
E

R
R

Y

CL
IN

TO
N

A
R

N
IE

AR
NI

E

AR
NI

E

AR
NI

E

AR
NI

E

AR
NI

E

AR
NI

E

KE
RR

Y

AR
NI

E

KE
RR

Y

A
R

N
IE

KE
RR

Y

K
ER

R
Y

KE
RR

Y

AR
NI

E

BU
SH

BU
SH

BU
SH

KE
RR

Y

BU
SH

BU
SH

BU
SH

KE
RR

Y

BU
SH

CL
IN

TO
N

BU
SH

CL
IN

TO
N

KE
RR

Y

CL
IN

TO
N

CL
IN

TO
N

Figure 5.7: Generative (ML) and Discriminative (CL) Politician Models. Left column ML models,
right column CL models. (A) The shape models for each class. Each different color circle represents a
unique part. (B) Plots of the mean vs the log (base e) of the variance for the first 7 PCA components.
Only Part 2 shown although it is representative of the other parts. Each unique shape represents a
different class and each color a different PCA coefficient. The ML models are more tightly bunched
between classes than the CL models as indicated by the clustering of colors. (C) The locations of
the best matching hypothesis in the same images for both ML and CL models. Incorrect hypothesis
are marked in red. The CL models are focusing more on the hair-line for the Arnie, Kerry, and Bush
classes.

97

(A)

50 0 50 100 150 200 250
 150

 100

50

0

50

100

150 LION

50 0 50 100 150 200 250
 150

 100

50

0

50

100

150 HOUSE CAT

50 0 50 100 150 200 250
 150

 100

50

0

50

100

150
LION

50 0 50 100 150 200 250
 150

 100

50

0

50

100

150 HOUSE CAT

50 0 50 100 150 200 250
 150

 100

50

0

50

100

150 COUGAR

50 0 50 100 150 200 250
 150

 100

50

0

50

100

150
TIGER

50 0 50 100 150 200 250
 150

 100

50

0

50

100

150
COUGAR

50 0 50 100 150 200 250
 150

 100

50

0

50

100

150 TIGER

(B)

50 0 50 100 150 200
2

3

4

5

6

7

8

9

10 PART 2

Lo
g

Va
r

Mean
50 0 50 100 150 200

2

3

4

5

6

7

8

9

10
PART 2

Lo
g

Va
r

Mean

(C)

LI
ON

LI
ON

LI
ON

LI
ON

LI
ON

H
O

U
S

E
 C

A
T

LI
ON

L
IO

N

LI
O

N

L
IO

N

H
O

U
S

E
 C

A
T

H
O

U
S

E
 C

A
T

LI
O

N

LI
ON

H
O

U
SE

 C
A

T

HO
US

E
CA

T

T
IG

E
R

CO
UG

AR

H
O

U
S

E
 C

A
T

TIG
ER

TI
G

ER

T
IG

E
R

TI
G

ER

T
IG

E
R

TI
G

E
R

CO
UG

AR

C
O

U
G

A
R

CO
UG

AR

CO
UG

AR

C
O

U
G

A
R

LI
ON

C
O

U
G

A
R

Figure 5.8: Generative (ML) and Discriminative (CL) Models of Cats Species. (A) The CL shape
classes are more distinct. (B) The CL appearance models also seem more distinct. (C) ML shape
models are broad indicating that the models are focusing on the appearance of patches rather than
their relative positions for modelling the object classes. The CL shape models are tighter indicating
that there is useful discriminative power in the mutual positions of the parts.

98

(A)

50 0 50 100 150 200
2

3

4

5

6

7

8

9
PART 1

Lo
g

Va
r

Mean
50 0 50 100 150 200

2

3

4

5

6

7

8

9

PART 1

Lo
g

Va
r

Mean

50 0 50 100 150 200
2

3

4

5

6

7

8

9

10
PART 2

Lo
g

Va
r

Mean
50 0 50 100 150 200

2

3

4

5

6

7

8

9

10 PART 2

Lo
g

Va
r

Mean

50 0 50 100 150 200
2

3

4

5

6

7

8

9

10
PART 3

Lo
g

Va
r

Mean
50 0 50 100 150 200

2

3

4

5

6

7

8

9

10 PART 3

Lo
g

Va
r

Mean

(B)

M
O

T
O

R
B

I
K

E

B
I
C

Y
C

L
E

B
I
C

Y
C

L
E

B
I
C

Y
C

L
E

B
I
C

Y
C

L
E

B
I
C

Y
C

L
E

B
I
C

Y
C

L
E

B
I
C

Y
C

L
E

B
IC

Y
C

L
E

B
IC

Y
C

L
E

B
IC

Y
C

L
E

M
O

T
O

R
B

IK
E

B
I
C

Y
C

L
E

B
IC

Y
C

L
E

M
O

T
O

R
B

I
K

E

M
O

T
O

R
B

IK
E

B
IC

Y
C

L
E

M
O

T
O

R
B

I
K

E

M
O

T
O

R
B

IK
E

M
O

T
O

R
B

I
K

E

M
O

T
O

R
B

IK
E

B
IC

Y
C

L
E

M
O

T
O

R
B

IK
E

M
O

T
O

R
B

IK
E

Figure 5.9: Generative (ML) and Discriminative (CL) Models of Bicycles and Motorcycles. ML
left column, CL right column. (A) Appearance models for all 3 parts, first 7 coefficients. The ML
appearance models tend to be more clustered across classes indicated by the close proximity of same
colored points. (B) The highest probability hypothesis noted by the colored circles. The ML models
tend to represent the wheels of both bicycles and motorbikes while the CL models tend to focus on
the body indicating that features on the body have higher discriminative power than the wheels.

99

0 50 100 150 200
30

40

50

60

70

80

90

100

Cat Species

P
e

r
c

e
n

t
C

o
r
r
e

c
t

ML Test

CL Test

ML Train

CL Train

0 100 200 300
70

75

80

85

90

95

100

Motorcycle vs. Bicycle

P
e

r
c

e
n

t
C

o
r
r
e

c
t

ML Test

CL Test

ML Train

CL Train

0 20 40 60 80 100 120
30

40

50

60

70

80

90

100

Politicians

Number of Training Examples

P
e
r
c
e
n

t
 C

o
r
r
e
c
t

ML Test

CL Test

ML Train

CL Train

0 50 100 150
70

75

80

85

90

95

100

Airplane vs. Human Faces

Number of Training Examples

P
e
r
c
e
n

t
 C

o
r
r
e
c
t

ML Test

CL Test

ML Train

CL Train

Figure 5.10: Performance plots as a function of the number of training examples. Data-sets shown
are Cat Species (4 classes), Bikes (2 classes), Politicians (4 classes), and Airplanes vs. Human
Faces (2 classes). CL tends to outperform the ML models when the classes are similar, but does
not show significant performance improvements when the classes are distinct (e.g. Airplanes vs.
Human Faces) as the generative models exhibit high performance. We also notice over-fitting for all
discriminatively trained models.

0.86

0.72

0.6

0.49

0.4

0.45

H
um

an
 Fa

ce
s

M
ot

or
cy

cl
e

B
icy

cl
e

H
ou

se
 Ca

t

Co
ug

ar

Ti
ge

r

Human Faces

Motorcycle

Bicycle

House Cat

Cougar

Tiger

0.86

0.82

0.72

0.67

0.66

0.62

H
um

an
 Fa

ce
s

M
ot

or
cy

cl
e

B
icy

cl
e

H
ou

se
 Ca

t

Co
ug

ar

Ti
ge

r

Human Faces

Motorcycle

Bicycle

House Cat

Cougar

Tiger

Figure 5.11: (Top) Initial confusion table for 6 classes. The x-axis indicates the true category of
the image and the y-axis the predicted category for the image. An (x, y) entry indicates the fraction
of times class x was classified as y. The values along the main diagonal are the percent of the time
an image was correctly classified. The size of the green dots indicates the magnitude of confusion.
Notice that there are subsets of classes which have higher confusion among themselves, namely
Cat Species and Bikes. (Bottom) Confusion table after discriminative learning of the Cat Species
cluster and the Bike cluster. The performance on the Human Face class does not change. Both
discriminative and generative models were trained using the same subset of data. Confused classes
were identified using the Training set. Confusion tables shown here indicate Test set performance.

100

subsets of confused models using discriminative methods, using high numbers of training

examples if necessary. We implemented such a system using a set of 6 classes: Cats Species

(House Cat, Tiger, Cougar), Bikes (Motorcycles, Bicycles), and Human Faces. The confu-

sion table created from the generative models appeals to our semantic notion of similarity,

with the subsets Cat Species and Bikes exhibiting higher confusion among themselves than

between other classes (Fig. 5.11). These 2 subsets are ideal candidates for discriminative

learning. Using the same training data, we create two independent sets of discriminative

models for the Cat Species and Bikes. Test examples are first grouped into a super-set

of Cat Species, Bikes, or Human Faces according to the initial generative model, followed

by discriminative classification for examples which fall into super-set category containing

several classes. Fig. 5.11 shows that this hierarchical method of initial generative, than dis-

criminative classification, results in good performance gains for previously confused classes

(%20 improvement for Cat Species and %11 for Bikes).

5.6 Conclusion

We have demonstrated a discriminative paradigm to learn object class categories. We show

how a discriminative setting can be used to improve object categorization performance when

generative settings cause substantial amounts of confusion between classes. We illustrate

the intuitive appeal of discriminative learning, namely the selection of discriminative fea-

tures. We also note the tradeoff between discriminative and generative techniques, with

discriminative techniques outperforming their generative counterparts but requiring both a

larger number of training images and a larger computational resources. This provides us

with intuition for when discriminative techniques are most suitable, namely when object

classes contain high numbers of overlapping features, thereby allowing discriminative learn-

ing to select the most informative features for learning each object class. We concluded by

proposing an object recognition system which initially trains models in a generative way

and then separates the representations of similar classes via discriminative learning.

5.7 Appendix: Data Collection

The Motorcycle, Airplane, and Human Face data-sets are from the Caltech Image Data-

Base. We collected images of all other object from the web using the Google, Yahoo, and

101

Lycos search engines. Images were sometimes cropped to emphasize the category of interest

and reduce the number of non-object features detected for semi-supervised learning.

