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Abstract

We begin by working out an e¤ective �eld theory valid below some new physics scale �

for Dirac neutrinos and Majorana neutrinos, respectively. For Dirac neutrinos, we obtain

a complete basis of e¤ective dimension four and dimension six operators that are invariant

under the gauge symmetry of the Standard Model. As for Majorana neutrinos, we come

up with a complete basis of e¤ective dimension �ve and dimension seven operators that

are invariant under the gauge symmetry of the Standard Model. Using the e¤ective theory,

we derive model-independent, "naturalness" upper bounds on the magnetic moments �� of

Dirac neutrinos and Majorana neutrinos generated by physics above the scale of electroweak

symmetry breaking. In the absence of �ne-tuning of e¤ective operator coe¢ cients, for Dirac

neutrinos, we �nd that current information on neutrino mass implies that j�� j . 10�14�B.

This bound is several orders of magnitude stronger than those obtained from analyses of

solar and reactor neutrino data and astrophysical observations. As for Majorana neutri-

nos, the magnetic moment contribution to the mass is Yukawa suppressed. The bounds we

derive for magnetic moments of Majorana neutrinos are weaker than present experimental

limits if �� is generated by new physics at � 1 TeV, and surpass current experimental

sensitivity only for new physics scales > 10�100 TeV. The discovery of a neutrino magnetic

moment near present limits would thus signify that neutrinos are Majorana particles. Then,

we use the scale of neutrino mass to derive model-independent naturalness constraints on

possible contributions to muon decay Michel parameters. We show that �in the absence of

�ne-tuning �the most stringent bounds on chirality-changing operators relevant to muon

decay arise from one-loop contributions to neutrino mass. The bounds we obtain on their

contributions to the Michel parameters are four or more orders of magnitude stronger than

bounds previously obtained in the literature. We also show that, if neutrinos are Dirac

fermions, there exist chirality-changing operators that contribute to muon decay but whose

�avor structure allows them to evade neutrino mass naturalness bounds. We discuss the im-
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plications of our analysis for the interpretation of muon decay experiments. Finally, we use

the upper limit on the neutrino mass to derive model-independent naturalness constraints

on some non-Standard-Model d! ue�� interactions. In the absence of �ne-tuning of e¤ec-

tive operator coe¢ cients, our results yield constraints on scalar and tensor weak interactions

one or more orders of magnitude stronger than a recent global �t after combined with the

current experimental limits. We also show that, if neutrinos are Majorana fermions, there

exist four-fermion operators that contribute to beta decay but whose �avor structure allows

them to evade neutrino mass naturalness bounds. We also consider the constraint on the

branching ratio of � ! �� by neutrino mass. Constraints on the beta decay parameters by

CKM Unitarity, Re=�, and �� are discussed as well.
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Chapter 1

Introduction

The Standard Model (SM) [1] is the name given in the 1970s to a theory of fundamental

particles and how they interact. The SM is very successful at energies up to about hundred

GeV. The SM has passed numerous experimental tests. However, despite its tremendous

successes, no one �nds the SM satisfactory, and it is widely expected that there is physics

beyond the SM, with new characteristic mass scale(s), perhaps up to, ultimately, a string

scale. In the absence of any direct evidence for their mass, neutrinos were introduced in the

SM as truly massless fermions for which no gauge-invariant renormalizable mass term can

be constructed. Consequently, in the SM there is no mixing in the lepton sector. However,

the evidences of neutrino oscillations were found in the Super-Kamiokande [3], SNO [4],

KamLAND [5], and other solar [6, 7, 8, 9] and atmospheric [10, 11] neutrino experiments of

neutrino oscillations. Observation of neutrino oscillations gives us the �rst sign of physics

beyond the SM. New physics seems to have manifested itself in the form of neutrino masses

and lepton mixing. In this way, neutrino masses can be connected to other new physics.

1.1 Some Neutrino Properties

1.1.1 Types of Neutrino

In general, there are two possible types of neutrinos: Dirac and Majorana neutrinos, since

neutrinos are neutral fermions. In the following, we consider the simplest case of one

generation. Dirac neutrinos could have Dirac mass terms, which couple left- and right-

handed �elds

mD�L�R + h:c:; (1.1)
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where mD is the Dirac mass and �L and �R are left- and right-handed Weyl spinor �elds,

respectively.

Majorana neutrinos could have Majorana mass terms which couples a left-handed or a

right-handed �eld to itself. Consider �L. Its Majorana mass term is

mM�cL �L;  c = C  
T
; (1.2)

where mM is the Majorana mass and C is the charge conjugation matrix.

Majorana neutrinos could also have both Dirac and Majorana mass terms. In this way

the mass terms, would be:

mD�R�L +
1

2
mM�R�

c
R + h:c: =

1

2
ncLMnL + h:c: (1.3)

with:

M �

0@ 0 mD

mD mM

1A . (1.4)

The eigenvalues of this mass matrix will be the neutrino masses:

m1 ' �
(mD)

2

mM
; m2 ' mM : (1.5)

WhenmM � mD, we obtain a very low mass, which would explain the lightness of neutrino,

and a very high mass, for a superheavy neutrino, which is the famous see-saw mechanism

[15].

Experimentally, there exists no conclusive evidence for or against the presence of light

Majorana neutrinos. New searches for neutrinoless double �-decay could provide conclusive

proof that the light neutrinos are Majorana, provided the neutrino-mass spectrum has

the �inverted� rather than �normal� hierarchy (for recent reviews, see, e.g., [16] ). If,

on the other hand, future longbaseline oscillation experiments establish the existence of

the inverted hierarchy and/or ordinary �-decay measurements indicate a mass consistent

with the inverted hierarchy, a null result from the neutrinoless double �-decay searches

would imply that neutrinos are Dirac neutrinos. Either way, the investment of substantial

experimental resources in these di¢ cult measurements indicates that determining the charge

conjugation properties of the neutrino is both an central question for neutrino physics as
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well as one that is not settled.

1.1.2 Neutrino Oscillations

Neutrino oscillations are similar to the well known oscillations between K0- and K0-mesons.

They occur because of the mixing in the charged weak current discussed in the SM. The

neutral and charged current weak interactions of neutrinos are described by the Lagrangian

LEW = �
X
�;i

�
g

2 cos �W
�L�


m�L� Zm +
gp
2
eL�


mU�i�Li W
�
m + h:c:

�
; (1.6)

where the �elds eL�, � = 1 : : : 3, represent the mass eigenstates of electron, muon, and tau,

and the �elds �Li, i = 1 : : : n � 3, correspond to neutrino mass eigenstates. The �avour

eigenstate �a is a linear superposition of mass eigenstates,

�a =
X
i

U��i�i : (1.7)

Three linear combinations of mass eigenstates have weak interactions, and are therefore

called active, whereas n � 3 linear combinations are sterile, i.e., they don�t feel the weak

force. In the case n = 4, for instance, the sterile neutrino is given by

�s =
X
i

U�4i�i : (1.8)

In the following we will restrict ourselves to the case of three active neutrinos.

We will consider now the evolution of the �avor state �a in vacuum. If at t = 0 �avor

neutrino �� is produced, for the neutrino state at a time t we will have

j��it = e�iH0 t j��i =
2X
1

U�li e
�iEit j�ii; (1.9)

where H0 is the free Hamiltonian. Developing Ei over m2
i we have

Ei ' E +
m2
i

2E
; (1.10)

where E = p is the energy of the neutrino in the approximation m2
i ! 0. From (1.9) and
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(1.10) for the neutrino state at the time t we have

j��it = e�iE t
3X
i=1

e�i
m2i t

2E U��i j�ii: (1.11)

Taking into account the unitarity of the mixing matrix, we �nd the amplitude of the

probability to �nd a state j��0i in the state j��it is

A(�� ! ��0) = h��j ��0it =
3X
i=1

U�0i e
�i m

2
i t

2E U��i (1.12)

from which we obtain the transition probability in the form

P (�� ! ��0) = j ��0� +
X
i=2;3

U�0i (e
�i�m2

i1
L
2E � 1)U��i j2 (1.13)

where �m2
i1 = m2

i �m2
1 , L is the distance between neutrino source and neutrino detector,

and we label neutrino masses in such a way that m1 < m2 < m3.

In the simplest case of the transition between two �avor neutrinos index i in (1.13) takes

the value 2. For �0 6= � we have

P (�� ! ��0) =
1

2
sin2 2� (1� cos�m2 L

2E
); (�0 6= �): (1.14)

Here �m2 = m2
2 �m2

1 and � is the mixing angle (jU�02j2 = sin2 �; jU�2j2 = cos2 �).

In matter, a resonance enhancement of neutrino oscillations can take place and transition

probabilities can be maximal even for small vacuum mixing angles� this is the Mikheyev-

Smirnov-Wolfenstein e¤ect [17], which turns out to be very important in the analysis of

solar neutrinos.

In recent years there has been a wealth of experimental data in neutrino physics, and we

can look forward to important new results also in the coming years. The present situation

is summarized in Fig. 1.1 which is taken from the review of particle physics.

1.1.3 Direct Bounds on Neutrino Masses

Neutrinos are expected to have mass, like all other leptons and quarks. The study of the

electron energy spectrum in tritium �-decay over many years has led to an impressive bound
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for the electron-neutrino mass. The strongest upper bound has been obtained by the Mainz

collaboration [12]:

m�e < 2:2 eV (95% CL). (1.15)

It is based on the analysis of the Kurie plot, where the electron energy spectrum is studied

near the maximal energy E0:

K(Ee) /
q
(E0 � Ee)((E0 � Ee)2 �m2

n)
1=2 : (1.16)

In the future the bound (1.15) is expected to be improved to 0.3 eV [13].

Direct kinematic limits for tau- and muon-neutrinos have been obtained from the decays

of � -leptons and �-mesons, respectively. The present upper bounds are [14],

m�� < 18:2 MeV (95% CL), m�� < 170 KeV (90% CL). (1.17)

1.2 Neutrino Mass Implications

Neutrino mass implications for new physics is the main topic in my dissertation. Here I am

just going to use a naïve relationship between the size of �� , neutrino magnetic moment,

and m� , neutrino mass, to illustrate the general picture.

If a magnetic moment is generated by physics beyond the Standard Model (SM) at an

energy scale �, as in Fig. 1.2a, we can generically express its value as

�� �
eG

�
; (1.18)

where e is the electric charge and G contains a combination of coupling constants and loop

factors. Removing the photon from the same diagram (Fig. 1.2b) gives a contribution to

the neutrino mass of order

m� � G�: (1.19)
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Figure 1.2: a) Generic contribution to the neutrino magnetic moment induced by physics
beyond the standard model. b) Corresponding contribution to the neutrino mass. The solid
and wavy lines correspond to neutrinos and photons respectively, while the shaded circle
denotes physics beyond the SM.

We thus have the relationship

m� �
�2

2me

��
�B

� ��
10�18�B

[�(TeV)]2 eV; (1.20)

which implies that it is di¢ cult to simultaneously reconcile a small neutrino mass and a

large magnetic moment.

However, it is well known that the naïve restriction given in Eq. (1.20) can be overcome

via a careful choice for the new physics. For example, we may impose a symmetry to enforce

m� = 0 while allowing a non-zero value for �� [18, 19, 20, 21], or employ a spin suppression

mechanism to keep m� small [22].

1.3 Plan of My Dissertation

Fig. 1.3 shows the framework of my work here. Above the new physics scale �, I expect some

form of new physics. In my work, I am going to carry out a model-independent analysis,

so I don�t specify new physics above �. Below �, the new physics is integrated out and I

have a e¤ective theory which I am going to work with. Since new physics is not speci�ed

above �, Cnj , the couplings of e¤ective dimension n operators, cannot be determined by

matching the e¤ective theory with the new physics at the scale �. Instead, they can only

be determined by experiments.

In Chapter 2, I am going list all n = 6 e¤ective operators for Dirac neutrinos and n = 7

ones for Majorana neutrinos for the e¤ective theory valid below �. Also, I focus on the
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Figure 1.3: Scheme of my dissertation

"interesting" operators that could contribute to neutrino mass through loops and other low

energy physics, such as neutrino magnetic moment, �-decay, and �-decay.

In Chapter 3, in order to connect the "interesting" operators with neutrino mass opera-

tors, I am going to work on these operators matching with 4D neutrino mass operators and

mixing with 6D neutrino mass operators.

In Chapter 4, I am going to use upper bounds on neutrino mass to constrain neutrino

magnetic moment [42, 45] and parameters of �-decay [41] and �-decay. I have to evolve the

renormalization scale � to characteristic energy of low energy physics to study them. For

neutrino magnetic moment and �-decay, I only have QED corrections, which are negligible.

However, as for �-decay, QCD corrections could be important and we therefore include

them in our analysis of �-decay.
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Chapter 2

E¤ective Field Theory

2.1 Introduction

Standard Model is the best theory of the ultimate nature of matter available today. To

date, almost all experimental tests of the three forces described by the Standard Model

have agreed with its predictions, which have resulted in establishing the Standard Model as

a very good e¤ective theory at the weak scale given by the Higgs boson vacuum expectation

value of v ' 250 GeV and below. Although the Standard Model is remarkably successful,

there is still some room for new physics, due to many theoretical reasons and deviations

from some experiments, which suggests that new physics might be one with a cuto¤ scale

much lower than the Planck scale; perhaps as low as a few TeV. For example, the discovery

of neutrino mixing has given us the �rst sign of new physics beyond v. The exact nature

of the new physics has not been identi�ed yet. However, there are still two approaches we

can employ to explore the contributions from new physics. One is the top-down approach,

with which one can make a guess at this new physics and engage in constructing consistent

models. The top-down approaches can and will be very important for guiding thinking, but

are unlikely to lead to detailed serious predictions that really test the ideas, especially for

the string theory. The other approach is bottom-up, with which we can proceed by making

use of the e¤ective �eld theory, which is characterized by a scale �. Then we only need to

take explicitly into account the relevant degrees of freedom, i.e., those states with m� �,

while the heavier states with m� � are integrated out from the action of new physics. All

UV dependence appears directly in the coe¢ cients of the e¤ective Lagrangian, which is a

sum of the SM term and non-renormalizable ones which are the results of integrating out the

unknown degrees of freedom. However, the e¤ective Lagrangian carries an in�nite number
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of non-renormalizable terms whose coe¢ cients can only be determined by experiments since

the full theory is unknown. This is not as desperate as it seems, the good news is that all

the operators can be classi�ed by their dimensions d and their coe¢ cients are suppressed by

1
�d
. Generally, we only need to use the lowest-dimension operators, discarding the higher

orders.

Since the full theory still stays a mystery to us, we need to identify two crucial ingredients

of the e¤ective �eld theory before we build it. First, we have to identify the symmetry

the e¤ect �eld theory respects. Intense experimental e¤orts in the search for new physics

strongly suggest that we should take the gauge symmetry SUC (3) � SUL (2) � UY (1) of

the Standard Model above the weak scale. Below the weak scale, the gauge symmetry is

SUQCD (3)�UQED (1). The second ingredient to know is the degrees of freedom. We usually

take the minimal set of �elds, namely the SM �elds of 45 chiral fermions, plus the gauge

bosons and one Higgs doublet, plus the necessary �elds for certain theoretical motivations.

If we assume neutrinos are Dirac particle and are also massive, we need to include the

right-handed neutrinos vR as well. On the other hand, if the neutrinos are assumed to be

Majorana particle, the SM �elds are enough. Even for the popular see-saw mechanism in

which we need very heavy vR (s) to make vLs light enough, vR (s) are integrated out since

they are so heavy.

In this spirit, the total Lagrangian valid up to energies of order � can be written as an

expansion in 1
�

Le� = LSM+new �elds +
1

�
L5 +

1

�2
L6 +

1

�3
L7 � � � (2.1)

where LSM+new �elds are dimension four operators (SM operators plus ones generated by

the new �elds of the e¤ective �eld theory), L5 is the dimension �ve operator constructed

from the neutrino and Higgs �elds which is responsible for generating Majorana neutrino

masses for the active neutrinos, L6 are dimension six operators, etc. All Li are SUC (3) �

SUL (2) � UY (1) invariant. If L5 is non-vanishing then lepton number is not conserved.

On the other hand, neutrinos may be Dirac particles, in which case L5 vanishs. So for the

Dirac neutrino case, we have to include a new �eld vR and work out all the dimension

six operators. However for the Majorana neutrino case, we don�t need any new �elds. But

we have to �nd all the dimension seven operators, because L5 only includes the Majorana
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neutrino mass operator, which is not interesting for our analysis.

In Section 2.2, we review the Standard Model �eld and LSM to set notations; in Section

2.3 we develop L6 and L7.

