
INTELLIGENT INFORMATION GATHERING:
USING CONTROL FOR SENSING AND DECISION

MAKING

Thesis by

Timothy H. Chung

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2007

(Defended May 18, 2007)



ii

c© 2007

Timothy H. Chung

All Rights Reserved



iii

I humbly dedicate my thesis to my family, who have always been my greatest teachers:

my sister, who inspires me with her strength and courage to persevere in my

journey through academics as well as in life,

my mother, who elevates me with her love and support to the highest of my potential,

and my father, who guides me with his memory and spirit to becoming a great man myself.

– THC



iv

Acknowledgements

If I have seen further it is by standing on the shoulders of giants.

– Isaac Newton

I wish to extend my warmest thanks to the various people who have made my graduate career

such a rewarding and positive experience. My greatest gratitude goes to my advisors, Joel Burdick

and Richard Murray. Through their mentorship and encouragement, my time at Caltech has been

accentuated by many great opportunities for my academic as well as personal development.

The guidance given by my thesis committee members, Erik Antonsson and Pietro Perona, has

been invaluable in probing and uncovering new ideas and avenues, and in conjunction with my

advisors, have helped make this thesis possible. A special thanks goes to Maria Koeper for her

company and her chocolates, as well as her many efforts on my behalf.

A great number of collaborators during my time at Caltech have enriched my knowledge as well

as friendships, and to all of them, I owe a great debt of thanks for their enthusiasm, inspiration

and patience. Furthermore, SOPS (The Society of Professional Students) and the great network of

friends in Thomas building have been a wonderful family to me, and have been an unending source

of fond memories.

Last, but most definitely not least, I thank my family for their endless support and faith in me.

They have truly been the giants in my life, upon whose shoulders I am proud to stand and see so

much.



v

Abstract

Information is everywhere and evolving, which necessitates both deliberate and efficient processing

to acquire a good understanding of the dynamic situation, environment, or system of interest.

Intelligent agents such as autonomous mobile sensors can control the way they gather information and

thereby take advantage of feedback to improve the quality of that information. This approach reflects

a shift from traditional “sensing for control” notions to “control for sensing” methods for addressing

information-based objectives. This thesis presents several algorithms for distributed sensing tasks

in the context of a team of mobile sensing agents. Applications of these types of mobile sensor

networks include target tracking, dynamic environment monitoring, and distributed classification.

These methods point beyond the use of sensory data for control and toward a framework for using

control to improve information-based decisions made by intelligent agents. The sequential decision-

theoretic framework presented herein has relevant applications in engineered systems such as search

and rescue using a robotic team, as well as potential connections to natural systems including search

strategies in the human vision system.
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Chapter 1

Introduction

1.1 Motivation and Scope of Thesis

Autonomy requires the ability to acquire information, process it appropriately and efficiently, and

reason about its content and context. For autonomous robotic agents, increasingly intelligent sys-

tems can begin to escape their confinement to tasks traditionally relegated to robots called the

“Three D’s,” i.e., tasks that are dirty, dull, and/or dangerous. Equipped with greater abilities to

gather useful information, perceive relevant features, and execute efficient actions, autonomous and

intelligent agents can elevate humanity. In this way, autonomous systems can serve as focusing

elements of a vast amount of information that is present in the environment.

Given the importance of the information gathering capabilities to autonomous systems, efforts

to improve the quality of their acquired information merit further study to further augment. The

desire to understand the role of feedback control on enhancing the information gathering process

motivates the research presented in this thesis.

The general theme of this research is the use of feedback control to improve the gathering of

information as a mechanism for endowing autonomous systems with greater intelligence. Information

has many representations and therefore require investigations into the role of feedback from various

perspectives, whether at the level of sensory data (e.g., range and bearing measurements) or at the

higher level of decisions (e.g., presence/absence of a target).

In particular, of interest is the class of problems where mobility is the control mechanism by

which the quality of the information is improved. For many types of robotic systems, motion control

is the primary means of actuation, and its role in information gathering tasks is relevant for a

variety of applications, such as target detection and tracking, autonomous search, robotic mapping,

cooperation, etc.
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1.2 Background and Relevant Works

Given the diversity and ubiquity of information gathering tasks, the topic of using control to improve

the quality of sensing is a rapidly evolving field of research, and as such, has engendered much

attention in recent years. The advent of low cost sensing, actuation and computation has further

accelerated this line of research, spanning the various areas of active sensing, mobile sensor networks

and multi-agent approaches for dynamic target tracking. The work presented in Chapter 2 draws

on elements of all these topics.

The field of active sensing rests on the general principle that the coupling between actuation

and sensing components in systems should be taken advantage of, balancing the benefit of improved

information gain against the added cost of controlling the system. Relevant to many robotic ap-

plications, such as vision [1, 2, 3], manipulation [4], and exploration [5, 6, 7], active sensing in the

context of this thesis corresponds to the use of mobility to maneuver a team of mobile sensor agents

to improve their sensing performance. Related to the notions of optimal experiment design, Ucin-

ski [8, 9] proposes a mathematical framework for addressing optimal sensor trajectories (of which

optimal sensor placement [10, 11] is a special case) utilizing the Fisher Information Matrix. The

inverse of this information matrix, which is simply the estimation covariance matrix, is widely used

to define a cost function to govern the optimization process, as done in the work presented in this

thesis.

Closely related but more specific to the task of improved information gathering of dynamic tar-

gets, extensive research has been done in a diverse array of approaches. Built on the foundations of

target tracking work by Bar-Shalom and Fortman [12], Bar-Shalom and Li [13], and Rao, Durrant-

Whyte, and Sheen [14], these approaches examine different but intrinsically related measures of

the estimation process, applying different methodologies for the aggregation and propagation of the

information. Spletzer and Taylor [15] recognize the computational challenges of optimization of

motion trajectories for multiple mobile sensors, and require the use of approximate particle filter

methods to solve the problem. The information-theoretic approach presented by Logothetis [16] op-

timizes trajectories for bearings-only sensing by maximizing the information content in observations.

Grocholsky [17] and his collaborators [6] employ a decentralized framework, the Decentralized Data

Fusion algorithm [18], for gathering and exchanging information quantities among a team of mobile

sensors. These methods illustrate both the complexity of the distributed estimation task as well

as the desire to find distributed or decentralized solutions for applicability to teams of autonomous

mobile sensing agents.

Additionally, communication in the network of mobile sensors adds another component to the

challenges of sensing and control [19, 20]. The previous approaches for multi-robot systems do not

address practical issues of communication between agents, given that computation of a distributed
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motion control law for improved sensing is difficult enough. While mobile sensor networks have

received considerable focus from the networking community, much of the emphasis has been on man-

aging only the communication performance (e.g., transmission characteristics, network connectivity,

or energy efficiency) via node mobility without specific consideration for utilizing motion to improve

the quality of the sensing. In contrast, work by Mostofi and others [21, 22] recognize that a cross-

layer (between communication and actuation layers) design approach is necessary, and investigates

the balancing act of maintaining acceptable sensing performance while being constrained by com-

munication limitations. The resulting respresentation of optimal sensor positions are achieved using

a variable step-size (discrete) motion controller. Investigation of other communication constraints

such as network connectivity in relation to agent motion is conducted in Spanos, Olfati-Saber, and

Murray [23].

These previous works acknowledge the hurdles of computation and communication for utilizing

control to improve the quality of the gathered sensing information. While elegant in formulations as

optimization problems, global solutions to these generally nonlinear optimal control problems require

resorting to numerical techniques [24] and are impractical for implementation in real systems. In

contrast, the control laws presented in this thesis are given by closed-form expressions, thereby

enabling efficient realizations of the motion control strategies. Although solutions found by this

analytic gradient approach are only guaranteed to be locally optimal [25, 26], the immense practical

advantages in computation provide solid motivation and validation for their use. Additionally, these

results extend naturally to incorporate communication constraints, such as that of fading wireless

links between agents, preserving their closed-form structure as well as their usefulness in physical

systems. Furthermore, the analysis leads to an intuitive understanding of the behavior of multi-agent

sensing systems, and enables greater cognizance of the role of control in improving the performance

of these distributed sensing and estimation approaches. The intuition, in turn, can be used to

facilitate better design and application of these sensing, computation, and communication systems.

This insight and the general closed-form expressions for the motion control laws comprise some of

the main contributions of this thesis.

Research in decision making systems possesses a diverse heritage in robotics and artificial intel-

ligence [27]. Various approaches for modeling the search process have been developed in the context

of physical search of a target in a search region as developed in Chapter 3.

Search theory as a formal field of study developed out of the defining works of Koopman [28,

29, 30, 31] in the area of operations research. In the context of naval search and rescue [32],

these works developed a probabilistic foundation of search theory incorporating notions of optimal

allocation of resources and probability of detection of the target. In addition to these seminal

works, Washburn [33], Stone [34], and many others [35] have continued to develop search theory

in a probabilistic Bayesian context further, investigating classes of search paths, various models for
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detection (e.g., radar, sonar, vision) and methods for addressing uncertainty in the system. Various

models for target motion and behavior have also been studied [36]. More recently, advances in

computation capabilities led Bourgault and his colleagues [37, 38] to reconstruct the problem of

searching for lost targets, using the probability of detection of these targets as the objective function

for optimal search trajectory generation. The Bayesian filtering approach [39, 40] of these works

offers an advantage over other methods for maintaining and updating all information relevant to

the search (e.g., the target probability density function), and as such serves as the backbone of the

computation machinery presented in this thesis.

Unlike the physical search problem investigated above, the study of the role of feedback in such

systems in a sequential decision-theoretic context is a relatively nascent area, and the construction

and examination of the search problem in this framework is another main contribution of this

thesis. Sequential notions in decision theory stem from the methods developed by Wald [41] and

Wolfowitz [42] in the Sequential Probability Ratio Test (SPRT). These works laid the theoretical

groundwork for iterative methods in experiment design and hypothesis testing [43], whose principles

have been used in a wide variety of decision making applications. The nature of the SPRT is

recognized, as presented in Chapter 3, to represent an intrinsic notion of dynamics or evolution of

the decision process, for which the principle of feedback can be utilized to drive the process in a

controlled manner. For search, this feedback occurs in the form of motion control of the searcher’s

trajectory.

Motivated by the Bayesian construction and the dynamics of the SPRT structure, a decision-

theoretic approach to the physical search problem is realized. Due to the formulation as a decision,

the evolution of the probability distributions relevant to the search task can be succinctly repre-

sented by a closed-form update expression, representing another major contribution of this work.

In particular, the derived analytic expression allows for greater computational efficiency, tradition-

ally a severely limiting factor in many Bayesian filter applications. Furthermore, the formulation

presented in this thesis enables the generalization of the physical search task to a broader class of

search-related objectives. Such search problems can be found in engineered systems, as in the phys-

ical search task examined in the previous works above, but also in natural systems, such as animal

search behaviors [44] and human visual search [45], emphasizing the desire for a unifying approach

to these search objectives. The methodology presented in this thesis provides investigations and

insight into these problems and serves as a candidate approach for this generalization.

1.3 Summary of Contributions

Previous research on methods for distributed sensing and estimation have generally recognized the

need for approximate approaches [15], as the optimal solution for the motion trajectories of multiple
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mobile sensors is computationally expensive. These optimal control or numerical approaches are

computationally prohibitive for implementation on practical systems, as well as lacking in their

ability to provide insight into the role of motion control on improving the quality of the sensing

information. The main contributions of Chapter 2 include:

• Derivation of closed-form expressions for a motion control law which locally minimize the

overall uncertainty in observations of a dynamic target by a team of mobile sensors.

• Extension of the analytic formulas to address imperfect communication (e.g., fading wire-

less channels) between agents. The modified expressions preserve the general structure and

highlight the trade-offs required to address sensing and communication objectives.

• Statement and proof of an “estimation-classification” duality principle, which relates the per-

formance in distributed sensing tasks to that of classificiation. By employing the expressions

for improving the sensing quality, the duality principle ensures that probability of correct

classification is also improved.

The insight provided by these contributions enables a richer understanding of the distributed sensing

task, as well as demonstrates the ease and efficiency for implementation of these analytic motion

control laws in physical systems.

Similarly, the problem of physical search has also largely been restricted to numerical method-

ologies, incorporating assumptions on detection models that are mostly relevant for specific tasks,

such as naval search applications. Furthermore, additional works rest on the special case of no

false alarms [38] or other simplifications that reduce the computational challenge of updating the

probabilistic representation of the target location. Additionally, given their focus on autonomous

robotic search applications, these previous works do not easily generalize to a broader class of search

tasks, such as that exhibited by animals or in human visual search. Chapter 3 presents several main

contributions to this problem of search:

• Formulation of the physical search problem as a decision, enabling the use of sequential

decision-theoretic notions for representing the belief probability of the target’s presence or

absence within a search region.

• Derivation of closed-form expressions for the temporal evolution of the belief probability as a

function of the sequential observations attained by a searcher as it moves through the search

space.

• Presentation of two novel search control strategies – “Drosophila-inspired” and “saccadic”

methods – for governing the searcher’s search trajectory as novel approaches to accomplish

the search task, demonstrating the generality of the proposed framework in addressing a diverse

set of search-related problems.
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The construction of this search objective as a sequential decision enables the intuitive characteriza-

tion of various search metrics, such as the time-till-decision, and illuminates the role of controlling the

searcher’s motion trajectory in improving the decision making performance in the search application.

1.4 Overview of Thesis

Chapter 2 investigates the case where a team of sensors is given the task to gather and process

data regarding the state of dynamic targets in the presence of a noisy environment. The benefits of

cooperation amongst multiple sensing agents are evident in the reduction of overall uncertainty of

the combined measurements.

Section 2.1 considers how to use motion control to improve the performance of distributed multi-

agent sensing and estimation tasks. Combination of estimates via sensor fusion is described in

Section 2.2. The fusion process guides the design of a cost function which captures the overall

uncertainty in the fused estimates. Optimization of this cost function is discussed in Section 2.3,

where the main result of closed-form expressions for the gradient of the cost are derived. These

analytic formulas define the locally-optimal motion control laws that govern the motions of the

team of mobile sensing agents. Extension of these control laws to the case where communication

constraints between sensors are present is conducted in Section 2.4. This section also considers

the trade-off between sensing and communication performance in the cooperating team. Further-

more, foreshadowing the desire to accomplish higher-level tasks with mobile sensors, the relationship

between improved sensing and improved classification is studied and explicitly proved under mild

assumptions on the underlying probability distributions.

Chapter 3 investigates a different aspect of control in intelligent systems, where mobility is used

to influence the decision making process of mobile vehicles. In particular, for target detection in a

search region, motion of the searcher is utilized to improve the performance of the search task, such

as reducing the average time it takes to make that determination.

The relevance of decision theory as a tool for examining the role of feedback control on decision

making is discussed in Section 3.1 where the notions of sequential testing is introduced along with

measures of the performance of a decision process. Section 3.2 presents a formal framework which

casts the search problem as a decision between binary hypotheses given the decision-maker’s cur-

rent knowledge. In the specific case typically considered in the physical search theory literature,

the decision reflects a belief of whether or not the target of interest is present in the search region.

The temporal evolution of the decision by means of Bayesian filtering methods is described in Sec-

tion 3.3, where novel formulas that govern the decision evolution process are derived. In Section 3.4,

the explicit role of motion control of the searcher is investigated via several search control strate-

gies. Several control strategies including two new strategies, are considered in this section. The
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novel “Drosophila-inspired” and “saccadic” control strategies presented in Section 3.4 suggest the

generalized framework presented in this thesis may have application to a broad set of problems. The

analysis of the search strategies is enabled by the closed-form expressions presented in Section 3.3.
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Chapter 2

Distributed Sensing and
Estimation

Information exists everywhere and evolves endlessly. In order to understand the dynamic situation,

surroundings, or system of interest, it is essential that this information be gathered and processed

in a deliberate and efficient manner. Complicating this effort is the fact that in many settings,

the information can best be captured by use of multiple perspectives, which augment the overall

understanding, but which are obtained at the potential cost of additional confusion, overhead, or

expenditure of energy.

This chapter examines some of these information-rich, distributed, dynamic processes, including

the modeling of the distributed sensing framework, a measure of sensing performance, and a means

of increasing this performance by use of feedback control.

Section 2.1 describes a general distributed sensing problem where the state of a dynamic process

is estimated using multiple observations. This section develops a framework by which control can

be introduced into the distributed sensing problem for purposes of improving the quality of the

observed information.

Sensor fusion methods for combining these multiple measurements are discussed in Section 2.2,

where the relationship between individual sensor control actions and their effect on the overall sensing

performance are investigated. This examination results in a global representation and measure of

the quality of information.

Optimization of this metric enables an improvement in the accuracy and understanding of the

global system, and an analytic framework for this optimization via gradient methods is developed

Section 2.3. In this section, the main contribution of this work is presented in the derivations of

closed-form expressions for efficient control laws which collectively drive the sensor states to locally

optimal configurations.

Finally, given the relevance of wireless communication in these distributed systems, a model

for imperfect communication is examined in Section 2.4 and extend the gradient methods of the
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previous section to address these communication constraints.

2.1 Distributed Estimation of a Dynamic Process

The distributed estimation task requires the use of multiple sources of information to estimate the

state of a dynamic process. In order to accomplish this objective, one must have an understanding

or model of the system state to be estimated, as well as a representation of the manner in which the

information is acquired and processed.

In this section, a distributed estimation formulation is outlined in which multiple observations

are used to estimate the state of a simple dynamical system.

