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Abstract of the thesis 

 

This thesis describes research towards the realization of large-scale, ultra-dense nanowire-

based circuits. The primary means for the construction of such circuits is the superlattice 

nanowire pattern transfer (SNAP) technique. This technique was optimized for the 

fabrication of large nanowire arrays containing over 1000 nanowires at narrow pitch and 

aligned over millimeter length scales. Silicon nanowire arrays were fabricated with wire 

widths down to ten nanometers, and with precisely-controlled electronic properties and 

bulk-like resistivity values through the use of diffusion doping and the selection of high-

quality silicon-on-insulator substrates. 

 A binary tree demultiplexer circuit allows the unique addressing of N nanowires 

from within an ultra-dense array using of order 2×log2(N) control wires. An 

implementation of this circuit was experimentally demonstrated to bridge from the 

submicrometer dimensions of lithographic patterning to the nanometer-scale dimensions of 

SNAP patterning. This circuit utilized field-effect gating by relatively large control wires to 

address individual nanowires from within a 150-nanowire array patterned at a wire width 

and pitch of 13 and 34 nanometers, respectively.  

 Silicon- and metal-nanowire arrays were integrated with [2]rotaxane molecular 

materials for the fabrication of an ultra-dense, 160,000-bit crosspoint molecular electronic 

memory circuit. This circuit is patterned at a record density of 1×1011 bits per square 

centimeter (device-pitch of 33 nanometers), and contains bistable, electrochemically 

addressable [2]rotaxane switching molecules as the data storage elements within the 
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individual crosspoint junctions. Defective junctions could be readily identified through 

electronic testing and isolated through software coding. The working bits could then be 

configured to form a functional memory circuit. The molecular-mechanical nature of the 

switching mechanism was confirmed through volatility measurements. 

 An optimized two-step chlorination/methylation protocol was used to methyl 

passivate thin (~20-nanometer) silicon(111)-on-insulator microelectronic device surfaces, 

that were then demonstrated to be stable in air for arbitrarily long periods, and to resist 

oxidation due to common microelectronic fabrication procedures and wet-chemical 

treatments. Additionally, temperature-dependent mobility data showed that methylated 

silicon-on-insulator surfaces can be prepared with bulk-like mobility characteristics 

through careful optimization of the methylation reaction protocol. 
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Chapter 1 
 

Thesis overview 
 
 
1.1 Nanotechnology and nanoelectronics 

 

The rapidly expanding fields of nanoscience and nanotechnology are within the midst of 

an extraordinary period of scientific and technological productivity, due in no small part 

to the unprecedented collaboration of researchers from across the physical, chemical, 

biological, and life sciences. The promise of functional systems at the nanometer (nm) 

length scale (1–100 nm) has spurred researchers in diverse disciplines to engage in 

fruitful collaborations across traditional academic boundaries and between academia, 

industry, and government1. The result has been a modern-day scientific renaissance as the 

talents of chemists, physicists, biologists and engineers are simultaneously leveraged to 

understand and exploit novel phenomena and functionality particular to the nanometer 

size regime. Emerging applications of nanotechnology range from ultra-dense 

information storage2 to sustainable water purification3, to in-vivo biological sensors and 

intelligent drug delivery systems4, to ‘smart materials’ capable of sensing changes to their 

external environment and responding accordingly5.  

An exciting sub-field of nanotechnology is nanoelectronics and, in particular, 

molecular electronics6. Interest in this field has been fueled by the realization that the 
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technologies and materials systems currently in use by the semiconductor 

microelectronics industry cannot sustain the forty-year-old trend of device 

miniaturization into the coming decades. Indeed, the microelectronics industry had to 

overcome significant technical barriers to achieve the sub-100-nanometer dimensions of 

today’s transistors, and such barriers are becoming increasingly numerous and more 

difficult to overcome as device dimensions continue to shrink. This is highlighted by a 

recent assessment7 of the technology requirements for future generations of integrated 

circuits, which forewarns the emergence of insurmountable technical barriers (either 

physical or economical) by as early as the year 2010.  

This has led to a growing consensus that continued improvements in 

computational technology will likely occur through the development of alternative 

materials, patterning methods, and architectures7, 8. To that end, the Heath group began a 

research program with the intent to develop the required materials, methods, and circuit 

architecture to construct an ultra-dense molecular electronic computer. The Heath group 

‘vision’ for such an integrated circuit is shown in Figure 1-1. The dominant theme of this 

circuit is the crossbar architecture6, which consists of two perpendicularly overlaid arrays 

of high-density nanowires. These nanowires tile together the various computational 

elements of the circuit (logic, memory, etc.), which are themselves derived from unique 

electrically active thin-film materials sandwiched between the nanowires at the locations 

shown in the figure. 

My research has focused on a number of the components shown in Figure 1-1 for 

realizing this multifunctional computational architecture. These have included the 

development of techniques for patterning ultra-high-density arrays of silicon nanowires 
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Figure 1-1. Schematic diagram of a nanoelectronic crossbar architecture. The various 
computational elements such as memory, logic, and routing are shown tiled together 
through nanowire arrays. Multiplexers (Mux) and/or demultiplexers (Demux) control 
signals within the circuit and to outside electronics (power I/O).  
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with precisely controlled electronic properties (Chapter 2), the demonstration of a field-

effect transistor (FET)-based demultiplexer capable of bridging from the sub-micrometer 

length scales of conventional silicon microelectronic technology to the nanometer length 

scales of molecular electronics (Chapter 3), the integration of sub-lithographic patterning 

techniques and molecular materials for the fabrication of ultra-dense molecular electronic 

memory circuits (Chapter 4), and molecular-level control over nanoelectronic device 

surfaces (Chapter 5).  
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1.2 Organization of the thesis 

 

To accommodate the largely independent, but closely related, projects which have 

comprised my graduate research in the Heath group at Caltech, I have chosen to organize 

this thesis into chapters—with each chapter completely self-contained and with its own 

background and references. The following sections will provide a brief overview the 

chapters in this thesis, summarizing the main results of the research described in each 

chapter and (hopefully) providing some overall unity to the topics discussed individually 

in the chapters. 

 

1.2.1 Fabrication of ultra-dense nanowire arrays 

 

In Chapter 2, I describe research directed towards the development of high-quality arrays 

of silicon and metallic nanowires. One-dimensional nanostructures such as nanowires are 

useful in a wide variety of applications in nanotechnology9, and have emerged as the 

fundamental building blocks of novel nanoelectronic circuits. Such structures can be 

fabricated using highly parallel techniques and assembled into ultra-dense crossed-

nanowire (crossbar) circuits such as shown in Figure 1-1. Nanowires not only propagate 

electrical signals throughout the circuit, but can also serve as the active components 

within the circuit. This dual functionality results in significant savings in wiring overhead, 

and enables crossed-nanowire circuits to be fabricated at the incredible densities I 

describe in Chapter 4. 
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There are a number of methods for the fabrication of silicon nanowires, with most 

based on the catalytic growth of nanowires from molecular precursors9. However, this 

technique has a number of significant drawbacks for application to large-scale 

nanoelectronic circuitry. For one, crossbar circuits fabricated from catalytically-grown 

nanowires are usually limited in size to around 10 micrometers, and to date have 

contained at most 100 junctions10. Additionally, the techniques required to align 

catalytically-grown nanowires are rather complicated and generally imperfect. This 

makes their integration with lithographically-defined structures such as binary tree 

decoder circuits (discussed in Chapter 3) awkward and difficult. Dr. Nick Melosh, a 

former post-doc in the Heath group, developed a method in which high-density arrays of 

silicon or metal nanowires could be patterned without such a limitation. This method is 

called the superlattice nanowire pattern transfer, or SNAP, technique and allows the 

fabrication of dense arrays of nanowires aligned over millimeter length scales.  

Chapter 2 describes my efforts to systematically remove much of the 

phenomenology that had previously plagued the SNAP technique and the extension of 

SNAP to higher-density and larger-element arrays of nanowires. In addition, Chapter 2 

will describe my efforts in developing reliable doping protocols and eliminating 

fabrication-induced nanowire defects to achieve bulk-like conductivity characteristics 

from narrow-width silicon nanowires.  
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1.2.2 Demultiplexing ultra-dense nanowire arrays 

 

The SNAP technique is capable of producing arrays of metal and silicon nanowires with 

dimensions (width and pitch) beyond the capabilities of conventional lithographic 

techniques. However, such dense circuitry provides a new challenge for the field of 

nanoelectronics, namely, how to electrically address circuits that have characteristic wire 

dimensions and pitches that are smaller than the resolution achievable through 

lithographic patterning. The selective addressing of, and interaction with, individual 

nanostructures at high densities is one of the central challenges of both nanoscience and 

nanotechnology—in the absence of a resolution to this problem, many of the potential 

benefits of these emerging fields will remain unrealized. For instance, the nanowire-

based molecular electronic memory circuit described Chapter 4 is nearly two orders of 

magnitude denser than conventional circuitry. However, the lack of a robust technology 

to selectively address individual nanowires from within an ultra-dense array reduces the 

effective density of such a circuit to that of conventional (lithographically-defined) 

circuitry.  

Chapter 3 describes research by my co-workers (Dr. Robert Beckman, Dr. Ezekiel 

Johnston-Halperin and Dr. Yi Luo) and me to demonstrate a FET-based nanowire 

demultiplexing architecture that can be patterned with significantly larger dimensions 

than the nanowires it addresses, and with wide alignment tolerances. Its shown that this 

architecture successfully interfaces with high-density SNAP-fabricated nanowires to 

bridge the dimensional gap between nanometer-scale circuitry and conventional 

patterning technology11. 
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1.2.3 Ultra-dense crossbar molecular electronic circuits 

 

In 2002, the Heath group reported on the use of bistable [2]rotaxane molecules as the 

active elements within a 64-bit molecular electronic random access memory (RAM) 

circuit that utilized micrometer-scale wiring12. Although this work successfully 

demonstrated that molecules could be used store information within a solid-state crossbar 

circuit, it did not take advantage of the unique scalability offered by molecular 

components. 

 Chapter 4 is devoted to what has comprised the majority of my research efforts in 

the Heath group, namely, the integration of SNAP-fabricated arrays of silicon and metal 

nanowires with molecular materials for the fabrication of an ultra-dense, 160,000-bit 

molecular electronic crossbar memory circuit patterned at a record density of 100 gigabits 

per square centimeter (1×1011 bits cm–2)13. The construction of this memory circuit was a 

true tour de force in nanofabrication that would not have been possible without the efforts 

my colleague, Jang Wook Choi. In addition, numerous other members of the Heath and 

Stoddard group (at UCLA) made important contributions to this effort13.  

Beginning with a description of the rich science underlying the switching 

mechanism of bistable [2]rotaxane molecules and their integration into high-density 

crossbar architectures, Chapter 4 covers, in depth, the fabrication and operation of the 

memory circuit. The work described in this chapter shows that molecules can be used as 

scale-invariant components in solid state circuitry and, moreover, that functional circuitry 

can be assembled at macromolecular dimensions. A false-colored image of a typical 

molecular memory circuit is shown in Figure 1-2. 



 8

Figure 1-2. A false-colored scanning electron micrograph of a molecular 
electronic memory circuit fabricated from [2]rotaxane molecular materials 
and SNAP-fabricated silicon and titanium nanowires. The memory region is 
defined by the intersection of 400 silicon nanowires (light blue) and 400 
titanium nanowires (light yellow), and contains 160,000 bits in an area of 13×13 
square micrometers (or 1×1011 bits per square centimeter).  

 

1.2.4 Covalent modification and electrical characterization of silicon-

on-insulator devices 

 

As the feature sizes of silicon devices continue to be scaled towards nanometer 

dimensions, the physical and chemical properties of the surface play an increasingly 

prominent role in determining the overall device behavior. This has presented significant 

challenges, and opportunities, to the nanotechnology community, where surface effects 

manifest over a range of applications from nanoelectromechanical systems (NEMs)14 to 

electrical transport in thin silicon-on-insulator (SOI) films15.  
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Covalent alkyl passivation of silicon surfaces is attractive for a variety of 

nanoelectronic applications, such as FET-based demultiplexing and molecular electronics. 

However, the majority of work with alkyl-passivated, (111)-oriented silicon surfaces has 

utilized bulk wafers. While such wafers are convenient for surface characterization 

studies, they are less useful for the nanoelectronic applications of interest to us, where 

SOI structures are generally required. This last chapter of my thesis describes ongoing 

work to obtain high-quality methyl passivation of ultra-thin (111)-oriented SOI devices 

and their subsequent electrical characterization using variable-temperature conductivity 

and mobility measurements. Using an optimized (for SOI devices) version of the surface 

methylation protocols developed by the Lewis group at Caltech16, robust methyl 

passivation of silicon surfaces was achieved with devices as thin as 20 nanometers thick. 

Chapter 5 presents data showing that this passivation is resistant to oxidation for 

extended periods of time in ambient air, and after exposure to an assortment of common 

nanofabrication procedures and chemical treatments. Additionally, temperature-

dependent mobility data shows that methylated ultra-thin surfaces can be prepared with 

bulk-like mobility characteristics. 
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Chapter 2 
 

Fabrication of ultra-dense nanowire  
arrays 
 
 
2.1 Introduction  

 

The development of arrays of semiconducting and metallic nanowires (NWs) will 

undoubtedly be important for the realization of any future nanoelectronic circuit 

architecture. NWs serve to not only propagate electrical signals into and out of a circuit, 

but can also function as the active components within the circuit. For example, NWs have 

been used to fabricate nanoscale field-effect transistors (FETs)1-6, p-n diodes7, 8, bipolar 

junction transistors7, nanoscale electro-mechanical oscillators9, 10, lasers11, LEDs12, 

complex logic gates13, and complementary inverters with signal gain14. This economy of 

functionality makes NWs an ideal building block for assembling larger and more-

complicated nanoelectronic circuits since the fabrication of such circuits can be 

accomplished with little additional complexity15. For instance, aligned arrays of NWs can 

be used to fabricate a crossbar structure (an expanded ticktacktoe board) by repeating the 

NW fabrication procedure twice with the second set of NWs fabricated on top of, and 

perpendicular to, the underlying first set of NWs. By implementing a computational 

function at the intersection of two NWs, such as logic or memory, a crossed-nanowire 
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circuit containing N × M electronic devices can be fabricated from two constituent N- and 

M-nanowire arrays. The device-to-device pitch is limited by the pitch of the NWs, so the 

ultimate density of a NW crossbar circuit is limited by the dimension and pitch of the 

technique used to form the NW arrays. This has driven researchers in the field to develop 

methods for assembling NW arrays at very narrow pitch. The scalability and 

manufacturability of crossbar circuits has lead to an emerging consensus that future 

nanoelectronic applications (not necessarily limited to conventional computational 

functions, such as memory and logic) will most likely be based on the crossbar 

architecture16-19.  

In addition to NWs, single-walled carbon nanotubes (SWNTs) have gained 

considerable attention from the nanotechnology community. Carbon nanotubes are 

cylindrical, rolled-up sheets of graphene that are about a nanometer in diameter and 

possess remarkable electronic, thermal, and mechanical properties (excellent reviews are 

available from Hongjie Dai20 and Paul McEuen21). Current synthesis techniques produce 

a mix of semiconducting and metallic nanotubes (with about two-thirds being 

semiconducting), and while great progress has been made to separate the two22, nanotube 

electronics continues to be hindered in the absence of a high-throughput separation 

technique. This is in contrast to semiconductor NWs, where the electrical properties can 

be precisely controlled through doping. In addition, NW length, width, and morphology 

can be tailored during fabrication. Considerations such as these have made 

semiconducting NWs the dominant structure for building nanoelectronic circuits 

containing more than just a handful of devices. 
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 For electronics applications, the semiconducting material of choice is silicon. The 

physical and mechanical properties of silicon have been well characterized and there are 

highly developed protocols for patterning and electrically contacting silicon devices. An 

additional benefit is the possibility of integration onto a conventional CMOS technology 

platform, thus opening the door for relatively near-term commercial applications. 

The versatility of Si NW-based electronics has fueled intense research and 

development of semiconductor NW fabrication protocols to enable the parallel 

fabrication of large numbers of NWs of specific geometry and with precisely controlled 

electrical properties. 

The most widely used Si NW fabrication technique is the vapor-liquid-solid 

(VLS) growth mechanism23, 24. A typical procedure is to heat a gold nanocluster in the 

presence of vapor-phase silicon (usually SiH4 in an H2 carrier gas) to the Au-Si eutectic 

temperature (363° C), resulting in the formation of a liquid droplet of Au-Si alloy. As 

vapor-phase silicon is continuously fed into the reaction chamber, the droplet becomes 

supersaturated and solid silicon precipitates out of the melt. As long as there is silicon 

precursor in the reaction vessel to keep the droplet supersaturated, a Si NW grows from 

the solid-liquid interface with the supersaturated droplet riding on top. This process can 

be fine tuned to produce Si NWs with reasonably well controlled lengths and diameters25 

(which is primarily determined by the diameter of the Au catalyst). However, the VLS 

NW fabrication technique faces some significant challenges. VLS-grown NWs tend to be 

limited in length to around 10 micrometers (μm)26, which in turn limits their practical 

applicability to anything other than small-scale nanoelectronic circuits. The precise 

electrical properties of VLS-grown NWs are generally unknown before they are wired up 
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since the NWs are doped in-situ by adding dopant precursor to the reaction vessel. 

Additionally, while the VLS technique can be used fabricate large numbers of NWs in 

parallel, subsequent procedures are required to align the NWs into arrays and crossbar 

circuits24. The most successful procedure to date employs a Langmuir-Blodgett (LB) 

trough27 to align the NWs parallel to one another. However, this technique suffers from 

fluctuations in the average alignment direction and poor end-to-end registry of individual 

NWs. This makes interconnecting and integrating such arrays into larger (especially 

CMOS-compatible) circuitry difficult. In addition, the LB technique would be difficult to 

scale-up for the commercial manufacture of NW circuits. 

 

2.2 The SNAP nanowire fabrication technique 

  

2.2.1 Introduction to SNAP 

 

The ability to assemble nanoscale building blocks such as Si NWs into integrated 

nanoelectronic structures at narrow pitch (and therefore high density) is a general 

challenge in nanotechnology. The majority of work in the field has focused on few-

device demonstrations of scaling feature size, and has largely neglected such 

considerations as feature pitch, device-to-device reproducibility, and manufacturability—

all of which are required for any robust application. The superlattice nanowire pattern 

transfer (SNAP) technique was developed within the Heath group10 to simultaneously 

address these issues. The SNAP technique is a ‘top-down,’ non-photolithographic 

technique that enables the fabrication of ultra-dense arrays of high aspect ratio (length-to-
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width ratio routinely > 106) Si and/or metal NWs that are aligned over millimeter length 

scales, and without the need for a secondary alignment step after NW fabrication. NW 

width and wire-to-wire pitch are highly reproducible and the technique is compatible with 

conventional CMOS technology and adaptable for large-scale manufacturability. 

Furthermore, the SNAP technique permits precise control of the electrical characteristics 

of Si NWs through quantitative doping control. These traits make the SNAP technique 

ideally suited for realizing large-scale NW circuits.  

 My initial research efforts in the Heath group were devoted to optimizing the 

SNAP procedure so that fabrication of Si NW arrays with precisely controlled electrical 

properties would be routine and reproducible. Previous efforts were successful in using 

SNAP to generate arrays of 128 Si NWs of widths down to 20 nm, but only a fraction of 

those NWs conducted, and none exhibited bulk-like conductivity characteristics10. We 

found that Si NWs of widths of less than 30 nm are critically sensitive to the defects 

introduced by standard processing methods such as ion-implantation doping. Nanowires 

significantly smaller than 50 nm in width (~25-nm thick) and longer than 10 μm will 

often contain at least one such defect, and the result is a poorly conducting wire. 

However, by moving to diffusion doping we were able to improve the conductivity of our 

Si NWs by a factor of 103, and to demonstrate that Si NWs with diameters of 10 nm and 

lengths in excess of 1 mm can be fabricated with controllable, bulk-like conductivity 

characteristics and useful field-effect transistor properties28. In what follows I will 

describe the efforts of my coworkers and I to optimize SNAP NW fabrication procedures 

for extending the SNAP technique to arrays of 400 NWs for use in ultra-dense crossbar 
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memory circuits, in addition to achieving bulk-like conductivity from SNAP-fabricated 

Si NWs. I will begin with a general description of the SNAP NW fabrication protocol. 

 

2.2.2 Detailed description of SNAP nanowire fabrication  

 

SNAP uses molecular-beam epitaxy (MBE) to create a physical template for NW 

patterning. This template is a custom-grown gallium arsenide/aluminum gallium arsenide 

(GaAs/AlxGa(1-x)As) superlattice structure consisting of alternating layers of GaAs and 

AlxGa(1-x)As grown on top of a (100) GaAs substrate. The mole fraction x ranges from 0.5 

to 0.8; for clarity, the subscripts will be omitted in what follows. For typical applications, 

the AlGaAs layer thickness determines the NW width and the GaAs layer thickness 

determines the separation between NWs. Because MBE is capable of growing layers with 

atomic resolution, the NW width and separation can in principle be reduced to just a 

couple of atomic layers. In practice, however, NWs have been limited to about 7–8 nm in 

width and 15 nm in pitch29, although, as of this writing, we haven't pushed very hard on 

this limit. 

 The number of alternating layers of GaAs and AlGaAs determines the number of 

NWs in the array. To date, we have successfully used the SNAP technique to fabricate 

arrays containing up to 1400 NWs29; however, there is no reason (in principle) why we 

couldn’t increase this number considerably. 

The SNAP fabrication protocol begins by carefully dicing a portion of the 

superlattice wafer into small rectangular pieces approximately 2 mm wide and 5 mm long 

(Figure 2-1.A). These pieces will henceforth be referred to as masters for reasons that 

will become obvious. The masters are cleaved from the parent GaAs/superlattice wafer 
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A B C

DEF 

Figure 2-1. The major steps in SNAP nanowire fabrication (clockwise direction) A. A 
small piece of the GaAs/AlGaAs superlattice is selectively etched, B, forming a comb-like 
structure. C. Pt is then deposited along the ridges of the comb. D. The superlattice 
template is adhered to an epoxy-coated thin-film substrate. E. The superlattice is released 
from the Pt nanowires and, F, the Pt nanowire pattern is transferred into the underlying 
thin film. 

such that one of the 2-mm-wide edges of the master is precisely along a lattice direction. 

This leaves an atomically flat {110} or {001} plane exposed on that edge (depending on 

the direction of cleave). The masters are then loaded into a custom-made Teflon holder 

with the atomically flat edge facing up. They are sonicated in methanol (~10 seconds at a 

time) and the atomically flat edge is gently swabbed until all particulates visible under a 

160× magnification optical microscope are removed. The superlattice region of the 

master is scrupulously cleaned before proceeding since a single micrometer-sized piece 

of debris can (and frequently does) result in unsuccessful NW fabrication. I have found 

that small particulates relatively far away from the superlattice region are not usually a 

problem and can be ignored. Also, particulates that cannot be removed from sonication 

and swabbing may come off in the subsequent etch step. 
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The GaAs (or AlGaAs) layers 

are selectively etched in an NH4OH-

H2O2 etch solution to form a comb-

like structure (Figures 2-1.B and 2-

2.A) and 10 nm of Pt is then 

deposited with the superlattice 

surface oriented at 45° with respect 

to the evaporative flux of an 

electron-beam-evaporated Pt source 

(Figure 2-1.C). The orientation of the 

superlattice determines how much 

metal is deposited along the ridges of 

the AlGaAs (or GaAs) comb, which 

defines the Pt NW template. The 

metal-coated superlattice is then 

applied to a thin (~10 nm) layer of 

heat-curable epoxy spun onto a 

substrate with a thin-film epilayer (Figure 2-1.D). To ensure that the epoxy spins down 

uniformly, the surface is rigorously cleaned beforehand. The epoxy is then baked in two 

steps for 10 minutes and 30 minutes at approximately 100° C and 135° C, respectively. 

After curing, excess epoxy is removed by a high-power, 100-Watt (W) oxygen reactive-

ion etch (RIE) at 5 milliTorr (mTorr). The superlattice template is released from the Pt 

NWs by etching the GaAs/AlGaAs superlattice in either commercially available gold-

A 

400 nm 

B 

1 μm 

Figure 2-2. Scanning electron microscope (SEM)
images of SNAP nanowire fabrication. A. 
Partially etched GaAs/Al0.5Ga0.5As superlattice 
showing the Al0.5Ga0.5As ridges forming the Pt
nanowire template. B 128 12-nm-wide Si nanowires 
generated by using the transferred Pt nanowires as
an etch mask. The inset is a higher-resolution image 
revealing the incredible fidelity obtained with the
SNAP process. The scale bar is 150 nm.
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etch solution (4 g KI + 1 g I2 into 100 ml H2O) or 1:5:50 solution of 30% H2O2 to conc. 

H3PO4 to H2O; both for 3–5 hours*. The epoxy between the Pt wires is subsequently 

removed in another oxygen RIE step (40W, 5 mTorr).  

At this stage the SNAP procedure has produced an array of Pt NWs adhered to a 

thin-film substrate (Figure 2-1.E). The Pt NWs can then be used as an etch mask in an 

anisotropic RIE to transfer the NW pattern into the thin-film substrate (Fig 2-1F). The 

highly versatile SNAP technique can be used to fabricate NWs out of any thin-film 

material that can be anisotropically dry-etched. To fabricate Si NWs, the Pt NW pattern is 

adhered to a doped silicon-on-insulator substrate. High-fidelity pattern transfer with 

vertical side walls is accomplished using a high-frequency RIE tool (40 MHz Unaxis 

SLR parallel-plate RIE) and fluorine-based reactive-ion etching at low substrate bias (10–

20 volts DC). An etch recipe of CF4, He, and H2 (20:30:2.5) at 40 W and 5 mTorr was 

found to give vertical Si sidewalls with no observable undercut. (The added hydrogen 

promotes the deposition of a fluoropolymer on the Si NW sidewalls to prevent 

undercutting.) However, I found that this etch would occasionally reduce the conductivity 

of boron-doped NWs. One possible explanation is that hydrogen in the etch was diffusing 

into the NWs and forming a boron-hydrogen complex30. This complex results in 

passivation of the dopant so it can no longer produce free charge carriers. For thin Si 

epilayers, I have found this problem can be avoided without altering the etch fidelity by 

simply removing H2 from the recipe. The Si etch end-point is determined by 

interferometry, although the etch efficiency may be lower between the narrow-pitched Pt 

NWs than where the actual laser spot is positioned (due to residual epoxy and Pt NW 
                                                 
* A lower bound for the etch time is given by (thickness of superlattice region)/etch rate. The phosphoric 
acid etch rate is ~0.1 μm/min at room temperature. The KI/I2 etch rate was not measured but is estimated to 
be ~0.2 μm/min. 
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charging effects). To ensure complete transfer of the Pt NW pattern into the underlying Si 

film, the etch time is usually extended by 25–50 percent. Over-etching is not a problem 

for most applications since this only results in transferring the NW pattern into the 

underlying oxide by a small fraction (CF4 etches Si and SiO2 equally31 in pure CF4). After 

transferring the Pt NW pattern to the underlying Si epilayer, the final step is to remove 

the Pt NWs in hot aqua regia (1:4 conc. HCl to conc. HNO3 at 120° C, ~10 min). The 

result is an array of Si NWs on an insulating oxide that are aligned and continuous over 

hundreds of microns (Figure 2-1.E & Figure 2-2.B).  

The selective GaAs etch, Pt evaporation angle, and epoxy formulation are all key 

for obtaining high-quality NW arrays. Accordingly, I will discuss each in more detail 

below. 

 

2.2.3 Selective etching of GaAs on AlGaAs 

 

The SNAP technique relies on a physical template for NW fabrication. The construction 

of this template requires not only the fidelity of MBE to define alternating layers of GaAs 

and AlGaAs, but the ability to etch GaAs with high selectivity. One of my goals was to 

optimize this etch for various GaAs/AlGaAs superlattice structures. Although I will only 

consider the selective etching of GaAs over AlGaAs, as an alternative AlGaAs can be 

selectively etched over GaAs10 using a buffered-oxide etch solution (BOE) (6:1 NH4F to 

HF). Selective etching of AlGaAs is generally avoided because BOE is hazardous to 

work with. However, the ability to alternatively etch AlGaAs instead of GaAs can be 

useful for reversing the NW width and spacing for a given superlattice.  
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A 

B 

Figure 2-3. Pt deposition onto an etched 
GaAs/AlGaAs template. A. Cross-sectional 
diagram of a portion of the etched GaAs/AlGaAs 
template. Pt is evaporated onto the AlGaAs ridges 
at an angle θ forming an upside-down ‘L’ structure 
(right-side up after depositing the Pt NW array) 
with base and edge thicknesses b and e, 
respectively. Pt coats one side of each AlGaAs 
sidewall to a depth, h, that depends on θ and the 
AlGaAs spacing, s. B. Calculated dimensions of the 
Pt ‘L’ as a function of θ for a superlattice with 
AlGaAs spacing s = 17 nm and evaporated Pt 
thickness t = 10 nm. The evaporation angle is 
chosen to give the best Pt nanowire morphology 
within the constraint that h is less than the GaAs 
etch depth, d. For the superlattice considered here, 
this is 45° (see text). 
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The GaAs etch must be highly selective to GaAs over AlGaAs so that the AlGaAs 

ridges of the comb are not rounded. It also needs to be controllable so that the etch 

parameters can be calibrated to 

produce a consistent etch depth. 

The optimal etch depth is 

dependent on the GaAs layer 

thickness and the Pt 

evaporation angle. This can be 

seen from the cross-sectional 

schematic of a GaAs/AlGaAs 

comb shown in Figure 2-3.A.  

Each AlGaAs ridge acts as a 

self-aligned shadow mask for 

the ridge behind it. Since the 

evaporation angle must always 

be less than 90° to avoid 

depositing metal into the GaAs 

recess, the Pt lines actually 

have an ‘L’ structure, where the 

dimensions of the ‘L’ depend 

on the angle of evaporation 

(Figure 2-3.B). The metal 

extends along one side of each 
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AlGaAs ridge into the GaAs recess (h in Figure 2-3.A) for all relevant evaporation angles 

(i.e., 0° < θ < 90°) and increases with both the evaporation angle (Figure 2-3.B, black 

line) and the spacing of the AlGaAs layers. For maximum applicability to different 

superlattices and varying evaporation angles, it is desirable for the GaAs etch to produce 

a GaAs recess as deep as possible. 

I explored two etch chemistries* and a range of etch concentrations on 

superlattices containing 128, 150, and 400 alternating layers of GaAs/AlGaAs with layer 

thicknesses of 10 nm/20 nm, 10 nm/25 nm, and 15 nm/20 nm, respectively. The 128- and 

150-wire superlattices were grown by University of California Santa Barbara with mole 

fraction of Al x = 0.5. The 400-wire superlattices were grown from either University of 

California Santa Barbara or IQE Inc. (Bethlehem PA) with mole fraction of Al x = 0.8. 

The two etch solutions were 1:20 conc. NH4OH to 30% H2O2
[32] and 5:1 50% aqueous 

citric acid (C6H8O7) to 30% H2O2
[33, 34]. Aqueous citric acid was prepared by dissolving 1 

gram of anhydrous C6H8O7 per milliliter of H2O. These stock solutions were diluted by 

varying margins in H2O before use. Extra wide masters (about 4–5 mm) were cleaved 

from a given superlattice along a lattice direction and subsequently etched for times 

ranging from 5 seconds to 20 seconds, then rinsed with de-ionized (DI) (18 MΩ) water, 

and dried under N2. After etching, each master was cleaved lengthwise into halves and 

loaded onto a scanning electron microscope (SEM) puck with one piece laid on its side 

with the fresh cleave facing up. This way a top-down view showing the registry of the 

AlGaAs ridges as well as a cross-sectional view to measure the etch depth could be 

obtained from the same master. Figure 2-2.A was generated in this fashion.  

                                                 
* An acetic acid-based etch was also tried but was found to be inferior to the NH4OH and C6H8O7 etches. 
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Both of the etch solutions were found to have excellent selectivity for GaAs over 

AlGaAs. While the citric-acid etch in dilutions ranging from undiluted to 1:5 (stock 

solution to H2O) and etch times from 6 to 30 seconds, respectively, produced good results 

for the 128-wire superlattice, we found the NH4OH-H2O2 etch solution diluted by a factor 

of 15 in H2O to be easier to prepare and more consistent from one run to another and for 

different superlattices. Using this etch solution, the maximum (reliable) GaAs etch depth 

was found to be 30–40 nm, corresponding to 10–12 seconds of etch time. Longer etch 

times occasionally resulted in collapsed or broken-off AlGaAs ridges. 

After etching the IQE-grown 400-wire superlattice in NH4OH-H2O2 solution, I 

frequently observed small aggregates (< 50 nm) of what appeared to be solid Ga on the 

superlattice surface (Figure 2-4). This excess Ga may originate from a Ga-rich 

reconstruction35 of the exposed {001} crystal plane after cleaving along the 〈110〉 

Figure 2-4. Scanning electron micrograph (SEM) of a freshly-etched 400-nanowire 
GaAs/AlGaAs superlattice. This master was not treated with an additional H2O2 dip, and 
aggregates of solid Ga can clearly be seen dispersed over the GaAs/AlGaAs layer surface. 



