
 68

Chapter 4

Ultra-dense crossbar molecular memory
circuits

4.1 Introduction

The past four decades have witnessed extraordinary advances in computation that have

revolutionized the way people communicate and process information. Sustained progress

in this field has largely been driven by the consistent reduction of silicon-based

microelectronic-device dimensions with accompanying increases in device density. This

guiding principle of advancing computational technology through regular increases in

device integration is widely referred to as ‘scaled CMOS’ after the ubiquitous

complementary metal-oxide-semiconductor integrated circuit, and has driven the now

famous exponential increase in computational performance as measured by any number

of metrics (e.g., speed, size, cost, power consumption, etc.). However, there are strong

indications that continued scaling of conventional CMOS technology may falter in the

near future due to physical and (perhaps more importantly) financial considerations1. This

has led to a growing consensus within the semiconductor industry that continued

improvements in information processing technology will likely occur through the

development of alternative materials, patterning methods, and architectures2, 3 that can be

 69

integrated into the well-established silicon CMOS infrastructure in the near term1, 4 while

being scalable in the long term. Ideally, any new technology should be compatible with

conventional CMOS to bridge computational requirements during its assimilation period

while having the intrinsic potential to continue the exponential pace of computational

performance once traditionally-scaled CMOS comes to an end.

These considerations have brought a great deal of attention to the possibility of

engineering molecules for use as the active electronic components in otherwise solid-

state computational systems5. While the idea of using molecules to mimic traditional

computational functions is not new6, it is only within the past decade that molecules have

been integrated into hybrid solid-state/molecular devices to perform the traditional

computational functions of rectification7, storage8, and logic9. Although a complete

picture of electronic transport through molecular junctions continues to elude theorists10,

11, molecules have nonetheless empirically demonstrated their potential for computation.

Additionally, a number of methods have been reported for assembling small numbers of

nanowire12, 13 or carbon-nanotube14, 15 devices. However, while these studies demonstrate

individual device scalability, they seldom address issues such as device pitch or density,

which are equally important from a technology standpoint.

To that end, the Heath group began a research program focused on the concept of

developing an ultra-dense molecular electronic computer architecture where the various

computational elements would be tiled together through high-density arrays of nanowires

(NWs) (Figure 4-1)5. Along with my co-workers, my research in the Heath group has

focused on a number of the components shown in Figure 4-1 for realizing this

multifunctional computational architecture. These included the development of

 70

Figure 4-1. Schematic diagram of a nanoelectronic crossbar circuit architecture. The
various computational building-blocks are shown tiled together through ultra-dense
nanowire arrays. Multiplexers (Mux) and/or demultiplexers (Demux) control signals
within the circuit and to outside electronics (power I/O). This structure is both defect-
tolerant and amendable to non-lithographic fabrication techniques.

LogicLogic Routing &
Amplification

Routing &
Amplification

MemoryMemory

Mux/DemuxMux/Demux

M
ux

/D
em

ux
M

ux
/D

em
ux

Control I/O

Po
w

er
 I/

O
Po

w
er

 I/
O

Power I/OPower I/O Power I/OPower I/O

M
ux

/D
em

ux
M

ux
/D

em
ux

M
ux

/D
em

ux
M

ux
/D

em
ux

Routing &
Amplification

Routing &
Amplification

Mux/DemuxMux/DemuxMux/DemuxMux/Demux

Mux/DemuxMux/Demux

M
ux

/D
em

ux
M

ux
/D

em
ux

Po
w

er
 I/

O
Po

w
er

 I/
O

techniques for patterning ultra-high-density arrays of silicon NWs with precisely

controlled electronic properties (Chapter 2), and the demonstration of a field-effect

transistor (FET)-based demultiplexer capable of bridging from the sub-micrometer length

scales of conventional CMOS technology to the nanometer length scales of molecular

electronics (Chapter 3). In this chapter, I will discuss the integration of sub-lithographic

patterning techniques and [2]rotaxane-based molecular materials for the fabrication of an

ultra-dense, error-tolerant, 160,000-bit molecular electronic crossbar memory patterned at

a density of 100 gigabits per square centimeter (1×1011 bits cm–2). Before describing in

detail the fabrication and testing of this memory, I will give a brief introduction to the

 71

rich science underlying the switching mechanism of bistable [2]rotaxane molecules and

their integration into high-density crossbar architectures.

4.2 The [2]rotaxane switching cycle

Figure 4-2.A shows the molecular structure of a bistable [2]rotaxane HRT54+ used in the

crossbar molecular memory circuits discussed herein. This molecule was synthesized by

Dr. Hsian-Rong Tseng of the J. Fraser Stoddart group at UCLA using the techniques of

supramolecular16 template-directed17, 18 chemical synthesis. [2]Rotaxanes consist of two

mechanically-interlocked components: an amphiphilic dumbbell-shaped component and a

π-electron-accepting cyclobis(paraquat-p-phenylene) (CBPQT4+) ring (blue). The

dumbbell component features two bulky stoppers (light blue and grey) on either end to

prevent the ring from slipping off the [2]rotaxane shaft and to facilitate orientational

incorporation into solid-state devices via Langmuir-Blodgett techniques. The CBPQT4+

ring can translate along the shaft of the dumbbell-shaped component to sit at one of two

π-electron-donating recognition sites: the tetrathiafulvalene (TTF) unit (green) or the 1,5-

dioxynapthalene unit (DNP) (red). [2]Rotaxanes have been extensively studied

experimentally19-29 and theoretically30-33 in a variety of environments to elucidate the

physical mechanism underlying their switching behavior, and to quantify the switching

kinetics and equilibrium thermodynamics. Under ambient conditions, the CBPQT4+ ring

preferentially encircles the TTF unit over the DNP unit. For the [2]rotaxane RTTF4+

(which is very similar to HRT54+) in acetonitrile solution, this equilibrium is greater than

 72

4PF6
–

O

O

O

O

O

O

O

O

O

SS

O

O

SS

O

CH2 CH2

OO

CH2

N N

N N

+ +
++

O O O

O

OMe

O

OMe

O

OMe

O

4PF6
–

O

O

O

O

O

O

O

O

O

SS

O

O

SS

O

CH2 CH2

OO

CH2

N N

N N

+ +
++

N N

N N

+ +
++

O O O

O

OMe

O

OMe

O

OMe

O

4PF6
–

O

O

O

O

O

O

O

O

O

SS

O

O

SS

O

N N

N N
+ +

++

CH2 CH2

OO

CH2

O O O

O

OMe

O

OMe

O

OMe

O

Figure 4-2. Molecular structure and energy diagram of the bistable [2]rotaxane
HRT54+. A. At equilibrium, the ground-state co-conformation (GSCC) is energetically
favored over the metastable-state co-conformation (MSCC) by a free energy of ΔG°. This
corresponds to a GSCC-to-MSCC distribution of about 9:1. Within a Si/mol/Ti MSTJ (see
text), the molecule is oriented with the (light blue) hydrophilic stopper in contact with the
Si electrode and the grey hydrophobic stopper in contact with the Ti electrode. B. The
potential energy landscape revealing the basis of bistability in [2]rotaxane molecular
switches is plotted against the reaction coordinate, Q, representing translation of the ring
from the TTF unit to the DNP unit. The rate of relaxation from the MSCC (‘1’) state to the
GSCC (‘0’) state depends on the energy barrier, ΔG‡, which increases with the viscosity of
the physical environment (e.g., ΔG‡

solid-state > ΔG‡
solution).

GSCC

90 percent, and is described by a free energy change of ΔG° = +1.6 kcal/mol (Figure 4-

2.B) when the CBPQT4+ ring moves from the TTF to the DNP unit20. Thus, the co-

conformation with the CBPQT4+ ring encircling the TTF unit is referred to as the ground-

state co-conformation of the molecule. Recent experiments20 have shown that the ground

state equilibrium distribution of these molecules is dominated by molecular structure,

MSCC

A B

hydrophobic
stopper

ΔG °

hydrophilic
stopper

~ 9:1

 73

with the physical environment (e.g., solution or solid-state) of the molecular-switch

playing only a minor role. Within a silicon/molecule(s)/titanium (Si/mol/Ti) solid-state

molecular-switch tunnel junction (MSTJ), the ground-state co-conformation corresponds

to the low conductivity or binary ‘0’ state of the molecule.

The universal19 molecular-mechanical switching mechanism of bistable

[2]rotaxanes is shown in Figure 4-3. Starting at the ground-state co-conformation

(CBPQT4+ ring encircling the TTF unit), the first two oxidation states of the molecule

result from sequential oxidations of the TTF unit corresponding to the reaction TTF0

TTF TTF2+. Upon forming the TTF radical cation, coulombic

repulsion between the CBPQT4+ ring and the TTF unit results in translation of the ring

from the TTF unit to the DNP unit. This process occurs on a millisecond time scale27-29,

and is believed to convert all of the molecules from their ground-state co-conformation to

⎯→⎯
−−e +• ⎯→⎯

−−e +•

+•

Figure 4-3. Bistable [2]rotaxane switching cycle. Starting from the ground state with the
CBPQT4+ ring (blue, each white dot corresponding to a +2 charge) encircling the TTF (green)
unit and moving clockwise: The TTF unit is oxidized (highlighted now) resulting in translation
of the ring from the TTF to DNP (red) unit and formation of the metastable state after the TTF
unit regains neutrality. The molecule can relax back to the ground state through the rate-
limiting kinetic step, or through the clockwise loop on the left in which the ring is reduced
resulting in recovery of the ground state at least one thousand times faster.

Ground State

Rate
Limiting

Step

Negative
Voltage
Pulse

Positive
Voltage
Pulse

Metastable State

–2e– –e–

+2e– +e–

Ground State

Rate
Limiting

Step

Negative
Voltage
Pulse

Positive
Voltage
Pulse

Metastable State

–2e– –e–

+2e– +e–

Ground State

Rate
Limiting

Step

Negative
Voltage
Pulse

Positive
Voltage
Pulse

Metastable State

–2e– –e–

+2e– +e–

 74

a translational isomer with the ring encircling the DNP unit, referred to as the metastable-

state co-conformation of the molecule. Within a Si/mol/Ti MSTJ, this co-conformation

corresponds to the high conductivity or binary ‘1’ state of the molecule, and is obtained

by applying a positive voltage of about 1.5 V across the molecule (with respect to the

hydrophilic stopper, or equivalently, silicon electrode; see Figure 4-2.A).

Neutrality is quickly restored to the TTF unit in the absence of an oxidizing

potential; however, the CBPQT4+ ring continues to encircle the DNP unit for a period of

time due the energy barrier of ΔG‡ = 22.5 kcal/mol (HRT54+) shown in Figure 4-2.B.

Recovery of the ground- to metastable-state equilibrium distribution (~9:1) is a thermally

activated process, and temperature-dependent relaxation-time measurements have been

used to understand the kinetics of this relaxation20, 34. From a device perspective,

relaxation from the metastable-state co-conformation (‘1’ state) to the ground-state co-

conformation (‘0’ state) corresponds to the volatility or bit-retention time of a Si/mol/Ti

MSTJ. For the [2]rotaxane RTTF4+ in a 50-μm2 MSTJ, this relaxation time was measured

to be about 58 minutes at room temperature20.

The ground-state equilibrium distribution with the CBPQT4+ ring encircling the

TTF unit (> 90%) can be recovered at least 1000 times more quickly (this is a lower

limit; the actual value was not obtained experimentally)25, 35, 36 by electrochemically

reducing the two bipyridinium units in the CBPQT4+ ring to their radical cations

corresponding to the reaction CBPQT4+ CBPQT . According to previous

investigations37, 38, the doubly-reduced CBPQT ring then loses its affinity for the π-

electron-donating DNP recognition site, and the molecule relaxes back to its ground-state

co-conformation with the ring encircling the TTF unit before neutrality is restored. In

⎯⎯ →⎯
−+ e2 +•• 2

+•• 2

 75

terms of the solid-state switching mechanism, this corresponds to switching the molecule

from its high conductivity ‘1’ state to its low conductivity ‘0’ state, and is accomplished

by applying a negative voltage of about 1.5 V to the molecule at the hydrophilic stopper,

or equivalently, to the silicon electrode of a Si/mol/Ti MSTJ.

4.3 The crossbar architecture

The crossbar (Figure 4-1) is an attractive architecture for nanoelectronic circuitry for a

number of reasons5, 9, 39. First, nanoelectronic circuits based on the crossbar structure are

tolerant of manufacturing defects40, 41. Each device in the crossbar structure can be

uniquely addressed by two crossed wires that define the junction. If initial testing reveals

that a device is defective; its address can be stored and routed around during future

computations. This characteristic becomes increasingly important as electronic devices

approach macromolecular dimensions and non-traditional (and imperfect) fabrication

methods (e.g., self-assembly) are employed. A proof-of-concept demonstration that

robust computation can be obtained from a configurable circuit with defective

components was given by Hewlett Packard’s defect-tolerant, custom-configurable

computing machine, Teramac42. The Teramac computer had nearly a quarter million

hardware defects, but through the use of testing and configuration algorithms, it could be

transformed into a robust computing machine.

Second, the crossbar architecture can be fabricated without using lithographic

techniques. This is important because it is doubtful that conventional lithographic

 76

techniques will ever be able to achieve the resolution necessary to cost-effectively

fabricate a truly nanoelectronic architecture1, 43. Self-assembly and other non-traditional

patterning methods typically generate highly regular structures, so they aren’t practical

for fabricating the arbitrarily complex architectures characteristic of traditional CMOS

microelectronics. A crossbar structure, however, consists of only two sets of straight,

aligned wires and can be readily fabricated using a variety of non-lithographic

techniques. Indeed, several groups have demonstrated methods for assembling nanowires

(NWs) into crossbar structures using fluidic alignment12, 44, Langmuir-Blodgett

alignment45, and imprinting46-48, and various architectural concepts have been introduced

that can take advantage of such circuits49-52. However, only the superlattice nanowire

pattern transfer (SNAP) method (described in Chapter 2) has been successful in

producing NW arrays aligned over the length scales required for large-scale circuitry.

Third, the highly ordered nature of NW arrays has enabled the development of

demultiplexing architectures capable of addressing 2n NWs using order (n) number of

control wire pairs (see Chapter 3)53-55. These architectures allow the selection of an

individual NW from within an array that has been patterned at sub-lithographic density

using relatively large wires patterned using traditional lithographic processing. This

demonstrates that crossbar architectures can exhibit excellent scaling from the microscale

to the nanoscale, in addition to being compatible with standard CMOS microelectronic

technology.

Finally, the crossbar architecture is the highest-density two-dimensional circuit

for which every device can be independently addressed56. Wiring overhead in a crossbar

circuit is minimized because the NWs defining a junction are used to both configure and

 77

read the device. This is in contrast to conventional CMOS-based configurable devices

that require one set of wires (address lines) to configure the device and another set of

wires (data lines) to read it. The ability to independently address every component in the

circuit is useful for memory applications, but also enables the circuit to be fully tested for

manufacturing defects so these can be routed around during configuration. However,

taking advantage of the inherent density afforded by the crossbar architecture requires the

development of electrically active thin-film materials that function within the two-

terminal junctions of the circuit.

4.4 [2]Rotaxane molecular electronic crossbar circuits

Two-terminal molecular switches, such as [2]rotaxanes, have a number of important

advantages (and some disadvantages) over more-developed two-terminal electronic

materials such as ferroelectrics57. As discussed above, comprehensive experimental and

theoretical investigations have verified the distinctly molecular basis of [2]rotaxane

electrical switching. Thus, devices based on these switches should scale to

macromolecular dimensions without a significant change in the switching characteristics.

Solid-state-based switching materials are unlikely to exhibit similar scaling since they

arise from inherently bulk properties. Two-terminal devices based on these materials are

switched by applying a field across the junction to polarize crystallographic domains. The

hysteresis of this polarization disappears, and the device no longer switches, once the

 78

junctions are made smaller than the domain size of the material. For ferromagnetic

materials, this is referred to as the superparamagnetic limit58.

Another advantage of [2]rotaxane-based devices is that the voltage at which the

molecular switches are opened or closed is very stable. This is because the switching

mechanism is based on an electrochemical process in which current has to flow in or out

of molecular orbitals before the molecule isomerizes to its high- or low-resistance co-

conformations. In contrast, domain polarization is driven by nucleation events, and so is

intrinsically statistical. A consequence of this nucleation-driven switching mechanism is

that the field required to switch solid-state-based devices can fluctuate randomly from

one device to the next within a crossbar circuit, or even from one switching cycle to the

next within a single device.

In a crossbar structure, a given junction is switched by applying a voltage, V,

across the wires defining the junction. To avoid switching every junction sharing one of

the two address lines, V is split into V2
1− and V2

1+ components and applied

symmetrically across the two wires of the junction. Thus, junctions in the given row and

column only receive half of the required switching voltage and should not switch.

Nevertheless, because the required field for domain polarization is subject to statistical

fluctuation, V2
1± occasionally generates a sufficient field to inadvertently switch

junctions that received only half the switching voltage. This is generally referred to as the

‘half-select’ problem and is a generic problem for crossbar circuits utilizing domain-

switched electronic materials. To the contrary, the half-select problem has not been

observed in the [2]rotaxane-based crossbar circuits discuss herein (discussed in Section

4.6).

