
Packet-Switched On-Chip FPGA Overlay Networks

Thesis by

Nachiket Kapre

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2006

(Submitted May 31, 2006)

c© 2006

Nachiket Kapre

All Rights Reserved

ii

Acknowledgements

André DeHon has been my teacher, adviser, mentor and a parent away from home for the last three

years of my life. He has been the driving force behind this research and has put up with endless

mid-course corrections and somersaults during this work. This thesis is due to him.

Nikil Mehta joined this lab two years ago and I have thoroughly enjoyed working with him. His

technical writing and presentation skills have helped make our work accessible and comprehensible

to the community at large. I have learned a lot from him in these past two years.

This work emerged out of the lessons learn from the class project of the CS184b Computer

Architecture course taught by André in the spring of 2005. Michael deLorimier and Raphael Rubin

were the original TAs who provided tool support for the class project. Their insight has benefited

this work immensely and this research owes a lot to these two. Henry Barnor and Michael Wilson

helped craft the network hardware for this project, on Xilinx chips, and in recognition of their work

they are now happily employed with Altera.

Discussions with Eylon Caspi, Kees Vissers, Steve Trimberger, Shepard Siegel, Stephen Neuen-

dorffer, and Ian Eslick at the several Graph Machine retreats in Boston and Santa Barbara helped

us frame the presentation of our research so as to appeal to the research community.

Gunjan, Rohit, Sukhada, Abhishek, Helia, Amir and Saket have been members of my extended

family here in the United States. No amount of acknowledgements would do justice to the support

all of these have provided me.

I would also like to thank a friend from my undergraduate years in India, Sumeet Kulkarni.

Endless technical debates and arguments with him have helped shape the engineer inside me during

those formative years.

Last, but certainly not the least, I want to thank my wonderful parents Aruna and Ganesh

Kapre, my sibling Richa Kapre and my loving grandmothers Sumati Kapre and Sudha Shrikhande

who continue to support, encourage and love me from thousands of miles away.

iii

Abstract

As we scale to larger chip capacities, it becomes possible to map large, concurrent applications

to programmable fabrics. These applications often have irregular and dynamic communication

requirements. Packet-switched networks provide efficient implementations for such applications on

these fabrics. In this research, we show how to engineer high-performance packet-switched on-

chip networks and provide quantitative comparisons between different kinds of these networks. We

analyse different network topologies and justify selection of topologies based on experimental results.

We investigate packet-switched and time-multiplexed styles of routing and provide guidance on which

style is appropriate for which application.

We can summarize the key contributions of this work as follows:

• We show how to engineer a low-overhead, high-performance, sample packet-switched overlay net-

work with 8 PEs (single-size) that runs at 166 MHz and occupies ≈ 10K slices (30%) of a Xilinx

Virtex-2 6000 FPGA device.

• We generate workloads for benchmarking our networks from real, communication-rich applications

mapped to the GraphStep System Architecture [22] (ConceptNet Spreading-Activation, Sparse

Matrix Vector Multiply, Bellman-Ford Shortest-Path) instead of relying on synthetic traffic.

• We evaluate the effects of topology scaling to 100s and 1000s of Processing Elements (PEs) under

an FPGA cost model and demonstrate that the Butterfly Fat Tree (BFT) and Mesh topologies

achieve comparable performance in all scenarios. Performance difference between the two topolo-

gies at any area is within 20% of the other.

• We compare the performance achieved by Directional and Bidirectional Meshes and find that as

we scale to larger chip areas, Bidirectional Meshes provide consistently better performance across

all applications.

• We further show that Virtual-Channel (VC) based mesh routing algorithms are unsuitable for

these on-chip networks under the wiring-rich regime of FPGA substrates. They are as much as

10% worse than the simple mesh routing algorithms (Dimension Ordered and West Side First) at

equivalent area.

• We measure area and performance of packet-switched and time-multiplexed overlay networks and

show that packet switching outperforms time multiplexing at certain activity factors i.e. when the

iv

set of messages drops below 50% of the maximum when mapped to a network with 100 PEs.

• We demonstrate that packet switching can be 5-10× better than time-multiplexing at small FPGA

sizes. For most applications, time multiplexing is only about 1.5× better than packet switching.

When routing a decomposed ConceptNet workload it can be as much as 3.5× better.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 The Problem . 1

1.2 Concept of a Network-on-Chip . 1

1.3 Communication Patterns . 2

1.4 Outline . 4

2 Prior Work 6

2.1 Interconnection Networks . 6

2.2 FPGA Packet-Switched NoCs . 8

2.3 NoC Topologies . 9

3 Background 10

3.1 Flavors of Packet-Switching . 10

3.2 Deadlock . 11

3.3 Performance Analysis . 11

3.3.1 Serialization . 12

3.3.2 Network Bisection . 12

3.3.3 Network Latency . 13

4 Hardware 14

4.1 Switch Design . 14

4.2 Primitives . 16

4.2.1 Split . 16

4.2.2 Merge . 17

4.3 Other Elements . 18

vi

5 Topology 20

5.1 Limited Bisection Networks . 20

5.2 Ring . 21

5.3 Mesh . 21

5.3.1 Switch Architecture . 24

5.3.2 Routing Algorithms . 25

5.3.2.1 Deterministic . 25

5.3.2.2 Adaptive . 27

5.3.2.3 Virtual Channels . 27

5.4 BFT . 29

5.4.1 Routing Algorithm . 30

6 Applications 33

6.1 ConceptNet Spreading Activation . 34

6.2 Sparse Matrix-Vector Multiply . 36

6.3 Bellman-Ford Shortest Path . 37

6.4 Application Characteristics . 38

7 Methodology 40

7.1 Tool Infrastructure . 40

7.2 Cycle Accurate Simulator . 41

7.3 Area Model . 42

7.4 Latency Model . 44

8 Evaluation 48

8.1 Selection of Buffer Depth . 48

8.2 Impact of Topology . 49

8.2.1 Effect of PE Scaling . 50

8.2.2 Effect of Area Scaling . 52

8.2.3 Performance of Virtual-Channel-based Meshes 54

8.2.4 Performance of Directional and Bidirectional Meshes 57

8.2.5 Performance of BFTs and Meshes . 57

8.2.6 Explaining Quality of Performance . 59

8.2.7 Effect of Application Communication Requirements 59

8.2.8 Universal Topology . 63

8.3 Comparison with Time Multiplexing . 63

8.3.1 Effect of PE Scaling . 66

vii

8.3.2 Effect of Area Scaling . 67

8.3.3 Effect of Activity Factor . 68

8.3.4 Effect of Multiple Graph Steps . 71

9 Future Work 72

10 Conclusions 74

Bibliography 76

viii

List of Tables

1.1 Role of Various Communication Patterns . 2

2.1 Summary of Prior Work in FPGA Network-on-a-Chip Designs 8

4.1 Area, Latency and Speed of 32-bit Packet-Switched Switching Primitives on a Xilinx

Virtex-2 6000 -4 . 18

5.1 List of explored Topologies . 32

6.1 Application Graphs . 38

7.1 Area and Latency of Switchboxes of different topologies with 1-deep buffers with no

wire pipelining . 44

8.1 Ratio of Achieved Performance to Best Performance (Over All Areas and Applications) 65

ix

List of Figures

2.1 ConceptNet Network I/O per Cycle vs. Network Size 8

3.1 Deadlock in a Packet-Switched Network . 11

3.2 Network Bisection . 12

3.3 Communication Time vs. PEs with respect to lowerbounds of a BFT c = 1, p = 0.5 for

gemat11 (SMVM, Section 6.2) . 13

4.1 Conceptual Diagram of an N-input M-output switch 14

4.2 Conceptual Diagram of Split, Merge and TM-Merge Primitives 15

4.3 Conceptual Diagram of an N-input M-output switch composed using Splits and Merges 15

4.4 Internal Hardware Details of a 2-output Split . 16

4.5 Internal Hardware Details of a 2-input Merge . 17

4.6 Conceptual Diagram of Input and Output Blocks . 19

5.1 Routing Function for the Ring . 21

5.2 Ring Topology and a Ring Switch . 22

5.3 Effect of Multiple Channels on Hardware Requirements of a Ring 22

5.4 Bidirectional Mesh Topology and a Bidirectional Mesh Switch 23

5.5 Directional Mesh Topology and a Directional Mesh Switch 24

5.6 Directional Mesh Island-Style Switch . 25

5.7 Mesh Fast-XY Switch . 26

5.8 Dimension Ordered Routing . 26

5.9 Structural Diagram of an Arity-4 Bidirectional Mesh Switch DOR 27

5.10 West-Side-First Routing . 28

5.11 Structural Diagram of an Arity-4 Bidirectional Mesh Switch WSF 28

5.12 Idea of Virtual Channels . 28

5.13 Duato’s Fully Adaptive Routing Function for the Bidirectional Mesh 30

5.14 Minimal Adaptive Routing Function for the BFT . 31

5.15 BFT Topology and BFT Switches . 31

5.16 Structural Diagram of BFT T and Π Switch . 32

x

6.1 ConceptNet PE . 35

6.2 SMVM PE . 36

6.3 Bellman-Ford PE . 37

7.1 Logic-Circuit for Simulation . 42

7.2 Dual-Phase Simulation Algorithm : Phase-1 . 43

7.3 Dual-Phase Simulation Algorithm : Phase-2 . 43

7.4 FPGA Characterization Experiment . 45

7.5 Wire Lenghts in the BFT . 46

7.6 Comparing Worst-Case Latencies on the Mesh and the BFT 47

8.1 Communication Time vs. PEs for gemat11 (SMVM) with different buffer depths . . . 49

8.2 Zoom of Figure 8.1 . 49

8.3 Communication Time vs. Slices for gemat11 (SMVM) with different buffer depths . . 50

8.4 Communication Time vs. Area . 51

8.5 Communication Time vs. Area . 53

8.6 Actual Communication Time vs. PEs for gemat11 (SMVM) 53

8.7 Communication Time vs. PEs for non-V C and V C Meshes 55

8.8 Ratio of Communication Time of non-V C and V C meshes vs. Area 56

8.9 Ratio of Communication Time of Bidirectional Mesh/Directional Mesh vs. Area . . . 58

8.10 Ratio of Communication Time of Mesh/BFT vs. Area 60

8.11 Lowerbound Communication Time vs. PEs for gemat11 (SMVM) 61

8.12 Ratio of Actual to Lowerbound Communication Time vs. PEs for gemat11 (SMVM) . 61

8.13 Communication Time vs. Area . 62

8.14 Ratio of Actual Communication Time of Bidirectional Mesh W=1 DOR and BFT c=1

p=0.5 to Best Communication Time vs. Area . 64

8.15 Ratio of Time-Multiplexed/Packet-Switched Communication Time for Identical Topolo-

gies . 66

8.16 Communication Cycles vs. Area for Best Topologies 67

8.17 Ratio of Time-Multiplexed/Packet-Switched Communication Time for Identical Area 69

8.18 Communication Cycles vs. Activity for Sample Topology with 256 PEs 70

8.19 Activity Crossover vs. PEs . 70

8.20 Performance of Time-Multiplexing vs. Packet-Switching as a function of Graph Steps 71

xi

Chapter 1

Introduction

1.1 The Problem

Communication is beginning to limit the performance of modern digital systems. In conventional ISA

processors, communication requirements are handled implicitly through memory. However, memory

bandwidth scales poorly and is becoming a major barrier to achieving high performance. In spatial

architectures i.e. FPGAs, computation can be laid out in raw hardware where communication can

be represented explicitly using wires between the program’s operators. This allows us to exploit the

full capability of the available silicon and potentially achieve higher performance. This increased

performance, however, comes at the expense of increased wiring. Wiring accounts for a significant

portion of the chip area, dictates its clock cycle period (i.e. fastest speed at which the chip can

run) and consumes most of the its power. We can reduce wiring area requirement by time sharing

these wiring resources. In an extreme form of timesharing, we permit only one pair of compute

operators to send and receive messages at a time over a set of shared wires (i.e. a bus). This form

of interconnect causes communication to be fully sequentialized, leading to poor performance. We

need a solution that has modest area requirements while still delivering high performance for these

communication dominated applications.

1.2 Concept of a Network-on-Chip

Network-on-Chip (NoC) is an economical and efficient solution for realizing the communication re-

quirements of applications on a single chip. NoCs can be engineered to have less area than a spatially

connected design and provide much better performance than a bus. Communication networks have

been long been studied for multi-processor systems and supercomputers. With increasing silicon ca-

pacities, it has now become possible to map these systems efficiently onto single chips. The network

itself is a collection of switches connected to each other using shared wiring channels. The compute

operators or PEs are allowed to inject traffic into the network simultaneously at these switches.

1

Table 1.1: Role of Various Communication Patterns

Characteristics Configured TM PS Circuit
Know communication needs early late

(compile time) (runtime)
Communication predictability high low
Communcation throughput com-
pared to physical link throughput

> < < <

PE-to-PE latency compared to
packet length

n/a n/a > <

Channel Utilization high low
Switch Logic Area low low high high
Switch Memory Area low high modest low
Relative Latency lowest low highest moderate

The underlying cost model of the substrate influences the area efficiency and performance of

these networks. We choose to investigate the mapping of these networks to FPGA substrates. We

overlay our networks on top of FPGA logic to implement switching functions and use programmable

FPGA routing resources for wiring the switches. This provides a cost model that has been relatively

unexplored for implementing NoCs. FPGA overlay NoCs also offer the unique opportunity to quickly

and easily reconfigure networks to create application-specific topologies. This also enables runtime

flexibility and rapid design space exploration.

1.3 Communication Patterns

Applications have diverse communication requirements. Different styles of programmable intercon-

nect are relevant for different communication requirements. Applications with dynamic communi-

cation requirements can be efficiently mapped to a specific style of NoCs called Packet-Switched

Networks. We study Packet-Switched On-Chip Networks extensively in this thesis. We capture the

nature of communication supported by a few commonly used programmable interconnects in Ta-

ble 1.1. We discuss the characteristics of these different switching styles to motivate the application

space where packet-switching is relevant.

Spatially Configurable Interconnect When the interconnection pattern among PEs is a static

characteristic of the application (i.e. not data dependent) or highly predictable, and applications

require that we move data between PEs at a rate comparable to or higher than the throughput

of the primitive physical communication links, it is efficient to dedicate a communication channel to

performing each PE-to-PE communication tasks by spatially configuring the physical links (e.g. tra-

ditional, FPGA configured switching). That is, each programmable switch in the network has local

configuration state, and we set the state in the switches to provide direct paths between producing

2

and consuming PEs. Once set, the PE simply places data on its output port and the data propagates

over the pre-allocated, configured path from the source to the sink with no additional delays beyond

the physical switching delays. Consequently, data communication latency is minimized. Further,

switches can be very simple with minimal state, minimizing the area required per switch. When

the required PE-to-PE application bandwidth is higher than the bandwidth of a primitive commu-

nication channel, multiple channels can be configured in parallel to provide the required application

bandwidth (e.g. multi-bit datapaths).

Circuit-Switched Interconnect When the interconnection pattern among PEs is not known

in advance or highly data dependent, and hence unpredictable such that the PE-to-PE transfer

rate can be significantly lower than the throughput of the primitive physical communication links,

and the latency of the network is small compared to the data sent in a unit PE-to-PE transfer, it is ef-

ficient to circuit switch logical PE-to-PE communications over the physical communication channels.

That is, rather than pre-configuring switches or switching behavior, a destination tag is attached

to each data component. The switches dynamically accept these route requests and allocate a path

to the destination if one is available. Since the switches must make online switching decisions they

are more complicated, and hence larger and slower, than Spatially-Configured Interconnect

and Time-Multiplexed Interconnect. Unlike Time-Multiplexed Interconnect no config-

uration memory is required in the switches; unlike Packet-Switched Interconnect no memory

is required to provide data buffering in the network. Further, since switching decisions are made

based only on instantaneous, local information, switch utilization is lower than Time-Multiplexed

Interconnect whose configuration can be globally coordinated offline; to achieve a target network

bandwidth, this means the circuit switched network will typically need more physical links than

Time-Multiplexed Interconnect. Since connections are opened between source and sink and

held open, data bundles of arbitrary length can be sent at the full data rate of the primitive channel

with low additional latency once the connection is established. This means the network resources

are dedicated to this connection during the setup of the link and the data transfer; if the network

latency is long compared to the length of data transmission, this can result in inefficient utilization

of the physical network links.

Packet-Switched Interconnect When the interconnection pattern among PEs is not known

in advance or highly data dependent, and hence unpredictable such that the PE-to-PE transfer

rate can be significantly lower than the throughput of the primitive physical communication

links, and the latency of the network is large compared to the data sent in a unit PE-to-PE transfer,

it is efficient to packet switch logical PE-to-PE communications over the physical communication

channels. That is, rather than pre-configuring switches or switching behavior, a destination tag

3

is attached to each data component to create a packet. The switches dynamically accept packets

and switch them along paths towards their destination as the paths become free. Queues with

backpressure are used to accommodate resource limitations in the network. Since the switches

must make online switching decisions, packet switches are more complicated, and hence larger and

slower, than Spatially-Configured Interconnect and Time-Multiplexed Interconnect.

Unlike Time-Multiplexed Interconnect no configuration memory is required in the switches;

but, some memory is required to provide the data queues. Further, since switching decisions are made

based only on instantaneous, local information, switch utilization is lower than Time-Multiplexed

Interconnect whose configuration can be globally coordinated offline. However, when routing

packets, we only need to support the instantaneous traffic demands; if the instantaneous traffic

demands are very low compared to the potential traffic demands, the ability to route only the

instantaneous traffic may result in a net reduction in route time despite the fact that physical

resource utilization is lower than Time-Multiplexed Interconnect.

