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Abstract

We begin by working out an effective field theory valid below some new physics scale A
for Dirac neutrinos and Majorana neutrinos, respectively. For Dirac neutrinos, we obtain
a complete basis of effective dimension four and dimension six operators that are invariant
under the gauge symmetry of the Standard Model. As for Majorana neutrinos, we come
up with a complete basis of effective dimension five and dimension seven operators that
are invariant under the gauge symmetry of the Standard Model. Using the effective theory,
we derive model-independent, "naturalness" upper bounds on the magnetic moments p, of
Dirac neutrinos and Majorana neutrinos generated by physics above the scale of electroweak
symmetry breaking. In the absence of fine-tuning of effective operator coefficients, for Dirac
neutrinos, we find that current information on neutrino mass implies that |u,| < 1074 up.
This bound is several orders of magnitude stronger than those obtained from analyses of
solar and reactor neutrino data and astrophysical observations. As for Majorana neutri-
nos, the magnetic moment contribution to the mass is Yukawa suppressed. The bounds we
derive for magnetic moments of Majorana neutrinos are weaker than present experimental
limits if p, is generated by new physics at ~ 1 TeV, and surpass current experimental
sensitivity only for new physics scales > 10-100 TeV. The discovery of a neutrino magnetic
moment near present limits would thus signify that neutrinos are Majorana particles. Then,
we use the scale of neutrino mass to derive model-independent naturalness constraints on
possible contributions to muon decay Michel parameters. We show that — in the absence of
fine-tuning — the most stringent bounds on chirality-changing operators relevant to muon
decay arise from one-loop contributions to neutrino mass. The bounds we obtain on their
contributions to the Michel parameters are four or more orders of magnitude stronger than
bounds previously obtained in the literature. We also show that, if neutrinos are Dirac
fermions, there exist chirality-changing operators that contribute to muon decay but whose

flavor structure allows them to evade neutrino mass naturalness bounds. We discuss the im-



vi
plications of our analysis for the interpretation of muon decay experiments. Finally, we use
the upper limit on the neutrino mass to derive model-independent naturalness constraints
on some non-Standard-Model d — ue™V interactions. In the absence of fine-tuning of effec-
tive operator coefficients, our results yield constraints on scalar and tensor weak interactions
one or more orders of magnitude stronger than a recent global fit after combined with the
current experimental limits. We also show that, if neutrinos are Majorana fermions, there
exist four-fermion operators that contribute to beta decay but whose flavor structure allows
them to evade neutrino mass naturalness bounds. We also consider the constraint on the
branching ratio of # — vv by neutrino mass. Constraints on the beta decay parameters by

CKM Unitarity, R and 7g are discussed as well.
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Chapter 1

Introduction

The Standard Model (SM) [1] is the name given in the 1970s to a theory of fundamental
particles and how they interact. The SM is very successful at energies up to about hundred
GeV. The SM has passed numerous experimental tests. However, despite its tremendous
successes, no one finds the SM satisfactory, and it is widely expected that there is physics
beyond the SM, with new characteristic mass scale(s), perhaps up to, ultimately, a string
scale. In the absence of any direct evidence for their mass, neutrinos were introduced in the
SM as truly massless fermions for which no gauge-invariant renormalizable mass term can
be constructed. Consequently, in the SM there is no mixing in the lepton sector. However,
the evidences of neutrino oscillations were found in the Super-Kamiokande [3], SNO [4],
KamLAND [5], and other solar [6, 7, 8, 9] and atmospheric [10, 11] neutrino experiments of
neutrino oscillations. Observation of neutrino oscillations gives us the first sign of physics
beyond the SM. New physics seems to have manifested itself in the form of neutrino masses

and lepton mixing. In this way, neutrino masses can be connected to other new physics.

1.1 Some Neutrino Properties

1.1.1 Types of Neutrino

In general, there are two possible types of neutrinos: Dirac and Majorana neutrinos, since
neutrinos are neutral fermions. In the following, we consider the simplest case of one
generation. Dirac neutrinos could have Dirac mass terms, which couple left- and right-
handed fields

mpVLVR + h.c., (1.1)
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where mp is the Dirac mass and vy, and vy are left- and right-handed Weyl spinor fields,

respectively.

Majorana neutrinos could have Majorana mass terms which couples a left-handed or a

right-handed field to itself. Consider vyr. Its Majorana mass term is
2,C c -7
myvive, Y =Cy, (1.2)

where mjs is the Majorana mass and C' is the charge conjugation matrix.

Majorana neutrinos could also have both Dirac and Majorana mass terms. In this way

the mass terms, would be:

1 1
mpURVL, + imMﬁuf{ + h.c = in%MnL + h.c. (1.3)
with:
0 m
M = P (1.4)
mp Mmpyr

The eigenvalues of this mass matrix will be the neutrino masses:

mp o~ — , ma ™~ M. (1.5)

When mjs > mp, we obtain a very low mass, which would explain the lightness of neutrino,
and a very high mass, for a superheavy neutrino, which is the famous see-saw mechanism
[15].

Experimentally, there exists no conclusive evidence for or against the presence of light
Majorana neutrinos. New searches for neutrinoless double 5-decay could provide conclusive
proof that the light neutrinos are Majorana, provided the neutrino-mass spectrum has
the “inverted” rather than “normal” hierarchy (for recent reviews, see, e.g., [16] ). If,
on the other hand, future longbaseline oscillation experiments establish the existence of
the inverted hierarchy and/or ordinary (-decay measurements indicate a mass consistent
with the inverted hierarchy, a null result from the neutrinoless double [-decay searches
would imply that neutrinos are Dirac neutrinos. Either way, the investment of substantial
experimental resources in these difficult measurements indicates that determining the charge

conjugation properties of the neutrino is both an central question for neutrino physics as



well as one that is not settled.

1.1.2 Neutrino Oscillations

Neutrino oscillations are similar to the well known oscillations between K- and K9-mesons.
They occur because of the mixing in the charged weak current discussed in the SM. The

neutral and charged current weak interactions of neutrinos are described by the Lagrangian

9 g _ _
= - 5. Yla " a Zm+ —=€La " ai¥Li h.c.p L.
Lew E {QCOSQWVL Y v + \/EGL Y"Univri W,, + C} ( 6)

.t

where the fields er, @ = 1...3, represent the mass eigenstates of electron, muon, and tau,
and the fields vp;, ¢ = 1...n > 3, correspond to neutrino mass eigenstates. The flavour

eigenstate v, is a linear superposition of mass eigenstates,
va= Y Usvi. (1.7)
i

Three linear combinations of mass eigenstates have weak interactions, and are therefore
called active, whereas n — 3 linear combinations are sterile, i.e., they don’t feel the weak

force. In the case n = 4, for instance, the sterile neutrino is given by
ve=Y Ulvi. (1.8)
i

In the following we will restrict ourselves to the case of three active neutrinos.

We will consider now the evolution of the flavor state v, in vacuum. If at ¢ = 0 flavor

neutrino v, is produced, for the neutrino state at a time ¢t we will have

2
oyt = e 0l [ug) = Up e it |uy), (1.9)
1
where Hj is the free Hamiltonian. Developing F; over mf we have
m2
Ej~E+ 5k, (1.10)

where E = p is the energy of the neutrino in the approximation m? — 0. From (1.9) and
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(1.10) for the neutrino state at the time ¢ we have

Zzt
Vo)t = e iE1 Ze 2 Ul |vi). (1.11)

Taking into account the unitarity of the mixing matrix, we find the amplitude of the

probability to find a state |v,/) in the state |v,); is
. m? t
AVa — vor) = Wa| var) Z Uy; e 28 U, (1.12)
from which we obtain the transition probability in the form

P(Va - Vo/) = |5oz’oc + Z Uo/i zAle 2B — 1)Uéi |2 (1'13)
i—2,3

where Am?l = m?

—m?2 , L is the distance between neutrino source and neutrino detector,
and we label neutrino masses in such a way that m; < mo < mg.

In the simplest case of the transition between two flavor neutrinos index 4 in (1.13) takes
the value 2. For o/ # o we have

Py — vy) = % sin?26 (1 — cos Am? %) (o # ). (1.14)

Here Am? = m2 — m? and 6 is the mixing angle (|Uy2|? = sin?0, |Uaz|? = cos?0).

In matter, a resonance enhancement of neutrino oscillations can take place and transition
probabilities can be maximal even for small vacuum mixing angles—this is the Mikheyev-
Smirnov-Wolfenstein effect [17], which turns out to be very important in the analysis of
solar neutrinos.

In recent years there has been a wealth of experimental data in neutrino physics, and we
can look forward to important new results also in the coming years. The present situation

is summarized in Fig. 1.1 which is taken from the review of particle physics.

1.1.3 Direct Bounds on Neutrino Masses

Neutrinos are expected to have mass, like all other leptons and quarks. The study of the

electron energy spectrum in tritium -decay over many years has led to an impressive bound
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for the electron-neutrino mass. The strongest upper bound has been obtained by the Mainz

collaboration [12]:

my, < 2.2 eV (95% CL). (1.15)

It is based on the analysis of the Kurie plot, where the electron energy spectrum is studied

near the maximal energy Fjy:

K(E.) x\/(Eo — E)(Eo — E.)> —m3)V/2. (1.16)
In the future the bound (1.15) is expected to be improved to 0.3 eV [13].

Direct kinematic limits for tau- and muon-neutrinos have been obtained from the decays

of 7-leptons and m-mesons, respectively. The present upper bounds are [14],

m,,. < 18.2 MeV (95% CL), m,, < 170 KeV (90% CL). (1.17)

1.2 Neutrino Mass Implications

Neutrino mass implications for new physics is the main topic in my dissertation. Here I am
just going to use a naive relationship between the size of u,, neutrino magnetic moment,

and m,, neutrino mass, to illustrate the general picture.

If a magnetic moment is generated by physics beyond the Standard Model (SM) at an

energy scale A, as in Fig. 1.2a, we can generically express its value as

eG

where e is the electric charge and G contains a combination of coupling constants and loop
factors. Removing the photon from the same diagram (Fig. 1.2b) gives a contribution to

the neutrino mass of order

m, ~ GA. (1.19)



a) b)

O— —0O—

Figure 1.2: a) Generic contribution to the neutrino magnetic moment induced by physics
beyond the standard model. b) Corresponding contribution to the neutrino mass. The solid
and wavy lines correspond to neutrinos and photons respectively, while the shaded circle
denotes physics beyond the SM.

We thus have the relationship

A
2me uB

Hy
~ m[A(TeV)]Q eV, (1.20)

~

my

which implies that it is difficult to simultaneously reconcile a small neutrino mass and a
large magnetic moment.

However, it is well known that the naive restriction given in Eq. (1.20) can be overcome
via a careful choice for the new physics. For example, we may impose a symmetry to enforce
m,, = 0 while allowing a non-zero value for y, [18, 19, 20, 21], or employ a spin suppression

mechanism to keep m, small [22].

1.3 Plan of My Dissertation

Fig. 1.3 shows the framework of my work here. Above the new physics scale A, I expect some
form of new physics. In my work, I am going to carry out a model-independent analysis,
so I don’t specify new physics above A. Below A, the new physics is integrated out and I
have a effective theory which I am going to work with. Since new physics is not specified
above A, C}“, the couplings of effective dimension n operators, cannot be determined by
matching the effective theory with the new physics at the scale A. Instead, they can only
be determined by experiments.

In Chapter 2, I am going list all n = 6 effective operators for Dirac neutrinos and n =7

ones for Majorana neutrinos for the effective theory valid below A. Also, I focus on the



SU@)," SU(2),." U@,

EW T ~> NeutrinoMasses

. O(ﬂ) _ O¢n)
LQco"'LQED"‘é_.CSM,,- '\7'2'1 +é_ Ce—L_+...
] ]

w

SUB)." UDgeo ‘ RGE

=m, ~~ Meson Decays

Figure 1.3: Scheme of my dissertation

"interesting" operators that could contribute to neutrino mass through loops and other low
energy physics, such as neutrino magnetic moment, p-decay, and S-decay.

In Chapter 3, in order to connect the "interesting" operators with neutrino mass opera-
tors, I am going to work on these operators matching with 4D neutrino mass operators and
mixing with 6D neutrino mass operators.

In Chapter 4, I am going to use upper bounds on neutrino mass to constrain neutrino
magnetic moment [42, 45] and parameters of p-decay [41] and S-decay. I have to evolve the
renormalization scale p to characteristic energy of low energy physics to study them. For
neutrino magnetic moment and p-decay, I only have QED corrections, which are negligible.
However, as for -decay, QCD corrections could be important and we therefore include

them in our analysis of B-decay.



Chapter 2

Effective Field Theory

2.1 Introduction

Standard Model is the best theory of the ultimate nature of matter available today. To
date, almost all experimental tests of the three forces described by the Standard Model
have agreed with its predictions, which have resulted in establishing the Standard Model as
a very good effective theory at the weak scale given by the Higgs boson vacuum expectation
value of v ~ 250 GeV and below. Although the Standard Model is remarkably successful,
there is still some room for new physics, due to many theoretical reasons and deviations
from some experiments, which suggests that new physics might be one with a cutoff scale
much lower than the Planck scale; perhaps as low as a few TeV. For example, the discovery
of neutrino mixing has given us the first sign of new physics beyond v. The exact nature
of the new physics has not been identified yet. However, there are still two approaches we
can employ to explore the contributions from new physics. One is the top-down approach,
with which one can make a guess at this new physics and engage in constructing consistent
models. The top-down approaches can and will be very important for guiding thinking, but
are unlikely to lead to detailed serious predictions that really test the ideas, especially for
the string theory. The other approach is bottom-up, with which we can proceed by making
use of the effective field theory, which is characterized by a scale A. Then we only need to
take explicitly into account the relevant degrees of freedom, i.e., those states with m < A,
while the heavier states with m > A are integrated out from the action of new physics. All
UV dependence appears directly in the coefficients of the effective Lagrangian, which is a
sum of the SM term and non-renormalizable ones which are the results of integrating out the

unknown degrees of freedom. However, the effective Lagrangian carries an infinite number
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of non-renormalizable terms whose coefficients can only be determined by experiments since
the full theory is unknown. This is not as desperate as it seems, the good news is that all

the operators can be classified by their dimensions d and their coefficients are suppressed by

1

22+ Generally, we only need to use the lowest-dimension operators, discarding the higher

orders.

Since the full theory still stays a mystery to us, we need to identify two crucial ingredients
of the effective field theory before we build it. First, we have to identify the symmetry
the effect field theory respects. Intense experimental efforts in the search for new physics
strongly suggest that we should take the gauge symmetry SUc (3) x SUL (2) x Uy (1) of
the Standard Model above the weak scale. Below the weak scale, the gauge symmetry is
SUqcp (3) xUqeD (1). The second ingredient to know is the degrees of freedom. We usually
take the minimal set of fields, namely the SM fields of 45 chiral fermions, plus the gauge
bosons and one Higgs doublet, plus the necessary fields for certain theoretical motivations.
If we assume neutrinos are Dirac particle and are also massive, we need to include the
right-handed neutrinos vy as well. On the other hand, if the neutrinos are assumed to be
Majorana particle, the SM fields are enough. Even for the popular see-saw mechanism in
which we need very heavy vg (s) to make vps light enough, vg (s) are integrated out since
they are so heavy.