102

Chapter 6

Fisher Kernels and Extensions

6.1 Abstract

Learning models for detecting and classifying object categories is a challenging problem in

machine vision. While discriminative approaches to learning and classification have, in

principle, superior performance, generative approaches provide many useful features, one of

which is the ability to naturally establish explicit correspondence between model components

and scene features – this, in turn, allows for the handling of missing data and unsupervised

learning in clutter. We explore a hybrid generative/discriminative approach, using ‘Fisher

Kernels’ [JDH99], which retains most of the desirable properties of generative methods, while

increasing the classification performance through a discriminative setting. Our experiments,

conducted on a number of popular benchmarks, show strong performance improvements over

the corresponding generative approach. In addition, we demonstrate how this hybrid learning

paradigm can be extended to address several outstanding challenges within computer vision

including how to combine multiple object models and learning with unlabelled data.

6.2 Introduction

Detecting and classifying objects and object categories in images is currently one of the

most interesting, useful, and difficult challenges for machine vision. Much progress has been

made during the past decade in formulating models that capture the visual and geometrical

statistics of natural objects, in designing algorithms that can quickly match these models to

images, and in developing learning techniques that can estimate these models from training

images with limited supervision [BP96, UVNS02, WWP00, FPZ03, Low04, DS04, TMF04,

LS04, HP05, GHW06] However, our best algorithms are not close to matching human

103

abilities. Machine vision systems are at least two orders of magnitude worse than humans

in several aspects, including the number of categories that can be learned and recognized,

the classification error rates, the classification speed, and the ease and flexibility with which

new categories can be learned. Some of this work was presented in [HWP05a, HWP07]

and was done in collaboration with Max Welling.

This work is motivated by the challenge of learning to recognize categories that look

similar to one another. A number of methods have shown good performance on dissimi-

lar categories (for example airplanes, automobiles, spotted cats, faces and motorcycles as

in [FPZ03, DS04]). None of these methods has been shown to perform well on visual cat-

egories which look similar to one another such as bicycles and motorcycles or male and

female faces. For example, while the ‘constellation model’ [FPZ03] has error rates of a few

percent on dissimilar categories such as faces vs. airplanes and cars vs. cats, it has error

rates around 30% if it is asked to recognize faces of different people (see the x-axis of the

plots in Fig. 6.1). Why does this discrepancy exist? As we shall see, one potential confound

is the underlying generative learning algorithm.

Learning and classification methods fall into two broad categories (see Figure 6.2). Let y

be the label of the class and x the measured data associated with that class. A generative

approach will estimate the joint probability density function p(x, y) (or, equivalently, p(x|y)

and p(y)) and will classify using p(y|x) which is obtained using Bayes’ rule. Conversely,

discriminative approaches will estimate p(y|x) (or, alternatively, a classification function

y = f(x)) directly from the data. It has been argued that the discriminative approach results

in superior performance, i.e. why bother learning the details for models of different classes

if we can directly learn a criteria for discriminating between the classes [Vap98]? Indeed, it

was shown that the asymptotic (in the number of training examples) error of discriminative

methods is lower than for generative ones when using simple learning models [NJ02].

Yet, among machine vision researchers, generative models remain popular [UVNS02,

WWP00, FPZ03, DS04, LS04, Sch04]. There are at least five good reasons why generative

approaches are an attractive choice for visual recognition. First, generative models naturally

incorporate information about occlusion and missing features. This is because generative

methods allow one to establish explicit ‘correspondence’ between parts of the model and

features in the image. For every such mapping, the parts in the model corresponding to the

missing features can simply be marginalized out of the probabilistic model, leaving us with

104
<

5
 Tra

in
in

g
 E

x
a
m

p
le

s

65 70 75 80 85 90 95 100
65

70

75

80

85

90

95

100

Maximum L ikelihood P erformanceH
y

b
ri

d

M
o

d
e

l
(P

ri
o

r
K

n
o

w
le

d
g

e
) Performance Comparison

50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Maximum L ikelihood P erformanceH
y

b
ri

d

M
o

d
e

l
(C

o
m

b
in

in
g

M

o
d

e
ls

) Performance Comparison

Figure 6.1: A pure generative Maximum Likelihood (ML) approach will not work well when cate-
gories are similar in appearance (right column images of faces, each row shows a different person),
especially when few training examples are available (scatterplots on the left, x axis). We apply dis-
criminative techniques from Jaakkola et al. [JDH99] to transform generative approaches for visual
recognition into discriminative classifiers which retain some of the desirable properties of generative
models and perform much better (scatterplots on the left, y axis). (Top) ML in comparison to using
combinations of hybrid models. See section 6.7 below for details. Category labels for these faces,
from top to bottom: P1, P2, and P3. These new face categories will be posted on the web. (Bottom)
ML in comparison to hybrid models in a semi-supervised learning paradigm in which few examples
(in this case three training examples) are present. See section 6.6 below for details.

105

p(x|y1) p(y1|xtest)

p(x|yN) p(yN|xtest)

Train

.

.

.

Class 1

Class N

G
e

n
e
ra

ti
v
e

.

.

.
max ytest

Test
xtest

p(x|y1)

p(x|yN)

Train

.

.

.

Class 1

Class NH
y
b

ri
d

.

.

.
ytest

Testxtest

Fisher

Scores
SVM Classifier

Train

.

.

.

Class 1

Class N

D
is

c
ri

m
in

a
ti

v
e

SVM ytest

Testxtest

Classifier

Figure 6.2: Schematic comparison of the generative (top), discriminative (middle), and hybrid
(bottom) approaches to learning discussed in this paper. While generative models are a natural
choice for visual recognition, discriminative models have been shown to give better performance in
different domains. The hybrid model captures many desirable properties of both.

106

a lower dimensional model over the observed parts [WWP00]. Second, collecting training

examples is expensive in vision and training sets come at a premium. Ng and Jordan [NJ02]

demonstrated both analytically and experimentally that in a 2-class setting the generative

approach often has better performance for small numbers of training examples, despite the

asymptotic performance being worse. Third, it has been shown that prior knowledge can be

useful when few training examples are available, and that prior information may be easily

incorporated in a generative model [LFP06]. Fourth, we ultimately envision systems which

can learn thousands of categories; in this regime it is unlikely that we will be able to learn

discriminative classifiers by considering simultaneously all the training data. It is therefore

highly desirable to design classifiers that can learn one category at a time: this is easy in

the generative setting and difficult in the discriminative setting where training data for all

categories must be available at once for a decision boundary to be calculated. Fifth, it is

unclear, in general, what features to use when training a discriminative classifier on object

categories. Consider that many popular algorithms for object recognition rely on feature

detectors to find ‘interesting’ regions within an image. Each image thus is represented as

an unordered set of feature detections of variable length. How can these unordered lists be

used by a discriminative classifier?

Is it possible to get the best of both worlds and develop approaches with the flexibility of

generative learning and the performance of discriminative methods? Jaakkola and Haussler

have shown that a generative model can be used in a discriminative context by extracting

Fisher Scores from the generative model and converting them into a ‘Fisher Kernel’ [JDH99]

(see Figure 6.2). A kernel represents the data as a matrix of pairwise similarities which may

be used for classification by a kernel method, such as the support vector machine (SVM).

The field of kernel methods is well developed [Vap98, STC04, SS02, GHS05] and represents

the state of the art in discriminative learning. Here, we explore how to apply these ideas to

visual recognition.

We calculate Fisher Kernels that are applicable to visual recognition of object categories

and explore experimentally the properties of such ‘hybrid models’ on a number of popular

and challenging data-sets. Other kernel-based approaches have been suggested for object

recognition, including Vasconcelos et al. [VHM04] who exploit a similar paradigm, using a

Kullback-Leibler based kernel and test on the COIL data-set. Wallraven et al. [WCG03]

utilize a clever kernel which implicitly compares detected features in different images, but

107

apply their method to different sets of images than those used in this paper.

In Section 6.3 we briefly review one class of generative models, commonly called the

‘Constellation Model’, which will be used in the rest of the paper. In section 6.4 we show

how transform a generative Constellation Model into a discriminative setting by utilizing

the idea of Fisher Kernels. In Section 6.5 we compare the performance of hybrid and

generative constellation models. In Section 6.6 we explore how these hybrid models can

be extended and effectively used in circumstances where we have a mixture of labelled and

unlabelled data, i.e. ‘semi-supervised’ learning. Finally, in Section 6.7 and 6.8 we show

how the hybrid framework can be used to optimally combine several generative models (for

example generative models based on different feature detectors and different numbers of

parts) into a single classifier. Section 6.9 discusses the main results and observations of this

work.

6.3 Generative Models

In this section we briefly review a class of generative models which will be used in con-

junction with the discriminative methods described in the next section. In principle any

generative model that is differentiable with respect to its parameters can be used. We chose

to experiment with the ‘Constellation Model’ which was first proposed by Burl et al. [BP96].

Weber et al. [WWP00] showed that this model may be learned from cluttered images in a

weakly supervised setting in which only a class label is associated with each image using

maximum likelihood. Fergus et al. [FPZ03] extended the model by making it scale-invariant

and incorporating general purpose feature detectors. We use a simplified version of Fergus’

constellation model in which we do not explicitly model occlusion or relative scale.

6.3.1 The Constellation Model

The constellation model is a generative framework which constructs probabilistic models of

object classes by representing the appearance and relative position of several object parts

[BP96, WWP00, FPZ03]. Given a suitable training set composed of images containing

examples of objects belonging to a given category, such models are trained by finding a set of

model parameters θMLE which maximizes the log-likelihood of the model [WWP00, FPZ03].

Both appearance and shape are modelled as jointly Gaussian and θ = {θa, θs} represent

108

the mean and diagonal variance parameters of the shape (θs) and appearance models (θa).

To remove dependence on location, the x-y coordinates of the parts are measured relative

to a reference part, e.g. the left-most part. In our implementation, as suggested by Fergus

et al. [FPZ03], appearance is represented by the first 20 PCA components of normalized

11 × 11 pixel patches which were cut out around feature detections in training images at

the scale indicated by the detectors (see next subsection). The number of interest point

detections considered in an image is a design parameter.

For each training image Ii we obtain a set of F interest points and their appearance

descriptors. We would like to establish correspondence, i.e. assign a unique interest point

to every model part, or component, Mj . Burl et al [BP96] showed that since we do not a

priori know which interest point belongs to which model component, we need to introduce

a ‘hidden’ hypothesis variable h which maps interest points to model parts. We order the

interest points in ascending order of x-position. Note that although we model only the

diagonal components of the Gaussian, the model parts are not independent as we enforce

that each part is mapped to a unique feature, implicitly introducing dependencies. The

result is a total of
(

F
M

)
hypotheses, where each h assigns a unique interest point to each

model part. We marginalize over the hypothesis variable to obtain the following expression

for the log likelihood for a particular class:

∑

i

log (p(Ii)) =
∑

i

log

(∑

h

p(Ai, h|θa)p(Xi, h|θs)

)
(6.1)

where {Xi} are the relative coordinates of the object and represent the shape informa-

tion while {Ai} are the PCA components described above and represent the appearance

information. We assume that the shape and appearance models are independent of one

another given a hypothesis h and that the images are I.I.D. This step is key to maximum-

likelihood model learning, and to classification, once a model is available (see details

in [BP96, WWP00, FPZ03]). We note that exploring all possible hypotheses carries a

combinatorial computational cost which severely limits the number of parts and interest

points which can be used in the model.