Time-Multiplexed Interconnect When the interconnection pattern among PEs is a static char-

acteristic of the application (i.e. not data dependent) or highly predictable, and applications have

many PE-to-PE connections that transfer data at a rate significantly lower than the throughput

of the primitive physical communication links, it is efficient to statically schedule logical PE-to-

PE communications over the physical communication channels. That is, each switch has an FSM

or memory which can be programmed to give it a distinct switch configuration on each primitive

switching cycle. This program is executed repeatedly (cyclic schedule) to route data among sources

and sinks. Source-to-sink latency is low as data is routed from link-to-link without additional delays,

but may be higher than Spatially Configured Interconnect communication since the switch

timing must support a state change on every cycle. Switches can be simple, making switching area

low. However, if the length of the communication cycle is long, the memory required to hold the

switch schedule can become large and dominate the switching area.

For the kinds of small message applications we focus on here, the tens of clock cycles of network

latency between PEs guarantees that Circuit-Switched Interconnect is not an appropriate so-

lution. We defer the study of spatially configured networks for these applications for later. In this re-

port, we focus on developing analytic area and time models to select wisely between packet-switched

and to time-multiplexed networks. We hope to ground the trends of Table 1.1 into quantitative,

empirical trade offs.

1.4 Outline

The thesis is organized into the following chapters

4

Chapter 2 reviews existing work in the broad area of NoCs, Packet-Switched FPGA Overlay

Networks and Topology Selection for NoCs.

Chapter 3 provides an overview of different forms of packet-switched networks available and

explains the performance metrics used in subsequent analysis.

Chapter 4 introduces the switching primitives used to build the Packet-Switched Networks and

Chapter 5 explains how different topologies are supported using these primitives.

Chapter 7 describes the infrastructure used for our analysis and explains the area and latency

models used in the experiments.

Chapter 8 shows data and analysis from our topology exploration studies and comparison with

time-multiplexed networks.

Finally, Chapter 9 outlines additional avenues of research suggested in this thesis while Chapter 10

closes with a brief summary of the lessons learned from this study.

5

Chapter 2

Prior Work

2.1 Interconnection Networks

Interconnection networks have been extensively researched by the networking community since the

days of the early telephone switching systems [10]. Networks for multiprocessing systems have also

been studied relatively independently by the parallel computing community for decades [5,23,31,37,

56]. Packet-switching was the favored switching style used in these early multiprocessor networks.

Consequently, packet-switching has evolved into several styles with different performance charac-

teritics, e.g. store-forward, wormhole, virtual cut-through. Different network topologies (physical

connectivity between network elements) were also explored to build these networks i.e. Hypercubes,

Multistage Networks, lower-dimensional Meshes (2D and 3D), Tori, BFTs. The routing functions

(that decide how packets reach their destinations) used in these networks also underwent continuous

refinements i.e. Deterministic Routing, Adaptive Routing, Virtual Channels. Excellent surveys in

interconnection networks can be found in [16,23,49].

Topology Early networks were primarily built using higher-dimensional topologies (e.g. Hyper-

cubes). These networks also required the processors to perform routing of network traffic making

them hard to program and greatly limiting performance. As technology evolved, it became possible

to isolate routing responsibilities into a separate VLSI chip (e.g. Caltech Mesh Router [53, 54] used

in the Caltech Mosaic multicomputer, Torus Routing Chip [14]). When realistic 2D VLSI packaging

constraints were considered, lower-dimensional topologies (specifically BFTs) were shown to out-

perform the earlier higher-dimensional cousins in [37]. Subsequent network architectures (i.e. MIT

J-Machine [48], Cray T3D [12]) were built using these principles. We continue to use these ideas to

build on-chip networks.

Routing Algorithms Packet-switched networks were originally built using a store-forward style

of switching that required complete packet buffering in the switches. It was possible to route on

6

these networks without being affected by deadlock given sufficient buffering (theoretically unlimited

buffering). With the introduction of the Caltech Mesh Routing Chip [53], wormhole style of switching

became very popular. Deadlock was an important issue on these networks and could not be ignored

anymore. Hence, it became necessary to study and analyze different deadlock avoidance algorithms.

Early worhmole networks used Dimension-Ordered Routing to achieve deadlock-free routing which

was very restrictive. This was improved upon with the development of adaptive routing algorithms.

Glass and Ni introduced the concept of Turn Model [24] that specified a less restrictive set of routing

rules. Duato’s concept of extended channel dependency graph [23] facilitated the development of

fully adaptive algorithms under a general theoretical framework. These concepts influenced the

design of several networks including the Cray T3E [51], and Alpha 21364 [44].

Network-on-Chip As VLSI capacities increased, it became possible to pack multiple functional

elements onto a single chip. These functional elements were originally discrete chips on circuit boards

that were integrated using board-level bus-based networks. When these systems migrated to single-

chip systems, they inherited these buses. Several on-chip bus standards [3,28,60] are in popular use

even today. But, performance of serial buses does not scale as chip sizes grow. We illustrate the

effect of scaling chips sizes on the performance of bus traffic in the following example. Figure 2.1

shows network I/O messages per cycle as a function of PEs on our time-multiplexed network with

no bandwidth limitations, given a ConceptNet (Section 6.1) communication load. In Figure 2.1

we see that as the the number of PEs increases, the number of messages which can be injected

into the network increases significantly. Since a bus can handle only one network send or receive

per cycle, communication will be fully serialized. At small numbers of PEs, the bus would only

require 1–2× more cycles to route all messages than an unlimited network since very few messages

are being pushed into the network. Most cycles would be dedicated to serialized processing at the

PEs. At larger PE counts (> 500) PEs can inject more messages into the network (more of the

communication graph is exposed to the network). The bus would require over 100 times as many

cycles at these PE counts. Thus, a network capable of processing multiple messages simultaneously

would help improve peroformance.

Today’s silicon capacities allow networks other than buses to be implemented on single chips.

Seitz [52] made the initial case for routing packets instead of wires for efficient on-chip communi-

cation. Dally [15] then demonstrated the feasibility of building an on-chip network with less than

10% area overhead. DiMicheli et al. [6] propose building on-chip networks with a layered OSI-like

model for standardizing the interface and encapsulating the functionality of different elements of the

network appropriately. These initial NoC efforts have laid the foundation for subsequent work in

NoCs.

7

 0

 50

 100

 150

 200

 250

 1 10 100 1000 10000

N
et

w
or

k
IO

 p
er

 C
yc

le
 (

m
es

sa
ge

s)

Network Size (PEs)

Network IO per Cycle vs. Network Size

unlimited network

Figure 2.1: ConceptNet Network I/O per Cycle vs. Network Size

Table 2.1: Summary of Prior Work in FPGA Network-on-a-Chip Designs
NoC Freq Size Chip Switch

(MHz) Datawidth IO Area
IMEC [40] 40 3× 3 Virtex2 Pro 40 16-bit 4 446 slices, 1 BRAM
Hermes [43] 25 2× 2 Virtex2 1000 -4 8-bit 5 316 slices
LiPaR [55] 33 3× 3 Virtex2 Pro 30 -6 8-bit 5 437 slices
Dimetalk [46] 100 – Virtex2 -4 32-bit 4 450 slices, 1 BRAM

2.2 FPGA Packet-Switched NoCs

NoCs have been extensively studied under an ASIC cost model. FPGAs have been left relatively

unexplored for this mapping. Recent increases in FPGA capacities have made it possibe to map

NoCs to FPGAs. Some recent work has begun to examine NoCs under an FPGA overlay cost

model [40,43,46,55]. We summarize a representative sample in Table 2.1. While these research efforts

are the first to explore the FPGA design space, there are several limitations. Most of the designs

reported in Table 2.1 are 2D bidirectional mesh topologies offering no quantitative reasoning behind

this topology selection. We need to consider other topologies and evaluate their area and performance

to help choose the appropriate network topology. None of these efforts provide scalability analysis

to large chip sizes which are useful to help select the correct network configuration for future chips.

Most of these studies use synthetic traffic making it hard to offer analysis on the impacts on network

design. Marescaux et al. [40] reports application performance data only as a proof-of-concept.

Finally, most of these networks run at speeds between 25 and 100MHz which is far below peak

FPGA speeds.

8

2.3 NoC Topologies

Several ASIC NoC research efforts have considered using various topologies for their designs, such

as the mesh [32,42], torus [15], fat-tree [1,50], octagon [30], and star [34]. Pande et al. [50] compare

different topologies for networks with 256 PEs. Additional work has attempted to provide a design

methodology and automatic synthesis tools for evaluating and generating NoCs [26, 27, 45] . These

projects typically evaluate scaling of topologies over 10s of interconnected PEs without evaluating

tradeoffs with respect to other topologies. Murali et al. [45] provide a tool which explores several

different application specific topologies, but they do not examine the effects of scaling of NoC topolo-

gies. Most of these existing NoC architectures borrow heavily from previously developed network

architectures for parallel computing. On-chip networks have constraints that differ significantly

from those of multiprocessors, such as two-dimensional layouts, quadratic unbuffered wire delays,

and fewer pin constraints. Therefore, to design efficient NoCs it is essential to reexamine network

architectures and topologies under an appropriate cost model.

9

Chapter 3

Background

In this section, we explain how data is routed over a packet switched network and how this gives rise

to different flavors of packet-switched networks. We then consider the issues related to deadlock on

these networks when routing data. We then setup metrics that enable us to compare the performance

achieved by different networks when routing traffic.

3.1 Flavors of Packet-Switching

The main role of a packet-switched network is to transport packets from source to destination. A

packet is the smallest logical unit of data that a PE can inject into the network. A packet consists

of multiple flits (packets can also be only one flit). A flit is the smallest physical unit of data that

is routed by the network. The first few flits of the packet are called header-flits. They contain the

destination address (i.e. routing information) of the packet. The actual payload of the packet is

contained in the remaining flits.

There are several forms of packet-switched networks that are distinguished by the manner in

which they handle flits. In Store-Forward networks, all flits of a packet need to be received completely

at the input of the switch before they can be routed to an output. This scheme requires a large

amount of buffering when packets are very long and leads to very long network latencies. Given

sufficient buffering, this network can be deadlock-free. In wormhole networks, packet can be routed

as soon as the header is processed and buffering is avoided. Trailing flits follow the header-flit(s)

along the same channels in a pipelined manner. If the header is blocked due to contention in the

network, the rest of the flits stop advancing and occupy network resources. These resources stay

occupied until the contention is resolved. Switches in a cut-through networks also route packets

immediately upon header reception. The key difference is the amount buffering provided at the

switches. Cut-through networks provide more buffering in the switches than wormhole networks

to reduce the impact of contention on packet flow. This makes the switches more expensive than

switches in a wormhole network in terms of area and potentially also increases packet latency.

10

PE

switch

1

2
3

4

Figure 3.1: Deadlock in a Packet-Switched Network

3.2 Deadlock

Switches and PEs that form a packet-switched network are connected to each other by communi-

cation links (channels). The connectivity between elements of the network is defined by topology

of the network. This connectivity may introduce physical cycles between the network elements. If

we are not careful, packets routing over such a network may deadlock. In deadlock, packets cannot

move any further and are consequently unable to reach their destinations. Packets participating in

deadlock depend on other deadlocked packets to advance, in a cyclic fashion. We illustrate this in

Figure 3.1. Packet 1 is waiting for Packet 2 to proceed, Packet 2 is waiting for Packet 3 to advance,

Packet 3 is waiting for Packet 4 to go further while Packet 4 is waiting for Packet 1 to move ahead.

All 4 of these packets are deadlocked. Deadlock can also be introduced due to cyclic dependencies

between the PEs, but our compute model, described in Chapter 6, avoids this specific case. The key

idea used when avoiding deadlock is to break the dependency cycles that may exist in the network.

We can deadlock-free routing by either limiting the set of possible turns in each switch or by adding

a set of virtual channels to each physical channel and ordering packet flow between these channels.

We discuss these issues in greater detail in Section 5.3.2.

3.3 Performance Analysis

To understand the performance of different networks, we identify several quantitative network char-

acteristics which bound the number of cycles required for communication. This allows us to measure

the achieved performance of a given topology with respect to an optimal lowerbound.

11

Ncut

Nmessage

Figure 3.2: Network Bisection

3.3.1 Serialization

We engineer our PEs to handle an external input, output, or self message in one cycle. We can

bound on number of cycles spent on incoming and outgoing messages as follows:

Tinput = Ninput + Nself (3.1)

Toutput = Noutput + Nself (3.2)

Under the compute model described in Chapter 6, our PEs can handle both an input and an

output message per cycle.

Tserialization = max (Ninput, Noutput) (3.3)

(3.4)

3.3.2 Network Bisection

Bisection of a network is defined as the number of wires crossing from one side of the chip to the

other as shown in Figure 3.2. This bisection width limits the maximum number of messages that

can travel across the chip in a given cycle. If the number of message bits is greater than the number

of physical wires crossing the bisection, then communication must be serialized across the bisection:

Tcut =
⌈

Nmesssage ×Bitsmessage

Ntopcut

⌉
(3.5)

The top-level bisection may not be the largest serial bottleneck in the network. Hence, we need

12

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

Co
m

m
un

ica
tio

n
Ti

m
e

(c
yc

le
s)

PEs

Communication Time vs. PEs

Actual
Bisection
Latency

Serialization

Figure 3.3: Communication Time vs. PEs with respect to lowerbounds of a BFT c = 1, p = 0.5 for
gemat11 (SMVM, Section 6.2)

to recursively bisect the network and identify the most limiting of cuts (Tcuti):

Tbw = max
all cuts i

(Tcuti) (3.6)

3.3.3 Network Latency

If the network is sufficiently large, several cycles may be required to traverse the network from one

end to the other:

Tlatency = max
all routes i

(routei) (3.7)

Thus, the lower bound on performance of a topology is as follows:

Tcycles = max (Tserialization, Tbw, Tlatency) (3.8)

As an illustrative example, in Figure 3.3 we show how the performance of a topology can be

explained in terms of its lowerbounds. Here we plot actual performance (communication cycles

required to route a workload) vs. number of PEs for a BFT c = 1, p = 0.5, in addition to lowerbounds.

Initially the performance of the BFT is dominated by input and output serialization until 64 PEs.

At low numbers of PEs most cycles are dedicated towards serialized processing at the PEs. As we

increase the number of PEs the number of messages in the network increases (Figure 2.1). Since

this is a limited bisection BFT, the performance is subsequently limited by bisection until 1024 PEs,

after which it is latency dominated.

13

Chapter 4

Hardware

4.1 Switch Design

The primary function of a switch in a packet-switched network is to accept packets on inputs

and route them to appropriate outputs as shown in Figure 4.1. The routing algorithm used in

the switch decides the correct output for an incoming packet. This algorithm may cause multiple

incoming packets to request routing to the same output. It may also have to choose between

multiple outputs for a given packet, all of which are available. This can happen in the adaptive

set of routing algorithms that attempt to provide as many possible routing choices to a packet as

possible without getting deadlocked. The general problem of assigning outputs to input packets

is a bipartite matching problem locally within the switch. Designing a switch to implement this

algorithm with a large number of inputs and outputs at high speed is non-trivial. We want the

entire packet-switched network to run at high-speed. Our pipelined PEs run at a speed close to the

maximum possible speed of the on-chip FPGA memories (200 MHz out of 250 MHz). We expect

the network to run at comparable speeds to prevent system performance from being limited by the

network. Hence, we choose to design the the network to run at 200 MHz on commodity FPGAs. To

achieve this performance target we simplify the logic for output and input selection. We compose

the switch using a cascade of two basic primitives, a split and a merge, shown in Figure 4.2. This

switchN
 i
n
p
u
ts

M
 o

u
tp

u
ts

Figure 4.1: Conceptual Diagram of an N-input M-output switch

14

mergesplit

Figure 4.2: Conceptual Diagram of Split, Merge and TM-Merge Primitives

N
 i
n
p
u
ts

M
 o

u
tp

u
ts

s m

s m

s m

M
-1

N
-1

switch

Figure 4.3: Conceptual Diagram of an N-input M-output switch composed using Splits and Merges

allows the individual primitives to be pipelined independently. The switch that is composed out

of these primitives then continues to run at the target frequency. For the simple switch shown in

Figure 4.1, we show a split-merge based implementation in Figure 4.3. An additional benefit of using

these primitives is the simplicity of composing switches for different topologies. Each topology has

a unique connectivity pattern that can be easily represented as a network of splits and merges. We

then specify this pattern for each topology to implement the switch as required. Next, we look at

issues that help motivate design requirements for these primitives.

Synchronization We operate the interfaces between the primitives based on producer-consumer

synchronization. More specifically, we use the Tagged Data-Presence and Queues with Back-

pressure design patterns [19]. This allows packet transfers between the primitives to be negotiated

smoothly. Data-Presence signals are generated by the producer to inform the consumer about avail-

ability of valid packet data. The Back-Pressure signals are generated by the consumer to inform the

producer whether it is ready to process data.

Buffering A merge may receive packets on multiple inputs simultaneously. A split input may

receive a packet wanting to route to an output that is currently unavailable. These blocked packets

need to be handled appropriately. We provide buffering at the inputs to temporarily store the

packets until the required resources become available again. Depending on how many flits a packet

contains, a buffer depth of 1 might make it either a wormhole network (multiple flits per packet) or a

15

queue

dp_in

data_in

bp_out

wr_en

early_full

wr_data

decode

early_empty

rd_en

rd_data

output_logic bp_in0

data_out0

dp_out1

data_out1

bp_in1

dp_out0

can be pipelined
if necessary fifo0_size

fifo1_size

Figure 4.4: Internal Hardware Details of a 2-output Split

cut-through network (one flit per packet). At larger buffer depths, the network becomes an instance

of a cut-through network. Buffer size must be chosen judiciously since it directly influences the area

required by the switch. Buffering also has its disadvantages. Head-of-line blocking may increase the

latency experienced by a packet as it moves through the network. This happens when a packet at

the head of the buffer is waiting on a blocked output resource. Rest of the packets in the buffer are

then forced to wait for the head packet to get routed first before they can move. Thus, buffer-sizing

is an important design criteria that we’ll revisit in Section 8.1.

