
Time-Multiplexed FPGA Overlay Networks on Chip

Thesis by

Nikil Mehta

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2006

(Submitted May 31, 2006)



c© 2006

Nikil Mehta

All Rights Reserved

ii



Acknowledgements

First and foremost I would like to thank my advisor André DeHon for his guidance and support
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Abstract

How do we design a communication network for processing elements (PEs) on a single chip that

minimizes application communication time and area? In designing such a network it is essential to use

a network communication pattern that matches application communication and area requirements.

This report characterizes the design space of a particular communication pattern for networks on

chip: Time-Multiplexed Interconnect. In contrast to more commonly used packet-switched

networks, which route communication dynamically, time-multiplexed networks schedule all possible

communication prior to runtime with an offline router. We describe how to build well engineered,

highly scalable time-multiplexed FPGA networks in terms of topology selection, routing algorithm

design and hardware design that operate on a Xilinx XC2V6000-4 at 166MHz. To benchmark our

networks we use real, communication rich applications instead of generating synthetic traffic. We

show that over all areas (10K–10M slices) and over all applications the best “one topology fits

all” is Butterfly Fat Tree (BFT) with c = 1, p = 0.5, which requires, in the worst case, 6.1× as

many cycles to route communication than the optimal topology. We compare time-multiplexing to

packet-switching, and show that on average, over all applications for all equivalent topologies, online

packet-switched communication requires 1.5× as many cycles to route as offline time-multiplexed

scheduling. When applying designs to equivalent area, for areas <100K slices packet-switching

typically outperforms time-multiplexing, but at >100K slices packet-switching requires up to 3.4×

as many cycles to route as time-multiplexing in the worst case. Finally, for equivalent, large networks

(>100 PEs) time-multiplexing outperforms packet-switching for communication loads where greater

than 10% of all logical links are active. This demonstrates that well designed time-multiplexed FPGA

overlay networks can deliver performance and area efficiency exceeding that of packet-switched

networks.

iv



Contents

Acknowledgements iii

Abstract iv

List of Tables viii

List of Figures x

Glossary of Terms xiii

1 Introduction 1

1.1 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 FPGA Networks on Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Network Communication Patterns . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Time-Multiplexed vs. Packet-Switched Interconnect . . . . . . . . . . . . . . 9

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Prior Work 11

2.1 Networks on Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Time-Multiplexed Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Time-Multiplexed vs. Packet-Switched Networks . . . . . . . . . . . . . . . . . . . . 13

3 Time-Multiplexed Network Design 15

3.1 Network Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Butterfly Fat Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Hardware Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Merge Primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



3.2.3 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 I/O Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.5 Pipelined Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Time-Multiplexed Router Design 26

4.1 The Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Multicommodity Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 Single-Source Shortest Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Communication Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Lowerbound Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 PE Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Network Bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.3 Network Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.4 Lowerbound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Communication Workloads 36

5.1 The GraphStep System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 ConceptNet Spreading Activation Step . . . . . . . . . . . . . . . . . . . . . . 37

5.2.2 Sparse Matrix-Vector Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.3 Bellman-Ford Shortest Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Application Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Total Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.2 Node Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.3 Rent Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Node Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.1 Router Quality Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Processing Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Toolflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Time-Multiplexed Topology Selection 47

6.1 PE Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Area Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Optimal Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



7 Time-Multiplexed vs. Packet-Switched Networks 61

7.1 Packet-Switched Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Offline vs. Online Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3 Normalized Area Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4 Cost of Routing All Possible Communication . . . . . . . . . . . . . . . . . . . . . . 73

8 Context Memory Compression 75

8.1 SRL16 Area Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2 Percent Area in Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3 Separating External and Self Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.4 Context Compression with espresso and jedi . . . . . . . . . . . . . . . . . . . . . 80

9 Future Work 82

9.1 Communication Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.1 Spatially Configurable and Circuit-Switched Interconnect . . . . . . . . . . . 82

9.1.2 Additional Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.2 Network Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2.1 Additional Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2.2 Automated Topology Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2.3 Additional Cost Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2.4 Multiple-Chip Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3 Context Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3.1 PE Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3.2 Compressing with jedi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.4 Router Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.4.1 Routing Fanout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.4.2 Pathfinder Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10 Conclusions 86

Bibliography 88

vii



List of Tables

1.1 Role of Various Communication Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Time-Multiplexed Merge Primitive (16-bit, 1024-deep) . . . . . . . . . . . . . . . . . . 21

3.2 Time-Multiplexed Switches (16-bit, 1024-deep) . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Time-Multiplexed Router Runtime (BFT c = 1, p = 0.5 for fidap035) . . . . . . . . . 31

5.1 Application Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 GraphStep Application PEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Worst Case Topology Performance (All Areas and Applications) . . . . . . . . . . . . 60

7.1 Packet-Switched Split and Merge Primitives (32-bit) . . . . . . . . . . . . . . . . . . . 62

7.2 Packet-Switched Switches (32-bit, 1-deep buffers) . . . . . . . . . . . . . . . . . . . . . 62

8.1 espresso Switch Context Compression (BFT c = 1, p = 0.5 with 8 PEs for small) . . 81

viii



List of Figures

1.1 Spatially Configurable Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Time-Multiplexed Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Circuit-Switched Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Packet-Switched Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Previously Studied Network on Chip Topologies . . . . . . . . . . . . . . . . . . . . . 12

3.1 p = 0 Network Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 p = 1 Network Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Ring (5 PEs, w = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Mesh (4× 4, w = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 BFT (16 PEs, c = 1, p = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Time-Multiplexed Merge Primitive (3-input) . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Time-Multiplexed Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Time-Multiplexed Greedy Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 A* Shortest Path Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 A* Priority Queue Sorting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Communication Time vs. PEs (BFT c = 1, p = 0.5 for gemat11) . . . . . . . . . . . . 34

4.5 Quality Ratio vs. PEs (gemat11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Quality Difference vs. PEs (gemat11) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Network I/O per Cycle vs. Network Size (small) . . . . . . . . . . . . . . . . . . . . . 37

5.2 Node Decomposition Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Communication Time vs. PEs with and without Decomposition (small) . . . . . . . . 43

5.4 Quality Ratio vs. PEs with and without Decomposition (small) . . . . . . . . . . . . 44

5.5 GraphStep PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Communication Time vs. PEs (Small Graphs) . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Communication Time vs. PEs (Medium Graphs) . . . . . . . . . . . . . . . . . . . . . 49

ix



6.3 Communication Time vs. PEs (Large Graphs) . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Lowerbound Communication Time vs. PEs (gemat11) . . . . . . . . . . . . . . . . . . 51

6.5 Quality Ratio vs. PEs for (gemat11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 Communication Time vs. Area (Small Graphs) . . . . . . . . . . . . . . . . . . . . . . 53

6.7 Communication Time vs. Area (Medium Graphs) . . . . . . . . . . . . . . . . . . . . 54

6.8 Communication Time vs. Area (Large Graphs) . . . . . . . . . . . . . . . . . . . . . . 55

6.9 Ratio of Mesh/BFT Communication Time vs. Area (Small Graphs) . . . . . . . . . . 57

6.10 Ratio of Mesh/BFT Communication Time vs. Area (Medium Graphs) . . . . . . . . . 58

6.11 Ratio of Mesh/BFT Communication Time vs. Area (Large Graphs) . . . . . . . . . . 59

7.1 Ratio of PS/TM Communication Time vs. PEs (gemat11) . . . . . . . . . . . . . . . 63

7.2 Ratio of PS/TM Communication Time vs. PEs (Small Graphs) . . . . . . . . . . . . 65

7.3 Ratio of PS/TM Communication Time vs. PEs (Medium Graphs) . . . . . . . . . . . 66

7.4 Ratio of PS/TM Communication Time vs. PEs (Large Graphs) . . . . . . . . . . . . 67

7.5 Time-Multiplexed and Packet-Switched Communication Time vs. Area (gemat11) . . 69

7.6 Ratio of PS/TM Communication Time vs. Area (Small Graphs) . . . . . . . . . . . . 70

7.7 Ratio of PS/TM Communication Time vs. Area (Medium Graphs) . . . . . . . . . . . 71

7.8 Ratio of PS/TM Communication Time vs. Area (Large Graphs) . . . . . . . . . . . . 72

7.9 Communication Time vs. Activity Factor (small) . . . . . . . . . . . . . . . . . . . . 74

7.10 PS/TM Activity Factor Crossover vs. PEs (small) . . . . . . . . . . . . . . . . . . . . 74

8.1 Xilinx SRL16 Structure [63] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.2 Area Characteristics (small) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.3 Area Characteristics (gemat11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.4 Routing External and Self Messages Separately (small) . . . . . . . . . . . . . . . . . 79

x



Glossary of Terms

Activity Factor: Percentage of active edges in a communication graph. When representing com-

munication as a graph, where nodes correspond to actors and edges correspond to messages that

must be sent, all messages sent corresponds to an activity factor of 100%.

ASIC: Application Specific Integrated Circuit. An integrated circuit that is designed to perform a

specific task. ASIC circuits are typically smaller and faster than equivalent FPGA circuits. However,

such a circuit cannot be altered after manufacturing and is costly to design.

BFT: Butterfly Fat Tree. A binary tree has connections between levels equal to the number of

nodes at a given level. In a Butterfly Fat Tree the number of connections between levels can increase

at higher levels of the tree (i.e. it becomes “fatter” at the top). The exact “fatness” of the tree is

parameterizable by the Rent parameter p.

Bisection: When separating a graph into two parts, the bisection of the graph is the number of

edges that cross the two sides. This is an important value in two contexts. First, when the graph

is a circuit to be laid out in two-dimensional VLSI, it represents the minimal cross-sectional area

required for the wires that connect the two halves of the circuit. Second, when the graph is a

network, the bisection of the network represents the total number of physical links between the two

halves of the network, and therefore the total number of messages that can be sent between the two

halves at one time. This value represents the available bandwidth of the network.

ConceptNet: A common-sense reasoning knowledge base represented as a graph, where nodes

represent concepts and edges represent semantic relationships.

Context Memory: A memory that stores exactly what a switch or PE in a time-multiplexed

network should do on every cycle. That is, it stores the exact hardware configuration of the element

which dictates how messages are routed through the element. Since every element requires a context

memory, and each context memory stores a configuration for every communication cycle, the total

area consumed by all context memories in a network can potentially be very large.
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FSM: Finite State Machine. A model of behavior composed of states, transitions between states,

and actions performed when entering a state.

FPGA: Field Programmable Gate Array. A device which contains programmable logic and inter-

connect. By programming the device one can implement arbitrary digital logic. Reprogrammability

allows designs to be changed, unlike ASICs.

FPGA Overlay Network: The notion of placing a logical network over the physical network of

an FPGA. The physical FPGA network refers to the wires and programmable switches that connect

programmable logic. By programming these switches and logic, one can create a circuit that is itself

a network, implemented on top of the physical FPGA network.

GraphStep: A system architecture for sparse graph algorithms. This describes both a way to rep-

resent sparse graph algorithms and a process for implementing a hardware system. In the GraphStep

model each graph node is an actor that can communicate with the neighboring nodes connected to

its edges.

LUT: Look Up Table. The basic unit of logic in an FPGA which maps a set of k (typically 4)

input values to a single output value. A LUT is programmed to implement any k input function.

Upon receiving one of the 2k input permutations, instead of actually computing the correct output,

the solution is looked up directly in a table.

NoC: Network on chip. Components in a system on chip (SoC) communicate with each other via

this network.

PE: Processing Element. Generally used to refer to some circuit that performs computation.

Packet-Switching: A network communication pattern where the path of a message is dynamically

determined by switches at runtime (e.g. the Internet).

Rent’s Rule: IO = cNp. An empirical relationship that relates the number of external signal

connections of a block of logic (IO) to the number of logic gates/nodes in the block (N). This

relationship applies to many systems such as digital circuits and multicomputers.

Router: A software tool that schedules the communication of a time-multiplexed network prior

to runtime. This tool routes all messages in space and schedules them in time on physical network

resources. The schedule computed by the router is stored in context memory.
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Runtime Reconfiguration: The capability of an FPGA device to reconfigure while the device

is performing a computation.

Self Message: A message where the source and destination is the same processing element. As

communication in the GraphStep system architecture is specified between nodes, and multiple nodes

may reside in a single PE, messages may be sent from and to nodes in the same PE.

SMVM: Sparse Matrix Vector Multiply. A multiplication operation performed between a sparse

matrix (a matrix containing primarily zeros) and a vector. This operation is used in many popular

iterative algorithms, such as Conjugate Gradient and GMRES.

Slice: A unit of area in a Xilinx FPGA. For the Virtex2 family of parts, one slice is equivalent to

two 4 input LUTs, each with output registers.

SoC: System on Chip. The idea of integrating all components of a computer system on a single

chip. This provides several general benefits such as reduced cost and increased system performance.

SRL16: A 16-bit shift register implemented using the configuration bits of a 4-input LUT. These

shift registers can be cascaded together to form larger shift registers.

Time-Multiplexing: A network communication pattern where communication between process-

ing elements is scheduled before actually taking place. Messages are multiplexed (i.e. interleaved) in

time over a physical link. The exact timing of the interleaving of messages is calculated by a router.
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Chapter 1

Introduction

1.1 Thesis

For applications where communication between processing elements can be scheduled offline, well de-

signed time-multiplexed FPGA overlay networks on chip can deliver performance and area efficiency

exceeding that of online, packet-switched networks.

1.2 Motivation and Scope

One of the earliest and most obvious techniques developed to increase the performance of computing

systems is the simultaneous use of multiple processors to solve a single problem. How quickly a mul-

tiprocessor system can solve a problem depends on three fundamental components: the nature of

the problem and solution algorithm, the computational rate of each processor, and the communica-

tion time between processors. For many parallel systems the primary limiter on total performance is

communication time, not the performance of an individual processor. In order for processors to work

together to solve a computation, they must communicate with each other quickly and efficiently.

The rate at which processors can communicate is determined by the effectiveness of the network

that connects them. The quality of a network can be measured in many ways:

• Latency: How long does it take for one processor to communicate with another?

• Bandwidth: How much communication can the network support at one time?

• Area: How much area (silicon, PCB, etc.) does the network consume?

• Energy: How much energy does the network consume?

• Reliability: Can the network tolerate faults, defects, or other errors?

• Flexibility: Can the network support any type of communication?
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• Binding Time: Must communication be known before runtime?

• Scalability: How do these characteristics change as the size of the network grows?

The scope of this report is to evaluate networks in terms of performance (latency, bandwidth)

and area efficiency over a large range of network sizes. We do not attempt to address energy or

reliability concerns.

How do we design a scalable network that minimizes both communication time and area? We

will explore in detail the primary design decisions involved in constructing such a network:

• Communication Pattern: What is the overall model for how messages are transported over

the entire network? (Section 1.2.2)

• Routing Algorithm: How are messages scheduled/negotiated on individual network re-

sources (i.e. processors, switches)? (Chapter 4)

• Network Topology: How are network resources connected together? (Chapters 3 and 6)

• Hardware Design: How are network resources designed at the circuit level? (Chapters 3 and 8)

The most fundamental design decision is the choice of communication pattern, or switching

style of the network. This report focuses on one particular network communication pattern: Time-

Multiplexed Interconnect. We attempt to characterize how Time-Multiplexed Intercon-

nect compares to other communication patterns (in particular, Packet-Switched Intercon-

nect), and how to best design a time-multiplexed network in terms of routing algorithm, network

topology, and hardware design.

While certain trends presented in this work are relevant to all types of multiprocessor networks,

we limit our scope to one specific type of multiprocessor network: the FPGA overlay network on

chip (NoC).

1.2.1 FPGA Networks on Chip

Networks for connecting large numbers of processors in computing systems have been studied by

the parallel computing community for decades [51,6,55,30,37,18]. Researchers have done extensive

work in exploring switching styles, routing algorithms, network topologies, and hardware design in

multiprocessor systems.

These systems typically assume one processor per single physical chip. With recent increases in

silicon capacity it is now possible to fit several processing elements (PEs) on a single chip and connect

these components via a network on chip (NoC) [7]. Modern chips have enough capacity for 10s–100s

of PEs on chip with the promise of 1000s of PEs in the future, enabling single chip systems large

enough to solve significant problems. A number of network architectures have been proposed for
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NoCs, borrowing heavily from previously developed architectures for parallel computing. However,

NoCs have constraints that differ significantly from those of multiprocessors:

• Two-Dimensional Layouts: Multiprocessor systems allows multiple chips to be connected

in any configuration in three-dimensional space. However, for single chip solutions, current

silicon manufacturing technology allows a only single layer of transistors on a chip. While

multiple layer technologies are being developed, current NoC designs must be placed in two-

dimensional layouts.