For clarity we consider the makeup of a typical set of parameters θ. Consider one part of

a 3-part model. A single part consists of parameters specifying its shape and appearance, θs

and θa respectively. The shape of the part is specified by a two dimensional mean and two

109

Figure 6.3: Examples of scaled features found by the KB (left) and multi-scale DoG (right) detectors
on images from the ’persons’ data-set located at http://www.emt.tugraz.at/ opelt/. Approximately
the top 50 most salient detections are shown for both.

dimensional variance (we consider diagonal covariance matrices in our model) indicating

the mean and variance of the position of the part. Each part thus has a four dimensional

parameter array specifying its location. Now consider the appearance parameters of a part.

The appearance of a part is specified by the mean and variance of the PCA components for

that particular part. A 20 dimensional PCA representation thus consists of a total of 40

parameters, 20 for the mean and 20 for the variance of the part.

6.3.2 Interest-Point Detection

The constellation model requires the detection of interest points within an image. Numer-

ous algorithms exist for extracting and representing these interest points. We considered

several popular interest point detectors: the entropy based Kadir and Brady (KB) [KB01]

detector, the multi-scale Difference of Gaussian (DoG) detector [Cro84], the multi-scale hes-

sian detector (mHes), and the multi-scale Harris detector(mHar). Figure 6.3 shows typical

interest points found within images. All detectors indicate the saliency of interest points,

and only the most salient interest points are used. The KB interest point detector was used

in all experiments below unless otherwise specifically noted.

6.3.3 Generative Model Learning

We train our generative constellation models using the EM algorithm [DLR76] as computed

explicitly for the constellation model by Weber et al. [WWP00]. The algorithm involves

iteratively calculating the expected values of the unobserved variables of the model and then

maximizing the parameters. The algorithm was terminated after 50 iterations or after the

110

log likelihood stopped increasing. A typical 3-part model optimized on 100 images with 25

detections in each image took on the order of 20 minutes to optimize using a combination

of C (mex) and Matlab code.

6.4 Fisher Scores and Fisher Kernels

For supervised learning, such as regression and classification, kernel methods are often the

method of choice. As argued in the introduction, our interest is in combining generative

models with a discriminative step for the purpose of visual object recognition. We chose

support vector machines (SVM) [Vap98] as our kernel machine. The SVM (like all kernel

methods) process the data in the form of a kernel matrix (or Gram matrix), a symmetric

and positive definite n × n matrix of similarities between all samples. A simple way to

construct a valid kernel matrix is by defining a set of features, φ(xi), and to define the

kernel matrix as,

Ki,j = K(xi, xj) = φT (xi)φ(xj) (6.2)

The kernel represents the similarities between samples: relatively large kernel entries corre-

spond to two samples which are similar while small (possibly negative) entries correspond

dissimilar samples. Kernels defined by inner products such as the one in Equation 6.2

produce positive-definite kernel matrices [Vap98].

The generative model will have its impact on the classifier through the definition of

these features. We will follow [JDH99] in using “Fisher Scores” as our features. Given a

generative probabilistic model the ‘Fisher Scores’ φ(xi) are defined as

φ(xi) =
∂

∂θ
log p(xi|θMLE) (6.3)

where θMLE is the maximum likelihood estimate of the parameters θ. By definition, θMLE

is obtained by maximizing the likelihood. A necessary condition is that the gradient of such

likelihood (or log-likelihood) is zero, which is equivalent to ‘balancing’ the Fisher Scores,

∑

i

∂

∂θ
log p(xi|θMLE) =

∑

i

φ(xi) = 0 (6.4)

Hence, samples “pull” on the parameter values through their Fisher Scores which can be

interpreted as “forces”. At the MLE all forces balance. Two data-items that exert similar

111

‘forces’ on all parameters have their feature vectors aligned resulting in a larger positive

entry in the kernel matrix.

Since it is not a priori evident that the data can be separated using a hyperplane in

this feature space, it can be beneficial to increase the flexibility of the separating surface

(making sure that the problem is properly regularized) as shown in [Vap98]. This is achieved

by applying non-linear kernels such as the RBF kernel or the polynomial kernel in this new

feature space, i.e. K(φ(xi), φ(xj)) with,

KRBF(xi, xj) = exp
(
− 1

2σ2
||φ(xi)− φ(xj)||2

)
(6.5)

KPOLp(xi, xj) = (R + φ(xi)T φ(xj))p (6.6)

Where σ represents the variance of the RBF kernel and p represents the degree of the

polynomial kernel being used.

To remove scale differences between the features we normalized the features before we

computed their inner product,

φa(xi) → φa(xi)√
1
N

∑N
j=1 φ2

a(xj)
(6.7)

Why do we bother going through a two-stage process where we first train generative

models for each object category and then train another classifier based on a kernel derived

from those models, where we could also classify using log-likelihood ratios? The intuitive

answer to this question is that a classifier is trained to find an optimal decision boundary,

i.e. it focusses its attention to what is relevant to the task. Here, the samples which are

close to the decision boundary carry much more information than the ones away from the

boundary. In contrast, classifying according to likelihood ratios simply derives the decision

boundary as a by-product from fitting models for every category. The objective of this

fitting procedure is to maximize the probability of all samples for every category and not

deriving a good decision boundary for the classification task at hand. This intuition has

been made more precise in numerous papers. Most relevant to Fisher kernels is the theorem

in [JDH99] stating that asymptotically (in the large data limit) a classifier based on the

Fisher Kernel can be shown at least as good (and typically better) as the corresponding

naive Bayesian procedure (i.e. likelihood ratios or maximizing p(y|x)). Similar results have

112

been obtained in e.g. [NJ02] and [TAKM03]. It should be mentioned that for small numbers

of samples the naive Bayesian procedure may act as a regularizer and avoids the kind of

over-fitting that can be observed in discriminative approaches.

Given a kernel matrix and a set of labels {yi} for each sample, the SVM proceeds to

learn a classifier of the form,

y(x) = sign

(∑

i

αiyiK(xi, x)

)
(6.8)

where the coefficients {αi} are determined by solving a constrained quadratic program which

aims to maximize the margin between the classes. For details we refer to [STC04] and [SS02].

In our experiments we used the LIBSVM package (available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm/).

There are a number of design parameters: the free parameters in the definition of the

kernel (i.e. σ in the RBF kernel and R, p in the polynomial kernel) and some regularization

parameters in the optimization procedure of the {αi}. For an SVM the regularization

parameter is a constant C determining the tolerance to misclassified samples in the training

set. Values for all design parameters were obtained by cross-validation or by learning them

on a bound of the leave-one-out error (see Section 6.7).

In Figure 6.4 we compare the performance of the various kernels defined above on two

data-sets. The performance is similar, with some variability between data sets. We used

linear and RBF kernels in the following experiments as there was no appreciable difference

in the performance of the various kernels and because these kernels are popular within the

machine learning community.

6.4.1 Fisher Scores for the Constellation Model

In order to train an SVM we require the computation of the Fisher Score for a model. Recall

that the Fisher Score is the derivative of log likelihood of the parameters for the model, i.e.:

∂

∂θs
log (p(Ii|θ)) =

∑

h

p(h|Ii, θ)
∂

∂θs
log p(Xi, h|θs) (6.9)

∂

∂θa
log (p(Ii|θ)) =

∑

h

p(h|Ii, θ)
∂

∂θa
log p(Ai, h|θa) (6.10)

where both {θa, θs} consist of mean and variance parameters of Gaussian appearance and

shape models. Despite a potentially variable number of detections in each image Ii its Fisher

113

Airplane Faces Motor Leopards
90

91

92

93

94

95

96

Comparison of Different Kernels

Linear

Poly

RBF

Pe
rfo

rm
an

ce

Figure 6.4: Performance comparison of various kernels on several data-sets. The parameters used
to train and test these models are described in the experimental section. The polynomial kernel was
of degree 2. The y-axis indicates the classification performance, note that the scale starts at 90%.
These results were averaged over 5 experiments. 100 train/test examples used. First bar in each
set: Linear kernel. Second bar: Polynomial kernel. Third bar: RBF kernel.

114

Score has a fixed length. This is because the hypothesis h maps features to a pre-specified

number of parts and hence there is a fixed number of parameters in the model.

Most of the execution time of the algorithm is spent during the computation of the

Fisher kernels as well as the training of the generative models. In comparison, the SVM

training, even with extensive cross-validation, is quite short due to the relatively small

number of training images.

6.5 Comparing Generative and Hybrid Approaches

Our first set of experiments was designed to compare the performance of our hybrid method

with generative models on a commonly used benchmark of 4 object categories with diverse

appearances from one another. We chose the same categories used by [FPZ03] in order to

directly compare with their results (their results were obtained using a more sophisticated

generative Constellation Model than the one we used).

Some details of the SVM training: Fisher Scores were normalized to be within the range

[-1,1]. We performed 10x cross-validation to obtain estimates for the optimal values of C.

For the RBF kernel, which contains the additional hyper-parameter σ, we found the optimal

values of C and σ by performing an exhaustive search over the parameters. We varied the

cross-validation search space for both parameters on a log base 2 scale from -7,9 in steps

of 1 for C and -8,0 in steps of 2 for σ. We chose this range because the best results were

typically within these parameter settings.

6.5.1 Experiments on Caltech Data Sets

Table 6.1 illustrates the performance on these data-sets1. Images were normalized to have

the same number of pixels in the x-dimension in order to prevent the algorithm from learning

meaningful information from the absolute size of the images. We did not crop the images.

We recognize that although these data-sets are used extensively by the vision community,

they exhibit some deficiencies. In particular the object of interest is usually in the center of

the image and the objects are mostly in standardized poses and good lighting conditions.

In these experiments a single generative model was created of the foreground class from

which Fisher Scores were extracted for both the foreground and background classes for

1The data-sets, including the background data-set used here, can be found at:
http://www.vision.caltech.edu/html-files/archive.html. The Leopards data-set is from the Corel Data-Base

115

Figure 6.5: Localization of objects within images using the generative constellation model. Each
unique colored circle represents a different part of the model. This is a 4-part model. The positions
of the circles represent the hypothesis, h, with the highest likelihood. The generative framework
approximately localizes the position of each object. We note that the images shown here do not
exhibit excessive amounts of clutter.

