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Plasmon-Enhanced Silicon Nanocrystal Luminescence for

Optoelectronic Applications

by Julie Suzanne Biteen

Abstract

On the path toward the realization of silicon-based optical emitters for integrated

microelectronics, this thesis studies the optoelectronic properties of silicon nano-

crystals as a function of their surface passivation and their interactions with plas-

monic materials. The first part of the thesis utilizes controlled oxidation exposures

and photoluminescence spectroscopy to verify previous theoretical and computa-

tional predictions of oxygen-related surface states that effectively narrow the en-

ergy band gap of small silicon nanocrystals. The focus of the second half of the

thesis is on experimental and computational studies of enhanced luminescence from

silicon nanocrystals in the near field of noble metal nanostructures.

Surface plasmon enhancement is a technique that has only recently been applied

to semiconductor nanocrystal luminescence. This thesis thoroughly investigates

the emission of silicon nanocrystals coupled to gold and silver nanostructures to

achieve a new level of understanding of the enhancement effect. By pairing silicon

nanocrystals to metal nanostructures, up to ten-fold increases in the luminescence

intensity are realized, concomitant with enhancements of the radiative decay rate,

the absorbance cross section, and the quantum efficiency. Moreover, coupling at

the plasmon resonance frequency is used to tune the nanocrystal emission spec-

trum. A computational exploration of these experimental observations indicates

that the enhancement effects can be ascribed to emission in the concentrated local

field that results from the excitation of metal particle plasmon modes. Finally,

the process of coupling silicon nanocrystal emitters to plasmonic metals is applied

to a silicon-nanocrystal light-emitting diode, and enhanced electroluminescence is

realized.
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Chapter 1

Introduction

1.1 Silicon-Based Photonics

As device dimensions decrease to ever smaller sizes, new miniaturization strategies

are sought. In 1965, Gordon Moore predicted that the number of transistors incor-

porated in a chip will double every 24 months,1 and, forty years later, device dimen-

sions continue to scale down accordingly. In addition to enabling the conveniences

afforded to us by today’s microelectronic devices, such as wireless phones and

personal computers, this miniaturization of electronics has led to improved speed

and performance, as well as to lower power consumption. As microcomponents—

or increasingly nowadays, “nanocomponents”—become smaller and more densely

packed, the traditional electrical interconnects between areas on a chip become in-

creasingly impractical. These wires are bulky, and heat dissipation resulting from

signal propagation along them causes the device reliability to suffer.

In the long term, traditional interconnect solutions will cease to be effective

in microelectronics design strategies.2 Optical interconnects provide a pragmatic

and efficient alternative for satisfying performance requirements by overcoming

propagation delay, power, and bandwidth limitations. Since transferring energy

via optical signals requires an on-chip emitter and detector, an important mate-

rials and process integration challenge in the semiconductors community is the

development of new technologies to perform these functions.
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The integration challenges for combining photonic and electronic components

on a chip are not trivial. Currently, silicon-based complementary metal oxide

semiconductor (CMOS) fabrication dominates the semiconductor world, and sili-

con microelectronics has benefited enormously from this economy of scale. Jack

Kilby said in 1976, “One of the great strengths of the integrated circuit concept

has always been that it could draw on the mainstream efforts of the semicon-

ductor industry,”3 and so too do microphotonics seek to profit from this already

existent infrastructure. Silicon-based waveguides, modulators, and detectors have

been realized, but the actualization of practical, efficient, CMOS-compatible silicon

light-emitting devices (LEDs) and lasers has yet to occur.

The purpose of this thesis is to examine the photophysics of silicon-based light

emitters. We will explore the novel possibility of tuning silicon nanocrystal emis-

sion through surface modifications and coupling to plasmonic metals, investigate

ways of enhancing the overall emission, and, finally, examine the potential for

integrating such bright, efficient emitters into electrically pumped devices.

1.2 Semiconductor Nanocrystal Optoelectronics

1.2.1 Silicon Nanocrystals

Silicon is the most prevalent material in the electronics world, not only because

of its abundance and low cost, but also because it has a high-quality, stable ox-

ide that provides excellent electronic passivation. However, due to its indirect

band gap, the electronic structure of silicon prevents this material from being a

strong light emitter. In indirect band gap semiconductors like silicon, there is a

mismatch in momentum space between the electron and hole states. To conserve

momentum, excitation and relaxation between the conduction band and valence

band extrema require the assistance of a crystal lattice vibration. Radiative re-

combination of excited charge carriers is therefore a three-body process, and, as

a result, it is much less efficient than the analogous two-body recombination in a

direct band gap semiconductor, where the conduction and valence band extrema
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are matched in momentum space. The low probability of radiative recombination

in indirect band gap materials favors non-radiative decay processes, and excited

electrons generally lose energy as heat, not emitted photons. These materials ex-

hibit only very faint luminescence, even at low temperatures, and this weakness

has traditionally prevented the desirable extension of silicon microelectronics to

silicon optoelectronics; LEDs and lasers cannot be produced from bulk silicon.

Hope for using silicon as a light emitter was resurrected in 1990, when Can-

ham discovered that porous silicon, which has nanometer-scale features, exhibits

efficient room-temperature photoluminescence at visible energies above the bulk

Si band gap of 1.12 eV.4, 5 Here, photoluminescence (PL) refers to the emission

of a photon upon the relaxation of an electron-hole pair (exciton) that has been

excited by some external light source. The relaxation energy of the charge carriers

is determined by the energy difference between the conduction and valence bands.

Since the discovery of room-temperature PL from porous silicon, considerable

effort has been devoted to the development of silicon nanostructure-based light

emission sources. The luminescence of Si nanocrystals has been studied in various

systems, from single nanocrystals6 to multilayered structures,7 and efficient electro-

luminescence has also been reported.8–10 Photoluminescent silicon nanostructures

have been fabricated by many methods, including porous etching,4 implantation of

Si+ ions,11 aerosol synthesis,12 rf co-sputtering of Si and SiO2,13 and chemical va-

por deposition of silicon suboxides.14 Though each system has unique advantages

and disadvantages, the ion implantation method, which creates a Gaussian profile

of excess Si in a SiO2 substrate that is subsequently annealed to nucleate and

grow nanocrystals, is a fully CMOS-compatible procedure. We therefore choose to

work on silicon nanocrystals produced by ion implantation in order to explore the

optoelectronics of this easily integratable system.

1.2.2 Quantum Dot Energetics

The origin of photoluminescence from silicon nanocrystals has been attributed to

excitonic emission in a quantum-confined system.15 When an exciton is created in
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a nanocrystal with dimensions smaller than the excitonic Bohr radius, the electrons

and holes are confined in real and reciprocal space. The Bohr radius of an exciton is

a material-specific property; in bulk silicon, this length is 4.9 nm.16 By disrupting

the crystal symmetry, quantum confinement causes a relaxation of the momentum

selection rules in the silicon nanocrystal. Radiative recombination is therefore

a much more efficient process in silicon nanocrystals than in bulk silicon, and

the emission efficiency skyrockets accordingly. Quantum-confined nanocrystals, or

quantum dots, based on a wide range of semiconductor materials, are now being

widely investigated as emitters, detectors, biological sensors, and solar cells; in

the present thesis, we focus on the application of silicon nanocrystals as optical

emitters for integrated photonics.

Quantum confinement has the effect of increasing the band gap of a material

relative to the bulk value. Therfore, silicon nanocrystals emit in the near-infrared

to visible range. In these systems, the emission of a photon upon the radiative

recombination of quantum-confined excitons occurs at an energy that depends on

the nanocrystal size, and the photoluminescence is size-tunable.17 An analytical

model, introduced by Brus in 1986, predicts that the quantum confinement effect

in nanocrystals scales with confinement radius, r. Neglecting higher-order terms,

the expected energy-size relationship in the simple reduced mass picture is18

Eg,nc(r) = Eg,bulk +
~2π2

2mred
r−2 − 1.8e2

4πε0ε
r−1 (1.1)

Here, Eg,nc(r) is the band gap of the nanocrystal, which increases from the bulk

value, Eg,bulk (1.12 eV for silicon), as r decreases. The relative dielectric constant

is given by ε, and the reduced mass is mred = (1/me +1/mh)−1, where me and mh

are the electron and hole effective masses, respectively. The dominant second term

in Eq. (1.1) is the localization energy, which scales as r−2, and the less important

third term scales as r−1 to account for the shielded Coulomb interaction between

electron and hole.
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1.2.3 Surface States on Silicon Nanocrystals

For an optical emitter, the quantum efficiency is defined as the probability of

radiative recombination following excitation. The efficiency of silicon nanocrystals,

which can decay through radiative and non-radiative pathways, is therefore given

by the ratio of the radiative decay rate to the total decay rate. As described in

Section 1.2.2, quantum confinement leads to an enhancement in the radiative rate.

In systems of silicon nanocrystals, one can additionally take advantage of the high-

quality oxide to passivate the surface and therefore eliminate many non-radiative

channels, such as dangling bonds and defect centers. This further enhances the

quantum efficiency by reducing the total decay rate.

However, the effect of the silicon nanocrystal surface structure cannot be ne-

glected. Indeed, despite the predicted essentially r−2 dependence of the nanocrys-

tal band gap in Eq. (1.1), several experimental studies have indicated that, al-

though the PL of silicon is indeed blue-shifted as its dimensions decrease, the shift

is smaller than expected.19, 20 In addition, a relatively wide range of experimental

PL measurements for small Si nanocrystals have been reported in the literature.

In the majority of systems that have been investigated, the silicon nanocrystals are

coordinated to oxygen at the surface, either because they are synthesized within a

SiO2 matrix or due to the rapid native oxidation of silicon surfaces in an aerobic

environment. It is therefore difficult to separate the role of these surface groups

from the intrinsic properties of the nanocrystals, but recent theoretical models

suggest that localized states at the surface of these materials can in fact account

for trends in experimental data.21–23 A complete understanding of this effect has

yet to be achieved.

1.2.4 Enhanced Luminescence

The radiative decay rate of silicon nanocrystals is typically found to be on the

order of 10−100 kHz. This is several orders of magnitude greater than the rate

of radiative recombination in bulk silicon, leading to extremely high quantum
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Figure 1.1: Comparison of emission wavelengths and decay rates for four different
semiconductor nanocrystals based on literature values. The data for Si, PbSe,
CdSe, and InAs are taken from references 24, 25, 26, and 27, respectively.

efficiencies (& 50%) in silicon nanocrystals.24 Unfortunately, despite their high

emission efficiency, the overall brightness of silicon nanocrystals is still limited.

This is true because, though the PL intensity of an emitter depends on the quantum

efficiency, it also depends strongly on the absorption cross section and the radiative

decay rate. Unfortunately, the cross section and decay rate in silicon nanocrystals

are still very low compared to those of dyes and direct band gap emitters.

This quandary is illustrated in Figs. 1.1 and 1.2. Based on a survey of the

semiconductor quantum dot literature, in Fig. 1.1 we compare the emission wave-

lengths and total decay rates of silicon nanocrystals24 to those of direct band gap

semiconductor nanocrystals (PbSe,25 CdSe,26 and InAs27) produced by colloidal

syntheses. The quantum efficiencies of these nanocrystals are not indicated in this

Figure; these range from 10 to 50%. The total power, P , emitted by a semicon-

ductor quantum dot is given by the product of the total decay rate, the emission

energy, and the quantum efficiency, i.e.,

P = Γexp × Eemission × Q (1.2)
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Figure 1.2: Emission power of four different semiconductor nanocrystals based on
the data in Fig. 1.1.