4.2 Primitives

4.2.1 Split

The split primitive has one input, multiple outputs and a routing function which selects one of the

outputs for the incoming packet. We show the internal hardware details of a 2-output split primitive

in Figure 4.4. A split primitive is composed of input logic to decode the destination address, a FIFO

to buffer packets and output logic to determine the correct output port for the packet. We choose

to simplify output logic by computing the routing decision as soon as the packet is received at the

inputs. For deterministic routing functions, the decision logic is usually simple and straightforward.

For adaptive routing functions, we may need to provide additional congestion information about the

outputs. For these cases, we can pipeline the routing logic as required. However, we need to ensure

that the input backpressure signal is generate equally early. The output interface logic is also simple

and can be easily packed into 1–2 levels of 4-LUTs.

16

queue0

dp_in0

data_in0

bp_out0

wr_en

early_full

wr_data

input select

early_empty

rd_en

rd_data

data_out

dp_out

bp_in

can be pipelined
if necessary

queue1

dp_in1

data_in1

bp_out1

wr_en

early_full

wr_data

early_empty

rd_en

rd_data

output mux

can be pipelined
if necessary

Figure 4.5: Internal Hardware Details of a 2-input Merge

4.2.2 Merge

The merge primitive has multiple inputs and one output. Packets arriving on the inputs must

compete for a single output. A simple scheme of arbitration would be to select between the input

ports in a round robin fashion. We use a more adaptive scheme that selects a packet based on FIFO

occupancies of the input queues and a priority function. We show hardware details of a 2-input

merge in Figure 4.5. A merge primitive is composed of an input FIFO for each input followed by

selection logic to choose between these inputs. When limited to a few inputs, the input selection

hardware can fit comfortably in 2–3 4-LUTs. When selecting from more than 4 inputs, we may

need the selection logic. We require a multiplexer to select between the read data ports of the input

FIFOs. It may be necessary to pipeline the multiplexer if a large number of inputs are present.

Area and latency figures for packet-switched primitives are shown in Table 4.1, assuming a 32-

bit datapath (16-bits data, 16-bits destination address) and a buffer depth of 16. Slices are a unit

of measuring area in FPGAs. A single slice contains 2 4-LUTs on a Xilinx Virtex-2 6000 device.

Newer FPGAs i.e. Xilinx Virtex-5 user 6-LUTs and they have 4 6-LUTs per slice. We measure slices

17

Primitive Area (Slices) Latency Speed
Queue Total (Cycles) (MHz)

Ctrl Buffer
16-deep Buffer

Split-2 30 33 80 2 218
Merge-2 60 66 154 2 200
Split-3 30 33 88 2 217
Merge-3 90 99 254 2 200
Split-4 30 33 96 2 212
Merge-4 120 132 340 2 223

1-deep Buffer
Split-2 0 8 23 2 269
Merge-2 0 16 58 2 262
Split-3 0 8 30 2 269
Merge-3 0 24 94 2 252
Split-4 0 8 32 2 265
Merge-4 0 32 115 2 252

Table 4.1: Area, Latency and Speed of 32-bit Packet-Switched Switching Primitives on a Xilinx
Virtex-2 6000 -4

using the Virtex-2 metric. A Xilinx Virtex-2 contains ≈ 32K slices. The largest of the newer Xilinx

Virtex-4s contain ≈ 100K slices.

4.3 Other Elements

The PEs that generate and receive packets can have a different datapath bitwidth than the network.

To send a network message, a packet needs to broken into a sequence of flits prior to network injection.

We serialize data into flits before inserting them into the network and deserialize them on reception.

PEs may also have multiple input and output ports. Consequently, we must distribute packets into

specific output ports as required by the routing algorithm. We would also be required to multiplex

the incoming packets on the multiple input ports. We encapsulate all this extra functionality into

specialized IO blocks as shown in Figure 4.6. We reuse the split and merge primitives described in

previous section (Section 4.2) and design additional serializer and deserializer primitives for use in the

IO blocks. The input block contains an instance of the deserializer primitive for each input followed

by a wide-merge. The deserializer primitive collects multiple flits of a packet before forwarding it

to the wide-merge. The output block contains a wide-split followed by an instance of the serializer

primitive for each output. The serializer primitive on the other hand accepts a parallel input and

injects flits into the network sequentially. While the serializer and deserializer primitives are useful

in supporting multi-flit packets, we current do not use them for this study since our applications are

all single-flit (see Chapter 6).

18

deserializer

wide-merge

deserializer deserializer

PE

serializer

wide-split

serializer serializer

PE

Figure 4.6: Conceptual Diagram of Input and Output Blocks

19

Chapter 5

Topology

Topology of a network refers to the arrangement of switches and PEs in the network. Choice of

topology has a significant impact on the performance and area requirements of on-chip networks. In

this chapter, we first motivate the kinds of networks we consider for our analysis. We then describe

the networks in detail and explain how we use the hardware primitives described in Chapter 4 to

compose switches in these topologies.

5.1 Limited Bisection Networks

The most commonly used topology for NoCs is the bus [3,28,60]. With no segementation, a bus can

only handle a single network send and receive per cycle. Applications with large numbers of PEs

will become quickly bandwidth bottlenecked on the bus. Topologies such as crossbars, multistage

networks (e.g. Benes̆ [4], Clos [11]), stars, and hypercubes [35] all represent networks, at the other

extreme, that have a large bisection. More specifically, crossbars have enough switching logic to

allow routing any permutation while the switching limitations in the Benes̆ network allows routing

any permutation with a possible rearrangement of existing routes. These topologies are prohibitively

expensive in terms of area two-dimensional VLSI layout [57], especially when scaled to 1000s of PEs.

[33] observes that typical designs do not require full connectivity between the PEs. We can

use Rent’s rule to characterize the wiring requirements of our application (IO = cNp, where N

= compute nodes in the application, IO = input and output messages sent between the compute

nodes). We observe that most designs are characterized by a Rent parameter p, where 0.5 < p < 0.75.

Thus, most designs operate in a limited bisection region with p < 1, but do require a bisection more

than p = 0. We can characterize all topologies by the tunable Rent parameter p (e.g. a bus is a

p = 0 topology, while fully connected topologies are p = 1) and attempt to design a network with

a p that will match application requirements. We will see that over our range of applications p = 0

networks can quickly become bisection limited, while p = 1 networks avoid bandwidth bottlenecks

at a significant area cost.

20

Ring Routing Function
∆X = destination.X − switch.X
if ∆X == 0

direction = PE EXIT
else if ∆X > 0

direction = EAST
else if ∆X < 0

direction = WEST

Figure 5.1: Routing Function for the Ring

We examine rings, meshes and Butterfly Fat Trees (BFTs) [25,37] over a range of configurations.

Rings and meshes can be parameterized by their channel width w to increase bandwidth, while BFTs

can be parameterized around base channel width c and wire growth rate p. In particular we examine

rings with p = 0 and w = 1, 2, BFTs with c = 1, 2 and p = 0, 0.5, 0.67, 1, and two-dimensional meshes

(both directional and bidirectional) with p = 0.5 and w = 1, 2. We also vary the virtual channel

count (discussed in greater detail in Section 5.3.2) V C = 2, 4 on bidirectional meshes.

5.2 Ring

In a ring topology, the network elements are connected as shown in Figure 5.2. Each switch is

connected to two neighbouring switches and one PE. We build bidirectional rings, in which, every

pair of neighbouring switches can exchange packets going in either direction on independent physical

channels. Thus, in the simplest configuration, each ring switchbox shown in Figure 5.2 has one

bidirectional connection to a PE and one bidirectional connection to each of its two neighbouring

switchboxes. We leave the connections emerging from the two extreme ends of the ring unconnected.

This avoids the possibility of having a physical cycle in the network and ensures deadlock-free routing.

The existence of bidirectional communication channels between the switchboxes continues to ensure

full routability. We describe the simple routing algorithm used, in Figure 5.1.

We also build multiple parallel rings of width W to achieve larger bisection bandwidth (Ntopcut =

W). Rings with a larger bisection can potentially carry more traffic. These rings, however, need

extra hardware to select between the different channels. This is shown in Figure 5.3. Thus, exploring

multiple channels allows us to evaluate the impact of sacrificing logic area for interconnect area to

get better performance.

5.3 Mesh

We build both directional and bidirectional meshes for our analysis. In bidirectional mesh networks,

switches are connected in a 2D array structure as shown in Figure 5.4 with each switch connected to

a maximum of 4 possible neighbouring switches (switches on the mesh boundary have 3 neighbours

21

PE

PE

PE

PE

PE

s

m

s

s

mm

Figure 5.2: Ring Topology and a Ring Switch

s

PEPEPE

ms

sm

m

s

ms

sm

m

PEm s

s

ms

sm

m

W=1

W=2

Figure 5.3: Effect of Multiple Channels on Hardware Requirements of a Ring

22

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Figure 5.4: Bidirectional Mesh Topology and a Bidirectional Mesh Switch

while corner switches have 2 neighbours). There are as many switches as PEs and each switch is

connected to a unique PE. Every pair of connected switches can exchange packets going in either

direction on independent physical channels. The bidirectional mesh is composed of identical bidi-

rectional switches as shown in Figure 5.4. We implement, both, deterministic and adaptive routing

algorithms on the bidirectional mesh (i.e. Dimension Ordered Routing, West-Side First, Duato’s

algorithm. See Section 5.3.2).

In directional mesh networks, the switches are still connected in a 2D array structure. However,

there are additional restrictions on how packets can move between the switches. Every row or column

in the directional mesh allows packets to flow in only one direction. To ensure complete connectivity,

these directions alternate every other channel (i.e. the odd columns have packets that can go only

NORTH while the even columns have packets that can go only SOUTH, see Figure 5.5). Additionally,

the PEs are required to have two ports into the network for full network reachability. We compose

the mesh using a set of 4 directional switchboxes (one for each 2D mesh orientation). We implement

only deterministic routing algorithm for the directional mesh (i.e. Dimension Ordered). We could

implement other adaptive routing algorithms, but existing directional restrictions complicate the

design. For this study, we choose not to implement these adaptive algorithms.

For both flavors, we vary channel width W to build meshes with richer bisection bandwidths

(Ntopcut = O(W ×
√

N)) at the expense of logic area. Once packets are injected into a physical

channel, they are routed to their destinations wholly in that channel. These packets are not allowed

to switch channels along the way. Hence, the PEs must be distribute their traffic evenly across the

different channels to optimize their use.

23

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Figure 5.5: Directional Mesh Topology and a Directional Mesh Switch

5.3.1 Switch Architecture

We compose the mesh switchboxes in several different ways using the split and merge primitives.

Arity of the primitive (i.e. the number of inputs of the merge, number of outputs of the split), the

arrangement of the primitives (i.e. order in which they are connected) and the implemented routing

algorithms give rise to a rich set of possible switchboxes with different areas and traversal latencies.

We tabulate the area and latencies of these switchboxes in Table 7.1

Island-Style Switchbox We have two architectures for composing switches for the Directional

Mesh. The first architecture is shown in Figure 5.6 which is inspired by the island-style connectivity

of programmable FPGA interconnect described in [7, 8]. The key idea here is to minimize the

number of splits and merges and hence area at the expense of longer switch latency. This switch

architecture is not relevant to the bidirectional mesh.

Fast-XY Switchbox An alternative design that optimized latency at the expense of area is shown

in Figure 5.7. The observation here is that packets spend most of their time traversing along the X

(from X+ to X-, or X- to X+) or Y (from Y+ to Y-, or Y- to Y+) directions and taking 90o turns

only occasionally. In certain routing algorithms, turns are actually taken only once in the entire

journey (Dimension Ordered Routing, Section 5.3.2.1). We can minimize the latency experienced

by a packet when taking these through connections. This is illustrated in Figure 5.7 with the blue

colored route for a packet going from X+ to X−. The packet experiences the latency of only one

split and one merge as it passes through the switch. When a packet needs to take a turn, it has to

go through one additional split and merge as shown by the red route in the same figure. Finally,

packets going to and from a PE are processed last and see the most latency represented by the green

route. We build Fast-XY switches for both directional and bidirectional mesh. In both cases, the

24

m

s

s

sm

m

s

m

PE
(i,j)

PE
(i-1,j)

PE
(i-1,j-1)

PE
(i,j-1)

Figure 5.6: Directional Mesh Island-Style Switch

three split cascade is implemented for each input and the three merge cascade is implemented for

each output. The internal wiring between the cascades is specific to the routing function used and

the nature of the mesh.

High-Arity Switchbox The two architectures discussed earlier are to be preferred when only

2-input merges and 2-output splits are available. With larger arity splits and merges, it is possible

to build more compact switches that use fewer splits and merges. Currently, we implement larger

arity switches only for the bidirectional mesh (it is possible, with additional effort, to build these for

the directional mesh as well). Two implementations of this switchbox implementing two different

routing algorithms are shown in Figure 5.9 and in Figure 5.11.

5.3.2 Routing Algorithms

5.3.2.1 Deterministic

In deterministic routing, the path taken by a packet traveling between a given source-destination

pair is always fixed. The path is intelligently chosen so as to avoid deadlock. For a 2D Mesh, this

is easily achieved by forcing all packets to route in the same, particular dimension first followed by

the other dimension once the first dimension is equalized. This form of routing is called Dimension

Ordered Routing (DOR). For example, if a packet wants to route from PE 2, 1 to PE 6, 8, it first

routes along the +X direction until it reaches a switch in column 6 after which is routes in the +Y

direction to eventually reach the destination. DOR can be implemented in the switch by disabling

a set of turns. Specifically, if we route along the X channel first, then turns going from Y to X

are disabled. Thus, in this case, a total of four turns are disaled i.e. NE, NW , SE and SW . The

resulting switch implementation is shown in Figure 5.9.

25

s

s

s

NORTH

m

m

m

m

m

m

SOUTH

EAST

PE
(i,j)

m

m

m

Figure 5.7: Mesh Fast-XY Switch

Dimension Ordered Routing Function
∆X = destination.X − switch.X
∆Y = destination.Y − switch.Y
if ∆X == 0 && ∆Y == 0

direction = PE EXIT
else if ∆X > 0

direction = EAST
else if ∆X < 0

direction = WEST
else if ∆Y > 0

direction = NORTH
else if ∆Y < 0

direction = SOUTH

Figure 5.8: Dimension Ordered Routing

26

s m

m

m

m

m

s

s

s

s

NORTH

SOUTH

EAST

PE

W EST

NORTH

SOUTH

EAST

PE

W EST

Figure 5.9: Structural Diagram of an Arity-4 Bidirectional Mesh Switch DOR

5.3.2.2 Adaptive

Deterministic routing algorithms are very restrictive and cannot adapt to congestion in the net-

work. Partially adaptive algorithms based on the Turn Model [24] attempt to be less restrictive

than deterministic algorithms and more responsive to network conditions at a moderate increase in

implementation cost. While Dimension Ordered Routing disables a set of four 90o turns, algorithms

using the Turn Model prevent only two such turns in the network. We choose to implement the

West-Side-First (WSF) routing algorithm in our analysis. In WSF, NW and SW turns are disabled

and packets are routed in the West direction (−X) first if the destination is to the left of the source.

Turns in East, North and South directions are taken adaptively based on network conditions. We

show a switch implementation of this algorithm in Figure 5.11 which highlights the new connections

added in red. The area cost of this switch is higher than the DOR switch (Figure 5.11) due to larger

arity splits and merges for the affected ports. We show this in Table 7.1

5.3.2.3 Virtual Channels

Virtual Channels were originally developed to achieve deadlock-free routing in wormhole networks.

They can also be used for flow control to help packets route around congested resources. Virtual

channels attempt to provide full adaptivity while routing packets at the expense of significant buffer

area overhead and switch complexity.

The key idea behind this scheme is the virtualization of the physical wiring resources in the

network. The physical channel between two network elements is shared by multiple virtual channels.

Usage of the physical channel is managed by virtual channel buffers allocated on either ends of the

link. This is shown in Figure 5.12. Only one virtual channel is permitted to use the physical

channel in a given cycle. Flits from other channels are stored in these virtual buffers while the

27

West-Side First Routing Function
∆X = destination.X − switch.X
∆Y = destination.Y − switch.Y
if ∆X == 0 && ∆Y == 0

direction = PE EXIT
else if ∆X < 0

direction = WEST
else if ∆X > 0 && ∆Y > 0

direction = Select(EAST, NORTH)
else if ∆X > 0 && ∆Y < 0

direction = Select(EAST, SOUTH)
else if ∆X == 0 && ∆Y > 0

direction = NORTH
else if ∆X == 0 && ∆Y < 0

direction = SOUTH

Figure 5.10: West-Side-First Routing

s m

m

m

m

m

s

s

s

s

NORTH

SOUTH

EAST

PE

W EST

NORTH

SOUTH

EAST

PE

W EST

Figure 5.11: Structural Diagram of an Arity-4 Bidirectional Mesh Switch WSF

physical channel

virtual
channel-0

virtual
channel-1

virtual
channel-0

virtual
channel-1

Figure 5.12: Idea of Virtual Channels

28

channel is being utilized. Free space in the destination buffers is used to determine which virtual

channel gets to use the physical channel in a given cycle. Packets traveling in a virtual channel

can switch between channels based on the the deadlock-free routing function implemented in the

switches. Virtual channels can also be used to improve link utilization. This is achieved by reducing

the amount of time a packet stays blocked waiting for an output to become available. Packets are

allowed to bypass blocked packets by forwarding along an alternative virtual channel. Thus, the

physical channel that was idle due to the blocked packet gets utilized. Virtual channels are very

useful when operating in the pin-constrained regime of multi-chip networks. The number pf physical

channels possible in an on-chip networks is far greater than that possible in off-chip networks due

to chip IO limitations. In such conditions, we have to time-multiplex the different on-chip physical

channels over the limited set of IO pins for routing offchip packets. These on-chip physical channels

effectively behave as virtual-channels in the off-chip network.