In this spirit, the total Lagrangian valid up to energies of order A can be written as an

expansion in %

Left = LSMtnew fields + %55 + %56 + %57 e (2.1)
where LM inew fields are dimension four operators (SM operators plus ones generated by
the new fields of the effective field theory), L5 is the dimension five operator constructed
from the neutrino and Higgs fields which is responsible for generating Majorana neutrino
masses for the active neutrinos, L¢ are dimension six operators, etc. All £; are SUc (3) x
SUL (2) x Uy (1) invariant. If L5 is non-vanishing then lepton number is not conserved.
On the other hand, neutrinos may be Dirac particles, in which case L5 vanishs. So for the
Dirac neutrino case, we have to include a new field vp and work out all the dimension
six operators. However for the Majorana neutrino case, we don’t need any new fields. But

we have to find all the dimension seven operators, because L5 only includes the Majorana
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neutrino mass operator, which is not interesting for our analysis.

In Section 2.2, we review the Standard Model field and Lgy to set notations; in Section

2.3 we develop Lg and L7.

2.2 The Fields and the Lagrangian Lgq;

To set notations, we begin with Lgy. The fields are
o Matter fields:
Left-handed lepton doublets: L= (1,2,-1)

Right-handed charged leptons: [ (1,1,—2)

Left-handed quark doublets: Q

(3:2,3)

Right-handed quark singlets: UR (3, 1,%), dr (3, 1, —%)

e Gauge fields:

Gluons: Gﬁ, A=1---8, (8,1,0)
W bosons: Wy, a=1,2,3 (1,3,0)
B bosons: B, (1,1,0)
e Higgs boson doublets: ¢ (1,2,1), ¢~5 =ir2¢* (1,2, 1)

where we indicate how fields transform under SUc (3) x SUL, (2) x Uy (1) in the brackets.
The gauge couplings of SUc (3) x SUL (2) x Uy (1) are denoted by g3, g2, and g;. The latter

are often expressed in terms of the weak mixing angle, 0y, and the electric unit charge, e:

sin Oy = —5—— (2.2)

e = gosin by = g1 cos Oy .
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The SUc (3) x SUL (2) x Uy (1) Lagrangian is

1 A Auv 1 a auy 1 v
[’SM = _ZG/»“’G e ZW‘W}W (g EBNVBM (23)
+iLPL +iQPQ + iuglPupr + idrPdg + ilrDlg
+ foLolg + faQpdR + fuQour

A
+ (D) (D) +misTo + 2 (619)”.
Assuming mi < 0, ¢ develops a vacuum expectation value (VEV)

0
¢ — (2.4
v/\/§ )

and the Higgs potential spontaneously breaks part of the gauge symmetry,

SUc (3) x SUL (2) x Uy (1) — SU (3)QCD x U(1)qED.-

The one remaining physical Higgs degree of freedom, H = (0, ¢°/+/2), acquires a mass given
by Mg = Av.

Quarks and charged leptons receive masses through Yukawa interactions. In the three-
generation SM, the Yukawa couplings fe, fu, and fq become matrix valued. The mass

matrices for charged leptons, u-type quarks, and d-type quarks are given by, respectively,

me:feﬁy mu:fuﬁa md:fdﬁ- (2'5)

Normally, me, my, and mq are general matrices. We can use fields’ redefinition to make

some of them diagonal; will discuss this in Section 3.2.

2.3 Operator Basis

We are going to list all the effective operators with dimension six for the case of Dirac
neutrinos in Section 2.3.1 and all the effective operators with dimension five and dimension

seven for the case of Majorana neutrinos in Section 2.3.2. We find that it is useful to group
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them according to the number of fermion, Higgs, and gauge boson fields that enter. And we
will make use of the equations of motion to express some operators in terms of other ones
and hence exclude them in the operator basis. In the process of listing all operators, we will
single out the operators which can contribute to both m,, through radiative corrections and

muon decay, beta decay, or neutrino magnetic moment in order to carry out our analysis in

Chapter 4.

2.3.1 Construction of Lz for Dirac Neutrinos

In this case, the effective Lagrangian turns out to be
Leff = LM +new fields T %[’6 -+ he. (2.6)
The lowest dimension neutrino mass operator is
o) = Lovx. (2.7)
After spontaneous symmetry breaking, one has

C. 0\ — —m,vrvg (2.8)

my, = —Ci v/V2.

The other operators with dimension four are those of the SM which we already have in
Section 2.2.

For the case of Dirac neutrinos that we consider here, there exist no gauge-invariant
operators with dimension five. So we move to operators with dimension six.

Four-lepton:

IN"LLy L Igy"lrlryulr  IRY'IRVRYWWR  VRY'VRVRVWVR (2.9)

I/ZRZRL I/I/RfRL eijfilRijR

Several of the operators appearing in this list can contribute to u-decay, but only the last

one can also contribute to m, through radiative corrections. Including flavor indices, we
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refer to this operator as
6 ij 7 AjC 7B, D
O,(E)ABCD =€V Lilp Ly vy (2.10)

where the indices 4, j refer to the weak isospin components of the LH doublet fields and

Semi-leptonic four-fermion:

eij@idejVR eij@ilRfjuR Z'y“L@'yﬂQ LururL (2.11)
€;QivrL;dr €;Q;urLjlp Ipy"lguryur  LdrdrL
LvpurQ L1 LQvmQ  VrRYMvruRY.ur  QlrIRQ

LirdpQ lrY"lrdryudr  QURVRQ

IRy vRuRYdr VY vRARYWAR

The first and the second column could contribute to the (-decay at tree level while the
third and fourth column couldn’t. Only the first column can contribute radiatively to dm,,
through loop graphs. Since vr doesn’t exist in SM, operators of a given dimension with the
same number of vg can only mix with each other. The relevant operators are
O 1 p s = LAVRUHQ” (2.12)
O apap = €L A7 Q% VR,

(6) _ .. Pa BTA D
O ap.ap = €iQ%dr L4 VR

where we already specify flavor indices for the fermion fields and these operators don’t mix

with the other four-fermion operators.

Four-quark:

A"QRYQ QYN NQ (2.13)

These operators don’t contribute to the beta decay, muon decay, or neutrino magnetic

moment. They don’t contribute radiatively to dm, through loop graphs, either.

Lepton-Higgs:
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(L L) (¢ Dyo) i(Ly'7"L)(¢ "7 Dyo) (2.14)
ilRy"R) (97 Dug) iRy "vR ) (67 Dyd)
i(lry"vE) (6" Dyud)

Neither of the first two operators in the list can contribute significantly to m, since they
contain no RH neutrino fields. Any loop graph through which they radiatively induce m,
would have to contain operators that contain both LH and RH fields, such as (’)gél) or other
n = 6 operators. In either case, the resulting constraints on the operator coefficients will be
weak. For similar reasons, the third and fourth operators cannot contribute substantially
because they contain an even number of neutrino fields having the same chirality and since

the neutrino mass operator contains one LH and one RH neutrino field. Only the last

operator

6 L. 5A D ~
09, =illgy"vE) (6" Dyd) (2.15)
can contribute significantly to m,,, since it contains a single RH neutrino. It also contributes
to the u-decay amplitude after SSB via the graph of Fig. 2.1a, since the covariant derivative

D,, contains charged W-boson fields. We also write down the n = 6 neutrino mass operators

0% ap = (LAGvR) (67 ¢). (2.16)
Quark-Higgs:
i@y dp) (T Dug) (@' TQ)(¢7 T Dyug) (2.17)
W(QQ) (¢ Dug)  i(dry"dr)(¢" Do)
i(urn*ur) (¢ Dyug)

Here we also list operators having two quark fields within because they might contribute
to [-decay at tree level combining some SM operator. Actually the first two operators do

contribute to G-decay. But they don’t include v and therefore won’t contribute to dm,,.

Fermion-Higgs-Gauge:
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fTa’y“DVLWﬁV f’y“D”LBW ZR’y“D”lRBW vpY"'D"vRrBw (2.18)
QQ(ZO"MVTGQZ))ZRWSV gl(ZU“V(;S)lRBW

go (ZO'/'WTG‘ ®) VRW;Z’V g1 (Za“”gb)uRBW

As for the fermion-Higgs operators, the operators in (2.18) that contain an even number

AB

of vp fields will not contribute significantly to m;

, so only the last two in the list are

relevant:

0% 1 = 01 (LAc" O)vR By, (2.19)

OI(/I(i?AD = gg(I_/AO'#VTaqz)VgWZ,.

These also contribute to the neutrino magnetic moment. We also observe that the operator
OI(/‘G,? 4p Will also contribute to the p-decay or S-decay amplitude via graphs as in Fig. 2.1b.
We have computed its contributions to the Michel parameters of py-decay and find that they
are suppressed by ~ (%)2 relative to the effects of the other n = 6 operators. We think
the same suppression still exists for §S-decay. This suppression arises from the presence
of the derivative acting on the gauge field and the absence of an interference between the

corresponding amplitude and that of the SM.

Two-quark-Higgs-Gauge:

iQ\Y, D, QG iQT, D, QW™  iQ~,D,QB" (2.20)
idpAYY, DydrGA™  idry,DydrB"  iup Ay, DyurGY
iurYuDyurB"” (@aw,)\AuR)ggGA“” (@U“VTGUR)(JZWGMV
(Qouur)dB*  (QouM\dr)$G™  (Qoyu T dr) oW

(Qouwdr)p B

We list these operators for the same reason as above Quark-Higgs operators. However, even
if they may contribute to the S-decay, their contributions will be suppressed by derivatives

on the gauge bosons just as (9516/) Ap- What is more, they don’t contribute to ém, due to
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that fact they contain no vg.

In addition to these operators, there exist additional operators with dimension six which
don’t contribute to m, through radiative corrections and muon decay, beta decay or neutrino
magnetic moment. They won’t mix with the "interesting operators" due to mismatch of
the number of vr. These operators are not interesting in our case. We list them as follows

for completeness.

Two-fermion-Gauge

iQT ", D, QW™ iQv,D,QB" idp\~, D, drG (2.21)
idryDydpB" A, D,urG ™ iugy,D,upB"

ilgyu D pB" L%y, D, LW*"  iL~,D,LB"

QA Y, D, QG
Gauge-only
FapcGRrGBAGS fapcGirGBrGSF (2.22)
cabe W WA e W WEAWH
Higgs-only

(670)° 8 (67 0) 0" (670) (2.23)

Fermion-Higgs

(676) (Ting)  (¢76) @dro) (670) (Qurd) (2.24)
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(a) (®)

Figure 2.1: Contributions from the operators (a) (9( ) 4p and (b) Og)AD (denoted by the
shaded box) to the amplitude for p-decay or - decay Sohd, dashed, and wavy lines denote
fermions, Higgs scalars, and gauge bosons, respectively. After SSB, the neutral Higgs field
is replaced by its vev, yielding a four-fermion u-decay or S-decay amplitude

Higgs-Gauge
oT¢) Gi, G (6% 0) Ga, G (2.25)

¢
¢+ ¢) Wﬁywauy (¢+ ¢) Wﬁuwaw/
¢

(

(

(¢7¢) BuwB"™  (¢79) BuB"
(¢+ a¢) Wa BHY (¢+Ta¢) W;ZIB;LV
C

¢) (Duo" D"¢) (7 D"9) (Dug™¢)

2.3.2 Construction of L5 and L; for Majorana Neutrinos

Now, we don’t need any new fields and therefore the effective Lagrangian is

st Lo dhe (2.26)

Leg = Lsm + A3

A

The lowest-order contribution to the neutrino (Majorana) mass arises from the usual

five dimensional operator containing ¢ and L
(5) _ ik _jm Te.T .
Oy = €™ (L L) drdm (2.27)

where L¢ = LTC, and C denotes charge conjugation. After spontaneous symmetry breaking,
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one has
c3, 0% -
M’A Mo, —my V5 VL, (2.28)
2
v
my = —=Cir 55

The lowest-order contribution to muon decay, beta decay, and neutrino magnetic moment
arises at dimension seven. We are going to group the operator with dimension seven ac-

cording to the number of fermion, Higgs, and gauge boson fields that enter, as before.

Two-fermion-Higgs-Gauge:

O = (L7€s) oy, (HTeLP) B (2.29)
OI(/IZ?AB = (ﬂeH) O (HTET“LB) whv

These contain the neutrino magnetic moment operator. They will also contribute to the

p-decay and [-decay as (’)5‘6,) 4p in the Dirac case. Their contributions are also suppressed.

Two-fermion-Higgs-derivative:

Og)AB = ieikejmﬂi’yulg(ﬁqukl)u(pm (230)

(6)

This is analogous to O in the Dirac case, it also contributes to p-decay and -decay in

V,AB
(6)
the way O\7,AB does.
Four-lepton-Higgs:
Ogl),AB,CD = I (LAGLE)(IGLE ) bm (2.31)

. g - —
O(Lz),AB,CD = €”€km(LACiLkB)(lgL?)¢m

These will contribute to pu-decay. In Section 3.2, we will find (’)(L? Ap.cp contributes to m,,
through radiative corrections, while (95372) ap.cp wWon't. They are analogous to (’)gﬁ) ABCp In

the Dirac case.
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Four-quark-Higgs:

O g = €9 F™ (LAGLE ) (dRQ)) (2.32)
Oc(l?,AB,aﬁ = Eikejm(LAciLf)(TﬁQf)éf)m
OR 4 ap = €9 (LAQ)(AFLE )b
O ps.an = €™ (LAGQR) (AR LE )b

O 15 ap = €18 (LA LE) Q" ul) b
7 'm <1 70 Tk
Oqu),AB,aﬁ = ML (LA L) (@ Up) b

7 ij (T Ac. T .
O s = €9 (LA M1B) (i) 6

OC(ZL B.of is the counterpart of 02?1)4 D.of in the Dirac case and OC(ZA B.of is one of O((;z D.of
in the Dirac case, they will all contribute to 5-decay. However, in Section 3.2, we will find
that Oi?AB’a/B and Og)’AB@B don’t contribute to m, wvia loops. As for OS{)AB’Q/B, it won’t
contribute to neutrino mass through loops because of Dirac structure.

Two-leptons-Higgs-two-derivatives:

Oyp = (L¢eH) (D, H"eD"L) (2.33)

O3p = (L¢eD,H) (D*H" L) (2.34)

These operators are not interesting to us since they don’t contribute to m,, through radiative

corrections and muon decay, beta decay, or neutrino magnetic moment.
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Chapter 3

Operator Matching and Mixing

3.1 Introduction

We start with the effective Lagrangian which follows [45] and takes the following form

CH 1) n
Lo = Z e 0" () + h.c. (3.1)
n7]

where p is renormalization scale, n > 4 is the corresponding operator’s dimension, j is the
index running over all independent operators of a given dimension and A is the new physics

(n)

cutoff. In analyzing the renormalization of an operator, say O; (1), it is useful to consider

separately two cases:

° Oz(n) receives contributions at the scale A associated with loop graphs containing an

(m)

operator (’)j with m > n.

