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ABSTRACT 

 

Many real-life decision making problems incorporate higher-order structure, involving 

interdependencies between different stimuli, actions, and subsequent rewards. It is not 

known whether brain regions implicated in decision making, such as ventromedial 

prefrontal cortex, employ a stored model of the task structure to guide choice (model-based 

decision making) or merely learn action or state values without assuming higher-order 

structure, as in standard reinforcement learning. To discriminate between these possibilities 

we scanned human subjects with fMRI while they performed two different decision making 

tasks with higher-order structure: probabilistic reversal learning, in which subjects had to 

infer which of two choices was the more rewarding and then flexibly switch their choice 

when contingencies changed; and the inspection game, in which subjects had to 

successfully compete against an intelligent adversary by mentalizing the opponent’s state 

of mind in order to anticipate the opponent’s behavior in future. For both tasks we found 

that neural activity in a key decision making region: ventromedial prefrontal cortex, was 

more consistent with computational models that exploit higher-order structure, than with 

simple reinforcement learning. Moreover, in the social interaction game, subjects were 

found to employ a sophisticated strategy whereby they used knowledge of how their 

actions would influence the actions of their opponent to guide their choices. Specific 

computational signals required for the implementation of such a strategy were present in 

medial prefrontal cortex and superior temporal sulcus, providing insight into the basic 

computations underlying competitive strategic interactions. These results suggest that brain 

regions such as ventromedial prefrontal cortex employ an abstract model of task structure 

to guide behavioral choice, computations that may underlie the human capacity for 

complex social interactions and abstract strategizing. 
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C h a p t e r  1  

INTRODUCTION 

PRELUDE 

From an evolutionary perspective, rewards and punishments could be considered as events 

that heighten or lower the probability of an organism reproducing. The identification of 

what constitutes a rewarding and punishing event for a particular organism can be 

considered to be genetically hardwiredi, given that the evaluation of the final objective of 

reproductive efficiency is accomplished across various organism generations. These 

constitute primary rewards such as food and sex, and primary punishments such as physical 

pain; all leading directly or indirectly to heightening or lowering an organism’s survival 

and reproduction. Moreover, during the life of an organism, events that are associated to 

these primary rewards and punishments can be learnt.  

The first organism in which associative learning (classical conditioning) was extensively 

studied was with Aplysia’s (a sea hare, shell-less mollusk) siphon-withdrawal reflex. One 

defense mechanism that the organism evolved is to withdraw its siphon when it is 

stimulated. Stimulation of the tail has no such effect on the siphon. However, after repeated 

stimulation of the tail followed shortly by stimulation of the siphon, tail stimulation would 

eventually induce siphon withdrawal on its own1, 2. The mechanism by which neurons learn 

to associate coincident events was first postulated by Donald Hebb3, and basically states 

that the more frequently a pre-synaptic neuron fires coincidently with the firing of a post-

synaptic neuron, the higher the probability that the pre-synaptic neuron will lead to the 

firing of the post-synaptic neuron. This type of learning involves a modification of the 

                                                 
i With higher level organisms that have social customs that can be passed on from generation to generation, a second form of evolution 

takes place, with the survival of customs that indirectly lead to the survival and reproduction of the organisms that embrace them. Thus, 
social rewards and punishments are not genetically hardwired, but learnt during the lifetime of an organism, and delivered by the rest of 
society.  
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synaptic weight, or connectivity, between two neurons through a series of biochemical 

reactions at the synaptic site4, 5. 

Higher cognitive skills6 basically extend this ability of associating complex external stimuli 

with primary rewards and punishments. For example, the visual system can distinguish a 

snake from a log (recognition–ventral stream), and understand the movement of objects 

(dorsal stream) that lead to upcoming rewarding or punishing events, all from the pattern of 

environment light hitting the retina. Furthermore, organisms have a great degree of 

freedom in making choices, and many times have multiple, competing predicted rewards 

and punishments that could be a consequence of a decision. Thus, the association of 

external stimuli with primary rewarding and punishing events has to be condensed into a 

final abstract internal value (or utility) to guide decisions. It is from here I will start my 

introduction, going quickly over the literature on how organisms might computationally 

assign an abstract value (or reward expectation) so as to guide choice in complex, real-

world environments, and start to tease apart the brain structures that execute different 

components of these algorithms in the human brain. 

STATES AND DECISIONS 

The problem to be solved by an organism is to make decisions so as to maximize the 

reward, or utility, it obtains. This problem can be broken down into separate components 

which will be addressed shortly. Before we do so, I will present a common framework, or 

paradigm, to better understand the problem itself. A mechanical view of the world is one in 

which the whole environment (including the organism itself in the environment) can be 

characterized as a uniquely identifiable state at any point in time, and that the flow of time 

is simply having the world jump (transition) from state to state. Having the ability to make 

a decision implies that this state flow can be influenced such that the environment (plus 

organism) ends up in a given state contingent on the decision made. A simple example is 

when a person is in front of two doors. The state he/she is in can be titled ‘in front of two 

doors,’ and depending on what door he/she chooses, the ‘left’ or ‘right’ door, he/she will 

end in one of two alternative states, i.e., ‘rooms.’  
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The problem of making decisions so as to maximize rewards can be broken down into: 

1. State categorization: what makes one state different from another 

2. State identification: which state an organism is in 

3. State value: the reward/punishment an organism receives as a consequence of being 

in a given state 

4. State flow: how states change (transition) with time 

5. Decisions: how a decision affects the flow of states  

Although the world may consist of uniquely identifiable states, an organism still has to 

learn and categorize them, leading to an internal representation of world states. This will 

not be directly addressed by work in this thesis. The best illustration of the more 

biologically oriented advances in the field can be found in research on how the visual 

system learns to categorize (and subsequently identify) objects and scenes7, 8 using 

unsupervised learning objectives such as sparse9 and predictive coding10. Once an internal 

representation of state categories exists, an organism has to infer in what state it is currently 

in. Most reward learning research will assume that a state can be perfectly identified, 

whereas in real world scenarios an organism will have some uncertainty of which state it is 

in, leading to a probability distribution over states. This is the situation when things are 

hard to recognize due to environmental noise (Is it a snake or a log?), or when internal 

states are not well mapped to environmental states (representation noise). One objective of 

learning is to minimize the latter, and make the mapping as good as possible. 

Moreover, there is a constraint on the number of states that can be encoded by a brain with 

limited capacity. A person from the tropics might define a certain state of water found in 

colder regions as ‘solid water,’ while a person from a more temperate region will 

differentiate between ‘snow’ and ‘ice.’ This can be defined as a coding problem11. For an 

organism, states that happen more often in an environment, or that have a bigger variance 

in received rewards and punishments, are better differentiated in comparison to states that 
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do not happen often, or have very similar consequent rewards, which are lumped together 

and identified as one single state. Thus, learning how to encode environment states and the 

value of those states go hand in hand. Furthermore, it is also advantageous not to encode 

the whole environment as one single state (grandmother representation), but as best as 

possible as a combination of unique states that can happen independently at the same time 

(sparse representation). This is illustrated again with the visual system, in which one can 

see more than one object which might have different identities and assigned values, but that 

sometimes can be found together in the same scene independently from each other. 

However, we will assume the state representation of the environment is given a priori, and 

follow up with the question of how values are assigned to existing states through 

experience. 

With the passage of time, environment states follow one another with certain (physical) 

rules. Knowing or having an internal model of how states transform into each other is 

useful to predict what is to come, and what rewards to expect in future. The probability of 

the environment arriving at a given state may well depend on the history of all previous 

states that were visited beforehand. However, this can be relaxed somewhat in many 

problems such that the probability of jumping to a state only depends on the current state, 

and not on other states further back in history (i.e., a Markov process).  

Last, and importantly, is the question of how decisions affect this process. An organism 

making a decision ceases to be an observer of the state flow of the environment, with the 

rewards it might receive in each state, but rather an active actor who can decide which 

state(s) will follow. That is, an organism’s decision defines the probability distribution of 

states to follow. This choice will be such so as to maximize the rewards received in the 

future, consequent on the environment states visited and decisions made thereafter. 

Moreover, organisms apply a discount on future rewards, in part due to their uncertainty 

(The type of discounting that humans apply to future monetary rewards is an area of 

contention in economic fields12, 13.)  
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COMPUTATIONAL REWARD LEARNING 

Given an existing state representation of the environment, we will tease apart how rewards 

and decision policies (what decision to make at each state) are learned.  

State Values 

The most straightforward approach to learning state values is by sampling, in which the 

value of the state is updated given the reward the organism receives such that the value is 

equivalent to the immediate expected reward sS RV = . This is known as the Rescorla-

Wagner rule14, in which the value of state S  is updated with a prediction error, SVR −=δ , 

between the expected value of the state SV  and the reward received R :  

δη+= SS VV , (1.1)

where η is the learning rate. 

From the learned state values, the expectation of future rewards of any given state can be 

calculated by adding the value of that state and the value of future states visited thereafter 

contingent on the actual decision policy (future decisions), and the discount on future 

rewards. The expectation of future rewards then guide decision making. However, knowing 

a priori all states and decisions that will be made in the future requires a precise model of 

state flow (including future decisions made) and tracing all possible future branches is 

computationally intensive and time consuming. An alternative, model-free approach is to 

sample the future expected reward of each state directly instead of their immediate 

expected reward. The future expected reward of a state can be recursively defined (Bellman 

equation15) as the immediate expected reward of that state, plus the expected reward of 

future states (expectation over future states visited due to the current decision policy) 

reduced with a temporal discount:  

)1()()( ++= tStStS VRV γ . (1.2)
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Thus, future expected rewards can be learned directly with a simple update rule, 

)()1( tStS VVR −+= +γδ , known as a temporal difference (TD) update16. 

Choice selection  

A simple way to decide between two future states is by choosing the one with the highest 

sampled value. However, if a state has only been sample a few times, the value of the state 

might still be unknown, i.e., there is reward uncertainty. The implicit value of reducing 

state uncertainty when making decisions is known as the explore-exploit dilemma17. The 

resulting choice stochasticity due to reward uncertainty can be approximated by a softmax 

distribution across choices18, in which the probability SP  of choosing state S  is bigger the 

higher its value SV , but where the probability of choosing other states is non-zero 

(controlled by a noise or exploration parameter β/1 ): 

∑
=

i

V

V

S i

S

e
eP β

β

. 
 

(1.3)

 

Furthermore, the reward associated with a given state might not be fixed, but rather a 

distribution of values. The most simple, perhaps, is for rewards to have a Gaussian 

distribution with a certain mean and variance, given a state. Thus, rewards might randomly 

be higher or lower than the mean. This is known as reward risk, and it biases how people 

make choices19, 20. Humans not only maximize their expected reward when making 

decisions, but also take into consideration the riskiness of those rewards. Furthermore, 

humans exhibit risk preferences that change according to whether outcomes are perceived 

as gains or losses, something that arguably only depends on how those outcomes are 

measured relative to an arbitrary frame: an observation known as prospect theory21. 

However, the algorithms presented in this introduction can easily be extended to use utility 

values that incorporate both the rewards received and their associated risks.  The study of 

people’s behavior when making monetary decisions is part of the nascent field of 

Neuroeconomics22, 23.   



 

 

7

Bayesian forward models  

As mentioned earlier, a model of state transitions can be constructed to estimate future 

expected rewards. In effect, this is a model of the environment dynamics, and it can be used 

to look forward at all possible outcomes in the future given the current state. If each state is 

also assigned a mean expected reward value (for immediate rewards), then this forward-

looking process can be used to calculate the discounted expected value of that state by 

integrating over all future alternative paths. Crucially, forward models have two distinct 

components in comparison to sampling-based algorithms. First, the model of how 

environment states are linked to each other, and their immediate associated rewards, has to 

be learnt. Secondly, the current model can be used to guide decisions by inferring the state 

an organism is currently in, and estimating in a forward manner the associated expected 

rewards. These two steps can alternate with each other in what is usually referred to as EM 

(Expectation-Maximization24), where the first refers to the inference step and the latter to 

the learning step (see Appendix A). Moreover, the inference step can be simplified into an 

expected value update equation similar to 1.1, but where all the state values are updated 

simultaneously as shown below: 

)( SSS VRVV −+= η  

)( ''' SforegoneSS VRVV −+= η , 
 

(1.4)

where S is the chosen state, and S’ are the un-chosen or foregone states (see Appendix B for 

a complete derivation). The relation between the rewards assigned to update each state not 

only depends on the outcome but also on the structure, or relation between states, of the 

model.  These are not as simple as the reward that would have been received had the other 

state been chosen. Thus, it is important to point out that, although expected value update 

equivalents are intriguing because of their similarity to RL updating, they are just a proxy 

for the correct underlying interpretation: that of hidden state inference.   

Summary 

Decision making involves knowing the future expected rewards of possible states. This can 

be done in a forward model search approach, or in a model-free RL expected reward 
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sampling approach. The first is computationally intensive, time consuming, and assumes 

knowledge of the state flow of the environment; while the later is ignorant about 

environmental state flow, and computationally quick, but reaches optimal behavior slowly 

after extensive sampling of the environment. Furthermore, forward models can be quick to 

incorporate new rules and thus adapt to a changing environment, while RL models are quite 

slow in adapting to changing reward contingencies. An intermediate approach can be used, 

in which expected rewards are computed by taking a few steps into the future with a 

forward model, but replacing future steps with sample expected rewards. This combines the 

flexibility of forward models (in the short term) with the speed of sampling methods (for 

expected rewards further in the future). Likewise, both approaches could be implemented 

in parallel and used appropriately, depending on the circumstances25.  

BRAIN CORRELATES 

The question of which of these algorithms is used by the human brain, and specifically, 

what brain structures execute different algorithmic components will now be addressed. 

Historically, the first structure to be extensively studied in mammalian brains (rats, 

monkeys) was the hippocampus, due to its high neural density which made it easy to record 

from extra-cellularly. In particular, these neurons were found to quickly associate incoming 

signals (among others, leading to the formulation of the Hopfield network26 as a model of 

memory storage in the hippocampus), and to display a variety of adaptive behavior 

involving connectivity changes at the synaptic level. The hippocampus is thought to be the 

location of declarative associative memory formation27, from which its contents are then 

also transferred to other neocortical structures28. Patients with bilateral hippocampal lesions 

(from surgical ablation as a corrective measure for seizures, or prolonged alcohol abuse) 

cannot form new long term memories but find old memories relatively untouched29, 30, 

depending on the damage extent. Thus, hippocampus can be thought of as an integral part 

in forming high-level state representations, by associating activities from different cortical 

regions. 
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Neural signals in different brain regions have been found to guide choice in a variety of 

contexts, from discriminating between noisy sensory stimuli31, 32, to choosing between 

stimuli depending on taste33-35, physical pain36-42, and monetary rewards43-47. As discussed 

previously, a common reward currency (or utility) should be used to guide choice across 

these different modes of rewards and punishments. fMRI studies in humans, and 

neurophysiologic studies in rats and primates, have shown activity correlating with reward 

expectations across all modalities in mOFC48-52, suggesting this area as encoding an 

abstract representation of reward for the guidance of choice53, 54. Moreover, there is 

evidence that the interaction between amygdala and mOFC is crucial for the generation of 

expected reward signals55, 56. Lesions in mOFC extending up the medial PFC wall have led 

to specific deficits in choice behavior: learning is unimpaired, but the ability to adapt to 

changing contingencies, such as in reversal learning is diminished56-58.  

A key component of reinforcement learning algorithms is the formation of prediction 

errors, that is, the difference between rewards obtained and those expected. Schultz, Dayan, 

and Montague59 showed that the activity of dopamine neurons in substantia nigra encode 

reward prediction errors. Furthermore, they showed that this signal displayed the 

characteristics of a temporal prediction error in that reward expectations were progressively 

transferred to the earliest state that would predict that reward. Substantia nigra dopamine 

neurons mainly project to striatum and medial structures in mOFC, mPFC, and ACC. 

Imaging studies find BOLD activity to prediction errors in striatal structures60-63, as well as 

temporal difference errors62. The finding of neural structures encoding temporal difference 

errors in principle advocate the brain as implementing a model-free approach for state 

reward representations, in which future expected rewards are directly encoded for every 

environment state. However, these findings do not exclude a model-based approach, in 

which states would only encode immediate rewards, and how states predict the next state to 

come (state flow) is being learnt. This would imply that a model-based reward expectation 

would have to be calculated before a prediction error can be generated. In practice, it is 

thought that parallel systems might be computing future expected rewards – a fast and 

inflexible model-free approach, and a slow and flexible model-based approach located in 
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mPFC64-66. These two systems might compete when predicting expected rewards, with the 

system that makes the most reliable predictions having the final word25.  

Last of all, studies have started to look at the effects of reward risk and uncertainty in 

guiding behavioral choice67-69.  It has also been proposed that the brain might be explicitly 

encoding reward risk as a separate signal, so as to arrive at optimal economic decisions70. 

DISCUSSION 

In this thesis I will provide evidence that reward expectations are not computed solely in a 

model-free approach, as advocated by reinforcement learning, but that explicit, model-

based encoding of the structure of the task being solved better explains behavioral choices, 

as well as reward expectations and prediction errors in the human brain (Chapter 2). I will 

then look at how different brain regions interact to reach model-based decisions (Chapter 3) 

and use a whole brain approach to predict what a subject’s next decision will be using 

single trial fMRI signals. Finally I study how subjects with localized amygdala lesions 

impact the generation of expected reward signals for the guidance of behavioral choice 

(Chapter 4). A different, albeit more complex, task was then used to corroborate and extend 

these results. Subjects participated in a competitive game in which they had to predict the 

opponent’s next choice to guide their own actions (Chapter 5). This involved not only 

making a model of the opponent, but players had to understand how their own action 

influenced the opponent’s behavior. 

The tasks used in this thesis to explore model-based decision making in humans 

incorporate two facets. The first is that environment states are not explicit, and subjects 

have to create an abstract internal representation of states to solve the tasks. Secondly, the 

association of reward contingencies with internal states is assumed known (from training 

before the task or from explicit instructions), and thus this thesis is not a study of learning, 

but a study of abstract model-based state inference to guide decision making. Optimal state 

inference can be formulated using Bayesian estimation (Chapter 2), but simpler equivalent 

dynamic equations are later derived (Chapter 4 and 5). A general introduction to Bayesian 

inference is provided in Appendix A; and the link between Bayesian inference and the 
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equivalent dynamic equations is made explicit in Appendix B. Conclusions for each study 

can be found in the associated chapters. 

This body of work shows that humans are not guided solely by model-free RL 

mechanisms, but that they do incorporate complex knowledge of the task to update the 

values of all choices accordingly. We hypothesize that this is done by creating an abstract 

model of environment states on which the task is solved, and from which expected values 

are then extracted to guide choice – a process known as model-based decision making. 

Furthermore, fMRI BOLD signals subsequent to a subject’s choice reliably encode the 

expected reward, as calculated from these model-based algorithms in ventromedial PFC.  

More generally, this work shows the value of using optimal choice models to explain 

behavior, and then using the internal model variables to tease apart neural processes in the 

brain.   

Many questions on model-based decision making are left unanswered in this thesis. Most 

encompassing is the question of how the brain learns the structure of the model, with its 

internal abstract states and associated expected reward values, on which it later infers state 

activities to guide decision making as shown in this work.  This can be broken in two: the 

learning and categorization of environment states, and the learning of how each state 

predicts the state that will follow with the flow of time. Understanding how these two 

processes are learnt, and the role that reward modulation has, will be an exciting task for 

further research.   
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C h a p t e r  2  

MODEL-BASED DECISION MAKING IN HUMANSii 

 

 

Many real-life decision making problems incorporate higher-order structure, involving 

interdependencies between different stimuli, actions, and subsequent rewards. It is not 

known whether brain regions implicated in decision making, such as ventromedial 

prefrontal cortex, employ a stored model of the task structure to guide choice (model-based 

decision making) or merely learn action or state values without assuming higher-order 

structure, as in standard reinforcement learning. To discriminate between these 

possibilities we scanned human subjects with fMRI while they performed a simple decision 

making task with higher-order structure: probabilistic reversal learning. We found that 

neural activity in a key decision making region –  ventromedial prefrontal cortex –  was 

more consistent with a computational model that exploits higher-order structure, than with 

simple reinforcement learning. These results suggest that brain regions such as 

ventromedial prefrontal cortex employ an abstract model of task structure to guide 

behavioral choice, computations that may underlie the human capacity for complex social 

interactions and abstract strategizing. 

                                                 
ii Adapted with permission from Alan N. Hampton, Peter Bossaerts, John P. O’Doherty, “The role of the ventromedial 

prefrontal cortex in abstract state-based inference during decision making in humans,” J. Neurosci. 26, 8360-8367 
(2006).  Copyright 2006 Journal of Neuroscience. 
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INTRODUCTION 

Adaptive reward-based decision making in an uncertain environment requires the ability to 

form predictions of expected future reward associated with particular sets of actions, and 

then bias action selection toward those actions leading to greater reward35, 71. 

Reinforcement learning models (RL) provide a strong theoretical account for how this 

might be implemented in the brain15. However, an important limitation of these models is 

that they fail to exploit higher-order structure in a decision problem, such as 

interdependencies between different stimuli, actions, and subsequent rewards. Yet, many 

real-life decision problems do incorporate such structure53, 72, 73.  

To determine whether neural activity in brain areas involved in decision making is 

accounted for by a computational decision making algorithm incorporating an abstract 

model of task structure or else by simple reinforcement learning (RL), we conducted a 

functional Magnetic Resonance Imaging (fMRI) study where subjects performed a simple 

decision making problem with higher-order structure: probabilistic reversal learning53, 74, 75 

(Fig. 2.1A). The higher-order structure in this task is the anti-correlation between the 

reward distributions associated with the two options, and the knowledge that the 

contingencies will reverse. 

To capture the higher-order structure in the task, we used a Markov model (Fig. 2.1B) that 

incorporates an abstract state variable: the “choice state”. The model observes an outcome 

(gain; loss) with a probability that depends on the choice state; if the choice state is 

“correct” then the outcome is more likely to be high; otherwise the outcome is more likely 

to be low. The observations are used to infer whether the choice state is correct or not. The 

crucial difference between a simple RL model and the (Markov) model with an abstract, 

hidden state, is that in the former only the value of the chosen option is updated, whereas 

the valuation of the option that was not chosen does not change (see Methods); while in the 

latter, state-based model, both choice expectations change: if stimulus A is chosen and the 

probability that the choice state is “correct” is estimated to be, say, 3/4, then the probability 

that the other stimulus, B is correct is assumed to be 1/4 (=1-3/4). 
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One region that may be especially involved in encoding higher-order task structure is the 

prefrontal cortex (PFC). This region has long been associated with higher-order cognitive 

functions, including working memory, planning and decision making64-66. Recent 

neurophysiological evidence implicates PFC neurons in encoding abstract rules76, 77. On 

these grounds we predicted that parts of human PFC would correlate better with an abstract 

state-based decision algorithm than with simple RL. We focused on parts of the PFC 

known to play an important role in reward-based decision making, specifically its ventral 

and medial aspects65, 74. 