For each of the nanocrystal materials in Fig. 1.1, we therefore computed the emit-

ted power; this is given in Fig. 1.2. Here, it is clear that in order to compete with

such direct band gap quantum dots as CdSe and InAs, the emission intensity of

nc-Si must be enhanced by three orders of magnitude.

If one goal of the study of silicon nanocrystal luminescence is the realization of

a photoemitter for integrated circuits, then it is important to attain much higher

emission intensities. Several schemes for enhancing emission from a silicon-based

emitter have been proposed. Among these approaches are defect engineering using

silicon nanocrystals as sensitizers for secondary emitters, such as erbium ions,28, 29

and band structure engineering through alloying silicon to direct band gap mate-

rials like tin.30, 31 A more recent innovation has been the coupling of emitters like

silicon nanocrystals to nanostructured metals.

Since 1974, sensing applications have been taking advantage of roughened metal

surfaces to enhance the detected signal in Raman spectroscopy; this process is

known as surface-enhanced Raman spectroscopy (SERS).32 Though its origin is

not fully understood, the SERS effect is widely attributed to the coupling of a

molecular dipole to the highly concentrated electromagnetic field generated by a
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resonantly oscillating surface plasmon mode in the roughened metal surface.33 The

electromagnetic effects that gave rise to SERS also spawned interest in related top-

ics, including enhanced absorption and fluorescence in dye molecules near rough

metal surfaces.34 More recently, enhanced luminescence from semiconductor quan-

tum dots and wells has been reported.35–37 In the present thesis, we explore this

strategy of coupling semiconductor emitters to plasmonic nanostructured noble

metals, and extend the applications of plasmon enhancement to silicon nanocrys-

tal photoluminescence and electroluminescence.

1.3 Outline of Thesis

In this thesis, we perform a thorough investigation of the photophysical properties

of silicon nanocrystal (nc-Si) emitters as a function of their surface passivation

and their interactions with plasmonic materials. Experimental and computational

methods are used to further our understanding of silicon nanocrystal photonics,

and we characterize the photoluminescence and electroluminescence of these emit-

ters.

In Chapter 2, we investigate the effect of silicon nanocrystal surface passivation

on the electronic band gap. Using a selective etching technique to isolate the

nc-Si on a silicon substrate, we study the nanocrystal emission energy during

controlled oxidation. Based on these experiments, we identify a size regime, that

of nanocrystals with diameters . 2.8 nm, where oxidation leads to the presence

of an intergap surface state that decreases the emission energy. This reduction in

excitonic emission energy following oxidation is a first experimental verification of

the formation of an oxygen-related excitonic recombination state for very small

nc-Si. Using the same techniques that enabled the silicon nanocrystal surface

oxidation experiments, other procedures, including physical manipulations of the

nanocrystal density and chemical modifications of the nanocrystal surfaces, were

performed; these are described in Appendix A.

Our treatment of the electromagnetic effects that give rise to enhanced emis-
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sion upon coupling nc-Si to nanostructured metals begins in Chapter 3. There,

we introduce the physics of nanoparticle surface plasmon polaritons, describe the

theory of plasmonic field enhancement, and outline its connection to the radia-

tive properties of dipole emitters, which include semiconductor nanocrystals. We

present some full-field electromagnetic simulation results for lithographically at-

tainable metal nanoparticle array configurations, and, based on these computa-

tions, we make predictions regarding the tunability of these arrays as a function

of materials properties, dimensionality, and geometry.

Chapter 4 describes the first experimental realization of enhanced photolumi-

nescence from nc-Si. This is achieved by coupling silicon nanocrystals to nanopo-

rous gold, and varying the metal/semiconductor separation distance in a controlled

fashion. A four-fold, separation distance-dependent enhancement in PL intensity

is observed. To determine the source of the intensity enhancement, a detailed

investigation of the system dynamics is performed. The individual contributions

from enhancements in absorbance cross section, radiative decay rate, and quan-

tum efficiency are thus identified. An analysis of the luminescence data indicates

a local-field-enhanced quantum efficiency of 58% for nc-Si coupled to the nano-

porous gold layer. Some additional details about the theoretical model used to

deconvolute the ensemble measurements considered in Chapter 4 are elaborated

upon in Appendix B

Building on the plasmon-enhanced PL results of Chapter 4, the nanoporous

gold film is replaced in Chapter 5 by lithographically defined arrays of silver

nanoparticles. In contrast to nanoporous gold, these arrays have very sharp plas-

mon resonance peaks, which are identified by transmission spectroscopy, and the

resonances can be tuned with the particle diameter and the array pitch (center-

to-center spacing). The coupled nc-Si/metal nanoparticle emission is measured

by micro-photoluminescence spectroscopy, and the enhancement in PL intensity

is found to have a spectral dependence: the frequency of maximum nc-Si PL en-

hancement coincides with the Ag nanoparticle array plasmon resonance frequency.

Plasmon-enhanced photoluminescence is thus identified as a resonant process.
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The physics that lead to resonantly enhanced PL from nc-Si coupled to Ag

nanoparticle arrays are explored with full-field electromagnetic simulations in Chap-

ter 6. We solve Maxwell’s equations with finite-integral time domain computations

to study the systems investigated experimentally in Chapter 5. Our computational

treatment permits the examination of the exact system analyzed experimentally,

i.e., reasonably closely coupled cylindrical particles. For metal particles of a given

diameter arranged in arrays with a specific pitch, we find excellent agreement be-

tween the measured and calculated resonance frequencies. Furthermore, by inte-

grating the enhanced electromagnetic field over the plane of the nc-Si emitters, we

find that the calculated increase in field intensity corresponds well to the measured

photoluminescence intensity enhancement.

In Chapter 7, the concept of plasmon-enhanced photoluminescence is extended

to increased electroluminescence upon coupling to metal nanostructures. This is

done by arranging the nc-Si emitters in a field-effect light-emitting diode. By

pairing electrically pumped nc-Si with arrays of Ag nanoparticles, more than two-

fold emission enhancements are measured, indicating that enhanced luminescence

from nc-Si can be achieved for devices.

Finally, in Chapter 8, some general conclusions are drawn and we provide our

perspective for the future of silicon microphotonics.
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Chapter 2

Size-Dependent Electronic Surface States in

Silicon Nanocrystals

2.1 Introduction

Silicon nanocrystals (nc-Si) with diameters, d, less than 5 nm exhibit room-

temperature photoluminescence (PL)4 due to the recombination of quantum con-

fined excitons.17 Detailed assessments of the relationship between Si nanocrystal

size and band gap using self-consistent tight binding21 and Quantum Monte Carlo

(QMC)22 methods predict a continuous increase in band gap with decreasing di-

ameter in nanocrystals with diameters down to less than 1 nm. Experimental

measurements have confirmed that the excitonic emission energy of nc-Si increases

as the nanocrystal size decreases, but the increase is smaller than that expected

theoretically.19–21 This discrepancy suggests the presence of excitonic recombina-

tion through a localized electronic state whose energy level lies within the band

gap of the smaller nanocrystals.

Silicon nanocrystals are typically embedded in silicon dioxide or surrounded

by a native oxide layer, and theoretical models suggest that oxygen-related states

at the nanocrystal surface can produce intragap energy levels.21, 22 Wolkin et al.

theoretically evaluated the effect of a surface silicon-oxygen double bond (Si=O)

on the electronic band structure of a Si nanocrystal.21 Their semi-empirical com-

putations predicted that the energy difference between the conduction and valence



12

bands would increase with nanocrystal diameter roughly according to d−2, but

their calculations also predicted that, for nanocrystals with d . 3 nm, the Si=O

double bond would produce interface states that lie within the band gap, thereby

reducing the energy of emitted photons. Puzder et al. used QMC calculations for

small nanocrystals and interpolated to the bulk band gap with trends from density

functional theory to confirm the semi-empirical results; they additionally showed

that a variety of other surface terminations can produce deep-lying surface states

in the Si nanocrystal band structure.22 The emission energy of silicon nanocrystals

is therefore predicted to depend strongly on the number and nature of bonds on

the nanocrystal surface, and a better understanding of surface effects would permit

band gap engineering. The additional localized states that arise in the presence of

a Si=O double bond can also help to explain more recent reports of non-linear op-

tical effects in silicon nanocrystal systems.38, 39 Explaining such non-linear effects

requires invoking three- or four-level models for steady-state optical inversion; they

cannot occur in the presence of silicon conduction and valence bands alone. We

seek to test these interface-related excitonic recombination models experimentally,

in particular those related to the presence of oxygen. In this chapter, we use pho-

toluminescence (PL) spectroscopy to measure the exciton recombination energy

of Si nanocrystals in a well-controlled size range, d ∼ 2.5−3.4 nm (400−1000 Si

atoms), with and without passivation by an oxygen environment.

2.2 Experimental

2.2.1 Preparation of Silicon Nanocrystals in SiO2 Films and on

Bulk Si Substrates

Nucleation and Growth of Nanocrystals

Ensembles of nc-Si were produced by implantation of 5-keV Si+ ions to a fluence of

1.3× 1016 cm−2 into 15 nm thick silicon dioxide films that were grown by thermal

oxidation of lightly p-doped Si(100). According the Monte Carlo simulation pro-

gram TRIM,40 such implantations lead to a Gaussian depth distribution of silicon
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in the SiO2 matrix and produce a peak excess Si concentration of 14% at a depth of

10 nm. The implanted samples were annealed at 1100 ◦C for 5 min in Ar. Trans-

mission electron microscopy has previously revealed that this process produces

spherical nanocrystals,41 and in the present chapter, we utilize atomic force mi-

croscopy (AFM) on HF-etched samples to characterize the heights (and therefore

diameters) of the nanocrystals. The unetched samples were subsequently heated

in a 10% H2(g) in N2(g) forming gas for 30 min at 450 ◦C to eliminate emission

from dangling surface bonds and defect states in the SiO2 matrix.42

Following this synthesis, the nanocrystal sizes could be controlled with high-

temperature oxidation. For this purpose, the annealed, passivated samples were

annealed in a flow of 99.998% O2(g) at 800 ◦C. Previous reports have shown that

this method can be used to reduce the mean Si nanocrystal diameter in order to

tune the emission across the visible.43

Controlled Etching and Deposition

To access the surface of the silicon nanocrystals of all sizes, it was essential to

remove them from the SiO2 matrix in which they were formed. For this purpose,

a controlled etching procedure was developed. First, the embedded nc-Si samples

were cleaned by immersion in a solution of 5:1:1 H2O:H2O2:NH4OH at 80 ◦C for

10−20 min followed by a rinse in 18 MΩ·cm resistivity water. The nanocrystals

were subsequently removed from the SiO2 and deposited onto the silicon sub-

strate with a 40 s chemical etch in buffered hydrofluoric acid (7.2% HF(aq), 36%

NH4F(aq) v/v). Care was taken to hold the samples horizontally. This etching

procedure produced samples of Si nanocrystals physisorbed on a bulk Si wafer via

van der Waals interactions. The etch rate of the buffered HF etchant was ∼ 1

nm/s. Since the bulk Si substrate serves as an etch stop when etching with HF,

we chose to etch the 15 nm nc-Si-doped SiO2 for a relatively long etch time of 22 s

to ensure that the SiO2 layer was completely removed.

In the present chapter, we focus on the effect of the surface oxidation of these

nanocrystals on their optoelectronic properties. However, additional manipula-
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tions of the freestanding nanocrystals, including chemical surface treatments and

physical manipulations, were also performed, and these techniques are discussed

in Appendix A.