 79

Despite the significant advantages of [2]rotaxane switches in terms of scalability

and operability in crossbar structures, these switches do have some drawbacks. For one,

the relaxation of the switch from its low-resistance binary ‘1’ state to its high-resistance

binary ‘0’ state is thermally activated. Thus, [2]rotaxane-based devices will show

temperature-dependent variations in their operation. Another drawback is that [2]rotaxane

molecular-switch tunnel junctions (MSTJs) are observed to stop functioning after a

relatively low number of write cycles. In large MSTJs (~50 μm2), this number ranges

from 100 to 1000 cycles9, 39, and is significantly less in nanometer-scale junctions. A

possible explanation is that molecules along the perimeter of a junction are more

susceptible to environmental damage. Reducing the area of the junction increases the

fraction of molecules found along the perimeter, thus resulting in a lower average number

of write cycles. Finally, because the switching mechanism is due to large-amplitude

molecular mechanical motion, it is relatively slow. The solid-state kinetic processes

responsible for molecular mechanical switching have been quantified for a variety of

bistable [2]rotaxanes, revealing that switching occurs on a millisecond time scale27, 29.

While quite slow compared to conventional CMOS-based switches, this is not a

significant limitation since in highly parallel architectures, such as the crossbar,

computational speed may be generated by switching many devices at once rather than

quickly switching one device at a time.

 80

4.5 A 160,000 bit memory circuit patterned at 1×1011 bits/cm2

In 2002, the Heath and Stoddart groups reported on the use of bistable [2]rotaxane

molecules as the active elements within a 64-bit molecular electronic random access

memory (RAM) circuit that utilized micrometer-scale wiring9. While this work

successfully demonstrated that [2]rotaxane molecules could be used as the active

elements within in a solid-state crossbar memory circuit to store, read out, and erase

small data strings, it did not take advantage of the unique scalability offered by molecular

components. This would have required methods for patterning circuits with

macromolecular feature sizes and pitches. The Superlattice Nanowire Pattern Transfer

(SNAP) method, which can pattern ultra-dense arrays of NWs aligned over millimeter

length scales, provides this capability.

A major focus of my research in the Heath group was to integrate SNAP-

fabricated NW arrays with [2]rotaxane molecular materials to demonstrate an ultra-dense

crossbar molecular electronic memory circuit patterned at macromolecular dimensions. In

addition to demonstrating device density, we wanted to demonstrate large-scale device

integration. To that end, the SNAP method was extended from previous reports59, 60 to

generate arrays of 400 NWs that were used to construct and test a 400-by-400 crossbar

memory circuit at extreme dimensions. As Figure 4-4 shows, the entire 160,000-bit

crossbar circuit is approximately the size of a white blood cell (~13×13 μm2).

The fabrication of this molecular memory circuit proved to be a significant

challenge on many fronts. First and foremost was the inherent difficulty in making

 81

Figure 4-4. A false-colored optical micrograph of a memory circuit with
white blood cells for scale. White blood cells (shown in green) approximately
15 micrometers in diameter were sprinkled over this functional memory circuit to
provide a biological metric for the level of device integration accomplished in
this work. All 160,000 bits are contained within the intersection of the yellow
and blue rectangles.

devices at the density described herein, and of integrating those devices into large-scale

functional circuits. This is emphasized by contrasting the level of device integration in

our molecular memory with its analog in conventional microelectronic technology, the

dynamic random access memory (DRAM) circuit. The 2005 International Technology

Roadmap for Semiconductors (ITRS) consortium reports1 that current DRAM circuits are

patterned with a memory cell size of 0.04 μm2 and a density of 1.5×109 bits/cm2. For

comparison, the molecular memory described here is about two orders of magnitude

more dense with a memory cell size of 0.001 μm2 and device density of 1×1011 bits/cm2.

In fact, this level of integration is on par with ‘ultimately scaled’ CMOS-based

 82

microelectronic technology, which ITRS projects may reach a cell area of 0.001 μm2 and

density of 5×1010 bits/cm2 by the year 2020.

An additional fabrication challenge was developing a process flow compatible

with the delicate [2]rotaxane molecular monolayers. This was accomplished by adopting

a fabrication scheme in which the memory was built up sequentially, with the molecular

monolayer incorporated as close to the final step as possible, and then protecting that

monolayer during subsequent processing steps. It also required establishing electronic-

measurement protocols that could be employed to follow the conductivity status of the

NWs during the entire nanofabrication procedure. Details of this process flow, along with

the various electronic testing protocols, are discussed in Section 4.6. However, a list of

the major steps in memory fabrication is as follows:

1. Use SNAP to fabricate the bottom array of Si NW electrodes.

2. Pattern all necessary electrical contacts using electron beam lithography.

3. Planarize the chip using a spin-on glass.

4. Deposit the [2]rotaxane monolayer and evaporate a thin Ti layer on top.

5. Deposit a Pt NW array over the molecule/Ti layer perpendicular to the Si NWs.

6. Using dry etching, transfer the Pt NW pattern to the underlying Ti layer.

Note that, in the last step, the Pt NW pattern only serves as a mask to define an

array of Ti NWs from a continuous Ti film. This fabrication protocol not only minimizes

the number of processing steps after deposition of the molecular monolayer, but also uses

the Ti layer to both protect the molecules and serve as the top electrode in the molecular-

 83

switch tunnel junctions. This technique has been shown, via infrared spectroscopy in

conjunction with electronic transport measurements, to protect the functional sites of the

[2]rotaxane molecules by reacting with the hydrophobic end groups while leaving the

functional regions of the molecule unscathed (Figure 4-2.A)22.

The structure of our crossbar molecular memory circuit is shown in Figure 4-5.A,

and consists of a bottom electrode set of 400 Si NWs (16-nm wide, 33-nm pitch; highly

phosphorous doped, as discussed in Chapter 2, n = 5×1019 cm–3) crossed by a top

electrode set of 400 Ti NWs (16-nm wide, 33-nm pitch) sandwiching a monolayer of

bistable [2]rotaxanes. Each bit corresponds to an individual molecular-switch tunnel

junction defined by a Si bottom NW and Ti top NW, and contains approximately 350

[2]rotaxane molecules. The solid-state switching signature of the bistable [2]rotaxanes

that were used in this study has been shown to originate from electrochemically

addressable, molecular mechanical switching for C/mol/metal or Si/mol/metal

junctions61, but not for metal/mol/metal wire junctions62. The desire to utilize molecular

mechanical bistable switches as the storage elements is what dictated the choice of the Si

NW/mol/Ti NW (Si/mol/Ti) crossbar structure.

Electrical contacts were established to several bottom and top NWs to allow for

testing of up to 180 ‘effective’ bits (ebits) from the central region of the crossbar, but

only 128 were actually tested due to measurement constraints. The ‘effective’ prefix is

used because SNAP-fabricated NWs are patterned beyond the resolution of lithographic

methods63, so each contact bridges 2–4 NWs (Figure 4-5.B). As a result, most of the

tested ebits contained an average of 4–9 junctions. We recently reported on a

demultiplexer54 (see Chapter 3) that would allow for this memory circuit to be fully

 84

Figure 4-5. Scanning electron micrographs (SEMs) of the NW crossbar memory. A.
Image of the entire circuit. The array of 400 bottom Si NWs is seen as the light grey
rectangular patch extending diagonally up from bottom left. The top array of 400 Ti NWs
is covered by the SNAP template of 400 Pt NWs, and extends diagonally down from top
left. Testing contacts (T) are for monitoring the electrical properties of the Si NWs during
the fabrication steps. Two of those contacts are also grounding contacts (G), and are used
for grounding most of the Si NWs during the memory evaluation, writing, and reading
steps. Electron-beam-lithography patterned 18 top (TC) and 10 bottom (BC) contacts are
also visible. The scale bar is 10 micrometers. B. An SEM image showing the cross-point of
top and bottom NW electrodes. Each cross-point corresponds to an ‘effective bit’ in
memory testing because (inset) the electron-beam-lithography defined contacts bridged 2–
4 nanowires. The scale bar is 2 micrometers. C. High-resolution SEM of approximately
2500 junctions out of a 160,000-junction nanowire crossbar circuit. The red square
highlights an area of the memory that is equivalent to the number of bits that were tested.
The scale bar is 200 nanometers.

200 nm

A

B

C

 85

tested, including the ability to address each junction independently. However,

implementation of that demultiplexer would have added significant complexity to an

already demanding nanofabrication procedure, and wasn’t necessary to demonstrate the

viability of this circuit. (This limitation simply adds some level of uncertainty to our

estimates of device yield.) Assuming 4–9 junctions per ebit, the 128 ebits tested

represents between 0.5–0.7 percent of the full 160,000-bit crossbar circuit distributed

across 6 percent of the device area (Figure 4-5.C). We believe that this relatively small

portion of the crossbar is representative of the overall circuit. This belief is based upon

the fact that we have fabricated approximately 50 full 160,000-junction crossbar memory

circuits, four of which have been fully tested as memories. Each of those tested memory

circuits yielded similar results.

By scanning-electron-microscopy inspection, the 160,000-junction crossbar

appeared to be structurally defect-free, with no evidence of broken, wandering, or

electrically shorted NWs (Figure 4-5.B). Nevertheless, there were a large number of

electrical defects. Comprehensive electrical characterization was used to determine the

address locations of both working and defective ebits, as well as to provide insight into

the nature of the defective ebits. This was done by first applying +1.5 V relative to the Si

NW electrodes to set all ebits to ‘1’, or alternatively to switch the [2]rotaxane molecules

to their metastable-state co-conformation. Each ebit was then read sequentially using a

non-perturbing +0.2 V bias. Application of –1.5 V to the Si electrode was then used to set

all ebits to ‘0’; this effectively returned the active molecular monolayer to its ground-

state co-conformation. The status of each of the 128 ebits was then read again. The 1/0

current ratios are presented in Figure 4-6.A. Approximately 50 percent of the tested ebits

 86

Figure 4-6. Data from evaluating the performance of 128 ebits within the crossbar
memory circuit. A. The current ratio of the ‘1’ state divided by the ‘0’ state of the tested
ebits. Note that many of the ebits exhibit little to no switching response. Those ebits are
defective. B. A map of the defective and usable ebits, along with a pie-chart giving the
testing statistics. Note that, except for the bad Si NW contacts on bottom electrodes B1 and
B6, and the shorted top electrodes, T2 and T3, the defective and good bits are randomly
distributed. Poor switches can be divided into two types: Type I defects (26% of the 128
tested) are ebits that exhibited an open-circuit conductance and a low- or zero-amplitude
switching response when tested. Type II defects (22%) are non-switchable ebits that
exhibited a conductance similar to that of a closed switch. In both cases, the 1/0 ratio is near
unity.

A

16 32 48 64 80 96 112 128
1

2

3

1/
0

cu
rr

en
t r

at
io

Bit number

128127126125124123122121T16

120119118117116115114113T15

112111110109108107106105T14

104103102101100999897T13

9695949392919089T12

8887868584838281T11

8079787776757473T10

7271706968676665T9

6463626160595857T8

5655545352515049T7

4847464544434241T6

4039383736353433T5

3231302928272625T4

2423222120191817T3

161514131211109T2

87654321T1

B8B7B6B5B4B3B2B1

128127126125124123122121T16

120119118117116115114113T15

112111110109108107106105T14

104103102101100999897T13

9695949392919089T12

8887868584838281T11

8079787776757473T10

7271706968676665T9

6463626160595857T8

5655545352515049T7

4847464544434241T6

4039383736353433T5

3231302928272625T4

2423222120191817T3

161514131211109T2

87654321T1

B8B7B6B5B4B3B2B1

Good
Switch

Bad
SiNW

contact

Good
Switch

Bad
SiNW

contact

Poor
Switch

Good
Switch

Bad
SiNW

contact

Good
Switch

Bad
SiNW

contact

Poor
Switch

Adjacent
top NWs
shorted
(12.5%)

(non-fatal

B

 87

yielded some sort of switching response; however, some of those ebits may have been

exhibiting behavior originating from assorted parasitic current pathways through the

crossbar array.

Multiple current pathways between an input and output electrode are an inherent

drawback of crossbar architectures wherein each junction is electrically connected to

every other junction. Thus, when many devices are switched from the ‘0’ to the ‘1’ state,

the current through the non-switching devices can also change due to a modification of

the effective resistance of these parasitic loops. A standard remedy is to incorporate

diodes at each crosspoint64 that will suppress parasitic loops by acting as one-way current

valves. Although the molecule/Ti interface yields some built-in rectification, we have

additionally fabricated micrometer-scale molecular electronic memory circuits with a

vertical p-n doping gradient through each junction19. This resulted in improved memory

performance that should, in principle, extend to the nanometer-scale memory described

here. For this prototype circuit, however, we found it sufficient to simply ground all NW

electrodes not being used during a read cycle in conjunction with the establishment of a

threshold for a ‘good’ ebit based upon a minimum 1/0 current ratio of ~1.5. About 25

percent of the ebits passed this threshold. While this yield may be low for a mature

technology, we are very encouraged by this result in an unpackaged first-generation

circuit.

Defective bits impacted memory performance with varying levels of severity

(Figure 4-6.B). Bits with a 1/0 ratio of unity were classified as ‘poor switches’ and

resulted from switches stuck in either the ‘1’ or ‘0’ state. Poorly switching bits only lead

to a proportional loss in memory performance. Bad contacts to the NWs, however,

 88

removed an entire row of bits from memory operation. In a similar vein, two Ti

electrodes that are shorted together effectively turn two rows of bits into one row of

usable bits—also removing a row of bits from operation and doubling the number of

junctions in the ebits for that row. We believe the majority of these defects resulted from

sub-nanometer variations in the reactive-ion etching process that was employed to define

the top Ti NWs. As will be explained more fully in the next section, these Ti NWs

originate as a uniform thin film (~20 nm) that is deposited on top of the [2]rotaxane

Langmuir monolayer. The SNAP process is used to deposit 400 Pt NWs on top of this

film, and those Pt NWs serve as an etch mask for defining the 400 top Ti electrodes. The

capability of etching tools to define nanostructures at the narrow pitches required here is

largely unexplored and, in fact, this etching step was one of the most challenging

nanofabrication steps for constructing the memory.

Isolated devices, or crossbar memories patterned at substantially lower densities

and with larger wires, can typically be prepared with a nearly 100 percent yield. The

capability of etching tools to define nanostructures at the narrow pitches required here is

largely unexplored and, in fact, was one of the most challenging nanofabrication steps in

constructing the memory.

An important result from the defect map shown in Figure 4-6.B is that the good

and bad ebits are randomly dispersed throughout the matrix, implying that the good

junctions are not correlated to one another. However, the ultimate test of any memory

circuit is whether it can store information. Based upon the defect map shown in Figure 4-

6.B, and taking advantage of the inherent defect tolerance of the crossbar architecture42,

we were able to identify the addresses of good ebits, and from those addresses configure

 89

an operational memory. This is demonstrated by the data of Figure 4-7 in which we have

utilized 24 out of 30 operational ebits to write a string of ‘1’s and ‘0’s that represent the

ASCII characters for ‘CIT,’ short for ‘California Institute of Technology.’

Our principle motivation for utilizing bistable [2]rotaxane molecules as the active

elements within this memory is that even though we are measuring of order 100

molecules in each junction, the change in conductivity correlated with the two

conformational states is a single-molecule property20, 27, 34. The implication is that the

switching signature should be effectively size-invariant (neglecting statistical effects),

meaning that it should scale down to the macromolecular dimensions that characterize

these crossbar junctions. In fact, the success of these molecules at this scale implies that

next-generation devices using only tens of molecules may be possible. While it may be

unlikely that these digital circuits will scale to a density that is only limited by the size of

the molecular switches, it should be possible to significantly increase the bit density over

what is described here (Section 4.6).

Previous work (see Section 4.2) has quantified the thermodynamic and kinetic

parameters that describe both the bistability and the switching mechanism of the

[2]rotaxane (Figure 4-2.A) and related molecules in a variety of environments. Those

measurements required robust switching devices that could be cycled many times and at

various temperatures. The junctions measured here were much more delicate: While all

good ebits could be cycled multiple times (as evidenced by the testing and writing steps),

most ebits failed after a half-dozen cycles or so. While the exact failure mode is still

under investigation, it is worth noting that these junctions have a very large perimeter-to-

area ratio, and that molecules along the perimeter of a junction are likely to be more

 90

A

B

0 100 200
18

19

20

0 40 80 120 160 200
0

2

4

6

N
um

be
r o

f b
its

Time (min)

 Time (min)

'1
' c

ur
re

nt
 (n

A
)

4 8 12 16 20 24
1

3

5

 Relative bit number

1/
0

cu
rr

en
t r

at
io

TI
(01000011)(01001001)(01010100)

C

0 100 200
18

19

20

0 40 80 120 160 200
0

2

4

6

N
um

be
r o

f b
its

Time (min)

 Time (min)

'1
' c

ur
re

nt
 (n

A
)

4 8 12 16 20 24
1

3

5

 Relative bit number

1/
0

cu
rr

en
t r

at
io

TI
(01000011)(01001001)(01010100)

C

Figure 4-7. Demonstration of memory storage and retention characteristics from the
molecular electronic crossbar memory. A. A demonstration of point-addressability
within the crossbar. Good ebits were selected from the defect mapping of the tested
portion of the crossbar. A string of ‘0’s and ‘1’s corresponding to ASCII characters for
‘CIT’ (abbreviation for California Institute of Technology) were stored and read out
sequentially. The dotted line indicates the separation between a ‘0’ and ‘1’ state of the
individual ebits. The black trace is raw data showing ten sequential readings of each bit
while the red bars represent the average of those ten readings. Note that deviations of
individual readings from their average are well separated from the threshold 1/0 line. B. A
histogram representing the 1/e decay time of the ‘1’ state to the ‘0’ state. The 25 ebits
represented in the data each were ‘large’ ebits, comprised of approximately 100 junctions,
to increase the measurement signal to noise. Raw data from a single large ebit is shown in
the inset. The line is a single exponential fit used to extract the decay time.

