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Chapter 4 
 

Ultra-dense crossbar molecular memory 
circuits 
 
 
4.1 Introduction  

 

The past four decades have witnessed extraordinary advances in computation that have 

revolutionized the way people communicate and process information. Sustained progress 

in this field has largely been driven by the consistent reduction of silicon-based 

microelectronic-device dimensions with accompanying increases in device density. This 

guiding principle of advancing computational technology through regular increases in 

device integration is widely referred to as ‘scaled CMOS’ after the ubiquitous 

complementary metal-oxide-semiconductor integrated circuit, and has driven the now 

famous exponential increase in computational performance as measured by any number 

of metrics (e.g., speed, size, cost, power consumption, etc.). However, there are strong 

indications that continued scaling of conventional CMOS technology may falter in the 

near future due to physical and (perhaps more importantly) financial considerations1. This 

has led to a growing consensus within the semiconductor industry that continued 

improvements in information processing technology will likely occur through the 

development of alternative materials, patterning methods, and architectures2, 3 that can be 
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integrated into the well-established silicon CMOS infrastructure in the near term1, 4 while 

being scalable in the long term. Ideally, any new technology should be compatible with 

conventional CMOS to bridge computational requirements during its assimilation period 

while having the intrinsic potential to continue the exponential pace of computational 

performance once traditionally-scaled CMOS comes to an end. 

These considerations have brought a great deal of attention to the possibility of 

engineering molecules for use as the active electronic components in otherwise solid-

state computational systems5. While the idea of using molecules to mimic traditional 

computational functions is not new6, it is only within the past decade that molecules have 

been integrated into hybrid solid-state/molecular devices to perform the traditional 

computational functions of rectification7, storage8, and logic9. Although a complete 

picture of electronic transport through molecular junctions continues to elude theorists10, 

11, molecules have nonetheless empirically demonstrated their potential for computation. 

Additionally, a number of methods have been reported for assembling small numbers of 

nanowire12, 13 or carbon-nanotube14, 15 devices. However, while these studies demonstrate 

individual device scalability, they seldom address issues such as device pitch or density, 

which are equally important from a technology standpoint. 

To that end, the Heath group began a research program focused on the concept of 

developing an ultra-dense molecular electronic computer architecture where the various 

computational elements would be tiled together through high-density arrays of nanowires 

(NWs) (Figure 4-1)5. Along with my co-workers, my research in the Heath group has 

focused on a number of the components shown in Figure 4-1 for realizing this 

multifunctional computational architecture. These included the development of 
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Figure 4-1. Schematic diagram of a nanoelectronic crossbar circuit architecture. The 
various computational building-blocks are shown tiled together through ultra-dense 
nanowire arrays. Multiplexers (Mux) and/or demultiplexers (Demux) control signals 
within the circuit and to outside electronics (power I/O). This structure is both defect-
tolerant and amendable to non-lithographic fabrication techniques. 
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techniques for patterning ultra-high-density arrays of silicon NWs with precisely 

controlled electronic properties (Chapter 2), and the demonstration of a field-effect 

transistor (FET)-based demultiplexer capable of bridging from the sub-micrometer length 

scales of conventional CMOS technology to the nanometer length scales of molecular 

electronics (Chapter 3). In this chapter, I will discuss the integration of sub-lithographic 

patterning techniques and [2]rotaxane-based molecular materials for the fabrication of an 

ultra-dense, error-tolerant, 160,000-bit molecular electronic crossbar memory patterned at 

a density of 100 gigabits per square centimeter (1×1011 bits cm–2). Before describing in 

detail the fabrication and testing of this memory, I will give a brief introduction to the 
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rich science underlying the switching mechanism of bistable [2]rotaxane molecules and 

their integration into high-density crossbar architectures.  

 

4.2 The [2]rotaxane switching cycle  

 

Figure 4-2.A shows the molecular structure of a bistable [2]rotaxane HRT54+ used in the 

crossbar molecular memory circuits discussed herein. This molecule was synthesized by 

Dr. Hsian-Rong Tseng of the J. Fraser Stoddart group at UCLA using the techniques of 

supramolecular16 template-directed17, 18 chemical synthesis. [2]Rotaxanes consist of two 

mechanically-interlocked components: an amphiphilic dumbbell-shaped component and a 

π-electron-accepting cyclobis(paraquat-p-phenylene) (CBPQT4+) ring (blue). The 

dumbbell component features two bulky stoppers (light blue and grey) on either end to 

prevent the ring from slipping off the [2]rotaxane shaft and to facilitate orientational 

incorporation into solid-state devices via Langmuir-Blodgett techniques. The CBPQT4+ 

ring can translate along the shaft of the dumbbell-shaped component to sit at one of two 

π-electron-donating recognition sites: the tetrathiafulvalene (TTF) unit (green) or the 1,5-

dioxynapthalene unit (DNP) (red). [2]Rotaxanes have been extensively studied 

experimentally19-29 and theoretically30-33 in a variety of environments to elucidate the 

physical mechanism underlying their switching behavior, and to quantify the switching 

kinetics and equilibrium thermodynamics. Under ambient conditions, the CBPQT4+ ring 

preferentially encircles the TTF unit over the DNP unit. For the [2]rotaxane RTTF4+ 

(which is very similar to HRT54+) in acetonitrile solution, this equilibrium is greater than  



 72

4PF6
–

O

O

O

O

O

O

O

O

O

SS

O

O

SS

O

CH2 CH2

OO

CH2

N N

N N

+ +
++

O O O

O

OMe

O

OMe

O

OMe

O

4PF6
–

O

O

O

O

O

O

O

O

O

SS

O

O

SS

O

CH2 CH2

OO

CH2

N N

N N

+ +
++

N N

N N

+ +
++

O O O

O

OMe

O

OMe

O

OMe

O

4PF6
–

O

O

O

O

O

O

O

O

O

SS

O

O

SS

O

N N

N N
+ +

++

CH2 CH2

OO

CH2

O O O

O

OMe

O

OMe

O

OMe

O

Figure 4-2. Molecular structure and energy diagram of the bistable [2]rotaxane 
HRT54+. A. At equilibrium, the ground-state co-conformation (GSCC) is energetically 
favored over the metastable-state co-conformation (MSCC) by a free energy of ΔG°. This 
corresponds to a GSCC-to-MSCC distribution of about 9:1. Within a Si/mol/Ti MSTJ (see 
text), the molecule is oriented with the (light blue) hydrophilic stopper in contact with the 
Si electrode and the grey hydrophobic stopper in contact with the Ti electrode. B. The 
potential energy landscape revealing the basis of bistability in [2]rotaxane molecular 
switches is plotted against the reaction coordinate, Q, representing translation of the ring 
from the TTF unit to the DNP unit. The rate of relaxation from the MSCC (‘1’) state to the 
GSCC (‘0’) state depends on the energy barrier, ΔG‡, which increases with the viscosity of 
the physical environment (e.g., ΔG‡

solid-state > ΔG‡
solution). 

GSCC 

90 percent, and is described by a free energy change of ΔG° = +1.6 kcal/mol (Figure 4-

2.B) when the CBPQT4+ ring moves from the TTF to the DNP unit20. Thus, the co-

conformation with the CBPQT4+ ring encircling the TTF unit is referred to as the ground-

state co-conformation of the molecule. Recent experiments20 have shown that the ground 

state equilibrium distribution of these molecules is dominated by molecular structure, 
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with the physical environment (e.g., solution or solid-state) of the molecular-switch 

playing only a minor role. Within a silicon/molecule(s)/titanium (Si/mol/Ti) solid-state 

molecular-switch tunnel junction (MSTJ), the ground-state co-conformation corresponds 

to the low conductivity or binary ‘0’ state of the molecule. 

The universal19 molecular-mechanical switching mechanism of bistable 

[2]rotaxanes is shown in Figure 4-3. Starting at the ground-state co-conformation 

(CBPQT4+ ring encircling the TTF unit), the first two oxidation states of the molecule 

result from sequential oxidations of the TTF unit corresponding to the reaction TTF0 

TTF  TTF2+. Upon forming the TTF  radical cation, coulombic 

repulsion between the CBPQT4+ ring and the TTF  unit results in translation of the ring 

from the TTF unit to the DNP unit. This process occurs on a millisecond time scale27-29, 

and is believed to convert all of the molecules from their ground-state co-conformation to 

⎯→⎯
−−e +• ⎯→⎯

−−e +•

+•

Figure 4-3. Bistable [2]rotaxane switching cycle. Starting from the ground state with the 
CBPQT4+ ring (blue, each white dot corresponding to a +2 charge) encircling the TTF (green) 
unit and moving clockwise: The TTF unit is oxidized (highlighted now) resulting in translation 
of the ring from the TTF to DNP (red) unit and formation of the metastable state after the TTF 
unit regains neutrality. The molecule can relax back to the ground state through the rate-
limiting kinetic step, or through the clockwise loop on the left in which the ring is reduced 
resulting in recovery of the ground state at least one thousand times faster. 
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a translational isomer with the ring encircling the DNP unit, referred to as the metastable-

state co-conformation of the molecule. Within a Si/mol/Ti MSTJ, this co-conformation 

corresponds to the high conductivity or binary ‘1’ state of the molecule, and is obtained 

by applying a positive voltage of about 1.5 V across the molecule (with respect to the 

hydrophilic stopper, or equivalently, silicon electrode; see Figure 4-2.A). 

Neutrality is quickly restored to the TTF unit in the absence of an oxidizing 

potential; however, the CBPQT4+ ring continues to encircle the DNP unit for a period of 

time due the energy barrier of ΔG‡ = 22.5 kcal/mol (HRT54+) shown in Figure 4-2.B. 

Recovery of the ground- to metastable-state equilibrium distribution (~9:1) is a thermally 

activated process, and temperature-dependent relaxation-time measurements have been 

used to understand the kinetics of this relaxation20, 34. From a device perspective, 

relaxation from the metastable-state co-conformation (‘1’ state) to the ground-state co-

conformation (‘0’ state) corresponds to the volatility or bit-retention time of a Si/mol/Ti 

MSTJ. For the [2]rotaxane RTTF4+ in a 50-μm2 MSTJ, this relaxation time was measured 

to be about 58 minutes at room temperature20.  

The ground-state equilibrium distribution with the CBPQT4+ ring encircling the 

TTF unit (> 90%) can be recovered at least 1000 times more quickly (this is a lower 

limit; the actual value was not obtained experimentally)25, 35, 36 by electrochemically 

reducing the two bipyridinium units in the CBPQT4+ ring to their radical cations 

corresponding to the reaction CBPQT4+  CBPQT . According to previous 

investigations37, 38, the doubly-reduced CBPQT  ring then loses its affinity for the π-

electron-donating DNP recognition site, and the molecule relaxes back to its ground-state 

co-conformation with the ring encircling the TTF unit before neutrality is restored. In 

⎯⎯ →⎯
−+ e2 +•• 2

+•• 2
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terms of the solid-state switching mechanism, this corresponds to switching the molecule 

from its high conductivity ‘1’ state to its low conductivity ‘0’ state, and is accomplished 

by applying a negative voltage of about 1.5 V to the molecule at the hydrophilic stopper, 

or equivalently, to the silicon electrode of a Si/mol/Ti MSTJ. 

 

4.3 The crossbar architecture 

 

The crossbar (Figure 4-1) is an attractive architecture for nanoelectronic circuitry for a 

number of reasons5, 9, 39. First, nanoelectronic circuits based on the crossbar structure are 

tolerant of manufacturing defects40, 41. Each device in the crossbar structure can be 

uniquely addressed by two crossed wires that define the junction. If initial testing reveals 

that a device is defective; its address can be stored and routed around during future 

computations. This characteristic becomes increasingly important as electronic devices 

approach macromolecular dimensions and non-traditional (and imperfect) fabrication 

methods (e.g., self-assembly) are employed. A proof-of-concept demonstration that 

robust computation can be obtained from a configurable circuit with defective 

components was given by Hewlett Packard’s defect-tolerant, custom-configurable 

computing machine, Teramac42. The Teramac computer had nearly a quarter million 

hardware defects, but through the use of testing and configuration algorithms, it could be 

transformed into a robust computing machine.  

Second, the crossbar architecture can be fabricated without using lithographic 

techniques. This is important because it is doubtful that conventional lithographic 
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techniques will ever be able to achieve the resolution necessary to cost-effectively 

fabricate a truly nanoelectronic architecture1, 43. Self-assembly and other non-traditional 

patterning methods typically generate highly regular structures, so they aren’t practical 

for fabricating the arbitrarily complex architectures characteristic of traditional CMOS 

microelectronics. A crossbar structure, however, consists of only two sets of straight, 

aligned wires and can be readily fabricated using a variety of non-lithographic 

techniques. Indeed, several groups have demonstrated methods for assembling nanowires 

(NWs) into crossbar structures using fluidic alignment12, 44, Langmuir-Blodgett 

alignment45, and imprinting46-48, and various architectural concepts have been introduced 

that can take advantage of such circuits49-52. However, only the superlattice nanowire 

pattern transfer (SNAP) method (described in Chapter 2) has been successful in 

producing NW arrays aligned over the length scales required for large-scale circuitry.  

Third, the highly ordered nature of NW arrays has enabled the development of 

demultiplexing architectures capable of addressing 2n NWs using order (n) number of 

control wire pairs (see Chapter 3)53-55. These architectures allow the selection of an 

individual NW from within an array that has been patterned at sub-lithographic density 

using relatively large wires patterned using traditional lithographic processing. This 

demonstrates that crossbar architectures can exhibit excellent scaling from the microscale 

to the nanoscale, in addition to being compatible with standard CMOS microelectronic 

technology. 

Finally, the crossbar architecture is the highest-density two-dimensional circuit 

for which every device can be independently addressed56. Wiring overhead in a crossbar 

circuit is minimized because the NWs defining a junction are used to both configure and 
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read the device. This is in contrast to conventional CMOS-based configurable devices 

that require one set of wires (address lines) to configure the device and another set of 

wires (data lines) to read it. The ability to independently address every component in the 

circuit is useful for memory applications, but also enables the circuit to be fully tested for 

manufacturing defects so these can be routed around during configuration. However, 

taking advantage of the inherent density afforded by the crossbar architecture requires the 

development of electrically active thin-film materials that function within the two-

terminal junctions of the circuit.  

 

4.4 [2]Rotaxane molecular electronic crossbar circuits 

 

Two-terminal molecular switches, such as [2]rotaxanes, have a number of important 

advantages (and some disadvantages) over more-developed two-terminal electronic 

materials such as ferroelectrics57. As discussed above, comprehensive experimental and 

theoretical investigations have verified the distinctly molecular basis of [2]rotaxane 

electrical switching. Thus, devices based on these switches should scale to 

macromolecular dimensions without a significant change in the switching characteristics. 

Solid-state-based switching materials are unlikely to exhibit similar scaling since they 

arise from inherently bulk properties. Two-terminal devices based on these materials are 

switched by applying a field across the junction to polarize crystallographic domains. The 

hysteresis of this polarization disappears, and the device no longer switches, once the 
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junctions are made smaller than the domain size of the material. For ferromagnetic 

materials, this is referred to as the superparamagnetic limit58. 