Category Hybrid Shape App ML Prev
Faces 91 77.7 88.9 83 89.4 [Fer05]
Motorcycles 95.1 74.5 91.2 74.2 96.7 [Fer05]
Airplanes 93.8 95.3 84.2 72.4 92.2 [Fer05]
Leopards 93 71.8 91.3 68.1 88 [Fer05]

Table 6.1: Performance comparison for some Caltech data-sets in a 2-alternative task whether the
test image either contains an object from a given class, or contains no object (background class). We
used 100 training and test images for each class. The background class was the same used by [Fer05].
All scores quoted are the total number correct for both the target class and the background over
the total number of examples from both classes. The second column shows the performance of our
hybrid discriminative algorithm. The third and fourth columns show performance using only the
Shape and Appearance Fisher Scores respectively. The Fifth column is the performance using a
likelihood ratio on the underlying generative models. The final column shows previous performances
on the same data-sets [Fer05]. Our underlying generative model contained 3 parts and used a
maximum of 30 detected interest points per image. Results were averaged over 5 experiments.
In comparing with [Fer05] note that in that study approximately twice as many training images
were used, as well as a more sophisticated generative constellation model (6 parts, scale-invariance,
occlusion modelling), hence the higher performance of [Fer05] with respect to our baseline generative
constellation model (ML). On the other hand, our hybrid method models relies on the background
images for SVM training while the ML method of [Fer05] does not make explicit use of the background
images

.

116

True Class ⇒ Motor Leopards Faces Airplanes
Motorcycles 96.7 7.3 1.3 .3
Leopards 1.3 90.7 .7 0
Faces 1.3 0 97 .3
Airplanes .7 2 1 99.3

Table 6.2: Confusion table for 4 Caltech data-sets in a 4-way classification experiment. The main
diagonal contains the percent correct for each category. Perfect performance would be indicated by
100s along the main diagonal. We use the same classes as used in [FPZ03] which utilizes a purely
generative constellation model and resulted in performances of 92.5, 90.0, 96.4, and 90.2 across
the main diagonal for a 4-way discrimination task. When performing classification using only the
Shape and Appearance Fisher Scores we achieve an average performance (average across the main
diagonal of the confusion table) of 72.6 and 94.8. 100 training and testing images were used in our
experiments. Averaged over 3 experiments.

117

training. The SVM was trained with the Fisher Scores from the foreground and background

class. Testing was performed using an independent set of images from the foreground and

background class by extracting their Fisher Scores from the foreground generative model

and classifying them using the SVM. We refer to these experiments as ‘class vs. background’

experiments, as they involve a discrimination task between one foreground class and one

background class.

In addition to class vs. background experiments, we conducted classification experi-

ments using multiple object categories. First a generative model was constructed for all

classes of interest. Fisher Scores for both train and test images were obtained by concate-

nating the Fisher Scores from each model. Only the training images were used to create

both the SVM classifier and the generative distribution. Since an SVM is inherently a two-

class classifier we train the multi-class SVM classifier in a ‘one-vs-one’ manner. For each

pair of classes a distinct classifier was trained. A test image was assigned to the category

containing the largest number of votes among the trained classifiers. ‘One-vs-one’ classifica-

tion requires that N(N−1)
2 classifiers be created and used during classification. ‘One-vs-one’

clearly introduces a large number of classifiers which must be evaluated during run-time.

However, we prefer it to a ‘one-vs-all’ strategy as ‘one-vs-all’ is not as amenable to un-

balanced data-sets and the potential large computational cost is not as evident for small

numbers of training examples. All other parameters for training were kept the same as

above. Table 6.2 illustrates a confusion table for 4 Caltech Data-Sets. The discriminative

method again outperforms its generative counterpart [FPZ03] despite using a much simpler

underlying generative model.

There are several interesting points of note. First, the hybrid method works well even

on dissimilar categories. In fact it performs significantly better than the corresponding

generative ML method and slightly better than a more sophisticated ML method. Second:

the classification results in Table 2 are comparable with the best current results in the

literature. It is fair to say that the Caltech-4 data-set is easy (see Figures 6.5 and 6.6)

and may not be the best data-set to use when comparing algorithms. Further results

on more challenging data-sets, among them the ‘People’ and ‘Bikes’ Graz data-sets2, were

reported by us in [HWP05a] and the technique performed well in these cases as well. Three,

Experiments conducted using only the Shape and Appearance Fisher Scores mostly indicate

2Available at http://www.emt.tugraz.at/ opelt/

118

that the combination of the two is more powerful than either in isolation. Interestingly, by

comparing the shape-only and appearance-only performance one can see that the relative

importance of these two terms varies with the category. In particular we notice that the

Leopard data-set, which exhibits stereotyped appearance information but large articulations

in shape, performs best when using only appearance information while airplanes, which

exhibits fairly uniform shape information, yields good performance when using only shape

information.

The hybrid approach uses an underlying generative constellation model to generate

Fisher Scores which are in turn used for classification. This underlying model can be used

to localize objects within an image by selecting the hypothesis with the highest likelihood

(the same technique was demonstrated to localize objects by Fergus et. al in [FPZ03]).

Figure 6.5 demonstrates the localization ability of our implementation of the constellation

model on several different categories.

6.5.2 Background Classes

In this section we explore the effect of a particular “background” training set on learning.

Consider the detection tasks described above (Figure 6.1) in which we build a hybrid clas-

sifier which detects whether or not an object is present in an image. In this setting, the

algorithm must be trained using both a ‘positive’ or foreground training set and a negative

or ‘background’ training set. In principle the background set should represent any images

that does not contain the object of interest. This set of images has a very broad statistical

variation which may not be well represented by a limited training set as used in our exper-

iments. If the statistics of the background data-set are not appropriately chosen, we run

the risk of over-fitting to those background images used for training.

In order to further explore this potential confound, we performed experiments using

several common data-sets used as background images to determine how well background

data-sets generalized to one another. We considered 3 standard sets of background images:

(1) the Caltech background data-set used in [FPZ03] (Caltech1), (2) the Caltech background

data-set used [LFP06] (Caltech2), (3) the Graz data-set used in [OFPA] (Graz). A random

sample of images from the three sets is shown in Figure 6.6. We performed experiments by

first generating a model for one foreground class. This generative model was then used to

create Fisher scores for the foreground class and a particular background class and an SVM

119

classifier was trained using these scores. We tested the classifier on images from all three

background classes.

Results for these experiments are summarized in Table 6.7. This table illustrates that

the statistics of a particular background data-set can influence the ability of the classifier to

generalize to new sets. These results should be seen as a caveat when using discriminative

learning for detection tasks as the statistics of the background images play a crucial role in

generalization, especially when relatively few background examples are used. Even if one

has access to a large number of background images it is, in principle, difficult, to obtain

a set of images which model the distribution of any arbitrary background. Furthermore,

some discriminative methods, such as SVMs, are not readily amenable to training with

unbalanced data-sets, making the choice of background images to use during training even

more problematic.

6.6 Semi-Supervised Learning

In computer vision it is often easy to obtain unlabelled images while labelled images often

require a significant investment of resources. In this section we explore how to leverage unla-

belled and labelled images within our hybrid generative-discriminative framework described

above. Using labelled and unlabelled data is often referred to as semi-supervised learning

in the machine learning community. In particular we show how semi-supervised learning

can be used to learn classifiers with far fewer training examples than the corresponding

supervised framework. Figure 6.8 illustrates a schematic of the proposed semi-supervised

learning algorithm. Some of these results were presented in [HWP05b].

Many interesting methods have been proposed for semi-supervised learning (see e.g.

[See02] for an approach relevant to Fisher Kernels). We decided to implement a relatively

simple idea that attempts to learn the kernel using the available unlabelled data. In the

context of Fisher Kernels this boils down to learning a probabilistic model on the unlabelled

data-set. We subsequently extract Fisher Scores based on this model, but evaluate it on

the labelled data. These Fisher Scores are combined into a kernel matrix and provide input

to the SVM. To see why this is a sensible approach we consider the task of classifying

images of faces of two different people. The Fisher Scores represent the derivatives of the

log-likelihood and hence the tendency of a particular sample to change the model. If the

120

Figure 6.6: Examples of background images: (top) Caltech 1 is a collection of indoor and outdoor
digital photographs taken on the Caltech campus, (middle) Caltech 2 is a collection of images
obtained from the Google image search engine by typing ‘things’ as a search string, (bottom) Graz
is a collection of outdoor and indoor images, some of which focus on specific objects. There are
noticeable differences in the image statistics from the different background classes.

Trained BG ⇒ Caltech1 Caltech2 Graz
Caltech1 93 86.5 82
Caltech2 83 90.5 78
Graz 83.5 88 91

Caltech1 92 82 83.5
Caltech2 83 92.5 87
Graz 85 85 91.5

Figure 6.7: Generalization of different background statistics: Top, Airplane vs. BG experiments.
Bottom, Leopards vs. BG experiments. The top row indicates the background data-set trained with.
The rows indicate the test set used. The columns indicate the performance of the algorithms. The
bold scores indicate the performance on the test examples from the same background class which
was trained on, these tend to be the highest performing test sets. We trained and tested with 100
images for each foreground and background category. Results were averaged over 2 experiments.
The mHar detector was used.

121

Unlabeled Training Data

p(x|y)

Class 1

.

.
Class N

Labeled Training Data

Fisher

Scores
SVM

S
e
m

i-
S

u
p

e
rv

is
e
d

 L
e

a
rn

in
g

Unlabeled Training Data

p(x|y)

Class 1

.

.
Class N

Labeled Training Data

Fisher

Scores
SVM

S
e
m

i-
S

u
p

e
rv

is
e
d

 L
e

a
rn

in
g

Figure 6.8: Schematic overview of the semi-supervised learning algorithm employed. Semi-
supervised learning employs both labelled and unlabelled data. Note that only unlabelled data
is used to create the generative model but that Fisher Scores are extracted from the generative
model using labelled data.

122

underlying model is one of a completely unrelated class of objects (say leopards), then

we expect any face image to roughly change the model in a similar fashion, so the Fisher

Scores for different faces are expected to be similar. If however, the underlying model is an

average face model, then we expect the changes to the model for person A and person B to

be different, resulting in different Fisher Scores and hence small kernel entries. So clearly, a

good kernel should be based on a probabilistic model for the class of objects we are trying

to classify.

In the following sections will investigate a number of issues: 1) does the method we

propose work at all, 2) what is the effect of using different sets of unlabelled data, 3) how

does the performance depend on the number of unlabelled examples and 4) how does the

performance depend on the number of labelled (training) examples.