 91

susceptible to processing damage or contamination since the circuit is measured under

ambient conditions (i.e., the circuit is unpackaged). Despite this difficulty, we were able

to measure the rate of relaxation from the 1 0 state for many of the ebits (Figure 4-7.B).

From a device perspective, this time represents the volatility, or memory retention time,

of the ebits. With respect to the bistable [2]rotaxane switching cycle, this time represents

a room-temperature measurement of the rate-limiting kinetic step within the switching

cycle wherein the metastable co-conformation relaxes to the ground state. Our measured

rate (90 ± 40 minutes; median decay = 75 minutes) was statistically equivalent to the rate

reported for much larger devices (50 μm2 junction area) containing the same [2]rotaxane

switches (58 ± 5 minutes) and measured using a more comprehensive thermodynamic

analysis20. Thus, our results are consistent with previous reports of a molecular

mechanism for the memory operation9.

4.6 Crossbar molecular memory circuit fabrication and testing

In this section, I will discuss the details of memory fabrication and testing. In an effort to

keep this section more or less self-contained, some of the material mentioned above is

repeated (albeit with greater detail). A bottom-up approach was critical to the successful

fabrication of this memory. This approach both minimized the number of processing

steps following deposition of the delicate molecular monolayer, as well as protected the

molecules from remaining processing steps. The following in-depth description of how

 92

this memory was fabricated will proceed with an analogous structure, that is, from the

bottom up.

The 160,000-junction crossbar memory described above consists of 400 Si

nanowire (NW) bottom electrodes of 16-nm width and 33-nm pitch, crossed with 400 Ti

NW top electrodes of the same dimensions, and with a monolayer of bistable [2]rotaxane

molecules sandwiched in between. We have previously reported on using the superlattice

nanowire pattern transfer (SNAP) technique to fabricate highly ordered arrays of metal

and Si NWs of up to 128 NWs. For this work, the SNAP technique was extended to

create 400-element NW arrays of both the bottom and top electrode materials, and so was

the primary patterning method for achieving the 1×1011-cm–2 bit density of the crossbar.

The SNAP NW fabrication procedure is described in detail in Chapter 2. Briefly, SNAP

is a ‘top-down,’ non-photolithographic technique that uses molecular-beam epitaxy

(MBE) to create a physical template for NW patterning. This template is used to deposit

an array of Pt NWs onto an epoxy-coated thin-film material. The Pt array then serves as

an etch mask to transfer the NW pattern into the underlying thin-film. This technique

enables the fabrication of ultra-dense arrays of high-aspect-ratio (length to width

routinely > 106) Si and metal NWs that are aligned over millimeter length scales, without

the need for a secondary alignment step after NW fabrication.

4.6.1 Fabrication and contact to bottom Si nanowire electrodes

An overview of the process flow used to fabricate the memory is shown in Figure 4-8.

The Si NW array was fabricated as described in Chapter 2. The starting wafer for the Si

 93

Figure 4-8. Process flow for fabricating the 160,000 bit molecular electronic memory
circuit at 1011 bits/cm2. A. A section of SNAP-patterned SiNW bottom electrodes are
electrically contacted to electron-beam lithography patterned metal electrodes. B. The entire
circuit is coated with SiO2 using an optimized spin-on-glass procedure. C. The active memory
region is exposed using lithographic patterning followed by CF4 dry etching. D. The bistable
[2]rotaxane Langmuir monolayer is deposited on top of the Si NWs and then protected by the
deposition of a Ti layer. E. The molecule/Ti layer is etched everywhere except for the active
memory region. F. An evaporated SiO2 insulating layer is deposited over the entire chip. G.
An array of Pt NWs is deposited on top of the Ti/SiO2 layer at a right angle to the bottom Si
NWs using the SNAP method. H. The Pt NW pattern is transferred, using BCl3 dry etching, to
the underlying Ti layer to form an array of top Ti NW electrodes, and the crossbar structure is
complete.

Dry etch Pt nanowires

Test
Si

nanowires
T.E.

Spin-on glass

Dry etch

SiO2 deposited

[2]Rotaxane + titanium

Dry etch

A B

C D

E F

G H

B.E.

 94

NWs was a 33-nm-thick silicon-on-insulator (SOI) substrate with a 250-nm-thick buried

oxide (Simgui, Shanghai, China). This wafer was highly diffusion doped (phosphorous;

n=5×1019 cm–3) to ensure that NWs fabricated from it would maintain robust conductivity

throughout the various nanofabrication procedures, in addition to forming ohmic contacts

with Ti-Pt leads. This proved to be important in later stages where the Si NW surface is

unavoidably etched. To fabricate the Si NW array, an array of Pt NWs was deposited

onto the doped SOI substrate using the SNAP method, and high-frequency (40 MHz)

fluorine-based (CF4 to He 20:30, 5 mTorr, 40 W) reactive-ion etching was used to

transfer the Pt NW pattern into the underlying Si epilayer to form an approximately 2-

millimeter-long array of Si NWs. The Pt NW array was then dissolved in hot aqua regia

(1:4 conc. HCl to conc. HNO3, 120° C, 10 min) and the Si NW array was sectioned into a

30-μm-long region using a lithographically-patterned Al mask and three sequential

reactive-ion etch (RIE) steps. The first was a high-power O2 RIE (20 mTorr, 100 W, 2

min) to remove any residual epoxy (from the SNAP procedure), then a brief SF6 RIE (5

mTorr, 30 W, 30 sec) to remove any unmasked Si, and finally a low-power O2 RIE (20

mTorr, 10 W, 2 min) to oxidize any pinholes through the insulating oxide that may have

been bored out from the first two RIE steps. We had occasionally observed leakage

current through the insulating oxide when this last step was omitted.

Ten electrical contacts to these bottom Si NWs, as well as 18 contacts that are

intended for the top Ti NWs, were defined at this point using standard electron-beam

lithography (EBL) patterning and electron-beam evaporation to produce wires consisting

of a 15-nm Ti adhesion layer followed by 50 nm of Pt (Appendix 4.1). Immediately prior

to metal evaporation, the Si NWs were cleaned using a gentle O2 plasma (20 mTorr, 10

 95

W, 30 seconds) followed by a 5-second dip in buffered oxide etch (BOE) (6:1; NH4F to

HF) solution to remove the Si NW native oxide. After metal lift-off, the chip was

annealed at 450 °C in N2 for 5 minutes. In addition to promoting the formation of ohmic

contacts, this anneal helped to prevent peeling of the smallest lithographically-defined

wires during the spin-on glass step described below.

Figure 4-9.A shows an SEM image of the memory circuit at the stage in which the

Si NWs and all of the external electrical contacts have been created. Note that there are

four sets of EBL-defined contacts. The 18 narrow contacts at the bottom left of the image

(nominal width of 70 nm at 300-nm pitch) will eventually connect to the top Ti NW

electrodes and are used for testing of the final memory circuit. The ten narrow contacts to

the Si NWs at the bottom right (nominal width of 60 nm at 300-nm pitch) of the image

are also used for testing of the memory circuit. Finally there are two narrow test

electrodes at the top left and two wide electrodes at the bottom right. The wide electrodes

contact about two-thirds of all the Si NWs and serve a dual function. First, they ground

unused Si NWs during memory testing to minimize parasitic current loops through the

crossbar. (This procedure approximates how a fully multiplexed crossbar circuit would be

utilized.) Second, when used in conjunction with the two narrow test-electrodes on the

opposite side of Si-NW array, they enable testing of the Si-NW conductivity at various

stages throughout the memory-fabrication processes. This testing procedure provided

invaluable feedback for finely tuning and tracking many of the fabrication processes,

most notably the etching procedures described below. Once these various contacts were

established, robust Si-NW conductivity was confirmed via current-voltage (I-V)

measurements. If the Si NWs were measured to be poor conductors (a very infrequent

 96

B

5 μm
200 nm

100 nm

D

A

E F

C

50 μm

5 μm

300 nm

Figure 4-9. Representative scanning electron micrographs illustrating the crossbar
memory fabrication process. A. A 30-micrometer-long section of 400 Si NWs with electron-
beam lithography (EBL) defined contacts to the Si NWs (bottom right) and pre-patterned
contacts to the Ti-NW array (not deposited at this stage) (bottom left). B. Representative
contacts to Si NWs showing each EBL-defined metal lead is about 70-nm wide and contacts
2–4 NWs. C. Micrograph verifying that the spin-on-glass layer fills the narrow trenches
between the Si NWs. The chip was cleaved after the planarization process to allow for the
view shown here. D. Lithographically patterned window in the SOG film defining the memory
active region. E. Deposition of 400 Pt NWs over the memory active region. Note the Pt NWs
extend for about a millimeter in either direction. F. Micrograph of the Ti NWs contacting pre-
patterned EBL-defined leads after transferring the Pt NW pattern to the underlying
[2]rotaxane/Ti layer.

 97

occurrence) or if there was any measurable leakage current through the insulating oxide,

the chip was discarded. Additionally, the chip was discarded if I-V measurements showed

rectification at the contacts (unless ohmic behavior could be established through further

efforts).

The device was then planarized using an optimized spin-on-glass (SOG)

procedure (Accuglass 214, Honeywell Electronic Materials, Sunnyvale CA) (Figure

4-8.B). This planarization process is critical because the SOG not only protects Si NWs

and EBL defined wiring outside of the active memory region from damage that can arise

during subsequent processing steps, but it also prevents evaporated Ti from entering the

gaps between Si NWs where it would be extremely difficult to remove. For the SOG to

fill the narrow gaps between adjacent Si NWs (Figure 4-9.C), it had to be applied to the

surface of the chip while under vacuum (< 1 mTorr). This was accomplished by placing

the chip into a clean Erlenmeyer flask* sealed with an air-tight rubber septum and

piercing the septum with a syringe needle attached via tubing to a diffusion pump. After a

couple of minutes to ensure evacuation of the flask, a scrupulously-clean glass syringe

and a 5-inch metal needle were used to generously apply the SOG liquid to the chip

surface (while maintaining vacuum with the other needle). The chip was then

immediately taken out of the flask and spun at 5000 RPM to ensure a uniform film.

At this point, the chip was inspected using a light microscope to look for any

particulates on the surface. If any were found (which almost inevitably there were), the

SOG film was stripped from the chip with extremely delicate swabbing while immersed

in methanol, followed by repeatedly rinsing in methanol and isopropyl alcohol and drying

* The flask was modified with a cylindrical glass pedestal for mounting the chip off the flask bottom.

 98

under a stream of N2. The repeated solvent rinses followed by blowing with N2 seemed to

be particularly effective at removing particles from the surface. Sonication was avoided

because it would occasionally damage the finest EBL-defined wires. The SOG was then

re-applied to the chip under ambient conditions, spun at 5000 RPM, and re-checked for

particulates. Note that vacuum application was found to be unnecessary for subsequent

SOG applications, probably because the SOG applied under vacuum continued to wet the

NW gaps through subsequent methanol cleanings. This entire procedure was repeated

until no particulates were seen on the chip surface. It was very important to ensure that

the chip was rigorously clean before proceeding, since particles on the surface would

frequently result in an unsuccessful transfer of the Pt NW array (which is required in a

later step to define the top Ti NW electrodes for the memory).

After globally thinning the SOG layer to 50 nm using a CF4 plasma (10 mTorr, 40

W), an opening in polymethyl-methacrylate (PMMA) was lithographically defined over

the Si NWs, and the tips of the 18 EBL-defined contacts (Figure 4-8.C). The SOG was

then further etched until the tops of the underlying Si NWs were exposed (Figure 4-9.C).

This step was monitored by periodically measuring the Si NW conductivity using the test

electrodes. The majority of dopant atoms in the Si NWs reside within 10 nm of the

surface (Chapter 2), so the NW conductivity is very sensitive to any etching of the

surface. This unique feature of SNAP-fabricated Si NWs makes it very straightforward to

etch back the SOG until just the tops of the Si NWs are exposed, since the etch end-point

can be precisely determined by a small drop in the Si NW conductivity. At this stage, the

entire memory circuit is under SOG (and thus electrically isolated from any further top

 99

processing) except for the lithographically-defined opening over the Si NWs and the 18

EBL-defined contacts. This opening defines the active memory region (Figure 4-9.D).

4.6.2 Deposition of molecules and top electrode materials

A monolayer of bistable [2]rotaxane switches was prepared by Langmuir-Blodgett

techniques and transferred onto the device, as reported previously9, 22. A thin film of Ti

(20 nm) was then evaporated over the entire chip (Figure 4-8.D). This Ti layer serves to

protect the molecules from further top processing and will later be patterned into the

crossbar top electrodes. As briefly mentioned above, this Ti layer additionally adds

(favorable) current rectification to each Si/mol/Ti MSTJ to reduce the impact of parasitic

current pathways within the crossbar circuit. The amount of rectification is dependent

upon the amount of Ti oxidation that occurs at the molecule/Ti interface, which, in turn,

depends upon the vacuum level of the metal deposition system65-67. For this work, the Ti

was deposited at a pressure of approximately 5×10–7 Torr. For micrometer-scale

Si/mol/Ti MSTJs, this typically produced a rectification of about 10:1 at 1 V.

 Using photolithographic techniques and BCl3 RIE (5 mTorr, 30 W), the

molecule/Ti layer was then removed from everywhere except for the memory active

region where electrical contact to the underlying Si NWs is made (Figure 4-8.E).

Patterning the Ti film is important for two reasons: First, it prevents the deposited Ti film

from bridging (shorting) EBL-defined wiring that protrudes from the SOG film

(explained below). Second, it removes the requirement of precise NW registry over the

entire length (> 1 millimeter) of the Pt NW array deposited in a later step (Figure 4-9.E).

 100

This is important because the dry etch used to define the Ti NW pattern from the Pt NW

stencil can cause adjacent Pt NWs to wander into each other (thus shorting the

corresponding Ti NWs beneath) in regions with non-uniform epoxy (used to adhere the

Pt NW array to the surface; explained further below). Over the length of a typical SNAP-

fabricated NW array, the likelihood of this occurrence is expected to be almost certain.

Next, a thin (~15 nm) SiO2 layer was deposited over the entire substrate to isolate

the EBL-defined wires from the Pt NWs to be deposited in the next step. (Recall that the

EBL-defined wires are 65-nm tall and the SOG was globally thinned to 50 nm; Figure

4-8.F.) It may seem that the SiO2 deposition can be avoided by etching the SOG film to a

thickness greater than the EBL-defined wire height. However, this results in a larger

recess in the SOG opening that defines the memory active region. Spin-coated epoxy

used for Pt NW deposition in the next step fills this opening, which, as explained below,

can be problematic during subsequent etching.

A thin layer of epoxy (~10 nm) is then spin-coated onto the chip and the SNAP

technique is used to deposit an array of 400 Pt NWs over the Ti/SiO2/epoxy layer at a

right angle to the underlying Si NWs (Figure 4-8.G and Figure 4-9.E). Finally, careful

BCl3 RIE (5 mTorr, 30 W) was used to transfer the Pt NW pattern to the underlying

Ti/SiO2/epoxy film, thus forming Ti NW top electrodes (Figure 4-8.H). Although the Pt

NW array is in excess of 1 mm long (Figure 4-9.F), the top Ti electrodes of the crossbar

circuit only extend from the tips of the 18 EBL-defined leads to a couple of micrometers

past the underlying Si NW array. The etch endpoint was determined by monitoring the

 101

cross-conductance of the top Ti NWs* (Figure 4-10.A). Complete transfer of the Pt NW

pattern to the underlying Ti film is indicated by a fall in the cross-conductance to about

ten nanoSiemens (nS). Note that the cross-conductance does not go to zero since the Ti

electrodes, while physically separated, are still electrically coupled through the crossbar

junctions and the underlying Si NWs. The health of the underlying Si NWs throughout

the Ti-etching process was also monitored, as shown in Figure 4-10.B.

Figure 4-10. Conductance monitoring during the Ti layer etching. A. Cross-conductance
measurements between electrical contacts to the top nanowire array were performed to monitor
the Ti layer etching. When the current drops to sub-10 nanoAmps, the top Ti electrodes are
separated. The inset scanning electron microscope (SEM) image shows two representative
contacts to the top Ti electrodes as highlighted in yellow. It is the cross-conductance between
such contacts that was used for this measurement. B. The Si NW conductance was measured
throughout the Ti layer etching to ensure that Si NWs were not damaged. The SEM image
(inset) shows the current pathway that was measured.

A B

The use of Ti as the top electrode material here was necessary since its high

reactivity prevents metal from spiking across the [2]rotaxane monolayer during

evaporation22. However, Ti is a difficult metal to etch because it forms a tough TiO2 layer

* Interferometric end-point detection cannot be used here since the etch rate for Ti within a 16-nm trench is
likely to be quite different from that of a regular Ti surface.