2.1.1 Evolution of Dynamic Processes

Given that the world is constantly changing, it should come as no surprise that systems that change

and evolve in time are of great interest. In examining the states of such a system, a model for the

dynamics of the system is required, which is assumed to take the following general state-space form:

x[k + 1] = f (x[k]) + w[k],

where x[k] ∈ Rn contains the state variables of interest at discrete time index k, and f(x) represents

a nonlinear model of the dynamics by which the state of the system evolves. Further, the process

noise, w[k] ∈ Rn, captures the fact that uncertainty exists in the environment as well as in the

modeling of the process itself. For the moment, no restrictions on the types of allowable noises (e.g.,

bounded versus unbounded) are assumed, with Q[k] denoting the positive-definite process noise

covariance.

Given the varied and versatile tools available for linear systems, it is useful to examine the

linearization of the nonlinear process model above

x[k + 1] = Fx[k] + w[k],

where F ∈ Rn×n is the linearized dynamics matrix. This dynamic process model holds for a multi-

tude of systems, including, for example, the motion of a vehicle in space, where the state variables

might consist of the vehicle’s position and velocity components as a function of time. This example

of a dynamic vehicle will be used throughout the development of the theory as a case study for the

distributed sensing methodology, but note that the theory holds for observation of general dynamic

processes.
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2.1.2 Measurement Process

The necessity for accurate modeling of the observation process should be obvious, given the fact that

the objective is to gather and process sensory information. For the distributed estimation task, one

is particularly interested in integrating various sources of information to estimate the given dynamic

process. Consider the case where M observations are taken at each time step to estimate the process

state. Each of these observations obeys:

yi[k] = hi (x[k]) + vi[k], (2.1.1)

where yi[k] ∈ Rm (i = 1, . . . , M) is the observation of the ith sensor, and hi(x) is the nonlinear

measurement function for this observation. Note that hi is generally a function of the dynamic pro-

cess state. Furthermore, the ith measurement is assumed to be perturbed by additive measurement

noise, vi[k] ∈ Rm with its uncertainty represented by covariance Ri[k] ∈ Rm×m. The measurement

noise processes for different observations are assumed independent, i.e., E
[
vivT

j

]
= 0, where E [·]

and (·)T are the expectation and transpose operators, respectively. In the case that these multi-

ple observations are made using a team of M distinct sensors, yi corresponds to the observation

generated by the ith sensing agent.

As done previously, the linearized form of the measurement model is used

yi[k] = Hix[k] + vi[k],

where Hi ∈ Rm×m is the linearized measurement matrix.

As embedded technologies combining sensing, computation and actuation become more prevalent,

it is likely that the observation process will also be dependent on the state of the sensor. In other

words, the ith sensing system is also a dynamic process itself, whose state zi[k] ∈ Rs can also evolve

as

zi[k + 1] = Φizi[k] + Γiui[k]. (2.1.2)

The sensor state can be affected by application of the control signal ui[k]. In laying the groundwork

for the distributed estimation problem, the case where the sensor system is linear and unperturbed

by disturbances is initially investigated.

An example of sensor-actuator coupling is the control of a pan-tilt camera settings which are

adjusted to improve the photograph. Another such case is the fine adjustments of the knob on a

radio to tune to the right frequency for improved reception. In both of these examples, the objective

is to use feedback control to improve the sensing performance.

In this manner, the observation model defined above is also a function of the sensor state, in
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addition to the dynamic state to be estimated:

yi[k] = hi (x[k], zi[k]) + vi[k].

In other words, by appropriate choice of control signal ui, the measurement process can be tailored

to the sensing objective.

As formulated above, the observation function, and not the measurement noise covariance, can

be affected by controlling the ith sensor’s state, zi. However, the uncertainty in the observation

is typically defined by the measurement noise covariance [46, 47]. By an appropriate choice of

coordinate transformation, the dependence on process and sensor states (x and zi, respectively) and

the shape of the measurement uncertainty can be captured in a single matrix quantity. In other

words, by application of the transformation matrix Ti ∈ Rm×m, the observation model becomes

Tiyi[k] = Tih (x[k], zi[k]) + Tivi[k].

The coordinate transformation matrix, Ti, will depend on the sensor state as well, thereby enabling

control inputs to affect the transformed measurement noise covariance given by TiRi[k]TT
i .

Hence, by injecting control in the measurement process, the shape of the uncertainty profile can

be manipulated. In the case of improved sensing, such actions reduce the effective size (e.g., volume

or major axis) of the uncertainty envelope. The statement of the distributed sensing task can now

be stated as follows: Given M controllable sensing agents, each providing an observation of the

dynamic process, the distributed sensing objective is to generate a coordinated control law such that

the M agents maneuver to reduce an overall state estimation error. In this way, feedback control is

used to improve the quality of sensing.

2.1.2.1 Heterogeneous Measurement Models

The observation models for each of the M sensors need not be the same. The ensuing algorithms only

require that the observations from these different sensors are compatible (i.e., measurements are of

the same dynamic state). In other words, the framework described here allows for sensors with vari-

ous sensing modalities to interact and collectively gather and share information in a straightforward

manner.

For example, many different sensors for measuring a vehicle’s spatial position exist, such as

sonar range-finders, laser-scanning range devices, radar, and stereoscopic camera systems. Any and

all combinations of these sensors may be utilized in the distributed sensing task, offering benefits of

different resolution and sensor characteristics. This feature of the team sensing approach highlights

the general nature of the framework and reflects its applicability to a variety of realistic systems.
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2.1.2.2 Observation of Multiple Dynamic Processes

Additionally, one can model the evolution of N multiple dynamic processes, each with its own state,

xj ∈ Rnj , simply by augmenting the state vector to comprise the multiple states. Independence of

these different states facilitate an analytically simple structure (i.e., diagonal dynamics and noise

covariance matrices), but coupled or constrained states can easily be incorporated in this framework.

Similarly, the observation process can also be modified to represent the simultaneous measure-

ment of the multiple dynamic processes by augmentation of the measurement vectors. For indepen-

dent observations, the uncertainty and respective transformation matrices can be redefined as block

diagonal matrices:

Ri −→ diag (Ri,1, . . . ,Ri,N ) , Ti −→ diag (Ti,1, . . . ,Ti,N ) ,

for N simultaneously observed processes.

A challenge that arises when multiple processes are observed is that of data association. Namely,

confusion may exist as to which measurement corresponds to which dynamic process, requiring

a mechanism for identifying each process uniquely. As the theory and implementation of data

association methodologies comprise an active area of research, we assume that simple but reliable

methods, such as the use of identifying markers (e.g., color, visual patterns, and RFID), are employed

in the observation of the multiprocess systems. The interested reader is referred to [12, 13] and the

references therein for a survey of various data association approaches.

2.1.3 Case Study: Distributed Target Tracking

To illustrate the modeling approach described in the previous sections, the example problem of

estimating the state of a planar dynamic vehicle can be considered, where x ∈ R2 is the Carte-

sian position of the target vehicle’s center of mass. Assume M multiple mobile sensing agents,

each equipped with a (possibly different) range-and-bearing sensor such as sonar or LADAR (a.k.a.

laser radar) units commonly used on many robotic platforms for target tracking tasks. A pictorial

representation of the this system is given in Figure 2.1.

Let the state of the target vehicle evolve as

x[k + 1] = Fx[k] + w[k],

where the target has arbitrary dynamics (such as omnidirectional, car-like, or differential drive)

represented by the linear dynamics matrix, F ∈ R2×2 and the process noise, w ∈ R2, are disturbances

(e.g., zero-mean, white and Gaussian) on the target’s (x, y) position as it moves in the plane.

The observation model for typical target-tracking sensors is nonlinear, due to the coordinate
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Figure 2.1: Illustration of the distributed target tracking problem. A team of M = 2 mobile sensing
platforms take range-and-bearing measurements of the target position in R2.

change from relative (i.e., body-fixed) to global coordinates. These sensors typically output noisy

range and bearing measurements, r and b, respectively, to the target with respect to the local frame.

Using ‖ · ‖2 and ∠(·) to denote the Euclidean distance and relative angle in the sensor frame, the

observation model is given by (e.g., [48]):

yi[k] =


 ri

bi


 =


 ‖x− zi‖2

∠ (x− zi)


 + vi[k]

=




√
(xx − zx

i )2 + (xy − zy
i )2

atan
(

xy−zy
i

xx−zx
i

)
+ zθ

i


 + vi[k],

where the state of the ith sensor, zi ∈ R3, comprises the Cartesian coordinates of the sensing agent’s

position, (zx
i , zy

i ), and its heading angle, zθ
i , and its evolution is given by the dynamic system

described by Equation 2.1.2.

The linearization of the measurement function, evaluated at the sensor’s current configuration,
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is given by the measurement matrix, Hi ∈ R2×2:

Hi =




xx−zx
i√

(xx−zx
i )2+(zy

i−zy
i )2

xy−zy
i√

(xx−zx
i )2+(zy

i−zy
i )2

− xy−zy
i

(xx−zx
i )2+(zy

i−zy
i )2

xx−zx
i

(xx−zx
i )2+(zy

i−zy
i )2


 =




xx−zx
i

ri

xy−zy
i

ri

−xy−zy
i

r2
i

xx−zx
i

r2
i




=


 cos(bi + zθ

i ) sin(bi + zθ
i )

− 1
ri

sin(bi + zθ
i )

1
ri

cos(bi + zθ
i )


 ,

where it can easily be seen how the observation can be changed by controlling the sensor state

variables.

No conditions on the measurement noise, vi, are required in the general formulation, but for the

sake of this example, let the observation be corrupted by zero-mean, white Gaussian noise, whose

uncertainty envelope, consisting of both range and bearing errors, is shown in Figure 2.2.

Figure 2.2: Schematic of the observation model, capturing the uncertainty in range-and-bearing
measurements of the target’s position in R2.

Note that the measurement uncertainty is represented in body-fixed coordinates. Consistent

with standard range-and-bearing models [48] for target tracking in the plane, the measurement noise

covariance matrix in this reference frame has the following two-dimensional diagonal structure:

Ri =


 fr

i (x, zi) 0

0 f b
i (x, zi)


 =


 (σr

i )2 0

0
(
σb

i

)2


 ,

where (σr
i )2 and

(
σb

i

)2 are the range and bearing measurement noise variances for the ith sensor’s

observation, respectively. Note that the model above can represent a large class of observation

uncertainties by allowing for the noise variances to possibly depend on the sensor and target states

(e.g., range-to-target) via functions, fr
i and f b

i . Such state-dependent uncertainties are present in a
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wide range of practical sensing modalities (e.g., atmospheric corrections in radar observations).

To transform the local (i.e., range and bearing) observations to a global (Cartesian) coordi-

nate system (to facilitate compatibility of measurements from different sensors) use the (rotation)

transformation matrix,

Ti =


 cos(zθ

i ) − sin(zθ
i )

sin(zθ
i ) cos(zθ

i )


 .

Application of this coordinate transformation to the linearized measurement model yields

Tiyi[k] = TiHix[k] + Tivi[k],

such that

TiHi =


 cos(bi) sin(bi)

− 1
ri

sin(bi) 1
ri

cos(bi)


 ,

is the transformed linear observation matrix which no longer has the explicit dependence on the

sensor state it had previously. Further, the transformed measurement noise covariance is now given

by TiRi[k]TT
i , given by:


 cos(zθ

i ) − sin(zθ
i )

sin(zθ
i ) cos(zθ

i )





 (σr

i )2 0

0
(
σb

i

)2





 cos(zθ

i ) sin(zθ
i )

− sin(zθ
i ) cos(zθ

i )


 ,

which now captures the shape of the measurement uncertainty envelope in the global coordinate

system. Thus, we see that by controlling the states (specifically, zθ
i ) of the M sensing agents, we

can change the uncertainty associated with the observation process. The objective is to design

the control inputs so as to “shrink” the resulting uncertainty envelope as much as possible. The

questions of incorporating multiple observations and reducing the uncertainty are addressed in the

following sections, after which the examination of this target-tracking case study will be continued.

2.2 Distributed Sensor Fusion

The question of combining measurements from multiple information sources is that of sensor fusion.

In essence, the fusion of observations is an information distillation process, by which large quantities

of information are brought together to form a reduced but refined representation. The inherent

benefits of fusion include the redundancy present in multiple observations of the same state as well

as the differences in spatial or temporal resolution that capture a wider perspective of the system

behavior. The natural result of these features is the reduction of uncertainty in the overall fused

observation.

As discussed in Chapter 1, significant resources have been dedicated over the past half century
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to the development of sensor fusion techniques and theory. More specifically, as distributed systems

have become more prevalent, methods for distributed or decentralized sensor fusion have spurred

much interest, and it is this subset of data fusion research that is most relevant to the distributed

sensing objective considered here.

Since the focus of this work is to examine the role of control in distributed sensing tasks, the goal

is not to develop new distributed sensor fusion algorithms, but instead to demonstrate how control

of sensor states enters into the sensor fusion process. To start, consider the simple but general fusion

approach of combining information quantities weighted by the inverse of their uncertainties. Funda-

mentally, this method represents the simplified theoretical backbone of many fusion algorithms, such

as the inverse covariance Kalman filter [49], and many other Kalman-filter variants (e.g., covariance

intersection [50] or fusion of Gaussian observations [51]). Henceforth, the formulation will use the

“inverse covariance” fusion rules to illuminate this relationship between control of sensor states and

fusion of sensor measurements, and rigorous studies of the effect of control in more sophisticated

sensor fusion algorithms (e.g., [18]) remain for future investigation.

These “inverse covariance” fusion relations, for combining M independent observations, are given

by:

P−1
fused x̂fused =

M∑

i

P−1
i x̂i, P−1

fused =
M∑

i

P−1
i ,

where x̂i and Pi, are the local estimate vectors and estimate error covariance matrices of the ith

sensor, Pfused ∈ Rn×n is the fused estimate error covariance matrix, and x̂fused ∈ Rn is the fused

estimate of the dynamic process state, x. Note that the time index k is implied. The term “estimate”

is defined as the sensing agent’s representation of the state, and any ambiguity in its use in the context

of the distributed sensing task will be cleared away shortly. The intuition behind these expressions

is that the best fused estimate is a weighted sum of all individual estimates, where each estimate is

scaled by the inverse of the uncertainty.

One must note that these relations assume the agents’ estimates are uncorrelated with one

another. Given that the M observations are of the same dynamic process(es), this independence

simplification is not strictly true [52, 53]. However, this assumption leads to only minimal estimation

performance penalties [53] for a broad class of systems, and the reader is referred to the myriad

methods in the references cited previously for addressing fusion of correlated estimates. Again, as

motivated above, the goal is to illuminate the role of feedback control in the distributed estimation

task, and such simplifying assumptions help provide the desired insight.

As mentioned previously, an estimate of the dynamic process state, x, is any quantity reflecting

the sensing agent’s representation of the state. In this manner, we investigate two representations,

each with its own merits, of the process state, which can each be used for generating a fused estimate

using the fusion rule above. One representation is simply the observation, yi[k], itself as per the
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measurement model given by Equation 2.1.1. Another method for representing the estimate is

to process measurements locally (i.e., by each sensing agent individually) using a Kalman filter,

which uses knowledge of the system parameters to generate an optimal estimate given the local

observations.

2.2.1 Fusion of Local Observations

In this setting, each sensing agent produces its own observation and shares it, along with the cor-

responding measurement error covariance matrix, with all other agents. The advantage of this

approach is that no additional processing needs to be performed at the sensor node. For imple-

mentations that make use of small and/or cheap sensor platforms, where computation capability

may be severely limited, this method of fusing measurements is computationally efficient and easily

utilized. This fusion strategy also provides immediate insight into the structure of the distributed

sensor fusion process, without the need for implementing additional data-processing methods.

The fusion equations for the estimate and its error covariance in the case of shared observations

becomes:

P−1
fused x̂fused =

M∑

i

P−1
i x̂i =

M∑

i

(
TiRiTT

i

)−1
yi,

P−1
fused =

M∑

i

P−1
i =

M∑

i

(
TiRiTT

i

)−1
.

This expression shows that multiple observations, transformed into a common global reference frame,

can be combined in a straightforward manner. Application of the transformation matrix, Ti, enables

the use of control of the sensor state to influence the global fused estimate of the dynamic process

state.

2.2.2 Fusion of Locally Filtered Estimates

Alternatively, sensor observations can be processed locally by each mobile sensor using a Kalman

filter to reduce the effect of uncertainty in measurements. The filtered result (i.e., the state estimate

and estimate error covariance) is then shared and fused with those of other sensing agents.

This approach addresses some of the challenges faced by the simpler fusion of local observations.

Due to the recursive structure of the Kalman filter, the history of measurements and knowledge of

the dynamic process model parameters are used to help improve the state estimate. Further, when

data sets are large due to data-intensive observations (e.g., high resolution scans, and image/video

data), the communication bottleneck may prevent transmission of the raw measurements; instead,

the measurements can be processed into a more manageable size in the form of a state estimate,

which can then be transmitted to the sensing teammates.
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Recall the general Kalman filter equations [54, 55],

x̂[k]− = Fx̂[k − 1],

P[k]− = FP[k − 1]FT + Q,

K[k] = P[k]−HT
(
HP[k]−HT + R

)−1
,

x̂[k] = x̂[k]− + K[k]
(
y[k]−Hx̂[k]−

)
,

P[k] = (I−K[k]H)P[k]−,

where K is the Kalman estimator gain.

Thus, the ith sensor generates its local estimate, x̂i, and estimate error covariance, Pi according

to the following equations (after application of the transformation matrix Ti):

x̂i[k]− = Fx̂i[k − 1],

Pi[k]− = FPi[k − 1]FT + Q,

Ki[k] = Pi[k]−HT
i TT

i

(
TiHiPi[k]−HT

i TT
i + TiRiTT

i

)−1
,

x̂i[k] = x̂i[k]− + Ki[k]
(
Tiyi[k]−TiHix̂i[k]−

)
,

Pi[k] = (I−Ki[k]TiHi)Pi[k]− = ∆i −KiTiHi∆i,

where ∆i
4
= Pi[k]− = FPi[k − 1]FT +Q, and exchanges these quantities with the other sensing

agents. Note that while ∆ is independent of current sensor states, the Kalman gain Ki, through the

dependence on the sensor state of the transformed measurement noise covariance matrix, TiRiTT
i ,

can be affected by appropriate control inputs.