Another advantage of [2]rotaxane-based devices is that the voltage at which the 

molecular switches are opened or closed is very stable. This is because the switching 

mechanism is based on an electrochemical process in which current has to flow in or out 

of molecular orbitals before the molecule isomerizes to its high- or low-resistance co-

conformations. In contrast, domain polarization is driven by nucleation events, and so is 

intrinsically statistical. A consequence of this nucleation-driven switching mechanism is 

that the field required to switch solid-state-based devices can fluctuate randomly from 

one device to the next within a crossbar circuit, or even from one switching cycle to the 

next within a single device.  

In a crossbar structure, a given junction is switched by applying a voltage, V, 

across the wires defining the junction. To avoid switching every junction sharing one of 

the two address lines, V is split into V2
1− and V2

1+ components and applied 

symmetrically across the two wires of the junction. Thus, junctions in the given row and 

column only receive half of the required switching voltage and should not switch. 

Nevertheless, because the required field for domain polarization is subject to statistical 

fluctuation, V2
1± occasionally generates a sufficient field to inadvertently switch 

junctions that received only half the switching voltage. This is generally referred to as the 

‘half-select’ problem and is a generic problem for crossbar circuits utilizing domain-

switched electronic materials. To the contrary, the half-select problem has not been 

observed in the [2]rotaxane-based crossbar circuits discuss herein (discussed in Section 

4.6).  
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Despite the significant advantages of [2]rotaxane switches in terms of scalability 

and operability in crossbar structures, these switches do have some drawbacks. For one, 

the relaxation of the switch from its low-resistance binary ‘1’ state to its high-resistance 

binary ‘0’ state is thermally activated. Thus, [2]rotaxane-based devices will show 

temperature-dependent variations in their operation. Another drawback is that [2]rotaxane 

molecular-switch tunnel junctions (MSTJs) are observed to stop functioning after a 

relatively low number of write cycles. In large MSTJs (~50 μm2), this number ranges 

from 100 to 1000 cycles9, 39, and is significantly less in nanometer-scale junctions. A 

possible explanation is that molecules along the perimeter of a junction are more 

susceptible to environmental damage. Reducing the area of the junction increases the 

fraction of molecules found along the perimeter, thus resulting in a lower average number 

of write cycles. Finally, because the switching mechanism is due to large-amplitude 

molecular mechanical motion, it is relatively slow. The solid-state kinetic processes 

responsible for molecular mechanical switching have been quantified for a variety of 

bistable [2]rotaxanes, revealing that switching occurs on a millisecond time scale27, 29. 

While quite slow compared to conventional CMOS-based switches, this is not a 

significant limitation since in highly parallel architectures, such as the crossbar, 

computational speed may be generated by switching many devices at once rather than 

quickly switching one device at a time. 

 

  



 80

4.5 A 160,000 bit memory circuit patterned at 1×1011 bits/cm2 

 

In 2002, the Heath and Stoddart groups reported on the use of bistable [2]rotaxane 

molecules as the active elements within a 64-bit molecular electronic random access 

memory (RAM) circuit that utilized micrometer-scale wiring9. While this work 

successfully demonstrated that [2]rotaxane molecules could be used as the active 

elements within in a solid-state crossbar memory circuit to store, read out, and erase 

small data strings, it did not take advantage of the unique scalability offered by molecular 

components. This would have required methods for patterning circuits with 

macromolecular feature sizes and pitches. The Superlattice Nanowire Pattern Transfer 

(SNAP) method, which can pattern ultra-dense arrays of NWs aligned over millimeter 

length scales, provides this capability.  

A major focus of my research in the Heath group was to integrate SNAP-

fabricated NW arrays with [2]rotaxane molecular materials to demonstrate an ultra-dense 

crossbar molecular electronic memory circuit patterned at macromolecular dimensions. In 

addition to demonstrating device density, we wanted to demonstrate large-scale device 

integration. To that end, the SNAP method was extended from previous reports59, 60 to 

generate arrays of 400 NWs that were used to construct and test a 400-by-400 crossbar 

memory circuit at extreme dimensions. As Figure 4-4 shows, the entire 160,000-bit 

crossbar circuit is approximately the size of a white blood cell (~13×13 μm2).     

The fabrication of this molecular memory circuit proved to be a significant 

challenge on many fronts. First and foremost was the inherent difficulty in making 



 81

Figure 4-4. A false-colored optical micrograph of a memory circuit with 
white blood cells for scale. White blood cells (shown in green) approximately 
15 micrometers in diameter were sprinkled over this functional memory circuit to 
provide a biological metric for the level of device integration accomplished in 
this work. All 160,000 bits are contained within the intersection of the yellow 
and blue rectangles. 

devices at the density described herein, and of integrating those devices into large-scale 

functional circuits. This is emphasized by contrasting the level of device integration in 

our molecular memory with its analog in conventional microelectronic technology, the 

dynamic random access memory (DRAM) circuit. The 2005 International Technology 

Roadmap for Semiconductors (ITRS) consortium reports1 that current DRAM circuits are 

patterned with a memory cell size of 0.04 μm2 and a density of 1.5×109 bits/cm2. For 

comparison, the molecular memory described here is about two orders of magnitude 

more dense with a memory cell size of 0.001 μm2 and device density of 1×1011 bits/cm2. 

In fact, this level of integration is on par with ‘ultimately scaled’ CMOS-based 
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microelectronic technology, which ITRS projects may reach a cell area of 0.001 μm2 and 

density of 5×1010 bits/cm2 by the year 2020. 

An additional fabrication challenge was developing a process flow compatible 

with the delicate [2]rotaxane molecular monolayers. This was accomplished by adopting 

a fabrication scheme in which the memory was built up sequentially, with the molecular 

monolayer incorporated as close to the final step as possible, and then protecting that 

monolayer during subsequent processing steps. It also required establishing electronic-

measurement protocols that could be employed to follow the conductivity status of the 

NWs during the entire nanofabrication procedure. Details of this process flow, along with 

the various electronic testing protocols, are discussed in Section 4.6. However, a list of 

the major steps in memory fabrication is as follows:  

 

1. Use SNAP to fabricate the bottom array of Si NW electrodes. 

2. Pattern all necessary electrical contacts using electron beam lithography. 

3. Planarize the chip using a spin-on glass. 

4. Deposit the [2]rotaxane monolayer and evaporate a thin Ti layer on top. 

5. Deposit a Pt NW array over the molecule/Ti layer perpendicular to the Si NWs. 

6. Using dry etching, transfer the Pt NW pattern to the underlying Ti layer. 

 

Note that, in the last step, the Pt NW pattern only serves as a mask to define an 

array of Ti NWs from a continuous Ti film. This fabrication protocol not only minimizes 

the number of processing steps after deposition of the molecular monolayer, but also uses 

the Ti layer to both protect the molecules and serve as the top electrode in the molecular-
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switch tunnel junctions. This technique has been shown, via infrared spectroscopy in 

conjunction with electronic transport measurements, to protect the functional sites of the 

[2]rotaxane molecules by reacting with the hydrophobic end groups while leaving the 

functional regions of the molecule unscathed (Figure 4-2.A)22.  

The structure of our crossbar molecular memory circuit is shown in Figure 4-5.A, 

and consists of a bottom electrode set of 400 Si NWs (16-nm wide, 33-nm pitch; highly 

phosphorous doped, as discussed in Chapter 2, n = 5×1019 cm–3) crossed by a top 

electrode set of 400 Ti NWs (16-nm wide, 33-nm pitch) sandwiching a monolayer of 

bistable [2]rotaxanes. Each bit corresponds to an individual molecular-switch tunnel 

junction defined by a Si bottom NW and Ti top NW, and contains approximately 350 

[2]rotaxane molecules. The solid-state switching signature of the bistable [2]rotaxanes 

that were used in this study has been shown to originate from electrochemically 

addressable, molecular mechanical switching for C/mol/metal or Si/mol/metal 

junctions61, but not for metal/mol/metal wire junctions62. The desire to utilize molecular 

mechanical bistable switches as the storage elements is what dictated the choice of the Si 

NW/mol/Ti NW (Si/mol/Ti) crossbar structure. 

Electrical contacts were established to several bottom and top NWs to allow for 

testing of up to 180 ‘effective’ bits (ebits) from the central region of the crossbar, but 

only 128 were actually tested due to measurement constraints. The ‘effective’ prefix is 

used because SNAP-fabricated NWs are patterned beyond the resolution of lithographic 

methods63, so each contact bridges 2–4 NWs (Figure 4-5.B). As a result, most of the 

tested ebits contained an average of 4–9 junctions. We recently reported on a 

demultiplexer54 (see Chapter 3) that would allow for this memory circuit to be fully 
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Figure 4-5. Scanning electron micrographs (SEMs) of the NW crossbar memory. A. 
Image of the entire circuit. The array of 400 bottom Si NWs is seen as the light grey 
rectangular patch extending diagonally up from bottom left. The top array of 400 Ti NWs 
is covered by the SNAP template of 400 Pt NWs, and extends diagonally down from top 
left. Testing contacts (T) are for monitoring the electrical properties of the Si NWs during 
the fabrication steps. Two of those contacts are also grounding contacts (G), and are used 
for grounding most of the Si NWs during the memory evaluation, writing, and reading 
steps. Electron-beam-lithography patterned 18 top (TC) and 10 bottom (BC) contacts are 
also visible. The scale bar is 10 micrometers. B. An SEM image showing the cross-point of 
top and bottom NW electrodes. Each cross-point corresponds to an ‘effective bit’ in 
memory testing because (inset) the electron-beam-lithography defined contacts bridged 2–
4 nanowires. The scale bar is 2 micrometers. C. High-resolution SEM of approximately 
2500 junctions out of a 160,000-junction nanowire crossbar circuit. The red square 
highlights an area of the memory that is equivalent to the number of bits that were tested. 
The scale bar is 200 nanometers.  

200 nm

A 

B 

C 
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tested, including the ability to address each junction independently. However, 

implementation of that demultiplexer would have added significant complexity to an 

already demanding nanofabrication procedure, and wasn’t necessary to demonstrate the 

viability of this circuit. (This limitation simply adds some level of uncertainty to our 

estimates of device yield.) Assuming 4–9 junctions per ebit, the 128 ebits tested 

represents between 0.5–0.7 percent of the full 160,000-bit crossbar circuit distributed 

across 6 percent of the device area (Figure 4-5.C). We believe that this relatively small 

portion of the crossbar is representative of the overall circuit. This belief is based upon 

the fact that we have fabricated approximately 50 full 160,000-junction crossbar memory 

circuits, four of which have been fully tested as memories. Each of those tested memory 

circuits yielded similar results.   

By scanning-electron-microscopy inspection, the 160,000-junction crossbar 

appeared to be structurally defect-free, with no evidence of broken, wandering, or 

electrically shorted NWs (Figure 4-5.B). Nevertheless, there were a large number of 

electrical defects. Comprehensive electrical characterization was used to determine the 

address locations of both working and defective ebits, as well as to provide insight into 

the nature of the defective ebits. This was done by first applying +1.5 V relative to the Si 

NW electrodes to set all ebits to ‘1’, or alternatively to switch the [2]rotaxane molecules 

to their metastable-state co-conformation. Each ebit was then read sequentially using a 

non-perturbing +0.2 V bias. Application of –1.5 V to the Si electrode was then used to set 

all ebits to ‘0’; this effectively returned the active molecular monolayer to its ground-

state co-conformation. The status of each of the 128 ebits was then read again. The 1/0 

current ratios are presented in Figure 4-6.A. Approximately 50 percent of the tested ebits 



 86

Figure 4-6.  Data from evaluating the performance of 128 ebits within the crossbar 
memory circuit. A. The current ratio of the ‘1’ state divided by the ‘0’ state of the tested 
ebits. Note that many of the ebits exhibit little to no switching response. Those ebits are 
defective. B. A map of the defective and usable ebits, along with a pie-chart giving the 
testing statistics. Note that, except for the bad Si NW contacts on bottom electrodes B1 and 
B6, and the shorted top electrodes, T2 and T3, the defective and good bits are randomly 
distributed. Poor switches can be divided into two types: Type I defects (26% of the 128 
tested) are ebits that exhibited an open-circuit conductance and a low- or zero-amplitude 
switching response when tested. Type II defects (22%) are non-switchable ebits that 
exhibited a conductance similar to that of a closed switch. In both cases, the 1/0 ratio is near 
unity.  
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yielded some sort of switching response; however, some of those ebits may have been 

exhibiting behavior originating from assorted parasitic current pathways through the 

crossbar array.  

Multiple current pathways between an input and output electrode are an inherent 

drawback of crossbar architectures wherein each junction is electrically connected to 

every other junction. Thus, when many devices are switched from the ‘0’ to the ‘1’ state, 

the current through the non-switching devices can also change due to a modification of 

the effective resistance of these parasitic loops. A standard remedy is to incorporate 

diodes at each crosspoint64 that will suppress parasitic loops by acting as one-way current 

valves. Although the molecule/Ti interface yields some built-in rectification, we have 

additionally fabricated micrometer-scale molecular electronic memory circuits with a 

vertical p-n doping gradient through each junction19. This resulted in improved memory 

performance that should, in principle, extend to the nanometer-scale memory described 

here. For this prototype circuit, however, we found it sufficient to simply ground all NW 

electrodes not being used during a read cycle in conjunction with the establishment of a 

threshold for a ‘good’ ebit based upon a minimum 1/0 current ratio of ~1.5. About 25 

percent of the ebits passed this threshold. While this yield may be low for a mature 

technology, we are very encouraged by this result in an unpackaged first-generation 

circuit.  

Defective bits impacted memory performance with varying levels of severity 

(Figure 4-6.B). Bits with a 1/0 ratio of unity were classified as ‘poor switches’ and 

resulted from switches stuck in either the ‘1’ or ‘0’ state. Poorly switching bits only lead 

to a proportional loss in memory performance. Bad contacts to the NWs, however, 
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removed an entire row of bits from memory operation. In a similar vein, two Ti 

electrodes that are shorted together effectively turn two rows of bits into one row of 

usable bits—also removing a row of bits from operation and doubling the number of 

junctions in the ebits for that row. We believe the majority of these defects resulted from 

sub-nanometer variations in the reactive-ion etching process that was employed to define 

the top Ti NWs. As will be explained more fully in the next section, these Ti NWs 

originate as a uniform thin film (~20 nm) that is deposited on top of the [2]rotaxane 

Langmuir monolayer. The SNAP process is used to deposit 400 Pt NWs on top of this 

film, and those Pt NWs serve as an etch mask for defining the 400 top Ti electrodes. The 

capability of etching tools to define nanostructures at the narrow pitches required here is 

largely unexplored and, in fact, this etching step was one of the most challenging 

nanofabrication steps for constructing the memory.  

Isolated devices, or crossbar memories patterned at substantially lower densities 

and with larger wires, can typically be prepared with a nearly 100 percent yield. The 

capability of etching tools to define nanostructures at the narrow pitches required here is 

largely unexplored and, in fact, was one of the most challenging nanofabrication steps in 

constructing the memory.  

An important result from the defect map shown in Figure 4-6.B is that the good 

and bad ebits are randomly dispersed throughout the matrix, implying that the good 

junctions are not correlated to one another. However, the ultimate test of any memory 

circuit is whether it can store information. Based upon the defect map shown in Figure 4-

6.B, and taking advantage of the inherent defect tolerance of the crossbar architecture42, 

we were able to identify the addresses of good ebits, and from those addresses configure 
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an operational memory. This is demonstrated by the data of Figure 4-7 in which we have 

utilized 24 out of 30 operational ebits to write a string of ‘1’s and ‘0’s that represent the 

ASCII characters for ‘CIT,’ short for ‘California Institute of Technology.’  