 

 

15

RESULTS 

Behavioral Measures  

The decision to switch is implemented on the basis of the posterior probability that the last 

choice was incorrect. The higher this probability, the more likely a subject is to switch  

(Fig. 2.1C). The state-based model predicts subjects’ actual choice behavior (whether to 

switch or not) with an accuracy of 92±2%. On average, subjects made the objectively 

correct choice (chose the action associated with the high probability of reward) on 61±2% 

of trials, which is close to the performance of the state-based model (using the parameters 

estimated from subjects’ behavior), that correctly selected the best available action on 63% 

of trials. This is also close to the maximum optimal performance of 64%, as measured by a 

model using the actual task parameters. 

Prior correct signal in the Brain  

The model estimated prior probability that the current choice is correct (prior correct) 

informs about the expected reward value of the currently chosen action. The prior correct 

signal was found to have a highly statistically significant correlation with neural activity in 

medial prefrontal cortex (mPFC), adjacent orbitofrontal cortex (OFC), and the amygdala 

bilaterally (Fig. 2.2; the correlation in medial PFC was significant at a corrected level for 

multiple comparisons across the whole brain at p<0.05). These findings are consistent with 

previous reports of a role for ventromedial PFC and amygdala in encoding expected reward 

value55, 78-81. This evidence has, however, generally been interpreted in the context of RL 

models.  

In order to plot activity in medial PFC against the prior probabilities, we sorted trials into 

one of 5 bins to capture different ranges in the prior probabilities and fitted each bin 

separately to the fMRI data. This analysis showed a strong linear relation between the 

magnitude of the evoked fMRI signal in this region and the prior correct probabilities   

(Fig. 2.2C). We also extracted the % signal change time-courses from the same region and 

show these in Fig. 2.2D, plotted separately for trials associated with high and low prior 

probabilities. The time-courses show an increase in signal at the time of the choice 
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reflected on trials with a high prior correct, and a decrease in signal at the time of the 

choice for trials with a low prior correct.  

Posterior – prior correct update 

The difference between the posterior correct (at the time of the reward outcome) and the 

prior correct can be considered an update signal of the prior probabilities once a 

reward/punishment is received. This signal was significantly correlated with activity in 

ventromedial PFC as well as in other brain areas such as the ventral striatum (Fig. 2.2B). 

This update is also reflected in the time-course plots in Fig. 2.2D. Trials with a low prior in 

which a reward is obtained show an increase in signal at the time of the outcome, whereas 

trials with a high prior in which a punishment is obtained result in a decrease in signal at 

outcome. Thus the response at the time of the posterior differs depending on the prior 

probabilities and whether the outcome is a reward or punishment, fully consistent with the 

notion that this reflects an update of the prior probabilities. 

Abstract-state model vs. standard RL: The response profile of neural activity in 

human ventromedial prefrontal cortex 

The prior correct signal from the state-based model is almost identical to the expected 

reward signal from the RL model. Nevertheless, our paradigm permits sharp discrimination 

between the two models. The predictions of the two models differ immediately following a 

switch in subjects’ action choice. According to both models, a switch of stimulus should be 

more likely to occur when the expected value of the current choice is low, which will 

happen after receiving monetary losses on previous trials. What distinguishes the two 

models is what happens to the expected value of the newly chosen stimulus after subjects 

switch. According to simple RL, the expected value of this new choice should also be low, 

because that was the value it had when the subject had previously stopped selecting it and 

switched choice (usually after receiving monetary losses on that stimulus). As simple RL 

only updates the value of the chosen action, the value of the non-chosen action stays low 

until the next time that action is selected. However, according to a state-based inference 

model, as soon as a subject switches action choice, the expected reward value of the newly 

chosen action should be high, because the known structure of the reversal task incorporates 
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the fact that once the value of one action is low, the value of the other is high. Thus, in a 

brain region implementing abstract state-based decision making, the prior correct signal 

(which reflects expected value) should jump up following reversal, even before an outcome 

(and subsequent prediction error) is experienced on that new action. In RL, the value of the 

new action will only be updated following an outcome and subsequent prediction error. 

This point is illustrated in Fig. 2.3A where the model predicted expected value signals are 

plotted for simple RL and for the state-based model, before and after reversal. Changes in 

activation in ventromedial PFC upon choice switches correspond to those predicted by the 

abstract state-based model: activation decreases after a punishment and if subject does not 

switch, but increases upon switching, rejecting the RL model in favor of the model with an 

abstract hidden state (see also Fig. S2.3).  

To further validate this point, we conducted an fMRI analysis in which we pitted the state-

based model and the best fitting (to behavior) RL algorithm against each other, to test 

which of these provides a better fit to neural activity. A direct comparison between the 

regression fits for the state-based model and those for RL revealed that the former was a 

significantly better fit to the fMRI data in medial PFC at p<0.001 (Fig. 2.3B). While the 

peak difference was in medial PFC, the state-based model also fit activity better in medial 

OFC at a slightly lower significance threshold (p<0.01). This suggests that abstract state-

based decision making may be especially localized to the ventromedial PFC. 

Prior incorrect 

We also tested for regions that correlated negatively with the prior correct, that is areas 

correlating positively with the prior probability that the current action is incorrect. This 

analysis revealed significant effects in other sectors of prefrontal cortex: specifically right 

dorsolateral prefrontal cortex (rDLPFC), right anterior insular cortex, and anterior cingulate 

cortex (Fig. 2.4A). Fig. 2.4B shows the relation between the BOLD activity and the model 

prior incorrect signal in rDLPFC.  
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Behavioral decision to switch  

Finally, we tested for regions involved in implementing the behavioral decision itself (to 

switch or stay). Enhanced responses were found in anterior cingulate cortex and anterior 

insula on switch compared to stay trials (Fig. 2.4C). This figure shows that regions 

activated during the decision to switch are in close proximity to those areas that are 

significantly correlated with the prior probability that the current choice is incorrect, as 

provided by the decision model. 



 

 

19

DISCUSSION 

In this study we set out to determine whether during performance of a simple decision task 

with a rudimentary higher-order structure, human subjects engage in state-based decision 

making in which knowledge of the underlying structure of the task is used to guide 

behavioral decisions, or if, on the contrary, subjects use the individual reward history of 

each action to guide their decision making without taking into account higher-order 

structure (standard RL). The decision making task we used incorporates a very simple 

higher-order structure: the probability that one action is correct (i.e., leading to the most 

reward) is inversely correlated with the probability that the other action is incorrect (i.e., 

leading to the least reward). Over time the contingencies switch, and once subjects work 

out that the current action is incorrect they should switch their choice of action. We have 

captured state-based decision making in formal terms with an elementary Bayesian Hidden 

Markov computational model that incorporates the task structure (by encoding the inverse 

relation between the actions and featuring a known probability that the action reward 

contingencies will reverse). By performing optimal inference on the basis of this known 

structure, the model is able to compute the probability that the subject should maintain their 

current choice of action or switch their choice of action.  

The critical distinction between the state-based inference model and standard RL is what 

happens to the expected value of the newly chosen stimulus after subjects switch. 

According to standard RL, the expected value of the new choice should be low, because 

that was the value it had when the subject had previously stopped selecting it (usually after 

receiving monetary losses on that stimulus). By contrast, the state-based algorithm predicts 

that the expected value for the newly chosen action should be high, because, unlike 

standard RL, it incorporates the knowledge that when one action is low in value the other is 

high. By comparing neural activity in the brain before and after a switch of stimulus, we 

have been able to show that, consistent with state-based decision making, the expected 

value signal in ventromedial prefrontal cortex jumps up even before a reward is delivered 

on the newly chosen action. This updating therefore does not occur at the time of outcome 

via a standard reward prediction error (as in standard RL). Rather, the updating seems to 
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occur using prior knowledge of the task structure. This suggests that ventromedial 

prefrontal cortex participates in state-based inference rather than standard RL. 

Our Bayesian Markov model is just one of a family of models which incorporates the 

simple abstract structure of the task. Thus, while we show that vmPFC implements state-

based inference, we remain agnostic about the particular computational process by which 

this inference is implemented. Furthermore, our findings do not rule out a role for simple 

RL in human decision making, but rather open the question of how abstract-state based 

inference and simple RL might interact with each other in order to control behavior25. This 

also raises the question of whether the dopaminergic system, whose phasic activity has 

been traditionally linked with a reward prediction error in simple RL, subserves a similar 

function when the expected rewards are derived from an abstract state representation. An 

important signal in our state-based model is the posterior correct, which represents an 

update of the prior correct probability based on the outcome experienced on a particular 

trial. The difference between the posterior and the prior looks like an error signal, similar to 

prediction errors in standard RL, except that the updates are based on the abstract states in 

the model. We found significant correlations with this update signal (posterior-prior) in 

ventral striatum and mPFC, regions that have previously been associated with prediction 

error coding in neuroimaging studies60, 62, 63, 82, 83 (Fig. 2.2B). These findings are consistent 

with the possibility that ventromedial prefrontal cortex is involved in encoding the abstract 

state-space, while standard reinforcement learning is used to learn the values of the abstract 

states in the model, an approach known as model-based reinforcement learning15, 84. 

The final decision whether to switch or stay, was associated with activity in anterior 

cingulate cortex and anterior insula, consistent with previous reports of a role for these 

regions in behavioral control74, 75, 85-88. These regions are in close proximity to areas that 

were significantly correlated with the prior probability that the current choice was incorrect, 

as provided by the decision model. A plausible interpretation of these findings is that 

anterior insula and anterior cingulate cortex may actually be involved in using information 

about the inferred choice probabilities in order to compute the decision itself. 
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In the present study we provide evidence that neural activity in ventromedial PFC reflects 

learning based on abstract states that capture interdependencies. Our results imply that the 

simple RL model is not always appropriate in the analysis of learning in the human brain. 

The capacity of prefrontal cortex to perform inference on the basis of abstract states shown 

here could also underlie the ability of humans to predict the behavior of others in complex 

social transactions and economic games, and accounts more generally for the human ability 

of abstract strategizing89. 
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MATERIALS AND METHODS 

Subjects 

Sixteen healthy normal subjects participated in this study (14 right handed; 8 female). The 

subjects were pre-assessed to exclude those with a prior history of neurological or 

psychiatric illness. All subjects gave informed consent and the study was approved by the 

Institute Review Board at Caltech.  

Task description 

Subjects participated in a simple decision-making task with higher-order structure: 

probabilistic reversal learning. On each trial they are simultaneously presented with the 

same two arbitrary fractal stimuli objects (left-right spatial position random) and asked to 

select one. One stimulus is designated the correct stimulus in that choice of that stimulus 

leads to a monetary reward (winning 25 cents)  on 70% of occasions, and a monetary loss 

(losing 25 cents) 30% of the time. Consequently choice of this “correct” stimulus leads to 

accumulating monetary gain. The other stimulus is “incorrect,” in that choice of that 

stimulus leads to a reward 40% of the time and a punishment 60% of the time, leading to a 

cumulative monetary loss. The specific reward schedules used here are based on those used 

in previous studies of probabilistic reversal learning53, 90. After having chosen the correct 

stimulus on 4 consecutive occasions, the contingencies reverse with a probability of 0.25 

on each successive trial. Once reversal occurs, subjects then need to choose the new correct 

stimulus on 4 consecutive occasions before reversal can occur again (with 0.25 

probability). Subjects were informed that reversals occurred at random intervals throughout 

the experiment but were not informed of the precise details of how reversals were triggered 

by the computer (so as to avoid subjects using explicit strategies such as counting the 

number of trials to reversal). The subject’s task is to accumulate as much money as 

possible, and thus keep track of which stimulus is currently correct and choose it until 

reversal occurs. In the scanner, visual input was provided with Restech (Resonance 

Technologies, Northridge, CA, USA) goggles, and subjects used a button box to choose a 

stimulus. At the same time that the outcome was revealed, the total money won was also 

displayed. In addition to the reversal trials we also included null event trials, which were 
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33% of the total number of trials and randomly intermixed with the reversal trials. These 

trials consist of the presentation of a fixation cross for 7 secs. Before entering the scanner, 

subjects were informed that they would receive what they earned plus an additional $25 

dollars. If they sustained a loss overall then that loss would be subtracted from the $25 

dollars. On average, subjects accumulated a total of $3.80 (+/- $0.70) during the 

experiment. 

Pre-scan training 

Before scanning, the subjects were trained on three different versions of the task. The first 

is a simple version of the reversal task, in which one of the two fractals yields monetary 

rewards 100% of the time and the other monetary losses 100% of the time. These then 

reverse according to the same criteria as in the imaging experiment proper, where a reversal 

is triggered with probability 0.25 after 4 consecutive choices of the correct stimulus. This 

training phase is ended after the subject successfully completes 3 sequential reversals. The 

second training phase consists of the presentation of two stimuli that deliver probabilistic 

rewards and punishments as in the experiment, but in which the contingencies do not 

reverse. The training ends after the subject consecutively chooses the “correct” stimulus 10 

times in a row. The final training phase consists of the same task parameters as in the actual 

imaging experiment (stochastic rewards and punishments, and stochastic reversals, as 

described above). This phase ends after the subject successfully completes 2 sequential 

reversals. Different fractal stimuli were used in the training session to those used in the 

scanner. Subjects were informed that they would not receive remuneration for their 

performance during the training session.  

Reinforcement learning model 

Reinforcement learning (RL) is concerned with learning predictions of the future reward 

that will be obtained from being in a particular state of the world or performing a particular 

action. Many different varieties of RL algorithms exist. In this study we used a range of 

well known RL algorithms to find the one that provided the best fit to subjects’ choice data 

(see Fig. S2.1 for the comparison of behavioral fits between algorithms). The best fitting 

RL algorithm was then compared against the state-based decision model for the results 
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reported in the study. See the Behavioral Data Analysis section for a description of the 

model-fitting procedure. 

The best fitting algorithm to subjects’ choice data was a variant of Q-learning91, in which 

action values are updated via a simple Rescorla-Wagner (RW) rule14. On a trial t in which 

action a is selected, the value of action a is updated via a prediction error δ:  

)()()1( ttVtV aa δη+=+ , (2.1)

where η is the learning rate. The prediction error δ(t) is calculated by comparing the actual 

reward received r(t) after choosing action a with the expected reward for that action: 

)()()( tVtrt a−=δ . (2.2)

When choosing between two different states (a and b), the model compares the expected 

values to select which will give it the most reward in the future. The probability of 

choosing state A is: 

{ }( )αβσ −−= )()( ba VVAP , (2.3)

where ))exp(1/(1)( zz −+=σ  is the Luce choice rule18 or logistic sigmoid, α indicates the 

indecision point (when it’s equiprobable to make either choice), and β reflects the degree of 

stochasticity in making the choice (i.e., the exploration/exploitation parameter).  

Abstract state-based model 

We constructed a Bayesian Hidden State Markov ModelHMM, see 92 (HMM) that 

incorporates the structure of the probabilistic reversal learning task (Fig. 2.1B), and which 

can be solved optimally with belief propagation techniques24. Xt represents the abstract 

hidden state (correct or incorrect choice) that subjects have to infer at time t. Yt represents 

the reward (positive) or punishment (negative) value subjects receive at time t. And St 

represents whether subjects switched or stayed between time t-1 and time t. The conditional 

probabilities linking the random variables are as follows: 
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The first two conditional probabilities describe the transition probabilities of the hidden 

state variable from trial to trial. If the subjects stay (make the same choice as in the 

previous trial) and their last choice was correct (Xt-1=correct), then their new choice is 

incorrect (Xt=incorrect) with probability δ, where delta is the reversal probability 

(probability that the contingencies in the task reverse) and which was considered to be 

learnt during training. Likewise, if the subjects stay and their last choice was incorrect     

(Xt-1=incorrect), then their new choice will be correct with probability δ. On the other 

hand, if subjects switch, with their last choice being incorrect, the new choice might still be 

incorrect with probability δ. The state transition matrices in equation 2.4 incorporate the 

structural relationship between the reversing task contingencies and subjects’ switches. To 

complete the model, we include the probability of receiving a reward P(Y/X) given the state 

(correct or incorrect choice) the subjects are in. This was modeled as a Gaussian 

distribution whose mean is the expected monetary reward each state has. In the present 

task, the actual expected value of the correct choice is 10 cents and the expected value of 

the incorrect choice is -5 cents. However, to allow for possible variation in the accuracy of 

subjects’ estimates of the expected values of each choice, we left these expected values as 

free parameters when fitting the Bayesian model to each subject’s behavioral data. Fitted 

parameters for the reversal probability and expected rewards were close to the actual 

experimental parameters (Table S2.1). 

 With P(X0)=(0.5,0.5) at the beginning of the experiment, Bayesian inference was carried 

out to calculate the posterior probability of the random variable X (correct/incorrect choice) 

given the obtained rewards and punishments (variable Y) and the subjects’ switches 
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(variable S) using causal belief propagation (equations 2.5-2.6). Equation 2.5 specifies the 

subjects’ prior, or belief that they will be at a given internal state at time t as a consequence 

of their choice St and the internal state posterior from the previous trial. Equation 2.6 

updates this prior with the observed reward/punishment Yt to obtain the current posterior, or 

optimal assessment of the state at time t. These equations have the Markov property that 

knowledge of only the posterior from the previous trial, as well as the last 

reward/punishment and behavioral action are needed to calculate the posterior of the next 

trial. An introduction to HMMs is provided in the supplementary methods section at the 

end of this chapter, as well as in Appendix A. 
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    (2.6)

For the reversal task, the consequence of action switch (or stay) is linear with the inferred 

posterior probability that the subjects are making the incorrect (or correct) choice (and so 

are the expected rewards). The decision to switch is thus based on the probability that the 

current choice is incorrect )( incorrectX t =Posterior  (the close correspondence between 

the model-estimated posterior that the current choice was incorrect and subjects’ actual 

choice behavior is illustrated in Fig. 2.1C). We assume a stochastic relation between actual 

choice and the probability that the current choice is incorrect, and use the logistic sigmoid 

as in equation 2.3: 

{ }( )αβσ −= incorrectPswitchP )( . (2.7)

The state-based model we use here assumes that subjects use a fixed probability of reversal 

which is uniform on all trials in which the correct stimulus is being chosen. However, in 

actuality the probability of reversal is not uniformly distributed over all the trials, because 

after subjects switch their choice the reversal probability is set to zero until subjects make 

the correct choice on four consecutive occasions. We compared a version of the state-based 
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model which incorporates the full reversal rule (0 probability of reversal until four 

consecutive correct choices are made, and a fixed probability thereafter) to that which 

incorporates a simple rule based on a single fixed probability. The latter model was found 

to provide a marginally better fit (with a log likelihood of -0.29 compared to -0.40 for the 

full model) to subjects actual behavioral choices. This justifies use of a state-based model 

with this simplified reversal rule in all subsequent analyses. 

Behavioral Data Analysis 

Both the RL and state-based model decision probabilities P(switch/stay) were fitted against 

the behavioral data B(switch/stay). The state-based model calculates the probability of 

switching through equation 2.7. The RL model computes the probability of choosing one 

stimulus vs. another, but can be converted to a switch/stay probability based on the 

subject’s previous selection (i.e., P(switch)=P(choose A) if the subject chose B in the 

previous trial, and vice-versa). On average, subjects switched 22±2 times during the 

experiment, out of around 104 trials, so we used a maximum log likelihood fitting criteria 

that weighed switching and staying conditions equally: 

stay

staystay

switch

switchswitch

N
PB

N
PB

L ∑∑ +=
loglog

log . 
(2.8)

Model parameters were fitted using a variant of a simulating annealing procedure93. A 

comparison of the log likelihoods of the Bayesian model, and a number of RL models is 

shown in Fig. S2.1, and a time plot of subject choices vs. model predictions in Fig. S2.2. 

The Bayesian model has a better log likelihood fit than the best-fitting RL model (P < 10-7, 

paired t-test). This is also true even when using a penalized log likelihood measure (Bayes 

Information Criterion – BIC) that takes into account the number of free parameters in each 

model94, shown in equation 2.9; where M is the number of free parameters (5 for the 

Bayesian model, 3 for the model-free RL) and N the total number of data points.  

N
NMLBIC loglog2 +−=

 

(2.9)
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The mean fitted parameter values across subjects for the Bayesian model and the best-

fitting RL model are shown in Table S2.1. These parameters were used when fitting the 

models to the fMRI data. We assumed subjects learned the task structure and reward 

contingencies during the training period, and then kept these parameters fixed during task 

execution. 

We note that while the approach we use here of deriving best-fitting parameters from 

subjects’ behavior and then regressing the model with these parameters against the fMRI 

data is perhaps the most parsimonious way to constrain our model-based analysis, this 

approach assumes that behavior is being controlled by a single unitary learning system with 

a single set of model parameters. However, it is possible that behavior may be controlled 

by multiple parallel learning systems, each with distinct model parameters83, 95, and, as 

such, these multiple learning systems would not be discriminated using our approach. 

fMRI data  acquisition 

Functional imaging was conducted using a Siemens 3.0 Tesla Trio MRI scanner to acquire 

gradient echo T2* weighted echo-planar images (EPI). To optimize functional sensitivity in 

OFC we acquired the data using an oblique orientation of 30° to the AC-PC line. A total of 

580 volumes (19 minutes) were collected during the experiment in an interleaved-

ascending manner. The imaging parameters were: echo time, 30ms; field-of-view, 192mm; 

in-plane resolution and slice thickness, 3mm; TR, 2 seconds. High-resolution T1-weighted 

structural scans (1x1x1mm) were acquired for anatomical localization. Image analysis was 

performed using SPM2 (Wellcome Department of Imaging Neuroscience, Institute of 

Neurology, London, UK). Pre-processing included slice timing correction (centered at 

TR/2), motion correction, spatial normalization to a standard T2* template with a 

resampled voxel size of 3mm, and spatial smoothing using an 8mm gaussian kernel. 

Intensity normalization and high-pass temporal filtering (128 secs) were also applied to the 

data96. 
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fMRI data analysis 

The event-related fMRI data was analyzed by constructing sets of delta (stick) functions at 

the time of the choice, and at the time of the outcome. Additional regressors were 

constructed by using the model estimated prior probabilities as a modulating parameter at 

the time of choice; and the state-based prediction error signal (posterior-prior probabilities) 

as a modulating parameter at the time of outcome. In addition, we modeled subjects’ 

behavioral decision (switch vs. stay) by time-locking a regressor to the expected time of 

onset of the next trial (two seconds after the outcome is revealed). All of these regressors 

were convolved with a canonical hemodynamic response function (hrf). In addition, the 6 

scan-to-scan motion parameters produced during realignment were included to account for 

residual motion effects. These were fitted to each subject individually, and the regression 

parameters were then taken to the random effects level to obtain the results shown in Figs. 

2.2 and 2.4. All reported fMRI statistics and p-values arise from group random effects 

analyses. We report those activations as significant in a priori regions of interest that 

exceed a threshold of p<0.001 uncorrected, whereas activations outside regions of interest 

are reported only if they exceed a threshold of p<0.05 following whole brain correction for 

multiple comparisons. Our a priori regions of interest are: prefrontal cortex (ventral and 

dorsal aspects), anterior cingulate cortex, anterior insula, amygdala, and striatum (dorsal 

and ventral), as these areas have previously been implicated in reversal learning and other 

reward-based decision making taskse.g. 74, 82. 