In this manner, both methods – fusion of local observations and of locally filtered estimates

– demonstrate how the global (i.e., fused) sensing process can be influenced by local sensor state

controls.

It merits mentioning that by using a decentralized sensor fusion algorithm, each sensor need

not receive all data from all other sensors in order to compute a fused estimate and uncertainty.

Clearly, the result of this calculation using observations from only a subset of the team will not

be the true global fused values; however, this framework allows for general networks of sensors

with varied communication topologies, not necessarily fully connected as often required for optimal

centralized solutions. Further, this fact also means that the calculation of the control laws discussed

in the following sections is robust to the addition or deletion of sensor nodes. This robustness

is particularly relevant and useful in practical implementations of the methods presented in this

chapter.
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2.2.3 Case Study: Distributed Target Tracking

The components of the distributed sensing discussed above can be further illuminated by revisiting

the illustrative example of tracking a target in the plane using multiple range-and-bearing sensors.

Employing the sensor fusion algorithms described above, it is possible to attain a fused or aggregate

observation of the target position that possesses lower overall uncertainty than each of the range

and bearing measurements individually. Figure 2.3 depicts a simulated example of the benefit of

fusing two independent local observations. Panels (a) and (b) show multiple observations taken

individually by sensor 1 and 2, respectively. Panel (c) illustrates the result of employing the sensor

fusion method described in Section 2.2.1, resulting in a smaller uncertainty envelope for the fused

measurements.

Figure 2.3: Illustration of the benefit of fusing multiple observations. Two (stationary) sensing
agents make independent, noisy range and bearing observations of a planar target, which are fused
to yield estimates with reduced uncertainty.

As can be seen, the resulting uncertainty of the fused observations, represented by the uncertainty

ellipse, is smaller than that of the individual observations. This reduction of uncertainty in this

example highlights the desire to use distributed agents for gathering information.

2.2.4 Construction of the Distributed Sensing Cost Function

For purposes of control, a measure of performance of the ensemble of sensing agents is required.

This measure will enable the design of control laws that drive the individual sensor agents to states

which improve overall sensing performance.

The estimate error covariance generated by the sensor fusion process provides a representation

of the uncertainty present in the estimate. Said another way, Pfused captures the overall “shape”

of the fused estimate uncertainty. Various metrics can be defined which use a function of this error

covariance matrix, and a particular metric can be selected according to the optimization task.

Definition of the uncertainty size metric defines a cost function, J , which can be minimized via
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control. The remainder of this chapter will explore the use of the following cost function:

J = detPfused = det

(
M∑

i

P−1
i

)−1

.

The determinant of the estimate error covariance matrix represents the volume of uncertainty,

and the proposed optimization seeks to reduce this volume. Known as D-optimal design [4], the

determinant is chosen (instead of the trace, maximum eigenvalue, etc.) to facilitate the development

of the theoretical framework in Section 2.3.

Define two cost functions, J1 and J2, for the two approaches outlined in this section; namely,

fusion of local observations and fusion of locally processed estimates, respectively. By simple sub-

stitution of the expressions for the fused estimate error covariance computations, the cost functions

of interest are given by:

J1 = detPfused = det

(
M∑

i

(
TiRiTT

i

)−1

)−1

, (2.2.1)

J2 = detPfused = det

(
M∑

i

(∆i −KiTiHi∆i)
−1

)−1

. (2.2.2)

By design, J1 and J2 are functions of the sensor states, carried intrinsically in the transformed

measurement noise covariances. Thus, by varying the states of the sensors, the estimate error

covariance can be influenced in a manner which reduces the cost. The question posed here is how

to do so in a decentralized way, given a team of M sensing agents.

2.3 Gradient Analysis

Given an expression for the cost function, J , a method for determining the minimal cost configuration

for the states of the sensing agents is desired. In general, determination of the optimal trajectories

for the evolution of the sensor states is computationally expensive, and becomes prohibitive as the

number of the dimensions of the process states increases.

In contrast to the computational cost of calculating optimal sensor state evolutions, gradient-

descent methods for finding minimums have the feature that only local information is used in direct-

ing the optimization. While one can only be guaranteed to find a local minimum, the computational

benefits alone merit investigation into gradient-based approaches. An additional advantage of the

gradient is its decentralizing effect on functions that possess summations by distributing the dif-

ferentiation [56], such as the cost functions J1 (Equation 2.2.1) and J2 (Equation 2.2.2). In other

words, the resultant expression for the gradient of such functions depends only on the states involved

in the differentiation (while holding other states constant) and terms containing only other states
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vanish in the calculation. Consequently, the gradient approach results in closed-form analytic ex-

pressions which make it an appealing choice for insight into the distributed state estimation problem

in general, as well as for implementation in practical physical systems.

The computation of the gradients of J1 and J2 employs the following standard matrix calculus

identities [57]:

∂

∂z
h(A(z)) = tr

[
∂h

∂A
∂A
∂z

]
, (matrix chain rule), (2.3.1)

∂

∂A
det (A) = |A| A−T = |A| A−1, (derivative of the determinant), (2.3.2)

∂

∂z
A−1 = −A−1

(
∂A
∂z

)
A−1, (derivative of the inverse), (2.3.3)

where A ∈ Rn×n is a symmetric, positive-definite matrix, h : Rn×n → R is a real-valued matrix

function, and z ∈ R is a scalar variable.

The derivatives of the cost function with respect to each component of the ith sensor’s state,

zi =
(
z1
i , . . . , zl

i, . . . , z
s
i

)T , which help to determine the locally cost-minimizing path for sensor i, are

given in the following proposition.

Proposition 1 The gradient of J1 and J2 with respect to the lth coordinate of the ith sensor state,

given by zl
i, has the general form:

∂J

∂zl
i

= |Pfused| tr
[
Π

∂

∂zl
i

(
TiRiTT

i

)
ΠT Pfused

]
,

where

Π =





TiR−1
i TT

i , for J1,

P−1
i Ki, for J2.

Proof: Proof is realized by application of Equations 2.3.1-2.3.3 to either Equation 2.2.1 or

Equation 2.2.2, and the complete derivation can be found in Appendix A.

2.3.1 Gradient-Descent Control Law

The gradient formulas can be used to define a control law, ui(zi), for the control of the ith sensor’s

state. This control law defines the inputs to the sensor state evolution expression, which has already

been shown to influence the overall sensing performance of the coordinated team. The direction to

achieve the steepest slope of the cost function for the ith sensor is given by the gradient:

∇ziJ(z1, . . . , zM ,x) =
∂J

∂z1
i

ez1
i

+ · · ·+ ∂J

∂zs
i

ezs
i

=
s∑

l

(
∂J

∂zl
i

ezl
i

)
,
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where ezl
i

is the unit vector associated with coordinate zl
i.

Construction of the gradient-based control law can simply be done by taking the components of

the gradient expression above (negative for steepest descent or minimization of the cost):

ui(zi) =
(
− ∂J

∂z1
i

∣∣∣
zi

. . . − ∂J
∂zs

i

∣∣∣
zi

)T

,

evaluated at the current state of the ith sensor. Due to the decentralizing effect of the gradient on

the cost function, ui(zi) is an explicit function of only the ith sensor’s state. In other words, as

can be seen in the derivation, all other terms corresponding to other sensing agents vanish when

computing the derivative.

As a result, the ith sensor’s control law can be computed from just the sensor’s own current

state, its sensor model and the fused estimate error covariance. This simple result occurs because

all information from other sensing agents relevant for computation of the control law is already

captured implicitly in the fused estimate error covariance, Pfused. In this manner, the optimization

for motion control is conducted in a completely decentralized fashion. Furthermore, by construction,

the control law is the instantaneously (i.e., locally) optimal action to reduce the uncertainty in the

system.

The above statement highlights an important feature of this formulation, in that each sensor can

operate independently of all other sensors. In other words, knowledge of the dynamics, measurement

and uncertainty models of other sensors is not required in order to compute the local control law.

Importantly, information regarding the dynamic states of all other sensors is also unnecessary, which

reduces the amount of data required to be transmitted at every time step.

2.3.2 Gradient Analysis for Tracking Multiple Dynamic Processes

In addressing the tracking of multiple dynamic processes, a straightforward extension to the compu-

tation of the gradient exists [47]. Recall the augmentation approach used for the dynamics, obser-

vation, and corresponding transformation matrices. Due to this structure, the tracking of multiple

processes appears in the gradient computation simply as derivatives over additional independent

coordinates, while maintaining the same form of the closed-form expression.

Proposition 2 The gradient of J1 and J2 with respect to the ith sensor’s coordinate, zl
i, relative to

the jth dynamic process has the general form given by:

∂J

∂zl
i,j

= |Pfused| tr
[
Π

∂

∂zl
i

(
Ti,jRi,jTT

i,j

)
ΠT Pfused

]
,
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where

Π =





Ti,j R−1
i,j TT

i,j , for J1,

P−1
i,j Ki,j , for J2.

Proof: This result follows immediately from the calculation for Proposition 1, using the aug-

mented process, measurement noise covariance and transformation matrices defined for tracking

multiple processes. The reader is referred again to Appendix A for the complete derivation.

The computation of the gradient with respect to process j is independent of those for all other

processes, following from the independence of these N processes. The cost function now incorporates

the additional variables of each process, thereby resulting in the following gradient expression:

∇ziJ(z1, . . . , zM ,x1, . . . ,xN ) =
s∑

l




N∑

j

∂J

∂zl
i,j


 ezl

i
.

Note that the number of derivative computation scales with the number of dynamic processes the

system needs to track. In general, the tracking problem becomes computationally challenging as more

processes are tracked; however, the analytic expressions for the gradient enable significantly more

efficient computations. Consequently, the closed-form formulas allow for examination of systems

with large numbers of processes as well as sensing agents.

The modified control law for the ith sensor observing N target processes is given by:

ui(zi) =
N∑

j

ui,j(zi),

where the vector sum is over the control signals for the jth process is:

ui,j(zi) =
(
− ∂J

∂z1
i,j

∣∣∣
zi

. . . − ∂J
∂zs

i,j

∣∣∣
zi

)T

.

The gradient-based control law for tracking multiple processes is simply the sum of the control laws

for each process. With these expressions, multiple sensing agents are able to observe and estimate

multiple dynamic processes, maneuvering individually in a locally optimal fashion using the gradient

descent control laws presented here. Additionally, this summation of control laws implies that rather

than measuring all N processes, it is possible to observe only a subset of these states and generate

a control law that is only relevant for this subset. This feature demonstrates the flexibility of

this framework for examining the appropriate distribution of sensing resources (i.e., subteams of

sensors) for different processes. While this problem of resource allocation brings up the challenge

of data association and task assignment (already indicated to be active research areas for multi-

agent systems), the distributed framework presented herein may serve as a foundation from which
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to conduct further investigations.

Stability of the distributed gradient feedback control law about the local minimum (i.e., equi-

librium point) can be examined using tools from Lyapunov stability [25, 58], graph theory [59], or

artificial potential function approaches [60, 26]. Explicit calculation of the multiple sensor states

resulting in local minima of the cost function is difficult in general. Investigation of these minima

for the simplified case of planar observations using two and three mobile sensors is conducted in

Appendix B.

2.3.3 Case Study: Distributed Target Tracking, Revisited

Recall the example of tracking a dynamic target vehicle using a team of M mobile sensors. Assume

that these mobile platforms can move omnidirectionally in the plane (i.e., agents are fully actuated

in R2) and communicate completely with all team members. Further, given the observation model

presented previously, consider as an illustrative example a measurement uncertainty model where

the measurement noise in range is quadratic in the distance, ri,j , from the ith sensor to the jth

target. In other words,

fr
i (x, zi) = fr

i (ri,j) = a2 (ri,j − a1)
2 + a0,

where a0, a1, a2 are constant coefficients. This model corresponds to the notion of a “sweet spot” in

sensing, located at a distance a1 from the target, where uncertainty in measurements is minimal [46].

Furthermore, let the measurement noise in bearing simply be a fixed multiple α of the range noise

variance, such that f b
i (ri,j) = αfr

i (ri,j).

In this case of range and bearing observations, the derivative term in the gradient-based control

law can be computed explicitly using the uncertainty model given above. In terms of the ith sensor’s

range and bearing (i.e., polar) coordinates, zr
i and zb

i , respectively, with respect to a single target,

differentiation of the transformed covariance matrices yields:

∂

∂zr
i

TiRiTT
i = Ti




∂fr

∂zr
i

0

0 ∂fb

∂zr
i


TT

l ,

where, for this illustrative example using the given quadratic range-dependent uncertainty model,

the derivatives are:
∂fr

∂zr
i

= 2a2(ri − a1),
∂f b

∂zr
i

= 2αa2(ri − a1),
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and further

∂

∂zb
i

TiRiTT
i =

∂Ti

∂zb
i

RiTT
i + TiRi

∂TT
i

∂zb
i

=


 0 −1

1 0


TiRiTT

i + TiRiTT
i


 0 −1

1 0




T

.

Since the gradient is computed in polar coordinates (i.e., zr
i , zb

i ) centered about the target, the

direction of steepest slope is given by

∇zr
i ,zb

i
J(zr

1 , zb
1, . . . , z

r
M , zb

M ) =
∂J

∂zr
i

ezr
i

+
1
ri

∂J

∂zb
i

ezb
i
.

Hence, the gradient-based control law for the ith sensor is given in these polar coordinates by

ui(zr
i , zb

i ) =
(
− ∂J

∂zr
i

− 1
ri

∂J
∂zb

i

)T

.

All that remains is to convert the control signal from polar to Cartesian coordinates, done easily by

a simple rotation:

ui(zr
i , zb

i ) = Ti ui(zx
i , zy

i ) = Ti ui(zi) ⇒ ui(zi) = TT
i ui(zr

i , zb
i ).

The resulting configuration, for the case of a team of homogeneous sensors, (i.e., fr
i (·) = fr(·), ∀ i)

with uncertainty model parameters a0 = 0.1528, a1 = 15.625, a2 = 0.0008 and bearing scaling

parameter, α = 5, is depicted in Figure 2.4, where the motion of the agents are governed by cost

functions J1 and J2 (shown in (a) and (b), respectively). Identical initial positions of the sensors

of arbitrary placement were used in the two simulations, with the target starting at the origin and

randomly drifting along the positive x-axis.

Figure 2.4: Three sensors track a (biased) randomly walking target using the proposed gradient-
descent control law for costs (a) J1, (b) J2.
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The sensors converge to an intuitively symmetric configuration, where the three similar sensors

are uniformly distributed about the target at their optimal sensing distance. In the case of M = 3

agents, this configuration corresponds to the globally optimal sensor placement, with separation

between agents of 120o (or equivalently, due to the symmetry of the uncertainty, 60o) on a circle of

radius a1 centered about the target. (See Appendix B.)

Figure 2.5: Evolution of the cost for an illustrative simulation run. Comparison of the algorithms
shows that mobile sensors outperform stationary ones (i.e., have lower overall sensing uncertainty).
Selection of the fusion approach (either sharing local observations or locally filtered estimates) is a
design choice between performance and computation constraints.

A comparison of the performance under the two cost functions for this illustrative simulation run

is shown in Figure 2.5, and is contrasted to the scenario where sensors fixed at their initial positions

track the same moving target. It can be seen that mobility aids in reducing the uncertainty in the

state estimate on the average, independent of initial conditions. Further, as expected, the local

processing of measurements provides significant improvement over simply sharing observations, due

to the filter’s ability to incorporate previous measurements and predict target motion. If onboard

computation is limited, however, motion control based on simple observation fusion may serve as a

less computationally intensive alternative.

2.4 Extension to Imperfect Communication

One of the challenges faced by distributed systems is the need to have a communication infrastructure

in place to enable the sharing of gathered information. This communication overhead is precisely

the subject of much scrutiny in distributed and networked control systems research, which includes,
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for example, analysis of estimation processes when scheduling of observations is necessary due to

communication constraints.

The distributed framework presented thus far has assumed that complete communication is

possible without any degradation in the transmitted information. In practice, this assumption

does not always hold, especially in dynamic environments. Moreover, many distributed systems

connect information gathering sources via wireless networks, such as the case of teams of mobile

sensing platforms where wired communication links are impractical. In this manner, the objective

of improving the quality of sensed information merits the examination of the distributed sensing

task in the presence of imperfect wireless communication between agents, which is the subject of

this section.

As seen previously, the state of the sensor influences the quality of the observation. Similarly,

the communication quality can also be modeled to be affected by the sensor state. However, in-

stead of depending on the relationship between the sensor and the target process, the uncertainty

in communication is tied to the differences in state between sensing agents. As will be seen in

Section 2.4.2, these differing dependencies will yield a situation which requires a trade-off between

control for improved sensing and control for improved communication.

The homogeneous sensor observation model can be easily modified to include the effects of noisy

communication links, such as fading wireless channels [22]. Sensor i′ broadcasts its transformed

observation, Ti′yi′ , which is received by the ith sensor according to the following process:

ŷi,i′ [k] = Ti′yi′ [k] + vc
i,i′ [k] = Ti′Hi′x[k] + Ti′vi′ [k] + vc

i,i′ [k],

where vc
i,i′ [k] ∈ Rm is the communication noise in the received observation. In other words, as in

the perfect communication case, the ith sensor receives estimates from some or all of its teammates,

but in contrast, these estimates are perturbed by additive communication noise. Assume that the

communication noise across links is symmetric, i.e., vc
i,i′ = vc

i′,i, and that there is no noise for

self-transmissions (i.e., vc
i,i = 0).