2.2.2 Optoelectronic Characterization

Photoluminescence measurements were acquired from samples maintained in a

chamber under a flow of 99.99% Ar(g) through a clear glass window. The samples

were excited by the λex = 457.9-nm line from an Ar+ laser with a power density,

Pex, of 60 mW/mm2, and emission was collected using a silicon charge-coupled

device detector (sensitivity range 200−1100 nm) cooled with liquid nitrogen to

−132 ◦C, in conjunction with a 27.5 cm focal length grating spectrograph. A 510

nm long-pass filter in front of the entrance slit was used to cut off scattered laser

illumination. PL spectra were obtained with a 60 s integration, and the spectrum

of a clean silicon wafer taken under identical alignment conditions and excitation

power was used to remove dark count signatures. The decay dynamics were probed

by modulating the photoexcitation source with an acousto-optic modulator at 250

Hz, and recording the PL with a GaAs photomultiplier tube (PMT) coupled to a

multichannel photon counting system. This system’s time resolution was < 50 ns.

2.2.3 Physical Analysis of Silicon Nanocrystals

The freestanding Si nanocrystals on Si(100) substrates discussed in this chapter

were suitable candidates for standard surface science analysis techniques. We re-

lied on atomic force microscopy (AFM) to verify the presence of Si nanocrystals

on the substrate, as well as to measure the nanocrystals’ heights and determine a

lower limit for the coverage of nanocrystals. Since a traditional contact mode AFM

tip will pick up and move small nanoparticles, we utilized non-contact mode AFM,

with a cantilever resonant frequency of ∼ 300 kHz, to scan our samples. Standard

gold-coated tips with a radius of . 10 nm were used, so a pair of nanocrystals in

close proximity to one another could not be resolved laterally. Still, the instru-

ment is accurate to ± 1 Å in the vertical direction; this technique could therefore
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precisely quantify the nanocrystal heights, and hence the diameters, since these

nanocrystals have been previously determined to be approximately spherical.41

The samples were also characterized by UHV scanning tunneling microscopy

(STM). This provided a means to analyze the nanorystals in an oxygen-free en-

vironment, as the pressure was maintained at 1 × 10−10 Torr. STM also gives

a greater lateral resolution than does AFM, ±1 nm rather than ±10 nm; this

technique is therefore a better method for measuring surface coverage.

To characterize the chemical nature of the samples in this chapter, we used

X-ray photoelectron spectroscopy (XPS) with an M-Probe surface spectrometer

(VG Instruments). The sample was excited by monochromatic (1486.6 eV) Al

Kα X-rays incident at 55 ◦ from the normal focused to a beam spot of 800 µm

×1500 µm. The emitted photoelectrons were collected by a hemisphere analyzer

at a takeoff angle of 55 ◦ from the normal. The system pressure was ≤ 1 × 10−9

Torr. Measured binding electron energies were referenced to the Fermi level of the

spectrometer.

Further characterization was performed using reflection high-energy electron

diffraction (RHEED). In this technique, 25.0-keV electrons are incident on the

sample at a glancing angle (∼ 1−5 ◦), and their diffraction pattern upon interaction

with the surface is recorded.

2.3 Results and Discussion

2.3.1 Embedded Silicon Nanocrystals

Figure 2.1(a) shows the room-temperature PL spectrum of the prepared nc-Si en-

semble. The large spectral width can be ascribed to the distribution of nanocrystal

sizes resulting from the nucleation and growth process, as well as to the signifi-

cant (50−100 nm) linewidths that are known to characterize even single silicon

nanocrystals at room temperature.6 The peak PL energy, Emax, of 1.60 eV in Fig.

2.1(a), when compared with calculations by Puzder et al.,22 corresponds to a mean

nanocrystal diameter, d0, of 3.4 nm. To obtain nanocrystal ensembles with slightly
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Figure 2.1: Normalized room temperature photoluminescence measurements on
nanocrystal samples embedded in 15 nm SiO2 [panels (a) and (b)], and immediately
after etching the SiO2 [panels (c) and (d)]. Panels (a), (b), (c), and (d) are the
spectra of Si nanocrystal ensembles with average diameter, d0, of 3.4, 3.3, 3.2,
and 2.9 nm, respectively. The absolute intensity of the emission in (a) and (b) is
20 times that in (c) and (d). The dashed lines are fits of the data to Gaussian
distributions. λex = 457.9 nm, Pex = 60 mW/mm2.
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Figure 2.2: 6 µm × 6 µm non-contact atomic force microscope image of the d0 =
3.2 nm etched sample in Fig. 2.1(c).

smaller mean diameters, the SiO2 film containing the embedded nanocrystals was

annealed for 20 min at 800 ◦C under O2. The resulting PL spectrum (Fig. 2.1(b))

was blue-shifted by 80 meV, and the corresponding diameter is 3.3 nm.22

2.3.2 Microscopy and Spectroscopy of Etched Silicon Nanocrys-

tals

To obtain even smaller nanocrystals and to isolate them from the SiO2 matrix,

the controlled etching procedure described in Section 2.2.1 was applied. Non-

contact atomic force microscopy (AFM) was used to examine these samples; this

technique can provide information about the nanocrystal diameters by measuring

their heights, and it can also give a lower limit on surface coverage. The AFM image

in Fig. 2.2 shows a scan of the d0 = 3.2 nm sample characterized in Fig. 2.1(c),

and indicates a coverage of ≥ 30 nanocrystals per µm2 and average nanocrystal

diameter of 2−4 nm.

The same samples were investigated by scanning tunneling microscopy (STM).

The STM image in Fig. 2.3(a) shows a 50 nm × 50 nm region of nc-Si on a
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Figure 2.3: (a) 50 nm × 50 nm scanning tunneling microscope image of the d0

= 3.2 nm etched sample. (b) Line profile along the cut indicated by the red
arrow in panel (a). After Fig. 2.6 of the thesis of Tao Feng, California Institute of
Technology.44
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Figure 2.4: Reflection high-energy diffraction (RHEED) pattern of randomly ori-
ented Si nanocrystals on a Si(100) substrate. The concentric circles, labeled on
the left, correspond to diffractions from the nc-Si, and the vertical streaks, labeled
at the bottom, correspond to diffractions from the Si(100).

Si substrate. This figure shows a dense distribution of nc-Si with a coverage of

1011−1012 cm−2. The line scan in Fig 2.3(b) is the height profile along the cut

indicated by the red arrow in Fig 2.3(a). STM can discern individual nanocrystals,

even when these have heights less than 1 nm.

Reflection high-energy electron diffraction (RHEED) was used to verify that the

small particles observed on the surface by AFM were indeed silicon nanocrystals.

Electron diffraction can distinguish between single-crystal and polycrystalline ma-

terials; in the present experiments, we expect the collection of randomly oriented

nc-Si to look like a polycrystalline silicon surface. We therefore anticipate that

the sparse layer of randomly oriented silicon nanocrystals on a Si(100) substrate

will have a diffraction pattern in RHEED that is a combination of polycrystalline

rings and silicon(100) lines. Figure 2.4 shows the result for a RHEED measure-

ment of diffraction along the (110) direction. In this figure, the three concentric

rings are the (111), (220), and (311) diffractions of the randomly oriented silicon

nanocrystals, and the three vertical streaks are the (01̄), (00), and (01) lines from

the Si(100) substrate.
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Figure 2.5: X-ray photoelectron spectrum for the Si 2p region of a freshly etched
sample of Si nanocrystals on an Si(100) substrate showing a single peak charac-
teristic of the Si0 oxidation state at 99.5 BeV and no evidence of a silicon oxide
signal at higher binding energies.

Upon removal from the buffered HF etching solution, the Si substrates with Si

nanocrystals were examined by X-ray photoelectron spectroscopy (XPS). The XP

spectrum of the Si (2p) region of a typical freshly etched sample is shown in Fig. 2.5.

In this region, the Si0 peak of bulk Si or Si-H occurs at 99.3 BeV, while silicon oxide

and suboxide peaks show in the range of 101−105 BeV.45 The spectrum in Fig. 2.5,

which contains a single peak at 99.5 BeV, demonstrates that the nanocrystals and

the Si surface were oxide-free to the limit of the instrument resolution (i.e., less

than 5% of a monolayer of oxide), implying that the nanocrystals’ surfaces were

hydrogen-terminated. To prevent oxidation, the nanocrystals were stored under a

flow of 99.99% Ar. When left in ambient air, the nanocrystal surfaces oxidized on

a scale of minutes, as determined by XPS.
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Figure 2.6: Photoluminescence spectra of a freshly etched sample [black curve]
and the same sample after 15 min of irradiation in air by the PL excitation source
[red curve]. Photobleaching in air causes a 3.2× decrease in the signal intensity.
λex = 457.9 nm, Pex = 60 mW/mm2.

2.3.3 Photoluminescence Spectroscopy of Etched Silicon Nano-

crystals

After etching, the intensity-normalized PL spectra of both samples (Figs. 2.1(c)

and (d)) exhibited a 140−150 meV blue shift relative to the spectra of the corre-

sponding embedded samples from which they were etched (Figs. 2.1(a) and (b)).

The corresponding average nanocrystal diameters are d0 = 3.2 nm (Fig. 2.1(c)) and

d0 = 2.9 nm (Fig. 2.1(d)). After etching, the widths of the PL spectra remained

in the range of 340−360 meV, indicating that the size distribution remained un-

changed from the embedded samples. The peaks were symmetric for all of the

measurements discussed in this paper. The reduction in diameter by 0.2−0.4 nm

produced by HF etching corresponds to the conversion of approximately two mono-

layers of Si (one on each side of the nanocrystal) to silicon hydrides as a result of

the etch process.

The absolute PL intensity for the etched samples was reduced by a factor of
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∼ 20 relative to that of their respective embedded precursors, which can be ex-

plained by a reduction in nanocrystal coverage during this process. After etching,

the average nanocrystal coverage, estimated from the implanted Si fluence, aver-

age nanocrystal diameter, and PL intensity decrease was in the range of 1011−1012

cm−2, i.e., one nanocrystal per 10−100 nm2 of substrate area. This upper limit is

consistent with the lower limit for coverage obtained from the AFM image in Fig.

2.2. The intensity stayed constant with time in air after etching, but decreased

upon photoexcitation in air. Figure 2.6 shows the PL intensity from a typical sam-

ple left in air immediately (black curve) and after 15 min of photoexcitation in air

ambient (red curve). The emission intensity decreases three-fold. All subsequent

PL measurements were therefore taken through the window of a chamber in which

the sample was stored under a flow of 99.99% Ar to prevent photobleaching.

To verify that the emission from the etched samples was excitonic in nature,

the photoluminescence decay lifetime was determined with time-resolved PL mea-

surements. The decay trace of a typical sample of etched nanocrystals, monitored

at the emission wavelength of 775 ± 20 nm, is shown in Fig. 2.7. The decay of

silicon nanocrystal emission intensity, IPL(t), is fitted with a stretched exponential

function,

IPL(t) = IPL,0 exp
[
− (t/τ)β

]
(2.1)

where IPL,0 is the initial PL intensity, t is the time, τ is the experimental decay

lifetime, and β is a parameter between 0 and 1 (β = 1 in the case of single

exponential decay) that depends on a host of factors including interactions between

neighboring nanocrystals, the presence of defect states, and intermittency in the

emission. The curve in Fig. 2.7 is characterized by β = 0.8 and a decay time of

τ = 16 µs that is consistent with excitonic emission from Si nanocrystals.46, 47

2.3.4 Effect of Oxidation on the Emission of Silicon Nanocrystals

To examine the effect of oxygen on nc-Si emission, samples were subjected to

short periods (30 s) of in situ oxidation in air (21−22 ◦C, 30−35% humidity). To
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Figure 2.7: Time-resolved photoluminescence measurement on a freshly etched Si
nanocrystal sample in Ar. The excitation source is turned off at time, t = 0, with
a response time of < 50 ns. The dashed line is a fit to stretched exponential decay,
as described in Eq. (2.1). λex = 457.9 nm, λdet = 775 ± 20 nm.

minimize pump-induced photo-oxidation, the nanocrystal oxidation was performed

in the dark. After each oxidation step, the sample chamber was refilled with Ar,

and PL data were recorded. Before any exposure to air, the d0 = 3.2 nm and

d0 = 2.9 nm samples in Figs. 2.8(a) and (b) have the spectra shown in panels Figs.