 102

at its surface68. Highly-directional BCl3 reactive ion etching was used because it provides

the needed momentum to erode the TiO2 layer while additionally providing reactive Cl

ions to chemically remove Ti. Figure 4-11 shows a fully functional memory circuit in

which the final Pt NW deposition (using SNAP) was substituted by EBL-patterned Pt

microwires (about 210 nm in width) of variable spacing down to 90 nm (less than 3 times

the SNAP Pt NW pitch). The [2]rotaxane/Ti film was etched using an iterative procedure

so the Ti electrode cross-conductance could be periodically checked. Also, SEM analysis

was used to gauge how effectively the BCl3 etch removed Ti from between the Pt

microwires after each etch iteration. Note that SEM analysis cannot be used to track the

etch progress using SNAP fabricated Pt NWs because 1) the SNAP NW spacing is too

narrow, and 2) the electron beam heats up the underlying epoxy causing the Pt NWs to

collapse into each other. SEM analysis confirmed complete separation of the underlying

Ti electrodes after the Ti electrode cross-conductance fell to below 50 nS (Figure

4-11.A). Taking into account that the (210-nm-wide) EBL-defined Ti microwires are

about five times wider than the combined average number Ti NWs defining a row of

ebits (3 × 16 nm = 48 nm), we reasoned that Ti NWs patterned from SNAP-fabricated Pt

NWs would be separated when their cross-conductance fell to below 10 nS. We have

found this metric to be accurate with many memory chips. Note that while the Ti

electrode cross-conductance at separation scales linearly with the Pt wire width, the total

etch time does not scale predictably with the Pt wire spacing. In fact, the total etch time

to achieve Ti NW separation can vary considerably from one memory chip to the next

with nominally identical SNAP Pt NW arrays.

 103

A

B

-0.2 -0.1 0.0 0.1 0.2

-4

-2

0

2

4

0.0 0.1 0.2
10-11

10-10

10-9

10-8

 1-2
 3-4
 5-6
 7-8

C
ur

re
nt

 (n
A

)

Voltage (V)

1 4 8

Figure 4-11. Diagnostic Ti etching between electron-beam lithography (EBL)-defined
Pt microwires. A. Ti electrode cross-conductance after separation. The numbers in the
legend correspond to cross-conductance measurements between the 90-nm-spaced EBL-
defined microwires numbered (sequentially from 1 to 8) in panel B. The cross-conductance
values after separation are 0.5 nS (blue trace, corresponding to microwires 7–8), 5 nS (red
trace, microwires 3–4), 15 nS (green trace, microwires 5–6), and 25 nS (black trace,
microwires 1–2). B. SEM images of the diagnostic memory circuit. The background shows
the EBL-defined Pt microwires patterned over the memory active region to form a Si NW/Ti
microwire crossbar. Scale bar is 2.5 μm. The inset is a high-resolution SEM image of the
region between two Pt microwires indicated by the yellow circle. Note the Ti has been
cleanly removed, revealing the underlying Si NWs. The scale bar is 100 nm.

 104

To form Ti NWs as the top electrodes from SNAP deposited Pt NWs, the chip

was etched (via BCl3) in intervals of time ranging from five minutes (at the beginning) to

30 seconds (near the end) so that periodic conductance measurements could be made to

monitor the etch progress. This significantly increased the total BCl3 etch time because

the chip had to be periodically removed from the vacuum environment of our reactive ion

etcher resulting in re-growth of surface TiO2. The total BCl3 etch time ranged from 15 to

20 minutes, although a large fraction of that time was undoubtedly spent etching re-

grown TiO2 at the beginning of each BCl3 etch iteration. As will be discussed below, this

unavoidably* long etch time can lead to fidelity problems in transferring the Pt NW

pattern to the underlying Ti film.

The Ti etching step described above proved to be one of the most challenging

aspects of memory fabrication and required the simultaneous optimization of a number of

correlated factors. This included the BCl3 etch recipe described above, the depth of the

SOG recess defining the memory active region, and the epoxy used to bond the Pt NW

array to the Ti/SiO2 film. This epoxy fills in the SOG recess, thus separating the Ti/SiO2

film from the Pt NWs by a relatively thick organic spacer. If the epoxy is too thick

significant undercutting can occur. This leads to blurring of the Ti NW pattern and

wandering of individual Pt NWs on top of a sea of shifting epoxy. Frequently the Pt NWs

would wander so much they would short into each other (Figure 4-12), resulting in Ti

NW top electrodes that could not be physically separated (more on this below). This

problem was exacerbated with the relatively long BCl3 etch times required to define the

Ti NWs.

* In principle, the etch time could be reduced considerably by monitoring the conductance in-situ with the
BCl3 etch so the time-consuming TiO2-removal step would only need to be done once. Obviously, our RIE
system did not have this feature.

 105

The epoxy thickness over the Ti film was reduced by decreasing the recess of the

SOG window defining the memory active region. This was accomplished by globally

thinning the SOG film beforehand. Trial and error in conjunction with atomic force

microscopy (AFM) measurements of the SOG recess and surrounding region after curing

the spin-coated epoxy (without the deposited Pt NWs) determined the optimal SOG

thickness to be about 50 nm. Thinning the SOG further required reducing the thickness

(65 nm) of the EBL-defined wires so they did not protrude from the SOG + SiO2 film

(keeping the thickness of SiO2 deposited over the Ti film to be constant at 15 nm*).

However, this led to problems in making reliable contact to the Si NWs, since the

Figure 4-12. SEM image of a crossbar memory circuit before optimization of the Ti NW
fabrication parameters. This image shows wandering of individual Pt NWs due to shifting
epoxy from the BCl3 etch used to define the Ti NW array. The inset shows a zoomed-in view
from the center of the memory crossbar region. The scale bar in the inset is 500 nm.

* Increasing the SiO2 thickness beyond 15 nm adversely affected the etch fidelity.

 106

deposited metal would be more prone to becoming discontinuous at the ends of the Si

NWs where there is a step of 33 nm (the starting SOI thickness) (Figure 4-9.B). It should

be noted, however, that more advanced metal deposition systems capable of depositing

metal conformally would eliminate this constraint.

While reducing the epoxy thickness over the Ti film was necessary to achieve

high-fidelity pattern transfer of the Pt NW mask, it was not sufficient. This required

improving the epoxy recipe to make it more resistant to undercutting without making it

overly difficult to etch using O2 or BCl3. (A O2 etch of 5 mTorr at 40 W always preceded

the initial BCl3 etch to remove epoxy from between the SNAP-fabricated Pt NWs.) After

some trial and error, the optimal epoxy recipe was determined to be a modified version of

Allied High Tech (Rancho Dominguez, CA) Epoxy Bond 110. (5 drops part A, 1 drop

part B, 2 drops of dibutyl phthalate, and diluted with 10 ml of anhydrous tetrahydrofuran.

The dibutyl phthalate is a plasticizer that makes the epoxy easier to etch from between Pt

NWs.)

4.6.3 Memory testing

The memory circuit was tested using a Probe 2000 (San Jose, CA) custom-built probe

card (Appendix 4.2) and a Keithley 707A switching matrix in conjunction with a

Keithley 7174A low-current matrix card for off-chip demultiplexing. Individual ebits

(containing 4–16 crossbar junctions, but most often containing nine crossbar junctions)

were electrically addressed within the 2-D cross-point array by the intersection of 2–4

sequential Si NW bottom electrodes and 2–4 sequential Ti NW top electrodes. Individual

 107

molecular junctions were set to their low resistance, or ‘1’ state, through the application

of a positive 1.5–2.3 V pulse (voltages are referenced to the bottom Si NW electrode) of

0.2-second duration. A junction was set to its ‘0’ or high resistance state through

application of a −1.5 V pulse, also of 0.2-second duration. To avoid switching an entire

column or row of bits, the switching voltage was split between the two electrodes

defining the ebit. Thus, to write a ‘1’ with +2 V, a single Si NW electrode is charged to

+1 V, while a single Ti NW electrode is set to −1 V, and only where they cross does the

junction receive the full +2 V switching voltage. Half-selected bits, that is, bits receiving

only half the switching voltage, were never observed to switch. Individual ebits were read

by applying a small, non-perturbing +0.2 V bias to the bottom Si NW electrode and

grounding the top Ti NW electrode through a Stanford Research Systems SR-570 current

pre-amplifier. Bits not being read were held at ground to reduce parasitic current

pathways through the crossbar array. Note that all the electrical writing and reading

operations described in this work were done sequentially.

Configuring the memory circuit for information storage proceeded as follows.

Initially, all ebits were read with +0.2 V to document their baseline current. The value of

this baseline current varied from being greater than the current through the junction when

set to its low-resistance or ‘1’ state to being less than the current through the junction

when set to its high-resistance or ‘0’ state. However, after a (good) bit had been switched

though the application of ± 1.5 V, it performed reliably (i.e., on current > off current)

until it no longer exhibited switching behavior. After the baseline current was read, all

ebits were switched to their ‘1’ state, read out, then set to their ‘0’ state and again read

out (Figure 4-13 shows raw data). Good ebits were identified as those with 1/0 current

 108

Figure 4-13. Raw switching data from a molecular electronic crossbar memory circuit.
The raw data in this figure was used to generate the 1/0 plot and defect matrix shown in Figure
4-6.

ratios roughly greater than or equal to 1.5. Bad ebits fell into a few classes, with the two

most common groups being ebits that were either poor switches with little or no

switching response or open circuits. In both cases, the 1/0 ratio was unity. Adjacent Ti

top electrodes that were shorted together were identified when the ebits addressed by

those electrodes were not independently addressable. This is evidenced by an 8-bit

periodicity in the response of bits sharing a single Si NW bottom electrode and the

shorted Ti top electrodes. This can be seen from the bit matrix in Figure 4-6.B where the

shorting of top electrodes T2 and T3 results in nearly equivalent responses from bits 13 &

21 and bits 15 & 23. A more-severe case of top Ti NW shorting is shown in Figure 4-14,

which corresponds to the memory circuit shown in Figure 4-12. Even though this type of

defect is not completely fatal (i.e., two rows of ebits could still be utilized as a single row

 109

A

B

Figure 4-14. Data from a memory circuit with extensive Ti NW top electrode shorting.
A. 1/0 current ratio measurements from 64 bits of the memory circuit shown in Figure 4-
12. B. Defect map of the good and defective ebits with a pie chart showing the testing
statistics. Good ebits were defined as ebits with 1/0 ratios greater than 1.2 (31% of the
tested bits). Note that most of the good ebits (yellow) are clustered together within columns
(Si NW bottom electrodes), indicating severe Ti NW (rows) shorting.

6463626160595857T8

5655545352515049T7

4847464544434241T6

4039383736353433T5

3231302928272625T4

2423222120191817T3

161514131211109T2

87654321T1

B8B7B6B5B4B3B2B1

6463626160595857T8

5655545352515049T7

4847464544434241T6

4039383736353433T5

3231302928272625T4

2423222120191817T3

161514131211109T2

87654321T1

B8B7B6B5B4B3B2B1

poor
switch

good
switch

poor
switch

good
switch

8 16 24 32 40 48 56 64

1.0

1.2

1.4

1.6

1.8

2.0

1/
0

cu
rre

nt
 ra

tio

Bit number

of twice-as-large ebits), we did not use ebits associated with shorted top electrode

defects.

Once the good ebits were identified, they were used to store and read out small

strings of information written in standard ASCII code. The maximum number of ebits

that could be tested was 180, but our electronics were configured to test 128 ebits (less

than 1 percent of the actual crossbar). Based on results from similarly fabricated memory

 110

circuits, we believe this small subset of measured bits is representative and sufficient to

demonstrate the key concepts of this memory.

To increase the measured current, volatility measurements were carried out with

approximately 100 (~30 ebits) junctions in parallel. The junctions were switched to their

‘1’ or low resistance state, as described above, and the current was periodically measured

through the parallel combination of all 100 junctions at discrete time points. Note that

defective switches stuck in a low conductivity state contribute little signal to the parallel

combination while defective switches stuck in a high conductivity state only add a

constant offset to the decaying current. There could be an unknown number of defective

switches (and hence junctions) stuck in their ‘1’ state; however, the current through a

parallel combination of functional and defective junctions will decay with the same time

constant as that of the functional junctions as long as the number of defective junctions is

not too large. We occasionally observed parallel combinations with a large fraction of

defective junctions. These were identified by an approximately constant measured current

as a function of time. Data from these parallel combinations were not used.

If a defective junction is shorted (i.e., the Ti top electrode is shorted to the bottom

Si electrode through direct metal contact), the current through the junction would be

orders of magnitude higher than expected and readily identified. We did not observe such

junctions in the memory circuits described above.

 111

4.7 Limitations of the SNAP process for crossbar circuits

The nanofabrication methods described above for creating the 160,000-bit crossbar

memory circuit can be significantly extended in terms of both memory size and bit

density. For [2]rotaxane-based molecular electronic memory circuits, proper choice of

electrode materials within the crossbar has proven to be very important for successful

memory operation61; that is, having Si bottom electrodes and metallic top electrodes with

a thin Ti layer to protect the underlying [2]rotaxane monolayer was key. Arrays of

SNAP-fabricated Pt NWs only serve as stencils for forming the crossbar electrodes. To

be used in a crossbar memory, the SNAP NW pattern must be transferred to Si or Ti NWs

for the bottom and top electrodes, respectively. Thus, it is not just the SNAP process, but

the ability to translate the initially deposited SNAP NWs to form other NWs that

ultimately limits the size and density of the circuitry that can be fabricated.

Figure 4-15 (left micrograph) shows an array of 7-nm-wide, 15-nm-tall single

crystal Si NWs patterned at 13-nm pitch. This array could be used to produce to a

crossbar molecular memory circuit at about six times the density of this work (~ 6×1011

bits cm–2). While this array may not represent the density limit of what could be

achieved, densities in excess of 1×1012 cm–2 may difficult to obtain using these patterning

methods and conventional nanofabrication tools. Similarly, the 160,000-bit crossbar

described herein can be extended in terms of the total number of bits by using larger-

element SNAP NW arrays. Figure 4-15 (right two micrographs) shows SEM images of an

array of 1400 Si NWs formed using the SNAP method. An array this size makes possible

 112

Figure 4-15. Next-generation crossbar molecular memory circuits using SNAP
patterning. (left) An array of 7-nm-wide Si NWs patterned at 13-nm pitch could produce a
crossbar molecular memory circuit with six times the bit density of this work. (right) An
array of 1400 Si NWs patterned at 33-nm pitch could provide enough nanowires to produce
an approximately two-million-bit crossbar molecular memory circuit. The inset shows an
expanded view of the array, which is virtually free of defective nanowires.

the construction of an approximately two-million-bit crossbar molecular memory circuit

and it is certainly possible to further expand this concept to substantially larger structures.

From a manufacturing perspective, a significant limitation of the SNAP process is

that each NW array must be fabricated serially using a labor-intensive process (despite

SNAP being a parallel patterning method in that all NWs within an array are created

simultaneously). For instance, in a single day a worker can usually fabricate not more

than 10–20 arrays of Si NWs. However, a recent collaboration with Stan Williams’ group

at Hewlett Packard labs (Palo Alto, CA) has demonstrated that nanoimprinting can be

used to replicate SNAP NWs and to form crossbar structures47. This indicates that high-

 113

throughput parallel fabrication methods can be developed, even at the near molecular-

densities described in this work.

4.8 Concluding remarks

Many challenges remain to be addressed before the type of crossbar molecular

memory described here can be practically implemented. For example, areas of future

interest include finding faster and more-robust molecular switches, addressing

nanofabrication challenges associated with improving the fidelity of these tools and

procedures, and meeting engineering challenges such as those involved with combining

demultiplexing architectures, such as those described in Chapter 3, with crossbar

circuits69. Nevertheless, this circuit stands as a new benchmark for nanoelectronic device

integration and provides evidence that at least some of the most challenging scientific

issues associated with integrating nanowires, molecular materials, and defect-tolerant

circuit architectures at extreme dimensions are solvable. The circuits described in this

work represent significant advances in sub-lithographic patterning, large-scale assembly

of nanoscale electronic devices, and the integration of molecular and solid state materials.

Furthermore, recently published nanoimprinting results imply that methods for the high-

throughput manufacturing of these types of circuits are possible46-48.

 114

4.9 References

1. The International Technology Roadmap for Semiconductors (ITRS), 2005 Edn.
San Jose, CA, Semiconductor Industry Association.

2. Cavin, R. K. et al. A long-term view of research targets in nanoelectronics.
Journal of Nanoparticle Research 7, 573–586 (2005).

3. Galatsis, K. et al. Emerging memory devices – Nontraditional possibilities based
on nanomaterials and nanostructures. Ieee Circuits & Devices 22, 12–21 (2006).

4. Cahen, D. & Hodes, G. Molecules and electronic materials. Advanced Materials
14, 789–798 (2002).

5. Heath, J. R. & Ratner, M. A. Molecular electronics. Physics Today 56, 43–49
(2003).

6. Aviram, A. & Ratner, M. A. Molecular Rectifiers. Chemical Physics Letters 29,
277–283 (1974).

7. Kornilovitch, P. E., Bratkovsky, A. M. & Williams, R. S. Current rectification by
molecules with asymmetric tunneling barriers. Physical Review B, 66, (2002).