2.2 The Fields and the Lagrangian LSM

To set notations, we begin with LSM: The �elds are

� Matter �elds:

Left-handed lepton doublets: L =

0@ �L

lL

1A (1;2;�1)
Right-handed charged leptons: lR (1;1;�2)

Left-handed quark doublets: Q =

0@ uL

dL

1A�3;2;13�
Right-handed quark singlets: uR

�
3;1;43

�
, dR

�
3;1;�2

3

�
� Gauge �elds:

Gluons: GA� , A = 1 � � � 8, (8;1; 0)

W bosons: W a
� , a = 1; 2; 3 (1;3; 0)

B bosons: B� (1;1; 0)

� Higgs boson doublets: � (1;2;1), e� = i�2�� (1;2;�1)

where we indicate how �elds transform under SUC (3)�SUL (2)�UY (1) in the brackets.

The gauge couplings of SUC (3)�SUL (2)�UY (1) are denoted by g3, g2, and g1. The latter

are often expressed in terms of the weak mixing angle, �W , and the electric unit charge, e:

sin2 �W =
g21

g21 + g
2
2

(2.2)

e = g2 sin �W = g1 cos �W .
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The SUC (3)� SUL (2)� UY (1) Lagrangian is

LSM = �
1

4
GA��G

A�� � 1
4
W a
��W

a�� � 1
4
B��B

�� (2.3)

+ iL6DL+ iQ6DQ+ iuR 6DuR + idR 6DdR + ilR 6DlR

+ feL�lR + fdQ�dR + fuQe�uR
+ (D��) (D

��) +m2
��

y�+
�

2
(�y�)2.

Assuming m2
� < 0, � develops a vacuum expectation value (VEV)

�!

0@ 0

v=
p
2

1A (2.4)

and the Higgs potential spontaneously breaks part of the gauge symmetry,

SUC (3)� SUL (2)� UY (1)! SU (3)QCD � U(1)QED:

The one remaining physical Higgs degree of freedom, H = (0; �0=
p
2), acquires a mass given

by MH = �v.

Quarks and charged leptons receive masses through Yukawa interactions. In the three-

generation SM, the Yukawa couplings fe, fu, and fd become matrix valued. The mass

matrices for charged leptons, u-type quarks, and d-type quarks are given by, respectively,

me = fe
vp
2
, mu = fu

vp
2
, md = fd

vp
2
. (2.5)

Normally, me, mu, and md are general matrices. We can use �elds�rede�nition to make

some of them diagonal; will discuss this in Section 3.2.

2.3 Operator Basis

We are going to list all the e¤ective operators with dimension six for the case of Dirac

neutrinos in Section 2.3.1 and all the e¤ective operators with dimension �ve and dimension

seven for the case of Majorana neutrinos in Section 2.3.2. We �nd that it is useful to group
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them according to the number of fermion, Higgs, and gauge boson �elds that enter. And we

will make use of the equations of motion to express some operators in terms of other ones

and hence exclude them in the operator basis. In the process of listing all operators, we will

single out the operators which can contribute to both m� through radiative corrections and

muon decay, beta decay, or neutrino magnetic moment in order to carry out our analysis in

Chapter 4.

2.3.1 Construction of L6 for Dirac Neutrinos

In this case, the e¤ective Lagrangian turns out to be

Le� = LSM+new �elds +
1

�2
L6 � � �+ h:c: (2.6)

The lowest dimension neutrino mass operator is

O(4)M = L~��R. (2.7)

After spontaneous symmetry breaking, one has

C4M;O
(4)
M ! �m��L�R (2.8)

m� = �C4M v=
p
2:

The other operators with dimension four are those of the SM which we already have in

Section 2.2.

For the case of Dirac neutrinos that we consider here, there exist no gauge-invariant

operators with dimension �ve. So we move to operators with dimension six.

Four-lepton:

L
�LL
�L lR

�lRlR
�lR lR


�lR�R
��R �R

��R�R
��R (2.9)

�LlRlRL �L�R�RL �ijLilRLj�R

Several of the operators appearing in this list can contribute to �-decay, but only the last

one can also contribute to m� through radiative corrections. Including �avor indices, we
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refer to this operator as

O(6)F;ABCD = �ij �LAi l
C
R
�LBj �

D
R (2.10)

where the indices i; j refer to the weak isospin components of the LH doublet �elds and

�12 = ��21 = 1.

Semi-leptonic four-fermion:

�ijQidRLj�R �ijQilRLjuR L
�LQ
�Q LuRuRL (2.11)

�ijQi�RLjdR �ijQiuRLjlR lR

�lRuR
�uR LdRdRL

L�RuRQ L
��aLQ
��
aQ �R


��RuR
�uR QlRlRQ

LlRdRQ lR

�lRdR
�dR Q�R�RQ

lR

��RuR
�dR �R


��RdR
�dR

The �rst and the second column could contribute to the �-decay at tree level while the

third and fourth column couldn�t. Only the �rst column can contribute radiatively to �m�

through loop graphs. Since �R doesn�t exist in SM, operators of a given dimension with the

same number of �R can only mix with each other. The relevant operators are

O(6)Q;AD;�� = LA�DR u
�
RQ

� (2.12)

O(6)d1;AD;�� = �ijLAid
�
RQ

�
j�
D
R

O(6)d2;AD;�� = �ijQ�id
�
RL

A
j�
D
R

where we already specify �avor indices for the fermion �elds and these operators don�t mix

with the other four-fermion operators.

Four-quark:

Q
�QQ
�Q Q
��AQQ
��
AQ (2.13)

These operators don�t contribute to the beta decay, muon decay, or neutrino magnetic

moment. They don�t contribute radiatively to �m� through loop graphs, either.

Lepton-Higgs:
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i(L
�L)(�+D��) i(�L
��aL)(�+�aD��) (2.14)

i(lR

�lR)(�

+D��) i(�AR

��BR )(�

+D��)

i(lR

��BR )(�

+D�e�)
Neither of the �rst two operators in the list can contribute signi�cantly to m� since they

contain no RH neutrino �elds. Any loop graph through which they radiatively induce m�

would have to contain operators that contain both LH and RH �elds, such as O(4)M or other

n = 6 operators. In either case, the resulting constraints on the operator coe¢ cients will be

weak. For similar reasons, the third and fourth operators cannot contribute substantially

because they contain an even number of neutrino �elds having the same chirality and since

the neutrino mass operator contains one LH and one RH neutrino �eld. Only the last

operator

O(6)~V ;AD � i(l
A
R


��DR )(�
+D�e�) (2.15)

can contribute signi�cantly tom� , since it contains a single RH neutrino. It also contributes

to the �-decay amplitude after SSB via the graph of Fig. 2.1a, since the covariant derivative

D� contains chargedW -boson �elds. We also write down the n = 6 neutrino mass operators

O(6)M;AD = (�L
Ae��DR )(�+�): (2.16)

Quark-Higgs:

i(uR

�dR)(�

+D�e�) i(Q
��aQ)(�+�aD��) (2.17)

i(Q
�Q)(�+D��) i(dR

�dR)(�

+D��)

i(uR

�uR)(�

+D��)

Here we also list operators having two quark �elds within because they might contribute

to �-decay at tree level combining some SM operator. Actually the �rst two operators do

contribute to �-decay. But they don�t include �R and therefore won�t contribute to �m� .

Fermion-Higgs-Gauge:
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L�a
�D�LW a
�� L
�D�LB�� lR


�D� lRB�� �R

�D��RB�� (2.18)

g2(L�
���a�)lRW

a
�� g1(L�

���)lRB��

g2(L�
���ae�)�RW a

�� g1(L�
�� e�)�RB��

As for the fermion-Higgs operators, the operators in (2.18) that contain an even number

of �R �elds will not contribute signi�cantly to mAB
� , so only the last two in the list are

relevant:

O(6)B;AD = g1(�L
A��� e�)�DRB�� (2.19)

O(6)W;AD = g2(�L
A����ae�)�DRW a

�� :

These also contribute to the neutrino magnetic moment. We also observe that the operator

O(6)W;AD will also contribute to the �-decay or �-decay amplitude via graphs as in Fig. 2.1b.

We have computed its contributions to the Michel parameters of �-decay and �nd that they

are suppressed by �
�m�

�

�2 relative to the e¤ects of the other n = 6 operators. We think
the same suppression still exists for �-decay. This suppression arises from the presence

of the derivative acting on the gauge �eld and the absence of an interference between the

corresponding amplitude and that of the SM.

Two-quark-Higgs-Gauge:

iQ�A
�D�QG
A�� iQ�a
�D�QW

a�� iQ
�D�QB
�� (2.20)

idR�
A
�D�dRG

A�� idR
�D�dRB
�� iuR�

A
�D�uRG
A��

iuR
�D�uRB
�� (Q����

AuR)e�GA�� (Q����
auR)e�W a��

(Q���uR)e�B�� (Q����
AdR)�G

A�� (Q����
adR)�W

a��

(Q���dR)�B
��

We list these operators for the same reason as above Quark-Higgs operators. However, even

if they may contribute to the �-decay, their contributions will be suppressed by derivatives

on the gauge bosons just as O(6)W;AD. What is more, they don�t contribute to �m� due to
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that fact they contain no �R:

In addition to these operators, there exist additional operators with dimension six which

don�t contribute tom� through radiative corrections and muon decay, beta decay or neutrino

magnetic moment. They won�t mix with the "interesting operators" due to mismatch of

the number of �R. These operators are not interesting in our case. We list them as follows

for completeness.

Two-fermion-Gauge

iQ�a
�D�QW
a�� iQ
�D�QB

�� idR�
A
�D�dRG

A�� (2.21)

idR
�D�dRB
�� iuR�

A
�D�uRG
A�� iuR
�D�uRB

��

ilR
�D� lRB
�� iL�a
�D�LW

a�� iL
�D�LB
��

iQ�A
�D�QG
A��

Gauge-only

fABCG
A�
� GB�� GC�� fABC eGA�� GB�� GC�� (2.22)

�abcW
a�
� W b�

� W c�
� �abcfW a�

� W b�
� W c�

�

Higgs-only �
�+�

�3
@�
�
�+�

�
@�
�
�+�

�
(2.23)

Fermion-Higgs

�
�+�

� �
LlR�

� �
�+�

� �
QdR�

� �
�+�

� �
QuRe�� (2.24)
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Figure 2.1: Contributions from the operators (a) O(6)B;AD and (b) O(6)B;AD (denoted by the
shaded box) to the amplitude for �-decay or �-decay. Solid, dashed, and wavy lines denote
fermions, Higgs scalars, and gauge bosons, respectively. After SSB, the neutral Higgs �eld
is replaced by its vev, yielding a four-fermion �-decay or �-decay amplitude

Higgs-Gauge

�
�+�

�
GA��G

A��
�
�+�

� eGA��GA�� (2.25)�
�+�

�
W a
��W

a��
�
�+�

�fW a
��W

a���
�+�

�
B��B

��
�
�+�

� eB��B���
�+�a�

�
W a
��B

��
�
�+�a�

�fW a
��B

���
�+�

� �
D��

+D��
� �

�+D��
� �
D��

+�
�

2.3.2 Construction of L5 and L7 for Majorana Neutrinos

Now, we don�t need any new �elds and therefore the e¤ective Lagrangian is

Le� = LSM +
1

�
L5 +

1

�3
L7 � � �+ h:c: (2.26)

The lowest-order contribution to the neutrino (Majorana) mass arises from the usual

�ve dimensional operator containing � and L

O(5)M = �ik�jm(LciLj)�k�m (2.27)

where Lc = LTC, and C denotes charge conjugation. After spontaneous symmetry breaking,
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one has

C5M;O
(5)
M

�
! �m��cL�L (2.28)

m� = �C4M
v2

2�
:

The lowest-order contribution to muon decay, beta decay, and neutrino magnetic moment

arises at dimension seven. We are going to group the operator with dimension seven ac-

cording to the number of fermion, Higgs, and gauge boson �elds that enter, as before.

Two-fermion-Higgs-Gauge:

O(7)B;AB =
�
LAc��

�
���

�
HT �LB

�
B�� (2.29)

O(7)W;AB =
�
LAc�H

�
���

�
HT ��aLB

�
W��
a

These contain the neutrino magnetic moment operator. They will also contribute to the

�-decay and �-decay as O(6)W;AD in the Dirac case. Their contributions are also suppressed.

Two-fermion-Higgs-derivative:

O(7)eV ;AB = i�ik�jmLAci

�lBR�j�kD��m (2.30)

This is analogous to O(6)eV ;AB in the Dirac case, it also contributes to �-decay and �-decay in
the way O(6)eV ;AB does.

Four-lepton-Higgs:

O(7)L1;AB;CD = �ij�km(LAciL
B
j )(l

C
RL

D
k )�m (2.31)

O(7)L2;AB;CD = �ij�km(LAciL
B
k )(l

C
RL

D
j )�m

These will contribute to �-decay. In Section 3.2, we will �nd O(7)L1;AB;CD contributes to m�

through radiative corrections, while O(7)L2;AB;CD won�t. They are analogous to O
(6)
F;ABCD in

the Dirac case.
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Four-quark-Higgs:

O(7)d1;AB;�� = �ij�km(LAciL
B
j )(d

�
RQ

�
k)�m (2.32)

O(7)d2;AB;�� = �ik�jm(LAciL
B
j )(d

�
RQ

�
k)�m

O(7)d1;A�;�B = �ij�km(LAciQ
�
k)(d

�
RL

B
j )�m

O(7)d2;A�;�B = �ik�jm(LAciQ
�
k)(d

�
RL

B
j )�m

O(7)u1;AB;�� = �ij�mk (L
Ac
iL
B
j )(Q

�ku�R)�m

O(7)u2;AB;�� = �jm�ik(L
Ac
iL
B
j )(Q

�ku�R)�m

O(7)R;AB;�� = �ij(LAci

�lBR)(d

�
R
�u

�
R)�j

O(7)d;AB;�� is the counterpart of O
(6)
d;AD;�� in the Dirac case and O

(7)
d;AB;�� is one of O

(6)
d;AD;��

in the Dirac case, they will all contribute to �-decay. However, in Section 3.2, we will �nd

that O(7)u1;AB;�� and O
(7)
d1;AB;�� don�t contribute to m� via loops. As for O(7)R;AB;��, it won�t

contribute to neutrino mass through loops because of Dirac structure.

Two-leptons-Higgs-two-derivatives:

O12D =
�
�Lc�H

� �
D�H

T �D�L
�

(2.33)

O22D =
�
�Lc�D�H

� �
D�HT �L

�
(2.34)

These operators are not interesting to us since they don�t contribute tom� through radiative

corrections and muon decay, beta decay, or neutrino magnetic moment.
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Chapter 3

Operator Matching and Mixing

3.1 Introduction

We start with the e¤ective Lagrangian which follows [45] and takes the following form

Le� =
X
n;j

Cnj (�)

�n�4
O(n)j (�) + h:c: (3.1)

where � is renormalization scale, n > 4 is the corresponding operator�s dimension, j is the

index running over all independent operators of a given dimension and � is the new physics

cuto¤. In analyzing the renormalization of an operator, say O(n)i (�), it is useful to consider

separately two cases:

� O(n)i receives contributions at the scale � associated with loop graphs containing an

operator O(m)j with m > n.

Above the weak scale, all the �elds are massless, and � itself appears only logarithmi-

cally. If O(n)i and O(m)j can exist for zero external momentum, these graphs will vanish

in dimensional regularization (DR) since they must be proportional to Mm�n where M is

some mass scale. If we use brutal cuto¤, these graphs turn out proportional to �m�n.

However, they might be cancelled by the contributions from new physics. Since we don�t

know anything about new physics, we have to be cautious, and thus are going to follow

the argument found in [56] and use NDA to estimate these contributions. Simple power

counting shows that these contributions go as � �m�n

16�2
times a product of O(m)j operator

coe¢ cient
Cmj
�m�4 and the gauge couplings g1; � � � ; gl appearing in the loop. Thus, matching

of the e¤ective theory with the full theory (unspeci�ed) at the scale � implies the presence
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of a contribution to Cnj of order
g1���gl
16�2

Cmj . As emphasized in [56], the precise numerical

coe¢ cient that enters this matching contribution cannot be computed without knowing the

theory above the scale.

� O(n)i mixes with a set of operators
n
O(n)j

o
which have the same dimension as O(n)i .

We can carry out exact calculations on mixing among these operators by employing

a renormalization group (RG) analysis. We will compute all the one-loop graphs that

contribute by using DR and background �eld gauge [23] in d = 4 � 2�; and introduce the

renormalization scale �. Due to operator mixing, the renormalized operators O(n)jR can be

expressed in terms of the un-renormalized operators O(n)j via

O(n)jR =
X
k

Z�1jk Z
nL=2
L Z

n�=2
� Z

nlR=2

lR
Z
nQ=2
Q Z

ndR=2

dR
Z
nuR=2
uR O(n)k =

X
k

Z�1jk O
(n)
k0 (3.2)

where

O(n)k0 = Z
nL=2
L Z

n�=2
� Z

nlR=2

lR
Z
nQ=2
Q Z

ndR=2

dR
Z
nuR=2
uR O(n)k (3.3)

are the � independent bare operators; Z1=2L ; Z
1=2
� ; Z

1=2
lR
; Z

1=2
Q ; Z

1=2
dR
; and Z1=2uR are the wave-

function renormalization constants for the �elds LA; �; lAR; Q
�; d�R; and u

�
R , respectively;

nL; n�; nlR ; nQ; ndR ; and nuR are the number of left-handed lepton, Higgs �elds, right-

handed leptons, left-handed quarks, right-handed down quarks, and right-handed up quarks

appearing in a given operator. In the minimal subtraction scheme that we adopt here, the

products of renormalization constants Z�1jk Z
nL=2
L Z

n�=2
� Z

nlR=2

lR
Z
nQ=2
Q Z

ndR=2

dR
Z
nuR=2
uR simply re-

move the 1=� terms arising from the loop graphs.