Time series of fMRI activity in regions of interest (shown in Fig. 2.2D) were obtained by 

extracting the first eigenvariate of the filtered raw time-series (after high-pass filtering and 

removal of the effects of residual subject motion) from a 3mm sphere centered at the peak 

voxel (from the random effects group level). This was done separately for each individual 

subject, binned according to different trial types and averaged across trials and subjects. 

SPM normalizes the average fMRI activity to 100, so that the filtered signal is considered 

as a percentage change from baseline. It is to be noted that the time-series are not generated 

using canonical hrf functions. More specifically, peak BOLD activity is lagged with respect 

to the time of the event that generated it. For example, activity arising as a consequence of 
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neural activity at the time of choice will have its maximum effect 4-6 seconds after the time 

of choice, as expressed in the time-series plot. 

We also compared the best fitting model-free RL and Bayesian algorithms directly        

(Fig. 2.3B) by fitting both models at the same time with the fMRI data. To make both 

models as similar as possible, we used the normalized value and prediction error signals 

from the Rescorla Wagner model as regressors (modulating activity at the time of the trial 

onset and outcome respectively), and the normalized prior correct and prediction error 

(posterior-prior correct) from the state-based model as regressors (modulating activity at 

the time of the trial onset and outcome, respectively). Separate Reward and Punishment 

regressors were also fitted at the time of the outcome. Prior correct and value contrasts 

were calculated at the individual level and then taken to the random effects level to 

determine which areas had a better correlation with the state-based model.  

In order to calculate the predicted value and prior correct signals for the standard RL and 

state-based model shown in Fig. 2.3, we calculated the expected value (from the RW 

model) and prior correct value (derived from the state-based model) on all trials in which 

subjects received a punishment and for the immediately subsequent trial. We then sorted 

these estimates into two separate categories according to whether subjects switched their 

choice of stimulus or maintained their choice of stimulus (stay) on the subsequent trial. 
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Figure 2.1. Reversal task setup and state-based decision model. (A) Subjects choose 

one of two fractals, which on each trial are randomly placed to the left or right of the 

fixation cross. Once a stimulus is selected by the subject it increases in brightness, and 

remains on the screen until 2 seconds after the choice. After a further 3s, a reward (winning 

25 cents, depicted by a quarter dollar coin) or punishment (losing 25 cents, depicted by a 

quarter dollar coin covered by a red cross) is delivered, with the total money earned 

displayed at the top. One stimulus is designated the correct stimulus in that choice of that 

stimulus leads to a monetary reward on 70% of occasions, and a monetary loss 30% of the 

time. Consequently choice of this ‘correct’ stimulus leads to accumulating monetary gain. 

The other stimulus is ‘incorrect’, in that choice of that stimulus leads to a reward 40% of 

the time and a punishment 60% of the time, leading to a cumulative monetary loss. After 

subjects choose the correct stimulus on 4 consecutive occasions, the contingencies reverse 

with a probability of 0.25 on each successive trial. Subjects have to infer the reversal took 

place and switch their choice, at which point the process is repeated. (B) We constructed an 

abstract state-based model that incorporates the structure of the reversal task in the form of 

a Bayesian Hidden State Markov Model, which uses previous choice and reward history in 

order to infer the probability of being in the correct/incorrect choice state. The choice state 

changes (“transits”) from one period to another depending on (i) the exogenously given 

chance that the options are reversed (the good action becomes the bad one and v.v.), and 

(ii) the control (if subject switches when the actual – but hidden – choice state is “correct” 

then the choice state becomes “incorrect” and v.v.). In the diagram, Y is the observed 

reward/punishment, S the observed switch/stay action, and X the abstract correct/incorrect 

choice state that is inferred at each time step (see Methods). Arrows indicate the causal 

relations among random variables. (C) Observed choice frequencies that subjects switch 

(black) or stay (grey) against the state-based model’s inferred posterior probability that 

their last choice was incorrect. The higher the posterior incorrect probability, the more 

likely subjects switch (relative choice frequencies are calculated separately for each 

posterior probability bin). 
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Figure 2.2. Correct choice prior, and posterior - prior update signals in the brain. (A) 

Brain regions showing a significant correlation with the prior correct signal from the state-

based decision model (time-locked to the time of choice). Strong correlations with prior 

correct were found in ventromedial prefrontal cortex (mPFC: 6, 57, -6mm; z=5.33 ; OFC: 

0, 33, -24mm; z=4.04), as well as in posterior dorsal amygdala (extending into anterior 

hippocampus). The activations are shown superimposed on a subject averaged structural 

scan and the threshold is set at p<0.001. (B) Brain regions correlating with the posterior-

prior update signal. This is a form of prediction error signal that reflects the difference in 

value between the prior probability that the choice will be correct and the posterior 

probability that the choice was correct following receipt of the outcome (a reward or 

punishment). This signal is significantly correlated with activity in the bilateral ventral 

striatum (-24,3,-9mm; z=4.64 and 18,3,-15mm; z=4.48) and medial PFC (-6,54,-24 mm; 

z=3.54). These fMRI contrasts are from group random effects analyses. (C) The 

relationship between fMRI responses in medial prefrontal cortex (yellow circle in panel a) 

at the time of choice and the prior correct signal from the state-based model showed a 

strong co-linearity, supporting the idea of an optimal inference of state probabilities. In 

order to plot this activity against the prior probabilities, we sorted trials into one of 5 bins to 

capture different ranges in the prior probabilities, and fitted each bin separately to the fMRI 

data. (D) The time course for the averaged % signal change in this same region (mPFC) is 

shown separately for trials with a high prior correct signal (prob. > 0.65) and low prior 

correct signal (prob. < 0.5). Error bars depict the standard error of the mean across all trials 

of that type. Trials are also separated according to whether a reward or a punishment was 

received at the time of outcome to illustrate updating of the signal following feedback. The 

leftmost shaded area indicates the period (1 sec in length) in which subjects made their 

choice, and the second shaded area the period in which subjects were presented with their 

rewarding or punishing feedback. Trials with a low prior in which a reward is obtained 

show an increase in signal at the time of the outcome (with the peak BOLD activity lagged 

by 4-6 seconds, see Methods), whereas trials with a high prior in which a punishment is 

obtained result in a decrease in signal at outcome, consistent with the possibility that the 

response at the time of outcome reflects an update signal. 
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Figure 2.3. Standard RL and abstract state-based decision models make qualitatively 

different predictions about the brain activity after subjects switch their choice. (A) 

Both models predict that if a decision is made to stay after being punished, the next action 

will have a lower expected value in the next trial (blue line). However, if a decision is made 

to switch choice of stimulus after being punished, simple RL predicts that the expected 

value of the new choice will also be low (red line – leftmost panel) because its value was 

not updated since the last time it was chosen. On the other hand a state-based decision 

model predicts that the expected value of the new choice will be high, because if the 

subjects have determined that their choice till now was incorrect (prompted by the last 

punishment), then their new choice after switching is now correct and has a high expected 

value (red line – middle panel). Mean fMRI signal changes (time-locked to the time of 

choice) in medial PFC (derived from a 3mm sphere centered at the peak voxel) plotted 

before and after reversal (rightmost panel) show that activity in this region is more 

consistent with the predictions of state-based decision making than that of standard RL, 

indicating that the expected reward signal in mPFC incorporates the structure of the 

reversal task. (B) Direct comparison of brain regions correlating with the prior correct 

signal from the state-based model compared to the equivalent value signal (of the current 

choice) from the simple RL model. A contrast between the models revealed that the state-

based decision model accounts significantly better for neural activity in medial PFC 

(shown left panel; 6,45,-9mm; z=3.68).  
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Figure 2.4. Incorrect choice prior and switch - stay signals in the brain. (A) Brain 

regions showing a significant correlation with the prior incorrect signal from the state-

based algorithm (time-locked to the time of choice). Significant effects were found in right 

dorsolateral PFC (39, 36, 33mm; z=4.30), anterior cingulate cortex (6, 21, 45mm; z=3.37), 

and right anterior insula (48, 15, 9mm; z=3.96). The threshold is set at p<0.001. (B) Plot 

showing relationship between fMRI responses in dorsolateral prefrontal cortex at the time 

of choice and the prior incorrect signal from the Bayesian model, illustrating strong co-

linearity between this signal and activity in this region. (C) Brain regions responding on 

trials in which subjects decide to switch compared to when they do not switch their choice 

of stimulus. Significant effects were found in anterior cingulate cortex (-3, 24, 30mm; 

z=4.54) and anterior insula bilaterally (-39, 18, -12mm; z=4.26; 51, 21, 3mm; z=4.23). The 

fact that anterior cingulate and anterior insula respond on these switch trials, as well as 

responding to the prior incorrect signals, suggests that the decision to switch may be 

implemented in these regions.  

 



 

 

39

SUPPLEMENTARY METHODS 

Reinforcement Learning Models 

Q-Learning 

These algorithms learn what actions to take when in a given state by learning a value of the 

reward that is expected after taking that action. The simplest form, as depicted in the 

Methods section in the chapter, updates the value of the action via a simple Rescorla-

Wagner (RW) rule14. On a trial t in which action a is selected, the value of action a is 

updated via a prediction error δ:  

)()()1( ttVtV aa δη+=+ , (s2.1)

where η is the learning rate. The prediction error δ(t) is calculated by comparing the actual 

reward received r(t) after choosing action a with the expected reward for that action: 

)()()( tVtrt a−=δ . (s2.2)

Thus, action values reflect the immediate subsequent reward that is expected after taking 

that action. This can be extended so as to learn the cumulative rewards expected in the 

future, as a consequence of taking a given action. In general, an exponentially discounted 

measure of future expected reward is used, in which more weight is given to rewards 

expected in the near future in comparison to rewards expected in the far future: 

10),()(
1

<<= ∑
∞

=t
t

t rERE γγ      
(s2.3)

where γ is the discount factor that indicates how near and far future rewards are weighed. 

Q-learning can be extended to learn future discounted expected rewards via Temporal 

Difference Learning (TD), in which the prediction error used in the value update is: 

)()1()()( ' tVtVtrt aa
−++= γδ . (s2.4)
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The effective reward obtained in the next time step due to action a, is a sum of the 

immediate reward r(t) and the discounted expected reward due to action a’ in the next time 

step. When using Q-learning with temporal difference prediction errors, Q(td), we fitted a 

variable number of intermediate states in between the time of choice (t=1) and the time of 

reward outcome (t=T), as used in O’Doherty et al.as used in 62. Both Q-learning 

algorithms, Q(rw) and Q(td), then stochastically choose the action with most value, as 

explained in Methods (equation 2.3). 

Actor-Critic 

Instead of learning action values directly, as in Q-learning, an alternative approach is to 

separate value learning and action selection into two stages97. The first stage, or “Critic,” 

involves policy evaluation, in which the expected future rewards that follow from being in 

a particular state (corresponding to the average of the expected rewards available for all 

selected actions in that state) are learnt. The second stage, or “Actor,” uses the prediction 

error signal (δ(t)) derived from the critic to modify of the probability of choosing a given 

action so as to increase the average expected reward of the whole policy (equation s2.5). 

[ ] )()()1( tPtmtm babaa δδη −+=+  

∑
=

i

m

m

b i

b

e
eP β

β

 

(s2.5a) 
 
 

(s2.5b)

 

The AC(rw) algorithm tested in this chapter uses a Rescorla-Wagner rule (equation s2.2) to 

calculate the prediction error δ(t), and the AC(td) algorithm uses Temporal Differences  

(equation s2.4) with intermediate state steps between the time of choice and the time of 

reward outcome to calculate the prediction error δ(t).  
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 Advantage Learning 

Advantage Learning is an extension of the actor-critic algorithm98, see also 99. Although 

advantage learning differs in a number of respects from actor-critic, the main difference in 

terms of the behavioral fitting of the two models in the present case is that in advantage 

learning the value of the initial state (time of choice, t=1) is not directly estimated but 

instead is set according to: 

)2()2()1( =+=== tVPtVPtV bbaa . (s2.6)

 

BAYESIAN HIDDEN STATE MARKOV MODELS 

The key to Bayesian inference is an effective rule, Bayes’ rule, which allows one to infer 

the probability of a hidden cause from observable variables. 

Imagine a medical situation. A patient visits you repeatedly. Upon visit t, you prescribe her 

medication St. The result is a set of symptoms Yt.  

 

In simple reinforcement learning, you learn the relationship between the medication St and 

subsequent symptoms Yt. When this patient returns for visit t+1, you use the direct 

relationship between both variables which you learnt from all the past pairs of observables 

(St,Yt), to determine the choice of medication St+1. Reinforcement learning is flexible 

enough to allow for changes in this direct relationship through learning. Effectively, 

St

Yt 



 

 

42

reinforcement learning discounts observable pairs from earlier visits more than from more 

recent visits. 

Reinforcement learning is only concerned with observables. Bayesian inference, in 

contrast, allows for the possibility that there is a hidden cause Xt that determines the 

effectiveness of the medication, i.e., the relationship between the medication St and the 

symptoms Yt. Bayes’ rule allows one to infer what Xt is given the past observable pairs and 

knowledge on how the hidden causes Xt generate the observable symptoms Yt. 

 

To make the example more concrete, one can imagine that Xt takes on 4 values: Xt=0 

corresponds to no illness; Xt=1 corresponds to a viral infection;  Xt=2 denotes bacterial 

infection; Xt=3 stands for allergic reaction. Yt is a measure of nasal symptoms related to 

colds, flu and allergic reactions. And St stands for medication (St=0: none; St=1: anti-viral;  

St=2: antibiotic; St=3: antihistamine). 

Bayesian inference allows one to model explicitly how the “cause” Xt changes over time – 

including as a result of the choice variable St (medication, in the case of the example). It is 

often assumed that such changes are Markov, which means that the change in X from visit t 

to t+1 is influenced only by the immediate past (Xt).  

 

Xt

Yt

St
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The interpretation of the various components of this Bayesian hidden state Markov model 

in the chapter is as follows: St denotes the choice of the subject (St=0 means “stay”; St=1 

corresponds to “switch”); Xt denotes the correctness of the choice (Xt=0 means “incorrect 

choice”; Xt=1 means “correct choice”); Yt is the observed reward (Yt is a continuous 

monetary value, rewards being positive and punishments negative). 

Further information on Bayes’ rule, Bayesian inference and Bayesian hidden state Markov 

models can be found by D. MacKay100, M. Jordan24, and Z. Ghahramani101.   

Xt-1 
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Figure S2.1. Comparison of the behavioral fits of the state-based decision model to a 

variety of standard Reinforcement Learning algorithms, showing that the state-based 

model provides a better fit to subjects’ behavioral data than a range of RL 

algorithms. The RL algorithms fitted to the subjects’ behavioral data were: Q-learning 

Q(rw) using a Rescorla-Wagner update rule, Q-learning Q(td) with intermediate time steps 

(assumes multiple time steps within a trial and calculates the expected future reward for 

each time step within a trial62, 97), actor-critic AC(rw) with a Rescorla-Wagner update rule, 

actor-critic AC(td) with intermediate time steps, and advantage learning (Adv.) – an 

extension of the actor-critic algorithm98. (A) The log likelihoods of the action predictions 

(switch vs. stay) of each model show that the state-based model provides the best fit to the 

data. The second best fitting model is Q-learning using a Rescorla Wagner update rule, 

which is the RL algorithm we compared to the state-based model in the fMRI analyses. RL 

models are depicted in light blue. (B), The state-based model shows a better fit to the data 

even when using the Bayes Information Criterion (BIC) to account for the fact that the 

state-based model has more free parameters than the RL models (the number of free 

parameters was 5 for the state-based model, 3 for the Q-learning Q(rw) model, 5 for the Q-

learning Q(td) model, 2 for the actor-critic AC(rw), 4 for the actor-critic AC(td), and 4 for 

Advantage learning). 
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Figure S2.2. Behavioral data and model predictions for three randomly chosen 

subjects (subjects 1, 7, 13). The predictions of the state-based decision model (blue line) 

as to when to switch correspond more closely to the subjects’ actual switching behavior 

(red bar = switch) as compared to the predictions of the best fitting standard RL algorithm 

(green line). On top of each graph is the history of received rewards (blue) and punishments 

(red), with subjects usually switching after a string of punishments.  
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Figure S2.3. Plot of the model-predicted choice probabilities derived from the best-

fitting RL algorithm before and after subjects switch their choice. One possible 

alternative explanation for the difference in predictions of the abstract state-based model 

and the RL model, is that in the latter we are showing the predictions of value rather than 

choice probability. In many RL variants, such as the actor-critic, an anti-correlation 

between actions is built in when computing the choice probabilities. Thus, it could be 

argued that, had we plotted choice probability from an RL model instead of value, the 

predictions of the two models would be much more similar. Here we plot the choice 

probability data from the best-fitting RL model, which incorporates a form of anti-

correlation between actions. In spite of this, we still see that the predictions of the choice 

probabilities from the RL model do not show the pattern of results we observe for the 

abstract-state-based model (where the correct choice probability jumps up following 

reversal). This illustrates that a normalized choice probability signal from standard RL does 

not emulate the effect predicted by the state-based model, as found to be the case in 

ventromedial prefrontal cortex. 
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Table S2.1. Mean parameters across subjects for the behavioral models 

Q-learning (Rescorla-Wagner) 
Learning Rate η α log10 β 
0.84 ± 0.03 0.0 ± 0.02 0.6 ± 0.2 
 
 
State-based decision model 
Correct mean µC Incorrect mean µI Transition  

prob. δ 
α log10 β 

11.3 ± 1.0 cents -7.5 ± 1.3 cents 0.24 ± 0.03 0.55 ± 0.02 1.4 ± 0.2 
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Table S2.2.  fMRI activity localization  

a) Prior correct activity  

brain region laterality x y Z Z-score 
      
Ventral medial PFC L/R 6 57 -6 5.33 
Posterior amygdala/anterior 
hippocampus  

R 33 -15 -18 4.68 

Dorsomedial PFC (frontopolar gyrus) L -9 66 21 4.47 
Dorsomedial PFC (frontopolar gyrus) R 6 66 24 4.46 
Medial OFC/Subgenual cingulate 
cortex 

L/R 0 39 -6 4.17 

Medial OFC L/R 0 33 -24 4.04 
Posterior cingulate cortex L/R -9 -57 24 3.98 
 
b) Posterior correct – Prior correct activity  

brain region laterality x y z Z-score 
      
Medial PFC L -6  54 24 3.54 
Ventral striatum L -24 3 -9 4.64 
Ventral striatum R 18 3 -15 4.48 
 
c) Prior incorrect activity  

brain region laterality x y z Z-score 
      
Dorsolateral PFC R 39 36  33 4.30 
Anterior insula/frontal operculum R 48 15 9 3.96 
Anterior cingulate cortex R 6 21 45 3.37 
 
d) Switch-Stay activity  

brain region laterality x y z Z-score 
      
Anterior cingulate cortex L/R -3  24 30 4.54 
Anterior insula R 51 21 3 4.23 
Anterior insula L -39 18 -12 4.26 
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C h a p t e r  3  

PREDICTING BEHAVIORAL DECISIONS WITH fMRIiii 

 

 

While previous studies have implicated a diverse set of brain regions in reward-related 

decision making, it is not yet known which of these regions contain information that 

directly reflects a decision. Here we measured brain activity using fMRI in a group of 

subjects while they performed a simple reward-based decision making task: probabilistic 

reversal-learning. We recorded brain activity from 9 distinct regions of interest previously 

implicated in decision making, and separated out local spatially distributed signals in each 

region from global differences in signal. Using a multivariate analysis approach, we 

determined the extent to which global and local signals could be used to decode subjects’ 

subsequent behavioral choice, based on their brain activity on the preceding trial. We 

found that subjects’ decisions could be decoded to a high level of accuracy on the basis of 

both local and global signals even before they were required to make a choice, and even 

before they knew which physical action would be required. Furthermore, the combined 

signals from three specific brain areas: anterior cingulate cortex, medial prefrontal cortex, 

and ventral striatum, were found to provide all the information sufficient to decode 

subjects’ decisions out of all the regions we studied. These findings implicate a specific 

network of regions in encoding information relevant to subsequent behavioral choice. 

                                                 
iii Adapted with permission from Alan N. Hampton, John P. O’Doherty, “Decoding the neural substrates of reward-

related decision making with fMRI,” PNAS (2007). Copyright 2007 Proc. Natl. Acad. Soc. U.S.A. 
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INTRODUCTION 

Decision making is a neural process that intervenes between the processing of a stimulus 

input and the generation of an appropriate motor output. Motor responses are often 

performed in order to obtain reward, and the obligation of a decision making mechanism is 

to ensure that appropriate responses are selected in order to maximize available reward. 

While the neural systems involved in this process have been the subject of much recent 

research, studies have yet to isolate the specific neural circuits responsible for this decision 

process. Neural signals have been found that relate to but do not directly reflect this 

process, such as those pertaining to the expected value or utility of the available actions35, 

73, responses signaling errors in those predictions59, encoding the value of outcomes 

received53, as well as responses related to monitoring or evaluation of a previously 

executed action87, 102, 103. Such signals have been found in diverse regions throughout the 

brain, including, anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), 

orbitofrontal cortex (OFC), dorsolateral prefrontal cortex (DLPFC), amygdala, and 

striatum. While complex behavioral decisions are likely to depend on information 

computed in a widely distributed network, it is not yet known where among this network of 

brain regions neural activity directly reflects the subsequent behavioral decision as to which 

action to select. 

In order to determine the brain regions where neural activity is directly related to a final 

behavioral decision, we applied multivariate decoding techniques to our fMRI data. This 

approach combines the temporal and spatial resolution of event-related fMRI with 

statistical learning techniques in order to decode on a trial-by-trial basis subjects’ behavior 

or subjective states directly from their neural activity. Up to now this technique has been 

used in visual perception, to decode perceptual states and/or perceptual decisions from 

fMRI signals recorded mainly (though not exclusively) in visual cortical areas104-108. These 

previous studies have used locally distributed variations in activity to decode visual 

percepts, under situations where the global mean signals in a given region may show no 

significant differences between conditions. In the present case, many of our target regions 

of interest have been found to show global signal changes related to behavioral choice, that 
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is, large spatially extended cluster areas of activation have previously been reported in 

these areas in previous fMRI studies74, 86. Here, in addition to testing for global signals, we 

also tested for the presence of locally distributed signals relevant to behavioral decision 

making in each of our areas of interest. For this we separated out global and local signals 

within each region, and explored the separate contributions of signals at these two different 

spatial scales. We then extend this technique to the multi-region level to determine the 

contribution of interactions between brain areas in reward-related decision making.  

To address this, subjects performed a probabilistic reversal task53, 75 while being scanned 

with fMRI. On each trial, subjects are presented with two fractal stimuli and asked to select 

one (Fig. 3.1A), with the objective of accumulating as much money as possible. After 

making a choice, subjects receive either a monetary gain or a monetary loss. However, one 

choice is “correct,” in that choice of that stimulus leads to a greater probability of winning 

money and hence to an accumulating monetary gain, while the other choice is “incorrect,” 

in that choice of that stimulus leads to a greater probability of losing money and hence to 

an accumulating monetary loss. After a time the contingencies reverse so that what was the 

correct choice becomes the incorrect choice and vice versa. In order to choose optimally, 

subjects need to work out which stimulus is correct, and continue to choose that stimulus 

until they determine the contingencies have reversed, in which case they should switch 

their choice of stimulus. The goal of our study is to decode subjects’ behavioral choices on 

a subsequent trial on the basis of neural activity on the preceding trial. 