• Quadratic Unbuffered Wire Delays: The time required for a signal to propagate over an

inter-processor wire in a multiprocessor system is roughly linear in the length of the wire. The

delay of an unbuffered wire in a integrated circuit is quadratic in the length of the wire.

• Fewer Pin Constraints: The number of input/output pins to a processor in a multiprocessor

system is limited by packaging technology, the size of physical wires on a circuit board, and

the energy required to drive them. I/O can increase significantly for NoCs by using wires on

the same scale as the processing element itself.

Little work has been done to characterize the tradeoffs in network design under these new con-

straints. Therefore, it is essential to reexamine network architectures under an appropriate cost

model.

One model that is particularly intriguing to NoC designers desiring flexibility is the Field Pro-

grammable Gate Array (FPGA). FPGAs provide a general reconfigurable fabric of logic upon which

arbitrary digital hardware can be created quickly and changed easily. Instead of spending a signif-

icant amount of time and money implementing a single design on an ASIC or custom chip, users

can create and test many different designs on an FPGA. NoC designers in particular can create an

NoC in hardware by mapping or overlaying a logical network on top of the FPGA reconfigurable

network. The flexibility provided by FPGAs enables techniques such as application-specific NoC

synthesis, runtime reconfigurable NoCs, and rapid design space exploration and testing of NoCs.

Despite these advantages over an ASIC or custom NoC model, the FPGA overlay NoC model is rel-

atively new and unexplored. We will therefore focus our exploration of time-multiplexed networks

on the FPGA overlay NoC cost model.

1.2.2 Network Communication Patterns

An fundamental choice to make in designing network interconnect is the selection of a communication

pattern, or switching style. To begin to understand where time-multiplexing belongs in the space of

switching styles, Table 1.1 rounds up the relative strengths and weaknesses of four commonly used
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Characteristics Spatially Time- Packet- Circuit-
Configurable Multiplexed Switched Switched

Communication known early late
(compile time) (runtime)

Communication predictability high low
Communication throughput com-
pared to physical link throughput

> < < <

Message latency compared to mes-
sage length

n/a n/a > <

Physical link utilization high low
Switch logic area low low high high
Switch memory area low high modest low
Relative message latency lowest low highest moderate

Table 1.1: Role of Various Communication Patterns

communication patterns. Each pattern performs optimally under a unique set of application com-

munication and hardware conditions; our goal is to quantify these conditions for time-multiplexing.

The basic idea behind each pattern is explained as follows:

Spatially Configurable Interconnect Spatially Configurable Interconnect consists of

dedicating pre-configured physical paths between communicating PEs. These paths are dedicated

in the sense that they can only be used for messages sent from the source PE to the sink PE on

the path; no other pairs of PEs can share links in this path. To use this pattern the communication

between PEs must be known in advance. For this pattern to be efficient, the application must require

that we move data between PEs at a rate comparable to or higher than the physical link throughput

(i.e. links should be not be underutilized, otherwise dedicating a link is unnecessary).

Figure 1.1 shows a spatially configured network where messages are routed through dedicated

links. Each message sent in this figure (from PEs A → D, B → D, C → A) propagates on its own

pre-configured physical link. The programmable switches in the network have a local configuration

state, and we set that state to provide a direct path of physical links between sending and receiving

PEs. Once set, the source PE simply places data on its output and the data propagates over the path

from the source to the sink with no additional delays beyond physical switching delays. Consequently,

communication latency is minimized. Further, switches can be very simple with minimal logic and

memory area.

An everyday example of Spatially Configurable Interconnect is FPGA interconnect,

where programmable logic (corresponding to PEs in Figure 1.1) is connected via wires and pro-

grammable switches (corresponding to switches in Figure 1.1).

Time-Multiplexed Interconnect Instead of dedicating links, Time-Multiplexed Intercon-

nect consists of sharing (i.e. multiplexing in time) physical links between communicating PEs in a

completely predetermined manner. An offline router is responsible for computing this schedule prior
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Figure 1.1: Spatially Configurable Interconnect

to runtime. Like Spatially Configurable Interconnect, to use this pattern the communica-

tion between PEs must be known in advance. Unlike Spatially Configurable Interconnect,

for this pattern to be efficient the application must require that we move data between PEs at a

rate significantly lower than the physical link throughput (i.e. since links are shared they cannot be

used heavily by pairs of PEs).

Figure 1.2 shows a time-multiplexed network where messages are routed through pre-programmed,

shared links. Each message sent in this figure (from PEs A → D, B → D, C → A) propagates on

a physical link that is shared in time. The programmable switches in the network have an FSM or

context memory which is pre-programmed by the router to give it a distinct switch configuration

on each time-step. This program is executed repeatedly (i.e. a cyclic schedule) to route messages

between sources and sinks. We can see in Figure 1.2 that because time-multiplexing can schedule

communication offline, network resources are used efficiently and messages do not collide. Communi-

cation latency is low as data is routed from link-to-link without additional delays, but may be higher

than Spatially Configured Interconnect since switches must change state on every time-step.

Switches can be simple with minimal logic area. However, since each switch stores a program in

context memory, if the length of the communication is long, the program and the associated context

memory can become very large. To illustrate how large this can be: networks we examine contain

hundreds of switches and may take tens of thousands of cycles to route communications. Therefore

the total number of context memory entries in the entire network can be on the order of millions.

A critical feature to note here is that since time-multiplexing schedules communication prior to

runtime, it must schedule all possible communication. That is, if only a subset of PEs are commu-

nicating and this is not known prior to runtime (e.g. it is data dependent), the time-multiplexed
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Figure 1.2: Time-Multiplexed Interconnect

router is forced to schedule non-essential communication. Therefore, at runtime PEs that are not

actually sending messages will have time-slots allocated in the network in the event that they ever

do send messages. For low number of PEs actually communicating at runtime, this could require

more cycles to route than necessary.

An everyday example of Time-Multiplexed Interconnect is the setup of train tracks, where

trains share tracks in time. The paths of trains and the configuration of switches between tracks are

scheduled ahead of time to avoid conflicts.

Circuit-Switched Interconnect Both Spatially-Configured Interconnect and Time-Multiplexed

Interconnect require all communication between PEs to be known in advance. However, for some

applications communication is not known prior to runtime. Circuit-Switched Interconnect

allows communication to be routed dynamically at runtime, where physical paths between com-

municating PEs are dynamically dedicated for the length of a single communication. Source PEs

dynamically request paths to sink PEs at runtime, and the network allocates a dedicated path if

one is available. This is useful when the communication pattern between PEs is not known in ad-

vance. For this pattern to be efficient, communication must be unpredictable such that we move

data between PEs at a rate significantly lower than the physical link throughput (i.e. since links

are shared they cannot be used heavily by pairs of PEs). Additionally, the latency of the network

should be small in comparison to the length of the message, as the setup time required to allocate

and dedicate a path should not be greater than the length of time that the path is used.

Figure 1.3 shows a circuit-switched network where messages are dynamically routed through

dedicated paths. Each message sent in this figure (from PEs A → D, B → D, C → A) propa-
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Figure 1.3: Circuit-Switched Interconnect

gates on a physical link that is shared in time. The switches dynamically accept route requests

and setup a path to the destination if one is available. We see that no route form A → D is

available, so A must wait for communication between B → D to cease. Since the switches must

make online switching decisions, they are more complex, and hence larger and slower than switches in

Spatially-Configured Interconnect and Time-Multiplexed Interconnect. Unlike Time-

Multiplexed Interconnect no configuration memory is required in the switches, and unlike

Packet-Switched Interconnect no memory is required to provide data buffering in the net-

work. Further, since switching decisions are made based only on instantaneous, local information,

switch utilization is lower than Time-Multiplexed Interconnect, whose configuration can be

globally coordinated offline.

An everyday example of Circuit-Switched Interconnect is the telephone network, where

calls are dynamically allocated to physical connections that are dedicated only for the length of the

communication.

Packet-Switched Interconnect Like Circuit-Switched Interconnect, Packet-Switched

Interconnect is capable of routing communication not known in advance, where communicating

PEs send packets of data that are individually negotiated through shared physical links the network.

Like Circuit-Switched Interconnect, for this pattern to be efficient communication must be

unpredictable such that we move data between PEs at a rate significantly lower than the physical link

throughput (i.e. since links are shared they cannot be used heavily by pairs of PEs). However, unlike

Circuit-Switched Interconnect, the latency of the network should be large in comparison to

the length of the message (otherwise circuit-switching is more efficient).
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Figure 1.3 shows a packet-switched network where messages are dynamically routed through

shared links. Each message sent in this figure (from PEs A → D, B → D, C → A) propagates

on a physical link that is shared in time. Communication takes place via packets, where each

packet contains a tag with the destination PE. The switches read the tag and locally determine the

direction to send the packet in. Because switches make local, greedy decisions, messages can collide

and congest switches. We see that both messages from A→ D and B → D are routed through the

same physical links at the same time, creating a bottleneck. Each switch contains a Queue with

backpressure to accommodate resource limitations in the network. Since the switches must make

online switching decisions, packet switches are more complex, and hence larger and slower than

switches in Spatially-Configured Interconnect and Time-Multiplexed Interconnect.

Unlike Time-Multiplexed Interconnect no configuration memory is required in the switches;

however, some memory is required to provide the data queues. Further, since switching decisions

are made based only on instantaneous, local information, switch utilization is lower than Time-

Multiplexed Interconnect whose configuration can be globally coordinated offline.

A critical feature to note here is that unlike Time-Multiplexed Interconnect, when routing

packets we only need to support instantaneous traffic demands. Time-Multiplexed Intercon-

nect must schedule resources for PEs that may never communicate; Packet-Switched Inter-

connect only needs to route messages for PEs that are actually communicating. This may result

in a net reduction in communication time despite the fact that physical resource utilization is lower

than Time-Multiplexed Interconnect.

An everyday example of Packet-Switched Interconnect is the Internet.
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1.2.3 Time-Multiplexed vs. Packet-Switched Interconnect

Chapter 7 will focus on comparing Time-Multiplexed Interconnect to Packet-Switched In-

terconnect in the context of choosing an appropriate communication pattern. Spatially Con-

figured Interconnect is inefficient for applications that underutilize physical link throughput

and will not be prioritized for this report. Circuit-Switched Interconnect is efficient only

for larger messages on shorter networks, and is not an appropriate solution for the kinds of small

message applications we focus on here. See Chapter 9 for a discussion of exploring these switching

styles in the future.

To illustrate the kinds of tradeoffs between time-multiplexing and packet-switching we will ex-

amine, consider the following example. Packet-switching typically requires larger switchboxes due

to buffering and logic required for dynamic decision making. Time-multiplexed switchboxes are

typically smaller in terms of raw logic, but if the total number of communication cycles is large,

switch context memory may require significant area. Packet-switched switchboxes may allow us

to fit an 8 PE network on a single fixed-size chip. With comparatively smaller switches we could

fit a 16 PE time-multiplexed network as long as routing could be completed in 30K cycles. Here

time-multiplexing can use more PEs in parallel to solve a computation and can therefore provide

higher performance than packet-switching. However, if routing takes more than 30K cycles, time-

multiplexed switch area increases and we can fit only 8 PEs. Furthermore, at more than 100K

cycles we can only fit 4 PEs. Now packet-switching enables more parallelism and can outperform

time-multiplexing. Consequently, there are operating ranges in which each network is preferred.

To select wisely between packet-switching and time-multiplexing for FPGA overlay NoCs, we

need to develop analytic area and time models to ground the general trends of Table 1.1 into

quantitative, empirical tradeoffs. In particular, we want to quantify the following three questions:

• For equivalent topologies and communication loads, what is the quantitative difference be-

tween the offline, global routing of time-multiplexing and the online, local routing of packet-

switching? (Section 7.2)

• For an equivalent, fixed area capacity and equivalent communication loads, what is the per-

formance difference between well engineered time-multiplexed and packet-switched networks?

(Section 7.3)

• For communication loads that only require routing a subset of all possible communication,

what is the cost of routing all possible communication for time-multiplexed interconnect?

(Section 7.4)
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1.3 Organization

The rest of this report is organized as follows. Chapter 2 further motivates this study by intro-

ducing prior work in NoCs and time-multiplexed networks. Chapter 3 explains how to design the

hardware of a time-multiplexed network and introduces the topologies that we explore. Chapter 4

describes our routing algorithm and how to measure its efficiency. Chapter 5 introduces the real

(i.e. not synthetic) communication workloads we use to benchmark our networks. Chapter 6 shows

how to choose an optimal network topology. Chapter 7 compares time-multiplexing with packet-

switching. Chapter 8 explains how to further optimize time-multiplexed networks by compressing

context memory. Chapters 9 and 10 conclude by suggesting future work and reviewing results.
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Chapter 2

Prior Work

To motivate our study of time-multiplexed networks, we first describe prior work in networks on chip,

focusing on efforts in topology selection that are relevant to time-multiplexed networks on chip. We

then summarize prior work specific to time-multiplexing and the comparison of time-multiplexing

to packet-switching.

2.1 Networks on Chip

While some researchers have examined issues in designing general time-multiplexed systems, nearly

all NoC projects have focused on packet-switched networks. Network topology design has been the

focus of much of this research. Findings about performance and area scaling culled from topology

design research are relevant across communication patterns, as we will see in Chapter 7.

Most prior work in NoC topology design has assumed a packet-switched network under an ASIC

cost model. Several NoCs have been studied for various topologies such as the ring [58], mesh [31,43],

torus [13], fat-tree [1, 49], octagon [29], and star [34] (see Figure 2.1). These projects typically

evaluate scaling of topologies over 10s of interconnected PEs without evaluating tradeoffs with

respect to other topologies. Pande et al. [49] do compare different topologies for larger networks.

However, they do not examine how these networks scale, as they examine only fixed-size networks

of 256 PEs.

Additional work has attempted to provide a design methodology and automatic synthesis tools

for evaluating and generating topologies for ASIC NoCs [45,21,23] . Murali et al. [45] provide a tool

which explores several different application-specific topologies, but they do not examine the effects

of scaling NoC topologies. Rather than characterizing topological area and performance for small

systems or for a single system size, this work attempts to compare and explore the scalability of

different network topologies from 2–2048 PEs.

Some recent work has begun to examine NoCs under an FPGA overlay cost model [41, 44, 53,

46], as recent increases in FPGA capacity have made it possible to map NoCs to FPGAs. While
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Figure 2.1: Previously Studied Network on Chip Topologies

promising, this work has ignored time-multiplexing and has avoided comparing the performance of

network topologies. We examine several large-scale topologies and are the first to characterize the

tradeoffs between topologies for NoCs on FPGAs.

Finally, nearly all prior work has used synthetic traffic for evaluating tradeoffs in NoC design.

Select papers [60] have examined real world applications mapped to NoCs without attempting to

use them to characterize the design space of NoC architecture. We evaluate our networks with a

variety of real world applications 5.2. These applications provide diverse communication patterns

which heavily load our network and stress the performance tradeoffs between different network

architectures.

2.2 Time-Multiplexed Networks

The idea of time-division multiplexing (TDM) information was invented in World War II for the

purpose of encrypting radio transmissions. Bell Labs then popularized the idea by developing the first

T1 voice channel system, which interleaves multiple voice signals on a single line in a pre-scheduled

manner. The T1 communications standard and its successors have been in use by telephony carriers

for years. Additionally, many modern wireless communications protocols use a type of TDM, called
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TDMA (time-division multiple access) where many users share the same radio frequency in time.

TDMA is used extensively in the Global System for Mobile Communications (GSM), satellite, and

even local area network systems.

In the computing world, the distributed parallel processing community has focused much research

on the time-multiplexing of communication between processing elements. Several of these projects

used concepts similar to those we implement in our network, but with a slightly different focus.

Instead of using switches with context memory, many projects used FSMs to coordinate communi-

cation between multiple chips (iWarp [9] and NuMesh [54]) or between PEs integrated onto a single

chip (Synchroscalar [48]). Other projects used time-multiplexing at the logic-level for implementing

circuits [17, 8, 26, 14, 59]. In these designs time-multiplexed context memory is built into logic and

switches of the native FPGA or simulation-engine architecture.

The project with a model and focus most similar to ours is Virtual Wires [4]. Instead of exam-

ining the time-multiplexing of resources connecting processing elements in an ASIC or embedded in

an FPGA, Virtual Wires examined the time-multiplexing of resources overlayed on top of an FPGA.