Since the bare operators O(n)j0 do not depend on the renormalization scale, whereas the

Z�1jk and the O
(n)
jR do, the operator coe¢ cients C

n
j must carry a compensating �-dependence

to ensure that Le� is independent of scale. This requirement leads to the RG equation for

the operator coe¢ cients:

�
d

d�
Cnj +

X
k

Cnk 
kj = 0 (3.4)

where


kj =
X
l

�
�
d

d�
Z�1kl

�
Zlj (3.5)
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is the anomalous dimension matrix.

Using the anomalous dimension matrix 
 and the one-loop running of the couplings in


, we can solve the RG equation. If the couplings in 
 don�t change drastically� just as

�1; �2; �3; and Yukawa couplings which run from � to v� their runnings have a negligible

impact on the solutions to RGE so it�s safe to assume these couplings are constant. If we

de�ne the column vector C =

0BBBBBB@
Cn1
...

Cnj
...

1CCCCCCA, the RGE will take a simple form:

�
d

d�
C+ 
TC = 0 (3.6)

where 
 is the anomalous dimension matrix. Since 
 is assumed constant, the solution is

C(�) = exp(� 
T ln �
�
)C(�): (3.7)

Keeping only the leading logarithms ln �� , we �nd

C(�) = C(�)� 
T ln �
�
C(�): (3.8)

In the following section, we are going to apply the above results to O(4)M;AD and O
(6)
M;AD

in the Dirac case and O(5)M;AD; and O
(7)
M;AD in the Majorana case.

3.2 Mixing and Matching Considerations for O(4;6)M and O(5;7)M

3.2.1 Diagonalizing Yukawa Couplings

To simplify our analysis, we can rede�ne the lepton �elds L and lR so that the charged

lepton Yukawa fABe coupling matrix is diagonal. Speci�cally, we take

LA ! LA 0 = SABL
B (3.9)

lCR ! lC 0 = TCDl
D
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with SAB and TCD chosen so that

�Lfe l = �L0 fdiage l0 (3.10)

where L, L0 denote vectors in �avor space, fe denotes the Yukawa matrix in the original

basis, and fdiage = ~Sy fe ~T . We note that the �eld rede�nition Eq. (3.9) di¤ers from the

conventional �avor rotation used for quarks, since we have performed identical rotations

on both isospin components of the left-handed doublet. Speci�cally, the charged lepton

Yukawa operator is fABe L
A
�lBR where fABe = mA

v=
p
2
�AB with mA being the mass for the

charge lepton of �avor A and v being the vacuum expectation value of the Higgs scalar �eld.

However, there are some subtleties in diagonalizing quark Yukawa matrices. The two

quark Yukawa matrices f��u and f��d can�t be diagonalized simultaneously by rede�ning Q�,

u�R, and d
�
R. Speci�cally, the rede�nitions of Q

�, u�R, and d
�
R

Q� ! T��Q� (3.11)

u�R ! S��u u�R

d�R ! S��d d�R

yield

fu ! T+fuSu (3.12)

fd ! T+fdSd

where the unitary matrices T; Su; and Sd can be chosen so that fu and fd are diagonal.

Since there is only one matrix T acting on the left side of fu and fd which are generally

independent, we can either make fu diagonal or make fd diagonal but not both.

In literature, people always choose T and Su so that fu is diagonal, i.e., we have

fu ! fdiagu = T+fuSu =

0BBB@
mu 0 0

0 mc 0

0 0 mt

1CCCA
p
2

v
(3.13)

while Sd and U; a unitary matrix acting on the left side of fd, are chosen to diagonalize fd,
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namely

UfuSd = fdiagu =

0BBB@
md 0 0

0 ms 0

0 0 mb

1CCCA
p
2

v
(3.14)

fu ! TfuSd = TU+UfuSd = TU+fdiagu = VCKMf
diag
u

Q� ! T��Q� =

0@ u�L

(TU+)
��
d�L

1A =

0@ u�L

V ��CKMd
�
L

1A
where u�L and d�L are mass eigenstates after SSB and TU+ is just VCKM; which is the

famous Cabibbo-Kobayashi-Maskawa matrix. We will adopt this choice in the remainder of

the paper and use notations Q�, u�R, and d
�
R as the corresponding basis.

Consequently, gauge interactions in the new basis entail no transitions between genera-

tions. We also note rede�nition of �elds also implies a rede�nition of the operator coe¢ cients

C4M;AD, C
6
F;ABCD, etc.. For example, one has

C4;6M;A0D = C4;6M;AD SM;A0A (3.15)

C6 0F;A0B0C0D = C6F;ABCD SA0A SB0B T
�
C0C

where a sum over repeated indices is implied.

However, we note that we can also choose T; Sd, and Su to make fu diagonal. The

transformation between the new basis Q0�, u0�R , and d
0�
R and Q�, u�R, and d

�
R are given by

Q0� = (V +CKM)
��Q� (3.16)

u0�R = u�R

d0�R = d�R

which imply a rede�nition of the 6D operator coe¢ cients

C 06Q;AD;�� = C6Q;AD;��V
��
CKM (3.17)

C 06d1;AD;�� = C6d1;AD;��(V
+
CKM)

�� (3.18)

C 06d2;AD;�� = C6d2;AD;��(V
+
CKM)

��: (3.19)
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Figure 3.1: One-loop graphs for the matching of O(6)B;W , O
(6)
~V
, and O(6)F (denoted by the

shaded box) into O(4)M; AD. Solid, dashed, and wavy lines denote fermions, Higgs scalars,
and gauge bosons, respectively. Panels (a, b, c) illustrate matching of O(6)B;W , O

(6)
~V
, and

O(6)F , respectively, into O
(4)
M; AD.

Rν

RR ud /

φ~

_
L

_
Q

Rν

RR ud /

φ~

_
L

_
Q

Figure 3.2: One-loop graphs for the matching of O(6)u;d (denoted by the black box) into
O(4)M; AD. Solid and dashed lines denote fermions and Higgs scalars, respectively.

We are going to use these transformations in Section 4.2. Diagonalization of the neutrino

mass matrix requires additional, independent rotations of the �DL;R �elds after inclusion of

radiative contributions to the coe¢ cients C4;6M;AD generated by physics above the weak scale.

Since we are concerned only with contributions generated above the scale of SSB, we will

not perform the latter diagonalization, and will carry out computations using the L0, l0R

basis.

3.2.2 Dirac Case

3.2.2.1 Matching withO(4)M;AD

The one-loop graphs for matching O(6)F;ABCD, O
(6)
~V ;AB

, O(6)W;AD and O(6)B;AD; with O
(4)
M;AD

are shown in Fig. 3.1. For mixing the four-fermion operators O(6)F;ABCD into O(4)M;AD, two
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topologies are possible, associated with either the �elds (L
A
, �DR ) or (L

B
, �DR ) living on the

external lines. For mixing O(6)F;ABCD; as well as of O
(6)
~V ;AB

; into O(4)M;AD, one insertion of

the Yukawa interaction fAC�e l
C
RL

A is needed to convert the internal RH lepton into a LH

one. In contrast, no Yukawa insertion is required for the mixing of O(6)B;AD and O
(6)
W;AD into

O(4)M;AD. The interesting six dimensional operators O
(6)
Q;AD;�� ;O

(6)
d1;AD;��; and O

(6)
d2;AD;�� can

contribute to O(4)M;AD through the one-loop graphs of Fig. 3.2. Using NDA we can estimate

the contributions from the coe¢ cients of six dimensional operators to the coe¢ cient of the

four dimensional neutrino mass operator

O(6)B;AD ! C4M;AD �
�

4� cos2 �W
C6B;AD

O(6)W;AD ! C4M;AD �
3�

4� sin2 �W
C6W;AD

O(6)~V ;AD ! C4M;AD �
fAAe
16�2

C6~V ;AD =
1

16�2
mA

v=
p
2
C6~V ;AD (3.20)

O(6)F;ABAD ! C4M;BD �
fAAe
8�2

C6F;ABAD =
1

8�2
mA

v=
p
2
C6F;ABAD

O(6)F;ABBD ! C4M;AD �
fBBe
16�2

C6F;ABBD =
1

16�2
mB

v=
p
2
C6F;ABBD

O(6)Q;AD;�� ! C4M;AD �
NC
8�2

f��u C6Q;AD;�� =
NC
8�2

m�
u

v=
p
2
���C6Q;AD;��

O(6)d1;AD;�� ! C4M;AD �
NC
16�2

f��d C6d1;AD;�� =
NC
16�2

m�
d

v=
p
2
V ���CKMC

6
d1;AD;��

O(6)d2;AD;�� ! C4M;AD �
NC
8�2

f��d C6d2;AD;�� =
NC
8�2

m�
d

v=
p
2
V ���CKMC

6
d2;AD;��

where �W is the weak mixing angle, NC is the quark�s number of color and m�
u , m

�
d ;mA;

and mB are the masses for up quark of �avor �; down quark of �avor �; and charged lepton

of �avor A and B; respectively. The relative factor of 3 cot2 �W for the mixing of O(6)W;AD
compared to the mixing of O(6)B;AD arises from the ratio of gauge couplings (g2=g1)2 and

the presence of a ~� � ~� appearing in Fig. 3.1a. The factor of two that enters the mixing of

O(6)F;ABAD compared to that of O(6)F;ABBD arises from the trace associated with the closed

chiral fermion loop that does not arise for O(6)F;ABBD, so as the factor of two of O
(6)
d2;AD;��:
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3.2.2.2 Mixing withO(6)M;AD

In order to start the renormalization of O(6)M;AD, we need to come up with a basis of operators

close under renormalizations. We �nd that the minimal set consists of 10 operators that

contribute to �-decay, �-decay, neutrino magnetic moment, and mAD
� :

O(6)B;AD ;O
(6)
W;AD ;O

(6)
M;AD;O

(6)eV ;AD ;O(6)F;AB;BD;O(6)F;AA;AD;O(6)F;BA;BD; (3.21)

O(6)Q;AD;��;O
(6)
d1;AD;��;O

(6)
d2;AD;��

We only keep the one-loop graphs up to the �rst order in the Yukawa couplings because

all the Yukawa couplings except top quark�s are small and hence the higher powers are

highly suppressed. As for the top quark�s Yukawa coupling, it always comes together with

the tiny CKM matrix element Vtd in our calculations, since �-decays always involve up or

down quarks.

These graphs of the mixing between O(6)M;AD and O
(6)
B;AD ;O

(6)
W;AD , which are illustrated in

Fig. 3.3�Fig. 3.5, were computed by the authors of [45]. The remaining classes of graphs rel-

evant to mixing among the �rst row of the basis Eq. (3.21) are illustrated in Fig. 3.6, where

we show representative contributions to operator self-renormalization and mixing among the

various operators. The latter include mixing of all operators into O(6)M;AD (a�c); mixing of

O(6)M;AD, O
(6)
B;AD, and O

(6)
W;AD into O

(6)
~V ;AD

(d, e); and mixing between the four-fermion oper-

ators and the magnetic moment operators (f, g). Representative self-renormalization graphs

are given in Fig. 3.6(h�j). The representative Feynman diagrams of the graphs mixing be-

tween the �rst seven and the last three and among the last three are shown in Fig. 3.7�Fig.

3.9. The graphs of Fig. 3.7 involve renormalization of O(6)Q;AB;a�;O
(6)
d1;AB;a� ; and O

(6)
d2;AB;a� ,

where O(6)d1;AB;a� and O
(6)
d2;AB;a� mix into each other under renormalizations. The graphs of

Fig. 3.8 show how O(6)Q;AB;a�;O
(6)
d1;AB;a� ; and O

(6)
d2;AB;a� mix into O

(6)
B;W . Contributions from

O(6)Q;AB;a� / LAD2e��R; which is zero by the equation of motion for �, and O(6)d1;AB;a� and
O(6)d2;AB;a� do contribute to O

(6)
B;W : The graphs mixing O

(6)
B;W into O(6)Q;AB;a�;O

(6)
d1;AB;a� ; and

O(6)d2;AB;a� are illustrated in Fig. 3.9. As noted in [44], the mixing of the the four-fermion

operators into O(6)M;AD contains three powers of the lepton Yukawa couplings and is highly

suppressed. In contrast, all other mixing contains, at most, one Yukawa insertion.
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Figure 3.3: Self-renormalization of O(6)B;W

Figure 3.4: Mixing of O(6)B;W into O(6)M

After calculating all the graphs, we obtain the anomalous dimension matrix which is


 =

0BBBBBB@

L 
1 
2 
3


01 A1 0 0


02 0 A2 A3


03 0 A4 A5

1CCCCCCA (3.22)

where 
L is the 7� 7 anomalous dimension matrix for the �rst seven operators


L =

0BBBBBBBBBBBBBBB@

� 3(�1�3�2)
16�

3�1
8�

�6�1(�1 + �2) � 9�1f
AA�
e

8�
� 9�1f

AA
e

4�
� 9�1f

BB
e

2�

9�1f
BB
e

4�

9�2
8�

3(�1�3�2)
16�

6�2(�1 + 3�2)
27�2f

AA�
e

8�
� 9�2f

AA
e

4�
� 9�2f

BB
e

2�

9�2f
BB
e

4�

0 0 9(�1+3�2)
16�

� 3�
2�2

0 0 0 0

0 0
9�2f

AA
e

8�
� 3fAAe �

8�2
3�1
4�

0 0 0

� 3fAA�e
128�2

� fAA�e
128�2

0 0 3(3�1��2)
8�

0 0

� 3fBB�e
128�2

� fBB�e
128�2

0 0 0 3(�1+�2)
8�

3(�1��2)
4�

0 0 0 0 0 3(�1��2)
4�

3(�1+�2)
8�

1CCCCCCCCCCCCCCCA
:


1; 
2; and 
3 are the 7�1 column vector mixing the �rst seven operators intoO(6)Q;AD;�� ;O
(6)
d1;AD;��;

Figure 3.5: Self-renormalization of O(6)M
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Figure 3.6: One-loop graphs for the mixing among 6D operators. Notation is as in previous
�gures. Various types of mixing (a�g) and self-renormalization (h�j) are as discussed in the
text

Figure 3.7: Self renormalizations of O(6)Q;d1;d2;AD;�� (denoted by the black box). Solid,
dashed, and wavy lines denote fermion, Higgs scalar, and gauge bosons, respectively
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Figure 3.8: Mixing O(6)Q;d1;d2;AD;�� into O
(6)
B;W

Figure 3.9: Mixing O(6)B;W into O(6)Q;d1;d2;AD;��

and O(6)d2;AD;��, respectively,


1 =

0BBBBBBBBBBBBBBB@

0

0

0

0

0

0

0

1CCCCCCCCCCCCCCCA
; 
2 =

0BBBBBBBBBBBBBBB@

�1f
��
d

3�

�3�2f
��
d

2�

0

0

0

0

0

1CCCCCCCCCCCCCCCA
; 
2 =

0BBBBBBBBBBBBBBB@

��1f
��
d

3�

3�2f
��
d

4�

0

0

0

0

0

1CCCCCCCCCCCCCCCA
: (3.23)


01; 

0
2; and 


0
3 are the 1� 7 row vector mixing O

(6)
Q;AD;�� ;O

(6)
d1;AD;��; and O

(6)
d2;AD;�� into the

�rst seven operators, respectively,


01 =
�
0 0 0 0 0 0 0

�
(3.24)


02 =
�
� f���d
128�2

�3f���d
128�2

0 0 0 0 0
�


03 =
�
0 0 0 0 0 0 0

�
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and

A1 = �173�1
576�

+
2�3
�

(3.25)

A2 = A5 = �13�1
576�

+
3�2
8�

� 2�3
3�

A3 = � 5�1
36�2

� 3�2
4�

+
4�3
3�

A4 = � 5�1
36�2

� 3�2
4�

+
4�3
3�

:

We �nd that the running of the gauge and Yukawa couplings has a negligible impact on

the evolution of the C6k(�). Eq. (3.8) gives us the solution to the RGE up to the leading

logarithms ln(�=�). We �nd

C6M;AD(�) = C6M;AD(�)
h
1� 
33 ln

�

�

i
�
h

�C

6
�(�) + 
+C

6
+(�) + 
43C

6
~V ;AD

(�)
i
ln
�

�

C6+(�) = C6+(�)
h
1� ~
 ln �

�

i
+
��
fAA�e =32�2

�
C6F; AAAD(�) +

�
fBB�e =32�2

�
C6F; ABBD(�)