 24

direction (the direction along the IQE wafer flat). I found these aggregates could be 

oxidized and removed from the superlattice surface by a 5-second dip in undiluted 30% 

H2O2 immediately following the NH4OH-H2O2 etch. Although Ga aggregates on the 

superlattice surface were found to be present only after cleaving along the 〈110〉 or 〈010〉 

directions, the extra H2O2 treatment was adopted as a standard step in the NH4OH-H2O2 

etch procedure. (In the very least, this step helped to remove particulates from the 

superlattice surface.) 

 

2.2.4 Optimum platinum evaporation angle 

 

In addition to the GaAs etch, I systematically investigated how different Pt evaporation 

This roughness is likely due to the accumulation of Pt 

lt of the small evaporation angle (Figure 2-

3.B, red line). Larger evaporation angles gave smoother Pt NWs, but to also increased the 

depth of evaporated Pt along AlGaAs ridges (Figure 2-3.B, black line). After some trial 

and error, I found that a 45° evaporation angle worked the best. A 45° angle consistently 

angles affected the Pt NW morphology. Smooth Pt NWs are important because they must 

serve as a high-fidelity stencil to define arrays of Si or other thin-film material NWs. 

Ideally, Pt should only deposit along the AlGaAs ridges so that the transferred Pt NWs 

are as symmetrical as possible. This requires a small evaporation angle to reduce the 

depth of evaporated Pt along the side of individual AlGaAs ridges (Figure 2-3.B, black 

line). However, this was found to also increase the roughness of transferred Pt NWs 

along their corresponding side. 

along one side of the AlGaAs ridge as a resu
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produces smooth Pt NWs while being shallow enough that evaporated Pt does not reach 

the bottom of the GaAs recess (Figure 2-3.B).  

 

2.2.5 Epoxy formulation 

 

Optimizing the epoxy formulation for high-yield SNAP-NW fabrication has proven to be 

quite difficult, and numerous members of the Heath group have worked to establish a 

reliable formulation. In fact, one of my initial efforts in the Heath group was to 

investigate the use of amine-terminated self-assembled monolayers (SAMs) on silicon to 

replace the epoxy altogether as a Pt NW adhesive. We found that SAMs could produce 

small arrays of aligned Pt NWs over distances of up to 50 μm, but reliable alignment over 

longer distances and larger NW arrays was very difficult. To date, two epoxy 

rmulations are used in the Heath group; both are modifications of Epoxy Bond 110 

Dominguez California). Both formulations include a 

olymeric additive that functions as a plasticizer to make the epoxy easier to etch in the 

fo

(Allied High Tech, Rancho 

p

oxygen plasma steps described above. The first version uses a PMMA additive (0.37 g of 

6 % PMMA, 20 drops of Epoxy Bond part A, 2 drops of Epoxy Bond part B, 15 ml of 

chlorobenzene). This epoxy recipe etches easily in O2 but does not adhere to the substrate 

as well as the following recipe using dibutyl phthalate as a plasticizer: 5 drops part A, 1 

drop part B, 2 drops of dibutyl phthalate, 10 ml of anhydrous tetrahydrofuran (THF). The 

latter recipe was used exclusively for the fabrication of crossbar circuits, described in 

Chapter 4. The epoxy is spun onto a clean substrate at 5000 RPM to achieve a film 
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thickness of about 10 nm. (Note that film thickness is critical to ensure good pattern 

transfer.) 

 

2.3 Achieving bulk-like conductivity of silicon nanowires  

 

To maximize the conductivity of our Si NWs, we undertook a systematic investigation  

of the relative importance of the defects native to our SOI substrates as compared to 

defects introduced through processing techniques such as doping and reactive-ion etching 

(RIE). A p-doped Si (100) epilayer grown via MBE represented our ‘gold standard’ for 

fabricating

28

 high-quality Si NWs; this substrate was used to assess how the RIE transfer of 

e NW pattern from Pt to Si affected Si-NW conductivity. NWs fabricated from the 

MBE substrate then served as a metric for comparison to commercially available 4-inch 

wafers (defect 

ensity < 0.1 cm–2). In addition, NWs fabricated from 4-inch SOI wafers were used to 

th

SOI wafers (defect density = 0.23 cm–2) and industry-standard 8-inch SOI 

d

compare ion-implantation doping to diffusion doping from a spin-on dopant source. As 

expected, NWs fabricated from the higher quality 8-inch SOI wafers resulted in better-

conducting Si NWs. The use of spin-on doping resulted in a more dramatic improvement 

in NW conductivity, and has proved to be essential for reliably obtaining conductive Si 

NWs below 50 nm in width. 

The Si-NW resistivity was used as the figure of merit for NW quality. To 

facilitate resistivity measurements, Si-NW arrays were sectioned into multiple regions of 

length 5–25 μm with each section contacted by two sets of Ti/Al/Pt (10 nm/150 nm/20 

nm) electrodes via electron-beam lithography and thin-film metal deposition and lift-off. 
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Individual NWs were 10–15 nm wide and each electrode addressed 2–4 NWs (Figure 2-

5.A inset). The contacts were subsequently annealed at 450° C for 5 minutes in argon to 

promote ohmic contact formation. Four contacts allow the measurement of two sets of 

wires per region and cross-conductance measurements between sets to measure leakage 

current.  

Figure 2-5.A (filled circle) shows a current-voltage (I-V) trace for a 7-μm-long 

section of Si NWs fabricated from the MBE substrate (30 nm of Boron:Si on intrinsic Si, 

p = 1×1019 cm–3); the linearity of the trace confirms the ohmic nature of the contacts.  

The histogram in Figure 2-5.B represents many such resistance measurements normalized 

by the bulk-scaled resistance, Ro, and reveals the bulk-like conductivity of these NWs 

despite their narrow width of ~10 nm. The good morphological properties of these NWs 

apparently correspond to good electronic properties, confirming that the RIE recipe 

described above does not damage the NWs. 

 In contrast, when Si NWs were fabricated from the same substrate used in 

previou

se defects36, but for NWs of narrow width 

(~10 nm here) even a small number of doping-induced defects can dramatically affect 

s studies10 (ion-implantation doped 4-inch SOI wafer; 25 nm of boron-doped Si 

on 150 nm of SiO2; p = 3×1019 cm–3), the R/Ro histogram was centered at 104 (not 

shown), indicating that the electrical properties of those NWs were severely degraded. 

The most probable cause is lattice defects from ion-implantation methods. Ion-

implantation doping uses a high-energy beam of ionized dopant atoms to implant dopants 

into the Si substrate. These high-energy dopants collide with Si atoms in the lattice and 

produce point defects that degrade the conductivity of the substrate. Post-implantation 

thermal annealing can alleviate most of the
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Figure 2-5. Si nanowire electrical properties.
A. IV measurements of 4 nanowire samples (all
samples doped via spin-on diffusion doping): ■

 

8” SOI, p=5e19cm–3, 10nm×31nm×3μm ▲ 8” 
SOI, n=1e20cm–3, 10nm×31nm×3μm ● MBE, 
p=1e19cm–3, 10nm×30nm×7μm ♦ 4” SOI, 
p=5e18cm–3, 10nm×25nm×2.5μm. Upper-left 
inset shows data plotted on a semi-log scale. 
Lower-right inset shows an SEM image of the
nanowire contacts; scale bar is 200 nm. B. 
Statistical distribution of normalized nanowire
resistance (R/Ro) for various substrates. R/Ro
values for ion-implantation doped Si NWs are
greater than 103 and are not shown. The bin size 
is 10. 

on doping to improve NW 

conductivity, we used SNAP to 

fabricate Si NWs from a 4-inch SOI 

substrate doped with the spin-on 

doping technique (25 nm of Si on 

150 nm of SiO2, p = 5×1018 cm–3). 

Figure 2-5.A (filled diamond) shows 

NW conductivity. This is confirmed 

by the observation that we could 

reliably fabricate conductive NWs 

from ion-implanted substrates down 

to 50 nm in width, but NWs of 10–

15 nm in width were frequently poor 

conductors. Consequently, we 

moved to spin-on doping as an 

alternative to ion-implantation 

doping. This method forgoes the use 

of ion-implantation and instead uses 

high-temperature annealing to gently 

diffuse dopant atoms into the Si 

lattice from a spin-on dopant source. 

To test the efficacy of spin-



 29

Figure 2-5.B shows a histogram 

e

normalized resistance is still a factor of ten higher 

fabricated from spin-on doped substrates are a th

their ion-implantation doped counterparts. This dra

the result of eliminating lattice defects from ion-im

importance of spin-on doping for the fabrication of c

Improving NW conductivity by another fac

scaled NW resistance, was accomplished simply 

wafer as the starting material (8-inch industry-sta

Figure 2-5.A (filled square) shows a typical I-V sca

doped 8-inch SOI wafer (30.8 nm of Si on 145 nm o

and Figure 2-5.B, the normalized resistance, wh  

histogram of NWs fabricated from the MBE 

fabricated from 8-inch spin-on doped SOI (30.8 nm

n = 1×1020 cm–3) also show bulk-scaled resistanc

typical I-V scan is showed in Figure 2-5.A (filled tri

The SNAP technique was additionally used 

a (111) surface orientation from bonded silico

Semiconductor, Vancouver, WA.; 40 nm of Si on

                                                

an I-V scan* for a 3-μm-long section of these NWs, and 

of the normalized resistance constructed from s veral such I-V scans. Although the 

than the bulk-scaled resistance, NWs 

ousand-times-better conductors than 

matic increase in NW conductivity is 

plantation doping, and highlights the 

onductive NWs with narrow widths.  

tor of ten, and thus achieving bulk-

by using a lower-defect-density SOI 

ndard SOI† instead of 4-inch SOI). 

n for NWs fabricated from a spin-on 

f SiO2, 3-μm long, p = 5×1019 cm–3); 

ich is comparable to the resistance 

substrate. Phosphorous-doped NWs 

 of Si on 150 nm of SiO2, 3-μm long, 

e (statistical data not shown) and a 

angle, dashed line). 

to fabricate high-quality Si NWs with 

n(111)-on-insulator wafers (Isonics 

 2 μm of SiO2). In accord with the 

 
* A slight non-linearity in the IV scan at voltages below 250 mV is observed, but length-dependent 
resistance measurements revealed linear (ohmic) scaling implying that the observed resistance is dominated 
by the native NW conductivity and not by the contacts. 

s from † Further confirmation of the superior quality of 8-inch industry standard SOI over 4-inch SOI come
the observation that 4-inch SOI shows substantial leakage current through the insulating oxide while the 8-
inch SOI does not. 



 30

0 1 2 3 4 5 6 7 8
0

2

3

4

1

5

6

Fr
eq

ue
nc

y

R/Ro

Figure 2-6. Electrical properties of Si(111) 
nanowires. A. Representative current-voltage 
scans from 6 sets of Si(111) nanowires 
showing linear response and high conductivity. 
The top-left inset shows the same data plotted 
on a semi-log scale and the bottom-right inset 
shows a nanowire contact. B. Statistical 
distribution of normalized nanowire resistances 
(R/Ro). The bin size is 0.25. The inset shows a 
zoomed-in SEM image of 15-nm wide 

A 

B 

nanowires within a 150-element Si NW array. 
The scale bar is 200 nm.  
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nm thick as received, but was thinned 

to 40 nm through sacrificial dry 

thermal oxidation and BOE wet 

etching. The wafer was then diffusion 

doped with phosphorus using the spin-

on doping method (n = 1×1020 cm–3), 

and the SNAP technique was used to 

fabricate 150-element arrays of 

Si(111) NWs on top of an insulating 

oxide (Figure 2-6.B

versatility of the SNAP technique, no modification was required to the procedures that 

were described above in the context of (100) SOI wafers. The (111) SOI epilayer was 80- 

, inset). The Si 

shows a histogram of the normalized 

resistance constructed from several 

such I-V scans.  

By comparing the normalized 

NW resistance histograms of Figures 

 

NWs were sectioned into regions 1 

μm in length, then contacted and 

tested as described above. Figure 2-

6.A shows representative I-V scans 

from these NWs and Figure 2-6.B 

2-5.B and 2-6.B, it is seen that Si NWs
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i

effects that ion-implantation processes have on S

layer of the (100) SOI wafers used in the study ab

the separation by implanted oxygen (SIMOX) tec

implantation doping in that it bombards the silic

ions. Oxygen ions are implanted into the Si su

separating the Si epilayer from the substrate. L

implantation anneal does not repair all of the 

epilayer. In contrast, the (111) SOI wafers were fabricated (commercially) using a 

bonding technique whereby two oxidized Si waf

lantation. 

fabricated from the (111)-oriented SOI substrates are better conductors than those 

fabricated from (100)-oriented SOI substrates. (The R/Ro distribution for the Si(111) 

des further evidence of the detrimental 

i NW conductivity. The buried oxide 

ove were created (commercially) using 

hnique. This process is similar to ion-

on surface with an energetic beam of 

bstrate to form a buried SiO2 layer 

ike ion-implantation doping, a post-

implantation-related defects in the Si 

ers are bonded together at their SiO2 

surfaces, thus forming a SOI 

structure without the need for 

oxygen ion imp

NWs is more sharply peaked at unity.) This prov

Using NWs fabricated from a 

4-inch spin-on doped SOI substrate 

(7.5-μm long, p = 5×1018 cm–3), a 

crossbar-FET was constructed by 

depositing 7 nm of Al2O3 over the 

NW array, followed by a 250-nm-

wide metallic wire as a gate. Figure 

2-7 shows the gating response for 

Figure 2-7. P-type nanowire gating response for 
various values of the source-drain voltage. The 
asymmetry in source-drain bias is attributed to
asymmetrical Schottky barriers.  
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various values of the source-drain voltage. An impressive modulation in conductivity was 

obtained through a gate bias of just ±1V. (Although difficult to see in the figure, we could 

tune the NW conductivity by a factor of 103.) These results show that by minimizing 

defects at all stages of NW fabrication we can fabricate Si NWs with bulk-scaled 

conductance that are highly responsive to field-effect gating. 

 

2.4  Silicon nanowire doping 

  

The observation that diffusion-doped Si NWs are thousand-fold-better conductors than 

iffusion doping an important part of 

s, I will discuss the technical aspects 

 SNAP NW fabrication.  

their ion-implantation-doped counterparts makes d

w

of diffusion doping using spin-on dopants for use in

Most spin-on dopants consist of the desired dopant s

boron) incorporated into a SiO2 polymer-matrix and

dopant solution is spin-coated onto a clean Si 

temperature to drive off solvent. This results in the 

film on the Si surface that provides a virtually infin

is then annealed at high temperature in an inert e

dopant atoms from the dopant-rich SiO2 film into t

simple and gentle route for doping SOI epilayers tha

the dopant, annealing and removing the dopant. Because spin-on doping requires high 

the SNAP NW fabrication protocol. In what follo

pecies (such as phosphorus or 

 dissolved in an organic solvent. This 

chip and baked at an intermediate 

formation of a thin, dopant-rich SiO2 

ite source of dopant atoms. The chip 

nvironment to facilitate diffusion of 

he Si lattice. This method provides a 

t is compatible with batch-processing 

for manufacturability.  

The spin-on doping procedure consists of four steps: cleaning the wafer, applying 
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temperatures, the wafer must be rigorously cleaned to ensure all organic material is 

removed. To remove organic contamination I frequently used ‘piranha clean’ (2:1 H2SO4 

to H2O2, 120° C, 10 min) followed by an RCA clean (5:1:1 H2O to H2O2 to NH4OH, 80° 

, 10 min; followed by 1:10 BOE to H2O, 25° C, 10 sec; followed by 5:1:1 H2O to H2O2 

to HCl, 80° C, 10 min). The piranha step was usually omitted if the wafer had not come 

into contact with photoresist. The RCA clean usually removes small particulates in 

nic contaminates, but this should be checked under a microscope. If any 

then spun at 

4000 RPM and subsequently baked on a hotplat

e appropriate time and temperature to achieve a given doping 

concen

C

addition to orga

particulates are found, sonication and swabbing of the wafer surface in methanol is 

required.  

After ensuring that the wafer is clean, the dopant solution is generously applied to 

the wafer surface using a syringe and a 0.2-μm PTFE filter. The wafer is 

e set at 200° C for 10 min. I obtained the 

best results for n-type doping using Emulsitone (Whippany, NJ) phosphorosilicafilm 

(phosphorus concentration = 5×1020 cm–3) and for p-type doping using Emulsitone 

Borosilicafilm (boron concentration = 5×1020 cm–3). The n-type dopant was frequently 

diluted by a factor of ten in methanol for easier removal after annealing, but can be used 

as is without difficulty. However, I regularly had difficulty removing the p-type film after 

annealing unless it was ten-fold diluted in methanol before use.  

The dopant-film-coated wafer is then annealed under nitrogen in a rapid thermal 

annealer (RTA) for th

tration. After annealing, the n-type dopant is removed with brief sonication in 

acetone followed by swirling in BOE until the surface is hydrophobic (usually less than 

10 seconds). The p-type dopant frequently required acetone sonication and swabbing 
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before using BOE to remove the dopant film. If the surface is not hydrophobic after 15 

seconds in BOE, I found a brief piranha clean followed by soaking in water and another 

10 seconds in BOE to be effective. 

 To determine the correct anneal time and temperature to achieve a given doping, 

small test pieces of the substrate to be doped are annealed under various conditions to 

construct a look-up table of measured dopant density for particular anneal parameters. To 

determine the doping, I used a home-built four-point probe to measure wafer resistivity 

and calculated the dopant density from an empirical equation relating dopant density to Si 

resistivity. Although this technique is widely used to measure dopant density, it should be 

emphasized that sheet resistivity measurements only give an integrated average of the 

dopant density through the thickness of the measured substrate. 

To obtain an estimate of the proper anneal time and temperature for a given 

doping, I started by modeling the diffusion of dopant atoms into Si. Taking the thickness 

of the Si epilayer to be infinite and the dopant concentration at the surface to be constant, 

a 1-D diffusion model ⎟⎟
⎠
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where erfc is the complementary error function, C is the dopant concentration, Csurface is 

the concentration of dopant atoms in the spin-on dopant film, d is the depth into the Si 

epilayer, t is the anneal time, and D(T) is the temperature (T)-dependent diffusivity. For 

Si, D(T) is given by the empirical relation 
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with A and E constants that 

sity of P (n-type 

anneal temperatures. Using 

equation (1) as a guide, 

several SOI substrates with Si epilayer thicknesses from  annealed under 

various conditions to study diffusion doping in our SOI substrates. Figure 2-9.A shows 

Analogous behavior is observed with 31-nm 

(Figure 2-9.B) and 25-nm (Figure 2-9.C) SOI epilayers. The (in ve) trend from this 

dataset is that higher-temperature anneals produce a sharply rising dopant density that  

Figure 2-8. Calculated dopant concentrations as a 
funct
temperatures. Calculations are for P and B diffusion in Si 

For other SOD concentrations, multiply by the appropriate 

integrated average (~6 nm for a 5 minute anneal at 900 C). 
ameters were taken from ref. 37.  

depend on the diffusing 

dopant atom. For 

phosphorus (boron) 

diffusion, A = 8x10-4 cm2/s 

(0.06 cm2/s) and E = 2.74 

eV (3.12 eV)37. Figure 2-8 

shows the calculated 

den

doping) and B (p-type 

doping) in Si as a function 

of anneal time for various 

ion of diffusion time for various anneal 

from a spin-on dopant (SOD) of concentration 1×1020 cm–3. 

scale factor (e.g., multiply by 5 for a SOD concentration of 
5×1020 cm–3) Depth was taken to be the doping-weighted 

B and P diffusivity par

 25–50 nm were

the measured (filled circles) and calculated (dashed line) n-type dopant density for 50-nm 

SOI after various anneal times at 900° C. Both experiment and calculation reveal a latent 

period before any appreciable doping occurs, after which the dopant density rises sharply 

before asymptotically approaching Csurf. 

tuiti
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subsequently flattens out at high 

g

anneals

monoto

density requiring long anneals to 

achieve

than 1×

temper

by man

a smal

difficul

dopant density by varying the 

anneal 

Si 

epilayer was determined 

A 

B 

C 

Figure 2-9. Time and temperature dependence 

nm SOI; note the good agreement between the 
calculated and measured dopant densities. B. 31-
nm SOI. C. 25-nm SOI.  

1020

dopin , while lower-temperature 

 produce a slow, 

nically increasing dopant 

 dopant densities greater 

1018 cm–3. 

For the higher anneal 

atures, dopant density rises 

y orders of magnitude over 

l time interval making it 

t to reliably obtain a given 

time (especially for 

densities lower than ≈ 1×1019 cm–

3). A better approach is to adjust 

the anneal temperature while fixing 

the anneal time to achieve a rough 

dopant density, and to adjust the 

anneal time for fine tuning.  

The doping profile as a 

function of depth into the of phosphorus doping in SOI substrates A. 50-
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experimentally (Figure 2-10 blue triangles and red

epilayer (via CF4-based RIE) in 10-nm increments an

resistivity) after each increment. As expected, diffusio

l (Figure 2-10, 

das

nanoelectronic applications. For instance, the dopant 

along the length of SNAP-fabricated Si NWs can be

NW surface in regions where the conductivity is to 

depth to achieve a given doping density can be det vs. 

depth plot corresponding to the anneal time and temperature o

The ability to spatially control the conductivi

important applications in NW crossbar circuit architec

 squares) by thinning a 50-nm Si 

d measuring the doping (via 4-point 

n doping produces a dopant density 

gradient that falls rapidly with 

depth into the Si epilayer. Note 

that the infinitely-thick Si 

epilayer mode

hed line) agrees well with 

experiment over most of the 

epilayer thickness (Figure 2-10, 

blue triangles). 

 This dopant density 

gradient will be transferred to 

SNAP-fabricated Si NWs from 

diffusion-doped SOI epilayers, 

and can be very useful for 

density and hence the conductivity 

 tuned very simply by etching the 

be decreased. The appropriate etch 

ermined from a dopant density 

f the starting SOI epilayer.  

ty of SNAP-fabricated Si NWs has 

tures. Si NWs can be made highly-

Figure 2-10. Dopant density vs. depth for 50 nm
SOI substrates with and without dopant drive-
in. Si epilayers that were diffusion doped as
normal (triangles and squares) show a rapid
decrease in dopant density with depth as expected
from calculation (dashed line). SOI subjected to an
additional dopant drive-in step as described in the
text show a more homogeneous dopant density
with depth (circles). 
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doped in regions where electrical signals must propagate and moderate- to lowly-doped 

in regions that need to be responsive to field-effect gating. This becomes especially 

important when tiling together multiple nanoelectronic functional blocks fabricated from 

tion of this technique to a FET-

dopant density is desired. For 

ltra-dense memory circuit made 

ly etched but must nonetheless 

, the dopant density can be 

a single array of NWs. In Chapter 3, I describe the applica

based demultiplexer.  

 There are applications where a homogeneous 

instance, in Chapter 4, I describe the fabrication of an u

from crossed NW arrays in which Si NWs are unavoidab

maintain robust conductivity. In cases such as this

homogenized with a secondary high-temperature anneal. After diffusion-doping as usual, 

approximately 250 nm of SiO2 is deposited over the SOI surface. I frequently used 

plasma-enhanced chemical deposition (PECVD) for this . T

out-gassing of dopant atoms during a second anneal at 1

to the long anneal time and high temperature of this ste

argon ambient. If perfect homogeneity is not required, a

suffice. (Most RTAs are capable of staying at 1000° C fo

 

 step his oxide layer prevents 

000° C for 10–15 minutes. Due 

p, I used a tube-furnace and an 

 shorter anneal at 1000° C will 

r 2 minutes.) Figure 2-10 (dark 

green circles) reveals that the dopant density vs. depth profile after drive-in is nearly 

constant throughout the 50-nm Si player (the abrupt drop in dopant density at 45-nm 

depth may be due to increased surface resistance from RIE damage and/or uneven 

etching of the surface). 
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2.5 Concluding remarks 

 

As described in this chapter, the SNAP technique is a highly versatile NW fabrication 

protocol capable of producing dense arrays of aligned NWs over millimeter length scales.

Furthermore, because S

 

NAP is a ‘top-down’ technique, NWs can be fabricated from any 

In addition to the work described in this thesis, the SNAP technique could be used 

to pattern more exotic thin-film materials. For instance, SNAP could be used to define 

nanoscale ribbons from two-dimensional graphene, a recently discovered form of 

graphite only a single atomic layer thick with exciting electrical characteristics38. 

 

thin-film material that can be anisotropically dry-etched. The physical properties of the 

NWs are thus derived from those of the starting thin-film material. In this chapter, the 

SNAP technique was used to fabricate high-quality Si NW arrays with specific surface 

orientation through the use of (100)- or (111)-oriented Si epilayers. In addition, through 

the use of diffusion doping and surface resistivity measurements, which are only possible 

with a bulk surface, the electrical properties of the NWs could be precisely determined 

and controlled. This is in contrast to catalytically grown NWs where, in general, the 

doping is unknown before NW fabrication and can be difficult to determine afterwards. 

In the next chapter, I describe how the highly ordered nature of SNAP-fabricated NWs 

enables the development of binary tree demultiplexing architectures capable of 

electrically addressing a single NW from within a dense array. In chapter 4, I describe 

how the unique capability of SNAP to pattern NWs from thin-film materials can be used 

to construct an ultra-dense molecular electronic memory circuit.  
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Appendix 2.1: Experimentally determined doping data for 25, 31 and 50 

nm SOI 

 

id 

mid 4 mid 10  750 3 

high

w 

id 

low 850 5 low 10  800 4 

mid 800* 5* 

high

low 

id 

high 

 

n-type 25 nm SIMOX p-type 25 nm SIMOX 

doping (cm–3) temp (oC) time (min) doping (cm–3) temp (oC) time (min)

  

m 1015 800 3 mid 1015 700* 4* 

1016 800 16

 1016 800 5 high 1016 750 4 

lo 1017 800 6 low 1017 750* 6* 

m 1017 800 7 mid 1017 750* 7* 

high 1017 850 4 high 1017 800* 3* 

1018 18

1018 900 5 mid 1018 

 1018 900 8 high 1018 850 3 

1019 900 9 low 1019 900* 2 

m 1019 950 6 mid 1019 900 6 

1019 1000 7 high 1019 1000 5 
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n-t

 

ype 31 nm SIMOX p-type 31 nm SIMOX 

doping (cm–3) temp (oC) time (min) doping (cm–3) temp (oC) time (min)

  

mid 10  880 3 mid 10  830* 3* 

mid 1016 830 4 mid 1016 780* 4* 

high 10  830 5 high 10  780* 5* 

low 1017 830 6 low 1017 780* 6* 

mid 1017 830 7 mid 1017 780* 7* 

high 1017 830 8 high 1017 780* 8* 

low 10  880 4 low 10  830* 4* 

mid 1018 880 5 mid 1018 830* 5* 

high 1018 880 6 high 1018 830* 6* 

low 10  930 6 low 10  880* 6* 

mid 1019 980 4 mid 1019 930 4 

high 1019 1000 7 high 1019 950 7* 

 

 

 

 

 

 

 

15 15

16 16

18 18

19 19
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n-type 50 nm SIMOX p-type 50 nm SIMOX 

doping time (min) dop time (min)

mid 1015 850 1 mid 1015 700* 2* 

 800 2 16 0* 2* 

 800 3 16 50 3 

 850 2 17 00 2 

 850 3 17 00 3 

 50 3.5 17 0* 

 900 1.5 18 0* 

 900 2.5 18 0* 

 875 4 18 25 4 

 900 4 19 50 4 

 950 4 19 50 6 

 1000 7 19 000 6 

    

 Extrapolated or best estimate     

 (cm–3) temp (oC) ing (cm–3) temp(oC) 

      

mid 1016 mid 10 75

high 1016 high 10 7

low 1017 low 10 8

mid 1017 mid 10 8

high 1017 8 high 10 80 3.5* 

low 1018 low 10 85 1.5* 

mid 1018 mid 10 85 2.5* 

high 1018 high 10 8

low 1019 low 10 8

mid 1019 mid 10 8

high 1019 high 10 1

  

*
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Chapter 3 
 

Demultiplexing ultra-dense nanowire 
arrays 
 
 
3.1 Introduction 

  

One of the central challenges of both nanoscience and nanotechnology is the selective 

addressing of and interaction with individual nanostructures at high densities (i.e., 

densities limited only by the intrinsic size and packing of the nanostructures); in the 

absence of a resolution to this problem, many of the potential benefits of these emerging 

fields will remain unrealized. Specifically, this challenge manifests over a range of 

problems varying from coupling conventional electronics to novel nano-scale memory 

and logic architectures1, to addressing of single nanoparticles for applications in quantum 

computing2, to construction of high-density biomolecular sensor circuits3, 4, to name a 

few. Within the field of nano-electronics, this challenge can be framed as the ability to 

fabricate and address circuits that have characteristic wire dimensions and pitches that are 

smaller than the resolution achievable through lithographic patterning. For instance, I 

describe in Chapter 4 a novel molecular electronic memory circuit fabricated from 

crossed arrays of nanowires (NWs) that is nearly two orders of magnitude denser than 

conventional circuitry. However, the lack of a robust technology to selectively address 
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individual NWs from within such an ultra-dense array reduces the effective density of the 

memory circuit to that of conventional (lithographically-defined) circuitry.  

 The first aspect of this challenge, which consists of patterning and assembling 

NWs at ultra-high densities, has been achieved by several groups. Methods have included 

the assembly of catalytically-grown5 NWs with the use of Langmuir-Blodgett 

techniques4, 6, 7, harnessing competing interactions (i.e., long-range Coulombic repulsions 

and short-range van der Waals attractions) to control NW length and pitch8, 9, and, as 

described in detail in Chapter 2, using molecular beam epitaxy (MBE)-grown 

GaAs/AlxGa(1-x)As superlattices as templates for depositing and subsequently transferring 

NWs onto thin-film substrates10, 11.  

 Architectural concepts for meeting the second aspect of this challenge, which 

consists of electrically addressing (demultiplexing) individual NWs that are patterned at 

sub-lithographic densities, have also been proposed, but not yet implemented. The key 

objectives are three-fold. First, the demultiplexer architecture must bridge from the 

micrometer or submicrometer dimensions achievable through lithography to the few-

nanometer dimensions achievable through alternative patterning methods. Second, the 

architecture should allow for the addressing of large numbers of NWs with small 

numbers of micrometer or submicrometer wires. Third, the manufacture of the 

multiplexer should be tolerant of fabrication defects. 

 Proposed demultiplexer architectures12 have been based on combining crossbars1 

(NWs crossed by lithographically patterned demultiplexing wires)13 with multi-input 

binary tree decoders14. Binary tree decoders, by their very nature, exhibit order 2×log2(N) 

scaling, where N is the number of output NWs and 2×log2(N) is the number of input 
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demultiplexing wires needed to address the NWs. Because each wire among a pair of 

input wires addresses one-half of the output NWs (Figure 1.A), 2n NWs can be addressed 

by n input-wire pairs. This allows a small number of input wires to uniquely address an 

exponentially large number of NWs. In practice, demultiplexers for addressing very 

dense arrays of NWs require additional input wires above the theoretical minimum of 

2×log2(N), due to fabrication constraints. However, the number of additional input wires 

increases only linearly as fabrication tolerances are increased for the optimized structure 

described in this work. As will be discussed in the next section, this makes the binary tree 

demultiplexer very tolerant to alignment and manufacturing defects. 

 

3.2 Demultiplexer architectures and alignment tolerance 

  

Kuekes and Williams15 were the first to describe a scheme for bridging microscale and 

nanoscale wires with a diode- or resistor-based decoder that utilized randomly deposited 

gold nanoparticles sandwiched within a crossbar of microscale address wires crossing the 

NW array. Although they demonstrated that 5×log2(N) ‘large’ wires should be sufficient 

to address a dense array of N NWs, their technique required non-standard fabrication 

procedures and extensive testing to identify unique NW addresses. DeHon, Lincoln, and 

Savage12 described a more complex architecture for addressing N NWs using no more 

than 2.2×log2(N) + 11 address wires. Their scheme utilizes field-effect gating of NWs by 

a microwire demultiplexer that allows tighter address encoding, and is compatible with 

conventional microelectronic fabrication procedures. However, their scheme requires 

control over the doping profile along the axial dimension of the NWs. Such NWs have 
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been recently realized experimentally16-18, and Lieber’s group has used them to 

demonstrate a demultiplexer that bridges fabrication methods (i.e., self-assembly versus 

lithographic patterning), but not length scales19, 20. Both of these demultiplexing schemes 

are based upon placing a number of control regions (gates) on the surface of the NWs. An 

individual NW, which is initially in the non-conducting state, will conduct only when all 

of the control regions are field- or voltage-addressed; that is, it is the logical equivalent of 

a multi-input AND gate. (Conversely, demultiplexed NWs described herein conduct only 

when they are not addressed; i.e., the control regions amount to a multi-input NOR gate.) 