6.6.1 Caltech Faces-Easy Categories

We employ a similar experimental paradigm as described above in Section 6.5. However,

we consider situations when there is a wealth of unlabelled data available which will be

used to construct the model from which we extract Fisher Scores. In order to be clear on

our terminology we refer to the ‘unlabelled training set’ as the set of unlabelled data used

to generate the classifier and the ‘labelled training set’ as the set of labelled data used to

generate the classifier.

The Caltech Faces-Easy (see Figure 6.9) consists of about 400 images of human faces.

It is composed of 20 or more photographs of 19 individuals, while the remaining 40 or so

images contain fewer exemplars. Thus we can divide the entire face category into smaller

categories corresponding to individuals.

A linear kernel was used in all experiments below. Using an exponential kernel is

difficult due to the inability to accurately tune the scale parameter σ: there are not enough

exemplars to perform cross-validation.

6.6.2 Results

We compared performance using various different sets of unlabelled training images to create

the generative model, where each set of images was more or less related to the set of labelled

training images. We considered the following sets of unlabelled training images: (1) Faces-

Easy data-set. Note that our unlabelled training set contained images from all individuals

123

except those used for the labelled training set. (2) the Caltech 1 Background Images (see

Figure 6.7 above), (3) the Leopards data-set, (4) Images of printed pages from a copy of

Homer’s ‘Odyssey’. Examples of the features found for classes (1) and (4) are shown in

Figure 6.9. A generative model trained on background will result in broad distributions,

while generative models trained on specific classes will have a more distinct distribution

reflecting the statistics of the unlabelled training images.

First a model was trained using images from the unlabelled training data-sets. Next, 2

individuals from the Faces-Easy set were selected at random to train the classifier. Fisher

Scores were extracted from the model. We did not include any images used for training or

testing in the unlabelled data-set. Median and 25th/75th quantiles were computed over 20

experiments by selecting to individuals at random.

Results are shown in Figure 6.10. Several interesting points can be made: (1) The

nature of the unlabelled training data-set is critical: using a data-set unrelated to the

classification problem at hand, e.g. the ‘The Odyssey’ or ‘Leopards’ data-sets in the context

of face classification, results in the worst performance. Using a very general data-set, e.g.

the Caltech 1 Background (BG1) data-set, results in better performance than using an

unrelated data-set. This may be due to the broad distribution which results from training

on the background data-set, which, although not as beneficial as using the images from the

same class, is better than using a generative model from a completely different class. Finally,

using a data-set which describes the distribution of the images involved in the classification

problem well, e.g. using the remaining face images from “Easy-Faces” to classify the faces of

two held-out individuals, results in the best performance. (2) Discrimination performance

increases as we add more unlabelled training examples. This is particularly true for the

faces data-set, in which we notice a large increase in performance from 10 to 100 prior

examples. The same qualitative effect is observed for the BG1 data-set. We observed that

with few training examples the BG1 unlabelled images creates overfitted models with small

variances, resulting in comparable performance to using the ‘Odyssey’ or ‘Leopards’ data-

sets. As more training examples are added, the model becomes more general, and its utility

as a prior improves.

A reasonable measure for how appropriate a kernel is for a particular classification task

124

Figure 6.9: Features detected by the Kadir and Brady detector on image of (Top) the Odyssey text
and (Bottom) the Faces-Easy data-set. Note that the Faces-Easy data-set is equivalent to the Faces
data-set used in the experiments above except that the Faces-Easy data-set contains faces which are
more cropped. Also note that the features found in the two sets of images have drastically different
appearance statistics.

is the “kernel-alignment” proposed in [STC04],

A(yyT ,K) =
yT Ky

N
√

tr(KT K)
(6.11)

where N is the number of training cases and y is a vector of +1 and −1 indicating the class

of each data-case3. Figures 6.11 and 6.12 illustrate that training using more suitable sets

of unlabelled data results in more appropriate kernels.

6.7 Combining Multiple Generative Models

In the previous section we showed how to leverage unlabelled data within our hybrid frame-

work. In this section we show how the hybrid framework can be used to combine multiple

generative models into a single classifier. Why is this useful? Consider that visual data

3Why did we not choose the perfect kernel according to this metric, namely K = yyT ? The reason is that
this kernel would overfit on the training data and exhibit poor generalization performance. The alignment
measure is therefore only useful provided we do not overfit, which we would not expect given the fact that
we learn the kernel on a separate, unlabelled data-set.

125

1 2 3 4 5 6 7 8 9 10 11
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Training Exemplars

s

Face
Background
Leopards
Odyssey
ML

Semi-Supervised Learning

P
er

fo
rm

an
ce

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Unlabelled Examples (Log 10 Scale)

P
e
rf

o
rm

a
n
c
e

Face
Background
Leopards
Odyssey
ML

Increasing Unlabelled Examples

Figure 6.10: (Left) Performance on the 2-way faces classification problem as we vary the number
of labelled training examples per class. Number of unlabelled examples was fixed at 100. (Right)
Classification performance as a function of the number of unlabelled examples. 5 labelled training
examples per class were used to train the SVM classifier. In both plots we show the median and
25th/75th quantiles computed over 20 experiments. Each line represents a different unlabelled
data-set except for the cyan line which shows the maximum likelihood performance on the labelled
training set only (i.e. it did not use any unlabelled data and classified by comparing the likelihood
scores, the fluctuations in this line are due to using randomized training/test sets). Note that the
nature of the unlabelled data-set has an important impact on the classification performance.

126

Unlabelled: F aces
Performance = 0.91

Alignment = 0.36

Unlabelled: Background
Performance = 0.76

Alignment = 0.27

Unlabelled: L eopards
Performance = 0.67

Alignment = 0.21

Unlabelled: O dyssey
Performance = 0.65

Alignment = 0.12

Face 1 Face 2 Face 1 Face 2

Fa
ce

 1
Fa

ce
 2

Fa
ce

 1
Fa

ce
 2

Figure 6.11: Kernel matrices computed using different sets of unlabelled training data. Each model
underlying a kernel was trained on 200 unlabelled data-cases. A kernel was computed as φT (xi)φ(xj)
with normalized Fisher Scores and averaged over 20 experiments. Diagonal entries are zeroed out to
improve resolution. When the Faces data-set was used as an unlabelled set we can easily discern a
block-structure where the images in the same class are similar to each but dissimilar to the images
of the other class (images in the same class correspond to first 10 entries and second 10 entries
respectively and brighter colors indicate higher similarity between the data-points). Note that the
block structure is not evident when a a dissimilar set of unlabelled training examples is used, i.e.
the ‘Odyssey’ unlabelled data-set. Test performance and alignment values are also indicated.

127

−10 −5 0 5 10
−6

−4

−2

0

2

4

6
Faces

DIM 1

DI
M

 2

−20 −15 −10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8

10

12
Odyssey

DIM 1

Figure 6.12: Visualization of Fisher Scores extracted from models created using different sets
of unlabelled training data. Each plot was the result of learning with a different set of unlabelled
training data, namely ‘Faces’ (Left) and ‘Odyssey’ (Right). The circle and triangles are two different
individuals for which Fisher Scores were extracted from the generative model. Note that none of
these images were in the set of unlabelled training data used to create the ‘Faces’ generative model.
Distances in feature space were computed as dij = ||φ(xi) − φ(xj)||, where φ is normalized and is
Fisher Score. These were input to the MDS procedure which embeds the data in a 2-D Euclidean
space while minimizing distance distortion. One can clearly see that the model learned on the Faces
data (left) results in an embedding which is linearly separable (even in 2 dimensions), while the
embedding obtained from the Odyssey data-set (right) is not linearly separable (different classes are
represented by circles and triangles). This indicates that using ‘Faces’ as an unlabelled training set
will result in a more robust classifier.

128

is heterogeneous in nature. Different ‘front-ends’ (feature detectors, feature descriptors)

work best on different types of data. For instance, the techniques used for optical character

recognition (OCR) vary greatly from those used to detect cars. Also, it is clear that some

features should be described with ‘brightness’ templates, others with ‘texture’ descriptors,

still others with parameterized edges or curves. It would be useful to remain initially ag-

nostic as to which front-end is most useful and allow the learning algorithm to decide which

to use.

In the previous section we learned the kernel on unlabelled training data under the

assumption that very few labelled training data were available. However, it is also possible

to tune the kernel based on the labelled training examples, provided the labelled data-set

is sufficiently large. In this setting, one has to be careful not to “overfit” the kernel on the

training examples and achieve poor generalization performance. A standard approach to

determine regularization and kernel parameters is by cross-validation. Unfortunately, when

the number of parameters is large this method becomes infeasible. An alternative approach

that has been proposed in the literature is to optimize the kernel on approximations or

bounds of the test-error. The approach we will follow here was described in [CVBM02] (see

also [OW00] and [JH99]) which derive gradients for the span bound of the leave-one-out

error. Other authors, e.g. [GHS05] offer an alternate solution to this problem.

Consider the choices we face when modelling a particular object category using the

Constellation Model. Which front-end interest point detector should we use? How many

parts should the model contain? Should one model the geometry and appearance of a

part? Each of these choices leads to a different model and hence to a different set of

Fisher Scores. Instead of choosing a particular type of model, one could argue to create

multiple models, and incorporate information from all these models into a single Fisher

Score by concatenating the Fisher Scores from each individual model. However, this is an

unsatisfactory procedure because we do not know how to weight the different contributions,

which may operate at different scales. Hence, a natural idea is to weight the Fisher Scores

of each component model. Taking this one step further, one could decide to attach a

different weight to each individual dimension of the entire feature vector, not just to each

individual component model. This choice of parametrization is problem dependent: too

many parameters may still lead to overfitting and may be too computationally expensive.

In this section we explore the potential of learning the weights for the various contribu-

129

p1(x|yN)

Train

.

.

.

.

.

.

.

Class 1

Class N

.

.

.

ytest

Test
xtest

SVM Classifier

pK(x|yN)

.

.

.

p1(x|y1).
.
.

pK(x|y1)

Generative

Models

.

.

.

F1.
.
.

F1

FN.
.
.

FN

.

.

.

w1 *F1.
.
.

w1 *F1

wN *FN.
.
.

wN *FN

Fisher

Scores

Weighted

Fisher

Models

1 11

K K K

1

KK

1 1

K

p1(x|yN)

Train

.

.

.

.

.

.

.

Class 1

Class N

.

.

.

ytest

Test
xtest

SVM Classifier

pK(x|yN)

.

.

.

p1(x|y1).
.
.

pK(x|y1)

Generative

Models

.

.

.

F1.
.
.

F1

FN.
.
.

FN

.

.