An important feature of this task is that its probabilistic nature precludes subjects from 

inferring which stimulus is correct on the basis of the outcome received on the previous 

trial alone, because both correct and incorrect stimulus choices are associated with 

rewarding and punishing feedback. Rather, subjects need to take into account the history of 

outcomes received in order to make decisions about what choices to make in future. 

Furthermore, the two stimuli are presented at random on the left or right of the screen. 

Thus, on the previous trial, subjects do not know in advance which of two possible motor 

responses are needed to implement a particular decision until such time as the next trial is 

triggered. Consequently, our fMRI signal cannot be driven merely by trivial (i.e., non-
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decision-related) neural activity pertaining to preparation of a specific motor response 

(choose left vs. choose right), as such signals are not present before the stimuli are shown. 

Therefore, the only signals in the brain relevant to decoding choice are those pertaining to 

the subjects’ abstract decision of whether to maintain their current choice of stimulus or 

switch their choice to the alternative stimulus, or else the consequences of that decision 

(e.g., to implement a switch in behavioral responses). 

Nine regions of interest were specified a priori (Fig. S3.1), based on previous literature 

implicating these regions in reward-related decision making. These include the medial and 

lateral OFC, and adjacent mPFC. These regions have been shown to encode expected 

reward values, as well as the reward value of outcomes53, 79, 109. Moreover, signals in these 

regions have been found to relate to behavioral choice – whereby activity increases in 

medial PFC on trials when subjects maintain their current choices on subsequent trials, 

compared to when they switch74  

Another region that we hypothesized might contain signals relevant to behavioral choice, is 

the ACC. This area is engaged when subjects switch their choice of stimulus on reversal 

learning tasks74, 86, suggesting that signals there relate to behavioral choice. A general role 

for this region in monitoring action-outcome associations has recently been proposed88. 

The region has also been argued to mediate action selection under situations involving 

conflict between competing responses87, and action selection between responses with 

different reward contingencies46. ACC has also been suggested to play a role in monitoring 

errors in behavioral responding, or even in decoding when these errors might occur110. 

What all of these accounts of anterior cingulate function have in common is that they posit 

an intervening role for this area between the processing of a stimulus input and the 

generation of an appropriate behavioral response, even though such accounts differ as to 

precisely how this region contributes at this intermediate stage. On these grounds we 

hypothesized that neural signals in ACC would be relevant for decoding subsequent 

behavioral choices. 
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Other regions we deemed relevant to decision making include the insular cortex, which has 

been shown to respond during uncertainty in action choice, as well as under situations 

involving risk or ambiguity67, 68, 111. Kuhnen and Knutson69 showed that neural activity in 

this region on a previous trial correlated with whether subjects will make a risk-seeking or 

risk-averse choice in a risky decision making paradigm. We also include in our regions of 

interest ventral striatum, where activity is linked to errors in prediction of future reward, 

and dorsal striatum, which is argued to mediate stimulus-response learning as well as goal-

directed action selection62, 82, 112, 113. Another region we included is the amygdala, which has 

been implicated in learning of stimulus-reward or stimulus-punisher associations55, 78, 114.  

We analyze the contribution each region of interest gives to the decoding of choice 

behavior in two ways. In the first, we study each region individually and compare their 

discriminative power for decoding behavioral choice. This is done by separating fMRI 

signals in each region into spatially local and spatially global signals, thus disambiguating 

results that correspond to classic fMRI approaches (global signals), with results that can 

only be obtained using multivariate fMRI decoding techniques (local signals). In the 

second approach, we make use of neural responses in all of our 9 regions of interest to 

decode behavioral decisions by using a multivariate analysis that optimally combines 

information from the different brain regions (Fig. 3.1B). This enables us to obtain better 

decoding accuracy than by using each region separately, as well as to explore the relative 

contributions of each of these different areas to the final behavioral choice.  
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RESULTS 

Local vs. global signals related to behavioral choice in regions of interest 

To address the contribution of global vs. local signals in the encoding of behavioral choice, 

we separated the original fMRI data into global signals with a spatial scale bigger than 

8mm, and local signals with a spatial scale smaller than 8mm (see Methods). Fig. 3.2A 

shows the statistical significance of each voxel when discriminating between switch vs. 

stay decisions in two subjects. Local signals (rightmost images) defined this way do not 

survive classical fMRI analysis (Fig. 3.2B), and can only be studied utilizing signal 

analysis techniques sensitive to spatially distributed signals. We evaluated the degree to 

which each individual region of interest could decode subjects’ subsequent choices, when 

using either global or local signals (Fig. 3.3A). Each subject underwent four separate fMRI 

sessions (70 trials each) during which they performed the decision making task. Four 

classifiers were trained and tested for each subject using four-fold cross validation, where 

each classifier is trained using three of the sessions (210 trials), and then tested on the 

session that is left out (70 trials). Decoding accuracy derived from global and local signals 

were comparable within each region of interest, suggesting that local and global signals 

strongly co-vary in each of the regions studied. There was a trend toward a greater 

contribution of local signals compared to global signals in overall decoding accuracy in 

ACC, although this did not reach statistical significance (at p<0.08) 

Decoding accuracy of each individual region 

When combining both local and global signals and evaluating decoding accuracy for each 

region alone, we find that each region can decode better than chance whether a subject is 

going to switch or not (Fig. 3.3B), with the highest accuracies being obtained by ACC 

(64%), anterior insula (62%), and DLPFC (60%). To address whether the difference in 

decoding accuracy across regions is merely a product of intrinsic differences in MR signal 

to noise in these areas, we examined the signal-to-noise ratio (SNR) in each region by 

analyzing responses elicited by the main effect of receiving an outcome compared to rest. 

All regions had comparable SNR to the main effect (Fig. S3.6), suggesting that accuracy 
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differences are unlikely to be accounted for by variations in intrinsic noise levels between 

regions. 

Combined accuracy across multiple regions 

Next, we aimed to determine whether a combination of specific brain regions would 

provide better decoding accuracy than just considering one region alone. For this we built 

regional classifiers using a multivariate approach that takes into account interactions 

between multiple regions of interest when decoding decisions (see Fig. 3.1B). This 

approach optimally combines both local and global signals from each region of interest. In 

order to determine which subset of regions to include in our classifier, we performed a 

hierarchical analysis whereby we started with the most accurate individual region, and then 

iteratively built multi-region classifiers by adding one region at a time. At each step in this 

iterative process, we added the region that increased the multi-region classifier’s accuracy 

the most (out of the remaining regions). Figure 3.3C shows the results of this process. We 

found that out of our nine regions of interest, a classifier with only 3 of these areas – ACC, 

mPFC, and ventral striatum – achieved an overall decoding accuracy of 67±2%, a 

significantly better decoding accuracy of subject’s choice than that provided by each region 

alone (for example, compared to ACC at p<0.01). Accuracy increase when adding regions 

is not only due to the signals related to behavioral choice in each region, but also depends 

on the degree of statistical independence of noise across regions (Fig. S3.4). Fig. 3.3D 

shows the average accuracy for each individual subject when using our region-based 

classifier. Receiver Operating Characteristic (ROC) curves representing the average 

classifier accuracy across a range of response thresholds are shown in Fig. S3.5 (see also 

Table S3.2).  

Insula and DLPFC, which on their own have high decoding accuracy, were not selected in 

our hierarchical classifier, suggesting that signals from these regions are better accounted 

for by the other included regions. To account for the possibility that another combination of 

regions could substitute equally well for the regions included in the hierarchical classifier, 

we ran an additional analysis whereby we tested the classification accuracy of every 

possible combination of three regions (Fig. S3.7). Even in this case we still found that the 
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specific combination of regions identified from the hierarchical analysis were highest in 

decoding accuracy compared to all other possible combinations, supporting the conclusion 

that the specific regions we identified are sufficient for decoding decisions up to the overall 

decoding accuracy obtained in our study.  

It should be noted that the approach we use here, whereby signals are combined across 

regions, proved significantly better at decoding behavioral decision making than alternative 

decoding techniques which do not employ this multi-region approach (Fig. S3.2). 

However, when we added more than 4 regions in the hierarchical analysis, the combined 

classifier’s accuracy gradually decreased again (Fig. 3.3C), perhaps due to over-fitting of 

the training data.  

Decisions per se or detection of rewarding vs. punishing outcomes? 

A key question is whether the decoding accuracy of our regional classifier is derived by 

detecting activity elicited by the decision process and its consequences, or merely reflects 

detection of the sensory and affective consequences of receiving a rewarding or punishing 

outcome on the preceding trial. To test this, we restricted input to the classifier to only 

those trials on which subjects received a punishing outcome. Even in this instance, the 

classifier was able to decode subjects’ decisions to switch or stay on the subsequent trial 

with 57±1% accuracy, significantly better than chance (at p<10-8, across subjects’ mean 

accuracy). This suggests that our classifier is using information relating to the behavioral 

decision itself and is not merely discriminating between rewarding or punishing outcomes 

on the immediately preceding trial. Additional analyses in support of this conclusion are 

detailed in the supplementary material at the end of this chapter.  
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DISCUSSION 

The results of this study demonstrate that it is possible to decode with a high degree of 

accuracy, reward-related decisions or the consequence of those decisions (in terms of 

initiating a change in response choice) in human subjects on the basis of neural activity 

measured with fMRI before the specific physical action involved is either planned or 

executed. Theoretical accounts of goal-directed behavior differ in the degree to which 

decisions are suggested to be linked to the specific action needed to carry them out. 

According to one stimulus-driven view, decisions are computed abstractly in terms of the 

specific stimulus or goal the subject would like to attain115, 116. In the case of the 

probabilistic reversal task used here, this comes down to a choice between which of two 

different fractal stimuli to select. An alternative approach is to propose that decisions are 

computed by choosing between the set of available physical actions that are required in 

order to attain a particular goal. Here, we measure neural responses on a preceding trial 

before subjects are presented with the explicit choice between two possible actions, and 

before subjects know which specific action they will need to select in order to implement 

that decision. The fact that these decisions can be decoded before subjects are aware of the 

specific action that needs to be performed to realize them (choose left button or right 

button), suggests that decision signals can be encoded in the brain at an abstract level, 

independently of the actual physical action with which they are ultimately linked115. We 

should note however, that our decoding technique which is based on activity elicited at the 

time of receipt of the outcome on the preceding trial, is likely to be picking up both the 

decision itself and the consequence of the decision. In other words, once a decision to 

switch is computed, a change in stimulus-response mapping is going to be initiated, and the 

activity being detected in our analysis may also reflect this additional process.  

Our findings have important implications not only for understanding what types of 

decisions are computed but also when these decisions are computed. In the context of the 

reversal task, it is possible for a decision to be computed at any point in time between 

receipt of the outcome on the previous trial, and implementation of the behavioral choice 

on the next. By using multivariate fMRI techniques we have been able to show that 
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subsequent decisions (or the consequences of those decisions) can be decoded on the basis 

of signals present on the preceding trials (after outcomes are received). This suggests that 

the decision to switch or maintain current response set may be initiated as soon as the 

information needed to compute the decision is available, rather than being implemented 

only when required on the subsequent trial.  

In this study we also separated fMRI signals with a global spatial encoding from those with 

a local spatial encoding, and evaluated the information each contained for decoding 

behavioral choice within each of our regions of interest. Global signals, as we define them 

here, are relatively uniform spatially extended clusters of activation within a given area 

(with a spatial scale greater than 8mm). Typically, these spatially smoothed signals are 

those reported in conventional fMRI analyses, as they are especially likely to survive at the 

group level. However, recently it has been shown that information about task processes can 

be obtained from considering local spatially distributed variations in voxel activity105, 106. In 

the present case, we defined spatially local signals as those with a spatial scale of less than 

8mm. In this study we showed that within each region of interest, local signals do convey 

important information regarding behavioral choice over and above that conveyed by the 

global signals. However, we did not find strong evidence for a dissociation between regions 

in the degree to which they were involved in encoding local and global signals, except for a 

trend in anterior cingulate cortex toward a greater role for this region in encoding local as 

opposed to global signals. These results suggests that at least in the context of the present 

reversal learning task, the presence of global and local information relevant to behavioral 

decision making strongly covaries within areas. This is in contrast to results observed in the 

visual system, where in some instances local signals convey information pertaining to 

visual perception even when global signals do not. Local fMRI signals in visual cortex 

have been argued to relate to the columnar organization in this area of the brain. It should 

be noted however, that much less is known about the degree to which columnar 

organization exists outside of visual cortical areas, and hence, the underlying neural 

architecture that contributes to local fMRI signals in other areas of the brain such as the 

prefrontal cortex remains to be understood. 
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We also used a multivariate analysis technique, whereby the degree to which neural signals 

in multiple brain regions contribute to the decision process are evaluated simultaneously. 

This approach has allowed us to efficiently recruit signals from diverse brain regions in 

order to arrive at a better decoding accuracy for subjects’ behavioral choice than would 

follow from considering activity in any one region alone. As a consequence, our findings 

suggest that reward-related decision processes might be better understood as a product of 

computations performed across a distributed network of brain regions, rather than being the 

purview of any one single brain area. 

Nevertheless, our results do suggest that some regions are more important than others. 

When we compared the decoding accuracy of classifiers incorporating information from all 

of our regions of interest to the accuracy of classifiers using information derived from 

different subsets of regions, we found that activity in a specific subset of our regions of 

interest accounted for the maximum accuracy of our classifier, namely the anterior 

cingulate cortex, medial PFC, and ventral striatum. Each of these regions have been 

identified previously as playing a role in decision making and behavioral choice on the 

basis of prior fMRI studies using traditional statistical analysis techniques74, 82, 86. Out of 

these, one region in particular stood out as contributing the most: dorsal anterior cingulate 

cortex. This region has been previously implicated in diverse cognitive functions, including 

response conflict and error detection87, 110. However, a recent theoretical account has 

proposed a more general role for this region in guiding action selection for reward46, 86. 

While not incompatible with response-conflict or error-detection theories, our results are 

especially consistent with this latter hypothesis, suggesting that this region is playing a key 

role in implementing the behavioral decision itself.  

Some of the regions featured in this study, such as dorsolateral prefrontal cortex, may 

contribute to task or cognitive-set switching more generally117-119 and are unlikely to be 

uniquely involved in reward-related decision making. However, it is notable that 

dorsolateral prefrontal cortex was ultimately not selected in our combined classifier. 

Instead, the regions that were selected have previously been specifically implicated in 
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reward-related learning and/or in implementing changes in behavior as a consequence of 

such learning, and not in cognitive set-shifting per se74, 86. 

The present study demonstrates that it is possible to decode abstract reward-related 

decisions in human subjects on a single trial basis, in essence by reading their decision 

before the action is executed. Our findings are consistent with the proposal that decision 

making is best thought of as an emergent property of interactions between a distributed 

network of brain areas rather than being computed in any one single brain region. Of all the 

regions we studied, we found that a subset of three regions seemed to contain information 

that was sufficient to decode behavioral decision making: ACC, medial PFC, and ventral 

striatum. Future studies are needed to determine whether these regions contain information 

specifically required for probabilistic reversal learning or whether other types of reward-

related decisions can also be decoded on the basis of information contained in these areas. 
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MATERIALS AND METHODS 

Subjects 

Eight healthy, right-handed, normal subjects participated in this study (four female, mean 

age 27.6 ± 5.6 SD). The subjects were pre-assessed to exclude those with a prior history of 

neurological or psychiatric illness. All subjects gave informed consent and the study was 

approved by the Institute Review Board at Caltech. Subjects were paid according to their 

performance in the task. Before scanning, subjects were trained on three different versions 

of the probabilistic reversal taskas in Chapter 1, 109 (as in Chapter 1), which is also 

described in supplementary methods in this chapter. 

Data acquisition and preprocessing 

The functional imaging was conducted by using a Siemens 3.0 Tesla Trio MRI scanner to 

acquire gradient echo T2* weighted echo-planar images (EPI) with BOLD (blood 

oxygenation level dependent) contrast. To optimize functional sensitivity in OFC we used a 

tilted acquisition in an oblique orientation of 30° to the AC-PC line. Four sessions of 450 

volumes each (4x15 minutes) were collected in an interleaved-ascending manner. The 

imaging parameters were: echo time, 30ms; field-of-view, 192mm; in-plane resolution and 

slice thickness, 3mm; TR, 2 seconds. Whole-brain, high-resolution T1-weighted structural 

scans (1x1x1mm) were acquired from each subject and co-registered with their mean EPI. 

Image analysis was performed using SPM2 (Wellcome Department of Imaging 

Neuroscience, Institute of Neurology, London, UK). To correct for subject motion, the 

images were realigned to the first volume, spatially normalized to a standard T2* template 

with a re-sampled voxel size of 3mm. Trials were 12 seconds long, and were time locked to 

the start of the fMRI EPI scan sequence. This was done to ensure that the scans from the 

previous trial used to decode the subject’s decision in the next trial would not be 

contaminated with BOLD activity arising from the choice itself on the subsequent trial. A 

running high-pass filter (the mean BOLD activity in the last 36 volumes, or 72 seconds, 

was subtracted from the activity of the current volume) was also applied to the data. This 

was used instead of the usual high-pass filtering96 so that BOLD activity in a volume would 

not be contaminated with activity from the choice itself in subsequent volumes. In the 
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scanner, visual input was provided with Restech (Resonance Technologies, Northridge, 

CA, USA) goggles, and subjects used a button box to choose a stimulus. 

Global and local spatial signals 

To dissociate global and local signals relevant to behavioral choice we used the following 

procedure: 1) The activity in each voxel was scaled such that the variance of the BOLD 

activity over all trials in a session was equalized across all voxels. 2) The fMRI data was 

spatially smoothed using a Gaussian kernel with a half width at half maximum (FWHM) of 

8mm, to capture global changes in signal. 3) fMRI data containing only locally distributed 

spatial signals were then extracted by subtracting the smoothed fMRI data (obtained in step 

2) from the non-spatially smoothed fMRI data (obtained in step 1). This procedure adopts 

the assumption that BOLD activity is a function of the underlying neuronal activity that is 

identical across neighboring voxels, except for a scaling constant. Furthermore, step 1 

estimates and eliminates the scaling differences across voxels, but errors in the estimation 

of this scaling could lead to an incomplete dissociation between local and global signals. 

The procedure also assumes that if local encodings exist, they will have the same spatial 

scaling characteristics across all brain regions.  

Region of interest (ROI) specification 

Nine regions of interest were specified based on previous literature implicating these 

regions in reward-related decision making, and delineated by anatomical landmarks (Fig. 

S3.1). Regions of interest were specified using a series of spheres centered at specified 

(x,y,z) MNI coordinates and with specified radii in millimeters (see Table S3.3 for 

complete specification). 

Discriminative analysis 

To optimally classify whether subjects will switch or stay in a given trial, the fMRI voxel 

activity x  (see Fig. 3.1A) is assigned to the action ia  for which the posterior probability 

)()()()|( x|xx papapap iii =  is maximal. Here )( iap |x  is the distribution of voxel 

activities given action ia . Assuming that the fMRI activity x follows a multivariate normal 
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distribution with the same covariance matrix Σ  given either action, the posterior 

probability whether to choose the switch action is: 

(3.1) 

 

where switchx  and stayx  are the training sample means of the fMRI activity for both actions, 

and S is the pooled covariance matrix estimated from the training sample. This can be 

simplified to )1(1)|( y
switch eap −+=x , where  

                                        (3.2) 

Here θ  is a threshold variable that groups all constants. Given the brain voxel activity x  in 

a single trial, choosing the action with maximal posterior is equivalent to choosing the 

action for which 0>y . 

The classifier was built in two steps (see Fig. 3.1B). In the first, nine regions of interest 

were specified (Fig. S3.1), and a unique signal from each region was obtained by adding up 

the activities of all voxels in that region, weighted by the voxels’ discriminability: 

(3.3) 

 

where 2
iσ  is the pooled voxel variance of voxel i. This approach assumes that the noise is 

independent across voxels, a procedure used to avoid overfitting the classifier to the fMRI 

data. The second step utilizes the coalesced regional activities as input to a full Gaussian 

discriminative classifier (equation 3.2), where weights are assigned to each region.  

Decoding accuracy is measured as the percentage of correctly decoded behavioral choices. 