Virtual Wires attempts to overcome pin limitations by time sharing each physical wire among logi-

cal wires and pipelining those connections at a high frequency. To schedule the logical wires on the

physical wires, they developed a greedy spatial and temporal scheduler [52], demonstrating a signif-

icant increase in usable I/O bandwidth. Instead of just time-multiplexing chip I/O communication

by overlaying logic on an FPGA, our work attempts to time-multiplex communication over an entire

network overlayed on an FPGA. We use a similar space-time greedy scheduler as the basis of our

own routing algorithm.

2.3 Time-Multiplexed vs. Packet-Switched Networks

Some researchers have begun to explore the tradeoff between static scheduling and dynamic routing.

The RAW microprocessor [61] utilized a static scheduler to compile streams of computations across

PEs, but also supported dynamic hardware to allow for unresolvable events such as memory stalls

and interrupts. The designers discovered that a combination of static scheduling techniques and

software routines handled dynamic events more efficiently than dedicated dynamic hardware. The

tradeoffs between static scheduling and dynamic routing were not quantified beyond this observa-

tion. The aSoC architecture [38] took this comparison a step further. aSoC utilized a statically

scheduled communications processor, complete with context memory, to network together PEs and

compared it to dynamic routing models. They found that static scheduling moderately increased

performance at the cost of increased area in context memory, but they did not quantify this increase

in area. aSoC supported only 16 PEs and a light traffic load where PE processing time generally

dominated communication time. Rather than simply examining one system size or configuration,
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this work attempts to broadly explore the design space tradeoffs between static scheduling and dy-

namic routing, and quantifies when either time-multiplexing or packet-switching is preferred under

various applications conditions. Our exploration ranges from 2–2048 PEs and includes traffic loads

which can often dominate node processing times.

14



Chapter 3

Time-Multiplexed Network Design

To design a physical time-multiplexed network, we must first select a network topology that describes

how to connect PEs. Next, we must determine how to construct the individual elements of that

topology in hardware. Here we discuss the topologies that we explore in Chapter 6 and their

hardware design.

3.1 Network Topologies

The most commonly used topology for NoCs is the shared bus [3, 25, 62] (Figure 3.1(a)). Only one

device can send a message on a bus at one time; therefore, devices on a bus must arbitrate for control.

Assuming no segmentation, a bus can only handle a single unique network send and receive per cycle,

sent from the single PE controlling the bus. Multiple receives are possible but only for non-unique

data that fans out to multiple PEs. Applications with large numbers of PEs communicating in

parallel must send and receive significantly more than one message per cycle. For the applications

we consider, hundreds of sends and receives per cycle are common (see Figure 5.1 for an example

from our workload set). In these situations the bus will be forced to serialize communication and

will become bandwidth bottlenecked.

For communication heavy applications it is necessary to avoid the bandwidth limitations of a

bus and move to scalable networks. A small modification to the bus to allow increased injection of

messages is the addition of pipelined segmentation, creating a ring topology (Figure 3.1(b)). We

examine rings as representatives of the best possible performance that a bus can achieve.

PE PE PE PE

(a) Bus

PE PE PE PE

(b) Ring (no wraparound)

Figure 3.1: p = 0 Network Topologies
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Figure 3.2: p = 1 Network Topologies

One extreme alternative to the limited, serialized connectivity of the bus is the selection of a

topology which supports any connectivity between all PEs. Common multiprocessor topologies such

as crossbars, multistage networks (e.g. Benes̆ [5], Clos [11]), and hypercubes all represent networks

that provide fully connectivity between PEs (Figure 3.2). Previously studied topologies for NoCs

such as octagons and stars provide similar connectivity (Figure 2.1). These topologies have high

bandwidth due to their large bisection and hence do not become serialization bottlenecked as quickly

as a bus or ring. However, fully connected topologies are prohibitively expensive in terms of area

in two-dimensional VLSI layout due to large numbers of wires crossing the bisection [57]. This high

area cost is exacerbated when scaled to 1000s of PEs.

Additionally, Landman [32] observes that typical designs do not even require this kind of full

connectivity. Using Rent’s rule, one can characterize the wiring requirements (or connectivity) of

a circuit as follows:

IO = cNp (3.1)

Here, N is the number of nodes in a circuit, IO is the number of input and output signals to the
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Figure 3.3: Ring (5 PEs, w = 1)

circuit, and c and p are parameters that are design specific. The Rent parameters c and 0 < p < 1

describe the level of connectivity in a circuit, where c is a constant factor and p is an asymptotic

factor. The intuition behind this equation is that for a given block of N nodes, the number of wires

entering and exiting the block can be no less than a constant (IO = c, where p = 0), and no greater

than linear in N (IO = cN , where p = 1). Rent’s rule can be applied recursively to blocks within a

design, where c and p for the entire design are the values that best fit Eq. 3.1 over many blocks.

Buses and rings are p = 0 topologies, while fully connected topologies are p = 1. Landman found

that most real designs are characterized by a Rent parameter of 0.5 < p < 0.75. Therefore, most

designs operate in a limited bisection region with p < 1, but do require more bisection than p = 0.

Therefore, for most designs a bus does not provide enough interconnect, while fully connected

topologies are area inefficient in that they provide too much interconnect. All topologies can be

characterized by the tunable Rent parameter p, and we can attempt to design a network with a p

that will match application requirements. We will see that over our range of applications p = 0

networks can quickly become bisection limited, while p = 1 networks avoid bandwidth bottlenecks

but at a significant cost in area (Section 6.2).

To explore the design space of limited bisection networks, we focus of exploration of network

topologies to rings, meshes and Butterfly Fat Trees (BFTs) [37,20] over a range of configurations.

3.1.1 Ring

Figure 3.3 shows the bidirectional ring topology we examine. Rings can be parameterized by their

channel width w, equivalent to the Rent parameter c, which specifies the number of rows of switches

in the ring. Each channel is independent and can be thought of as a separate, identical rings of

switches, each attached to the row of PEs. We chose not to build wraparound wires (unlike the ring

shown in Figure 2.1(a)) as to increase layout simplicity. We examine rings with w = 1, 2. Since

p = 0 for the ring, we consider the ring as a representative of how well one can do with a small

amount of interconnect that can be varied by the constant factor w.

3.1.2 Mesh

Figure 3.4 shows the two types of mesh topologies we examine: directional and bidirectional. Like

rings, meshes can be parameterized by their channel width w, equivalent to the Rent parameter c,
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Figure 3.4: Mesh (4× 4, w = 1)

which specifies the number of rows of switches in each horizontal and vertical channel. Each channel

is an independent mesh that can be thought of as a separate plane of switches, each attached to

the array of PEs. We will examine meshes with w = 1, 2. We note that p = 0.5 for the mesh,

representing a moderate amount of interconnect that can be varied by the constant factor w.

We choose to tune channel width instead of dimensionality for meshes. Previously, higher dimen-

sional meshes such as as hypercubes (Figure 3.2(c)), or more generally k-ary n-cubes, were shown

to be less efficient than two-dimensional meshes due to pin constraints [12]. As NoCs are not I/O

limited like multiprocessor networks, it may be worth revisiting higher dimensional mesh topologies

in the future under an appropriately revised cost model.

3.1.3 Butterfly Fat Tree

Figure 3.5 shows the Butterfly Fat Tree (BFT) [37,20], from both logical and layout perspectives. The

BFT resembles a binary tree with two modifications at higher levels of the tree. First, connections

can cross the tree before reaching the root, allowing routes to exploit locality by turning across the

tree at lower levels. Second, connections can increase in number (i.e. become “fatter”) at higher

levels, increasing total network bandwidth.

BFTs can be parameterized around the base channel width c and wire growth rate p, allowing

a single topology to be fully tuned in terms of its Rent parameters. Like w for the ring and

mesh, c indicates the number of parallel, non-interacting planes of switches. The Rent parameter p

specifically denotes which of the two types of BFT switches are used at each level of the tree: the

Π or T switch. The Π switch is a bandwidth preserving switch, where two inputs enter from the

bottom of the switch and two outputs exit from the top. The T switch is a bandwidth reducing

switch, where two inputs enter from the bottom and only one output exits from the top. A p = 0
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Figure 3.5: BFT (16 PEs, c = 1, p = 0.5)

BFT indicates no growth of wires, or all T switches. Recall that p = 0 in Rent’s rule indicates

IO = c, or that when dividing a BFT recursively into blocks, each block has a constant number

of links entering and exiting the block. A p = 1 BFT is entirely made of Π switches, such that in

each recursive block the number of links entering and exiting that block is linear in the number of

elements in the block (IO = cN). Figure 3.5 shows a p = 0.5 tree, where Π and T switches alternate

at each level. We examine BFTs with c = 1, 2 and p = 0, 0.5, 0.67, 1.

3.2 Hardware Design

We now examine the hardware design of the switches, input/output blocks, and pipelined inter-

connect of our network (processing element design is discussed in Section 5.5). In designing the

hardware for our network, we have four main goals: simplicity, scalability, high performance, and

area efficiency. In order to make the network as simple as possible, we construct all switches and

I/O blocks out of multiple instances of a single, parameterizable element: the time-multiplexed
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Figure 3.6: Time-Multiplexed Merge Primitive (3-input)

merge. The simplicity of the merge block allows it to both run at a high frequency and consume a

small amount of logic area. Additionally, by decomposing all switches into simple merge blocks, we

can easily pipeline our switches heavily and thus run the entire network at a high frequency. This

technique scales well to very large network sizes.

While we present switch and I/O block designs as general circuits that can be constructed on

any substrate, the specific area and performance model we show data for is based on the Xilinx

XC2V6000-4 FPGA. All area (slices), latency (cycles), and frequency (MHz) numbers presented in

this section are based on synthesizing, placing and routing designs on a Xilinx XC2V6000-4 (see

Section 5.6 for more details).

3.2.1 Hardware Parameters

Each hardware element in our network is parameterizable in terms of the bit width of data. If the

number of bits in a message exceeds the datawidth of network links and switches, messages can

be broken up into pieces or “flits” to be routed separately. This provides a way for PEs to send

arbitrarily long messages over a network with a fixed datawidth. For the applications we consider,

all messages sent within a single application are of equal size (16 or 64 bits). We choose to synthesize

networks with datawidths equal to the size of a single message, routing all messages as single flits.

Routing multiple flits would decrease the size of the switch logic, as the logic could be sized to

process shorter data. However, routing multiple flits increases the total number of communication

cycles due to the increased number of flits that must be routed. This in turn increases the total

number of bits required for context memory, which dominates switch area. For the small message

applications that we focus on here, multiple flit messages are inefficient.
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Primitive Area (Slices) Latency Speed
Logic Context Total (Cycles) (MHz)

Merge2 8 32 40 1 219
Merge3 24 64 88 1 204
Merge4 24 64 88 1 204

Table 3.1: Time-Multiplexed Merge Primitive (16-bit, 1024-deep)

3.2.2 Merge Primitive

The time-multiplexed network is composed solely from the time-multiplexed merge primitive. A

merge has n inputs and a single output, where each input and output can be multiple bits wide.

Figure 3.6 shows a sample 3-input merge primitive, implemented both at the block diagram and

FPGA circuit level. Merges are simply constructed out of n-input multiplexers controlled by context

memory. Context memory controls which merge input is routed to the output on that cycle, corre-

sponding to routing decisions computed offline. Because of this simple design, the latency to route

through a merge is a few LUT delays. Since merges need to store routing decisions for every cycle,

for large cycle counts context memory can dominate the area of the merge primitive, and in turn

the entire network. The following equations describe the area in slices required for time-multiplexed

merge primitives as a function of datawidth and context depth, where n = 2, 3, 4:

Merge2area =
ContextDepth

32
+

DataWidth

2
(3.2)

Merge3area = 2× ContextDepth

32
+ 3× DataWidth

2
(3.3)

Merge4area = 2× ContextDepth

32
+ 3× DataWidth

2
(3.4)

Context memories are implemented with SRL16s [63] for compact storage, where each slice holds

a single bit of context memory that is 32 cycles deep. We see that a Merge2 requires 1 bit of context

(corresponding to ContextDepth
32 slices) to control a single two-input multiplexer (implemented in

DataWidth
2 slices). The Merge3 and Merge4 however require 2 bits of context to control three-input

and four-input multiplexers. Table 3.1 shows the area, latency, and speed of each synthesized merge

with a datawidth of 16-bits and with 1024 cycles of context. We further discuss the area model for

context memory and techniques to reduce context area in Chapter 8.

3.2.3 Switches

Figure 3.7 shows how we construct each switch for each topology solely out of merge primitives.

Table 3.2 shows the area, latency, and speed of each switch for a 16-bit network with 1024 cycles

of context. When calculating the area of switches used in the actual network, we ignore the area

required for merges connected to outputs that are unused. This is applicable to switches on the edge

21



merge2

merge2

merge2

(a) Ring Switch

merge2

merge2

merge2

(b) BFT T Switch

merge3

merge2

merge3

merge2

(c) BFT Π Switch

merge4

merge4

merge4

merge4

(d) Directional Mesh Switch

merge4

merge4

merge4

merge4

merge4

(e) Bidirectional Mesh Switch

Figure 3.7: Time-Multiplexed Switches

Switch Area (Slices) Latency Speed
Logic Context Total (Cycles) (MHz)

Ring 24 96 120 1 219
Directional Mesh 96 256 352 1 204
Bidirectional Mesh 120 320 440 1 204
BFT Π 64 192 256 1 204
BFT T 24 96 120 1 219

Table 3.2: Time-Multiplexed Switches (16-bit, 1024-deep)

of a mesh, the end of a ring, and the top of a BFT.

3.2.4 I/O Blocks

In order for messages to exit the PE and enter the network, and for messages to exit the network

and enter the PE, we construct network I/O blocks to allow the PE to interface with the network.

The input block consists of a single multiple input merge, where several incoming network links are

able to connect to the PE. The output block simply allows the PE to fanout its output messages

to each outgoing network link. While this may cause the network to route spurious messages, each
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PE contains a single bit of context memory to indicate when a valid, scheduled message arrives (See

Section 5.5).

The area, latency, and speed of an input block is identical to the merge that implements it

(Eqs. 3.2, 3.3, 3.4 and Table 3.1). Output blocks require no logic or area. As previously mentioned,

for increased efficiency we set the datawidth of all elements in our network and the datawidth of the

PE to be the same to allow the routing of single flit messages. This avoids the need to deserialize

and serialize data in incoming and outgoing messages respectively, in an attempt to match the PE

datawidth to the network datawidth.

3.2.5 Pipelined Interconnect

One important consideration in simulating our network is how to model the latency and speed of

switches for very large networks (i.e. 1000s of PEs). Large networks require large chips, and we

are not guaranteed that the entire network will be able to place and route at > 200 MHz on an

arbitrarily large chip. Because of the simplicity of the logic in each merge block, we assume that

a time-multiplexed merge can place and route at > 200 MHz, while maintaining a single cycle of

latency on an arbitrarily large chip. However, wires that connect switches together may be very

long and must be pipelined for all topologies to support high frequency operation.

As the wire distance to cross a chip (corner to corner) is identical for all topologies, we must

ensure that for each topology the number of cycles required to cross a chip via only wires is the

same. To calculate the required number of registers to pipeline all wires in our network for > 200

MHz operation, we perform the following calculations.

Maximum Length Unpipelined Wire We first compute the maximum length of an unpipelined

wire for 200 MHz operation. We observe that when placing two primitives on opposite ends of

of a Xilinx XC2V6000-4 (edge to edge), to achieve 200 MHz performance we must pipeline the

wires connecting the two primitives with 3 registers each. As the XC2V6000-4 contains 32K slices

(i.e. 180× 180), this corresponds to adding one pipeline register per 60 slices. Therefore, we assume

that the maximum length of an unpipelined wire is ≈ 60 slices.

Wires in our system connect PEs to switches and switches to switches. Switches are small enough

such that internal wires do not need to be pipelined. PE to switch connections are typically very

short and only require 1 cycle of pipelining. Switch to switch connections comprise the longest wires

in the system and we must calculate the length and pipelining for each of these wires. We observe

that our largest PE (SMVM) is 4000 slices, or roughly 64×64 slices in area. This PE is significantly

larger than switches in our system (Table 3.2) and will dominate total area. Therefore, in the worst

case we can approximate crossing a N PE system laid out in 2D as traveling the distance of 2×
√

N

PE length wires. As the PE is 64 slices long, a wire crossing the length of this PE requires at least 1
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pipeline register; but because routes in FPGA may take slower wires we assume 2 pipeline registers.