8. Blum, A. S. et al. Molecularly inherent voltage-controlled conductance switching.
Nature Materials 4, 167–172 (2005).

9. Luo, Y. et al. Two-dimensional molecular electronics circuits. ChemPhysChem 3,
519–525 (2002).

10. McCreery, R. L. Molecular Electronic Junctions. Chem. Mater. 16, 4477–4496
(2004).

11. Joachim, C. & Ratner, M. A. Molecular Electronics Special Feature: Molecular
electronics: Some views on transport junctions and beyond. PNAS 102, 8801–
8808 (2005).

12. Huang, Y. et al. Logic gates and computation from assembled nanowire building
blocks. Science 294, 1313–1317 (2001).

13. Duan, X. F., Huang, Y. & Lieber, C. M. Nonvolatile memory and programmable
logic from molecule-gated nanowires. Nano Letters 2, 487–490 (2002).

14. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon
nanotube transistors. Science 294, 1317–1320 (2001).

15. Chen, Z. H. et al. An integrated logic circuit assembled on a single carbon
nanotube. Science 311, 1735–1735 (2006).

16. Lehn, J. M. Toward self-organization and complex matter. Science 295, 2400–
2403 (2002).

17. Tseng, H. R., Vignon, S. A. & Stoddart, J. F. Toward chemically controlled
nanoscale molecular machinery. Angewandte Chemie-International Edition 42,
1491–1495 (2003).

18. Stoddart, J. F. & Tseng, H. R. Chemical synthesis gets a fillip from molecular
recognition and self-assembly processes. Proceedings of the National Academy of
Sciences of the United States of America 99, 4797–4800 (2002).

19. Beckman, R. et al. Spiers Memorial Lecture – Molecular mechanics and
molecular electronics. Faraday Discussions 131, 9–22 (2006).

 115

20. Choi, J. W. et al. Ground-state equilibrium thermodynamics and switching
kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular
electronic devices. Chemistry-a European Journal 12, 261–279 (2005).

21. David W. Steuerman, H.-R. T., Andrea J. Peters, Amar H. Flood, Jan O.
Jeppesen, Kent A. Nielsen, J. Fraser Stoddart, James R. Heath. Molecular-
Mechanical Switch-Based Solid-State Electrochromic Devices. Angewandte
Chemie International Edition 43, 6486–6491 (2004).

22. DeIonno, E., Tseng, H. R., Harvey, D. D., Stoddart, J. F. & Heath, J. R. Infrared
Spectroscopic Characterization of [2]Rotaxane Molecular Switch Tunnel Junction
Devices. J. Phys. Chem. B 110, 7609–7612 (2006).

23. Flood, A. H. et al. The role of physical environment on molecular
electromechanical switching. Chemistry-a European Journal 10, 6558–6564
(2004).

24. Pease, A. R. et al. Switching devices based on interlocked molecules. Accounts of
Chemical Research 34, 433–444 (2001).

25. Tseng, H. R., Wu, D. M., Fang, N. X. L., Zhang, X. & Stoddart, J. F. The
metastability of an electrochemically controlled nanoscale machine on gold
surfaces. Chemphyschem 5, 111–116 (2004).

26. Asakawa, M. et al. Current/voltage characteristics of monolayers of redox-
switchable [2]catenanes on gold. Advanced Materials 12, 1099–1102 (2000).

27. Katz, E., Lioubashevsky, O. & Willner, I. Electromechanics of a redox-active
rotaxane in a monolayer assembly on an electrode. J. Am. Chem. Soc. 126,
15520–32 (2004).

28. Katz, E., Baron, R., Willner, I., Richke, N. & Levine, R. D. Temperature-
dependent and friction-controlled electrochemically induced shuttling along
molecular strings associated with electrodes. Chemphyschem 6, 2179–2189
(2005).

29. Katz, E., Sheeney-Haj-Ichia, L. & Willner, I. Electrical contacting of glucose
oxidase in a redox-active rotaxane configuration. Angewandte Chemie-
International Edition 43, 3292–3300 (2004).

30. Jang, S. S. et al. Structures and properties of self-assembled monolayers of
bistable [2]rotaxanes on Au(111) surfaces from molecular dynamics simulations
validated with experiment. Journal of the American Chemical Society 127, 1563–
1575 (2005).

31. Jang, S. S. et al. Molecular dynamics simulation of amphiphilic bistable
[2]rotaxane Langmuir monolayers at the air/water interface. Journal of the
American Chemical Society 127, 14804–14816 (2005).

32. Jang, Y. H. & Goddard, W. A. Mechanism of oxidative shuttling for [2]rotaxane
in a Stoddart-Heath molecular switch: Density functional theory study with
continuum-solvation model. Journal of Physical Chemistry B 110, 7660–7665
(2006).

33. Deng, W. Q., Muller, R. P. & Goddard, W. A. Mechanism of the Stoddart-Heath
bistable rotaxane molecular switch. Journal of the American Chemical Society
126, 13562–13563 (2004).

34. Steuerman, D. W. et al. Molecular-mechanical switch-based solid-state
electrochromic devices. Angew. Chem. Int. Ed. 43, 6486–91 (2004).

 116

35. Collier, C. P. et al. Molecular-based electronically switchable tunnel junction
devices. Journal of the American Chemical Society 123, 12632–12641 (2001).

36. Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable
switch. Science 289, 1172–1175 (2000).

37. Jeppesen, J. O. et al. Amphiphilic bistable rotaxanes. Chemistry-a European
Journal 9, 2982–3007 (2003).

38. Nielsen, M. B. et al. Binding studies between tetrathiafulvalene derivatives and
cyclobis(paraquat-p-phenylene). Journal of Organic Chemistry 66, 3559 (2001).

39. Collier, C. P. et al. Electronically configurable molecular-based logic gates.
Science 285, 391–394 (1999).

40. Lee, M. H., Kim, Y. K. & Choi, Y. H. A defect-tolerant memory architecture for
molecular electronics. Ieee Transactions on Nanotechnology 3, 152–157 (2004).

41. DeHon, A. & Naeimi, H. Seven strategies for tolerating highly defective
fabrication. Ieee Design & Test of Computers 22, 306–315 (2005).

42. Heath, J. R., Kuekes, P. J., Snider, G. S. & Williams, R. S. A defect-tolerant
computer architecture: Opportunities for nanotechnology. Science 280, 1716–
1721 (1998).

43. Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031
(2000).

44. Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-
dimensional nanostructures into functional networks. Science 291, 630–633
(2001).

45. Whang, D., Jin, S., Wu, Y. & Lieber, C. M. Large-scale hierarchical organization
of nanowire arrays for integrated nanosystems. Nano Letters 3, 1255–1259
(2003).

46. Chen, Y. et al. Nanoscale molecular-switch devices fabricated by imprint
lithography. Applied Physics Letters 82, 1610–1612 (2003).

47. Jung, G. Y. et al. Circuit fabrication at 17 nm half-pitch by nanoimprint
lithography. Nano Letters 6, 351–354 (2006).

48. Wu, W. et al. One-kilobit cross-bar molecular memory circuits at 30-nm half-
pitch fabricated by nanoimprint lithography. Applied Physics a-Materials Science
& Processing 80, 1173–1178 (2005).

49. Ziegler, M. M. et al. in Molecular Electronics Iii 312–330 (New York Acad
Sciences, New York, 2003).

50. Stan, M. R., Franzon, P. D., Goldstein, S. C., Lach, J. C. & Ziegler, M. M.
Molecular electronics: From devices and interconnect to circuits and architecture.
Proceedings of the Ieee 91, 1940–1957 (2003).

51. Kuekes, P. J., Stewart, D. R. & Williams, R. S. The crossbar latch: Logic value
storage, restoration, and inversion in crossbar circuits. Journal of Applied Physics
97 (2005).

52. Snider, G., Kuekes, P., Hogg, T. & Williams, R. S. Nanoelectronic architectures.
Applied Physics a-Materials Science & Processing 80, 1183–1195 (2005).

53. Chen, Y. et al. Nanoscale molecular-switch crossbar circuits. Nanotechnology 14,
462–468 (2003).

 117

54. Beckman, R., Johnston-Halperin, E., Luo, Y., Green, J. E. & Heath, J. R. Bridging
dimensions: Demultiplexing ultrahigh-density nanowire circuits. Science 310,
465–468 (2005).

55. Zhong, Z. H., Wang, D. L., Cui, Y., Bockrath, M. W. & Lieber, C. M. Nanowire
crossbar arrays as address decoders for integrated nanosystems. Science 302,
1377–1379 (2003).

56. DeHon, A., Goldstein, S. C., Kuekes, P. J. & Lincoln, P. Nonphotolithographic
nanoscale memory density prospects. Ieee Transactions on Nanotechnology 4,
215–228 (2005).

57. Waser, R. & Rudiger, A. Ferroelectrics – Pushing towards the digital storage
limit. Nature Materials 3, 81–82 (2004).

58. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692
(2005).

59. Beckman, R. A. et al. Fabrication of conducting Si nanowire arrays. Journal of
Applied Physics 96, 5921–5923 (2004).

60. Melosh, N. A. et al. Ultrahigh-density nanowire lattices and circuits. Science 300,
112–115 (2003).

61. Diehl, M. R. et al. Single-walled carbon nanotube based molecular switch tunnel
junctions. Chemphyschem 4, 1335–1339 (2003).

62. Stewart, D. R. et al. Molecule-independent electrical switching in Pt/organic
monolayer/Ti devices. Nano Letters 4, 133–136 (2004).

63. Vieu, C. et al. Electron beam lithography: resolution limits and applications.
Applied Surface Science 164, 111–117 (2000).

64. Parkin, S. S. P. et al. Exchange-biased magnetic tunnel junctions and application
to nonvolatile magnetic random access memory (invited). Journal of Applied
Physics 85, 5828–5833 (1999).

65. McCreery, R. et al. Molecular rectification and conductance switching in carbon-
based molecular junctions by structural rearrangement accompanying electron
injection. J. Am. Chem. Soc. 125, 10748–58 (2003).

66. Nowak, A. M. & McCreery, R. L. In situ Raman spectroscopy of bias-induced
structural changes in nitroazobenzene molecular electronic junctions. Journal of
the American Chemical Society 126, 16621–16631 (2004).

67. Nowak, A. M. & McCreery, R. L. Characterization of
carbon/nitroazobenzene/titanium molecular electronic junctions with
photoelectron and Raman spectroscopy. Analytical Chemistry 76, 1089–1097
(2004).

68. Handbook of Semiconductor Manufacturing Technology (eds. Nishi, Y. &
Doering, R.) (Marcel Dekker, Inc., New York, 2000).

69. Ziegler, M. M. & Stan, M. R. CMOS/nano co-design for crossbar-based
molecular electronic systems. Ieee Transactions on Nanotechnology 2, 217–230
(2003).

 118

Appendix 4.1 Details of lithographically-patterned structures

500
μm

125 μm diameter pads for
making contact to probe

card

10 μm wide wires

40 μm
squares for making

contact to EBL-
patterned wiring

NW crossbar
circuit location

Width of SNAP
master

Optical lithography patterned structure. The coordinates for the pads
are on the next page. A printed photomask (Output City, Eoway CA) was
used to expose the pattern in AZ 5214 (Clariant). AZ 400K was used for
development and metal lift-off was in acetone.

 119

Coordinates for the optical mask pattern on previous page (1 unit = 1 micrometer)

with the origin at the lower left pad.

PAD # X COORDINATE Y COORDINATE
1 0.0000 0.0000
2 0.0000 350.0000
3 0.0000 700.0000
4 0.0000 1050.0000
5 0.0000 1400.0000
6 0.0000 1750.0000
7 0.0000 2100.0000
8 0.0000 2450.0000
9 0.0000 2800.0000
10 0.0000 3150.0000
11 0.0000 3500.0000
12 0.0000 3850.0000
13 0.0000 4200.0000
14 0.0000 4550.0000
15 0.0000 4900.0000
16 1778.0000 4900.0000
17 2101.6561 4705.6744
18 2395.6589 4468.8663
19 2654.4711 4194.0355
20 2873.2185 3886.3582
21 3047.7811 3551.6291
22 3174.8715 3196.1523
23 3252.0959 2826.6227
24 3278.0000 2450.0000
25 3252.0959 2073.3773
26 3174.8715 1703.8477
27 3047.7811 1348.3709
28 2873.2185 1013.6418
29 2654.4711 705.9645
30 2395.6589 431.1337
31 2101.6561 194.3256
32 1778.0000 0.0000

 120

850 μm
50 μm

Outermost electron-beam lithography written structures. The large 50-μm pads
and crosses at the periphery make contact to optical-lithography-defined pads that in
turn fan-out to large circular pads (125 μm diameter) for making contact to a custom-
built probe card. All electron-beam lithography was done using an FEI XL-30 SEM
with the Nanometer Pattern Generation System (NPGS) version 6.0 (J.C. Nabity
Systems) to expose regions of 3% polymethyl-methacrylate (PMMA) over 2.25%
MMA. Pattern development was done with 1:3 methyl isobutyl ketone to isopropyl
alcohol. Metal depositions were done using an electron-beam evaporator (Semicore
Corp, CHA-Mark 40; Freemont, CA), and lift-off was in acetone.

 121

30 μm

Si NW bottom electrodes

Contacts to top Ti NWs

Grounding pad

Contacts to bottom Si NWs

5.1 μm

2.7 μm

300 nm pitch, width 50-70 nm

Intermediate-to-smallest EBL-patterned structures.

Test electrodes

 122

Appendix 4.2 Memory probe card specifications

 123

Appendix 4.3 NI LabWindows /CVI code used for memory

reading/writing operations

Note that much of the code below has been commented out (/*…*/). I nonetheless left
those portions intact in its original location within the code. This code was written
primarily by Dr. Yi Luo for use with a Keithley 707A switching matrix, National
Instruments (NI) DAQ PC card (v. 4.8), and a Stanford Research Systems SR-570 current
pre-amplifier.

#include <gpib.h>
//#include <windows.h>
#include <utility.h>
//#include "decl-32.h"
#include <stdio.h>
#include <string.h>
#include <userint.h>
#include <dataacq.h>
#include <ansi_c.h>
#include "MUX_AC.h"

static int daq, daq1;
FILE *fp_out;
int Device1;
int cross_point[9][9],set_bit[9][9];
int num_read, all_switch,all_control=-1, ramp, ramp_num=20;
double time_write, time_read, volt_write_on,volt_write_off, volt_read, volt_hold, threshold_high,threshold_low;
double adch0,adch1, volt_ramp0, volt_ramp1, ramp_rate;
const char tmp_file[10]="tmp.dat";

void main(){
 int i;
 Device1=ibdev(0,18,0,10,1,0); /* initiate 707A */
 ibwrt(Device1,"REMOTE",6); /* enable remote mode */
 ibwrt(Device1,"E0X",3); /* Point to present relays */

 daq = LoadPanel (0, "MUX_AC.uir", MUX);
 DisplayPanel (daq);
 i=AI_Clear (1);
 RunUserInterface ();
}
int select_ind (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 daq1 = LoadPanel (1, "MUX_AC.uir", MUX1);
 DisplayPanel (daq1);
 return 1;
 }
int close_selection(int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 int i,m;
 i=HidePanel(daq1);
 return 0;
 }
int switch_control(int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 int m;
 if(all_control==-1){
 m=SetCtrlAttribute(daq,MUX_ALL_SWITCHES, ATTR_DIMMED, 0);
 }
 else{
 m=SetCtrlAttribute(daq,MUX_ALL_SWITCHES, ATTR_DIMMED, 1);
 }
 all_control=all_control*(-1);
 return 1;
 }
int configure_ind (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 int i,j,k,m,i_ramp;
 char c[5],d[6];
 if (all_control!=1){
 m = GetCtrlVal (daq, MUX_Switch1_1, &cross_point[1][1]);
 m = GetCtrlVal (daq, MUX_Switch1_2, &cross_point[1][2]);
 m = GetCtrlVal (daq, MUX_Switch1_3, &cross_point[1][3]);

 124

 m = GetCtrlVal (daq Switch1_4, &cross_point[1][4]);
 m = GetCtrlVal (daq Switch1_5, &cross_point[1][5]);
 m = GetCtrlVal (daq Switch1_6, &cross_point[1][6]);

 m = GetCtrlVal (daq, MUX_Switch1_8, &cross_point[
 m = GetCtrlVal (daq, MUX_Switch2_1, &cross_point
 m = GetCtrlVal (daq, MUX_Switch2_2, &cross_point
 m = GetCtrlVal (daq, MUX_Switch2_3, &cross_point[

, MUX_
, MUX_
, MUX_

 m = GetCtrlVal (daq, MUX_Switch1_7, &cross_point[1][7]);
1][8]);

[2][1]);
[2][2]);
2][3]);

 m = GetCtrlVal (daq, MUX_Switch2_4, &cross_point[2][4]);
m = GetCtrlVal (daq, MUX_Switch2_5, &cross_point[2][5]);
m = GetCtrlVal (daq, MUX_Switch2_6, &cross_point[2][6]);
m = GetCtrlVal (daq, MUX_Switch2_7, &cross_point[2][7]);

(daq, MUX_Switch4_1, &cross_point[4][1]);
(daq, MUX_Switch4_2, &cross_point[4][2]);

m = GetCtrlVal (daq, MUX_Switch4_3, &cross_point[4][3]);
m = GetCtrlVal (daq, MUX_Switch4_4, &cross_point[4][4]);
m = GetCtrlVal (daq, MUX_Switch4_5, &cross_point[4][5]);