�
ln
�

�

+
h
(f���d =32�2)C6d1;AD;��(�)

i
ln
�

�

~C6(�) = ~C6(�)
h
1 + ~
 ln

�

�

i
+ 3=128�2 (�1 � �2) [fAA�e C6F; AAAD(�) + f

BB�
e C6F; ABBD(�)

+ f���d C6d1;AD;��(�)] ln
�

�

C6~V ;AD(�) = C6~V ;AD(�)
h
1� 
44 ln

�

�

i
+ (9fAAe =8�) ~C6(�) ln

�

�

C6F; AAAD(�) = C6F; AAAD(�)

�
1 +

3(�2 � 3�1)
8�

ln
�

�

�
+ (9fAAe =4�)

�
C6B;AD(�)�1 + C

6
W;AD(�)�2

�
ln
�

�
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C6F; ABBD(�) = C6F; ABBD(�)

�
1� 3(�1 + �2)

8�
ln
�

�

�
� 3(�1 � �2)

4�
C6F; BABD(�) ln

�

�

+ (9fBBe =2�)
�
C6B;AD(�)�1 + C

6
W;AD(�)�2

�
ln
�

�

C6F; BABD(�) = C6F; BABD(�)

�
1� 3(�1 + �2)

8�
ln
�

�

�
� 3(�1 � �2)

4�
C6F; ABBD(�) ln

�

�

� (9fBBe =4�)
�
C6B;AD(�)�1 + C

6
W;AD(�)�2

�
ln
�

�

C6Q;AD;��(�) = C6Q;AD;��(�)

�
1 +

�
173�1
576�

� 2�3
�

�
ln
�

�

�

C
(6)
d1;AD;�� = C

(6)
d1;AD;��(�)

�
1 +

�
13�1
576�

� 3�2
8�

+
2�3
3�

�
ln
�

�

�
+ C6d2;AD;��(�)

�
5�1
36�2

+
3�2
4�

� 4�3
3�

�
ln
�

�

+

"
2�1f

��
d

9�
C6B;AD(�) +

3�2f
��
d

4�2
C6W;AD(�)

#
ln
�

�

C
(6)
d2;AD;�� = C

(6)
d2;AD;��(�)

�
1 +

�
13�1
576�

� 3�2
8�

+
2�3
3�

�
ln
�

�

�
+ C6d1;AD;��(�)

�
5�1
36�2

+
3�2
4�

� 4�3
3�

�
ln
�

�

+

"
�1f

��
d

3�
C6B;AD(�)�

3�2f
��
d

4�
C6W;AD(�)

#
ln
�

�

where

C6�(�) � C6B;AD(�)� C6W;AD(�)

~C6(�) � �1C
6
B; AD(�)� 3�2C6W;AD(�) (3.26)


� � (
13 � 
23) =2

~
 � 3(�1 + 3�2)=16�:
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Figure 3.10: One-loop graphs for the matching of O(7)B;W (denoted by the black box) into

O(5)M;AD

We observe that to linear order in the lepton Yukawa couplings, C6M;AD(�) receives contri-

butions from the two magnetic moment operators and O(6)~V but not from the four fermion

operators.

3.2.3 Majorana Case

Although we have less operators in the Majorana case than in the Dirac case, it turns out

that the �avor structure is far more complicated. In the Dirac case, we specify a �avor D

for RH neutrino but this �avor is indeed inactive in our analysis. Unlike the Dirac case, we

have vcL to play the role of �R. The �avor of v
c
L plays an important role. Consider magnetic

moment operator for Majorana neutrino

O��MM =
���
2
v�cL �

����LF�� (3.27)

where � and � are �avors for neutrinos. We �nd that O��MM = 0 and the only non-diagonal

operator could be nonzero. We only have a so-called transition magnetic moment operator

for Majorana neutrinos. This doesn�t happen in the Dirac case.

3.2.3.1 Matching withO(5)M;AD

First, we de�ne

O�W;AB =
1

2

n
O
(7)
W;AB �O

(7)
W;BA

o
: (3.28)

In this way, we can express O(7)W;AB in terms of operators with explicit �avor symmetry

O�W;AB.

The one-loop graphs for matching O�W;AB and O
(7)
B;AB with O

(5)
M;AB are shown in Fig.

3.10. The mixing of O+W;AB and O
(7)
B;AB are zero since O

+
W;AB and O

(7)
B;AB are �avor antisym-

metric while O(7)M;AB is �avor symmetric. The 7D operators O(7)u and O(7)d can contribute to
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Figure 3.11: One-loop graphs for the matching of O(7)L;u;d (denoted by the shaded box) into
O(5)M; AD

O(5)M through the one-loop graphs of Fig. 3.2. Using NDA we can estimate the contributions

from the coe¢ cients of 7D operators to the coe¢ cient of the 5D neutrino Majorana mass

operator

O+W;AB ! C5M;AB '
�

4� sin2 �W
C+W;AB (3.29)

O(7)eV ;AB ! C5M;AB � �
fBB�e

16�2
C
(7)eV ;AB

O(7)L1;AB;BD ! C5M;AD � �
fBBe
16�2

C
(7)
L1;AB;BD

O(7)L1;AB;AD ! C5M;BD �
fAAe
16�2

C
(7)
L1;AB;AD (3.30)

O(7)L2;AB;DD ! C5M;AB �
fDDe
8�2

C
(7)
L1;AB;DD

O(7)L2;AB;AD ! C5M;BD �
fAAe
16�2

C7L2; ABAD

O(7)d2;A�;�B ! C5M;AB �
f��d NC
16�2

C7d2;A�;�B

O(7)d2;AB;�� ! C5M;AB �
f��d NC
8�2

C7d2;AB;�� (3.31)

O(7)u2;AB;�� ! C5M;AB �
f���u NC
8�2

C7u2;AB;��

O(7)u2;A�;�B ! C5M;AB �
f��d NC
16�2

C7u2;A�;�B

Please note O(7)L;AB;CD could contribute to both O
(5)
M;AD and O

(5)
M;BD. We already see that

�avor structure make our analysis of Majorana case very di¤erent than the Dirac case. Due
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to �avor structure di¤erence, Dirac neutrinos and Majorana neutrinos could have di¤erent

implications.

3.2.3.2 Mixing withO(7)M;AD

We could carry out our analysis just as in the Dirac case, but due to the complex �avor

structure, a basis of operators close under renormalizations, including O(7)M;AD; would include

an intolerable number of operators. So we are not going to calculate the full anomalous

dimension matrix 
. If 
 is assumed constant, the solution to RGE up to the leading

logarithms ln �� is

C(�) = exp(� 
T ln �
�
)C(�): (3.32)

So if we are only interested in how one operator, Oi, will contribute to O(7)M;AD, we don�t

need to calculate the full 
. 
iM ; which stands for mixing of Oi into O(7)M;AD, will be enough;

we then have

C7M (�) � �
iMCi (�) ln
�

�
(3.33)

Just like in the Dirac case, the mixing of the four-fermion operators into O(7)M;AD contains

three powers of the lepton Yukawa couplings and is highly suppressed. And it turns out

O+W;AB will not contribute to neutrino magnetic moment. As for O
(7)
B;AB; it is antisymmetric

in �avor while O7DM;AB is symmetric. So its contribution to C7DM;AB vanishes. At the end of

the day, we are only left with O�W;AB and O
(7)eV ;AB:

As the operator O�W is �avor antisymmetric, it must be multiplied by another �avor

antisymmetric contribution in order to produce a �avor symmetric mass term. This can be

accomplished through insertion of Yukawa couplings in the diagram shown in Fig. 3.12 [53].

This diagram provides a logarithmically divergent contribution to the 7D mass term, given

by

C7DM;AB(v) '
3�2
4�

m2
A �m2

B

v2
ln
�

v
C�W;AB(�) (3.34)

where mA are the charged lepton masses, and the exact coe¢ cient has been computed using

dimensional regularization, and renormalized with modi�ed minimal subtraction.

As for O(7)eV ;AB, its mixing into O(7)M;AB is very similar to how O(6)eV ;AB mixes into O(6)M;AB.
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Figure 3.12: Contribution of O�W to the 7D neutrino mass operator

After our calculation, we �nd

C7M;AD(�) �
�
9�2f

AA
e

8�
� 3f

AA
e �

8�2

�
C7~V ;AD(�) ln

�

�
(3.35)

which is exactly as the Dirac case.
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Chapter 4

Neutrino Mass Constraints

After SSB, the operators O(4)M and O(6)M generate a contribution to the Dirac neutrino mass

�m� = �C4M (v)
vp
2

(4.1)

�m� = �C6M (v)
v3

2
p
2�2

;

and the operators O(5)M and O(7)M to the Majorana neutrino mass

�m� = �C5M (v)
v2

2�
(4.2)

�m� = �C7M (v)
v4

4�3
:

Assuming there is no �ne-tuning, the upper limit on m� would put the same order of bound

�m� as well, namely, �m� . m� . In this way, we can use neutrino mass to constrain CM (v)

as follows:

��C4M (v)�� . m�

v=
p
2
;
��C6M (v)�� . m�

v=
p
2

�2

v2=2
; (4.3)

��C5M (v)�� . m�

v=
p
2

�

v=
p
2
;
��C6M (v)�� . m�

v=
p
2

�3

v3=2
p
2
:

So, through the operator mixing and matching discussed in Section 3.2, we are going to

constrain neutrino magnetic moment in Section 4.1, some parameters of �-decay in Section

4.2, and �-decay in Section 4.3. Finally, we constrain � ! �� in Section 4.4
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4.1 Constraints on Neutrino Magnetic Moment

In the Standard Model (minimally extended to include non-zero neutrino mass) the neutrino

magnetic moment is given by [24]

�� � 3� 10�19
� m�

1eV

�
�B: (4.4)

An experimental observation of a magnetic moment larger than that given in Eq. (4.4)

would be an unequivocal indication of physics beyond the minimally extended Standard

Model. Current laboratory limits are determined via neutrino-electron scattering at low

energies, with �� < 1:5�10�10�B [25] and �� < 0:7�10�10�B [26] obtained from solar and

reactor experiments, respectively. Slightly stronger bounds are obtained from astrophysics.

Constraints on energy loss from astrophysical objects via the decay of plasmons into ��

pairs restricts the neutrino magnetic moment to be �� < 3� 10�12 [27]. Neutrino magnetic

moments are reviewed in [29, 30, 31], and recent work can be found in [32, 28].

In general, contributions to mAD
� involving O(6)M;AD (O

(7)
M;AD) will be smaller than those

that involve mixing with O(4)M;AD (O(5)M;AD) by � (v=�)2, since O(6)M;AD (O(7)M;AD) contains

an additional factor of (�y�)=�2. For v not too di¤erent from �, the impact of the mixing

with O(6)M;AD (O
(7)
M;AD) can also be important.

4.1.1 Dirac Case

After SSB we have

O(6)B ! vp
2
g1��L�

���RB�� (4.5)

O(6)W ! g2
vp
2
��L�

���RW
3
�� + � � � : (4.6)

Using g2 sin �W = g1 cos �W = e, it is straightforward to see that the combination C6BO
(6)
B +

C6WO
(6)
W appearing in Le� contains the magnetic moment operator

���
4
������F�� (4.7)
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where F�� is the photon �eld strength tensor and

��
�B

= �4
p
2
�mev

�2

� �
C6B(v) + C

6
W (v)

�
: (4.8)

Matching with O(4)M;AD, O
(6)
B and O(6)W contribute to O(6)M with

C4M � �

4� cos2 �W
C6B (4.9)

C4M � 3�

4� sin2 �W
C6W

from which we �nd

��
�B

. 4
�mem�

�2

�� �

4� cos2 �W
+

3�

4� sin2 �W

�
: (4.10)

For � = v � 250GeV, we have ���� ���B
���� . 10�14; (4.11)

which is several orders of magnitude more stringent than current experimental constraints.

However, for � not too di¤erent from the weak scale, the 6D mixing can be of comparable

importance to the 4D case. The solution to RGE allows us to relate �� to the corresponding

neutrino mass matrix element in terms of C�(�) and C6M (�)

�m� =
v2

16me

C6M (v)

C+(v)

��
�B

; (4.12)

To obtain a natural upper bound on �� , we assume �rst that C6i (�) = 0 (i 6= B;W ) so that

�m� is generated entirely by radiative corrections involving insertions of O(6)B;W . Doing so

in Eq. (4.12) and solving for ��=�B leads directly to

j�� j
�B

=
GF mep
2��

�
�m�

� ln(�=v)

�
32� sin4 �W

9 jf j ; (4.13)

where �W is the weak mixing angle,

f = (1� r)� 2
3
r tan2 �W � 1

3
(1 + r) tan4 �W ; (4.14)

and r = C�=C+ is a ratio of e¤ective operator coe¢ cients de�ned at the scale � (see below)
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that one expects to be of order unity. To arrive at a numerical estimate of this bound, we

substitute � = v into the logarithms appearing in Eq. (4.13) and obtain

j�� j
�B

. 8� 10�15 �
� m�

1 eV

� 1

jf j : (4.15)

It is interesting to consider the bound for the special case that only the magnetic moment

operator is generated at the scale �, i.e., C+(�) 6= 0 and C� = 0, with f ' 1. For this

case, considering a nearly degenerate neutrino spectrum with masses � 1 eV leads to the

j�� j . 8�10�15�B� a limit that is two orders of magnitude stronger than the astrophysical

bound [27] and 104 stronger than those obtained from solar and reactor neutrinos. For a

hierarchical neutrino mass spectrum, the bound would be even more stringent.

4.1.2 Majorana Case

Table 4.1: Summary of constraints on the magnitude of the magnetic moment of Majorana
neutrinos. The upper two lines correspond to a magnetic moment generated by the OW
operator, while the lower two lines correspond to the O�B operator.

i) 1-loop, 7D �W�� � 1� 10�10�B
�
[m� ]��
1 eV

�
ln�1 �2

M2
W
R��

ii) 2-loop, 5D �W�� � 1� 10�9�B
�
[m� ]��
1 eV

� �
1 TeV
�

�2
R��

iii) 2-loop, 7D �B�� � 1� 10�7�B
�
[m� ]��
1 eV

�
ln�1 �2

M2
W
R��

iv) 2-loop, 5D �B�� � 4� 10�9�B
�
[m� ]��
1 eV

� �
1 TeV
�

�2
R��

After spontaneous symmetry breaking, the �avor antisymmetric operators OB and O�W
contribute to the magnetic moment interaction

1

2
[�v]AB vAcL ����BL F�� ; (4.16)

where F�� is the electromagnetic �eld strength tensor,

[�� ]AB
�B

=
2mev

2

�3

�
C7B;AB(v) + C

�
W;AB(v)

�
: (4.17)

The �avor symmetric operator O+W does not contribute to this interaction at tree-level.
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One-loop matching yields a contribution to O5DM associated with O+W of order

C5DM ' �

4� sin2 �W
C+W ; (4.18)

while contribution to O5DM associated with O�W is zero, as mentioned in Section 3.2.

We see that the one-loop contribution to the 5D mass term provides a strong constraint

on C+W but no constraint on the parameter C�W . In general, C
�
W are unrelated parameters

in the theory. If the new physics were to have no speci�c �avor symmetry/antisymmetry

it might be natural for C�W to be of similar magnitude. Alternatively, given the strong

constraint on C+W arising from Eq. (4.18), a sizable magnetic moment requires jC�W j � jC+W j.

We have seen that the �avor antisymmetric operator O�W does not contribute to the 5D

neutrino mass term at 1-loop order, thus a direct constraint on the magnetic moment is not

obtained from the diagrams in Fig. 3.10. However, suppose we had a theory in which the

coe¢ cients of O+W and O�W were of similar magnitude, C+W � C�W . Then, using Eqs. (4.17,

4.18) we have

m� �
�

8� sin2 �W

�2

me

��
�B

;

� ��
0:4� 10�15�B

[�(TeV)]2 eV; (4.19)

and thus obtain a stringent �� bound similar to that for Dirac neutrinos.

We emphasize that Eq. (4.19) is not a model-independent constraint, as in general O+W
and O�W are unrelated. While it might seem natural for the the new physics to generate

coe¢ cients of similar size for both operators, we could obtain �nite C�W and vanishing C+W

(at tree-level) by imposing an appropriate �avor symmetry.

We now consider the more general case where C+W and C�W are unrelated, and directly

derive constraints on the the coe¢ cient of the �avor antisymmetric operator, C�W . As the

operator O�W is �avor antisymmetric, it must be multiplied by another �avor antisymmetric

contribution in order to produce a �avor symmetric mass term. This is given by Eq. (3.34).

We note that Eq. (3.34) gives the O�W contribution to the neutrino mass from all scales

between � and the scale of electroweak symmetry breaking to leading log order. Using this

result� as well as Eq. (4.17), to relate C�W and C7DM to �� and m� ; respectively �leads to

bound (i) in Table 4.1.
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Figure 4.1: Representative contribution of O�W to the 5D neutrino mass operator

Note that this provides a weaker constraint than that in Eq. (4.19), as it is suppressed

by the charged lepton masses, and also only logarithmically dependent on the scale of new

physics �.