Denote the covariance matrix of the communication noise vector, vc
i,i′ , as Ci,i′ ∈ Rm×m. This

communication noise is often dependent on a variety of issues such as transmission power and

environmental effects [61, 22], and as such, is modeled to have a spatial dependence of the general

form gc(xi,xi′), which explicitly highlights the possible dependence on the states of the receiving

and transmitting agents. Given this model, the communication noise covariance matrix is:

Ci,i′ =




gc(zi, zi′) 0 0

0
. . . 0

0 0 gc(zi, zi′)


 =




(
σc

i,i′
)2 0 0

0
. . . 0

0 0
(
σc

i,i′
)2


 ,
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where the uncertainty in the received observation due to communication noise is denoted
(
σc

i,i′
)2.

Given the measurement and communication channel models, the modified fusion equation for

the covariance of the estimate error is [22]:

P−1
i,fused =

M∑

i′
(Pi′ + Ci,i′)

−1
,

where Pi,fused is the ith sensor’s fused estimate error covariance matrix. Note that in the previous

perfect communication case (and assuming complete communication between all agents), the sensor

fusion process results in identical fused estimates and covariance matrices for all agents, due to the

fact that each agent is essentially acting as the central fusion node. However, in the current scenario,

since the information collected by each sensor is no longer identical to that of its teammates because

of the communication noise, Pi,fused will be different for each sensor, thereby requiring the additional

identifying subscript i.

The cost function J3,i to be minimized is once again the determinant of the fused uncertainty

matrix, given as:

J3,i = detPi,fused = det

(
M∑

i′
(Pi′ + Ci,i′)

−1

)−1

. (2.4.1)

Similar to the cost functions J1 and J2, this cost function is also dependent on the sensor states,

following along the lines of the derivations of the previous section to yield the following result:

Proposition 3 The gradient of J3,i with respect to the ith sensor’s coordinate, zl
i, is given by:

∂J3,i

∂zl
i

= |Pi,fused|tr
[
Π

∂

∂zl
i

(
TiRiTT

i

)
ΠT Pi,fused

]

+
M∑

i′ 6=i

|Pi,fused|tr
[
Φi,i′

∂Ci,i′

∂zl
i

Φi,i′ Pi,fused

]
,

where Φi,i′
4
= (Pi + Ci,i′), Π is chosen according to whether simple observations (i.e., Pi =

TiRiTT
i ) or locally filtered measurements (i.e., Pi = ∆i−KiTiHi∆i) are fused, and the derivative

of the communication noise covariance matrix is given by:

∂Ci,i′

∂zl
i

=




∂
∂zl

i

gc
i,i′(zi, zi′) 0 0

0
. . . 0

0 0 ∂
∂zl

i

gc
i,i′(zi, zi′)


 .

Proof: The matrix calculus identities are employed once again, as done previously, noting that

the communication noise term vanishes when considering self-transmission, and persists otherwise.
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The reader is referred again to Appendix A for the detailed algebraic calculation.

Given this expression for the gradient, the gradient-based control law can easily be constructed

for the case of imperfect communication. Taking the partial derivative components, construct the

control vector as follows:

ui(zi) =
(
−∂J3,i

∂z1
i

∣∣∣
zi

. . . −∂J3,i

∂zs
i

∣∣∣
zi

)T

,

evaluated at the current state of the ith sensor.

The first term in the derivative term is exactly the expression derived for the control law for the

perfect communication case. The second term represents the effect of the communication noise from

each of the ith sensor’s teammates. The component of the control law in the lth coordinate (i.e., the

derivative computed in Proposition 3) comprises these two terms:

ul
i(zi)

4
= −∂J3,i

∂zl
i

∣∣∣∣
zi

=

(ul
i)

sensing

︷ ︸︸ ︷
|Pi,fused|tr

[
Π

∂

∂zl
i

(
TiRiTT

i

)
ΠT Pi,fused

]

+
M∑

i′ 6=i

|Pi,fused|tr
[
Φi,i′

∂Ci,i′

∂zl
i

Φi,i′ Pi,fused

]

︸ ︷︷ ︸
(ul

i)
comm

,

such that the control vector can be decomposed easily into

ui(zi) = (ui)
sensing + (ui)

comm
.

The sensors’ control inputs are clearly governed by two influences, namely that of applying control

to improve sensing quality combined with applying control to improve communication performance.

Note that these effects, as they appear in the context of the control signal, are decoupled. This point

is examined more closely in the Section 2.4.2.

2.4.1 Case Study: Distributed Target Tracking with Imperfect Commu-

nication

In the previous construction of the distributed target tracking example, perfect transmission of

observations was assumed. This section examines the behavior of the system in the presence of

imperfect communication.

Many different models exist for the internodal communication noise function, gc(·), which may

include the effects of transmission distance and power, frequency, quantization sizes, and number of

bits per transmission over the channel (see [22] and references therein). As an illustrative example,
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choose a noise model where the signal-to-noise ratio (SNR) obeys a general inverse-square law [61]:

gc(xi,xj) =
(
σc

i,j

)2 =
1

SNR
, where SNR =

µ

d2
i,j

,

for µ > 0 a constant communication noise parameter and di,j
4
= ‖xi − xj‖2 is the distance between

sensor i and sensor j.

Applying this communication noise model, the derivative component in the control signal is

dependent on the distance, di,i′ , given by

∂Ci,i′

∂zl
i

=




∂
∂zl

i

gc
i,i′(di,i′) 0

0 ∂
∂zl

i

gc
i,i′(di,i′)


 ,

with
∂

∂zl
i

gi,i′(di,i′) =
2
µ

∂di,i′

∂zl
i

=
2
µ

(
zl
i − zl

i′
)
.

The performance of the modified gradient-based control law for the task of target tracking with

two mobile sensors is depicted in Figure 2.6, with communication parameter µ = 1000 and mea-

surement uncertainty model given in the perfect communication example (see Section 2.3.3). The

sensors start at arbitrary initial conditions, some distance away from the randomly walking target.

The resulting configuration of the sensors under communication constraints is shown overlaying the

outcome under the same initial conditions without communication noise.

Figure 2.6: Two sensors track a randomly walking target: With imperfect communication (dark),
or with perfect communication (light).

Clearly, the communication constraint biases the mobile agents to remain closer to one another
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than in the case where perfect inter-agent communication is assumed. This behavior results in a

compromise of sensing performance. Note that, given the above sensing and communication models,

the sensing agents maintain their relative bearing at ±π
2 radians for optimal sensing. Different

communication models may yield configurations where the agents maintain their optimal sensing

distances and instead reduce their relative bearing to the target [22].

2.4.2 Relationship between Sensing and Communication

One can next investigate how performance, measured by the cost function Equation 2.4.1, is related

to communication and sensing parameters. Varying the parameter µ (which is an aggregate measure

of communication characteristics) results in Figure 2.7 for the case where multiple sensors observe

a single target. As µ becomes small (communication noise becomes large) no useful information is

exchanged amongst the sensing agents. Thus, each agent tends to act independently, and none of

the benefits of cooperative sensing is realized. For high values of µ (the communication link quality

is very good), overall cost is reduced by the use of an increasing number of sensors. Interesting

behavior appears to occur in the intermediate range, where there is a trade-off between the sensing

and communication objectives.

Figure 2.7: Sensing and communication performance tradeoff as a function of communication pa-
rameter, µ.

Further insight into this trade-off can be found by varying the optimal sensing distance (a.k.a.

“sweet spot”), a1. As shown in Figure 2.8, reducing the optimal range to a target has the effect of

improving the overall system performance – the smaller this distance is, the closer the cooperating

sensors can operate while maintaining a wide-enough perspective. Conversely, while large separations

between sensors provide sufficiently different views of the target, communication noise increases
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commensurately. Clearly, the choice or design of sensors plays a role in the overall performance of

the mobile sensing network.

Figure 2.8: Sensing and communication performance tradeoff as a function of sensing sweet spot, a1

2.5 Extension to Classification

Estimation, as presented in the previous sections, is at the level of processing of sensory data. As

interest in endowing sensing agents with more intelligence increases, a logical extension of the state

estimation problem is that of classification of processes.

A wide class of situations require that collected data be used to identify the category of the

observed process, including applications of target identification and shape classification. As done in

the context of improving the state estimate by use of mobility, an analogous examination of utilizing

motion control to improve the classification performance can be conducted.

Hence, the problem statement for the classification task presented in this section can be captured

as follows. Given measurements of the state of a target, how should the sensors move in order to

improve their overall ability to correctly classify a single target? To address this question, first a cost

function is developed which evaluates the quality of the classification. The intuitive choice is the

probability of error in classification, denoted pe, which describes the likelihood that the categorization

made from measurements is not the true class of the target.
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2.5.1 Classification Probability

Formulation of the expression for pe is done in a general manner, but emphasis will be on the binary

hypothesis problem, where there are two classes (e.g., heads or tails, 0 or 1, friend or foe). Much

literature already exists for this class of problems (e.g., see [62]), and further, multiple alternative

problems are often treated as extensions of the two-class scenario [62, 63].

Let C denote the set of N classes, i.e., C = {c1, . . . , cN}. For instance, in the binary hypothesis

scenario, N = 2 represents examination of two classes such that c1 and c2 might correspond to, for

example, “friend” and “foe,” respectively.

Following [63], the different hypotheses are represented as:

cj : p(y|xj) = N (xj , Σj). (2.5.1)

Here, y represents the single resulting fused estimate arising from the sensor fusion process, such as

the inverse covariance Kalman filter described in the previous section. Describing Equation 2.5.1

in words, if the target is a member of class cj , the measurements are distributed normally with

covariance Σj and centered about the true state xj . In addition, xj itself is also a random variable

whose distribution may depend on the class cj . Consider in particular the case where the probability

distributions of members of a class are also random variables:

p(xj) ≡ p(x|cj) = N (x̄j ,Λj), (2.5.2)

where x̄j and Λj represent the mean and covariance of the distribution of members in class cj .

Classification decision rules are assumed to be known in advance. The rules defining the bound-

aries between classes can be learned, or determined from first principles. In either case, denote the

region in measurement space where cj is the correct class by Ωy,j and its complement by Ω̄y,j .

With the above definitions in mind, following [62] the probability of error in classification can be

expressed as:

pe =
N∑

j=1

p(error|cj)p(cj)

=
N∑

j=1

p(cj)

(
1−

∫

Ωy,j

p(y|cj) dy

)

= 1−
N∑

j=1

∫

Ωy,j

p(y|cj)p(cj) dy,

where p(cj) represents the a priori probability of the target being in class cj , and
∑N

j=1 p(cj) = 1.

Note that the probability of correct classification, pc, is related to pe by pe = 1− pc. In the case
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of many classes, it is easier to investigate the probability of correct classification. When the a priori

class distributions are independent of the measurements, the utility function to be maximized is:

pc =
N∑

j=1

p(cj)
∫

Ωy,j

p(y|cj) dy. (2.5.3)

The goal is to find an expression p(y|cj), which relates the probability distribution of the mea-

surements with a particular class. By definition of marginal probabilities,

p(y|cj) =
∫

p(y, x|cj) dx =
∫

p(y|x, cj)p(x|cj) dx, (2.5.4)

where the second equation comes from simple application of Bayes’ rule.

For a particular class cj , Equation 2.5.4 can be rewritten to incorporate the relationship between

target state x and the jth class cj :

p(y|cj) =
∫

p(y|xj)p(xj) dxj . (2.5.5)

where xj is introduced as the nuisance parameter [63]. Thus Equations 2.5.3 and 2.5.5, which

depend implicitly upon the sensors’ states, define a utility function whose maximization over the

set of possible sensor motions leads to the best classification performance of a team of cooperating

mobile sensors.

2.5.1.1 Gaussian noise and class distributions

In the particular case where the sensing noise is Gaussian and the class distributions are Gaussian,

the following expressions can be obtained from Equations 2.5.1 and 2.5.2, respectively:

p(y|xj) =
1

(2π)
n
2 |Σj | 12

exp
(
−1

2
(y − xj)T Σ−1

j (y − xj)
)

,

p(xj) =
1

(2π)
n
2 |Λj | 12

exp
(
−1

2
(xj − x̄j)T Λ−1

j (xj − x̄j)
)

.

such that Equation 2.5.4 becomes:

p(y|cj) =
∫
N (xj ,Σj) N (x̄j , Λj) dxj

= Ny (x̄j , (Σj + Λj)) ,

utilizing the fact that the integral of the product of Gaussians is itself a Gaussian distribution [64].

Thus in this specialized case, the utility function to be maximized (the probability of correct
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classification) is given by:

pc =
N∑

j=1

p(cj)
∫

Ωy,j

Ny (x̄j , (Σ + Λj)) dy. (2.5.6)

2.5.2 Relationship between Estimation and Classification in the Gaussian

Case

In general, the computation of the probability of correct classification is challenging, even when done

numerically [64]. Optimization over sensor positions in order to determine the best trajectories of

the sensors further renders the computation more challenging.

However, an understanding of the behavior of Equation 2.5.6 can be attained by investigating its

dependence on the sensor states. Note that the covariance of the target estimate is affected by sensor

motion, due to the spatially dependent measurement noise. Before proceeding, the following theorem

is presented as it forms the basis for a duality principle that simplifies the task of maximizing the

utility function.

Theorem 2.5.1 Let the scalar-valued function f : Rn×n → R that operates on a matrix A ∈ Rn×n

be given as:

f(A) =
∑

λ

∫
N (A) dz,

where λ is a constant, z ∈ Rn, and

N (A) =
1

(2π)
n
2 |A| 12

exp
(
−1

2
zT A−1z

)
.

Then, given that A and B ∈ Rn×n are positive definite, the following scalar-valued inequality holds:

f(A + B) < f(A).

Proof: Examination of the function, f , applied to the perturbed matrix A + B yields that

N (A + B) =
1

(2π)
n
2 |A + B| 12

exp
(
−1

2
zT (A + B)−1

z

)

<
1

(2π)
n
2 |A| 12

exp
(
−1

2
zT (A + B)−1

z

)
,

noting that scalar determinants in the denominators are related by |C + D| > |C| for C and D

positive definite [57]. Further, use of the identity

(
C−1 + D−1

)−1
= C − C (C + D)−1

C,
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and the fact that A and B are nonsingular allow further simplification:

N(A+B) <
1

(2π)
n
2 |A| 12

e
− 1

2 zT
“
A−1−A−1(A−1+B−1)−1

A−1
”
z

< N (A) e
1
2 zT

“
A−1(A−1+B−1)−1

A−1
”

z

< N (A).

The last inequality is seen by observing that a quadratic form is always positive, and hence, the

exponential factor must be greater than or equal to identity. Noting that f is the integral over

positively valued N , the proof is complete.

Theorem 2.5.1 leads to the conclusion that the probability of correct classification, pc, is inversely

related to the sum of Σj and Λj , which are both positive definite. Hence, the following corollary

follows immediately:

Corollary 1 In the case of Gaussian sensor noise and Gaussian class distributions, maximization

of the probability of correct classification, pc, is achieved by minimization of the determinant of the

estimate error covariance matrix |Σj |.

Proof: Note that the class distribution covariance Λj is independent of sensor positions, and

so examination can focus on changes in Σj due to the motion of the sensors. Define A greater than

B (i.e., A > B) for A,B ∈ Rn×n and positive definite if and only if the matrix A−B is also positive

definite. Hence, with this relationship defined for for A,B positive definite matrices,

|A| > |B| ⇔ A > B,

or in other words, decreasing a positive definite matrix, such as Σj , decreases its determinant. Thus,

the inverse relationship between pc and |Σj | from application of Theorem 2.5.1 is immediate.

Note that the objective for distributed optimal estimation tasks is to choose the collective team

motions to minimize the estimation cost function, commonly given by the determinant of the estimate

error covariance matrix. For this reason, we term the statement of Corollary 1 the estimation-

classification duality principle.

Thus, for the special case of Gaussian noise and class distributions, there exists a direct con-

nection between the classification problem and the task of estimating the target state. This result

simplifies the distributed classification objective to one of distributed sensing, for which many pos-

sible approaches exist, including the gradient-based motion control laws developed earlier. These

methods yield the optimal sensor motion paths and configurations for estimating or tracking targets,
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which are, for the given formulation, the same paths and configurations for optimal classification of

targets.
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Chapter 3

Control for Decision Making

Beyond the collection and processing of sensory data, intelligent agents may be endowed with the

ability to make decisions. Decisions represent a distillation of information contained in observations,

and enable the autonomous system to perform a greater variety of tasks.

One can extend the notions of the previous chapter from using feedback control to improve the

quality of sensing to that of using control to improve the quality of decision making. As before, the

goal is to define both the characteristics of the decisions to be made as well as a measure of the

quality of those decisions.

Traditionally, decision making systems have simply taken sensory information and reasoned about

their environment, enabling them to follow this with an action of some sort. Of interest is an

understanding of how such a system can take an action in order to improve the decision.

In order to begin this investigation, formulation of the decision problem such that it depends on

the current mode or state of the system is necessary. Furthermore, the temporal notion of decisions

should be captured by this formulation to characterize the “dynamics” of these decision making

processes.

A simple example of using feedback to drive the decision making process is the task of changing

lanes. Consider a driver who wishes to move to an adjacent lane. The driver may first glance

(i.e., the control action) at the rear-view mirror to see if any vehicles are present within that view.

Depending on what is visible in that view, she can surmise the presence or absence of an obstacle,

or determine that another observation is necessary. Upon deeming another perspective necessary,

she may take a look at the side-view mirror, again followed by the decision of whether it is safe to

changes lane or not. Finally if uncertainty remains, an additional action of checking the vehicle’s

“blind spot” by turning her head may be taken to make another observation. The decision to change

lanes can now be made with high degree of confidence.