Mesh Latency For an N PE bidirectional mesh we can see that a worst case route (corner to

corner) must cross the distance of 2 ×
(√

N − 1
)

PEs. Given that the number of cycles to cross a

PE is 2, we express the mesh wire pipelining requirement as follows:

Meshwire cycles = 2×
(√

N − 1
)
× (twire)

= 2×
(√

N − 1
)
× (2)

= 4
√

N − 1

≈ 4
√

N

(3.5)

In the worst case the total number of cycles to traverse the mesh is the sum of the number of

cycles to traverse both switches and wires:

Meshswitch cycles =
(
2×
√

N − 1
)
× (tswitch)

=
(
2×
√

N − 1
)
× (1)

= 2
√

N − 2

≈ 2
√

N

(3.6)

Meshlatency = Meshwire cycles + Meshswitch cycles

=
(
4
√

N
)

+
(
2
√

N
) (3.7)

We make similar latency assumptions for the ring topology.

BFT Latency We observe that for the BFT the length of switch to switch wires doubles after every

two stages of the tree (Figure 3.5(b)). We can express the general BFT wire pipelining requirement

as follows, where h is the height of a wire in the tree:

BFTwire cycles = 2×
log(N)−1∑

h=0

twireh
(3.8)
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We must select a sequence of twireh
such that BFTwire cycles = Meshwire cycles:

BFTwire cycles = 2×
log(N)−1∑

h=0

2d
h+1
2 e

= 2×

(
1 + 1 + 2 + 2 + 4 · · ·

√
N

2
+
√

N

2

)

= 4×

(
1 + 2 + 4 · · ·

√
N

2

)
= 4
√

N

(3.9)

We can further express the total latency required to traverse both switches and wires as:

BFTswitch cycles = 2× log N × tswitch

= 2 log N
(3.10)

BFTlatency = BFTwire cycles + BFTswitch cycles

=
(
4
√

N
)

+ (2 log N)
(3.11)

We see that wire pipeline cycles for the mesh and BFT are asymptotically the same (4
√

N).

However, the switch latency of a BFT is asymptotically lower than that of a mesh (2 log N < 2
√

N).
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Chapter 4

Time-Multiplexed Router Design

In order for PEs to communicate on a time-multiplexed network, an offline router must schedule

all communication prior to runtime. Here we discuss the nature of the routing problem, our greedy

routing algorithm, and how to measure our algorithm’s efficiency.

4.1 The Routing Problem

The informal goal of time-multiplexed routing for NoCs is: given a static communication load, find

a schedule that allows messages to travel from source to sink without using the same resources at

the same time (i.e. congesting resources). Two types of messages must be routed: self messages and

external messages (See Chapter 5 for more details on our application message model). Self messages

(i.e. messages where the source and destination of the message is the same PE) do not need to

traverse the network, but must access local PE resources as necessary. External messages must also

access local PE resources, and then must exit the source PE, access network resources by traversing

network links and switches, and enter the sink PE. In addition to correctness (i.e. all messages

routed), several optimization targets can be defined, such as minimizing total communication cycles,

router runtime, and energy. Our router will focus on minimizing total communication cycles.

4.1.1 Multicommodity Flow

Time-multiplexed routing is a specific instance of generalized multicommodity flow [35,24], typically

used to formulate the problem of spatial routing. Time-multiplexing introduces the additional

constraint that messages must also be routed in time; we state this version of multicommodity flow

as follows. Directed resource graph G = (V,E) represents the resources in the network and their

interconnectivity. In this graph nodes correspond to PEs and network link segments, while edges

correspond to the allowable connections between pairs of nodes via switchboxes and input/output

blocks. Each edge e ∈ E has an associated nonnegative capacity in time denoted by c(e, t), which

represents the maximum amount of flow that can pass through that edge on cycle t. For time-
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multiplexed routing ∀e, c(e, t) = 1. Additionally, each resource r has an associated delay cr, which

represents the latency through that resource (Table 3.2).

Additionally, there is a set of k > 1 triplets (si, ti, di), termed commodities, corresponding to

messages that need to be routed. For each commodity i the variables si, ti represent source and sink

nodes in the resource graph, while di represents a positive demand. For time-multiplexed routing

∀i, di = 1. The general objective is to route all commodities in time while satisfying demand,

obeying capacities, and obeying latencies experienced when traveling through a resource. Formally,

we can express the solution as a set of flows through all edges in time, where fi(e, t) represents the

amount of commodity i passing through edge e on cycle t. This solution set corresponds to message

assignments for each resource. The set of flows must obey the following constraints:

1. Flow is conserved: ∀v, incoming flow at time t = outgoing flow at time t + cr, ∀i and ∀t.

2. Capacities are obeyed: ∀e,
∑

i fi(e, t) ≤ c(e, t).

3. Demands are satisfied: ∀i, di units of commodity i must flow from si to ti.

4. Latencies are obeyed: When a messages enters resource r on cycle t, it must exit that resource

on cycle t + cr.

Time-multiplexed networks require the additional constraint that all flows are integral (specifi-

cally = 1), as a message flit is an atomic unit. While general multicommodity flow can be formulated

as a linear program (LP), integer multicommodity flow is a mixed integer program (MIP), and is

therefore NP-complete [19].

The optimization target for our time-multiplexed router is to minimize total communication

time. Therefore, our optimization problem is to satisfy the above constraints of time-multiplexed

routing while minimizing the the total number of cycles t.

4.1.2 Single-Source Shortest Path

A critical subproblem to be solved in conventional heuristics for time-multiplexed routing is the

routing of a single message. We formulate this problem as finding the minimum weight path from a

source to a sink: Given a weighted resource graph G = (V,E), and source and sink nodes s, t, find

the minimum weight path connecting s and t. Each resource has a weight in time that represents

the state of that resource in a given cycle. The weight of resource r at cycle t can be a function of

values such as the occupancy of a resource (i.e. if a resource is occupied it should cost more to use),

the cycle t (i.e. routes should be encouraged to use resources earlier in time), etc. The exact weight

function depends on the router algorithm used as we will discuss in the following section.
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4.2 Greedy Algorithm

One common heuristic algorithm for solving multicommodity flow, typically used in FPGA spatial

routing, is Pathfinder [42]. Pathfinder, based on Lee’s maze routing algorithm [33], attempts to

route each commodity one by one while allowing flow through a resource to exceed its capacity.

Routes that violate capacity constraints are later ripped up and re-routed until no routes exceed

resource capacities. Each route is found with a shortest path algorithm where resources are weighted

based on congestion and the history of congestion. Congestion is simply an integer representing the

number of routes occupying a given resource (i.e. the amount of flow through a resource). History

can be expressed in several ways, but most simply it is a running sum of congestion over the course

of the algorithm. Therefore, for Pathfinder the representation of the weight of resource r in cycle t

is as follows:

weight(r, t) = 1 + α× (occupany(r, t)× history(r, t)) (4.1)

Where α is some constant. Pathfinder has been shown to produce high quality routes in a

moderately short amount of time. However, the amount of state needed to represent every resource

in the graph is very large, and can significantly increase algorithm memory usage and runtime.

Additionally, Pathfinder may require a significant amount of ripping up and re-routing of routes,

further increasing runtime. Finally, Pathfinder is not guaranteed to converge. We found that for

purposes, under certain conditions a simple greedy router performed close to the optimal number of

total communication cycles while routing significantly faster than Pathfinder. In Section 4.4 we we

evaluate the quality and runtime of our router and provide examples that indicate that for most cases,

the extra quality obtained by Pathfinder may not be worth the additional runtime and resource cost.

In cases where that extra quality is desired, our greedy router complements a Pathfinder approach

by providing an achievable lowerbound on performance.

Our solution to the routing problem is a greedy algorithm, similar to that of [52]. Instead of

allowing routes to occupy congested resources, we avoid congested resources and therefore avoid

ripping up and re-routing routes. Therefore, the weight of each resource is simply:

weightr,t = 1 (4.2)

Pseudocode for our algorithm is shown in Figure 4.2. The list of messages to route is initially

sorted randomly, as we found that there is no discernible benefit to routing longer routes first or

last. Each message is routed one at a time with a fast A* shortest path algorithm (e.g. [56]) shown

in Figure 4.3. A* works by spreading along the resource graph in time and by placing candidate

network links in time to examine on a priority queue. Initially, output links from the source are
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Algorithm 4.2.1: GreedyRoute(message list)

sort message list (randomly)

total cycles← 0
for each message ∈ message list

path← FindShortestPath(message.source, message.sink, 0, total cycles + 1)
total cycles← max (path.cycles, total cycles)

return (total cycles)

Figure 4.1: Time-Multiplexed Greedy Routing Algorithm

placed on the priority queue. We ensure that these links are not occupied and that the resources

(e.g. memory) of the source are not occupied, ensuring sure that the source is ready to send a

message. The algorithm then enters a loop where candidate links in time are examined one by one

by popping the top link off the priority queue. If one of those links in time terminates in a node

that is the sink, and the sink is not busy, then the algorithm is done. Otherwise, we examine the

non-sink node and place its output links in time on the priority queue and continue. We ensure that

these output links are not occupied and that they occur at a time = input link.time+node.latency

in order to account for switch latencies.

The advantage of A* is the method in which it sorts links in time in the priority queue, shown

in Figure 4.4. The queue is sorted by three variables: weight, guess, and time. weight is equivalent

to weightr,t = 1 and represents the number of links in time traversed thus far to reach the current

link in time, i.e. the length of the path. guess is a heuristic that A* uses to speed up search time.

guess is a guess as to how many links are left until the sink. This is calculated on a topology specific

basis. Together, weight + guess represent the estimated total length of a given path. Links in time

that minimize this value are pushed to the top of the priority queue and thus examined first. If

weight + guess are equal for two links in time, then the link that occurs earlier in time is examined

first. The end result of this sorting technique is that each message is routed greedily on the shortest

available path in space and earliest possible slot in time.

Self messages do not require an A* shortest path search. These messages are simply scheduled

on the PE in the earliest possible slot in time when resources (i.e. memory) are available.

4.2.1 Communication Constraints

For some applications, messages may have constraints on when they can be routed. That is, before

it is possible to send out a particular message, another message may need to be received first. To

understand when these constraints occur for our applications, see Section 5.4.

To deal with these constraints, we make the following simple change to our router. When

iterating through the list of routes, we only route those messages whose constraints are satisfied.
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Algorithm 4.2.2: FindShortestPath(source, sink, start time, end time)

// start search with source’s links over time

for time← start time to end time
for each link in time ∈ source.get outputs(time)

if !link in time.occupied() and !source.occupied(time)
link in time.weight← 1
priority queue.push(link in time)

// examine links on priority queue

while !priority queue.empty()
link in time← priority queue.pop()
time← link in time.time
weight← link in time.weight
node← link in time.sink

// reached sink

if node = sink and !sink.occupied(time)
return (link in time.path())

// keep searching

for each link in time ∈ node.get outputs(time)
if !link in time.occupied()

link in time.weight← weight + 1
priority queue.push(link in time)

Figure 4.2: A* Shortest Path Algorithm

Algorithm 4.2.3: PriorityQueueCompare(link in time a, link in time b)

// sort by smallest (distance traveled + distance left)

if (link in time a.weight + link in time a.guess) <
(link in time b.weight + link in time b.guess)
return (−1)
else if (link in time a.weight + link in time a.guess) >

(link in time b.weight + link in time b.guess)
return (1)

// then sort by earliest in time

else if link in time a.time < link in time b.time
return (−1)
else if link in time a.time > link in time b.time
return (1)

else
return (0)

Figure 4.3: A* Priority Queue Sorting Algorithm
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Topology Size Runtime
(PEs) (min:sec)

2 16:31
4 7:20
8 3:41

16 2:52
32 1:33
64 0:59

128 0:48
256 0:48
512 1:23

1024 2:23
2048 5:02

Table 4.1: Time-Multiplexed Router Runtime (BFT c = 1, p = 0.5 for fidap035)

When encountering a message whose constraints are not satisfied, we place that constrained message

at the end of the route list to be routed later. Once the PE receives the incoming messages that the

constrained message depends on, the router is able to route that message. Therefore in Figure 4.2,

instead of setting start time to 0, we set it to the time at which the last dependent message is

received. For our applications we ensure that there are no cyclic dependencies, guaranteeing that

all constraints for all routes will eventually be satisfied. These constraints limit the flexibility of the

router and may cause the router to make non-optimal decisions because of its greedy nature. In

Section 5.4.1 we go into further detail on the impact of these constraints on router quality.

4.2.2 Runtime

The primary optimization target of our router is to minimize communication time, not algorithm

runtime. To ease router development we implement our router in Java (see Section 5.6 for more

infrastructure details). Router runtime varies greatly depending on the size of the application graph,

the size of the network topology, and machine speed and load. Runtimes for our largest application

graph (SMVM fidap035, see Section 5.2.2) on a representative BFT with c = 1, p = 0.5 are shown

in Table 4.1. All runs were performed on an Intel Xeon 3.6 GHz processor with 4 GB of RAM using

Sun Java v1.5.0 06.

4.3 Lowerbound Calculation

Now that we have an algorithm for routing messages on our time-multiplexed network, we can

attempt to measure its quality by comparing the number of cycles it takes to route to the lowerbound

number of cycles based on physical topology constraints. We identify several quantitative network

characteristics which bound the number of cycles required for communication:
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4.3.1 PE Serialization

PE Serialization refers to the number of cycles required for a PE to process all messages. We engineer

the datapath of our PEs to handle one external input and output message in one cycle each. For

more details on our PE implementation see Section 5.5. A self message requires two cycles as it can

be thought of as both an input and output message for the same PE. We can bound the number of

cycles spent on incoming and outgoing message processing as follows:

Tinput =Ninput + Nself (4.3)

Toutput =Noutput + Nself (4.4)

While the datapath can handle single input and output messages simultaneously, memory band-

width limitations may restrict the PE may to handle either an input or output message per cycle,

depending on message memory access requirements. We can define the cumulative serialization

bound as either one of the following equations, based on memory limitations:

Tserialization =max (Ninput, Noutput)

or

Tserialization =Ninput + Noutput

(4.5)

For the applications we consider, input and output messages can be processed simultaneously,

so the equation Tserialization = max (Ninput, Noutput) applies.

Serialization is a function of the number of PEs in a network. For a fixed communication load

(i.e. fixed number of messages), more PEs translates to less message processing per PE, and a lower

bound on serialization cycles. Topologies which fit more PEs in a given area will have the lowest

values of Tserialization.

4.3.2 Network Bisection

Network bisection refers to the available bandwidth of a network, which dictates how many messages

the network can support at a single time. When dividing a network into two halves, the number of

links crossing between the two halves is called the bisection, or top cut. This indicates the maximum

number of message flits that can cross the network in a single cycle. If the number of message flits

is greater than the top cut, then communication is bottlenecked and must be serialized across the

bisection:

Tcut =
⌈

Nflits

Ntopcut

⌉
(4.6)
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The top-level bisection may not be the largest serial bottleneck in the network. Hence, we need

to recursively bisect the network and identify the most limiting of cuts (Tcuti):

Tbisection = max
all cuts i

(Tcuti) (4.7)

Network bisection is a function of the amount of interconnect in a topology. Topologies with

richer interconnect, indicated by a Rent parameter p closer to 1, will have the lowest values of

Tbisection.

4.3.3 Network Latency

Network latency refers to the number of cycles needed to cross the entire network. If the network is

sufficiently large, several cycles may be required for a route to traverse the network:

Tlatency = max
all routes i

(latencyi) (4.8)

Network latency is a function of the size of a network and the latency of each switch. Short

networks with few, low latency switches on the longest path will have the lowest value of Tlatency.

4.3.4 Lowerbound

Thus, the lower bound on performance of a topology is as follows:

Tcycles = max (Tserialization, Tbisection, Tlatency) (4.9)

As an illustrative example, in Figure 4.4 we show how the performance of a topology can be

explained in terms of its lowerbounds. Here we plot lowerbound performance and actual performance

vs. number of PEs for a BFT c = 1, p = 0.5 for the gemat11 graph (see Section 5.2.2). Initially

the performance of the BFT is dominated by input and output serialization until 64 PEs. At low

numbers of PEs most cycles are dedicated towards serialized processing at the PEs. As we increase

the number of PEs the number of messages in the network increases (see Figure 5.1 for an example).