While both architectures are tolerant of a certain amount of randomness in their 

fabrication process and both exhibit logarithmic scaling to allow a few inputs to address 

many NWs, they are required to be more complex than the architecture described below 

due to the stochastic dimensions of the NWs they function to address. How precisely the 

dimensions of the NW array (i.e., NW diameter, length, pitch, etc.) can be controlled 

determines how much additional complexity is required from the NWs’ electrical 

properties or from the demultiplexer architecture to facilitate unique addressing of each 

NW within an array. 

Most NW fabrication procedures (including those described above) only 

approximately control NW diameter, pitch, and length. Proposed demultiplexing concepts 

then require a combination of sophisticated NWs (i.e., NWs in which the doping is 

controlled along the axial dimension as described above) and demultiplexers with several 

additional (redundant) address lines. Conversely, the superlattice NW pattern transfer 

(SNAP) technique, described in detail in Chapter 2, permits the fabrication of NWs with 

precisely controlled NW width and pitch, and this substantially eases the requirements of 
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the NWs’ electrical properties and on the demultiplexer architecture. Rather than 

requiring the demultiplexer to bridge fabrication approaches and dimensions, it only has 

to bridge dimensions. The highly ordered nature of SNAP-fabricated NW arrays enables 

the development of a straightforward field effect transistor (FET)-based demultiplexing 

architecture that uses traditional microelectronic (lithographic) processing. 

 The FET-based binary decoder architecture used in this work (in conjunction with 

SNAP-fabricated NWs) is a defect-tolerant design that can allow for large margins of 

error in its implementation and still remain fully functional. This architecture provides at 

least partial solutions to two issues: 1) alignment of the submicrometer demultiplexer 

features with the nanoscale features of a NW array, and 2) the use of large demultiplexer 

feature sizes and feature pitches to address a NW array that is characterized by a 

substantially smaller (but tightly defined) NW width and pitch. As described in the 

paragraphs below, redundancy can be built into the binary tree decoder architecture to 

significantly ease constraints in lithographic patterning and alignment of the decoder with 

respect to the NW array. Although there are more subtle constraints in the placement of 

the smallest gate structures with respect to individual NWs in the array, the highly 

ordered nature of SNAP-fabricated NWs allows the translation of this constraint into an 

equivalent constraint on the relative placement of gate structures with respect to each 

other within the decoder pattern. Such relative alignment within the decoder pattern can 

be readily achieved. Details of a scheme to affect this translation are briefly considered in 

Section 3.4. I will now turn to a discussion of the alignment tolerance afforded by the 

synergistic combination of SNAP-fabricated NWs and binary tree decoders, using Figure 

3-1 as a guide. 
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Figure 3-1. The operation of a NOR logic binary tree demultiplexer with varying 
fabrication constraints. A-D. The NWs are represented by eight horizontal wires, and 
the demultiplexer by three vertical complementary wire pairs. The operation of a 
complementary wire pair may be understood by considering an input address of ‘1’ to 
wire pair A. The left wire is sent high by this address, and the right wire is sent low. For 
an input address of ‘0’, the reverse is true. Regions where the gates interact strongly with 
the underlying NWs are shown as bars. When a NW passes under a bar that is connected 
to a wire in the high state, that NW is deselected (gated). The input address that selects 
each NW is indicated next to the NW. A. A standard binary tree demultiplexer; note that 
every MW pair turns off half of the NWs it contacts. B. A binary tree demultiplexer in 
which the binary tree pattern is not registered with specific NWs, and extends beyond the 
limits of the NW pattern. Note that the addresses are no longer sequential. C. The binary 
tree pattern of gate electrodes is shown at twice the pitch and twice the feature size of the 
NW array. Note that 2×log2(N) address wires are still need to address N nanowires. D. 
The binary tree pattern of gate electrodes is shown at three times the pitch and three times 
the feature size of the NW array. Note that an additional pair of address wires is needed 
and so half of all address values are inactive. 
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3.2.1 Alignment tolerance through architecture 

 

 Alignment along the length (x-axis) of SNAP-fabricated NWs is relatively 

straightforward since such NWs can be extremely long (typically millimeters). Precise 

alignment along the perpendicular (y-axis) direction, however, is more difficult. A partial 

solution to this problem is to fabricate the binary tree of the demultiplexer with a 

repeating pattern, the period of which is equal to the width of the NW array. In this 

fashion, the decoder pattern will extend beyond the boundaries of the array (Figure 3-

1.B). If, for example, the decoder pattern misses its intended position on the NW array by 

500 nm, causing the top 500 nm of addresses to miss their mark, the addresses are simply 

repeated at the bottom of the array. The decoder pattern can be fabricated to an arbitrary 

length, giving any amount of y-axis tolerance desired. The cost of giving up absolute 

demultiplexer alignment is knowledge of which NW corresponds to which demultiplexer 

address. However, it is still possible to know that every NW has a unique address.  

 The constraints on rotational alignment are tighter than for translational alignment 

since small deviations of the decoder pattern from 90° (with respect to the x-axis) can 

result in a NW shifting from its intended decoder address to that of its neighbor.  

Fortunately, angular alignment of the decoder pattern relative to the NW array can be 

accomplished with high precision. This is primarily because the SNAP technique is 

capable of producing very straight arrays of NWs over millimeter length scales, which 

can readily be aligned to using lithographic techniques. Nonetheless, if rotational 

alignment is imperfect, extra input wire pairs at the smallest gate-pitch and slightly offset 

from each other can be used to distinguish NWs without unique addresses.  
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3.2.2 Feature size tolerance through architecture 

 

The second challenge towards bridging the dimensions from the nanometer features of a 

NW array to the sub-micrometer features of the demultiplexer revolves around the limits 

of the lithography used to define the demultiplexer binary tree features. For the binary 

decoder depicted in Figure 3-1.C, the narrowest-pitch gate patterns on the address wires 

are at twice the pitch of the output wires, and there is no need for redundant address lines 

(i.e., the scaling is exactly 2×log2N address wires for N NWs). In reality, addressing an 

array of narrow-pitch NWs (the SNAP-fabricated NWs described in this work are at ~30-

nm pitch) with large repetitions of gates at twice the NW pitch would be exceedingly 

difficult and certainly not practical. However, the gate electrodes may be fabricated at a 

pitch that is m times the NW pitch, where m is an integer. This is shown in Figure 3-1.D 

for m = 3. This requires an additional input wire pair with the same gate periodicity but 

offset by a single NW pitch. Note that using any three out of the four input wire pairs 

does not produce a set of unique addresses for the eight NWs shown – all four are 

needed. This type of alignment, in which the gates are aligned to one another with high 

precision but not aligned with the underlying NW pattern, is practical to achieve. 

However, there are penalties associated with adding additional wire pairs (besides the 

need to fabricate more input wires). Each additional address pair of demultiplexing wires 

reduces the number of good addresses by half. This is illustrated in Figure 3-1.D in which 

an additional pair of address lines is needed to uniquely address each NW in the array, 

but only half of the input addresses actually identify a wire; e.g., there are 24 = 16 

addresses but only eight wires. Thus, the circuit must be tested to discover the good 

addresses and once they are found they must be stored in memory. Since the number of 
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good addresses is nominally the number of NWs to be addressed, only a relatively small 

amount of memory is required. For instance, a NW crossbar memory circuit (such as 

described in Chapter 4) fabricated from two NW arrays of N NWs each would yield N × 

N bits of storage requiring about N×log2N bits to store the good NW addresses. A one-

megabit memory circuit (N = 103) requires about 1 percent of its bits to store the good 

NW addresses, while a 10-gigabit memory (N = 105) requires about 0.01 percent of its 

bits to store the good NW addresses. On the other hand, finding the good addresses in the 

first place requires testing the circuit, with the amount of testing increasing significantly 

as additional address wire pairs are needed. 

 

3.3  FET-based demultiplexing of SNAP-fabricated NW arrays 

 

In what follows, I will describe the research of my co-workers and me to demonstrate a 

field-effect-based demultiplexing scheme that is tolerant of manufacturing defects, has no 

serious restrictions in terms of the wire size and pitch of the demultiplexer structure, and 

utilizes 2×log2(N) + R microwires to address N NWs, where R (for redundant address 

lines) is zero or a small integer. This scheme does not require control over the axial 

doping profile of the underlying NWs, but can take advantage of the readily achieved 

vertical doping profiles described in Chapter 2. It is optimized (i.e., R is small) for NW 

arrays in which the NW pitch and width are precisely controlled, such as the case for 

NWs fabricated using the SNAP method described above. The scheme is based on NOR 

logic; that is, the only NW that is not field-addressed is the one selected (Figure 3-1).  
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The demultiplexer concept is shown in Figure 3-2, in which 32 (= 25) NWs are addressed 

with five pairs of (drawn) submicrometer wires. Note that the binary tree pattern extends 

above and below the NW array to ease the lateral alignment requirements. As long as the 

multiplexer pattern is oriented perpendicular to the NW array, and the NW pitch and 

width dimensions are well defined, the circuit will be functional. As described above, the 

cost associated with giving up lateral alignment precision is the knowledge of exactly 

which NW is selected by a given input address. For example, the binary address ‘1 0 1 0 

1’ utilized in Figure 3-2 corresponds to the decimal address 21, but it is the 28th wire 

from the top that is selected. In practice, one usually doesn’t need to know the physical 

location of the actual NW, just the address of that NW, and so this ‘cost’ is not significant 

for most applications. Also notice that the smallest-patterned binary tree feature sizes and 

Figure 3-2. The nanowire demultiplexer, drawn over an electron micrograph of 25 (= 
32) silicon nanowires. A. All NWs are ohmically contacted to the left electrode. A binary 
tree pattern consisting of five complementary pairs of large wires is shown. The green 
regions correspond to areas in which a voltage applied to the top (metal) wires can reduce the 
conductivity of the NWs through field-effect gating. All multiplexer features are larger than 
the NW features. B. A voltage applied to the left electrode raises all NWs to that voltage 
level. A single NW is selected by applying the input address ‘1 0 1 0 1’. Application of a 
voltage onto a given wire pair sends one wire high and the other low. The resistance of NWs 
that pass under a voltage-gated (red) region is increased. Only a single NW (colored red 
across the entire structure) remains in the high-conducting state. 
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pitches are significantly larger than the smallest corresponding dimensions within the 

NW array (although R = 0 for the example of Figure 3-2). This aspect of the architecture 

makes it particularly amenable to manufacturing processes. For example, the dimensions 

of the multiplexed control wires are well suited to micro-imprint molding, a relatively 

high-throughput lithographic technique21. 

 Development of the demultiplexer architecture described here proceeded in two 

stages: first by selectively addressing lithographically patterned NWs, and second by 

selectively addressing small groups of NWs patterned at sublithographic dimensions. For 

both cases, the key elements of the structure of the multiplexer are illustrated in Figure 3-

3. The goal of this structure is to achieve voltage gating on one NW (NWG) and to 

minimize voltage gating on an adjacent NW (NWI), and this requires careful selection of 

both low-κ and high-κ dielectric materials. For the high-κ dielectric, HfO2 was chosen 

because it has a high dielectric constant (κ = 25), it forms an insulating film on Si that is 

stable to high temperatures22, interdiffusion between Si and Hf is not observed23 (as it can 

be for other high-κ dielectrics23), and methods for growing very thin films of HfO2 exist. 

Finally, HfO2 has been shown to be an effective gate dielectric for nanotube24, 25 and 

NW26 field-effect transistors. For the low-κ dielectric, we chose SiO2 (κ = 3.9) because of 

the ease of fabricating such films. 

 Figure 3-4 shows data from a demonstration circuit in which ten relatively large 

Si wires (doping, n = 5×1018 cm-3) are uniquely addressed. For this circuit (in the context 

of Figure 3-3), W = 200 nm and P = 1000 nm. The thickness of the SiO2 low-κ dielectric 
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Figure 3-3. A. Side view schematic of the demultiplexer. Two NWs are shown in an end-
on view, and D, W, and P refer to the depth, width, and pitch of the NWs. NWG and NWI 
refer to voltage gated and isolated NWs. The HfO2 high-κ dielectric film is typically 3–6 
nm thick, while the SiO2 dielectric is 50–100 nm thick. Note that for small P values, P 
determines the distance of the NWI from the gate electrode, and hence the gating 
selectivity. The shading of the NWs represents the doping profile. B. Measured doping 
profile through the silicon-on-insulator wafers from which the NWs are formed. Two 
modes of doping are illustrated: drive-in doping (red circles), which produces a uniform 
doping level through the depth of the NWs, and gradient doping (black squares), which 
produces a rapidly decreasing dopant density, and is utilized for demultiplexing high-
conductivity NWs. 
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while the total capacitance of NWI has two contributions in parallel. NWI is coupled to 

the gate horizontally through the P–W thick (800 nm) SiO2 dielectric (ignoring the 

relatively small series contributions by the HfO2 layer and the NWI native oxide) and 
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Figure 3-4. A demultiplexer constructed on a test circuit of 10 Si wires, each 200 nm 
wide, patterned at 1-µm pitch. The inset shows the gating electrode structure (before 
deposition of the gate electrodes) that was patterned on top of the underlying wire array. 
Results illustrating the operation of this circuit are shown in the two bar graphs, in which 
individual wires were maintained in the high-conductivity state while all other wires were 
deselected through appropriate input addressing. 
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For the NW array of Figure 3-4, CI is dominated by the first term of equation (2) which 

gives CI ≈ 0.04 εο nm–1. The selectivity is then given by CG / CI ≈ 40. 

While the data of Figure 3-4 illustrates the validity of our FET-based 

demultiplexer architecture for the selection of individual wires, it does not demonstrate 

the capability to bridge length scales. Referring again to Figure 3-3, we next considered a 

NW circuit with width W = 13 nm and pitch P = 34 nm. Again, the metal gate electrode 

is separated from NWG by about 5 nm of HfO2 and 1–2 nm of SiO2 (the native oxide on 

the NW surface). However, NWI is now separated from the gate by 5 nm of HfO2 and 
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only about 20 nm (= P – W) of SiO2. Thus, in contrast to the demonstration of Figure 3-4, 

it is the dimensions of the NW array (pitch and width) rather than the thickness of the 

low-κ dielectric that determines the gating selectivity of adjacent and very closely spaced 

NWs, i.e., CI is dominated by the second term in equation (2) and is approximately 0.02 

εο nm–1 . The result is that for a perfectly fabricated circuit, when a gating voltage is 

applied, the field felt by NWG is about ten times greater than that felt by NWI. For 

realistic fabrication tolerances, the field ratio is likely to be reduced. 

 Figure 3-5 shows images of the demultiplexer fabrication process for a circuit 

designed to address an ultra-high density NW circuit. Using the SNAP method, 150 n-

doped Si NWs were fabricated. As described in Chapter 2, this technique can produce 

aligned arrays of high-aspect ratio (> 106) metal and semiconductor NWs at dimensions 

that are not achievable through alternative methods. Silicon NW arrays containing 

between 102–103 NWs, with bulk-like and controllable conductivity characteristics, may 

be fabricated at dimensions down to W = 8 nm and P = 16 nm. 

 The demultiplexer itself was patterned using electron-beam lithography and thin-

film materials deposition. A brief description of the fabrication procedure is given in 

Section 3.5. For this demonstration, highly conducting p+ (1019 cm-3) Si NWs were 

utilized to ensure ohmic contacts and good signal. However, highly doped NWs do not 

exhibit a strong gating response. Thus, the NWs were thinned (etched) by about 10 nm in 

the regions where the gate electrodes were deposited, so that in those regions, the doping 

was ~1018 cm-3 (Figure 3-3.B). This is a unique feature of diffusion-doped, SNAP-

fabricated Si NWs and allows the gating response to be tuned in automatic registry with 

the gating regions, while also maintaining highly conductive NWs (Figure 3-5.B).  
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Figure 3-5. Scanning electron micrographs of the nanowire demultiplexer assembly 
process. A. Sixteen electrical contacts are established, each to two or three NWs from an array 
of Si NWs. B. The binary gate demultiplexer pattern after deposition of the low-κ SiO2 
dielectric and patterning of lithographically-defined windows. Note that once the tops of the 
underlying Si NWs were exposed, the CF4-based reactive ion etch process (used to etch the 
windows in the SiO2 layer) was briefly extended to intentionally remove approximately 10 nm 
from the NW surface. This lowers the dopant concentration in the gate region. The high-κ 
HfO2 dielectric is deposited following this etch step. C. Assembled demultiplexer circuit. M 
refers to the multiplexer electrode used to apply a voltage to all of the NWs. D is the 
demultiplexer structure, shown with metal electrodes deposited on the HfO2 gate insulator. T 
refers to test electrodes. Individual NWs are measured by applying a voltage to M and 
grounding the test connections through an ammeter.  
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 There is a chicken-and-egg challenge associated with testing this demultiplexer on 

narrow-pitch NW arrays; that is, how does one test whether the demultiplexer can address 

individual NWs when the individual NWs themselves are too closely spaced to separately 

wire up for the test? Our approach was twofold: First, we established 24 (= 16) electrical 

contacts, each bridging two or three NWs, at a 150-nm pitch for testing (Figure 3-5.A). 

Second, a binary gating tree of four pairs of microwires was fabricated to allow for the 

separate addressing of these 16 individual groups (Figure 3-5.B). The most closely 

spaced wire pairs were patterned at a 600-nm pitch, and these pairs were repeated twice, 

with the second wire pair phase-shifted by the pitch of the electrical contacts (= 150 nm). 

The gate width (= 300 nm) was twice the inter-gate spacing. The result was that relatively 

large binary-tree features could select out the two or three NWs addressed by a given test 

electrode. 

 Figure 3-6 shows results from the NW demultiplexer, in which, for two different 

address combinations, two different sets of NWs were selected, at a signal-to-background 

level of about four for the worst-case comparison. It is important to note that due to slight 

variations in the process conditions, different sections of the NW array show both small 

differences in conductivity as well as different coupling strengths to the gate electrodes. 

As a result, the data shown is normalized by the values obtained by setting the entire gate 

array high (+10 V, suppressing conductivity for these p-type NWs), yielding a map of 

nanoFET response for this specific device. Additionally, we have fabricated a second 

device based on n-type NWs and found similar values for both the contrast and the 

selectivity.  
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Figure 3-6. Characteristic operation of the nanowire demultiplexer for two different 
input addresses. The central picture illustrates the address that was used to select out wire 3 
in the bottom left bar graph. Gate voltages of +10 V and –10 V were applied to the red and 
green wires, respectively. The normalized current is the ratio of wire current measured under 
an addressing gate configuration to the current of the wire when +10 V is applied to all gates  

 

 This result validates our demultiplexing architecture, and provides a viable 

pathway toward bridging length scales between micro- and nano-electronic circuits. As 

mentioned above, the full demonstration of single-wire selectivity is currently hindered 

by the lack of an appropriate validation technique, but there is no reason to believe that 

this architecture can not be extended to even smaller dimensions, given a modest scaling 

of the controlling gate array. Additionally, we believe molecular-level control of the Si 

NW-dielectric interface could significantly increase the NW selectivity presented here. 

 Returning again to Figure 3-3, the 1–2 nm native oxide on the Si NW surface 

significantly limits the selectivity by greatly reducing the effective dielectric constant of 

the gate insulator. Although the Si NW native oxide can be removed by hydrofluoric acid 
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etching, the surface will quickly re-oxidize in an ambient environment. However, through 

chemical modification of the Si surface, the native oxide can be replaced by a monolayer 

of covalently bonded methyl groups (i.e., a CH3-terminated surface). As will be discussed 

in more detail in Chapter 5, this passivation prevents oxidation of the Si surface and is 

resistant to typical nanofabrication processing techniques. Replacing tnative in equation (1) 

with the methyl monolayer thickness (about 0.2 nm) and replacing 
2SiOκ by the methyl 

monolayer dielectric constant (believed to be about 2[27, 28]), the capacitive coupling of 

NWG to the gate, and hence the NW selectivity, doubles. The selectivity can be further 

improved by decreasing the HfO2 dielectric thickness using atomic layer deposition 

methods (down to about 2 nm). Lastly, further generations of this structure can be 

improved through the incorporation of ultralow-κ (< 2.0) materials, such as nanoporous 

silica films (κ = 1.3–2.5), porous polymers, and polytetrafluoroethylene (PTFE) (κ = 

1.9)29. A challenge will be to incorporate these changes while maintaining a low-leakage 

current through the gate electrodes (currently 6 pA into a signal channel, or 300 µA cm–

2). For nanowires much smaller than those used here, statistical fluctuations in dopant 

density may ultimately prove limiting to this and other field-effect approaches. 

  

3.4 Demultiplexer patterning requirements 

  

A source of alignment error that cannot be compensated for with increasing redundancy 

of the input wires is schematically illustrated in Figure 3-7. Note that in Figure 3-7.A it is 

clear that NWG represents a deselected (gated) NW, and NWI represents a selected 

(isolated) NW. For Figure 3-7.B, it is not clear whether the NW labeled with a question 
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Figure 3-7. An illustration of the importance of alignment precision between the 
demultiplexer gate structure and the underlying nanowire array. A. A perfectly fabricated 
demultiplexer gate structure, with a deselected (NWG) and an adjacent selected (NWI) NW. B. 
An imperfectly fabricated demultiplexer. NWG is clearly deselected, but the status of the other 
NW is unclear. 

mark (?) is deselected or selected. The implication is that it is necessary to control the 

placement of the gate electrodes to at least one-half of the pitch of the NWs. This is true, 

but, as described below, that accuracy is only required for the relative placement of the 

gates with respect to each other, rather than with respect to the underlying NW array.  

 Absolute alignment of the demultiplexer pattern with an underlying NW array to 

an accuracy of the half-pitch of the NWs is difficult, but highly precise relative alignment 

of the demultiplexer features (gates) with each other is relatively straightforward. To 

solve the problem of ambiguously addressed NWs depicted in Figure 3-7, extra input 

wire pairs at the highest gate frequency (smallest gate size) can be added to the 

demultiplexer with the gate pattern of the extra lines slightly offset from one another 

(ideally by the NW half-pitch). Note that the extra wires are probably only required for 

wire pairs with the smallest gate size. This is because wires with larger gating regions 

will have a smaller fraction of ambiguously gated NWs. 

 Unlike the case of using extra wiring to address NWs with relatively large gates 

(discussed in Section 3.2), these redundant address lines do not lead to redundant 
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addresses. Instead, extra wire pairs are separately tested and then one of them is selected 

according to which address wire pair yields the best performance. The idea is to take 

advantage of the precise relative alignment that can be achieved with EBL without 

requiring absolute alignment to the NW array. Note that this scheme requires the NW 

array to have a well-defined NW width and pitch; such is the case with SNAP-fabricated 

NWs. 

 Finally, fluctuations in the decoder features due to resolution limitations of EBL 

techniques may result in NWs having non-unique addresses similar to the problem of 

poor rotational alignment. This problem can be alleviated by using the same strategy for 

overcoming rotational alignment errors, that is, by adding redundant input wire pairs; 

however, for NWs at very narrow pitch such lithographic limitations may preclude single 

NW addressability. 

 

3.5 Demultiplexer fabrication 

 

The following section briefly describes the major steps in fabricating the demultiplexer 

described herein. More detail can be found in the thesis of Dr. Robert R. Beckman30. The 

NWs were fabricated using the SNAP technique and (100)-oriented silicon-on-insulator 

(SOI) wafers (30 nm of Si on 150 nm of SiO2) doped using diffusion-based doping 

methods (as described in Chapter 2). The fall in dopant density with depth into the Si 

epilayer, which is characteristic of diffusion-based doping, was critical for increasing the 

response of NWs to field-effect addressing. 
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 The SNAP-fabricated NWs were then sectioned (via lithographic patterning and 

an SF6 dry etch) to at least 10 μm in length, and ohmic contacts were patterned using 

standard electron-beam lithography (EBL), thin-film metal evaporation, and lift-off. The 

contacts were annealed in N2 (5 min, 450° C), and Si NW conductivity was verified 

before proceeding to the dielectric material deposition steps. 

 A thick (> 50 nm) SiO2 layer was used as the low-κ (low-gate-capacitance) 

dielectric material, and was deposited by either spin-on glass (SOG; Honeywell, see 

Chapter 4, Section 4.6 for details) or plasma-enhanced chemical vapor deposition 

(PECVD). The SOG is likely to have a slightly lower κ value than a PECVD oxide, due 

to the lower quality of the film, which is useful for increasing the high- and low-gate 

contrast. EBL was used to patterning windows in either poly-methyl methacrylate 

(PMMA) or ZEP-520A (Zeon Corp. Tokyo, Japan), and reactive-ion etching (20:30:2.5 

CF4 to He to H2, 40 W, 5 mTorr) was used to etch the SiO2 over the binary-tree-gated 

regions. The etch time was extended beyond the interferometrically-determined end-point 

to slightly thin (by about 10 nm) the Si NWs. As described above, this decreases the 

dopant density in the regions where a strong gating response is desired. 

 Following the critical SiO2 etch, a thin film (<5 nm) of HfO2 is deposited (via 

electron-beam evaporation of Hf metal in an O2 atmosphere of 6.7×10-5 Torr) over the 

entire decoder pattern as the high-κ dielectric. Lastly, Ti/Al/Pt (10 nm/100 nm/ 20 nm) 

top-gate electrodes are deposited using EBL, thin-film metal evaporation, and lift-off. 

Note that the evaporated HfO2/Ti/Al/Pt stack fills the etched recesses in SiO2 where the 

gate electrodes couple strongly to the underlying Si NWs to be gated (Figure 3-5.B and 

Figure 3-5.C). 
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Chapter 4 
 

Ultra-dense crossbar molecular memory 
circuits 
 
 
4.1 Introduction  

 

The past four decades have witnessed extraordinary advances in computation that have 

revolutionized the way people communicate and process information. Sustained progress 

in this field has largely been driven by the consistent reduction of silicon-based 

microelectronic-device dimensions with accompanying increases in device density. This 

guiding principle of advancing computational technology through regular increases in 

device integration is widely referred to as ‘scaled CMOS’ after the ubiquitous 

complementary metal-oxide-semiconductor integrated circuit, and has driven the now 

famous exponential increase in computational performance as measured by any number 

of metrics (e.g., speed, size, cost, power consumption, etc.). However, there are strong 

indications that continued scaling of conventional CMOS technology may falter in the 

near future due to physical and (perhaps more importantly) financial considerations1. This 

has led to a growing consensus within the semiconductor industry that continued 

improvements in information processing technology will likely occur through the 

development of alternative materials, patterning methods, and architectures2, 3 that can be 
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integrated into the well-established silicon CMOS infrastructure in the near term1, 4 while 

being scalable in the long term. Ideally, any new technology should be compatible with 

conventional CMOS to bridge computational requirements during its assimilation period 

while having the intrinsic potential to continue the exponential pace of computational 

performance once traditionally-scaled CMOS comes to an end. 

These considerations have brought a great deal of attention to the possibility of 

engineering molecules for use as the active electronic components in otherwise solid-

state computational systems5. While the idea of using molecules to mimic traditional 

computational functions is not new6, it is only within the past decade that molecules have 

been integrated into hybrid solid-state/molecular devices to perform the traditional 

computational functions of rectification7, storage8, and logic9. Although a complete 

picture of electronic transport through molecular junctions continues to elude theorists10, 

11, molecules have nonetheless empirically demonstrated their potential for computation. 

Additionally, a number of methods have been reported for assembling small numbers of 

nanowire12, 13 or carbon-nanotube14, 15 devices. However, while these studies demonstrate 

individual device scalability, they seldom address issues such as device pitch or density, 

which are equally important from a technology standpoint. 

To that end, the Heath group began a research program focused on the concept of 

developing an ultra-dense molecular electronic computer architecture where the various 

computational elements would be tiled together through high-density arrays of nanowires 

(NWs) (Figure 4-1)5. Along with my co-workers, my research in the Heath group has 

focused on a number of the components shown in Figure 4-1 for realizing this 

multifunctional computational architecture. These included the development of 
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Figure 4-1. Schematic diagram of a nanoelectronic crossbar circuit architecture. The 
various computational building-blocks are shown tiled together through ultra-dense 
nanowire arrays. Multiplexers (Mux) and/or demultiplexers (Demux) control signals 
within the circuit and to outside electronics (power I/O). This structure is both defect-
tolerant and amendable to non-lithographic fabrication techniques. 
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techniques for patterning ultra-high-density arrays of silicon NWs with precisely 

controlled electronic properties (Chapter 2), and the demonstration of a field-effect 

transistor (FET)-based demultiplexer capable of bridging from the sub-micrometer length 

scales of conventional CMOS technology to the nanometer length scales of molecular 

electronics (Chapter 3). In this chapter, I will discuss the integration of sub-lithographic 

patterning techniques and [2]rotaxane-based molecular materials for the fabrication of an 

ultra-dense, error-tolerant, 160,000-bit molecular electronic crossbar memory patterned at 

a density of 100 gigabits per square centimeter (1×1011 bits cm–2). Before describing in 

detail the fabrication and testing of this memory, I will give a brief introduction to the 
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rich science underlying the switching mechanism of bistable [2]rotaxane molecules and 

their integration into high-density crossbar architectures.  

 

4.2 The [2]rotaxane switching cycle  

 

Figure 4-2.A shows the molecular structure of a bistable [2]rotaxane HRT54+ used in the 

crossbar molecular memory circuits discussed herein. This molecule was synthesized by 

Dr. Hsian-Rong Tseng of the J. Fraser Stoddart group at UCLA using the techniques of 

supramolecular16 template-directed17, 18 chemical synthesis. [2]Rotaxanes consist of two 

mechanically-interlocked components: an amphiphilic dumbbell-shaped component and a 

π-electron-accepting cyclobis(paraquat-p-phenylene) (CBPQT4+) ring (blue). The 

dumbbell component features two bulky stoppers (light blue and grey) on either end to 

prevent the ring from slipping off the [2]rotaxane shaft and to facilitate orientational 

incorporation into solid-state devices via Langmuir-Blodgett techniques. The CBPQT4+ 

ring can translate along the shaft of the dumbbell-shaped component to sit at one of two 

π-electron-donating recognition sites: the tetrathiafulvalene (TTF) unit (green) or the 1,5-

dioxynapthalene unit (DNP) (red). [2]Rotaxanes have been extensively studied 

experimentally19-29 and theoretically30-33 in a variety of environments to elucidate the 

physical mechanism underlying their switching behavior, and to quantify the switching 

kinetics and equilibrium thermodynamics. Under ambient conditions, the CBPQT4+ ring 

preferentially encircles the TTF unit over the DNP unit. For the [2]rotaxane RTTF4+ 

(which is very similar to HRT54+) in acetonitrile solution, this equilibrium is greater than  
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Figure 4-2. Molecular structure and energy diagram of the bistable [2]rotaxane 
HRT54+. A. At equilibrium, the ground-state co-conformation (GSCC) is energetically 
favored over the metastable-state co-conformation (MSCC) by a free energy of ΔG°. This 
corresponds to a GSCC-to-MSCC distribution of about 9:1. Within a Si/mol/Ti MSTJ (see 
text), the molecule is oriented with the (light blue) hydrophilic stopper in contact with the 
Si electrode and the grey hydrophobic stopper in contact with the Ti electrode. B. The 
potential energy landscape revealing the basis of bistability in [2]rotaxane molecular 
switches is plotted against the reaction coordinate, Q, representing translation of the ring 
from the TTF unit to the DNP unit. The rate of relaxation from the MSCC (‘1’) state to the 
GSCC (‘0’) state depends on the energy barrier, ΔG‡, which increases with the viscosity of 
the physical environment (e.g., ΔG‡

solid-state > ΔG‡
solution). 

GSCC 

90 percent, and is described by a free energy change of ΔG° = +1.6 kcal/mol (Figure 4-

2.B) when the CBPQT4+ ring moves from the TTF to the DNP unit20. Thus, the co-

conformation with the CBPQT4+ ring encircling the TTF unit is referred to as the ground-

state co-conformation of the molecule. Recent experiments20 have shown that the ground 

state equilibrium distribution of these molecules is dominated by molecular structure, 
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with the physical environment (e.g., solution or solid-state) of the molecular-switch 

playing only a minor role. Within a silicon/molecule(s)/titanium (Si/mol/Ti) solid-state 

molecular-switch tunnel junction (MSTJ), the ground-state co-conformation corresponds 

to the low conductivity or binary ‘0’ state of the molecule. 

The universal19 molecular-mechanical switching mechanism of bistable 

[2]rotaxanes is shown in Figure 4-3. Starting at the ground-state co-conformation 

(CBPQT4+ ring encircling the TTF unit), the first two oxidation states of the molecule 

result from sequential oxidations of the TTF unit corresponding to the reaction TTF0 

TTF  TTF2+. Upon forming the TTF  radical cation, coulombic 

repulsion between the CBPQT4+ ring and the TTF  unit results in translation of the ring 

from the TTF unit to the DNP unit. This process occurs on a millisecond time scale27-29, 

and is believed to convert all of the molecules from their ground-state co-conformation to 

⎯→⎯
−−e +• ⎯→⎯

−−e +•

+•

Figure 4-3. Bistable [2]rotaxane switching cycle. Starting from the ground state with the 
CBPQT4+ ring (blue, each white dot corresponding to a +2 charge) encircling the TTF (green) 
unit and moving clockwise: The TTF unit is oxidized (highlighted now) resulting in translation 
of the ring from the TTF to DNP (red) unit and formation of the metastable state after the TTF 
unit regains neutrality. The molecule can relax back to the ground state through the rate-
limiting kinetic step, or through the clockwise loop on the left in which the ring is reduced 
resulting in recovery of the ground state at least one thousand times faster. 