Note that in the above problem, there are various aspects which make this problem interesting.

First, the question of the sequence of looks is related to the type of information attained and the

speed of the action needed. Further, it is possible to mistakenly believe a vehicle is present when in
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fact it is not, and vice versa, due to uncertainty in observations (e.g., dirty windows, poor visibility,

or limited visual acuity). Additionally, depending on how conservative the driver is, she may be

less willing to accept greater uncertainty in her decision regarding the safety of the lane change,

characterized by the need to take more observations. A more reckless driver, for example, may make

a premature decision after simply glancing in the rear-view mirror.

This example highlights the various components of decision making that are sought in this

research: the sequential nature of the problem, the fact that the uncertain environment leads to

imperfect observations, and the role of the confidence in the decision. Once a proper understanding

of the relationship between these factors is achieved, one can begin to examine how the decisions

are affected by appropriate injection of control into the decision making system.

This chapter develops a framework for examining decision making systems that facilitate a natural

study of the role of feedback in these processes, and presents a formulation of a search problem as

a canonical example for this investigation. Delving into the relationship between decisions and

feedback control yields a demonstration of the generality of this framework, as it pertains to a

diverse array of search-related problems.

Section 3.1 lays the foundation for examining how decisions are made in a sequential fashion.

Information is accumulated and integrated over time, providing a manner of dynamics for these

decision processes. Available and applicable tools from statistical learning methods, such as the

Sequential Probability Ratio Test, provide an approach to modeling decisions in a sequential frame-

work, which facilitates the introduction of an example of a search problem as it pertains to decision

making.

A class of search tasks is cast in a probabilistic context in Section 3.2, motivated by the fact that

knowledge is imperfect due to uncertainties in the environment, modeling and information gathering

modalities. The structure of this search problem is presented by developing the search context (e.g.,

the environment), a general model of target detection that accounts for imperfect information, and

the probabilistic representation of these components, which enable the formulation of the search

objective as a decision task.

Section 3.3 develops the Bayesian filter methodology that takes advantage of the sequential nature

of the search task. The construction of the search problem as a decision (as presented in the previous

section) facilitates the derivation of analytic expressions which represent the sequential evolution of

the decision process as a function of the system parameters such as the detection model and the

initial state of the decision. The closed-form expressions encourage and enable further analyses of

the decision’s evolution, illuminating various facets of this search problem, thereby enabling the

researcher to attain additional insight.

The work to develop the framework presented in the previous section culminates in Section 3.4,

which investigates the role of employing different strategies for controlling or directing the search.
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The benefit of utilizing information in a feedback manner is clearly demonstrated in several contexts.

Furthermore, these search strategies demonstrate the applicability and generality of this decision

making construction, as it is shown to be relevant to conventional robotic search objectives, such as

mobile agent search and rescue, as well as those not traditionally treated in a robotic context, such

as modeling of behavior and human visual search.

3.1 Dynamics of Decision Making

Decision theory allows one to examine the process of decision making given observations. As de-

scribed in the introduction, this process has been studied extensively in various communities, ranging

from statistical learning and pattern recognition to signal detection and estimation. In these fields,

the canonical construction is to inspect the decision of a binary hypothesis, where either an affirma-

tive or null result is possible.

The process of evaluating and classifying a set of observations has traditionally been based on

a binary hypothesis test, which assumes that a large set of observations has already been obtained.

In essence, the computation of the decision rule or threshold, which is used to determine the class

of subsequent observations, is a batch process after collection of many samples from the experiment

or process. Various treatments of classical decision theory are readily found in [62, 63].

However, this requirement of performing a batch computation is a departure from the desired

objective of gathering information sequentially and reasoning about the observation in real time. As

motivated previously, this notion of sequential or iterative decision making is necessary for addressing

dynamic systems where information changes over time. This necessity led to the development of

decision-theoretic tools, including the Sequential Probability Ratio Test (SPRT), which provides a

mechanism for integrating information over time and making a decision upon aggregation of sufficient

information. In this section, a review of the SPRT and its construction are presented, along with a

discussion on the metrics of performance of the resulting decision. These sequential decision making

notions are used to introduce and motivate an examination of the search problem.

3.1.1 Sequential Probability Ratio Test

Developed by Wald and Wolfowitz [41, 42], the SPRT considers the decision of an alternative choice

against the null hypothesis. As in the classical binary decision case, consider the task of choosing

either hypothesis H = 1 or H = 0. In the lane-changing example, this decision problem might

be equivalent to determining whether it is safe (H = 1) or not (H = 0) to move to the adjacent

lane. Given a set of n observations, Dn = {d1, . . . , dn}, the classical approach is to represent the

joint probability distribution of the measurements, Pr(d1, . . . , dn), in the standard ratio test of a
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hypothesis:

L(Dn)
4
=

Pr(d1, . . . , dn|H = 1)
Pr(d1, . . . , dn|H = 0)

(H = 1)

T
(H = 0)

L̄,

where Pr(d1, . . . , dn|H = 1) represents the probability of obtaining the data given that the hypoth-

esis is true, and similarly for Pr(d1, . . . , dn|H = 0) given it is false. The constant, L̄, represents the

decision rule in the classical setting, such that a value of this ratio greater than the threshold corre-

sponds to a decision accepting the hypothesis and vice versa. Notions of optimality in these types

of decisions pertain to the appropriate selection of this threshold, L̄, such as in the Neyman-Pearson

criterion [62].

In the context of the Sequential Probability Ratio Test, however, two decision thresholds are

considered such that given t < n observations:

B <
Pr(d1, . . . , dt|H = 1)
Pr(d1, . . . , dt|H = 0)

< A, (3.1.1)

where A and B (B < A) are positive constants. For ratio values such that the above expression

is true (i.e., B < L(Dt) < A), an additional observation is required, whereas for L(Dt) < B or

L(Dt) > A, no additional measurements are taken and the decision process is completed with

acceptance or rejection, respectively, of the alternative hypothesis, H = 1.

Continuing with the analysis, independence of the observations (and taking the logarithm) yields

log L(Dt) = log
Pr(d1|H = 1)× · · · × Pr(dt|H = 1)
Pr(d1|H = 0)× · · · × Pr(dt|H = 0)

,

=
t∑

i=1

log
Pr(di|H = 1)
Pr(di|H = 0)

4
=

t∑

i=1

zi,

such that the decision task described by Equation 3.1.1 becomes

log B <

t∑

i=1

zi < log A.

Thus, as each observation is obtained in sequence, the cumulative sum of the probability ratios is

computed and tested against the thresholds, (A,B), resulting either in termination of the decision

process or the necessity to obtain an additional measurement.

3.1.1.1 Measures of Performance of Decisions

Given the parameters of the decision test, the sequential decision formulation provides insights into

the relationship between the power of the test (i.e., error probability rates), the confidence of the
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resulting decision, and the average number of observations required until a decision is reached.

These characteristics define a multitude of metrics to evaluate the performance of the sequential

decision task, such as time till decision, asymptotic confidence thresholds, rate of change of the

belief function [41].

Given the power of the test and the thresholds at which decisions occur, one can determine the

average or expected number of observations required to achieve a decision. This time till decision,

denoted tD, makes for an obvious measure of performance, as many dynamic tasks often require

decisions and subsequent actions to be made in a timely manner. Other metrics mentioned above

can be related to tD, as a trade-off relationship exists between an increase in decision confidence

levels or a reduction of error rates with a likely increase in the time until the decision is made. In the

context of the decision thresholds, (A,B), of the sequential decision process, the time till decision,

tD, is given by

tD = min {arg(B(t) = A), arg(B(t) = B)} .

As time till decision will be the most relevant measure in the dynamic decision tasks in this chapter,

it will hereafter be used to quantify the performance of the decision system given the parameter

set. In the context of search and detection problems, this metric of time-to-decision is akin to the

time-to-detection measure, as seen in the search theory literature [34].

Figure 3.1: Schematic of the evolution of three decision processes, with varying values of time till
decision. Feedback can be used to improve the performance, i.e., reduce the time until a decision is
made.

An illustration of this metric for schematic evolutions of different decision processes are given

in Figure 3.1. All three example decision processes result in the selection of the null hypothesis at

varying times, tD1 < tD2 < tD3 . One mechanism for improved performance (defined by a reduction

in the time necessary to make a decision) is to inject appropriate feedback control into the dynamic

decision process. Mobility of the searcher is used to apply this control in focusing where to search, but
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other forms of feedback, e.g., modulation of sensor characteristics, can be used to answer additional

questions such as how to search. The analysis and application of such feedback is the objective of

the research presented in this chapter.

3.1.2 Application of Sequential Decision Making to Search

As introduced in the lane change example, a general application of sequential decision making is that

of search, where the objective is to determine the presence of a target and its location in a search

region, or determine that it is otherwise absent from the space. Search is intrinsically a sequential

decision making problem, as illustrated by the lane-changing example, that requires observations at

different times and places in order to gather information relevant to making a decision about the

state of the environment.

The goal in a physical search problem is to generate the search paths in uncertain environments

that best enable the searcher to locate a target (perhaps among other objects) using one or more

mobile sensor platforms, possibly under resource constraints [28, 29, 30]. As discussed in Chapter 1,

the above search problem serves a wide variety of applications and has thus been extensively studied

by a variety of research communities.

The task of detecting a object or target in a region may be categorized by different aspects

of the search problem [35]. A classification according to the model of the target dynamics can be

represented by three distinct categories. A type I search represents the case where the target remains

stationary, such as an injured person in the case of a search-and-rescue objective or land mines in

demining operations. Alternatively, the target may have some dynamics, where the target’s motion

is not intentionally designed to either help or hinder the detection process by the searcher. These

Type II search tasks include scenarios where the target is unaware it is being sought after (as in the

case of searching for vehicles in adjacent lanes in the lane-changing example), or scenarios where

the target’s motion is due to environmental disturbances (e.g., a life raft drifting in the ocean) [38].

Classification as a Type III search is applicable for situations where the target is adversarial and

employs motion to delay or prevent detection by the searcher [65]. Such tasks may include the

detection of an intruder by a security guard in a building or exploration by a predator in search

of prey. This taxonomy of search problems by the target dynamics is helpful for examining the

diverse applications of search theory in general. Investigations of Type I and II search scenarios

are explicitly presented in this thesis, noting further that the construction of the analytic formulas

and numerical studies focuses on the case of a single searcher of these types so as to develop an

intuition and understanding of the analysis. Study of noncooperative search as well as multiple

searchers, in addition to other extensions remains a promising area of future research; however, the

general search framework developed herein facilitates a straightforward means of examining this

latter case, requiring only that an appropriate probabilistic representation of these extensions be
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provided. Further discussion on these future directions can be found in Chapter 4.

The search problem described here may be generalized to a broader class of problems where

the choice of observations is controlled to best search for an object or outcome. For instance, the

scheduling of individual sensor nodes in a wireless sensor network [66] or the selection of the focus-of-

attention in visual systems [67, 45] can also be formulated as search problems, where a control policy

is generated to improve the information obtained by observations. The aim of the research presented

in this chapter is to provide a unifying framework for modeling, analyzing, and understanding search

in the context of decision-theoretic notions.

3.2 Probabilistic Search as a Decision

This section formulates the search task as a decision problem, examining the target’s presence or

absence in a hypothesis-testing framework. As will be shown, this framework incorporates the

various components of the search solutions proposed in previous works [34, 38] while enabling study

of a broader class of search problems.

3.2.1 Problem Setup

Consider a single searcher, denoted S, located at position xS in an environment A, which is rep-

resented by a discretized grid of |A| cells, such as the example depicted in Figure 3.2. Such a

discretization can be employed to capture either system characteristics such as limited range of the

detector or physical partitions of the environment such as rooms in a building. The theoretical

formulation generalizes to continuous representations of the environment; however, an emphasis on

the discrete framework is motivated by its intuitive appeal for sequentially arriving observations as

well as its practical advantage for implementation in applied systems.

Knowledge of the searcher’s whereabouts is assumed perfect to within the resolution of the

search space discretization. Each cell in the discretized search environment will be indexed by a

(a ∈ Z+ ≤ |A|), such that xS = a denotes that the searcher is currently in the ath cell. The searcher

is able to make a single detection observation in a given time step in a given cell. The mobile

searcher’s motion, which consists of either remaining at its present location or moving to a single

other cell within A, is governed by its control strategy, which will be subject of study in Section 3.4.

Denote the target’s location by xT , such that the expression “xT ∈ A” reflects the presence

of the target in the search space, and similarly “xT /∈ A” represents its absence. Furthermore,

“xT = a” and “xT 6= a” signify that the target is and is not, respectively, located specifically in

the ath cell. Additionally, a model of the target dynamics is captured by the target state transition

matrix, which represents the probability of the target transitioning from a given cell to another cell

(see Section 3.2.4 for more details).
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Figure 3.2: Example of discretized search region, A. The locations of the target, T , and the searcher,
S, are denoted xT and xS , respectively.

3.2.2 Search is a Decision Problem

The fundamental question the searcher is trying to answer is whether or not the target is present in

the search region. This task clearly poses a binary decision problem with the alternative (H = 1)

and null (H = 0) hypotheses defined as follows:

H =





0, if xT /∈ A,

1, if xT ∈ A.

The objective is now to determine the probability that the affirmative hypothesis is true, i.e.,

Pr(H = 1). This probability is a measure of the aggregate belief (ranging between 0 and 1) that

the target is present somewhere in the region A. In a similar manner, the individual cell belief

probability, Pr(xT = a), represents the probability that the target is specifically located in cell a.

This latter probability expression addresses the secondary question of identifying the location of the

target within A. Noting that the target can only occupy a single cell at any given instant, it can

be immediately seen (by the Law of Disjoint Probabilities) that the overall or aggregate probability

that the target is present in the search region is given by:

Pr(H = 1) = Pr(xT = 1 ∨ · · · ∨ xT = |A|) =
|A|∑
a=1

Pr(xT = a).

Before a search has begun and before any measurements have been taken, the prior probability

that the target is in A is defined to be Pr(H = 1)
4
= δ, for 0 ≤ δ ≤ 1. For example, a prior belief

value of δ = 1 indicates that the target is certainly present in the region, and the search problem

reduces to simply localizing the target, once detected, within the region. Nonunity values of δ,
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however, allow for the possibility that the target is not in the region to begin with. It is assumed

that the target does not enter or exit the search region throughout the duration of the search, i.e.,

the fact that xT ∈ A (xT /∈ A) at the start of the search implies that the target is (not) in A for all

time. The confidence in this prior belief is reflected in the evolution of the probability as a function

of observations (e.g., decreasing as null observations are received), and the ability to capture this

initial uncertainty is one of the advantages of the framework presented in this chapter.

3.2.3 Detection of the Target

A major reason for employing a decision-theoretic approach is because it admits the use of detection

sensor models that capture false alarms and missed detections. Such an approach is warranted as

detection of a target can only be guaranteed in a probabilistic sense because measurements are

generally taken in the presence of noise in practice. Consider d a binary random variable capturing

the detection state, which can take values of either 0 or 1 with some probability. This detection

variable represents the decision of whether or not the detection of a specific target has been made

locally within a given cell.

Augmenting the notation to address the search problem, define dt
al

to be the detection measure-

ment at discrete time step t taken in cell a. This subscript term, al, is included when referring to

the lth detection measurement (allowing for multiple measurements in a single cell) of the specified

cell a, and will be omitted otherwise when there is no ambiguity.

In this manner, the following detection model can be constructed for an imperfect detection

measurement process, given the presence or absence of the target in the cell:

Pr(dt
a|xT ) :





Pr(dt
a = 0|xT = a) = β,

Pr(dt
a = 1|xT = a) = 1− β,

Pr(dt
a = 0|xT 6= a) = 1− α,

Pr(dt
a = 1|xT 6= a) = α,

where α and β are the detection error probabilities for false alarms and missed detections, respec-

tively. These error rates quantify the noise characteristics of the observation, and for a given sensor

(α, β) can be determined experimentally or by sensor specifications. In the parlance of decision

theory, the detector model is nothing more than the likelihood function of receiving a measurement

given the state or hypothesis, and the error probabilities (α,β) represent the power of the decision

test for the sensor.

The statement of the search task can now be stated as follows: Given the detector model (α, β)

and the prior belief δ, determine the evolution of the belief that the target is present in region A as

a function of the observations made until time t, i.e., Pr(H = 1|Dt), where Dt = {d1, . . . , dt}. This
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belief evolution ultimately governs the decision of whether (and if so, where) the target is located

in A, thereby completing the search.

3.2.4 Case Study: Search on a Grid

An example of the search problem described above can be constructed as follows. This example

will be used repeatedly throughout this chapter. Consider the search space A given by a square

10 × 10 grid (see Figure 3.3), such that |A| = 100. A single mobile searcher is initially located

in cell (i, j) = (5, 8), and is equipped with a detector, characterized by its error rates (α, β) of

false alarms and missed detections, respectively, as per Section 3.2.3. The searcher’s initial belief or

representation of the prior probability that the target is present in A at the onset of search is given

by Pr(H = 1) = δ, which is divided up among the |A| cells according to some prior distribution.

For illustrative purposes, consider the example prior distribution depicted in Figure 3.3, which is

modeled as a discrete approximation to a Gaussian distribution, centered about the cell (i, j) = (1, 3)

with covariance values σi = 7 and σj = 15, and appropriately normalized such that
∑|A|

a=1 Pr(xT =

a) = δ. However, it is important to note that any form for the initial belief probability density

function (PDF), including multimodal and nonsmooth distributions, can be utilized due to the

general Bayesian formulation of this framework.

Figure 3.3: The search problem on a 10×10 grid, with prior distribution modeled as a discretization
of a Gaussian distribution with mean (1, 3) and covariances σi = 7 and σj = 15. The initial positions
of the searcher and target are (5, 8) and (4, 3), respectively.