Since this is a limited bisection BFT, performance is subsequently limited by bisection until 1024

PEs. When the size of the network increases beyond 1024 PEs, communication becomes latency

dominated.

4.4 Quality

To measure the quality of our router, for each experiment performed we simply compared the number

of communication cycles required to route to the number of lowerbound communication cycles. We
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present quality results for a representative graph in our application set, SMVM gemat11 (see Section

5.2.1). Figure 4.5 plots the ratio of actual to lowerbound cycles as a function of PEs over a mix of

the best performing topologies, while Figure 4.6 plots the absolute difference in cycles.

In Figure 4.5 we see that our router routes in under 3.6× the number of lowerbound cycles. For

topologies other than the directional mesh, our router achieves within 2× the number of lowerbound

cycles. We note that these results are consistent across all graphs for all applications. There are

several possibilities for the gap in route quality between the directional mesh and other topologies.

One possibility is that the directional mesh provides far less routing flexibility than the bidirectional

mesh, meaning that it may be easier for the greedy router to make non-optimal routing decisions.

This would cause the quality ratio to increase.

Another possibility is that mesh lowerbounds in general are not asymptotically tight, meaning

that their lowerbounds are too low. Routes in a mesh are free to take many different non-optimal

paths to the destination. Taking a path that is not the shortest in distance can increase the amount

of traffic passing through a cut beyond what is calculated as a lowerbound. This would cause ratio

of actual cycles to lowerbound cycles to increase. Regardless, we are unsure of the exact reason for

this gap, and will look to examine this further in future work.

While the quality ratio may be upwards of 2× for most topologies, Figure 4.6 shows that the

absolute difference in cycles is minimal for most topologies. We see that the absolute difference

in cycles is large for the ring and directional mesh. The difference in cycles for the ring can be

attributed to the fact that the ring in general requires a very large number of cycles to route because

it is heavily bisection and latency limited. The quality difference for the the directional mesh can

be attributed to the reasons mentioned above. For all other topologies, we see that the absolute

difference in cycles is < 150. We again note that these results are consistent across all graphs for all

applications.
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For most topologies we see that our router provides adequate quality in reasonable runtimes

given the size and complexity of our topologies and workloads. Later we will see that BFTs and

directional meshes provide the best performance for time-multiplexed networks (Chapter 6). For

BFTs our router provides good results when considering both quality ratio and quality difference.

For directional meshes, we cannot conclude yet as to whether or not our router lacks quality or if

the lowerbounds for the directional mesh are too low. We plan to explore comparing our router to

Pathfinder to help quantify the tradeoffs in quality and runtime. Our greedy router will aid in this

exploration as it provides and achievable lowerbound for Pathfinder.
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Chapter 5

Communication Workloads

Nearly all prior work on NoC design has used synthetic or lightly loaded traffic to evaluate networks.

We believe that it is of critical importance to benchmark NoCs with heavy communication workloads

generated from real applications. Here we discuss the details behind the three applications we

examine and how we map them to our time-multiplexed networks.

5.1 The GraphStep System Architecture

We examine communication workloads for applications mapped to the GraphStep system architec-

ture [16]. The GraphStep system architecture is a high-level model for capturing graph algorithms,

abstracted from a detailed hardware implementation. GraphStep provides a representation and a

discipline for designing and implementing sparse graph algorithms. In GraphStep the sparse graph

is explicitly represented and computation takes place under an actor model. Each node is an actor

that communicates to neighboring nodes (connected via edges) through message passing. The eval-

uation model is a three phased Receive-Update-Send sequence, termed a GraphStep, where nodes

are barrier synchronized on the end of the Update phase. We model the communication of the

Receive and Send phases on our network where graph nodes send messages to other graph nodes.

We measure network performance as the total number of cycles required to route the workload of a

single GraphStep.

In our particular FPGA implementation, multiple graph nodes are physically placed on each PE

where they are time-multiplexed. Since messages are sent between graph nodes, messages can be

sent from a given PE to the same PE (self messages). The PEs consist of specialized processing

logic coupled with small, local, high bandwidth on-chip memories (e.g. Xilinx BlockRAMs [63]).

PEs are heavily pipelined and are therefore capable of sending and receiving messages in a single

cycle. This allows applications to potentially send and receive messages on every cycle from every

PE in the network. See Figure 5.5 and Section 5.5 for more details.

GraphStep allows us to examine applications that inject large amounts of traffic into the net-
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work. To illustrate the importance of examining applications with high communication requirements

mapped to large-scale networks, consider Figure 5.1. Here we plot network I/O messages per cycle

as a function of PEs on a network with no bandwidth limitations, given a ConceptNet [40] (Sec-

tion 5.2.1) communication load. Small networks (< 100 PEs) require only 1–10 network sends or

receives per cycle, as most cycles are dedicated to serialized processing at PEs. Larger networks

(> 100 PEs) require up to 180 network sends or receives per cycle. Consequently, examining net-

work topologies for small networks or for applications with light communication requirements will

not load networks enough to distinguish tradeoffs in network design. It is essential to examine both

large-scale networks and applications which stress those networks in order to fully characterize the

performance differences between network architectures.

5.2 Applications

We map three applications to the GraphStep system architecture. Each application computes over

a static, sparse graph, and thus the communication between graph nodes can be determined and

scheduled before runtime.

5.2.1 ConceptNet Spreading Activation Step

ConceptNet [40] is common-sense reasoning knowledge base represented as a graph. Nodes represent

nouns or noun-verb pairs (e.g. “cookie”, “eat cookie”) and edges represent semantic relationships

(e.g. “used for”, “is a”). Applications of ConceptNet include topic-jisting, analogy-making, text

summarization, and semantic prediction.

A key step in the ConceptNet algorithm is spreading activation. In spreading activation, an

initial set of graph nodes (corresponding to the set of keywords for a particular query) are activated.
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A single step of spreading activation involves sending an activation potential from each node to

its neighbors along its edges, activating those neighbors in turn. As the computation proceeds,

larger portions of the graph become activated. The percentage of active edges (activity factor)

over the whole graph depends on the initial query and what step of the spreading activation is

being performed. As the time-multiplexed network must compute schedules allowing for all possible

communication taking place, we perform our time-multiplexed experiments at 100% activity. We

run the packet-switched experiments at 100% activity and for a range of activity factors between

1%–100% which correspond to consecutive steps in selected queries.

ConceptNet consists of four distinct sets of predicates, each of differing breadth and accuracy.

The experiments described here were performed on the smallest, highest quality subset consisting of

14,000 nodes and 27,000 edges. This minimal subset exercises the core algorithm while containing

simulation run times.

5.2.2 Sparse Matrix-Vector Multiply

Iterative Sparse Matrix-Vector Multiply (SMVM) is used in several iterative numerical routines

(e.g. Conjugate Gradient, GMRES), where a large sparse matrix (i.e. a matrix with many zeroes)

is multiplied by a vector. We use a parallel implementation of this algorithm based on deLormier

et al. [15], which parallelizes Compressed Sparse Row (CSR) SMVM. CSR SMVM is a set of dot

products between the vector and matrix rows which are partitioned across multiple PEs. During an

iteration of the compute stage, each PE computes the dot product between its assigned rows and the

vector, resulting in a vector which must be sent to other PEs for use in the next iteration. For this

implementation graph nodes represent matrix rows while edges represent required communication.

We map representative matrices from the Matrix Market suite [47] to generate workloads for our

experiments.

5.2.3 Bellman-Ford Shortest Path

The goal of Bellman-Ford is to find the shortest (i.e. least weight) path from a single node to all

other nodes on a weighted graph. The Bellman-Ford algorithm is used in several CAD applications

such as single source shortest paths (e.g. FPGA Routing [42]), finding negative edge weight cycles

(e.g. Retiming [36]), and slack propagation (e.g. Static Timing Analysis) in circuit graphs. Bellman-

Ford operates by performing a relaxation operation on all edges of the graph in each GraphStep

until quiescence (i.e. no more messages left). A relaxation of an edge consists of examining the

sink node of the edge and computing the minimum the node’s data value and the edge’s data value.

We run Bellman-Ford over representative ISPD98 [2] benchmark graphs to produce communication

workloads that capture the structure of circuit netlists.
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5.3 Application Characteristics

An understanding of application communication characteristics can aid network designers in selecting

an appropriate network architecture and size. Characteristics of the application graphs used for our

experiment are shown in Table 5.1. In Section 4.3 we identified performance limiting characteristics

of network topologies; here, we identify three key performance limiting characteristics of application

graphs.

5.3.1 Total Edges

The total number of messages (i.e. graph edges) generated by an application dictates how serialized

(Eq. 4.5) that application is. That is, for an application graph with a large number of edges mapped

to a topology with a small number of PEs, each PE will need to process many messages. When

this ratio of edges to PEs is large enough, total communication time will be dictated by serialized

processing of self messags at the PEs. We observe that when the ratio of number of application edges

to number of PEs is on the order of 100, the application is typically serialization limited. When

this ratio is smaller, network bottlenecks such as bisection (Eq. 4.7) and latency (Eq. 4.8) begin to

dominate PE serialization. Here, the total number of messages injected into the network (Figure 5.1)

is large enough load the network more heavily than serialized self message processing at each PE.

For the network sizes we examine (2–2048 PEs), large application graph (80–220K edges) are not

affected by bisection or latency until the largest PE counts. Hence, we do not examine workloads

beyond 220K messages, as topologies do not differentiate in performance under these conditions

(i.e. 220K
2048 > 100).

5.3.2 Node Degree

As network size grows and the number of PEs increase, at a large enough network size a PE may

contain a single graph node. This PE must process all messages (i.e. graph edges) of this node

serially (Eq. 4.5). Therefore, total system performance will be limited by the number of edges of the

largest degree node. Applications with large fanin or fanout nodes can therefore become performance

limited at large PE counts when a single large fanin-fanout graph node resides on a PE. For the

ConcepetNet small graph, this bottleneck effect is significant enough to dominate performance

for all network sizes. As this is an important issue in mapping graphs to the GraphStep system

architecture, we implemented a decomposition strategy that reduces the degree of large nodes by

creating fanin and fanout trees. See Section 5.4 for an overview of our decomposition strategy.

We decompose only the ConcepetNet small graph since the maximum degree of nodes in all other

graphs was not large enough to dominate performance. After decomposing small all graphs have a

degree limit of ≤ 250 (Table 5.1).
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Graph Nodes Edges Max Degree Rent
Fanin Fanout cgraph pgraph

ConceptNet
small 15026 27745 63 64 33 0.5

SMVM
add20 2395 17319 124 124 21 0.6
bcsstk11 1473 17857 27 30 89 0.2
rdb3200l 3200 18880 6 6 24 0.5
gemat11 4929 33185 27 28 23 0.8
utm5940 5940 83842 30 20 300 0.2
fidap035 19716 218308 18 18 222 0.0

Bellman-Ford
ibm01 12752 36455 33 93 28 0.3
ibm05 29347 97862 9 109 25 0.6

Table 5.1: Application Graphs

5.3.3 Rent Parameter

To describe the richness and locality of physical network interconnect we used the Rent parameter p

(Eq. 3.1). As Rent’s rule can be applied to any connected graph structure, for application graphs we

can similarly define an intrinsic Rent parameter pgraph to describe the communication locality of the

application graph itself. pgraph is independent of the actual placement of the graph and describes

the communication required by the application. We can compute this parameter by counting the

number of messages (i.e. graph edges) that cross the bisection recursively at each level of a recursive

partition, similar to calculating p for network topologies. Applications with higher p have non-

local communication and require networks with sufficient interconnect capable of supporting this

communication. We examine application graphs with over wide range of pgraph.

5.4 Node Decomposition

Node decomposition decreases the size of large degree nodes, making it easier to balance communi-

cation. As PEs serially process the edges of resident nodes, very large degree nodes will limit total

system performance unless we can decrease their degree. We decrease node degree by breaking up

nodes into multiple, low degree nodes connected in fanin and fanout trees. Figure 5.2 shows an

example node decomposition.

Given a large node, we construct k-arity bounded fanin and fanout trees to deal with input and

output edges. We use k = 64 for decomposing small. Each message sent on a logical edge to a large

fanin node is received by a low degree node at the leaf of a fanin tree. That leaf node waits to receive

all input messages and sends a combined message up the tree. Messages sent on output edges are

handled in a similar way by nodes in the fanout tree. We observe that for messages where operations

performed on edge data are associative, such as ConceptNet, data in messages can be combined and

split arbitrarily without affecting correctness. Therefore, by creating extra, low degree nodes that
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Figure 5.2: Node Decomposition Strategy

can be placed in different PEs, we can potentially decrease total PE serialization by max degree−k

messages while ensuring semantic correctness.

However, we must guarantee that all nodes in fanout and fanin trees receive all messages from all

predecessors before sending messages to successors. Scheduling all communication prior to runtime

with our time-multiplexed router gives us the freedom to deal with this limitation easily. For

each node in a fanout-fanin tree we build a list of constraints that contains all predecessor edges.

Our router only routes nodes whose constraints have been satisfied (i.e. all dependent messages

have been received), ensuring that outgoing messages are scheduled in a time-slot after incoming

messages. See Section 4.2.1 for more details on router constraint handling, and Section 5.4.1 for the

impact on router quality.

To partition graphs with large nodes, we first remove nodes with degree > k. We then partition

the graph (Section 5.6) and decompose large nodes separately. We then introduce decomposed nodes

into the partition and repartition to integrate the new nodes.

5.4.1 Router Quality Impact

Here we provide some preliminary results comparing the performance of decomposition and the

quality of routing with and without constraints. Figure 5.3 plots time-multiplexed communication

time vs. PEs for ConceptNet small over a mix of the best performing topologies. Specifically,

in Figure 5.3(a) we plot communication time for an undecomposed graph (requiring no routing

constraints); in Figure 5.3(b) we plot communication time for a decomposed graph but without

routing with constraints (semantically incorrect, but shown to help understand router quality); in

Figure 5.3(c) we plot communication time for a decomposed graph routed with constraints. We see

that in Figure 5.3(a), without decomposition performance is limited to over 2000 cycles due to the

degree of one very large node (in this case, the “person” node). After introducing decomposition,

we see that communication time can decrease by an order of magnitude to 200 cycles. We see that
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communication time is roughly equivalent for a decomposed graph when routing without constraints

(Figure 5.3(b)) or with constraints (Figure 5.3(c)), implying that total performance and router

quality is not affected by constraints.

Figure 5.4 confirms this trend by plotting router quality (ratio of actual to lowerbound cycles)

as a function of PEs for the same set of small graphs. When routing without decomposition

(Figure 5.4(a)) we see that router quality for the undecomposed small graph is very high, as it

is easy for the router to route in conditions where performance is dominated by a single large

degree node. When routing with decomposition we see that router quality without constraints

(Figure 5.4(b)) is virtually identical to router quality with constraints (Figure 5.4(c)).

5.5 Processing Elements

We design custom processing elements for each application to model GraphStep computation. The

basic structure of the PE is shown in Figure 5.5.

The GraphStep evaluation model is a three phased Receive-Update-Send sequence, where each

PE computes in the Update phase and sends and receives messages in overlapped Send and Receive

phases. In the Receive phase the PE must store incoming messages in memory, while in the Send

phase the PE must read outgoing messages from memory. In the Update phase the PE must read

each node from memory, read each incoming edge on a given node to process received data, and

then write data to outgoing edges to be sent in the next phase. Additional data may need to

be written to the node. Therefore, each PE must perform O(incoming edges) writes in Receive,

O(outgoing edges) reads in Send, and O(2 × nodes + incoming edges + outgoing edges) memory

operations in the Update phase.

To provide graph storage we create separate logical memories for nodes, incoming edges, and

outgoing edges. These memories may be implemented phyiscally as separate or shared memories.