Our principle motivation for utilizing bistable [2]rotaxane molecules as the active 

elements within this memory is that even though we are measuring of order 100 

molecules in each junction, the change in conductivity correlated with the two 

conformational states is a single-molecule property20, 27, 34. The implication is that the 

switching signature should be effectively size-invariant (neglecting statistical effects), 

meaning that it should scale down to the macromolecular dimensions that characterize 

these crossbar junctions. In fact, the success of these molecules at this scale implies that 

next-generation devices using only tens of molecules may be possible. While it may be 

unlikely that these digital circuits will scale to a density that is only limited by the size of 

the molecular switches, it should be possible to significantly increase the bit density over 

what is described here (Section 4.6). 

Previous work (see Section 4.2) has quantified the thermodynamic and kinetic 

parameters that describe both the bistability and the switching mechanism of the 

[2]rotaxane (Figure 4-2.A) and related molecules in a variety of environments. Those 

measurements required robust switching devices that could be cycled many times and at 

various temperatures. The junctions measured here were much more delicate: While all 

good ebits could be cycled multiple times (as evidenced by the testing and writing steps), 

most ebits failed after a half-dozen cycles or so. While the exact failure mode is still 

under investigation, it is worth noting that these junctions have a very large perimeter-to-

area ratio, and that molecules along the perimeter of a junction are likely to be more 
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Figure 4-7. Demonstration of memory storage and retention characteristics from the 
molecular electronic crossbar memory. A. A demonstration of point-addressability 
within the crossbar. Good ebits were selected from the defect mapping of the tested 
portion of the crossbar.  A string of ‘0’s and ‘1’s corresponding to ASCII characters for 
‘CIT’ (abbreviation for California Institute of Technology) were stored and read out 
sequentially. The dotted line indicates the separation between a ‘0’ and ‘1’ state of the 
individual ebits. The black trace is raw data showing ten sequential readings of each bit 
while the red bars represent the average of those ten readings. Note that deviations of 
individual readings from their average are well separated from the threshold 1/0 line.  B. A 
histogram representing the 1/e decay time of the ‘1’ state to the ‘0’ state.  The 25 ebits 
represented in the data each were ‘large’ ebits, comprised of approximately 100 junctions, 
to increase the measurement signal to noise. Raw data from a single large ebit is shown in 
the inset. The line is a single exponential fit used to extract the decay time. 
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susceptible to processing damage or contamination since the circuit is measured under 

ambient conditions (i.e., the circuit is unpackaged). Despite this difficulty, we were able 

to measure the rate of relaxation from the 1 0 state for many of the ebits (Figure 4-7.B). 

From a device perspective, this time represents the volatility, or memory retention time, 

of the ebits. With respect to the bistable [2]rotaxane switching cycle, this time represents 

a room-temperature measurement of the rate-limiting kinetic step within the switching 

cycle wherein the metastable co-conformation relaxes to the ground state. Our measured 

rate (90 ± 40 minutes; median decay = 75 minutes) was statistically equivalent to the rate 

reported for much larger devices (50 μm2 junction area) containing the same [2]rotaxane 

switches (58 ± 5 minutes) and measured using a more comprehensive thermodynamic 

analysis20. Thus, our results are consistent with previous reports of a molecular 

mechanism for the memory operation9.  

 

4.6 Crossbar molecular memory circuit fabrication and testing 

  

In this section, I will discuss the details of memory fabrication and testing. In an effort to 

keep this section more or less self-contained, some of the material mentioned above is 

repeated (albeit with greater detail). A bottom-up approach was critical to the successful 

fabrication of this memory. This approach both minimized the number of processing 

steps following deposition of the delicate molecular monolayer, as well as protected the 

molecules from remaining processing steps. The following in-depth description of how 
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this memory was fabricated will proceed with an analogous structure, that is, from the 

bottom up. 

The 160,000-junction crossbar memory described above consists of 400 Si 

nanowire (NW) bottom electrodes of 16-nm width and 33-nm pitch, crossed with 400 Ti 

NW top electrodes of the same dimensions, and with a monolayer of bistable [2]rotaxane 

molecules sandwiched in between. We have previously reported on using the superlattice 

nanowire pattern transfer (SNAP) technique to fabricate highly ordered arrays of metal 

and Si NWs of up to 128 NWs. For this work, the SNAP technique was extended to 

create 400-element NW arrays of both the bottom and top electrode materials, and so was 

the primary patterning method for achieving the 1×1011-cm–2 bit density of the crossbar. 

The SNAP NW fabrication procedure is described in detail in Chapter 2. Briefly, SNAP 

is a ‘top-down,’ non-photolithographic technique that uses molecular-beam epitaxy 

(MBE) to create a physical template for NW patterning. This template is used to deposit 

an array of Pt NWs onto an epoxy-coated thin-film material. The Pt array then serves as 

an etch mask to transfer the NW pattern into the underlying thin-film. This technique 

enables the fabrication of ultra-dense arrays of high-aspect-ratio (length to width 

routinely > 106) Si and metal NWs that are aligned over millimeter length scales, without 

the need for a secondary alignment step after NW fabrication.  

 

4.6.1 Fabrication and contact to bottom Si nanowire electrodes 

 

An overview of the process flow used to fabricate the memory is shown in Figure 4-8. 

The Si NW array was fabricated as described in Chapter 2. The starting wafer for the Si 
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Figure 4-8. Process flow for fabricating the 160,000 bit molecular electronic memory 
circuit at 1011 bits/cm2. A. A section of SNAP-patterned SiNW bottom electrodes are 
electrically contacted to electron-beam lithography patterned metal electrodes. B. The entire 
circuit is coated with SiO2 using an optimized spin-on-glass procedure. C. The active memory 
region is exposed using lithographic patterning followed by CF4 dry etching. D. The bistable 
[2]rotaxane Langmuir monolayer is deposited on top of the Si NWs and then protected by the 
deposition of a Ti layer. E. The molecule/Ti layer is etched everywhere except for the active 
memory region. F. An evaporated SiO2 insulating layer is deposited over the entire chip. G. 
An array of Pt NWs is deposited on top of the Ti/SiO2 layer at a right angle to the bottom Si 
NWs using the SNAP method. H. The Pt NW pattern is transferred, using  BCl3 dry etching, to 
the underlying Ti layer to form an array of top Ti NW electrodes, and the crossbar structure is 
complete. 
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NWs was a 33-nm-thick silicon-on-insulator (SOI) substrate with a 250-nm-thick buried 

oxide (Simgui, Shanghai, China). This wafer was highly diffusion doped (phosphorous; 

n=5×1019 cm–3) to ensure that NWs fabricated from it would maintain robust conductivity 

throughout the various nanofabrication procedures, in addition to forming ohmic contacts 

with Ti-Pt leads. This proved to be important in later stages where the Si NW surface is 

unavoidably etched. To fabricate the Si NW array, an array of Pt NWs was deposited 

onto the doped SOI substrate using the SNAP method, and high-frequency (40 MHz) 

fluorine-based (CF4 to He 20:30, 5 mTorr, 40 W) reactive-ion etching was used to 

transfer the Pt NW pattern into the underlying Si epilayer to form an approximately 2-

millimeter-long array of Si NWs. The Pt NW array was then dissolved in hot aqua regia 

(1:4 conc. HCl to conc. HNO3, 120° C, 10 min) and the Si NW array was sectioned into a 

30-μm-long region using a lithographically-patterned Al mask and three sequential 

reactive-ion etch (RIE) steps. The first was a high-power O2 RIE (20 mTorr, 100 W, 2 

min) to remove any residual epoxy (from the SNAP procedure), then a brief SF6 RIE (5 

mTorr, 30 W, 30 sec) to remove any unmasked Si, and finally a low-power O2 RIE (20 

mTorr, 10 W, 2 min) to oxidize any pinholes through the insulating oxide that may have 

been bored out from the first two RIE steps. We had occasionally observed leakage 

current through the insulating oxide when this last step was omitted.  

Ten electrical contacts to these bottom Si NWs, as well as 18 contacts that are 

intended for the top Ti NWs, were defined at this point using standard electron-beam 

lithography (EBL) patterning and electron-beam evaporation to produce wires consisting 

of a 15-nm Ti adhesion layer followed by 50 nm of Pt (Appendix 4.1). Immediately prior 

to metal evaporation, the Si NWs were cleaned using a gentle O2 plasma (20 mTorr, 10 



 95

W, 30 seconds) followed by a 5-second dip in buffered oxide etch (BOE) (6:1; NH4F to 

HF) solution to remove the Si NW native oxide. After metal lift-off, the chip was 

annealed at 450 °C in N2 for 5 minutes. In addition to promoting the formation of ohmic 

contacts, this anneal helped to prevent peeling of the smallest lithographically-defined 

wires during the spin-on glass step described below.  

Figure 4-9.A shows an SEM image of the memory circuit at the stage in which the 

Si NWs and all of the external electrical contacts have been created. Note that there are 

four sets of EBL-defined contacts. The 18 narrow contacts at the bottom left of the image 

(nominal width of 70 nm at 300-nm pitch) will eventually connect to the top Ti NW 

electrodes and are used for testing of the final memory circuit. The ten narrow contacts to 

the Si NWs at the bottom right (nominal width of 60 nm at 300-nm pitch) of the image 

are also used for testing of the memory circuit. Finally there are two narrow test 

electrodes at the top left and two wide electrodes at the bottom right. The wide electrodes 

contact about two-thirds of all the Si NWs and serve a dual function. First, they ground 

unused Si NWs during memory testing to minimize parasitic current loops through the 

crossbar. (This procedure approximates how a fully multiplexed crossbar circuit would be 

utilized.) Second, when used in conjunction with the two narrow test-electrodes on the 

opposite side of Si-NW array, they enable testing of the Si-NW conductivity at various 

stages throughout the memory-fabrication processes. This testing procedure provided 

invaluable feedback for finely tuning and tracking many of the fabrication processes, 

most notably the etching procedures described below. Once these various contacts were 

established, robust Si-NW conductivity was confirmed via current-voltage (I-V) 

measurements. If the Si NWs were measured to be poor conductors (a very infrequent 
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Figure 4-9. Representative scanning electron micrographs illustrating the crossbar 
memory fabrication process. A. A 30-micrometer-long section of 400 Si NWs with electron-
beam lithography (EBL) defined contacts to the Si NWs (bottom right) and pre-patterned 
contacts to the Ti-NW array (not deposited at this stage) (bottom left). B. Representative 
contacts to Si NWs showing each EBL-defined metal lead is about 70-nm wide and contacts 
2–4 NWs. C. Micrograph verifying that the spin-on-glass layer fills the narrow trenches 
between the Si NWs. The chip was cleaved after the planarization process to allow for the 
view shown here. D. Lithographically patterned window in the SOG film defining the memory 
active region. E. Deposition of 400 Pt NWs over the memory active region. Note the Pt NWs 
extend for about a millimeter in either direction. F. Micrograph of the Ti NWs contacting pre-
patterned EBL-defined leads after transferring the Pt NW pattern to the underlying 
[2]rotaxane/Ti layer. 
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occurrence) or if there was any measurable leakage current through the insulating oxide, 

the chip was discarded. Additionally, the chip was discarded if I-V measurements showed 

rectification at the contacts (unless ohmic behavior could be established through further 

efforts).  

The device was then planarized using an optimized spin-on-glass (SOG) 

procedure (Accuglass 214, Honeywell Electronic Materials, Sunnyvale CA) (Figure 

4-8.B). This planarization process is critical because the SOG not only protects Si NWs 

and EBL defined wiring outside of the active memory region from damage that can arise 

during subsequent processing steps, but it also prevents evaporated Ti from entering the 

gaps between Si NWs where it would be extremely difficult to remove. For the SOG to 

fill the narrow gaps between adjacent Si NWs (Figure 4-9.C), it had to be applied to the 

surface of the chip while under vacuum (< 1 mTorr). This was accomplished by placing 

the chip into a clean Erlenmeyer flask* sealed with an air-tight rubber septum and 

piercing the septum with a syringe needle attached via tubing to a diffusion pump. After a 

couple of minutes to ensure evacuation of the flask, a scrupulously-clean glass syringe 

and a 5-inch metal needle were used to generously apply the SOG liquid to the chip 

surface (while maintaining vacuum with the other needle). The chip was then 

immediately taken out of the flask and spun at 5000 RPM to ensure a uniform film.  

At this point, the chip was inspected using a light microscope to look for any 

particulates on the surface. If any were found (which almost inevitably there were), the 

SOG film was stripped from the chip with extremely delicate swabbing while immersed 

in methanol, followed by repeatedly rinsing in methanol and isopropyl alcohol and drying 

                                                 
* The flask was modified with a cylindrical glass pedestal for mounting the chip off the flask bottom. 
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under a stream of N2. The repeated solvent rinses followed by blowing with N2 seemed to 

be particularly effective at removing particles from the surface. Sonication was avoided 

because it would occasionally damage the finest EBL-defined wires. The SOG was then 

re-applied to the chip under ambient conditions, spun at 5000 RPM, and re-checked for 

particulates. Note that vacuum application was found to be unnecessary for subsequent 

SOG applications, probably because the SOG applied under vacuum continued to wet the 

NW gaps through subsequent methanol cleanings. This entire procedure was repeated 

until no particulates were seen on the chip surface. It was very important to ensure that 

the chip was rigorously clean before proceeding, since particles on the surface would 

frequently result in an unsuccessful transfer of the Pt NW array (which is required in a 

later step to define the top Ti NW electrodes for the memory). 

After globally thinning the SOG layer to 50 nm using a CF4 plasma (10 mTorr, 40 

W), an opening in polymethyl-methacrylate (PMMA) was lithographically defined over 

the Si NWs, and the tips of the 18 EBL-defined contacts (Figure 4-8.C). The SOG was 

then further etched until the tops of the underlying Si NWs were exposed (Figure 4-9.C). 

This step was monitored by periodically measuring the Si NW conductivity using the test 

electrodes. The majority of dopant atoms in the Si NWs reside within 10 nm of the 

surface (Chapter 2), so the NW conductivity is very sensitive to any etching of the 

surface. This unique feature of SNAP-fabricated Si NWs makes it very straightforward to 

etch back the SOG until just the tops of the Si NWs are exposed, since the etch end-point 

can be precisely determined by a small drop in the Si NW conductivity. At this stage, the 

entire memory circuit is under SOG (and thus electrically isolated from any further top 
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processing) except for the lithographically-defined opening over the Si NWs and the 18 

EBL-defined contacts. This opening defines the active memory region (Figure 4-9.D).  