Ground State

Rate
Limiting

Step

Negative
Voltage
Pulse

Positive
Voltage
Pulse

Metastable State

–2e– –e–

+2e– +e–

Ground State

Rate
Limiting

Step

Negative
Voltage
Pulse

Positive
Voltage
Pulse

Metastable State

–2e– –e–

+2e– +e–

Ground State

Rate
Limiting

Step

Negative
Voltage
Pulse

Positive
Voltage
Pulse

Metastable State

–2e– –e–

+2e– +e–



 74

a translational isomer with the ring encircling the DNP unit, referred to as the metastable-

state co-conformation of the molecule. Within a Si/mol/Ti MSTJ, this co-conformation 

corresponds to the high conductivity or binary ‘1’ state of the molecule, and is obtained 

by applying a positive voltage of about 1.5 V across the molecule (with respect to the 

hydrophilic stopper, or equivalently, silicon electrode; see Figure 4-2.A). 

Neutrality is quickly restored to the TTF unit in the absence of an oxidizing 

potential; however, the CBPQT4+ ring continues to encircle the DNP unit for a period of 

time due the energy barrier of ΔG‡ = 22.5 kcal/mol (HRT54+) shown in Figure 4-2.B. 

Recovery of the ground- to metastable-state equilibrium distribution (~9:1) is a thermally 

activated process, and temperature-dependent relaxation-time measurements have been 

used to understand the kinetics of this relaxation20, 34. From a device perspective, 

relaxation from the metastable-state co-conformation (‘1’ state) to the ground-state co-

conformation (‘0’ state) corresponds to the volatility or bit-retention time of a Si/mol/Ti 

MSTJ. For the [2]rotaxane RTTF4+ in a 50-μm2 MSTJ, this relaxation time was measured 

to be about 58 minutes at room temperature20.  

The ground-state equilibrium distribution with the CBPQT4+ ring encircling the 

TTF unit (> 90%) can be recovered at least 1000 times more quickly (this is a lower 

limit; the actual value was not obtained experimentally)25, 35, 36 by electrochemically 

reducing the two bipyridinium units in the CBPQT4+ ring to their radical cations 

corresponding to the reaction CBPQT4+  CBPQT . According to previous 

investigations37, 38, the doubly-reduced CBPQT  ring then loses its affinity for the π-

electron-donating DNP recognition site, and the molecule relaxes back to its ground-state 

co-conformation with the ring encircling the TTF unit before neutrality is restored. In 

⎯⎯ →⎯
−+ e2 +•• 2

+•• 2
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terms of the solid-state switching mechanism, this corresponds to switching the molecule 

from its high conductivity ‘1’ state to its low conductivity ‘0’ state, and is accomplished 

by applying a negative voltage of about 1.5 V to the molecule at the hydrophilic stopper, 

or equivalently, to the silicon electrode of a Si/mol/Ti MSTJ. 

 

4.3 The crossbar architecture 

 

The crossbar (Figure 4-1) is an attractive architecture for nanoelectronic circuitry for a 

number of reasons5, 9, 39. First, nanoelectronic circuits based on the crossbar structure are 

tolerant of manufacturing defects40, 41. Each device in the crossbar structure can be 

uniquely addressed by two crossed wires that define the junction. If initial testing reveals 

that a device is defective; its address can be stored and routed around during future 

computations. This characteristic becomes increasingly important as electronic devices 

approach macromolecular dimensions and non-traditional (and imperfect) fabrication 

methods (e.g., self-assembly) are employed. A proof-of-concept demonstration that 

robust computation can be obtained from a configurable circuit with defective 

components was given by Hewlett Packard’s defect-tolerant, custom-configurable 

computing machine, Teramac42. The Teramac computer had nearly a quarter million 

hardware defects, but through the use of testing and configuration algorithms, it could be 

transformed into a robust computing machine.  

Second, the crossbar architecture can be fabricated without using lithographic 

techniques. This is important because it is doubtful that conventional lithographic 
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techniques will ever be able to achieve the resolution necessary to cost-effectively 

fabricate a truly nanoelectronic architecture1, 43. Self-assembly and other non-traditional 

patterning methods typically generate highly regular structures, so they aren’t practical 

for fabricating the arbitrarily complex architectures characteristic of traditional CMOS 

microelectronics. A crossbar structure, however, consists of only two sets of straight, 

aligned wires and can be readily fabricated using a variety of non-lithographic 

techniques. Indeed, several groups have demonstrated methods for assembling nanowires 

(NWs) into crossbar structures using fluidic alignment12, 44, Langmuir-Blodgett 

alignment45, and imprinting46-48, and various architectural concepts have been introduced 

that can take advantage of such circuits49-52. However, only the superlattice nanowire 

pattern transfer (SNAP) method (described in Chapter 2) has been successful in 

producing NW arrays aligned over the length scales required for large-scale circuitry.  

Third, the highly ordered nature of NW arrays has enabled the development of 

demultiplexing architectures capable of addressing 2n NWs using order (n) number of 

control wire pairs (see Chapter 3)53-55. These architectures allow the selection of an 

individual NW from within an array that has been patterned at sub-lithographic density 

using relatively large wires patterned using traditional lithographic processing. This 

demonstrates that crossbar architectures can exhibit excellent scaling from the microscale 

to the nanoscale, in addition to being compatible with standard CMOS microelectronic 

technology. 

Finally, the crossbar architecture is the highest-density two-dimensional circuit 

for which every device can be independently addressed56. Wiring overhead in a crossbar 

circuit is minimized because the NWs defining a junction are used to both configure and 
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read the device. This is in contrast to conventional CMOS-based configurable devices 

that require one set of wires (address lines) to configure the device and another set of 

wires (data lines) to read it. The ability to independently address every component in the 

circuit is useful for memory applications, but also enables the circuit to be fully tested for 

manufacturing defects so these can be routed around during configuration. However, 

taking advantage of the inherent density afforded by the crossbar architecture requires the 

development of electrically active thin-film materials that function within the two-

terminal junctions of the circuit.  

 

4.4 [2]Rotaxane molecular electronic crossbar circuits 

 

Two-terminal molecular switches, such as [2]rotaxanes, have a number of important 

advantages (and some disadvantages) over more-developed two-terminal electronic 

materials such as ferroelectrics57. As discussed above, comprehensive experimental and 

theoretical investigations have verified the distinctly molecular basis of [2]rotaxane 

electrical switching. Thus, devices based on these switches should scale to 

macromolecular dimensions without a significant change in the switching characteristics. 

Solid-state-based switching materials are unlikely to exhibit similar scaling since they 

arise from inherently bulk properties. Two-terminal devices based on these materials are 

switched by applying a field across the junction to polarize crystallographic domains. The 

hysteresis of this polarization disappears, and the device no longer switches, once the 
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junctions are made smaller than the domain size of the material. For ferromagnetic 

materials, this is referred to as the superparamagnetic limit58. 

Another advantage of [2]rotaxane-based devices is that the voltage at which the 

molecular switches are opened or closed is very stable. This is because the switching 

mechanism is based on an electrochemical process in which current has to flow in or out 

of molecular orbitals before the molecule isomerizes to its high- or low-resistance co-

conformations. In contrast, domain polarization is driven by nucleation events, and so is 

intrinsically statistical. A consequence of this nucleation-driven switching mechanism is 

that the field required to switch solid-state-based devices can fluctuate randomly from 

one device to the next within a crossbar circuit, or even from one switching cycle to the 

next within a single device.  

In a crossbar structure, a given junction is switched by applying a voltage, V, 

across the wires defining the junction. To avoid switching every junction sharing one of 

the two address lines, V is split into V2
1− and V2

1+ components and applied 

symmetrically across the two wires of the junction. Thus, junctions in the given row and 

column only receive half of the required switching voltage and should not switch. 

Nevertheless, because the required field for domain polarization is subject to statistical 

fluctuation, V2
1± occasionally generates a sufficient field to inadvertently switch 

junctions that received only half the switching voltage. This is generally referred to as the 

‘half-select’ problem and is a generic problem for crossbar circuits utilizing domain-

switched electronic materials. To the contrary, the half-select problem has not been 

observed in the [2]rotaxane-based crossbar circuits discuss herein (discussed in Section 

4.6).  
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Despite the significant advantages of [2]rotaxane switches in terms of scalability 

and operability in crossbar structures, these switches do have some drawbacks. For one, 

the relaxation of the switch from its low-resistance binary ‘1’ state to its high-resistance 

binary ‘0’ state is thermally activated. Thus, [2]rotaxane-based devices will show 

temperature-dependent variations in their operation. Another drawback is that [2]rotaxane 

molecular-switch tunnel junctions (MSTJs) are observed to stop functioning after a 

relatively low number of write cycles. In large MSTJs (~50 μm2), this number ranges 

from 100 to 1000 cycles9, 39, and is significantly less in nanometer-scale junctions. A 

possible explanation is that molecules along the perimeter of a junction are more 

susceptible to environmental damage. Reducing the area of the junction increases the 

fraction of molecules found along the perimeter, thus resulting in a lower average number 

of write cycles. Finally, because the switching mechanism is due to large-amplitude 

molecular mechanical motion, it is relatively slow. The solid-state kinetic processes 

responsible for molecular mechanical switching have been quantified for a variety of 

bistable [2]rotaxanes, revealing that switching occurs on a millisecond time scale27, 29. 

While quite slow compared to conventional CMOS-based switches, this is not a 

significant limitation since in highly parallel architectures, such as the crossbar, 

computational speed may be generated by switching many devices at once rather than 

quickly switching one device at a time. 
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4.5 A 160,000 bit memory circuit patterned at 1×1011 bits/cm2 

 

In 2002, the Heath and Stoddart groups reported on the use of bistable [2]rotaxane 

molecules as the active elements within a 64-bit molecular electronic random access 

memory (RAM) circuit that utilized micrometer-scale wiring9. While this work 

successfully demonstrated that [2]rotaxane molecules could be used as the active 

elements within in a solid-state crossbar memory circuit to store, read out, and erase 

small data strings, it did not take advantage of the unique scalability offered by molecular 

components. This would have required methods for patterning circuits with 

macromolecular feature sizes and pitches. The Superlattice Nanowire Pattern Transfer 

(SNAP) method, which can pattern ultra-dense arrays of NWs aligned over millimeter 

length scales, provides this capability.  

A major focus of my research in the Heath group was to integrate SNAP-

fabricated NW arrays with [2]rotaxane molecular materials to demonstrate an ultra-dense 

crossbar molecular electronic memory circuit patterned at macromolecular dimensions. In 

addition to demonstrating device density, we wanted to demonstrate large-scale device 

integration. To that end, the SNAP method was extended from previous reports59, 60 to 

generate arrays of 400 NWs that were used to construct and test a 400-by-400 crossbar 

memory circuit at extreme dimensions. As Figure 4-4 shows, the entire 160,000-bit 

crossbar circuit is approximately the size of a white blood cell (~13×13 μm2).     

The fabrication of this molecular memory circuit proved to be a significant 

challenge on many fronts. First and foremost was the inherent difficulty in making 
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Figure 4-4. A false-colored optical micrograph of a memory circuit with 
white blood cells for scale. White blood cells (shown in green) approximately 
15 micrometers in diameter were sprinkled over this functional memory circuit to 
provide a biological metric for the level of device integration accomplished in 
this work. All 160,000 bits are contained within the intersection of the yellow 
and blue rectangles. 

devices at the density described herein, and of integrating those devices into large-scale 

functional circuits. This is emphasized by contrasting the level of device integration in 

our molecular memory with its analog in conventional microelectronic technology, the 

dynamic random access memory (DRAM) circuit. The 2005 International Technology 

Roadmap for Semiconductors (ITRS) consortium reports1 that current DRAM circuits are 

patterned with a memory cell size of 0.04 μm2 and a density of 1.5×109 bits/cm2. For 

comparison, the molecular memory described here is about two orders of magnitude 

more dense with a memory cell size of 0.001 μm2 and device density of 1×1011 bits/cm2. 

In fact, this level of integration is on par with ‘ultimately scaled’ CMOS-based 
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microelectronic technology, which ITRS projects may reach a cell area of 0.001 μm2 and 

density of 5×1010 bits/cm2 by the year 2020. 

An additional fabrication challenge was developing a process flow compatible 

with the delicate [2]rotaxane molecular monolayers. This was accomplished by adopting 

a fabrication scheme in which the memory was built up sequentially, with the molecular 

monolayer incorporated as close to the final step as possible, and then protecting that 

monolayer during subsequent processing steps. It also required establishing electronic-

measurement protocols that could be employed to follow the conductivity status of the 

NWs during the entire nanofabrication procedure. Details of this process flow, along with 

the various electronic testing protocols, are discussed in Section 4.6. However, a list of 

the major steps in memory fabrication is as follows:  

 

1. Use SNAP to fabricate the bottom array of Si NW electrodes. 

2. Pattern all necessary electrical contacts using electron beam lithography. 

3. Planarize the chip using a spin-on glass. 

4. Deposit the [2]rotaxane monolayer and evaporate a thin Ti layer on top. 

5. Deposit a Pt NW array over the molecule/Ti layer perpendicular to the Si NWs. 

6. Using dry etching, transfer the Pt NW pattern to the underlying Ti layer. 

 

Note that, in the last step, the Pt NW pattern only serves as a mask to define an 

array of Ti NWs from a continuous Ti film. This fabrication protocol not only minimizes 

the number of processing steps after deposition of the molecular monolayer, but also uses 

the Ti layer to both protect the molecules and serve as the top electrode in the molecular-
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switch tunnel junctions. This technique has been shown, via infrared spectroscopy in 

conjunction with electronic transport measurements, to protect the functional sites of the 

[2]rotaxane molecules by reacting with the hydrophobic end groups while leaving the 

functional regions of the molecule unscathed (Figure 4-2.A)22.  

The structure of our crossbar molecular memory circuit is shown in Figure 4-5.A, 

and consists of a bottom electrode set of 400 Si NWs (16-nm wide, 33-nm pitch; highly 

phosphorous doped, as discussed in Chapter 2, n = 5×1019 cm–3) crossed by a top 

electrode set of 400 Ti NWs (16-nm wide, 33-nm pitch) sandwiching a monolayer of 

bistable [2]rotaxanes. Each bit corresponds to an individual molecular-switch tunnel 

junction defined by a Si bottom NW and Ti top NW, and contains approximately 350 

[2]rotaxane molecules. The solid-state switching signature of the bistable [2]rotaxanes 

that were used in this study has been shown to originate from electrochemically 

addressable, molecular mechanical switching for C/mol/metal or Si/mol/metal 

junctions61, but not for metal/mol/metal wire junctions62. The desire to utilize molecular 

mechanical bistable switches as the storage elements is what dictated the choice of the Si 

NW/mol/Ti NW (Si/mol/Ti) crossbar structure. 

Electrical contacts were established to several bottom and top NWs to allow for 

testing of up to 180 ‘effective’ bits (ebits) from the central region of the crossbar, but 

only 128 were actually tested due to measurement constraints. The ‘effective’ prefix is 

used because SNAP-fabricated NWs are patterned beyond the resolution of lithographic 

methods63, so each contact bridges 2–4 NWs (Figure 4-5.B). As a result, most of the 

tested ebits contained an average of 4–9 junctions. We recently reported on a 

demultiplexer54 (see Chapter 3) that would allow for this memory circuit to be fully 
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Figure 4-5. Scanning electron micrographs (SEMs) of the NW crossbar memory. A. 
Image of the entire circuit. The array of 400 bottom Si NWs is seen as the light grey 
rectangular patch extending diagonally up from bottom left. The top array of 400 Ti NWs 
is covered by the SNAP template of 400 Pt NWs, and extends diagonally down from top 
left. Testing contacts (T) are for monitoring the electrical properties of the Si NWs during 
the fabrication steps. Two of those contacts are also grounding contacts (G), and are used 
for grounding most of the Si NWs during the memory evaluation, writing, and reading 
steps. Electron-beam-lithography patterned 18 top (TC) and 10 bottom (BC) contacts are 
also visible. The scale bar is 10 micrometers. B. An SEM image showing the cross-point of 
top and bottom NW electrodes. Each cross-point corresponds to an ‘effective bit’ in 
memory testing because (inset) the electron-beam-lithography defined contacts bridged 2–
4 nanowires. The scale bar is 2 micrometers. C. High-resolution SEM of approximately 
2500 junctions out of a 160,000-junction nanowire crossbar circuit. The red square 
highlights an area of the memory that is equivalent to the number of bits that were tested. 
The scale bar is 200 nanometers.  

200 nm

A 

B 

C 
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tested, including the ability to address each junction independently. However, 

implementation of that demultiplexer would have added significant complexity to an 

already demanding nanofabrication procedure, and wasn’t necessary to demonstrate the 

viability of this circuit. (This limitation simply adds some level of uncertainty to our 

estimates of device yield.) Assuming 4–9 junctions per ebit, the 128 ebits tested 

represents between 0.5–0.7 percent of the full 160,000-bit crossbar circuit distributed 

across 6 percent of the device area (Figure 4-5.C). We believe that this relatively small 

portion of the crossbar is representative of the overall circuit. This belief is based upon 

the fact that we have fabricated approximately 50 full 160,000-junction crossbar memory 

circuits, four of which have been fully tested as memories. Each of those tested memory 

circuits yielded similar results.   

By scanning-electron-microscopy inspection, the 160,000-junction crossbar 

appeared to be structurally defect-free, with no evidence of broken, wandering, or 

electrically shorted NWs (Figure 4-5.B). Nevertheless, there were a large number of 

electrical defects. Comprehensive electrical characterization was used to determine the 

address locations of both working and defective ebits, as well as to provide insight into 

the nature of the defective ebits. This was done by first applying +1.5 V relative to the Si 

NW electrodes to set all ebits to ‘1’, or alternatively to switch the [2]rotaxane molecules 

to their metastable-state co-conformation. Each ebit was then read sequentially using a 

non-perturbing +0.2 V bias. Application of –1.5 V to the Si electrode was then used to set 

all ebits to ‘0’; this effectively returned the active molecular monolayer to its ground-

state co-conformation. The status of each of the 128 ebits was then read again. The 1/0 

current ratios are presented in Figure 4-6.A. Approximately 50 percent of the tested ebits 



 86

Figure 4-6.  Data from evaluating the performance of 128 ebits within the crossbar 
memory circuit. A. The current ratio of the ‘1’ state divided by the ‘0’ state of the tested 
ebits. Note that many of the ebits exhibit little to no switching response. Those ebits are 
defective. B. A map of the defective and usable ebits, along with a pie-chart giving the 
testing statistics. Note that, except for the bad Si NW contacts on bottom electrodes B1 and 
B6, and the shorted top electrodes, T2 and T3, the defective and good bits are randomly 
distributed. Poor switches can be divided into two types: Type I defects (26% of the 128 
tested) are ebits that exhibited an open-circuit conductance and a low- or zero-amplitude 
switching response when tested. Type II defects (22%) are non-switchable ebits that 
exhibited a conductance similar to that of a closed switch. In both cases, the 1/0 ratio is near 
unity.  
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yielded some sort of switching response; however, some of those ebits may have been 

exhibiting behavior originating from assorted parasitic current pathways through the 

crossbar array.  

Multiple current pathways between an input and output electrode are an inherent 

drawback of crossbar architectures wherein each junction is electrically connected to 

every other junction. Thus, when many devices are switched from the ‘0’ to the ‘1’ state, 

the current through the non-switching devices can also change due to a modification of 

the effective resistance of these parasitic loops. A standard remedy is to incorporate 

diodes at each crosspoint64 that will suppress parasitic loops by acting as one-way current 

valves. Although the molecule/Ti interface yields some built-in rectification, we have 

additionally fabricated micrometer-scale molecular electronic memory circuits with a 

vertical p-n doping gradient through each junction19. This resulted in improved memory 

performance that should, in principle, extend to the nanometer-scale memory described 

here. For this prototype circuit, however, we found it sufficient to simply ground all NW 

electrodes not being used during a read cycle in conjunction with the establishment of a 

threshold for a ‘good’ ebit based upon a minimum 1/0 current ratio of ~1.5. About 25 

percent of the ebits passed this threshold. While this yield may be low for a mature 

technology, we are very encouraged by this result in an unpackaged first-generation 

circuit.  

Defective bits impacted memory performance with varying levels of severity 

(Figure 4-6.B). Bits with a 1/0 ratio of unity were classified as ‘poor switches’ and 

resulted from switches stuck in either the ‘1’ or ‘0’ state. Poorly switching bits only lead 

to a proportional loss in memory performance. Bad contacts to the NWs, however, 
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removed an entire row of bits from memory operation. In a similar vein, two Ti 

electrodes that are shorted together effectively turn two rows of bits into one row of 

usable bits—also removing a row of bits from operation and doubling the number of 

junctions in the ebits for that row. We believe the majority of these defects resulted from 

sub-nanometer variations in the reactive-ion etching process that was employed to define 

the top Ti NWs. As will be explained more fully in the next section, these Ti NWs 

originate as a uniform thin film (~20 nm) that is deposited on top of the [2]rotaxane 

Langmuir monolayer. The SNAP process is used to deposit 400 Pt NWs on top of this 

film, and those Pt NWs serve as an etch mask for defining the 400 top Ti electrodes. The 

capability of etching tools to define nanostructures at the narrow pitches required here is 

largely unexplored and, in fact, this etching step was one of the most challenging 

nanofabrication steps for constructing the memory.  

Isolated devices, or crossbar memories patterned at substantially lower densities 

and with larger wires, can typically be prepared with a nearly 100 percent yield. The 

capability of etching tools to define nanostructures at the narrow pitches required here is 

largely unexplored and, in fact, was one of the most challenging nanofabrication steps in 

constructing the memory.  

An important result from the defect map shown in Figure 4-6.B is that the good 

and bad ebits are randomly dispersed throughout the matrix, implying that the good 

junctions are not correlated to one another. However, the ultimate test of any memory 

circuit is whether it can store information. Based upon the defect map shown in Figure 4-

6.B, and taking advantage of the inherent defect tolerance of the crossbar architecture42, 

we were able to identify the addresses of good ebits, and from those addresses configure 
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an operational memory. This is demonstrated by the data of Figure 4-7 in which we have 

utilized 24 out of 30 operational ebits to write a string of ‘1’s and ‘0’s that represent the 

ASCII characters for ‘CIT,’ short for ‘California Institute of Technology.’  

Our principle motivation for utilizing bistable [2]rotaxane molecules as the active 

elements within this memory is that even though we are measuring of order 100 

molecules in each junction, the change in conductivity correlated with the two 

conformational states is a single-molecule property20, 27, 34. The implication is that the 

switching signature should be effectively size-invariant (neglecting statistical effects), 

meaning that it should scale down to the macromolecular dimensions that characterize 

these crossbar junctions. In fact, the success of these molecules at this scale implies that 

next-generation devices using only tens of molecules may be possible. While it may be 

unlikely that these digital circuits will scale to a density that is only limited by the size of 

the molecular switches, it should be possible to significantly increase the bit density over 

what is described here (Section 4.6). 

Previous work (see Section 4.2) has quantified the thermodynamic and kinetic 

parameters that describe both the bistability and the switching mechanism of the 

[2]rotaxane (Figure 4-2.A) and related molecules in a variety of environments. Those 

measurements required robust switching devices that could be cycled many times and at 

various temperatures. The junctions measured here were much more delicate: While all 

good ebits could be cycled multiple times (as evidenced by the testing and writing steps), 

most ebits failed after a half-dozen cycles or so. While the exact failure mode is still 

under investigation, it is worth noting that these junctions have a very large perimeter-to-

area ratio, and that molecules along the perimeter of a junction are likely to be more 
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Figure 4-7. Demonstration of memory storage and retention characteristics from the 
molecular electronic crossbar memory. A. A demonstration of point-addressability 
within the crossbar. Good ebits were selected from the defect mapping of the tested 
portion of the crossbar.  A string of ‘0’s and ‘1’s corresponding to ASCII characters for 
‘CIT’ (abbreviation for California Institute of Technology) were stored and read out 
sequentially. The dotted line indicates the separation between a ‘0’ and ‘1’ state of the 
individual ebits. The black trace is raw data showing ten sequential readings of each bit 
while the red bars represent the average of those ten readings. Note that deviations of 
individual readings from their average are well separated from the threshold 1/0 line.  B. A 
histogram representing the 1/e decay time of the ‘1’ state to the ‘0’ state.  The 25 ebits 
represented in the data each were ‘large’ ebits, comprised of approximately 100 junctions, 
to increase the measurement signal to noise. Raw data from a single large ebit is shown in 
the inset. The line is a single exponential fit used to extract the decay time. 
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susceptible to processing damage or contamination since the circuit is measured under 

ambient conditions (i.e., the circuit is unpackaged). Despite this difficulty, we were able 

to measure the rate of relaxation from the 1 0 state for many of the ebits (Figure 4-7.B). 

From a device perspective, this time represents the volatility, or memory retention time, 

of the ebits. With respect to the bistable [2]rotaxane switching cycle, this time represents 

a room-temperature measurement of the rate-limiting kinetic step within the switching 

cycle wherein the metastable co-conformation relaxes to the ground state. Our measured 

rate (90 ± 40 minutes; median decay = 75 minutes) was statistically equivalent to the rate 

reported for much larger devices (50 μm2 junction area) containing the same [2]rotaxane 

switches (58 ± 5 minutes) and measured using a more comprehensive thermodynamic 

analysis20. Thus, our results are consistent with previous reports of a molecular 

mechanism for the memory operation9.  

 

4.6 Crossbar molecular memory circuit fabrication and testing 

  

In this section, I will discuss the details of memory fabrication and testing. In an effort to 

keep this section more or less self-contained, some of the material mentioned above is 

repeated (albeit with greater detail). A bottom-up approach was critical to the successful 

fabrication of this memory. This approach both minimized the number of processing 

steps following deposition of the delicate molecular monolayer, as well as protected the 

molecules from remaining processing steps. The following in-depth description of how 
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this memory was fabricated will proceed with an analogous structure, that is, from the 

bottom up. 

The 160,000-junction crossbar memory described above consists of 400 Si 

nanowire (NW) bottom electrodes of 16-nm width and 33-nm pitch, crossed with 400 Ti 

NW top electrodes of the same dimensions, and with a monolayer of bistable [2]rotaxane 

molecules sandwiched in between. We have previously reported on using the superlattice 

nanowire pattern transfer (SNAP) technique to fabricate highly ordered arrays of metal 

and Si NWs of up to 128 NWs. For this work, the SNAP technique was extended to 

create 400-element NW arrays of both the bottom and top electrode materials, and so was 

the primary patterning method for achieving the 1×1011-cm–2 bit density of the crossbar. 

The SNAP NW fabrication procedure is described in detail in Chapter 2. Briefly, SNAP 

is a ‘top-down,’ non-photolithographic technique that uses molecular-beam epitaxy 

(MBE) to create a physical template for NW patterning. This template is used to deposit 

an array of Pt NWs onto an epoxy-coated thin-film material. The Pt array then serves as 

an etch mask to transfer the NW pattern into the underlying thin-film. This technique 

enables the fabrication of ultra-dense arrays of high-aspect-ratio (length to width 

routinely > 106) Si and metal NWs that are aligned over millimeter length scales, without 

the need for a secondary alignment step after NW fabrication.  

 

4.6.1 Fabrication and contact to bottom Si nanowire electrodes 

 

An overview of the process flow used to fabricate the memory is shown in Figure 4-8. 

The Si NW array was fabricated as described in Chapter 2. The starting wafer for the Si 
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Figure 4-8. Process flow for fabricating the 160,000 bit molecular electronic memory 
circuit at 1011 bits/cm2. A. A section of SNAP-patterned SiNW bottom electrodes are 
electrically contacted to electron-beam lithography patterned metal electrodes. B. The entire 
circuit is coated with SiO2 using an optimized spin-on-glass procedure. C. The active memory 
region is exposed using lithographic patterning followed by CF4 dry etching. D. The bistable 
[2]rotaxane Langmuir monolayer is deposited on top of the Si NWs and then protected by the 
deposition of a Ti layer. E. The molecule/Ti layer is etched everywhere except for the active 
memory region. F. An evaporated SiO2 insulating layer is deposited over the entire chip. G. 
An array of Pt NWs is deposited on top of the Ti/SiO2 layer at a right angle to the bottom Si 
NWs using the SNAP method. H. The Pt NW pattern is transferred, using  BCl3 dry etching, to 
the underlying Ti layer to form an array of top Ti NW electrodes, and the crossbar structure is 
complete. 
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NWs was a 33-nm-thick silicon-on-insulator (SOI) substrate with a 250-nm-thick buried 

oxide (Simgui, Shanghai, China). This wafer was highly diffusion doped (phosphorous; 

n=5×1019 cm–3) to ensure that NWs fabricated from it would maintain robust conductivity 

throughout the various nanofabrication procedures, in addition to forming ohmic contacts 

with Ti-Pt leads. This proved to be important in later stages where the Si NW surface is 

unavoidably etched. To fabricate the Si NW array, an array of Pt NWs was deposited 

onto the doped SOI substrate using the SNAP method, and high-frequency (40 MHz) 

fluorine-based (CF4 to He 20:30, 5 mTorr, 40 W) reactive-ion etching was used to 

transfer the Pt NW pattern into the underlying Si epilayer to form an approximately 2-

millimeter-long array of Si NWs. The Pt NW array was then dissolved in hot aqua regia 

(1:4 conc. HCl to conc. HNO3, 120° C, 10 min) and the Si NW array was sectioned into a 

30-μm-long region using a lithographically-patterned Al mask and three sequential 

reactive-ion etch (RIE) steps. The first was a high-power O2 RIE (20 mTorr, 100 W, 2 

min) to remove any residual epoxy (from the SNAP procedure), then a brief SF6 RIE (5 

mTorr, 30 W, 30 sec) to remove any unmasked Si, and finally a low-power O2 RIE (20 

mTorr, 10 W, 2 min) to oxidize any pinholes through the insulating oxide that may have 

been bored out from the first two RIE steps. We had occasionally observed leakage 

current through the insulating oxide when this last step was omitted.  

Ten electrical contacts to these bottom Si NWs, as well as 18 contacts that are 

intended for the top Ti NWs, were defined at this point using standard electron-beam 

lithography (EBL) patterning and electron-beam evaporation to produce wires consisting 

of a 15-nm Ti adhesion layer followed by 50 nm of Pt (Appendix 4.1). Immediately prior 

to metal evaporation, the Si NWs were cleaned using a gentle O2 plasma (20 mTorr, 10 
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W, 30 seconds) followed by a 5-second dip in buffered oxide etch (BOE) (6:1; NH4F to 

HF) solution to remove the Si NW native oxide. After metal lift-off, the chip was 

annealed at 450 °C in N2 for 5 minutes. In addition to promoting the formation of ohmic 

contacts, this anneal helped to prevent peeling of the smallest lithographically-defined 

wires during the spin-on glass step described below.  

Figure 4-9.A shows an SEM image of the memory circuit at the stage in which the 

Si NWs and all of the external electrical contacts have been created. Note that there are 

four sets of EBL-defined contacts. The 18 narrow contacts at the bottom left of the image 

(nominal width of 70 nm at 300-nm pitch) will eventually connect to the top Ti NW 

electrodes and are used for testing of the final memory circuit. The ten narrow contacts to 

the Si NWs at the bottom right (nominal width of 60 nm at 300-nm pitch) of the image 

are also used for testing of the memory circuit. Finally there are two narrow test 

electrodes at the top left and two wide electrodes at the bottom right. The wide electrodes 

contact about two-thirds of all the Si NWs and serve a dual function. First, they ground 

unused Si NWs during memory testing to minimize parasitic current loops through the 

crossbar. (This procedure approximates how a fully multiplexed crossbar circuit would be 

utilized.) Second, when used in conjunction with the two narrow test-electrodes on the 

opposite side of Si-NW array, they enable testing of the Si-NW conductivity at various 

stages throughout the memory-fabrication processes. This testing procedure provided 

invaluable feedback for finely tuning and tracking many of the fabrication processes, 

most notably the etching procedures described below. Once these various contacts were 

established, robust Si-NW conductivity was confirmed via current-voltage (I-V) 

measurements. If the Si NWs were measured to be poor conductors (a very infrequent 
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Figure 4-9. Representative scanning electron micrographs illustrating the crossbar 
memory fabrication process. A. A 30-micrometer-long section of 400 Si NWs with electron-
beam lithography (EBL) defined contacts to the Si NWs (bottom right) and pre-patterned 
contacts to the Ti-NW array (not deposited at this stage) (bottom left). B. Representative 
contacts to Si NWs showing each EBL-defined metal lead is about 70-nm wide and contacts 
2–4 NWs. C. Micrograph verifying that the spin-on-glass layer fills the narrow trenches 
between the Si NWs. The chip was cleaved after the planarization process to allow for the 
view shown here. D. Lithographically patterned window in the SOG film defining the memory 
active region. E. Deposition of 400 Pt NWs over the memory active region. Note the Pt NWs 
extend for about a millimeter in either direction. F. Micrograph of the Ti NWs contacting pre-
patterned EBL-defined leads after transferring the Pt NW pattern to the underlying 
[2]rotaxane/Ti layer. 
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occurrence) or if there was any measurable leakage current through the insulating oxide, 

the chip was discarded. Additionally, the chip was discarded if I-V measurements showed 

rectification at the contacts (unless ohmic behavior could be established through further 

efforts).  