That is, the mean between correctly decoded switch actions (number of correctly decoded 

switches divided by the total number of switch actions) and correctly decoded stay actions 
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(number of correctly decoded stays divided by the total number of stay actions). This 

measure takes into account the fact that the number of times a subject switches or stays can 

be different across sessions. 
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Figure 3.1. Reversal task setup and classifier construction. (A)  Subjects chose one of 

two fractals, which on each trial were randomly placed to the left or right of the fixation 

cross. The chosen stimulus is illuminated until 2s after the trial onset. After a further 1s, a 

reward (winning 25 cents) or punishment (losing 25 cents) is delivered for 1s, with the total 

money earned displayed at the top. The screen is then cleared and a central fixation cross is 

then presented for 8s before the next trial begins. One stimulus is designated the correct 

stimulus in that choice of that stimulus leads to a monetary reward on 70% of occasions, 

and a monetary loss 30% of the time. The other stimulus is “incorrect,” in that choice of 

that stimulus leads to a reward 40% of the time and a punishment 60% of the time. After 

subjects choose the correct stimulus on 4 consecutive occasions, the contingencies reverse 

with a probability of 0.25 on each successive trial. Subjects have to infer the reversal took 

place and switch their choice, at which point the process is repeated. The last three scans in 

a trial are used by our classifier to decode whether subjects will switch their choice or not 

in the next trial. A canonical BOLD response elicited at the time of reward receipt is shown 

(in green) to illustrate the time-points in the trial at which the hemodynamic response is 

sampled for decoding purposes. A new trial was triggered every 12 seconds in order to 

ensure adequate separation of hemodynamic signals related to choices on consecutive 

trials. The average of three scans between the outcome of reward and the time of choice in 

the next trial was used for decoding subjects’ behavioral choice in the next trial. These 

three time-points will not only contain activity from the decision itself (activity taking place 

after the receipt of feedback, but before the next trial), but also activity from the 

reward/punishment received in the current trial, and activity consequent to the choice made 

in the current trial. (B) The multivariate region classifier used in this study is divided in two 

parts. The first extracts a representative signal from each region of interest (left box) by 

averaging the brain voxels within a region weighted by the voxels’ discriminability of the 

switch vs. stay conditions. To avoid overfitting the fMRI data, we did not take into 

consideration the correlations between voxels within a region of interest (equation 3.3, 

Methods). The second part of the classifier (right box) adds up the signal from each region, 

weighted by the region’s importance in classifying the subject’s decision (equation 3.2, 

Methods). Weights are calculated using a multivariate classifier that uses each region’s 



 

 

70

decoding strength, and correlations between regions, to maximize the accuracy of the 

classifier in decoding whether subjects are going to switch or stay (see Methods – 

Discriminative analysis). 
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Figure 3.2. Global and local fMRI signals related to behavioral choice (A) Here we 

show fMRI signals related to behavioral choice, i.e., whether subjects will switch or 

maintain (stay) their choices on a subsequent trial. Voxel t-scores for the discriminability 

between switch and stay trials is shown for 2 individual subjects with data in its original 

form (left-most panel), and then decomposed into a global spatial component (with spatial 

scale > 8mm, middle panel) and a local spatial component (spatial scale < 8mm, right 

panel). The ACC region of interest is outlined in white for reference. Red and yellow colors 

indicate increased responses on switch compared to stay trials, while blue colors indicate 

stronger responses on stay compared to switch trials. (B) Results from a group random 

effects analysis across subjects conducted separately for the original unsmoothed data, 

global data, and local data. While global signals survive at the random effects level 

(consistent with classical fMRI analyses), local spatial signals do not survive at the group 

random effects level. Random effect t-scores are shown with a threshold set at p<0.2 for 

visualization. 
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Figure 3.3. Illustration of the decoding accuracy for subjects’ subsequent behavioral 

choices for each individual region and combination across regions (A) Plot of average 

accuracies across subjects shown separately for local and global spatial scales. Both spatial 

scales contain information that can be used to decode subjects’ subsequent behavioral 

choice in all of our regions of interest. Notably, decoding accuracies are comparable at the 

local and global scales within each region. (B) Plot of average across accuracy across 

subjects for each region individually combining both local and global signals. (C) Results 

of the hierarchical multi-region classifier analysis, averaged across subjects. An ordering of 

regions was performed by starting with a classifier which only contains the individual 

region with best overall accuracy (ACC, left column), and iteratively adding to this 

classifier the regions whose inclusion increases the accuracy of the classifier the most (or 

decreases the least). Thus, the second column shows the accuracy of a classifier containing 

ACC and ventral striatum, the third column the accuracy of a classifier containing ACC, 

ventral striatum, and mPFC, and so forth. The combination of the three regions which 

provide the best decoding accuracy are highlighted in grey. Addition of a fourth region 

(dorsal striatum) does not significantly increase decoding accuracy. All error bars indicate 

standard errors of the mean. (D) Decoding accuracy for the three-region classifier shown 

separately for each individual subject (Table S3.1). 
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MATERIALS AND METHODS 

Pre-scan training 

Before scanning, subjects were trained on three different versions of the task. The first is a 

simple version of the reversal task, in which one of the two fractals presented yields 

monetary rewards 100% of the time and the other monetary losses 100% of the time. These 

then reverse according to the same criteria as in the imaging experiment proper, as 

described in Fig 3.1A. This training phase is ended after the subject successfully completes 

3 sequential reversals. The second training phase consists of the presentation of two stimuli 

that deliver probabilistic rewards and punishments as in the experiment, but where the 

contingencies do not reverse. The training ends after the subject consecutively chooses the 

‘correct’ stimulus 10 times in a row. The final training phase consists of the same task 

parameters as in the actual imaging experiment. This phase ends after the subject 

successfully completes 2 sequential reversals. Different fractal stimuli were used in the 

training session than those used in the scanner. Subjects were informed that they would not 

receive remuneration for their performance during the training session. 
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SUPPLEMENTARY ANALYSES 

Dissociating the contribution of reward vs. punishment signals on the immediately 

preceding trial from behavioral choice signals in the classification analysis 

In order to determine whether our decision classifier was using information above and 

beyond that pertaining to receipt of rewards and punishers on the previous trial, we first 

explored how much information receiving a reward or a punishment on the previous trial 

provides about the subsequent behavioral choice. For this, we looked only at subjects’ 

reward and punishment histories (leaving aside their fMRI data), and trained a classifier to 

decode subjects’ subsequent choices on the basis of rewards and punishments received on 

an immediately preceding trial. This classifier was able to decode subjects choices with 

63±1% accuracy, a decoding accuracy lower than that achieved by the classifier based on 

the fMRI data (of 67±2%, p<0.07 paired t-test across subjects). The decoding accuracy of 

the naïve classifier was due to the probabilistic nature of the task; in which subjects will 

sometimes switch and sometimes stay following receipt of a punishing outcome, but will 

always stay after receipt of a reward. 

In addition to decoding behavioral decisions from brain activity, we also tested a classifier 

in order to determine whether on a given trial subjects received a reward or a punishment. 

This classifier (using the same three regions of interest as used for our decision classifier) 

was able to decode subjects’ receipt of a reward or punishment with 70±1% accuracy. This 

shows that these regions are sensitive not only to the actual behavioral decision, but also to 

whether subjects’ received a rewarding or a punishing outcome. Nevertheless, these 

findings also confirm that our decision classifier has to be using much more information 

than merely reading responses to the rewarding or punishing outcomes received on the 

previous trial, as the fact that rewards and punishments themselves can only be decoded up 

to an accuracy of 70% suggests that reward and punishment information on the 

immediately preceding trial probably constitutes a relatively minor contribution toward the 

overall accuracy of the decision classifier (because as shown above, even with 100% 

decoding accuracy, rewards and punishments on the previous trial can only decode 63% of 

subsequent decisions).  



Medial PFC Amygdala Dorso Lateral PFC

Frontal InsulaVentral StriatumMedial OFC

Lateral OFC Dorsal Striatum ACC

77



 

 

78

Figure S3.1. Brain regions of interest. Nine regions of interest were specified. These are: 

medial PFC, adjacent medial and lateral OFC, amygdala, ventral and dorsal striatum, left 

and right DLPFC, anterior insula, and ACC. fMRI signals in each region were used to 

decode subjects’ behavioral choices using a two-step multivariate classifier (see Fig. 3.1B). 

Table S3.3 specifies the coordinates of these regions of interest. 
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Figure S3.2. Comparison of fMRI classifiers. Adding up all the brain voxels weighted by 

their discriminability (in decoding stay vs. switch decisions), which assumes voxels are 

independent of each other, yielded an accuracy of 61%. When taking the 20 individually 

best discriminating voxels and adding them independently, it yielded an accuracy of 64%. 

Our multivariate region-based classifier, which combines three regions of interest, yielded 

an average accuracy across subjects of 67% (blue column), significantly better than the 

other techniques (e.g., at p<0.04, paired t-test when compared to the 20 best voxel 

classifier). Error bars are fixed effects across subject sessions.  
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Figure S3.3. Switch vs. stay for individual subjects. Results of a simple linear contrast 

between signals in regions of interest derived from averaging the last 3 scans in a trial (after 

the receipt of outcome), according to whether subjects switch or stay on the subsequent 

trial, using smoothed data (global signals). The figures show t-scores within each region of 

interest that reflect the difference in signals between trials in which subjects subsequently 

switch their choice of stimulus to those trials where subjects stay (or maintain their 

previous choice of stimulus). Red and yellow colors indicate increased responses on switch 

compared to stay trials, while blue colors indicate stronger responses on stay compared to 

switch trials.  
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Figure S3.4. Normalized cross-correlation of regression residuals across regions. 

Regression residuals correspond to aspects of task processing that are not directly related to 

the subject’s behavioral decision; such as preparation of motor responses and stimulus 

processing. These processes can be shared between regions, thereby introducing 

correlations in time-courses between regions. The normalized cross-correlation matrix plot 

shown here illustrates the correlation between regions, after activity related to the decision 

has been removed. Each region is plotted on the vertical and horizontal axes, and 

correlations between any two regions can be found by finding the square corresponding to 

the intersection between the regions on these two axes. The color of each square depicts the 

intensity of the correlation, ranging from blue (uncorrelated) to red (fully correlated), see 

attached color scale. The diagonal elements express the correlation of the signal of a region 

with itself, and are by definition equal to one. The cross-correlation of residuals across 

regions shows a strong sharing of task processes between DLPFC, insula, and ACC (lower 

right triplet). In addition, ventral and dorsal striatum were found to be highly correlated in 

their activity. We also found weak correlations between residual activity in mPFC and 

medial OFC, and between DLPFC and OFC. In general, brain regions that are closer to 

each other in terms of physical distance, present higher inter-correlations than regions that 

are more distal, perhaps reflecting increased coupling between regions as a function of 

local connectivity.  
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Figure S3.5. Classification Receiver Operating Characteristic Curve. A measure used 

in signal detection to measure classifier discriminability is the area under a Receiver 

Operating Characteristic (ROC) curve120, which represents the average classifier accuracy 

across all possible thresholds. Here we show typical ROC curves for the four sessions from 

one subject: blue for the session classifier on the training data, and red on the testing data. 

An area of 100 means the classifier will have on average an accuracy of 100%, and an area 

of 50 means that on average the classifier will have a 50% accuracy. Across subjects, ROC 

curves indicated an average accuracy of 71±2% for decoding behavioral choices over all 

sessions (Table S3.2). The ROC curves of the classifiers for the training data and testing 

data are very similar, indicating that our procedure for training the discriminative classifier 

across regions of interest does not over-fit the fMRI data.  
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Figure S3.6. Behavioral choice responses and the signal-to-noise ratio in each region 

of interest. The fact that we find some regions to have higher decoding accuracy than 

others could reflect either a greater contribution of a given region toward computing a 

decision (and its consequences), or alternatively could be merely ascribed to global 

differences in the signal-to-noise ratio of the fMRI signal between regions. To account for 

this, we compared the sensitivityiv of each region to the behavioral choice signals (top-right 

panel), with the sensitivity of each region as estimated from responses to the main effect at 

the time of outcome (bottom-right panel). As can be seen, SNR is comparable across 

regions of interest, and thus differences in behavioral choice sensitivity across regions are 

unlikely to be accounted for merely by an overall difference in SNR across these areas. The 

left panels show the average classifier normalized discriminant weights (t-scores) across 

subjects. Although some regions have classification power (sensitivity), they average out 

across individuals because they have different signs across regions. 

 

 

                                                 
iv An unsigned mean sensitivity across subjects was obtained by 1) squaring the SNR per subject, 2) transforming to z-scores with an 

inverse F distribution 3) averaging z-scores across subjects 4) transforming back with an F distribution 4) taking the square root.  
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Figure S3.7. Regional classifiers. In Fig. 3.3D we created classifiers with an increasing 

number of regions to find the minimum set of regions that provided the maximum accuracy 

when decoding subjects’ decisions. However, the process might be misleading in that there 

might be a different combination of N regions that is better than a classifier with N regions 

built hierarchically. To test for this, we computed classifier accuracy for all combinations 

of three regions (out of 9). The accuracy of each combination of regions is shown ordered 

from left to right with the right most column corresponding to the best combination of 

regions (shown in black). This turns out to be ACC, ventral Striatum and mPFC, which 

enjoys a 1% advantage in decoding accuracy over the next best combination of regions. 

Thus, the results of this analysis accord with the hierarchical analysis in highlighting the 

three regions identified from that analysis as providing the most information for decoding 

behavioral choice out of all regions tested. 
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SUPPLEMENTARY TABLES 

Table S3.1. Multivariate classifier accuracy in decoding choice across subjects and 

subject sessions 

Subject 1 2 3 4 5 6 7 8 Mean 
Sess. 1 69% 69% 73% 67% 59% 57% 64% 57% 64±2%
Sess. 2 73% 52% 62% 79% 76% 63% 68% 63% 67±3%
Sess. 3 61% 83% 81% 76% 81% 55% 61% 60% 70±4%
Sess. 4 74% 63% 81% 77% 70% 64% 56% 57% 68±3%
Mean 69±3% 67±6% 74±4% 75±3% 72±5% 59±2% 62±3% 59±1% 67±2%
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Table S3.2. Multivariate classifier ROC areas across subjects and subject sessions 

Subject 1 2 3 4 5 6 7 8 Mean
Sess. 1 74 74 76 68 63 54 66 68 68±3 
Sess. 2 83 63 67 82 76 66 74 61 71±3 
Sess. 3 65 86 90 82 85 61 65 76 76±4 
Sess. 4 76 65 80 77 72 65 63 57 69±3 
Mean 74±4 72±5 78±5 77±3 74±5 61±3 67±2 66±4 71±2 
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Table S3.3. Regions of Interest. Each region of interest is specified by a series of 

spheres centered at the specified (x, y, z) MNI coordinates and radius (mm). 

mPFC x y z radius
 0 52 0 12 
 0 50 11 12 
 0 47 21 12 
 0 52 33 12 
 0 59 23 12 
 0 64 12 12 
 0 65 1 12 
 0 60 -9 12 

 
mOFC x y z Radius
 0 38 -26 12 
 0 40 -26 12 
 0 42 -26 12 
 0 44 -26 12 
 0 46 -26 12 
 0 48 -26 12 

 
lOFC x y z Radius
 25 50 -21 10 
 26 43 -21 10 
 26 38 -21 10 
 -25 50 -21 10 
 -26 43 -21 10 
 -26 38 -21 10 

 
Amygdala x y z radius
 20 -2 -29 10 
 -20 -2 -29 10 
 23 -11 -27 8 
 -23 -11 -27 8 
 28 -17 -23 8 
 -28 -17 -23 8 

 
DLPFC x y z radius
 -43 23 50 25 
 -43 46 39 25 
 -43 63 16 25 
 43 23 50 25 
 43 46 39 25 
 43 63 16 25 

Insula x y z radius
 36 23 0 10 
 -36 23 0 10 

 
vStriatum x y z radius
 -20 15 -9 4 
 -19 10 -9 5 
 -22 10 -14 5 
 -17 10 -16 5 
 -10 10 -16 5 
 -14 10 -12 5 
 -10 5 -16 5 
 -17 5 -16 5 
 -19 5 -9 5 
 -22 5 -4 5 
 -18 13 -11 5 
 -15 5 -13 5 
 20 15 -9 4 
 19 10 -9 5 
 22 10 -14 5 
 17 10 -16 5 
 10 10 -16 5 
 14 10 -12 5 
 10 5 -16 5 
 17 5 -16 5 
 19 5 -9 5 
 22 5 -4 5 
 18 13 -11 5 
 15 5 -13 5 
 3 10 -16 5 
 -3 10 -16 5 
 3 5 -16 5 
 -3 5 -16 5 
 0 10 -16 5 
 -5 10 -16 5 
 5 10 -16 5 
 0 5 -16 5 
 -5 5 -16 5 
 5 5 -16 5 
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dStriatum x y z radius
 -13 16 8 5 
 -13 11 13 5 
 -12 5 15 5 
 -9 11 8 5 
 -10 16 3 5 
 -9 17 -2 5 
 -10 7 11 5 
 13 16 8 5 
 13 11 13 5 
 12 5 15 5 
 9 11 8 5 
 10 16 3 5 
 9 17 -2 5 
 10 7 11 5 

 
ACC x y z radius
 0 26 29 12 
 0 18 33 12 
 0 6 38 12 
 0 27 40 12 
 0 17 46 12 
 0 6 50 12 
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C h a p t e r  4  

AMYGDALA CONTRIBUTIONSv 

 

 

The prefrontal cortex receives substantial anatomical input from the amygdala, and these 

two structures have long been implicated in reward-related learning and decision making. 

Yet little is known about how these regions interact, especially in humans. We investigated 

the contribution of the amygdala to reward-related signals in prefrontal cortex by scanning 

two rare subjects with focal bilateral amygdala lesions using fMRI. The subjects performed 

a reversal learning task in which they first had to learn which of two choices was the more 

rewarding, and then flexibly switch their choice when contingencies changed. Compared to 

healthy controls, both amygdala lesion subjects showed a profound change in ventromedial 

prefrontal cortex activity associated with reward expectation and behavioral choice. These 

findings support a critical role for the human amygdala in establishing expected reward 

representations in prefrontal cortex, which in turn may be used to guide behavioral choice.  

                                                 
v Work done in collaboration with Ralph Adolphs, J. Mike Tyszka, and John P. O’Doherty. 
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INTRODUCTION 

Research on the neural substrates of reward-related learning and decision-making has 

highlighted the important contributions of the ventromedial prefrontal cortex (vmPFC, 

encompassing the orbital and medial surfaces of the frontal lobes) and the amygdala. A 

large number of electrophysiology, lesion, and neuroimaging studies in humans and 

animals have examined the functions of these two structures53, 55, 116, 121. Lesion studies in 

rats and non-human primates suggest that both structures play an important role in learning 

associations between stimuli and subsequent reward or punishment, as well as in the 

adaptive control of behavior following changes in such reinforcement contingencies or in 

the value of the reinforcer56, 57, 122-124. Single unit studies have found that neurons in both 

structures respond to stimulus cues predictive of future rewarding or punishing outcomes, 

or respond in anticipation of an impending outcome80, 81, 114, 125, 126. Moreover, firing rates of 

these neurons track changes in reward contingencies over time, suggesting an important 

role for these regions in computing and rapidly updating reward expectations. Furthermore, 

lesion and neuroimaging studies in humans have also implicated amygdala and 

ventromedial prefrontal cortex in guiding behavioral choice under uncertainty, and have 

found evidence of neural activity related to expected reward and behavioral choice in both 

of these areas65, 74, 109, 127, 128.  

While much is now known about the involvement of amygdala and prefrontal cortex 

individually, these structures do not function in isolation, but as components of a network 

of brain structures important for reinforcement learning. The two structures are known to 

be bi-directionally connected anatomically129, 130, but very little is known about the 

functional significance of these connections. A small number of studies in animals have 

made use of the crossed-unilateral lesion technique to show that interactions between the 

two regions may be critical for certain reward-related functions, such as in the ability to 

modify behavior following a change in the value of an associated reinforcer56. 

Electrophysiological studies in the vmPFC of rats114 have found that amygdala lesions 

substantially reduced the population of neurons in prefrontal cortex encoding expected 

outcomes, thus rendering these representations inflexible and stimulus-driven. The same 
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study also found a reduced number of neurons that were subsequently encoding the 

expected reward of choices made. These findings suggest that signals from the amygdala 

play an important role in facilitating neural representations of reward expectancy in 

vmPFC55. 

Much less is known about the functional significance of interactions between amygdala and 

vmPFC in the human brain. While some neuroimaging studies have begun to use 

connectivity analyses to model functional interactions between these regions, albeit not in 

the context of reward learning131-133, the use of imaging techniques alone can provide only 

limited data about the causal effect of neural activity in one area on neural computations in 

another.  

Here, we studied two rare human subjects with focal bilateral amygdala lesions due to 

Urbach-Wiethe disease134 (Fig. 4.1). The two subjects were scanned with fMRI while they 

participated in a task designed to probe reward-related learning and behavioral decision-

making: monetary probabilistic reversal learning (Fig. 4.2). Previous studies have reported 

blood oxygenation-level dependent (BOLD) signal changes in both the amygdala and 

vmPFC that are related to processing rewarding and punishing outcomes in this task, and in 

encoding signals related to subsequent behavioral decisions74. Moreover, activity in both of 

these regions tracks expected reward value during performance of this task, and these 

expectation signals are updated flexibly following changes in reinforcement 

contingencies109.  

We investigated the effects of amygdala lesions on reward representations in vmPFC by 

comparing the BOLD responses measured in the subjects with amygdala lesions to those 

measured in healthy control subjects. We looked for the effects of the amygdala lesion on 

BOLD signals correlated with behavioral choice (whether to maintain current choices or 

switch choices in the task), computation of expected reward value (how much money they 

expected to earn or lose following their choice), and value of the outcomes (the actual 

monetary gain or loss at the end of each trial). We hypothesized that the amygdala 
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contributes to computations of expected reward value in vmPFC, which in turn should 

affect signals of behavioral choice. 
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RESULTS 

Subjects 

Both amygdala subjects had focal bilateral lesions in the amygdala due to Urbach-Wiethe 

disease (Fig. 4.1). One of the subjects, S.M., has been extensively published before: she is a 

41-year-old woman with a high-school education, IQ in the normal range, and normal basic 

visuoperception, language, and memory; her lesions encompass the entire amygdalae, as 

well as subjacent white matter and very anterior entorhinal cortex. The second subject, 

A.P., is a 21-year-old woman in college with likewise normal IQ, perception, language, and 

memory; lesions are entirely confined to the amygdala, occupying roughly 50% of each 

amygdala’s volume. Both subjects are fully right-handed, live independently, and show no 

evidence of psychopathology on tests of personality assessment. Both subjects also perform 

normally on standard neuropsychological tests of response switching, such as the 

Wisconsin Card Sorting Task and the Trailmaking task. Subjects with amygdala lesions 

were compared to 16 healthy controls of similar age as A.P. (Controls), as well as to 4 

healthy women similar to S.M. in age (SM-comparisons, see Methods for further details).  

Behavioral performance on probabilistic reversal learning 

Subject AP 

AP was significantly impaired relative to controls in the average number of trials to reach 

the criterion for contingency reversal, and hence impaired in the number of contingency 

reversals obtained over the course of the task. AP obtained only 3 reversals, whereas 

controls obtained on average 8 reversals, a performance 3.5 S.D.s below the control mean 

(p<0.002). A further analysis of AP’s performance revealed that, although she was not 

significantly more likely to switch choice when compared to controls (Fig. 4.3), her choice 

of when to switch was inconsistent with the reward contingency: in particular, she switched 

choice after obtaining a positive reward much more often than did the controls. For this 

reason, although she switched the same amount as controls did overall, she achieved fewer 

contingency reversals in the task. 
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Subject SM 

SM was also impaired relative to controls in the number of contingency reversals, 

obtaining 4 reversals. However, the SM-comparison subjects who were closer in age to SM 

were also variably impaired relative to the control group, and when SM’s data were 

compared to this group of subjects of more similar age, her behavioral variables did not 

stand out as abnormal (Fig. 4.3). It should be noted that for the purpose of our fMRI study, 

the fact that SM performs similarly to SM-comparison subjects is in fact advantageous, as 

any observed differences in BOLD signal would then be unlikely to be confounded by 

differences in behavior135.  

Both amygdala lesion subjects were also impaired in the number of trials taken to reach 

acquisition during the initial training phase outside the scanner (even before reversals took 

place). However, as in the behavioral performance during scanning itself, the SM-

comparison subjects were also impaired relative to the younger controls (see Fig. S4.1). 

fMRI Results 

Here we report whole brain analyses of BOLD signal correlating with parameters from our 

models that are based on the behavior of the control subjects, but restrict our analysis of the 

difference in BOLD signal between amygdala lesion subjects and controls to those regions 

that originally elicited a signal in controls—notably, specific regions of prefrontal cortex 

(see Methods). fMRI data for this same set of control subjects is more extensively analyzed 

in Hampton et al.109. 

Behavioral choice signals 

In order to determine the effects of amygdala lesions on BOLD signals in orbital and 

medial prefrontal cortex related to behavioral choice, we first conducted a simple canonical 

trial-based analysis of the fMRI data whereby we examined BOLD responses following 

receipt of the outcome on a given trial (as in O’Doherty et al.74). Trials were separated 

according to whether on the subsequent trial following the outcome subjects changed their 

choice of stimulus (“switch” trials) or continued choosing the same stimulus (“stay” trials).  



 

 

101

Fig. 4.4A shows areas with significant responses in “switch” compared to “stay” trials in 

control subjects. This contrast revealed significantly greater activity in “switch” compared 

to “stay” in anterior frontal insula, extending into posterior lateral orbitofrontal cortex and 

anterior cingulate cortex (ACC). The reverse contrast revealed significant effects in mPFC 

(Fig. 4B). These results are consistent with previous studies of reversal learning in healthy 

control subjects74, 75, 86.  