GetCtrlVal (daq, MUX_Switch4_6, &cross_point[4][6]);
lV daq, MUX_Switch4_7, &cross_point[4][7]);
lV daq, MUX_Switch4_8, &cross_point[4][8]);

trlVal (daq, MUX_Switch5_1, &cross_point[5][1]);
trlVal (daq, MUX_Switch5_2, &cross_point[5][2]);

tCtrlVal (daq, MUX_Switch5_3, &cross_point[5][3]);
tCtrlVal (daq, MUX_Switch5_4, &cross_point[5][4]);
CtrlVal (daq, MUX_Switch5_5, &cross_point[5][5]);
CtrlVal (daq, MUX_Switch5_6, &cross_point[5][6]);

rlVal (daq, MUX_Switch5_7, &cross_point[5][7]);
rlVal (daq, MUX_Switch5_8, &cross_point[5][8]);

etCtrlVal (daq, MUX_Switch6_1, &cross_point[6][1]);
etCtrlVal (daq, MUX_Switch6_2, &cross_point[6][2]);

UX_Switch6_3, &cross_point[6][3]);
 MUX_Switch6_4, &cross_point[6][4]);

point[6][5]);

ross_point[6][8]);
MUX_Switch7_1, &cross_point[7][1]);

m = GetCtrlVal (daq, MUX_Switch7_2, &cross_point[7][2]);
 MUX_Switch7_3, &cross_point[7][3]);

_ itch7_7, &c 7][7]
s_point[7][8]);
s_point[8][1]);

8_2, &cross_point[8][2]);
_3, &cross_point[8][3]);
_4, &cross_point[8][4]);

tch8_5, &cross_point[8][5]);

point[8][8]);

trlVal (daq, MUX_ALL_SWITCHES, &all_switch);

UX1_Switch1_1, &set_bit[1][1]);
ch1_2, &set_bit[1][2]);

ch1_5, &set_bit[1][5]);

ch2_1, &set_bit[2][1]);

_6, &set_bit[2][6]);
set_bit[2][7]);

itch3_2, &set_bit[3][2]);
itch3_3, &set_bit[3][3]);
tch3_4, &set_bit[3][4]);

 m = GetCtrlVal (daq, MUX_Switch2_8, &cross_point[2][8]);
 m = GetCtrlVal (daq, MUX_Switch3_1, &cross_point[3][1]);
 m = GetCtrlVal (daq, MUX_Switch3_2, &cross_point[3][2]);
 m = GetCtrlVal (daq, MUX_Switch3_3, &cross_point[3][3]);
 m = GetCtrlVal (daq, MUX_Switch3_4, &cross_point[3][4]);
 m = GetCtrlVal (daq, MUX_Switch3_5, &cross_point[3][5]);
 m = GetCtrlVal (daq, MUX_Switch3_6, &cross_point[3][6]);
 m = GetCtrlVal (daq, MUX_Switch3_7, &cross_point[3][7]);
 m = GetCtrlVal (daq, MUX_Switch3_8, &cross_point[3][8]);
 m = GetCtrlVal
 m = GetCtrlVal

 m =
 m = GetCtr al (

etCtr al (m = G
 m = GetC

GetC m =
 m = Ge
 m = Ge
 m = Get
 m = Get
 m = GetCt

m = GetCt
 m = G

m = G
m = GetCtrlVal (daq, M

 m = GetCtrlVal (daq,
 m = GetCtrlVal (daq, MUX_Switch6_5, &cross_
 m = GetCtrlVal (daq, MUX_Switch6_6, &cross_point[6][6]);

cross_point[6][7]); m = GetCtrlVal (daq, MUX_Switch6_7, &
 m = GetCtrlVal (daq, MUX_Switch6_8, &c
 m = GetCtrlVal (daq,

 m = GetCtrlVal (daq,
 m = GetCtrlVal (daq, MUX_Switch7_4, &cross_point[7][4]);
 m = GetCtrlVal (daq, MUX_Switch7_5, &cross_point[7][5]);

X_Switch7_6, &cross_point[7][6] m = GetCtrlVal (daq, MU);
 (daq, MUX Sw ross_point[); m = GetCtrlVal

 m = GetCtrlVal (daq, MUX_Switch7_8, &cros
 m = GetCtrlVal (daq, MUX_Switch8_1, &cros
 m = GetCtrlVal (daq, MUX_Switch
 m = GetCtrlVal (daq, MUX_Switch8

m = GetCtrlVal (daq, MUX_Switch8
 m = GetCtrlVal (daq, MUX_Swi

 = GetCtrlVa m l (daq, MUX_Switch8_6, &cross_point[8][6]);
(daq, MUX_Switch8_7, &cross_point[8][7]); m = GetCtrlVal

 m = GetCtrlVal (daq, MUX_Switch8_8, &cross_
 }
 else{
 m = GetC
 for(i=1;i<=8;i++){
 for(j=1;j<=8;j++){

cross_point[i][j]=all_switch;
}

 }
 }

(daq1, M m = GetCtrlVal
 m = GetCtrlVal (daq1, MUX1_Swit

 = GetCtrlVa m l (daq1, MUX1_Switch1_3, &set_bit[1][3]);
 m al (daq1, MUX1_Switch1_4, &set_bit[1][4]); = GetCtrlV
 m = GetCtrlVal (daq1, MUX1_Swit
 m = GetCtrlVal (daq1, MUX1_Switch1_6, &set_bit[1][6]);
 m = GetCtrlVal (daq1, MUX1_Switch1_7, &set_bit[1][7]);

Switch1_8, &set_bit[1][8]); m = GetCtrlVal (daq1, MUX1_
 m = GetCtrlVal (daq1, MUX1_Swit
 m = GetCtrlVal (daq1, MUX1_Switch2_2, &set_bit[2][2]);

Switch2_3, &set_bit[2][3]); m = GetCtrlVal (daq1, MUX1_
 m = GetCtrlVal (daq1, MUX1_Switch2_4, &set_bit[2][4]);

2_5, &set_bit[2][5]); m = GetCtrlVal (daq1, MUX1_Switch
 m = GetCtrlVal (daq1, MUX1_Switch2
 m = GetCtrlVal (daq1, MUX1_Switch2_7, &

 = GetCtrlVa m l (daq1, MUX1_Switch2_8, &set_bit[2][8]);
(daq1, MUX1_Switch3_1, &set_bit[3][1]); m = GetCtrlVal

 m = GetCtrlVal (daq1, MUX1_Sw
_Sw m = GetCtrlVal (daq1, MUX1

 m = GetCtrlVal (daq1, MUX1_Swi
 m = GetCtrlVal (daq1, MUX1_Switch3_5, &set_bit[3][5]);
 m = GetCtrlVal (daq1, MUX1_Switch3_6, &set_bit[3][6]);
 m = GetCtrlVal (daq1, MUX1_Switch3_7, &set_bit[3][7]);

 125

 m = GetCtrlVal (daq1, MUX1_Switch3_8, &set_bit[3][8]);
 m = GetCtrlVal (daq1, MUX1_Switch4_1, &set_bit[4][1]);
 m = GetCtrlVal (daq1, MUX1_Switch4_2, &set_bit[4][2]);
 m = GetCtrlVal (daq1, MUX1_Switch4_3, &set_bit[4][3]);
 m = GetCtrlVal (daq1, MUX1_Switch4_4, &set_bit[4][4]);
 m = GetCtrlVal (daq1, MUX1_Switch4_5, &set_bit[4][5]);
 m = GetCtrlVal (daq1, MUX1_Switch4_6, &set_bit[4][6]);
 m = GetCtrlVal (daq1, MUX1_Switch4_7, &set_bit[4][7]);
 m = GetCtrlVal (daq1, MUX1_Switch4_8, &set_bit[4][8]);
 m = GetCtrlVal (daq1, MUX1_Switch5_1, &set_bit[5][1]);
 m = GetCtrlVal (daq1, MUX1_Switch5_2, &set_bit[5][2]);
 m = GetCtrlVal (daq1, MUX1_Switch5_3, &set_bit[5][3]);
 m = GetCtrlVal (daq1, MUX1_Switch5_4, &set_bit[5][4]);
 m = GetCtrlVal (daq1, MUX1_Switch5_5, &set_bit[5][5]);
 m = GetCtrlVal (daq1, MUX1_Switch5_6, &set_bit[5][6]);
 m = GetCtrlVal (daq1, MUX1_Switch5_7, &set_bit[5][7]);
 m = GetCtrlVal (daq1, MUX1_Switch5_8, &set_bit[5][8]);
 m = GetCtrlVal (daq1, MUX1_Switch6_1, &set_bit[6][1]);
 m = GetCtrlVal (daq1, MUX1_Switch6_2, &set_bit[6][2]);
 m = GetCtrlVal (daq1, MUX1_Switch6_3, &set_bit[6][3]);
 m = GetCtrlVal (daq1, MUX1_Switch6_4, &set_bit[6][4]);
 m = GetCtrlVal (daq1, MUX1_Switch6_5, &set_bit[6][5]);
 m = GetCtrlVal (daq1, MUX1_Switch6_6, &set_bit[6][6]);
 m = GetCtrlVal (daq1, MUX1_Switch6_7, &set_bit[6][7]);
 m = GetCtrlVal (daq1, MUX1_Switch6_8, &set_bit[6][8]);
 m = GetCtrlVal (daq1, MUX1_Switch7_1, &set_bit[7][1]);
 m = GetCtrlVal (daq1, MUX1_Switch7_2, &set_bit[7][2]);
 m = GetCtrlVal (daq1, MUX1_Switch7_3, &set_bit[7][3]);
 m = GetCtrlVal (daq1, MUX1_Switch7_4, &set_bit[7][4]);
 m = GetCtrlVal (daq1, MUX1_Switch7_5, &set_bit[7][5]);
 m = GetCtrlVal (daq1, MUX1_Switch7_6, &set_bit[7][6]);
 m = GetCtrlVal (daq1, MUX1_Switch7_7, &set_bit[7][7]);
 m = GetCtrlVal (daq1, MUX1_Switch7_8, &set_bit[7][8]);
 m = GetCtrlVal (daq1, MUX1_Switch8_1, &set_bit[8][1]);
 m = GetCtrlVal (daq1, MUX1_Switch8_2, &set_bit[8][2]);
 m = GetCtrlVal (daq1, MUX1_Switch8_3, &set_bit[8][3]);
 m = GetCtrlVal (daq1, MUX1_Switch8_4, &set_bit[8][4]);
 m = GetCtrlVal (daq1, MUX1_Switch8_5, &set_bit[8][5]);
 m = GetCtrlVal (daq1, MUX1_Switch8_6, &set_bit[8][6]);
 m = GetCtrlVal (daq1, MUX1_Switch8_7, &set_bit[8][7]);
 m = GetCtrlVal (daq1, MUX1_Switch8_8, &set_bit[8][8]);
 m = GetCtrlVal (daq, MUX_TIME_WRITE, &time_write);
 m = GetCtrlVal (daq, MUX_VOLT_WRITE_ON, &volt_write_on);

_off);

******* st

 /*******

 /* dummy line */

 /* check if the bit is selected */

 c[2]=(char)(48+i);

(Device1,c,4);

2]=(char)(48+i);
c[3]='X';

 c[4]='\0';
4);

+8);

4);

+8);

4);

/* two-digit */
j-2);

,5);

 m = GetCtrlVal (daq, MUX_VOLT_WRITE_OFF, &volt_write
 m = GetCtrlVal (daq, MUX_VOLT_HOLD, &volt_hold);
 m = GetCtrlVal (daq, MUX_Ramp, &ramp);
 m = GetCtrlVal (daq, MUX_Ramp_Rate, &ramp_rate);

/* arting the loop of configuring *******/

 * test ********/
 m=SetCtrlVal(daq,MUX_STOP_SCAN,1);
 m=SetCtrlVal(daq,MUX_Config_complete,0);
 m=SetCtrlVal(daq,MUX_Memory_Check_Done,0);
 ibwrt(Device1,"CA72X",5);
 ibwrt(Device1,"NA72X",5);
 for(i=1;i<=8;i++){
 for(j=1;j<=8;j++){
 if (set_bit[i][j]==1){
 c[0]='C';
 c[1]='B';

 c[3]='X';
 c[4]='\0';
 ibwrt
 c[0]='N';
 c[1]='A';
 c[

 ibwrt(Device1,c,
 if (j<2){
 c[0]='C';
 c[1]='C';
 c[2]=(char)(48+j
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,
 c[0]='N';
 c[1]='H';
 c[2]=(char)(48+j
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,
 }
 else{
 d[0]='C';
 d[1]='C';
 d[2]='1';
 d[3]=(char)(48+
 d[4]='X';
 d[5]='\0';
 ibwrt(Device1,d

 126

 d[0]='N';
 d[1]='H';
 d[2]='1'; /* two-digit */

j-2);

,5);

j+8)){
(k<10){

f (k<=8){
[0]='C';

c[1]='A'; /* apply -1.0 volt to rows from Keithley 5-25-01 */
2]=(char)(48+k);

[3]='X';
[4]='\0';

e1,c,4);

lse{
[0]='C';
[1]='H';

2]=(char)(48+k);
[3]='X';
[4]='\0';

e1,c,4);

lse{
[0]='C';
[1]='H';
2]='1';
3]=(char)(48+k-10);

[4]='X';
[5]='\0';

e1,d,5);

][j]==1){

 for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){

+ (volt_write_on/2-volt_hold)/ramp_num;
 volt_ramp1=volt_ramp1 + (volt_write_on/2)/ramp_num;

 m = AO_VWrite (1, 0, volt_ramp0);
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_on/ramp_num/ramp_rate);

 Delay(time_write); /* hold */
 for(i_ramp=1; i_ramp<=ramp_num; i_ramp++){

lt_ramp0=v old)/ramp_num;

m = AO_VWrite (1, 0, volt_ramp0);
AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);

Delay(volt_write_on/ramp_num/ramp_rate);

 }

0=volt_hold;

=1; i_ramp<=ramp_num; i_ramp++){

amp0=volt_ramp0 + (volt_write_off/2-volt_hold)/ramp_num;
volt_ramp1=volt_ramp1 + (volt_write_off/2)/ramp_num;
m = AO_VWrite (1, 0, volt_ramp0);
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);

volt_write_off/ramp_num/ramp_rate);

e_write); /* hold */
num; i_ramp++){

volt_ramp0=volt_ramp0 - (volt_write_off/2-volt_hold)/ramp_num;
mp1=volt_ramp1 - (volt_write_off/2)/ramp_num;

m = AO_VWrite (1, 0, volt_ramp0);
(1, 1, (-volt_ramp1-0.06225)/0.9938);

e_off/ramp_num/ramp_rate);

(volt_write_on/2));
Write (1, 1, (-volt_write_on/2-0.06225)/0.9938);

 d[3]=(char)(48+
 d[4]='X';
 d[5]='\0';
 ibwrt(Device1,d
 }
 for(k=1;k<=16;k++){
 if((k!=i)&&(k!=
 if
 i
 c

 c[
 c
 c
 ibwrt(Devic
 }
 e
 c
 c
 /* Ground the columns */
 c[
 c
 c
 ibwrt(Devic
 }
 }
 e
 d
 d
 d[
 d[
 d
 d
 ibwrt(Devic
 }
 }
 }
 /* set write voltage */
 Delay(0.1);
 printf("\a");
 if(ramp==1){
 if(cross_point[i
 volt_ramp0=volt_hold;
 volt_ramp1=0.0;

 /* ramp-up */
 volt_ramp0=volt_ramp0

 }

 /* ramp-down */
 vo olt_ramp0 - (volt_write_on/2-volt_h
 volt_ramp1=volt_ramp1 - (volt_write_on/2)/ramp_num;

 m =

 }

 else{
 volt_ramp
 volt_ramp1=0.0;
 for(i_ramp
 /* ramp-up */
 volt_r

 Delay(
 }
 Delay(tim
 for(i_ramp=1; i_ramp<=ramp_
 /* ramp-down */

 volt_ra

 m = AO_VWrite
 Delay(volt_writ
 }
 }
 } /* with ramp */
 else{
 if(cross_point[i][j]==1){
 m = AO_VWrite (1, 0,
 m = AO_V
 }
 else{

 127

 m = AO_VWrite (1, 0, (volt_write_off/2));
Write (1, 1, (-volt_write_off/2-0.06225)/0.9938);

olt_hold);
.06225/0.9938);

[1]='H';

 /* two-digit */

4]='X';

e1,d,5);

 /* two-digit */

e1,d,5);

 = GetCtrlV itch1_5, &cross_point[1][5]);

 = GetCtrlV h2_6, &cross_point[2][6]);