The device was then planarized using an optimized spin-on-glass (SOG) 

procedure (Accuglass 214, Honeywell Electronic Materials, Sunnyvale CA) (Figure 

4-8.B). This planarization process is critical because the SOG not only protects Si NWs 

and EBL defined wiring outside of the active memory region from damage that can arise 

during subsequent processing steps, but it also prevents evaporated Ti from entering the 

gaps between Si NWs where it would be extremely difficult to remove. For the SOG to 

fill the narrow gaps between adjacent Si NWs (Figure 4-9.C), it had to be applied to the 

surface of the chip while under vacuum (< 1 mTorr). This was accomplished by placing 

the chip into a clean Erlenmeyer flask* sealed with an air-tight rubber septum and 

piercing the septum with a syringe needle attached via tubing to a diffusion pump. After a 

couple of minutes to ensure evacuation of the flask, a scrupulously-clean glass syringe 

and a 5-inch metal needle were used to generously apply the SOG liquid to the chip 

surface (while maintaining vacuum with the other needle). The chip was then 

immediately taken out of the flask and spun at 5000 RPM to ensure a uniform film.  

At this point, the chip was inspected using a light microscope to look for any 

particulates on the surface. If any were found (which almost inevitably there were), the 

SOG film was stripped from the chip with extremely delicate swabbing while immersed 

in methanol, followed by repeatedly rinsing in methanol and isopropyl alcohol and drying 

                                                 
* The flask was modified with a cylindrical glass pedestal for mounting the chip off the flask bottom. 
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under a stream of N2. The repeated solvent rinses followed by blowing with N2 seemed to 

be particularly effective at removing particles from the surface. Sonication was avoided 

because it would occasionally damage the finest EBL-defined wires. The SOG was then 

re-applied to the chip under ambient conditions, spun at 5000 RPM, and re-checked for 

particulates. Note that vacuum application was found to be unnecessary for subsequent 

SOG applications, probably because the SOG applied under vacuum continued to wet the 

NW gaps through subsequent methanol cleanings. This entire procedure was repeated 

until no particulates were seen on the chip surface. It was very important to ensure that 

the chip was rigorously clean before proceeding, since particles on the surface would 

frequently result in an unsuccessful transfer of the Pt NW array (which is required in a 

later step to define the top Ti NW electrodes for the memory). 

After globally thinning the SOG layer to 50 nm using a CF4 plasma (10 mTorr, 40 

W), an opening in polymethyl-methacrylate (PMMA) was lithographically defined over 

the Si NWs, and the tips of the 18 EBL-defined contacts (Figure 4-8.C). The SOG was 

then further etched until the tops of the underlying Si NWs were exposed (Figure 4-9.C). 

This step was monitored by periodically measuring the Si NW conductivity using the test 

electrodes. The majority of dopant atoms in the Si NWs reside within 10 nm of the 

surface (Chapter 2), so the NW conductivity is very sensitive to any etching of the 

surface. This unique feature of SNAP-fabricated Si NWs makes it very straightforward to 

etch back the SOG until just the tops of the Si NWs are exposed, since the etch end-point 

can be precisely determined by a small drop in the Si NW conductivity. At this stage, the 

entire memory circuit is under SOG (and thus electrically isolated from any further top 
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processing) except for the lithographically-defined opening over the Si NWs and the 18 

EBL-defined contacts. This opening defines the active memory region (Figure 4-9.D).  

 

4.6.2 Deposition of molecules and top electrode materials 

 

A monolayer of bistable [2]rotaxane switches was prepared by Langmuir-Blodgett 

techniques and transferred onto the device, as reported previously9, 22. A thin film of Ti 

(20 nm) was then evaporated over the entire chip (Figure 4-8.D). This Ti layer serves to 

protect the molecules from further top processing and will later be patterned into the 

crossbar top electrodes. As briefly mentioned above, this Ti layer additionally adds 

(favorable) current rectification to each Si/mol/Ti MSTJ to reduce the impact of parasitic 

current pathways within the crossbar circuit. The amount of rectification is dependent 

upon the amount of Ti oxidation that occurs at the molecule/Ti interface, which, in turn, 

depends upon the vacuum level of the metal deposition system65-67. For this work, the Ti 

was deposited at a pressure of approximately 5×10–7 Torr. For micrometer-scale 

Si/mol/Ti MSTJs, this typically produced a rectification of about 10:1 at 1 V.   

  Using photolithographic techniques and BCl3 RIE (5 mTorr, 30 W), the 

molecule/Ti layer was then removed from everywhere except for the memory active 

region where electrical contact to the underlying Si NWs is made (Figure 4-8.E). 

Patterning the Ti film is important for two reasons: First, it prevents the deposited Ti film 

from bridging (shorting) EBL-defined wiring that protrudes from the SOG film 

(explained below). Second, it removes the requirement of precise NW registry over the 

entire length (> 1 millimeter) of the Pt NW array deposited in a later step (Figure 4-9.E). 
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This is important because the dry etch used to define the Ti NW pattern from the Pt NW 

stencil can cause adjacent Pt NWs to wander into each other (thus shorting the 

corresponding Ti NWs beneath) in regions with non-uniform epoxy (used to adhere the 

Pt NW array to the surface; explained further below). Over the length of a typical SNAP-

fabricated NW array, the likelihood of this occurrence is expected to be almost certain.  

Next, a thin (~15 nm) SiO2 layer was deposited over the entire substrate to isolate 

the EBL-defined wires from the Pt NWs to be deposited in the next step. (Recall that the 

EBL-defined wires are 65-nm tall and the SOG was globally thinned to 50 nm; Figure 

4-8.F.) It may seem that the SiO2 deposition can be avoided by etching the SOG film to a 

thickness greater than the EBL-defined wire height. However, this results in a larger 

recess in the SOG opening that defines the memory active region. Spin-coated epoxy 

used for Pt NW deposition in the next step fills this opening, which, as explained below, 

can be problematic during subsequent etching. 

A thin layer of epoxy (~10 nm) is then spin-coated onto the chip and the SNAP 

technique is used to deposit an array of 400 Pt NWs over the Ti/SiO2/epoxy layer at a 

right angle to the underlying Si NWs (Figure 4-8.G and Figure 4-9.E). Finally, careful 

BCl3 RIE (5 mTorr, 30 W) was used to transfer the Pt NW pattern to the underlying 

Ti/SiO2/epoxy film, thus forming Ti NW top electrodes (Figure 4-8.H). Although the Pt 

NW array is in excess of 1 mm long (Figure 4-9.F), the top Ti electrodes of the crossbar 

circuit only extend from the tips of the 18 EBL-defined leads to a couple of micrometers 

past the underlying Si NW array. The etch endpoint was determined by monitoring the 
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cross-conductance of the top Ti NWs* (Figure 4-10.A). Complete transfer of the Pt NW 

pattern to the underlying Ti film is indicated by a fall in the cross-conductance to about 

ten nanoSiemens (nS). Note that the cross-conductance does not go to zero since the Ti 

electrodes, while physically separated, are still electrically coupled through the crossbar 

junctions and the underlying Si NWs. The health of the underlying Si NWs throughout 

the Ti-etching process was also monitored, as shown in Figure 4-10.B.  

Figure 4-10. Conductance monitoring during the Ti layer etching. A. Cross-conductance 
measurements between electrical contacts to the top nanowire array were performed to monitor 
the Ti layer etching. When the current drops to sub-10 nanoAmps, the top Ti electrodes are 
separated. The inset scanning electron microscope (SEM) image shows two representative 
contacts to the top Ti electrodes as highlighted in yellow.  It is the cross-conductance between 
such contacts that was used for this measurement. B. The Si NW conductance was measured 
throughout the Ti layer etching to ensure that Si NWs were not damaged. The SEM image 
(inset) shows the current pathway that was measured.  

A B

The use of Ti as the top electrode material here was necessary since its high 

reactivity prevents metal from spiking across the [2]rotaxane monolayer during 

evaporation22. However, Ti is a difficult metal to etch because it forms a tough TiO2 layer 

                                                 
* Interferometric end-point detection cannot be used here since the etch rate for Ti within a 16-nm trench is 
likely to be quite different from that of a regular Ti surface. 
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at its surface68. Highly-directional BCl3 reactive ion etching was used because it provides 

the needed momentum to erode the TiO2 layer while additionally providing reactive Cl 

ions to chemically remove Ti. Figure 4-11 shows a fully functional memory circuit in 

which the final Pt NW deposition (using SNAP) was substituted by EBL-patterned Pt 

microwires (about 210 nm in width) of variable spacing down to 90 nm (less than 3 times 

the SNAP Pt NW pitch). The [2]rotaxane/Ti film was etched using an iterative procedure 

so the Ti electrode cross-conductance could be periodically checked. Also, SEM analysis 

was used to gauge how effectively the BCl3 etch removed Ti from between the Pt 

microwires after each etch iteration. Note that SEM analysis cannot be used to track the 

etch progress using SNAP fabricated Pt NWs because 1) the SNAP NW spacing is too 

narrow, and 2) the electron beam heats up the underlying epoxy causing the Pt NWs to 

collapse into each other. SEM analysis confirmed complete separation of the underlying 

Ti electrodes after the Ti electrode cross-conductance fell to below 50 nS (Figure 

4-11.A). Taking into account that the (210-nm-wide) EBL-defined Ti microwires are 

about five times wider than the combined average number Ti NWs defining a row of 

ebits (3 × 16 nm = 48 nm), we reasoned that Ti NWs patterned from SNAP-fabricated Pt 

NWs would be separated when their cross-conductance fell to below 10 nS. We have 

found this metric to be accurate with many memory chips. Note that while the Ti 

electrode cross-conductance at separation scales linearly with the Pt wire width, the total 

etch time does not scale predictably with the Pt wire spacing. In fact, the total etch time 

to achieve Ti NW separation can vary considerably from one memory chip to the next 

with nominally identical SNAP Pt NW arrays.  
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Figure 4-11. Diagnostic Ti etching between electron-beam lithography (EBL)-defined 
Pt microwires. A. Ti electrode cross-conductance after separation. The numbers in the 
legend correspond to cross-conductance measurements between the 90-nm-spaced EBL-
defined microwires numbered (sequentially from 1 to 8) in panel B. The cross-conductance 
values after separation are 0.5 nS (blue trace, corresponding to microwires 7–8), 5 nS (red 
trace, microwires 3–4), 15 nS (green trace, microwires 5–6), and 25 nS (black trace, 
microwires 1–2). B. SEM images of the diagnostic memory circuit. The background shows 
the EBL-defined Pt microwires patterned over the memory active region to form a Si NW/Ti 
microwire crossbar. Scale bar is 2.5 μm. The inset is a high-resolution SEM image of the 
region between two Pt microwires indicated by the yellow circle. Note the Ti has been 
cleanly removed, revealing the underlying Si NWs. The scale bar is 100 nm.  
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To form Ti NWs as the top electrodes from SNAP deposited Pt NWs, the chip 

was etched (via BCl3) in intervals of time ranging from five minutes (at the beginning) to 

30 seconds (near the end) so that periodic conductance measurements could be made to 

monitor the etch progress. This significantly increased the total BCl3 etch time because 

the chip had to be periodically removed from the vacuum environment of our reactive ion 

etcher resulting in re-growth of surface TiO2. The total BCl3 etch time ranged from 15 to 

20 minutes, although a large fraction of that time was undoubtedly spent etching re-

grown TiO2 at the beginning of each BCl3 etch iteration. As will be discussed below, this 

unavoidably* long etch time can lead to fidelity problems in transferring the Pt NW 

pattern to the underlying Ti film.  

The Ti etching step described above proved to be one of the most challenging 

aspects of memory fabrication and required the simultaneous optimization of a number of 

correlated factors. This included the BCl3 etch recipe described above, the depth of the 

SOG recess defining the memory active region, and the epoxy used to bond the Pt NW 

array to the Ti/SiO2 film. This epoxy fills in the SOG recess, thus separating the Ti/SiO2 

film from the Pt NWs by a relatively thick organic spacer. If the epoxy is too thick 

significant undercutting can occur. This leads to blurring of the Ti NW pattern and 

wandering of individual Pt NWs on top of a sea of shifting epoxy. Frequently the Pt NWs 

would wander so much they would short into each other (Figure 4-12), resulting in Ti 

NW top electrodes that could not be physically separated (more on this below). This 

problem was exacerbated with the relatively long BCl3 etch times required to define the 

Ti NWs.  
                                                 
* In principle, the etch time could be reduced considerably by monitoring the conductance in-situ with the 
BCl3 etch so the time-consuming TiO2-removal step would only need to be done once. Obviously, our RIE 
system did not have this feature. 
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The epoxy thickness over the Ti film was reduced by decreasing the recess of the 

SOG window defining the memory active region. This was accomplished by globally 

thinning the SOG film beforehand. Trial and error in conjunction with atomic force 

microscopy (AFM) measurements of the SOG recess and surrounding region after curing 

the spin-coated epoxy (without the deposited Pt NWs) determined the optimal SOG 

thickness to be about 50 nm. Thinning the SOG further required reducing the thickness 

(65 nm) of the EBL-defined wires so they did not protrude from the SOG + SiO2 film 

(keeping the thickness of SiO2 deposited over the Ti film to be constant at 15 nm*). 

However, this led to problems in making reliable contact to the Si NWs, since the 

Figure 4-12. SEM image of a crossbar memory circuit before optimization of the Ti NW 
fabrication parameters. This image shows wandering of individual Pt NWs due to shifting 
epoxy from the BCl3 etch used to define the Ti NW array. The inset shows a zoomed-in view 
from the center of the memory crossbar region. The scale bar in the inset is 500 nm. 

                                                 
* Increasing the SiO2 thickness beyond 15 nm adversely affected the etch fidelity. 
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deposited metal would be more prone to becoming discontinuous at the ends of the Si 

NWs where there is a step of 33 nm (the starting SOI thickness) (Figure 4-9.B). It should 

be noted, however, that more advanced metal deposition systems capable of depositing 

metal conformally would eliminate this constraint. 

While reducing the epoxy thickness over the Ti film was necessary to achieve 

high-fidelity pattern transfer of the Pt NW mask, it was not sufficient. This required 

improving the epoxy recipe to make it more resistant to undercutting without making it 

overly difficult to etch using O2 or BCl3. (A O2 etch of 5 mTorr at 40 W always preceded 

the initial BCl3 etch to remove epoxy from between the SNAP-fabricated Pt NWs.) After 

some trial and error, the optimal epoxy recipe was determined to be a modified version of 

Allied High Tech (Rancho Dominguez, CA) Epoxy Bond 110. (5 drops part A, 1 drop 

part B, 2 drops of dibutyl phthalate, and diluted with 10 ml of anhydrous tetrahydrofuran. 

The dibutyl phthalate is a plasticizer that makes the epoxy easier to etch from between Pt 

NWs.) 

 

4.6.3 Memory testing 

 

The memory circuit was tested using a Probe 2000 (San Jose, CA) custom-built probe 

card (Appendix 4.2) and a Keithley 707A switching matrix in conjunction with a 

Keithley 7174A low-current matrix card for off-chip demultiplexing. Individual ebits 

(containing 4–16 crossbar junctions, but most often containing nine crossbar junctions) 

were electrically addressed within the 2-D cross-point array by the intersection of 2–4 

sequential Si NW bottom electrodes and 2–4 sequential Ti NW top electrodes. Individual 
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molecular junctions were set to their low resistance, or ‘1’ state, through the application 

of a positive 1.5–2.3 V pulse (voltages are referenced to the bottom Si NW electrode) of 

0.2-second duration. A junction was set to its ‘0’ or high resistance state through 

application of a −1.5 V pulse, also of 0.2-second duration. To avoid switching an entire 

column or row of bits, the switching voltage was split between the two electrodes 

defining the ebit. Thus, to write a ‘1’ with +2 V, a single Si NW electrode is charged to 

+1 V, while a single Ti NW electrode is set to −1 V, and only where they cross does the 

junction receive the full +2 V switching voltage. Half-selected bits, that is, bits receiving 

only half the switching voltage, were never observed to switch. Individual ebits were read 

by applying a small, non-perturbing +0.2 V bias to the bottom Si NW electrode and 

grounding the top Ti NW electrode through a Stanford Research Systems SR-570 current 

pre-amplifier. Bits not being read were held at ground to reduce parasitic current 

pathways through the crossbar array. Note that all the electrical writing and reading 

operations described in this work were done sequentially. 

Configuring the memory circuit for information storage proceeded as follows. 

Initially, all ebits were read with +0.2 V to document their baseline current. The value of 

this baseline current varied from being greater than the current through the junction when 

set to its low-resistance or ‘1’ state to being less than the current through the junction 

when set to its high-resistance or ‘0’ state. However, after a (good) bit had been switched 

though the application of ± 1.5 V, it performed reliably (i.e., on current > off current) 

until it no longer exhibited switching behavior. After the baseline current was read, all 

ebits were switched to their ‘1’ state, read out, then set to their ‘0’ state and again read 

out (Figure 4-13 shows raw data). Good ebits were identified as those with 1/0 current 



 108

Figure 4-13. Raw switching data from a molecular electronic crossbar memory circuit. 
The raw data in this figure was used to generate the 1/0 plot and defect matrix shown in Figure 
4-6. 

ratios roughly greater than or equal to 1.5. Bad ebits fell into a few classes, with the two 

most common groups being ebits that were either poor switches with little or no 

switching response or open circuits. In both cases, the 1/0 ratio was unity. Adjacent Ti 

top electrodes that were shorted together were identified when the ebits addressed by 

those electrodes were not independently addressable. This is evidenced by an 8-bit 

periodicity in the response of bits sharing a single Si NW bottom electrode and the 

shorted Ti top electrodes. This can be seen from the bit matrix in Figure 4-6.B where the 

shorting of top electrodes T2 and T3 results in nearly equivalent responses from bits 13 & 

21 and bits 15 & 23. A more-severe case of top Ti NW shorting is shown in Figure 4-14, 

which corresponds to the memory circuit shown in Figure 4-12. Even though this type of 

defect is not completely fatal (i.e., two rows of ebits could still be utilized as a single row 
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A 
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Figure 4-14. Data from a memory circuit with extensive Ti NW top electrode shorting. 
A. 1/0 current ratio measurements from 64 bits of the memory circuit shown in Figure 4-
12. B. Defect map of the good and defective ebits with a pie chart showing the testing 
statistics. Good ebits were defined as ebits with 1/0 ratios greater than 1.2 (31% of the 
tested bits). Note that most of the good ebits (yellow) are clustered together within columns 
(Si NW bottom electrodes), indicating severe Ti NW (rows) shorting. 
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of twice-as-large ebits), we did not use ebits associated with shorted top electrode 

defects.  

Once the good ebits were identified, they were used to store and read out small 

strings of information written in standard ASCII code. The maximum number of ebits 

that could be tested was 180, but our electronics were configured to test 128 ebits (less 

than 1 percent of the actual crossbar). Based on results from similarly fabricated memory 
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circuits, we believe this small subset of measured bits is representative and sufficient to 

demonstrate the key concepts of this memory.   

To increase the measured current, volatility measurements were carried out with 

approximately 100 (~30 ebits) junctions in parallel. The junctions were switched to their 

‘1’ or low resistance state, as described above, and the current was periodically measured 

through the parallel combination of all 100 junctions at discrete time points. Note that 

defective switches stuck in a low conductivity state contribute little signal to the parallel 

combination while defective switches stuck in a high conductivity state only add a 

constant offset to the decaying current. There could be an unknown number of defective 

switches (and hence junctions) stuck in their ‘1’ state; however, the current through a 

parallel combination of functional and defective junctions will decay with the same time 

constant as that of the functional junctions as long as the number of defective junctions is 

not too large. We occasionally observed parallel combinations with a large fraction of 

defective junctions. These were identified by an approximately constant measured current 

as a function of time. Data from these parallel combinations were not used.  

If a defective junction is shorted (i.e., the Ti top electrode is shorted to the bottom 

Si electrode through direct metal contact), the current through the junction would be 

orders of magnitude higher than expected and readily identified. We did not observe such 

junctions in the memory circuits described above.  
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4.7 Limitations of the SNAP process for crossbar circuits 

 

The nanofabrication methods described above for creating the 160,000-bit crossbar 

memory circuit can be significantly extended in terms of both memory size and bit 

density. For [2]rotaxane-based molecular electronic memory circuits, proper choice of 

electrode materials within the crossbar has proven to be very important for successful 

memory operation61; that is, having Si bottom electrodes and metallic top electrodes with 

a thin Ti layer to protect the underlying [2]rotaxane monolayer was key. Arrays of 

SNAP-fabricated Pt NWs only serve as stencils for forming the crossbar electrodes. To 

be used in a crossbar memory, the SNAP NW pattern must be transferred to Si or Ti NWs 

for the bottom and top electrodes, respectively. Thus, it is not just the SNAP process, but 

the ability to translate the initially deposited SNAP NWs to form other NWs that 

ultimately limits the size and density of the circuitry that can be fabricated.  

Figure 4-15 (left micrograph) shows an array of 7-nm-wide, 15-nm-tall single 

crystal Si NWs patterned at 13-nm pitch. This array could be used to produce to a 

crossbar molecular memory circuit at about six times the density of this work (~ 6×1011 

bits cm–2). While this array may not represent the density limit of what could be 

achieved, densities in excess of 1×1012 cm–2 may difficult to obtain using these patterning 

methods and conventional nanofabrication tools. Similarly, the 160,000-bit crossbar 

described herein can be extended in terms of the total number of bits by using larger-

element SNAP NW arrays. Figure 4-15 (right two micrographs) shows SEM images of an 

array of 1400 Si NWs formed using the SNAP method. An array this size makes possible 



 112

Figure 4-15. Next-generation crossbar molecular memory circuits using SNAP 
patterning. (left) An array of 7-nm-wide Si NWs patterned at 13-nm pitch could produce a 
crossbar molecular memory circuit with six times the bit density of this work. (right) An 
array of 1400 Si NWs patterned at 33-nm pitch could provide enough nanowires to produce 
an approximately two-million-bit crossbar molecular memory circuit. The inset shows an 
expanded view of the array, which is virtually free of defective nanowires.  

the construction of an approximately two-million-bit crossbar molecular memory circuit 

and it is certainly possible to further expand this concept to substantially larger structures.  

From a manufacturing perspective, a significant limitation of the SNAP process is 

that each NW array must be fabricated serially using a labor-intensive process (despite 

SNAP being a parallel patterning method in that all NWs within an array are created 

simultaneously). For instance, in a single day a worker can usually fabricate not more 

than 10–20 arrays of Si NWs. However, a recent collaboration with Stan Williams’ group 

at Hewlett Packard labs (Palo Alto, CA) has demonstrated that nanoimprinting can be 

used to replicate SNAP NWs and to form crossbar structures47. This indicates that high-
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throughput parallel fabrication methods can be developed, even at the near molecular-

densities described in this work.  

 

4.8 Concluding remarks 

 

Many challenges remain to be addressed before the type of crossbar molecular 

memory described here can be practically implemented. For example, areas of future 

interest include finding faster and more-robust molecular switches, addressing 

nanofabrication challenges associated with improving the fidelity of these tools and 

procedures, and meeting engineering challenges such as those involved with combining 

demultiplexing architectures, such as those described in Chapter 3, with crossbar 

circuits69. Nevertheless, this circuit stands as a new benchmark for nanoelectronic device 

integration and provides evidence that at least some of the most challenging scientific 

issues associated with integrating nanowires, molecular materials, and defect-tolerant 

circuit architectures at extreme dimensions are solvable. The circuits described in this 

work represent significant advances in sub-lithographic patterning, large-scale assembly 

of nanoscale electronic devices, and the integration of molecular and solid state materials. 

Furthermore, recently published nanoimprinting results imply that methods for the high-

throughput manufacturing of these types of circuits are possible46-48.  
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Appendix 4.1 Details of lithographically-patterned structures 

 

500 
μm

125 μm diameter pads for 
making contact to probe 

card  

10 μm wide wires 

40 μm 
squares for making 

contact to EBL-
patterned wiring 

NW crossbar 
circuit location

Width of SNAP 
master

Optical lithography patterned structure. The coordinates for the pads 
are on the next page. A printed photomask (Output City, Eoway CA) was 
used to expose the pattern in AZ 5214 (Clariant). AZ 400K was used for 
development and metal lift-off was in acetone. 
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Coordinates for the optical mask pattern on previous page (1 unit = 1 micrometer) 

with the origin at the lower left pad.  
 
 

PAD # X COORDINATE Y COORDINATE 
1 0.0000 0.0000 
2 0.0000 350.0000 
3 0.0000 700.0000 
4 0.0000 1050.0000 
5 0.0000 1400.0000 
6 0.0000 1750.0000 
7 0.0000 2100.0000 
8 0.0000 2450.0000 
9 0.0000 2800.0000 
10 0.0000 3150.0000 
11 0.0000 3500.0000 
12 0.0000 3850.0000 
13 0.0000 4200.0000 
14 0.0000 4550.0000 
15 0.0000 4900.0000 
16 1778.0000 4900.0000 
17 2101.6561 4705.6744 
18 2395.6589 4468.8663 
19 2654.4711 4194.0355 
20 2873.2185 3886.3582 
21 3047.7811 3551.6291 
22 3174.8715 3196.1523 
23 3252.0959 2826.6227 
24 3278.0000 2450.0000 
25 3252.0959 2073.3773 
26 3174.8715 1703.8477 
27 3047.7811 1348.3709 
28 2873.2185 1013.6418 
29 2654.4711 705.9645 
30 2395.6589 431.1337 
31 2101.6561 194.3256 
32 1778.0000 0.0000 
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850 μm
50 μm

Outermost electron-beam lithography written structures. The large 50-μm pads 
and crosses at the periphery make contact to optical-lithography-defined pads that in 
turn fan-out to large circular pads (125 μm diameter) for making contact to a custom-
built probe card. All electron-beam lithography was done using an FEI XL-30 SEM 
with the Nanometer Pattern Generation System (NPGS) version 6.0 (J.C. Nabity 
Systems) to expose regions of 3% polymethyl-methacrylate (PMMA) over 2.25% 
MMA. Pattern development was done with 1:3 methyl isobutyl ketone to isopropyl 
alcohol. Metal depositions were done using an electron-beam evaporator (Semicore 
Corp, CHA-Mark 40; Freemont, CA), and lift-off was in acetone. 
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30 μm 

Si NW bottom electrodes 

Contacts to top Ti NWs 

Grounding pad 

Contacts to bottom Si NWs 

5.1 μm 

2.7 μm

300 nm pitch, width 50-70 nm 

Intermediate-to-smallest EBL-patterned structures.  

Test electrodes 
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Appendix 4.2 Memory probe card specifications 
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Appendix 4.3 NI LabWindows /CVI code used for memory 

reading/writing operations 

 

Note that much of the code below has been commented out (/*…*/). I nonetheless left 
those portions intact in its original location within the code. This code was written 
primarily by Dr. Yi Luo for use with a Keithley 707A switching matrix, National 
Instruments (NI) DAQ PC card (v. 4.8), and a Stanford Research Systems SR-570 current 
pre-amplifier.  

 
#include <gpib.h> 
//#include <windows.h>      
#include <utility.h> 
//#include "decl-32.h" 
#include <stdio.h> 
#include <string.h>  
#include <userint.h> 
#include <dataacq.h> 
#include <ansi_c.h> 
#include "MUX_AC.h" 
 
static int daq, daq1; 
FILE *fp_out; 
int Device1; 
int cross_point[9][9],set_bit[9][9]; 
int num_read, all_switch,all_control=-1, ramp, ramp_num=20; 
double time_write, time_read, volt_write_on,volt_write_off, volt_read, volt_hold, threshold_high,threshold_low; 
double adch0,adch1, volt_ramp0, volt_ramp1, ramp_rate; 
const char tmp_file[10]="tmp.dat"; 
 
void main(){ 
 int i; 
 Device1=ibdev(0,18,0,10,1,0);      /* initiate 707A  */  
 ibwrt(Device1,"REMOTE",6);       /* enable remote mode   */ 
 ibwrt(Device1,"E0X",3);        /* Point to present relays  */ 
  
 daq = LoadPanel (0, "MUX_AC.uir", MUX); 
 DisplayPanel (daq); 
 i=AI_Clear (1); 
 RunUserInterface (); 
} 
int select_ind (int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
 { 
 daq1 = LoadPanel (1, "MUX_AC.uir", MUX1); 
 DisplayPanel (daq1); 
 return 1; 
 } 
int close_selection(int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
 {  
 int i,m; 
 i=HidePanel(daq1); 
 return 0; 
 } 
int switch_control(int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
 {  
  int m; 
  if(all_control==-1){         
   m=SetCtrlAttribute(daq,MUX_ALL_SWITCHES, ATTR_DIMMED, 0);  
  } 
  else{ 
   m=SetCtrlAttribute(daq,MUX_ALL_SWITCHES, ATTR_DIMMED, 1);  
  } 
  all_control=all_control*(-1); 
  return 1; 
 } 
int configure_ind (int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
 { 
 int i,j,k,m,i_ramp; 
 char c[5],d[6]; 
 if (all_control!=1){ 
 m = GetCtrlVal (daq, MUX_Switch1_1, &cross_point[1][1]); 
 m = GetCtrlVal (daq, MUX_Switch1_2, &cross_point[1][2]); 
 m = GetCtrlVal (daq, MUX_Switch1_3, &cross_point[1][3]); 
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 m = GetCtrlVal (daq Switch1_4, &cross_point[1][4]); 
 m = GetCtrlVal (daq Switch1_5, &cross_point[1][5]); 
 m = GetCtrlVal (daq Switch1_6, &cross_point[1][6]); 

 m = GetCtrlVal (daq, MUX_Switch1_8, &cross_point[
 m = GetCtrlVal (daq, MUX_Switch2_1, &cross_point
 m = GetCtrlVal (daq, MUX_Switch2_2, &cross_point
 m = GetCtrlVal (daq, MUX_Switch2_3, &cross_point[

, MUX_
, MUX_
, MUX_

 m = GetCtrlVal (daq, MUX_Switch1_7, &cross_point[1][7]); 
1][8]); 

[2][1]); 
[2][2]); 
2][3]); 

 m = GetCtrlVal (daq, MUX_Switch2_4, &cross_point[2][4]); 
m = GetCtrlVal (daq, MUX_Switch2_5, &cross_point[2][5]); 
m = GetCtrlVal (daq, MUX_Switch2_6, &cross_point[2][6]); 
m = GetCtrlVal (daq, MUX_Switch2_7, &cross_point[2][7]); 

(daq, MUX_Switch4_1, &cross_point[4][1]); 
(daq, MUX_Switch4_2, &cross_point[4][2]); 

m = GetCtrlVal (daq, MUX_Switch4_3, &cross_point[4][3]); 
m = GetCtrlVal (daq, MUX_Switch4_4, &cross_point[4][4]); 
m = GetCtrlVal (daq, MUX_Switch4_5, &cross_point[4][5]); 

GetCtrlVal (daq, MUX_Switch4_6, &cross_point[4][6]); 
lV daq, MUX_Switch4_7, &cross_point[4][7]); 
lV daq, MUX_Switch4_8, &cross_point[4][8]); 

trlVal (daq, MUX_Switch5_1, &cross_point[5][1]); 
trlVal (daq, MUX_Switch5_2, &cross_point[5][2]); 

tCtrlVal (daq, MUX_Switch5_3, &cross_point[5][3]); 
tCtrlVal (daq, MUX_Switch5_4, &cross_point[5][4]); 
CtrlVal (daq, MUX_Switch5_5, &cross_point[5][5]); 
CtrlVal (daq, MUX_Switch5_6, &cross_point[5][6]); 

rlVal (daq, MUX_Switch5_7, &cross_point[5][7]); 
rlVal (daq, MUX_Switch5_8, &cross_point[5][8]); 

etCtrlVal (daq, MUX_Switch6_1, &cross_point[6][1]); 
etCtrlVal (daq, MUX_Switch6_2, &cross_point[6][2]); 

UX_Switch6_3, &cross_point[6][3]); 
 MUX_Switch6_4, &cross_point[6][4]); 

point[6][5]); 

ross_point[6][8]); 
MUX_Switch7_1, &cross_point[7][1]); 

m = GetCtrlVal (daq, MUX_Switch7_2, &cross_point[7][2]); 
 MUX_Switch7_3, &cross_point[7][3]); 

_ itch7_7, &c 7][7]
s_point[7][8]); 
s_point[8][1]); 