 

4.6.2 Deposition of molecules and top electrode materials 

 

A monolayer of bistable [2]rotaxane switches was prepared by Langmuir-Blodgett 

techniques and transferred onto the device, as reported previously9, 22. A thin film of Ti 

(20 nm) was then evaporated over the entire chip (Figure 4-8.D). This Ti layer serves to 

protect the molecules from further top processing and will later be patterned into the 

crossbar top electrodes. As briefly mentioned above, this Ti layer additionally adds 

(favorable) current rectification to each Si/mol/Ti MSTJ to reduce the impact of parasitic 

current pathways within the crossbar circuit. The amount of rectification is dependent 

upon the amount of Ti oxidation that occurs at the molecule/Ti interface, which, in turn, 

depends upon the vacuum level of the metal deposition system65-67. For this work, the Ti 

was deposited at a pressure of approximately 5×10–7 Torr. For micrometer-scale 

Si/mol/Ti MSTJs, this typically produced a rectification of about 10:1 at 1 V.   

  Using photolithographic techniques and BCl3 RIE (5 mTorr, 30 W), the 

molecule/Ti layer was then removed from everywhere except for the memory active 

region where electrical contact to the underlying Si NWs is made (Figure 4-8.E). 

Patterning the Ti film is important for two reasons: First, it prevents the deposited Ti film 

from bridging (shorting) EBL-defined wiring that protrudes from the SOG film 

(explained below). Second, it removes the requirement of precise NW registry over the 

entire length (> 1 millimeter) of the Pt NW array deposited in a later step (Figure 4-9.E). 
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This is important because the dry etch used to define the Ti NW pattern from the Pt NW 

stencil can cause adjacent Pt NWs to wander into each other (thus shorting the 

corresponding Ti NWs beneath) in regions with non-uniform epoxy (used to adhere the 

Pt NW array to the surface; explained further below). Over the length of a typical SNAP-

fabricated NW array, the likelihood of this occurrence is expected to be almost certain.  

Next, a thin (~15 nm) SiO2 layer was deposited over the entire substrate to isolate 

the EBL-defined wires from the Pt NWs to be deposited in the next step. (Recall that the 

EBL-defined wires are 65-nm tall and the SOG was globally thinned to 50 nm; Figure 

4-8.F.) It may seem that the SiO2 deposition can be avoided by etching the SOG film to a 

thickness greater than the EBL-defined wire height. However, this results in a larger 

recess in the SOG opening that defines the memory active region. Spin-coated epoxy 

used for Pt NW deposition in the next step fills this opening, which, as explained below, 

can be problematic during subsequent etching. 

A thin layer of epoxy (~10 nm) is then spin-coated onto the chip and the SNAP 

technique is used to deposit an array of 400 Pt NWs over the Ti/SiO2/epoxy layer at a 

right angle to the underlying Si NWs (Figure 4-8.G and Figure 4-9.E). Finally, careful 

BCl3 RIE (5 mTorr, 30 W) was used to transfer the Pt NW pattern to the underlying 

Ti/SiO2/epoxy film, thus forming Ti NW top electrodes (Figure 4-8.H). Although the Pt 

NW array is in excess of 1 mm long (Figure 4-9.F), the top Ti electrodes of the crossbar 

circuit only extend from the tips of the 18 EBL-defined leads to a couple of micrometers 

past the underlying Si NW array. The etch endpoint was determined by monitoring the 
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cross-conductance of the top Ti NWs* (Figure 4-10.A). Complete transfer of the Pt NW 

pattern to the underlying Ti film is indicated by a fall in the cross-conductance to about 

ten nanoSiemens (nS). Note that the cross-conductance does not go to zero since the Ti 

electrodes, while physically separated, are still electrically coupled through the crossbar 

junctions and the underlying Si NWs. The health of the underlying Si NWs throughout 

the Ti-etching process was also monitored, as shown in Figure 4-10.B.  

Figure 4-10. Conductance monitoring during the Ti layer etching. A. Cross-conductance 
measurements between electrical contacts to the top nanowire array were performed to monitor 
the Ti layer etching. When the current drops to sub-10 nanoAmps, the top Ti electrodes are 
separated. The inset scanning electron microscope (SEM) image shows two representative 
contacts to the top Ti electrodes as highlighted in yellow.  It is the cross-conductance between 
such contacts that was used for this measurement. B. The Si NW conductance was measured 
throughout the Ti layer etching to ensure that Si NWs were not damaged. The SEM image 
(inset) shows the current pathway that was measured.  

A B

The use of Ti as the top electrode material here was necessary since its high 

reactivity prevents metal from spiking across the [2]rotaxane monolayer during 

evaporation22. However, Ti is a difficult metal to etch because it forms a tough TiO2 layer 

                                                 
* Interferometric end-point detection cannot be used here since the etch rate for Ti within a 16-nm trench is 
likely to be quite different from that of a regular Ti surface. 



 102

at its surface68. Highly-directional BCl3 reactive ion etching was used because it provides 

the needed momentum to erode the TiO2 layer while additionally providing reactive Cl 

ions to chemically remove Ti. Figure 4-11 shows a fully functional memory circuit in 

which the final Pt NW deposition (using SNAP) was substituted by EBL-patterned Pt 

microwires (about 210 nm in width) of variable spacing down to 90 nm (less than 3 times 

the SNAP Pt NW pitch). The [2]rotaxane/Ti film was etched using an iterative procedure 

so the Ti electrode cross-conductance could be periodically checked. Also, SEM analysis 

was used to gauge how effectively the BCl3 etch removed Ti from between the Pt 

microwires after each etch iteration. Note that SEM analysis cannot be used to track the 

etch progress using SNAP fabricated Pt NWs because 1) the SNAP NW spacing is too 

narrow, and 2) the electron beam heats up the underlying epoxy causing the Pt NWs to 

collapse into each other. SEM analysis confirmed complete separation of the underlying 

Ti electrodes after the Ti electrode cross-conductance fell to below 50 nS (Figure 

4-11.A). Taking into account that the (210-nm-wide) EBL-defined Ti microwires are 

about five times wider than the combined average number Ti NWs defining a row of 

ebits (3 × 16 nm = 48 nm), we reasoned that Ti NWs patterned from SNAP-fabricated Pt 

NWs would be separated when their cross-conductance fell to below 10 nS. We have 

found this metric to be accurate with many memory chips. Note that while the Ti 

electrode cross-conductance at separation scales linearly with the Pt wire width, the total 

etch time does not scale predictably with the Pt wire spacing. In fact, the total etch time 

to achieve Ti NW separation can vary considerably from one memory chip to the next 

with nominally identical SNAP Pt NW arrays.  
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Figure 4-11. Diagnostic Ti etching between electron-beam lithography (EBL)-defined 
Pt microwires. A. Ti electrode cross-conductance after separation. The numbers in the 
legend correspond to cross-conductance measurements between the 90-nm-spaced EBL-
defined microwires numbered (sequentially from 1 to 8) in panel B. The cross-conductance 
values after separation are 0.5 nS (blue trace, corresponding to microwires 7–8), 5 nS (red 
trace, microwires 3–4), 15 nS (green trace, microwires 5–6), and 25 nS (black trace, 
microwires 1–2). B. SEM images of the diagnostic memory circuit. The background shows 
the EBL-defined Pt microwires patterned over the memory active region to form a Si NW/Ti 
microwire crossbar. Scale bar is 2.5 μm. The inset is a high-resolution SEM image of the 
region between two Pt microwires indicated by the yellow circle. Note the Ti has been 
cleanly removed, revealing the underlying Si NWs. The scale bar is 100 nm.  
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To form Ti NWs as the top electrodes from SNAP deposited Pt NWs, the chip 

was etched (via BCl3) in intervals of time ranging from five minutes (at the beginning) to 

30 seconds (near the end) so that periodic conductance measurements could be made to 

monitor the etch progress. This significantly increased the total BCl3 etch time because 

the chip had to be periodically removed from the vacuum environment of our reactive ion 

etcher resulting in re-growth of surface TiO2. The total BCl3 etch time ranged from 15 to 

20 minutes, although a large fraction of that time was undoubtedly spent etching re-

grown TiO2 at the beginning of each BCl3 etch iteration. As will be discussed below, this 

unavoidably* long etch time can lead to fidelity problems in transferring the Pt NW 

pattern to the underlying Ti film.  

The Ti etching step described above proved to be one of the most challenging 

aspects of memory fabrication and required the simultaneous optimization of a number of 

correlated factors. This included the BCl3 etch recipe described above, the depth of the 

SOG recess defining the memory active region, and the epoxy used to bond the Pt NW 

array to the Ti/SiO2 film. This epoxy fills in the SOG recess, thus separating the Ti/SiO2 

film from the Pt NWs by a relatively thick organic spacer. If the epoxy is too thick 

significant undercutting can occur. This leads to blurring of the Ti NW pattern and 

wandering of individual Pt NWs on top of a sea of shifting epoxy. Frequently the Pt NWs 

would wander so much they would short into each other (Figure 4-12), resulting in Ti 

NW top electrodes that could not be physically separated (more on this below). This 

problem was exacerbated with the relatively long BCl3 etch times required to define the 

Ti NWs.  
                                                 
* In principle, the etch time could be reduced considerably by monitoring the conductance in-situ with the 
BCl3 etch so the time-consuming TiO2-removal step would only need to be done once. Obviously, our RIE 
system did not have this feature. 
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The epoxy thickness over the Ti film was reduced by decreasing the recess of the 

SOG window defining the memory active region. This was accomplished by globally 

thinning the SOG film beforehand. Trial and error in conjunction with atomic force 

microscopy (AFM) measurements of the SOG recess and surrounding region after curing 

the spin-coated epoxy (without the deposited Pt NWs) determined the optimal SOG 

thickness to be about 50 nm. Thinning the SOG further required reducing the thickness 

(65 nm) of the EBL-defined wires so they did not protrude from the SOG + SiO2 film 

(keeping the thickness of SiO2 deposited over the Ti film to be constant at 15 nm*). 

However, this led to problems in making reliable contact to the Si NWs, since the 

Figure 4-12. SEM image of a crossbar memory circuit before optimization of the Ti NW 
fabrication parameters. This image shows wandering of individual Pt NWs due to shifting 
epoxy from the BCl3 etch used to define the Ti NW array. The inset shows a zoomed-in view 
from the center of the memory crossbar region. The scale bar in the inset is 500 nm. 

                                                 
* Increasing the SiO2 thickness beyond 15 nm adversely affected the etch fidelity. 
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deposited metal would be more prone to becoming discontinuous at the ends of the Si 

NWs where there is a step of 33 nm (the starting SOI thickness) (Figure 4-9.B). It should 

be noted, however, that more advanced metal deposition systems capable of depositing 

metal conformally would eliminate this constraint. 

While reducing the epoxy thickness over the Ti film was necessary to achieve 

high-fidelity pattern transfer of the Pt NW mask, it was not sufficient. This required 

improving the epoxy recipe to make it more resistant to undercutting without making it 

overly difficult to etch using O2 or BCl3. (A O2 etch of 5 mTorr at 40 W always preceded 

the initial BCl3 etch to remove epoxy from between the SNAP-fabricated Pt NWs.) After 

some trial and error, the optimal epoxy recipe was determined to be a modified version of 

Allied High Tech (Rancho Dominguez, CA) Epoxy Bond 110. (5 drops part A, 1 drop 

part B, 2 drops of dibutyl phthalate, and diluted with 10 ml of anhydrous tetrahydrofuran. 

The dibutyl phthalate is a plasticizer that makes the epoxy easier to etch from between Pt 

NWs.) 

 

4.6.3 Memory testing 

 

The memory circuit was tested using a Probe 2000 (San Jose, CA) custom-built probe 

card (Appendix 4.2) and a Keithley 707A switching matrix in conjunction with a 

Keithley 7174A low-current matrix card for off-chip demultiplexing. Individual ebits 

(containing 4–16 crossbar junctions, but most often containing nine crossbar junctions) 

were electrically addressed within the 2-D cross-point array by the intersection of 2–4 

sequential Si NW bottom electrodes and 2–4 sequential Ti NW top electrodes. Individual 
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molecular junctions were set to their low resistance, or ‘1’ state, through the application 

of a positive 1.5–2.3 V pulse (voltages are referenced to the bottom Si NW electrode) of 

0.2-second duration. A junction was set to its ‘0’ or high resistance state through 

application of a −1.5 V pulse, also of 0.2-second duration. To avoid switching an entire 

column or row of bits, the switching voltage was split between the two electrodes 

defining the ebit. Thus, to write a ‘1’ with +2 V, a single Si NW electrode is charged to 

+1 V, while a single Ti NW electrode is set to −1 V, and only where they cross does the 

junction receive the full +2 V switching voltage. Half-selected bits, that is, bits receiving 

only half the switching voltage, were never observed to switch. Individual ebits were read 

by applying a small, non-perturbing +0.2 V bias to the bottom Si NW electrode and 

grounding the top Ti NW electrode through a Stanford Research Systems SR-570 current 

pre-amplifier. Bits not being read were held at ground to reduce parasitic current 

pathways through the crossbar array. Note that all the electrical writing and reading 

operations described in this work were done sequentially. 

Configuring the memory circuit for information storage proceeded as follows. 

Initially, all ebits were read with +0.2 V to document their baseline current. The value of 

this baseline current varied from being greater than the current through the junction when 

set to its low-resistance or ‘1’ state to being less than the current through the junction 

when set to its high-resistance or ‘0’ state. However, after a (good) bit had been switched 

though the application of ± 1.5 V, it performed reliably (i.e., on current > off current) 

until it no longer exhibited switching behavior. After the baseline current was read, all 

ebits were switched to their ‘1’ state, read out, then set to their ‘0’ state and again read 

out (Figure 4-13 shows raw data). Good ebits were identified as those with 1/0 current 
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Figure 4-13. Raw switching data from a molecular electronic crossbar memory circuit. 
The raw data in this figure was used to generate the 1/0 plot and defect matrix shown in Figure 
4-6. 

ratios roughly greater than or equal to 1.5. Bad ebits fell into a few classes, with the two 

most common groups being ebits that were either poor switches with little or no 

switching response or open circuits. In both cases, the 1/0 ratio was unity. Adjacent Ti 

top electrodes that were shorted together were identified when the ebits addressed by 

those electrodes were not independently addressable. This is evidenced by an 8-bit 

periodicity in the response of bits sharing a single Si NW bottom electrode and the 

shorted Ti top electrodes. This can be seen from the bit matrix in Figure 4-6.B where the 

shorting of top electrodes T2 and T3 results in nearly equivalent responses from bits 13 & 

21 and bits 15 & 23. A more-severe case of top Ti NW shorting is shown in Figure 4-14, 

which corresponds to the memory circuit shown in Figure 4-12. Even though this type of 

defect is not completely fatal (i.e., two rows of ebits could still be utilized as a single row 
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A 

B 

Figure 4-14. Data from a memory circuit with extensive Ti NW top electrode shorting. 
A. 1/0 current ratio measurements from 64 bits of the memory circuit shown in Figure 4-
12. B. Defect map of the good and defective ebits with a pie chart showing the testing 
statistics. Good ebits were defined as ebits with 1/0 ratios greater than 1.2 (31% of the 
tested bits). Note that most of the good ebits (yellow) are clustered together within columns 
(Si NW bottom electrodes), indicating severe Ti NW (rows) shorting. 
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of twice-as-large ebits), we did not use ebits associated with shorted top electrode 

defects.  

Once the good ebits were identified, they were used to store and read out small 

strings of information written in standard ASCII code. The maximum number of ebits 

that could be tested was 180, but our electronics were configured to test 128 ebits (less 

than 1 percent of the actual crossbar). Based on results from similarly fabricated memory 
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circuits, we believe this small subset of measured bits is representative and sufficient to 

demonstrate the key concepts of this memory.   