We provide storage with dual ported BlockRAMs [63], where PEs receive as many as the number

of BlockRAMs divided by PEs, but are guaranteed to receive at least one BlockRAM each. We

structure the nodes and edges in the memories such that all memory accesses (node read, incoming

edge reads, outgoing edge writes, node write) in the Update phase are sequential, eliminating the

need for address computations. We do store a single bit of read/write enable for both node memory

operations and edge memory operations in compact SRL16 storage [63] (32 bits per slice), necessary

for indicating when to read and write in the Update phase. We account for these two bits in our

area model as follows:

PEUpdateContext = 2× nodes + incoming edges + outgoing edges

32
(5.1)
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Figure 5.3: Communication Time vs. PEs with and without Decomposition (small)

43



 1

 1.5

 2

 2.5

 3

 1  10  100  1000  10000

Q
ua

lity
 R

at
io

 (A
ct

ua
l/L

ow
er

bo
un

d 
cy

cle
s)

PEs

Quality Ratio vs. PEs (Selected Topologies)

BFT c=1 p=0.0
BFT c=1 p=0.5

BFT c=1 p=0.67
BFT c=2 p=0.67
BFT c=2 p=1.0
Bidir Mesh w=1

Dir Mesh w=1
Dir Mesh w=2

Ring w=1

(a) Quality Ratio vs. PEs (small, undecomposed, no constraints)

 1

 1.5

 2

 2.5

 3

 1  10  100  1000  10000

Q
ua

lity
 R

at
io

 (A
ct

ua
l/L

ow
er

bo
un

d 
cy

cle
s)

PEs

Quality Ratio vs. PEs (Selected Topologies)

BFT c=1 p=0.0
BFT c=1 p=0.5

BFT c=1 p=0.67
BFT c=2 p=0.67
BFT c=2 p=1.0
Bidir Mesh w=1

Dir Mesh w=1
Dir Mesh w=2

Ring w=1

(b) Quality Ratio vs. PEs (small, decomposed, no constraints)

 1

 1.5

 2

 2.5

 3

 1  10  100  1000  10000

Q
ua

lity
 R

at
io

 (A
ct

ua
l/L

ow
er

bo
un

d 
cy

cle
s)

PEs

Quality Ratio vs. PEs (Selected Topologies)

BFT c=1 p=0.0
BFT c=1 p=0.5

BFT c=1 p=0.67
BFT c=2 p=0.67
BFT c=2 p=1.0
Bidir Mesh w=1

Dir Mesh w=1
Dir Mesh w=2

Ring w=1

(c) Quality Ratio vs. PEs (small, decomposed, constraints)

Figure 5.4: Quality Ratio vs. PEs with and without Decomposition (small)
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Application Datawidth Logic Area (slices) Frequency (MHz)
ConceptNet 16 200 166
SMVM 64 4000 166
Bellman-Ford 16 200 166

Table 5.2: GraphStep Application PEs

To handle the sending and receiving of messages for the Send and Receive phases, each PE

contains input and output packet handlers. These handlers, like the compute pipeline, are pipelined

to allow the sending and receiving of a single message per cycle. The input handler is responsible for

writing data from an incoming packet to memory, while the output handler is responsible for reading

data for an outgoing packet. Memory access, like network resources, is completely pre-scheduled

by the time-multiplexed router. To indicate when the handlers should read and write to memory a

valid bit for each handler is computed by offline router for each cycle, equivalent to read and write

enables. The valid bit for the input packet handler also serves to indicate when a valid incoming

messages is arriving, to avoid handling spurious messages. A third valid bit signals the processing of

self messages. These bits are stored in SRL16s and are accounted for in our area model as follows:

PEV alidContext = 3× contextDepth

32
(5.2)

To provide the address at which the handlers read and write, we store the schedule of all read-

/write addresses for both incoming and outgoing edge memory. We only need to store a single

address for each edge, as the incoming and outgoing valid bits indicate when to read and write on

each cycle. We also store these in SRL16s:

PEReceiveContext = log2(incoming edges)× incoming edges

32
(5.3)

PESendContext = log2(outgoing edges)× outgoing edges

32
(5.4)

The area required for PE in slices is therefore:

PEarea = PElogic + PESendContext + PEReceiveContext + PEUpdateContext + PEV alidContext (5.5)

The compute pipeline is unique to each application. For both ConceptNet and Bellman-Ford

the pipeline must handle addition and min/max calculations. The SMVM pipeline requires double

precision addition and multiplication. For increased speed we implement multipliers using pipelined

LUT-level logic instead of the embedded 18x18 multipliers.

Datawidth, area, and frequency for each PE is shown in Table 5.2. Area figures represent only

base PE logic area; area may increase significantly depending on graph size, partition balance, and

context depth (Eq. 5.5). Each application uses a PE datawidth and network datawidth equal to the
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Figure 5.5: GraphStep PE

size of a single message. We note that the area of the SMVM PE logic is significant due to the use

of LUT-level logic to implement double precision multipliers. We also note that each PE operates

at 166 MHz, below the maximum operating frequency of the network (> 200 MHz). Therefore,

total system performance is currently limited by the critical path of the PE datapath and not the

network, which is capable of running at much higher speeds.

5.6 Toolflow

To evaluate the performance of our networks, we constructed a Java-based infrastructure to simulate

the packet-switched network with cycle accuracy [27, 28] and to compute schedules for the time-

multiplexed network (Chapter 4). We map applications to our networks using a partitioner and

placer based on MLPart v5.2.14 which is part of the UMPack [10] package. While we ensure that

single chip logic and interconnect resources are sufficient to map our applications, we assume that

application graphs can be mapped to the available on-chip BRAMs.

We use our Java infrastructure to generate a structural VHDL netlist for a given network configu-

ration. We create VHDL for each PE, implementing the 3 phase algorithm of the GraphStep system

architecture [16]. Since we decompose our switchboxes into merge primitives, we can pipeline and

optimize at the level of these individual primitives for high performance (Table 3.1). We demon-

strate 166 MHz performance for a sample topology (BFT with c = 1, p = 0.5 and 8 PEs) on a

XC2V6000-4 without context memory. We synthesize, place, and route the entire VHDL design

using the Synplicity Compiler v8.0 and the Xilinx ISE v8.1i to obtain hardware operating frequency

and slice count results.
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Chapter 6

Time-Multiplexed Topology
Selection

We present three quantitative comparisons to explore the issues in designing large-scale time-

multiplexed network topologies. First, we examine how communication time scales with the size

of a topology in terms of number of PEs. Second, we examine the size of a topology in terms of

actual area and re-evaluate performance scaling. Third, we attempt to choose a single topology that

is robust over all areas and for all applications, providing the best worst-case performance.

6.1 PE Scaling

Section 4.3 listed several physical characteristics of network topologies that bound performance. As

these bounds depend on the physical structure of a topology, they aid in demonstrating inherent

differences in topological performance. However, these differences in performance are often not

visible until very large numbers of PEs. To explore the relationship between the number of PEs

and topological performance, in Figures 6.1, 6.2, 6.3 we plot communication cycles as a function of

PEs for small (17K–18K edges), medium (27K–36K edges), and large (80-220k edges) graphs in our

application set. In each graph we plot the best performing configurations of the BFT (c = 1 with

p = 0, 0.5, 0.67; c = 2 with p = 0.67, 1), directional mesh (w = 1, 2), bidirectional mesh (w = 1), and

ring (w = 1).

We describe the general trends present in each graph by examining the bcsstk11 graph as

representative example (Figure 6.1(b)). bcsstk11 contains 18K messages; therefore, we expect to it

to be serialization limited until around 100 PEs. We see that at low PE counts (< 10 PEs) there is no

significant performance difference between topologies. Here, most PEs are processing self messages

and the network is lightly loaded (see Figure 5.1). This motivates us to further increase PE counts

to understand when topologies begin to differ significantly. As PE count increases (10–100 PEs),

most topologies are still serialization limited, but the ring and BFTs with p = 0 begin to bisection
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Figure 6.1: Communication Time vs. PEs (Small Graphs)
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Figure 6.2: Communication Time vs. PEs (Medium Graphs)
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Figure 6.3: Communication Time vs. PEs (Large Graphs)
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bottleneck (Eq. 4.7). In this range, PEs are still processing many self messages; however, PEs inject

enough messages into the network to limit the performance of low bandwidth topologies. These

topologies have a constant number of channels crossing the bisection and are consequently bisection

limited. As PE count increases further (100-1000 PEs), as expected we see nearly all topologies

leave the serialization limited regime. Rings are severely affected by latency, and the number of

cycles required to route all messages increases significantly. As we examine rings as representatives

of the best possible performance a bus can achieve, we see that buses cannot compete with the

performance provided by scalable networks. Meshes with w = 1 are not affected by latency but

are bisection limited, and BFTs with p ≤ 0.5 are similarly bisection limited. We see that BFTs

with p = 0.67, p = 1 and meshes with w = 2 achieve the best performance as they provide needed

interconnect. At very high PE counts (>1000 PEs), all topologies are limited due to latency; here,

increasing the number of PEs actually increases communication time. We note that these effects

can only be seen when the ratio of application size to PE count is > 100.

These trends are consistent across all application graphs. In general we see that meshes with

w = 2 and BFTs with p = 0.67, 1 provide the best performance, with their relative performance

being nearly equal. For the gemat11 graph we see that BFTs provide better performance than

meshes at higher PE counts. gemat11 (Figure 6.2(b) is a graph with highly non-local communication

(pgraph = 0.8), and the p = 0.5 of a mesh does not provide enough interconnect to achieve high

performance. For the large sized graphs shown in Figure 6.3, all topologies are serialization limited

until PE counts larger than medium and small graphs. This is due to the large number of edges in

these graphs; the graph edge to PE ratio indicates that all topologies will be serialization bottlenecked

until 100s–1000s of PEs. We could attempt to increase PE count beyond 1000s of PEs; however,

such topologies will be latency limited and may actually degrade performance.

To help us further understand why topologies perform differently at higher PE counts relative
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to application size, in Figure 6.4 we plot the lowerbound performance (Section 4.3) of gemat11

and in Figure 6.5 we plot the ratio of achieved performance to lowerbound performance . This

helps us understand the difference between the inherent lowerbound performance of a topology and

the achievable performance by the time-multiplexed router. We see in Figure 6.4 that lowerbound

performance is close to actual performance for ring, bidirectional mesh, and BFT topologies shown in

Figure 6.2(b); Figure 6.5 confirms this trend. We do see that the lowerbound for directional meshes is

noticeably lower than actual performance. As noted in Section 4.4, the quality of the router is lower

for directional meshes; this difference can possibly be attributed to the fact that mesh lowerbounds

are not asymptotically tight, and that directional meshes are more difficult to route as they are less

deterministic than BFTs and rings. Regardless, we observe that the best achievable performance

across all PEs for all applications is obtained by BFTs and directional meshes.

6.2 Area Scaling

In the previous section we did not consider the area requirements of our topologies. Topologies

with equivalent PE counts may have very different area requirements as the number of and size of

switches varies significantly across topologies (Table 3.2). Additionally, application PEs have varying

sizes (Table 5.2). Both PEs and switches use the same area resources on FPGAs; therefore, we can

tradeoff area between compute and interconnect to obtain increased performance when either is

needed. To explore this tradeoff, in Figures 6.6, 6.7, 6.8 we plot communication cycles as a function

of PEs for small (17K–18K edges), medium (27K–36K edges), and large (80-220k edges) graphs in

our application set, across the best performing topologies.

In Section 6.1 we observed that at low PE counts all topologies provide the same performance,

and at higher PE counts high bandwidth meshes and BFTs provide the best performance. We see
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Figure 6.6: Communication Time vs. Area (Small Graphs)
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Figure 6.7: Communication Time vs. Area (Medium Graphs)
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Figure 6.8: Communication Time vs. Area (Large Graphs)
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very similar trends here when considering area, but with some slight differences.

Initially, performance of all topologies is serialization limited between 10K–100K slices for small

and medium graphs, and 100K–1M slices for large graphs. The serialization region for larger graphs

extends beyond that of smaller graphs since larger graphs contain more edges and remain serialized

at larger areas (Section 5.3.1). When only considering the number of PEs, in the serialization limited

region all topologies yield the same performance. When considering area, topologies with less area

allocated to interconnect and more area allocated to PEs provide slightly better performance in a

given area. We can see across all graphs that a BFT with c = 1, p = 0 or a ring w = 1 provide more

PEs and enough interconnect to get the best performance.

At larger slice counts (100K–1M slices for small and medium graphs, 1M–10M slices for large

graphs), the network communication load increases and low bisection topologies that previously

provided the best performance begin to bottleneck. We generally see here that topologies with

slightly more area in interconnect (directional mesh w = 1, BFT c = 1, p = 0.5) perform best. For

even larger slice counts (1M–10M slices for small and medium graphs, 10M–100M slices for large

graphs), the largest bisection topologies (directional mesh w = 2, BFT c = 2, p = 1) yield the best

performance. These topologies tradeoff area in PEs for area in interconnect to increase performance.

We see that increased area in interconnect does not always provide increased performance; for large

graphs (in particular fidap035, Figure 6.8(c)) performance continues to remain serialized, even for

the largest areas considered. However, we generally observe that as we increase area, topologies that

provide more interconnect achieve better performance.

We can make a few additional qualitative observations. First, we see that no time-multiplexed

network for our applications can fit in an area below 30K slices. This is due to the large overhead

required for context memory (See Section 8.2) in both the switches and PEs. For a discussion on

the implications of the large areas that we consider, and when such areas might be attainable on a

single chip, see Section 9.2.3.

Second, we see that BFTs and meshes provide very similar performance and area efficiency. To

help quantify which of these two topologies perform better in a given area, Figures 6.9 6.9 6.9 plot

the ratio of optimal mesh performance to optimal BFT performance as a function of area. We see

that aside from a very points at very small areas, across all areas the difference between the optimal

mesh and optimal BFT is no more than a factor of 2. We generally see that the best mesh requires

up to 2× as many cycles to route as the best BFT at smaller areas. For intermediate areas the

best BFT requires 1.5× as many cycles to route as the best mesh. Finally, at larger areas the BFT

regains its performance advantage, with the mesh requiring up to again 2× as many cycles to route.
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Figure 6.9: Ratio of Mesh/BFT Communication Time vs. Area (Small Graphs)

57



 0

 0.5

 1

 1.5

 2

 10000  100000  1e+06  1e+07

M
es

h/
BF

T 
Co

m
m

un
ica

tio
n 

Ti
m

e 
Ra

tio

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area

Mesh/BFT

(a) small (ConceptNet)

 0

 0.5

 1

 1.5

 2

 10000  100000  1e+06  1e+07  1e+08

M
es

h/
BF

T 
Co

m
m

un
ica

tio
n 

Ti
m

e 
Ra

tio

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area

Mesh/BFT

(b) gemat11 (SMVM)

 0

 0.5

 1

 1.5

 2

 10000  100000  1e+06  1e+07

M
es

h/
BF

T 
Co

m
m

un
ica

tio
n 

Ti
m

e 
Ra

tio

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area

Mesh/BFT

(c) ibm01 (Bellman-Ford)

Figure 6.10: Ratio of Mesh/BFT Communication Time vs. Area (Medium Graphs)

58



 0

 0.5

 1

 1.5

 2

 100000  1e+06  1e+07  1e+08

M
es

h/
BF

T 
Co

m
m

un
ica

tio
n 

Ti
m

e 
Ra

tio

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area

Mesh/BFT

(a) utm5940 (SMVM)

 0

 0.5

 1

 1.5

 2

 100000  1e+06  1e+07

M
es

h/
BF

T 
Co

m
m

un
ica

tio
n 

Ti
m

e 
Ra

tio

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area

Mesh/BFT

(b) ibm05 (Bellman-Ford)

 0

 0.5

 1

 1.5

 2

 100000  1e+06  1e+07  1e+08

M
es

h/
BF

T 
Co

m
m

un
ica

tio
n 

Ti
m

e 
Ra

tio

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area

Mesh/BFT

(c) fidap035 (SMVM)

Figure 6.11: Ratio of Mesh/BFT Communication Time vs. Area (Large Graphs)
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Topology Performance Ratio to
Optimal Topology

BFT c = 1, p = 0.0 15.9
BFT c = 1, p = 0.5 6.1
BFT c = 1, p = 0.67 8.3
BFT c = 1, p = 1.0 8.3
BFT c = 2, p = 0.0 8.7
BFT c = 2, p = 0.5 11.6
BFT c = 2, p = 0.67 11.6
BFT c = 2, p = 1.0 11.5
Directional Mesh w = 1 9.2
Directional Mesh w = 2 18.9
Bidirectional Mesh w = 1 33.3
Bidirectional Mesh w = 2 16.3
Bidirectional Mesh w = 4 29.3
Ring w = 1 29.2
Ring w = 2 32.6
Ring w = 4 31.8

Table 6.1: Worst Case Topology Performance (All Areas and Applications)

6.3 Optimal Topology

We have seen that different configurations of BFTs and meshes perform optimally for different areas

and applications. For small areas or for applications with a small pgraph, a topology with less area

in interconnect provides the best performance. However, at large areas or for applications with a

large pgraph, topologies with more are in interconnect are preferred. This indicates that designing

a network with a fixed topology configuration could be inefficient over a range of applications and

network sizes [37]. To help quantify the cost of a “one topology fits all” methodology, we compute the

ratio of actual performance of each topology to the performance of the best topology at a given area.