Above the weak scale, all the fields are massless, and p itself appears only logarithmi-
cally. If (’)En) and Oj(m) can exist for zero external momentum, these graphs will vanish
in dimensional regularization (DR) since they must be proportional to M™~" where M is
some mass scale. If we use brutal cutoff, these graphs turn out proportional to A™™",
However, they might be cancelled by the contributions from new physics. Since we don’t
know anything about new physics, we have to be cautious, and thus are going to follow

the argument found in [56] and use NDA to estimate these contributions. Simple power

counting shows that these contributions go as ~ % times a product of (’)j(m) operator
. cr . . . .
coefficient 17— and the gauge couplings g1,--- ,g; appearing in the loop. Thus, matching

of the effective theory with the full theory (unspecified) at the scale A implies the presence
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g91--g1
1672

of a contribution to C}' of order C7". As emphasized in [56], the precise numerical
coefficient that enters this matching contribution cannot be computed without knowing the

theory above the scale.

(n)

° (’)gn) mixes with a set of operators {O§n)} which have the same dimension as O,

We can carry out exact calculations on mixing among these operators by employing

a renormalization group (RG) analysis. We will compute all the one-loop graphs that

contribute by using DR and background field gauge [23] in d = 4 — 2¢, and introduce the
(n)

renormalization scale u. Due to operator mixing, the renormalized operators (’)j n can be

. . n .
expressed in terms of the un-renormalized operators C’)j(- ) via

1 /2n/2m/2n/2nd/2nu/2 1
]R_ZZ A A A A A A Zij o (3.2)
where
() _ o /2n/2nl/2n/2nd/2nu/2()
Ort = ZpM 2,007 W 2R 2y T 2y Oy (3.3)
are the p independent bare operators; 21/2 Z;)/2, ZZIR/2’ Zé/2, Z;}/j, and Zil/f are the wave-

%, and u% , respectively;

function renormalization constants for the fields LA, ¢, 14, Q,
ML, N Ny NQ, Ndys and ny, are the number of left-handed lepton, Higgs fields, right-
handed leptons, left-handed quarks, right-handed down quarks, and right-handed up quarks
appearing in a given operator. In the minimal subtraction scheme that we adopt here, the
products of renormalization constants Z, 1ZnL/2ZZ¢’/2Z;:R/2Z8Q/2ZZ;R/ZZZ;R/2 simply re-
move the 1/e terms arising from the loop graphs.

(n)

Since the bare operators Ojo do not depend on the renormalization scale, whereas the
Zj_k1 and the O](%) do, the operator coefficients C’;-L must carry a compensating u-dependence
to ensure that L.g is independent of scale. This requirement leads to the RG equation for

the operator coefficients:

d n n
k

where

d , _
Tkj = Z <Md,qul1> 21 (3.5)

l
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is the anomalous dimension matrix.
Using the anomalous dimension matrix v and the one-loop running of the couplings in
v, we can solve the RG equation. If the couplings in v don’t change drastically—just as
a1, a9, a3, and Yukawa couplings which run from A to v—their runnings have a negligible

impact on the solutions to RGE so it’s safe to assume these couplings are constant. If we
cr

define the column vector C = | = |, the RGE will take a simple form:

=

d
M@C +~4TC =0 (3.6)

where 7y is the anomalous dimension matrix. Since « is assumed constant, the solution is

C() = exp( =" In £)C(). (3.7)

Keeping only the leading logarithms In £, we find

C(u) = C(A) — 7' In %C(A). (3.8)
In the following section, we are going to apply the above results to OE\? Ap and O](\G/[) AD

in the Dirac case and OE\Z)AD, and O](J[)AD in the Majorana case.

3.2 Mixing and Matching Considerations for O](S’G) and O](\Z’7)

3.2.1 Diagonalizing Yukawa Couplings

To simplify our analysis, we can redefine the lepton fields L and [r so that the charged

lepton Yukawa fAP coupling matrix is diagonal. Specifically, we take

LA — LA = SupLP (3.9)

I — 19" = Topl”
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with S4p and Top chosen so that
Lfl=1L fliasy (3.10)

where L, L' denote vectors in flavor space, f.denotes the Yukawa matrix in the original
basis, and &% = St f,T. We note that the field redefinition Eq. (3.9) differs from the
conventional flavor rotation used for quarks, since we have performed identical rotations
on both isospin components of the left-handed doublet. Specifically, the charged lepton
Yukawa operator is fé“Bngblg where fAB = ;7\%(5 ApB with m 4 being the mass for the

charge lepton of flavor A and v being the vacuum expectation value of the Higgs scalar field.

However, there are some subtleties in diagonalizing quark Yukawa matrices. The two
quark Yukawa matrices fy F and fé)‘ﬁ can’t be diagonalized simultaneously by redefining Q,

uf, and d%. Specifically, the redefinitions of Q, u$%, and d%

Q™ — T8QP (3.11)
up — Sﬁ‘ﬂu%

% — 57 dy
yield

fu— T+quu (3.12)

fa— T faSq

where the unitary matrices 7', Sy, and S4 can be chosen so that f, and fq are diagonal.
Since there is only one matrix T acting on the left side of f, and fq which are generally

independent, we can either make f, diagonal or make fy diagonal but not both.

In literature, people always choose T" and S, so that f, is diagonal, i.e., we have

m, 0 0
. 2
fu - fﬁhag = T+fusu = 0 me 0O \Uf (313)
0 0 my

while Sq and U, a unitary matrix acting on the left side of fq, are chosen to diagonalize fq,
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namely

my 0 0 f
. 2
UfuSa=Fi" =10 mg 0 [~ (3.14)
0 0 my

fu— TfuSq=TU U f,Sq =TU" fli88 — Vpep A28

ur, ur,

af «
(TU+)*? df VEmady

Q" = T*Q" =

where u$ and dg are mass eigenstates after SSB and TU™ is just Voxwm, which is the
famous Cabibbo-Kobayashi-Maskawa matrix. We will adopt this choice in the remainder of

the paper and use notations <, u%, and d as the corresponding basis.

Consequently, gauge interactions in the new basis entail no transitions between genera-
tions. We also note redefinition of fields also implies a redefinition of the operator coefficients

C’ﬁ AD> C% Apcps ete.. For example, one has

1,6 4,6
Cat, arp = Cap, ap S, ara (3.15)

6/ 6
Cr wpcp = Cp apop SaaSp T

where a sum over repeated indices is implied.

However, we note that we can also choose T, Sq, and S, to make f, diagonal. The

transformation between the new basis Q'*, v’§, and d’§ and Q%, u%, and d, are given by

Q" = (Vi) Q" (3.16)
u}% =up
B = dR

which imply a redefinition of the 6D operator coeflicients

A
CS,AD,aﬁ = Cg),AD,a,\VcéM (3.17)
A
Citap.ap = Can,ap s (Voxm)® (3.18)

Cap.as = Coraprs(Vin) ™ (3.19)
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Figure 3.1: One-loop graphs for the matching of 01(367)W’ Ogi), and (9%6) (denoted by the
shaded box) into 05\? Ap- Solid, dashed, and wavy lines denote fermions, Higgs scalars,
and gauge bosons, respectively. Panels (a, b, c) illustrate matching of OS}W? 0576), and
(’)Ef), respectively, into O](é[)’ AD-

Q!
o
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Figure 3.2: One-loop graphs for the matching of Oiﬁt)i (denoted by the black box) into

Og\?, ap- Solid and dashed lines denote fermions and Higgs scalars, respectively.

We are going to use these transformations in Section 4.2. Diagonalization of the neutrino
mass matrix requires additional, independent rotations of the 1/5 p fields after inclusion of
radiative contributions to the coeflicients Cf\/f Ap generated by physics above the weak scale.
Since we are concerned only with contributions generated above the scale of SSB, we will
not perform the latter diagonalization, and will carry out computations using the L', I

basis.

3.2.2 Dirac Case

3.2.2.1 Matching with OE\A/‘[)AD

The one-loop graphs for matching (’)ES)ABCD, Og)AB’ O$)AD and Og)AD, with 05\4/1[) AD

are shown in Fig. 3.1. For mixing the four-fermion operators (’);@ABC p into Og\j) Aps two
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topologies are possible, associated with either the fields (ZA, vE) or (fB, vE) living on the

external lines. For mixing O%)ABCD, as well as of O V. AB’ into (’)J(é,) Ap» one insertion of

the Yukawa interaction fA¢*1 RLA is needed to convert the internal RH lepton into a LH

one. In contrast, no Yukawa insertion is required for the mixing of Ogi) Ap and (’)‘(,[6,) Ap into

(’)](é[), ap- The interesting six dimensional operators OS}A D.ag (’)((g)’ AD.af> and (’)C(g)’ AD.ap Can

contribute to (9](\‘/1[) up through the one-loop graphs of Fig. 3.2. Using NDA we can estimate
the contributions from the coefficients of six dimensional operators to the coefficient of the

four dimensional neutrino mass operator

6) 4 — 6
(’)( —C ~—n(
B, AD M,AD ™ o2 Oy B, AD

6) 4 3o 6
o% ¢ ~—00
W, AD M,AD ™ oS O W, AD

AA
(6) 4 o 6 1 ma g
Ovap = Ohap ~ 16500 ap = 1672 y/y/2 VAP (3.20)
(©) s fa4 1 ma g

0] —C ~Z_( =4
F,ABAD M,BD ™~ g5 UF ABAD = g3 NG F, ABAD

BB
6 f 1 mpg
OET,)ABBD — Cir ap ~ 7% SC% ABBD = 1672 /v \[CF, ABBD

(6) 4 No _my 6
Ogapap = Chap ~ g S0 £3PC8 Do = 872 0/y/3" 6°Ch.ap.08

B
(6) 4 Nc' ,op 6 Nc mg o xap
OdLAD,ag — Chpap ~ 1602 I Ci1,AD.a8 = 1622 NG CIOéMCdl AD,af

B
(6) 4 N My _xaB ~6
Ous ap.ap — Cir,ap ~ fd B.AD.af = 877 0/v2 ckMCd2,AD.ap

where Oy is the weak mixing angle, N¢ is the quark’s number of color and my, mg,ma,

and mp are the masses for up quark of flavor o, down quark of flavor «, and charged lepton

of flavor A and B, respectively. The relative factor of 3 cot? fy for the mixing of (9‘(,[6,) AD

)

compared to the mixing of (’)( ‘Ap arises from the ratio of gauge couplings (g2/g1)? and

the presence of a 7- 7 appearing in Fig. 3.1a. The factor of two that enters the mixing of
ng)A pap compared to that of ng)A ppp arises from the trace associated with the closed
(6)

chiral fermion loop that does not arise for Ogi) ABBD> S0 as the factor of two of Oy 4p 4
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3.2.2.2 Mixing withO'9

In order to start the renormalization of Og\? Ap»> We need to come up with a basis of operators

close under renormalizations. We find that the minimal set consists of 10 operators that

contribute to p-decay, S-decay, neutrino magnetic moment, and m‘;‘D :

6 6 6 6 6 6 6
Ok, OV, 05\4),AD’ O‘(N/,)AD’ O%,)AB,BDv O%,QA,A@ OHBA,BD? (3.21)

(6) (6) (6)
OQ,AD,aB? Odl,AD,aﬂ? OdZ,AD,aﬁ

We only keep the one-loop graphs up to the first order in the Yukawa couplings because
all the Yukawa couplings except top quark’s are small and hence the higher powers are
highly suppressed. As for the top quark’s Yukawa coupling, it always comes together with
the tiny CKM matrix element V;4 in our calculations, since 5-decays always involve up or

down quarks.

These graphs of the mixing between (95\64) Ap and (9,(3624 Ds (9‘(5’)14 b, which are illustrated in
Fig. 3.3-Fig. 3.5, were computed by the authors of [45]. The remaining classes of graphs rel-
evant to mixing among the first row of the basis Eq. (3.21) are illustrated in Fig. 3.6, where

we show representative contributions to operator self-renormalization and mixing among the

various operators. The latter include mixing of all operators into (’)5\(/}) Ap (a—c); mixing of

(’)](\6/[)7 AD> (’)](;) Ap» and (’){(,3? Ap into Ogi) AD (d, e); and mixing between the four-fermion oper-

ators and the magnetic moment operators (f, g). Representative self-renormalization graphs
are given in Fig. 3.6(h—j). The representative Feynman diagrams of the graphs mixing be-

tween the first seven and the last three and among the last three are shown in Fig. 3.7-Fig.

3.9. The graphs of Fig. 3.7 involve renormalization of OS)AB > OC(S)AB B> and Oc(g)AB af’

where Ogi) AB.af and (’)&62) AB.af mix into each other under renormalizations. The graphs of

Fig. 3.8 show how OS)AB 0 (’)((g)AB ap> and (’)((ig)AB op Mix into (’)gj)w. Contributions from

OS,)AB,aB o L7D25UR, which is zero by the equation of motion for ¢, and Ofg)’ABﬂﬁ and
06(162) AB.af do contribute to Og)w. The graphs mixing Og)w into OS)A B.ap (’)((ﬁ) AB.af’ and

(’)((162)7 ABqp are illustrated in Fig. 3.9. As noted in [44], the mixing of the the four-fermion

operators into (’)5\3) Ap contains three powers of the lepton Yukawa couplings and is highly

suppressed. In contrast, all other mixing contains, at most, one Yukawa insertion.
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(6)

Figure 3.3: Self-renormalization of Oy,

Figure 3.4: Mixing of O}, into O}

After calculating all the graphs, we obtain the anomalous dimension matrix which is

YL Y2 8
A1 0 0

= | (3.22)
v 0 A2 A3

vs 0 A4 A5

where ~7, is the 7 x 7 anomalous dimension matrix for the first seven operators

3(a1—3a3) 3 9aq fAA* 9ay fA4 9a1 fEE 9a1 fBB

— e s —6ai(on +o2)  ——gE — i T an
9o 3(a;—3a2) 27a2feAA* QagfeAA QaneBB gagfeBB

T: 167 60[2(0&1 + 30{2) 8 - 4 - 27 47

9(ai1+3as) 3\
0 0 Naadday) _ 3% 0 0 0 0
_ 9ap fAA 3584 30
= 0 0 “8r T a2 T 0 0 0
AAx AAx

g g o e o
388 fBB~ 3(a1+as)  3(e1—ay)

T 12872 T 128#2 0 0 0 87 ar
3(a1—a) 3(a1+a2)

0 0 0 0 0 = Lt

and 3 are the 7x1 column vector mixing the first seven operators into (’)(6) 0(6)
Y1572, Y3 g p Q,AD,aB> Y d1,AD a8’
/
/ // B
) \ _ -
N //% P \\ L \\///
\\ ;7 N s
N N s
il + I +

Figure 3.5: Self-renormalization of (’)](\64)
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Figure 3.6: One-loop graphs for the mixing among 6D operators. Notation is as in previous
text

figures. Various types of mixing (a—g) and self-renormalization (h—j) are as discussed in the

e

Figure 3.7: Self renormalizations of (’)C; d1.d2.AD.0f (denoted by the black box). Solid,
dashed, and wavy lines denote fermion, Higgs scalar, and gauge bosons, respectively



(6)

Figure 3.8: Mixing O 1 i 4p.ap ito O%y

Figure 3.9: Mixing Og)w into Ogj)dl d2,AD.0f

and Oflg) AD.af’ respectively,

0 a1 fg”? _a1f§6
3T 3
0 3as foP 3as foP
27 47
0 0 0
n=1|0f.72= 0 Y2 = 0 (3.23)
0 0 0
0 0 0
0 0 0