.

w1 *F1.
.
.

w1 *F1

wN *FN.
.
.

wN *FN

Fisher

Scores

Weighted

Fisher

Models

1 11

K K K

1

KK

1 1

K

Figure 6.13: Overview of proposed visual category recognition algorithm which automatically
weights the importance of different models.

tions to the kernel. This has lead to interesting insights; for instance that a certain type of

detector is much better to build a face model than another type of detector. In some sense,

by learning the optimal combination of kernels we are partially relieved from the task to

pick the best components to model a certain object class. Instead we let the data decide

which components are most important for the classification task. This information could

subsequently be used to remove irrelevant components, thus improving the computational

efficiency of the resulting classifier.

6.7.1 Leave-One-Out Span Bound

Our proposed method consists of three steps which are illustrated in Figure 6.13: 1) Train

an ensemble of generative models separately for each class, 2) extract Fisher Scores to

construct Fisher Kernels for all the models separately, 3) train an SVM classifier and “learn

the kernel” by weighting the different kernels. Finding the weights is achieved by minimizing

a bound on the leave-one-out error [CVBM02]. Next, we will provide details for these steps.

The general form of the kernel that we consider is,

KRBF(Ii, Ij) = exp

(
−1

2

∑

M
wM||φM(Ii)− φM(Ij)||2

)
(6.12)

where we have introduced separate weights wM for each model. To tune the weights wM and

the regularization constant C in the SVM, we adopt the method proposed in [CVBM02]. In

130

this method a smoothed version of the the “span-bound” of the leave-one-out (LOO) error4

is minimized,

T (w, C) =
1
N

N∑

n=1

σT (αnS2
n− 1) with S2

n =
1

[(KSV + Diag(η/α))−1]nn
− η/αn (6.13)

where σT (x) = 1/(1+e−x/H) is the sigmoid function, H is the temperature (set to H = 100),

η is a smoothing parameter (set to η = 0.1) and KSV the kernel evaluated at the support

vectors. The parameters α are the dual weights in a 2-norm soft margin SVM. The 2-norm

SVM is convenient because the regularization parameter C can be considered as a parameter

of the kernel function, alongside the weights wM. (hence the notation θ = ({wM}, C) in the

following). We invite the reader to explore [CVBM02] for more details and a more complete

explanation of this procedure.

The chief advantage of this smoothed span bound is that it can be efficiently minimized

using gradient descent. The gradients can be written as,

dT (θ)
dθ

=
∂T (θ)
∂KSV

∂KSV

∂θ
+

∂T (θ)
∂α

∂α

∂θ
(6.14)

While the first partial derivative is straightforward, the second requires some more thought

because the dual weights α are the solution of the 2-norm SVM. For more details on how

to compute it we refer to [CVBM02]. Discontinuities in this derivative are expected when

data-cases jump in or out of the support vector set. However, the gradient descent with line

search procedure works well in practice. Note that for each gradient step we need to solve

a QP for the SVM. However, this procedure is much more efficient than cross-validation

which would need to check a number of grid-points exponential in the number of parameters,

which is at least a dozen in our experiments.

6.8 Experiments with Combinations of Kernels

We tested our system which weights different models on numerous object categories. Each

image within a category is associated with a class label, however the objects are not seg-

mented within an image. We used some of the classes from previous experiments and

and collected an additional set of classes consisting of 200 images of 3 different faces taken

4We show the case without bias term for simplicity, but bias was included in our experiments.

131

Unweighted Weighted 10% 20% −10% Others
leopards vs. BG 91.3 94.3 89 90 62 88 [Fer05]
P1 vs. P3 86 89.8 82.2 81.1 67 –

Table 6.3: The effect of weighting and removing features on performance. Unweighted: performance
using XVal on a single weight for all dimensions and a slack parameter. Weighted: performance
after minimizing the LOO-span bound on the weights of each model. 10%/20%: performance using
only the top 10% and 20% of the relevant dimensions. −10%: performance using the worst 10%.
Others: the performance of previous constellation model algorithms. Note that [FPZ03] uses 6-part
models including occlusion and typically 2− 4 times more training examples.

against varying backgrounds and lighting conditions. Examples of the face images are shown

in Figure 6.1. For the 2-part models up to 100 detected interest points were used, and for

the 4-part models up to 20 interest points. Typically 100 training images and up to 250

testing images were used.

Training a classifier proceeds as follows: First, learn a suite of generative models for

each class using the training data only. In case we classify against background we only

train models on the foreground class. Next, extract Fisher Scores from all models and train

weights wM by minimizing the span bound. The weighted scores are used to construct a

single kernel KRBF which is used to train a 2-norm SVM, still only using training data.

The kernel and dual weights α for the support vectors are then used in the usual way to

predict the class label of test cases.

6.8.1 Feature Selection

The generative models contain numerous parameters from which Fisher Scores are extracted

and it is unclear, in general, which components of the model(s) are important for classifica-

tion tasks. Figure 6.14 illustrates the resulting weights after minimizing the LOO bound.

We observe that the relative weight of features vary for each classification task, thereby

giving us a deeper understanding of the importance of these model components for a par-

ticular task. Table 6.3 illustrates the effects on performance as subsets of ‘good’ and ‘bad’

features are removed. We observe that the weights obtained from the LOO procedure are

good indicators of generalization ability of a particular feature. Parameter selection for the

“unweighted” procedure was done using 10-fold cross-validation (XVal) by varying both C

and a single weight for all the models W in log steps from [−9 : 3 : 9].

132

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1

2 1 2

1

2 3 4 5 6 7 8 9 10
1

2 3
4 5 6 7

8
9 10

1
2

3 4 5 6 7 8 9 10
1

2 1

2 1

2

3 4 5 6

7

8
9 10

1

2

3 4

5 6
7 8

9

10

1
2

3 4
5 6

7

8 9 10

Leopards

Weight Scale Index

W
ei

gh
t S

ca
le

MS1

MS2

MA1
MA2

MA3

VS1

VS2

VA1 VA2 VA3

Leopards

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1

2

1

2 1
2 3

4

5 6 7 8
9 10

1

2 3

4

5 6
7

8 9
10 1

2
3

4

5
6 7

8
9 10

1
2 1

2 1

2 3 4 5 6 7

8
9 10

1 2

3

4 5 6

7
8

9 10

1
2

3

4

5

6
7

8

9

10

Faces vs Background

Weight Scale Index

W
ei

gh
t S

ca
le MS1

MS2
MA1

MA2
MA3

VS1

VS2

VA1 VA2

VA3

Faces Background

Figure 6.14: Determining which model parameters are most useful for a particular classification
task. Higher weights indicate more important features. Fisher Scores are extracted from a 3 part
diagonal covariance model with 10 dimensional appearance model of the foreground class using
the KB detector. 100 training examples were used. Position is conditioned on location of first
model part so the shape model is only optimized over 2 parts. M/V indicates mean/variance, S/A
indicates Shape/Appearance and 1/2/3 indicates the part within a model. Each group has 2 or
10 bars corresponding the number of dimensions. E.g. “VA2” indicates a group of 10 variance
parameters for the appearance model of part 2. (Top) Leopards vs. Background classification
task. Early coefficients in the appearance model are the most useful dimensions for classification.
(Bottom) Faces vs. Background classification task. The Shape model appears to be more useful for
classification. The consistent detection of facial features by the KB detector makes the shape model
relatively more important.

133

Unweighted Weighted 1 2 −1 Others
motorcycles vs. BG 92.6 92.6 77.2 89.6 72 96.7 [Fer05]
leopards vs. BG 93.4 94.8 90.5 93.7 69.1 88 [Fer05]
airplanes vs. BG 89.8 91.4 80.6 87.2 65.4 93.3 [Fer05]
P2 vs. P3 83.3 92.4 92.7 93.0 67.9 –

Table 6.4: The effect of weighting and removing models on performance. Un-
weighted/Weighted/Others: same as Table 6.3. 1/2: the performance using only the best
model/performance using the first and second best model. −1: performance using the worst model.
100 training images were used.

6.8.2 Model Selection

We have argued above that selecting for individual features becomes computationally diffi-

cult and subject to over-fitting when the number of LOO optimized parameters is too high.

We address this issue by assuming each model has the same weight for each of its extracted

fisher scores (i.e. the weights are tied across features within a model). We apply the LOO

Span Bound described above to appropriately weight the models for maximum generaliza-

tion performance. We generate separate models based on: (1) Shape and Appearance, (2)

2/4 model parts, (3) 4 different interest point detectors. This results in 16 models for each

class. Figure 6.16 shows the evolution of the weights and the corresponding change in test

error on a typical classification task.

Figure 6.15 illustrates that the LOO procedure selects different combinations of models

depending on the particular classification task at hand. These optimized combinations

of models yield an increase in classification performance over the XVal procedure on the

unweighted models (see Table 6.4 and Table 6.5).

In addition, we study the effect of training on a subset of the models based on their

optimized weights from the LOO procedure (see Figure 6.16 Left, and Table 6.4). We notice

that training the Xval procedure with only the best models results in good performance,

while training using only the models with poor weights results in low classification perfor-

mance. This procedure can be used to select the best models for a particular classification

task, allowing for computational savings during detection.

134

0

1

2

3

4

5

6
x 10

−3

K2S

K2A

H2S
H2A

R2S
R2A

D2S

D2A

K4S

K4A

H4S

H4A

R4S

R4A

D4S

D4A

Airplanes

Model

W
ei

gh
t S

ca
le

0

1

2

3

4

5

6
x 10

−3

K2S

K2A

H2S

H2A

R2SR2A

D2S

D2A

K4S
K4A

H4S

H4A

R4S

R4A

D4SD4A

Leopards

Model

W
ei

gh
t S

ca
le

0

1

2

3

4

5

6
x 10

−3

K2S

K2A

H2S

H2A

R2S

R2A

D2S

D2A

K4S

K4A

H4S

H4A

R4S

R4A

D4S
D4A

Motorcycles

Model

W
ei

gh
t S

ca
le

0

1

2

3

4

5

6
x 10

−3

K2S

K2A

H2S

H2A

R2S

R2A

D2S

D2A

K4S

K4A

H4S

H4A

R4S
R4AD4S

D4A

P1 vs. P3

Model

W
ei

gh
t S

ca
le

0

1

2

3

4

5

6
x 10

−3

K2S

K2A

H2S

H2A

R2S

R2A

D2S

D2A

K4S

K4A

H4S

H4A

R4S

R4A

D4S

D4A

P1 vs. P2

Model

W
ei

gh
t S

ca
le

0

1

2

3

4

5

6
x 10

−3

K2S

K2A

H2S

H2A

R2S

R2A

D2S

D2A

K4S

K4A

H4S

H4A

R4S

R4A

D4S

D4A

P2 vs. P3

Model

W
ei

gh
t S

ca
le

Figure 6.15: The effects of weighting models on different classification tasks. K/H/R/D in-
dicate KB/mHes/mHar/DoG detectors. 2/4 indicates Two/Four part models. S/A indicates
Shape/Appearance models. E.g. “K2A” corresponds to a 2-part appearance model using the KB
detector. Top Row. (Left) Airplanes vs. Background. (Center) Leopards vs. Background. (Right)
Motorcycles vs. Background. Different combinations of models are selected for a particular classi-
fication task. Bottom Row. Performance on People Faces classification tasks. Notice that models
created using mHar seem to be the best predictors of generalization ability. Performance using
weighted models, from left to right, of 91.45, 92, and 92.42 respectively.