Consider further a single target located in cell (4, 3) in the prescribed search region. Note that in

this example the initial belief, given by the distribution of δ in A, allocates the belief prior probability

incorrectly by attributing greater likelihood of finding the target in cells which do not contain the
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target, and vice versa. The robustness of the decision-based belief framework presented in this

paper is demonstrated by the eventual correction of this “bad guess” by sequential accumulation of

information.

The target dynamics, as described earlier, can be represented probabilistically in terms of its

state transition matrix. A stationary target (i.e., a search problem of Type I) is simply represented

by an identity matrix of dimension |A| × |A|, such that the probability of transitioning to any cell

other than its current location is zero (requiring a self-transition probability of unity). A dynamic

target of Type II will have more complex transition matrices, which will depend on the discretization

of the environment as well as on the constraints on target motion. For example, a target which moves

simply from one cell to the next following cell (defined by some ordering of the cells) is represented

by the transition probability matrix, Π:

Π = [pij ] =




0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

1 0 · · · 0




,

where pij is the probability of transitioning from cell i to cell j in the next time step.

As can be seen by this example, deterministic models for the target motion can be captured as

easily as probabilistic ones by these state transition probability matrix representations.

3.3 Discrete Bayesian Formulation

The use of Bayesian filters for autonomous applications is ubiquitous in the robotics community [40].

The primary reasons for their popularity are their applicability to general (i.e., non-Gaussian) prob-

ability density functions, as well as their inherent recursive formulation, such that arbitrary prob-

ability density functions (PDFs) can be maintained and updated in a relatively efficient recursion

algorithm.

3.3.1 Recursive Computation of the Cell Belief Probabilities

Introduced in the previous section, the probability distribution of interest is the belief function,

B(t), defined by

B(t)
4
= Pr(H = 1|Dt) =

|A|∑
a=1

Pr(xT = a|Dt). (3.3.1)

This expression shows that in order to compute the aggregate belief probability, given a sequence of

t observations, one must compute each of the individual cell belief probabilities. Note that Pr(xT )
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represents the PDF of the location of the target, xT .

Computation of the cell belief probability is done using Bayesian filtering [40, 39], which incor-

porates the propagation of the target PDF with an update step after an observation is received. The

prediction component of the discrete filter utilizes the discrete analog of the Chapman-Kolmogorov

equation (e.g., see [38]), given by

Pr(xt
T |Dt−1) =

∑

i

Pr(xt
T |xt−1

T = i)Pr(xt−1
T = i|Dt−1),

which multiplies the process model of the target, captured by Pr(xt
T |xt−1

T = i), with the target PDF

(i.e., the belief) of the previous time step.

The update step is performed by application of Bayes rule over the target probability distribution,

given the latest observation:

Pr(xt
T |Dt) =

Pr(dt
k|xt

T , Dt−1)
Pr(dt

k|Dt−1)
Pr(xt

T |Dt−1).

As can be seen by Equation 3.3.1, the computation of the observation update of the belief

probability function in an individual cell is required and it is given by:

Pr(xT = a|Dt) =
Pr(dt

k|xT = a, Dt−1)
Pr(dt

k|Dt−1)
Pr(xT = a|Dt−1),

where one can recognize the numerator term to be the detector model (i.e., likelihood function),

and Pr(xt
T = a|Dt−1) is the individual cell belief value determined at the previous time step, which

provides the recursion in the filter. The term in the denominator, Pr(dt
k|Dt−1), is the marginalization

of the measurement, and can be computed in closed form by

Pr(dt
k|Dt−1) =

∑

H={0,1}
Pr(dt

k|H, Dt−1)Pr(H|Dt−1).

Making use of the fact that

Pr(dt
k|H = 1, Dt−1) =

∑|A|
b=1 Pr(dt

k|xt
T = b, Dt−1) Pr(xt

T = b|Dt−1)
∑|A|

b=1 Pr(xt
T = b|Dt−1)

,

and that

Pr(dt
k|H = 0, Dt−1) = Pr(dt

k|xt
T 6= b,Dt−1) ∀b,
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the final expression for the update of the individual cell belief probabilities is determined to be:

Pr(xt
T = a|Dt) =

Pr(dt
k|xt

T = a,Dt−1) Pr(xt
T = a|Dt−1)

Pr(dt
k|xt

T =k,Dt−1)Pr(xt
T =k|Dt−1) + Pr(dt

k|H =0,Dt−1)(1−Pr(xt
T =k|Dt−1))

. (3.3.2)

Introducing the definitions

Ψ
4
= (1− dt)β + dt(1− β),

Φ
4
= (1− dt)(1− α) + dtα,

Ψ and Φ represent detections for when the target is present and absent, respectively, in the currently

observed cell. The expression, Equation 3.3.2, for the individual cell belief probability update

becomes

Pr(xt
T = a|Dt) =

Pr(dt
k|xt

T = a, Dt−1) Pr(xt
T = a|Dt−1)

ΨPr(xt
T = k|Dt−1) + Φ (1− Pr(xt

T = k|Dt−1))
. (3.3.3)

The terms in this expression can be described in the following intuitive manner. The numerator

represents the probability of receiving a detection measurement at time t in cell k times the prior

probability of the target’s presence, whereas the denominator contains the normalization constant

over all detection types. This recursive expression provides a compact and efficient way to update

the belief function at every time step as the searcher observes a sequence of unexplored and/or

previously visited cells. The benefit of its simplicity is seen both in analytic extensions and in

algorithmic implementations demonstrated in the following sections.

3.3.2 Closed-Form Expressions for Uniform PDFs

Simplification of the update expressions can be made under the assumption that the initial belief

probability density function is uniformly distributed. Given no prior knowledge of the distribution

on the target’s location, one can use uniform distribution to represent maximal uncertainty. In this

case where each of the initial (i.e., prior to any observations being taken) cell belief probabilities are

uniform (constant), it is possible to generate closed-form expressions for the evolution of the belief

function, parametrized by the number of measurements taken. These functions provide insight into

the search process, as well as form the foundation for computationally efficient algorithms.

For a sequence of null detections (Dt = 0) and for uniform prior probabilities, Pr(xT = a) =
δ
|A| , ∀ a, the overall belief probability is given by:

Pr(H = 1|Dt = 0) =
tβδ + (1− α)(|A| − t)δ
tβδ + (1− α)(|A| − tδ)

. (3.3.4)
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Recall the problem setup proposed in Section 3.2.4. The objective is to search for a target in the

10× 10 search space with the initial belief prior probability of δ = 0.5. Consider the special case of

a uniform prior distribution of this belief probability, as shown in Figure 3.4. The belief evolution

governed by Equation 3.3.4 can be studied as a function of the error rates, made possible by the

closed-form expression.

Figure 3.4: Illustration of uniform prior probability distribution. The initial belief (i.e., aggregate
probability) value is δ = 0.5, such that all cells contain δ

|A| probability.

Figure 3.5 plots, for different values of the false alarm rate α, the evolution of the belief function

for a searcher with a constant 10% missed detection rate (i.e., β = 0.1) while it searches a 10 × 10

array of cells. Alternatively, the dependence on the missed detection rate β is illustrated for this

sequence of null detections in Figure 3.6, with α = 0.5 held constant. Both Figures 3.5 and 3.6 are

enabled by the derived closed-form formulas, which give insight into how the belief function evolves

as a function of time and sensor characteristics. For example, the limiting case of no false alarms in

Figure 3.5 demonstrates that the possibility of having missed the target in the sweep of the search

space limits the total performance of the search. Similarly, increasing the rate of missed detections

reduces the confidence in the received null detections, as seen in Figure 3.6.

In the case of uniform priors, the derivative of the above expression can be taken explicitly to

determine the rate-of-change of the belief as a function of time step t:

∂

∂t
Pr(H = 1|Dt = 0) =

|A|(1− α)(α + β − 1)(1− δ)δ
[|A|(1− α) + tδ(α + β − 1)]2

.

The belief evolution for a consecutive sequence of null measurements followed by a nonnull measure-
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Figure 3.5: Evolution of B(t), given a sequence of null observations, Dt = 0, for varying α, constant
β = 0.1, δ = 0.5, and grid size, |A| = 100.

ment is often of interest (e.g., [40, 68]). This belief is given succinctly by

Pr(H = 1|dt = 1, Dt−1 = 0)

=
αβ(t− 1)δ + (1− β)(1− α)δ + α(1− α) (|A| − t) δ

αβ(t− 1)δ + (1− β)(1− α)δ + α(1− αD) (|A| − tδ)
, (3.3.5)

where again the advantage of such a closed-form expression is seen by the fact that its derivative is

easily computed:

∂

∂t
Pr(H = 1|dt = 1, Dt−1 = 0)

=
|A|α2(1− α)(α + β − 1)(1− δ)δ

[|A|(1− α) + (1− tα)δ(α + β − 1)]2
.

Figure 3.7 depicts the belief evolution for an illustrative example where a nonnull observation is

received by the detector during the course of the search (at t = 65), where the searcher sequentially

enters a new cell at each step. As can be seen, the perfect detector (i.e., α = β = 0) can immediately

decide that the target is present upon arrival of a nonnull observation, and thus the belief in this

case jumps to unity, which ends the search task. In contrast, since false alarms are possible with an

imperfect detector, only an incremental increase in the belief is registered with a positive detection,

and the search necessarily must continue as the desired confidence to make a decision has not yet

been reached.

The special case of uniform prior distributions is presented to simply demonstrate the structure



53

Figure 3.6: Evolution of B(t), given a sequence of null observations, Dt = 0, for varying β, constant
α = 0.5, δ = 0.5, and grid size, |A| = 100.

of the Bayesian framework; however, nonuniform prior belief probabilities are easily and efficiently

incorporated into the decision-based formulation in the general case, as is demonstrated by the

example in the following section.

3.3.3 Case Study: Search on a Grid, Revisited

Consider again the search problem constructed in Section 3.2.4, where the searcher moves through

the search region of size |A| = 100 seeking to determine the location of a single target if it is present.

Given the expressions for computing the evolution of the searcher’s belief as detections are sequen-

tially processed, the performance of different motions through the search region can be investigated.

These motion strategies govern the searcher’s trajectory (i.e., the sequence of visited cells), thereby

affecting the belief probability distribution through its observation updates. Two basic but näıve

approaches presented below are random search, where the next cell to visit is chosen randomly from

adjacent cells, and sweeping search, which executes parallel search tracks in exhaustively covering

the search region.

3.3.3.1 Random Search

Serving as a baseline strategy for comparison, a searcher employing a random walk strategy provides

a lower bound on the time to decision for any complete search, which is one that guarantees visiting

all cells at least once [34]. The selection of the next cell to visit, denoted kt, is chosen at random, such



54

Figure 3.7: Effect of receiving a nonnull observation at t = 65 on the evolution of the belief for the
perfect and imperfect detector.

that the distance between the current and next cell, ∆k = ‖kt− kt−1‖ is within the reachable set of

cells, ∆k < κ. The constraint κ may reflect dynamic constraints on the mobile searcher, representing

a limitation on the maximal cell-to-cell distance attainable in a single time step. Choice of the next

cell represents the searcher’s motion control signal, such that for the random walk strategy it is given

by:

kt = rand
∆k<κ

(k) (Strategy I),

where the rand function denotes the random selection of the next cell, given that it is a reachable

cell. Note that this strategy does not require knowledge of the belief distribution. Variations on this

strategy include biased random walk methods, where, on the average, the searcher may tend toward

some preferred direction such as the peak location of the prior belief distribution. Such an approach

may be useful for low computation, local sensing of the belief gradient, which may be relevant in

foraging scenarios or static source (e.g., odor, chemical plume) localization tasks.

Figure 3.8 depicts several instances of the evolution of the belief probability distribution using

the random search method for the example search task outlined previously. As can be seen, the

random approach leads to inefficient searches resulting in long waits until a decision is made. While

a decision can eventually be reached (e.g., in this example, after over 1000 time steps), it is evident

that different approaches can be utilized to reduce this time till decision.

3.3.3.2 Sweeping Search

The sweeping approach, where the searcher moves from one cell to the next in an incremental fash-

ion, represents the classical Boustrophedan searching strategy used in traditional robotic coverage

algorithms [69]. The sweeping search, like the random search, also does not use the distribution

of the belief in selecting the next cell to visit. The sweeping search strategy is represented by the
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Figure 3.8: Illustration of belief probability distribution evolution for a single searcher randomly
walking through the example search space to determine the presence of a stationary target. The
random walk search strategy results in long times-till-decision but can be used as a limiting case in
examining the performance of different search strategies.

following control signal

kt = kt−1 + 1 (Strategy II),

where the next cell to visit is simply the next cell according to some ordering of the cells (e.g., cells

in a grid numbered sequentially top-to-bottom, left-to-right). The changes in the belief probability

distribution for a simulation using the sweeping search strategy is shown in Figure 3.9. The problem

setup is, once again, the same as presented in Section 3.2.4.

As in the random search, the sweeping approach discussed above is also inefficient in search, as

much time is spent examining cells with low chance of containing the target. The result is that

many observations are required before a decision regarding the target’s presence can be made, such

that the large time till decision is impractical for most decision making contexts

One advantage of the sweeping approach is that the coverage of the region is done in linear

time and distributes the number of repeated visits to a specific cell in the context of fairness (i.e., a

cell will be revisited only after all other cells have been visited). However, in the presence of noisy

detections, multiple measurements in particular cells, resulting in a biased allocation of observations,

may often be beneficial for reducing the uncertainty present in those cells.

The random walk and sweeping strategies generate search paths that ignore any available current

or updated information about the belief of the target’s presence. As such, these approaches do not

offer much in the way of performance, as the time until decision are orders of magnitude larger when

compared to strategies (see Section 3.4) which do take advantage of this information in a feedback
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Figure 3.9: Illustration of belief probability distribution evolution for a single searcher executing
sweeping search in example search space to determine the presence of a stationary target. The
sweeping search strategy, like random search, also results in long times-till-decision.

manner. Instead, the random walk and sweeping methods can serve as lower bounds on performance

(measured by the time until a decision is made) for the class of strategies that do take the current

belief into account in determining search trajectories [33, 34]. Clearly, the use of feedback to control

and guide the searcher’s motion should affect how quickly the search task can be completed, which

motivates the investigation into the role of control in improving the decision making process.

3.4 Control Strategies for Decision Making

The framing of the search problem as a sequential decision problem enables analysis of the decision’s

temporal evolution. However, the analysis thus far has only considered the role of the searcher’s

state on the search process passively, rather than providing a method for governing the dynamics

of the searcher’s state in future time. In other words, the question of how to modify the search

trajectory to improve the quality or performance of the decision making task requires application of

feedback control.

Using the formulas for belief evolution, one can evaluate different search control policies with

respect to their ability to improve the decision making performance. The task of generating this

policy defines the search path control problem. This section examines several approaches to address

this task, ranging from intuitive and known methods to several novel search strategies which are

facilitated by the decision making framework presented in this chapter. In addition to being relevant

to the target search problem studied here, these novel search strategies also offer insight into other
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search problems that arise in a variety of fields, including visual search and sensor networks.

Of importance in any sequential decision task is the specification of the termination criteria.

An additional advantage of the decision framework proposed in this chapter is that it intrinsically

defines the conditions for terminating the search. More specifically, the search continues as long as

the value of the belief function, as defined by Equation (3.3.1), lies within threshold values, A and B

(0 ≤ B < A ≤ 1). A belief threshold value of A = 1 (B = 0) requires that the search terminate only

when the searcher is absolutely certain that the target is present (absent). These decision thresholds

offer additional degrees of freedom in the search problem definition. The construction of the search

problem has the form of the sequential hypothesis-testing methodology described by the Sequential

Probability Ratio Test (as described in Section 3.1.1) developed by Wald and Wolfowitz [42]. In the

SPRT-like framework, observations are gathered as long as there is ambiguity in the acceptance or

rejection of the hypothesis, which, in the case of the search task, is the determination of the presence

or absence of the target within region A according to the thresholds A,B.

These thresholds for specifying the end of the decision process lead to a practical and ubiquitous

measure of the decision task performance given by the time until a decision is made. In many

applications, this measure may represent the goal of making a decision in minimum time. Using

this time till decision as the metric for the proposed search task, a comparison of different control

strategies can be conducted, perhaps weighed against other characteristics such as their computation

requirements and complexity.

Each search control strategy described below specifies which cell, kt, to visit next at time t, given

the sequence of previous observations up to time t− 1, Dt−1. Where relevant, dynamic constraints

on the searcher may limit the reachability of cells and require that the next cell be within some

distance κ from the current cell, such that ∆k
4
= ‖kt − kt−1‖ < κ for a given choice of kt, where ‖ · ‖

denotes an appropriate distance metric (e.g., 1-norm or Euclidean distance). Furthermore, since, by

construction, the entire probability distribution function, Pr(xT |Dt−1), at time, t−1, is known, the

cell containing the maximal cell belief value, kt−1
max at time, t− 1, can easily be determined and used

to guide the selection of kt.

3.4.1 Look Ahead Search

In optimal path-planning, the goal is to generate the search trajectory along which an objective

function is maximized. As is well known, the solution to such problems is often computationally

expensive, if not intractable [70]. In fact, the problem of search on a discrete grid to minimize the

time to detection is NP -hard [71]. Choosing probability of detection as the objective function to be

optimized, as in, e.g., [40], can also be shown to be NP -complete. Hence, given the computational

complexity of the task, suboptimal solutions (e.g., approximation or heuristic methods) are sought

to solve the search path-planning problem within a practically relevant time.
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Table 3.1: Pseudocode for the look ahead algorithm with finite horizon w

function LookAhead(current cell kt−1, belief Bt−1, window size w)
returns: optimal policy, πt−1, and utility, U(πt−1).