V1,74, and 4 are the 1 X 7 row vector mixing (’)g})AD B’ OEZ?AD ope and Og;)AD op 1nto the

first seven operators, respectively,

viz(o 00000 0) (3.24)
= (L —3 00 0 0 0)
752(0000000)
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and

1730[1 2&3

Al = 2
56m | (3.25)
1301 3as 2ag3
A2 = A5 = — bt N
g 576w 8w 3
5Ye %1 3ag 4a3
A= — — —~= 4+ =
3672 4rw + 3
4
A4 _ 5041 3042 as

3602 dr | 31

We find that the running of the gauge and Yukawa couplings has a negligible impact on
the evolution of the C%(u). Eq. (3.8) gives us the solution to the RGE up to the leading
logarithms In(p/A). We find

Chr ap(1) = Chy ap(A) [1 — 331n ﬂ

~ [ OO ) + 1 CEA) +1sCE ()] 4

CLu) = CY(A) [1 =5 ]

+ [(f84%/320°) CF aaap(A) + (FEP/320%) C% appp(M)] ln%

+ (57 /32)Cy ap.as ()] I &

C8(u) = CO(A) [1 +4In %]

+3/1287% (o1 — ) [f£*CY aaap(A) + fPP*CR appp(A)

af3* %
+ fdﬁ 031,AD,a5(A)] In A

C8 ap() = C% ) [1 = &] + (9724 /8m)C°(4) In

FRS

3(ae — 3 I
CP aaap(p) = CE aaap(A) [1 + (287r1) In A}

+ (954/47) [C8 ap(Mar + Cly ap(Aaz] In %
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a1+« I

C?, appp() = Cp appp(N) [1— (18772) In n
3 a1 — Q9 7
- (47r)0167, Bapp(A)In A

+ (9f8F )27) [CE ap(M)ar + CPy ap(A)az] hl%

3o + o I
C?, papp() = Cp papp(A) [1 - (18772) In A]

_ 3(041 — az)
4

— (9577 /4m) [ ap(A)ar + Cfy, ap(A)az] n &

i
C% Appp(A)In N

173c;  2as3 n X
A

Coap.apt) = CH apap(N) |1+ 576

™

871 A

(6) (6) 13@1 3a2 2053 I
Cir,ap,as = Car,ap,ap(A) {1 - <5767r 8t | 31 Iy

S5a;  3as  4das X
A

In —

B af
3042f
Ch ap(A) + 7Fd Civ ap(A)

81 A

(6) _ ) 13a;  3az | 2as p
CdZ,AD,ozB - CdZ,AD,aﬁ(A) |:1 + <5767T {7 + g In —=

3672 Arx 37

3anfP
Ch ap(A) — 47;1 Civ ap(A)

S5a; 3as  4das X
A

+ CSI,AD,aﬁ(A) [

alfﬁfﬁ
3

+

7
nZ

A
where

CO(p) = 1 CH ap(p) — 302Cfy ap(p)
Y+ = (713 £ 723) /2
¥ = 3(a1 + 3ag)/16m.

(3.26)
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Figure 3.10: One-loop graphs for the matching of Og}w (denoted by the black box) into

5
O ap

We observe that to linear order in the lepton Yukawa couplings, C’& ap () receives contri-

(6)

butions from the two magnetic moment operators and Of/ but not from the four fermion

operators.

3.2.3 Majorana Case

Although we have less operators in the Majorana case than in the Dirac case, it turns out
that the flavor structure is far more complicated. In the Dirac case, we specify a flavor D
for RH neutrino but this flavor is indeed inactive in our analysis. Unlike the Dirac case, we
have v¢ to play the role of vr. The flavor of v§ plays an important role. Consider magnetic

moment operator for Majorana neutrino
Ofrar = %TECUWV?FMV (3.27)

where « and 3 are flavors for neutrinos. We find that O9f;, = 0 and the only non-diagonal
operator could be nonzero. We only have a so-called transition magnetic moment operator

for Majorana neutrinos. This doesn’t happen in the Dirac case.

3.2.3.1 Matching withO\),

First, we define
1 7 7
Oa/,AB =5 {Oi(/V?AB + Oi(/V,)BA} . (3.28)

In this way, we can express Og/) Ap in terms of operators with explicit flavor symmetry

+
OW,AB‘
The one-loop graphs for matching (’);—LV ap and (’)g) Ap With (’)5\‘? 4p are shown in Fig.
3.10. The mixing of (’)?,'V ap and (’)g) Ap are zero since OIJE/ ap and (’)g) 4 are flavor antisym-

metric while (95\? 4p is flavor symmetric. The 7D operators (9187) and (9&7) can contribute to



Figure 3.11: One-loop graphs for the matching of O(L7L 4 (denoted by the shaded box) into

5
037 ap

O](\?[) through the one-loop graphs of Fig. 3.2. Using NDA we can estimate the contributions
from the coefficients of 7D operators to the coefficient of the 5D neutrino Majorana mass

operator

Q

o Coap~—-o—CF 3.29
W,AB " “M,AB A7 sin? Oy W,AB ( )
BBx
(7) s [ A
Op ap — Chan 1672 Cv aB
BB
(7 5 (7)
OLl,AB,BD — Cirap ~ — 127r2 L1,AB,BD
AA
(M) 5 J ™
OLl,AB,AD - CM,BD ~ 7lg7r2 CLLAB,AD (3.30)
DD
(7) 5 (7
OLQ,AB,DD - CM,AB ~ 867r2 CL1,AB,DD
AA

(7) 5 e 7
OL2,AB,AD - CM, BD ™ 1672 CL2,ABAD

af
7 5 fd NC 7
0512),,45,@3 — Cif,aB ~ 1672 Ci2,48,0B

o
7 f Nc
Oéz),AB,aﬁ - 015\4, AB ™ (187067;27,43@5 (3.31)

e aB*NC
5 u 7
Ouz,AB,ag - CM, AB ™ Q2 Cu2,AB,aﬁ

af
(7 5 fd Ne 4
Ou2,AB,aB - CM, AB ™ 162 "u2AB.aB

Please note (’)(L7)A 5.cp could contribute to both Og\‘? Ap and (’)](5[) pp- We already see that

flavor structure make our analysis of Majorana case very different than the Dirac case. Due
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to flavor structure difference, Dirac neutrinos and Majorana neutrinos could have different

implications.

3.2.3.2 Mixing withO\?

We could carry out our analysis just as in the Dirac case, but due to the complex flavor
structure, a basis of operators close under renormalizations, including (’)5\? Ap> Would include
an intolerable number of operators. So we are not going to calculate the full anomalous
dimension matrix . If 7 is assumed constant, the solution to RGE up to the leading

logarithms In £ is

C(u) = exp(— 77 In %)C(A). (3.32)

So if we are only interested in how one operator, O;, will contribute to Og\? Ap> we don’t

need to calculate the full . 7,57, which stands for mixing of O; into (’)5\? Ap> Will be enough;

we then have

Chr (1) ~ =7insCi (1) ln% (3.33)

Just like in the Dirac case, the mixing of the four-fermion operators into (’)](\Z[) Ap contains

three powers of the lepton Yukawa couplings and is highly suppressed. And it turns out
Offv’ 4p Will not contribute to neutrino magnetic moment. As for (’)g’) Ap> it 1s antisymmetric

in flavor while O%P , 5 is symmetric. So its contribution to C7P, 5 vanishes. At the end of

(7)

the day, we are only left with (9;[,7 ap and (’)‘7’ B

As the operator Oy, is flavor antisymmetric, it must be multiplied by another flavor
antisymmetric contribution in order to produce a flavor symmetric mass term. This can be
accomplished through insertion of Yukawa couplings in the diagram shown in Fig. 3.12 [53].
This diagram provides a logarithmically divergent contribution to the 7D mass term, given
by

3aem? —m?% . A
7D 27A B —
C(M,AB (U) = E 02 In E W,AB (A) (334)
where m 4 are the charged lepton masses, and the exact coefficient has been computed using
dimensional regularization, and renormalized with modified minimal subtraction.

@ e " . - ) L (6)
As for OV,AB’ its mixing into OM,AB is very similar to how 0‘7 1 Mixes into OM,AB'

)
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Figure 3.12: Contribution of Oy, to the 7D neutrino mass operator

After our calculation, we find

9a2feAA o 3feAA>‘> 07

i
Clranti) ~ (2255 22N ¢yt (3.35)

which is exactly as the Dirac case.
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Chapter 4

Neutrino Mass Constraints

After SSB, the operators Og\? and Og\g) generate a contribution to the Dirac neutrino mass

Sm, = —034(@)% (4.1)

3

Sy = —C8 (v)———

and the operators (’)](\‘:’[) and O](\Z[) to the Majorana neutrino mass

2

v
m, = —C]?J(v)Q—A (4.2)
7 vt
5m,, == —CM(’U)W

Assuming there is no fine-tuning, the upper limit on m, would put the same order of bound

dm,, as well, namely, dm, < m,. In this way, we can use neutrino mass to constrain Cs(v)

~

as follows:
m, my, A2
|C}‘\‘4(U){ N ma ‘CZ?/[(U)} N 1;/7\/51127/2’ (4.3)
my my 3
O3 0)] < e R OIRS A

~ou/N20/V2 v/V203/2¢/2

So, through the operator mixing and matching discussed in Section 3.2, we are going to
constrain neutrino magnetic moment in Section 4.1, some parameters of u-decay in Section

4.2, and (-decay in Section 4.3. Finally, we constrain m — Dv in Section 4.4
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4.1 Constraints on Neutrino Magnetic Moment

In the Standard Model (minimally extended to include non-zero neutrino mass) the neutrino

magnetic moment is given by [24]

~3x1 —19<m”) . 4.4
Hy 3 x 10 leV “B ( )

An experimental observation of a magnetic moment larger than that given in Eq. (4.4)
would be an unequivocal indication of physics beyond the minimally extended Standard
Model. Current laboratory limits are determined via neutrino-electron scattering at low
energies, with p, < 1.5 x 107195 [25] and p, < 0.7 x 107195 [26] obtained from solar and
reactor experiments, respectively. Slightly stronger bounds are obtained from astrophysics.
Constraints on energy loss from astrophysical objects via the decay of plasmons into vv
pairs restricts the neutrino magnetic moment to be u, < 3 x 10712 [27]. Neutrino magnetic
moments are reviewed in [29, 30, 31], and recent work can be found in [32, 28].

(6) 7)

AD involving O M. AD ((95\4 4p) Will be smaller than those

In general, contributions to m;,

that involve mixing with (’)g\? AD (O](\?[) ap) by ~ (v/A)?, since OE\?AD (05\? 4p) contains
an additional factor of (¢f¢)/A2. For v not too different from A, the impact of the mixing

with Og\? AD (O](\? 4p) can also be important.

4.1.1 Dirac Case

After SSB we have

v
o L VR B (4.5)
ol gzﬁﬁLU“VVRWSV TR (4.6)

Using g2 sin Oy = g1 cos Oy = e, it is straightforward to see that the combination C%Og) +

C%Ogj/) appearing in Leg contains the magnetic moment operator

—%DU“VVFMV (4.7)
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where F),, is the photon field strength tensor and

B a2 (55 [Ch) + )] (48)

Matching with (’)](é[)y AD> Og) and (’)I(/g) contribute to Og\? with

4 @ 6
~— 4.
Cr 47 cos? Oy (4.9)
3a
C4 ~ 6
M A sin? Gy
from which we find
My < (memy> (0 3a
— <4 . 4.10
ug "~ A2 (477 cos? Oy * 47 sin? Oy (4.10)
For A = v =~ 250GeV, we have
‘“” <1074, (4.11)
KB

which is several orders of magnitude more stringent than current experimental constraints.

However, for A not too different from the weak scale, the 6D mixing can be of comparable
importance to the 4D case. The solution to RGE allows us to relate y, to the corresponding
neutrino mass matrix element in terms of Cy (A) and C$;(A)

2 CY(0)

16me Cy(v) pp (4.12)

om, =

=

To obtain a natural upper bound on y,,, we assume first that CS(A) = 0 (i # B, W) so that
om, is generated entirely by radiative corrections involving insertions of Ogi)w. Doing so

in Eq. (4.12) and solving for u,/up leads directly to

| Grpme [ omy, ] 327 sin? Oy (4.13)
pe  V2ma [aln(A/v) 91fl ’ '
where Oy is the weak mixing angle,
2 2 1 4
f= (1—r)—§rtan HW—g(l—i-r)tan Ow (4.14)

and r = C_/C4 is a ratio of effective operator coefficients defined at the scale A (see below)
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that one expects to be of order unity. To arrive at a numerical estimate of this bound, we

substitute A = v into the logarithms appearing in Eq. (4.13) and obtain

|1
KB

my

< 8% 1071 x (1 eV) IJlf! . (4.15)

It is interesting to consider the bound for the special case that only the magnetic moment
operator is generated at the scale A, i.e., C4(A) # 0 and C_ = 0, with f ~ 1. For this
case, considering a nearly degenerate neutrino spectrum with masses ~ 1 eV leads to the
Iy < 8x1071%up—a limit that is two orders of magnitude stronger than the astrophysical
bound [27] and 10* stronger than those obtained from solar and reactor neutrinos. For a

hierarchical neutrino mass spectrum, the bound would be even more stringent.

4.1.2 Majorana Case

Table 4.1: Summary of constraints on the magnitude of the magnetic moment of Majorana
neutrinos. The upper two lines correspond to a magnetic moment generated by the Oy
operator, while the lower two lines correspond to the O operator.

i) 1-loop, 7D | %% | <1 x1070pp (["f”js;ﬁ) ! s Rag
2
(‘) (5 Bas
iii) 2-loop, 7D “gﬁ <1x10 g ([mu]as) In—1 AizRaﬁ
w
iv) 2-loop, 5D Mfg <4x10up ( )

ii) 2-loop, 5D | ply | <1x 10 7up

After spontaneous symmetry breaking, the flavor antisymmetric operators Op and Oy,

contribute to the magnetic moment interaction

1 -
5 [MU]AB UfCUuVVEFyVa (4.16)

where F),, is the electromagnetic field strength tensor,

Ly 2mev2 _
plap _ 20 (5 ape) + Ciyap(®) (2.17)

The flavor symmetric operator (’)IJ/‘F, does not contribute to this interaction at tree-level.
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One-loop matching yields a contribution to O?}[) associated with (’){;/ of order

P~ o 418
M= grsin? 0y W (4.18)

while contribution to O?/? associated with Oy, is zero, as mentioned in Section 3.2.

We see that the one-loop contribution to the 5D mass term provides a strong constraint
on CV+V but no constraint on the parameter Cy;,. In general, Ca[, are unrelated parameters
in the theory. If the new physics were to have no specific flavor symmetry/antisymmetry
it might be natural for C;—LV to be of similar magnitude. Alternatively, given the strong
constraint on C}}, arising from Eq. (4.18), a sizable magnetic moment requires |Cy;,| > |Ci|.
We have seen that the flavor antisymmetric operator Oy, does not contribute to the 5D
neutrino mass term at 1-loop order, thus a direct constraint on the magnetic moment is not
obtained from the diagrams in Fig. 3.10. However, suppose we had a theory in which the
coeflicients of O‘TV and Oy, were of similar magnitude, C';FV ~ Cyy;. Then, using Egs. (4.17,

4.18) we have

a A,
My ~ o5 ———,
87 sin” Oy me UB

My 2

and thus obtain a stringent u, bound similar to that for Dirac neutrinos.