We use Virtual Channels to investigate a better implementation of deadlock-free routing on the

on-chip mesh. We use a high quality fully adaptive deadlock-free routing algorithm by Duato [23]

for our exploration. For these experiments, we study the behaviour of the network by increasing the

number of virtual channels (V C) per port. We need a minimum of 2 virtual channels for correct

operation of the routing algorithm. Duato’s algorithm splits the set of available virtual channels into

two. One set of virtual channels (A) allows packets to turn in all possible directions while the second

set (B) implements an adaptive deadlock-free routing algorithm (we use Dimension Ordered Routing

in B). Packets in A that are unable to continue routing along A escape to a virtual channel in B.

Once in B, the packet is not allowed to re-enter A. When the packet is limited to routing within B,

it is guaranteed to reach the destination since B implements a proven deadlock-free routing scheme.

5.4 BFT

A Butterfly-Fat-Tree is a network where the switches are organized in a folded-tree-like structure

and the PEs are connected to the leaf-level switches. The “fatness” of the tree can be tuned by

changing the number of channels or switches at upper levels in the tree. The folding of subtrees

gives rise to a resemblance to “butterfly” networks. We can represent the “fatness” mathematically

as the value of the Rent parameter p. We compose BFTs of arity-2 using T and Π switches as shown

in Figure 5.15 [20, 58]. The Rent paramter p is translated into a sequence of growth rates for each

level in the tree (a growth rate of 1 implies T switches at that level and a growth rate of 2 implies

Π switches at that level). This translation is described in [18] Increasing the Rent parameter of the

BFT increases its bisection bandwidth (Ntopcut = c×np), thereby allowing more bisection traffic per

cycle. Contrast this with the mesh (Ntopcut = W ×
√

N) with a p = 0.5 and a ring (Ntopcut = W)

with a p = 0. BFTs with larger values of p also require more switches, which influences the number

29

Duato’s Fully Adaptive Routing Function
∆X = destination.X − switch.X
∆Y = destination.Y − switch.Y
if ∆X == 0 && ∆Y == 0

direction = PE EXIT
else if ∆X < 0

direction = WEST
else if ∆X > 0 && ∆Y > 0

direction = Select(EAST A,NORTH A,EAST B)
else if ∆X > 0 && ∆Y < 0

direction = Select(EAST A, SOUTH A,EAST B)
else if ∆X < 0 && ∆Y > 0

direction = Select(WEST A,NORTH A,WEST B)
else if ∆X < 0 && ∆Y < 0

direction = Select(WEST A, SOUTH A,WEST B)
else if ∆X == 0 && ∆Y > 0

direction = NORTH A,NORTH B
else if ∆X == 0 && ∆Y < 0

direction = SOUTH A,SOUTH B
else if ∆Y == 0 && ∆X > 0

direction = EAST A,EAST B
else if ∆Y == 0 && ∆X < 0

direction = WEST A,WEST B

Figure 5.13: Duato’s Fully Adaptive Routing Function for the Bidirectional Mesh

of PEs that can be packed on a chip. For example, in a ConceptNet PE based network (195 slices

for each PE), given 130K slices, we can either fit a p = 0 BFT with 128 PEs or a p = 0.5 BFT with

only 64 PEs.

Actual composition of the T and π switches using the hardware primitives are shown in Fig-

ure 5.16. We hierarchically place the network on the FPGA and pipeline the upper stages of the

tree based on layout feedback to retain high performance even when stages cannot be placed adjacent

to one another.

5.4.1 Routing Algorithm

We use a minimal adaptive routing algorithm for routing on the BFT [38]. Packets climbing up

the tree make adaptive routing decisions based on FIFO occupancies. When the packet reaches the

common ancestor of the source and destination PEs, it begins its descent. During descent, the route

is completely deterministic for a given destination. Appropriate bits from the destination address

guide the packet downhill to the destination. This is called destination-tag routing. We describe

this algorithm in Figure 5.14.

We enumerate the list of all topologies explored in Table 5.1.

30

Adaptive BFT Routing Function
if uphill

if tswitch()
direction = TOP

if piswitch()
direction = Adaptive Select(TOP LEFT, TOP RIGHT)

else if downhill
if destination.X[height] == 0

direction = BOTTOM LEFT
else

direction = BOTTOM RIGHT

Figure 5.14: Minimal Adaptive Routing Function for the BFT

PE

PE PE

PE

PE

PE PE

PE

PE

PE PE

PE

PE

PE PE

PE

downlink
right

downlink
left

uplink

T
downlink

right
downlink

left

uplink
0

uplink
1

Figure 5.15: BFT Topology and BFT Switches

31

s

m m

ss

m

s s

m m

m m

s s

Figure 5.16: Structural Diagram of BFT T and Π Switch

Topology Channel-Width (W) Rent-Parameter (p) PEs Total
or Virtual-Channel (V C)

Ring 1, 2, 4 0 2–2048 33
Directional Mesh Island-Style 1, 2 0.5 2–2025 88
Directional Mesh Fast X-Y Style 1, 2 0.5 2–2025 88
Bidirectional Mesh Arity-4 DOR 1, 2, 4 0.5 2–2025 132
Bidirectional Mesh Arity-4 WSF 1, 2, 4 0.5 2–2025 132
Bidirectional Mesh Fast X-Y Style 1, 2, 4 0.5 2–2025 132
Bidirectional Mesh Duato (V Cs) 2, 4 0.5 2–2025 88
BFT 1, 2 0, 0.5, 0.67, 1 2–2048 88
Total 26 - 781

Table 5.1: List of explored Topologies

32

Chapter 6

Applications

As with most other NoC research efforts, we could have used synthetically generated workloads for

our analysis. But we choose to use workloads generated from a range of real applications that are

representative of typical communication conditions and hence predictive of real performance. Using

several real workloads further allows us to capture the variability of communication characteristics

in the real world. Synthetic workloads are useful for initial analysis when actual applications are not

available. As we scale the number of PEs for a given application, the amount of network traffic that

gets injected into the network from each PE changes. These trends are not captured when using

synthetic benchmarks where the injection rate is kept constant.

We examine communication workloads for applications mapped to the GraphStep system archi-

tecture [22] which is a specific form of Bulk Synchronous Parallel (BSP) model of computation [59].

The GraphStep system architecture is a high-level model for capturing graph algorithms, abstracted

from a detailed hardware implementation. The computation is a graph where each node is an ac-

tor that communicates to neighboring nodes through message passing. Computation proceeds in

steps, each of which is a three phased Receive-Update-Send sequence. Nodes are barrier synchro-

nized on the end of each Send-Receive phase. We model the communication of the Receive and

Send phases on our network, and measure network performance as the number of cycles required

to route a workload in a single GraphStep. One benefit of using this compute model for generating

our workloads is the separation of the communicate phase from the compute phase. Moreover, the

messages generated in the communicate phase are not required to obey any ordering constraints and

are independent of any dependencies in the compute graph. This allows us to generate our traffic

apriori without actually modeling the compute step and we can inject messages into the network

using an order of our choosing. Thus, these workloads are easily reproducible and do not require

complex, simultaneous simulation of computation and communication. While this could limit the

generality of the analysis, this provides us with initial evidence to help compare different networks.

The analysis can then be extended using a more diverse set of workloads as mentioned in Chapter 9.

In our particular FPGA implementation, multiple graph nodes are physically placed on each

33

PE where they are time-multiplexed. The PEs consist of specialized processing logic coupled with

small, local, high bandwidth on-chip memories (e.g. Xilinx BlockRAMs [61]). PEs are capable of

processing and sending messages in a single cycle. This allows applications to potentially send and

receive messages on every cycle from every PE in the network.

GraphStep allows us to examine applications that inject large amounts of traffic into the net-

work. To illustrate the importance of examining applications with high communication requirements

mapped to large-scale networks, consider Figure 2.1. Here we plot network I/O messages per cycle

as a function of PEs on a network with no bandwidth limitations, given a ConceptNet [39] com-

munication load of 27K messages. Small networks (< 100 PEs) require only 1–10 network sends

or receives per cycle, as most cycles are dedicated to serialized processing at PEs. Larger networks

(> 100 PEs) require up to 200 network sends or receives per cycle. Consequently, examining net-

work topologies for small networks or for applications with light communication requirements will

not load networks enough to distinguish trade-offs in network design. It is essential to examine both

large-scale networks and applications which stress those networks in order to fully characterize the

performance differences between network topologies.

We describe the set of GraphStep applications chosen for our analysis briefly in this section.

6.1 ConceptNet Spreading Activation

ConceptNet [39] is common-sense reasoning knowledge base represented as a graph, where nodes

represent concepts and edges represent semantic relationships. Queries to this knowledge base

activate initial nodes in the graph, corresponding to the set of keywords in the query. Activated

nodes send messages to neighbors along their edges, activating neighbors in turn. As the computation

proceeds, larger portions of the graph become activated. The percentage of active edges over the

whole graph (activity factor) depends on the initial query and what step of the spreading activation

is being performed. In the case of complex queries or multiple simultaneous activations, the entire

graph may become activated after a small number of steps. We route workloads from several

query sets that touch different portions of the graph. These queries have to a range of activity

factors between 1%–100% which correspond to consecutive steps in selected queries. Details of our

FPGA implementation can be found in [22] and are shown in Figure 6.1. We wrote VHDL for the

ConceptNet PEs, implementing the 3 phase algorithm of the GraphStep system architecture [22].

We implement the required multipliers using pipelined LUT-level logic instead of the on-chip 18x18

multipliers for speed. This PE requires 200 slices on a Virtex-2 6000.

34

SpreadingActivation
foreach graphstep

// receive
foreach message m

e ← m.sink
e.data ← m.data

wait for step synchronization
// update

foreach graph node g
g.sum ← 0
foreach graph edge e of g

g.sum ← g.sum + e.data
// send

foreach graph node g
foreach graph edge e of g
value ← g.sum × e.discount
if (value>THRESHOLD)

new message (e.sink , value)

Input
Packet Handler

Local
Memory

Output
Packet Handler

Memory
Arbiter

Discount
Lookup

>

Threshold

Figure 6.1: ConceptNet PE

35

MatrixVector Multiply
foreach graphstep

// receive
foreach message m

e ← m.sink
e.vector value ← m.vector value

wait for step synchronization
// update

foreach graph node g
g.vector value ← 0.0
foreach graph edge e of g

g.vector value ← g.matrix value × e.vector value
// send

foreach graph node g
foreach graph edge e of g

new message (e.sink , g.vector value)

Input
Packet Handler

Local
Memory

Output
Packet Handler

Memory
Arbiter

Temp

Figure 6.2: SMVM PE

6.2 Sparse Matrix-Vector Multiply

Iterative Sparse Matrix-Vector Multiply (SMVM) is used in several numerical routines (e.g. Con-

jugate Gradient, GMRES). In each iteration a set of dot products between the vector and matrix

rows is performed. New values for the vector to be used in the next iteration are calculated and the

matrix-vector multiply step is repeated. We can represent this computation as a graph where nodes

represent matrix rows and edges represent the communication of the new vector values. In each

iteration messages must be sent along all edges. We map representative matrices from the Matrix

Market suite [47] to generate workloads for our experiments. We use an FPGA implementation of

this algorithm based on deLorimier et al. [21] which we illustrate in Figure 6.2. They also use

LUT-level logic to implement double-precision floating point computation for high-speed operation.

This makes the PE very large and requires around 4000 slices.

36

Bellman Ford - Labeling Phase
foreach graphstep

// receive
foreach message m

e ← m.sink
e.distance ← m.distance

wait for step synchronization
// update

foreach graph node g
g.distance = inf
foreach graph edge e of g

if e.distance ≤ g.distance
g.distance ← e.distance

// send
foreach graph node g

foreach graph edge e of g
new distance ← g.distance + e.cost

new message (e.sink , new distance)

Input
Packet Handler

Local
Memory

Output
Packet Handler

Memory
Arbiter

>

Figure 6.3: Bellman-Ford PE

6.3 Bellman-Ford Shortest Path

The Bellman-Ford algorithm is used in several CAD applications such as single source shortest

paths (e.g. FPGA Routing [41]), finding negative edge weight cycles (e.g. Retiming [36]), and slack

propagation (e.g. Static Timing Analysis). The algorithm simply relaxes all edges in each step until

quiescence. A relaxation consists of computing the minimum over all values received on input edges.

We run Bellman-Ford over representative ISPD98 [2] benchmark graphs to produce communication

workloads that capture the structure of circuit netlists. We sketch the datapath and the operation of

a Bellman-Ford PE in Figure 6.3. VHDL for the Bellman-Ford PE can be derived in a straightforward

manner from the ConceptNet PE and is assumed to have the same size of 200 slices (although it

could potentially be optimized).

37

Table 6.1: Application Graphs

Graph Nodes Edges Max Rent
Fanin Fanout c p

ConceptNet
small 15026 27745 63 64 33 0.5

SMVM
add20 2395 17319 124 124 21 0.6
bcsstk11 1473 17857 27 30 89 0.2
rdb3200l 3200 18880 6 6 24 0.5
gemat11 4929 33185 27 28 23 0.8
utm5940 5940 83842 30 20 300 0.2
fidap035 19716 218308 18 18 222 0.0

Bellman-Ford
ibm01 12752 36455 33 93 28 0.3
ibm05 29347 97862 9 109 25 0.6

6.4 Application Characteristics

An understanding of application communication characteristics can aid network designers in selecting

an appropriate network topology and size. Characteristics of the application graphs used for our

exploration are shown in Table 6.1. In Section 3.3 we identified performance limiting characteristics

of network topologies; here, we identify three key performance limiting characteristics of application

graphs:

Total Messages The number of messages (i.e. graph edges) generated by an application dictates

how serialized (Eq. 3.4) that application is. When the ratio of workload size to number of PEs is

on the order of 100, the application is typically serialization limited. For example, we observe that

for small workloads (17K-35K messages), applications are no longer serialized beyond 100s of PEs.

Additionally, applications with significantly more messages (500K or more) require many more PEs

(4000 or more) before they are affected by bisection or latency.

Node Fanin-Fanout As network size grows and the number of PEs increase, eventually a PE will

contain a single graph node. As input and output messages must be serialized (Eq. 3.4), optimal

performance will be limited by the maximum fanin or fanout node. Applications with large fanin or

fanout nodes are performance limited when increasing PEs beyond a certain limit (i.e. when a single

large fanin-fanout graph node resides on a PE). We decomposed application graphs that contained

high fanin-fanout nodes i.e. small. After decomposition all graphs have a fanin-fanout limit of <128

and we ensure that computation remains semantically correct.

38

Rent Parameter To describe network interconnect richness and locality we used the Rent pa-

rameter p (Section 5). For applications we can similarly define an intrinsic Rent parameter pgraph

to describe communication locality that is independent of actual placement. We can compute this

parameter by counting the number of messages that cross the bisection recursively at each level of a

recursive partition. Applications with higher p have non-local communication and require networks

with sufficient interconnect capable of supporting this communication.

39

Chapter 7

Methodology

In this section, we present details on the tools we developed for our analysis. We developed a

cycle-accurate simulator for routing communication workloads on different networks. We discuss

the dual-phase simulation scheme used in this simulator. We model latencies in our networks for

an accurate evaluation of performance. We motivate and explain this latency model for different

topologies.

7.1 Tool Infrastructure

We use a Java-based infrastructure to construct and evaluate our networks. We generate parame-

terized configurations of all topologies and evaluate their performance on our workloads. Our tools

write out a VHDL netlist representation of each topology along with UCF constraints. We run these

through the Synplicity Compiler (v8.0) and the Xilinx ISE (v8.1i) to obtain area and performance

numbers. We demonstrate 166 MHz performance for a sample topology (8 PE p = 0.5 BFT) on a

V2-6000-4. This performance is limited by critical paths in the PE datapath and not the network

which is potentially capable of running faster (200 MHz). We also pipeline long wires in the inter-

connect and model wire delays accurately for all topologies. We use a cycle-accurate simulator to

route communication traffic on our packet-switched networks and to obtain cycle counts. We also

use an implementation of a greedy router to compute routing schedules for the time-multiplexed

network described in [29].

We map applications to our networks using a partitioner and placer based on MLPart v5.2.14

which is part of the UMPack [9] package. While we ensure that single chip logic and interconnect

resources are sufficient to map our applications, we assume that application graphs can be mapped

to the available on-chip BRAMs. We also assume that the required instruction memory for the

time-multiplexed PEs can fit in BRAMs. This allows us to select a message order which optimizes

communication time for static scheduling. ConceptNet and Bellman-Ford use a 32-bit network

for passing messages while SMVM requires an 80-bit network for single precision floating point

40

communication. All applications use single-flit packets.

7.2 Cycle Accurate Simulator

We have a very large space for exploring the tradeoffs between the different networks. We generate

networks with upto 44 sizes (2 PEs to 2048 PEs) for each one of the 26 topological configurations

mentioned in Table 5.1 (Rings, BFTs and Meshes with different parameters). We route 6 benchmarks

for each of these networks with as many as 100K messages in each benchmark. We also model the

effect of wire latency and switch delay in these networks.