This ratio is always ≥ 1, where lower values indicate best worst case performance and topological

robustness. In Table 6.1 we tabulate the worst case ratios for each topology, computed over all areas

and all applications. We see that the most robust topology, a BFT with c = 1, p = 0.5, requires in

the worst cast as many as 6.1× as many cycles to route as the best topology. Many other topologies

require roughly up to an order of magnitude or more cycles to route than the best topology. This

indicates that there is a non-trivial cost in selecting a single topology for all areas and applications,

motivating application-specific topology design.
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Chapter 7

Time-Multiplexed vs.
Packet-Switched Networks

We present three quantitative comparisons to help characterize the tradeoffs between packet-switching

and time-multiplexing. To review, the goals of this chapter are to answer the following questions

posed in Section 1.2.3:

• For equivalent topologies and communication loads, what is the quantitative difference be-

tween the offline, global routing of time-multiplexing and the online, local routing of packet-

switching?

• For an equivalent, fixed area capacity and equivalent communication loads, what is the per-

formance difference between well engineered time-multiplexed and packet-switched networks?

• For communication loads that only require routing a subset of all possible communication,

what is the cost of routing all possible communication for time-multiplexed interconnect?

To answer these questions we perform the following experiments. First, we compare the perfor-

mance difference between offline and online scheduling by routing identical topologies for identical

100% activity communication loads. Second, we consider the impact of area and compare the perfor-

mance difference between packet-switching and time-multiplexing for identical, fixed area capacities.

Third, we compare performance while varying the activity factor of our communication loads for

various network sizes.

7.1 Packet-Switched Implementation

We provide a brief overview of the packet-switched implementation used for comparison (see [27,28]

for more details).

While the time-multiplexed network routes all communication offline with a router, the packet-

switched network routes all communication online via intelligent switches. Instead of using context
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Primitive Area (Slices) Latency Speed
Queue Total (Cycles) (MHz)

Ctrl Buffer
16-deep Buffer

Split2 30 33 80 2 218
Merge2 60 66 154 2 200
Split3 30 33 88 2 217
Merge3 90 99 254 2 200
Split4 30 33 96 2 212
Merge4 120 132 340 2 223

1-deep Buffer
Split2 0 8 23 2 269
Merge2 0 16 58 2 262
Split3 0 8 30 2 269
Merge3 0 24 94 2 252
Split4 0 8 32 2 265
Merge4 0 32 115 2 252

Table 7.1: Packet-Switched Split and Merge Primitives (32-bit)

Switch IO Area Latency Speed
(Ports) (Slices) (Cycles) (MHz)

Ring 3 243 4 200
Directional Mesh Island-Style 4 324 8 200
Directional Mesh Fast X-Y Style 4 972 4 (fast), 8(slow) 200
Bidirectional Mesh Arity-4 DOR 5 603 4 200
Bidirectional Mesh Arity-4 WSF 5 660 4 200
Bidirectional Mesh Fast X-Y Style 5 1215 4 (fast), 8(slow) 200
Bidirectional Mesh Virtual-Channels with Duato 5 - 8 200
BFT T-Switch 3 243 4 200
BFT Π-Switch 3 410 4 200

Table 7.2: Packet-Switched Switches (32-bit, 1-deep buffers)

memory to determine how to route a packet in the switch on a given cycle, switches dynamically

compute routing decisions based on the switch routing algorithm and the header of the packet. Pack-

ets contain 16-bit headers corresponding to network addresses that each switch reads and interprets

in order to determine the direction in which to send the packet. Like the time-multiplexed network

we route single flit packets; this requires wider networks to accommodate for the 16-bits of header

in each packet (32-bit networks for ConceptNet and Bellman-Ford, 80-bit networks for SMVM).

We examine the same network topologies for the packet-switched network as the time-multiplexed

network: ring 3.1.1, mesh 3.1.2, and BFT 3.1.3. Much like the time-multiplexed network, switches

in the packet-switched network are composed out of primitives. In addition to the merge primitives

the packet-switched network uses the split primitive. These primitives interface with each other

using data-presence and back-pressure based flow control. To deal with potential network blocking,

we design our primitives with input queues to handle the buffering of packets. We sized our queues

to be 1-deep as we found this provided the optimal performance and area efficiency.

62



 1

 1.2

 1.4

 1.6

 1.8

 2

 1  10  100  1000  10000
 0

 50

 100

 150

 200

P
S

/T
M

 C
om

m
un

ic
at

io
n 

T
im

e 
R

at
io

N
et

w
or

k 
I/O

 p
er

 C
yc

le
 (

m
es

sa
ge

s)

PEs

Ratio of PS/TM Communication Time vs. PEs (BFT c=1, p=0.5)

PS/TM
Network I/O

Figure 7.1: Ratio of PS/TM Communication Time vs. PEs (gemat11)

The split primitive has one input, two outputs and a routing function which selects one of the

two outputs for the incoming packet. The split primitive computes the routing decision in a single

cycle based on the destination address of the packet. This routing function determines the path that

packets will take on the topology. We use several types of routing functions across topologies: trivial

routing for rings, adaptive routing for BFTs, and implementations of dimension ordered, west side

first, and Duato’s routing algorithms for the mesh.

The merge primitive has two inputs and one output. Packets arriving on the two inputs must

compete for a single output. A simple scheme of arbitration would be to select from the two input

ports in a round robin fashion. We use a more adaptive scheme that selects a packet based on FIFO

occupancies of the input queues.

Tables 7.1 and 7.2 round up the area, latency and speed required for packet-switched primitives

and switchboxes.

7.2 Offline vs. Online Routing

To characterize the inherent performance difference between offline and online routing, we route

100% activity communication loads on equivalent time-multiplexed and packet-switched topologies,

measuring the total number of communication cycles required to route. An example comparison for

a BFT with c = 1 and p = 0.5 for the gemat11 benchmark is shown in Figure 7.1. Network I/O

per cycle (as in Figure 5.1) is also shown on the same graph. At low numbers of PEs (<32) we

see that offline and online routing produce nearly equivalent cycle counts. Small numbers of PEs

induce a light communication load (1–10 messages per cycle) and little offline/online differentiation.

As the number of PEs increase (>32) the communication load increases (10s–100s of messages per

cycle), and we begin to see offline routing outperform online routing. Offline routing is able to take

63



advantage of global information to make optimal routing decisions on larger networks, while online

routing is limited to making local decisions which affect the overall quality of route. As a result, in

this example online routing requires up to 1.5× as many cycles to route as offline routing for larger

networks.

In Figures 7.2, 7.3, 7.4 we plot the ratio of packet-switched to time-multiplexed communication

time as a function of PEs across all graphs in our application set: small (17K–18K edges), medium

(27K–36K edges), and large (80-220k edges). Like the previous example, the goal of these graphs

is to compare the inherent difference in offline and online routing for identical topological struc-

tures. Therefore, for these graphs we compare time-multiplexed and packet-switched networks for

all equivalent topologies (e.g. packet-switched BFT c = 1, p = 0.5 vs. the same time-multiplexed

topology). For each PE count we compute the ratio of time-multiplexed to packet-switched com-

munication time for a single topology, and then we compute the maximum, minimum, and average

ratio across all topologies. For topologies where there is a single time-multiplexed implementation

but several equivalent packet-switched implementations (e.g. bidirectional mesh w = 1 with either

dimension-ordered routing or west side first), we select the best packet-switched implementation for

comparison.

In these graphs we see very similar results across all applications. At low PE counts packet-

switching and time-multiplexing route in the same number of cycles. In the worst case (the minimum

ratio), across all PE counts time-multiplexing still routes in roughly the same number of cycles as

packet-switching. For a very small number of points we see that packet-switching routes in fewer

cycles than time-multiplexing (Figure 7.3(c) for example). For these points we note that the absolute

difference in cycles is very small (typically 1-10 cycles) and therefore the performance difference is

negligible. In the best case (the maximum ratio), at high PE counts packet-switching requires 2.8×

as many cycles to route as time-multiplexing (Figure 7.4(a)). On average, across all benchmarks

and all equivalent topologies at high PE counts, we see that packet-switching requires 1.5× as many

cycles to route as time-multiplexing.

7.3 Normalized Area Comparison

To fully characterize the performance difference between our packet-switched and time-multiplexed

networks we must also consider the area they consume. For equivalent topologies at the same PE

count, packet-switched and time-multiplexed networks may use significantly different amounts of

area due to differences in switch sizes and the amount time-multiplexed context memory required.

For example, packet-switched BFT T switchboxes for ConceptNet (32-bits) require 243 slices of logic

and buffering. Time-multiplexed BFT T switchboxes for ConceptNet (16-bits) require only 24 slices

of logic but 3× ContextDepth
32 slices of context. Therefore, if time-multiplexing requires > 2592 cycles
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Figure 7.2: Ratio of PS/TM Communication Time vs. PEs (Small Graphs)
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Figure 7.3: Ratio of PS/TM Communication Time vs. PEs (Medium Graphs)
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Figure 7.4: Ratio of PS/TM Communication Time vs. PEs (Large Graphs)
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to route communication, time-multiplexed BFT T switchboxes will be larger than their equivalent

packet-switched implementations.

Figure 7.3 illustrates this tradeoff more generally with the gemat11 benchmark as an example.

In Figures 7.5(a) and 7.5(b) we plot communication time at 100% activity as a function of area for

both packet-switching and time-multiplexing. In these graphs we show a mix of the best performing

topologies across all areas. As described in the previous chapter (Chapter 6, Section 6.2), we see that

in general as we increase area, topologies that provide more interconnect achieve better performance.

To see how time-multiplexing and packet-switching compare directly, in Figure 7.5(c) we plot the

composite best performance of time-multiplexing and packet-switching. To compare performance

independent of topology (i.e. only for the best topologies at each area point), we obtain Figure 7.5(c)

by taking the minimum over all topologies in Figures 7.5(a) and 7.5(b).

We observe that for small areas (8K–50K slices) it is not possible to implement a time-multiplexed

network due to area constraints; however, packet-switching is feasible. As area increases and time-

multiplexing becomes possible (50K–100K slices), time-multiplexing requires more cycles to route

than packet-switching. In these areas time-multiplexing can only fit small numbers of PEs, resulting

in higher cycle counts. However, as area increases (100K–10M slices), we see that time-multiplexing

routes in fewer cycles than packet-switching. Time-multiplexing can fit more PEs, decreasing se-

rialization and reducing cycle counts. Combined with time-multiplexing’s advantage of routing

all communication offline, we see that time-multiplexing can outperform packet-switching. Finally,

above 10M slices we see this performance advantage decrease until around 40M slices, where the per-

formance of packet-switching equals time-multiplexing. These areas correspond to the largest time-

multiplexed networks (2048 PEs), where latency limits performance enough for packet-switching to

close the performance gap. Above 40M slices packet-switched scaling continues, where the largest

packet-switched networks require more area than the largest time-multiplexed networks.

We note that the range of areas that we examine is extremely large (up to almost 100M slices),

far exceeding the capacity of current chips. For a discussion on the implications of the large areas

that we consider, and when such areas might be attainable on a single chip, see Section 9.2.3.

To quantify this tradeoff, Figures 7.6, 7.7, 7.8 show the ratio of packet-switched to time-multiplexed

communication time as a function of area over these optimal topology points, for all graphs in our

application set: small (17K–18K edges), medium (27K–36K edges), and large (80-220k edges). We

can obtain these curves by dividing the time-multiplexed and packet-switched curves in Figure 7.5(c)

for each application graph. In these figures we also show the individual area points at which time-

multiplexing and packet-switching yield the best absolute performance, to help clarify the area

required for optimal performance.

We see very similar results across all applications. At low areas the ratio of packet-switched to

time-multiplexed communication time is below 1, indicating superior packet-switching performance.
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Figure 7.7: Ratio of PS/TM Communication Time vs. Area (Medium Graphs)

71



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100000  1e+06  1e+07  1e+08

PS
/T

M
 C

om
m

un
ica

tio
n 

Ti
m

e 
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM 
Best Absolute PS Performance
Best Absolute TM Performance

(a) utm5940 (SMVM)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100000  1e+06  1e+07  1e+08

PS
/T

M
 C

om
m

un
ica

tio
n 

Ti
m

e 
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM 
Best Absolute PS Performance
Best Absolute TM Performance

(b) ibm05 (Bellman-Ford)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100000  1e+06  1e+07  1e+08

PS
/T

M
 C

om
m

un
ica

tio
n 

Ti
m

e 
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM 
Best Absolute PS Performance
Best Absolute TM Performance

(c) fidap035 (SMVM)

Figure 7.8: Ratio of PS/TM Communication Time vs. Area (Large Graphs)
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For some applications at low areas this ratio approaches 0 (e.g. Figure 7.8(c)), indicative of packet-

switching vastly outperforming time-multiplexing. As area increases, time-multiplexing outperforms

packet-switching, with packet-switching requiring typically 1.5× as many cycles to route as time-

multiplexing. In the best case (Figure 7.7(a)) packet-switching requires 3.4× as many cycles. As we

increase area even further packet-switching is able to close the performance gap, and in some cases

outperform time-multiplexing at very large areas (e.g. Figure 7.7(a) at 4M slices).

For all application graphs other than small, we see that the optimal time-multiplexed per-

formance requires around 1M slices or more. The optimal packet-switched performance requires

typically a factor of 2–10× additional area than time-multiplexing.

7.4 Cost of Routing All Possible Communication

Thus far we have compared packet-switching and time-multiplexing assuming 100% communication

loads. Given 100% communication and identical networks, time-multiplexing outperforms packet-

switching. However, many applications do not exhibit 100% communication, such as ConceptNet

Spreading Activation (Section 5.2.1) and Bellman-Ford Shortest Path (Section 5.2.3). For example,

it make take spreading activation several steps until all edges of the graph are activated; for this

section we consider the early steps of real queries in spreading activation over the small graph. For

these early steps where the activity factor is less than 100%, time-multiplexing must still route all

possible communication while packet-switching only needs to route those edges that are active. At

some activity factor less than 100% packet-switching should be able to outperform time-multiplexing

given the same network topology.

To demonstrate where this activity crossover point can be, Figure 7.9 plots packet-switched

and time-multplexed communication time as a function of activity factor for a BFT with c =

1, p = 0.5 and 256 PEs. Here we see that the performance of time-multiplexing is constant over all

activity factors. At 100% activity packet-switching requires 1.5× as many cycles to route as time-

multiplexing. However, as we decrease the activity factor we see that the number of cycles required

for packet-switching decreases. At 9% activity and below packet-switching routes in fewer cycles than

time-multiplexing, with time-multiplexing requiring up to 1.5× as many cycles as packet-switching

in the worst case. It is this crossover point of 9% activity that we are interested in determining for

all network sizes.

Figure 7.10 characterizes this crossover point across a range of PEs for small. At each PE count

we select the optimal packet-switched and time-multiplexed topology and determine their activity

crossover point. We see that at low PE counts (2–100) time-multiplexing routes 100% activity in

the same number of cycles that packet-switching routes 100-60% activity or less. For these small

network sizes the cost of routing all possible communication in time-multiplexing is high: packet-
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switching can route nearly the same amount of communication for the same PE count, and is able

to route less than 100% activity in fewer cycles. As we increase PE count above 100, we see that

the activity crossover point drops abruptly to under 10%. For larger network sizes we can conclude

that the cost of routing all possible communication is low. Only for activity factors under 10% can

packet-switching outperform time-multiplexing. Therefore, for large networks (>100 PEs) offline

routing can outperform online routing for communication loads above 10% activity.
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Chapter 8

Context Memory Compression

One of the most significant disadvantages of time-multiplexed networks is the large amount of area

needed for context memory. Each element in the network must store some set of configuration bits for

every cycle to specify element behavior on that cycle. Every programmable switch in the network

requires context memory to store switch configuration (Eqs. 3.2, 3.3, 3.4), and each PE requires

context memory to indicate when to read and write to memory and at which address (Eq. 5.5).

In this chapter we provide data from preliminary attempts to reduce context memory area, both

by altering our router algorithm and by changing the method of context storage.

8.1 SRL16 Area Model

We store all bits of context memory in compact SRL16 storage [63], where one slice can hold 32 bits.