8_2, &cross_point[8][2]); 
_3, &cross_point[8][3]); 
_4, &cross_point[8][4]); 

tch8_5, &cross_point[8][5]); 

point[8][8]); 

trlVal (daq, MUX_ALL_SWITCHES, &all_switch); 

 

UX1_Switch1_1, &set_bit[1][1]); 
ch1_2, &set_bit[1][2]); 

ch1_5, &set_bit[1][5]); 

ch2_1, &set_bit[2][1]); 

_6, &set_bit[2][6]); 
set_bit[2][7]); 

itch3_2, &set_bit[3][2]); 
itch3_3, &set_bit[3][3]); 
tch3_4, &set_bit[3][4]); 

 
 
 
 m = GetCtrlVal (daq, MUX_Switch2_8, &cross_point[2][8]); 
 m = GetCtrlVal (daq, MUX_Switch3_1, &cross_point[3][1]); 
 m = GetCtrlVal (daq, MUX_Switch3_2, &cross_point[3][2]); 
 m = GetCtrlVal (daq, MUX_Switch3_3, &cross_point[3][3]); 
 m = GetCtrlVal (daq, MUX_Switch3_4, &cross_point[3][4]); 
 m = GetCtrlVal (daq, MUX_Switch3_5, &cross_point[3][5]); 
 m = GetCtrlVal (daq, MUX_Switch3_6, &cross_point[3][6]); 
 m = GetCtrlVal (daq, MUX_Switch3_7, &cross_point[3][7]); 
 m = GetCtrlVal (daq, MUX_Switch3_8, &cross_point[3][8]); 
 m = GetCtrlVal 
 m = GetCtrlVal 
 
 
 
 m = 
 m = GetCtr al (

etCtr al ( m = G
 m = GetC

GetC m = 
 m = Ge
 m = Ge
 m = Get
 m = Get
 m = GetCt

m = GetCt 
 m = G

m = G 
m = GetCtrlVal (daq, M 

 m = GetCtrlVal (daq,
 m = GetCtrlVal (daq, MUX_Switch6_5, &cross_
 m = GetCtrlVal (daq, MUX_Switch6_6, &cross_point[6][6]); 

cross_point[6][7]);  m = GetCtrlVal (daq, MUX_Switch6_7, &
 m = GetCtrlVal (daq, MUX_Switch6_8, &c
 m = GetCtrlVal (daq, 
 
 m = GetCtrlVal (daq,
 m = GetCtrlVal (daq, MUX_Switch7_4, &cross_point[7][4]); 
 m = GetCtrlVal (daq, MUX_Switch7_5, &cross_point[7][5]); 

X_Switch7_6, &cross_point[7][6] m = GetCtrlVal (daq, MU ); 
 (daq, MUX Sw ross_point[ );  m = GetCtrlVal

 m = GetCtrlVal (daq, MUX_Switch7_8, &cros
 m = GetCtrlVal (daq, MUX_Switch8_1, &cros
 m = GetCtrlVal (daq, MUX_Switch
 m = GetCtrlVal (daq, MUX_Switch8

m = GetCtrlVal (daq, MUX_Switch8 
 m = GetCtrlVal (daq, MUX_Swi

 = GetCtrlVa m l (daq, MUX_Switch8_6, &cross_point[8][6]); 
(daq, MUX_Switch8_7, &cross_point[8][7]);  m = GetCtrlVal 

 m = GetCtrlVal (daq, MUX_Switch8_8, &cross_
 } 
 else{ 
  m = GetC
  for(i=1;i<=8;i++){ 
   for(j=1;j<=8;j++){ 

cross_point[i][j]=all_switch;    
}   

  } 
 } 

(daq1, M m = GetCtrlVal 
 m = GetCtrlVal (daq1, MUX1_Swit

 = GetCtrlVa m l (daq1, MUX1_Switch1_3, &set_bit[1][3]); 
 m al (daq1, MUX1_Switch1_4, &set_bit[1][4]);  = GetCtrlV
 m = GetCtrlVal (daq1, MUX1_Swit
 m = GetCtrlVal (daq1, MUX1_Switch1_6, &set_bit[1][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch1_7, &set_bit[1][7]); 

Switch1_8, &set_bit[1][8]);  m = GetCtrlVal (daq1, MUX1_
 m = GetCtrlVal (daq1, MUX1_Swit
 m = GetCtrlVal (daq1, MUX1_Switch2_2, &set_bit[2][2]); 

Switch2_3, &set_bit[2][3]);  m = GetCtrlVal (daq1, MUX1_
 m = GetCtrlVal (daq1, MUX1_Switch2_4, &set_bit[2][4]); 

2_5, &set_bit[2][5]);  m = GetCtrlVal (daq1, MUX1_Switch
 m = GetCtrlVal (daq1, MUX1_Switch2
 m = GetCtrlVal (daq1, MUX1_Switch2_7, &

 = GetCtrlVa m l (daq1, MUX1_Switch2_8, &set_bit[2][8]); 
(daq1, MUX1_Switch3_1, &set_bit[3][1]);  m = GetCtrlVal 

 m = GetCtrlVal (daq1, MUX1_Sw
_Sw m = GetCtrlVal (daq1, MUX1

 m = GetCtrlVal (daq1, MUX1_Swi
 m = GetCtrlVal (daq1, MUX1_Switch3_5, &set_bit[3][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch3_6, &set_bit[3][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch3_7, &set_bit[3][7]); 
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 m = GetCtrlVal (daq1, MUX1_Switch3_8, &set_bit[3][8]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_1, &set_bit[4][1]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_2, &set_bit[4][2]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_3, &set_bit[4][3]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_4, &set_bit[4][4]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_5, &set_bit[4][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_6, &set_bit[4][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_7, &set_bit[4][7]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_8, &set_bit[4][8]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_1, &set_bit[5][1]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_2, &set_bit[5][2]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_3, &set_bit[5][3]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_4, &set_bit[5][4]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_5, &set_bit[5][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_6, &set_bit[5][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_7, &set_bit[5][7]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_8, &set_bit[5][8]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_1, &set_bit[6][1]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_2, &set_bit[6][2]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_3, &set_bit[6][3]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_4, &set_bit[6][4]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_5, &set_bit[6][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_6, &set_bit[6][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_7, &set_bit[6][7]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_8, &set_bit[6][8]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_1, &set_bit[7][1]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_2, &set_bit[7][2]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_3, &set_bit[7][3]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_4, &set_bit[7][4]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_5, &set_bit[7][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_6, &set_bit[7][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_7, &set_bit[7][7]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_8, &set_bit[7][8]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_1, &set_bit[8][1]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_2, &set_bit[8][2]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_3, &set_bit[8][3]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_4, &set_bit[8][4]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_5, &set_bit[8][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_6, &set_bit[8][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_7, &set_bit[8][7]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_8, &set_bit[8][8]); 
 m = GetCtrlVal (daq, MUX_TIME_WRITE, &time_write); 
 m = GetCtrlVal (daq, MUX_VOLT_WRITE_ON, &volt_write_on); 

_off); 

*******   st

     /*******

 /* dummy line */ 

   /* check if the bit is selected   */ 
      

 c[2]=(char)(48+i); 

(Device1,c,4); 
      

2]=(char)(48+i); 
c[3]='X'; 

 c[4]='\0'; 
4); 

+8); 

4);  

+8); 

4);  

/* two-digit  */ 
j-2); 

,5); 

 m = GetCtrlVal (daq, MUX_VOLT_WRITE_OFF, &volt_write
 m = GetCtrlVal (daq, MUX_VOLT_HOLD, &volt_hold); 
 m = GetCtrlVal (daq, MUX_Ramp, &ramp);  
 m = GetCtrlVal (daq, MUX_Ramp_Rate, &ramp_rate);  
  
/* arting the loop of configuring   *******/  
 
   *  test ********/ 
 m=SetCtrlVal(daq,MUX_STOP_SCAN,1);  
 m=SetCtrlVal(daq,MUX_Config_complete,0); 
 m=SetCtrlVal(daq,MUX_Memory_Check_Done,0); 
 ibwrt(Device1,"CA72X",5);    
 ibwrt(Device1,"NA72X",5);  
 for(i=1;i<=8;i++){ 
  for(j=1;j<=8;j++){ 
  if (set_bit[i][j]==1){   
    c[0]='C';  
      c[1]='B'; 
   
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt
    c[0]='N';  
      c[1]='A'; 
    c[
    
   
    ibwrt(Device1,c,
    if (j<2){ 
    c[0]='C'; 
    c[1]='C'; 
    c[2]=(char)(48+j
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,
    c[0]='N'; 
    c[1]='H'; 
    c[2]=(char)(48+j
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,
    } 
    else{ 
    d[0]='C'; 
    d[1]='C'; 
    d[2]='1';      
    d[3]=(char)(48+
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d
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    d[0]='N'; 
    d[1]='H'; 
    d[2]='1';      /* two-digit  */ 

j-2); 

,5); 

j+8)){ 
(k<10){ 

f (k<=8){ 
[0]='C'; 

c[1]='A';    /* apply -1.0 volt to rows from Keithley 5-25-01  */ 
2]=(char)(48+k); 

[3]='X'; 
[4]='\0'; 

e1,c,4); 
 
lse{ 
[0]='C'; 
[1]='H';     

2]=(char)(48+k); 
[3]='X'; 
[4]='\0'; 

e1,c,4); 
 

 
lse{ 
[0]='C'; 
[1]='H'; 
2]='1'; 
3]=(char)(48+k-10); 

[4]='X'; 
[5]='\0'; 

e1,d,5);  
 

 

][j]==1){ 

  for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){    

+ (volt_write_on/2-volt_hold)/ramp_num; 
   volt_ramp1=volt_ramp1 + (volt_write_on/2)/ramp_num; 

 m = AO_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 
Delay(volt_write_on/ramp_num/ramp_rate); 

 Delay(time_write);     /* hold */ 
 for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){    

lt_ramp0=v old)/ramp_num; 

m = AO_VWrite (1, 0, volt_ramp0); 
AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 

Delay(volt_write_on/ramp_num/ramp_rate); 

  } 

0=volt_hold; 

=1; i_ramp<=ramp_num; i_ramp++){    

amp0=volt_ramp0 + (volt_write_off/2-volt_hold)/ramp_num; 
volt_ramp1=volt_ramp1 + (volt_write_off/2)/ramp_num; 
m = AO_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 

volt_write_off/ramp_num/ramp_rate); 

e_write);     /* hold */ 
num; i_ramp++){    

volt_ramp0=volt_ramp0 - (volt_write_off/2-volt_hold)/ramp_num; 
mp1=volt_ramp1 - (volt_write_off/2)/ramp_num; 

m = AO_VWrite (1, 0, volt_ramp0); 
(1, 1, (-volt_ramp1-0.06225)/0.9938); 

e_off/ramp_num/ramp_rate); 

(volt_write_on/2)); 
Write (1, 1, (-volt_write_on/2-0.06225)/0.9938); 

    d[3]=(char)(48+
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d
    }        
   for(k=1;k<=16;k++){ 
    if((k!=i)&&(k!=
     if 
      i
      c
      
      c[
      c
      c
      ibwrt(Devic
      }
      e
      c
      c
 /*  Ground the columns */ 
      c[
      c
      c
      ibwrt(Devic
      }
     }
     e
     d
     d
     d[
     d[
     d
     d
     ibwrt(Devic
     }
    }    
   } 
   /*  set write voltage */ 
   Delay(0.1); 
   printf("\a");   
   if(ramp==1){ 
    if(cross_point[i
     volt_ramp0=volt_hold; 
     volt_ramp1=0.0; 
   
  /* ramp-up */    
      volt_ramp0=volt_ramp0 
   
     
      
      
     } 
    
    
  /* ramp-down */    
      vo olt_ramp0 - (volt_write_on/2-volt_h
      volt_ramp1=volt_ramp1 - (volt_write_on/2)/ramp_num; 
      
      m = 
      
     } 
       
    else{ 
     volt_ramp
     volt_ramp1=0.0; 
     for(i_ramp
  /* ramp-up */    
      volt_r
      
      
      
      Delay(
     } 
     Delay(tim
     for(i_ramp=1; i_ramp<=ramp_
  /* ramp-down */    
      
      volt_ra
      
      m = AO_VWrite 
      Delay(volt_writ
     } 
    } 
   }    /* with ramp */ 
   else{ 
    if(cross_point[i][j]==1){ 
     m = AO_VWrite (1, 0, 
     m = AO_V
    } 
    else{ 
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     m = AO_VWrite (1, 0, (volt_write_off/2)); 
Write (1, 1, (-volt_write_off/2-0.06225)/0.9938); 

olt_hold); 
.06225/0.9938); 

      

   

[1]='H'; 

   /* two-digit  */ 

4]='X'; 
 

e1,d,5); 

   /* two-digit  */ 

e1,d,5); 

 = GetCtrlV itch1_5, &cross_point[1][5]); 

 = GetCtrlV h2_6, &cross_point[2][6]); 

UX_Switch3_6, &cr
int[3][7]); 

     m = AO_V
    } 
    Delay(time_write); 
    m = AO_VWrite (1, 0, v
    m = AO_VWrite (1, 1, -0
   }  /* no ramp */ 
  /*****  set holding voltage to the row, and Ground to the column  *****/  
    c[0]='C';  
      c[1]='A'; 
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Devic  e1,c,4); 
    c[0]='N';     
      c[1]='B'; 
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4); 
    if (j<2){ 
    c[0]='C'; 
    c
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    c[0]='N'; 
    c[1]='C'; 
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4); 
    } 
    else{ 
    d[0]='C'; 
    d[1]='H'; 
    d[2]='1';   
    d[3]=(char)(48+j-2); 
    d[
    d[5]='\0';
    ibwrt(Devic
    d[0]='N'; 
    d[1]='C'; 
    d[2]='1';   
    d[3]=(char)(48+j-2); 
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Devic
    } 
   /*ibwrt(Device1,"P0X",3);     open all relays  5-21-01 */ 
  }   /*   finish setting one selected bit  */ 
  }   /* j */ 
  } 
 /* close i loop  */ 
 m=SetCtrlVal(daq,MUX_Config_complete,1);   
 return 1; 
 } 
int configure (int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
 { 
 int i,j,k,m,i_ramp; 
 char c[5],d[6]; 
 if (all_control !=1){ 
 
 m = GetCtrlVal (daq, MUX_Switch1_1, &cross_point[1][1]); 
 m = GetCtrlVal (daq, MUX_Switch1_2, &cross_point[1][2]); 
 m = GetCtrlVal (daq, MUX_Switch1_3, &cross_point[1][3]); 
 m = GetCtrlVal (daq, MUX_Switch1_4, &cross_point[1][4]); 
 m al (daq, MUX_Sw
 m = GetCtrlVal (daq, MUX_Switch1_6, &cross_point[1][6]); 
 m = GetCtrlVal (daq, MUX_Switch1_7, &cross_point[1][7]); 
 m = GetCtrlVal (daq, MUX_Switch1_8, &cross_point[1][8]); 
 m = GetCtrlVal (daq, MUX_Switch2_1, &cross_point[2][1]); 
 m = GetCtrlVal (daq, MUX_Switch2_2, &cross_point[2][2]); 
 m = GetCtrlVal (daq, MUX_Switch2_3, &cross_point[2][3]); 
 m = GetCtrlVal (daq, MUX_Switch2_4, &cross_point[2][4]); 
 m = GetCtrlVal (daq, MUX_Switch2_5, &cross_point[2][5]); 
 m al (daq, MUX_Switc
 m = GetCtrlVal (daq, MUX_Switch2_7, &cross_point[2][7]); 
 m = GetCtrlVal (daq, MUX_Switch2_8, &cross_point[2][8]); 
 m = GetCtrlVal (daq, MUX_Switch3_1, &cross_point[3][1]); 
 m = GetCtrlVal (daq, MUX_Switch3_2, &cross_point[3][2]); 
 m = GetCtrlVal (daq, MUX_Switch3_3, &cross_point[3][3]); 
 m = GetCtrlVal (daq, MUX_Switch3_4, &cross_point[3][4]); 
 m = GetCtrlVal (daq, MUX_Switch3_5, &cross_point[3][5]); 
 m = GetCtrlVal (daq, M oss_point[3][6]); 
 m = GetCtrlVal (daq, MUX_Switch3_7, &cross_po
 m = GetCtrlVal (daq, MUX_Switch3_8, &cross_point[3][8]); 
 m = GetCtrlVal (daq, MUX_Switch4_1, &cross_point[4][1]); 
 m = GetCtrlVal (daq, MUX_Switch4_2, &cross_point[4][2]); 
 m = GetCtrlVal (daq, MUX_Switch4_3, &cross_point[4][3]); 
 m = GetCtrlVal (daq, MUX_Switch4_4, &cross_point[4][4]); 
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 m = GetCtrlVal (daq, MUX_Switch4_5, &cross_point[4][5]); 
 m = GetCtrlVal (daq, MUX_Switch4_6, &cross_point[4][6]); 
 m = GetCtrlVal (daq, MUX_Switch4_7, &cross_point[4][7]); 
 m = GetCtrlVal (daq, MUX_Switch4_8, &cross_point[4][8]); 
 m = GetCtrlVal (daq, M oss_point[5][1]); UX_Switch5_1, &cr

UX_Switch5_2, &cr

 = GetCtrlV

 

****/  

     /*******

_Config_complete,0); 
q,MUX_Memory_Check_Done,0); 

dummy line */ 
e1

{ 
 

i][j]==1){       2-17-01  */ 
[0]='C';        

   c[1]='B'; 
 

;  
      

 

; 

 

; 

 

; 

    /* two-digit  */ 

 m = GetCtrlVal (daq, M oss_point[5][2]); 
 m = GetCtrlVal (daq, MUX_Switch5_3, &cross_point[5][3]); 
 m al (daq, MUX_Switch5_4, &cross_point[5][4]); 
 m = GetCtrlVal (daq, MUX_Switch5_5, &cross_point[5][5]); 
 m = GetCtrlVal (daq, MUX_Switch5_6, &cross_point[5][6]); 
 m = GetCtrlVal (daq, MUX_Switch5_7, &cross_point[5][7]); 
 m = GetCtrlVal (daq, MUX_Switch5_8, &cross_point[5][8]); 
 m = GetCtrlVal (daq, MUX_Switch6_1, &cross_point[6][1]); 
 m = GetCtrlVal (daq, MUX_Switch6_2, &cross_point[6][2]); 
 m = GetCtrlVal (daq, MUX_Switch6_3, &cross_point[6][3]); 
 m = GetCtrlVal (daq, MUX_Switch6_4, &cross_point[6][4]); 
 m = GetCtrlVal (daq, MUX_Switch6_5, &cross_point[6][5]); 
 m = GetCtrlVal (daq, MUX_Switch6_6, &cross_point[6][6]); 
 m = GetCtrlVal (daq, MUX_Switch6_7, &cross_point[6][7]); 
 m = GetCtrlVal (daq, MUX_Switch6_8, &cross_point[6][8]); 
 m = GetCtrlVal (daq, MUX_Switch7_1, &cross_point[7][1]); 
 m = GetCtrlVal (daq, MUX_Switch7_2, &cross_point[7][2]); 
 m = GetCtrlVal (daq, MUX_Switch7_3, &cross_point[7][3]); 
 m = GetCtrlVal (daq, MUX_Switch7_4, &cross_point[7][4]); 
 m = GetCtrlVal (daq, MUX_Switch7_5, &cross_point[7][5]); 
 m = GetCtrlVal (daq, MUX_Switch7_6, &cross_point[7][6]); 
 m = GetCtrlVal (daq, MUX_Switch7_7, &cross_point[7][7]); 
 m = GetCtrlVal (daq, MUX_Switch7_8, &cross_point[7][8]); 
 m = GetCtrlVal (daq, MUX_Switch8_1, &cross_point[8][1]); 
 m = GetCtrlVal (daq, MUX_Switch8_2, &cross_point[8][2]); 
 m = GetCtrlVal (daq, MUX_Switch8_3, &cross_point[8][3]); 
 m = GetCtrlVal (daq, MUX_Switch8_4, &cross_point[8][4]); 
 m = GetCtrlVal (daq, MUX_Switch8_5, &cross_point[8][5]); 
 m = GetCtrlVal (daq, MUX_Switch8_6, &cross_point[8][6]); 
 m = GetCtrlVal (daq, MUX_Switch8_7, &cross_point[8][7]); 
 m = GetCtrlVal (daq, MUX_Switch8_8, &cross_point[8][8]); 
 } 
 else{ 
  m = GetCtrlVal (daq, MUX_ALL_SWITCHES, &all_switch); 
  for(i=1;i<=8;i++){ 
   for(j=1;j<=8;j++){ 
   cross_point[i][j]=all_switch; 
   } 
  } 
 } 
 m = GetCtrlVal (daq, MUX_TIME_WRITE, &time_write); 
 m = GetCtrlVal (daq, MUX_VOLT_WRITE_ON, &volt_write_on); 
 m = GetCtrlVal (daq, MUX_VOLT_WRITE_OFF, &volt_write_off); 
 m = GetCtrlVal (daq, MUX_VOLT_HOLD, &volt_hold);      
 m = GetCtrlVal (daq, MUX_Ramp, &ramp);  
 m = GetCtrlVal (daq, MUX_Ramp_Rate, &ramp_rate);  
  
/********   starting of configur the loop ing   ***
 
   *  test ********/ 
 m=SetCtrlVal(daq,MUX_STOP_SCAN,1);  
 m=SetCtrlVal(daq,MUX
 m=SetCtrlVal(da
 ibwrt(Device1,"CA25X",5);     /* 
 ibwrt(Devic ,"NA25X",5);  
 for(i=1;i<=8;i++)
  for(j=1;j<=8;j++){
  /*  if(cross_point[
    c
   
    c[2]=(char)(48+i);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    c[0]='N';  
    c[1]='A'; 
    c[2]=(char)(48+i);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    if (j<2){ 
    c[0]='C'; 
    c[1]='C'; 
    c[2]=(char)(48+j+8);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    c[0]='N'; 
    c[1]='H'; 
    c[2]=(char)(48+j+8);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    } 
    else{ 
    d[0]='C'; 
    d[1]='C'; 
    d[2]='1';  
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    d[3]=(char)(48+j-2); 

; 

    /* two-digit  */ 
); 

; 
      
      

 

;  

 

;  

); 

;  
 } 
}         

{ 
){ 

 if (k<=8){ 
  c[0]='C'; 

   c[1]='A';   /* apply -1.0 volt to rows from Keithley 5-25-01  */ 
2]=(char)(48+k); 

[3]='X'; 
[4]='\0'; 

e1,c,4); 
 
lse{ 

   c[0]='C'; 
 c[1]='H';     

/*  Ground the columns */ 
   c[2]=(char)(48+k); 

 c[3]='X'; 
 c[4]='\0'; 

ibwrt(Device1,c,4); 

 } 
 else{ 

d[0]='C'; 

r)(48+k-10); 

ice1,d,5);  

 
0=volt_hold; 
1=0.0; 

<=ramp_num; i_ramp++){    

volt_ramp0=volt_ramp0 + (volt_write_on/2-volt_hold)/ramp_num; 
amp1=volt_ramp1 + (volt_write_on/2)/ramp_num; 

m = AO_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 

volt_write_on/ramp_num/ramp_rate); 
Delay(-volt_write_on/ramp_num/ramp_rate); 

elay(time_write);     /* hold */ 
amp=1; i_ramp<=ramp_num; i_ramp++){    

volt_ramp0=volt_ramp0 - (volt_write_on/2-volt_hold)/ramp_num; 

    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5)
    d[0]='N'; 
    d[1]='H'; 
    d[2]='1';  
    d[3]=(char)(48+j-2
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5)
    }  
  /* }   
   else{ 
    c[0]='C'; 
    c[1]='B'; 
    c[2]=(char)(48+i);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    if (j<4){ 
    c[0]='C'; 
    c[1]='A'; 
    c[2]=(char)(48+j+6);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    } 
    else{ 
    d[0]='C'; 
    d[1]='A'; 
    d[2]='1'; 
    d[3]=(char)(48+j-4
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5)
   
   
     2-17-01  */        
   for(k=1;k<=16;k++)
    if((k!=i)&&(k!=j+8)
     if (k<10){ 
     
    
   
      c[
      c
      c
      ibwrt(Devic
      }
      e
   
     
 
   
     
     
      
      } 
    
    
     
     d[1]='H'; 
     d[2]='1'; 
     d[3]=(cha
     d[4]='X'; 
     d[5]='\0'; 
     ibwrt(Dev
     } 
    }    
   } 
   /*  set write voltage */ 
   Delay(0.1); 
   printf("\a"); 
   if(ramp==1){ 
    if(cross_point[i][j]==1){
     volt_ramp
     volt_ramp
     for(i_ramp=1; i_ramp
  /* ramp-up */    
      
      volt_r
      
      
      Delay(
      
     } 
      
     D
     for(i_r
  /* ramp-down */    
      
      volt_ramp1=volt_ramp1 - (volt_write_on/2)/ramp_num; 
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      m = AO_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 
Delay(volt_write_on/ramp_num/ramp_rate); 

(-volt_write_on/ramp_num/ramp_rate);  

d; 
1=0.0; 
=1; i_ramp<=ramp_num; i_ramp++){    

m = AO_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 
Delay(volt_write_off/ramp_num/ramp_rate); 

y(-volt_write_off/ramp_num/ramp_rate); 

e_write);     /* hold */ 
num; i_ramp++){    

volt_ramp0=volt_ramp0 - (volt_write_off/2-volt_hold)/ramp_num; 
volt_ramp1=volt_ramp1 - (volt_write_off/2)/ramp_num; 

_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 
Delay(volt_write_off/ramp_num/ramp_rate); 

e_off/ramp_num/ramp_rate); 

 
(volt_write_on/2)); 

Write (1, 1, (-volt_write_on/2-0.06225)/0.9938); 

 = AO_VWrite (1, 0, (volt_write_off/2)); 

 

 

0]='C'; 

    

[3]='X'; 

se{ 
 

     /* two-digit  */ 
+j-2); 

[1]='C'; 

*  open all relays (skipped  5-25-01) */ 

SetCtrlVal q,MUX_Co  

      
      
      Delay
     } 
    } 
    else{ 
     volt_ramp0=volt_hol
     volt_ramp
     for(i_ramp
  /* ramp-up */    
      volt_ramp0=volt_ramp0 + (volt_write_off/2-volt_hold)/ramp_num; 
      volt_ramp1=volt_ramp1 + (volt_write_off/2)/ramp_num; 
      
      
      
      Dela
     } 
     Delay(tim
     for(i_ramp=1; i_ramp<=ramp_
  /* ramp-down */    
      
      
      m = AO
      
      
      Delay(-volt_writ
     } 
    } 
   }    /* with ramp */ 
   else{ 
    if(cross_point[i][j]==1){
     m = AO_VWrite (1, 0, 
     m = AO_V
    } 
    else{ 
     m
     m = AO_VWrite (1, 1, (-volt_write_off/2-0.06225)/0.9938); 
    }
    Delay(time_write); 
    m = AO_VWrite (1, 0, volt_hold); 
    m = AO_VWrite (1, 1, -0.06225/0.9938);
   }  /* no ramp */ 
  /*****  set holding voltage to the row, and Ground to the column  *****/  
    c[        
      c[1]='A'; 
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    c[0]='N';    
      c[1]='B'; 
    c[2]=(char)(48+i); 
    c
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    if (j<2){ 
    c[0]='C'; 
    c[1]='H'; 
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    c[0]='N'; 
    c[1]='C'; 
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    } 
    el
    d[0]='C';
    d[1]='H'; 
    d[2]='1'; 
    d[3]=(char)(48
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5); 
    d[0]='N'; 
    d
    d[2]='1';      /* two-digit  */ 
    d[3]=(char)(48+j-2); 
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5); 
    } 
   /*   ibwrt(Device1,"P0X",3);    /
  } 
 } 
/* close the loop  */ 
m= (da nfig_complete,1); 
return 1; 
} 
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int logic_check(int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2){ 
 /*SetCtrlVal(daq,MUX_STOP_SCAN,1);   */ 
 return 1; 
} 
int memory_check(int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2){ 

ail[9][9]; 

=SetCtrlAttr tch1_4r, ATTR_DIMMED, TRUE); 

, TRUE); 
daq,MUX witch3_1r, TRUE); 

IMMED, TRUE); 

, TRUE); 
UE); 

, TRUE); 

daq,MUX switch4_6r, 
daq,MUX switch5_1r, 

); 

); 
); 

); 

nt[i][j], (i-1)*8+j, cross_point[i][j],VAL_BLUE); 

e 707A  */   
    /* Point to present relays  */ 

/* use relay row D to read (Vread+AC from function generater)  */  

 

  

     /* amp-meter  */ 
+8); 

c[4]='\0'; 
 ibwrt(Device1,c,4);  

  c[0]='N'; 
       /*  GND  */ 

   c[2]=(char)(48+j+8); 
   c[3]='X'; 

 /*SetCtrlVal(daq,MUX_STOP_SCAN,1);   */ 
int i,j,k,ii,m;  
double r_dummy; 
int f
double AD0[9][9][100],AD1[9][9][100]; 
char c[5],d[6]; 
 DeleteGraphPlot (daq, MUX_GRAPH, -1, VAL_IMMEDIATE_DRAW);   
 m=SetCtrlVal(daq,MUX_Memory_Check_Done,0); 
 m=SetCtrlVal(daq,MUX_Set_phase,0); 
/* 
 m=SetCtrlAttribute(daq,MUX_switch1_1r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch1_2r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch1_3r, ATTR_DIMMED, TRUE); 
 m ibute(daq,MUX_swi
 m=SetCtrlAttribute(daq,MUX_switch1_5r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch1_6r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch2_1r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch2_2r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch2_3r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch2_4r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch2_5r, ATTR_DIMMED, TRUE);  
 m=SetCtrlAttribute(daq,MUX_switch2_6r, ATTR_DIMMED
 m=SetCtrlAttribute( _s ATTR_DIMMED, 
 m=SetCtrlAttribute(daq,MUX_switch3_2r, ATTR_D
 m=SetCtrlAttribute(daq,MUX_switch3_3r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch3_4r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch3_5r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch3_6r, ATTR_DIMMED
 m=SetCtrlAttribute(daq,MUX_switch4_1r, ATTR_DIMMED, TR
 m=SetCtrlAttribute(daq,MUX_switch4_2r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch4_3r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch4_4r, ATTR_DIMMED
 m=SetCtrlAttribute(daq,MUX_switch4_5r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute( _ ATTR_DIMMED, TRUE);  
 m=SetCtrlAttribute( _ ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch5_2r, ATTR_DIMMED, TRUE); 
 m ibute(daq,MUX_switch5_3r, ATTR_DIMMED, TRUE); =SetCtrlAttr
 m=SetCtrlAttribute(daq,MUX_switch5_4r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch5_5r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch5_6r, ATTR_DIMMED, TRUE);  
 m=SetCtrlAttribute(daq,MUX_switch6_1r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch6_2r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch6_3r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch6_4r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch6_5r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch6_6r, ATTR_DIMMED, TRUE);  
12-12-01  LED's removed and kept in an untitled panel    */ 
 for(i=1;i<=8;i++){ 
  for(j=1;j<=8;j++){ 
  PlotLine(daq, MUX_GRAPH, (i-1)*8+(j-1), cross_poi
  } 
 } 
 m = GetCtrlVal (daq, MUX_TIME_READ, &time_read); 
 m = GetCtrlVal (daq, MUX_VOLT_READ, &volt_read); 
 m = GetCtrlVal (daq, MUX_Threshold_High, &threshold_high); 
 m = GetCtrlVal (daq, MUX_Threshold_Low, &threshold_low); 
 m = GetCtrlVal (daq, MUX_NUM_READ, &num_read); 
 m = GetCtrlVal (daq, MUX_VOLT_HOLD, &volt_hold);   
 fp_out=fopen(tmp_file,"w"); 
/* Device1=ibdev(0,18,0,10,1,0);     /* initiat
/* ibwrt(Device1,"E0X",3);    
 for(i=1;i<=8;i++){ 
  for(j=1;j<=8;j++){ 
    c[0]='C'; 
    c[1]='D';  
   2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4); 
    c[0]='N'; 
    c[1]='A';   
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    if (j<2){ 
    c[0]='C'; 
    c[1]='G';   
    c[2]=(char)(48+j
    c[3]='X'; 
    
   
  
    c[1]='H'; 
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    c[4]='\0'; 

 else{ 
   d[0]='C'; 

d[1]='G';        /* amp-meter  */ 

); 
   d[4]='X'; 

  d[5]='\0'; 
   ibwrt(Device1,d,5);  

 d[0]='N'; 
  d[1]='H';        /*  GND  */ 

d[4]='X'; 
   d[5]='\0'; 

 

if (k<=8){ 
c[0]='C'; 
c[1]='A';    /* apply -1.0 volt to rows from Keithley 5-25-01  */ 
c[2]=(char)(48+k); 
c[3]='X'; 
c[4]='\0'; 
ibwrt(Device1,c,4); 
} 
else{ 
c[0]='C'; 
c[1]='H';     

c[2]=(char)(48+k); 
c[3]='X'; 
c[4]='\0'; 
ibwrt(Device1,c,4); 
} 

8+k-10); 