An RTL-level VHDL simulation of our network would provide an unnecessary level of detail

that is irrelvant for our analysis. The RTL logic simulators are known to be very slow compared to

higher-level functional simulations and runnning all these test cases would take a large amount of

simulation time. Instead, we choose to perform a cycle-accurate functional simulation of the network.

We compose the network in a hierarchical, bottom-up manner by creating functional models for the

different network elements. We develop these functional models in a higher-level programming

language, not VHDL. We synthesize, place and route the VHDL descriptions to get area and latency

figures for these network elements. The functional models are then programmed with these figures

for an accurate simulation. This allows us to not only run our simulations fast, but also permits a

rapid design space exploration through quick modifications to the high-level functional models.

When considering sequential circuits without feedback (i.e. logic pipelines), we can order the

circuit elements (i.e. combination logic, registers) by traversing the circuit graph from outputs to

inputs in topologically sorted manner. This ordered graph can then be easily simulated in each

cycle by visiting the elements in this topological order. For logic circuits with feedback (i.e. general

RTL netlists), no such order can be guaranteed due to the cyclic dependencies between the circuit

elements. We can resolve this ordering problem by using a dual-phase simulation scheme. In this

scheme, the logic circuit is grouped into two types of elements, combinational logic blocks and

registers as shown in Figure 7.1. Each register in the circuit is represented using two simulation-

specific registers, an original register and an extra shadow register. In the first phase, only a write

operation is permitted on the the original register while only a read operation is allowed on the

shadow register. In this phase, the combinational logic block between the registers is simulated

by reading the input values from the shadow input registers and writing the computed value into

the original output register. This is represented in Figure 7.2 where the red edges represent the

active edges. In the first figure, the inputs values (orange tokens) are read by the combination logic

blocks and in the second figure, the outputs register (blue tokens) is updated. All combinational

logic blocks in the circuit are simulated in this manner and in any order. In the second phase, the

values from the original registers are transferred to their respective shadows. This is illustrated in

41

A

B

C

combinational logic block

original register

shadow register

Figure 7.1: Logic-Circuit for Simulation

Figure 7.3 where the blue tokens replace the orange tokens. This completes one cycle of the circuit

simulation. The splitting of registers allows the circuit elements to be simulated independently. We

simulate our network using this dual phase algorithm.

Using a hierarchical simulation framework also enables us to iteratively increase the simulation

detail. During the initial exploration phase, we wrote switch-level functional models that tested the

different routing algorithms at the switch-level. This allowed us to verify the correctness of these

functions without needing to accurately model the effect of contention at the switch outputs. Once

the routing functions were verified, we replaced the switch with an arrangement of interconnected

splits and merges. This enabled a proper modeling of blocking behavior between the splits and

merges and also contention between resources.

We wrote functional models for the PEs to model the three-phase GraphStep algorithm de-

scribed in Section 6. A list of packets that need to be sent from a PE is computed before running

the simulation. When simulating a ConceptNet workload, this list is generated from an external

LISP implementation. For all other benchmarks, we can assume messages on all graph edges. We

distribute this list to the respective PEs to generate packets. Some of the generated packets could

be self-messages (messages intended for the generating PE itself). Self-messages are handled sep-

arately and are not injected into the network. We assume that our PEs have dual-port memories

(Xilinx BRAMs are dual-ported). The packet-handling logic in our PE allows for single-cycle packet

reception and transmission.

7.3 Area Model

We tabulate the area required by the individual switchboxes in Table 7.1. We assume a buffer-depth

of 1 and no interconnect pipelining for these calculations. The 32-bit switches in the table are for

ConceptNet and Bellman-Ford implementations while the 80-bit network is for Matrix Multiply. As

42

A

B

C

A

B

C

active output edge

active input edge

Figure 7.2: Dual-Phase Simulation Algorithm : Phase-1

A

B

C

register update

Figure 7.3: Dual-Phase Simulation Algorithm : Phase-2

43

SwitchBox IO Area (Slices) Latency
Ports 32-bit 80-bit (Cycles)

Ring 3 243 531 4
Directional Mesh Island-Style 4 324 708 8
Directional Mesh Fast X-Y Style 4 972 2124 4 (fast), 8(slow)
Bidirectional Mesh Arity-4 DOR 5 603 1299 4
Bidirectional Mesh Arity-4 WSF 5 660 1428 4
Bidirectional Mesh Fast X-Y Style 5 1215 2124 4 (fast), 8(slow)
Bidirectional Mesh Virtual-Channels with Duato 5 - - 8
BFT T -Switch 3 243 531 4
BFT Π-Switch 3 410 886 4

Table 7.1: Area and Latency of Switchboxes of different topologies with 1-deep buffers with no wire
pipelining

described in Chapter 5, we compose the switches using splits and merges. For the Virtual Channel

switchbox, we currently do not have such an implementation. We use a conservative approximation

of area for these switches (area is consistent relative to other switches). For switches in the corners

or edges of the meshes, corners of rings, or at the top-levels in the BFT we need less connectivity

than usual. We model this by pruning the unnecessary logic and counting area for only relevant

primitives.

7.4 Latency Model

The total time required for a packet to traverse the network is a function of both the switch delay

and the wire delay along the path. We already model logic delay in our Java primitives. To get

an accurate estimation of performance, we choose to model wire delay as well. This is particularly

important when trying to compare topologies with different switching requirements.

FPGA Characterization We first characterize the wiring latency of the FPGA to calculate the

amount pipelining required for a given wire on the chip. We place two primitives at the extreme

ends of a chip side as shown in Figure 7.4. We vary the amount of pipelining provided on the wires

between these primitives to achieve 200 MHz performance. We observe that we need 3 levels of

registers on the wires between the primitives placed in this configuration. This roughly translates

into a requirement of pipelining the wire every ≈60 slices. The largest PE we consider is the SMVM

PE (Section 6.2). It is assumed to be placed in a square region of dimensions 65 slices × 65 slices.

An unpipelined wire crossing the length of this PE would need ≈ 1.1 cycles to each the other side.

Placement congestion in a fully populated FPGA may cause the wire to take a non-minimal, slower

route. Thus, if we want to pipeline this wire for 200 MHz performance, we will need to pipeline it

twice i.e. 2 registers distributed over 65 slices of wire distance.

44

XC2V6000-4
FPGA Device

3 pipeline

levels

Figure 7.4: FPGA Characterization Experiment

Mesh Wire Delay Model Here, we compute the worst case delay of a placed and routed mesh

topology by modeling both switch delay and wire delay. We place a mesh with N PEs in a grid

of size
√

N ×
√

N . The mesh switches are placed near their corresponding PEs. If the network is

a bidirectional mesh, there will be
√

N switches along the horizontal or vertical dimensions. The

area of a bidirectional mesh switch is smaller than an SMVM PE. Thus, the amount of pipelining

required between neighbouring switches will be dictated by the size of the PE. The wire between

these switches will need to be registered twice as described earlier. We can express the worst case

latency of a route in a bidirectional mesh as follows:

Meshlatency == 2× (
√

N − 1)× (tlogic + twire) (7.1)

== 2× (
√

N − 1)× (2 + 2) (7.2)

== 2×
√

N + 4×
√

N − 8 (7.3)

In the equation, tlogic is the port-to-port latency of a bidirectional mesh switch from Table 7.1.

BFT Wire Delay Model We place the BFT using the H-tree [19] pattern. Using this pattern,

as we climb up the tree, the wires get progressively slower since they interconnect increasingly larger

subtrees. We pipeline these wires to get 200 MHz operation. We observe from Figure 7.5 that the

length of the wires doubles after every two segments (two levels of switches) as we climb up the

tree. Hence, to keep pace with this increasing wire length, we double the amount of interconnect

pipelining provided after every two levels. The worst case latency of a route in a BFT is shown here:

BFTlatency == 2× log N × tlogic + 2×
l=log(N)−1∑

l=0

twirel
(7.4)

== 4× log N + 2× (1 + 1 + 2 + 2 + 4 + 4 + . . . + 2×
√

N

4
+ 2×

√
N

4
) (7.5)

45

N/4 N/4

N
/8

N/8

N
/4

N
/4

N
/8

N/8

N

N

Figure 7.5: Wire Lenghts in the BFT

== 4× log N + 4× (1 + 2 + 4 + . . . + 2×
√

N

4
) (7.6)

== 4× log N + 4× (1 + 2 + 4 + . . . +
√

N

2
) (7.7)

== 4× log N + 4×
√

N (7.8)

Note that the wire latencies in both Equation 7.3 and Equation 7.8 are the same (4 ×
√

N).

This corresponds to the minimal Manhattan distance between the extreme PEs which is the same

same irrespective of topology . The latency in the BFT switchboxes is programmed for each level

independently. Within a level, it is programmed separately for wires from the lower level and wires

from the level above. The sequence of latencies we use is (1 1 2 2 4 4 . . .). Each switch use two

values from this array depending on its height in the tree to program its wire delays.

We plot latency obtained from Equation 7.3 and Equation 7.8 in Figure 7.6. We observe that

below ≈ 300 PEs, the worst case latency on a Mesh is marginally better than the BFT. Above 300

PEs, the logarithmic switch delays help the BFT achieve better worst case latency. But, as we will

see in Section 8.2 the Mesh does not always need to route the worst case path.

46

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000

W
or

st
 C

as
e

La
te

nc
y

(C
yc

le
s)

PEs

Worst Case Latency vs. PEs

Mesh
BFT

Figure 7.6: Comparing Worst-Case Latencies on the Mesh and the BFT

47

Chapter 8

Evaluation

We start this section by providing quantitative justification for selection of buffer depth in the

hardware primitives. We use these primitives in our subsequent exploration. We then present and

analyze results from several experiments. First, we provide quantitative reasoning behind topology

selection when designing large-scale networks having a large number of PEs. Next, we compare

packet-switching and time-multiplexing to understand the application scenarios under which either

one of them is to be preferred.

8.1 Selection of Buffer Depth

The split and merge primitives are parameterized around three variables, datawidth, packet-length

and buffer depth. We choose datawidth and packet-length based on application requirements. For

the applications considered, the number of bits per message is not very large (≤ 80 bits). Hence,

for all our experiments, we set packet-length to 1 and appropriately adjusted datawidth to equal

messages size. This allowed us to avoid the area penalty of having specialized IO blocks (Section 4.3)

to handle PE IO. It also enabled us to achieve better performance than with messages serialization.

That means, we only need to tune buffer depth. As noted in Section 4.2, buffer depth has a large

impact on area as well as performance of the network. To quantify this impact and to help choose the

right buffer depth, we built a few sample topologies using a c = 1, p = 0.67 BFT and routed traffic

from the gemat11 Matrix Multiply (Section 6.2) benchmark. In Figure 8.1, we plot the performance

achieved by networks with buffer depths with 1, 2, 4, 8, 16, 32, 64, 128 and 256 locations as a function

of the number of PEs in the network. We see that at low PE counts (< 50 PEs), there is no difference

between the different networks. At larger PE counts (50-300 PEs), the network with a buffer depth

of 1 gets the worst performance. From the zoomed in version of the same plot shown in Figure 8.2,

we can see that the best performance is achieved by the network with a buffer depth of 4. Thus, at

these PE counts, having too few buffer slots causes network congestion while having too many buffer

slots increases network latency leading to poor performance. But, once we factor in area, we see that

48

 100

 1000

 10000

 100000

 1 10 100 1000 10000

C
om

m
un

ic
at

io
n

T
im

e
(c

yc
le

s)

Area (pes)

Communication Time vs. Area (c=1, p=0.67 BFT)

Depth=1
Depth=2
Depth=4
Depth=8

Depth=16
Depth=32
Depth=64

Depth=128
Depth=256

Figure 8.1: Communication Time vs. PEs for gemat11 (SMVM) with different buffer depths

 100

 1000

 10 100 1000 10000

C
om

m
un

ic
at

io
n

T
im

e
(c

yc
le

s)

Area (pes)

Communication Time vs. Area (c=1, p=0.67 BFT)

Depth=1
Depth=2
Depth=4
Depth=8

Depth=16
Depth=32
Depth=64

Depth=128
Depth=256

Figure 8.2: Zoom of Figure 8.1

networks with a buffer depth of 1 have the best performance for a given area over most of the area

range as seen in Figure 8.3. We attribute this to the smaller area requirement of a 1-deep buffer.

At larger areas, once the performance lowerbounds are achieved, there is no significant difference

between the different networks.

8.2 Impact of Topology

We present four quantitative comparisons to explore the issues in designing large-scale network

topologies. First, we examine how communication cycles scale with number of PEs for different

topologies. In this exploration, we compare the performance achieved by a Virtual-Channel-based

routing algorithms with deterministic and adaptive algorithms. We quantify the performance differ-

ence between BFTs and Meshes at different areas. We also show a comparison between Directional

49

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
om

m
un

ic
at

io
n

T
im

e
(c

yc
le

s)

Area (slices)

Communication Time vs. Area (c=1, p=0.67 BFT)

Depth=1
Depth=2
Depth=4
Depth=8

Depth=16
Depth=32
Depth=64

Depth=128
Depth=256

Figure 8.3: Communication Time vs. Slices for gemat11 (SMVM) with different buffer depths

and Bidirectional Meshes. Second, we consider the impact of area and re-evaluate performance

scaling of topologies. Third, we examine how topology performance corresponds to both area and

application requirements. Fourth, we attempt to choose a single topology that is robust over all

areas and for all applications, providing the best worst-case performance. Before presenting these

comparisons, we briefly discuss the characteristics of our applications graphs to aid in understanding

our results.

8.2.1 Effect of PE Scaling

We first explore the effects of increasing the number of PEs on the performance of different topologies,

using the gemat11 graph as an example of the scaling trends of large-scale networks.

In Figure 8.4 we plot communication cycles as a function of PEs for all topologies routing the

gemat11 workload. gemat11 contains 33K messages; therefore, we expect to it to be serialization

limited until 100s of PEs. We see that at low PE counts (< 10 PEs) there is no significant performance

difference between different topologies. Here, most of the traffic is local and the network is lightly

loaded (see Figure 2.1, Section 3.3.1). This motivates us to further increase PE counts to understand

when topologies start to differ.

Ring As 10–100 PEs, rings start to bisection bottleneck . These networks have a constant number

of channels crossing the bisection and are consequently bisection limited (Eq. 3.6). Rings with a

larger channel-width (W ≥ 4) show similar trends but achieve superior absolute performance than

the lower channel-width rings. At very large PE counts, 100–1000 PEs, the rings are severely affected

by latency and the number of cycles required to route all messages increases significantly.

50

 1000

 10000

 100000

 1 10 100 1000 10000

Co
m

m
un

ica
tio

n
Ti

m
e

(c
yc

le
s)

PEs

Communication Time vs. PEs (Ring Topologies)

Ring w=1
Ring w=2
Ring w=4

(a) gemat11 Ring

 100

 1000

 10000

 100000

 1 10 100 1000 10000

Co
m

m
un

ica
tio

n
Ti

m
e

(c
yc

le
s)

PEs

Communication Time vs. PEs (BFT Topologies)

c=1 p=0
c=1 p=0.5

c=1 p=0.67
c=1 p=1
c=2 p=0

c=2 p=0.5
c=2 p=0.67

c=2 p=1

(b) gemat11 BFT

 100

 1000

 10000

 1 10 100 1000 10000

Co
m

m
un

ica
tio

n
Ti

m
e

(c
yc

le
s)

Area (pes)

Communication Time vs. Area (Bidirectional Mesh Topologies)

Arity4 DOR w=1
Arity4 WSF w=1

FastXY w=1
Arity4 DOR w=2
Arity4 WSF w=2

FastXY w=2
Arity4 DOR w=4
Arity4 WSF w=4

FastXY w=4

(c) gemat11 Bidirectional Mesh

 100

 1000

 10000

 1 10 100 1000 10000

Co
m

m
un

ica
tio

n
Ti

m
e

(c
yc

le
s)

PEs

Communication Time vs. PEs (Directional Mesh Topologies)

FastXY w=1
IslandStyle w=1

FastXY w=2
IslandStyle w=2

(d) gemat11 Directional Mesh

Figure 8.4: Communication Time vs. Area

51

Mesh Directional Meshes begin to get bandwidth limited starting at 10 PEs. Directional meshes

have a very restrictive set of routes that limit achievable performance. Bidirectional Meshes continue

to scale well until 100 PEs after which they also start to bisection bottleneck. At very high PE counts

(> 1000 PEs), Bidirectional Meshes are eventually limited by latency. Meshes with large channel

width achieve better absolute performance than the lower channel width networks. We also observe

that DOR-based Mesh switches provide better performance than the WSF -based switches. We are

currently trying to understand this counter-intuitive behavior. We expect WSF -based networks to

provide performance that is at least as good as DOR, not worse.

BFT BFTs with different values of the Rent parameter p show different scaling trends. BFTs with

a p = 0 behave similar to rings and are bisection limited at 10s of PEs. At larger PE counts (> 1000

PEs) they begin to get latency limited. BFTs with a p ≥ 0.5 scale well into the 100s of PEs range

and are affected by latency only after 1000s of PEs.

8.2.2 Effect of Area Scaling

In the previous example, we did not consider area requirements for our topologies. Topologies with

equal PE counts may have very different area requirements as the number of switches and their

sizes vary across topologies (Table 7.1). Additionally, application PEs have varying sizes. As PEs

and interconnect use the same area resources on an FPGA, we can trade off area between PEs and

interconnect.

Ring We observe that rings with a larger channel width achieve better performance at larger chip

areas. This is observed in the form of shifting of the curves previously seen in Figure 8.4. This is

expected, since a ring with a channel width of W requires approximately W times more area than

a ring with a channel width of 1. We see similar behavior when comparing other topologies as well.