Differences in behavioral choice signals in amygdala subjects compared to controls 

We examined regions in which the above contrast would differ between our two subjects 

with amygdala lesions and controls by restricting the analysis to those voxels that showed a 

significant effect in the controls in the first place (for switch-stay; Fig. 4.4A). We found 

significantly greater responses in switch compared to stay trials in control subjects than in 

the two amygdala subjects in a region of posterior lateral orbitofrontal cortex/anterior 

insula, bilaterally (Fig. 4.4C, threshold at p<0.01). These differences were significant in 

each amygdala subject individually compared to controls (at p<0.001 for SM and at p<10-8 

for AP). A plot of the contrast estimates for switch-stay are shown in Fig. 4.4D. It is 

notable that responses in both amygdala subjects are markedly different from controls, and 

even from the SM-comparison subjects (who were similar in their behavioral performance 

to SM). A comparison of the reverse contrast (stay-switch) between amygdala subjects and 

controls did not reveal any significantly decreased responses in the amygdala subjects. 

These results indicate that bilateral damage to the amygdala results in altered responses in 

anterior insula/posterior orbitofrontal cortex and anterior cingulate cortex related to 

behavioral choice, suggesting that in healthy individuals the amygdala makes an important 

contribution to the computation of behavioral control signals in those regions.  

Expected reward signals 

We next examined BOLD responses to expected reward. For this, we applied a 

computational model which calculates expected reward signals related to subjects’ choice 

in a trial by taking into account the history of rewards and punishments obtained and the 

history of choices made (see Methods). In our control subjects, we found significant 
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correlations with this signal in orbital and medial prefrontal cortex (Fig. 4.5A), time locked 

to the time of choice. Activity in these areas increases in a linear fashion as a function of 

increasing expected reward value109 suggesting that these areas are involved in encoding 

the expected reward of the currently chosen stimulus. 

Differences in expected reward signals between amygdala subjects and controls 

In a direct comparison between areas correlating with expected reward signals in the 

amygdala subjects and controls, we found significant differences in medial prefrontal 

cortex at p<0.001 (Fig. 4.5B). These results were significant in each subject individually 

when compared to controls at p<0.001 for AP and p<0.0001 for SM. A consistent 

difference between AP and controls, and between SM and SM-comparison subjects can be 

seen when plotting the regression coefficients of all subjects in medial prefrontal cortex 

(Fig. 4.5C), confirming that the amygdala subjects process the expected reward value of 

each choice abnormally. These results were obtained by fitting a model to the behavior of 

the group of 16 controls, and then using the model parameters as the regressor against the 

fMRI data from the amygdala subjects, as well as the fMRI data from the controls. 

However, in order to account for the possibility that a difference in model parameters 

between the controls and amygdala subjects could account for the above results, we also 

performed the same analysis using parameter fits derived individually from each of the 

amygdala subjects. This analysis yielded the same results: a significant difference in 

expected reward signals in medial prefrontal cortex in amygdala subjects compared to 

controls (Fig. S4.2A). 

To further characterize how amygdala lesion subjects process expected reward 

representations in medial prefrontal cortex, we plotted the signal in medial PFC measured 

with fMRI against the expected reward signals obtained from the model of the subjects’ 

task performance. We sorted trials into one of 5 bins to capture different ranges in the 

expected reward values and fitted each bin separately to the fMRI data. For controls, this 

analysis shows a linear increasing relationship between the magnitude of the evoked fMRI 

signal in this region and expected reward value. By contrast, responses in mPFC in the 
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amygdala subjects did not display a clear linear increasing relationship with expected 

reward (Fig. 4.5D). 

Responses to rewarding and punishing outcomes 

We also looked for responses relating to the receipt of rewarding or punishing feedback at 

the time of outcome. In our control subjects, when comparing responses to receipt of 

rewarding compared to punishing outcomes, we found significant activity relating to 

receipt of reward in medial prefrontal and medial orbitofrontal cortex (Fig. 4.6A), 

consistent with previous reports53, 74, 136-138. On the other hand, when testing for areas 

responding to punishing compared to rewarding outcomes we found significant effects in 

the anterior ventrolateral prefrontal cortex extending into lateral OFC, also consistent with 

previous results53, 139, 140.  

Differences in responses to rewarding and punishing outcomes in amygdala subjects 

compared to controls 

We then compared the above contrast in amygdala subjects to that in the control subjects, 

again restricting ourselves to those regions that showed significant effects (at p<0.01) of 

rewarding or punishing feedback in the control subjects in the first place. We found no 

significant differences in BOLD responses to rewarding or punishing feedback in amygdala 

subjects compared to controls at p<0.001 uncorrected, with only a single voxel surviving in 

medial PFC in the reward contrast at p<0.01 (Fig. 4.6B). These results suggest that 

processing of rewarding and punishing feedback in OFC and medial PFC remains intact 

after amygdala lesions. Thus, amygdala lesions appear to impair selectively the generation 

of behavioral choice and expected reward signals in prefrontal cortex, but leave the 

generation of reward outcome signals relatively unaffected. 

Controlling for behavioral differences between amygdala subjects and controls 

In order to further control for the possibility that differences in behavior between the 

amygdala subjects and controls could contribute to the results observed, we performed a 

follow-up analysis in which we selected only those trials on which every subject had made 

a correct choice according to the underlying task contingency. That is, we chose those trials 
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on which subjects correctly maintained their choice of stimulus (if their current choice of 

stimulus was correct), and those trials on which subjects correctly switched their choice of 

stimulus after the contingencies had reversed. All other trials were modeled separately as 

error trials of no interest. We then conducted the same analyses reported above for each 

contrast of interest. All of the above results held up (see Figs. S4.2B and S4.3), indicating 

that the abnormal signal in prefrontal cortex that we report following amygdala damage 

cannot be due simply to differences in the distribution of errors made between controls and 

amygdala subjects. 
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DISCUSSION 

Amygdala and ventromedial prefrontal cortex are known to play an important role in 

reward-related learning and decision making, yet little is known about how these structures 

interact to support such functions in the human brain. In the present study, we provide 

novel evidence that neural representations in orbital, medial, and lateral prefrontal cortex 

related to the computation of expected reward and the computation of behavioral choice 

depend on input from the amygdala. Moreover, our results indicate that reward outcome 

representations in vmPFC are not as dependant on amygdala input. 

Consistent with previous reports74, 75, we found robust signals related to behavioral choice 

in posterolateral OFC, agranular insula, and anterior cingulate cortex in healthy individuals. 

By contrast, these signals were significantly reduced in both subjects with amygdala 

lesions. Moreover, this effect is unlikely to be driven by differences in behavioral 

performance between the amygdala subjects and their controls, as these results held up 

even when behavioral differences between the patients and controls were taken into 

account in the fMRI analysis (by restricting analysis to only those trials in which both 

amygdala subjects and controls made the correct choices). Furthermore, subject SM did not 

show overall behavioral impairments relative to her age-matched comparison subjects, yet 

still showed significant differences in activity in the target regions of prefrontal cortex 

compared to controls. Thus, differences in neural signals in this area are unlikely to be 

merely a consequence of the degree of behavioral impairment on the task, but are likely to 

be a direct consequence of the amygdala lesion. These results support the hypothesis that 

the production of signals related to behavioral choice in OFC and anterior cingulate cortex 

relies directly on input from the amygdala.  

This conclusion leaves open the question of what precisely the amygdala contributes to 

behavioral choice signals in prefrontal cortex. Computational models of decision-making 

such as those grounded in reinforcement learning approaches, conceive of behavioral 

decision-making as being driven by an underlying computation of expected rewards or 

utilities for different available actions or stimuli. Decisions are then weighted according to 

the relative value of the different actions, so that over the course of learning choices 
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associated with higher value become favored (with the caveat that actions believed to be 

sub-optimal nonetheless may sometimes be selected for the purposes of exploration17). The 

decision process is likely therefore to involve an explicit comparison between expected 

reward values available for different actions. In the case of reversal learning, there are only 

two possible actions: either maintaining current behavioral choice when the chosen 

stimulus is believed to be correct, or switching stimulus choice once a change in 

contingencies has been detected. Here we used a computational model of decision-making, 

which is essentially a modified reinforcement learning algorithm that also takes into 

account the reversal structure of the task. This model computes expected reward signals 

based on the history of prior outcomes. Previously we have shown that BOLD signals in 

ventromedial prefrontal cortex reflect computations of expected reward according to this 

model109. We hypothesize that these expected reward signals are then used as input to the 

decision-making process in order to determine whether to maintain current stimulus choice 

or switch stimulus choice in the task.  

In the present study we found that expected reward signals in medial PFC were markedly 

abnormal in the amygdala lesion subjects. Whereas control subjects showed a linear 

increase in activity in this region as a function of increased expected reward value, no such 

relationship was found in the subjects with amygdala lesions. The absence of normal 

expected reward signals in the medial PFC of subjects with amygdala lesions implies that 

these signals can no longer be used appropriately to generate behavioral decisions. The lack 

of these expected reward signals could therefore also account for the difference in observed 

behavioral choice signals. Thus, we suggest that the primary contribution of amygdala-

vmPFC interactions is in computing expected reward values which, once established, are 

then used to generate behavioral decisions.  

While we found significant effects of amygdala lesions on prefrontal signals of expected 

reward and behavioral choice, we found no such effects on signals of receipt of the 

outcome. In control subjects, receipt of monetary reward elicited robust signal in medial 

prefrontal cortex extending down to the medial orbital surface, consistent with many 

previous findings53, 137, 139. However, when comparing BOLD signal in controls to that in 
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amygdala lesion subjects, we found no significant differences, except for a single voxel at 

p<0.01, suggesting that differential processing of reward feedback in this area is unaffected 

by the lesion. Similarly, BOLD signal to punishing feedback was found in lateral areas of 

prefrontal cortex (on the lateral surface and extending down to lateral OFC) in controls, 

again consistent with prior observations. However, once again there were no differences 

between activity in amygdala subjects and controls in these responses. Thus, our findings 

indicate that amygdala lesions selectively impair some but not all aspects of reward-related 

processing in vmPFC, ruling out a non-specific effect of amygdala lesions on vmPFC 

function or on the BOLD signal in general.  

To conclude, the results of the present study highlight an important contribution of 

amygdala-vmPFC interactions toward the computation of expected reward value in 

humans, and support a model of decision making whereby these expected reward signals, 

once computed, are integrated in vmPFC and then subsequently used to guide behavioral 

decision making. More generally, these results highlight the utility of combining studies of 

human subjects who have discrete lesions with neuroimaging in order to address 

computationally-driven hypotheses about the functional significance of neural interactions 

between brain areas. While the present study has addressed the role of amygdala lesions on 

vmPFC function, a fruitful avenue for future research will be to investigate the converse 

effects of vmPFC lesions on amygdala function, and to explore interactions with additional 

structures involved in reward processing, such as the ventral striatum. 
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MATERIALS AND METHODS 

Subjects 

Two subjects with bilateral amygdala lesions (AP: age 20, Full-Scale IQ 98, VIQ 92, PIQ 

106; and SM: age 42, Full-Scale IQ 88, VIQ 86, PIQ 95) participated in this study141. 

Sixteen healthy, normal subjects also participated as controls (8 female, 14 right handed), 

as well as four subjects similar to SM in age and IQ (all female, mean age 53±7, mean IQ 

99±4). Control subjects excluded those with a prior history of neurological or psychiatric 

illness. All subjects gave informed consent and the study was approved by the Institutional 

Review Board at Caltech. Before entering the scanner, subjects were informed that they 

would receive what they earned (or lost) in the task, added to an initial amount of $25 

dollars. It was not possible for subjects to produce a net monetary loss in the study. 

Pre-scan training  

Before scanning the subjects were trained on three different versions of the task. The first is 

a simple version of the reversal task, in which one of the two fractals presented yields 

monetary rewards 100% of the time and the other monetary losses 100% of the time. These 

then reverse according to the same criteria as in the imaging experiment proper, where a 

reversal is triggered with probability 0.25 after 4 consecutive choices of the correct 

stimulus. This training phase is ended after subjects successfully complete 3 sequential 

reversals. The second training phase consists of the presentation of two stimuli that deliver 

probabilistic rewards and punishments as in the experiment (see Fig. 4.2), but where the 

contingencies do not reverse. The training ends after the subject consecutively chooses the 

“correct” stimulus 10 times in a row. The final training phase consists of the same task 

parameters as in the actual imaging experiment (stochastic rewards and punishments as 

described in the main text, and stochastic reversals). This phase ends after the subject 

successfully completes 2 sequential reversals. Different fractal stimuli were used in the 

training session than those used in the scanner. Subjects were informed that they would not 

receive remuneration for their performance during the training session. Subject 

performance during training can be seen in Fig. S4.1. 
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Data acquisition and pre-processing 

Blood oxygenation level dependent (BOLD) functional MRI was conducted using a 

Siemens 3.0 Tesla Trio MRI scanner to acquire gradient echo T2* weighted echo-planar 

images (EPI). An eight-channel phased array head coil was used for radiofrequency 

reception. Visual stimuli were presented using Restech (Resonance Technologies, 

Northridge, CA, USA) goggles, and subject responses were recorded with a button box. 

Oblique axial-coronal slices were acquired at 30° to the AC-PC line for a neutral head 

position to minimize signal loss and geometric distortion in the orbitofrontal cortex (OFC). 

A total of 580 volumes (19 minutes) were collected during the experiment in an 

interleaved-ascending slice order. The imaging parameters were: echo time (TE), 30ms; 

field-of-view (FOV), 192mm; in-plane resolution and slice thickness, 3mm; repetition time 

(TR), 2 seconds. Whole-brain, high-resolution T1-weighted structural scans (1x1x1mm) 

were also acquired from the control subjects, co-registered with their mean EPI and 

averaged to permit anatomical localization of the functional activations at the group level. 

Image analysis was performed using SPM2 (Wellcome Department of Imaging 

Neuroscience, Institute of Neurology, London, UK). Temporal normalization was applied 

to the scans, each slice being centered to the middle of the scan (TR/2). To correct for 

subject motion, all EPI volumes were realigned to the first volume, spatially normalized to 

a standard T2* template with a resampled voxel size of 3mm, and spatially smoothed using 

a Gaussian kernel with a full width at half maximum (FWHM) of 8mm. Intensity 

normalization and high-pass temporal filtering (using a filter width of 128 secs) were also 

applied to the data96. The same process was applied to the amygdala lesion subjects, and no 

qualitative spatial distortion effects due to the normalization process could be seen near the 

lesioned area in either the functional EPI or structural T1-weighted scans.  

Data Analysis 

Behavioral Data 

To compare the behavior of the amygdala lesion subjects in the probabilistic reversal task 

to control subjects, we analyzed two measures: First, how often do subjects switch choice 

(depending on whether they have just received a reward or a punishment); and second, how 

many task contingency reversals does their behavior elicit, given that subjects have to reach 
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the criterion of making the correct choice four times in a row before task contingency 

probabilistically reverses. For statistical comparisons across subjects, these measurements 

are assumed to have a binomial distribution for each individual subject, and are modeled as 

a beta distribution across subjects (the beta distribution being a conjugate prior distribution 

of the binomial distribution142). Behavioral statistical significance t-scores (Fig. 4.3) of the 

difference between each amygdala lesion subject and control subjects were appropriately 

corrected to take into account that measurements have a beta distribution instead of a 

Gaussian distribution. 

Computational model-based analysis: generating expected reward signals 

In order to generate signals related to subjects’ expected reward value on each trial we used 

an approximation to the Hidden Markov Model formulation used previously109, whereby in 

order to choose optimally, it is necessary to compute expected reward signals not only by 

taking into account the history of rewards and punishments received on a given choice, but 

also the structure of the task: namely, that when one choice is correct, the other is not (this 

derivation is further detailed in Appendix B). Rewards and punishments received on each 

trial were used to update both the selected and unselected choices. Thus, after making 

choice A and receiving a reward, the update of the value of both choices becomes: 
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where t
A

t VR −  is the prediction error between the reward tR subjects obtained at time t, 

and the expected reward t
AV  of their choice. This model is therefore a variant of standard 

reinforcement learning, except for the additional updating of the action not taken (action 

B), similar to fictive updating in RL143, 144. This model states that subjects assume that the 

reward they would have received for the choice not taken is exactly opposite to the reward 

they receive for their current choice. Although reward outcomes are probabilistic, this 

update correctly captures the anti-correlation between choice values in this task. 
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To choose which action to make (A or B), the model compares their expected rewards to 

select which will give the most reward in the future. The probability of choosing action A 

is: 

 { }( )αβσ −−= )()( AB VVAP  (4.2) 

where ))exp(1/(1)( zz +=σ  is the Luce choice rule18 or logistic sigmoid, α indicates the 

indecision point (when it’s equiprobable to make either choice) and β reflects the degree of 

stochasticity in making the choice (i.e., the exploration/exploitation parameter).  

In order to estimate the free parameters in the model, we fit the model predictions to 

subjects’ actual behavior data, and selected those parameters which minimized the error in 

the fit of the model to the behavioral data (using logistic log likelihood errors). We used the 

multivariate constrained minimization function (fmincon) of the Optimization Toolbox 2.2 

in Matlab 6.5 (www.mathworks.com) for this fitting procedure. 

FMRI data analysis 

Behavioral choice 

For the analysis of behavioral choice signals, we conducted an analysis similar to that 

reported in O’Doherty et al.74. For this, we categorized trials according to subjects’ reward 

outcomes and subsequent behavioral choices. We modeled event-related responses at the 

time of receipt of the outcome, and differentiated between trials in which subjects 

subsequently switched their choice of stimulus (switch trials), and trials in which subjects 

maintained their current choice of stimulus (stay trials). These two type of trials were 

further differentiated by whether subjects received a punishment or a reward as a 

consequence of their choice in the current trial. Separate regressors were entered for 

reward-stay, reward-switch, punish-stay, and punish-switch trials, by constructing sets of 

delta (stick) functions at the time of the outcome for each trial type. A common regressor 

across all trial types was also modeled at the time of choice. These regressors were then 

convolved with a canonical hemodynamic response function. In addition, the 6 scan-to-

scan motion parameters produced during realignment were included to account for residual 
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motion effects. These regressors were fitted to each subject’s fMRI data individually, and 

the regression parameters were then taken to the random effects level, to generate group 

random effects statistics. The regression parameters for both amygdala subjects were 

modeled separately at the random effects level from the regression parameters for the 

control subjects. A linear contrast was then computed between the amygdala subjects and 

controls to identify areas showing significant differences between amygdala subjects and 

controls. For the results reported in the present study, we tested for areas showing 

significantly decreased responses in the amygdala subjects compared to the controls at 

p<0.001 uncorrected in our regions of interest, restricted to those areas showing significant 

effects for the switch-stay contrast in the control subjects (at p<0.01 or lower). The results 

were also masked to show only those voxels that are significantly different to controls in 

each amygdala lesion subject individually (at p<0.05 or lower), in order to select only those 

areas that are significantly different in both subjects compared to controls. 

Expected reward signals 

We then conducted an additional analysis to detect brain regions correlating with expected 

reward. For this, regressors were constructed using the trial-by-trial expected reward 

signals as predicted by the computational model described above, given the trial history of 

each individual subject. These were then entered as parametric regressors set at the time of 

choice. We also modeled the outcome received on each trial (whether a reward or a 

punishment was obtained). As before, these regressors were convolved with a 

hemodynamic response function, and motion regressors were included as effects of no 

interest. 

These regression fits were then taken to the random effects level separately for the contrasts 

of expected reward signals at the time of choice and rewards vs. punishments at the time of 

outcome, and a comparison was computed between both amygdala subjects and controls 

for each contrast separately. Statistical significance was reported at p<0.001 uncorrected in 

our regions of interest. As before, we restricted our analysis to those voxels showing 

significant effects in the relevant contrast in the controls (at p<0.01 or below), and show 
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only those voxels that surviving a comparison of each individual amygdala subject to 

controls significant at p<0.05 or lower. 
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Figure 4.1. Axial T1-weighted structural MR images from the two amygdala lesion 

subjects. Selective bilateral calcification of the amygdala (arrows) due to Urbach-Wiethe 

disease134 is evident as loss of signal on these T1-weighted structural MR scans of the 

brains of S.M. (left) and A.P. (middle). An image from a typical healthy control subject 

with intact amygdalae is also shown for comparison (right). Multiple axial slices for both 

amygdala lesion subjects are shown in Fig. S4.4.  
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Figure 4.2. Probabilistic reversal task. Subjects chose one of two fractals, which on each 

trial were randomly located to the left or right of a fixation cross. Once a stimulus was 

selected by the subject, it increased in brightness and remained on the screen for a total of 2 

seconds. After a further 3s blank screen, a reward (winning 25 cents, depicted by a quarter 

dollar coin) or punishment (losing 25 cents, depicted by a quarter dollar coin covered by a 

red cross) was shown, with the total money earned displayed at the top ($2.50 in this 

figure). One stimulus was designated as the correct stimulus and resulted in a monetary 

reward on 70% of occasions, and a monetary loss 30% of the time, with an overall 

accumulation of monetary gain in the task. The other, “incorrect” stimulus resulted in a 

reward 40% of the time and a punishment 60% of the time, with a cumulative monetary 

loss. After subjects chose the correct stimulus on 4 consecutive occasions, the 

contingencies reversed with a probability of 0.25 on each successive trial. Subjects had to 

infer that the reversal took place and switch their choice, at which point the process was 

repeated. 
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Figure 4.3. Behavioral performance. During the reversal task performed in the scanner, 

both AP and SM took more trials to reach reversal criteria than controls (left panel – AP 

p<.002, SM p<.02). This was not directly caused by the number of choice switches the 

amygdala subjects executed (right panel), for AP did not significantly switch more often 

than controls did. However, the “quality” of these decisions was arguably impaired, in that 

the amygdala subjects would switch choice more often than controls in situations when it 

was not advantageous to do so, such as switching choice after receiving a rewarding 

outcome. However, controls of similar age to SM (right column in both panels; bar shows 

means, yellow symbols show individual data) were also impaired on these measures, 

compared to the younger controls.  
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Figure 4.4. Behavioral choice signals. Contrast (aligned to the time of outcome) between 

trials for which subjects subsequently switch their choice of stimulus (“switch”), compared 

to trials for which subjects subsequently continue choosing the current stimulus (“stay”). 