2.1(c) and (d), respectively; here, d0 is the initial mean diameter of the particles as

deduced from the relationship between the PL energy and the QMC theory results

in Ref. 22. Figures 2.8(a) and (b) depict the evolution of Emax with oxidation

time for these two samples, as determined from Gaussian fits to the PL spectra.

To study the excitonic recombination energy for even smaller nanocrystal sizes,

the sample with d0 = 3.2 nm of Fig. 2.8(a) was reoxidized in ambient air and

exposed to a second buffered HF etch. The PL spectrum and intensity of this

twice-etched sample was less spatially homogenous relative to the samples that

had only been etched once, presumably resulting from etch-induced nanocrystal

size distribution inhomogeneities. By selecting a particular location on the sample,

regions with different PL peak energies and thus different inferred mean nanocrys-
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tal diameters could be probed. The spectra labeled d0 = 2.8 nm and d0 = 2.5

nm in Figs. 2.8(c) and (d), respectively, were identified and probed using this ap-

proach. Care was taken to focus the exciting beam on a fixed spot throughout each

experiment so that any changes in luminescence intensity for a single experiment

were nominally due solely to changes within a given nanocrystal ensemble. The

error bars in Figs. 2.8(c) and (d) are larger than those in 2.8(a) and (b) due to a

significant decrease in emission intensity for these twice-etched samples.

For the samples in Figs. 2.8(a) and (b), as the oxidation time increased, the

emission energy increased monotonically, in accord with expectations for a con-

comitant decrease in nanocrystal diameter. In contrast, for the two nanocrystal

ensembles in Figs. 2.8(c) and (d), where d0 is smaller, the emission energy initially

increased, but then began to decrease after ∼ 7 min of oxidation.

The solid line that appears in both panels of Fig. 2.9 shows the predictions of

the QMC model of Puzder et al. for the emission energy of completely hydrogen-

terminated Si nanocrystals as a function of their diameter.22 For nanocrystals

with d & 3 nm, this model predicts that surface states should have little effect

on the excitonic recombination energy, and consequently, in this size regime, both

hydrogen- and oxide-terminated nanocrystals should exhibit PL emission at their

band gap energy. The monotonically increasing emission energies upon oxidation

in Figs. 2.8(a) and (b) indicate that the d0 = 3.2 nm and 2.9 nm samples fall in this

size regime. The QMC model was therefore used in conjunction with the PL data

of Figs. 2.8(a) and (b) to evaluate the nanocrystal diameter at each oxidation time

by constraining the observed Emax (from Figs. 2.8(a) and (b)) to the computational

trend line of Fig. 2.9. The resulting deduced decrease in nanocrystal diameter, ∆d,

as a function of air exposure time, t, is plotted for the d0 = 3.2 nm and 2.9 nm

samples in Fig. 2.10. The data are well-fitted by the logarithmic function,

∆d [nm] = 0.037 · ln (t [min] − 1.7) (2.2)

where t > 1.7 min. This logarithmic relationship is in accord with experiments on
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Figure 2.8: Time evolution of Emax over the course of ambient reoxidation. The
samples were etched at t = 0 min and transferred to an Ar flow chamber within
less than 1 min, where they remained during PL measurements; excitation and
collection were done through a fused silica window. λex = 457.9 nm, Pex = 60
mW/mm2.
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Figure 2.9: Fit of data from Fig. 2.8 to the QMC computations of Ref. 22 (solid
line) for samples of Si nanocrystals with 2.5−3.2 nm initial diameters, d0. (a)
The nanocrystal emission energies are constrained to the computed curve for the
emission energy of a silicon nanocrystal in the absence of surface states. (b) The
nanocrystal samples air exposure time is converted to size according to the rela-
tionship determined in Fig. 2.10. The stars represent the sizes at which, according
to calculations, one and six Si=O double bonds, respectively, are required to in-
troduce surface states.
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Figure 2.10: Relationship between size decrease and air exposure time derived
from comparing the air exposure time in Figs. 2.8(a) and (b) to the sizes in Fig.
2.9(a). The black squares and red circles correspond to the d0 = 3.2 and 2.9 nm
nc-Si in Figs. 2.8(a) and (b), respectively. The solid line shows a fit of the size
decrease, ∆d, to the logarithmic function, ∆d [nm] = 0.037 · ln (t [min] − 1.70).

the time-dependence of the room temperature growth of thin native oxide films on

bulk Si surfaces.48

The emission energies of the smaller-diameter nanocrystals clearly cannot be

constrained to the calculated curve of Fig. 2.9, because the PL was red-shifted as

the oxidation time increased (and presumably as particle size decreased). Instead,

since the samples in Figs. 2.8(c) and (d) were oxidized in the same way as the

samples in Figs. 2.8(a) and (b), (i.e., with 30 s intervals of exposure to air), all

samples were assumed to have the same logarithmic oxidation kinetics. The times

in Fig. 2.8(c) and (d) could therefore be converted to the diameters in Fig. 2.9(b).

This latter figure shows that, for the initial period of oxidation, the observed

PL energies for these smaller-diameter nanocrystals followed the calculated curve

for band-to-band emission, but once ∼ 0.1 nm of Si had been converted to ∼

0.3 monolayers of silicon oxide, the emission energies were red-shifted below the

expected band gap. These data are consistent with the formation of an (oxygen-

related) trap state in the Si nanocrystals having d0 < 2.8 nm.
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According to Puzder et al. and Wolkin et al.,21, 22 below a certain diameter, a

double-bonded surface group will introduce a deep-lying state that reduces the ex-

citon recombination energy. One candidate for the oxygen-related state indicated

by the data of Figs. 2.8 and 2.9 is therefore the Si=O double bond. Though there

is a significant barrier to making this bond, the formation of Si=O bonds has been

calculated to occur on a silicon surface by the photoexcitation of Si-OH (an ex-

pected species due to water vapor in the air), with a barrier to formation of ∼ 2.4

eV.49 The 2.7 eV photons used for luminescence measurements could drive such a

reaction process. The Si=O double bond has also been observed by Fourier trans-

form infrared spectroscopy as a metastable transient.50 Indeed, observation of PL

does not require the luminescent state to be long-lived, since exciton lifetimes in

Si nanocrystals at room temperature are on the order of tens of microseconds.43

Finally, we note that Puzder et al. have shown that while one Si=O bond will

produce a defect level only for nanocrystal sizes below ∼ 2.4 nm, multiple Si=O

bonds will lead to the emergence of deep-lying states for larger nanocrystal sizes.22

The star symbols on the drawn line in both panels of Fig. 2.9 indicate the minimum

diameters at which one or six Si=O bonds are expected theoretically to produce

a deep-lying state. The observed trap-related red shift in the present chapter

occurs between these two extrema; it can therefore be theoretically explained by

the binding of only a small number of double-bonded surface species.

2.4 Conclusions

In conclusion, the PL peak emission energy of Si nanocrystals with d0 ∼ 2.9−3.4

nm shows an increase in excitonic recombination energy upon oxidation-induced

size reductions, in agreement with calculations. For smaller nanocrystals (d0 ∼

2.5−2.8 nm), oxidation leads to an initial emission blue shift, but after the growth

of ∼ 0.3 monolayers of native oxide, a red shift is observed. The latter is consistent

with the formation of a theoretically predicted oxygen-related intraband surface

state. Selective etching of Si nanocrystal/SiO2 composites leads to the formation of
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controlled ensembles of isolated nanocrystals that display oxidation kinetics similar

to those of planar surfaces, making them available for future single-nanocrystal

studies.



30

Chapter 3

Plasmonic Enhancements of Semiconductor

Nanocrystal Emission

3.1 Introduction

The optical properties of small noble metal particles have attracted the attention

of physicists for hundreds of years.51, 52 Silver and gold nanoparticles interact very

strongly with incident visible illumination, and their absorption spectra demon-

strate clear differences from their bulk counterparts, including enhanced absorption

and spectral changes. These extraordinary properties can be explained by the exci-

tation of coherent free electron oscillations, or particle surface plasmon polaritons,

in the nanoparticles. As a result of the high polarizability induced by such modes,

a strong electric field develops about the particle surface. This enhanced local field

has been exploited for many diverse applications, among them, surface-enhanced

spectroscopy,32, 34, 53, 54 subwavelength optical propagation,55 higher harmonic gen-

eration,56 and targeted surface photochemistry.57

Studies of silicon nanocrystal (nc-Si) luminescence have long been plagued by

the weak emission intensity resulting from the low radiative recombination rates of

these emitters. In the remainder of this thesis, we therefore strive to take advantage

of the enhanced local field about metal nanostructures for the novel application

of engineering the decay rate and emission intensity of silicon nanocrystals. Mo-

tivated by the desire to enhance and manipulate the photoluminescence (PL) and
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electroluminescence (EL) of silicon nanocrystals, in the present chapter, we in-

troduce the concept of plasmon-enhanced quantum dot emission. In particular,

we explore the prediction of enhanced dipole emission in the vicinity of a metal

nanoparticle, we discuss the nature of particle plasmon modes, and we present cal-

culations that describe the enhanced local field about a resonantly excited metal

nanostructure.

3.2 Plasmon-Enhanced Emission

3.2.1 Theoretical Predictions of Enhanced Emission

Thirty years ago, spectroscopists remarked on the remarkable sensitivity of Ra-

man spectroscopy when studying molecules absorbed on metal surfaces.32, 53, 54

Since that time, enhancement factors up to 1014−1015 have been reported in the

literature, making SERS a convenient tool even for delicate measurements like

single-molecule spectroscopy, and surface-enhanced Raman spectroscopy (SERS)

has become an established analytical technique.58 Raman spectroscopy, a tech-

nique that detects vibrational modes through inelastic scattering events, is strongly

non-linear with respect to the electric field strength of the pump beam. Though

the interpretation of the enhancement effect remains somewhat controversial, the

bulk of the surface-induced enhancement observed in SERS is generally attributed

to an increase in the local electromagnetic field.33, 59, 60 Accordingly, this large

enhancement effect has generated a large body of interest in utilizing the powers

of surface enhancement for other spectroscopic applications that might take ad-

vantage of the increases in absorption and luminescence that are manifestations

of the enhanced local electromagnetic field about rough and nanostructured metal

surfaces.34, 61

In the present thesis, we focus on the potential that exists for using the en-

hanced local field about a nanostructured metal to increase the luminescence of

an emitter. The emission of a dipole in the vicinity of a metal particle has been

treated theoretically in many works.61–69 The majority of these studies focus on
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the problem of a dye molecule emitting in proximity to a spherical or ellipsoidal

metal nanoparticle, but the theory is quite general and thus can be easily extended

to the case of a semiconductor nanocrystal emitter near an arbitrary metal nano-

structure. Here, we make use of the formalism of Gersten and Nitzan,61 which

has been extended by Wokaun et al. to address fully radiationless energy transfer

quenching,62 and which has been restated more recently by Kümmerlen et al.63

An emitter in the near field of an excited metal nanoparticle will experience an

enhanced local field, E(ω) = L(ω)E0(ω), where L(ω) is the frequency-dependent

field enhancement. The origin and properties of such enhanced electromagnetic

fields will be addressed in Sections 3.3 and 3.4, and at the present, we simply

remark that L(ω) is a function that depends on the materials properties of the

metal particle and its environment, as well as on the specific size and shape of the

metal nanostructure and the distance between the emitter and the metal surface.