Mesh In Directional Meshes, we find that the Island Style networks provide better performance

only at small areas. The FastXY style switches deliver better performance at larger areas due to the

latency optimized paths within the switches. Bidirectional Meshes with DOR routing completely

dominate performance at all areas. DOR switches are smaller and were seen to achieve better

performance even when scaling PEs, in Figure 8.4.

BFTs BFTs with a smaller p require less interconnect area. Hence, we observe that the best BFT

topology is different in different area ranges. A p = 0 BFT is best below 50K slices, a p = 0.5 BFT

is better until 200K slices, a p = 0.67 BFT achieves superior performance in the 200K-1M slices

range and finally the p = 1 BFT dominates at areas above that.

52

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08

Co
m

m
un

ica
tio

n
Ti

m
e

(c
yc

le
s)

Area (Slices)

Communication Time vs. Slices (Ring Topologies)

Ring w=1
Ring w=2
Ring w=4

(a) gemat11 Ring

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08

Co
m

m
un

ica
tio

n
Ti

m
e

(c
yc

le
s)

Area (Slices)

Communication Time vs. Area (BFT Topologies)

c=1 p=0
c=1 p=0.5

c=1 p=0.67
c=1 p=1
c=2 p=0

c=2 p=0.5
c=2 p=0.67

c=2 p=1

(b) gemat11 BFT

 100

 1000

 10000

 10000 100000 1e+06 1e+07 1e+08

Co
m

m
un

ica
tio

n
Ti

m
e

(c
yc

le
s)

Area (slices)

Communication Time vs. Area (Bidirectional Mesh Topologies)

Arity4 DOR w=1
Arity4 WSF w=1

FastXY w=1
Arity4 DOR w=2
Arity4 WSF w=2

FastXY w=2
Arity4 DOR w=4
Arity4 WSF w=4

FastXY w=4

(c) gemat11 Bidirectional Mesh

 100

 1000

 10000

 10000 100000 1e+06 1e+07 1e+08

Co
m

m
un

ica
tio

n
Ti

m
e

(c
yc

le
s)

Area (Slices)

Communication Time vs. Area (Directional Mesh Topologies)

FastXY w=1
IslandStyle w=1

FastXY w=2
IslandStyle w=2

(d) gemat11 Directional Mesh

Figure 8.5: Communication Time vs. Area

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08

Pe
rfo

rm
an

ce
 (C

yc
le

s)

Area (slices)

Actual Performance vs. Area (Selected Topologies)

BFT c=1 p=0.67
Bidir. Mesh VC=4

Bidir. Mesh w=1 DOR
Bidir. Mesh w=4 DOR

Dir. Mesh w=1 FastXY
Ring w=4

Figure 8.6: Actual Communication Time vs. PEs for gemat11 (SMVM)

53

We plot a select few topologies from Figure 8.2.2 together in Figure 8.6. We can clearly see

that Ring with W = 4 is outperformed by all other topologies and gets affected by latency sooner

than the rest. We also find that Virtual-Chanel-based meshes require a much larger area to provide

comparable performance as other topologies (see Section 8.2.3). We observe that Bidirectional

Meshes outperform Directional Meshes are larger areas (see Section 8.2.4). When comparing the

performance achieved by the BFTs and the Meshes, we see that they are very similar and neither

one dominates the other (see Section 8.2.5).

8.2.3 Performance of Virtual-Channel-based Meshes

In the previous section, we showed how to compare the performance of different topologies by

increasing PE counts and area. In this section, we study the impact of routing algorithms on

the performance of the Virtual-Channel-based meshes when increasing PE counts and area. We

implement meshes with different routing algorithms and would like to select the best performing

algorithm. We can classify the meshes into two types, Virtual-Channel (V C) based and non-Virtual-

Channel (non-V C) based meshes. As outlined in Section 5.3.2, V C based meshes can potentially

improve the utilization of a given physical link by time-sharing the physical channel between multiple

virtual channels. We also noted that this improved performance comes at the expense of additional

hardware i.e. V C-based switches are larger that regular mesh switches. In both networks, we try to

distribute load evenly between the different channels, virtual or physical.

In Figure 8.7, we plot the performance of the best V C based mesh and the best non-V C based

mesh topologies. We observe that at low PE counts, there is no performance difference between

these two types of meshes. At larger PE counts, the best performance achieved by the V C-based

mesh is unable to beat the best performance of the non-V C based mesh (except small and ibm01).

We attribute this performance difference to the larger bisection bandwidth possible in the non-V C

based meshes at same PE counts. When considering area the V C based meshes achieve their peak

performance at areas larger than non-V C meshes due to its larger area requirement. In Figure 8.8,

we plot the ratio of non-V C-based Mesh communication time to V C-based Mesh communication

time. If the ratio is < 1, then non-V C meshes provide better performance. The vertical lines

represent the areas at which the respective topologies achieved their best performance (lowest cycle

count for routing). We see that the non-V C-based meshes achieve their best performance much

earlier than the V C-based meshes. We also observe that the performance achieved by the V C

meshes is 10% less than the non-V C meshes and hence conclude that NoC designers should avoid

using Virtual-Channels for pure on-chip networks. Virtual-Channel networks are to be preferred

when there is a severe bandwidth constraint in the network which is not the case when designing

networks inside a chip.

54

 100

 1000

 10000

 1 10 100 1000 10000

C
om

m
un

ic
at

io
n

T
im

e

Area (slices)

Performance of the Meshes: Communication Time vs. Area

Other-Mesh
VC-Mesh

(a) add20

 100

 1000

 10000

 1 10 100 1000 10000

C
om

m
un

ic
at

io
n

T
im

e

Area (slices)

Performance of the Meshes: Communication Time vs. Area

Other-Mesh
VC-Mesh

(b) bcsstk11

 100

 1000

 10000

 1 10 100 1000 10000

C
om

m
un

ic
at

io
n

T
im

e

Area (slices)

Performance of the Meshes: Communication Time vs. Area

Other-Mesh
VC-Mesh

(c) gemat11

 100

 1000

 10000

 100000

 1 10 100 1000 10000

C
om

m
un

ic
at

io
n

T
im

e

Area (slices)

Performance of the Meshes: Communication Time vs. Area

Other-Mesh
VC-Mesh

(d) utm5940

 100

 1000

 10000

 100000

 1 10 100 1000 10000

C
om

m
un

ic
at

io
n

T
im

e

Area (slices)

Performance of the Meshes: Communication Time vs. Area

Other-Mesh
VC-Mesh

(e) small

 100

 1000

 10000

 1 10 100 1000 10000

C
om

m
un

ic
at

io
n

T
im

e

Area (slices)

Performance of the Meshes: Communication Time vs. Area

Other-Mesh
VC-Mesh

(f) ibm01

 100

 1000

 10000

 100000

 1 10 100 1000 10000

C
om

m
un

ic
at

io
n

T
im

e

Area (slices)

Performance of the Meshes: Communication Time vs. Area

Other-Mesh
VC-Mesh

(g) ibm05

Figure 8.7: Communication Time vs. PEs for non-V C and V C Meshes
55

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Other Meshes to VC-based Meshes: Comm. Ratio vs. Area (Best Topologies)

Other-Mesh/VC-Mesh
Best Absolute VC-Mesh Performance

Best Absolute Other-Mesh Performance

(a) add20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Other Meshes to VC-based Meshes: Comm. Ratio vs. Area (Best Topologies)

Other-Mesh/VC-Mesh
Best Absolute VC-Mesh Performance

Best Absolute Other-Mesh Performance

(b) bcsstk11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Other Meshes to VC-based Meshes: Comm. Ratio vs. Area (Best Topologies)

Other-Mesh/VC-Mesh
Best Absolute VC-Mesh Performance

Best Absolute Other-Mesh Performance

(c) gemat11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Other Meshes to VC-based Meshes: Comm. Ratio vs. Area (Best Topologies)

Other-Mesh/VC-Mesh
Best Absolute VC-Mesh Performance

Best Absolute Other-Mesh Performance

(d) utm5940

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Other Meshes to VC-based Meshes: Comm. Ratio vs. Area (Best Topologies)

Other-Mesh/VC-Mesh
Best Absolute VC-Mesh Performance

Best Absolute Other-Mesh Performance

(e) small

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Other Meshes to VC-based Meshes: Comm. Ratio vs. Area (Best Topologies)

Other-Mesh/VC-Mesh
Best Absolute VC-Mesh Performance

Best Absolute Other-Mesh Performance

(f) ibm01

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Other Meshes to VC-based Meshes: Comm. Ratio vs. Area (Best Topologies)

Other-Mesh/VC-Mesh
Best Absolute VC-Mesh Performance

Best Absolute Other-Mesh Performance

(g) ibm05

Figure 8.8: Ratio of Communication Time of non-V C and V C meshes vs. Area
56

8.2.4 Performance of Directional and Bidirectional Meshes

We build two kinds of mesh topologies based on the kind of connectivity provided between the

switches, Bidirectional and Directional Meshes. Directional Meshes can be built with smaller switch-

boxes and can provide compact implementations at small PE counts. Bidirectional Meshes have

slightly larger switches but provide more connectivity between the switches. We quantify the perfor-

mance difference between these two kinds of topologies in Figure 8.9. We plot the ratio of communi-

cation cycles required by the Directional Mesh and Bidirectional Mesh vs. chip area. When the ratio

is greater than 1, Bidirectional Meshes offer better performance. The vertical lines represent the ar-

eas at which the respective topologies achieved their best performance. We observe that Directional

Meshes are superior to Bidirectional Meshes at small chip sizes when the performance is mostly

serialization dominated. In these operating conditions, it is beneficial to sacrifice network richness

for more PEs. After 100K slices, Bidirectional Meshes always outperform Directional Meshes. This

factor can be asl large as 2.5 in some cases. In most cases (except small), the Bidirectional Mesh

achieves the best performance at a smaller area than the Directional Mesh.

8.2.5 Performance of BFTs and Meshes

In Section 8.2.2, we noticed that there was no significant performance difference between the BFT

and the Mesh. In Figure 8.10, we plot the ratio of communication cycles of a Mesh to a BFT vs.

area. If the ratio is greater than 1, Mesh requires more communication cycles than the BFT. The

vertical lines represent the areas at which the respective topologies achieved their best performance.

We find that in BFT achieves the best performance as smaller areas in half the applications while

the Mesh achieves the best performance earlier in the other half. We further observe that at low

areas (below 50K slices), the Mesh requires 50% more cycles than a BFT at equivalent area. At

larger areas (50K-10M slices), the Mesh achieves marginally better performance than the BFT. Mesh

performance is better than the BFT by less than 20% in the most optimistic case. This difference in

performance is due to the different worst case delay experienced by a packet on these topologies for

a given placement. In Section 7.4, we had observed that the physical worst case latency (between

extreme PEs) on a Mesh was larger than the BFT. The actual worst case latency observed on the

Mesh, for the placements we used, was much smaller. This was because the worst case path for

the given placement was between PEs that were much closer to each other than the physical worst

case. On the BFT, however, the placement required the packet to cross the top-level switchbox to

get to the other chip partition. This required the packet to traverse the physical worst case path

on the network. Although the BFT shows better theoretical worst-case latency, when considering

a real workload and a good placement, we find the exact opposite behavior. Thus, given a good

placement, a BFT can never beat the Mesh in the current form. The BFT is, however, only within

57

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Directional to Bidirectional-Mesh Comm. Time vs. Area (Best Topologies)

Directional-Mesh/Bidirectional-Mesh
Best Absolute Bidirectional-Mesh Performance

Best Absolute Directional-Mesh Performance

(a) add20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Directional to Bidirectional-Mesh Comm. Time vs. Area (Best Topologies)

Directional-Mesh/Bidirectional-Mesh
Best Absolute Bidirectional-Mesh Performance

Best Absolute Directional-Mesh Performance

(b) bcsstk11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Directional to Bidirectional-Mesh Comm. Time vs. Area (Best Topologies)

Directional-Mesh/Bidirectional-Mesh
Best Absolute Bidirectional-Mesh Performance

Best Absolute Directional-Mesh Performance

(c) gemat11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Directional to Bidirectional-Mesh Comm. Time vs. Area (Best Topologies)

Directional-Mesh/Bidirectional-Mesh
Best Absolute Bidirectional-Mesh Performance

Best Absolute Directional-Mesh Performance

(d) utm5940

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1000 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Directional to Bidirectional-Mesh Comm. Time vs. Area (Best Topologies)

Directional-Mesh/Bidirectional-Mesh
Best Absolute Bidirectional-Mesh Performance

Best Absolute Directional-Mesh Performance

(e) small

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1000 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Directional to Bidirectional-Mesh Comm. Time vs. Area (Best Topologies)

Directional-Mesh/Bidirectional-Mesh
Best Absolute Bidirectional-Mesh Performance

Best Absolute Directional-Mesh Performance

(f) ibm01

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1000 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Directional to Bidirectional-Mesh Comm. Time vs. Area (Best Topologies)

Directional-Mesh/Bidirectional-Mesh
Best Absolute Bidirectional-Mesh Performance

Best Absolute Directional-Mesh Performance

(g) ibm05

Figure 8.9: Ratio of Communication Time of Bidirectional Mesh/Directional Mesh vs. Area
58

20% of the best mesh performance for considered workloads and within 10% on average. We revisit

this briefly in the Chapter 9 on Future Work.

8.2.6 Explaining Quality of Performance

To help characterize why topologies perform differently at larger PE counts relative to application

size, we plot the lowerbound performance (Section 3.3) of gemat in Figure 8.11 and the ratio of

achieved performance to lowerbound performance in Figure 8.12. This helps us understand how

close packet-switching can come to achieving lowerbound performance for individual topologies. We

observe, in Figure 8.12, that rings are within 2× of their lowerbound. This is due to larger bandwidth

provided by the multiple channels (W = 4 ring) considered for this comparison. We find that best

performing BFTs are within 2.4×, Bidirectional Meshes are within 2.5× and Directional Meshes are

within 5.1× of their respective lowerbounds. Directional Meshes have fewer possible routes available

which make packet-switched routing on these networks harder than on richer Bidirectional Meshes.

We also observe that the V C Mesh is 3× worse than the lowerbound at larger area. This is due

to the insufficient routing freedom (bandwidth) in the network and the constraints imposed by the

routing algorithm.

8.2.7 Effect of Application Communication Requirements

We plot communication cycles as a function of area in Figure 8.13 for a range of benchmarks: SMVM

rdb3200l, gemat11, utm5940, fidap035 and ConceptNet small.

We can classify the performance of these applications into characteristic regions. As expected,

we see that all topologies for all applications are initially serialization bottlenecked. As area (and

consequently PEs) increases, topologies become bisection limited and eventually latency limited. We

will see that the area ranges of these characteristic regions are directly correlated to application size.

Initially, performance of all topologies is serialization limited between 1K–500K slices for gemat11

and rdb3200l and 1K–1M slices for utm5940 and fidap035. The serialization region for utm5940

and fidap035 extends beyond that of gemat11 and rdb3200l since the former graphs are larger

and remained serialized at larger areas (Section 6.4). When only considering number of PEs, in

the serialization limited region all topologies yield the same performance. When considering area,

topologies with larger interconnect requirements require larger areas to achieve the same performance

as topologies with less interconnect. We find that BFTs with a p = 0 provide the best performance

in this area range. At large slice counts, 500K–10M slices for gemat11 and rdb3200l, 1M–50M slices

for utm5940 and fidap035), the network is more heavily loaded. We find that Bidirectional Meshes

with DOR routing (W = 1,W = 2) and a BFT with c = 1, p = 0.67 achieve the best performance

in this region. For large communication graphs (i.e. fidap035), we find that performance continues

59

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

M
es

h/
B

F
T

 C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area (Best Topologies)

Mesh/BFT
Best Absolute BFT Performance

Best Absolute Mesh Performance

(a) add20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

M
es

h/
B

F
T

 C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area (Best Topologies)

Mesh/BFT
Best Absolute BFT Performance

Best Absolute Mesh Performance

(b) bcsstk11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

M
es

h/
B

F
T

 C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area (Best Topologies)

Mesh/BFT
Best Absolute BFT Performance

Best Absolute Mesh Performance

(c) gemat11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

M
es

h/
B

F
T

 C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area (Best Topologies)

Mesh/BFT
Best Absolute BFT Performance

Best Absolute Mesh Performance

(d) utm5940

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1000 10000 100000 1e+06 1e+07 1e+08

M
es

h/
B

F
T

 C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area (Best Topologies)

Mesh/BFT
Best Absolute BFT Performance

Best Absolute Mesh Performance

(e) small

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1000 10000 100000 1e+06 1e+07 1e+08

M
es

h/
B

F
T

 C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area (Best Topologies)

Mesh/BFT
Best Absolute BFT Performance

Best Absolute Mesh Performance

(f) ibm01

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1000 10000 100000 1e+06 1e+07 1e+08

M
es

h/
B

F
T

 C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of Mesh/BFT Communication Time vs. Area (Best Topologies)

Mesh/BFT
Best Absolute BFT Performance

Best Absolute Mesh Performance

(g) ibm05

Figure 8.10: Ratio of Communication Time of Mesh/BFT vs. Area
60

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08

Lo
we

r B
ou

nd
 P

er
fo

rm
an

ce
 (C

yc
le

s)

Area (slices)

Lower-Bound Performance vs. Area (Selected Topologies)

BFT c=1 p=0.67
Bidir. Mesh VC=4

Bidir. Mesh w=1 DOR
Bidir. Mesh w=4 DOR

Dir. Mesh w=1 FastXY
Ring w=4

Figure 8.11: Lowerbound Communication Time vs. PEs for gemat11 (SMVM)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1000 10000 100000 1e+06 1e+07 1e+08

Q
ua

lity
 R

at
io

 (A
ct

ua
l/L

ow
er

bo
un

d
cy

cle
s)

Area (slices)

Quality Ratio vs. Area (Selected Topologies)

BFT c=1 p=0.67
Bidir. Mesh VC=4

Bidir. Mesh w=1 DOR
Bidir. Mesh w=4 DOR

Dir. Mesh w=1 FastXY
Ring w=4

Figure 8.12: Ratio of Actual to Lowerbound Communication Time vs. PEs for gemat11 (SMVM)

61

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08

P
er

fo
rm

an
ce

 (
C

yc
le

s)

Area (slices)

Actual Performance vs. Area (Selected Topologies)

BFT c=1 p=0
BFT c=1 p=0.5

BFT c=1 p=0.67
Bidir. Mesh w=1 DOR
Bidir. Mesh w=2 DOR

(a) rdb3200l (18K messages)

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08

P
er

fo
rm

an
ce

 (
C

yc
le

s)

Area (slices)

Actual Performance vs. Area (Selected Topologies)

BFT c=1 p=0
BFT c=1 p=0.5

BFT c=1 p=0.67
Bidir. Mesh w=1 DOR
Bidir. Mesh w=2 DOR

(b) gemat11 (33K messages)

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08

P
er

fo
rm

an
ce

 (
C

yc
le

s)

Area (slices)

Actual Performance vs. Area (Selected Topologies)

BFT c=1 p=0
BFT c=1 p=0.5

BFT c=1 p=0.67
Bidir. Mesh w=1 DOR
Bidir. Mesh w=2 DOR

(c) utm5940 (83K messages)

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000 1e+06 1e+07 1e+08

P
er

fo
rm

an
ce

 (
C

yc
le

s)

Area (slices)

Actual Performance vs. Area (Selected Topologies)

BFT c=1 p=0
BFT c=1 p=0.5

BFT c=1 p=0.67
Bidir. Mesh w=1 DOR
Bidir. Mesh w=2 DOR

(d) fidap035 (218K messages)

Figure 8.13: Communication Time vs. Area

62

to remain serialized, even for the largest areas considered. We generally observe that, as we increase

area, topologies that provide more interconnect achieve better performance. However, at very high

chip sizes, performance begins to degrade due to latency and it is preferable to build smaller networks

with less area to get better performance.