SRL16s are simply LUTs converted into shift registers, where each LUT SRAM configuration bit is

used as memory storage. These bits can be chained together to form a 16-bit shift register. We map a

single bit of n cycle deep context to a chain of d n
16e SRL16s, or d n

32e slices. On each cycle of operation

all SRL16s in the time-multiplexed network shift to provide the appropriate configuration bits for

that cycle. Figure 8.1 shows how a LUT can be used as SRL16 storage, and how multiple SRL16s

can be cascaded together to form arbitrarily large memories. The SRL16 is the most compact form

of storage apart from BlockRAMs on Xilinx parts.

8.2 Percent Area in Context

Area in our cost model is split into three basic parts: logic, context, and pipelined interconnect.

Context area is used in both switches and PEs, and depends on the following:

• Switch Context: This depends the type of switch (i.e. the number of merge units and the

width of each unit) and the number of cycles required to route (Eqs. 3.2, 3.3, 3.4).
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(a) Xilinx LUT Model

(b) Xilinx SRL16 Model

(c) Xilinx SRL16 Cascade

Figure 8.1: Xilinx SRL16 Structure [63]

• PE Context: This depends on the number of cycles required to route (Eq. 5.2), but depends

much more heavily on the number of nodes and edges allocated to a given PE (Eqs. 5.1, 5.4, 5.3).

To examine how efficient our current model of storage is, we plot the area characteristics of

both ConceptNet small and SMVM gemat11 in Figures 8.2 and 8.3 respectively. Specifically, in

Figures 8.2(a) and 8.3(a) we plot the percentage of area in context (both switch and PE) as a

function of PEs across the best performing topologies. We note that these curves are consistent

across all graphs in their respective applications. For small we see that at low PE counts (2–16

PEs), 80–100% of area is in context memory. At around 100 PEs area is evenly divided between

context and logic/interconnect. At >100 PEs only 20–40% of of area is in context. For gemat11

we typically see a smaller percentage of total area devoted to context: from 2–10 PEs context area
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Figure 8.2: Area Characteristics (small)

comprises 50% or more of total area, but above 10 PEs context area drops quickly to under 10%

of total area. We see that all topologies follow nearly the same curve, with low bisection topologies

(ring w = 1, BFT c = 1, p = 0) requiring the most area in context.

To understand the breakdown of area in terms of switch logic, switch context, PE logic, PE

context, and pipelined interconnect, in Figures 8.2(b) and 8.3(b) we plot individual components of

area as a function of PEs for small and gemat11. Here we focus on a single BFT c = 1, p = 0.5

topology as all topologies exhibit similar breakdowns. For small we see that from 1–100 PEs area

is dominated by PE context, specifically by the context required for memory addressing. Above

100 PEs both PE logic and pipelined interconnect begin to dominate equally. For gemat11, we see

that from 1–8 PEs area is dominated by PE context, but above 8 PEs area is dominated solely by

PE logic. This is because the SMVM PE is significantly larger than the ConceptNet/Bellman-Ford

PEs (4000 vs. 200 slices). Therefore, we observe that attempting to reduce context area in SMVM

77



 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000

Ar
ea

 in
 C

on
te

xt
 (%

)

PEs

Percent Area in Context vs. PEs (Selected Topologies)

BFT c=1 p=0.0
BFT c=1 p=0.5

BFT c=1 p=0.67
BFT c=2 p=0.67
BFT c=2 p=1.0
Bidir Mesh w=1

Dir Mesh w=1
Dir Mesh w=2

Ring w=1

(a) Percent Area in Context vs. PEs

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1  10  100  1000  10000

Ar
ea

 (s
lic

es
)

PEs

Area Breakdown vs. PEs (BFT c=1 p=0.5)

Total
Switch Logic

Switch Context
PE Logic

PE Context
Pipelined Interconnect

(b) Area Breakdown vs. PEs

Figure 8.3: Area Characteristics (gemat11)

networks will yield diminishing returns. We therefore focus our reduction techniques on small.

8.3 Separating External and Self Messages

While switch context area only comprises a small percentage of total area compared to PE context

and PE logic, we can make a simple change to our router to experiment in reducing switch context.

We make the simple observation that context only needs to be stored in switches for period of time

where external messages are routed. That is, if we have a hypothetical communication load where

all messages are self messages, no messages will traverse the network and therefore switches require 0

bits of context. For low PE counts self messages account for the vast majority of traffic (Figure 5.1);

therefore, we can attempt to route self messages separately from external messages. We will then

only need switch context for the number of cycles required to route all external messages separately.
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Figure 8.4: Routing External and Self Messages Separately (small)

In Figure 8.4 we plot the results of routing small with and without separation of external and

self messages on a BFT c = 1, p = 0.5. In Figure 8.4(a) we see that routing with separation

decreases total switch context area from 2–100 PEs by almost an order or magnitude in the best

case, but above 100 PEs area savings diminish. We note that routing self and external messages

separately introduces new constraints to our greedy router which will cause total communication

time to change. Figure 8.4(b) compares communication time vs. PEs for routing with and without

separation. We see that above 16 PEs the penalty for routing with separation is significant, costing

almost 2× as many cycles to route as no separation in the worst case. However, the difference in

cycles for <16 PEs is negligible. Therefore, routing with separation reduces switch context area at

low PE counts without affecting performance.
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8.4 Context Compression with espresso and jedi

The disadvantage with our current model of storing context in SRL16s is that configuration bits

must be stored for all elements in every cycle, regardless if all elements are performing necessary

switching operations on every cycle. That is, if a switch is not routing a packet, the value of its

merge configuration bits do not matter. If these “don’t care“ situations occur often with network

elements, storing context bits for all elements in every cycle is inefficient.

Instead of storing context information in SRL16s, we make the observation that context mem-

ory just provides a simple mapping from cycle number to some number of configuration bits. This

mapping could be implemented using combinational logic just as easily as SRL16 memories. This

requires that for each network element we synthesize a specialized piece of logic that simply im-

plements the correct mapping function (i.e. truth table) from cycle number to configuration bits.

The advantage of such an approach is that if there are a large number of “don’t cares” or enough

structure (i.e. runs of 0s and 1s) in the output bits (i.e. configuration bits) of the truth table, we can

use conventional two-level logic optimization tools to greatly reduce the size of the circuit required

to implement the truth table. The area of such a circuit may in fact be smaller than the area of

SRL16 storage.

To explore this approach, we show some preliminary data on compressing only switch context

for small on a BFT with c = 1, p = 0.5 and 8 PEs. To perform context compression we create truth

tables for each switch which maps cycle number to switch configuration, where we explicitly specify

both the input cycle bits the output binary configuration bits. For unused configuration bits we

specify don’t cares. We run this truth table through the espresso two-level boolean optimization

tool [50] to reduces the number of pterms (i.e. cycle to configuration rows in the truth table). We

then create VHDL for each minimized truth table that we synthesize (Section 5.6) to obtain area in

slices for the context circuit.

Table 8.4 shows the results of this experiment. We note that switches at height 2 do not contain

context memory as they do not need to make switching decisions (i.e. they are just pipelined,

configured wires). We see that while espresso is able to reduce the number of pterms per switch by

nearly an order of magnitude, this reduction in pterms does not translate to a significant reduction in

synthesized area. Because this BFT configuration is serialization limited, certain switches (e.g. (1,1))

are underutilized due to greedy decisions made by the router and their area is reduced by a factor

of 4. However, switches that experience more heavy traffic (e.g. (2,1)) actually increase in area after

synthesis. We see that it is difficult to store context memory in more compact storage than the

SRL16.

These results are preliminary and we hope that with changes to our toolflow (using jedi for

example), and with attempts in reducing PE context in addition to switch context that we may
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Switch (x, height) Before Compression After Compression
Pterms Area (slices) Pterms Area (slices)

0, 0 3674 818 317 766
1, 0 3674 818 333 775
2, 0 3674 818 310 811
3, 0 3674 818 258 601
0, 1 3674 417 338 794
1, 1 3674 417 53 167
2, 1 3674 417 336 844
3, 1 3674 417 50 179
0, 2 0 0 0 0
1, 2 0 0 0 0

Total 29392 4940 1995 4937

Table 8.1: espresso Switch Context Compression (BFT c = 1, p = 0.5 with 8 PEs for small)

eventually see total system area savings through context compression. See Section 9.3 for more

comments on future work.
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Chapter 9

Future Work

9.1 Communication Patterns

9.1.1 Spatially Configurable and Circuit-Switched Interconnect

Thus far we have compared time-multiplexing to only packet-switching. To fully characterize the

design space of time-multiplexing for NoCs, we need to compare it to both spatially configurable

interconnect and circuit-switched interconnect. Some work has been done in characterizing the

design space of circuit-switched NoCs for FPGAs [22]. For applications that send significantly

longer messages than those we have considered thus far, circuit-switching may be useful. For the

kinds of sparse-graph algorithms we are in general interested in, we believe that spatially configurable

interconnect may not be appropriate. In terms of area, in configurable interconnect a network link

must be allocated for all graph nodes that are communicating. Therefore, the number of wires in

the system scales according to the number of edges in the application graph. For large graphs this

area cost may be insurmountable. In terms of performance, physical configured links offer minimum

end to end latency and very high throughput. However, since a message will only be sent on an edge

once during a single GraphStep (potentially 100s-1000s of cycles), physical links will only be utilized

every 100s-1000s of cycles, dramatically underutilizing their maximum throughput. However, we

would like to further quantify these area and performance tradeoffs.

9.1.2 Additional Workloads

Communication patterns and densities can vary greatly between different applications. Exploration

of more real applications would help us to better characterize the tradeoffs between packet-switching

and time-multiplexing for any given general application. We are particularly interested in mapping

larger communication graphs with smaller fanout limitations in order to increase network commu-

nication and test the capabilities of our networks.
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9.2 Network Topologies

9.2.1 Additional Topologies

Certain topologies that researchers have previously dismissed for multiprocessor networks (e.g. the

Hypercube, Figure 3.2(c) [12]) may be worth revisiting under the NoC cost model. As NoCs differ

from multiprocessor systems (Section 1.2.1), previously dismissed topologies may perform well under

an appropriately revised cost model.

9.2.2 Automated Topology Synthesis

Since no single topology performs optimally over all applications and all areas (Section 6.3), ideally,

one would want to synthesize a different topology for each application. Therefore, we are motivated

to automate the process of topology selection based on a given set of parameters such as applica-

tion workload characteristics, desired performance, chip area, and technology cost model. Using a

reconfigurable FPGA substrate greatly facilitates this application-specific customization.

9.2.3 Additional Cost Models

The specific cost model that we examine is an FPGA overly NoC model for the Xilinx XC2V6000-

4. However, the areas that we consider for our single chip networks greatly exceed the maximum

capacity of this device (32K slices). As the Virtex2 is a relative outdated part, and new devices

provide increases in speed, capacity, and features, extrapolating the performance of our networks to

large areas under the XC2V6000-4 cost model is conservative. The question remains, however: at

what point will the areas that we consider (from 10K–10M slices) become feasible for a single chip?

In terms of current technology, the recently announced Xilinx Virtex5 [63] provides far greater

capacity than the Virtex2. Area in the Virtex2 is measured in slices, where a single slices is equivalent

to 2 4-input LUTs with registers. Area in the Virtex5 is also measured in slices, but here a single

slice is equivalent to 4 6-input LUTs with register. We can very conservatively assume that a single

Virtex5 slice provides equal or greater capacity than two Virtex2 slices. The largest Virtex5 parts

provide 50K slices of logic, at least as much capacity as 100K Virtex 2 slices. Therefore, chips

with capacities of more than 100K slices are currently available. If chip scaling continues to follow

Moore’s law (capacity doubles every 24 months), we can expect capacities of 1M and 10M slices in

roughly 6–8 years and 14–16 years respectively.

Additionally, we have limited our exploration to an FPGA overlay NoC cost model due to the

advantages of FPGA NoCs over ASIC NoC (Section 1.2.1) and the ease of mapping our networks

directly to hardware. We would like to revisit our analysis under an ASIC cost model to examine how

our conclusions might differ in a revised area-time model for switches and interconnect. This may
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provide insight as to the advantages of building FPGA with hardwired support for time-multiplexed

interconnect. We would also like to compare the performance of our network to that of previous

ASIC networks to examine the advantages in designing a simple, highly pipelined network.

9.2.4 Multiple-Chip Network

Our network design space exploration has thus far been limited to single chip networks. A fairly

simple extension of this work would be to model multiple-chip networks, examining similar area-time

tradeoffs in communication patterns and topologies (both inter-chip and intra-chip). Preliminary

switchboxes to handle offchip traffic have already been designed and tested.

9.3 Context Compression

9.3.1 PE Context

Thus far we have only provided preliminary results for compression switch context. While these

results are not yet promising, we should shift our focus to PE context compression as it constitutes

a larger percentage of total area.

9.3.2 Compressing with jedi

One issue with our approach thus far is that we explicitly specify the configuration bits for switches,

limiting the freedom of espresso to perform minimization. To increase freedom we could enumerate

states for each legal switch configuration and let the tool choose an appropriate minimal encoding.

jedi [39] allows us to specify output states instead of explicit output bits and then attempts to

find an optimal encoding. We have yet to explore this technique but we believe that it may yield

improved results over the espresso approach.

9.4 Router Improvements

9.4.1 Routing Fanout

Currently our router routes messages assuming point-to-point communication. However, for some

applications the same message can be sent to multiple destination PEs (e.g. Bellman-Ford). Under

these conditions routing messages without taking advantage of fanout can be extremely inefficient

for high fanout messages. We expect significant performance gains by routing fanout explicitly.
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9.4.2 Pathfinder Quantification

The quality of our router is adequate for the applications that we examine (Section 4.4). To obtain

additional quality we plan to explore Pathfinder. Pathfinder yields higher quality results than greedy

methods, but at a significant runtime cost with not guarantee of convergence. We plan to explore

comparing our router to Pathfinder to help quantify the tradeoffs in quality and runtime. Our greedy

router will aid in this exploration as it provides and achievable lowerbound for Pathfinder.
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Chapter 10

Conclusions

In this work we characterized the design space of Time-Multiplexed interconnect for FPGA

overlay networks on chip and compared it to Packet-Switched Interconnect. We described

how to build well engineered, highly scalable time-multiplexed FPGA networks in terms of topology

selection, router algorithm design, and hardware design.

We showed how to design networks out of simple, high performance network primitives and

pipelined interconnect. These allow us to compose our network hardware elements out of small

blocks than can easily be pipelined for high performance. We demonstrated network performance

of >200MHz on a Xilinx XC2V6000-4, with a total system performance of 166MHz. We note that

total system performance is limited not by network timing but by critical paths within the processing

elements.

To benchmark our networks we mapped several real applications with heavy communication re-

quirements (ConceptNet Spreading Activation, Sparse Matrix-Vector Multiply, Bellman-Ford Short-

est Path) to the GraphStep system architecture. For each application we selected graphs that span

a range of sizes and communication requirements. To route these workloads, we designed a greedy

routing algorithm that routes in the worst case within 3.6× as many cycles as the lowerbound, across

all topologies, network sizes, and applications.

To determine the best time-multiplexed topology, we performed experiments over rings, meshes,

and BFTs over a wide range of network sizes (2–2048 PEs) and areas (10K–10M slices). We demon-

strated that performance differences between topologies begin to emerge only at large networks

sizes, emphasizing the importance of examining large-scale networks. We showed that in general

as area increases, topologies which provide a higher percentage of area in interconnect rather than

compute provide the best performance. Both meshes and BFTs of various configurations provide

the best performance at large chip sizes, while their relative performance is within a factor of 2×.

We showed that over all areas (10K–10M slices) and over all applications the best “one topology fits

all” configuration is Butterfly Fat Tree (BFT) with c = 1, p = 0.5, which requires, in the worst case,

6.1× as many cycles to route communication than the optimal topology. This indicates that there
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is non-trivial cost in selecting a single topology for all areas and applications.

We compared time-multiplexing to packet-switching, and showed that on average, over all appli-

cations for all equivalent topologies, online packet-switched communication requires 1.5× as many

cycles to route as offline time-multiplexed scheduling. When applying designs to equivalent area,

for areas typically <100K slices packet-switching typically outperforms time-multiplexing, but at

>100K slices packet-switching requires up to 3.4× as many cycles to route as time-multiplexing in

the worst case. Finally, for equivalent large networks (>100 PEs) time-multiplexing outperforms

packet-switching when routing communication loads where greater than 10% of all logical links are

active. This demonstrates that well designed time-multiplexed FPGA overlay networks can deliver

performance and area efficiency exceeding that of packet-switched networks.
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