The neutrino magnetic moment operator O�W will also contribute to the 5D mass oper-

ator via two-loop matching of the e¤ective theory onto the full theory at � � �.

An illustrative contribution is shown in Fig. 4.1. As with the diagrams in Fig. 3.12, we

require two Yukawa insertions in order to obtain a �avor symmetric result. This diagram

contributes to the 5D mass operator, and we again provide an NDA estimate:

C5DM;AB '
g2

(16�2)2
m2
A �m2

B

v2
C�W;AB: (4.20)

Again, using Eqs. (4.17, 4.20), this leads to bound (ii) in Table 4.1. In doing so, we have

neglected the running of the operator coe¢ cients from the scale � to v; since the e¤ects are

higher order in the gauge couplings and have a negligible numerical impact on our analysis.

Compared to the 1-loop (7D) case of Eq. (3.34), the 2-loop (5D) matching leads to a

mass contribution that is suppressed by a factor of 1=16�2 arising from the additional loop,

but enhanced by a factor of �2=v2 arising from the lower operator dimension. Thus, as we

increase the new physics scale, �, this two-loop constraint rapidly becomes more restrictive

and nominally provides a stronger constraint than the 1-loop result once � � 4�v � 4 TeV.

Inclusion of the logarithmic �-dependence of one-loop mixing implies that the "crossover"

scale between the two e¤ects is closer to � 10 TeV.

Unlike the case of the SU(2)L gauge boson, where a �avor symmetric operator O+W
exists, the operator O(7)B is purely �avor antisymmetric. Therefore, it cannot contribute to

the O(5)M mass term at one loop. As was noticed in [53], the one-loop contribution of O(7)B
to the O(7)M mass term also vanishes.

If we insert OB in the diagram in Fig. 3.12, the contribution vanishes, due to the SU(2)
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structure of the graph. Therefore, to obtain a non-zero contribution to O(7)M from O(7)B we

require the presence of some non-trivial SU(2) structure. This can arise, for instance, from

a virtual W boson loop.

This mechanism gives the leading contribution of the operator O(7)B to the 7D mass

term. The O(7)B and O(7)W contributions to the 7D mass term are thus related by

(�m�)
B

(�m�)W
� �

4�

1

cos2 �W
; (4.21)

where �W is the weak mixing angle and where the factor on the RHS is due to the additional

SU(2)L boson loop. This additional loop suppression for the O(7)B contribution results in a

signi�cantly weaker neutrino magnetic moment constraint than that obtained above O�W .

The corresponding limit is shown as bound (iii) in Table 4.1.

However, the leading contribution of O(7)B to the 5D mass term arises from the same

2-loop matching considerations (Fig. 4.1) that we discussed in connection with the O�W
operator. Therefore, the contribution to the 5D mass term is the same as that for OW ,

except for a factor of (g1=g2)2 = tan2 �W . We thus obtain

C
(5)
M;AB '

g21
(16�2)2

m2
� �m2

�

v2
C
(7)
B;AB (4.22)

corresponding to bound (iv) in Table 4.1. Importantly, this is the strongest constraint on

the O(7)B contribution to the neutrino magnetic moment for any value of �.

Our results are summarized in Table 4.1 below, where the quantity R�� is de�ned as

R�� =

����� m2
�

m2
� �m2

�

����� ; (4.23)

with m� being the masses of charged lepton masses. Numerically, one has R�e ' R�� ' 1

and R�e ' 283.

The limit on the magnetic moment of a Dirac neutrino is considerably more stringent

than for Majorana neutrino. This is due to the di¤erent �avor symmetries involved. In the

Dirac case, no insertion of Yukawa couplings is needed to convert a �avor antisymmetric

operator into a �avor symmetric operator, and the stringent limit � � 10�15�B holds (in

the absence of strong cancellations). A signi�cant implication is that if a magnetic moment
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� � 10�15�B were measured, it would indicate that neutrinos are Majorana fermions,

rather than Dirac. Moreover, the scale of lepton number violation would be well below the

conventional see-saw scale.

4.2 Implications for Muon Decay Parameters

4.2.1 Introduction

Precision studies of muon decay continue to play an important role in testing SM and

searching for physics beyond it. In the gauge sector of SM, the Fermi constant G� that

characterizes the strength of the low-energy, four-lepton �-decay operator is determined

from the � lifetime, and gives one of the three most precisely-known inputs into the

theory. Analyses of the spectral shape, angular distribution, and polarization of the de-

cay electrons (or positrons) probe for contributions from operators that deviate from the

(V � A) 
 (V � A) structure of the SM decay operator. In the absence of time-reversal

(T) violating interactions, there exist seven independent parameters� the so-called Michel

parameters [33, 34]� that characterize the �nal state charged leptons: two (�, �) that de-

scribe the spatially isotropic component of the lepton spectrum; two (�, �) that characterize

the spatially anisotropic distribution; and three additional quantities (�0, �00, �00) that are

needed to describe the lepton�s transverse and longitudinal polarization. Two additional

parameters (�0=A, �0=A) characterize a T-odd correlation between the �nal state lepton

spin and momenta with the muon polarization: Ŝe � k̂e � Ŝ�.

Recently, new experimental e¤orts have been devoted to more precise determinations of

these parameters. The TWIST Collaboration has measured � and � at TRIUMF [35, 36],

improving the uncertainty over previously reported values by factors of � 2:5 and � 3, re-

spectively. An experiment to measure the transverse positron polarization has been carried

out at the Paul Scherrer Institute (PSI), leading to similar improvements in sensitivity over

the results of earlier measurements [37]. A new determination of P�� with a similar de-

gree of improved precision is expected from the TWIST Collaboration, and one anticipates

additional reductions in the uncertainties in � and � [38].

At present, there exists no evidence for deviations from SM predictions for the Michel

parameters (MPs). It is interesting, nevertheless, to ask what constraints these new mea-

surements can provide on possible contributions from physics beyond the SM. It has been
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conventional to characterize these contributions in terms of a set of ten four-fermion oper-

ators

L��decay = �4G�p
2

X

; �; �

g
�� �e��

����
�� (4.24)

where the sum runs over Dirac matrices �
 = 1 (S), 
� (V), and ���=
p
2 (T), and the

subscripts � and � denote the chirality (R, L) of the muon and �nal state lepton, respectively.

In the Majorana case, �R is substituted by �cL. In the SM, one has g
V
LL = 1 and all other

g
�� = 0. A recent, global analysis by Gagliardi, Tribble, and Williams [40] give the present

experimental bounds on the g
�� that include the impact of the latest TRIUMF and PSI

measurements. In the following sections, 1 stands for electron �avor and 2 for muon �avor.

4.2.2 Dirac Case

To arrive at neutrino mass naturalness constraints on the g
�� coe¢ cients, it is useful to

tabulate their relationships with the dimension six operator coe¢ cients. In some cases,

one must perform a Fierz transformation in order to obtain the operator structures in Eq.

(4.24). Letting

g
�� = ��
� v
�

�2
C6k ; (4.25)

we give in Table 4.3 the �s corresponding to the various dimension six operators.

We use the entries in Table 4.3 and the estimates in Eq. (3.20) to obtain the bounds in

Table 4.2. Note that the bounds become smaller as � is increased from v.

The constraints on the gVLR;RL follow from mixing among the 6D operators and Table

4.3. Assuming no �ne-tuning, �m2D
� . m2D

� , we obtain

gVLR .
�
m2D
�

m�

��
8� sin2 �W

9

��
�� � sin2 �W

3�

��1 �
ln
v

�

��1
: (4.26)

A similar expression holds for gVRL; but with m� ! me and m2D
� ! m1D

� . Note that in

arriving at Eq. (4.26) we have ignored the running of the C6~V ;AD(�) between � and v, since

the impact on the gVLR;RL is higher order in the gauge and Yukawa couplings. To derive

numerical bounds on the gVLR;RL from Eq. (4.26) we use the running couplings in the MS

scheme � = �̂(MZ) � 1=127:9, sin2 �̂W (MZ) � 0:2312 and the tree-level relation between

the Higgs quartic coupling �, the Higgs mass mH , and v: 2� = (mH=v)
2. We quote two

results, corresponding to the direct search lower bound onmH � 114 GeV and the one-sided
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Table 4.2: Constraints on �-decay couplings g
�� in the Dirac case. The �rst eight rows give
naturalness bounds in units of (v=�)2 � (m�=1 eV) on contributions from 6D muon decay
operators based on one-loop mixing with the 4D neutrino mass operators. The ninth row
gives upper bounds derived from a recent global analysis of [40], while the last row gives
estimated bounds from [44] derived from two-loop mixing of 6D muon decay and mass
operators. A �-� indicates that the operator does not contribute to the given g
��, while
�None� indicates that the operator gives a contribution unconstrained by neutrino mass.
The subscript D runs over the two generations of RH Dirac neutrinos

Source jgSLRj jgTLRj jgSRLj jgTRLj jgVLRj jgVRLj

O(6)F; 122D 4� 10�7 2� 10�7 - - - -

O(6)F; 212D 4� 10�7 - - - - -

O(6)F; 112D None None - - - -

O(6)F; 211D - - 8� 10�5 4� 10�5 - -

O(6)F; 121D - - 8� 10�5 - - -

O(6)F; 221D - - None None - -

O(6)~V ; 2D - - - - 8� 10�7 -

O(6)~V ; 1D - - - - - 2� 10�4

Global [40] 0.088 0.025 0.417 0.104 0.036 0.104
Two-loop [44] 10�4 10�4 10�2 10�2 10�4 10�2

Table 4.3: Coe¢ cients � that relate g
�� to the dimension six operator coe¢ cients C6k

� gSLR gTLR gSRL gTRL gVLR gVRL

C6F; 122D 1=4 1=8 - - - -
C6F; 212D 1=2 - - - - -
C6F; 112D 3=4 1=8 - - - -
C6F; 211D - - 1=4 1=8 - -
C6F; 121D - - 1=2 - - -
C6F; 221D - - 3=4 1=8 - -
C6~V ; 2D - - - - �1=2 -

C6~V ; 1D - - - - - �1=2
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95 % C.L. upper bound from analysis of precision electroweak measurements, mH � 186

GeV[54]. We obtain

��gVLR�� . �m2D
�

1 eV

��
ln
�

v

��1 8><>:
1:2� 10�6; mH = 114GeV

7:5� 10�6; mH = 186GeV

(4.27)

��gVRL�� . �m1D
�

1 eV

��
ln
�

v

��1 8><>:
2:5� 10�4; mH = 114GeV

1:5� 10�3; mH = 186GeV

: (4.28)

For � � 1 TeV, the logarithms are O(1) so that for m� � 1 eV, the bounds on the gVLR;RL
derived from 6D mixing are comparable in magnitude to those estimated from mixing with

the 4D mass operators.

Although the four fermion operators do not mix with O(6)M;AD at linear order in the

Yukawa couplings, they do contribute to the magnetic moment operators O(6)B;AD and

O(6)W;AD at this order. From 6D mixing, we have

��AD�
�B

=

p
2

8�2

�me

v

�� v
�

�2
Re
�
f�AAC

6
F;AAAD + f

�
BBC

6
F;ABBD

�
ln
�

v
; (4.29)

where ��AD� denotes the contribution to the magnetic moment matrix and �B is a Bohr

magneton. While O(6)F;AAAD does not contribute to �-decay, the operator O(6)F;ABBD does,

and its presence in Eq. (4.29) implies constraints on its coe¢ cient from current bounds on

neutrino magnetic moments. The most stringent constraints arise for A = 1, B = 2 for

which we �nd

jC6F; 122Dj
� v
�

�2
� 5� 1010

�
ln
�

v

��1��1D�
�B

�
: (4.30)

Current experimental bounds on j�exp� =�Bj range from � 10�10 from observations of solar

and reactor neutrinos [25] to � 3�10�12 from the non-observation of plasmon decay into ���

in astrophysical objects [27]. Assuming that the logarithm in Eq. (4.30) is of order unity,

these limits translate into bounds on gSLR and g
T
LR ranging from � 1 ! 0:03 and � 0:3 !

0:01, respectively. The solar and reactor neutrino limits on j�exp� =�Bj imply bounds on the

gS;TLR that are weaker than those obtained from the global analysis of �-decay measurements,

while those associated with the astrophysical magnetic moment limits are comparable to

the global values. Nevertheless, the bounds derived from neutrino magnetic moments are
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several orders of magnitude weaker than those derived from the scale of neutrino mass.

The naturalness bounds on the C6k associated with the scale of m� have implications for

the interpretation of �-decay experiments. Because the coe¢ cients C6F; 112D and C6F; 221D

that contribute to gS;TLR;RL are not directly constrained by m� , none of the eleven Michel

parameters is directly constrained by neutrino mass alone. Instead, it is more relevant

to compare the results of global analyses from which limits on the g
�� are obtained with

the m� naturalness bounds, since the latter imply tiny values for the couplings gVLR;RL.

Should future experiments yield a value for either of these couplings that is considerably

larger than our bounds in Table 4.2, the new physics above � would have to exhibit either

�ne-tuning or a symmetry in order to evade unacceptably large contributions to m� . In

addition, should future global analyses �nd evidence for non-zero gS;TLR;RL with magnitudes

considerably larger than those given by the m�-constrained contributions listed in Table

4.2, then one would have evidence for a non-trivial �avor structure in the new physics that

allows considerably larger e¤ects from the operators O(6)F; 112D and O(6)F; 221D than from the

other four fermion operators.

4.2.3 Majorana Case

Just as in the Dirac case, we de�ne � as in

g
�� = ��
� v
�

�3
C7k (4.31)

and we give in Table 4.5 the � corresponding to the various dimension seven operators.

Since seven dimension operators contribute to g
��, g


�� is proportional to

�
v
�

�3. We notice
that O(7)L2;2B;12 (O

(7)
L2;1B;21) only contributes to g

T
RL (g

T
LR) due to a special �avor structure

for Majorana neutrinos. Let take O(7)L2;2B;12 as an example to illustrate this

O(7)L2;2B;12 = �ij�km(L2ciL
B
k )(l

1
RL

2
j )�m (4.32)

After SSB! vp
2
(��cL �

B
L )(eR�L)�

vp
2
(�cL�

B
L )(eR�

�
L)
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Table 4.4: Constraints on �-decay couplings g
�� in the Majorana case. The naturalness
bounds are given in units of (v=�)2 � (m�=1 eV) on contributions from 7D muon decay
operators based on one-loop mixing with the 5D neutrino mass operators

Source jgSLRj jgTLRj jgSRLj jgTRLj jgVLRj jgVRLj

O
(7)
L1;21;1B - - 1:6� 10�4 - - -

O
(7)
L1;21;2B 8� 10�7 - - - - -

O
(7)
L2;2B;11 - - 4� 10�5 2� 10�5 - -

O
(7)
L2;2B;21 4� 10�7 2� 10�7 - - - -

O
(7)
L2;1B;22 2� 10�7 1� 10�7 - - - -

O
(7)
L2;1B;12 - - 8� 10�5 4� 10�5 - -

O
(7)
L2;2B;12 - - - None - -

O
(7)
L2;1B;21 - None - - - -

O
(7)eV ;B1 - - - - - 1:6� 10�4

O
(7)eV ;B2 - - - - 8� 10�7 -

Global [40] 0.088 0.025 0.417 0.104 0.036 0.104
Two-loop [44] 10�4 10�4 10�2 10�2 10�4 10�2

Table 4.5: Coe¢ cients � that relate g
�� to the dimension six operator coe¢ cients C7k

� gSLR gTLR gSRL gTRL gVLR gVRL

C7L1;21;1B - - � 1
2
p
2

- - -

C7L1;21;2B
1
2
p
2

- - - - -

C7L2;2B;11 - - 1
4
p
2

1
8
p
2

- -

C7L2;2B;21 � 1
4
p
2

� 1
8
p
2

- - - -

C7L2;1B;22
1
4
p
2

� 1
8
p
2

- - - -

C7L2;1B;12 - - � 1
4
p
2

1
8
p
2

- -

C7L2;2B;12 - - - � 1
8
p
2

- -

C7L2;1B;21 - 1
8
p
2

- - - -

C7eV ;B1 - - - - - 1
2
p
2

C7eV ;B2 - - - - 1
2
p
2

-
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= �1
2

vp
2
(��cL �L)(eR�

B
L )�

1

4

vp
2
(��cL

���p
2
�L)(eR

���p
2
�BL )

+
1

2

vp
2
(�cL�

�
L)(eR�

B
L ) +

1

4

vp
2
(�cL

���p
2
��L)(eR

���p
2
�BL )

where we perform a Fierz transformation in the third and fourth lines. For Majorana

particles  and �, we have

 c� = �c (4.33)

 c���� = ��c��� :

So Eq. (4.32) becomes

O(7)L2;2B;12
After SSB! � v

2
p
2
(��cL

���p
2
�L)(eR

���p
2
�BL ):

We see O(7)L2;2B;12 indeed only contributes gTRL:

We use the entries in Table 4.5 and the estimates in Eq. (3.29) and Eq. (3.30) to obtain

the bounds in Table 4.4.