We emphasize that Eq. (4.19) is not a model-independent constraint, as in general O;FV
and Oy, are unrelated. While it might seem natural for the the new physics to generate
coefficients of similar size for both operators, we could obtain finite Cf;, and vanishing C’JV

(at tree-level) by imposing an appropriate flavor symmetry.

We now consider the more general case where C’;LV and Cy;, are unrelated, and directly
derive constraints on the the coefficient of the flavor antisymmetric operator, Cy;,. As the
operator Oy, is flavor antisymmetric, it must be multiplied by another flavor antisymmetric
contribution in order to produce a flavor symmetric mass term. This is given by Eq. (3.34).
We note that Eq. (3.34) gives the Oy, contribution to the neutrino mass from all scales
between A and the scale of electroweak symmetry breaking to leading log order. Using this
result—as well as Eq. (4.17), to relate C};, and C]7V[D to p, and m,, respectively — leads to

bound (i) in Table 4.1.



Figure 4.1: Representative contribution of Oy, to the 5D neutrino mass operator

Note that this provides a weaker constraint than that in Eq. (4.19), as it is suppressed
by the charged lepton masses, and also only logarithmically dependent on the scale of new
physics A.

The neutrino magnetic moment operator Oy, will also contribute to the 5D mass oper-
ator via two-loop matching of the effective theory onto the full theory at p ~ A.

An illustrative contribution is shown in Fig. 4.1. As with the diagrams in Fig. 3.12, we
require two Yukawa insertions in order to obtain a flavor symmetric result. This diagram

contributes to the 5D mass operator, and we again provide an NDA estimate:

2 2 2
5D . 9 My —Mp
Cirap =~ (167272 2 CWAB. (4.20)

Again, using Eqgs. (4.17, 4.20), this leads to bound (ii) in Table 4.1. In doing so, we have
neglected the running of the operator coefficients from the scale A to v, since the effects are
higher order in the gauge couplings and have a negligible numerical impact on our analysis.

Compared to the 1-loop (7D) case of Eq. (3.34), the 2-loop (5D) matching leads to a
mass contribution that is suppressed by a factor of 1/1672 arising from the additional loop,
but enhanced by a factor of A?/v? arising from the lower operator dimension. Thus, as we
increase the new physics scale, A, this two-loop constraint rapidly becomes more restrictive
and nominally provides a stronger constraint than the 1-loop result once A ~ 47v ~ 4 TeV.
Inclusion of the logarithmic A-dependence of one-loop mixing implies that the "crossover"
scale between the two effects is closer to ~ 10 TeV.

Unlike the case of the SU(2);, gauge boson, where a flavor symmetric operator O;FV

exists, the operator (’)g) is purely flavor antisymmetric. Therefore, it cannot contribute to

the 05\3) mass term at one loop. As was noticed in [53], the one-loop contribution of Og)
to the (’)g\? mass term also vanishes.

If we insert Op in the diagram in Fig. 3.12, the contribution vanishes, due to the SU(2)
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structure of the graph. Therefore, to obtain a non-zero contribution to O](\? from Og) we
require the presence of some non-trivial SU(2) structure. This can arise, for instance, from
a virtual W boson loop.

This mechanism gives the leading contribution of the operator Og) to the 7D mass

term. The (’)g) and (’)g,) contributions to the 7D mass term are thus related by

(6m,)B a 1

— N — 4.21
(6m,)W 4w cos? Oy’ (4.21)

where Oy is the weak mixing angle and where the factor on the RHS is due to the additional
SU(2)1, boson loop. This additional loop suppression for the (’)g) contribution results in a
significantly weaker neutrino magnetic moment constraint than that obtained above Oy, .
The corresponding limit is shown as bound (iii) in Table 4.1.

(

However, the leading contribution of (937) to the 5D mass term arises from the same
2-loop matching considerations (Fig. 4.1) that we discussed in connection with the Oy,
operator. Therefore, the contribution to the 5D mass term is the same as that for Oy,
except for a factor of (g1/g2)? = tan? fy,. We thus obtain

2 2
(5) gi  Ma M

~ (7)
M,AB — (16#2)2 v2 CB,AB (4-22)

corresponding to bound (iv) in Table 4.1. Importantly, this is the strongest constraint on

the Og) contribution to the neutrino magnetic moment for any value of A.

Our results are summarized in Table 4.1 below, where the quantity R,z is defined as

: (4.23)

with m, being the masses of charged lepton masses. Numerically, one has R, ~ R;, ~ 1

and R, ~ 283.

The limit on the magnetic moment of a Dirac neutrino is considerably more stringent
than for Majorana neutrino. This is due to the different flavor symmetries involved. In the
Dirac case, no insertion of Yukawa couplings is needed to convert a flavor antisymmetric
operator into a flavor symmetric operator, and the stringent limit x < 107'°upg holds (in

the absence of strong cancellations). A significant implication is that if a magnetic moment
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> 107 up were measured, it would indicate that neutrinos are Majorana fermions,
rather than Dirac. Moreover, the scale of lepton number violation would be well below the

conventional see-saw scale.

4.2 TImplications for Muon Decay Parameters

4.2.1 Introduction

Precision studies of muon decay continue to play an important role in testing SM and
searching for physics beyond it. In the gauge sector of SM, the Fermi constant G, that
characterizes the strength of the low-energy, four-lepton p-decay operator is determined
from the p lifetime, and gives one of the three most precisely-known inputs into the
theory. Analyses of the spectral shape, angular distribution, and polarization of the de-
cay electrons (or positrons) probe for contributions from operators that deviate from the
(V—A)® (V — A) structure of the SM decay operator. In the absence of time-reversal
(T) violating interactions, there exist seven independent parameters—the so-called Michel
parameters [33, 34]—that characterize the final state charged leptons: two (p, n) that de-
scribe the spatially isotropic component of the lepton spectrum; two (&, §) that characterize
the spatially anisotropic distribution; and three additional quantities (¢/, £”, n”) that are
needed to describe the lepton’s transverse and longitudinal polarization. Two additional
parameters (o//A, B'/A) characterize a T-odd correlation between the final state lepton
spin and momenta with the muon polarization: S, - l%e X Su-

Recently, new experimental efforts have been devoted to more precise determinations of
these parameters. The TWIST Collaboration has measured p and § at TRIUMF [35, 36],
improving the uncertainty over previously reported values by factors of ~ 2.5 and ~ 3, re-
spectively. An experiment to measure the transverse positron polarization has been carried
out at the Paul Scherrer Institute (PSI), leading to similar improvements in sensitivity over
the results of earlier measurements [37]. A new determination of P,¢ with a similar de-
gree of improved precision is expected from the TWIST Collaboration, and one anticipates
additional reductions in the uncertainties in p and § [38].

At present, there exists no evidence for deviations from SM predictions for the Michel
parameters (MPs). It is interesting, nevertheless, to ask what constraints these new mea-

surements can provide on possible contributions from physics beyond the SM. It has been
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conventional to characterize these contributions in terms of a set of ten four-fermion oper-

ators
4G 1

V2

where the sum runs over Dirac matrices IV = 1 (S), 4* (V), and ¢*?/v/2 (T), and the

Lr—decay — > gl ey, (4.24)

7767“‘

subscripts p and € denote the chirality (R, L) of the muon and final state lepton, respectively.
In the Majorana case, vg is substituted by v7. In the SM, one has g‘L/L = 1 and all other
gén = 0. A recent, global analysis by Gagliardi, Tribble, and Williams [40] give the present
experimental bounds on the g/, that include the impact of the latest TRIUMF and PSI

measurements. In the following sections, 1 stands for electron flavor and 2 for muon flavor.

4.2.2 Dirac Case

To arrive at neutrino mass naturalness constraints on the g¢, coefficients, it is useful to
tabulate their relationships with the dimension six operator coefficients. In some cases,
one must perform a Fierz transformation in order to obtain the operator structures in Eq.

(4.24). Letting
v v\? 6
g1, = —k (f) s, (4.25)
we give in Table 4.3 the ks corresponding to the various dimension six operators.
We use the entries in Table 4.3 and the estimates in Eq. (3.20) to obtain the bounds in
Table 4.2. Note that the bounds become smaller as A is increased from wv.

The constraints on the QZR, r, follow from mixing among the 6D operators and Table

4.3. Assuming no fine-tuning, dm?2P < m2P, we obtain

2D .2 s 2 -1 _1
v oo (M 87 sin” Oy _)\sm Ow | v 49
QLRN<mM>< 9 = —a (nA) . (4.26)

A similar expression holds for gEL, but with m, — m,. and m?P — mlP. Note that in

arriving at Eq. (4.26) we have ignored the running of the C‘Q/’ A D(u) between A and v, since
the impact on the g}jR rr, 18 higher order in the gauge and Yukawa couplings. To derive
numerical bounds on the g){R’ ry from Eq. (4.26) we use the running couplings in the MS
scheme o = a(Myz) ~ 1/127.9, sin? Oy (Mz) ~ 0.2312 and the tree-level relation between
the Higgs quartic coupling ), the Higgs mass my, and v: 2\ = (mpy/v)%2. We quote two

results, corresponding to the direct search lower bound on my > 114 GeV and the one-sided
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Table 4.2: Constraints on p-decay couplings g/, in the Dirac case. The first eight rows give
naturalness bounds in units of (v/A)? x (m,/1eV) on contributions from 6D muon decay
operators based on one-loop mixing with the 4D neutrino mass operators. The ninth row
gives upper bounds derived from a recent global analysis of [40], while the last row gives
estimated bounds from [44] derived from two-loop mixing of 6D muon decay and mass
operators. A “” indicates that the operator does not contribute to the given g/,, while
“None” indicates that the operator gives a contribution unconstrained by neutrino mass.
The subscript D runs over the two generations of RH Dirac neutrinos

Source ‘QER‘ |91:'CR| !g}%ﬂ \QEL’ |9XR‘ |9%L|

O nap 4x 1077 2x 1077 - - - -

(6) -7
F,212D 4 %10 - - - - -

©
Og)lm D None None - - - -
O - . 8x 1075 4x 1075 - -
©
0

6 _
(F,)121D - - 8% 107° - - -

6
% )221 D - - None None - -

(6) -7
(’)‘772D - - - - 8 x 10 -

(6) —4
OV,lD - - - - - 2 x 10

Global [40] 0.088 0.025 0.417 0.104 0.036 0.104
Two-loop [44] 1074 1074 1072 1072 1074 1072

Table 4.3: Coefficients  that relate g¢,, to the dimension six operator coefficients C,?

S T s T v 1%
K 9rr  9Lr Y9rRL Y9RL  9LR 9RL

02‘,122D 1/4 1/8 - - - -

C??,212D 1/2 - - - - -
02,11217 3/4 1/8 - - -

C%,211D - - 1/4 1/8 - -
02,12117 - - 1/2 - - -
C?«“,sz - - 3/4 1/8 - -
G o - e
o - - - - —1/2
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95 % C.L. upper bound from analysis of precision electroweak measurements, my < 186

GeV[54]. We obtain

” m2D A7) 12X 1075, mpy =114GeV
|9LR‘ S TeV 1 v (4.27)
75 %x107%  mpy =186 GeV
1D -1 125%x107%, mpy =114GeV
1% my A ’ H
9% < <1eV> <1 U) . (4.28)

1.5 x 1072, mpg = 186 GeV

For A ~ 1 TeV, the logarithms are O(1) so that for m, ~ 1 eV, the bounds on the Q‘L/R,RL
derived from 6D mixing are comparable in magnitude to those estimated from mixing with

the 4D mass operators.

Although the four fermion operators do not mix with Og\? 4p at linear order in the

Yukawa couplings, they do contribute to the magnetic moment operators (’)536) ap and

(91(/3? 4p at this order. From 6D mixing, we have

A

5 le‘D \/i Me v\ 2 * *
W (7) (K) Re [f4ACY anap + [55C% aBBD) hlg ; (4.29)

UB N 8? (Y
where 5,ufD denotes the contribution to the magnetic moment matrix and pp is a Bohr
magneton. While OEE)A aap does not contribute to p-decay, the operator OES)A ppp does,
and its presence in Eq. (4.29) implies constraints on its coefficient from current bounds on

neutrino magnetic moments. The most stringent constraints arise for A = 1, B = 2 for

which we find

v\? AT P
|G, 1220 (K) <5 x 10" <1Tl v> < e ) : (4.30)

Current experimental bounds on |uy P /up| range from ~ 10710 from observations of solar
and reactor neutrinos [25] to ~ 3 x 10712 from the non-observation of plasmon decay into vv
in astrophysical objects [27]. Assuming that the logarithm in Eq. (4.30) is of order unity,
these limits translate into bounds on QER and g%R ranging from ~ 1 — 0.03 and ~ 0.3 —
0.01, respectively. The solar and reactor neutrino limits on |uy " /ug| imply bounds on the
gf’g that are weaker than those obtained from the global analysis of u-decay measurements,
while those associated with the astrophysical magnetic moment limits are comparable to

the global values. Nevertheless, the bounds derived from neutrino magnetic moments are
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several orders of magnitude weaker than those derived from the scale of neutrino mass.

The naturalness bounds on the C’,S associated with the scale of m, have implications for
the interpretation of p-decay experiments. Because the coefficients 016;7112 p and C%’ 991D
that contribute to gg’}g rr are not directly constrained by m,, none of the eleven Michel
parameters is directly constrained by neutrino mass alone. Instead, it is more relevant
to compare the results of global analyses from which limits on the gd, are obtained with
the m, naturalness bounds, since the latter imply tiny values for the couplings g}fR, RL-
Should future experiments yield a value for either of these couplings that is considerably
larger than our bounds in Table 4.2, the new physics above A would have to exhibit either
fine-tuning or a symmetry in order to evade unacceptably large contributions to m,. In
addition, should future global analyses find evidence for non-zero gf’g rz With magnitudes
considerably larger than those given by the m,-constrained contributions listed in Table
4.2, then one would have evidence for a non-trivial flavor structure in the new physics that
allows considerably larger effects from the operators (9%67)112 p and (99221 p than from the

other four fermion operators.