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number Models

P
er

ce
nt

 E
rr

or

Leopards

Best Models
Worst Models

0 50 100 150 200 250
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Iteration

P
er

ce
nt

 E
rr

or

P2 vs. P3

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

900

1000

1100
P2 vs. P3

Iteration

W
ei

gh
t S

ca
le

Figure 6.16: (Left) Performance on the Leopards vs. Background classification task as a function
of the number of models used. Circles indicates when the best models are used, i.e. the index ‘2’
would indicate that the two best models were selected. Triangles indicate that the worst models
were used, i.e. index ‘2’ indicates that the worst two models were used. Models were weighted
equally during classification. Each point generated by conducting Xval over the weights and slack
parameter using only the specified models. (Center) Typical example of test error change during the
LOO procedure using initialization parameters from Xval as a function of the number of iterations.
(Right) Typical evolution of model weights for a combination of 4 models as a function of the number
of iterations. Plot of weight scales where the weight scale is defined as as function of the model weight
w: σ2 = 1/wM. Note that certain models become weighted more or less heavily emphasized as we
progress in optimization.

135

KB mHar mHes DoG Unweighted Weighted
P1 vs P2 76.6 82.8 72.3 61 88.2 92.8
P1 vs P3 64.3 85.2 73.6 69.1 89.7 93.6
P2 vs P3 74.6 82.4 81.1 64.7 90.1 92.8

Table 6.5: Performance on discriminating between faces in the People Face data-set.
KB/mHar/mHes/DoG: performance using Appearance/Shape models created using only the the
given detector. Unweighted: performance using models of all detectors with a single weight.
Weighted: performance after LOO optimization of the weights for the models. Notice the rela-
tively poor performance using only the KB or mHes on these classification tasks. 50 training images
used, 2-part, 20 PCA coefficient models.

136

75/2 33/3 22/4
0

0.1

0.2

0.3

0.4

0.5

Caltech 101 Results

Pe
rfo

rm
anc

e

Interest Points / Parts

.312
.357

.321

Generative
Hybrid
Mult−Model Hybrid

Figure 6.17: Performance on the Caltech 101 object category data-set when different numbers
of parts and interest points are used. Each set of columns indicate a different number of parts
and interest points used, i.e. 33/3 indicates that a maximum of 33 interest points were detected
in each image and that a 3 part model was used. Performance is measured by first calculating
the percent of correctly classified points in each class and then taking the average over all classes
(this corresponds to the average of the main diagonal of the confusion table). First column in each
set: pure generative approach using interest points from the KB interest point detector. I.e. a
generative model is created for all 101 categories and test examples are assigned to the generative
model with the highest posterior probability. Second column: hybrid approach where Fisher Scores
were extracted from a generative model made using the KB interest point detector. See text for
more details. Third column: hybrid approach when three (KB, mHar, mHess) different interest
point detectors are used and a generative model is created for each detector. Fisher Scores are
concatenated into a single vector. Fei Fei et al. [LFP06] managed 16% using a constellation model
with 3 parts and integrating prior information into their model. For a similar 3-part constellation
model with no prior information we achieve 14.3% using only the generative models, 26.1% using
our hybrid approach, and 35.7% using our multiple model hybrid approach. 15 training examples
were used for all experiments.

6.8.3 Integrating Unlabelled Data and Kernel Combination – The Cal-

tech 101

We next performed an experiment using our hybrid model which integrated both the use

of unlabelled data in a semi-supervised learning paradigm as well as combining multiple

models into a single classifier.

The Caltech 101 objet category data-set5 consists of 101 object categories with varying

numbers of examples in each category (from about 30 to over 1000). The challenge of this

data-set is to learn representations for many different object classes using a limited number

of training examples. The variability of this data-set is mostly evident between different

categories of objects rather than within a single category. Objects within a particular

category are often somewhat homogenous in both appearance and pose.

5Available at http://www.vision.caltech.edu/html-files/archive.html

137

For our experiments we used the following experimental paradigm. First we created a

broad underlying generative model using 5 randomly selected training images from all 101

classes. In the parlance of Section 6.6, this set of images corresponds to our set of unlabelled

trained examples. Generative models from this set of unlabelled training examples were

created using interest points detected from three different detectors, KB, mHess, mHar.

Fisher Scores were then extracted from the generative models for all classes within the

Caltech 101. Fisher Scores from each generative model were concatenated to form a single,

long vector to be used in the SVM classifier. To train our SVM classifier we used 15 training

examples and up to 30 test examples. We used the same cross-validation procedure to find

the hyper-parameters as described in the multi-class experiments above.

Figure 6.17 illustrates our results. These results show that utilizing the hybrid approach

yields substantial improvements in classification performance over the generative approach

and that additional performance gains are realized when generative models created using

different underlying feature detectors are combined to form a single classifier. These ex-

periments illustrate the utility in using a semi-supervised approach as well as combining

kernels in improving classification performance.

6.8.4 Integrating Unlabelled Data and Kernel Combination – The Graz

Data-Sets

We tested the performance of combining multiple kernels using the more challenging Graz

data-sets6, in particular the ‘persons’ and ‘bikes’ sets (Figure 6.18 shows examples from

these sets). It is imperative to have large numbers of features when learning on these sets

due to the large variability of the objects within the images. We first experimented with

combining multiple generative models, with each model containing a different number of

parts (2 and 3 parts). Both models were trained on the same data. Fisher scores were

extracted from the foreground generative models on a training set of data for both the

foreground and background classes on both 2 and 3 part models and combined into one large

vector for SVM training. Test scores were extracted in the same way. Table 6.6 illustrates

results combining simple 2 and 3-part constellation models. The performance training

an SVM classifier on Fisher scores for each individual model was less than the combined

performance. We anticipate using more features would result in higher performance on the

6These images can be obtained from http://www.emt.tugraz.at/∼pinz/data/

138

Figure 6.18: Example images from the Graz persons (top) and bikes (bottom) data-sets. Note the
large variations in pose, lighting, occlusion, and scale.

Gen. Model ⇒ Comb 2-Part 3-Part Prev
persons 78.5 75.2 76.4 80.8 [OFPA]
bikes 75.3 74.5 74.9 86.5 [OFPA]

Table 6.6: Effects of combining multiple generative models using the Fisher kernel. Results shown
for the Graz ’persons’ and ’bikes’ sets. 200 images used for training. Note that the combined models
outperform individual models. The 2-part and 3-part models used a maximum of 100 and 30 interest
points respectively.

Graz sets and this is an active research area.

In addition we combined models trained using different interest point detectors. Each

generative model was trained using different interest points detected on the same set of

images. Table 6.7 shows the results on the same data-sets. There are many more possible

combinations of models to explore, and combining models using different kernels is an

exciting avenue of future research.

6.9 Discussion and Conclusions

We have explored a method for obtaining discriminative classifiers from generative models of

visual categories. It works in two steps: first train generative models, then from those gener-

ative models calculate Fisher Kernels and use them for classification. This method achieves

the best of both the generative and discriminative worlds: for generative approaches it is

robust to occlusion and clutter, it may be trained from few examples, it benefits from prior

Gen. Model ⇒ Comb KB DoG Prev
persons 73.1 65.3 77.5 80.8 [OFPA]
bikes 79.0 73.3 76.5 86.5 [OFPA]

Table 6.7: Effects of combining generative models trained using different feature detectors. We
used a polynomial degree 2 kernel for experiments.

139

knowledge. Additionally, the generative part of the model may be trained incrementally.

Its discriminative nature results in superior classification performance.

Our experiments in Section 6.5 show that the performance of our hybrid approach is

not inferior to that of a traditional generative constellation model. Rather, performance

is significantly better there and is in line with the current results in the literature. The

advantage of the hybrid approach is particularly evident when the categories to be classified

are very similar, such as the faces of different people. In addition, we controlled for possible

overfitting to background statistics and found that this may be an issue.

Sections 6.6 show that our hybrid architecture lends itself readily to incorporating unla-

belled examples. This is achieved by training generative models on large sets of unlabelled

pictures which may contain relevant information. This process provides considerable perfor-

mance improvement when learning specific categories (faces in our experiments) with very

few training examples. As one would expect, we find that these results vary with the statis-

tics of the images used to construct the generative model. Figure 6.10 shows that learning

the statistics unrelated categories such as Text or Leopards will not help in distinguishing

between Faces, while the most useful generative model has the same statistics as the Faces

data-set.

In Section 6.7 we show that multiple models may be readily combined within our hybrid

method. Our experiments in Section 6.8 suggest that the system is able to determine

automatically which models provide the most valuable information for a given classification

task. This indicates that a higher level of automation has been achieved: we do not need

to ask an expert vision engineer to craft the best recognition strategy for a given task;

rather, we can let our hybrid system self-tune to use whatever information is most valuable.

Finally, we illustrate that combining both our semi-supervised learning approach and the

ability to combine multiple models yields strong performance on the Caltech 101 object

category data-set and that this performance is far superior to that of the corresponding

generative approach.

140

Bibliography

[Ash92] F.G. Ashby. Multidimensional models of Perception and Cognition. Erlbaum,

Hillsdale, NJ., 1992.

[BBE+04] Tamara L. Berg, Alexander C. Berg, Jaety Edwards, Michael Maire, Ryan

White, Yee Whye Teh, Erik G. Learned-Miller, and David A. Forsyth. Names

and faces in the news. In Computer Vision and Pattern Recognition (CVPR)

(2), pages 848–854, 2004.

[BCB98] B. Bartell, G. Cottrell, and R. Belew. Optimizing similarity using multi-query

relevane feedback. In American Society for Information Science, volume 49,

pages 742–761, 1998.

[BHK97] Peter N. Belhumeur, João P. Hespanha, and David J. Kriegman. Eigenfaces vs.

fisherfaces: Recognition using class specific linear projection. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 19(7):711–720, 1997.

[Bou03] G. Bouchard. The trade-off between generative and discriminative classifiers.