8.2.8 Universal Topology

In choosing a network topology, designers may not have the opportunity to know the communication

requirements of all applications apriori. Additionally, these networks may need to scale to larger

areas as design requirements change. Ideally, an NoC designer would like to be able to choose a

single topology that performs robustly over all applications and areas. But, we observe that different

topologies perform optimally for different areas and applications. This indicates that designing a

network with a fixed topology could be inefficient over a range of applications and network sizes

[37], [17]. To help quantify the cost of a “one topology fits all” methodology, we compute the ratio

of actual performance achieved by each topology to the performance achieved the best topology at a

given area. This ratio is always ≥ 1 and lower the value of this ratio, the more robust the topology.

We compute this ratio over all areas and over all applications. We tabulate the worst case ratios for

for each topology in Table 8.1. We see that the most robust topology, a BFT with c = 1, p = 0.5,

requires as many as 1.9× the number of cycles required by the best topology. We also observe that

the best performing mesh has a worst case ratio of 2.5 which is similar to BFTs. We plot these ratios

as a function of area in Figure 8.14. It shows that the worst case is observed only at very large areas

and in the average case this ratio is around 1.5. This still indicates that there is a non-trivial cost

in selecting a single topology for all areas and applications, motivating application specific topology

design.

8.3 Comparison with Time Multiplexing

Selection of an appropriate communication pattern should be based on application communication

requirements and characteristics. Time-multiplexing uses static scheduling which requires communi-

cation to be predictable and known ahead of time. Packet-switching has no such needs. It is possible

to dynamically inject traffic into the network at any time. Hardware requirements are particularly

important in comparing packet-switching and time-multiplexing. Packet-switching typically requires

larger switchboxes due to buffering and logic required for dynamic decision making (Section 7.3).

Time multiplexed switchboxes are typically smaller in terms of raw logic, but if the total number

of communication cycles is large, switch context memory may require significant area. To illustrate

these area and performance trade-offs, consider the following example. Packet-switched switchboxes

may allow us to fit an 8 PE network on a chip. With comparatively smaller switches we could fit

63

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1000 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Bidirectional Mesh W=1 DOR/BFT c=1 p=0.5 Communication Ratios

Mesh Ratio
BFT Ratio

(a) add20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1000 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Bidirectional Mesh W=1 DOR/BFT c=1 p=0.5 Communication Ratios

Mesh Ratio
BFT Ratio

(b) bcsstk11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1000 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Bidirectional Mesh W=1 DOR/BFT c=1 p=0.5 Communication Ratios

Mesh Ratio
BFT Ratio

(c) rdb3200l

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1000 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Bidirectional Mesh W=1 DOR/BFT c=1 p=0.5 Communication Ratios

Mesh Ratio
BFT Ratio

(d) gemat11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 1000 10000 100000 1e+06 1e+07

C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Bidirectional Mesh W=1 DOR/BFT c=1 p=0.5 Communication Ratios

Mesh Ratio
BFT Ratio

(e) small

Figure 8.14: Ratio of Actual Communication Time of Bidirectional Mesh W=1 DOR and BFT c=1
p=0.5 to Best Communication Time vs. Area

64

Topology Worst Case
Performance Ratio

BFT c = 1, p = 0 14.1
BFT c = 1, p = 0.5 1.9
BFT c = 1, p = 0.67 2.1
BFT c = 1, p = 1 2.1
BFT c = 2, p = 0 7.5
BFT c = 2, p = 0.5 2.8
BFT c = 2, p = 0.67 3.4
BFT c = 2, p = 1 6.4
Directional Mesh - Island Style w = 1 4.0
Directional Mesh - Island Style w = 2 6.4
Directional Mesh - FastXY w = 1 3.9
Directional Mesh - FastXY w = 2 4.9
Bidirectional Mesh - Arity 4 DOR w = 1 2.5
Bidirectional Mesh - Arity 4 DOR w = 2 2.9
Bidirectional Mesh - Arity 4 DOR w = 4 4.7
Bidirectional Mesh - Arity 4 WSF w = 1 4.8
Bidirectional Mesh - Arity 4 WSF w = 2 8.5
Bidirectional Mesh - Arity 4 WSF w = 4 17.0
Bidirectional Mesh - FastXY w = 1 2.5
Bidirectional Mesh - FastXY w = 2 3.1
Bidirectional Mesh - FastXY w = 4 5.0
Bidirectional Mesh - Duato V C = 2 4.6
Bidirectional Mesh - Duato V C = 4 11.0
Ring w = 1 48.8
Ring w = 2 48.8
Ring w = 4 48.5

Table 8.1: Ratio of Achieved Performance to Best Performance (Over All Areas and Applications)

65

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 10 100 1000 10000
 0

 50

 100

 150

 200

P
S

/T
M

 C
om

m
un

ic
at

io
n

T
im

e
R

at
io

N
et

w
or

k
I/O

 p
er

 C
yc

le
 (

m
es

sa
ge

s)

PEs

Ratio of PS/TM Communication Time vs. PEs (BFT c=1, p=0.5)

PS/TM
Network I/O

Figure 8.15: Ratio of Time-Multiplexed/Packet-Switched Communication Time for Identical Topolo-
gies

a 16 PE time-multiplexed network as long as routing could be completed in 30K cycles. If routing

takes more than 30K cycles we can fit only 8 PEs, and at more than 100K cycles we can only fit 4

PEs. Consequently, there are operating ranges where either network my outperform the other.

To setup the analysis, we first provide a quantitative comparison between the performance achiev-

able by offline and online scheduling. For this, we route for identical 100% activity communication

loads on identical topologies with the same number of PEs. Next, we consider the impact of area

and compare the performance difference between packet-switching and time-multiplexing for identi-

cal areas. We also examine the balance between compute and interconnect in order to determine the

correct topologies to compare across area. Finally, for given area capacities we examine performance

while varying the activity factor of our communication loads. This helps establish the space in which

packet-switching outperforms time-multiplexing as a function of routed messages.

8.3.1 Effect of PE Scaling

To characterize the inherent performance difference between offline and online routing, we routed

100% activity communication loads on equivalent topologies, measuring the total number of com-

munication cycles required to route. We collected data for BFTs over a range of channel widths

(c = 1, 2) and Rent parameters (p = 0, 0.5, 0.67, 1). The ratio of packet-switched to time-multiplexed

communication time as a function of PEs for a representative BFT with c = 1 and p = 0.5 is shown

in Figure 8.15. Network I/O per cycle (as in Figure 2.1) is also shown on the same graph. At low

numbers of PEs (<100) we see that offline and online routing produce equivalent cycle counts. Small

numbers of PEs induce a light communication load (1-20 messages per cycle) and little offline/online

differentiation. As the number of PEs increase (>100) the communication load increases (100s of

messages per cycle), and we begin to see offline routing outperform online routing. Offline routing is

66

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08

PS
/T

M
 C

om
m

un
ica

tio
n

Ti
m

e
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area

PS
TM

Figure 8.16: Communication Cycles vs. Area for Best Topologies

able to take advantage of global information to make optimal routing decisions on larger networks,

while online routing is limited to making local decisions which affect the overall quality of route. As

a result, online routing requires up to 50% more cycles than offline routing to route larger networks.

8.3.2 Effect of Area Scaling

To fully characterize the performance difference between our packet-switched and time-multiplexed

networks we must also consider the area they consume. For equivalent topologies at the same PE

count, packet-switched and time-multiplexed networks may use significantly different amounts of

area due to differences in switch sizes and the amount time-multiplexed context memory needed. To

fairly compare this area-time trade off between time-multiplexing and packet-switching, we examine

the best packet-switched and time-multiplexed topologies over all area points in our comparison.

The composite area-time curves for packet-switched and time-multiplexed networks are shown in

Figure 8.16. At smaller areas (<12K slices) time-multiplexing requires more cycles to route than

packet-switching. Smaller areas fit fewer PEs, resulting in higher cycle counts. As area increases,

however, time-multiplexing can fit more PEs, decreasing serialization and reducing cycle counts.

Finally, at large areas, time-multiplexed networks start requiring more area due to increasing latency.

To quantify this trade off, we show the ratio of packet-switched to time-multiplexed communica-

tion time as a function of area over these optimal topology points in Figure 8.17. Below 30K slices,

the context required to hold the instruction memory in the PEs is very large. This excessive context

memory requirement makes time-multiplexed networks infeasible below 30K slices. At small areas

above this threshold, 30K–50K slices for add20, bcsstk11, small and ibm01, 30K–100K slices for

ibm05, utm5940 and fidap035, time multiplexing is inefficient and requires between 5-10× as many

cycles to route as packet switching. At larger areas (50K–2M slices for add20, bcsstk11, small and

67

ibm01, and 1M-20M slices for utm5940 and fidap035) packet-switching requires 1-3.5× as many

cycles to route as time-multiplexing, in the worst case. On an average packet switching is only 1.5×

worse than time multiplexing. The worst case performance ratio of 3.5× is achieved when routing

a decomposed ConceptNet workload. Time-multiplexed router uses a tighter routing strategy when

routing these decomposed edges than packet switching. Also, at the largest area values (above 1M

slices for add20, bcsstk11, small and ibm01, and above 20M slices for utm5940 and fidap035),

time multiplexing’s advantage begins to shrink down to around 1-1.2× (occasionally also dropping

below packet switching). This is due to time-multiplexed performance being limited by edge fanout

or fanin limit and latency starting to dominate the context requirement. During this interval the

packet-switched network is able to close the performance gap.

8.3.3 Effect of Activity Factor

So far we have compared packet-switching and time-multiplexing assuming 100% communication

loads. When routing ConceptNet queries (Section 6.1) we may be required to communicate only a

fraction of the total workload. We call this fraction activity factor. Different queries touch different

portions of the graph. Hence, the magnitude of activity factor varies with the query. The time-

multiplexed router has no prior knowledge of which exact subset of messages will need to routed

for the different queries. Hence, it is required to route the full 100% workload. On the other hand,

packet-switching only needs to route those edges that are active. At some activity factor less than

100% packet-switching should be able to outperform time-multiplexing when both are given the

same amount of area. In Figure 8.18, we plot communication cycles vs. activity for the a sample

topology with 256 PEs. We observe that below 10% activity, packet switching requires fewer cycles

to route the partial workload than time multiplexing. The exact fraction at which this crossover

occurs depends on the size of the workload and the network. In Figure 8.19 we plot activity crossover

as a function of PEs by choosing only the best performing topologies at those PE counts. If the

crossover is high (50–100%), it is best to use packet switching for the network. If the crossover is less

(1–50%), it is best to use time multiplexing in the network. At small PE counts, packet switching

can match the performance of time multiplexing even at 100% activity. This is mainly because

performance is fully serialized. At larger PE counts, once the network is no longer serialization

bottlenecked, packet switching can match time multiplexing only at smaller activity factors. After

about 100-200 PEs, packet switching is able to get better performance than time multiplexing only

below 1% activity.

68

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

PS
/T

M
 C

om
m

un
ica

tio
n

Ti
m

e
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM
Best Absolute PS Performance
Best Absolute TM Performance

(a) add20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

PS
/T

M
 C

om
m

un
ica

tio
n

Ti
m

e
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM
Best Absolute PS Performance
Best Absolute TM Performance

(b) bcsstk11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

PS
/T

M
 C

om
m

un
ica

tio
n

Ti
m

e
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM
Best Absolute PS Performance
Best Absolute TM Performance

(c) small

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07 1e+08

PS
/T

M
 C

om
m

un
ica

tio
n

Ti
m

e
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM
Best Absolute PS Performance
Best Absolute TM Performance

(d) gemat11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10000 100000 1e+06 1e+07

PS
/T

M
 C

om
m

un
ica

tio
n

Ti
m

e
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM
Best Absolute PS Performance
Best Absolute TM Performance

(e) ibm01

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100000 1e+06 1e+07 1e+08

PS
/T

M
 C

om
m

un
ica

tio
n

Ti
m

e
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM
Best Absolute PS Performance
Best Absolute TM Performance

(f) ibm05

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100000 1e+06 1e+07 1e+08

PS
/T

M
 C

om
m

un
ica

tio
n

Ti
m

e
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM
Best Absolute PS Performance
Best Absolute TM Performance

(g) fidap035

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100000 1e+06 1e+07 1e+08

PS
/T

M
 C

om
m

un
ica

tio
n

Ti
m

e
Ra

tio

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM
Best Absolute PS Performance
Best Absolute TM Performance

(h) utm5940

Figure 8.17: Ratio of Time-Multiplexed/Packet-Switched Communication Time for Identical Area

69

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

Co
m

m
un

ica
tio

n
Ti

m
e

(c
yc

le
s)

Activity Factor (%)

Communication Time vs. Activity Factor (BFT c=1 p=0.5, 256 PEs)

Packet-Switched
Time-Multiplexed

Figure 8.18: Communication Cycles vs. Activity for Sample Topology with 256 PEs

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

Ac
tiv

ity
 F

ac
to

r C
ro

ss
ov

er
 (%

)

PEs

PS/TM Activity Factor Crossover vs. PEs (Best Topologies)

PS/TM Activity Crossover

Figure 8.19: Activity Crossover vs. PEs

70

dehctiws-tekcap

dexelpitlum-emit

spets-hparg

e
mit

n
urlat

ot

emitnur
retuor

Figure 8.20: Performance of Time-Multiplexing vs. Packet-Switching as a function of Graph Steps

8.3.4 Effect of Multiple Graph Steps

We have considered the performance from a single graph step (Section 6) in our analysis so far. A

typical application run could consist of several graph steps ranging from a few (< 8) for ConceptNet

queries to thousands for SMVM. We have also not accounted for the runtime of the offline router.

We’ve already shown that at sufficiently large chip areas, the performance achieved by the statically-

scheduled time-multiplexed network is superior to the dynamically-routed packet-switched network.

When we consider complete execution time that includes the runtime of the router we see a further

separation of application scenarios between the two styles. For some applications with a few graph

steps, the offline router runtime may be a significant overhead. If we graph the total runtime of

the these two networks vs the total number of graph steps in Figure 8.20 (not real data), we will

notice two distinct regions. In the first region, the performance of packet-switching is better than

time-multiplexing due to the high overhead of offline scheduling. In the second region, after the

total number of graph steps (number of times the routed schedule is reused) exceeds a certain

threshold, the time-multiplexing outperforms packet-switching. In this region, the initial cost of

computing the time-multiplexed schedule has been amortized across the multiple graph steps and

we can take advantage the better route quality. Thus, in applications where the statically routed

schedule need not be used several times (below the crossover threshold), packet-switching is the

preferred switching style. The exact crossover depends of the size of the application and the number

of graph steps required to be routed.

71

Chapter 9

Future Work

Communication patterns and densities can vary greatly between different applications. Exploration

of more applications would help us better characterize the trade-offs between different topologies and

between packet switching and time multiplexing. We are particularly interested in mapping larger

communication graphs with fanin and fanout decomposition of the graph nodes to more evenly

distribute the communication load.

We’ve observed that no single topology performs best over different applications. Ideally, one

would want to synthesize a topology customized for every application so as to maximize performance.

Hence, we are motivated to automate this process of topology selection based on a given application

workload.

Previously, higher dimensional meshes such as as k-ary n-cubes were shown to be less efficient than

two-dimensional meshes due to pin constraints [13]. As NoCs are not I/O limited like multiprocessor

networks, it may be worth revisiting higher dimensional mesh topologies in the future under an

appropriately revised cost model.

We currently implement only Dimension Ordered Routing on the Directional Mesh. We would

like to extend that to include other adaptive schemes. We would also like to fully understand the

differences in performance due to DOR and WSF routing algorithms on Bidirectional Meshes.