Due to the local-field enhancement, the luminescence of an emitter will be

modified upon its coupling to an excited metal nanoparticle, and the PL intensity

enhancement, ηPL, of this optical emitter is given by

ηPL(ωexc, ωPL) = ησ(ωexc)ηQ(ωPL)

= |L(ωexc)|2 ηQ(ωPL)
(3.1)

Here, the first factor reflects increases in PL intensity due to enhanced absorption,

ησ, at the excitation frequency, ωexc, and the second factor is the enhancement

in radiative quantum efficiency, ηQ; this latter term describes the variations in

emission resulting from changes in the radiative and non-radiative decay dynamics

at the emission frequency, ωPL.

The radiative quantum efficiency of an emitter is the ratio of the radiative

decay rate to the total decay rate along radiative and non-radiative pathways. In

the absence of the metal nanoparticle, the quantum efficiency, Q0, is then given

by

Q0 =
Γr,0

Γr,0 + Γnr,0
(3.2)
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where Γr,0 and Γnr,0 are the radiative and non-radiative decay rates of the emitter

in free space. Upon coupling to the metal nanoparticle, these rates are increased

by ∆Γr and ∆Γnr , respectively, and the quantum efficiency, Q′, becomes

Q′ =
Γr,0 + ∆Γr

(Γr,0 + ∆Γr) + (Γnr,0 + ∆Γnr)
(3.3)

The quantum efficiency enhancement is the ratio, ηQ = Q′/Q0.

As discussed in great depth by Gersten and Nitzan, the radiative decay rate of

a dipole emitter near a metal nanoparticle is a complex function of the nanoparticle

geometry, the position of the dipole relative to the nanoparticle, and the dielectric

environment.61 However, Kümmerlen et al. point out that for particles with di-

mensions that are small relative to the wavelength, only the dipolar plasmon mode

contributes significantly to emission. Therefore, since the dipole moment of the

coupled nanoparticle/emitter system, emitting at frequency ωPL, is proportional

to L(ωPL), the radiative decay rate of the coupled system is proportional to the

square of this enhancement factor, i.e.,63

Γr,0 + ∆Γr = Γr,0 |L(ωPL)|2 (3.4)

In determining the coupled system radiative rate with Eq. (3.4), the enhancement

factor, L, is evaluated at the emission frequency, ωPL.

Unfortunately, to experience high local fields, the emitter must be in close

proximity to the metal. As a result, in addition to the beneficial dipole-dipole

coupling effect that results in an enhanced radiative emission rate, the emitter is

also affected by the presence of higher-order modes, which are non-radiative. Such

radiationless energy transfers from the excited emitter molecule to higher-order

surface plasmon modes in the metal lead to an increase in the non-radiative decay

rate of the coupled system.62

For the case of an emitter very close to a metal nanoparticle, the metal surface

can be approximated as an infinite plane,63 and we can simplify our treatment

of the radiationless energy transfer process by considering it equivalent to the
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extensively explored case of the damping of an emitter near a planar metal film.70

In this small separation-distance limit, the change in non-radiative decay rate is

found to depend on the emitter/surface separation distance, d, and the free emitter

radiative rate, i.e.,63

∆Γnr = A
Γr,0

d3
(3.5)

where the amplitude, A, depends on the dielectric functions of the metal and the

embedding medium.

Given the functional forms of ∆Γr and ∆Γnr in Eqs. (3.4) and (3.5), the quan-

tum efficiency of the coupled system in Eq. (3.3) becomes

Q′ =
Γr,0 |L(ωPL)|2

Γr,0 |L(ωPL)|2 + Γr,0Ad−3 + Γnr,0

(3.6)

The quantum efficiency enhancement, ηQ = Q′/Q0, is then

ηQ =
|L(ωPL)|2

Q0 |L(ωPL)|2 + Q0Ad−3 + (1− Q0)
(3.7)

and the total emission enhancement in Eq. (3.1) is expressed by

ηPL = |L(ωexc)|2 ·
|L(ωPL)|2

Q0 |L(ωPL)|2 + Q0Ad−3 + (1 − Q0)
(3.8)

3.2.2 Experimental Observations of Plasmon-Enhanced Emission

By coupling an emitter to a field that is locally enhanced at the excitation or

emission frequency, emitter enhancements are predicted according to Eq. (3.8).

Such effects have been observed in many different systems. The first experimental

evidence of plasmon-enhanced emission was seen in 1980 by Glass et al., who

examined changes in absorption and emission from the dyes rhodamine B and nile

blue adsorbed on films of Ag nanoparticles.34 This work highlighted many of the

important features of the plasmon enhancement effect. Firstly, the dye absorption

spectrum was greatly enhanced upon coupling to the metal particles. Secondly,

when separated by a 3 nm polymethyl methacrylate (PMMA) spacer layer, the
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dye absorbance was still enhanced, but much less so. Thirdly, the fluorescence

intensities of each dye were enhanced in the presence of the metal nanoparticles,

and these intensities reached their maximum values when the Ag particle plasmon

resonance occured at the absorption wavelength of each specific dye. Finally, the

luminescence from the same dye molecules adsorbed on smooth, continuous metal

surfaces was heavily quenched.34

Many other studies of plasmon-coupled dye emission followed, including some

more recent single-molecule investigations.71–74 Through these studies, it has be-

come clear that, as predicted in Section 3.2.1, a competition between enhancing

(radiative coupling) and quenching (non-radiative coupling) accurately describes

the observed electromagnetic effects. At very small metal/dye separation distances,

fluorescence is quenched, but at some slightly larger optimal distance, radiative

coupling becomes dominant and fluorescence is enhanced.74

The plasmon-enhanced emission effect is not limited to the emission of dyes,

and indeed, coupling to metal surface plasmons has shown enhancements in the ra-

diative decay rates and emission intensities of semiconductor quantum wells.37, 75–77

More recently, in part spurred by reports of enhanced SERS signals for CdS quan-

tum dots that are coated by Ag nanoparticles,78 investigators have turned their

attention to plasmon-enhanced photoluminescence from semiconductor nanocrys-

tals. In 2002, Kulakovich et al. observed distance-dependent enhancement and

quenching of the PL emission from CdSe/ZnS core/shell nanocrystals coupled to

Au nanoparticles,36 and, in that same year, Shimizu et al. observed enhanced PL

emission from CdSe/ZnS core/shell nanocrystals on a rough gold film, concurrent

with a 103× enhancement in emission rate.35 It is therefore clear that this scheme

has great potential for enhancing the emission of silicon nanocrystals.
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3.3 Local-Field Enhancements about Metal Nanostruc-

tures

3.3.1 Plasmon Modes in Small Metal Nanoparticles

Illumination incident on noble-metal nanoparticles interacts strongly with them by

inducing coherent oscillations of the free electrons. These collective bound modes

are termed surface plasmon polaritons, and at the plasmon resonance frequency,

ωp, the coherent response is exactly π/2 out of phase with the applied external

field, and a large polarization is induced by surface charges. As the resonant field

builds up in the particle, a strong dipolar local field evolves in the vicinity of the

particle.79 It is this enhanced local field to which the electromagnetic enhancement

effects described in Section 3.2 are attributed. The field enhancement is strongly

tied to the plasmon mode, and the local field is therefore strongest at the plasmon

resonance frequency.

In a dielectric environment with dielectric constant, εm, the induced polariza-

tion, p, is proportional to the applied field, E0, i.e.,

p = εmαE0 (3.9)

The constant of proportionality, α, is a measure of the ease with which the metal

may be polarized. In the electrostatic limit of a very small spherical metal nanopar-

ticle, with radius, r, much smaller than the radiation wavelength, λ, the polariz-

ability, α, is given by80

α(ω) = 4πr3 ε1(ω) − εm

ε1(w) + 2εm
(3.10)

Here, ε1(ω) is the complex dielectric function of the metal; this varies strongly

with ω. The denominator of Eq. (3.10) approaches zero at the Fröhlich condition,

<{|ε1(ω)|} = −2εm (3.11)

and the polarizability is resonantly amplified. The frequency at which this occurs
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is the plasmon resonance frequency, ωp.

At this resonance frequency, the absorbance efficiency, Qabs, is also amplified

significantly. Again, for the case of a very small sphere, the absorbance efficiency

is given analytically by80

Qabs(ω) =
4r

λ

ε1(ω)− εm

ε1(w) + 2εm
(3.12)

At the plasmon resonance, charge is confined to a very small volume, and in

the small particle limit, the polarizability and absorbance cross sections are limited

only by the imaginary part of ε1(ω), which accounts for Ohmic losses. Strong

increases in plasmonic effects are therefore expected at the plasmon resonance

frequency.

3.3.2 More Complicated Metal Nanoparticle Systems

The analytical model described in Section 3.3.1 accounts only for small, isotropic

spheres in a homogeneous environment. Moreover, it is based on the quasistatic

approximation, where the electric field is assumed to be constant over the nanopar-

ticle volume. Additional consideration must be given to the analysis of more com-

plicated systems.

Larger Nanoparticles

As the dimensions of metal nanoparticles approach the wavelength of light, ad-

ditional factors must be considered to account for the experimental observation

that the local plasmon resonance frequency and amplitude depend strongly on

the particle diameter. For these larger particles, higher-order multipolar spherical

harmonic modes begin to affect the absorption and extinction spectra.81 Such

multipole modes are in general lossy and cannot contribute to the dipole-dipole

interaction enhancement effects described in this chapter. The dipolar plasmon

resonance itself is also not independent of particle size. Due to the finite ratio of

particle size to wavelength, the electrons cannot all oscillate in phase, and such
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retardation leads to a depolarization of the radiation across the particle surface.

Consequently, the dipolar resonance is shifted to lower energies as the particle

size grows.79 Finally, large particles also suffer from radiative damping, which de-

creases the dephasing time, T2 ∼ 5−10 fs. Since the field enhancement about the

plasmonic metal is directly proportional to T2, processes that dampen the plas-

mon mode will lead to smaller enhanced local fields and therefore smaller optical

enhancement effects.82

Anisotropic Nanoparticles

The formalism of Section 3.3.1 can be extended from spheres to anisotropic ellip-

soids. In this case, the single-dipole resonance of the sphere is split into several

plasmon modes, each with a specific directionality. Relative to a sphere of the

same volume, the long-axis mode will be red-shifted and the short-axis mode will

be blue-shifted.80

Coupling Between Closely Spaced Nanoparticles

In a chain or array of metal nanoparticles, the effect of particle interactions is de-

termined by the polarization induced in each particle due to the fields arising from

its neighboring particles.81 These interactions give rise to very intense local-field

confinement in the spaces between adjacent particles,83 and have also been shown

to permit waveguiding along particle chains.55 At very small particle spacings,

s, near-field dipolar interactions dominate; these have a s−3 distance dependence.