1,d,5);  

  

   
 */ 

f("\a");    
 0, volt_read);    /* channel 0's output goes to relay row B directly  

ction generater  */ 
elay (0.1);   /* delay after setting the read voltage */ 

/*manually set phase on the lock-in  5_28_01  */  
  
_phase,1);     

,0);     taken out for non-volatile devices   6-5-01*/ 

 (1, 0, 1, &adch0);   /* output from current amplifier  */  
 /* output from lock-in amplifier   */ 

i][j][ii]=-adch0;   /****  Current Amplifier revise the polarity!!  *****/ 
;   

ii>0) m=Plot  MUX_GRAPH, 8 0*(i-1) -

H, 8.0*(i-1)+j-1+(double)(ii-1)/(double)(num_read-1), AD1[i][j][ii-1], 8.0*(i-1)+j-

      

     

e1,c,4); 

    ibwrt(Device1,c,4); 
    } 
   
 
    
    d[2]='1'; 
    d[3]=(char)(48+j-2
 
  
 
   
  
    d[2]='1'; 
    d[3]=(char)(48+j-2); 
    
 
    ibwrt(Device1,d,5); 
    } 
   for(k=1;k<=16;k++){ 
    if((k!=i)&&(k!=j+8)){ 
     if (k<10){ 
      
      
      
      
      
      
      
      
      
      
      
 /*  Ground the columns */ 
      
      
      
      
      
     } 
     else{ 
     d[0]='C'; 
     d[1]='H'; 
     d[2]='1'; 
     d[3]=(char)(4
     d[4]='X'; 
     d[5]='\0'; 
     ibwrt(Device
     } 
    }  
   } 
 
   /*  set read voltage and measure the current */
   /* Delay (0.1);   5-25-01 
   print
   m = AO_VWrite (1,
       and goes to row D through fun
   D
   
   /*  
   m=SetCtrlVal(daq,MUX_Set
   scanf("%f",r_dummy); 
   m=SetCtrlVal(daq,MUX_Set_phase
 
   for (ii=0;ii<num_read;ii++){ 
   m = AI_VRead
   m = AI_VRead (1, 1, 1, &adch1);  
    
   AD0[
   AD1[i][j][ii]=adch1
    
   if( Line (daq, .0*(i-1)+j-1+(double)(ii-1)/(double)(num_read-1), AD0[i][j][ii-1], 8. +j
1+(double)(ii)/(double)(num_read-1), AD0[i][j][ii], VAL_RED);      
   if(ii>0) m=PlotLine (daq, MUX_GRAP
1+(double)(ii)/(double)(num_read-1), AD1[i][j][ii], VAL_GREEN);      
    
   Delay (time_read/num_read); 
   } 
 /*****  set holding voltage to the row, and Ground to the column  *****/  
    c[0]='C';  
      c[1]='A'; 
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    c[0]='N';   
      c[1]='D'; 
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Devic  
    if (j<2){ 
    c[0]='C'; 
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    c[1]='H'; 
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  

    /* two-digit  */ 

  /* two-digit  */ 

[4]='X'; 

hreshold_high) { 
j]=1; 

  5-25-01  */ 

 voltage to the rows, and Ground to the columns  *****/  

1]='A'; y -1.0 v

[0]='C'; 
 /*  Ground the columns */ 

[4]='\0'; 

k-10); 

E); 

    c[0]='N'; 
    c[1]='G'; 
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4); 
    } 
    else{ 
    d[0]='C'; 
    d[1]='H'; 
    d[2]='1';  
    d[3]=(char)(48+j-2); 
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5); 
    d[0]='N'; 
    d[1]='G'; 
    d[2]='1';    
    d[3]=(char)(48+j-2); 
    d
    d[5]='\0'; 
    ibwrt(Device1,d,5); 
    } 
   fail[i][j]=0; 
   if(cross_point[i][j]==0){ 
    for (ii=0;ii<num_read;ii++){ 
     if(AD0[i][j][ii]>threshold_low) { 
      fail[i][j]=1; 
      break; 
     }  
    } 
   } 
   if(cross_point[i][j]==1){ 
    for (ii=0;ii<num_read;ii++){ 
     if(AD0[i][j][ii]<t
      fail[i][
      break; 
     }  
    } 
   } 
   /*  m = AO_VWrite (1, 0, 0.0);  
   ibwrt(Device1,"P0X",3);   
  } 
 } 
/* close the loop  */ 
 
/*****  set holding
  for(k=1;k<=16;k++){ 
  if (k<10){ 
   if (k<=8){ 
    c[0]='C'; 
    c[  /* appl olt to rows from Keithley 5-25-01  */ 
    c[2]=(char)(48+k); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4); 
    } 
    else{ 
    c
    c[1]='H';  
    c[2]=(char)(48+k); 
    c[3]='X'; 
    c
    ibwrt(Device1,c,4); 
    } 
   } 
   else{ 
   d[0]='C'; 
   d[1]='H'; 
   d[2]='1'; 
   d[3]=(char)(48+
   d[4]='X'; 
   d[5]='\0'; 
   ibwrt(Device1,d,5);  
   } 
  } 
/* 
if(fail[1][1]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_1r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch1_1r,cross_point[1][1]);}  
if(fail[1][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_2r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch1_2r,cross_point[1][2]);}  
if(fail[1][3]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_3r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch1_3r,cross_point[1][3]);} 
if(fail[1][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_4r, ATTR_DIMMED, FALS
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 m=SetCtrlVal(daq,MUX_switch1_4r,cross_point[1][4]);} 
if(fail[1][5]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_5r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch1_5r,cross_point[1][5]);} 
if(fail[1][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_6r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch1_6r,cross_point[1][6]);} 
if(fail[2][1]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_1r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch2_1r,cross_point[2][1]);} 
if(fail[2][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_2r, ATTR_DIMMED, FALSE); 

, FALSE); 
nt[3][4]);}  

TR_DIMMED, FALSE); 
_swi

witch4_2r, ATTR_DIMMED, FALSE); 
q,MUX_switch4_2r,cross_point[4][2]);}  

daq,MUX_switch4_3r, ATTR_DIMMED, FALSE); 

r, ATTR_DIMMED, FALSE); 
;}  

daq,MUX switch4_5r, FALSE); 

E); 

, FALSE); 
nt[5][3]);}  

FALSE); 
);}  

SE); 
);}  

nt[5][6]);}  

m=SetCtrlAttribute(daq,MUX_switch6_1r, ATTR_DIMMED, FALSE); 

D, FALSE); 
etCtrlVal(daq,MUX_switch6_2r,cross_point[6][2]);}  

D, FALSE); 
etCtrlVal(daq,MUX_switch6_3r,cross_point[6][3]);}  

D, FALSE); 
etCtrlVal(daq,MUX_switch6_4r,cross_point[6][4]);}  

 m=SetCtrlVal(daq,MUX_switch2_2r,cross_point[2][2]);}  
if(fail[2][3]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_3r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch2_3r,cross_point[2][3]);}  
if(fail[2][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_4r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch2_4r,cross_point[2][4]);}  
if(fail[2][5]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_5r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch2_5r,cross_point[2][5]);}  
if(fail[2][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_6r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch2_6r,cross_point[2][6]);}  
if(fail[3][1]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_1r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch3_1r,cross_point[3][1]);}  
if(fail[3][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_2r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch3_2r,cross_point[3][2]);}  
if(fail[3][3]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_3r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch3_3r,cross_point[3][3]);}  
if(fail[3][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_4r, ATTR_DIMMED
 m=SetCtrlVal(daq,MUX_switch3_4r,cross_poi
if(fail[3][5]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_5r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch3_5r,cross_point[3][5]);}  
if(fail[3][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_6r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch3_6r,cross_point[3][6]);}  
if(fail[4][1]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch4_1r, AT
 m=SetCtrlVal(daq,MUX tch4_1r,cross_point[4][1]);}  
if(fail[4][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_s
 m=SetCtrlVal(da
if(fail[4][3]==0) { 
 m=SetCtrlAttribute(
 m=SetCtrlVal(daq,MUX_switch4_3r,cross_point[4][3]);}  
if(fail[4][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch4_4
 m=SetCtrlVal(daq,MUX_switch4_4r,cross_point[4][4])
if(fail[4][5]==0) { 
 m=SetCtrlAttribute( _ ATTR_DIMMED, 
 m=SetCtrlVal(daq,MUX_switch4_5r,cross_point[4][5]);}  
if(fail[4][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch4_6r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch4_6r,cross_point[4][6]);}  
 
if(fail[5][1]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_1r, ATTR_DIMMED, FALS
 m=SetCtrlVal(daq,MUX_switch5_1r,cross_point[5][1]);}  
if(fail[5][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_2r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch5_2r,cross_point[5][2]);}  
if(fail[5][3]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_3r, ATTR_DIMMED
 m=SetCtrlVal(daq,MUX_switch5_3r,cross_poi
if(fail[5][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_4r, ATTR_DIMMED, 
 m=SetCtrlVal(daq,MUX_switch5_4r,cross_point[5][4]
if(fail[5][5]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_5r, ATTR_DIMMED, FAL
 m=SetCtrlVal(daq,MUX_switch5_5r,cross_point[5][5]
if(fail[5][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_6r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch5_6r,cross_poi
if(fail[6][1]==0) { 
 
 m=SetCtrlVal(daq,MUX_switch6_1r,cross_point[6][1]);}  
if(fail[6][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch6_2r, ATTR_DIMME
 m=S
if(fail[6][3]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch6_3r, ATTR_DIMME
 m=S
if(fail[6][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch6_4r, ATTR_DIMME
 m=S
if(fail[6][5]==0) { 
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 m=SetCtrlAttribute(daq,MUX_switch6_5r, ATTR_DIMMED, FALSE); 
etCtrlVal(daq,MUX_switch6_5r,cross_point[6][5]);}  

D, FALSE); 
etCtrlVal(daq,MUX_switch6_6r,cross_point[6][6]);}  

for(j=1;j<=8;j++){ 

%d %d %d %f %f\n", i, j, cross_point[i][j], AD0[i][j][k], AD1[i][j][k]);      

e(fp_out); 

t control, int event, 

Data2){ 
 

line[100]; 

 = 0; i < num_read*64; ++i) 

sscanf(line,"%d %d %d %f %f", &tmp1[i], &tmp2[i], &tmp3[i], &tmp4[i], &tmp5[i]); 

ptPopup ("SAVE FILE", "Enter the file name (*.txt).", name, 20); 

fprintf(fp_out,"%d %f %f\n",tmp3[i], tmp4[i], tmp5[i]); 

Data2) 

case EVENT_COMMIT: 

case EVENT_RIGHT_CLICK: 

0; 

panel, int control, int event, void *callbackData, int eventData1, int eventData2) 

  
0; 

nt control, int event, 

 

  DeleteGraphPlot (daq, MUX_GRAPH, -1, VAL_IMMEDIATE_DRAW);     
L_IMMEDIATE_DRAW);       */ 

 m=S
if(fail[6][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch6_6r, ATTR_DIMME
 m=S
 

12-12-01 taken out, because the LED's are removed*/ 
 

m=SetCtrlVal(daq,MUX_Memory_Check_Done,1); 
 for(i=1;i<=8;i++){ 
  
   for (k=0;k<num_read;k++){    
    fprintf(fp_out, "
    } 
   } 
  }      
 fclos
 return 1; 
} 
int stop(int panel, in
  void *callbackData, int eventData1, int eventData2){ 
 return 1; 
} 
int save_file(int panel, int control, int event, 
  void *callbackData, int eventData1, int event
 int i;
 int tmp1[6400],tmp2[6400],tmp3[6400]; 
 float tmp4[6400], tmp5[6400]; 
 char 
 char name[30]; 
 fp_out=fopen (tmp_file,"r"); 
 for (i
  { 
  fgets(line,sizeof(line),fp_out); 
  
  } 
   fclose(fp_out); 
 Prom
 fp_out=fopen(name,"w"); 
 for (i =0; i < num_read*64; ++i) 
  
 fclose(fp_out);  
 return 1; 
} 
int quit(int panel, int control, int event, 
  void *callbackData, int eventData1, int event
{  
 int i; 
 switch (event) { 
  
   i = AO_VWrite (1, 0, 0.0);  
   i = AO_VWrite (1, 1, 0.0);  
   ibwrt(Device1,"P0X",3);  
   QuitUserInterface (0); 
   break; 
  
   break; 
 } 
 return 
} 
/* 
int load_individual_panel (int 
{ 
 daq1 = LoadPanel (0, "MUX.uir",SET_INDIVI); 
 DisplayPanel (daq1);   
 return 
} 
*/  
int clear (int panel, i
  void *callbackData, int eventData1, int eventData2) 
{  
 int i;
 switch (event) { 
  case EVENT_COMMIT: 
  
/*    DeleteGraphPlot (daq, DAQ_GRAPH_2, -1, VA
    break; 
 } 
 return 0; 
} 
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Chapter 5 
 

Covalent modification and electrical 
characterization of silicon (111)-on-
insulator devices 
 
 
5.1 Introduction 

 

5.1.1 Electrical properties of silicon surfaces 

 

As the dimensions of silicon (Si) devices are scaled to the nanometer regime, the 

properties of the surface play an increasingly prominent role in determining the overall 

device characteristics. This has presented significant challenges, and opportunities, to the 

nanoelectronic community, where surface effects manifest over a range of applications. 

Recent examples include substantial increases in the quality factor of electromechanical 

resonators through covalent modification of the surface1, and the demonstration that 

electrical transport in ultra-thin (< 20 nm) silicon-on-insulator epilayers can be 

completely dominated by the electronic properties of the surface3. Silicon-on-insulator, or 

SOI, consists of a thin layer of single-crystal Si on a SiO2 support, and is rapidly 

becoming the preferred platform for high-speed microelectronics, nanoelectronics, and 

sensor applications. However, surface effects such as interface roughness6, 7, surface 
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optical8-13 (SO) phonons, film stress14, and coulombic interactions with electrically active 

surface states15 (also called interface or trap states) scatter charge carriers in thin-film 

SOI devices, resulting in degradation of charge-carrier mobility. Additionally, surface 

states introduce localized energy levels continuously distributed in energy throughout the 

silicon bandgap that function as recombination-generation (R-G) centers catalyzing the 

annihilation and/or creation of charge carriers (Figure 5-1.A). Such states facilitate 

indirect recombination of electron-hole pairs by capturing an electron (or hole) within a 

bound-state orbit about the R-G center site until recombination occurs. This significantly 

increases the probability of electron-hole recombination, since an electron and hole no 

longer have to interact simultaneously in space and time16, 17. The technological 

implication of charge-carrier annihilation and creation due to electrically active surface 

states is the introduction of a significant amount of randomness into the operational 

behavior of the device. This is because the character, density, and energy distribution of 

surface states are exquisitely sensitive to very small fabrication details, and thus vary 

considerably from device to device18.  

 The most egregious effect of surface states is their introduction of significant non-

idealities into the behavior of metal-oxide-silicon (MOS) field-effect devices, the 

workhorse of modern information-processing technology, and the operational basis for 

the demultiplexer architecture described in Chapter 3. Figure 5-1.B shows how surface 

states influence the electrical characteristics of field-effect devices. To a good 

approximation, all surface states below the Fermi energy, EF, are full and those above it 

are empty. These states continuously fill and empty as the Fermi energy moves upward in 

the bandgap with positive gate voltages and downward with negative gate voltages, 
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respectively. Surface states roughly above the 

middle of the bandgap are believed to be 

acceptor-like (that is, neutral when empty and 

negative when filled with an electron), while 

those below midgap are believed to be donor-

like (that is, positively charged when empty 

and neutral when filled with an electron)19. 

Thus, the application of a gate voltage 

produces a net charge per unit area, Q, at the 

Si/oxide interface of a MOS device. Since the 

surface states always remain fixed in energy 

relative to the conduction and valence band 

edges, a voltage more positive than the flat-

band voltage, VFB, (the voltage in which there 

is no band bending at the surface) draws 

electrons into the upper, acceptor-like surface 

states, making Q < 0, while negative voltages 

less than VFB empties those states, making Q > 0. The point is that surface states can 

charge and discharge as a function of gate voltage, resulting in understandable, but 

generally unpredictable, behavior from field-effect devices.  

Figure 5-1. Surface states at a 
silicon interface. A. Surface states 
are distributed throughout the 
bandgap and can capture (solid 
arrows) or emit (dotted arrows) 
charge carriers. Carrier capture can 
result in electron-hole recombination 
with emission of lattice phonons. B. 
Surface states charge and discharge as 
a function of gate bias producing a net 
charge Q at the surface (see text). 
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 To see this more quantitatively, consider a simple metal-oxide-silicon (MOS) 

capacitor (where the oxide is unspecified). Taking the direction from the metal/oxide 

interface into the Si layer as the positive x-direction (with x = 0 at the metal/oxide 
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interface), the potential applied to the metal gate, VG, is dropped partly across the oxide, 

Δφox, and partly across the Si bulk, ΔφSi, or 

SoxSioxGV φφφφ +Δ=Δ+Δ= ,     (1) 

where φS is the potential at the Si/oxide interface (since the potential goes to zero within 

the Si bulk). Poisson’s equation can be used to relate the voltage dropped across the oxide 

to the potential at the Si surface as 
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where ρox(x) is the charge density distribution across the oxide layer, Eox is the electric 

field across the oxide layer, and κox is the oxide dielectric constant. Two integrations of 

equation (2) across the oxide layer of thickness tox then gives 
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Invoking the electrostatic boundary condition relating the normal components of the 

electric displacement fields on either side of the Si/oxide interface, and assuming there is 

no charge at the interface other than that possibly included in ρox gives 
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where κSi is the Si dielectric constant, and ES is the electric field at the Si/oxide interface 

(which, of course, is a function of φS). The oxide charge density due to charged surface 

states resides right at the Si/oxide interface, and thus can be modeled as a delta function. 

Substituting ρox(x) = ±Q (φS) δ (x – tox) and equation (4) into equation (3) then gives 
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where Cox is the oxide capacitance per unit area. Substituting equation (5) into equation 

(1) gives 

ox
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QEtV )()( φφ
κ
κφ ±+= .    (6) 

Equation (6) relates the voltage applied to the gate of a field-effect device, VG, to the 

voltage ‘seen’ by the Si surface, φS. The effect of charged surface states is accounted 

for by the last term, which shows that the required gate voltage to obtain a given 

surface potential (the operational voltage of the device) will vary from device to device 

due to the presence of Q in equation (6).  

Intensive experimental investigation of the Si surface and the Si/oxide interface 

(especially the Si/SiO2 interface) has identified unsatisfied or ‘dangling’ Si bonds at the 

Si surface as the primary physical origin of surface states. When the Si lattice is cleaved 

along a particular plane to form a surface, one of the four Si–Si bonds is broken, thus 

leaving a dangling bond pointing in the direction perpendicular to the surface plane. The 

density of these dangling bonds per unit area of surface depends on the surface 

orientation and whatever reconstruction the surface might undergo18. Growth of a SiO2 

layer at the Si surface satisfies many of these dangling bonds (with the number critically 

dependent on the quality of the SiO2 and thus the growth conditions), but not all, and the 

remaining dangling bonds are believed to result in electrically active surface states20.  

 While the density of surface states and their energy distribution can vary 

considerably from one device to the next, the vast amount of experimental research on 

the electrical properties of Si surfaces has revealed some general trends19. For one, the 

density of surface states (states per unit area per unit energy) is about an order of 

magnitude greater on (111) surfaces than on (100) surfaces. This observation is correlated 
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with the number of dangling bonds per unit area at the Si surface. A (111) surface has 

roughly 15 percent more dangling bonds, which results in a faster oxidation rate of the 

(111) surface than the (100) surface during SiO2 growth, a higher percentage of Si sub-

oxides (SiOx with x ≤ 2), and thus a larger density of surface states21. It is primarily for 

this reason that the Si(100) surface has been used almost exclusively in the 

microelectronics industry.  

 

5.1.2 Covalent modification of silicon (111) surfaces 

 

Despite the less-than-ideal Si(111)/SiO2 interface, the Si(111) surface has a number of 

attractive qualities for scientific and technological applications. The majority of these 

applications stem from the fact that a (111) surface can be made atomically smooth with 

nearly perfect hydrogen termination through simple bench-top aqueous NH4F etching22, 23. 

In addition, dangling bonds on a (111) surface point in a direction normal to the surface 

plane, resulting in a structurally and chemically simple surface ideal for ultra-high 

vacuum (UHV) surface studies, such as scanning tunneling microscopy (STM)24, 25 and 

small molecule adsorption26, in addition to providing a convenient handle for covalent 

functionalization of the surface using a variety of techniques27. 

 The hydrogen-terminated Si(111) surface obtained after aqueous fluorine-based 

etching has been well documented to have a low number of structural defect sites and 

electrically active surface states. This was first demonstrated by Yablonovich et al. 

through surface recombination measurements of hydrogen-terminated Si(111) surfaces28 

and has since been corroborated by a number of researchers2, 27, 29. The number of 

electrically active states on Si(111) surfaces has been reduced to very low levels (less 
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than one electrically active state per 108 surface atoms) through complete hydrogen 

passivation28. This is about two orders of magnitude less than the number of surface 

states measured from optimally-processed Si(100)/SiO2 interfaces. 

 However, the electronic quality of hydrogen-terminated Si(111) surfaces rapidly 

degrades in air due to surface oxidation29-31. Consequently, several methods have been 

developed to achieve robust oxide-free alkyl passivation of crystalline Si surfaces27. 

These methods feature direct carbon-silicon bonding (as opposed to more labile Si–O–C 

linkages) and offer the advantage of a well ordered monolayer via kinetically inert 

covalent bonds that are stable up to 650° C in UHV[32].  

Directly bonded alkyl monolayers have been demonstrated to be of much higher 

quality on Si(111) surfaces than on Si(100) surfaces33. This is because the top-most atoms 

of a Si(111) surface are characterized by a single dangling bond pointing perpendicular to 

the surface plane, while each Si(100) surface atom has two dangling bonds that point 

towards neighboring Si(100) surface atoms in adjacent rows. Steric interference thus 

prevents full alkyl passivation of Si(100) surfaces, even with the smallest hydrocarbon 

species, e.g., methyl groups. 

This is in contrast to Si(111) surfaces in which molecular modeling and cryogenic 

STM experiments by Yu et al.24 have confirmed that complete methyl termination of 

every (top-most) surface Si atom on an unreconstructed (1×1) surface is possible. It is 

believed that surface functionalization with longer-chain alkyl groups (CnH2n+1 with n ≥ 

2) results in incomplete coverage of the Si(111) surface due to steric interactions, with 

non-alkyl passivated surface sites being terminated primarily by hydrogen4, 34.  
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The surface functionalization chemistry employed in studies by Yu et al. to obtain 

high-quality methyl-terminated Si(111) surfaces was developed within the Lewis group at 

Caltech35, and consists of a simple two-step chlorination/methylation procedure. This 

method has been demonstrated from numerous studies to produce high-quality methyl 

passivated Si(111) surfaces2, 5 that are robust to oxidation36, and are characterized by low 

numbers of electrically active surface states29. Beyond STM studies, molecular-level 

control over the interfacial chemistry of Si surfaces is expected to find applications in 

molecular electronics37 and nanoelectronics38, 39. A specific example of the latter is 

described below. 

 

5.1.3 Application to FET-based nanowire demultiplexers 

 

Methyl passivation of Si surfaces could have important applications in nanoelectronics 

where control of the surface is paramount. 

For instance, the nanowire (NW) 

demultiplexer described in Chapter 3 was 

hindered in its ability to selectively 

address a given NW from within an ultra-

dense array by the presence of a thin 

native oxide coating the NWs. Figure 5-2 

shows a schematic cross section of a 

portion of the demultiplexer structure with 

four NWs coming out of the plane of the page. The ability of the demultiplexer to reduce 

the conductivity of NWG relative to that of NWI is determined by the how much of the 

HfO2
κ=20-25
t≈5 nm

NWG

SiO2

SiO2
κ=3.9
t≈75 nm

metal gate electrode, VG

NWG NWI

interfacial
layer

NWI

Figure 5-2. Schematic cross-section of 
a nanowire (NW) demultiplexer. The 
demultiplexer architecture selects a given 
NW by field-effect gating all the rest of 
the NWs in the array. Gated and isolated 
nanowires, NWG and NWI, respectively, 
are shown coming out of the page.  
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applied gate voltage, VG, is seen at NWG. This is given by the voltage dropped across the 

HfO2/interfacial layer shown in the figure, and which equation (5) gives as (ignoring the 

surface-state term and modifying the second term to account for the added layers of 

dielectric material) 
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where ti and κi are the thickness and dielectric constant of the interfacial layer (SiO2 or 

CH3). Equation (7) clearly shows that the selective gating of NWG can be enhanced by 

replacing the NW native SiO2 at the interface (ti ≈ 1.5 nm, κi = 3.9) by a covalently 

bonded methyl monolayer (ti ≈ 0.2 nm, κi ≈ 2). Plugging these numbers into equation (7) 

predicts a 100 percent increase in the gating of NWG, and, thus, a 100 percent increase in 

the demultiplexer selectivity (isolated NW current/gated NW current). 

Additionally, CH3-passivated NWs eliminate the electrically active native SiO2/Si 

interface that has been present in previous-generation demultiplexer devices. Due to their 

chaotic mode of formation, native oxides are highly defective and do not successfully 

passivate surface states21, 40. Conversely, a well-ordered CH3-Si(111) interface reduces 

the number of surface states by many orders of magnitude and should translate into more-

efficient and -reliable FET-based devices. This could be particularly important for use 

with high-κ dielectrics, which generally form a significantly more-defective interface 

than does Si/SiO2. 

The majority of work with alkyl-passivated Si(111) surfaces has utilized bulk 

wafers. While such wafers are convenient for obtaining high-quality, atomically flat 

surfaces, and are compatible with a variety of surface characterization techniques, they 
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are less useful for nanoelectronic applications, where silicon-on-insulator (SOI) structures 

are generally required. This was the motivation for the work described below. The next 

two sections of this chapter will first describe the passivation and surface characterization 

of ultra-thin SOI, followed by electrical measurements employing variable temperature 

Hall effect measurements. 

 

5.2 Fabrication and methyl passivation of SOI devices 

 

This section describes the fabrication of Si(111)-on-insulator Hall bar devices and their 

functionalization using a modified two-step chlorination/methylation procedure. 

 

5.2.1 Si(111)-on-insulator wafer fabrication 

 

An unexpected challenge proved to be obtaining the appropriate SOI starting material. 

This is because the overwhelmingly dominant SOI material is Si(100), which can be 

purchased commercially. Additionally, (100)-oriented SOI wafers are available with Si 

epilayer thicknesses in the low tens of nanometers by fabrication techniques such as 

separation by implanted oxygen or SIMOX. This is in contrast to (111)-oriented SOI 

wafers, which are usually custom fabricated using a bonding process. This involves the 

oxidation of two bulk Si(111) wafers that are bonded together on their oxidized side 

through a high-temperature process. While this produces a Si(111)-on-insulator structure, 

the Si epilayer is very thick and must be subsequently thinned.  
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 This led us to a collaboration with Isonics Corp. to develop a (111)-oriented, 

bonded SOI wafer (buried oxide thickness of 0.9–2 μm) with an epilayer thickness of less 

than 100 nm. A feedback loop was set up between our lab and Isonics to determine the 

processing parameters that consistently gave the highest quality Si(111) epilayer surface. 

Isonics’ processing consisted of bonding the SOI wafer, grinding and lapping to thin it 

down, and applying a final (proprietary) touch polish to further reduce the Si epilayer 

thickness and smoothen out thickness inhomogeneities introduced during the grinding 

and lapping procedure. This set of procedures reduced the bonded SOI epilayer thickness 

to 100–200 nm. Our post-processing then consisted of thinning the wafers by growing a 

high-quality sacrificial oxide under dry conditions (e.g., Si + O2  SiO2) at temperatures 

ranging from 1050° to 1100°. The exact growth time and temperature was obtained from 

calculations employing the Deal-Grove model18 of thermal oxidation on a Si(111) surface, 

taking into account that 44 percent of the total thermal oxide thickness was due to 

consumed Si. The sacrificial oxide was then removed by wet etching in buffered oxide 

etch (BOE) (6:1 40% NH4F to 49% HF; Gallade) and the thickness was measured using 

optical reflectance or ellipsometry. After a couple of SOI generations, the optimal starting 

thickness to begin thermal oxidation thinning was determined to be about 180 nm. 

Wafers that were polished to be thinner before the thermal oxidation step were found to 

produce poorer surfaces. Although these wafers were found to be locally homogeneous 

by atomic force microscopy (AFM) measurements, they were quite inhomogeneous over 

centimeter length scales. The data below shows pooled standard deviations of Si epilayer 

thicknesses for representative wafers. (Each row represents averages from three wafers.) 
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Average Si(111) 
epilayer thickness (nm)

Pooled standard deviation from 35 
measurements on each of three samples (± nm)

20 6 

34 3 

45 9 

50 6 

 

5.2.2 Hall bar fabrication 

 

Si(111)-on-insulator wafers were cleaved into approximately 1-cm squares, and doped 

using the spin-on doping protocol described in Chapter 2. Briefly, the wafers were 

sonicated in methanol and swabbed using a Texwipe CleanTip swab to remove 

particulates. After ensuring the wafer was clean, a 1:10 diluted (dopant to methanol) spin-

on dopant solution was spin-coated (at 4000 RPM) onto the wafer surface and 

subsequently baked at 200° C for 10 min to drive off excess solvent. Emulsitone 

(Whippany, NJ) Phosphorosilicafilm and Borosilicafilm were used for n-type and p-type 

doping, respectively. The dopant-film-coated wafer was then annealed under nitrogen in 

a rapid thermal annealer for the appropriate time and temperature to achieve a given 

doping concentration. After annealing, the dopant film was removed by swirling in BOE 

until the surface was hydrophobic (usually less than 10 seconds). At this point, four-

point-probe surface-resistivity measurements were used to measure the doping level, 

which ranged from 1×1018 – 1×1020 P or B atoms/cm3. The measured dopant distribution 
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as a function of depth into n- and p-doped (111)-oriented SOI epilayers is shown in 

Figure 5-3. 

 Photolithography was used to define rectangular Hall bars (described in more 

detail below) to facilitate resistivity 

and Hall mobility measurements. 

Specifically, AZ-5214 (Clariant) 

was spin-coated onto the wafer at 

4000 RPM, baked at 105° C for 5 

minutes, and exposed (λ = 405 nm, 

area dose ≈ 20 mW/cm2) using a 

Karl Suss MA-6  mask aligner 

through a Cr mask. The exposed 

pattern was then developed in AZ-

400k developer (pH ≈ 13, Clariant). 

The Cr mask exposed four Hall bar patterns into the photoresist (spaced by 1 mm along 

the perimeter of a square). Additionally, the mask exposed a large 2-mm square to 

facilitate x-ray photoelectron spectroscopy (XPS) measurements from the same chip from 

which the devices were fabricated. Electron-beam evaporation followed by lift-off was 

used to deposit 100 nm of Al onto the wafer surface to act as an etch mask. The Al Hall 

bar patterns were transferred into the underlying Si(111) epilayer using fluorine-based 

(CF4 to He 20:30, 5 mTorr, 40 W) reactive-ion etching. The endpoint was determined via 

interferometric detection. The Al was then removed by 5 minutes in a ~ 50° C solution of 

80% H3PO4 + 5% HNO3 + 5% glacial acetic acid + 10% H2O (18 MΩ Millipore), 

Figure 5-3. Dopant density vs. depth for 40-
nm-thick diffusion-doped Si(111) epilayers. 
The n-type wafer was annealed for 5 min at 950° 
C; the p-type wafer was annealed for 5 min at 
1050 ° C. 
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revealing four Si Hall bars and a 2-mm square sitting on top of an oxide surface. Note 

that devices were fabricated, as much as possible, before surface passivation. This 

strategy avoided exposing CH3-SOI surfaces to the harsh procedures described above 

(particularly AZ-400k, which is strongly basic, and the H3PO4/HNO3 step). 

 

5.2.3 Methyl passivation of SOI devices 

ith bulk Si(111) wafers, the various wet-chemical procedures can be allowed to 

s the chlorination/methylation reaction protocol adapted from the 

 

W

continue for arbitrarily long periods without regard to over-etching the Si surface. In 

contrast, all of the wet chemical steps described here had to be optimized to obtain high-

quality methyl passivation without over-etching the SOI surface or significantly etching 

the supporting SiO2 in contact with solution. For small devices and nanowires, this 

caused significant undercutting which occasionally resulted in lifting-off of the SOI 

device (or nanowires).  