In Section 8.2.5, we had concluded that it was not possible for the BFT to achieve better perfor-

mance than the Mesh, given a good placement. We can, however, attempt to reduce the worst-case

latency on a BFT by adding shortcut connections between the switches as in [18]. Packets routing

on these shortcut connections do not experience the worst-case latency in the network by avoiding

the switches in the upper levels of the tree. This optimization is required only if performance on the

topology is latency limited.

For this study, we restricted our analysis to reconfigurable FPGA substrates. However, we

would still like to revisit this analysis under the ASIC cost model to see how the conclusions differ

because of a revised area model for the switches and interconnect. We would also like to evaluate

the sensitivity of changing technology parameters (switch delay, wire delay, gate area, power and

72

others) on performance of the network. A custom network implementation can be later integrated

into the FPGA fabric itself to avoid the large area cost of overlaying the network.

Our network design space exploration has so far been limited to single chip networks. We hope

to extend this work to multiple-chip networks, examining similar area-time trade-offs. We would

want to build special switchboxes for handling inter-chip traffic and separate the on-chip and off-chip

networks for simplicity of routing.

73

Chapter 10

Conclusions

We demonstrate scalable, high performance implementations of packet-switched FPGA overlay net-

works operating at 166MHz. We compose our switches using fundamental split and merge primitives

that can be pipelined independently and composed to form switches. We pipeline the PE datapath

and long wires in the interconnect to achieve this high-speed operation. The final system perfor-

mance is limited by the critical path in the PE datapath, not the switches. The switches in our

network are capable of running at speeds in excess of 200 MHz.

When designing our switching primitives, we observed that networks with a buffer-depth of 1

provide the best performance at a given area than networks with larger buffers. This makes all our

networks cut-through and significantly lowers the area requried to implement the primitives.

We show that when the number of PEs is small with respect to application size, choice of network

topology does not impact performance as applications are mostly serialized. At larger PE counts

(100-1000s of PEs), topologies begin to show characteristic scaling trends. Performance of rings is

limited by latency between 10–100s of PEs. BFT and Mesh performances can be distinguished only

between 100–1000s of PEs.

We compared different kinds of rings, BFTs and Meshes for quantifying topology selection. As

expected, we found that rings scale poorly and become latency bottlenecked at high PE counts. We

observed that BFTs and Meshes provide similar performance and occasionally when the Mesh has

better performance, it is within 20% of the BFT performance. We created two kinds of Meshes,

Directional and Bidirectional. When we compared the performance of these two Meshes, we found

the Bidirectional Mesh to provide much better performace at large areas and consistently across

all applications. Directional Meshes provided better performance at small chip sizes due to their

smaller switches. We further compare Virtual-Channel-based Mesh topologies with the Meshes that

used adaptive or deterministic routing algorithms. We found that V C based Meshes were unable

to provide better absolute performance even at equivalent PE counts (except for 2 benchmarks).

Non-V C meshes were able to outperform V C based Meshes at equivalent area by as much as 10%

because they can accomodate more channels i.e. provide more bisection. Since V C-based Meshes

74

use signficantly larger switches, their best performance is achieved at much larger areas.

We observe that different applications have distinct communication requirements depending on

size and communication locality. When measuring the performance of a given topology we found

that it varies significantly over 1K − 10M slices and across all of our benchmarks. Therefore, there

is no single topology that routes all applications well for all areas. This is illustrated by the BFT

c = 1, p = 0.5 topology which requires as many as 1.9× the number of cycles as the best topology

to route all applications for all areas.

To aid designers in choosing the appropriate communication pattern between time-multiplexing

and packet-switching, we characterize the tradeoffs associated with these networks and quantify the

application conditions under which each is preferred. For our set of applications, offline scheduling

offers up to a 50% performance increase over online scheduling for equivalent topologies. Time

multiplexing provides better overall performance because, when computing an offline schedule, it

can take advantage of the global state of the network for routing the workload. Packet switching is

dynamic and routing decisions are computed locally in the switches. At equivalent areas, packet-

switching is 5-10× faster for small areas while time-multiplexing is up to 1.5× faster for larger

areas (up to 3× faster in the extreme case). At smaller PE counts, time-multiplexed networks have

excessive PE instruction context requirements and need a large area for the mapping. At larger PE

counts, the area requirement of the packet-switched network is dominated by the larger switches

and time-multiplexed networks are able to provide better performance. At sufficiently large areas,

packet-switched network are again able to match the performance of time-multiplexed networks

since those networks begin to get latency bottlenecked. Below 100 PEs, packet-switching offers

better performance than time-multiplexing for activity factors between 50–100%. Above 100 PEs,

packet-switching can provide better performance only when activity factors are between 1–50%.

75

Bibliography

[1] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Zeferino. SPIN: a Scalable,

Packet Switched, On-chip Micro-network. In Proceedings of the Conference and Exhibition on

Design, Automation and Test in Europe, pages 1128–1129, 2003.

[2] C. J. Alpert. The ISPD98 Circuit Benchmark Suite. In Proceedings of the International Sym-

posium on Physical Design, pages 80–85, 1998.

[3] ARM. AMBA Bus specification, 1999.

[4] V. Beneš. Permutation Groups, Complexes, and Rearrangeable Multistage Connecting Net-

works. Bell System Technical Journal, 43:1619–1640, July 1964.

[5] V. Beneš. Mathematical Theory of Connecting Networks and Telephone Traffic. Academic

Press, New York, NY, 1965.

[6] L. Benini and G. D. Micheli. Networks on Chips: A New SOC Paradigm. IEEE Computer,

35(1):70–78, 2002.

[7] V. Betz and J. Rose. Cluster-Based Logic Blocks for FPGAs: Area-Efficiency vs. Input Sharing

and Size. In Proceedings of the IEEE Custom Integrated Circuits Conference, pages 551–554,

May 1997.

[8] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs.

Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts, 02061

USA, 1999.

[9] A. Caldwell, A. Kahng, and I. Markov. Improved Algorithms for Hypergraph Bipartitioning.

In Proceedings of the Asia and South Pacific Design Automation Conference, pages 661–666,

January 2000.

[10] R. J. Chapuis. 100 Years of Telephone Switching: Electronics, Computers and Telephone

Switching, 1960-1985. IOS Press, 2003.

[11] C. Clos. A study of non-blocking switching networks. Bell Systems Techical Journal, 32(2):406–

424, March 1953.

76

http://doi.acm.org/10.1145/368434.368864

[12] Cray Research, Inc. CRAY T3D System Architecture Overview Manual, 1995. URL

http://www.cray.com/PUBLIC/product-info/mpp/T3D Architecture over/T3D.overview.html.

[13] W. Dally. Performance Analysis of k-ary n-cube Interconnection Networks. IEEE Transactions

on Computers, 39(6):775–785, June 1990.

[14] W. J. Dally and C. L. Sietz. The Torus Routing Chip, volume 1 of Distributed Computing,

pages 187–196. Springer-Verlag, 1986.

[15] W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip Interconnection Networks. In

Design Automation Conference, pages 684–689, 2001.

[16] W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan

Kauffman, 2004.

[17] A. DeHon. Balancing Interconnect and Computation in a Reconfigurable Computing Array

(or, why you don’t really want 100% LUT utilization). In Proceedings of the International

Symposium on Field-Programmable Gate Arrays, pages 69–78, February 1999.

[18] A. DeHon. Unifying Mesh- and Tree-Based Programmable Interconnect. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 12(10):1051–1065, October 2004.

[19] A. DeHon, J. Adams, M. deLorimier, N. Kapre, Y. Matsuda, H. Naeimi, M. Vanier, and

M. Wrighton. Design Patterns for Reconfigurable Computing. In Proceedings of the IEEE

Symposium on Field-Programmable Custom Computing Machines, pages 13–23, April 2004.

[20] A. DeHon, R. Huang, and J. Wawrzynek. Hardware-Assisted Fast Routing. In Proceedings

of the IEEE Symposium on Field-Programmable Custom Computing Machines, pages 205–215,

April 2002.

[21] M. deLorimier and A. DeHon. Floating-Point Sparse Matrix-Vector Multiply for FPGAs. In

Proceedings of the International Symposium on Field-Programmable Gate Arrays, pages 75–85,

February 2005.

[22] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. E. Uribe, T. F. Knight, Jr.,

and A. DeHon. GraphStep: A System Architecture for Sparse-Graph Algorithms. In Proceedings

of the IEEE Symposium on Field-Programmable Custom Computing Machines. IEEE, 2006.

[23] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An Engineering Approach.

Morgan Kaufmann Publishers, San Francisco, 2003.

[24] C. J. Glass and L. M. Ni. The Turn Model for Adaptive Routing. Technical report, Department

of Computer Science, Michigan State University, 1991.

77

http://www.cray.com/PUBLIC/product-info/mpp/T3D_Architecture_over/T3D.overview.html
http://www.cray.com/PUBLIC/product-info/mpp/T3D_Architecture_over/T3D.overview.html
http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://www.cs.caltech.edu/research/ic/abstracts/mesh_vs_tree_trvlsi2004.html
http://www.cs.caltech.edu/research/ic/abstracts/despat_fccm2004.html
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fccm2002.html
http://www.cs.caltech.edu/research/ic/abstracts/smvm_fpga2005.html

[25] R. I. Greenberg and C. E. Leiserson. Randomness in Computation, volume 5 of Advances in

Computing Research, chapter Randomized Routing on Fat-Trees. JAI Press, 1988. Earlier

version MIT/LCS/TM-307.

[26] A. K. Gupta and W. J. Dally. Topology Optimization of Interconnection Networks. Computer

Architecture Letters, 4, July 2005.

[27] W. H. Ho and T. M. Pinkston. A Design Methodology for Efficient Application-Specific On-

Chip Interconnects. IEEE Transactions On Parallel and Distributed Systems, 17(2):174–190,

February 2006.

[28] IBM. CoreConnect Specification, 1999.

[29] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson, M. Wrighton, and

A. DeHon. Packet-Switched vs. Time-Multiplexed FPGA Overlay Networks. In Proceedings of

the IEEE Symposium on Field-Programmable Custom Computing Machines. IEEE, 2006.

[30] F. Karim, A. Nguyen, and S. Dey. An Interconnect Architecture for Networking System on

Chips. IEEE Micro, 22(5):36–45, September/October 2002.

[31] C. P. Kruskal and M. Snir. The Performance of Multistage Interconnection Networks for Mul-

tiprocessors. IEEE Transactions on Computers, C-32(12):1091–1098, Dec. 1983.

[32] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. berg, K. Tiensyrj, and A. He-

mani. A Network on Chip Architecture and Design Methodology. In International Symposium

on VLSI, pages 117–124, 2002.

[33] B. S. Landman and R. L. Russo. On Pin Versus Block Relationship for Partitions of Logic

Circuits. IEEE Transactions on Computers, 20:1469–1479, 1971.

[34] S.-J. Lee, K. Lee, S.-J. Song, and H.-J. Yoo. Packet-Switched On-Chip Interconnection Network

for System-On-Chip Applications. IEEE Transactions on Circuits & Systems, 52(6):308–312,

June 2005.

[35] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-

cubes. Morgan Kaufmann Publishers, Inc., 1992.

[36] C. Leiserson, F. Rose, and J. Saxe. Optimizing Synchronous Circuitry by Retiming. In Third

Caltech Conference On VLSI, March 1983.

[37] C. E. Leiserson. Fat-Trees: Universal Networks for Hardware Efficient Supercomputing. IEEE

Transactions on Computers, C-34(10):892–901, Oct. 1985.

78

[38] C. E. Leiserson et al. The Network Architecture of the Connection Machine CM-5. In Symposium

on Parallel Architectures and Algorithms, pages 272–285, San Diego, California, June 1992.

ACM.

[39] H. Liu and P. Singh. ConceptNet – A Practical Commonsense Reasoning Tool-Kit. BT Technical

Journal, 22(4):211, October 2004.

[40] T. Marescaux, V. Nollet, J.-Y. Mignolet, A. B. W. Moffat, P. Avasare, P. Coene, D. Verk-

est, S. Vernalde, and R. Lauwereins. Run-Time Support for Heterogeneous Multitasking on

Reconfigurable SoCs. INTEGRATION, The VLSI Journal, 38(1):107–130, 2004.

[41] L. McMurchie and C. Ebeling. PathFinder: A Negotiation-Based Performance-Driven Router

for FPGAs. In Proceedings of the International Symposium on Field-Programmable Gate Arrays,

pages 111–117. ACM, February 1995.

[42] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The Nostrum Backbone - a

Communication Protocol Stack for Networks on Chip. In International Conference on VLSI

Design, 2002.

[43] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. HERMES: an Infrastructure for

Low Area Overhead Packet-switching Networks on Chip. INTEGRATION, The VLSI Journal,

38(1):69–93, 2004.

[44] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The Alpha 21364 Network

Architecture. In IEEE MICRO 2002, 2002.

[45] S. Murali and G. D. Micheli. SUNMAP: A Tool for Automatic Topology Selection and Gener-

ation for NoCs. In Proceedings of the ACM/IEEE Design Automation Conference, 2004.

[46] Nallatech. Simplifying Communication Across DSP Networks. Programmable World, 2003.

<http://www.mactivity.com/xilinx/pw2003/workshops/presos/wsa3_nallatech.pdf> .

[47] NIST. Matrix Market. <http://math.nist.gov/MatrixMarket/> , June 2004. Maintained

by: National Institute of Standards and Technology (NIST).

[48] M. Noakes and W. J. Dally. System Design of the J-Machine. In W. J. Dally, editor, Advanced

Research in VLSI: Proceedings of the Sixth MIT Conference, pages 179–194, Cambridge, Mas-

sachusetts, 1990. MIT Press.

[49] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh, and G. D. Micheli. Design, Synthesis and Test of

Networks on Chips. IEEE Design and Test of Computers, 22(5):404–413, 2005.

79

http://web.media.mit.edu/~hugo/publications/papers/BTTJ-ConceptNet.pdf
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.mactivity.com/xilinx/pw2003/workshops/presos/wsa3_nallatech.pdf
http://math.nist.gov/MatrixMarket/

[50] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Performance Evaluation and Design

Trade-offs for Network-on-chip Interconnect Architectures. IEEE Transactions on Computers,

54(8):1025–1040, August 2005.

[51] S. L. Scott and G. M. Thorson. The Cray T3E network: adaptive routing in a high performance

3D torus. In IEEE Hot Interconnects Symposium IV, 1996.

[52] C. Seitz. Let’s Route Packets Instead of Wires. In Proceedings of the 6th MIT Conference on

Advanced Research in VLSI, pages 133–137, 1990.

[53] C. Seitz and W.-K. Su. A Family of Routing and Communication Chips Based on the Mosaic.

In Proc. of 1993 Symposium on Research on Integrated Systems, 1993.

[54] C. L. Seitz. Mosaic C: An Experimental Fine-Grain Multicomputer. In A. Bensoussan and J.-

P. Verjus, editors, Future Tendencies in Computer Science, Control and Applied Mathematics:

Internantional Conference on the Occasion of the 25th Anniversary of INRIA, pages 69–85.

Sprinter-Verlag, December 1992.

[55] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri. LiPaR: A LightWeight Parallel

Router for FPGA based Networks on Chip. In Proceedings of the Great Lakes Symposium on

VLSI, 2005.

[56] H. Siegel. Interconnection Networks for Large-Scale Parallel Processing. Lexington Books,

Lexington, MA, 1985.

[57] C. D. Thompson. A Complexity Theory of VLSI. Technical Report CMU-CS-80-140, Depart-

ment of Computer Science, Carnegie-Mellon University, 1980.

[58] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V. George,

J. Wawrzynek, and A. DeHon. HSRA: High-Speed, Hierarchical Synchronous Reconfigurable

Array. In Proceedings of the International Symposium on Field-Programmable Gate Arrays,

pages 125–134, February 1999.

[59] L. G. Valliant. A Bridging Model for Parallel Computation. Communications of the ACM,

33(8):103, August 1990.

[60] D. Wingard. MicroNetwork-Based Integration for SOCs. In Proceedings of the ACM/IEEE

Design Automation Conference, pages 673–677, June 2001.

[61] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. The Programmable Logic Data Book-CD,

2005.

80

http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html

	Acknowledgements
	Abstract
	Introduction
	The Problem
	Concept of a Network-on-Chip
	Communication Patterns
	Outline

	Prior Work
	Interconnection Networks
	FPGA Packet-Switched NoCs
	NoC Topologies

	Background
	Flavors of Packet-Switching
	Deadlock
	Performance Analysis
	Serialization
	Network Bisection
	Network Latency

	Hardware
	Switch Design
	Primitives
	Split
	Merge

	Other Elements

	Topology
	Limited Bisection Networks
	Ring
	Mesh
	Switch Architecture
	Routing Algorithms
	Deterministic
	Adaptive
	Virtual Channels

	BFT
	Routing Algorithm

	Applications
	ConceptNet Spreading Activation
	Sparse Matrix-Vector Multiply
	Bellman-Ford Shortest Path
	Application Characteristics

	Methodology
	Tool Infrastructure
	Cycle Accurate Simulator
	Area Model
	Latency Model

	Evaluation
	Selection of Buffer Depth
	Impact of Topology
	Effect of PE Scaling
	Effect of Area Scaling
	Performance of Virtual-Channel-based Meshes
	Performance of Directional and Bidirectional Meshes
	Performance of BFTs and Meshes
	Explaining Quality of Performance
	Effect of Application Communication Requirements
	Universal Topology

	Comparison with Time Multiplexing
	Effect of PE Scaling
	Effect of Area Scaling
	Effect of Activity Factor
	Effect of Multiple Graph Steps

	Future Work
	Conclusions
	Bibliography