From Table 4.4, we �nd gSLR;RL in the Majorana case are fully constrained, while they

are not in the Dirac case, due to O(6)F; 221D and O
(6)
F; 112D. This happens because of Eq. (4.33)

for Majorana neutrinos. So the experimental measurements of gSLR;RL might give us hints

if neutrinos are Dirac or Majorana. If we �nd
���gSLR;RL��� is greater than the bounds obtained

here, it should mean that neutrinos are Dirac ones and contributions to O(4)M from O(6)F; 221D
and O(6)F; 112D are much more than these from the other four-fermion operators constrained

by neutrino mass, which means �avour structure is non-trivial in new physics. And as in

the Dirac case, gTLR;RL can�t be fully bounded by neutrino mass in the Majorana case.

The constraints on the gVLR;RL follow from mixing among the 7D operators and Table

4.5. We use in Eq. (3.35) to obtain

gVLR .
�
m2D
�

m�

��
8� sin2 �W

9

��
�� � sin2 �W

3�

��1 �
ln
v

�

��1
: (4.34)

which is the same as in the Dirac case. A similar expression holds for gVRL; but with
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m� ! me and m2D
� ! m1D

� . We again have

��gVLR�� . �m2D
�

1 eV

��
ln
�

v

��1 8><>:
1:2� 10�6; mH = 114GeV

7:5� 10�6; mH = 186GeV

(4.35)

��gVRL�� . �m1D
�

1 eV

��
ln
�

v

��1 8><>:
2:5� 10�4; mH = 114GeV

1:5� 10�3; mH = 186GeV

(4.36)

The constraints on
��gVLR�� and ��gVRL�� from the 7D neutrino mass operator in the Majorana case

is the same as constraints from the 6D neutrino mass operator. What is more, constraints

on g
�� from O(5)M are the same order as ones from O(4)M :

4.2.4 Constraints from Experiments

Finally, we note that one may use a combination of neutrino mass and direct studies of

the Michel spectrum to derive bounds on a subset of the Michel parameters that are more

stringent than one obtains from �-decay experiments alone. To illustrate, we consider the

parameters � and �, for which one has

3

4
� � = 3

4

��gVLR��2 + 32 ��gTLR��2 + 34Re �gSLRgT �LR�+ (L$ R) (4.37)

� = 8Re
�
gVRL

�
gS �LR + 6g

T �
LR

�
+ (L$ R)

	
: (4.38)

If neutrinos are Dirac particles (Majorana particles), from Table 4.2 (Table 4.4), we observe

that the magnitudes of the gVLR;RL contributions to � and � are constrained to be several

orders of magnitude below the current experimental sensitivities, whereas the contribu-

tions gS;TLR;RL that arise from O(6)F; 112D and O
(6)
F; 221D (gTLR;RL that arise from O(7)L2;2B;12 and

O(7)L2;1B;21) are only directly constrained by experiment. Thus, we may use the current exper-

imental results for � to constrain the operator coe¢ cients C6F; 112D and C
6
F; 221D (C

(7)
L2;2B;12

and C(7)L2;1B;21) and subsequently employ the results� together with the m� bounds on the

gVLR;RL� to derive expectations for the magnitude of �. For simplicity, we consider only

the contributions from C6F; 112D to � in the Dirac case. We think the same results hold for

Majorana case because of similarities between the constraints from the Dirac case and those

from the Majorana case. Using the current experimental uncertainty in this parameter, we
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�nd ��C6F; 112D�� � v��2 � 0:1: (4.39)

In the parameter �, this coe¢ cient interferes with C6~V ; 1D:

� = �6
� v
�

�4
Re
�
C6~V ; 1DC

6 �
F; 112D + � � �

�
; (4.40)

where the "+ � � � " indicates contributions from the other coe¢ cients that we will assume

to be zero for purposes of this discussion. From Eq. (4.39) and the m� limits on C6~V ; 1D we

obtain

j�j � 2� 10�4
� v
�

�2 �m1D
�

1 eV

�
: (4.41)

For � = v, this expectation for j�j is more than two orders of magnitude below the present

experimental sensitivity and will fall rapidly as � increases from v. A similar line of reason-

ing can be used to constrain the parameter �0 in terms of m� and the CP-violating phases

that may enter the e¤ective operator coe¢ cients.

4.3 Implications for Beta Decay Parameters

4.3.1 Introduction

Precision studies of nuclear and neutron beta decay, which once played an important in

the developments of the Standard Model, have been used to test the SM and look for the

physics beyond it. Measurements of various correlation coe¢ cients provide constraints on

the deviations from what the SM predicts. Several experiments have been carried out to

measure the correlation coe¢ cients with improved precision. The abBA collaboration will

make it possible to measure the correlations a; b; A; and B with precision of approximately

10�4, using a pulsed cold neutron beam at the SNS in OAK Ridge. The WITCH (Weak

Interaction Trap for CHarged particles) experiment[39] aims to measure the recoil energy

spectrum of the daughter ions from �-decay with a precision on a of about 0.5% or better.

It will be used to search for both scalar and tensor weak interaction types.

In analogy with the e¤ective four fermion Lagrangian for �-decay, we use (as in [43])

L��decay = �4G�p
2

X

;�;�

a
��e��

�eu�
d� (4.42)
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where �R is substituted by �cL in the Majorana case. In SM, one has a
V
LL = Vud; the (1,1)

element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and all other a
�� = 0: In the

literature, there exist several equivalent parameterizations of non-Standard-Model contri-

butions to light quark �-decay [46, 52]. Theoretically, the couplings a
�� can be generated in

various models beyond the SM. The left-right symmetric model, the exotic fermions, and

the leptoquark exchange and the limits that they put on the couplings are discussed in [46].

Besides neutrino mass constraints, we also �nd that aSLL; a
S
LR; a

T
LR; and a

V
RL can also be

constrained by the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, Re=� =
�(�+!e+�e+�+!e+�e
)
�(�+!�+��+�+!�+��
) , and pion beta decay (��), which can constrain other a



�� as well.

In fact, constraints on aVLR;LL; a
S
RL;RR; and a

T
RL by CKM unitarity and Re=� are discussed

in [46]. In our paper, special attention goes to constraints on aSLL; a
S
LR; a

T
LR; and aVRL

that involve the right-handed (RH) neutrino. Since no RH neutrino exists in SM, there is

no interference between the amplitudes from SM and the ones with RH neutrino. So the

new physics�contributions to �-decay�s correlation coe¢ cients are much more sensitive to

aSRL;RR; a
T
RL; and a

V
LR;LL than to a

S
LL;LR; a

T
LR; and a

V
RL. The constraints on a

S
LL;LR; a

T
LR;

and aVRL could not constrain the correlation coe¢ cients as much as are complementary to

their measurements. In this section, e stands for electron �avor and 1 for the �rst generation

of quarks.

4.3.2 Correlation coe¢ cients

The coupling constant a
�� has to be determined from experiments. The distribution in the

electron and neutrino directions and in the electron energy from oriented nuclei is given by

[55]

!(hJi j Ee;
e;
�)dEed
ed
� =
F (�Z;Ee)
(2�)5

peEe(E0 � Ee)2dEed
ed
��

1

2
�

�
1 + a

pe � p�
EeE�

+ b
me

Ee
(4.43)

+ c

�
pe � p�
3EeE�

� (pe � j) (p� � j)
EeE�

� �
J(J + 1)� 3 hJ � ji

J(2J � 1)

�
+
J

J
�
�
A
pe
Ee
+B

p�
E�

+D
pe � p�
EeE�

��
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where Ee; pe; and 
e denote the total energy, momentum, and angular coordination of the �

particle, and similarly for the neutrino; hJi is the nuclear polarization of the initial nuclear

state with spin J; j is a unit vector in the direction of J; E0 is the total energy available

in the transition; and F (�Z;Ee) is the Fermi-function. The a, b, c, A, B, etc., are the

correlation coe¢ cients that can be related to a
��:

Conventionally, people often use the e¤ective n ! pe�� interaction, which, neglecting

the induced form factors, is given by [46]

H
(N)
� � H

(N)
V;A +H

(N)
S +H

(N)
T ; (4.44)

H
(N)
V;A = e
�(CV + C

0
V 
5)�ep


�n+ e
�
5(CA + C
0
A
5)�ep


�
5n+ h:c:; (4.45)

H
(N)
S = e(CS + C

0
S
5)�epn+ h:c:; (4.46)

H
(N)
T = e

���p
2
(CT + C

0
T
5)�ep

���p
2
n+ h:c:; (4.47)

where the pseudo-scalar contribution is neglected since this vanishes in the nonrelativistic

approximation for the nucleons. The relation between the couplings a
�� in Eqs. (4.42) and

those in Eqs. (4.45�4.47) are given by

CV =
4G�p
2
gV (a

V
LL + a

V
LR + a

V
RR + a

V
RL) (4.48)

C 0V =
4G�p
2
gV (�aVLL � aVLR + aVRR + aVRL) (4.49)

CA =
4G�p
2
gA(a

V
LL � aVLR + aVRR � aVRL) (4.50)

C 0A =
4G�p
2
gA(�aVLL + aVLR + aVRR � aVRL) (4.51)

CS =
4G�p
2
gS(a

S
RL + a

S
RR + a

S
LR + a

S
LL) (4.52)

C 0S =
4G�p
2
gS(�aSRL � aSRR + aSLR + aSLL) (4.53)

CT =
8G�p
2
gT (a

T
RL + a

T
LR) (4.54)

C 0T =
8G�p
2
gT (��TRL + aTLR) (4.55)
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where the constant gi � gi(0), i = V;A; S; T are de�ned by

hp ju�idjni = gi(q
2)p�in q2 ! 0: (4.56)

If we assume exotic interactions are small� i.e., Ci � 1 and C 0i � 1, with i = S; T� the

Fierz interference term b and the beta-neutrino correlation coe¢ cient a can be written as

b ' �
 1

1 + �2

�
Re

�
CS � C 0S
CV

�
+ �2Re

�
CT � C 0T
CA

��
(4.57)

a ' 1� �2=3
1 + �2

"
� 1

(1 + �2)2

�
1 +

1

3
�2
�
jCS j2 + jC 0S j

2

jCV j2
(4.58)

+
1

3
�2
�
1� �2

� jCT j2 + jC 0T j2
jCAj2

#

where we ignore the T-odd terms in a and � = CAMGT
CVMF

; 
 =
p
1� �2Z2; and MF and MGT

are the Fermi and Gamov-Teller matrix elements respectively.

We will see below that neutrino masses would put bounds on aSLL; a
S
LR; a

T
LR; and a

V
RL:

From Eqs. (4.50�4.55), aSLL; a
S
LR; and a

T
LR are related to the n! pe�� couplings

8G�p
2
gS(a

S
LR + a

S
LL) = CS + C

0
S (4.59)

8G�p
2
gTa

T
LR = CT + C

0
T : (4.60)

So our paper will constrain (CS + C 0S) and (CT + C
0
T ) : These results are complementary to

those from measurements of b; which are sensitive to (CS � C 0S) and (CT � C 0T ) from Eq.

(4.57) and measurements of a, which are sensitive to jCS j2 + jC 0S j
2 and jCT j2 + jC 0T j

2 from

Eq. (4.58):

4.3.3 Dirac Case

4.3.3.1 E¤ective Hamiltonian Below the Weak Scale

We are going to relate C6j to a


��: First, we start with the e¤ective Lagragian valid below �

that takes the form

Leff = L4 +
1
�2
L6 + ::: (4.61)
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where Ln is the sum of all the independent dimension n operators. Speci�cally L6 is

L6 = +C
6
Q;AD;��(�)O

(6)
Q;AD;�� + C

6
d1;AD;��(�)O

(6)
d1;AD;�� (4.62)

+ C6d2;AD;��(�)O
(6)
d2;AD;�� + C

6eV ;AB(�)O(6)eV ;AB + � � �
where we just write down the interesting operators which can contribute to both �-decay

and neutrino mass via loop graphs, and + � � � are other operators. In general the Wilson

coe¢ cients are denoted by C 0s, depending on the indices, and � is the renormalization

scale. After spontaneous symmetry breaking, all the fermions and W;Z gauge bosons

become massive. The fermions�masses (except top quark) are much smaller than the weak

scale. But W;Z gauge bosons�masses are comparable to the weak scale. So when we evolve

� down to the weak scale, massive gauge bosons need to be integrated out. The e¤ective

Hamiltonian valid below the weak scale generated by Eq. (4.62) to the leading order in new

physics cuto¤ � writes

�Heff (�) =
aS1AD;�� (�)

�2
lAL�

D
R u

�
Ld
�
R +

aS2AD;�� (�)

�2
lAL�

D
R u

�
Rd

�
L (4.63)

+
aS3AD;�� (�)

�2
�AL �

D
R u

�
Ru

�
L +

aS4AD;�� (�)

�2
�AL �

D
R d

�
Ld
�
R

+
aT1AD;�� (�)

�2
lAL
���p
2
�DR u

�
L

���p
2
d�R +

aT2AD;�� (�)

�2
�AL
���p
2
�DR d

�
L

���p
2
d�R

+
aVAD;�� (�)

�2
lAR


��DR u
�
L


�d�L + h:c:+ � � �

where the boundary conditions for coe¢ cients aS1;S2;S3;S4;T1;T2;VAD;�� at v are given by

aS1AD;�� (v) = C6d2;AD;��(v) +
C6d1;AD;��(v)

2
(4.64)

aS2AD;�� (v) = C6Q;AD;�
(v)V

�
CKM

aS3AD;�� (v) = C6Q;AD;��(v)

aS4AD;�� (v) = �
 
C6d2;AD;
�(v) +

C6d1;AD;
�(v)

2

!
V 
�

aT1AD;�� (v) =
C6d1;AD;��(v)

4
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aT2AD;�� (v) = �
C6d1;AD;
�(v)V


�

4

avAD;�� (v) = �C6eV ;AD(v)V ��CKM
which is obtained by matching Eq. (4.63) with Eq. (4.62) at the weak scale. In Eq.

(4.63), we just write the operators containing �R, since the ones with �L won�t contribute

to neutrino mass or mix with other relevant operators. Among 6D operators in Section

2.3.1, only O(6)Q;AD;�� , O
(6)
d1;AD;��; O

(6)
d2;AD;��, and O

(6)eV ;AB that contribute to neutrino mass
generate the operators containing only one �R in Eq. (4.63). And � � � in Eq. (4.63) are

generated by � � � in Eq. (4.62).

We need to evolve � from the weak scale v, where C6Q;AD;�� , C
(6)
d1;AD;��; C

(6)
d2;AD;��,

and C
(6)eV ;AB can be related to neutrino masses, down to nucleon mass mN in order to

calculate various semileptonic processes. The evolutions of C6Q;AD;�� (�), C
(6)
d1;AD;�� (�) ;

C
(6)
d2;AD;�� (�), and C

(6)eV ;AB (�) from � to v were calculated in Chapter 3. The QED run-

ning of aS1;S2;S3;S4;T1;T2;VAD;�� (�) is ignored, since the correcting due to the running is around

�
4� ln

v
mN

� 3�10�2; which is negligible when we are only interested in order of magnitudes.