 Figure 5-4 show

Lewis group at Caltech2. Before functionalization, the wafers were rigorously cleaned to 

remove photoresist and fluoropolymeric by-products that may have been deposited on the 

surface from the previous photolithographic and etching steps. (For consistency, these 

steps were also followed for wafers that were not patterned into Hall bars, i.e., surfaces 

intended for XPS analysis only.) This was accomplished with an aggressive piranha-clean 
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Figure 5-4. SOI chlorination/methylation reaction protocol. 
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step (1:2 concentrated H2SO4 to 30% H2O2 at 120º C for 5 minutes followed by a ~10 

minute soak in H2O). The wafer was etched for 5 seconds in diluted BOE (1:10 BOE to 

H2O) to strip the native oxide, and rinsed in H2O. The wafer was immediately immersed 

in a 1:1:5 NH4OH:H2O2:H2O solution for 15 minutes at 80º C, followed by an H2O rinse 

and another 5 second dip in diluted BOE, and dried under a stream of N2.  

To obtain a flat Si(111) surface, the wafer was then etched for 5 minutes at room 

temperature in de-oxygenated 40% NH4F (pH ≈ 7.8; Transene Inc.). The NH4F was de-

oxygenated by bubbling Ar into the solution with occasionally stirring for at least 40 

minutes. The wafer was rinsed in water, dried under N2, and immediately loaded into a 

N2-purged glovebox for the chlorination and methylation steps. The surfaces were 

chlorinated using a saturated solution of PCl5 in chlorobenzene with a few grains of 

benzoyl peroxide for radical initiation. The reaction time ranged from 10 to 45 minutes at 

80–90º C, with the optimal reaction time discussed in Section 5.3. (It is worth noting that 

the chlorination reaction can also be carried out using Cl2 gas in a Schlenk line2 which 

has been demonstrated to result in less pitting of the Si surface41.) The PCl5 method was 

used here primarily because of convenience; however, it is worth noting that the PCl5 

method is compatible with batch-manufacturing protocols making this reaction protocol 

more relevant for technical applications.  
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 The wafers were removed from the PCl5 solution, rinsed with tetrahydrofuran 

(THF) followed by CH3OH, and dried under N2. The chlorine-terminated surfaces were 

methylated by refluxing in 3.0 M CH3MgCl in THF (Aldrich) for 2.5–3 hours at 70–80º 

C. After the reaction, the wafers were rinsed in THF followed by CH3OH, dried under N2, 

and removed from the glovebox. The samples were additionally sonicated for 5 minutes 

in CH3OH, followed by CH3CN to remove any Mg from the methyl-Grignard reagent. 

 

5.2.4 Making electrical contact to methyl-passivated devices 

 

Electrical contacts to Hall bar structures had to be deposited following the methylation 

reaction since typical contact metals react with the various wet-chemical procedures 

(NH4F, PCl5, and CH3MgCl). This constraint can be alleviated by masking the metal 

contacts with Si2N3 (which is not etched in NH4F) before the functionalization reaction; 

however, as I will show in the next section this is not required since the methyl 

monolayer is robust to the microelectronic fabrication protocols used here.  

 Positive-tone photoresists such as AZ-5214 result in significant carbon 

contamination18 of the CH3–Si(111) surface, is difficult to remove without using harsh 

treatments (such as acidic piranha), that, as will be shown below, oxidize the CH3–

passivated surface. Thus, the surface was protected by spin-coating it with a layer of 

either 3% poly-methyl methacrylate (PMMA) or 5.5% methyl methacrylate (MMA) 

before spin-coating the photoresist on top. An optical mask was used to expose the 

contact electrode pattern followed by development in AZ-400k. To obtain good electrical 

contacts, the methyl-passivation and the PMMA or MMA layer protecting the methyl 
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surface (which is not removed during the basic AZ-400k development) had to be 

removed before depositing contacting metals. This was accomplished by an aggressive 

O2 plasma etch (4 min, 20 mTorr, 100 W) followed by a five-second dip in undiluted 

BOE. Contact angle measurements on similarly processed methyl-passivated wafers were 

performed before and after this treatment to confirm removal of the organic layer as 

shown in the table below. Note that the surface was allowed to sit in air for a couple of 

hours to oxidize after the BOE step. Rapid re-growth of surface oxide confirmed removal 

of the methyl monolayer. 

 

Treatment on CH3-Si(111) surface Water contact angle 

Before O2 + BOE 70 ± 3° 

After O2 + BOE + sitting in air 32 ± 3° 

 

Following the O2 + BOE step, the wafer was immediately loaded into an electron-beam 

metal evaporator and a tri-layer stack of Ti/Pt/Au (10 nm/10 nm/150 nm) was deposited 

at rates of 0.25 Å s-1, 0.25 Å s-1, and 1 Å s-1, respectively. The temperature was monitored 

during the metal deposition on a separate Si(111) surface using a thermocouple lead in 

contact with the wafer surface. The highest recorded temperature was ~30° C and 

occurred during the Pt deposition. The capping Au layer was deposited to facilitate (Au) 

wire bonding in a subsequent step. The Pt layer was required to prevent Au from 

diffusing into the Si during a subsequent contact anneal, which was observed to result in 

a significant reduction of the device conductivity (note that Au impurities in Si introduce 

efficient mid-bandgap R-G centers19). 
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 Lift-off was accomplished in acetone with brief sonication. After lift-off, the 

wafer was immersed in fresh acetone, sonicated for 5 minutes, and allowed to soak for 

~20 minutes at 50° C. To gently remove excess organic residue, the wafer was soaked for 

over an hour in anisole heated to 150° C. The wafer was then annealed for 5 minutes at 

425° C under a N2 ambient to promote ohmic contact formation. Before proceeding, 

room temperature current-voltage (I–V) scans were performed to confirm the quality of 

the device contacts. Last, the chip was protected with a thick spin-coated layer of PMMA 

and cleaved to separate the four wired-up Hall bar patterns and the large 2-mm square. 

The PMMA was removed from the five (now individual) pieces by sonication in acetone 

followed by soaking in 150° C anisole. Note that the diagnostic 2-mm square underwent 

the exact same treatment as the Hall bar devices (i.e., lithography  methylation  more 

lithography  cleaning and separation). 

 At this point, the 2-mm square surface was characterized via x-ray photoelectron 

spectroscopy to (1) confirm complete surface passivation and (2) check for gross carbon 

contamination following the device fabrication work-up. If the surface was contaminated 

(from photoresist or CF4 plasma etch residue), more aggressive cleaning procedures were 

used, such as Aleg-310 positive photoresist/residue stripper (n-methyl-2-pyrrolidone, 

amine, and catechol in solvent; 55° C, 10–20 min) (Mallinckrodt Baker, Phillipsburg, NJ) 

or 1:1:5 NH4OH:H2O2:H2O (75° C, 10 min). Note that adventitious carbon was always 

present due to solvent, wafer handling, etc.  
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5.3 Spectroscopic characterization of methyl-passivated SOI devices 

 

5.3.1 Measurement description 

 

X-ray photoelectron spectroscopy (XPS) data were collected at room temperature in a 

UHV (10–9–10–10 Torr) chamber described in detail elsewhere2, 42.  X-rays from an Al Kα 

line at energy hν = 1486.6 eV were incident to the wafer surface at 35° from the surface 

plane. Ejected photoelectrons were collected with a hemispherical electron energy 

analyzer at a take-off angle of 35° from the sample surface. Data was collected using M-

probe ESCA Software version S-Probe 1.36.00. Survey scans were always taken in the 

energy range 0–1000 BeV (binding electron volts, or, hν  minus the photoelectron 

energy) to confirm the presence of only Si, C, and O (except possibly Mg from the 

methyl-Grignard reaction). High-resolution XP spectra of the Si 2p region from 

approximately 97–106 BeV were used to identify any surface oxidation as indicated by 

the formation of a broad SiOx peak at ~103.4 BeV. Additionally, high-resolution scans of 

the C 1s region from approximately 282–289 BeV were used to identify direct C–Si 

bonding, if possible (dependent on the amount of adventitious carbon adsorbed to the 

surface). All peak fitting was done using the M-probe software. Si 2p fitting employed a 

95% Gaussian and 5% Lorentzian line shape, with a 15% asymmetry. The 2p1/2 and 2p3/2 

peak separation was fixed at 0.6 eV with a 2p1/2:2p3/2 area ratio of 0.512, 42. C 1s peaks 

were roughly fit by manually specifying the approximate peak positions and allowing the 

software to freely adjust all remaining parameters. 
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 For chips used to fabricate Hall bar structures, XP spectra were collected from the 

photolithographically-defined 2-mm square described above. Before each scan, the x-ray 

spot was centered in the 2-mm square. This was made possible through the use of a 

fluorescent screen to identify the location of the x-ray spot relative to the square. Once 

the spot was located, the sample stage was translated accordingly.  

 

5.3.2 Surface characterization data 

 

Figure 5-5 shows a representative AFM image of a ~40-nm bonded Si(111) SOI epilayer 

(n = 1×1019 cm–3) that was etched for 15 minutes in de-oxygenated NH4F at room 

temperature, and Figure 5-5 shows XPS data from this surface immediately after 

functionalization, and after 108 hours of air exposure. The AFM image of Figure 5-5 

shows triangular etch pits pointing in 

the [ 211 ] direction43 can be resolved 

and used to assign lattice directions as 

shown. The terrace width was 

measured to be ≈ 20 nm. For very thin 

(≤ 30 nm) Si devices on top of a 1–2 

μm supporting SiO2 layer, 15 minutes 

of NH4F etching frequently resulted in 

severe thinning of the device, despite 

NH4F being a very slow Si(111) 

200 nm

≈ 20 nm
0 nm

2 nm

1 nm

Figure 5-5. Atomic force microscopy (AFM) 
image of a 40-nm Si(111) epilayer etched in 
NH4F. 

[110][110]
[112][112]



 156

etchant (etch rate ≈ 2 Å/min)44. A possible 

explanation for the enhanced etch rate may be 

excess dissolved oxygen in the NH4F solution 

originating from the SOI SiO2 layer. Transport 

of O2 to the reactive, bare Si surface would 

result in rapid oxidation, followed by 

subsequent etching by F– in the solution45, 46. 

Additionally, the presence of dissolved O2 in the 

NH4F solution may cause roughening of Si(111) 

surfaces45, the extent of which requires further 

study using STM measurements. Nevertheless, a 

five-second 1:10 BOE:H2O dip to remove the 

native oxide followed by a 4–5 minute NH4F 

etch resulted in complete hydrogen termination, 

and robust methyl passivation of SOI surfaces 

was obtained with the chlorination/methylation 

steps described above.  
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o ascertain the quality of this 

passivation, high-resolution XP spectra of the Si 

2p region were taken as a function of exposure 

time to air, and oxidation-resistance was taken as the figure of merit. The results of this 

study are presented in Figures 5-7.A and 5-7.B. Methyl-passivated SOI surfaces showed 

little re-growth of surface oxide, even after 108 hours (4.5 days) of exposure to ambient 

Figure 5-6 XP spectra of an H-
terminated silicon epilayer. (Top) Si 
2p region immediately after (black) 
and 108 hr after (red) NH4F etching. 
Note the dramatic re-growth of 
surface oxide. (Bottom) Survey scans 
showing the presence of only O, C, 
and Si. The satellite peaks at lower 
binding energy to the Si 2s and 2p 
peaks are due to surface plasmon 
excitation. The peak at 970 BeV is 
characteristic of oxygen K1L23L23 
Auger emission. 
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Figure 5-7. XP spectra of a 30 nm methyl-terminated SOI surface as a function of 
time in air. A. High-resolution scans of the Si 2p region showing very little oxidation 
after 108 hours in air. The noticeable shifting of the Si 2p peak to lower binding energy as 
a function of time may or may not be physical. This shift is seen in reported XPS data 
from the same instrument2, but not for a different instrument4. If physical, the mechanism 
may be due to surface band bending and surface dipole effects5 caused by the slow 
oxidation of unpassivated regions4. Inset. High-resolution scan of the C 1s region. Direct 
C–Si bonding is evidenced by the presence a side-peak shifted from the C 1s peak by 1.1 
BeV to lower binding energy. B. Survey scans from 0–1000 BeV confirm only C, O, and 
Si. The growth of the O 1s peak is primarily due to adsorbed H2O or adventitious C. This 
is verified by the Si 2p scan in A, which shows no significant surface oxidation.  
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air. Furthermore, follow-up XP scans on these surfaces after many months showed no 

significant further oxidation (not shown). This is in contrast to the H-terminated SOI 

surface shown in Figure 5-6, where surface oxidation is clearly evident by the presence of 

a broad peak at 103.4 BeV (due to formation of Si+, Si2+, Si2+ and Si4+ [4] species). The 

data of Figure 5-7.A does reveal some surface oxidation after 108 hours of air exposure, 

which is also observed with methylated bulk wafers. Recent work by Webb et al. has 

found this to result from the slow oxidation of isolated, inhomogeneous patches on the 

Si(111) surface4. Significantly, this study also found that slight oxidation of alkylated 

surfaces after prolonged air exposure resulted in no noticeable degradation of the 

surface’s remarkable electronic properties. 

 The inset of Figure 5-7.A shows a high-resolution scan of the C 1s region. 

Although partially obscured by a ubiquitous aliphatic C 1s peak at 285.4 BeV, a shifted C 

1s peak can be seen at 284.3 BeV. This shift to lower binding energy is due to direct C–Si 

bonding, and results from the carbon atom being negatively charged in its bond polarity, 

as expected from the electronegativities of C and Si (2.55 and 1.90, respectively)5, 34.  

 For application to nanoelectronics, methyl-passivated SOI devices must be 

resistant to common microelectronic fabrication protocols and chemicals. To that end, 2-

mm-square CH3–Si(111) surfaces on SiO2 were subjected to a host of fabrication 

chemicals, lithography procedures, and metal-deposition steps. XP spectra were collected 

before and after such treatments with re-growth of surface oxide once again taken as the 

figure of merit. As expected, immersion in a wide variety of solvents47 heated to their 

boiling point (for 20–30 min) did not affect the passivation by any discernable amount. 
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Additionally, photolithography and metal deposition procedures*  employing common 

positive-tone photoresists such as AZ-5214 (Clariant) and S-1813 (Shipley), and 

electron-beam lithography using PMMA did not result in appreciable oxidation of CH3-

SOI surfaces. An XP spectrum of the Si 2p region following photolithography and metal 

deposition (and lift-off in acetone) is shown in Figure 5-8.A for both a methyl-passivated 

(black trace) and untreated surface (red trace). 

 As expected, Figure 5-8.B (black trace) shows that one minute of diluted piranha-

clean (2:1:10 H SO2

0° C) treatment also resulted in significant 

                                                

4:H2O2:H2O, ~ 100° C) resulted in oxidation of the methylated SOI 

surface, albeit to a significantly lesser extent than for an untreated Si surface (red trace). 

Aqua Regia (2:1 HCl:HNO3, 1 min, ~10

oxidation (Figure 5-8.C). On the other hand, Figure 5-8.D shows that the popular RCA-I 

cleaning step (1:1:5 NH4OH:H2O2:H2O, 75° C, 10 min) did not result in appreciable 

oxidation of the CH3-SOI surface. Methylated SOI was also resistant to oxidation from 

Aleg-310, a common photoresist stripper (n-methyl-2-pyrrolidone, amine, and catechol in 

solvent; 55° C, 10 min) (Figure 5-8.E).  

 Lithographic procedures frequently resulted in significant contamination of CH3-

SOI surfaces after metal lift-off in acetone. The signature of carbon contamination from 

photoresist was the presence of a shifted C 1s peak to ~ 290 BeV from the aliphatic 

carbon peak at 284.5 BeV, attributed to the presence of ester-bonded C atoms in 

photoresists and PMMA. This is clearly seen in the C 1s XP spectrum shown in Figure 5-

8.F (top panel). Prolonged immersion (~1 hour) in anisole at 150° C significantly 

improved the surface in most cases (Figure 5-8.F, middle panel), but occasionally more-
 

* Note that, as described above, methyl-terminated surfaces do not come into contact with developers 
except where photo- or e-beam-resists are exposed. 
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aggressive cleaning techniques were needed such as treatment with either RCA-I (basic 

piranha) or Aleg-310 (Figure 5-8.F, bottom panel). 

 The data in Figures 5-8.A–F show that CH3-terminated SOI surfaces are resistant 

to oxidation from common micro/nanofabrication chemicals and lithographic protocols, 

and that devices fabricated from such surfaces should retain the excellent electrical 

properties of a CH3-terminated surface. 

 

5.4 Electrical characterization of methyl-passivated SOI devices 

 

The previous section showed that methyl-passivated ultra-thin SOI devices remained 

passivated with little surface oxidation after complete microelectronic device fabrication. 

The studies described in this section aimed to directly measure the electronic transport 

parameters in such devices using variable-temperature magneto-transport measurements. 

By measuring electrical transport parameters, such as mobility at various temperatures, 

insight can be gained into the constituent scattering mechanisms.  

 

5.4.1 Introduction to low-field Hall measurements 

 

Measurements of the magnetoresistivity tensor in a weak magnetic field is a basic 

material characterization technique that enables the measurement of the Hall mobility, μ, 

and carrier concentration, n, separately, as opposed to zero-field resistivity measurements 

that only determine the product of the two. To see this, consider an n-doped rectangular 
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thin-film with a magnetic field, B, perpendicular to the surface. At steady state, the 

average rate in which an electron loses momentum due to the scattering forces within a 

crystal lattice is equal to rate at which it is accelerated by the external field, or, in 

equation form: 

fieldlattice dt
d

dt
d pp

= .    (i) 

In the low-field, single-carrier Drude model48, a velocity-independent average 

momentum relaxation time, τm (the mean time between scattering events), is defined such 

that equation (i) can be simplified to 

BvEv
×+= em

mτ

where v is the drift velocity and m

*

,     (ii) 

* the effective mass. Taking the electric field, E, to be 

in the plane of the thin-film (the x-y plane), equation (ii) can be simplified to  
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μρρ enyyxx 1==   and enByxxy =−= ρρ .   (v) 

Equations (v) show that the Drude model predicts a field-independent longitudinal 

resistivity and a transverse resistivity that increases linearly with the applied magnetic 

field.  

An eight-contact Hall bar geometry, shown in Figure 5-9 (on page 166), was 

utilized for this study because it enabled two independent four-point longitudinal voltage 

Hall bar as symmetrical as possible. From these 

measurements and the known dimensions of the device, the magnetoresistivity tensor 

components of the thin film can be calculated. This

2 –3

Experimentally, a low-frequency AC or DC current was driven through the Hall 

bar structure and the longitudinal voltage, Vx, and Hall voltag

measured. This enabled the calculation of ρxx and ρyx from  

measurements, Vx, and a transverse (Hall) voltage measurement, VH, at the center of the 

Hall bar structure. The remaining two measurement arms were not used, but were 

nonetheless patterned to keep the 

 in turn enables the calculation of the 

Hall mobility, μ (cm /V s), resistivity, ρ (Ω cm), and carrier concentration, n (cm ), from 

equations (v).  

e, VH, were synchronously 

t
lIJ

x

x

x
xx ==ρ  and wVE t

IJ
H

x

y
yx ==ρ , 

where l is the een the same-side voltage measurement arms in Figure 5-9 

(page 166), and I is the cur m equa

VE
  (vi) 

 distance betw

rent. Fro tions (v) and (vi), the Hall mobility and carrier 

density were calculated from  

xx

HR
ρ

μ = ; 
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HRe
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where RH is the Hall factor (= Ey /IJ

all’ because it differs from the true mobility by a scattering factor, r. The absence 

of this 

Follow

control from 1.5 K to 400 K, 

and field capability of –50,000 to +50,000 Oersted. Independent longitudinal voltage 

measurements at two different locations of the Hall bar shown in Figure 7-8 allowed the 

 which case I discarded the sample. It is 

desirable to measure the Hall voltage in the center of the Hall bar structure, as shown in 

Figure 5-9, because the measurement is then as far as possible from the end contacts of 

x); which was calculated by suitably averaging VH 

measurements at different field and current polarities (described in the next section). The 

mobility (and carrier concentration) measured using this technique is qualified with the 

word ‘H

factor in the derivation above is due to the assumption of a velocity-independent 

mean time between collisions, τm. In reality, τm depends on the scattering mechanism 

(ionized impurity, phonon, etc.), and must be averaged over energy in addition to time. 

Further considerations give r = 〈τm
2〉/〈τm〉2 where 〈…〉 denotes an average over energy49. 

Fortunately, the scattering factor is close to unity (≈ 0.95–1.2)49 for the doping levels 

considered herein and was ignored. 

  

5.4.2 Measurement description 

 

ing fabrication, the Hall bar structures described in Section 5.2 were wired-bonded 

to a Au/plastic chip carrier and loaded into a Quantum Design Magnetic Property 

Measurements System (MPMS) cryostat with temperature 

homogeneity of the sample to be checked by comparing the two calculated resistivity 

values. I generally found the two resistivity measurements to agree to within ±10 percent 

unless there were poor Si-metal contacts, in
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the Hall bar. The proximity of the Hall bar end contacts can cause shorting of the 

transverse voltage, which can lead to an underestimate of the Hall coefficient. Theoretical 

analysis shows that if the contacts are in the middle of the Hall bar sample, and the aspect 

ratio of Hall bar length to width is l/w > 3, then the error from the contacts will be less 

than one percent [50]. For all the Hall bar structures tested l/w > 7, thus edge contacting 

errors should be negligible. Perturbations to the current flow and electric field pattern 

caused by voltage contacts were also reduced by using monolithic contact arms and 

making metal-Si contact at the ends of the arms51.  

Two sets of three equally-spaced contacts lie on opposite sides of the Hall bar. 

The distance between contacting arms is 150 μm and the distance from an end contact to 

Hall voltage probe is nominally 220 μm. The Hall bar is 800 μm long and 100 μm wide, 

 the Hall bar length is effectively reduced to 750 

m. 

H

x

a 

although after making electrical contacts

μ

 

5.4.2.1 DC measurements 

For most of the measurements described herein, the Hall voltage signal, V , was three 

orders of magnitude smaller than the longitudinal voltage signal, V . Furthermore, the 

Hall voltage was usually offset by ‘misalignment’ voltage49. The misalignment voltage is 

caused by a voltage gradient parallel to the excitation current flow and is usually present 

even in the absence of a field, and for perfectly aligned Hall voltage probes. However, 

this voltage is (to a good approximation) independent of field, and was cancelled by 

measuring the Hall voltage at opposite field polarities and subtracting the two 

measurements. Likewise, thermoelectric and smaller magnetothermal-electric voltages 
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(Ettingshausen and Righi-Leduc effects)52 were eliminated by reversing the current 

asured Hall voltages. The resistivity was measured at polarity and subtracting the me

zero-field on opposite sides on the bar and averaged. The equations for calculating 

transport parameters using the DC method are as follows: 

Resistivity 
l
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IVIV xx ×−−+
=
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×10switch
matrix

A
×10

FET pre-amp
Lock-in 2

Lock-in 3
FET pre-amp

Current
source

Lock-in 1

MPMS

VHVH

VxV

Lock-in 1 (Stanford Research Systems SR-830 D  current source 
in feedback or a precision resistor. For 

the resistor current source, the excitation current was monitored using the same lock-in. For an 
Op Am
measure the voltage across a small precision resistor in series with the current (not shown). 

avoid noise from the additional wiring of the switching matrix. For DC measurements lock-in 

Keithley 2182A Nanovoltmeter.  

x

Figure 5-9. Hall measurement circuit. For AC measurements, an AC voltage output from 
SP) was used to control a

consisting of either an operational amplifier operated 

Hall bar 

p current source, the excitation current was measured indirectly by using lock-in 1 to 

FET pre-amplifiers (100 MΩ) with a voltage gain of 10 amplified the voltage signals before 
they were measured by lock-in’s 2 and 3. A switching matrix (Keithley 707A) was used to 
measure two longitudinal voltages with one pre-amplifier and lock-in. Note that the signal 
from VH was much smaller than Vx, so an additional lock-in was dedicated for measuring VH to 

1 was replaced by a Keithley 2400 SourceMeasure unit and lock-in 3 was replaced by a 
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A constant current of 100 nA to 1 μA was used for DC measurements, and was adjusted 

with temperature to avoid sample heating and nonlinearities in the current-voltage 

response. (This was tested by doubling and/or halving the current and ensuring the 

voltage followed accordingly.) The applied magnetic field magnitude ranged from 3–5 T, 

depending on the Hall voltage signal level and the sourced current. (See Figure 5-9.)  

 

5.4.2.2 AC measurements 

DC measurements from samples doped below ~4×1018 cm–3 often became unreliable at 

lower temperatures due to decreased signal-to-noise from the need to use low current 

levels (which were required to avoid joule-heating of resistive samples*). Thus, many of 

the Hall measurements were made using low-frequency ( ≤ 13 Hz) and low current (1–10 

nA) AC measurements with the measurement circuit shown in Figure 5-9. (The figure 

caption describes the electrical measurement in more detail.) The advantages of the AC 

ent of phase. Accordingly, AC 

h DC measurements. From 100 K to 400 

K, AC measurements were found to differ from DC measurements in most cases by less 

imately five percent.  

          

technique for Hall measurements are: (1) Increased signal-to-noise via synchronous 

detection, and (2) elimination of thermal and magnetothermal voltage offsets. However, 

AC measurements create their own spurious effects, which are much more difficult to 

diagnose than are DC measurements, due to the involvem

measurements were checked where possible wit

than approx

                                       
* Near this doping the Si:P alloy system undergoes a semiconductor-to-metal transition49
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To eliminate the misalignment voltage, which is synchronous with the source 

current, VH was calculated from the slope of VH vs. B using two field points at each 

temperature. This eliminated the misalignment voltage as long as VH was linear in B and 

the misalignment voltage was not field dependent. (This is also an implicit requirement 

for the validity of the single-carrier Drude model described above.) To that end, VH  and 

Vx vs. B scans were initially taken at a relatively small number of temperature points to 

establish the temperatures and field strengths where this is true. Figure 5-10 shows 

typical data down to 1.75 K.  

Although a rather large field of 5 T was frequently used to increase the Hall 

voltage signal with respect to background (which was important for DC measurements), 

such fields were still within the low-field regime for the devices measured herein since 
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Figure -10. Hall and longitudina

misalignment voltage is the residual voltage of the lowest point on the VH vs. B plots and 

inset shows the Hall voltage normalized by the offset voltage. B. Longitudinal voltage 
normalized by the zero-field value. The voltage is nearly independent of field down to ~5 K 
where characteristic B2 behavior emerges due to departures from the single-carrier Drude 
model of magnetoresistance. Inset shows absolute voltage levels.
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the measured mobilities were generally less than 300 cm2/V-s, giving the low-field 

criterion* as B < 1/μ ≈ 1/(300 cm2/V-s) ≈ 30 T.  

 

5.4.3 Electrical characterization data 

 

In this section, I will present preliminary data from methyl-passivated ultra-thin SOI 

devices. The majority of these devices are characterized by Si epilayers of approximately 

10–25 nm thick. Figure 5-11 shows data from very highly doped ~20-nm thick CH3-

passivated SOI devices that were measured using DC techniques. This was possible 

because the samples were very highly-doped, resulting in metallic behavior down to 1.75 

K. The observed metallic behavior is caused by the formation of phosphorus impurity 

banding

devices (approximately l–4×1018 cm–3), the amount of time 

the dev

                                                

, resulting in a vanishing dopant ionization energy53, 54. This behavior is clearly 

evident from the resistivity-vs.-temperature plot of Figure 5-11.A. (Although not shown, 

the measured carrier concentration displayed little temperature dependence, as expected.) 

The temperature dependence of the mobility shown in Figure 5-11.B is indicative of 

weak phonon scattering with a power-law temperature dependence, μ ~ Ts, with 

temperature exponent s = 0.34 ± 0.03 for the n-type CH3 SOI device from 100–300 K, 

and s = 0.24 ± 0.04 for the p-type CH3 SOI device from 77–300.  

For moderately-doped 

ice remained in the PCl5 solution during the chlorination reaction was found to be 

an important parameter determining device mobility. This is most likely the result of 

 
* The low-field criterion amounts to the requirement of non-closing cyclotron orbits. The frequency of a 
cyclotron orbit is ωc=eB/m*, and an electron will be scattered before completing an orbit provided ωc 〈τm〉 < 
1 radian, or B < 1/μ . 
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significant device thinning1, 55 and etch-pit formation from the PCl5 chlorination reaction, 

which is expected to have an enhanced effect on very thin epilayers, such as those studied 

here. This is in accord with recent work by Cao et al.56, where STM measurements 

determined that wet-chemical chlorination of bulk Si(111) surfaces with PCl5 resulted in 

significant etch-pit formation.  

Supporting this hypothesis is the data of Figure 5-12, which displays the 

measured mobility of ~20-nm-thick CH3-SOI devices as a function of PCl5 chlorination 

time with the reaction temperature at ~90° C. Because the devices had different doping 

Figure 5-11 Resistivity and Hall mobility of highly-doped CH –SOI devices. A. 
Resistivity vs. temperature data showing clear metallic-like behavior due to high doping 
and impurity band formation. B. The mobility characteristics of n- and p-type CH

levels (from roughly 1–4×1018 –3

chlorination reagent. (Lower reaction temperatures and longer reaction times are 

expected to yield similar results). To verify that the surfaces used to obtain the data 

3

n-type sample mobility. Both devices were chlorinated via 30 minutes in PCl .  
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good electrical properties from CH3-terminated SOI devices using PCl5 as the 

3 SOI 
devices indicating phonon scattering of charge carriers in impurity bands as the dominant 
scattering mechanism. As expected, the p-type doped sample mobility is roughly half the 
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Figure 5-12. Normalized mobility as a function of PCl5 chlorination time. The 
normalization constant, μo, is the bulk mobility for the device doping, which ranged from 
n=1–6×1018. The uncertainty in these measurements is primarily due to uncertainty in the 

5

10 15 20 25 30 35 40 45
0.0

0.2

0.4

0.6

0.8

1.0

1.2

device thickness after functionalization, which in turn leads to uncertainty in the 
normalization factor. The PCl  reaction temperature was ~90° C. 
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3-SOI device chlorinated 
by a 10-minute immersion PCl . A. High-resolution scan of the Si 2p region showing little 
oxidation after ~24 hours of air exposure. Inset, survey scan showing only C, O, and Si. B. 
High-resolution scan of the C 1s region showing direct C–Si bonding evidenced by a 
chemical shift of the C 1s peak to lower binding energy (blue trace). The PCl5 reaction 
temperature was ~90° C. 
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shown in Figure 5-12 were methyl passivated, XP spectra were collected from the same 

chips on which the devices were fabricated. Figure 5-13 shows XP spectra from a device 

chlorinated from 10 minutes in PCl5 at ~ 90° C.  

Figure 5-14 shows the measured mobility vs. temperature characteristics from 

three moderately-doped devices (n = 1–2×1018 cm–3) after 10, 15, and 20 minutes in PCl5 

solution at ~90° C. The data shows the mobility is dominated by lattice interactions, such 

as ionized impurity scattering at low temperature, and phonon scattering at high 

temperature, as expected for non-degenerately doped Si19. The device chlorinated with a 

ten-minute immersion in PCl5 (black circles) displayed the highest mobility value (~210 

cm2/Vs at 300 K), which is slightly better than the bulk value for comparable doping. The 

low-temperature mobility of this device displays a temperature exponent of s = 1.43 ± 

0.03 indicating that ionized impurity scattering (which theoretical considerations predict 

depends on temperature as μ ~ T 3/2) is the dominant mobility reduction mechanism in 

Figure 5-14. Hall mobility vs. temperature. Black circles: ~20 nm CH3–SOI, n=2×1018 cm–3, 
10 min PCl5.  Red squares: ~20 nm CH3–SOI, n=1×1018 cm–3, 15 min PCl5. Blue triangles: 
~20 nm CH3–SOI, n=2×1018 cm–3, 20 min PCl5.
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this device57. Thus, the mobility of this device displays bulk-like behavior, where ionized 

impurity scattering is the dominant contribution to the temperature dependence of the 

mobility *  (at low temperature). The other two devices show lower temperature 

exponents: s = 1.20 ± 0.04 (red squares, 15 min PCl5) and s iangles, 

20 min PCl5). This may be due to increased contributions from other scattering 

mechanisms, perhaps related to the surface, such as surface roughness scattering14 due to 

increased etch pit density, and/or neutral impurity scattering. The latter has been observed 

to be important at low temperatures with a temperature exponent of s = 0.5 in bulk 

samples57. 

 

 = 0.65 ± 0.05 (blue tr

5.5 Concluding remarks 

 

This chapter presented research directed towards chemically controlling the surface of 

Si(111)-on-insulator epilayers using a modified chlorination/methylation protocol. The 

surface characterization data is fairly complete, and shows that electronic devices with 

oxide-free surfaces can be prepared from ultra-thin SOI epilayers using standard 

microelectronic fabrication protocols. The electronic measurements suggest the various 

wet-chemical processing steps employed to alkylate the surface of thin-film devices 

                                                 
* The total mobility, μT, due to an assortment of independent scattering mechanisms, can be written as 

∑=
s

sTμ μ11 , where μ ~Ts. Thus, the presence of surface scattering mechanisms (and/or other possible 

1.5

s

scattering mechanisms), each with a different temperature exponent, s, alters the measured temperature-
dependence of the mobility from μ ~T  (the expected temperature-dependence for moderately-doped bulk 
devices). 
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should be used with caution to avoid degrading the overall electronic properties of the 

device. 
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