For the longer distances more typical of lithographically fabricated samples, neigh-

boring particles interact mainly through radiative far-field interactions that scale

as 1/s.79

Interactions between adjacent nanoparticles strongly affect the collective plas-

mon modes, and this result is highly dependent on the geometry of the particle

assembly.84 For chains of closely spaced particles with polarization parallel to the

chain, the plasmon mode red shifts with decreasing interparticle spacing due to the

constructive interference of adjacent nanoparticles upon forming this longitudinal
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mode. Conversely, for chains of closely spaced particles arranged perpendicular

to the direction of polarization, a transverse mode is excited. In such a mode,

neighboring nanoparticles oppose one another’s polarization, and this leads to a

blue-shifting of the collective plasmon oscillation with decreasing spacing.85

Finally, for two-dimensional arrays of nanoparticles, the plasmon mode is highly

dependent on the array geometry. At small separation distances, s, the above-

mentioned longitudinal red shifts are generally stronger than the transverse mode

blue shifts, leading to an overall red shift of the collective array plasmon with

decreasing s. However, the behavior changes for larger separation distances. As s

approaches λ/2π, retardation will prevent neighboring particles from oscillating in

phase. In this case, a blue shift of the longitudinal plasmon mode is expected. Such

retardation-related blue shifts are also predicted to occur for the longitudinal mode

of one-dimensional arrays of nanoparticles with very large separation distances.84

3.4 Electromagnetic Simulations of Lithographically At-

tainable Metal Nanoparticles

In this thesis, we are particularly interested in the plasmon modes of lithograph-

ically attainable metal nanostructures. Due to their relatively large sizes, non-

ellipsoidal shapes, and interparticle interactions, these structures are in general too

complex to treat analytically, and we therefore use electromagnetic computations.

In the present section, we discuss the properties of noble metal nano-assemblies

investigated by finite-integration time domain simulations.

3.4.1 Finite-Integration Time Domain Calculations

The simulations in this chapter and in Chapter 6 were performed by three-dimensional

full-field electromagnetic simulations utilizing finite-element integration techniques

to solve Maxwell’s equations.86 This method allows us to investigate metal cylin-

ders explicitly, rather than approximating them as oblate ellipsoids. Additionally,

the effects of retardation, radiative damping, and interparticle coupling are ac-
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counted for. Finally, implementing von Karman periodic boundary conditions

allows us to investigate infinite one- and two-dimensional arrays.

The samples simulated in the present chapter consist of assemblies of 20 nm

thick noble metal cylinders embedded in a medium with relative dielectric constant

ε = 1.6, arranged in the xz-plane. The dipolar plasmon mode of this assembly is

excited by illuminating the particle assemblies by a plane wave incident normal to

the plane of particles, along the y-axis. The wave is polarized in the x-direction.

After 75 fs, the incident plane wave is interrupted, and the amount of energy

absorbed by the plasmon mode can be quantified. In the absence of the applied

external field, the plasmon mode decays; this ringdown is observed for 100 fs, and

a Fourier transform of the time decay behavior gives the characteristic oscillation

rate of the mode; this is the plasmon resonance frequency.

3.4.2 Tunability of the Metal Nanoparticle Array Plasmon Reso-

nances

Choice of Noble Metal

Gold and silver are often used in experiments of metal nanoparticle plasmonics as

both have strong resonances in visible wavelengths. From a practical standpoint,

gold is desirable because of its proven stability to oxidation and corrosion. Still,

gold is plagued by d-sp electronic interband transitions that dampen the plasmon

mode, whereas in silver, there is a larger spectral separation between the plasmon

band and the interband transition edge. We therefore examined both of these

noble metals.

Using electromagnetic simulations, we explored the difference in plasmon res-

onance between two-dimensional arrays of silver and gold nanoparticles. In both

cases, we considered arrays of cylinders with diameter d = 165 nm, arranged in a

square lattice with pitch (center-to-center interparticle spacing), p = 400 nm.

The metals are approximated using a modified Drude model fitted to tabulated

data over the wavelength range of interest.87 The dielectric function of silver, εAg,
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as a function of radial frequency, ω, was given by the Drude relation,

εAg (ω) = 5.45− 0.73
ω2

b,Ag

ω2 + iωγAg
(3.13)

where the bulk plasmon frequency is ωb,Ag = 1.72× 1016 rad s−1, and the plasmon

decay rate is γAg = 8.35× 1013 s−1. Similarly, the frequency-dependent dielectric

function of gold, ωAu(ω), was

εAu (ω) = 10.0− 1.0
ω2

b,Au

ω2 + iωγAu
(3.14)

where ωb,Au = 1.35× 1016 rad s−1 and γAu = 1.25× 1014 s−1.

Our results for the spectral response of these arrays are shown in Fig. 3.1.

The silver array (solid blue curve) has its dipole plasmon resonance at 705 nm,

whereas the gold sample (dashed red curve) peaks at 790 nm. Despite the identical

geometries of the two samples, because of their different dielectric functions, the

plasmon resonant response of the silver nanostructure occurs at a higher energy

than that of its gold counterpart.

Plasmon Modes in Particles, Chains, and Arrays

The collective plasmon mode from a collection of coupled metal nanoparticle as-

semblies is predicted to be different from that of an isolated single particle. We

therefore used electromagnetic simulations to probe the effects of coupling particles

in infinite chains and arrays. In Fig. 3.2, we consider Ag cylinders with d = 165

nm arranged in four different configurations: (a) an isolated single particle, (b) an

infinite chain of particles aligned along the polarization direction, x, (c) an infinite

chain of particles aligned perpendicular to the excitation wave polarization, and

(d) an infinite two-dimensional array. In cases (b)−(d), the pitch is p = 400 nm.

Figure 3.2 displays the intensity of the electric field induced by the applied elec-

tromagnetic field. Here, four contour lines represent an order of magnitude change

in field intensity. It is clear that even at the relatively large separation distances
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Figure 3.1: The dipole resonance modes calculated for infinite two-dimensional
silver and gold nanoparticle arrays (d = 165 nm, p = 400 nm) are indicated by
the solid blue and dashed red lines, respectively. The gold resonance is red-shifted
from that of silver by 85 nm.
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considered in this problem, the neighboring particles are strongly coupled through

far-field interactions.

The spectral response of the arrays is given in Fig. 3.3. In this figure, the

isolated particle (black curve) has the lowest plasmon resonance energy (λ = 756

nm). As expected, the chain aligned perpendicular to the polarization direction

(green curve, λ = 731 nm) is blue-shifted relative to the single particle; this is

attributed to the excitation of a higher-energy transverse mode in such a chain.

At first glance it appears counterintuitive to observe that the spectral response

of the chain parallel to the polarization direction (red curve, λ = 719 nm) and

that of the two-dimensional array of particles (blue curve, λ = 711 nm), are blue-

shifted yet further. However, as described in Section 3.3.2, we can assign this

energy change to the collective retardation effects that become important at such

relatively large particle spacings.

Realistic Anisotropies

When preparing cylindrical Ag particles by electron-beam lithography, the shape

of the particles is determined by the stigmation and stability of the electron beam.

Slight imperfections in either of these metrics invariably lead to subtle anisotropies

in the particles. A deviation from a perfectly circular cylinder to a cylinder with

a cross section that is an arbitrary ellipsoid is predicted to give rise to two non-

degenerate dipole plasmon modes. We sought to determine the effect of typical

deviations from perfectly isotropic cylinders.

In Fig. 3.4, we consider four different infinite arrays of Ag cylinders with con-

stant pitch, p = 400 nm. Fig. 3.4(a) portrays isotropic cylinders with dx = dz =

155 nm. Anisotropies are introduced in Figs. 3.4(b) and (c), where the cylinders

are elongated along the polarization direction (panel (b), dx = 175 nm, dz = 155

nm) and in the perpendicular direction (panel (c), dx = 155 nm, dz = 175 nm).

Finally, Fig. 3.4(d) considers isotropic cylinders with dx = dz = 175 nm. The

contour lines in Fig. 3.4 show the electric field intensity induced in the plane of

the particles, where four lines represent an order of magnitude change in intensity.
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Figure 3.2: Instantaneous local-field intensities in the plane of assemblies of Ag
nanocylinders with d = 165 nm, subject to an incident wave with polarization along
the x-axis. (a) Isolated single particle, (b) infinite chain of particles aligned along
the polarization direction, (c) infinite chain of particles aligned perpendicular to the
excitation wave polarization, and (d) infinite two-dimensional array. In (b)−(d),
the pitch is p = 400 nm. Four contour lines represent an order of magnitude
change in the x-component of the field intensity. Each Ag assembly was excited
at a wavelength close to its resonance. Excitation wavelengths for arrays (a), (b),
(c), and (d) were 763, 737, 737, and 714 nm, respectively.
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Figure 3.3: Dipole resonance modes calculated for Ag nanocylinders (d = 165
nm, p = 400 nm) assembled in four different geometries. From highest to lowest
energy are the responses of the array (blue curve, 711 nm), the chain parallel to
the direction of polarization (red curve, 719 nm), the chain perpendicular to the
polarization direction (green curve, 731 nm), and the isolated particle (black curve,
756 nm).
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Figure 3.4: Instantaneous local-field intensity in the plane of Ag arrays with differ-
ent particle anisotropies. The pitch is fixed at 400 nm, and the diameters along the
two in-plane axes are: (a) dx = dz = 155 nm, (b) dx = 175 nm, dz = 155 nm, (c)
dx = 155 nm, dz = 175 nm, and (d) dx = dz = 175 nm. Four contour lines repre-
sent an order of magnitude change in the x-component of the field intensity. Each
array was excited at a wavelength close to its resonance. Excitation wavelengths
for arrays (a), (b), (c), and (d) were 714, 763, 714, and 750 nm, respectively.
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Figure 3.5: Dipole resonance modes calculated for Ag arrays with different particle
anisotropies. From highest to lowest energy, the diameters along the two in-plane
axes are: dx = 155 nm, dz = 175 nm (green curve, 707 nm), dx = dz = 155 nm
(black curve, 712 nm), dx = dz = 175 nm (blue curve, 743 nm), and dx = 175 nm,
dz = 155 nm (red curve, 756 nm).

The spectral response of the isotropic and anisotropic arrays is displayed in

Fig. 3.5. Here, the isotropic, d = 155 nm particles (black curve) show a dipole

resonance at 712 nm. Elongation of the particle in the direction perpendicular to

the polarization (green curve, dx = 155 nm, dz = 175 nm) yields no significant

change in the dipole resonance frequency (λ = 707 nm). However, elongation of

the particle along the direction of polarization (red curve, dx = 175 nm, dz = 155

nm) causes a much larger red shift of the particle dipole resonance, to λ = 756

nm. This is attributed to an increase in the particle aspect ratio in the polarization

direction, as well as to increased coupling between adjacent particles. Finally, an

isotropic particle with d = 175 nm (blue curve, λ = 743 nm) demonstrates a very

similar spectral response to that of the particle elongated in the x-direction.

Based on the results in Fig. 3.5, we can conclude that the collective plasmon

resonance mode of an array is more sensitive to anisotropies in the direction of
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the polarization. It is also important to note that the energy shifts induced by

these anisotropies are quite subtle effects, comparable to the effect expected for a

distribution in sizes of isotropic particles. Therefore, we do not expect the minor

anisotropies discussed in this section to influence our experimental results strongly.