To increase the measured current, volatility measurements were carried out with 

approximately 100 (~30 ebits) junctions in parallel. The junctions were switched to their 

‘1’ or low resistance state, as described above, and the current was periodically measured 

through the parallel combination of all 100 junctions at discrete time points. Note that 

defective switches stuck in a low conductivity state contribute little signal to the parallel 

combination while defective switches stuck in a high conductivity state only add a 

constant offset to the decaying current. There could be an unknown number of defective 

switches (and hence junctions) stuck in their ‘1’ state; however, the current through a 

parallel combination of functional and defective junctions will decay with the same time 

constant as that of the functional junctions as long as the number of defective junctions is 

not too large. We occasionally observed parallel combinations with a large fraction of 

defective junctions. These were identified by an approximately constant measured current 

as a function of time. Data from these parallel combinations were not used.  

If a defective junction is shorted (i.e., the Ti top electrode is shorted to the bottom 

Si electrode through direct metal contact), the current through the junction would be 

orders of magnitude higher than expected and readily identified. We did not observe such 

junctions in the memory circuits described above.  
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4.7 Limitations of the SNAP process for crossbar circuits 

 

The nanofabrication methods described above for creating the 160,000-bit crossbar 

memory circuit can be significantly extended in terms of both memory size and bit 

density. For [2]rotaxane-based molecular electronic memory circuits, proper choice of 

electrode materials within the crossbar has proven to be very important for successful 

memory operation61; that is, having Si bottom electrodes and metallic top electrodes with 

a thin Ti layer to protect the underlying [2]rotaxane monolayer was key. Arrays of 

SNAP-fabricated Pt NWs only serve as stencils for forming the crossbar electrodes. To 

be used in a crossbar memory, the SNAP NW pattern must be transferred to Si or Ti NWs 

for the bottom and top electrodes, respectively. Thus, it is not just the SNAP process, but 

the ability to translate the initially deposited SNAP NWs to form other NWs that 

ultimately limits the size and density of the circuitry that can be fabricated.  

Figure 4-15 (left micrograph) shows an array of 7-nm-wide, 15-nm-tall single 

crystal Si NWs patterned at 13-nm pitch. This array could be used to produce to a 

crossbar molecular memory circuit at about six times the density of this work (~ 6×1011 

bits cm–2). While this array may not represent the density limit of what could be 

achieved, densities in excess of 1×1012 cm–2 may difficult to obtain using these patterning 

methods and conventional nanofabrication tools. Similarly, the 160,000-bit crossbar 

described herein can be extended in terms of the total number of bits by using larger-

element SNAP NW arrays. Figure 4-15 (right two micrographs) shows SEM images of an 

array of 1400 Si NWs formed using the SNAP method. An array this size makes possible 
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Figure 4-15. Next-generation crossbar molecular memory circuits using SNAP 
patterning. (left) An array of 7-nm-wide Si NWs patterned at 13-nm pitch could produce a 
crossbar molecular memory circuit with six times the bit density of this work. (right) An 
array of 1400 Si NWs patterned at 33-nm pitch could provide enough nanowires to produce 
an approximately two-million-bit crossbar molecular memory circuit. The inset shows an 
expanded view of the array, which is virtually free of defective nanowires.  

the construction of an approximately two-million-bit crossbar molecular memory circuit 

and it is certainly possible to further expand this concept to substantially larger structures.  

From a manufacturing perspective, a significant limitation of the SNAP process is 

that each NW array must be fabricated serially using a labor-intensive process (despite 

SNAP being a parallel patterning method in that all NWs within an array are created 

simultaneously). For instance, in a single day a worker can usually fabricate not more 

than 10–20 arrays of Si NWs. However, a recent collaboration with Stan Williams’ group 

at Hewlett Packard labs (Palo Alto, CA) has demonstrated that nanoimprinting can be 

used to replicate SNAP NWs and to form crossbar structures47. This indicates that high-
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throughput parallel fabrication methods can be developed, even at the near molecular-

densities described in this work.  

 

4.8 Concluding remarks 

 

Many challenges remain to be addressed before the type of crossbar molecular 

memory described here can be practically implemented. For example, areas of future 

interest include finding faster and more-robust molecular switches, addressing 

nanofabrication challenges associated with improving the fidelity of these tools and 

procedures, and meeting engineering challenges such as those involved with combining 

demultiplexing architectures, such as those described in Chapter 3, with crossbar 

circuits69. Nevertheless, this circuit stands as a new benchmark for nanoelectronic device 

integration and provides evidence that at least some of the most challenging scientific 

issues associated with integrating nanowires, molecular materials, and defect-tolerant 

circuit architectures at extreme dimensions are solvable. The circuits described in this 

work represent significant advances in sub-lithographic patterning, large-scale assembly 

of nanoscale electronic devices, and the integration of molecular and solid state materials. 

Furthermore, recently published nanoimprinting results imply that methods for the high-

throughput manufacturing of these types of circuits are possible46-48.  
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Appendix 4.1 Details of lithographically-patterned structures 

 

500 
μm

125 μm diameter pads for 
making contact to probe 

card  

10 μm wide wires 

40 μm 
squares for making 

contact to EBL-
patterned wiring 

NW crossbar 
circuit location

Width of SNAP 
master

Optical lithography patterned structure. The coordinates for the pads 
are on the next page. A printed photomask (Output City, Eoway CA) was 
used to expose the pattern in AZ 5214 (Clariant). AZ 400K was used for 
development and metal lift-off was in acetone. 
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Coordinates for the optical mask pattern on previous page (1 unit = 1 micrometer) 

with the origin at the lower left pad.  
 
 

PAD # X COORDINATE Y COORDINATE 
1 0.0000 0.0000 
2 0.0000 350.0000 
3 0.0000 700.0000 
4 0.0000 1050.0000 
5 0.0000 1400.0000 
6 0.0000 1750.0000 
7 0.0000 2100.0000 
8 0.0000 2450.0000 
9 0.0000 2800.0000 
10 0.0000 3150.0000 
11 0.0000 3500.0000 
12 0.0000 3850.0000 
13 0.0000 4200.0000 
14 0.0000 4550.0000 
15 0.0000 4900.0000 
16 1778.0000 4900.0000 
17 2101.6561 4705.6744 
18 2395.6589 4468.8663 
19 2654.4711 4194.0355 
20 2873.2185 3886.3582 
21 3047.7811 3551.6291 
22 3174.8715 3196.1523 
23 3252.0959 2826.6227 
24 3278.0000 2450.0000 
25 3252.0959 2073.3773 
26 3174.8715 1703.8477 
27 3047.7811 1348.3709 
28 2873.2185 1013.6418 
29 2654.4711 705.9645 
30 2395.6589 431.1337 
31 2101.6561 194.3256 
32 1778.0000 0.0000 
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850 μm
50 μm

Outermost electron-beam lithography written structures. The large 50-μm pads 
and crosses at the periphery make contact to optical-lithography-defined pads that in 
turn fan-out to large circular pads (125 μm diameter) for making contact to a custom-
built probe card. All electron-beam lithography was done using an FEI XL-30 SEM 
with the Nanometer Pattern Generation System (NPGS) version 6.0 (J.C. Nabity 
Systems) to expose regions of 3% polymethyl-methacrylate (PMMA) over 2.25% 
MMA. Pattern development was done with 1:3 methyl isobutyl ketone to isopropyl 
alcohol. Metal depositions were done using an electron-beam evaporator (Semicore 
Corp, CHA-Mark 40; Freemont, CA), and lift-off was in acetone. 
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30 μm 

Si NW bottom electrodes 

Contacts to top Ti NWs 

Grounding pad 

Contacts to bottom Si NWs 

5.1 μm 

2.7 μm

300 nm pitch, width 50-70 nm 

Intermediate-to-smallest EBL-patterned structures.  

Test electrodes 
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Appendix 4.2 Memory probe card specifications 
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Appendix 4.3 NI LabWindows /CVI code used for memory 

reading/writing operations 

 

Note that much of the code below has been commented out (/*…*/). I nonetheless left 
those portions intact in its original location within the code. This code was written 
primarily by Dr. Yi Luo for use with a Keithley 707A switching matrix, National 
Instruments (NI) DAQ PC card (v. 4.8), and a Stanford Research Systems SR-570 current 
pre-amplifier.  

 
#include <gpib.h> 
//#include <windows.h>      
#include <utility.h> 
//#include "decl-32.h" 
#include <stdio.h> 
#include <string.h>  
#include <userint.h> 
#include <dataacq.h> 
#include <ansi_c.h> 
#include "MUX_AC.h" 
 
static int daq, daq1; 
FILE *fp_out; 
int Device1; 
int cross_point[9][9],set_bit[9][9]; 
int num_read, all_switch,all_control=-1, ramp, ramp_num=20; 
double time_write, time_read, volt_write_on,volt_write_off, volt_read, volt_hold, threshold_high,threshold_low; 
double adch0,adch1, volt_ramp0, volt_ramp1, ramp_rate; 
const char tmp_file[10]="tmp.dat"; 
 
void main(){ 
 int i; 
 Device1=ibdev(0,18,0,10,1,0);      /* initiate 707A  */  
 ibwrt(Device1,"REMOTE",6);       /* enable remote mode   */ 
 ibwrt(Device1,"E0X",3);        /* Point to present relays  */ 
  
 daq = LoadPanel (0, "MUX_AC.uir", MUX); 
 DisplayPanel (daq); 
 i=AI_Clear (1); 
 RunUserInterface (); 
} 
int select_ind (int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
 { 
 daq1 = LoadPanel (1, "MUX_AC.uir", MUX1); 
 DisplayPanel (daq1); 
 return 1; 
 } 
int close_selection(int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
 {  
 int i,m; 
 i=HidePanel(daq1); 
 return 0; 
 } 
int switch_control(int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
 {  
  int m; 
  if(all_control==-1){         
   m=SetCtrlAttribute(daq,MUX_ALL_SWITCHES, ATTR_DIMMED, 0);  
  } 
  else{ 
   m=SetCtrlAttribute(daq,MUX_ALL_SWITCHES, ATTR_DIMMED, 1);  
  } 
  all_control=all_control*(-1); 
  return 1; 
 } 
int configure_ind (int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
 { 
 int i,j,k,m,i_ramp; 
 char c[5],d[6]; 
 if (all_control!=1){ 
 m = GetCtrlVal (daq, MUX_Switch1_1, &cross_point[1][1]); 
 m = GetCtrlVal (daq, MUX_Switch1_2, &cross_point[1][2]); 
 m = GetCtrlVal (daq, MUX_Switch1_3, &cross_point[1][3]); 
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 m = GetCtrlVal (daq Switch1_4, &cross_point[1][4]); 
 m = GetCtrlVal (daq Switch1_5, &cross_point[1][5]); 
 m = GetCtrlVal (daq Switch1_6, &cross_point[1][6]); 

 m = GetCtrlVal (daq, MUX_Switch1_8, &cross_point[
 m = GetCtrlVal (daq, MUX_Switch2_1, &cross_point
 m = GetCtrlVal (daq, MUX_Switch2_2, &cross_point
 m = GetCtrlVal (daq, MUX_Switch2_3, &cross_point[

, MUX_
, MUX_
, MUX_

 m = GetCtrlVal (daq, MUX_Switch1_7, &cross_point[1][7]); 
1][8]); 

[2][1]); 
[2][2]); 
2][3]); 

 m = GetCtrlVal (daq, MUX_Switch2_4, &cross_point[2][4]); 
m = GetCtrlVal (daq, MUX_Switch2_5, &cross_point[2][5]); 
m = GetCtrlVal (daq, MUX_Switch2_6, &cross_point[2][6]); 
m = GetCtrlVal (daq, MUX_Switch2_7, &cross_point[2][7]); 

(daq, MUX_Switch4_1, &cross_point[4][1]); 
(daq, MUX_Switch4_2, &cross_point[4][2]); 

m = GetCtrlVal (daq, MUX_Switch4_3, &cross_point[4][3]); 
m = GetCtrlVal (daq, MUX_Switch4_4, &cross_point[4][4]); 
m = GetCtrlVal (daq, MUX_Switch4_5, &cross_point[4][5]); 

GetCtrlVal (daq, MUX_Switch4_6, &cross_point[4][6]); 
lV daq, MUX_Switch4_7, &cross_point[4][7]); 
lV daq, MUX_Switch4_8, &cross_point[4][8]); 

trlVal (daq, MUX_Switch5_1, &cross_point[5][1]); 
trlVal (daq, MUX_Switch5_2, &cross_point[5][2]); 

tCtrlVal (daq, MUX_Switch5_3, &cross_point[5][3]); 
tCtrlVal (daq, MUX_Switch5_4, &cross_point[5][4]); 
CtrlVal (daq, MUX_Switch5_5, &cross_point[5][5]); 
CtrlVal (daq, MUX_Switch5_6, &cross_point[5][6]); 

rlVal (daq, MUX_Switch5_7, &cross_point[5][7]); 
rlVal (daq, MUX_Switch5_8, &cross_point[5][8]); 

etCtrlVal (daq, MUX_Switch6_1, &cross_point[6][1]); 
etCtrlVal (daq, MUX_Switch6_2, &cross_point[6][2]); 

UX_Switch6_3, &cross_point[6][3]); 
 MUX_Switch6_4, &cross_point[6][4]); 

point[6][5]); 

ross_point[6][8]); 
MUX_Switch7_1, &cross_point[7][1]); 

m = GetCtrlVal (daq, MUX_Switch7_2, &cross_point[7][2]); 
 MUX_Switch7_3, &cross_point[7][3]); 

_ itch7_7, &c 7][7]
s_point[7][8]); 
s_point[8][1]); 

8_2, &cross_point[8][2]); 
_3, &cross_point[8][3]); 
_4, &cross_point[8][4]); 

tch8_5, &cross_point[8][5]); 

point[8][8]); 

trlVal (daq, MUX_ALL_SWITCHES, &all_switch); 

 

UX1_Switch1_1, &set_bit[1][1]); 
ch1_2, &set_bit[1][2]); 

ch1_5, &set_bit[1][5]); 

ch2_1, &set_bit[2][1]); 

_6, &set_bit[2][6]); 
set_bit[2][7]); 

itch3_2, &set_bit[3][2]); 
itch3_3, &set_bit[3][3]); 
tch3_4, &set_bit[3][4]); 

 
 
 
 m = GetCtrlVal (daq, MUX_Switch2_8, &cross_point[2][8]); 
 m = GetCtrlVal (daq, MUX_Switch3_1, &cross_point[3][1]); 
 m = GetCtrlVal (daq, MUX_Switch3_2, &cross_point[3][2]); 
 m = GetCtrlVal (daq, MUX_Switch3_3, &cross_point[3][3]); 
 m = GetCtrlVal (daq, MUX_Switch3_4, &cross_point[3][4]); 
 m = GetCtrlVal (daq, MUX_Switch3_5, &cross_point[3][5]); 
 m = GetCtrlVal (daq, MUX_Switch3_6, &cross_point[3][6]); 
 m = GetCtrlVal (daq, MUX_Switch3_7, &cross_point[3][7]); 
 m = GetCtrlVal (daq, MUX_Switch3_8, &cross_point[3][8]); 
 m = GetCtrlVal 
 m = GetCtrlVal 
 