We calculate the QCD running of aS1���S4;T1;T2;VAD;�� (�) by solving the renormalization group

equation (RGE) for these coe¢ cients. The RGE for aS1���S4;T1;T2;VAD;�� (�) is

�
d

d�
ai +

X
k

ak

QCD
ki = 0 (4.65)

where 
QCD is the anomalous dimension matrix and superscript QCD reminds us that the

renormalization of the operators in Eq. (4.63) are only given by gluon exchanges between

the quark �elds. A standard calculation gives the following result for 
QCD:


QCD =
�3
4�

(0) � �3

4�

0BBBBBBBBBBBBBBB@

8 0 0 0 0 0 0

0 8 0 0 0 0 0

0 0 8 0 0 0 0

0 0 0 8 0 0 0

0 0 0 0 �8
3 0 0

0 0 0 0 0 �8
3 0

0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCA
(4.66)
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in the basis of
n
aS1���S4AD;�� ; a

T1
AD;��; a

T2
AD;��; a

V
AD;��

o
: Using the renormalization group equation

for �3 (�) to the leading term

�
d�3
d�

= �2�0
�23
4�

(4.67)

where �0 =
11Nc�2f

3 and Nc is the number of colors and f the number of quark �avors, we

solve the RGE for aS1���S4;T1;T2;VAD;�� (�) and have

aiAD;��(�) =

�
�3 (v)

�3 (�)

�� 

(0)
ii
2�0

aiAD;�� (v) i = S1 � � �S4; T1; T2; V: (4.68)

When � evolves from v down to mN ; the top quark, the bottom quark, and the charm quark

are integrated out one by one and so f = 6! 5! 4! 3 which implies

aS1���S4AD;��(mN ) =

�
�3 (mc)

�3 (mN )

�� 4
9
�
�3 (mb)

�3 (mc)

�� 12
25

(4.69)�
�3 (mt)

�3 (mb)

�� 12
23
�
�3 (v)

�3 (mt)

�� 4
7

aS1���S4AD;�� (v)

� KSa
S1���S4
AD;�� (v)

aT1;T2AD;��(mN ) =

�
�3 (mc)

�3 (mN )

� 4
27
�
�3 (mb)

�3 (mc)

� 3
25

(4.70)�
�3 (mt)

�3 (mb)

� 4
23
�
�3 (v)

�3 (mt)

� 4
21

aT1;T2AD;�� (v)

� KTa
T1;T2
AD;�� (v)

aVAD;��(mN ) � KV a
V
AD;��(v): (4.71)

Using �3 (mZ) = 0:120 and the 1-loop QCD beta function, we get

�3 (v) = 0:105

�3 (mt) = 0:110 (4.72)

�3 (mb) = 0:212

�3 (mc) = 0:338

�3 (mN ) = 0:378
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and

KS = 1:90

KT = 0:81 (4.73)

KV = 1:

Comparing Eq. (4.62) with Eq. (4.42), we have

��aSLL�� �
�����aS3eD;11 (mN )

�2
v2

2

����� �
�����KS

aS3eD;11 (v)

�2
v2

2

����� (4.74)

�
�����KS

C6Q;eD;1
(v)V

1

�2
v2

2

�����
��aSLR�� �

�����aS1eD;11 (mN )

�2
v2

2

����� �
�����KS

 
C6d2;eD;11(v)

�2
+
C6d1;eD;11(v)

2�2

!
v2

2

�����
��aTLR�� �

�����aT1eD;11 (mN )

�2
v2

2

����� �
�����KT

C6d1;eD;11(v)

4�2
v2

2

�����
��aVRL�� �

�����aVeD;11 (mN )

�2
v2

2

����� �
�����KV

C6eV ;eD(v)Vud
�2

v2

2

����� :

4.3.3.2 4D Case

If we look closely at Eq. (4.74), it is obvious that
��aSLL�� depends on C(6)Q;eD;1
 and ��aSLR�� ; and��aTLR�� only depends on the diagonal coe¢ cients C6d1;d2;eD;11. However, only C6Q;eD;11 and

C6d1;d2;eD;11 are constrained through Eq. (3.20), and C
6
Q;eD;1
 with 
 6= 1 are unconstrained.

It seems to imply that neutrino mass could put bounds on
��aSLR�� and ��aTLR�� but not on ��aSLL�� :

Actually there are some subtleties here. We can just as well carry out the calculations in

the basis of Q0�, u0�R , and d
0�
R de�ned in Section 2.3 wherein fd is diagonal. The operators

involving just lepton �elds and their corresponding coe¢ cients won�t change under the

rede�nition. So substituting Eq. (3.17�3.19) into Eq. (4.74) and Eq. (3.20) gives us

��aSLL�� �
�����KS

C 06Q;eD;11(v)

�2
v2

2Vud

�����
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��aSLR�� �
�����KS(VCKM )

1
(
C 06d2;eD;
1(v)

�2
+
C 06d1;eD;
1(v)

2�2
)
v2

2Vud

����� (4.75)

��aTLR�� �
�����KT (VCKM )

1

C 06d1;eD;
1(v)

4�2
v2

2Vud

�����
and

C4M;AD �
2NC
(4�)2

m�
u

v=
p
2
V ���C 06Q;AD;��

C4M;AD �
NC
(4�)2

m�
d

v=
p
2
���C 06d1;AD;�� (4.76)

C4M;AD �
2NC
(4�)2

m�
d

v=
p
2
���C 06d2;AD;��

in terms of new coe¢ cients C 06Q;AD;��; C
06
d1;AD;��; and C

06
d2;AD;��:

This time we �nd that
��aSLL�� is constrained but ��aSLR�� and ��aTLR�� are not, because C 06Q;AD;11

is bounded by neutrino mass and C 06d1;d2;AD;1
 with 
 6= 1 is not.

Now we have a contradiction here. What happened? Let us illustrate it with a simple

example. Suppose we have a e¤ective Lagragian

Leff = C1O1 + C2O2 + � � � (4.77)

where O1 and O2 are two independent operators and C1 and C2 are their coe¢ cients. And

we also assume they both contribute to some mass operator OM through loop e¤ects

CM � C1A (4.78)

CM � C2A

where A is a constant.

Somehow the operator O1 can relate to some observable g, namely g = C1B; where B

is a constant. It is clear g can be constrained by OM :

Now we use another basis fO+;O�g where O� = 1
2(O1 � O2): Under this basis the

e¤ective Lagragian becomes

Leff = C+O+ + C�O� (4.79)

where C� = C1 � C2:
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O� doesn�t contribute to OM since O1 and O2 are assumed to contribute the same

amount to OM by assumption. For O+ we have CM � C+A: The observable g =
C++C�

2 B:

It seems g is unbounded since OM can�t constrain C�: With the basis fO1;O2g, we can

separately constrain Ci because we use no �ne-tuning assumption which implies that there

is no cancellation between contributions from O1 and O2. Therefore, we can put bounds on

C�: So if we assume there is no �ne tuning, g is also constrained under fO+;O�g: The same

thing happens to
��aSLL�� ,��aSLR�� ; and ��aTLR�� ; since there is a relation between OQ;d1;d2;AD;��

and O0Q;d1;d2;AD;�� by OQ;d1;d2;AD;�� = V �
CKMO0Q;d1;d2;AD;�
 : So as long as we assume no

�ne tuning happens,
��aSLL�� ,��aSLR�� ; and ��aTLR�� should be bounded no matter what basis we

choose.

So Eq. (3.20) yields

��aSLL�� �
�����aS3eD;11 (mN )

�2
v2

2

����� �
�����KS

aS3eD;11 (v)

�2
v2

2

�����
�
�����KS

C6Q;eD;1
(v)V

1

�2
v2

2

�����
��aSLR�� �

�����aS1eD;11 (mN )

�2
v2

2

����� �
�����KS

 
C6d2;eD;11(v)

�2
+
C6d1;eD;11(v)

2�2

!
v2

2

����� (4.80)

��aTLR�� �
�����aT1eD;11 (mN )

�2
v2

2

����� �
�����KT

C6d1;eD;11(v)

4�2
v2

2

�����
��aVRL�� �

�����aVeD;11 (mN )

�2
v2

2

����� �
�����KV

C6eV ;eD(v)Vud
�2

v2

2

�����
and

C6Q;eD;11 .
m�

mu

(4�)2

2NC
)
��aSLL�� . 4�2

NC

m�

mu
KS(

v2

�2
) � 5� 10�6 v

2

�2
m�

1 eV
(4.81)

C6d1;eD;11 .
(4�)2

NC

m�

mdV ud
)

8<:
��aSLR�� . 8�2

NC
m�
md
KS(

v2

�2
) � 1:2� 10�5 v2

�2
m�
1 eV��aTLR�� . 2�2

NC
m�
md
KT (

v2

�2
) � 3� 10�6 v2

�2
m�
1 eV

C6d2;eD;11 .
(4�)2

2NC

m�

mdV ud
)
��aSLR�� . 2�2

NC

m�

md
KT (

v2

�2
) � 3� 10�6 v

2

�2
m�

1 eV

C6eV ;eD . (4�)2m�

me
)

��aVRL�� . 8�2m�

me
KV (

v2

�2
) � 1:5� 10�4 v

2

�2
m�

1 eV
:



63

Table 4.6: Constraints on �-decay couplings a
�� in the Dirac case. The naturalness bounds
are given in units of (v=�)2 � (m�=1 eV) on contributions from 6D beta decay operators
based on one-loop mixing with the 4D neutrino mass operators

Source
��aSLL�� ��aSLR�� ��aTLR�� ��aVRL��

O
(6)
Q;eD;11 5� 10�6 - - -

O
(6)
d1;eD;11 - 1:2� 10�5 3� 10�6 -

O
(6)
d2;eD;11 - 3� 10�6 - -

O
(6)eV ;eD - - - 1:5� 10�4

The bounds in Table 4.6 become smaller as � increases.

Eqs. (4.59, 4.60) give us the constraints of

��� eCS + eC 0S��� . 4� 10�6 (4.82)��� eCT + eC 0T ��� . 8� 10�5
where eCS � CS

CV
; eC 0S � C0S

CV
; eCT � CT

CA
; and eC 0T � C0T

CA
; and we use CV � 4G�p

2
gV a

V SM
LL and

CA � 4G�p
2
gSa

V SM
LL approximately; and 0:25 . gS . 1 [52] and 0:6 . gT . 2:3 [52]:

4.3.3.3 6D Case

Due to mixing among 6D operators,
��aVRL�� can be constrained by neutrino mass. We obtain

��aVRL�� . (m�

me
)(
8� sin2 �W

9
)(�� � sin2 �W

3�
)�1(ln

�

v
)�1 (4.83)

which is the same as the expression for
��gVRL�� in Section 4.2. so we just repeat it here:

��aVRL�� . ( m�

1eV
)(ln

�

v
)�1

8<: 2:5� 10�4 mH = 114GeV

1:5� 10�3 mH = 186GeV.
(4.84)

The constraints on
��aVRL�� from the 4D mass operator is comparable to the one obtained

from the 6D mass operator.
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4.3.4 Majorana Case

We carry out the same analysis in Section 4.3.3.1 and �nd relations between a
�� and C
7
i as

follow:

O(7)d2;eB;11 ! aSLR � �
v3

2
p
2�3Vud

KSC
7
d2;eB;11 (v)

O(7)d1;e1;1e ! aTLR � �
v3

4
p
2�3Vud

KTC
7
d1;e1;1e (v)

O(7)d1;e1;1B !

8<: aSLR � v3

4
p
2�3Vud

KSC
7
d1;e1;1B (v)

aTLR � v3

8
p
2�3Vud

KTC
7
d1;e1;1B (v)

e 6= B

O(7)d1;B1;1e !

8<: aSLR � v3

4
p
2�3Vud

KSC
7
d1;B1;1e (v)

aTLR � �v3
8
p
2�3Vud

KTC
7
d1;B1;1e (v)

e 6= B (4.85)

O(7)d2;e1;1B !

8<: aSLR � v3

4
p
2�3Vud

KSC
7
d2;e1;1B (v)

aTLR � v3

8
p
2�3Vud

KTC
7
d2;e1;1B (v)

O(7)d2;B1;1e !

8<: gSLR � v3

4
p
2�3Vud

KSC
7
d2;B1;1e (v)

gTLR � �v3
8
p
2�3Vud

KTC
7
d2;B1;1e (v)

O(7)u1;eB;�1 ! aSLL �
�v3

2
p
2�3Vud

V �1�KSC
7
u1;eB;�1 (v) e 6= B

O(7)u1;Be;�1 ! aSLL �
v3

2
p
2�3Vud

V �1�KSC
7
u1;Be;�1 (v) e 6= B

O(7)u2;eB;�1 ! aSLL �
v3

2
p
2�3Vud

V �1�KSC
7
u2;eB;�1 (v)

O(7)R;Ae;11 ! aVRR �
v3

2
p
2�3Vud

KV C
7
R;Ae;11 (v)

O(7)eV ;Ae ! aVRL �
v3

2
p
2�3

KV C
7eV ;Ae (v)

where we see some operators vanish with e = B due to the �avor structure of Majorana

neutrinos, in which case the neutrinos in beta decay are not electron neutrinos.

Matching the above operators with O(5)M , we �nd only some of them can contribute to

O(5)M using Eq. (3.31)

O(7)d2;eB;11 ! C5M;eB �
f11d NC
8�2

C7d2;eB;11
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Table 4.7: Constraints on �-decay couplings a
�� in the Majorana case. Naturalness bounds
are given in units of (v=�)2 � (m�=1 eV) on contributions from 7D beta decay operators
based on one-loop mixing with the 5D neutrino

Source
��aSLL�� ��aSLR�� ��aTLR�� ��aVRL��

O
(7)
d1;B1;1e - None - -

O
(7)
d1;e1;1e - None None -

O
(7)
d1;e1;1B - None None -

O
(7)
d2;eB;11 - 6� 10�6 3� 10�6 -

O
(7)
d2;e1;1B - 6� 10�6 3� 10�6 -

O
(7)
d2;B1;1e - 6� 10�6 3� 10�6 -

O
(7)
u1;eB;�1 None - - -

O
(7)
u1;Be;�1 None - - -

O
(7)
u2;eB;�1 5� 10�6 - - -

O
(7)eV ;Ae 1:5� 10�4

O(7)d2;e1;1B ! C
(5)
M;eB �

f11d NC
16�2

C
(7)
d2;e1;1B

O(7)d2;B1;1e ! C
(5)
M;eB �

f11d NC
16�2

C
(7)
d2;B1;1e (4.86)

O(7)u2;eB;�1 ! C
(5)
M;eB �

f�1�u NC
8�2

C7u2;eB;�1

O(7)eV ;Ae ! C
(5)
M;Ae �

fAAe NC
16�2

C7eV ;Ae:
The graphs of O(7)d1;u1 with Yukawa interaction inserted in the loop turn out to be propor-

tional to �ij�i�j , which is zero. We use the estimates in Eq. (3.20) to obtain the bounds in

Table 4.7. We still assume there is no �ne-tuning.

Consequently, the magnitudes of aSLR, a
T
LR, and a

S
LL are not directly bounded by m� and

naturalness considerations, as indicated in Table 4.7. From a theoretical standpoint, one

might expect the magnitudes of C7d1 and C
7
u1 to be comparable to those of the other four-

fermion operator coe¢ cients in models that are consistent with the scale of neutrino mass.

Nevertheless, we cannot a priori rule out order of magnitude or more di¤erences between

operator coe¢ cients. In contrast, the magnitudes of aSLR, a
T
LR, and a

S
LL are bounded by

m� in the absence of �ne-tuning. An implication is that if the magnitudes of aSLR, a
T
LR,



66

and aSLL greater than our bounds were measured, they would indicate that neutrinos are

Dirac fermions, rather than Majorana ones. It also gives evidence that �avor structure is

non-trivial in new physics. Using Eqs. (4.59, 4.60), we arrive to the same the constraints

as Dirac case

��� eCS + eC 0S��� . 4� 10�6 (4.87)��� eCT + eC 0T ��� . 8� 10�5
4.3.5 Status of Experiments

The current experiment limits on scalar and tensor couplings in �-decay usually comes from

the Fierz interaction term b or from the ��� correlation coe¢ cient a: The Fierz interaction

term b always constrains the term
��� eCS � eC 0S��� or ��� eCT � eC 0T ��� : The recent analysis yields��� eCS � eC 0S��� < 0:0044 (90% C.L.) [60] and eCT � eC 0T = �(1:5� 12)� 10�3 [61]: These results

are complementary to our analysis. The ��� correlation coe¢ cient a depends quadratically

on the scalar and tensor couplings. The scalar couplings were studied by measuring the beta-

neutrino correlation coe¢ cient a in the superallowed pure Fermi � transition 18Ne(0+) !
18F(0+; 1040keV) (T1=2 = 1:67s) [62]. It yielded the limit

r��� eCS���2 + ��� eC 0S���2 < 0:29 (95%

C.L.) for the scalar coupling constant. A recent experiment was carried out at ISOLDE to

measure the positron-neutrino correlation in the 0+ ! 0+ �-decay of 32Ar [63]. Combined

with the results from [64], it gives us
��� eCS���2 < 3:6�10�3 and ��� eC 0S���2 < 3:6�10�3 , which means��� eCS + eC 0S��� < 10�1: The present limit on the tensor couplings is obtained by determining

the �-� correlation coe¢ cient in the decay of 6He [65], which is a pure GT transition and

is thus sensitive to the tensor couplings. It gives us
jCT j2+jC0T j2
jCAj2+jC0Aj

2 < 0:8% (68% C.L.), which

implies
��� eCT + eC 0T ��� < 1:6 � 10�1 . Recently, a comprehensive analysis of experimental data

was carried out in [52] . The general �t with seven free real parameters in [52] results in

the following 95.5% C.L. limits

��� eCS��� < 0:070, ��� eC 0S��� < 0:067; (4.88)��� eCT ��� < 0:090, ��� eC 0T ��� < 0:089:
Our constraints are more stringent by one or two orders of magnitude and are compared



67

Figure 4.2: Constraints on ~CS = CS=CV and ~C 0S = CS=CV . The narrow diagonal band at
�45o is from this work. The gray circle is a 95% C.L. limit from Ref. [62]. The diagonal
band at 45o is a 90% C.L. limit from Ref. [60]

Figure 4.3: Constraints on ~CT = CT =CA and ~C 0T = C 0T =CA. The diagonal band at �45o is
from this work. The gray circle is a 68% C.L. limit from Ref. [65]. The diagonal band at
45o is a 90% C.L. limit from Ref. [61]

with the existing limits in Fig. 4.2 and Fig. 4.3 where it is seen that they are complimentary

to the existing limits. Combining our results with the existing limits yields

j eCS j . 2� 10�3, j ~C 0S j . 2� 10�3;
j eCT j . 6� 10�3, j ~C 0T j . 6� 10�3:

4.3.6 Constraints From CKM Unitarity, Re=� , and ��

Besides neutrino mass constraints, we also �nd that aSLL; a
S
LR; a

T
LR; and a

V
RL can also be

constrained by the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, Re=� =
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Table 4.8: Constraints on �-decay couplings a
����aSLL�� ��aSLR�� ��aTLR�� ��aVRL��
Neutrino Mass 5� 10�6 1:2� 10�5 10�6 10�3 � 10�4
CKM Unitarity 0:066 0:066 0:031 0:021
Re=� 2� 10�5 2� 10�5 1� 10�3 5� 10�2
�� 0:13 0:13 - 0:13
Two-loop[51] 10�4 10�4 10�4 10�3

Current Limits[52][46] - - - 3:7� 10�2

�(�+!e+�e+�+!e+�e
)
�(�+!�+��+�+!�+��
) ; and pion beta decay (��), which can constrain other a



�� as well.