4.2.3 Majorana Case

Just as in the Dirac case, we define k as in

v\ 3

g, = —k (X> cr (4.31)
and we give in Table 4.5 the x corresponding to the various dimension seven operators.
Since seven dimension operators contribute to g, g&, is proportional to (%)3 We notice
that O(L72) 9B 12 (O(LQ 1B.oy) only contributes to g%, (g7 5) due to a special flavor structure

for Majorana neutrinos. Let take (’)(L72) 9512 @s an example to illustrate this

. g _ —
O(L2),2B,12 = eI (L2 LY ) (IR L) b (4.32)
After SSB UV ¢ B\ /—— UV — B\/— 1
= — (W) (e — —(usvy)(egy
\@( L L)( RML) \/5(/% . )(er L)
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Table 4.4: Constraints on u-decay couplings g¢, in the Majorana case. The naturalness
bounds are given in units of (v/A)? x (m,/1eV) on contributions from 7D muon decay
operators based on one-loop mixing with the 5D neutrino mass operators

Source ‘QER‘ |9%R‘ ‘gsz’ ’9£L| ‘QER’ |9¥L|

O(L71),21,1B - - 1.6 x 1074 - - -
O(L71),21,2B 8% 1077 - - - - -
O(L72),23,11 - - 4%x107% 2x107° - -
Oy 5o 4x1077 2% 1077 ] ] ] )
0
0

(L?,w,gz 2x1077 1x1077 . - i i

22,13,12 - - 8x107® 4x107° - ;

(7
OL2,2B,12 - - - None - -
7

OL2,13,21 - None - - - -
o - ; - - ; 1.6 x 1074

(7) _7
09,32 - - - - 8 x 10 -
Global [40] 0.088 0.025 0.417 0.104 0.036 0.104

Two-loop [44] 1074 1074 1072 1072 1074 1072

Table 4.5: Coefficients x that relate g/, to the dimension six operator coefficients C,Z

S T s T v v

k 9LR 9LR 9RL 9rr __9Lr 9RL
7 1

Clio1,18 - - ~3v3 - - -

c7 1 _ - - - -
L1212B 33

T Y ) 1
?2723711 ) . 4./2 82

0?2,23,21 ThE TEE - - -

052,13,22 VioTRE ) - -

Cloapiz - Y A A -

c7 - _ - _ 1 -
L225.12 ) 2

0?2,13,21 - W) - - )

Cx;/,m ) . ) ) ; 2v2

0\7,32 ) . ) ) 2v2
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ot o
c \[ML)( \%VJLB

Ouv B)

(ug i) (Ervy) + 47(E\[ L)(eR\f

S ) - {0 )

N |

+

N | =
Sl

where we perform a Fierz transformation in the third and fourth lines. For Majorana

particles ¥ and x, we have

Pox = XY (4.33)

T
So Eq. (4.32) becomes

After SSB U (MCUW (@R O By

0(7) — v
L2,2B,12 NG f \f L

We see (9272) 5p 12 indeed only contributes ggL.

We use the entries in Table 4.5 and the estimates in Eq. (3.29) and Eq. (3.30) to obtain
the bounds in Table 4.4.

From Table 4.4, we find gf r.rr 0 the Majorana case are fully constrained, while they
are not in the Dirac case, due to (’)g)Qle and (’)%6:)112[). This happens because of Eq. (4.33)
for Majorana neutrinos. So the experimental measurements of gf R.RL might give us hints
if neutrinos are Dirac or Majorana. If we find ‘ gf R.R L‘ is greater than the bounds obtained
here, it should mean that neutrinos are Dirac ones and contributions to (’)](é[) from Og)ml D
and (9;5?112 p are much more than these from the other four-fermion operators constrained
by neutrino mass, which means flavour structure is non-trivial in new physics. And as in

the Dirac case, g{R’ g can’t be fully bounded by neutrino mass in the Majorana case.

The constraints on the ggR’ r, follow from mixing among the 7D operators and Table

4.5. We use in Eq. (3.35) to obtain

m2P 87 sin? Oy Asin? Oy ! A

i

which is the same as in the Dirac case. A similar expression holds for gEL, but with
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2D 1D :
m, — me and m;~ — m,~. We again have

§ m2D A\t |12%x107% mp =114GeV
|9LR‘ S leV 1 v (4.35)
7.5x107% mpy = 186 GeV
ol < miD A\7! )25 x 1074, mpy =114GeV (436)
IRLI S\ Tov v ‘

{1.5 x 1073, mpy = 186 GeV

The constraints on ! g}fR‘ and ‘ g%ﬂ from the 7D neutrino mass operator in the Majorana case
is the same as constraints from the 6D neutrino mass operator. What is more, constraints

on g, from O](\E/)[) are the same order as ones from O](é[).

4.2.4 Constraints from Experiments

Finally, we note that one may use a combination of neutrino mass and direct studies of
the Michel spectrum to derive bounds on a subset of the Michel parameters that are more
stringent than one obtains from pu-decay experiments alone. To illustrate, we consider the

parameters 0 and «, for which one has

3 3 3 3 .
1 P71 |9‘L/R‘2 + B IQ%RF + ZRG (QERQER) + (L < R) (4.37)

a=8Re{gp (975 +6917) +(L < R)} . (4.38)

If neutrinos are Dirac particles (Majorana particles), from Table 4.2 (Table 4.4), we observe
that the magnitudes of the g‘L/R’ gy, contributions to p and « are constrained to be several
orders of magnitude below the current experimental sensitivities, whereas the contribu-

tions gg’g pr that arise from O(FE?)HQ p and (9;@221 D (ng rz that arise from O(LQ op 19 and

05:72)71 B,21) are only directly constrained by experiment. Thus, we may use the current exper-
imental results for p to constrain the operator coefficients Cg 112p and C%’ 991D (6’272)72 B2
and 0272)71 B721) and subsequently employ the results—together with the m, bounds on the
g}{R pr—to derive expectations for the magnitude of a. For simplicity, we consider only
the contributions from 016;7112 p to pin the Dirac case. We think the same results hold for

Majorana case because of similarities between the constraints from the Dirac case and those

from the Majorana case. Using the current experimental uncertainty in this parameter, we
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find

v

2
1CS 11| (A) <0.1. (4.39)

6

In the parameter «, this coefficient interferes with C’V D

v\4 6 6 *

o = —6 (K) Re (CV,1D0F7112D + - ) s (440)
where the "+--- " indicates contributions from the other coefficients that we will assume
to be zero for purposes of this discussion. From Eq. (4.39) and the m, limits on C‘Q/ \p Ve
obtain

v 2 mlD
<2x 10 (f) v_ ), 4.41
laf < A 1oV (4.41)

For A = v, this expectation for || is more than two orders of magnitude below the present
experimental sensitivity and will fall rapidly as A increases from v. A similar line of reason-
ing can be used to constrain the parameter o/ in terms of m, and the CP-violating phases

that may enter the effective operator coefficients.

4.3 Implications for Beta Decay Parameters

4.3.1 Introduction

Precision studies of nuclear and neutron beta decay, which once played an important in
the developments of the Standard Model, have been used to test the SM and look for the
physics beyond it. Measurements of various correlation coefficients provide constraints on
the deviations from what the SM predicts. Several experiments have been carried out to
measure the correlation coefficients with improved precision. The abBA collaboration will
make it possible to measure the correlations a, b, A, and B with precision of approximately
1074, using a pulsed cold neutron beam at the SNS in OAK Ridge. The WITCH (Weak
Interaction Trap for CHarged particles) experiment[39] aims to measure the recoil energy
spectrum of the daughter ions from S-decay with a precision on a of about 0.5% or better.
It will be used to search for both scalar and tensor weak interaction types.

In analogy with the effective four fermion Lagrangian for p-decay, we use (as in [43])

4Gy
V2

[B—decay _ Z alse L veulyds (4.42)

7,€,0
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where vg is substituted by v{ in the Majorana case. In SM, one has aEL = Vig, the (1,1)
element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and all other a; = 0. In the
literature, there exist several equivalent parameterizations of non-Standard-Model contri-
butions to light quark -decay [46, 52]. Theoretically, the couplings azé can be generated in
various models beyond the SM. The left-right symmetric model, the exotic fermions, and

the leptoquark exchange and the limits that they put on the couplings are discussed in [46].

: : : S S T 4
Besides neutrino mass constraints, we also find that a7, a7, a}p, and ap; can also be

constrained by the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, R,
I’(ﬂ+~>6+ue+7r+~>e+ue’y)
T(rt—-ptvy+nt—pto,y)’

e/

and pion beta decay (mg), which can constrain other a; as well.

In fact, constraints on a¥R7 L a% L.RR> and a% ;, by CKM unitarity and R, /,, are discussed

e/p
in [46]. In our paper, special attention goes to constraints on afL, aER, a:LFR, and agL
that involve the right-handed (RH) neutrino. Since no RH neutrino exists in SM, there is
no interference between the amplitudes from SM and the ones with RH neutrino. So the
new physics’ contributions to -decay’s correlation coefficients are much more sensitive to
a,j%L’RR, aﬂL, and agRLL than to a*zL’LR, afR, and al‘éL. The constraints on afLyLR, afR,
and agL could not constrain the correlation coefficients as much as are complementary to

their measurements. In this section, e stands for electron flavor and 1 for the first generation

of quarks.

4.3.2 Correlation coefficients

The coupling constant az(s has to be determined from experiments. The distribution in the
electron and neutrino directions and in the electron energy from oriented nuclei is given by

[55]

w((J) | Ee, Qe, Q,)dE.dQed, =

Hi’fe)peEe(Eo — E.)?dEcdQed, x
(27)
1 pe : pl/ me
2§{1+aEeEV +bEe (4.43)
+ec pe'pu_(pe'j)(pl/'j) J(J+1)_3<J'j>
3E.E, E.E, J(2J —1)

J Pe Py Pe X Pv
—|A—+B—+D——
+J [ B, + B, + E.E,
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where F, p, and §2. denote the total energy, momentum, and angular coordination of the 3
particle, and similarly for the neutrino; (J) is the nuclear polarization of the initial nuclear
state with spin J; j is a unit vector in the direction of J; Fy is the total energy available
in the transition; and F(£Z, F,) is the Fermi-function. The a, b, ¢, A, B, etc., are the

correlation coefficients that can be related to QZ&

Conventionally, people often use the effective n — pe™ 7 interaction, which, neglecting

the induced form factors, is given by [46]

Y ~ B + 5D + 2, (4.44)
H‘(/AQ = e\ (Cv + CLs)vepy ™ n + eynys(Ca + Clyys )veby ysn + h.c., (4.45)
HéN) =¢e(Cs + C4ys)vepn + h.c., (4.46)
M = EU—)\M(CT + Copys )V, ﬁ%n + h.c. (4.47)
T ﬁ T e \@ )

where the pseudo-scalar contribution is neglected since this vanishes in the nonrelativistic
approximation for the nucleons. The relation between the couplings a/; in Egs. (4.42) and

those in Eqs. (4.45-4.47) are given by

4G
Cy = TQMSJV(GZL +app +akp +aky) (4.48)
, _ 4Gy vV v v v
Cy = WQV(_GLL —apr+arr + agr) (4.49)
4Gy, v v v v
Ca= WQA(QLL —apr+Arr — ARL) (4.50)
;4G 1% 1% v v
Ca= W9A<_GLL +arr+agg — agr) (4.51)
4Gy s s s S
Cs = WQS(QRL +arr +afr+arL) (4.52)
4G
Cs = T;QS(_G%L —app+aip+ai;) (4.53)
8G
Cr = T;QT(‘I%L +aip) (4.54)
8G
Cr = —2gr(—aky, +alp) (4.55)

V2
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where the constant g; = g;(0), i = V, A, S, T are defined by

(plalyd|n) = gi(¢®>)PLin ~ ¢*> — 0. (4.56)

If we assume exotic interactions are small—i.e., C; < 1 and C! < 1, with ¢ = S, T—the

Fierz interference term b and the beta-neutrino correlation coeflicient a can be written as

1 Cs — C" Cr—C/
b~ + R = Re( ——1L 4.57
W1+p2[e< Cv )+p e( Ca (450
1-p?/3 1 1, |Cs|* +|C%)?
B[ ) e s
2 a3 G
{5 oy |Cr” + [Cp
Hop?(1-p) LT
3 ( ) |CA’2
where we ignore the T-odd terms in a and p = %‘V]\]/\[flf,'y:\/l—azZz, and Mg and Mg

are the Fermi and Gamov-Teller matrix elements respectively.

We will see below that neutrino masses would put bounds on af I af R a:LFR, and al‘éL.

From Eqgs. (4.50-4.55), afL, afR, and aER are related to the n — pe~ 7 couplings

as(afn+afy) = Cs + Cs (1.59)
SGH T /
— = Cr + C7. 4.60
/2 9rarr T T ( )

So our paper will constrain (C's + C%) and (Cr + C7.) . These results are complementary to
those from measurements of b, which are sensitive to (Cs — C) and (Cr — Cf,) from Eq.
(4.57) and measurements of a, which are sensitive to |Cs|? 4 |C%|* and |Cr|* + |C4|? from

Eq. (4.58).

4.3.3 Dirac Case
4.3.3.1 Effective Hamiltonian Below the Weak Scale

We are going to relate C']6 to aly. First, we start with the effective Lagragian valid below A

that takes the form
1
Leff :L4+FL6+--- (4.61)
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where L, is the sum of all the independent dimension n operators. Specifically Lg is

6 6
Le = +Cg,AD,o<B(M)OéQ,)AD,a,B + C{?LAD,aB(M)OC(ﬂ)AD,a/B (4.62)

6 6
+ CSQ,AD,aﬁ(H)O((lz),AD,aﬁ +Cp Al )O%,)AB T

where we just write down the interesting operators which can contribute to both S-decay
and neutrino mass via loop graphs, and +--- are other operators. In general the Wilson
coefficients are denoted by C’s, depending on the indices, and g is the renormalization
scale. After spontaneous symmetry breaking, all the fermions and W, Z gauge bosons
become massive. The fermions’ masses (except top quark) are much smaller than the weak
scale. But W, Z gauge bosons’ masses are comparable to the weak scale. So when we evolve
1 down to the weak scale, massive gauge bosons need to be integrated out. The effective
Hamiltonian valid below the weak scale generated by Eq. (4.62) to the leading order in new

physics cutoff A writes

—Hepp(p) = T VR ug T VR Ua d'B (4.63)
S3 S4
aup 5(#) AAp 5(#)* —
vy + i vivR g dy

angva,B (,U,) lAiyy dﬁ 5%»045 ('u) AU da o Oy d'B
A2 RU L \f A2 vy \f VROp \[
a’XD,a,B( )
A2

_l’_

+ lA'y“VRuLfy“dB + h.c. +-

.. . 1,52 4,T1,T2 .
where the boundary conditions for coefficients ai bsabsg’s TLT2ZV ot v are given by

S1 6 CSI,AD,aﬁ (v)
aaD.ap (V) = Cag ap ap(v) + B — (4.64)

S
053 05 (V) = C& 4par (VRN

ai?b ag( v) = Cg,AD,ag(U)

031 Ap~p(V) a
a5 o (V) = (CS2,AD,%8(”) + ——— 2’75 V7

031 AD (v)
ang,aﬁ (U) = : 470@8
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T2 CSLAD,w(U)Vw
AAD,aB (v) =— 4

s (V) = =CL (VRN

which is obtained by matching Eq. (4.63) with Eq. (4.62) at the weak scale. In Eq.
(4.63), we just write the operators containing vg, since the ones with v, won’t contribute
to neutrino mass or mix with other relevant operators. Among 6D operators in Section

2.3.1, only O(Qﬁ,)AD,aB’ ij?AD,aﬁv O((ig)’AD,aﬁ, and Ogi)AB that contribute to neutrino mass

generate the operators containing only one vg in Eq. (4.63). And --- in Eq. (4.63) are
generated by --- in Eq. (4.62).