UX_Switch3_6, &cr
int[3][7]);

 m = AO_V
 }
 Delay(time_write);
 m = AO_VWrite (1, 0, v
 m = AO_VWrite (1, 1, -0
 } /* no ramp */
 /***** set holding voltage to the row, and Ground to the column *****/
 c[0]='C';
 c[1]='A';
 c[2]=(char)(48+i);
 c[3]='X';
 c[4]='\0';
 ibwrt(Devic e1,c,4);
 c[0]='N';
 c[1]='B';
 c[2]=(char)(48+i);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 if (j<2){
 c[0]='C';
 c
 c[2]=(char)(48+j+8);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 c[0]='N';
 c[1]='C';
 c[2]=(char)(48+j+8);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 }
 else{
 d[0]='C';
 d[1]='H';
 d[2]='1';
 d[3]=(char)(48+j-2);
 d[
 d[5]='\0';
 ibwrt(Devic
 d[0]='N';
 d[1]='C';
 d[2]='1';
 d[3]=(char)(48+j-2);
 d[4]='X';
 d[5]='\0';
 ibwrt(Devic
 }
 /*ibwrt(Device1,"P0X",3); open all relays 5-21-01 */
 } /* finish setting one selected bit */
 } /* j */
 }
 /* close i loop */
 m=SetCtrlVal(daq,MUX_Config_complete,1);
 return 1;
 }
int configure (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
 {
 int i,j,k,m,i_ramp;
 char c[5],d[6];
 if (all_control !=1){

 m = GetCtrlVal (daq, MUX_Switch1_1, &cross_point[1][1]);
 m = GetCtrlVal (daq, MUX_Switch1_2, &cross_point[1][2]);
 m = GetCtrlVal (daq, MUX_Switch1_3, &cross_point[1][3]);
 m = GetCtrlVal (daq, MUX_Switch1_4, &cross_point[1][4]);
 m al (daq, MUX_Sw
 m = GetCtrlVal (daq, MUX_Switch1_6, &cross_point[1][6]);
 m = GetCtrlVal (daq, MUX_Switch1_7, &cross_point[1][7]);
 m = GetCtrlVal (daq, MUX_Switch1_8, &cross_point[1][8]);
 m = GetCtrlVal (daq, MUX_Switch2_1, &cross_point[2][1]);
 m = GetCtrlVal (daq, MUX_Switch2_2, &cross_point[2][2]);
 m = GetCtrlVal (daq, MUX_Switch2_3, &cross_point[2][3]);
 m = GetCtrlVal (daq, MUX_Switch2_4, &cross_point[2][4]);
 m = GetCtrlVal (daq, MUX_Switch2_5, &cross_point[2][5]);
 m al (daq, MUX_Switc
 m = GetCtrlVal (daq, MUX_Switch2_7, &cross_point[2][7]);
 m = GetCtrlVal (daq, MUX_Switch2_8, &cross_point[2][8]);
 m = GetCtrlVal (daq, MUX_Switch3_1, &cross_point[3][1]);
 m = GetCtrlVal (daq, MUX_Switch3_2, &cross_point[3][2]);
 m = GetCtrlVal (daq, MUX_Switch3_3, &cross_point[3][3]);
 m = GetCtrlVal (daq, MUX_Switch3_4, &cross_point[3][4]);
 m = GetCtrlVal (daq, MUX_Switch3_5, &cross_point[3][5]);
 m = GetCtrlVal (daq, M oss_point[3][6]);
 m = GetCtrlVal (daq, MUX_Switch3_7, &cross_po
 m = GetCtrlVal (daq, MUX_Switch3_8, &cross_point[3][8]);
 m = GetCtrlVal (daq, MUX_Switch4_1, &cross_point[4][1]);
 m = GetCtrlVal (daq, MUX_Switch4_2, &cross_point[4][2]);
 m = GetCtrlVal (daq, MUX_Switch4_3, &cross_point[4][3]);
 m = GetCtrlVal (daq, MUX_Switch4_4, &cross_point[4][4]);

 128

 m = GetCtrlVal (daq, MUX_Switch4_5, &cross_point[4][5]);
 m = GetCtrlVal (daq, MUX_Switch4_6, &cross_point[4][6]);
 m = GetCtrlVal (daq, MUX_Switch4_7, &cross_point[4][7]);
 m = GetCtrlVal (daq, MUX_Switch4_8, &cross_point[4][8]);
 m = GetCtrlVal (daq, M oss_point[5][1]); UX_Switch5_1, &cr

UX_Switch5_2, &cr

 = GetCtrlV

****/

 /*******

_Config_complete,0);
q,MUX_Memory_Check_Done,0);

dummy line */
e1

{

i][j]==1){ 2-17-01 */
[0]='C';

 c[1]='B';

;

;

;

;

 /* two-digit */

 m = GetCtrlVal (daq, M oss_point[5][2]);
 m = GetCtrlVal (daq, MUX_Switch5_3, &cross_point[5][3]);
 m al (daq, MUX_Switch5_4, &cross_point[5][4]);
 m = GetCtrlVal (daq, MUX_Switch5_5, &cross_point[5][5]);
 m = GetCtrlVal (daq, MUX_Switch5_6, &cross_point[5][6]);
 m = GetCtrlVal (daq, MUX_Switch5_7, &cross_point[5][7]);
 m = GetCtrlVal (daq, MUX_Switch5_8, &cross_point[5][8]);
 m = GetCtrlVal (daq, MUX_Switch6_1, &cross_point[6][1]);
 m = GetCtrlVal (daq, MUX_Switch6_2, &cross_point[6][2]);
 m = GetCtrlVal (daq, MUX_Switch6_3, &cross_point[6][3]);
 m = GetCtrlVal (daq, MUX_Switch6_4, &cross_point[6][4]);
 m = GetCtrlVal (daq, MUX_Switch6_5, &cross_point[6][5]);
 m = GetCtrlVal (daq, MUX_Switch6_6, &cross_point[6][6]);
 m = GetCtrlVal (daq, MUX_Switch6_7, &cross_point[6][7]);
 m = GetCtrlVal (daq, MUX_Switch6_8, &cross_point[6][8]);
 m = GetCtrlVal (daq, MUX_Switch7_1, &cross_point[7][1]);
 m = GetCtrlVal (daq, MUX_Switch7_2, &cross_point[7][2]);
 m = GetCtrlVal (daq, MUX_Switch7_3, &cross_point[7][3]);
 m = GetCtrlVal (daq, MUX_Switch7_4, &cross_point[7][4]);
 m = GetCtrlVal (daq, MUX_Switch7_5, &cross_point[7][5]);
 m = GetCtrlVal (daq, MUX_Switch7_6, &cross_point[7][6]);
 m = GetCtrlVal (daq, MUX_Switch7_7, &cross_point[7][7]);
 m = GetCtrlVal (daq, MUX_Switch7_8, &cross_point[7][8]);
 m = GetCtrlVal (daq, MUX_Switch8_1, &cross_point[8][1]);
 m = GetCtrlVal (daq, MUX_Switch8_2, &cross_point[8][2]);
 m = GetCtrlVal (daq, MUX_Switch8_3, &cross_point[8][3]);
 m = GetCtrlVal (daq, MUX_Switch8_4, &cross_point[8][4]);
 m = GetCtrlVal (daq, MUX_Switch8_5, &cross_point[8][5]);
 m = GetCtrlVal (daq, MUX_Switch8_6, &cross_point[8][6]);
 m = GetCtrlVal (daq, MUX_Switch8_7, &cross_point[8][7]);
 m = GetCtrlVal (daq, MUX_Switch8_8, &cross_point[8][8]);
 }
 else{
 m = GetCtrlVal (daq, MUX_ALL_SWITCHES, &all_switch);
 for(i=1;i<=8;i++){
 for(j=1;j<=8;j++){
 cross_point[i][j]=all_switch;
 }
 }
 }
 m = GetCtrlVal (daq, MUX_TIME_WRITE, &time_write);
 m = GetCtrlVal (daq, MUX_VOLT_WRITE_ON, &volt_write_on);
 m = GetCtrlVal (daq, MUX_VOLT_WRITE_OFF, &volt_write_off);
 m = GetCtrlVal (daq, MUX_VOLT_HOLD, &volt_hold);
 m = GetCtrlVal (daq, MUX_Ramp, &ramp);
 m = GetCtrlVal (daq, MUX_Ramp_Rate, &ramp_rate);

/******** starting of configur the loop ing ***

 * test ********/
 m=SetCtrlVal(daq,MUX_STOP_SCAN,1);
 m=SetCtrlVal(daq,MUX
 m=SetCtrlVal(da
 ibwrt(Device1,"CA25X",5); /*
 ibwrt(Devic ,"NA25X",5);
 for(i=1;i<=8;i++)
 for(j=1;j<=8;j++){
 /* if(cross_point[
 c

 c[2]=(char)(48+i);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4)
 c[0]='N';
 c[1]='A';
 c[2]=(char)(48+i);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4)
 if (j<2){
 c[0]='C';
 c[1]='C';
 c[2]=(char)(48+j+8);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4)
 c[0]='N';
 c[1]='H';
 c[2]=(char)(48+j+8);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4)
 }
 else{
 d[0]='C';
 d[1]='C';
 d[2]='1';

 129

 d[3]=(char)(48+j-2);

;

 /* two-digit */
);

;

;

;

);

;
 }
}

{
){

 if (k<=8){
 c[0]='C';

 c[1]='A'; /* apply -1.0 volt to rows from Keithley 5-25-01 */
2]=(char)(48+k);

[3]='X';
[4]='\0';

e1,c,4);

lse{

 c[0]='C';
 c[1]='H';

/* Ground the columns */
 c[2]=(char)(48+k);

 c[3]='X';
 c[4]='\0';

ibwrt(Device1,c,4);

 }
 else{

d[0]='C';

r)(48+k-10);

ice1,d,5);

0=volt_hold;
1=0.0;

<=ramp_num; i_ramp++){

volt_ramp0=volt_ramp0 + (volt_write_on/2-volt_hold)/ramp_num;
amp1=volt_ramp1 + (volt_write_on/2)/ramp_num;

m = AO_VWrite (1, 0, volt_ramp0);
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);

volt_write_on/ramp_num/ramp_rate);
Delay(-volt_write_on/ramp_num/ramp_rate);

elay(time_write); /* hold */
amp=1; i_ramp<=ramp_num; i_ramp++){

volt_ramp0=volt_ramp0 - (volt_write_on/2-volt_hold)/ramp_num;

 d[4]='X';
 d[5]='\0';
 ibwrt(Device1,d,5)
 d[0]='N';
 d[1]='H';
 d[2]='1';
 d[3]=(char)(48+j-2
 d[4]='X';
 d[5]='\0';
 ibwrt(Device1,d,5)
 }
 /* }
 else{
 c[0]='C';
 c[1]='B';
 c[2]=(char)(48+i);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4)
 if (j<4){
 c[0]='C';
 c[1]='A';
 c[2]=(char)(48+j+6);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4)
 }
 else{
 d[0]='C';
 d[1]='A';
 d[2]='1';
 d[3]=(char)(48+j-4
 d[4]='X';
 d[5]='\0';
 ibwrt(Device1,d,5)

 2-17-01 */
 for(k=1;k<=16;k++)
 if((k!=i)&&(k!=j+8)
 if (k<10){

 c[
 c
 c
 ibwrt(Devic
 }
 e

 }

 d[1]='H';
 d[2]='1';
 d[3]=(cha
 d[4]='X';
 d[5]='\0';
 ibwrt(Dev
 }
 }
 }
 /* set write voltage */
 Delay(0.1);
 printf("\a");
 if(ramp==1){
 if(cross_point[i][j]==1){
 volt_ramp
 volt_ramp
 for(i_ramp=1; i_ramp
 /* ramp-up */

 volt_r

 Delay(

 }

 D
 for(i_r
 /* ramp-down */

 volt_ramp1=volt_ramp1 - (volt_write_on/2)/ramp_num;

 130

 m = AO_VWrite (1, 0, volt_ramp0);
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_on/ramp_num/ramp_rate);

(-volt_write_on/ramp_num/ramp_rate);

d;
1=0.0;
=1; i_ramp<=ramp_num; i_ramp++){

m = AO_VWrite (1, 0, volt_ramp0);
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_off/ramp_num/ramp_rate);

y(-volt_write_off/ramp_num/ramp_rate);

e_write); /* hold */
num; i_ramp++){

volt_ramp0=volt_ramp0 - (volt_write_off/2-volt_hold)/ramp_num;
volt_ramp1=volt_ramp1 - (volt_write_off/2)/ramp_num;

_VWrite (1, 0, volt_ramp0);
m = AO_VWrite (1, 1, (-volt_ramp1-0.06225)/0.9938);
Delay(volt_write_off/ramp_num/ramp_rate);

e_off/ramp_num/ramp_rate);

(volt_write_on/2));

Write (1, 1, (-volt_write_on/2-0.06225)/0.9938);

 = AO_VWrite (1, 0, (volt_write_off/2));

0]='C';

[3]='X';

se{

 /* two-digit */
+j-2);

[1]='C';

* open all relays (skipped 5-25-01) */

SetCtrlVal q,MUX_Co

 Delay
 }
 }
 else{
 volt_ramp0=volt_hol
 volt_ramp
 for(i_ramp
 /* ramp-up */
 volt_ramp0=volt_ramp0 + (volt_write_off/2-volt_hold)/ramp_num;
 volt_ramp1=volt_ramp1 + (volt_write_off/2)/ramp_num;

 Dela
 }
 Delay(tim
 for(i_ramp=1; i_ramp<=ramp_
 /* ramp-down */

 m = AO

 Delay(-volt_writ
 }
 }
 } /* with ramp */
 else{
 if(cross_point[i][j]==1){
 m = AO_VWrite (1, 0,
 m = AO_V
 }
 else{
 m
 m = AO_VWrite (1, 1, (-volt_write_off/2-0.06225)/0.9938);
 }
 Delay(time_write);
 m = AO_VWrite (1, 0, volt_hold);
 m = AO_VWrite (1, 1, -0.06225/0.9938);
 } /* no ramp */
 /***** set holding voltage to the row, and Ground to the column *****/
 c[
 c[1]='A';
 c[2]=(char)(48+i);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 c[0]='N';
 c[1]='B';
 c[2]=(char)(48+i);
 c
 c[4]='\0';
 ibwrt(Device1,c,4);
 if (j<2){
 c[0]='C';
 c[1]='H';
 c[2]=(char)(48+j+8);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 c[0]='N';
 c[1]='C';
 c[2]=(char)(48+j+8);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 }
 el
 d[0]='C';
 d[1]='H';
 d[2]='1';
 d[3]=(char)(48
 d[4]='X';
 d[5]='\0';
 ibwrt(Device1,d,5);
 d[0]='N';
 d
 d[2]='1'; /* two-digit */
 d[3]=(char)(48+j-2);
 d[4]='X';
 d[5]='\0';
 ibwrt(Device1,d,5);
 }
 /* ibwrt(Device1,"P0X",3); /
 }
 }
/* close the loop */
m= (da nfig_complete,1);
return 1;
}

 131

int logic_check(int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2){
 /*SetCtrlVal(daq,MUX_STOP_SCAN,1); */
 return 1;
}
int memory_check(int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2){

ail[9][9];

=SetCtrlAttr tch1_4r, ATTR_DIMMED, TRUE);

, TRUE);
daq,MUX witch3_1r, TRUE);

IMMED, TRUE);

, TRUE);
UE);

, TRUE);

daq,MUX switch4_6r,
daq,MUX switch5_1r,

);

);
);

);

nt[i][j], (i-1)*8+j, cross_point[i][j],VAL_BLUE);

e 707A */
 /* Point to present relays */

/* use relay row D to read (Vread+AC from function generater) */

 /* amp-meter */
+8);

c[4]='\0';
 ibwrt(Device1,c,4);

 c[0]='N';
 /* GND */

 c[2]=(char)(48+j+8);
 c[3]='X';

 /*SetCtrlVal(daq,MUX_STOP_SCAN,1); */
int i,j,k,ii,m;
double r_dummy;
int f
double AD0[9][9][100],AD1[9][9][100];
char c[5],d[6];
 DeleteGraphPlot (daq, MUX_GRAPH, -1, VAL_IMMEDIATE_DRAW);
 m=SetCtrlVal(daq,MUX_Memory_Check_Done,0);
 m=SetCtrlVal(daq,MUX_Set_phase,0);
/*
 m=SetCtrlAttribute(daq,MUX_switch1_1r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch1_2r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch1_3r, ATTR_DIMMED, TRUE);
 m ibute(daq,MUX_swi
 m=SetCtrlAttribute(daq,MUX_switch1_5r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch1_6r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch2_1r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch2_2r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch2_3r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch2_4r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch2_5r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch2_6r, ATTR_DIMMED
 m=SetCtrlAttribute(_s ATTR_DIMMED,
 m=SetCtrlAttribute(daq,MUX_switch3_2r, ATTR_D
 m=SetCtrlAttribute(daq,MUX_switch3_3r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch3_4r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch3_5r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch3_6r, ATTR_DIMMED
 m=SetCtrlAttribute(daq,MUX_switch4_1r, ATTR_DIMMED, TR
 m=SetCtrlAttribute(daq,MUX_switch4_2r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch4_3r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch4_4r, ATTR_DIMMED
 m=SetCtrlAttribute(daq,MUX_switch4_5r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(_ ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(_ ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch5_2r, ATTR_DIMMED, TRUE);
 m ibute(daq,MUX_switch5_3r, ATTR_DIMMED, TRUE); =SetCtrlAttr
 m=SetCtrlAttribute(daq,MUX_switch5_4r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch5_5r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch5_6r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch6_1r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch6_2r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch6_3r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch6_4r, ATTR_DIMMED, TRUE);
 m=SetCtrlAttribute(daq,MUX_switch6_5r, ATTR_DIMMED, TRUE
 m=SetCtrlAttribute(daq,MUX_switch6_6r, ATTR_DIMMED, TRUE);
12-12-01 LED's removed and kept in an untitled panel */
 for(i=1;i<=8;i++){
 for(j=1;j<=8;j++){
 PlotLine(daq, MUX_GRAPH, (i-1)*8+(j-1), cross_poi
 }
 }
 m = GetCtrlVal (daq, MUX_TIME_READ, &time_read);
 m = GetCtrlVal (daq, MUX_VOLT_READ, &volt_read);
 m = GetCtrlVal (daq, MUX_Threshold_High, &threshold_high);
 m = GetCtrlVal (daq, MUX_Threshold_Low, &threshold_low);
 m = GetCtrlVal (daq, MUX_NUM_READ, &num_read);
 m = GetCtrlVal (daq, MUX_VOLT_HOLD, &volt_hold);
 fp_out=fopen(tmp_file,"w");
/* Device1=ibdev(0,18,0,10,1,0); /* initiat
/* ibwrt(Device1,"E0X",3);
 for(i=1;i<=8;i++){
 for(j=1;j<=8;j++){
 c[0]='C';
 c[1]='D';
 2]=(char)(48+i);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 c[0]='N';
 c[1]='A';
 c[2]=(char)(48+i);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 if (j<2){
 c[0]='C';
 c[1]='G';
 c[2]=(char)(48+j
 c[3]='X';

 c[1]='H';