 
 
 m = 
 m = GetCtr al (

etCtr al ( m = G
 m = GetC

GetC m = 
 m = Ge
 m = Ge
 m = Get
 m = Get
 m = GetCt

m = GetCt 
 m = G

m = G 
m = GetCtrlVal (daq, M 

 m = GetCtrlVal (daq,
 m = GetCtrlVal (daq, MUX_Switch6_5, &cross_
 m = GetCtrlVal (daq, MUX_Switch6_6, &cross_point[6][6]); 

cross_point[6][7]);  m = GetCtrlVal (daq, MUX_Switch6_7, &
 m = GetCtrlVal (daq, MUX_Switch6_8, &c
 m = GetCtrlVal (daq, 
 
 m = GetCtrlVal (daq,
 m = GetCtrlVal (daq, MUX_Switch7_4, &cross_point[7][4]); 
 m = GetCtrlVal (daq, MUX_Switch7_5, &cross_point[7][5]); 

X_Switch7_6, &cross_point[7][6] m = GetCtrlVal (daq, MU ); 
 (daq, MUX Sw ross_point[ );  m = GetCtrlVal

 m = GetCtrlVal (daq, MUX_Switch7_8, &cros
 m = GetCtrlVal (daq, MUX_Switch8_1, &cros
 m = GetCtrlVal (daq, MUX_Switch
 m = GetCtrlVal (daq, MUX_Switch8

m = GetCtrlVal (daq, MUX_Switch8 
 m = GetCtrlVal (daq, MUX_Swi

 = GetCtrlVa m l (daq, MUX_Switch8_6, &cross_point[8][6]); 
(daq, MUX_Switch8_7, &cross_point[8][7]);  m = GetCtrlVal 

 m = GetCtrlVal (daq, MUX_Switch8_8, &cross_
 } 
 else{ 
  m = GetC
  for(i=1;i<=8;i++){ 
   for(j=1;j<=8;j++){ 

cross_point[i][j]=all_switch;    
}   

  } 
 } 

(daq1, M m = GetCtrlVal 
 m = GetCtrlVal (daq1, MUX1_Swit

 = GetCtrlVa m l (daq1, MUX1_Switch1_3, &set_bit[1][3]); 
 m al (daq1, MUX1_Switch1_4, &set_bit[1][4]);  = GetCtrlV
 m = GetCtrlVal (daq1, MUX1_Swit
 m = GetCtrlVal (daq1, MUX1_Switch1_6, &set_bit[1][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch1_7, &set_bit[1][7]); 

Switch1_8, &set_bit[1][8]);  m = GetCtrlVal (daq1, MUX1_
 m = GetCtrlVal (daq1, MUX1_Swit
 m = GetCtrlVal (daq1, MUX1_Switch2_2, &set_bit[2][2]); 

Switch2_3, &set_bit[2][3]);  m = GetCtrlVal (daq1, MUX1_
 m = GetCtrlVal (daq1, MUX1_Switch2_4, &set_bit[2][4]); 

2_5, &set_bit[2][5]);  m = GetCtrlVal (daq1, MUX1_Switch
 m = GetCtrlVal (daq1, MUX1_Switch2
 m = GetCtrlVal (daq1, MUX1_Switch2_7, &

 = GetCtrlVa m l (daq1, MUX1_Switch2_8, &set_bit[2][8]); 
(daq1, MUX1_Switch3_1, &set_bit[3][1]);  m = GetCtrlVal 

 m = GetCtrlVal (daq1, MUX1_Sw
_Sw m = GetCtrlVal (daq1, MUX1

 m = GetCtrlVal (daq1, MUX1_Swi
 m = GetCtrlVal (daq1, MUX1_Switch3_5, &set_bit[3][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch3_6, &set_bit[3][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch3_7, &set_bit[3][7]); 
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 m = GetCtrlVal (daq1, MUX1_Switch3_8, &set_bit[3][8]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_1, &set_bit[4][1]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_2, &set_bit[4][2]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_3, &set_bit[4][3]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_4, &set_bit[4][4]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_5, &set_bit[4][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_6, &set_bit[4][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_7, &set_bit[4][7]); 
 m = GetCtrlVal (daq1, MUX1_Switch4_8, &set_bit[4][8]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_1, &set_bit[5][1]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_2, &set_bit[5][2]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_3, &set_bit[5][3]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_4, &set_bit[5][4]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_5, &set_bit[5][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_6, &set_bit[5][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_7, &set_bit[5][7]); 
 m = GetCtrlVal (daq1, MUX1_Switch5_8, &set_bit[5][8]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_1, &set_bit[6][1]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_2, &set_bit[6][2]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_3, &set_bit[6][3]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_4, &set_bit[6][4]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_5, &set_bit[6][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_6, &set_bit[6][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_7, &set_bit[6][7]); 
 m = GetCtrlVal (daq1, MUX1_Switch6_8, &set_bit[6][8]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_1, &set_bit[7][1]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_2, &set_bit[7][2]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_3, &set_bit[7][3]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_4, &set_bit[7][4]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_5, &set_bit[7][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_6, &set_bit[7][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_7, &set_bit[7][7]); 
 m = GetCtrlVal (daq1, MUX1_Switch7_8, &set_bit[7][8]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_1, &set_bit[8][1]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_2, &set_bit[8][2]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_3, &set_bit[8][3]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_4, &set_bit[8][4]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_5, &set_bit[8][5]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_6, &set_bit[8][6]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_7, &set_bit[8][7]); 
 m = GetCtrlVal (daq1, MUX1_Switch8_8, &set_bit[8][8]); 
 m = GetCtrlVal (daq, MUX_TIME_WRITE, &time_write); 
 m = GetCtrlVal (daq, MUX_VOLT_WRITE_ON, &volt_write_on); 

_off); 

*******   st

     /*******

 /* dummy line */ 

   /* check if the bit is selected   */ 
      

 c[2]=(char)(48+i); 

(Device1,c,4); 
      

2]=(char)(48+i); 
c[3]='X'; 

 c[4]='\0'; 
4); 

+8); 

4);  

+8); 

4);  

/* two-digit  */ 
j-2); 

,5); 

 m = GetCtrlVal (daq, MUX_VOLT_WRITE_OFF, &volt_write
 m = GetCtrlVal (daq, MUX_VOLT_HOLD, &volt_hold); 
 m = GetCtrlVal (daq, MUX_Ramp, &ramp);  
 m = GetCtrlVal (daq, MUX_Ramp_Rate, &ramp_rate);  
  
/* arting the loop of configuring   *******/  
 
   *  test ********/ 
 m=SetCtrlVal(daq,MUX_STOP_SCAN,1);  
 m=SetCtrlVal(daq,MUX_Config_complete,0); 
 m=SetCtrlVal(daq,MUX_Memory_Check_Done,0); 
 ibwrt(Device1,"CA72X",5);    
 ibwrt(Device1,"NA72X",5);  
 for(i=1;i<=8;i++){ 
  for(j=1;j<=8;j++){ 
  if (set_bit[i][j]==1){   
    c[0]='C';  
      c[1]='B'; 
   
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt
    c[0]='N';  
      c[1]='A'; 
    c[
    
   
    ibwrt(Device1,c,
    if (j<2){ 
    c[0]='C'; 
    c[1]='C'; 
    c[2]=(char)(48+j
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,
    c[0]='N'; 
    c[1]='H'; 
    c[2]=(char)(48+j
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,
    } 
    else{ 
    d[0]='C'; 
    d[1]='C'; 
    d[2]='1';      
    d[3]=(char)(48+
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d
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    d[0]='N'; 
    d[1]='H'; 
    d[2]='1';      /* two-digit  */ 

j-2); 

,5); 

j+8)){ 
(k<10){ 

f (k<=8){ 
[0]='C'; 

c[1]='A';    /* apply -1.0 volt to rows from Keithley 5-25-01  */ 
2]=(char)(48+k); 

[3]='X'; 
[4]='\0'; 

e1,c,4); 
 
lse{ 
[0]='C'; 
[1]='H';     

2]=(char)(48+k); 
[3]='X'; 
[4]='\0'; 

e1,c,4); 
 

 
lse{ 
[0]='C'; 
[1]='H'; 
2]='1'; 
3]=(char)(48+k-10); 

[4]='X'; 
[5]='\0'; 

e1,d,5);  
 

 

][j]==1){ 

  for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){    

+ (volt_write_on/2-volt_hold)/ramp_num; 
   volt_ramp1=volt_ramp1 + (volt_write_on/2)/ramp_num; 

 m = AO_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 
Delay(volt_write_on/ramp_num/ramp_rate); 

 Delay(time_write);     /* hold */ 
 for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){    

lt_ramp0=v old)/ramp_num; 

m = AO_VWrite (1, 0, volt_ramp0); 
AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 

Delay(volt_write_on/ramp_num/ramp_rate); 

  } 

0=volt_hold; 

=1; i_ramp<=ramp_num; i_ramp++){    

amp0=volt_ramp0 + (volt_write_off/2-volt_hold)/ramp_num; 
volt_ramp1=volt_ramp1 + (volt_write_off/2)/ramp_num; 
m = AO_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 

volt_write_off/ramp_num/ramp_rate); 

e_write);     /* hold */ 
num; i_ramp++){    

volt_ramp0=volt_ramp0 - (volt_write_off/2-volt_hold)/ramp_num; 
mp1=volt_ramp1 - (volt_write_off/2)/ramp_num; 

m = AO_VWrite (1, 0, volt_ramp0); 
(1, 1, (-volt_ramp1-0.06225)/0.9938); 

e_off/ramp_num/ramp_rate); 

(volt_write_on/2)); 
Write (1, 1, (-volt_write_on/2-0.06225)/0.9938); 

    d[3]=(char)(48+
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d
    }        
   for(k=1;k<=16;k++){ 
    if((k!=i)&&(k!=
     if 
      i
      c
      
      c[
      c
      c
      ibwrt(Devic
      }
      e
      c
      c
 /*  Ground the columns */ 
      c[
      c
      c
      ibwrt(Devic
      }
     }
     e
     d
     d
     d[
     d[
     d
     d
     ibwrt(Devic
     }
    }    
   } 
   /*  set write voltage */ 
   Delay(0.1); 
   printf("\a");   
   if(ramp==1){ 
    if(cross_point[i
     volt_ramp0=volt_hold; 
     volt_ramp1=0.0; 
   
  /* ramp-up */    
      volt_ramp0=volt_ramp0 
   
     
      
      
     } 
    
    
  /* ramp-down */    
      vo olt_ramp0 - (volt_write_on/2-volt_h
      volt_ramp1=volt_ramp1 - (volt_write_on/2)/ramp_num; 
      
      m = 
      
     } 
       
    else{ 
     volt_ramp
     volt_ramp1=0.0; 
     for(i_ramp
  /* ramp-up */    
      volt_r
      
      
      
      Delay(
     } 
     Delay(tim
     for(i_ramp=1; i_ramp<=ramp_
  /* ramp-down */    
      
      volt_ra
      
      m = AO_VWrite 
      Delay(volt_writ
     } 
    } 
   }    /* with ramp */ 
   else{ 
    if(cross_point[i][j]==1){ 
     m = AO_VWrite (1, 0, 
     m = AO_V
    } 
    else{ 
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     m = AO_VWrite (1, 0, (volt_write_off/2)); 
Write (1, 1, (-volt_write_off/2-0.06225)/0.9938); 

olt_hold); 
.06225/0.9938); 

      

   

[1]='H'; 

   /* two-digit  */ 

4]='X'; 
 

e1,d,5); 

   /* two-digit  */ 

e1,d,5); 

 = GetCtrlV itch1_5, &cross_point[1][5]); 

 = GetCtrlV h2_6, &cross_point[2][6]); 

UX_Switch3_6, &cr
int[3][7]); 

     m = AO_V
    } 
    Delay(time_write); 
    m = AO_VWrite (1, 0, v
    m = AO_VWrite (1, 1, -0
   }  /* no ramp */ 
  /*****  set holding voltage to the row, and Ground to the column  *****/  
    c[0]='C';  
      c[1]='A'; 
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Devic  e1,c,4); 
    c[0]='N';     
      c[1]='B'; 
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4); 
    if (j<2){ 
    c[0]='C'; 
    c
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    c[0]='N'; 
    c[1]='C'; 
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4); 
    } 
    else{ 
    d[0]='C'; 
    d[1]='H'; 
    d[2]='1';   
    d[3]=(char)(48+j-2); 
    d[
    d[5]='\0';
    ibwrt(Devic
    d[0]='N'; 
    d[1]='C'; 
    d[2]='1';   
    d[3]=(char)(48+j-2); 
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Devic
    } 
   /*ibwrt(Device1,"P0X",3);     open all relays  5-21-01 */ 
  }   /*   finish setting one selected bit  */ 
  }   /* j */ 
  } 
 /* close i loop  */ 
 m=SetCtrlVal(daq,MUX_Config_complete,1);   
 return 1; 
 } 
int configure (int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
 { 
 int i,j,k,m,i_ramp; 
 char c[5],d[6]; 
 if (all_control !=1){ 
 
 m = GetCtrlVal (daq, MUX_Switch1_1, &cross_point[1][1]); 
 m = GetCtrlVal (daq, MUX_Switch1_2, &cross_point[1][2]); 
 m = GetCtrlVal (daq, MUX_Switch1_3, &cross_point[1][3]); 
 m = GetCtrlVal (daq, MUX_Switch1_4, &cross_point[1][4]); 
 m al (daq, MUX_Sw
 m = GetCtrlVal (daq, MUX_Switch1_6, &cross_point[1][6]); 
 m = GetCtrlVal (daq, MUX_Switch1_7, &cross_point[1][7]); 
 m = GetCtrlVal (daq, MUX_Switch1_8, &cross_point[1][8]); 
 m = GetCtrlVal (daq, MUX_Switch2_1, &cross_point[2][1]); 
 m = GetCtrlVal (daq, MUX_Switch2_2, &cross_point[2][2]); 
 m = GetCtrlVal (daq, MUX_Switch2_3, &cross_point[2][3]); 
 m = GetCtrlVal (daq, MUX_Switch2_4, &cross_point[2][4]); 
 m = GetCtrlVal (daq, MUX_Switch2_5, &cross_point[2][5]); 
 m al (daq, MUX_Switc
 m = GetCtrlVal (daq, MUX_Switch2_7, &cross_point[2][7]); 
 m = GetCtrlVal (daq, MUX_Switch2_8, &cross_point[2][8]); 
 m = GetCtrlVal (daq, MUX_Switch3_1, &cross_point[3][1]); 
 m = GetCtrlVal (daq, MUX_Switch3_2, &cross_point[3][2]); 
 m = GetCtrlVal (daq, MUX_Switch3_3, &cross_point[3][3]); 
 m = GetCtrlVal (daq, MUX_Switch3_4, &cross_point[3][4]); 
 m = GetCtrlVal (daq, MUX_Switch3_5, &cross_point[3][5]); 
 m = GetCtrlVal (daq, M oss_point[3][6]); 
 m = GetCtrlVal (daq, MUX_Switch3_7, &cross_po
 m = GetCtrlVal (daq, MUX_Switch3_8, &cross_point[3][8]); 
 m = GetCtrlVal (daq, MUX_Switch4_1, &cross_point[4][1]); 
 m = GetCtrlVal (daq, MUX_Switch4_2, &cross_point[4][2]); 
 m = GetCtrlVal (daq, MUX_Switch4_3, &cross_point[4][3]); 
 m = GetCtrlVal (daq, MUX_Switch4_4, &cross_point[4][4]); 
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 m = GetCtrlVal (daq, MUX_Switch4_5, &cross_point[4][5]); 
 m = GetCtrlVal (daq, MUX_Switch4_6, &cross_point[4][6]); 
 m = GetCtrlVal (daq, MUX_Switch4_7, &cross_point[4][7]); 
 m = GetCtrlVal (daq, MUX_Switch4_8, &cross_point[4][8]); 
 m = GetCtrlVal (daq, M oss_point[5][1]); UX_Switch5_1, &cr