We need to evolve p from the weak scale v, where Cg,AD,a,B’ C’C(l?)AD B C’U(lg)AD B

6 . .
and C‘(~/ )AB can be related to neutrino masses, down to nucleon mass my in order to

calculate various semileptonic processes. The evolutions of C’& AD.ap (1) C[(i?? AD.ap (1) 5

Co(lg)AD op (1), and CX(;)AB (1) from A to v were calculated in Chapter 3. The QED run-
ning of ailD’Ss’ﬁSB’S4’T1’T2’V (w) is ignored, since the correcting due to the running is around

- In Wf—N ~ 3 x 1072, which is negligible when we are only interested in order of magnitudes.
We calculate the QCD running of af,lb"fg’ﬂ’“’v(u) by solving the renormalization group

equation (RGE) for these coefficients. The RGE for ailD'"sg’Tl’m’V () is
uiai + Zak’yQ.CD =0 (4.65)
dM - ki

where 79¢P is the anomalous dimension matrix and superscript QCD reminds us that the
renormalization of the operators in Eq. (4.63) are only given by gluon exchanges between

the quark fields. A standard calculation gives the following result for y@¢P:

(0%} a3
AQCD _ 23 (0) — 23

4.
47 47 (4.66)

o o o o o o o
o o o o o w o
c o o o w o o
o o o w o o o
o o 4yl o o o o
o “‘éo o o o o o
o o o o o o o
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in the basis of {afllb”'gg, a£1D7 B’ a:‘g%y B’ aX Da 6} . Using the renormalization group equation

for ag (1) to the leading term
dasg a%
= _928,—3 4.6
m o (4.67)

where By = % and NN, is the number of colors and f the number of quark flavors, we

solve the RGE for aig'fg’ﬂ’n’v(u) and have

o
i (0% v 7%1' .
i) = (SH0) 7 dipas() i=SLSLTLTZV. (468)

When p evolves from v down to my, the top quark, the bottom quark, and the charm quark

Ol

are integrated out one by one and so f =6 — 5 — 4 — 3 which implies
51--54 az (me) \
GA%,aﬂ(mN) = ( < )

az (my) (32 E:i) ) - (4.69)
)

(Zz EZZ; ) b (ao;g,(gzt) > : a3 s (v)

_ S1..-54
= Ksajpap (v)

RIS

B ) — (22 ) (st * (4.70)

<Z§ E%) ' (aig(ngZ)) ’ @i ()

aXD,a,B(mN) = KVaXD,a,B(U)' (4.71)

ag (m¢) = 0.110 (4.72)
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and

Kg =1.90
Kr =0.81 (4.73)
Ky =1

Comparing Eq. (4.62) with Eq. (4.42), we have

S afl%,n (mn) v? agg,u (v) v2 474
latel~ |5 |~ K5 5 (4.74)
i CQ.enay WV 02
o A2 2

afll),n (mn) v?

A2 2

A2 + 2A2 2

(CgQ,eD,ll (v)  Chepii(v) ) v? ‘
Kg

% Chep11(v) 02
21T g

Kv A2 2

4.3.3.2 4D Case

If we look closely at Eq. (4.74), it is obvious that ‘afL} depends on C’SS,)SD’M and ‘aER} , and

|a:£R| only depends on the diagonal coefficients CSL d2.ep11- However, only CgﬁD’ll and
C’ngz’eD’ll are constrained through Eq. (3.20), and Cg,eD,l7 with «v # 1 are unconstrained.
It seems to imply that neutrino mass could put bounds on ‘af R‘ and }a€R| but not on ‘af L‘ .
Actually there are some subtleties here. We can just as well carry out the calculations in
the basis of Q", vy, and d)y defined in Section 2.3 wherein fy is diagonal. The operators
involving just lepton fields and their corresponding coefficients won’t change under the

redefinition. So substituting Eq. (3.17-3.19) into Eq. (4.74) and Eq. (3.20) gives us

CS,eD,n(U) v?
A2 2Va

‘G§L| ~ |Kgs




61

C¢I162 pA1(V) 02161 pA1(v) 2
a7 g| ~ |Ks(Verm)"( ’eA’; ’;A’; >2Vud (4.75)
0361 pA1(V) 02
jainl ~ | Kr(Veran) " =20 50
U
and
4 -~ % mg *Bov 16
M,AD (47T)2 1}/\/§ Q,AD,af
B
N,
i ¢ (4.76)

C ~ aﬂclﬁ
M,AD (47T)2 U/\/§ dl,AD,ap

B
4 ~ 2NC md 5& Clﬁ
M,AD (47‘(’)2 ’U/\/i d2,AD,apf

: : 16 16 16
in terms of new coefficients CQ,AD,aﬁv Cdl,AD,a,B’ and Cd2,AD,aB‘

This time we find that ‘aiL} is constrained but ’CL%R’ and ‘(LER‘ are not, because C’gAD,H

is bounded by neutrino mass and C’{fl d2,AD 1, With vy # 1 is not.

Now we have a contradiction here. What happened? Let us illustrate it with a simple

example. Suppose we have a effective Lagragian

Leff =C101+C505 + - -- (477)

where O and O, are two independent operators and C7 and Cy are their coefficients. And

we also assume they both contribute to some mass operator Oy through loop effects

Cy ~ C1A (4.78)
Cy ~ CrA

where A is a constant.

Somehow the operator O can relate to some observable g, namely g = C1 B, where B

is a constant. It is clear g can be constrained by Oyy.

Now we use another basis {O4,O_} where Oy = 1(O1 £ O,). Under this basis the
effective Lagragian becomes

Leff =C, 0. +C_0O_ (479)

where Cy = Cq £ Cs.
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O_ doesn’t contribute to Oy since @1 and Oy are assumed to contribute the same
amount to Oy by assumption. For O we have Cj; ~ C A. The observable g = %B .
It seems g is unbounded since Oy can’t constrain C_. With the basis {01,032}, we can
separately constrain C; because we use no fine-tuning assumption which implies that there

is no cancellation between contributions from O and Os. Therefore, we can put bounds on

C_. So if we assume there is no fine tuning, g is also constrained under {04, O_}. The same

thing happens to |G€L ,!agR{ , and ‘a:LFR , since there is a relation between Og 41.42,4D,08
/ (e% /

and OQ,dl,d2,AD,a,8 by Og.a1,d2,AD,a8 = VC?(MOQ’deQ,AD’m. So as long as we assume no

fine tuning happens, ‘aiL} ,‘afR‘ , and ‘agR‘ should be bounded no matter what basis we

choose.

So Eq. (3.20) yields

aff’),n (mn) 2 afg),n (v) v?

s
~Y —_— ~Y K _
aic A2 2 STTAT 2
6 vl 92
K CQ76D71’Y(U)V /Ui
o A2 2
‘aS ‘N agrl),n (mN)f K 022,eD,11(U) +Cg1,eD,11(U) f (4.80)
LR A2 2 o A2 2A2 2 '
‘aT ‘N agftl),n (mN)Uj K Cgl,eD,ll(v)’li
LR A2 2 T77aar 2
6
‘av ‘N aXD,ll (mN)f ~ K O\ZeD(U)Vde'Ui2
RE AT 2 VTTTAT 2
and
m,, (4m) 472 m,, v? eV m,
cs <z 2 < - Kg(+) ~5x 1070 — 4.81
Q,eD,11 ~ My 2NC ‘G’LL ~ NC My S(Ag) X A2 1eV ( )
2 2 k.2
co P my [ lafel S M mEKs(E) ~ 12X 107053 1%
dl,eD,ll ~ NC deud T < 27T2 my U2 —6 ’U2 my
}aLR| ~ TCEKT(F) ~ 3 X107 m 1oy
6 (4m)% m, g 214 m,, v? _g U7 My
Cizena1 S NG gV = |aZg| S NfcmdeT(p) ~3x10 A2 1oV
2 2
8 < @)™ = oY, <8Ry (L) ~ 15 x 10740 T
V,eD N( 7T) Me ’CLRL‘ ~ OT Me V(Ag) A21eV
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Table 4.6: Constraints on S-decay couplings a/y, in the Dirac case. The naturalness bounds
are given in units of (v/A)% x (m,/1eV) on contributions from 6D beta decay operators
based on one-loop mixing with the 4D neutrino mass operators

Source \ ai; | ‘ aip } ‘CL%R ‘ |aEL ‘

O p1 5x 1076 - ] ;

0%21;61)711 - 1.2x 107 3 x 1078 -
0?62)761)711 - 3x107° - -

—4
oY - - - 1.5 x 10

The bounds in Table 4.6 become smaller as A increases.

Eqgs. (4.59, 4.60) give us the constraints of

Cs+CLl <4x107° 4.82
S

‘5T+6*’T <8 x 1070

N _Cs - Cs &~ _ Crp ~ o — COp 4Gy VSM
where Cg = s, Cy = ot Cr = s and O = o and we use Cy ~ 3 IVoLL and

Cyp~ %QSGXEM approximately, and 0.25 < gg <1 [52] and 0.6 < g7 < 2.3 [52].

4.3.3.3 6D Case

Due to mixing among 6D operators, !agL‘ can be constrained by neutrino mass. We obtain

) ) A
8mwsin® Oy, Asin QW)_l(ln—)_l (4.83)

Jake| £ (20 - -

Me 9

)(a

which is the same as the expression for ‘ QEL‘ in Section 4.2. so we just repeat it here:

m, A | 25x107* mpy =114GeV
leVoh o 1.5 x 1073 my = 186GeV.

(4.84)

The constraints on |aEL| from the 4D mass operator is comparable to the one obtained

from the 6D mass operator.
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4.3.4 Majorana Case

We carry out the same analysis in Section 4.3.3.1 and find relations between a/; and C’Z as

follow:

3

7 S v 7

01(12),@3,11 — arp ™~ _2\@/\31/ dKScd2,eB,11 (v)
U

v3

7
Oél),el,le - QER ~ _74\/51\3‘/ dKTCgl,el,le (v)
U

S 3
o0 e~ v, KsChann V)
dl,e1,1B T U3 ,
LR ™ mKTcdl,el,lB (v)
S v3 7
7 arr~ 7 KsCa ,B1,1 (v)
Oél),Bl,le - 424 V ¢ e#B (4.85)

T
arr 8\fA3V KTCdl ,Bl,1e (’U)

S~ e KsCl,
o R ALR ™ 12NV, SCi2.e1,18 (v)
d2,e1,1B 3
aly ~ = KpCT (v)
LR 8v2A3V, 4 T d2,e1,1B

S 3 7
o0 iR~ ﬁKSCdz B11e (V)
d2,Bl,le T
ILR 8\//\31/ KTCdQ Bl,le (v)

) s —v?

*1la 7
OuleBal = ALL ™~ mv KsCyi ep a1 (V) e# B

3

7 *
Oq(Ll),Be,al - aiL ~ 2\/§A3V dV IQKSCZLB&CH (U) € 7é B
U,

3
7 v
052),63,041 - GEL ~ 2\/§A3V dv*laKSCZZeB,al (v)
U
(") v’

OR,Ae,ll - GKR ~ N’T%KVC}E,AE,II (v)
U

3
(M 1% v 7
OF e 7 GRL ™ 2V/2A3 EvCy 4. (v)

where we see some operators vanish with e = B due to the flavor structure of Majorana

neutrinos, in which case the neutrinos in beta decay are not electron neutrinos.

(5)

Matching the above operators with O/, we find only some of them can contribute to

o) using Eq. (3.31)

11
o s falNe
d2,eB;11 M,eB {72 d2,eB;11
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Table 4.7: Constraints on S-decay couplings a/,, in the Majorana case. Naturalness bounds
are given in units of (v/A)% x (m,/1eV) on contributions from 7D beta decay operators
based on one-loop mixing with the 5D neutrino

Source 0 I 547 O (71 |2k
01(1?31,16 - None - -
Od1 elle - None None -
Od1 (11B - None None -
0(2)63 " - 6x 1076 3x 107 -
0}12)61 5 - 6x 1076 3x 107 -
0(2) Blie - 6x 1076 3x 107 -
Oul eB,al None - - -

0%1,367061 None - - -
—6
Ou2,eB,a1 5 x 10 - - -

(7 »
0177,4@ 1.5 x 10

(7) ) fi'Ne )
Od2,e1,1B - CM,eB TG 2 “d2,el,1B
7 5 I Ne
Oz(i2),B1,1e - C](W?eB (116 2 052)31 le (4.86)
7 5 e Ne
07(1,2),63;041 - C’J(\/I?eB ~ {72 C172 ,eB;al

o _ oW 1N
‘7,Ae M,Ae 1672 V,Ae’

The graphs of O((i?ul with Yukawa interaction inserted in the loop turn out to be propor-
tional to €;¢'¢’, which is zero. We use the estimates in Eq. (3.20) to obtain the bounds in

Table 4.7. We still assume there is no fine-tuning.

Consequently, the magnitudes of af R af ry and af ;, are not directly bounded by m, and
naturalness considerations, as indicated in Table 4.7. From a theoretical standpoint, one
might expect the magnitudes of C7, and C7, to be comparable to those of the other four-
fermion operator coefficients in models that are consistent with the scale of neutrino mass.
Nevertheless, we cannot a priori rule out order of magnitude or more differences between
operator coefficients. In contrast, the magnitudes of aER, a:LFR, and af ;, are bounded by

m, in the absence of fine-tuning. An implication is that if the magnitudes of af R afR,
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and aEL greater than our bounds were measured, they would indicate that neutrinos are
Dirac fermions, rather than Majorana ones. It also gives evidence that flavor structure is
non-trivial in new physics. Using Eqgs. (4.59, 4.60), we arrive to the same the constraints

as Dirac case

jés + ég‘ <4x107° (4.87)

‘5T+5*’T <8x 107

4.3.5 Status of Experiments

The current experiment limits on scalar and tensor couplings in S-decay usually comes from
the Fierz interaction term b or from the 5 — v correlation coefficient a. The Fierz interaction
Gy — G
< 0.0044 (90% C.L.) [60] and Cr — Cf = —(1.5 +12) x 1073 [61]. These results

term b always constrains the term ‘55 — 6’&‘ or

\65 .y

. The recent analysis yields

are complementary to our analysis. The §—v correlation coefficient a depends quadratically
on the scalar and tensor couplings. The scalar couplings were studied by measuring the beta-
neutrino correlation coefficient @ in the superallowed pure Fermi 3 transition *Ne(0) —
i (5’5 i

BF(07,1040keV) (Ty /2 = 1.67s) [62]. It yielded the limit ‘55 < 0.29 (95%

C.L.) for the scalar coupling constant. A recent experiment was carried out at ISOLDE to
measure the positron-neutrino correlation in the 0% — 0% B-decay of 3?Ar [63]. Combined

2 2
Cs| <3.6x107%and |C4| < 3.6x1073, which means

with the results from [64], it gives us

‘5’5 + 5'5 < 1071, The present limit on the tensor couplings is obtained by determining

the B-v correlation coefficient in the decay of He [65], which is a pure GT transition and

|Cr 2+ |Cy |

is thus sensitive to the tensor couplings. It gives us CaPr|C P < 0.8% (68% C.L.), which
A A

CNZ'T + é’T < 1.6 x 107, Recently, a comprehensive analysis of experimental data

implies
was carried out in [52] . The general fit with seven free real parameters in [52] results in
the following 95.5% C.L. limits

Cs

‘55‘ < 0.070, < 0.067, (4.88)

‘GT‘ <0.090, |C%| < 0.089.