 132

 c[4]='\0';

 else{
 d[0]='C';

d[1]='G'; /* amp-meter */

);
 d[4]='X';

 d[5]='\0';
 ibwrt(Device1,d,5);

 d[0]='N';
 d[1]='H'; /* GND */

d[4]='X';
 d[5]='\0';

if (k<=8){
c[0]='C';
c[1]='A'; /* apply -1.0 volt to rows from Keithley 5-25-01 */
c[2]=(char)(48+k);
c[3]='X';
c[4]='\0';
ibwrt(Device1,c,4);
}
else{
c[0]='C';
c[1]='H';

c[2]=(char)(48+k);
c[3]='X';
c[4]='\0';
ibwrt(Device1,c,4);
}

8+k-10);

1,d,5);

 */

f("\a");
 0, volt_read); /* channel 0's output goes to relay row B directly

ction generater */
elay (0.1); /* delay after setting the read voltage */

/*manually set phase on the lock-in 5_28_01 */

_phase,1);

,0); taken out for non-volatile devices 6-5-01*/

 (1, 0, 1, &adch0); /* output from current amplifier */
 /* output from lock-in amplifier */

i][j][ii]=-adch0; /**** Current Amplifier revise the polarity!! *****/
;

ii>0) m=Plot MUX_GRAPH, 8 0*(i-1) -

H, 8.0*(i-1)+j-1+(double)(ii-1)/(double)(num_read-1), AD1[i][j][ii-1], 8.0*(i-1)+j-

e1,c,4);

 ibwrt(Device1,c,4);
 }

 d[2]='1';
 d[3]=(char)(48+j-2

 d[2]='1';
 d[3]=(char)(48+j-2);

 ibwrt(Device1,d,5);
 }
 for(k=1;k<=16;k++){
 if((k!=i)&&(k!=j+8)){
 if (k<10){

 /* Ground the columns */

 }
 else{
 d[0]='C';
 d[1]='H';
 d[2]='1';
 d[3]=(char)(4
 d[4]='X';
 d[5]='\0';
 ibwrt(Device
 }
 }
 }

 /* set read voltage and measure the current */
 /* Delay (0.1); 5-25-01
 print
 m = AO_VWrite (1,
 and goes to row D through fun
 D

 /*
 m=SetCtrlVal(daq,MUX_Set
 scanf("%f",r_dummy);
 m=SetCtrlVal(daq,MUX_Set_phase

 for (ii=0;ii<num_read;ii++){
 m = AI_VRead
 m = AI_VRead (1, 1, 1, &adch1);

 AD0[
 AD1[i][j][ii]=adch1

 if(Line (daq, .0*(i-1)+j-1+(double)(ii-1)/(double)(num_read-1), AD0[i][j][ii-1], 8. +j
1+(double)(ii)/(double)(num_read-1), AD0[i][j][ii], VAL_RED);
 if(ii>0) m=PlotLine (daq, MUX_GRAP
1+(double)(ii)/(double)(num_read-1), AD1[i][j][ii], VAL_GREEN);

 Delay (time_read/num_read);
 }
 /***** set holding voltage to the row, and Ground to the column *****/
 c[0]='C';
 c[1]='A';
 c[2]=(char)(48+i);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 c[0]='N';
 c[1]='D';
 c[2]=(char)(48+i);
 c[3]='X';
 c[4]='\0';
 ibwrt(Devic
 if (j<2){
 c[0]='C';

 133

 c[1]='H';
 c[2]=(char)(48+j+8);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);

 /* two-digit */

 /* two-digit */

[4]='X';

hreshold_high) {
j]=1;

 5-25-01 */

 voltage to the rows, and Ground to the columns *****/

1]='A'; y -1.0 v

[0]='C';
 /* Ground the columns */

[4]='\0';

k-10);

E);

 c[0]='N';
 c[1]='G';
 c[2]=(char)(48+j+8);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 }
 else{
 d[0]='C';
 d[1]='H';
 d[2]='1';
 d[3]=(char)(48+j-2);
 d[4]='X';
 d[5]='\0';
 ibwrt(Device1,d,5);
 d[0]='N';
 d[1]='G';
 d[2]='1';
 d[3]=(char)(48+j-2);
 d
 d[5]='\0';
 ibwrt(Device1,d,5);
 }
 fail[i][j]=0;
 if(cross_point[i][j]==0){
 for (ii=0;ii<num_read;ii++){
 if(AD0[i][j][ii]>threshold_low) {
 fail[i][j]=1;
 break;
 }
 }
 }
 if(cross_point[i][j]==1){
 for (ii=0;ii<num_read;ii++){
 if(AD0[i][j][ii]<t
 fail[i][
 break;
 }
 }
 }
 /* m = AO_VWrite (1, 0, 0.0);
 ibwrt(Device1,"P0X",3);
 }
 }
/* close the loop */

/***** set holding
 for(k=1;k<=16;k++){
 if (k<10){
 if (k<=8){
 c[0]='C';
 c[/* appl olt to rows from Keithley 5-25-01 */
 c[2]=(char)(48+k);
 c[3]='X';
 c[4]='\0';
 ibwrt(Device1,c,4);
 }
 else{
 c
 c[1]='H';
 c[2]=(char)(48+k);
 c[3]='X';
 c
 ibwrt(Device1,c,4);
 }
 }
 else{
 d[0]='C';
 d[1]='H';
 d[2]='1';
 d[3]=(char)(48+
 d[4]='X';
 d[5]='\0';
 ibwrt(Device1,d,5);
 }
 }
/*
if(fail[1][1]==0) {
 m=SetCtrlAttribute(daq,MUX_switch1_1r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch1_1r,cross_point[1][1]);}
if(fail[1][2]==0) {
 m=SetCtrlAttribute(daq,MUX_switch1_2r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch1_2r,cross_point[1][2]);}
if(fail[1][3]==0) {
 m=SetCtrlAttribute(daq,MUX_switch1_3r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch1_3r,cross_point[1][3]);}
if(fail[1][4]==0) {
 m=SetCtrlAttribute(daq,MUX_switch1_4r, ATTR_DIMMED, FALS

 134

 m=SetCtrlVal(daq,MUX_switch1_4r,cross_point[1][4]);}
if(fail[1][5]==0) {
 m=SetCtrlAttribute(daq,MUX_switch1_5r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch1_5r,cross_point[1][5]);}
if(fail[1][6]==0) {
 m=SetCtrlAttribute(daq,MUX_switch1_6r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch1_6r,cross_point[1][6]);}
if(fail[2][1]==0) {
 m=SetCtrlAttribute(daq,MUX_switch2_1r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch2_1r,cross_point[2][1]);}
if(fail[2][2]==0) {
 m=SetCtrlAttribute(daq,MUX_switch2_2r, ATTR_DIMMED, FALSE);

, FALSE);
nt[3][4]);}

TR_DIMMED, FALSE);
_swi

witch4_2r, ATTR_DIMMED, FALSE);
q,MUX_switch4_2r,cross_point[4][2]);}

daq,MUX_switch4_3r, ATTR_DIMMED, FALSE);

r, ATTR_DIMMED, FALSE);
;}

daq,MUX switch4_5r, FALSE);

E);

, FALSE);
nt[5][3]);}

FALSE);
);}

SE);
);}

nt[5][6]);}

m=SetCtrlAttribute(daq,MUX_switch6_1r, ATTR_DIMMED, FALSE);

D, FALSE);
etCtrlVal(daq,MUX_switch6_2r,cross_point[6][2]);}

D, FALSE);
etCtrlVal(daq,MUX_switch6_3r,cross_point[6][3]);}

D, FALSE);
etCtrlVal(daq,MUX_switch6_4r,cross_point[6][4]);}

 m=SetCtrlVal(daq,MUX_switch2_2r,cross_point[2][2]);}
if(fail[2][3]==0) {
 m=SetCtrlAttribute(daq,MUX_switch2_3r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch2_3r,cross_point[2][3]);}
if(fail[2][4]==0) {
 m=SetCtrlAttribute(daq,MUX_switch2_4r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch2_4r,cross_point[2][4]);}
if(fail[2][5]==0) {
 m=SetCtrlAttribute(daq,MUX_switch2_5r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch2_5r,cross_point[2][5]);}
if(fail[2][6]==0) {
 m=SetCtrlAttribute(daq,MUX_switch2_6r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch2_6r,cross_point[2][6]);}
if(fail[3][1]==0) {
 m=SetCtrlAttribute(daq,MUX_switch3_1r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch3_1r,cross_point[3][1]);}
if(fail[3][2]==0) {
 m=SetCtrlAttribute(daq,MUX_switch3_2r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch3_2r,cross_point[3][2]);}
if(fail[3][3]==0) {
 m=SetCtrlAttribute(daq,MUX_switch3_3r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch3_3r,cross_point[3][3]);}
if(fail[3][4]==0) {
 m=SetCtrlAttribute(daq,MUX_switch3_4r, ATTR_DIMMED
 m=SetCtrlVal(daq,MUX_switch3_4r,cross_poi
if(fail[3][5]==0) {
 m=SetCtrlAttribute(daq,MUX_switch3_5r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch3_5r,cross_point[3][5]);}
if(fail[3][6]==0) {
 m=SetCtrlAttribute(daq,MUX_switch3_6r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch3_6r,cross_point[3][6]);}
if(fail[4][1]==0) {
 m=SetCtrlAttribute(daq,MUX_switch4_1r, AT
 m=SetCtrlVal(daq,MUX tch4_1r,cross_point[4][1]);}
if(fail[4][2]==0) {
 m=SetCtrlAttribute(daq,MUX_s
 m=SetCtrlVal(da
if(fail[4][3]==0) {
 m=SetCtrlAttribute(
 m=SetCtrlVal(daq,MUX_switch4_3r,cross_point[4][3]);}
if(fail[4][4]==0) {
 m=SetCtrlAttribute(daq,MUX_switch4_4
 m=SetCtrlVal(daq,MUX_switch4_4r,cross_point[4][4])
if(fail[4][5]==0) {
 m=SetCtrlAttribute(_ ATTR_DIMMED,
 m=SetCtrlVal(daq,MUX_switch4_5r,cross_point[4][5]);}
if(fail[4][6]==0) {
 m=SetCtrlAttribute(daq,MUX_switch4_6r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch4_6r,cross_point[4][6]);}

if(fail[5][1]==0) {
 m=SetCtrlAttribute(daq,MUX_switch5_1r, ATTR_DIMMED, FALS
 m=SetCtrlVal(daq,MUX_switch5_1r,cross_point[5][1]);}
if(fail[5][2]==0) {
 m=SetCtrlAttribute(daq,MUX_switch5_2r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch5_2r,cross_point[5][2]);}
if(fail[5][3]==0) {
 m=SetCtrlAttribute(daq,MUX_switch5_3r, ATTR_DIMMED
 m=SetCtrlVal(daq,MUX_switch5_3r,cross_poi
if(fail[5][4]==0) {
 m=SetCtrlAttribute(daq,MUX_switch5_4r, ATTR_DIMMED,
 m=SetCtrlVal(daq,MUX_switch5_4r,cross_point[5][4]
if(fail[5][5]==0) {
 m=SetCtrlAttribute(daq,MUX_switch5_5r, ATTR_DIMMED, FAL
 m=SetCtrlVal(daq,MUX_switch5_5r,cross_point[5][5]
if(fail[5][6]==0) {
 m=SetCtrlAttribute(daq,MUX_switch5_6r, ATTR_DIMMED, FALSE);
 m=SetCtrlVal(daq,MUX_switch5_6r,cross_poi
if(fail[6][1]==0) {

 m=SetCtrlVal(daq,MUX_switch6_1r,cross_point[6][1]);}
if(fail[6][2]==0) {
 m=SetCtrlAttribute(daq,MUX_switch6_2r, ATTR_DIMME
 m=S
if(fail[6][3]==0) {
 m=SetCtrlAttribute(daq,MUX_switch6_3r, ATTR_DIMME
 m=S
if(fail[6][4]==0) {
 m=SetCtrlAttribute(daq,MUX_switch6_4r, ATTR_DIMME
 m=S
if(fail[6][5]==0) {

 135

 m=SetCtrlAttribute(daq,MUX_switch6_5r, ATTR_DIMMED, FALSE);
etCtrlVal(daq,MUX_switch6_5r,cross_point[6][5]);}

D, FALSE);
etCtrlVal(daq,MUX_switch6_6r,cross_point[6][6]);}

for(j=1;j<=8;j++){

%d %d %d %f %f\n", i, j, cross_point[i][j], AD0[i][j][k], AD1[i][j][k]);

e(fp_out);

t control, int event,

Data2){

line[100];

 = 0; i < num_read*64; ++i)

sscanf(line,"%d %d %d %f %f", &tmp1[i], &tmp2[i], &tmp3[i], &tmp4[i], &tmp5[i]);

ptPopup ("SAVE FILE", "Enter the file name (*.txt).", name, 20);

fprintf(fp_out,"%d %f %f\n",tmp3[i], tmp4[i], tmp5[i]);

Data2)

case EVENT_COMMIT:

case EVENT_RIGHT_CLICK:

0;

panel, int control, int event, void *callbackData, int eventData1, int eventData2)

0;

nt control, int event,

 DeleteGraphPlot (daq, MUX_GRAPH, -1, VAL_IMMEDIATE_DRAW);
L_IMMEDIATE_DRAW); */

 m=S
if(fail[6][6]==0) {
 m=SetCtrlAttribute(daq,MUX_switch6_6r, ATTR_DIMME
 m=S

12-12-01 taken out, because the LED's are removed*/

m=SetCtrlVal(daq,MUX_Memory_Check_Done,1);
 for(i=1;i<=8;i++){

 for (k=0;k<num_read;k++){
 fprintf(fp_out, "
 }
 }
 }
 fclos
 return 1;
}
int stop(int panel, in
 void *callbackData, int eventData1, int eventData2){
 return 1;
}
int save_file(int panel, int control, int event,
 void *callbackData, int eventData1, int event
 int i;
 int tmp1[6400],tmp2[6400],tmp3[6400];
 float tmp4[6400], tmp5[6400];
 char
 char name[30];
 fp_out=fopen (tmp_file,"r");
 for (i
 {
 fgets(line,sizeof(line),fp_out);

 }
 fclose(fp_out);
 Prom
 fp_out=fopen(name,"w");
 for (i =0; i < num_read*64; ++i)

 fclose(fp_out);
 return 1;
}
int quit(int panel, int control, int event,
 void *callbackData, int eventData1, int event
{
 int i;
 switch (event) {

 i = AO_VWrite (1, 0, 0.0);
 i = AO_VWrite (1, 1, 0.0);
 ibwrt(Device1,"P0X",3);
 QuitUserInterface (0);
 break;

 break;
 }
 return
}
/*
int load_individual_panel (int
{
 daq1 = LoadPanel (0, "MUX.uir",SET_INDIVI);
 DisplayPanel (daq1);
 return
}
*/
int clear (int panel, i
 void *callbackData, int eventData1, int eventData2)
{
 int i;
 switch (event) {
 case EVENT_COMMIT:

/* DeleteGraphPlot (daq, DAQ_GRAPH_2, -1, VA
 break;
 }
 return 0;
}

	4.1 Introduction
	4.2 The [2]rotaxane switching cycle
	4.3 The crossbar architecture
	4.4 [2]Rotaxane molecular electronic crossbar circuits
	4.5 A 160,000 bit memory circuit patterned at 1×10^11 bits/cm^2
	4.6 Crossbar molecular memory circuit fabrication and testing
	4.6.1 Fabrication and contact to bottom Si nanowire electrodes
	4.6.2 Deposition of molecules and top electrode materials
	4.6.3 Memory testing

	4.7 Limitations of the SNAP process for crossbar circuits
	4.8 Concluding remarks
	4.9 References
	Appendix 4.1 Details of lithographically-patterned structures
	Appendix 4.2 Memory probe card specifications
	Appendix 4.3 NI LabWindows /CVI code used for memory reading/writing operations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