3.5 Conclusions

This chapter described the phenomenon of plasmon-enhanced emission and used

analytical and computational techniques to explore the plasmon modes that give

rise to this electromagnetic effect. Though the plasmon resonance modes of metal

nanoparticles have been explored for over a hundred years, there is still much

to be learned about these oscillations and their manifestations. The possibility

for enhanced emission from silicon nanocrystals therefore motivates the next four

chapters of this thesis.
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Chapter 4

Enhanced Silicon Nanocrystal Emission from

Coupling to Randomly Nanostructured Gold

4.1 Introduction

As discussed in the previous chapters, silicon nanocrystals (nc-Si) have many de-

sirable properties as light emitters. These quantum dots exhibit room-temperature

luminescence with high internal quantum efficiencies, and the emission energy can

be tuned throughout the visible by varying the nanocrystal size88 or surface termi-

nation.21 However, due to the indirect band gap, Si nanocrystals suffer from low

radiative emission rates and absorbance cross sections that decrease the photolu-

minescence (PL) intensity relative to direct band gap semiconductors and organic

dyes. A method for overcoming this specific limitation and thereby increasing the

emission intensity from these nanocrystals is thus highly desirable. It has been

observed in compound semiconductor materials that coupling to a metal can lead

to enhanced emission from solid-state quantum dots35, 36 and wells.37

In this chapter, we show the first evidence of PL enhancement from nc-Si

coupled to metal nanostructures, and we report on a separation distance-resolved

study of the photoluminescence intensity, experimental decay rate, and effective

absorbance cross section. These measurements are used to deduce the radiative

rate and quantum efficiency of the coupled emitter/nanostructured metal system,

and our results allow us to make predictions for enhancements in an ideal system.
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4.2 Theory

The system described in the present chapter takes advantage of the plasmonic

nature of nanoporous gold (np-Au) to enhance the luminescence of silicon nano-

crystals. Small gold particles strongly concentrate electric fields,80 so we expect an

enhanced local field to be present about the ellipsoids and spheroids that make up

the np-Au film. A silicon nanocrystal in this enhanced field will have an altered

optical density of states, and steady-state analysis indicates that this will enhance

the decay rate of the nc-Si.61 Moreover, the local field near a metal is inversely

proportional to its radius of curvature, so the small ellipsoids in the np-Au will

concentrate the electric field much more strongly than a planar Au film. We re-

fer to the theory of plasmon enhancement, outlined in Chapter 3, to explain our

experimental observations.

The nanoporous gold contains a great assortment of feature sizes and shapes.

This roughness provides a fractal-like grating to couple energy of arbitrary fre-

quencies from Au plasmon modes to far field radiation. In addition, the variety

of spatial features gives rise to a range of different plasmon resonance energies.

Therefore, the film absorbs over a broad spectral range, and can therefore act as a

sensitizer for all nc-Si in its local field, irrespective of an emitter’s specific emission

energy.

4.3 Experimental

4.3.1 Preparation of Silicon Nanocrystals Coupled to Nanoporous

Gold

Si nanocrystals were produced by the implantation of 11-keV Si+ ions to a flu-

ence of 1.7 × 1016 cm−2 into a 1.6 mm thick fused quartz strip (Technical Glass

Products). According to Monte Carlo simulations performed with SRIM,40 such

an implantation yields a Gaussian depth distribution of implanted Si in the SiO2,

with a peak excess Si concentration of 10% at a depth of ∼ 20 nm. The Si-doped
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silica samples were cleaned by immersion in a solution of 5:1:1 H2O:H2O2:NH4OH

at 80 ◦C for 10 − 20 min, followed by a rinse in 18 MΩ·cm resistivity water. The

implanted quartz was then annealed in argon for 20 min at 200 ◦C and 20 min

at 450 ◦C to dry the surface, and then again for 30 min at 1000 ◦C to form nc-Si.

The samples were subsequently heated in a forming gas ambient (10% hydrogen

in nitrogen) for 30 min at 450 ◦C to eliminate emission from defect states in the

SiO2 matrix.42

After nanocrystal nucleation and growth, the surface of the 9 cm long strip of

nc-Si-doped quartz sample was etched in a 1:20 mixture of 48% HF in water in

a stepwise fashion. The etch rate was 0.25 nm/s, precisely calibrated by spectral

ellipsometry of an analogous sample of SiO2 on a Si substrate. Nine 2.5 nm deep

steps were etched using a computer-manipulated stepper-motor to precisely control

for step length (1 cm) and etch time (10 s). The 9 cm strip containing nc-Si-doped

fused silica at different depths was then split lengthwise in two, and the first half

was retained as a reference.

Subsequently, a film of nanoporous gold was prepared according to a method

developed by Erlebacher and coworkers.89 A 100 nm thick sheet of 12-carat gold

leaf (50:50 Au/Ag alloy; Sepp Leaf Products) was dealloyed by floating on a bath

of 70% nitric acid in water for 10 minutes. In this process, the selective dissolution

of Ag left behind a 100 nm thick nanoporous Au film. The nanoporous gold (np-

Au) film is then transferred to a bath of 18 MΩ·cm resistivity water via a graphite

roller. The so-formed nanoporous gold layer was finally adhered to the nc-Si-doped

silica surface without adhesive. Therefore, the Si nanocrystals in each step are at

a controlled distance from the np-Au film. The final sample is represented by the

schematic in Fig. 4.1, where D denotes the etch depth at each step.

4.3.2 Physical Characterization

The nanoporous gold film and the np-Au film/fused silica interface were character-

ized by scanning electron microscopy (SEM) with a LEO 1550VP Field Emission

SEM. Since SEM requires a conductive substrate, the surface of the fused silica
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Figure 4.1: Schematic of the sample consisting of Si nanocrystals (nc-Si) separated
from nanoporous gold (np-Au) in etched steps whose depths are represented by
the symbol D. Photoluminescence measurements are made from the transparent
side, as indicated by the blue arrow (photoexcitation at the wavelength, λex = 488
nm) and red arrow (emission detected at λdet).

samples was sputter coated with carbon to reduce charging. Additionally, samples

of nanoporous gold on lightly doped silicon were used to obtain images at higher

resolution.

A Sentech SE-850 spectral ellipsometer was used over the range of 300−820

nm to verify the step heights on the nc-Si-doped fused silica samples. Since pre-

cise measurements of thickness by ellipsometry require the presence of an opaque

substrate beneath the film being measured, these ellipsometry measurements were

performed on a silicon wafer with a 100 nm thick thermal SiO2 layer, which served

as an analog for the fused silica samples. For this purpose, the thermal-oxide-

coated silicon analog was processed simultaneously with the nc-Si-doped fused

silica samples during the stepwise etch described in Section 4.3.1. Since, at this

relatively low concentration of nanocrystals, the nc-Si-doped fused silica and the

thermal SiO2 have approximately identical etch rates in HF, a measurement of the

step heights on the thermal SiO2 analog is a good proxy for a measurement of the

step heights on the actual sample. Spectral ellipsometry with the Sentech SE-850

was also used to characterize the absorbance of the nanoporous gold film.
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4.3.3 Optical Characterization

Photoluminescence (PL) spectra were acquired under excitation from the λex =

488 nm line of an Ar+ laser focused to a ∼ 1 mm2 spot. The PL intensity was

measured using a charge-coupled device detector (sensitivity range 200−1100 nm),

cooled with liquid nitrogen to −132 ◦C, in conjunction with a 27.5 cm focal length

grating spectrograph. A dichroic filter that cuts off wavelengths below 510 nm was

used to eliminate scattered laser light from the measurements.

Time-resolved PL measurements were performed by chopping the 488 nm ex-

citation source with an acousto-optic modulator (AOM) at a frequency of 250 Hz.

Photoluminescence emission at wavelengths of λdet = 780 ± 20 nm was selected

with the spectrograph, and this PL emission was recorded with a GaAs photomul-

tiplier tube in conjunction with a multichannel photon counting system. The time

resolution of the system was ≤ 50 ns. PL measurements were made by exciting the

nc-Si and collecting emission through the transparent side of the samples, as indi-

cated by the arrows at the bottom of Fig. 4.1, and the reference sample was laid

nanocrystal-side down on a polished silicon substrate to account for any reflection

effects in the coupled np-Au/nc-Si sample.

4.4 Results and Discussion

4.4.1 Physical Characteristics of the Nanoporous Gold/Silicon

Nanocrystal Sample

Of great importance for understanding the physics of the coupled metal nanostruc-

ture/semiconductor emitter system investigated in this chapter is the ability to

carefully control the separation distance between the nc-Si and the np-Au. Before

exposure to HF, the center of the nc-Si distribution is 19.2 nm beneath the fused

silica surface. The purpose of the stepwise etch, then, is to produce macroscop-

ically accessible mesas with a constant mean nc-Si depth that steadily decreases

from the initial 19.2 nm. The results from an ellipsometric study of the thermal

SiO2 on Si analog described in Section 4.3.2 are shown in Fig. 4.2. This map of
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Figure 4.2: Step thicknesses measured by mapping the etched sample with spectral
ellipsometry, showing nine 1 cm wide steps, each one uniform within ± 0.2 nm
across the majority of its length.

thicknesses along the length of the etched SiO2 film demonstrates that the etching

procedure produced nine 1 cm wide steps, and that each step was uniform within

± 0.2 nm across the majority of its length. The results from ellipsometry indicate

that, when the np-Au is adhered to such a stepped sample, at each gradation it is

brought ∼ 2.5 nm closer to the center of the nc-Si distribution.

As indicated in Section 4.3.1, the np-Au layer is affixed to the nc-Si doped

silica by hydrophilic interactions alone, without any additional adhesives. Even

given the flat gradations produced by the stepwise etch procedure, constant, well-

characterized metal/semiconductor separation distances can still only be achieved

if the np-Au film is in close contact with the fused silica substrate. Scanning

electron microscopy (SEM) was used to verify that this condition was indeed true.

Figure 4.3 shows an SEM image of the fused silica/np-Au interface, taken at 100kx

magnification. This image has a low resolution due to the insulating silica. Still,

the SEM shows that the metallic film is in close contact with the fused silica layer.

It also indicates that the np-Au film is 100 nm thick.

Despite the fact that the sample imaged in Fig. 4.3 was sputtered with carbon,
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Figure 4.3: SEM image of np-Au film on nc-Si-doped fused silica at 100kx magni-
fication showing that the np-Au film is 100 nm thick and in close contact with the
SiO2 substrate.

Figure 4.4: SEM image of np-Au film on Si substrate at 50kx magnification showing
the fine structure of the np-Au film in cross section.

the fused silica layer is an excellent insulator and therefore subject to charging

in the SEM. To obtain higher resolution images of the np-Au film, we therefore

prepared samples of np-Au films on lightly doped silicon wafers. Fig. 4.4 shows the

SEM image of such a sample in cross section, taken at 50kx magnification. The in-

troduction of the conductive silicon substrate permits the imaging of much smaller

features, and the porous nature of the np-Au film becomes clearly discernable.

The fine features of the np-Au film are best studied with a plan-view SEM

image of the film’s top surface. Figure 4.5 shows that the selective dissolution of

Ag in nitric acid in Section 4.3.1 leaves behind a nanoporous gold film composed
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Figure 4.5: Plan view SEM (100kx magnification) of the np-Au surface showing
features on the order of 10 nm.

of approximately 50% Au and 50% voids. From this 100kx-magnification SEM

image, the gold feature dimensions are determined to be on the order of 10 nm,

and we see that the features range from spheres to prolate spheroids with aspect

ratios up to ∼ 1:3.

4.4.2 Evaluation of the Distribution of Silicon Nanocrystals by

Photoluminescence Spectroscopy

Monte Carlo calculations predict that the 11-keV Si+ ion implantation energy

chosen in this experiment gives a Gaussian implantation profile with mean Si+

depth of ∼ 20 nm. The Gaussian Si+ ion implantation profile used to produce

the nc-Si sample has been previously observed to give a Gaussian distribution

of nc-Si concentrations, in which larger nanocrystals are abundant at the center

of the distribution, where a greater Si excess exists, and smaller nanocrystals lie

mainly in the tails.90 The stepwise etched reference (no np-Au) sample provides

a good platform for characterizing the actual distribution of nanocrystal sizes and

concentrations in our samples; in contrast to imaging with microscopy, this method
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has the advantage of detecting only the optically active nc-Si.