Define the set of allowable actions (e.g., list of reachable cells)
For each action, kt

Take a detection measurement, dt, in cell kt

Compute belief function, Bt, over all cells (Equation 3.3.3)
If not at end of window

LookAhead(kt, Bt, w − 1) % depth-first optimization
Else

Store belief in kt as utility value
end

Identify the utility-optimizing action, k̄t

Return augmented policy πt and utility, U(πt)

A common approach is to use a “look ahead” window of w time steps, over which the optimization

of the path is performed. Also known in optimal control as receding horizon control [72, 24], with

finite horizon w, this approach generates a sequence of actions, or a policy, for the next w steps,

denoted π = {k1, . . . , kw}, and finds the optimal policy, π∗, which maximizes the objective function

along the path over the horizon window, i.e.,

π∗ = arg max
π={k1,...,kw}

w∑

j

Pr(xT = kj |Dt, dk1 , . . . , dkj−1).

The first step of this finite horizon optimal policy is then selected to be the next cell to be visited

in the next time step. Implementation of the look ahead search algorithm in pseudocode is described

in Table 3.1. At the next time step, the optimal trajectory over the horizon is recomputed. Note

that for w = 1, the one-step look ahead strategy is the discrete steepest gradient approximation

of the belief, which is simply the greedy algorithm for maximally increasing the objective function.

More generally, the planning window size w can be chosen to provide an approximation to the

optimal solution while maintaining computational feasibility. The closed-form expressions derived

in Section 3.3 offer substantial implementation advantages by enabling search path plans over longer

planning horizons.

Investigation of the performance of this look ahead strategy can be done to evaluate the role

of feedback in the decision making process. As an illustration of the decision making framework,

statistical analyses of the strategy can be conducted in the context of the example scenario con-

structed in Sections 3.2.4 and 3.3.3. Recall that the task is for a searcher to maneuver throughout

the search region A according to some search strategy, which will be taken to be the look ahead

strategy presented above.
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Figure 3.10 illustrates the histogram plot of the decision times for 5000 simulation trials employing

the look ahead strategy for varying window sizes, w = {1, 2, 3}. Each run utilized the same initial

conditions for the locations of the searcher and target, as well as the initial belief probability, δ = 0.5,

and detection model, α = 0.2, β = 0.1, such that the distribution of the decision times is a result of

the random uncertainty present in the detection observations in each cell.

Figure 3.10: Histogram plots of 5000 simulation studies of search employing the look ahead strategy
for window sizes, w = {1, 2, 3}. The resulting mode values for the time till decision are tD =
{57, 51, 48}, respectively, showing a reduction in average search time for increasing search horizon
length.

From this plot, the mode (i.e., the most frequent value of the histogram) of the decision time

distributions can easily be determined for each of the window sizes to be:

decision time, td :





57, w = 1,

51, w = 2,

48, w = 3.

As expected, there is a slight improvement in performance (i.e., a shorter time to decision) for

increasing window sizes, which is due to the fact that, for longer planning horizons, additional

information is taken into account in generating the search path. However, given the fact that the

performance of the look ahead algorithm is greatly dependent on initial conditions (e.g., initial

location of the searcher relative to the target, error in the initial prior belief probability distribution,

or size of the environment), the cost of computational burden seems to outweigh the improvement

in performance. Instead, a one-step look ahead control law (i.e., steepest gradient ascent), albeit

suboptimal, may serve as a reasonable compromise between performance and complexity. Observing
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that the random-walk and sweeping strategies are extremely inefficient in their searches, significant

advantages in performance can be found by utilizing even simple feedback laws such as look ahead

search with small window sizes.

3.4.2 “Drosophila-Inspired” Search

Search problems are not restricted only to engineered problems. In fact, the search problem presents

itself in many components of natural systems, as relevant notions are involved in tasks ranging from

foraging for resources to hunting and predation in a territory.

An example of search is exhibited in walking Drosophila melanogaster, a.k.a. the fruit fly, in

search of food. Study of such ethology of biological systems is of significant interest in the efforts to

relate neural processing of motor and sensory feedback systems to exhibition of macroscopic animal

behaviors (e.g., [73, 74]).

As studied and presented in [75], the trajectories of individual fruit flies are characterized by

the behavior of identifying a particular location of interest, pursuing a straight-line trajectory (with

minimal deviation) toward this goal, and upon arrival, finding another location and following another

straight-line path to this updated goal location. The insect’s motion is presumed to be in search of

food and evidence suggests that its behavior is mediated by visual sensory feedback.

Inspired by the ability of the fruit fly to execute search behavior that goes beyond näıve random

search, this section develops a search strategy which identifies the cell containing the maximum belief

value (which is simple to determine as the searcher maintains the belief distribution over all cells)

and specifies a goal location for the searcher. The computational simplicity of this approach offers

an advantage over more computationally expensive, planning-oriented approaches, such as the look

ahead strategy examined in Section 3.4.1. This strategy is presented as a low computation expense

yet high information gain option, whose performance will be quantified in what follows.

In this algorithm, the searcher determines and records the cell number containing the highest

belief value, kmax. Recall that κ represents a constraint on how far the searcher can travel in a single

time step, and can either be given by the searcher dynamics or specified by the desired resolution

of the search. The next cell to observe is determined by:

kt = arg min
∆k<κ

(‖kmax − kt−1‖) (Strategy IV).

For fruit flies walking on a flat surface (i.e., in continuous R2 space), the use of the 2-norm

(i.e., Euclidean distance) offers a reasonable approximation to their behavior, and ‖ · ‖ is also used

and shown in [38] to address scenarios of premature search termination due to sensitivities in the

optimization routine.

The results of simulation studies are shown in Figure 3.11, which represents the histogram of
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time till decision values for 5000 trials, given the same setup as treated previously. The 1-norm is

used to define distances between cells, appropriate for the lattice structure of the grid.

Figure 3.11: Histogram of times-till-decision for 5000 trials employing the “Drosophila-inspired”
search strategy. The average time to decide accurately that the target was present is given by the
mode value, tD = 89.

The “Drosophila-inspired” search strategy yielded an average search time of tD = 89, which

is longer than the average search times of the greedy algorithm examined previously. This fact is

certainly expected, as the goal location is only updated once the searcher arrives there (which may

take multiple time steps), unlike the recomputation of optimal paths at every time step done in look

ahead search. However, the computational simplicity of the flylike search strategy offers significant

advantages without sacrificing much in terms of performance in the decision making task. Clearly

this approach is more practical in cases where computation resources are limited, as in individual

sensor nodes in a mobile sensor network, or in deployments of microscale aerial vehicles, as well as,

arguably, in the brain of the fruit fly. The “Drosophila-inspired” search strategy demonstrates that

even small feedback interactions in the search decision making process offer substantial performance

enhancements over those without such feedback mechanisms.

3.4.3 “Saccadic” Search

Further motivated by examples of search that occur naturally, this section presents an approach

motivated by the human (primate) visual system. The strategy derives its name from the way the

eye in the human visual system saccades, or executes a rapid jump in its focus of attention, from one

salient feature in its visual field to another [76]. In visual search, the task is to find, if it is present,

an object or feature within a scene (e.g., an image) [45, 77, 78, 79].

One can readily envision the applicability of the search decision framework presented in this

chapter to this problem of visual search. The “saccadic” search strategy developed in this section

simply focuses the search on the cell containing the maximal belief probability at every time step,
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executing a “saccade”-like jump from peak to peak in the belief probability distribution.

Analogous to the control signal representations of the previous search strategies, the next cell to

visit under the “saccadic” strategy is determined according to:

kt = kt−1
max

4
= arg max

k
(Pr(xT = k|Dt−1)) (Strategy V).

Figure 3.12: Histogram of times-till-decision for 5000 trials employing the “saccadic” search strategy.
The average time to decide accurately that the target was present is given by the mode value, tD = 61.

The average time till decision for the “saccadic” strategy in the context of the example problem

setup was observed to be a value of tD = 61. The distribution of these decision times over 5000

simulation trials is illustrated in Figure 3.12. In terms of performance, this strategy offers comparable

average times until a decision is made as that of the look ahead search approach, under the caveat

that jumps between cells may not be dynamically feasible, e.g., for a mobile sensor platform with

finite velocity. However, this strategy provides a method for examining the “inertialess” or damped

case of these physical search strategies. Another interpretation is to consider the fact that the transit

time to get to the goal cell must be integrated, representing a possible method for weighting search

trajectories by this additional cost. Future investigations into this and other notions can provide

further insight into the search mechanisms as well as the role of feedback control in decision making

tasks.

The appearance of additional smaller peaks in the histogram plots of both the “saccadic” and

the “Drosophila-inspired” strategies can be explained. These secondary peaks correspond to distinct

“modes” in the search evolution, which depend on the sequence of observations of the cell containing

the target. As shown in the distributions in Figures 3.11 and 3.12, the primary peak corresponds to

the trials where the first visit to the target cell resulted in a positive detection. Subsequent peaks

correspond to the case where a missed detection occurs during the first visit to the cell, which leads

to revisits of the target cell.
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As suggested by its namesake, the “saccadic” search strategy may offer some insight into (or

may provide a model for understanding) the mechanisms governing human visual search [45, 77],

in which information is likely gathered sequentially using foveated glimpses of patches of the visual

field, which can be modeled as observations of cells in the presented framework. Discussion of this

line of future research can be found in Chapter 4.

Other relevant uses include, as an example, sensor networks for event detection applications,

where sensor nodes (i.e., cells) are triggered by possible events (such as intrusion). In these applica-

tions, a belief-dependent decision or action is executed in the context of search. The advantage of

the decision making framework presented in this chapter is that it generalizes these various search

problems into a single objective of making a decision regarding the presence or absence of a target.

Whether the search is for a physical entity such as a person or robot, or it is for a visual feature or

entity within a visual field, the underlying goal is the same.

3.4.4 Discussion on Control Strategies

As demonstrated by the search strategies presented in the preceding sections, the utilization of

feedback greatly improves the performance of the decision objective, as measured by the time taken

to reach a conclusive decision. The flexibility of the decision making framework, as it pertains to

probabilistic search, enables it to address a wide variety of search-related objectives.

The approach of computing the optimal path over a finite horizon, as presented in the look ahead

strategy, is one that offers high performance, in terms of making a decision in a minimal number of

time steps but at a computational expense. However, the decision making formulation of the search

task facilitated the closed-form solutions derived in Section 3.2, which greatly enable more efficient

computation of these search trajectories.

Two additional strategies provide computationally inexpensive alternatives for conducting search,

which serve well in a host of applications where computation power is limited, e.g., sensors embedded

on microaerial vehicles or simple nodes in a sensor network. Specifically, while the look ahead strate-

gies offer slightly better performance, a more comprehensive metric of performance which accounts

for computing time of search paths would immediately illuminate the significant advantages of the

“saccadic” and “Drosophila-inspired” strategies. In the case of search using mobile sensors, it may

be more prudent to have simpler, fast-moving detectors rather than necessitating computationally

powerful (which usually translates to more hardware and less dynamic capability) sensor platforms.

Furthermore, unlike the optimization-based look ahead schemes, these strategies have the added

benefit that their performance is largely independent of the initial conditions, and they also avoid

the issues of getting stuck in local minima of the objective function which limit most optimization

routines.

The results of the simulation studies presented in the previous section are summarized in Ta-
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Table 3.2: Performance comparison of different search control strategies.
Search Control Time till decision Time/Observation Total Effective Time

Strategy tD (mode) ∆tC (msec) tC (msec)
Random Walk 2833 0.2778 787.0074

Sweeping 3150 0.2820 888.3
Look ahead (w = 1) 57 0.6491 36.9987
Look ahead (w = 2) 51 3.4800 177.48
Look ahead (w = 3) 48 31.9576 1533.9648

“Drosophila-inspired” 89 0.3784 33.6776
Random Jump 3496 0.3024 1057.1904

“Saccadic” 61 0.3271 19.9531

ble 3.2. The average time taken per observation is a measure of the computational cost of each

calculation cycle, which includes the time for the observation, the belief distribution update, and

the determination of the next cell to visit. Hence, the total effective computation time, tC , reflects

the performance of the decision task (i.e., time till decision) weighted by the computational expense

of the search strategy employed. As can be seen, each observation and belief update is computed

in minimal time for the näıve random walk and sweeping strategies due to their simplicity, but the

disadvantage of lacking feedback in the search strategy is demonstrated in the significantly large

number of observations required to complete the search task. Conversely, the look ahead strategy

can arrive at a decision in the fewest number of observations but incurs large penalties in compu-

tation, especially as the window size increases. Since the effective performance of the look ahead

strategy further deteriorates with a larger feasible action set, the advantage of this approach for many

applications may be outweighed by the computational burden imposed. The “Drosophila-inspired”

strategy provides an efficient and effective alternative, as seen by the minimal total effective time

necessary to complete the search task.

Additionally, comparison of the “saccadic” strategy to a random jump strategy (where the next

cell to visit is chosen randomly from all cells in the search region) further shows that utilizing

information about the belief distribution in a feedback manner offers significant performance benefits.

Such comparisons and insights are both useful and necessary for the application of search to practical

implementations.
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Chapter 4

Conclusions and Future Directions

4.1 Discussion and Summary

The principle of using feedback to augment the capabilities of dynamic systems is well established,

as outlined in the previous section. Recognizing that information gathering is itself a dynamic and

evolving process motivates the underlying theme to the contributions of this thesis, which is how

the use of feedback can enhance the information gathering process.

In Chapter 2, a distributed estimation framework was presented for studying how a team of

mobile agents can cooperatively use motion to improve the performance of the sensing and tracking

of a dynamic process. Given a representation for the overall uncertainty of the team’s estimates, a

gradient-based decentralized motion control law for each mobile agent was derived in closed form.

These analytic expressions generate local uncertainty-minimizing trajectories for the (possibly het-

erogeneous) sensors as they take measurements of (possibly multiple) dynamical processes, embodied

in this work as dynamic targets. The advantage of these specific formulas are apparent in their ef-

ficient implementations, making it possible for realizations in practical distributed sensing mobile

agent systems. Investigation of the effect of a noisy communication environment, where disturbances

also depend on inter agent distances, resulted in a straightforward extension of the analytic motion

control law, which illuminated the trade-off relationship between sensing and communication per-

formance. This insight can provide additional guidance for the design of distributed mobile sensing

networks.

Additionally, the “estimation-classification duality principle” derived in Section 2.5 describes

the fact that the use of motion to improve estimation has the added benefit of improving the

performance in certain classification tasks, under assumptions of underlying Gaussian distributions.

As computation of classification probabilities are typically challenging, this result enables the use of

simpler motion control laws, such as the gradient-based method proposed in this thesis, to minimize

the probability of incorrect classification.

Chapter 3 formulated a probabilistic decision-theoretic model for the task of physical search of



66

a target in a search region. The Bayesian framework represents this search as a decision problem,

further enabling the use of imperfect sensors, which have not been well addressed in the literature

on robotic coverage. Investigation of the evolution of the belief of the target’s presence in the search

region resulted in generation of analytic closed-form expressions that govern the belief function.

These functions serve two main purposes: they offer a more general understanding of the search

problem (e.g., notions of rate-of-change of belief), and they facilitate an easier implementation of

search strategies in physical search systems.

Several different strategies were investigated and proposed for generating search paths. These

studies found that the decision framework enables the use of a variety of measures of the search

performance, including the time until a decision is made about the presence or absence of the target.

Different search approaches were evaluated using this metric in simulation studies, observing that

slight increases in performance are often not worth the computational burden, which is an important

consideration for many applications of interest.

The two approaches proposed – “saccadic” and “Drosophila-inspired” search – highlight the

relevance and general notion of the search problem to other classes of search-related tasks. The

decision-based formulation discussed in this chapter offers a common framework for examining these

types of problems, ranging from human visual search to efficient event detection in sensor networks

to the search ethology exhibited by insects, and perhaps more interestingly, may provide a method

for uncovering the mechanisms which govern the behavior of systems in these search tasks.

4.2 Future Directions

Immediate future work for active sensing includes a thorough analysis of the computational com-

plexity of this framework as a function of the number of sensors or targets, as scalability issues

are a limitation of many distributed approaches. Other desired results are an understanding of the

convergence properties of the gradient-based motion control, in terms of estimation error bounds, as

well as the corresponding steady-state sensor configurations for different classes of target motions.

Additionally, further examination of the proposed algorithms can be conducted under relaxations

of the assumptions made. For example, the uncertainty profile of the sensor model or the communi-

cation link may not be known a priori, and hence collected and shared data can be used to determine

these profiles in real time. Further, fully connected communication networks, in practice, are im-

practical; an additional area of future research is how different network topologies can be addressed

in terms of robustness, performance and stability of the distributed estimation process [23, 59].

The use of more complex models for both the target and sensor agents is a relatively straightfor-

ward extension, and should be investigated. Other target-tracking methods, such as pursuit-evasion

concepts, offer approaches where targets actively try to confound the mobile sensors. This scenario
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requires that the sensor agents consider the target behavior beyond simply a dynamical motion

model. Incorporation of these types of ideas may offer new perspectives on target-tracking and

other distributed sensing applications.

In the context of sequential decision-theoretic methods for search, there are many avenues for

future research. Of immediate interest is the investigation of other measures of performance, includ-

ing notions of achievable confidence in the choice of limits on the number of observations as well as

the role of (possibly changing) error rates α and β on the evolution of the belief. These concepts

can be best studied by definition and derivation of the expected value of the belief function, due

to the randomness introduced by uncertainty in the detections. Utilizing additional tools from the

sequential decision theory of the SPRT may offer avenues for more theoretical developments.