UX_Switch5_2, &cr

 = GetCtrlV

 

****/  

     /*******

_Config_complete,0); 
q,MUX_Memory_Check_Done,0); 

dummy line */ 
e1

{ 
 

i][j]==1){       2-17-01  */ 
[0]='C';        

   c[1]='B'; 
 

;  
      

 

; 

 

; 

 

; 

    /* two-digit  */ 

 m = GetCtrlVal (daq, M oss_point[5][2]); 
 m = GetCtrlVal (daq, MUX_Switch5_3, &cross_point[5][3]); 
 m al (daq, MUX_Switch5_4, &cross_point[5][4]); 
 m = GetCtrlVal (daq, MUX_Switch5_5, &cross_point[5][5]); 
 m = GetCtrlVal (daq, MUX_Switch5_6, &cross_point[5][6]); 
 m = GetCtrlVal (daq, MUX_Switch5_7, &cross_point[5][7]); 
 m = GetCtrlVal (daq, MUX_Switch5_8, &cross_point[5][8]); 
 m = GetCtrlVal (daq, MUX_Switch6_1, &cross_point[6][1]); 
 m = GetCtrlVal (daq, MUX_Switch6_2, &cross_point[6][2]); 
 m = GetCtrlVal (daq, MUX_Switch6_3, &cross_point[6][3]); 
 m = GetCtrlVal (daq, MUX_Switch6_4, &cross_point[6][4]); 
 m = GetCtrlVal (daq, MUX_Switch6_5, &cross_point[6][5]); 
 m = GetCtrlVal (daq, MUX_Switch6_6, &cross_point[6][6]); 
 m = GetCtrlVal (daq, MUX_Switch6_7, &cross_point[6][7]); 
 m = GetCtrlVal (daq, MUX_Switch6_8, &cross_point[6][8]); 
 m = GetCtrlVal (daq, MUX_Switch7_1, &cross_point[7][1]); 
 m = GetCtrlVal (daq, MUX_Switch7_2, &cross_point[7][2]); 
 m = GetCtrlVal (daq, MUX_Switch7_3, &cross_point[7][3]); 
 m = GetCtrlVal (daq, MUX_Switch7_4, &cross_point[7][4]); 
 m = GetCtrlVal (daq, MUX_Switch7_5, &cross_point[7][5]); 
 m = GetCtrlVal (daq, MUX_Switch7_6, &cross_point[7][6]); 
 m = GetCtrlVal (daq, MUX_Switch7_7, &cross_point[7][7]); 
 m = GetCtrlVal (daq, MUX_Switch7_8, &cross_point[7][8]); 
 m = GetCtrlVal (daq, MUX_Switch8_1, &cross_point[8][1]); 
 m = GetCtrlVal (daq, MUX_Switch8_2, &cross_point[8][2]); 
 m = GetCtrlVal (daq, MUX_Switch8_3, &cross_point[8][3]); 
 m = GetCtrlVal (daq, MUX_Switch8_4, &cross_point[8][4]); 
 m = GetCtrlVal (daq, MUX_Switch8_5, &cross_point[8][5]); 
 m = GetCtrlVal (daq, MUX_Switch8_6, &cross_point[8][6]); 
 m = GetCtrlVal (daq, MUX_Switch8_7, &cross_point[8][7]); 
 m = GetCtrlVal (daq, MUX_Switch8_8, &cross_point[8][8]); 
 } 
 else{ 
  m = GetCtrlVal (daq, MUX_ALL_SWITCHES, &all_switch); 
  for(i=1;i<=8;i++){ 
   for(j=1;j<=8;j++){ 
   cross_point[i][j]=all_switch; 
   } 
  } 
 } 
 m = GetCtrlVal (daq, MUX_TIME_WRITE, &time_write); 
 m = GetCtrlVal (daq, MUX_VOLT_WRITE_ON, &volt_write_on); 
 m = GetCtrlVal (daq, MUX_VOLT_WRITE_OFF, &volt_write_off); 
 m = GetCtrlVal (daq, MUX_VOLT_HOLD, &volt_hold);      
 m = GetCtrlVal (daq, MUX_Ramp, &ramp);  
 m = GetCtrlVal (daq, MUX_Ramp_Rate, &ramp_rate);  
  
/********   starting of configur the loop ing   ***
 
   *  test ********/ 
 m=SetCtrlVal(daq,MUX_STOP_SCAN,1);  
 m=SetCtrlVal(daq,MUX
 m=SetCtrlVal(da
 ibwrt(Device1,"CA25X",5);     /* 
 ibwrt(Devic ,"NA25X",5);  
 for(i=1;i<=8;i++)
  for(j=1;j<=8;j++){
  /*  if(cross_point[
    c
   
    c[2]=(char)(48+i);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    c[0]='N';  
    c[1]='A'; 
    c[2]=(char)(48+i);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    if (j<2){ 
    c[0]='C'; 
    c[1]='C'; 
    c[2]=(char)(48+j+8);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    c[0]='N'; 
    c[1]='H'; 
    c[2]=(char)(48+j+8);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    } 
    else{ 
    d[0]='C'; 
    d[1]='C'; 
    d[2]='1';  
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    d[3]=(char)(48+j-2); 

; 

    /* two-digit  */ 
); 

; 
      
      

 

;  

 

;  

); 

;  
 } 
}         

{ 
){ 

 if (k<=8){ 
  c[0]='C'; 

   c[1]='A';   /* apply -1.0 volt to rows from Keithley 5-25-01  */ 
2]=(char)(48+k); 

[3]='X'; 
[4]='\0'; 

e1,c,4); 
 
lse{ 

   c[0]='C'; 
 c[1]='H';     

/*  Ground the columns */ 
   c[2]=(char)(48+k); 

 c[3]='X'; 
 c[4]='\0'; 

ibwrt(Device1,c,4); 

 } 
 else{ 

d[0]='C'; 

r)(48+k-10); 

ice1,d,5);  

 
0=volt_hold; 
1=0.0; 

<=ramp_num; i_ramp++){    

volt_ramp0=volt_ramp0 + (volt_write_on/2-volt_hold)/ramp_num; 
amp1=volt_ramp1 + (volt_write_on/2)/ramp_num; 

m = AO_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 

volt_write_on/ramp_num/ramp_rate); 
Delay(-volt_write_on/ramp_num/ramp_rate); 

elay(time_write);     /* hold */ 
amp=1; i_ramp<=ramp_num; i_ramp++){    

volt_ramp0=volt_ramp0 - (volt_write_on/2-volt_hold)/ramp_num; 

    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5)
    d[0]='N'; 
    d[1]='H'; 
    d[2]='1';  
    d[3]=(char)(48+j-2
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5)
    }  
  /* }   
   else{ 
    c[0]='C'; 
    c[1]='B'; 
    c[2]=(char)(48+i);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    if (j<4){ 
    c[0]='C'; 
    c[1]='A'; 
    c[2]=(char)(48+j+6);
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4)
    } 
    else{ 
    d[0]='C'; 
    d[1]='A'; 
    d[2]='1'; 
    d[3]=(char)(48+j-4
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5)
   
   
     2-17-01  */        
   for(k=1;k<=16;k++)
    if((k!=i)&&(k!=j+8)
     if (k<10){ 
     
    
   
      c[
      c
      c
      ibwrt(Devic
      }
      e
   
     
 
   
     
     
      
      } 
    
    
     
     d[1]='H'; 
     d[2]='1'; 
     d[3]=(cha
     d[4]='X'; 
     d[5]='\0'; 
     ibwrt(Dev
     } 
    }    
   } 
   /*  set write voltage */ 
   Delay(0.1); 
   printf("\a"); 
   if(ramp==1){ 
    if(cross_point[i][j]==1){
     volt_ramp
     volt_ramp
     for(i_ramp=1; i_ramp
  /* ramp-up */    
      
      volt_r
      
      
      Delay(
      
     } 
      
     D
     for(i_r
  /* ramp-down */    
      
      volt_ramp1=volt_ramp1 - (volt_write_on/2)/ramp_num; 
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      m = AO_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 
Delay(volt_write_on/ramp_num/ramp_rate); 

(-volt_write_on/ramp_num/ramp_rate);  

d; 
1=0.0; 
=1; i_ramp<=ramp_num; i_ramp++){    

m = AO_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 
Delay(volt_write_off/ramp_num/ramp_rate); 

y(-volt_write_off/ramp_num/ramp_rate); 

e_write);     /* hold */ 
num; i_ramp++){    

volt_ramp0=volt_ramp0 - (volt_write_off/2-volt_hold)/ramp_num; 
volt_ramp1=volt_ramp1 - (volt_write_off/2)/ramp_num; 

_VWrite (1, 0, volt_ramp0); 
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938); 
Delay(volt_write_off/ramp_num/ramp_rate); 

e_off/ramp_num/ramp_rate); 

 
(volt_write_on/2)); 

Write (1, 1, (-volt_write_on/2-0.06225)/0.9938); 

 = AO_VWrite (1, 0, (volt_write_off/2)); 

 

 

0]='C'; 

    

[3]='X'; 

se{ 
 

     /* two-digit  */ 
+j-2); 

[1]='C'; 

*  open all relays (skipped  5-25-01) */ 

SetCtrlVal q,MUX_Co  

      
      
      Delay
     } 
    } 
    else{ 
     volt_ramp0=volt_hol
     volt_ramp
     for(i_ramp
  /* ramp-up */    
      volt_ramp0=volt_ramp0 + (volt_write_off/2-volt_hold)/ramp_num; 
      volt_ramp1=volt_ramp1 + (volt_write_off/2)/ramp_num; 
      
      
      
      Dela
     } 
     Delay(tim
     for(i_ramp=1; i_ramp<=ramp_
  /* ramp-down */    
      
      
      m = AO
      
      
      Delay(-volt_writ
     } 
    } 
   }    /* with ramp */ 
   else{ 
    if(cross_point[i][j]==1){
     m = AO_VWrite (1, 0, 
     m = AO_V
    } 
    else{ 
     m
     m = AO_VWrite (1, 1, (-volt_write_off/2-0.06225)/0.9938); 
    }
    Delay(time_write); 
    m = AO_VWrite (1, 0, volt_hold); 
    m = AO_VWrite (1, 1, -0.06225/0.9938);
   }  /* no ramp */ 
  /*****  set holding voltage to the row, and Ground to the column  *****/  
    c[        
      c[1]='A'; 
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    c[0]='N';    
      c[1]='B'; 
    c[2]=(char)(48+i); 
    c
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    if (j<2){ 
    c[0]='C'; 
    c[1]='H'; 
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    c[0]='N'; 
    c[1]='C'; 
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    } 
    el
    d[0]='C';
    d[1]='H'; 
    d[2]='1'; 
    d[3]=(char)(48
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5); 
    d[0]='N'; 
    d
    d[2]='1';      /* two-digit  */ 
    d[3]=(char)(48+j-2); 
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5); 
    } 
   /*   ibwrt(Device1,"P0X",3);    /
  } 
 } 
/* close the loop  */ 
m= (da nfig_complete,1); 
return 1; 
} 
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int logic_check(int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2){ 
 /*SetCtrlVal(daq,MUX_STOP_SCAN,1);   */ 
 return 1; 
} 
int memory_check(int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2){ 

ail[9][9]; 

=SetCtrlAttr tch1_4r, ATTR_DIMMED, TRUE); 

, TRUE); 
daq,MUX witch3_1r, TRUE); 

IMMED, TRUE); 

, TRUE); 
UE); 

, TRUE); 

daq,MUX switch4_6r, 
daq,MUX switch5_1r, 

); 

); 
); 

); 

nt[i][j], (i-1)*8+j, cross_point[i][j],VAL_BLUE); 

e 707A  */   
    /* Point to present relays  */ 

/* use relay row D to read (Vread+AC from function generater)  */  

 

  

     /* amp-meter  */ 
+8); 

c[4]='\0'; 
 ibwrt(Device1,c,4);  

  c[0]='N'; 
       /*  GND  */ 

   c[2]=(char)(48+j+8); 
   c[3]='X'; 

 /*SetCtrlVal(daq,MUX_STOP_SCAN,1);   */ 
int i,j,k,ii,m;  
double r_dummy; 
int f
double AD0[9][9][100],AD1[9][9][100]; 
char c[5],d[6]; 
 DeleteGraphPlot (daq, MUX_GRAPH, -1, VAL_IMMEDIATE_DRAW);   
 m=SetCtrlVal(daq,MUX_Memory_Check_Done,0); 
 m=SetCtrlVal(daq,MUX_Set_phase,0); 
/* 
 m=SetCtrlAttribute(daq,MUX_switch1_1r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch1_2r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch1_3r, ATTR_DIMMED, TRUE); 
 m ibute(daq,MUX_swi
 m=SetCtrlAttribute(daq,MUX_switch1_5r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch1_6r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch2_1r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch2_2r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch2_3r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch2_4r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch2_5r, ATTR_DIMMED, TRUE);  
 m=SetCtrlAttribute(daq,MUX_switch2_6r, ATTR_DIMMED
 m=SetCtrlAttribute( _s ATTR_DIMMED, 
 m=SetCtrlAttribute(daq,MUX_switch3_2r, ATTR_D
 m=SetCtrlAttribute(daq,MUX_switch3_3r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch3_4r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch3_5r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch3_6r, ATTR_DIMMED
 m=SetCtrlAttribute(daq,MUX_switch4_1r, ATTR_DIMMED, TR
 m=SetCtrlAttribute(daq,MUX_switch4_2r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch4_3r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch4_4r, ATTR_DIMMED
 m=SetCtrlAttribute(daq,MUX_switch4_5r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute( _ ATTR_DIMMED, TRUE);  
 m=SetCtrlAttribute( _ ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch5_2r, ATTR_DIMMED, TRUE); 
 m ibute(daq,MUX_switch5_3r, ATTR_DIMMED, TRUE); =SetCtrlAttr
 m=SetCtrlAttribute(daq,MUX_switch5_4r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch5_5r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch5_6r, ATTR_DIMMED, TRUE);  
 m=SetCtrlAttribute(daq,MUX_switch6_1r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch6_2r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch6_3r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch6_4r, ATTR_DIMMED, TRUE); 
 m=SetCtrlAttribute(daq,MUX_switch6_5r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch6_6r, ATTR_DIMMED, TRUE);  
12-12-01  LED's removed and kept in an untitled panel    */ 
 for(i=1;i<=8;i++){ 
  for(j=1;j<=8;j++){ 
  PlotLine(daq, MUX_GRAPH, (i-1)*8+(j-1), cross_poi
  } 
 } 
 m = GetCtrlVal (daq, MUX_TIME_READ, &time_read); 
 m = GetCtrlVal (daq, MUX_VOLT_READ, &volt_read); 
 m = GetCtrlVal (daq, MUX_Threshold_High, &threshold_high); 
 m = GetCtrlVal (daq, MUX_Threshold_Low, &threshold_low); 
 m = GetCtrlVal (daq, MUX_NUM_READ, &num_read); 
 m = GetCtrlVal (daq, MUX_VOLT_HOLD, &volt_hold);   
 fp_out=fopen(tmp_file,"w"); 
/* Device1=ibdev(0,18,0,10,1,0);     /* initiat
/* ibwrt(Device1,"E0X",3);    
 for(i=1;i<=8;i++){ 
  for(j=1;j<=8;j++){ 
    c[0]='C'; 
    c[1]='D';  
   2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4); 
    c[0]='N'; 
    c[1]='A';   
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    if (j<2){ 
    c[0]='C'; 
    c[1]='G';   
    c[2]=(char)(48+j
    c[3]='X'; 
    