Technical report, INRIA, 2003.

[BP96] Michael Burl and Pietro Perona. Recognition of planar object classes. Computer

Vision and Pattern Recognition (CVPR), page 223, 1996.

[CHL06] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discrimina-

tively, with application to face verification. In Computer Vision and Pattern

Recognition (CVPR), 2006.

[Cro84] J. L. Crowley. A representation for shape based on peaks and ridges in the

difference of low pass transform. Pattern Recognition and Machine Intelligence

(PAMI), 1984.

141

[CVBM02] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple

parameters for support vector machines. Machine Learning, 46:131–159, 2002.

[DLR76] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete

data via the em algorithm. In JRSS B, volume 39, pages 1–38, 1976.

[DS04] Gyuri Dorko and Cordelia Schmid. Object class recognition using discrimina-

tive local features. Submitted to IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 2004.

[ESZ06] M. Everingham, J. Sivic, and A. Zisserman. Hello! my name is... buffy – auto-

matic naming of characters in tv video. In Proceedings of the British Machine

Vision Conference, 2006.

[EZ06] Mark Everingham and Andrew Zisserman. Regression and classification ap-

proaches to eye localization in face images. In FG, pages 441–448, 2006.

[Fer05] R. Fergus. Visual Object Recocogntiion. PhD thesis, Department of Engineering

Science, University of Oxford, UK, 2005.

[FJ04] H.-J. Zhang B. Zhang F. Jing, M. Li. Entropy-based active learning with sup-

port vector machines for content-based image retrieval. IEEE International

Conference on Multimedia and Expo, 2004.

[FPZ03] Robert Fergus, Pietro Perona, and Andrew Zisserman. Object class recogni-

tion by unsupervised scale-invariant learning. In Computer Vision and Pattern

Recognition (CVPR), pages 264–271, 2003.

[FPZ04] Robert Fergus, Pietro Perona, and Andrew Zisserman. A visual category filter

for google images. In European Conference on Computer Vision (ECCV), pages

242–256, 2004.

[GHP07] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Tech-

nical Report UCB/CSD-04-1366, California Institute of Technology, 2007.

[GHS05] Carl Gold, Alex Holub, and Peter Sollich. Bayesian approach to feature selection

and parameter tuning for support vector machine classifiers. Neural Networks,

18(5-6):693–701, 2005.

142

[GHW06] Peter V. Gehler, Alex Holub, and Max Welling. The rate adapting poisson model

for information retrieval and object recognition. In International Conference on

Machine Learning (ICML), pages 337–344, 2006.

[HEZP05] Alex Holub, Mark Everingham, Andrew Zisserman, and Pietro Perona. Com-

bining principal component techniques and psychological spaces to find percep-

tually similar faces. In Vision Science Society (Abstract), 2005.

[HhLP07] Alex Holub, Yun hseuh Liu, and Pietro Perona. On constructing facial similarity

maps. In Computer Vision and Pattern Recognition (CVPR), 2007.

[Hin89] V. Hinsz. Facial resemblance in engaged and married couples. Journal of Social

and Personal Relationships, 6:223–229, 1989.

[HP05] Alex Holub and Pietro Perona. A discriminative framework for modelling object

classes. In Computer Vision and Pattern Recognition (CVPR), pages 664–671,

2005.

[HWP05a] Alex Holub, Max Welling, and Pietro Perona. Combining generative models and

fisher kernels for object recognition. In International Conference on Computer

Vision (ICCV), pages 136–143, 2005.

[HWP05b] Alex Holub, Max Welling, and Pietro Perona. Exploiting unlabelled data for

hybrid object classification. In NIPS 2005 Workshop in Inter-Class Transfer,

2005.

[HWP07] Alex Holub, Max Welling, and Pietro Perona. Hybrid generative-discriminative

object recognition. International Journal of Computer Vision (IJCV), 2007.

[Int] Intel. Opencv computer vision library. In

http://www.intel.com/technology/computing/opencv/.

[JDH99] T. Jaakkola, M. Diekhans, and D. Haussler. Exploiting generative models in

discriminative classifiers. In Advances in neural information processing systems

(NIPS), volume 11, pages 487–493, 1999.

[Jeb01] Tony Jebara. PhD thesis, MIT, Cambdridge, MA, 2001.

143

[JH99] T. Jaakkola and D. Haussler. Probabilistic kernel regression models. In Pro-

ceedings of the Seventh International Workshop on Artificial Intelligence and

Statistics, 1999.

[KB01] Timor Kadir and Michael Brady. Saliency, scale and image description. Inter-

national Journal of Computer Vision (IJCV), 45(2):83–105, 2001.

[KH03] Sanjiv Kumar and Martial Hebert. Discriminative random fields: A discrimi-

native framework for contextual interaction in classification. In International

Conference on Computer Vision (ICCV), pages 1150–1159, 2003.

[Kru64] J.B. Kruskal. In Psychometrika, pages 115–129, 1964.

[LFP06] Fei-Fei Li, Robert Fergus, and Pietro Perona. One-shot learning of object cat-

egories. IEEE Transactions on Pattern Analysis and Machince Intelligence,

28(4):594–611, 2006.

[Low04] D. Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision (IJCV), 2004.

[LS04] B. Leibe and B Schiele. Scale-invariant object categorization using a scale-

adaptive mean-shift search. DAGM-Symposium, pages 145–153, 2004.

[LSP06] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories, 2006. Computer Vision and

Pattern Recognition (CVPR).

[MN98] M. McCallum and K. Nigam. Employing em in pool-based active learning for

text classification. 1998. International Conference on Machine Learning (ICML).

[NGOL06] J. Neiworth, A. Gleichman, A. Olinich, and K. Lamp. Global and local pro-

cessing in adult humans, 5-year olds, and nw monkeys. Journal of Comparative

Psychology, 120, 2006.

[NJ02] A. Ng and M. Jordan. On discriminative vs. generative classifiers: A compar-

ison of logistic regression and naive bayes. In Advances in Neural Information

Processing Systems (NIPS), volume 12, 2002.

144

[OFPA] A. Opelt, M. Fusseneger, A. Pinz, and P. Auer. Generic object recognition with

boosting. Pattern Analysis and Machine Intelligence (PAMI).

[OW00] M. Opper and O. Winther. Gaussian processes and svm: Mean field and leave-

one-out. In Advances in Large Margin Classifiers, pages 311–326. MIT Press,

2000.

[Pla00] J. Platt. Probabilistic Outputs for Support Vector Machines and Comparisons

to Regularized Likelihood Methods. Advances in Large Margin Classifiers, MIT

Press, 2000.

[RBK98] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

20(1):23–38, 1998.

[RH97] Y.D. Rubinstein and T. Hastie. Discriminative vs. informative learning. In

AAAI, 1997.

[Rho88] G. Rhodes. Looking at faces: first-order and second-order features as determi-

nants of facial appearance. Perception, 17:43–63, 1988.

[Sam69] J.W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans-

actions on Compututation, C-18:401–409, 1969.

[SBB03] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination, and expression

database. Pattern Analysis and Machine Intelligence (PAMI), 25(12):1615–

1618, 2003.

[Sch04] H. Schneiderman. Learning a restricted bayesian network for object detection.

Computer Vision and Pattern Recognition (CVPR), pages 639–646, 2004.

[Sea06] P. Sinha and et al. Face recognition by humans: nineteen results all computer

vision researchers should know about. In Proceedings of the IEEE, Vol 94 N2,

2006.

[See02] M. Seeger. Covariance kernels from bayesian generative models. In Advances

in Neural Information Processing Systems (NIPS), volume 14, pages 905–912,

2002.

145

[Sin02] P. Sinha. Identifying perceptually significant features for recognizing faces. In

Proc. SPIE, volume 4662, pages 12–21, 2002.

[SK00] Henry Schneiderman and Takeo Kanade. A statistical method for 3d object

detection applied to faces and cars. In Computer Vision and Pattern Recognition

(CVPR), pages 1746–1759, 2000.

[SOS] H. Seung, M. Opper, and H. Sompolinsky. Query by committee. Proceedings

of the Fiftth Workshop on Computational Learning Theory.

[SS02] B. Schoelkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

[SSZ04] J. Sivic, F. Schaffalitzky, and A. Zisserman. Object level grouping for video

shots. In Proceedings of the 8th European Conference on Computer Vision

(ECCV), May 2004.

[STC04] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, 2004.

[TAKM03] Koji Tsuda, Shotaro Akaho, Motoaki Kawanabe, and Klaus-

Robert Mller. Asymptotic properties of the fisher kernel. In cite-

seer.ist.psu.edu/tsuda03asymptotic.html, 2003.

[TC01] S. Tong and E. Chang. Support vector machine active learning for image re-

trieval, 2001. Proceedings of the ninth ACM international conference on Mul-

timedia.

[TK00] S. Tong and D. Koller. Support vector machine active learning with applica-

tions to text classification, 2000. International Conference on Machine Learning

(ICML).

[TMF04] Antonio B. Torralba, Kevin P. Murphy, and William T. Freeman. Sharing fea-

tures: Efficient boosting procedures for multiclass object detection. In Computer

Vision and Pattern Recognition (CVPR), pages 762–769, 2004.

[TP91] M. Turk and A. Pentland. Face recognition using eigenfaces. In Computer

Vision and Pattern Recognition (CVPR), 1991.

146

[UVNS02] S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of intermediate com-

plexity and their use in classification. Nature Neuroscience, pages 682–687,

2002.

[Vap98] V. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[VHM04] N. Vasconcelos, P. Ho, and P. Moreno. The kullback-leibler kernel as a frame-

work for discriminant and localized representations for visual recognition. Eu-

ropean Conference on Computer Vision (ECCV), pages 430–441, 2004.

[VJ01] Paul A. Viola and Michael J. Jones. Rapid object detection using a boosted cas-

cade of simple features. In Computer Vision and Pattern Recognition (CVPR),

pages 511–518, 2001.

[WCG03] C. Wallraven, B. Caputo, and A.B.A. Graf. Recognition with local features:

the kernel recipe. International Conference on Computer Vision (ICCV), pages

257–264, 2003.

[Web00] Markus Weber. Unsupervised Learning of Models for Object Recognition. PhD

thesis in Computation and Neural Systems, California Institute of Technology,

Pasadena, CA, 2000.

[WWP00] M. Weber., M. Welling., and P. Perona. Towards automatic discovery of object

categories. Computer Vision and Pattern Recognition (CVPR), page 2101, 2000.

[ZH03] X. Zhou and T. Huang. Relevance feedback in image retrieval: A comprehensive

review. Multimedia Systems, 2003.