A wide range of interesting problems exist for application of these methods to mobile search

teams, including the use of the decision framework for examining target identification, switching

task allocation (e.g., whether to continue the search or to perform the rescue), and coordination

of a team of sensors which may fuse decisions rather than use sensor-based estimates. Another

particularly intriguing extension to this work is the search for antagonistic targets, which maneuver

to hinder the progress of the search. Game-theoretic notions, such as levels of rationality (which are

related to look ahead strategies), are certainly relevant as applied to search games [65, 68, 80], and

thus merit further research into these areas.

A final promising avenue of future work lies in the extension of the search models to more realistic

human visual search scenarios. The properties of foveated vision [81, 82], where observations occur

in a spatially diffuse manner rather than only at the location of the focus of attention [76, 83], can

be captured in the search framework presented in this thesis in a straightforward manner. Extension

of this framework may provide a viable model to enable further study of visual search systems, as

well as potentially illuminate the relationship between top-down (i.e., task-driven) and bottom-up

(i.e., feature-driven) attentional mechanisms [77, 78].
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Appendix A

Derivations of Matrix Gradients

The expressions for the gradients of the cost function, as given by Propositions 1, 2, and 3, are

derived in this section.

Recall the matrix calculus identities

∂

∂z
h(A(z)) = tr

[
∂h

∂A
∂A
∂z

]
, (matrix chain rule),

∂

∂A
det (A) = |A| A−T = |A| A−1, (derivative of the determinant),

∂

∂z
A−1 = −A−1

(
∂A
∂z

)
A−1, (derivative of the inverse),

where A ∈ Rn×n is a symmetric, positive-definite matrix, h : Rn×n → R is a real-valued matrix

function, and z ∈ R is a scalar variable.

A.1 Gradient expression for J1

The cost J1 represents the sensing cost for distributed estimation of a single dynamic process using

the fusion of local observations, as described in Section 2.2.1. The gradient of J1 is given by:

∂J1

∂zl
i

= |Pfused| tr
[
Π

∂

∂zl
i

(
TiRiTT

i

)
ΠT Pfused

]
, Π

4
= TiR−1

i TT
i .

Proof: The above result follows from applying Equation 2.3.1 (matrix chain rule) to find

∂J1

∂zl
i

=
∂

∂zl
i

|Pfused| = tr
[
∂|Pfused|
∂Pfused

∂Pfused

∂zl
i

]
,

where, by the derivative of the determinant, we get

∂|Pfused|
∂Pfused

= |Pfused|P−1
fused,
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and

∂Pfused

∂zl
i

=
∂

∂zl
i

(
M∑

i′

(
Ti′Ri′TT

i′
)−1

)−1

,

= Pfused

(
∂

∂zl
i

M∑

i′

(
Ti′Ri′TT

i′
)−1

)
Pfused,

= Pfused

(
M∑

i′

∂

∂zl
i

(
Ti′Ri′TT

i′
)−1

)
Pfused,

= Pfused

(
M∑

i′
Π

∂

∂zl
i

(
Ti′Ri′TT

i′
)
ΠT

)
Pfused,

= PfusedΠ
∂

∂zl
i

(
TiRiTT

i

)
ΠT Pfused,

where the summation is eliminated by the fact that ∂Ri′
∂zl

i

= 0, ∀i 6=i′ .

Substitution of these terms yields

∂J1

∂zl
i

= tr
[(
|Pfused|P−1

fused

) (
Pfused

(
Π

∂

∂zl
i

TiRiTT
i

)
ΠT Pfused

)]
,

= tr
[
|Pfused|Π ∂

∂zl
i

(
TiRiTT

i

)
ΠT Pfused

]
,

= |Pfused| tr
[
Π

∂

∂zl
i

(
TiRiTT

i

)
ΠT Pfused

]
.

This completes the proof.

A.2 Gradient expression for J2

The cost J2 represents the sensing cost for distributed estimation of a single dynamic process using

the fusion of locally filtered estimates, as described in Section 2.2.2. The gradient of J2 is given by:

∂J2

∂zl
i

= |Pfused|tr
[
Π

∂

∂zl
i

(
TiRiTT

i

)
ΠT Pfused

]
, Π

4
= P−1

i Ki.
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Proof: The proof proceeds as done previously, such that application of the matrix chain rule

and the derivative of the determinant yields

∂Pfused

∂zl
i

=
∂

∂zl
i

(
M∑

i′
P−1

i′

)−1

=
∂

∂zl
i

(
M∑

i′
(∆i′ −Ki′Ti′Hi′∆i′)

−1

)−1

= −Pfused
∂

∂zl
i

(
M∑

i′
P−1

i′

)
Pfused

= −Pfused

(
M∑

i′

∂

∂zl
i

P−1
i′

)
Pfused

= Pfused

(
M∑

i′
P−1

i′
∂Pi′

∂zl
i

P−1
i′

)
Pfused

= Pfused

(
M∑

i′
P−1

i′
∂

∂zl
i

(∆i′ −Ki′Ti′Hi′∆i′)P−1
i′

)
Pfused

= −Pfused

(
M∑

i′
P−1

i′
∂Ki′

∂zl
i

(Ti′Hi′∆i′)P−1
i′

)
Pfused

= Pfused

(
P−1

l Kl
∂

∂zl
i

(
TiRiTT

i

)
KT

l P−1
l

)
Pfused

A.3 Gradient expression for J3,j

∂J3,l

∂zl
i

= |Pl,f |tr
[
Π

∂Rl

∂zl
i

ΠT Pl,f

]

+
M∑

i6=l

|Pl,f |tr
[
Φl,i

∂Cl,i

∂zl
i

Φl,i Pl,f

]
,

where Φl,i
4
= (Pi + Cl,i), and Π is chosen according to whether simple observations (i.e., Pl = Rl)

or locally filtered measurements (i.e., Pl = ∆l −KlHl∆l) are fused.
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Proof: Again, (2.3.1) is used, where

∂Pl,f

∂zl
i

=
∂

∂zl
i

(
M∑

i′
Φ−1

l,i

)−1

=
∂

∂zl
i

(
M∑

i′
(Pi + Cl,i)

−1

)−1

= −Pl,f
∂

∂zl
i

(
M∑

i′
Φ−1

l,i

)
Pl,f

= −Pl,f

(
M∑

i′

∂

∂zl
i

Φ−1
l,i

)
Pl,f

= Pl,f

(
M∑

i′
Φ−1

l,i

∂Φl,i

∂zl
i

Φ−1
l,i

)
Pl,f

= Pl,f

(
M∑

i′
Φ−1

l,i

∂

∂zl
i

(Pi + Cl,i)Φ−1
l,i

)
Pl,f

= Pl,f

(
Φ−1

l,l

∂

∂zl
i

(Pl + Cl,l)Φ−1
l,l

)
Pl,f

+Pl,f




M∑

i 6=l

Φ−1
l,i

∂

∂zl
i

(Pi + Cl,i)Φ−1
l,i


Pl,f

= Pl,f

(
P−1

l

∂Pl

∂zl
i

P−1
l

)
Pl,f + Pl,f




M∑

i 6=l

Φ−1
l,i

∂Cl,i

∂zl
i

Φ−1
l,i


Pl,f
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Appendix B

Analysis of the Cost Function

B.1 Cost Function Expression for Two Sensors

An analytic expression for the cost function, J1, though difficult to come by in general, is desirable

for better understanding of the cost minimization process as well as the generation of the sensor

control laws. Recall that cost function J1 represents the fusion of local observations, or in other

words, the fused covariance matrix is given by:

P−1
fused =

M∑

i

R−1
i =

M∑

i

(
TiR̄iTT

i

)−1

such that the cost function is

J1
4
= detPfused = det

(
M∑

i

R−1
i

)−1

Consider the case where M = 2, i.e., only two sensors are taking measurements. For Pfused ∈
R2×2, define the two measurement covariance matrices, R1 and R2, to be:

R1 =


 a1 b1

c1 d1


 , R2 =


 a2 b2

c2 d2


 .

Then, taking the inverses of these matrices yields

R−1
i =

1
aidi − bici


 di −bi

−ci ai


 ,
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such that the sum of these inverses becomes

2∑

i=1

R−1
i =

2∑

i=1




di

aidi−bici

−bi

aidi−bici

−ci

aidi−bici

ai

aidi−bici




=




d1
a1d1−b1c1

+ d2
a2d2−b2c2

−b1
a1d1−b1c1

+ −b2
a2d2−b2c2

−c1
a1d1−b1c1

+ −c2
a2d2−b2c2

a1
a1d1−b1c1

+ a2
a2d2−b2c2


 4

=


 ā b̄

c̄ d̄


 .

Now, taking the inverse of this expression yields the fused covariance matrix:

Pfused =

(
2∑

i=1

R−1
i

)−1

=
1

ād̄− b̄c̄


 d̄ −b̄

−c̄ ā


 =




d̄
ād̄−b̄c̄

−b̄
ād̄−b̄c̄

−c̄
ād̄−b̄c̄

ā
ād̄−b̄c̄


 .

The cost function is simply the determinant of this matrix.

J1 = detPfused =
1

(ād̄− b̄c̄)2
(
d̄ā− b̄c̄

)
=

1
ād̄− b̄c̄

,

where the fact that |αA| = αn|A|, A ∈ Rn×n is employed.

Substitution of the variables yields

J1 =
1

ād̄− b̄c̄

=
1(

d1

a1d1 − b1c1
+

d2

a2d2 − b2c2

)(
a1

a1d1 − b1c1
+

a2

a2d2 − b2c2

)

−
(

b1

a1d1 − b1c1
+

b2

a2d2 − b2c2

)(
c1

a1d1 − b1c1
+

c2

a2d2 − b2c2

)

,

=
1(

d1
|R1| + d2

|R2|
)(

a1
|R1| + a2

|R2|
)
−

(
b1
|R1| + b2

|R2|
)(

c1
|R1| + c2

|R2|
) ,

=
(|R1||R2|)2

(d1|R2|+ d2|R1|) (a1|R2|+ a2|R1|)− (b1|R2|+ b2|R1|) (c1|R2|+ c2|R1|) ,

=
(|R1||R2|)2

|R2|2|R1|+ |R1||R2|(a1d2 + a2d1 − b2c1 − b1c2) + |R1|2|R2| ,

=
(|R1||R2|)2

|R2|2|R1|+ |R1||R2|(|R1 + R2| − |R1| − |R2|) + |R1|2|R2| ,

=
|R1||R2|
|R1 + R2| ,

where the matrix representation of the determinant has been used.

Now, for the given structure of our problem, the measurement covariance matrix is given by a
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diagonal matrix transformed via rotation matrices as below:

Ri
4
= TiR̄iTT

i =


 cos(θi) − sin(θi)

sin(θi) cos(θi)





 αi 0

0 βi





 cos(θi) sin(θi)

− sin(θi) cos(θi)


 .

Expansion of the terms of Ri gives

Ri =


 αi cos(θi) −βi sin(θi)

αi sin(θi) βi cos(θi)





 cos(θi) sin(θi)

− sin(θi) cos(θi)




=


 αi cos2(θi) + βi sin2(θi) (αi − βi) cos(θi) sin(θi)

(αi − βi) cos(θi) sin(θi) αi sin2(θi) + βi cos2(θi)


 ,

4
=


 ai bi

ci di


 .

Furthermore, the determinant can be found to be

|Ri| = |TiR̄iTT
i | = |Ti||R̄i||TT

i | = |R̄i| = αiβi,

because the determinant of matrix products is the product of determinants and the determinant of

a rotation matrix is unity.

So ultimately, the main point of interest is the matrix summation term, |R1 + R2|, in that all

other terms are scalar terms that do not contain the dependent variables, θi’s. Substitution of terms

yields

R1 + R2 =


 α1 cos2(θ1) + β1 sin2(θ1) (α1 − β1) cos(θ1) sin(θ1)

(α1 − β1) cos(θ1) sin(θ1) α1 sin2(θ1) + β1 cos2(θ1)




+


 α2 cos2(θ2) + β2 sin2(θ2) (α2 − β2) cos(θ2) sin(θ2)

(α2 − β2) cos(θ2) sin(θ2) α2 sin2(θ2) + β2 cos2(θ2)


 ,

Investigation of each element of this matrix will hopefully yield simplification of the expression.

Consider the (1, 1) component of the matrix:

R11 = α1 cos2(θ1) + β1 sin2(θ1) + α2 cos2(θ2) + β2 sin2(θ2),

=
1
2
(α1 + β1 + α2 + β2) +

1
2
(α1 − β1) cos(2θ1) +

1
2
(α2 − β2) cos(2θ2),
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and the (2, 2) component

R22 = α1 sin2(θ1) + β1 cos2(θ1) + α2 sin2(θ2) + β2 cos2(θ2),

=
1
2
(α1 + β1 + α2 + β2) +

1
2
(β1 − α1) cos(2θ1) +

1
2
(β2 − α2) cos(2θ2),

where the trigonometric identities, sin2(θ) = 1−cos(2θ)
2 and cos2(θ) = 1+cos(2θ)

2 , have been used.

Computation of the determinant yields

|R1 + R2| =
(

1
2
(α1 + β1 + α2 + β2) +

1
2
(α1 − β1) cos(2θ1) +

1
2
(α2 − β2) cos(2θ2)

)
×

(
1
2
(α1 + β1 + α2 + β2) +

1
2
(β1 − α1) cos(2θ1) +

1
2
(β2 − α2) cos(2θ2)

)

− ((α1 − β1) cos(θ1) sin(θ1) + (α2 − β2) cos(θ2) sin(θ2))
2
,

=
1
2

(α2β1 + 2α2β2 + β1β2 + α1α2 + 2α1β1 + α1β2)

− 1
2
(α1 − β1)(α2 − β2) cos(2(θ1 − θ2)),

= ρ1 − ρ2 cos(2(θ1 − θ2)).

Thus, in order to minimize the cost function, the quantity |R1 + R2| needs to be maximize,

which is done for γ12
4
= θ1 − θ2 = ±π

2 .

In this way, parameterizing the cost function by γ12 yields

J1 = detPfused =
|R1||R2|
|R1 + R2| =

α1β1α2β2

ρ02 − ρ12 cos(2γ12)
,

where

ρ02
4
=

1
2

((α1 − β1)(α2 − β2) + 2(α1 + α2)(β1 + β2)) ,

ρ12
4
=

1
2
(α1 − β1)(α2 − β2).

This dependence on the relative bearing of the sensors is illustrated in Figure B.1 for homogeneous

sensors (i.e., αi = 1, βi = 5,∀ i).

B.2 Cost Function Expression for Three Sensors

A similar analysis can be conducted for M = 3 sensors in the plane, such that


 ā b̄

c̄ d̄


 4

=




∑M
i=1

di

|Ri|
∑M

i=1
bi

|Ri|∑M
i=1

ci

|Ri|
∑M

i=1
ai

|Ri|



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Figure B.1: Dependence of the cost function (for two sensors) on their relative bearings with respect
to the target. This shows that in order to minimize the cost, the two agents should be separated by
±π

2 radians.

As before, the fused covariance matrix is given by

Pfused =

(
M∑

i=1

R−1
i

)−1

=
1

ād̄− b̄c̄


 d̄ −b̄

−c̄ ā


 =




d̄
ād̄−b̄c̄

−b̄
ād̄−b̄c̄

−c̄
ād̄−b̄c̄

ā
ād̄−b̄c̄


 ,

and the cost function is simply the determinant of this matrix.

J1 = detPfused =
1

(ād̄− b̄c̄)2
(
d̄ā− b̄c̄

)
=

1
ād̄− b̄c̄

,

employing the fact that |αA| = αn|A|, A ∈ Rn×n.

Substitution of the variables yields

J1 =
1

ād̄− b̄c̄

=
1(∑3

i=1
di

|Ri|
) (∑3

i=1
ai

|Ri|
)
−

(∑3
i=1

bi

|Ri|
)(∑3

i=1
ci

|Ri|
) ,

=
1(∑3

i=1

∑3
j=1

di

|Ri|
aj

|Rj |
)
−

(∑3
i=1

∑3
j=1

bi

|Ri|
cj

|Rj |
) ,

=
|R1||R2||R3|

|R3||R1 + R2| − |R1||R2|+ |R2||R1 + R3| − |R1||R3|
+ |R1||R2 + R3| − |R2||R3|

.

Similar expansion as done in the previous section shows that minimization of the cost function
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requires maximization of the denominator term, which becomes

|R3||R1+R2|−|R1||R2|+ |R2||R1+R3|−|R1||R3|+ |R1||R2+R3|−|R2||R3|
= ρ03 − ρ12 cos(2γ12)− ρ23 cos(2γ23)− ρ13 cos(2(γ12 + γ23)),

where the constant coefficient terms can be shown to be

ρ03 =
(

1
2

α1 α2 α3 β1 +
1
2

α1 α2 α3 β2 + 2 α1 α2 β1 β2 +
1
2

α1 α3 β1 β2

+
1
2

α2 α3 β1 β2 +
1
2

α1 α2 α3 β3 +
1
2

α1 α2 β1 β3 + 2 α1 α3 β1 β3

+
1
2

α2 α3 β1 β3 +
1
2

α1 α2 β2 β3 +
1
2

α1 α3 β2 β3 + 2 α2 α3 β2 β3

+
1
2

α1 β1 β2 β3 +
1
2

α2 β1 β2 β3 +
1
2

α3 β1 β2 β3

)
,

ρ12 =
1
2
α3β3 (α1 − β1) (α2 − β2) ,

ρ23 =
1
2
α1β1 (α2 − β2) (α3 − β3) ,

ρ13 =
1
2
α2β2 (α1 − β1) (α3 − β3) .

The maximal values of denominator term occurs at (γ12, γ23) pairs resulting in separations of

±π
3 (or equivalently, ± 2π

3 ) radians, as illustrated in Figure B.2.
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Figure B.2: Dependence of the cost function (for three sensors) on their relative bearings with respect
to the target. Minimization of cost requires that agents be separated by ±π

3 (or by symmetry, ± 2π
3 )

radians.
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