In fact, constraints on aVLR;LL; a
S
RL;RR; and a

T
RL by CKM unitarity and Re=� are discussed

in [46]. In our paper, special attention goes to constraints on aSLL; a
S
LR; a

T
LR; and aVRL

that involve the right-handed (RH) neutrino. Our analysis could apply to both Dirac and

Majorana cases. Our results are summarized in Table 4.8.

4.3.6.1 CKM Unitarity

The Cabibbo-Kobayashi-Maskawa matrix relates the quark eigenstates of the weak interac-

tion with the quark mass eigenstates and therefore it is unitary. The test of CKM matrix

unitarity, specially the �rst row relation

jVudj2 + jVusj2 + jVubj2 = 1; (4.89)

would give us a hint of new physics. For example, the author of [72] discussed its implications

for R-parity violating (RPV) extensions of the minimal supersymmetric Standard Model.

The most precise determination of jVudj comes from the study of superallowed 0+ ! 0+

nuclear beta decays. Taking the average of the nine most precise determinations yields [67]

jVudjEX = 0:97377� 0:00027: (4.90)

The precise value of jVusj2 is somewhat controversial. The Particle Data Group 2005

(PDG05) [68] recommended for Vus only the value determined from Ke3 decay,

jVusjEX = 0:2200� 0:0026 PDG05, (4.91)
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ignoring the value obtained from hyperon decays due to large theoretical uncertainties.

However, recent measurements of K ! �e� branching ratio [67] yields a di¤erent value for

jVusj than previous PDG averages

jVusjEX = 0:2257� 0:0021 PDG06. (4.92)

As for Vub, its value is small, jVubj2 � 1� 10�5, and consequently it has a negligible impact

on the unitarity test, Eq. (4.89). We follow the notations in [72] and then one has

jVudj2EX � jVudj2SM
jVudj2SM

=

8<: �0:0035� 0:0017 PDG05

�0:0008� 0:0015 PDG06
; (4.93)

where jVudjSM denotes the value implied by CKM unitarity. We note jVudjEX from PDG05

deviates from the Standard Model predictions by 2�; while jVudjEX from PDG06 is consis-

tent with the Standard Model predictions.

In order to constrain the e¤ects of new physics in �-decay, we can de�ne e¤ective Fermi

constants as in [72]

G�F = G�jVudj (1��r� +�r� ��� +��) (4.94)

where �r� and �r� denote the appropriate SM radiative corrections to the tree-level �-

decay and �-decay, respectively, and where �� and �� denote the new physics correction

to tree-level SM �-decay and �-decay amplitude. G� can be related to Eq. (4.93) by

G�2F

G�;SM2
F

� 1 = jVudj2EX � jVudj2SM
jVudj2SM

� 2�� � 2�� (4.95)

where the SM values are computed using �r� = �r� = 0. Analogous to �-decay, Eq. (4.44)

can be rewritten as

H��decay = 4G�p
2

X

;�;�

ea
��e��
�ep�
n� (4.96)

where eaV�L = �gV + gA2

�
aV�L +

�
gV � gA
2

�
aV�R

eaV�R = �gV � gA2

�
aV�L +

�
gV + gA
2

�
aV�R
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eaS�L = gS
2
aS�L +

gS
2
aS�R (4.97)

eaS�R = gS
2
aS�L +

gS
2
aS�R

eaT�L = gT
2
aT�L +

gT
2
aT�R

eaT�R = gT
2
aT�L +

gT
2
aT�R:

We �nd

�� =
��eaVRR��2 + ��eaVLR��2 + ��eaVRL��2 + ��eaVLL��2

+ 4
���eaSRR��2 + ��eaSLR��2 + ��eaSRL��2 + ��eaSLL��2� (4.98)

+ 3
���eaTRL��2 + ��eaTLR��2�� 1:

It follows, using PDG06 result from Eq. (4.93), that

��aSLR�� ; ��aSLL�� . 0:066 (95%C.L.)��aTLR�� . 0:031 (95%C.L.) (4.99)��aVRL�� . 0:021 (95%C.L.),

which are 103 greater than the bounds from neutrino mass. The contributions from
��aSLR��,��aSLL��, ��aTLR��, and ��aVRL�� alone don�t explain the PDG05 result from Eq. (4.93). So we need

to include �r� or eaVRL. However, when �r� � �r�; we can safely assume �r� . 10�3

which still yields the same bounds.

4.3.6.2 Re=�

Constraints on
��aSLR��, ��aSLL��, and ��aTLR�� can also be obtained by studying the results of �`2

decays. The ratio

Re=� =
� (�+ ! e+�e + �

+ ! e+�e
)

� (�+ ! �+�� + �+ ! �+��
)
(4.100)

has been measured precisely at PSI [73] and TRIUMF [74]. Comparing the Particle Data

Group average [67] with the SM value as calculated in [75], one has

REXe=�

RSMe=�
= 0:9958� 0:0033� 0:0004 (4.101)
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where the �rst error is experimental and the second is theoretical. In terms of couplings in

Eq. (4.42), one has [71]

Re=�

RSMe=�
=
��1 + �0LL � �LR + !e(�RP + 2k0�TRL)��2 + ���RL � �RR + !e(�LP � 2k0�TLR)��2

(4.102)

where �0LL =
aVLL
Vud

� 1; �ik =
aVik
Vud

(ik = LR;RL;RR); �iP =
aSiL�aSiR
Vud

(i = L;R); !e =

m�
me

m�
mu+md

� 2:6� 103; and k0 � ee(eu + ed)
3�
� ln

M2
W
�2

� 10�2 .The �TRL and �TLR appear in

Eq. (4.102) because the tensor interactions can induce the scalar ones by exchanging photons

between quarks and charged leptons[78]. The corresponding 2� bounds on
��aSLR�� ; ��aSLL�� ;and��aTLR�� are

��aSLL � aSLR�� . 2� 10�5 (95%C.L.) (4.103)��aTLR�� . 1� 10�3 (95%C.L.)��aVRL�� . 5� 10�2 (95%C.L.)

where the bounds on scalar couplings are roughly comparable to the ones from neutrino

mass and the bounds on tensor coupling is 102 greater than the one from neutrino mass.

It should be noted that the bounds (4.103) would become insigni�cant, if there were also a

contribution from new S and T interactions to �+ ! �� with coupling constants comparable

to aSLL; a
S
LR; and a

T
LR. Future experiments will make more precise measurements of Re=�,

aiming for precision at the level of :< 1 � 10�3 (TRIUMF [76]) and 5 � 10�4 (PSI [77]).

With higher precision on Re=�, the constraints on aSLL and a
S
LR would be stronger than

those from neutrino mass.

4.3.6.3 ��

We note that operators associated with aSLL, a
S
LR, and a

V
RL in the e¤ective Lagrangian Eq.

(4.42) could contribute to pion beta decay. So a precise measurement of its branching ratio,

together with the SM prediction, would imply bounds on aSLL, a
S
LR, and a

V
RL: We calculate

the correction due to aSLL, a
S
LR, and a

V
RL terms in the e¤ective Lagrangian Eq. (4.42) to

pion beta decay rate as follows:
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We note that the part of E¤ective Lagragian (4.42) associated with aSLL, a
S
LR, and a

V
RL

4G�p
2

�
aSLReL�eudR + a

S
LLeL�eudL

�
+
4G�p
2

�
aVRLeR


��eu
�dR
�

(4.104)

would contribute to �+ ! �0e+�: The amplitude is of the form

�M=
4G�p
2

�
aSLR + a

S
LL

�
2



�0
��ud ���+�ue�1 + 
5

2

�
v� (4.105)

+
4G�p
2

aVRL
2



�0
��u
�d ���+�ue
��1 + 
5

2

�
v�

where we set


�0
��u
5d j�+i = 


�0
��u
5
�d j�+i = 0 due to the parity symmetry. The

hadronic matrix element


�0
��u(x)
�d(x) j�+i is



�0
��u(x)
�d(x) ���+� (4.106)

=
h
f+
�
Q2
�
(p�0 + p�+)� + f�

�
Q2
�
(p�0 � p�+)�

i
e�i(p�+�p�0)�x

where Q2 = (p�+ � p�0)2 and f� = 0 due to conservation of the current u(x)
�d(x) and

and isospin symmetry and f+ (0) =
p
2 given by CVC. Taking the derivative on both sides

of Eq. (4.106) gives us

@�


�0
��u (x) 
�d (x) ���+� = i (mu �md)



�0
��u (x) d (x) ���+� (4.107)

= �if+ (p�+ � p�0)� (p�0 + p�+)� e
�i(p�+�p�0)�x

=)


�0
��u (x) d (x) ���+� = m2

�0 �m
2
�+

mu �md
f+e

�i(p�+�p�0)�x

where we use

@� (u (x) 
�d (x)) = i (mu �md)u (x) d (x) : (4.108)

So the amplitude becomes

�M=
4G�f+p

2

 �
aSLR + a

S
LL

�
2

m2
�0 �m

2
�+

mu �md
ue

�
1 + 
5

2

�
v� (4.109)

+
aVRL
2
(p�0 + p�+)� ue


�

�
1 + 
5

2

�
v�

�
:

Considering that the pion mass is much greater than the pion momenta, the momentum



73

terms can be neglected and so one has

�M� 4G�f+p
2

 
�
�
aSLR + a

S
LL

�
2

2m2
��

mu �md
ue

�
1 + 
5

2

�
v� (4.110)

+
aVRL
2
2m�ue


0

�
1 + 
5

2

�
v�

�

where � = m�+ �m�0 ; m� =
m�++m�0

2 :

The total amplitude is Mtot = MSM + �M, where SM denotes contributions from

the Standard Model. In computing jMtotj2 to obtain the di¤erential rate, we �nd that the

cross term involvingMSM and �M vanishes, sinceMSM contains no right-handed neutrino

spinors. For j�Mj2; we have

j�Mj2 =
�
4G�f+p

2

�2 24�����
�
aSLR + a

S
LL

�
2

2m2
��

mu �md

�����
2

Tr

�
pe � 


1 + 
5
2

p� � 

�

(4.111)

+4m2
�

����aVRL2
����2 Tr�pe � 

0 1 + 
52

p� � 

0
�#

=

�
4G�f+p

2

�2 24�����
�
aSLR + a

S
LL

�
2

2m2
��

mu �md

�����
2

2 (Ee � E� � pe � p�)

+4m2
�

����aVRL2
����2 2 (Ee � E� + pe � p�)

#

�
�
4G�f+p

2

�2 24�����
�
aSLR + a

S
LL

�
2

2m2
��

mu �md

�����
2

2 (Ee � E�)

+4m2
�

����aVRL2
����2 2 (Ee � E�)

#

=

�
4G�f+p

2

�2 24�����
�
aSLR + a

S
LL

�
2

2m2
��

mu �md

�����
2

2 + 8m2
�

����aVRL2
����2
35 (Ee � E�)

where pe �p� would integrate to zero when calculating the decay rate so that only the Ee �E�
term would contribute.
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The decay rate of �+ ! �0e+� is

d�� =
(2�)4 j�Mj2 �(4) (p�+ � p�0 � pe � p�)

2m�+

d3p�0

(2�)3 2E�0

d3pe

(2�)3 2Ee

d3p�

(2�)3 2E�
(4.112)

� j�Mj2 � (�� Ee � E�)
16m2

�EeE� (2�)
5 d3pe4�E

2
�dE�

where we integrate over the �nal state pion momentum p�0 and set E�+ = m�+ and

E�0 = m�0 by neglecting the pion momenta. Then we have

�� =

Z j�Mj2 � (�� Ee � E�)
16m2

�EeE� (2�)
5 d3pe4�E

2
�dE�

=

�
4G�f+p

2

�2 24�����
�
aSLR + a

S
LL

�
2

2m2
��

mu �md

�����
2

2 + 8m2
�

����aVRL2
����2
35 (4.113)

=

 �����aSLR + aSLR� 2�

mu �md

����2 + 4 ��aVRL��2
!

G2��
5

15 (2�)3
:

Finally, taking the ratio of this to the decay rate of �+ ! �+�

��+!�+� =
G2�
4�

F 2�m
2
�m� jVudj2

 
1�

m2
�

m2
�

!2
(4.114)

yields

�Br
�
�+ ! �0e+�

�
=

2�5
�����aSLR + aSLR� 2�

mu�md

���2 + 4 ��aVRL��2�
15 (2�)2 F 2�m

2
�m� jVudj2

�
1� m2

�

m2
�

�2 (4.115)

� 1:32� 10�8
���aSLR + aSLR��2 + ��aVRL��2�

where we use � = m�+ � m�0 = 4:59 MeV, m� =
m�++m�0

2 = 137:27 MeV, F� = 92:4

MeV, and m� = 105:66 MeV. The predictions [79] of the SM and CVC, given the PDG

recommended value range for Vud; are

BrSM
�
�+ ! �0e+�

�
= (1:038� 1:041)� 10�8 (4.116)
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while the PIBETA collaboration�s recent result [79] is

BrEX
�
�+ ! �0e+�

�
= [1:036� 0:004(stat)� 0:005(syst)]� 10�8 (4.117)

which implies ���Br ��+ ! �0e+�
��� . 0:023� 10�8 (95% C.L.). (4.118)

From Eq. (4.118), one has the bounds on aSLL, a
S
LR, and a

V
RL

��aSLR + aSLR�� . 0:13 (95%C.L.) (4.119)��aVRL�� . 0:13 (95%C.L.):

4.4 Constraints on � ! ��

The decay �0 ! �� is forbidden by angular momentum conservation if the neutrino is

massless. This is the case in SM. So the upper bound on neutrino masses would imply

the upper limit for the branching ratio of �0 ! ��: The most general local nonderivative

e¤ective neutrino-quark interaction that could contribute to �0 ! �� is given in [69] by:

L =G�p
2

�
gAA�


�
5�JA� +
�
gPP �


5� + igSP ��
�
JP
�

(4.120)

where JA� =
1
2

�
u
�
5u� d
�
5d

�
; JP = 1

2

�
u
5u� d
5d

�
; and a branching ratio is

B
�
�0 ! ��

�
�
�
9:6� 10�7

�
�

"�
0:2gAA

m�

m�
� gPP

�2
+ �2g2SP

#
(4.121)

where � =
q
1� 4m2

�
m2
�
;m� and m� denote the neutrino and the pion mass.

In Eq. (4.120), the �rst term comes from the Standard Model and new physics. Since

the contribution from the SM to gAA dominates over the one from new physics, we can safely

assume gAA = 1: The chirality-changing pseudoscalar interaction in Eq. (4.120) could induce

the neutrino mass radiatively and thereby be generated by O(6)Q;AD;��, O
(6)
d1;AD;��; O

(6)
d2;AD;��,

and O(6)eV ;AB; after integrating out the massive gauge bosons below the weak scale. Matching
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Eq. (4.120) with Eq. (4.63) at mN gives

gPP = �
v2

�2

 
aS3AD;11 (mN ) + a

S3�
DA;11 (mN )

2
+
aS4AD;11 (mN ) + a

S4�
DA;11 (mN )

2

!
(4.122)

gSP =
v2

�2

 
aS3AD;11 (mN )� aS3�DA;11 (mN )

2i
+
aS4AD;11 (mN )� aS4�DA;11 (mN )

2i

!

where A and D are the �avors of two neutrinos in the �nal products. Using Eq. (4.64) and

Eq. (4.81), we have

jgPP j .
KSv

2

�2
(4�)2

2NC

�
m�

mu
+
3m�

md

�
� 4� 10�5 (4.123)

jgSP j .
KSv

2

�2
(4�)2

2NC

�
m�

mu
+
3m�

md

�
� 4� 10�5;

which implies B
�
�0 ! ��

�
< 3� 10�15 which we use m� � 1eV and set � = v: Our result

is eight orders of magnitude stronger than the current best experimental limit [70] and 104

stronger than the result obtained in [44]. While only carried out our analysis in the Dirac

case, we believe the same result should hold for the Majorana case.
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