   
  
    c[1]='H'; 
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    c[4]='\0'; 

 else{ 
   d[0]='C'; 

d[1]='G';        /* amp-meter  */ 

); 
   d[4]='X'; 

  d[5]='\0'; 
   ibwrt(Device1,d,5);  

 d[0]='N'; 
  d[1]='H';        /*  GND  */ 

d[4]='X'; 
   d[5]='\0'; 

 

if (k<=8){ 
c[0]='C'; 
c[1]='A';    /* apply -1.0 volt to rows from Keithley 5-25-01  */ 
c[2]=(char)(48+k); 
c[3]='X'; 
c[4]='\0'; 
ibwrt(Device1,c,4); 
} 
else{ 
c[0]='C'; 
c[1]='H';     

c[2]=(char)(48+k); 
c[3]='X'; 
c[4]='\0'; 
ibwrt(Device1,c,4); 
} 

8+k-10); 

1,d,5);  

  

   
 */ 

f("\a");    
 0, volt_read);    /* channel 0's output goes to relay row B directly  

ction generater  */ 
elay (0.1);   /* delay after setting the read voltage */ 

/*manually set phase on the lock-in  5_28_01  */  
  
_phase,1);     

,0);     taken out for non-volatile devices   6-5-01*/ 

 (1, 0, 1, &adch0);   /* output from current amplifier  */  
 /* output from lock-in amplifier   */ 

i][j][ii]=-adch0;   /****  Current Amplifier revise the polarity!!  *****/ 
;   

ii>0) m=Plot  MUX_GRAPH, 8 0*(i-1) -

H, 8.0*(i-1)+j-1+(double)(ii-1)/(double)(num_read-1), AD1[i][j][ii-1], 8.0*(i-1)+j-

      

     

e1,c,4); 

    ibwrt(Device1,c,4); 
    } 
   
 
    
    d[2]='1'; 
    d[3]=(char)(48+j-2
 
  
 
   
  
    d[2]='1'; 
    d[3]=(char)(48+j-2); 
    
 
    ibwrt(Device1,d,5); 
    } 
   for(k=1;k<=16;k++){ 
    if((k!=i)&&(k!=j+8)){ 
     if (k<10){ 
      
      
      
      
      
      
      
      
      
      
      
 /*  Ground the columns */ 
      
      
      
      
      
     } 
     else{ 
     d[0]='C'; 
     d[1]='H'; 
     d[2]='1'; 
     d[3]=(char)(4
     d[4]='X'; 
     d[5]='\0'; 
     ibwrt(Device
     } 
    }  
   } 
 
   /*  set read voltage and measure the current */
   /* Delay (0.1);   5-25-01 
   print
   m = AO_VWrite (1,
       and goes to row D through fun
   D
   
   /*  
   m=SetCtrlVal(daq,MUX_Set
   scanf("%f",r_dummy); 
   m=SetCtrlVal(daq,MUX_Set_phase
 
   for (ii=0;ii<num_read;ii++){ 
   m = AI_VRead
   m = AI_VRead (1, 1, 1, &adch1);  
    
   AD0[
   AD1[i][j][ii]=adch1
    
   if( Line (daq, .0*(i-1)+j-1+(double)(ii-1)/(double)(num_read-1), AD0[i][j][ii-1], 8. +j
1+(double)(ii)/(double)(num_read-1), AD0[i][j][ii], VAL_RED);      
   if(ii>0) m=PlotLine (daq, MUX_GRAP
1+(double)(ii)/(double)(num_read-1), AD1[i][j][ii], VAL_GREEN);      
    
   Delay (time_read/num_read); 
   } 
 /*****  set holding voltage to the row, and Ground to the column  *****/  
    c[0]='C';  
      c[1]='A'; 
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  
    c[0]='N';   
      c[1]='D'; 
    c[2]=(char)(48+i); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Devic  
    if (j<2){ 
    c[0]='C'; 
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    c[1]='H'; 
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4);  

    /* two-digit  */ 

  /* two-digit  */ 

[4]='X'; 

hreshold_high) { 
j]=1; 

  5-25-01  */ 

 voltage to the rows, and Ground to the columns  *****/  

1]='A'; y -1.0 v

[0]='C'; 
 /*  Ground the columns */ 

[4]='\0'; 

k-10); 

E); 

    c[0]='N'; 
    c[1]='G'; 
    c[2]=(char)(48+j+8); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4); 
    } 
    else{ 
    d[0]='C'; 
    d[1]='H'; 
    d[2]='1';  
    d[3]=(char)(48+j-2); 
    d[4]='X'; 
    d[5]='\0'; 
    ibwrt(Device1,d,5); 
    d[0]='N'; 
    d[1]='G'; 
    d[2]='1';    
    d[3]=(char)(48+j-2); 
    d
    d[5]='\0'; 
    ibwrt(Device1,d,5); 
    } 
   fail[i][j]=0; 
   if(cross_point[i][j]==0){ 
    for (ii=0;ii<num_read;ii++){ 
     if(AD0[i][j][ii]>threshold_low) { 
      fail[i][j]=1; 
      break; 
     }  
    } 
   } 
   if(cross_point[i][j]==1){ 
    for (ii=0;ii<num_read;ii++){ 
     if(AD0[i][j][ii]<t
      fail[i][
      break; 
     }  
    } 
   } 
   /*  m = AO_VWrite (1, 0, 0.0);  
   ibwrt(Device1,"P0X",3);   
  } 
 } 
/* close the loop  */ 
 
/*****  set holding
  for(k=1;k<=16;k++){ 
  if (k<10){ 
   if (k<=8){ 
    c[0]='C'; 
    c[  /* appl olt to rows from Keithley 5-25-01  */ 
    c[2]=(char)(48+k); 
    c[3]='X'; 
    c[4]='\0'; 
    ibwrt(Device1,c,4); 
    } 
    else{ 
    c
    c[1]='H';  
    c[2]=(char)(48+k); 
    c[3]='X'; 
    c
    ibwrt(Device1,c,4); 
    } 
   } 
   else{ 
   d[0]='C'; 
   d[1]='H'; 
   d[2]='1'; 
   d[3]=(char)(48+
   d[4]='X'; 
   d[5]='\0'; 
   ibwrt(Device1,d,5);  
   } 
  } 
/* 
if(fail[1][1]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_1r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch1_1r,cross_point[1][1]);}  
if(fail[1][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_2r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch1_2r,cross_point[1][2]);}  
if(fail[1][3]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_3r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch1_3r,cross_point[1][3]);} 
if(fail[1][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_4r, ATTR_DIMMED, FALS
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 m=SetCtrlVal(daq,MUX_switch1_4r,cross_point[1][4]);} 
if(fail[1][5]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_5r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch1_5r,cross_point[1][5]);} 
if(fail[1][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch1_6r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch1_6r,cross_point[1][6]);} 
if(fail[2][1]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_1r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch2_1r,cross_point[2][1]);} 
if(fail[2][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_2r, ATTR_DIMMED, FALSE); 

, FALSE); 
nt[3][4]);}  

TR_DIMMED, FALSE); 
_swi

witch4_2r, ATTR_DIMMED, FALSE); 
q,MUX_switch4_2r,cross_point[4][2]);}  

daq,MUX_switch4_3r, ATTR_DIMMED, FALSE); 

r, ATTR_DIMMED, FALSE); 
;}  

daq,MUX switch4_5r, FALSE); 

E); 

, FALSE); 
nt[5][3]);}  

FALSE); 
);}  

SE); 
);}  

nt[5][6]);}  

m=SetCtrlAttribute(daq,MUX_switch6_1r, ATTR_DIMMED, FALSE); 

D, FALSE); 
etCtrlVal(daq,MUX_switch6_2r,cross_point[6][2]);}  

D, FALSE); 
etCtrlVal(daq,MUX_switch6_3r,cross_point[6][3]);}  

D, FALSE); 
etCtrlVal(daq,MUX_switch6_4r,cross_point[6][4]);}  

 m=SetCtrlVal(daq,MUX_switch2_2r,cross_point[2][2]);}  
if(fail[2][3]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_3r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch2_3r,cross_point[2][3]);}  
if(fail[2][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_4r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch2_4r,cross_point[2][4]);}  
if(fail[2][5]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_5r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch2_5r,cross_point[2][5]);}  
if(fail[2][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch2_6r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch2_6r,cross_point[2][6]);}  
if(fail[3][1]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_1r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch3_1r,cross_point[3][1]);}  
if(fail[3][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_2r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch3_2r,cross_point[3][2]);}  
if(fail[3][3]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_3r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch3_3r,cross_point[3][3]);}  
if(fail[3][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_4r, ATTR_DIMMED
 m=SetCtrlVal(daq,MUX_switch3_4r,cross_poi
if(fail[3][5]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_5r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch3_5r,cross_point[3][5]);}  
if(fail[3][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch3_6r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch3_6r,cross_point[3][6]);}  
if(fail[4][1]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch4_1r, AT
 m=SetCtrlVal(daq,MUX tch4_1r,cross_point[4][1]);}  
if(fail[4][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_s
 m=SetCtrlVal(da
if(fail[4][3]==0) { 
 m=SetCtrlAttribute(
 m=SetCtrlVal(daq,MUX_switch4_3r,cross_point[4][3]);}  
if(fail[4][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch4_4
 m=SetCtrlVal(daq,MUX_switch4_4r,cross_point[4][4])
if(fail[4][5]==0) { 
 m=SetCtrlAttribute( _ ATTR_DIMMED, 
 m=SetCtrlVal(daq,MUX_switch4_5r,cross_point[4][5]);}  
if(fail[4][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch4_6r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch4_6r,cross_point[4][6]);}  
 
if(fail[5][1]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_1r, ATTR_DIMMED, FALS
 m=SetCtrlVal(daq,MUX_switch5_1r,cross_point[5][1]);}  
if(fail[5][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_2r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch5_2r,cross_point[5][2]);}  
if(fail[5][3]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_3r, ATTR_DIMMED
 m=SetCtrlVal(daq,MUX_switch5_3r,cross_poi
if(fail[5][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_4r, ATTR_DIMMED, 
 m=SetCtrlVal(daq,MUX_switch5_4r,cross_point[5][4]
if(fail[5][5]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_5r, ATTR_DIMMED, FAL
 m=SetCtrlVal(daq,MUX_switch5_5r,cross_point[5][5]
if(fail[5][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch5_6r, ATTR_DIMMED, FALSE); 
 m=SetCtrlVal(daq,MUX_switch5_6r,cross_poi
if(fail[6][1]==0) { 
 
 m=SetCtrlVal(daq,MUX_switch6_1r,cross_point[6][1]);}  
if(fail[6][2]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch6_2r, ATTR_DIMME
 m=S
if(fail[6][3]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch6_3r, ATTR_DIMME
 m=S
if(fail[6][4]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch6_4r, ATTR_DIMME
 m=S
if(fail[6][5]==0) { 
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 m=SetCtrlAttribute(daq,MUX_switch6_5r, ATTR_DIMMED, FALSE); 
etCtrlVal(daq,MUX_switch6_5r,cross_point[6][5]);}  

D, FALSE); 
etCtrlVal(daq,MUX_switch6_6r,cross_point[6][6]);}  

for(j=1;j<=8;j++){ 

%d %d %d %f %f\n", i, j, cross_point[i][j], AD0[i][j][k], AD1[i][j][k]);      

e(fp_out); 

t control, int event, 

Data2){ 
 

line[100]; 

 = 0; i < num_read*64; ++i) 

sscanf(line,"%d %d %d %f %f", &tmp1[i], &tmp2[i], &tmp3[i], &tmp4[i], &tmp5[i]); 

ptPopup ("SAVE FILE", "Enter the file name (*.txt).", name, 20); 

fprintf(fp_out,"%d %f %f\n",tmp3[i], tmp4[i], tmp5[i]); 

Data2) 

case EVENT_COMMIT: 

case EVENT_RIGHT_CLICK: 

0; 

panel, int control, int event, void *callbackData, int eventData1, int eventData2) 

  
0; 

nt control, int event, 

 

  DeleteGraphPlot (daq, MUX_GRAPH, -1, VAL_IMMEDIATE_DRAW);     
L_IMMEDIATE_DRAW);       */ 

 m=S
if(fail[6][6]==0) { 
 m=SetCtrlAttribute(daq,MUX_switch6_6r, ATTR_DIMME
 m=S
 

12-12-01 taken out, because the LED's are removed*/ 
 

m=SetCtrlVal(daq,MUX_Memory_Check_Done,1); 
 for(i=1;i<=8;i++){ 
  
   for (k=0;k<num_read;k++){    
    fprintf(fp_out, "
    } 
   } 
  }      
 fclos
 return 1; 
} 
int stop(int panel, in
  void *callbackData, int eventData1, int eventData2){ 
 return 1; 
} 
int save_file(int panel, int control, int event, 
  void *callbackData, int eventData1, int event
 int i;
 int tmp1[6400],tmp2[6400],tmp3[6400]; 
 float tmp4[6400], tmp5[6400]; 
 char 
 char name[30]; 
 fp_out=fopen (tmp_file,"r"); 
 for (i
  { 
  fgets(line,sizeof(line),fp_out); 
  
  } 
   fclose(fp_out); 
 Prom
 fp_out=fopen(name,"w"); 
 for (i =0; i < num_read*64; ++i) 
  
 fclose(fp_out);  
 return 1; 
} 
int quit(int panel, int control, int event, 
  void *callbackData, int eventData1, int event
{  
 int i; 
 switch (event) { 
  
   i = AO_VWrite (1, 0, 0.0);  
   i = AO_VWrite (1, 1, 0.0);  
   ibwrt(Device1,"P0X",3);  
   QuitUserInterface (0); 
   break; 
  
   break; 
 } 
 return 
} 
/* 
int load_individual_panel (int 
{ 
 daq1 = LoadPanel (0, "MUX.uir",SET_INDIVI); 
 DisplayPanel (daq1);   
 return 
} 
*/  
int clear (int panel, i
  void *callbackData, int eventData1, int eventData2) 
{  
 int i;
 switch (event) { 
  case EVENT_COMMIT: 
  
/*    DeleteGraphPlot (daq, DAQ_GRAPH_2, -1, VA
    break; 
 } 
 return 0; 
} 
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