Our constraints are more stringent by one or two orders of magnitude and are compared



Figure 4.2: Constraints on Cg = Cg /Cy and C’g = Cg/Cy. The narrow diagonal band at
—45° is from this work. The gray circle is a 95% C.L. limit from Ref. [62]. The diagonal
band at 45° is a 90% C.L. limit from Ref. [60]

Figure 4.3: Constraints on Cp = Cp /C4 and C’} = C’./C4. The diagonal band at —45° is
from this work. The gray circle is a 68% C.L. limit from Ref. [65]. The diagonal band at
45° is a 90% C.L. limit from Ref. [61]

with the existing limits in Fig. 4.2 and Fig. 4.3 where it is seen that they are complimentary

to the existing limits. Combining our results with the existing limits yields

ICs| $2x 1072, |C4| S2x 1075,

ICr| S6x 1073, |Ch| <6 %1075

4.3.6 Constraints From CKM Unitarity, R./,, and 7

: : : S S T \%
Besides neutrino mass constraints, we also find that a};, a7y, a;p, and ap; can also be

constrained by the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, R/, =
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Table 4.8: Constraints on S-decay couplings aly,

o] |al| lazg|  |ak]
Neutrino Mass 5x107% 12x107° 107 1073 ~ 1072
CKM Unitarity 0.066 0.066 0.031 0.021
Ry, 2x107° 2x107°  1x107® 5x 1072
5 0.13 0.13 - 0.13
Two-loop[51] 1074 1074 1074 1073
Current Limits[52][46] - - - 3.7 x 1072

F(7T+ —etvetnt —>e+1/e'y)
Pt —ptvut+rt—pto.y)’

In fact, constraints on a¥R7 LLs aSR L.rRr> and a% r, by CKM unitarity and R/, are discussed

and pion beta decay (mg), which can constrain other a; as well.

in [46]. In our paper, special attention goes to constraints on a‘LqL, aER, a:fR, and aEL
that involve the right-handed (RH) neutrino. Our analysis could apply to both Dirac and

Majorana cases. Our results are summarized in Table 4.8.

4.3.6.1 CKM Unitarity

The Cabibbo-Kobayashi-Maskawa matrix relates the quark eigenstates of the weak interac-
tion with the quark mass eigenstates and therefore it is unitary. The test of CKM matrix

unitarity, specially the first row relation
|Vud’2 + ’Vus’2 + ’Vub‘Q - 17 (4.89)

would give us a hint of new physics. For example, the author of [72] discussed its implications
for R-parity violating (RPV) extensions of the minimal supersymmetric Standard Model.
The most precise determination of |V,4| comes from the study of superallowed 07 — 0T

nuclear beta decays. Taking the average of the nine most precise determinations yields [67]
|VwdlEx = 0.97377 £ 0.00027. (4.90)

The precise value of |Vi,|® is somewhat controversial. The Particle Data Group 2005

(PDGO05) [68] recommended for Vs only the value determined from Ke3 decay,

|Vus|Ex = 0.2200 £ 0.0026  PDGO5, (4.91)
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ignoring the value obtained from hyperon decays due to large theoretical uncertainties.
However, recent measurements of X — mer branching ratio [67] yields a different value for

|Vius| than previous PDG averages
Vius|x = 0.2257 £ 0.0021  PDGO6. (4.92)

As for Vi, its value is small, [V,3|? ~ 1 x 107°, and consequently it has a negligible impact

on the unitarity test, Eq. (4.89). We follow the notations in [72] and then one has

Vaaldyx — [Vaal%yy _ | —0.003540.0017 PDGO5 (4.03)

Vadl %1 —0.0008 + 0.0015 PDG06

where |V,q|sas denotes the value implied by CKM unitarity. We note |V,4|px from PDGO05
deviates from the Standard Model predictions by 20, while |V, 4|px from PDGO6 is consis-
tent with the Standard Model predictions.

In order to constrain the effects of new physics in S-decay, we can define effective Fermi

constants as in [72]

G = GulVaua| (1 = Ary + Arg — Ay + Ap) (4.94)

where Arg and Ar, denote the appropriate SM radiative corrections to the tree-level j3-
decay and p-decay, respectively, and where Ag and A, denote the new physics correction

to tree-level SM (-decay and p-decay amplitude. Gz can be related to Eq. (4.93) by

GES Vad 2z

GﬂQ w 2 - |V 2
7 1 — Vil 5 x ‘Vd‘SM ~ 205 — 24, (4.95)

where the SM values are computed using Ar, = Arg = 0. Analogous to u-decay, Eq. (4.44)

can be rewritten as

4G~~~
HPmdecay — —;Zazgéefyl/ef)l"vng (4.96)
76,8

where



~ gs gs

a7y, = rag, + A (4.97)
2 2

~3 gs s 98 s

We find

Ag = [alp|” + [aVa)” + |a¥e|” +|a¥e)”
+4 (‘Zibm‘2 +afel” + [a% | + (a3, 2) (4.98)
+3 (\aRL\Q + |5:LFR|2> -1

It follows, using PDGO6 result from Eq. (4.93), that

laZgl, |az,| < 0.066 (95%C.L.)
lajg| £0.031 (95%C.L.) (4.99)

lajr| $0.021 (95%C.L.),

which are 10% greater than the bounds from neutrino mass. The contributions from ‘a*Lq R‘,
|a§L’, }a}CR}, and ‘agL‘ alone don’t explain the PDGO5 result from Eq. (4.93). So we need
to include Ar, or EgL. However, when Arg ~ Ar,, we can safely assume Arg < 1073

which still yields the same bounds.

4.3.6.2 R

e/
Constraints on ‘af Rrl> !a*z .|, and ‘a{R‘ can also be obtained by studying the results of myy
decays. The ratio
R ['(rT —etve+ 7T — eTreny) (4.100)

/nT T (7t = pry, + 7t — pty,y)
has been measured precisely at PSI [73] and TRIUMF [74]. Comparing the Particle Data

Group average [67] with the SM value as calculated in [75], one has

EX

Rg/ﬂ’; = 0.9958 = 0.0033 % 0.0004 (4.101)

e/
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where the first error is experimental and the second is theoretical. In terms of couplings in

Eq. (4.42), one has [71]

R ) )
Rg/]\/; =1+ 7L — 1R +we(nrp + 2k0a£L)‘ + R — nrR + we(nLp — 2koa:£R)‘
e/u
(4.102)
! CLXL a‘% 3 aSL—zzSR .
where 1, = L — 1, mp = ¢ (ik = LR,RL,RR), mip = =42 (i = L, R), we =
mp__mg

2
e ~ 2.6 X 103, and ko ~ ec(ey + ed)%a In AZ—‘Z’V ~ 1072 .The ok; and ol appear in

Eq. (4.102) because the tensor interactions can induce the scalar ones by exchanging photons

between quarks and charged leptons|78]. The corresponding 20 bounds on ‘af R

S
a7 |,and

)

] e

laf, —afp| S2x107° (95%C.L.) (4.103)
lafp| S1x107% (95%C.L.)

laf| S5 %1072 (95%C.L.)

where the bounds on scalar couplings are roughly comparable to the ones from neutrino
mass and the bounds on tensor coupling is 10? greater than the one from neutrino mass.
It should be noted that the bounds (4.103) would become insignificant, if there were also a
contribution from new S and T interactions to 77 — pv with coupling constants comparable
to af I af Ry and a%’R. Future experiments will make more precise measurements of R,/,,
aiming for precision at the level of :< 1 x 1073 (TRIUMF [76]) and 5 x 10~* (PSI [77]).
With higher precision on R,/,, the constraints on aiL and af r would be stronger than

those from neutrino mass.

4.3.6.3 T4

We note that operators associated with af L af ry and agL in the effective Lagrangian Eq.
(4.42) could contribute to pion beta decay. So a precise measurement of its branching ratio,
together with the SM prediction, would imply bounds on a*Lq I af Ry and aEL. We calculate
the correction due to a‘z I af ry and agL terms in the effective Lagrangian Eq. (4.42) to

pion beta decay rate as follows:
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We note that the part of Effective Lagragian (4.42) associated with aEL, afR, and a%L

4G, ¢ S - _ 4G, v _ _
72“ (aLReLyeudR + aLLeLl/eudL) + T; (aRLeR'y“Veu'yudR) (4.104)

would contribute to 77 — 7% v. The amplitude is of the form
4G, (alp + ajL)
V2 2

4G, aY, 144°
et ey (H57 )

5
OIM= <7T0’ud’7r+>ue<1+27 >’UV (4.105)

where we set (70| unyd|nT) = (7°|uySy,d|rT) = 0 due to the parity symmetry. The

hadronic matrix element (7°|u(x)y,d(x) |7 T) is

(@ ) ") (4.106)
- |:f+ (Q2) (pﬂ—o +p7r+)ﬂ + f_ (QQ) (p7r0 _pw+)ﬂ] e_i(pWJr_pWO).m
where Q% = (py+ — pyo)? and f_ = 0 due to conservation of the current u(x)yud(z) and

and isospin symmetry and f, (0) = v/2 given by CVC. Taking the derivative on both sides
of Eq. (4.106) gives us

ot <7r0} (x)yud () {W+> =14 (my — mg) <7T0‘ u(x)d () ‘77+> (4.107)
= —ifs (Pr+ — Pro)" (Pro +Prt), e~ i(Prt —pr0)
m20 - m2+ i _ .
— (nf] @ () d(@) ") = TETE e e re)
where we use
0" (T (x) yud () =i (Mmy — mg) T (x)d(z). (4.108)

So the amplitude becomes

s 2Culs ((afg +afL) mpo —mi, (1497 4.109
= e Ul/ ( * )
\/§ 2 My — Mg 2
oV 1++°
+% (pﬂ0+p7r+)uu7€’yu ( 9 >UV> ’

Considering that the pion mass is much greater than the pion momenta, the momentum



73

terms can be neglected and so one has

4 S S 2 QA 1 5
(5./\/( ~ Guf—‘,— o (a’LR + aLL) mﬂ' ufe + ’y Uy (4110)
/2 2 My — Mg 2
Vv 5
1
tamere (157 )

m_4+m_o

where A = m_+ — m_o, My = 3

The total amplitude is M,y = Mgy + M, where SM denotes contributions from
the Standard Model. In computing |Mt0t|2 to obtain the differential rate, we find that the
cross term involving Mg and M vanishes, since Mgys contains no right-handed neutrino

spinors. For [0 M|?, we have

s s
(afgp+aZy) 2m2A
2 My — My

M2 = (4G“f+>2

2
1+
7 Tr (pe-v B, "y) (4.111)

2

Vo2
a 1+
+4m3r 712%L Tr (pe . ,Y,.YO 72 75]71/ . 770>

(afp+ai;) 2m2A

2 My, — My

Q(Ee'Eu_pe'pu)

(%)

2

1%
ARL

2
+4m;

Q(Ee B, +pe- pzx)]

4G, f+ 2 (aER—FafL) 2m2A

~ 2 (Ee . El/)
V2 2 My, — My
a¥, |

+4m? % 2(E. - E,)

2 [[(.s 5 2

_ (4Gufr (afp +azy) 2m2A 2 4 8m?2 apy (E.-E,)
V2 2 My, — My 2

where p.-p, would integrate to zero when calculating the decay rate so that only the E.- E,

term would contribute.
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The decay rate of 77 — 70t v is

doT = (27‘-)4 |6M|2 5(4) (p7r+ — Pr0 — Pe — pu)

d®p o d*pe
2m .+
_[SMPS(A - E. - E,)

d3pAnE2dE
16m2E.E, (27)° Pe Y

L L ds?f)" (4.112)
(2m)° 2E 0 (27)° 2E, (27)° 2E,

where we integrate over the final state pion momentum p,o and set E, .+ = m,+ and

E o = m_ o by neglecting the pion momenta. Then we have

2
A—E.—E,
6T = OMJ74( L )d3pe47rE3dEl,
16m2E.E, (2)

()

s s 2 v 2
(afp+aiy) 2m2A 2 |QRL
2+8 — 4.113
2 My, — My oMy 2 ( )
2A  |? 5\ G2A®
S S 1% I
= arr+a +4|a —
<( Lr+ din) —my o] ) 15 (27)°
Finally, taking the ratio of this to the decay rate of 7+ — pu*v
2
G2 (. m
Loty = o Frmyme |Vl (1 - — (4.114)
yields

28 (|(af + at ) 2
0Br (7T+ — 7T06+V) =

My, —Mg

Cealof )

— (4.115)
15 (27)2 F2m2my Vil (1 - ﬂ)

2
mx

_ 2 2
~ 1.32 x 10 8<‘a€R+afR‘ —i—‘agL‘ )
where we use A = m_+

My = 459 MeV, m, = "=t a0 — 137.27 MeV, F, = 92.4
MeV, and m, = 105.66 MeV. The predictions [79] of the SM and CVC, given the PDG
recommended value range for Vg4, are

BrSM (7r+ — mlety

) = (1.038 — 1.041) x 107® (4.116)
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while the PIBETA collaboration’s recent result [79] is
BriX (77 — 7% Tv) = [1.036 £ 0.004(stat) + 0.005(syst)] x 107° (4.117)
which implies
|6Br (7t — metr)| $0.023 x107°  (95% C.L.). (4.118)
From Eq. (4.118), one has the bounds on afL, afR, and aEL

lafp +alp| $0.13 (95%C.L.) (4.119)

lap,| 013 (95%C.L.).

4.4 Constraints on @ — vv

The decay m° — vw is forbidden by angular momentum conservation if the neutrino is
massless. This is the case in SM. So the upper bound on neutrino masses would imply
the upper limit for the branching ratio of 7° — v¥. The most general local nonderivative
effective neutrino-quark interaction that could contribute to 7° — v¥ is given in [69] by:

G .
L ==E [gaavy"vI} + (9ppvy°v +igspv) 7] (4.120)

S

where J, f = % (ﬂfyufyg)u . Eﬁ,fmd) ,JP = % (ﬂ%u . 375d) , and a branching ratio is

™

2
B (" — vp) ~ (9.6 x 1077) & [(0.29AA:Z” - gpp) + ﬁZg?qp] (4.121)

4m2 . .
where Kk = /1 — %, m, and m, denote the neutrino and the pion mass.
U

In Eq. (4.120), the first term comes from the Standard Model and new physics. Since
the contribution from the SM to g44 dominates over the one from new physics, we can safely

assume g4 4 = 1. The chirality-changing pseudoscalar interaction in Eq. (4.120) could induce

the neutrino mass radiatively and thereby be generated by Og )A D.af (’)((g) AD.af> (’)C(g) AD af"

6)

and O% B after integrating out the massive gauge bosons below the weak scale. Matching
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Eq. (4.120) with Eq. (4.63) at my gives

) (4.122)

_ _LQ affgb,n (mn) + a%%zf,n (mn) afﬁ:),n (mn) + a%ﬁ:,n (mn)
gpp A2 D) 5
v? a%},n (mn) — aSD?:lk,n (mn) afﬁ),n (mn) — a%ﬁf,n (mn)
ISP = §2 2 2%

where A and D are the flavors of two neutrinos in the final products. Using Eq. (4.64) and
Eq. (4.81), we have

Ksv? (47)% (my,  3m, _5
< — ~ 4 x10 4.123
Kgsv? (41)? <m,, 3m,,> _5
< — ~ 4 x10
SP| S )
957 A2 2No \m, my

which implies B (770

— yﬁ) < 3 x 1071 which we use m, ~ 1eV and set A = v. Our result
is eight orders of magnitude stronger than the current best experimental limit [70] and 10%
stronger than the result obtained in [44]. While only carried out our analysis in the Dirac

case, we believe the same result should hold for the Majorana case.
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