(A) Regions showing increased BOLD signal on “switch” compared to “stay” trials in 

control subjects. Significant effects were observed in anterior frontal-insula/posterior lateral 

orbitofrontal cortex bilaterally (-30, 21, -9mm, z=3.91 and 33, 21, -12mm, z=3.64), anterior 

cingulate cortex (-9, 21, 33mm, z=3.62), and extending into pre-motor cortex (0, 18, 

51mm, z=3.73). (B) Regions showing increased BOLD signal on stay compared to switch 

trials. Significant effects were observed in mPFC (-6, 45, 21mm, z=3.79). (C) Both 

amygdala subjects had significantly less switch vs. stay activity than controls in posterior 

lateral orbitofrontal cortex/anterior insula bilaterally (-30, 21, -18mm, z=4.2 and 36, 21,      

-18mm, z=4.32) and ACC (-9, 33, 42mm, z=5.29). (D) Switch-stay contrasts in both these 

areas show that not only are both amygdala subjects significantly different from the 16 

younger controls as well as the SM-comparison subjects, but also that the control group 

shows a very similar signal to the SM-comparisons. This is in stark contrast with the 

behavioral results, where SM-comparisons were also impaired when compared to the 

younger controls. Thus, behavioral differences are not driving the differences in fMRI 

signal. 
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Figure 4.5. Expected reward signals in the brain. (A) For control subjects, BOLD signal 

correlating with the magnitude of expected reward of a choice was found in ventromedial 

prefrontal cortex (6, 57, -6mm, z=5.13) and the amygdala bilaterally (-27, -6, -21mm, 

z=3.89) extending into hippocampus109. (B) We found a significantly weaker correlation 

with expected reward signal in mPFC (6, 57, -3mm, z=4.12) in the two amygdala subjects 

compared to controls (at p<0.001). (C) Regression coefficients in mPFC (6, 57, -3mm) 

indicate that both amygdala subjects differ markedly from controls in their representation 

of expected rewards, and SM differs with respect to SM-comparison subjects as well. (D) 

To analyze the relationship between expected rewards and BOLD signal in medial PFC, we 

subdivided trials into five bins depending on the expected reward value on that trial. The 

regression coefficients for each bin are plotted for the control subjects and for the SM-

comparison subjects (left panel), showing the linear relationship between expected rewards 

and brain BOLD activity. However, in contrast to the controls, the relationship between 

expected rewards and BOLD activity for both amygdala lesion subjects is nearly flat, 

indicating that both subjects are not computing expected rewards in mPFC in the same way 

as controls. Regression coefficients were extracted at the local maximum of the expected 

reward contrast for each subject, within a 10 mm radius of the group peak (as shown in 

panel B). 
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Figure 4.6. Responses to receipt of rewarding and punishing outcomes. (A) In a direct 

comparison of BOLD responses to rewarding and punishing outcomes in control subjects, 

we found increased activity in medial OFC to receipt of rewarding compared to punishing 

outcomes (-3, 57, -9mm, z=4.23), and increased activity in anterior ventrolateral prefrontal 

cortex extending into far lateral OFC to the receipt of punishing outcomes (27, 52, 6mm, 

z=3.45). (B) However, in a direct comparison of responses to rewarding outcomes between 

the amygdala lesion subjects and controls, we found no significant differences (except one 

voxel at p<0.01 in mPFC). Similarly, no differences were found in BOLD signal responses 

to punishing outcomes between amygdala subjects and controls. This suggests that 

outcome representations in orbital, medial, and lateral prefrontal cortices are unaffected by 

the amygdala lesions.  
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Figure S4.1. Subject performance during task acquisition. During training, subjects 

were exposed to a version of the task where one choice was always on average rewarding 

while the other was always on average punishing (see Methods). Both amygdala lesion 

subjects took a larger number of trials to reach the criteria of choosing the correct stimulus 

(by making the correct choice ten times in a row, or reaching the maximum number of 

trials allocated to this training phase). This is shown on the left panel, which shows a 

comparison of the number of trials taken to finish training for amygdala subjects and SM-

comparison subjects (individual subjects marked with yellow rhomboids), when compared 

to controls. Furthermore, amygdala subjects and SM-comparison subjects switched their 

choice of stimulus more often on average than controls did (right panel).  
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Figure S4.2. Controlling for the effects of behavioral differences between amygdala 

subjects and controls on signals pertaining to expected reward value. To control for the 

effects of differences in behavioral performance between the amygdala subjects and control 

subjects on the fMRI results for the comparison of expected reward signals (Fig. 4.5B), we 

performed two additional tests: (A) We first compared expected reward signals between the 

amygdala subjects and controls, but this time with model parameters derived from the best 

log likelihood fits of the computational model to the behavioral data for each amygdala 

subject individually. This controls for the possibility that the model accounts equally well 

for the behavioral data in the amydala lesion subjects as the controls, but that the amygdala 

subjects and controls only differ in the model-parameters. Contrary to this possibility, this 

analysis still revealed significant differences between amygdala subjects and controls in 

expected reward signals (again at p<0.001), again consistent with the results reported in the 

this chapter. (B) We then compared expected reward signals between the two amygdala 

subjects and controls using only those trials for which subjects made correct choices given 

the underlying contingencies. Here, we used the model-parameters derived from the control 

subjects. Consistent with the results reported previously (Fig. 4.5B), this analysis still 

showed significant differences between amygdala subjects and controls in encoding of 

expected rewards in medial PFC at p<0.001.  
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Figure S4.3. Controlling for behavioral differences between amygdala lesion subjects 

and controls in signals pertaining to behavioral choice. To further control for the effects 

of differences in behavioral performance between the amygdala subjects and control 

subjects on the fMRI data, we restricted our analysis to only those trials in which both 

amygdala subjects and controls made correct choices (given the underlying contingencies). 

For this, we modeled separately trials in which subjects’ action of staying with the same 

choice, or switching choice was correct given the underlying task contingency, from trials 

in which subjects’ actions were incorrect given the underlying task contingency. In this 

figure we show the results of a comparison between switch-stay trials in amygdala subjects 

and controls, similar to that shown in Fig. 4.4C. Even after controlling for behavioral 

differences, this analysis revealed a similar result to that reported in Fig. 4.4C. That is, 

amygdala subjects showed significantly reduced activity in posterior lateral orbitofrontal 

cortex/anterior insula and anterior cingulated cortex on switch-stay trials compared to 

controls (an effect which was still significant at p<0.001). 
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Figure S4.4. Multiple axial slices for both amygdala lesion subjects. Multiple axial 

slices of un-normalized T1-weighted structural images for both amygdala lesion subjects 

show that the rest of the brain is generally unaffected by the disease. Axial slices marked 

with an asterisk are shown in Fig. 4.1, in which the amygdala lesions for both subjects are 

compared to the intact amygdala of a typical control subject. In the asterisk-marked slices, 

the bilateral calcification of the amygdala due to Urbach-Wiethe disease can be seen as a 

loss of signal (dark) on these T1-weighted structural MR scans. 
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C h a p t e r  5  

THINKING OF YOU THINKING OF MEvi 

 

 

Competing successfully with an intelligent adversary depends on the ability to mentalize 

the opponent’s state of mind in order to anticipate the opponent’s behavior in the future. 

Here, we explore the computational underpinnings of such a capacity by scanning human 

subjects with fMRI while they engaged in a simple strategic game against a real opponent. 

Subjects were found to employ a sophisticated strategy, whereby they used knowledge of 

how their actions would influence the actions of their opponent to guide their choices. 

Moreover, specific computational signals required for the implementation of such a 

strategy were present in medial prefrontal cortex and superior temporal sulcus, providing 

insight into the basic computations underlying competitive strategic interactions, and their 

associated neural bases. 

    

                                                 
vi Work done in collaboration with Peter Bossaerts and John P. O’Doherty. 
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Humans, like many other primates, live in a highly complex social environment in which it 

is often necessary to interact with, and compete against, other individuals in order to attain 

reward. Success against an intelligent adversary with competing objectives likely depends 

on the capacity to infer the opponent’s state of mind, in order to predict what action the 

opponent is going to select in future and to understand how an individual’s own actions 

will modify and influence the behavior of one’s opponent. This ability is often referred to 

as “mentalizing” and has been linked to a number of specific regions thought to be 

specifically engaged when processing socially relevant stimuli, and especially when 

inferring the state of mind of others145. Neuroimaging studies in humans have implicated a 

specific network of brain regions including dorsomedial prefrontal cortex, posterior 

superior temporal sulcus (STS), and the temporal poles146, 147 while subjects engage in tasks 

relevant to mentalizing, such as evaluating false beliefs or social transgressions148, 149, 

describing the state of biological movements150-152, and while playing interactive games153-

155. However, although these studies have provided insight into what brain regions may be 

involved in the capacity to mentalize, the question of how this function is implemented at 

the neural level has received relatively little attention to date.  

The goal of the present study was to begin to characterize the basic computational signals 

underlying the capacity to mentalize, and to link different components of these putative 

signals to specific brain regions. In order to assess competitive interactions experimentally, 

we studied pairs of human subjects while they played each other in a two-player strategic 

game called the “inspection” game (or generalized matching pennies), in which opponents 

have competing goals (Figure 5.1A and 5.1B). One of the players was being scanned with 

fMRI, while their opponent was playing outside the scanner. The “employer” could either 

“inspect” or “not inspect,” while the “employee” could either “work” or “shirk.” The 

employer received 100 cents if he/she did “not inspect” and the employee “worked,” and 

received 25 cents if he/she “inspected” and caught the employee “shirking.”  Otherwise 

he/she got zero cents. In contrast, the “employee” got 50 cents for “working” when the 

employer “inspected,” and for “shirking” when the employer did “not inspect,” otherwise 

getting zero cents as well. Both players had competing objectives, in that when one player 

won in a given trial, the other one lost.  
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A player can in principle use a number of different strategies in order to try to win in such a 

game. Perhaps the simplest strategy is on each trial to simply choose the action that in the 

recent past gave the most reward. This strategy is referred to as reinforcement learning 

(RL), and approximates the optimal solution for many different types of decision problem 

in non-strategic contexts15. However, such a strategy would be devastating for an 

individual in a competitive scenario, because a clever opponent could detect the regularity 

in the reinforcement learners’ choices in order to work out what action the reinforcement 

learner is going to choose next and exploit that knowledge by choosing the confounding 

response.  

A more sophisticated approach is to try to predict the opponent’s next actions by taking 

into account the history of prior actions by the opponent, and then choosing the best 

response to that predicted action, a strategy known as “fictitious play”144, 156, 157. A fictive 

learner is, in contrast to a reinforcement learner, employing an elementary form of 

mentalizing, because they are engaging a representation of the actions and intentions of 

their opponent.  

However, an even more cognitively sophisticated and “Machiavellian” strategy a player 

could use in this game is to not only track the opponent’s actions, but also incorporate 

knowledge of how one’s own actions influence the opponent’s strategy. Simply put, this 

involves a player building a prediction of what the opponent will do in response to the 

player’s own actions. For example, the more the employer “inspects,” the higher the 

probability the employee will “work” in subsequent trials. The employer can then use this 

knowledge to make choices with higher expected rewards in following trials, i.e., “not 

inspect.” We will term this strategy the “influence” learning model (see Table 5.1 for a 

comparison of the different models). 

To address which of the above strategies most closely captured subjects’ behavior, we fit 

each model to behavior separately and compared the goodness of fit of each model. We 

found that the influence learning model provided a significantly better fit to subjects’ 

behavior (p<0.005 paired t-test) than did either the fictitious play rule or the reinforcement 
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learning rule, even when taking into account the different number of free parameters in 

each model by performing an out-of-sample test (Fig. 5.1C; Fig. S5.1). Fig. 5.1D shows the 

relationship between the probability of an action being selected as predicted by the 

influence model, and actual subject choices. These findings suggest that subjects are not 

only using representations of the opponents’ future choices to guide choice, but are also 

employing representations of the opponents’ likely responses to their own actions. 

We next analyzed the fMRI data from the player being scanned, to determine whether we 

could find evidence of neural signals reflecting the different components of the influence 

model, and if so, whether those signals are better accounted for by the influence model than 

by the fictitious play or simple RL models. A comparison of brain signals associated with 

the expected reward of the chosen action, as predicted by each model, is shown in Fig. 

5.2A. Expected value signals from the influence model were significantly correlated with 

neural activity in medial orbitofrontal cortex (mOFC), medial prefrontal cortex 

(encompassing both ventral and dorsal aspects, significant at p<0.05 corrected for small 

volume [SVC]), and right temporal pole (p<0.05 SVC). By contrast, only weak correlations 

with the expected value signals from the fictitious play model were found in medial 

orbitofrontal cortex, whereas no significant correlations were found with expected value as 

computed by the simple RL model. We next tested for brain regions showing a 

significantly better fit to the influence model than the RL model. This analysis revealed 

significant effects extending from mid to dorsal medial prefrontal cortex (p<0.05 SVC; Fig. 

5.2B), as well as in the right temporal pole (Fig. S5.2). The regression fits of the three 

models are shown in Fig. 5.2C for medial prefrontal cortex, demonstrating the superiority 

of the influence model in accounting for neural activity in this area. We then binned BOLD 

activity from mPFC according to the expected reward as predicted by the influence model, 

to illustrate the relationship between evoked fMRI responses and the model predictions 

(Fig. 5.2D). These data show that the influence model provides a significantly better 

account of the neural data in medial prefrontal cortex than does a simple RL model.  

We next set out to differentiate between the effects of the influence model and the more 

closely related fictitious play model in this area. For this, we looked specifically at the 
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points in the experiment when the predictions of these two models differ. In particular, the 

influence model predicts that the expected value following a switch in action choice (i.e., 

moving from working to shirking or vive-versa on successive trials) is on average higher 

than the expected reward when not switching choice (i.e., taking the same action on 

successive trials), whereas the fictitious play and indeed RL models predict exactly the 

opposite (Fig. 5.2E). This effect is greatest for the employee, as behavioral fits indicate that 

subjects exert more influence on their opponent when playing this role. An analysis of 

BOLD activity in the medial prefrontal cortex region of interest at the time of choice, 

revealed a positive signal in this area on switch compared to non-switch trials for the 

employee, consistent with the predictions of the influence model, but not with either the 

fictitious play or simple RL models (Fig. 5.2F). These results therefore suggest that the 

influence model does indeed account better for neural activity in medial prefrontal cortex 

than the fictitious play model. 

At the time of outcome, according to the influence model, a player needs to update his/her 

expectations of the opponent’s strategy using two different components: an influence 

update signal found only in the influence model and not in either of the other two models, 

which encodes the magnitude by which the opponent’s behavior adapts due to a player’s 

own action; and, in common with both the RL model and the fictitious play model, a 

prediction error signal that encodes the discrepancy between expected and actual rewards. 

We found that neural activity in another key component of the mentalizing network, 

superior temporal sulcus (bilaterally), was significantly correlated with the influence update 

signal (p<0.05 SVC; Fig. 5.3A), suggestive of a role for this region in guiding the update of 

expected value representations in medial PFC. Prediction error signals were found to 

correlate with neural activity in ventral striatum bilaterally (see Fig. S5.3), consistent with 

many previous findings implicating this area in prediction error coding60-63. Moreover, this 

analysis revealed significant prediction error effects in medial PFC, suggesting that this 

signal could also contribute to the updating of expectations in this region. 

To further investigate differences between the influence and fictitious play models, we 

examined between-subject variability in the degree to which the influence model provided 
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a better fit to subjects’ behavior than the fictitious play model, by comparing the difference 

in the likelihoods of the two models, and correlating that with neural activity elicited by the 

influence update signal. This measure can be taken as an assay of the individual differences 

in the degree of influence-based strategizing within our subject group. We found a 

significant between-subject correlation in the degree of influence activity and the difference 

in likelihoods between the influence and fictitious play models in dorsomedial prefrontal 

cortex (p<0.05 SVC; Fig. 5.3B). These results suggest that the more subjects strategize, the 

stronger the influence-based model correlates with neural activity in this region.  

Most studies involving mentalizing elicit activity in mPFC145-147. In this paper, we show 

that mPFC not only computes expected rewards of the selected choice in a two-person 

game, but is specifically recruited in the sophisticated update of the opponent’s state 

estimate (strategy) through prediction error and influence signals that also elicit BOLD 

activity in this region. Furthermore, another component of the “mentalizing” network, 

posterior STS, was found to be correlated with the influence a player’s action had on the 

opponent’s strategy. This area has previously been implicated in processing stimuli related 

to living agents and biologically relevant motion150, 158. Here, we provide evidence for a 

computationally specific role of this region in encoding influence signals during strategic 

social interactions.  

In this study we have taken the first steps in attempting to characterize the neural 

underpinnings of mentalizing during strategic interactions in precise computational terms. 

We have shown that a computational model which captures a sophisticated strategy in 

which individuals keep track not only of the actions of the opponent, but of how opponents 

are influenced in response to their own actions, provides a good account of behavior during 

performance of a simple strategic game. We have also shown that specific computational 

signals needed for the implementation of such a strategy are encoded in specific brain 

regions, such as dorsomedial prefrontal cortex and posterior superior temporal sulcus. 

These areas have previously been implicated in mentalizing and in “theory of mind,” but 

have never before been shown to encode specific computational signals that may 

potentially underlie such capacities. While in the present study players understand the 
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effects of influencing the opponent, an open question is how they could use that knowledge 

in order to alter the opponent’s behavior so as to receive bigger future rewards, by means 

such as reputation building and teaching159, or Stackelberg strategies (in which one player 

commits to a certain strategy and forces the other player to follow suit160). Furthermore, 

although in the present study human players always faced real human opponents, an 

interesting question for further study would be whether similar mechanisms are engaged in 

these areas when subjects are playing an intelligently adaptive but non-human computer, a 

manipulation often used when probing “theory of mind” areas in human imaging studies153-

155. Another open question is whether other animals besides humans have the capacity for 

sophisticated strategic computations of this sort, or whether the capacity to engage in such 

high level strategies is a uniquely human trait. Although previous studies of strategic game 

playing in rhesus macaques indicate that these animals do use simple RL and possibly 

fictitious updating161-163, it has not yet been addressed whether they are capable of higher-

level strategizing as found here in our human subjects. More generally, the present results 

show how the application of quantitative computational models to neuroimaging and 

behavioral data can be used to advance knowledge not only of simple learning situations, 

but also to unlock the complexities of social and strategic interactions22, 164. 
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Figure 5.1. Inspection game and behavioral results. (A) Two interacting players are 

each individually given two action choices at the beginning of each trial. Players are given 

one second to respond, and their choices are highlighted with a red frame for another 

second before being covered with a blank screen. Five seconds after the start of the trial, 

the actions of both players are shown to each player for 1.5 seconds, with the payoff each 

one individually receives shown at the top. (B) Payoff matrix for the inspection game used 

in this paper. (C) Log likelihood errors for each computational model tested shows that the 

influence model, which incorporates the effects of players’ actions influencing their 

opponents, has a better fit to subjects’ behavior than the RL and fictitious play models (to 

account for overfitting and the effects of differences in free parameters between models we 

also computed out-of-sample log likelihoods, which still yielded the same results, as shown 

in Fig. S5.1). (D) Furthermore, the actual probability of a player taking a specific 

behavioral action is linear with respect to the probability of choosing that action as 

computed by the influence model. Here, behavior and predictions are shown separately for 

the “employer” and “employee.” 
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Figure 5.2. Expected reward signals. (A)  At the time of choice, the expected reward of 

the action selected by a player is shown across the brain, as calculated by different 

computational models. The expected reward signal from the influence model is correlated 

significantly with BOLD responses in medial OFC (0, 36, -21mm, z=3.56), medial PFC    

(-3, 63, 15mm, z=3.29), and right temporal pole (42 , 15, -39, z=3.98) – the latter two areas 

surviving at p<0.05 correction for small volume (SVC) within an 8mm sphere centered on 

co-ordinates from areas implicated in mentalizing147, while only the fictitious play model 

has significant activity in mOFC (at p<0.001). The RL model had no significant activity 

correlating with expected reward anywhere in the brain. (B) An analysis to test for areas 

showing neural activity related to expected reward that is explained significantly better by 

the influence model than by the RL model revealed statistically significant  effects in 

mPFC (-3, 57, 12mm, z=3.11; p<0.05 SVC). Panel (C) shows the average correlation 

coefficients for each model from the area reported in (B) (extracted from all voxels 

showing effects at p<0.005 in mPFC). (D) fMRI activity in mPFC shows a linear relation 

with binned expected reward probabilities as computed by the influence model (fMRI 

activity extracted from individual peaks in a 10mm search radius centered on the peak from 

panel B). (E) The computational models tested in this paper make distinctly different 

predictions of the overall expected reward signals after switching actions (“switch”), or 

sticking to the same action (“non-switch”), as a consequence of influencing the opponent. 

Intuitively, the underlying reason is that both RL and fictitious play will most likely “stay” 

after a reward, and “switch” after a non-reward. However, the influence model has a higher 

incentive to “switch”, even after receiving a reward. That is, expected reward signals 

associated with a specific action do not necessarily increase after the receipt of a reward 

when taking into consideration the influence that specific action exerts on the opponent’s 

strategy. (F) fMRI responses in mPFC at the time of choice on switch compared to non-

switch trials show a response profile consistent with the influence model and not the 

fictious play models or RL models (the data is extracted from a 10mm sphere centered on 

the peak from panel B). The difference between the employee and employer was 

significant at p=0.02.  
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Figure 5.3. Influence signals in the brain. (A) At the time of outcome, the influence 

update of the inferred opponent’s strategy shows significant correlations with activity in 

STS bilaterally (-57, -54, 0mm, z=3.32 and 60, -54, 9mm, z=3.35, p<0.05 SVC). (B) The 

degree to which a subject thinks he/she is influencing his/her opponent can be measured by 

taking the difference in log-likelihood fits between the influence and fictitious models on 

each player’s behavior. Likewise, brain regions invoked in computing the influence on the 

opponent will correlate more strongly with the influence model for subjects invoking this 

approach, when compared to subjects that do not. Influence signals were found to 

significantly co-vary with the model likelihood difference (influence-fictitious) across 

subjects in mPFC (-3, 51, 24mm, z=4.09; p<0.05 SVC). The right panel shows the 

relationship between influence regression coefficients and model likelihood differences in 

mPFC. 
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Table 5.1. Model update rules. The RL model updates the value of the chosen action with 

a simple Rescorla-Wagner prediction error tδ , as the difference between received rewards 

and expected rewards, where η  is the learning rate. The fictitious play model instead 

updates the state (strategy) of the opponent ∗
tp  with a prediction error p

tδ  between the 

opponent’s action and expected strategy. The influence model extends this approach by 

also including the influence p
tλ  a player’s own action has on the opponent’s strategy. For 

more details, see Materials and Methods in this chapter. 
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MATERIALS AND METHODS 

Subjects 

Thirty-two healthy, normal subjects participated in this study, of which sixteen (25±1 years 

old, 7 female) were scanned while playing a competitive game in pairs with the other 

sixteen. Subject pairs were pre-screened to make sure that the subjects in each pair did not 

know each other before the experiment in order to reduce the possibility of collusion. 

However, one pair of subjects was in fact discarded due to evidence of collusion during the 

game. The subjects were also pre-assessed to exclude those with a prior history of 

neurological or psychiatric illness. All subjects gave informed consent and the study was 

approved by the Institute Review Board at Caltech.  

Task description 

Subjects participated in pairs in a simple interaction game: the inspection game165 (or 

generalized matching pennies game). The inspection game involves the interaction of two 

players: one with the role of employer and the other with the role of employee (Fig. 5.1A). 

On each trial, each player is presented with two choices. The subject whose role is the 

employer can choose to either “inspect” or “not inspect,” while the subject whose role is 

the employee can choose to either “work” or “shirk.” After players have individually made 

their choice, they are both shown the choice of their opponent, and rewarded according to 

the payoff matrix illustrated in Fig. 5.1B. Players have competing incentives, in that when 

one player is rewarded, the other player is not. Thus, both players will seek to maximize 

their rewards by trying to outguess the opponent’s next move (offensive play), while 

simultaneously making their own move as unpredictable as possible (defensive play). The 

payoff matrix’s association with players’ roles and actions remained fixed throughout an 

experiment, but was rotated across experiments to create a balanced design with respect to 

roles and actions. However, for convenience, in this paper we will always refer to the 

“employer” as having a payoff with action “not inspect” delivering a high reward (100 

cents) and action “inspect” a low reward (25 cents) – contingent on the opponent’s play; 

and will refer to the ‘employee’ as having a payoff with both actions always delivering the 

same reward (50 cents) – contingent on the opponent’s play. 
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Each pair of subjects underwent three game sessions. One subject used a computer terminal 

and keyboard to play the game, while the other was in the scanner using goggles as visual 

input (Resonance Technologies, Northridge, CA, USA), and a button box to choose an 

action. The first session was for training, while the second two are reported in this paper. 

Player roles alternated between the two subjects in each session. Thus, the scanned subjects 

reported in this paper played both roles in subsequent sessions (employer and employee). 

In addition to the game trials, we also included randomly intermixed null event trials which 

accounted for 33% of the total number of trials in a session. These trials consist of the 

presentation of a fixation cross for 7 seconds. Before entering the scanner, subjects were 

informed that they would receive what they earned in a randomly selected session, plus an 

additional $10 dollars.  

Reinforcement Learning 

Reinforcement learning (RL) is concerned with learning predictions of the future reward 

that will be obtained from being in a particular state of the world or performing a particular 

action. In this paper we use a simple RL model in which action values are updated via a 

Rescorla-Wagner (RW) rule14. On a trial t in which action a is selected, the value of action 

a is updated via a prediction error δ:  

t
a

t
a

t VV δη+=+1 , (5.1)

where η is the learning rate. The prediction error δt is calculated by comparing the actual 

reward received Rt after choosing action a with the expected reward for that action: 

a
ttt VR −=δ . (5.2)

When choosing between two different states (a and b), the model compares the expected 

values to select which will give it the most reward in the future. The probability of 

choosing action a is: 
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)( baa VVfp −= , (5.3)

where )1/(1)( zezf β−+=  is the Luce choice rule18 or logistic sigmoid, and β reflects the 

degree of stochasticity in making the choice (i.e., the exploration/exploitation parameter).  

Fictitious Play 

In game theory, a first-order fictitious play model156 is one in which a player infers the 

probability that the opponent will choose one action or another, and then decides so as to 

maximize the action’s consequent expected reward. The opponent’s probability p* of 

choosing an action a’ is dynamically inferred by tracking the history of actions the 

opponent makes: 

p
ttt pp δη+= ∗∗

+1 , (5.4)

where ∗−= tt
p

t pPδ  is the prediction error between the opponent’s expected action p*  and 

whether the opponent chose action a’ at time t ( 1=P ), or chose another action ( 0=P ). 

Given the opponent’s action probabilities p*, the expected value for each of the player’s 

actions can be calculated using the payoff matrix of the game. A stochastic choice 

probability can then be calculated using equation 5.3. For the inspection game described in 

this paper, this can be summarized as follows: calling p the probability that the “employee” 

will “work,” and q the probability that the “employer” will “not inspect,” and using the 

payoff matrix of the game (Fig. 5.1B – in the following formulations, payoffs were 

expressed in 25 cent units for convenience), the decision of each player is: 

)42( *qfp −=  

)15( * −= pfq , 

 

(5.5)

where q* and p* are the inferred probabilities of the opponent’s actions estimated using 

equation 5.4. 
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An equivalent formulation of fictitious play is one in which the values of actions are 

learned directly as in reinforcement models, instead of tracking the opponent player’s 

action probability. For this, not only the value of the chosen action is updated with the 

reward that was received (as in equation 5.1), but also all other actions are penalized 

proportional to their foregone rewards143, 144. Either approach posits knowledge of the 

structure of the game to update the variable estimates and arrive at a correct expected value 

for the actions of each player. 

Influencing the Opponent 

How much does a player’s next decision change given the action of the opponent?  

Replacing the update of the inferred opponent’s strategy (equation 5.4) in a player’s 

decision (equation 5.5), and Taylor expanding (around η=0): 

))(1(4 ∗−−−≈Δ tttt qQppp βη  

))(1(5 ∗−−+≈Δ tttt pPqqq βη . 

 

(5.6)

The sign difference in both terms is determined by the competitive structure of the game, 

namely, that the employer wants to “inspect” when the employee “shirks,” while the 

employee wants to “shirk” when the employer does “not inspect.” A player can obtain a 

more accurate inference of the opponent’s action strategy by incorporating the influence 

his/her own action has on the opponent. Thus, at the end of each trial both players update 

the estimates of their opponent such that:   

))(1(4)( 211
∗∗∗∗∗∗∗

+ −−−−+= tttttttt qQpppPpp βηη  

))(1(5)( 2
*

1
**

1
∗∗∗∗

+ −−+−+= tttttttt pPqqqQqq βηη , 

 

(5.7)

where q** and p** are the inferred probabilities that the opponent has of the player itself 

(second-order beliefs). Thus, this gives two clear signals: the prediction error as the first 

term and the influence update as the second term. The influence update, or how much a 

player influences his/her opponent, is proportional to the difference between the action a 
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player took and what the opponent thought was the player’s strategy. These second-order 

beliefs can be inferred by the player directly from the inferred opponent’s strategy by 

inverting equation 5.5: 
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Behavioral Data Analysis 

Model parameters were estimated by maximizing the logistic log likelihood of the 

predicted decision probabilities generated by a model against the actual behavior of all 

subjects. Parameters for the employer and employee roles were fitted separately to account 

for any differences. We used the multivariate constrained minimization function (fmincon) 

of the Optimization Toolbox 2.2 in Matlab 6.5 (www.mathworks.com) for this fitting 

procedure. All behavioral data shown corresponds to the actions of all 30 participants. 

fMRI data  acquisition 

Functional imaging was conducted using a Siemens 3.0 Tesla Trio MRI scanner to acquire 

gradient echo T2* weighted echo-planar (EPI) images. To optimize functional sensitivity in 

OFC we acquired the data using an oblique orientation of 30° to the AC-PC line. A total of 

580 volumes (19 minutes) were collected during the experiment in an interleaved-

ascending manner. The imaging parameters were: echo time, 30ms; field-of-view, 192mm; 

in-plane resolution and slice thickness, 3mm; TR, 2 seconds. High-resolution T1-weighted 

structural scans (1x1x1mm) were acquired for anatomical localization. Image analysis was 

performed using SPM2 (Wellcome Department of Imaging Neuroscience, Institute of 

Neurology, London, UK). Pre-processing included slice timing correction (centered at 

TR/2), motion correction, spatial normalization to a standard T2* template with a 

resampled voxel size of 3mm, and spatial smoothing using an 8mm Gaussian kernel. 
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Intensity normalization and high-pass temporal filtering (128 secs) were also applied to the 

data96. 

fMRI data analysis 

The event-related fMRI data was analyzed by constructing sets of delta (stick) functions at 

the time of the choice, and at the time of the outcome. Additional regressors were 

constructed by using the model estimated choice expected values as a modulating 

parameter at the time of choice; and one or more (depending on the model) update signals 

as modulating parameters at the time of outcome. All of these regressors were convolved 

with a canonical hemodynamic response function (hrf). In addition, the 6 scan-to-scan 

motion parameters produced during realignment were included to account for residual 

motion effects. These were fitted to each subject individually, and the regression 

parameters were then taken to the random effects level. All reported fMRI statistics and 

uncorrected p-values arise from group random effects analyses (N=15), and small volume 

corrected p-values are obtained from 8mm spheres around regions of interest previously 

implicated in mentalizing from a meta-analysis by Frith and Frith147. Specifically, co-

ordinates were defined from the center of each of the areas delineated from the meta-

analysis: mPFC (0, 56, 19mm), STS (±53, -51, 10mm), and temporal poles (±46, 11, -

35mm). An across-subject model likelihood difference modulator was also fitted at the 

second level, alongside the mean group-level effect, when studying the influence signal in 

Fig. 5.3.  

We also compared the influence and RL algorithms to each other by fitting both models at 

the same time with the fMRI data (Fig. 5.2B). To make both models as similar as possible, 

we normalized all modulating regressors before fitting to the fMRI data. Areas showing 

significant activity for any regressor of a given model indicated regions that were better 

explained by that model in comparison to the other.  

 



 RL          Fictitious     Influence

L
o

g
 L

ik
e

lih
o

o
d

-0.66

-0.665

-0.67

-0.675

-0.68

-0.685

-0.69

-0.695

154



 

 

155

Figure S5.1. Out-of-sample model log likelihood. The out-of-sample model log 

likelihood controls for models having different number of free parameters when fitting to 

behavioral data. Models were trained with the first 70 trials for each subject, and then 

tested on the last 30 trials to obtain an out-of-sample log likelihood. The influence model 

accounts for subjects’ behavior the best, with an out-of-sample log likelihood of 

0.674±.004, followed by the fictitious play model with 0.685±.003, and the RL model with 

0.687±.003. 
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Figure S5.2. Model comparisons with respect to the processing of expected reward 

signals in the brain. The influence model expected reward signals that are not explained 

by (orthogonal to) the RL model expected reward signals also activate the right STS, 

including the right temporal pole at p<0.001 uncorrected.  
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Figure S5.3. Prediction error signals. The prediction error signals generated by the 

influence model were correlated with activity in the ventral Striatum bilaterally                  

(9, 6, -18mm, z=4.97; -9, 9, -18mm, z=4.73; both p<0.05 whole brain corrected), mPFC    

(-9, 57, 6mm, z=4.35), and paracingulate cortex (12, 36, 18mm, z=4.62). This lends 

support to the suggestion that mPFC is not only involved in calculating expected reward 

signals derived from inference of the opponent’s game strategy (Fig. 5.2B), but is also 

involved in the update of the inferred opponent’s strategy through prediction errors (this 

figure) and influence updates (Fig. 5.3B). 
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A p p e n d i x  A  

BAYESIAN INFERENCE 

 
Bayesian models not only care about the relation between variables in a model, but also 

about the noise processes in those relations. When some variables in a model can be 

measured, the Bayesian model can be used to make optimal estimates of the values of the 

unknown (or hidden) variables. In this short introduction to Bayesian Inference we will go 

over the basics of this procedure. Other aspects of Bayesian models, such as learning, are 

left as references at the end.  

Conditional Probabilities 

In most instances, the relation between two variables ),( yx  can be expressed as a function 

linking them: 

)(xfy = . (A.1)

However, we are not only interested on the dependence between variables, but also on the 

random noise governing this relation. Instead of assigning a unique value y  given x , we 

can define a conditional probability of y  given x , or )/( xyp . Thus, depending on the 

value of x  we do not have a unique value for y , but a probability for every value y  can 

have. Graphically, the conditional probability relation of random variable y  given x  can 

be illustrated as follows: 
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In another terminology, the conditional probability describes how x  generates y , because 

we know the value of x (shaded circle) and can describe the probability distribution that 

y will have. In many situations, conditional probabilities are modeled assuming Gaussian 

noise (Fig. A below); but far more fancy relations, such as the multimodal distribution in 

Fig. B below, could arise in complex real-world situations. 

             

Figure A.1. Conditional probability distributions of y , given a fixed value of the 

random variable x . (A) Given x , y  has a Gaussian probability distribution centered 

around the most likely value of y  to be obtained given x . (B) y  has a multimodal 

probability distribution, and the mean of the distribution is not the most likely value of y  

to be obtained given x . 
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Bayes’ Rule 

We defined the conditional probability of y  given x  as a better description of the link 

between both variables. If we also know the probability distribution of x  on its own 

(priors), we can express the joint probability of both random variables as the multiplication 

of the probability of obtaining a value x  times the probability of obtaining a value y  given 

x : 

)()/(),( xpxypxyp = . (A.2)

The joint probability is the complete description of the relation between random variables. 

From this expression we can derive the inverse conditional probability, that of x  given y , 

through what is known as Bayes’ rule:  

∫==
S

dxxpxypypwhere
yp

xpxypyxp )()/()(,
)(

)()/()/( . (A.3)

This is illustrated in a graphical model as follows: 

                                                      

The arrow indicates that we know how the random variable y is generated given x . 

However, if we observe variable y  (shaded circle), we would like to be able to infer the 

value of x  given our Bayesian model. The answer is found with Bayes’ rule in equation 

A.3, which indicates how to calculate the conditional probability (posterior) of x  given our 

observed variable y . In most cases, this distribution is unimodal and one can express the 

X

Y
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mean of the distribution as the value estimate, and the variance of the distribution as the 

error of the inference. 

Simple Examples 

Dart Players (binary to real random variables) 

Imagine two dart throwers, one quite good and one not so. To measure exactly how good 

each one is, a sample of their throwing capabilities can be recorded and a probability 

distribution derived. The good thrower, being always close to the mark, would have a tight 

probability distribution (blue line), whereas the bad thrower not only has a more dispersed 

distribution, but in this case has a systematic bias of hitting to the right of the center target.  

                                          

Thus, given the current player, we know the probability distribution of the location their 

darts will hit. These are Gaussian distributions with a certain mean and variance. We can 

now also answer the inverse question. Given the location of a recently thrown dart, can we 

infer which player threw that dart?  Returning to our descriptions of random variables, the 

location the dart reaches is a continuous random variable y  that is generated by a binary 

random variable x  which can take two states, either the good player (g) was playing, or the 

bad player (b) was playing. Using equation A.3, the posterior probability of the good player 

(g) having thrown the dart can be calculated as:  

)()/()()/(
)()/()/(

bxpbxypgxpgxyp
gxpgxypygxp

==+==
==

==
 

(A.4)
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where )/( gxyp =  is the Gaussian distribution of dart locations given that the good player 

played, and )/( bxyp = the probability distribution of dart locations given that the bad 

player played. The prior probabilities )( gxp =  and )( bxp = indicate knowledge of how 

likely it was that either player was playing before the dart location was measured. For 

example, the good player probably plays more often, and thus 75.0)( == gxp  while 

25.0)( == bxp . In general, if no assumptions can be made about how often each player 

plays, all priors are left equal and the evidence (dart location) is left to decide who is the 

most probable player to have thrown the dart. 

Burglar and Alarm (binary to binary random variables) 

Binary random variables can predict other binary random variables as in this case. The 

random variable x  consists of two states: a burglar is entering the house (b), or nothing is 

happening (n). How do these states influence the binary variable y : whether an installed 

alarm system will go off (a) or not (na). How x  generates y  is depicted in the following 

diagram.  

 

                       

 

Burglar Nothing

Alarm No Alarm

0.9 0.8
0.20.1
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If a burglar is present, the alarm will go off with 0.9 probability, but might not go off at all 

(0.1 probability). On the other hand, if nothing is happening the alarm will not go off (0.8 

probability), but there still is a chance of the alarm going off due to other accidental 

circumstances (0.2 probability). These conditional probabilities can be written down as a 

matrix table: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

8.01.0
2.09.0

)/( xyp , 
(A.5)

where x  states are columns and y  states are rows. If we have equal priors for burglars 

being present or not (the priors then drop out from equation A.3), we can infer that the 

posterior probability that a burglar is present given that the alarm went off is 0.82: 

82.0
2.09.0

9.0
)/()/(

)/()/( =
+

=
==+==

==
===

nxaypbxayp
bxaypaybxp . 

(A.6)

 

Complex Graphical Models 

Models can be built that describe the conditional relations among many random variables, 

where each can be continuous, binary, or of other types: 

 

Figure A.2. Directed graphical model linking six random variables 
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The complete model can be expressed as a joint probability distribution ),,,,,( fedcbap  

linking the random variables. If some of the random variables are observed (shaded nodes), 

then the hidden variables (not observed) can be inferred by calculating the conditional 

probability of a,c,d given b,e,f  

∑
=

dca

fedcbap
fedcbapfebdcap

,,

),,,,,(
),,,,,(),,/,,(

 

(A.7)

and setting the values of the observed variables ),,/,,( λβα === febdcap . If we are 

only interested in inferring the value of random variable d given our observation of b, e and 

f, we marginalize (integrate) over the unobserved (hidden) random variables we are not 

interested in: 

∑ ===
===

====

ca

febdcap
febdcapfebdp

,

),,/,,(
),,/,,(),,/(
λβα

λβαλβα

 

(A.8)

A directed graphical model (Fig. A.2) represents a joint probability distribution over the 

model’s random variables that can be factorized into a product of conditional probabilities. 

This factorization is implied by which random variables are connected with arrows. 

)()(),/(),()/(),/(),,,,,( bpapbacpcepcdpedfpfedcbap =  (A.9)

In particular, when a random variable is generated by two other random variables (such as 

a and b having arrows pointing at c, the conditional probability ),/( bacp depends on both 

of these variables. Depending on the underlying distribution model, it may also be possible 

to factorize the conditional probability such that )/()/(),/( bcpacpbacp = . 

Having a factorial joint probability distribution allows for efficient message passing 

inference methods for calculating conditional probabilities given observed variables, in 

which each hidden variable is inferred locally by only using information from other random 

variables it is linked to in the graphical model. A more complete description of these 
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algorithms is beyond the scope of this short introduction to Bayesian inference, and the 

reader is referred to excellent literature on the subject24, 92. 

Hidden Markov Model 

An example of a common graphical model is the Hidden Markov Model92 illustrated in the 

following diagram. 

 

Random variable x is a binary random variable, and y is usually a continuous random 

variable, the indices indicate the passage of time. The conditional probability )/( 1−tt xxp  is 

usually a fixed probability matrix as in the previous binary to binary example, and the 

)/( tt xyp  conditional probability is usually a Gaussian distribution as in the previous 

binary to continuous example. The most common computational application of Markov 

models has been in speech recognition. When the hidden random variable x is continuous, 

then the model is known as a Kalman Filter101. 

To infer the value of the x random variable in the last time step, one can use equation A.7 

and A.8 to take into account the observed variables and marginalize away the hidden ones. 

A result due to the factorizable structure of this model, is that the inferred probability 

distribution (posterior) at time T-1 can be used directly when calculating the posterior at 

time T in the following manner: 
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∑ ∑
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. 

(A.10)

This is the idea behind the message-passing algorithm. Instead of marginalizing over the 

whole joint probability distribution, local posteriors can be calculated and then used further 

along (the next time step in this case) to calculate the next local posterior distribution. A 

simpler way to express this in two steps is: 

.
)()/(

)()/(
)(

)()/()(
1

11

∑

∑

=

=
−

−−

statesX
ttt

ttt
t

statesX
tttt

t

t

xxyP
xxyP

x

xxxPx

Prior
Prior

Posterior

PosteriorPrior

 

(A.11a) 

(A.11b)

The Markov property of the model is based on the fact that the posterior at times t can be 

inferred using only the current evidence and the posterior at time t-1, and no other 

information from states further in the past.  

Markov Decision Processes 

Markov models can also be created to understand decision making processes across time. A 

decision random variable can be added to the model, such that it influences the hidden state 

x at every time step (see figure below). In general the decisions are observed, but the model 

can also be used to infer what decision was made given an observation as described 

previously. In the literature, these systems are usually referred to as Partially Observed 

Markov Decision Processes (POMDP). If outcomes y have a reward associated with them, 

then future expected rewards can be inferred (before being observed) given a decision to be 

made. It is this model that is explained in more detail in Chapter 2. 
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Learning Graphical Models 

In this brief introduction to inference in Bayesian models we have not embarked on the 

topic of learning the model. In general, model parameters (such as means and variance for 

Gaussian conditional distributions, or probabilities associated with binary conditional 

distributions) can be treated as random variables themselves, so that learning is equivalent 

to inferring their values with the procedures just described. However, in general, more 

practical methods are used to learn model parameters, and we direct the reader to excellent 

literature on the subject24. 

 

X1

Y1 

X2

Y2

X3 

Y3 

X0 

S2 S3S1 



 

 

185

A p p e n d i x  B  

INFERENCE DYNAMICAL EQUIVALENTS 

 

In Appendix A Bayesian models were briefly introduced, and once a model is known, how 

to infer the probability distributions of hidden variables was derived.  These are exact 

solutions that can be calculated given the evidence (or observed variables) and the model 

parameters.  For a hidden Markov model, the inference of the hidden states is calculated 

with equation A.11.  However, approximate dynamical equations that converge to this 

optimal solution can be derived.  The motivation to do this is that these dynamical 

equations might approximate better the calculations that are carried out at the neural level.  

Furthermore, a similarity between reward learning, and inference updating will be drawn. 

The dynamical equations for a concrete case will be drawn, as an example of the process 

involved.  For this, I will define the HMM used in Appendix A (A.11), and use parameters 

akin to the reversal learning task used in Chapter 2.  For simplicity, I will not include the 

effect of choice in this derivation.  The model parameters I will use are: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=− δδ

δδ
1

1
)/( 1tt XXP  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
−+

=
ηην
ηην

2
1

2
1

2
1

2
1

)/( tt XYP . 

 

(B.1a) 

 

(B.1b)

 

The first conditional probability describes how states predict the states in the next time step, 

where δ  is the reversal probability.  The second conditional indicates the probability of 

getting a reward or punishment depending on what state I am in (the correct or incorrect 

state).  For example, in the reversal task in chapter 2, 1.0=η  and 2=ν , which leaves a 

conditional probability of getting a reward or punishment of:  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

6.3.
4.7.

)/( tt XYP . 

That is, if I am in the correct state (left column), the probability of getting a reward is .7 

(top row), and the probability of getting a punishment .3 (bottom row).  Likewise, if I am in 

the incorrect state (right column), the probability of getting a reward is .4, and the 

probability of getting a punishment is .6. Thus, the generalized formulation of equation  

B.1b is such that 0>η  indicates how much more reward than punishment is received in 

the correct state (and more punishment than reward in the incorrect state), and 0>ν  is an 

asymmetry factor.  From B.1b, the expected value of the correct state is ην2=correctE , and 

the expected value of the incorrect state is η2−=incorrectE . 

Correct state update 

A dynamical update equivalent of the inference equation A.11 can be derived for model 

B.1 by Taylor expanding around 0≈δ  and 0≈η . Defining p  as the probability of 

choosing the correct state, A.11 becomes: 

)( 2
1 ppp −+= δ  

)( pPpp −+= η , 

 

(B.2a) 

(B.2b)

where 1=P  if a reward is received, and 0=P  if a punishment is received. Given that 

there is a higher probability of getting a reward when in the correct state, the receipt of a 

reward always indicates a bigger probability that one actually is in the correct state, and 

thus the inferred probability of being in the correct state is increased in B.2b. Conversely, 

B.2a indicates that the bigger the reversal probability, the faster the probability of choosing 

the correct state goes to .5 (that is, where the probability of being in either state is 

undetermined). 
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Value equivalents 

The dynamic update equations defined in B.2b can be converted to value updates.  The 

value update of both choices (the one chosen and the one foregone) becomes: 

When rewarded 

)( chosencorrectchosenchosen VEVV −+= η  

)( foregoneincorrectforegoneforegone VEVV −+= η . 

 

(B.3) 

 

When punished 

)( chosenincorrectchosenchosen VEVV −+= η  

)( foregonecorrectforegoneforegone VEVV −+= η . 

 

(B.4) 

Thus, not only the chosen action is updated, but also the foregone action. Furthermore, the 

values are not updated with the reward received, and the rewards that could have been 

received had the other action been taken (as proposed in fictive updating143, 144); but with 

the expected rewards of the state the outcome is providing evidence for.  

To conclude, value update equivalents incorporate the structure of the model when 

updating the expected value of all choices. Moreover, these are just a proxy for the correct 

underlying interpretation: that of the inference of hidden state variables. 

 