The triangles in Fig. 4.6(a) shows the PL intensity, IPLref , of the reference

sample integrated over all wavelengths as a function of etch depth, D, in the range

0−20 nm. With each etch step, the top 2.5 nm of the nc-Si distribution is removed,

and IPLref (D) decreases accordingly. The dashed line in Fig. 4.6(a) is a fit of the

decreasing PL intensities to the integral of a stepwise-etched Gaussian distribution.

The emission intensities are consistent with an initial nc-Si distribution, Ntotal,

given by

Ntotal(d) ∝ exp
[

−2
(14.1)2

· (d − 19.2)2
]

(4.1)

where d is the distance from the unetched surface. This Gaussian distribution is

centered at a depth of 19.2 ± 0.1 nm from the unetched surface, and it has a width

of 14.1± 0.2 nm. The blue line in Fig. 4.7 illustrates this result. The large, 14.1 nm

distribution width in Eq. (4.1) indicates that the optical phenomena reported in

this chapter contain contributions from Si nanocrystals strongly coupled to np-Au

as well as from non-interacting nanocrystals much farther away from the np-Au;

the quantitative analysis in Appendix B considers such distribution effects.

The sizes of the Si nanocrystals within the Gaussian distribution of nc-Si were

inferred from the variation of the average PL emission wavelength with D (not

shown), and the average nanocrystal size was found to be depth-dependent. The

measured trends confirm previous reports that smaller nanocrystals, characterized

by their bluer emission, form in the wings of the concentration distribution, while

bigger nanocrystals, which have redder emission, are more prevalent toward the

center.90

For the measurements in this chapter, it is desirable to characterize the emission

from a specific size of Si nanocrystals. We select nanocrystals that emit at 780 ±

20 nm. Within the Si nanocrystal ensemble, those emitting at 780 nm are of an

intermediate size, and we therefore expect them to have a bimodal concentration

profile about the d = 19.2 nm distribution center. The squares in Fig. 4.6(b) show

the dependence of the PL intensity on D for emission at this specific detection
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Figure 4.6: PL intensity of the reference sample as a function of etch depth, D.
(a) PL intensity integrated over all wavelengths. (b) PL intensity detected at 780
± 20 nm only.
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Figure 4.7: Depth distributions of optically active silicon nanocrystals in fused
silica as inferred from the PL intensity variation with depth. Blue curve: Distri-
bution of all nanocrystals. Red curve: Distribution of nanocrystals emitting at
780 ± 20 nm only, described by the sum of two Gaussians as in Eq. (4.2).

wavelength range, λdet = 780 ± 20 nm. The dashed line in this figure is a fit to the

integral of a distribution that is the product of the total nanocrystal distribution,

Ntotal, with the sum of two Gaussian distributions, peaking at 9.6 and 28.8 nm,

respectively. This 780 nm emitter nanocrystal distribution, N , is given by

N(d) ∝ Ntotal(d)×
{

exp
[

−2
(7.05)2

· (d− 9.6)2
]

+ exp
[

−2
(7.05)2

· (d− 28.8)2
]}

(4.2)

where d is the distance from the unetched fused silica surface. The bimodal red

curve in Fig. 4.7 plots the trend in Eq. (4.2). Given this calculated distribution, it

then becomes possible to take the etch depth, D, as a measure of the np-Au/nc-Si

separation distance.
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4.4.3 Ellipsometric Study of the Nanoporous Gold Film Extinc-

tion

The nanoporous gold film was characterized optically by ellipsometry. Spectra

of the transmission, T , and reflection, R, were used to calculate the absorbance

spectrum, A = 1 − (T + R). Based on the np-Au film thickness of 100 nm,

measured by SEM, the extinction cross section spectrum in Fig. 4.8 (red line) was

derived from this measured absorbance, assuming, also based on SEM data, that

the average np-Au particle in the 50% Au/50% air film is a sphere of radius 10

nm. In Fig. 4.8, the np-Au film has a broad extinction spectrum that shows a peak

between 300 and 400 nm, and a tail that decreases with increasing wavelength

through most of the visible spectrum. A 100 nm thick film of continuous Au

deposited on SiO2 by evaporation was also studied with the Sentech SE-850, and its

transmission and reflection spectra were used to determine its absorbance spectrum

(not shown). Though the absorbance cross sections of both np- and bulk Au peak

at similar wavelengths, the percent absorbance of np-Au is more than three times

that of planar bulk Au throughout the visible, and np-Au absorbs over a broader

wavelength range than bulk Au. According to Mie-Gans theory,80 the measured

np-Au extinction cross section in Fig. 4.8 is consistent with the aggregate surface

plasmon resonance response for a continuum of features including Au spheres and

spheroids in air and spherical and spheroidal voids in gold, which corresponds to

the morphology inferred from the plan view SEM image in Fig. 4.5.

At excitation wavelengths in the range considered in Fig. 4.8, the silicon nano-

crystal absorbance cross section at an emission wavelength of 780 nm has been

measured by Garcia et al.91 (solid triangles), Kovalev et al.92 (solid squares),

and the present work, Section 4.4.4 (open circle). The extinction cross section of

np-Au is much higher than that of nc-Si over this whole spectrum; for visibility,

the latter is magnified by a factor of 20 in Fig. 4.8. The trend in Si nanocrystal

absorbance cross sections is fit to a decreasing exponential (blue line), and it is

found that the decreasing Si nanocrystal cross sections obey a trend similar to the

np-Au cross sections, but that np-Au has a much larger absorbance cross section
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Figure 4.8: Red line: extinction cross section of np-Au as a function of ab-
sorbance wavelength. Blue line: fit to nc-Si absorbance cross section as measured
at λdet = 780 nm in reference 91 (solid triangles), reference 92 (solid squares), and
the present work (open circle). At the pump wavelength, λex = 488 nm, used in
this experiment, the nanoporous gold film has an extinction cross section that is
7000 times greater than that of nc-Si.
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than Si nanocrystals at all wavelengths investigated. For example, at the excita-

tion wavelength, λex = 488 nm, used in this experiment, the cross section of the

np-Au film is four orders of magnitude greater than that of silicon nanocrystals.

The np-Au can therefore act as a sensitizer for nc-Si, thereby increasing its effec-

tive absorbance cross section,61 whether excited directly by a photon or indirectly

by a surface plasmon.

4.4.4 Photoluminescence Measurements of the Nanoporous Gold/

Silicon Nanocrystal System

Variations in Photoluminescence Spectrum

Typical PL spectra from the reference and coupled np-Au/nc-Si samples are re-

ported in Fig. 4.9 (black and red lines, respectively) for an etch depth, D = 5 nm,

and for an excitation power density, Pex = 50 mW/mm2. The PL intensity of the

coupled sample is slightly blue-shifted with respect to the reference sample, but

the most notable feature is the increase in emission intensity in the np-Au/nc-Si

sample relative to the reference.

We define the photoluminescence (PL) intensity enhancement, ηPL(D) at depth

D, as the ratio between the PL intensity of the np-Au/nc-Si coupled sample,

IPLnpg(D), and the PL intensity, IPLref (D), of the reference sample, i.e., ηPL(D) =

IPLnpg(D)/IPLref (D). In Fig. 4.10, we report the magnitude of this enhancement

integrated over all emission wavelengths, as a function of D, for two different pump

powers. The red circles show the PL enhancement at a low pump power, Pex = 50

mW/mm2. We find that ηPL is greater than one (i.e., IPLnpg > IPLref ) for all D,

and there is a maximum PL enhancement of ∼ 4 when 7.5 nm < D < 15 nm.

However, IPLref and IPLnpg also vary with pump power. The dependence of

IPLref and IPLnpg on Pex at D = 10 nm, displayed in Fig. 4.11, shows that IPLref

(solid squares) increases linearly with Pex up to ∼ 120 mW/mm2, and then grows

sublinearly with further increases in Pex, finally achieving its saturated intensity

at Pex ∼ 250 mW/mm2. The open circles in Fig. 4.11 show that for the coupled
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Figure 4.9: Typical PL spectra for the reference (black) and coupled np-Au/nc-Si
(red) samples, at D = 5 nm and Pex = 50 mW/mm2.

sample, IPLnpg increases linearly with Pex to ∼ 170 mW/mm2, and does not fully

saturate for any value of Pex, up to the highest experimentally attainable pump

power of 417 mW/mm2. Similar trends were observed for all values of D, and the

difference between the reference and coupled samples was most pronounced for D

between 7.5 and 12.5 nm. Due to the reduced saturation effects in the coupled

np-Au/nc-Si sample, the enhancement ηPL is more pronounced at higher pump

powers: ηPL at Pex = 400 mW/mm2 is plotted in the blue squares in Fig. 4.10; at

this pump power, ηPL is larger than it was at the lower power, and peaks at ∼ 7.5

when D = 7.5− 10 nm.

It is interesting to consider the role played by the nanoporous gold in this

system. As was seen in Fig. 4.8, the np-Au film has an absorbance that peaks at

wavelengths considerably shorter than the Si nanocrystal emission, itself centered

at ∼ 780 nm. For the total PL intensity enhancements in Fig. 4.10, emission

enhancement is then a primarily non-resonant process, which is predicted to be

much weaker than a resonant one.61 Still, the existence of nanostructure in the
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Figure 4.10: The enhancement in PL intensity, integrated over all emission wave-
lengths, was measured as a function of etch depth at Pex = 50 mW/mm2 (red
circles) and 400 mW/mm2 (blue squares).

Figure 4.11: Total PL intensity integrated over all wavelengths, as a function
of pump power, Pex, at etch depth, D = 10 nm, for the reference sample (closed
squares) and coupled sample (open circles), and fit of first data points (solid curves)
to linear trends from which the reference sample deviates to a greater degree than
the coupled sample as a result of saturation effects. The points at which saturation
begins in the reference and coupled samples are indicated by the dashed black and
red lines, respectively.
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porous gold is important. Indeed, we found that, for all separation distances, upon

replacing the np-Au film by a film of continuous Au, the luminescence intensity

was decreased relative to an uncoupled reference sample, whereas luminescence

from nc-Si near nanoporous gold was never reduced from the reference value.

According to the absorbance spectrum of np-Au in Fig. 4.8, we expect reso-

nantly enhanced emission to be possible only in the case of the smallest (bluest)

nanocrystals in the nc-Si ensemble. Since resonant enhancement effects are pre-

dicted to be much stronger than non-resonant contributions, we expect that even

if a very small number of emitters are resonantly coupled, their emission should

be disproportionately intense, and therefore detectable. We typically found in our

samples that the enhanced np-Au/Si nanocrystal sample emits with a PL spec-

trum with a peak that is slightly blue shifted relative to the reference PL spectrum,

and that the peak width is broadened. This is indeed consistent with the smallest

nanocrystals experiencing greater emission enhancement than larger nanocrystals.

Variations in Photoluminescence Dynamics at a Single Emission Wave-

length

To understand the origin of the PL enhancement better, we fix the detection wave-

length at λdet = 780 ± 20 nm, thus focusing our investigation on a precise Si nano-

crystal size, since the nc-Si PL wavelength is size-dependent. We also select the

low excitation power regime by restricting measurements to Pex ≤ 100 mW/mm2.

In Fig. 4.12, the PL intensities measured at λdet = 780 nm for both the reference

(squares) and the np-Au/nc-Si coupled sample (circles) are reported as a function

of D for Pex = 50 mW/mm2. From these measurements, the enhancement, ηPL

at λdet = 780 nm, is calculated; this ratio is reported in the red triangles of Fig.

4.13. Interestingly, the PL intensity enhancement is > 1 for all the etching depths

and has a maximum value & 4 at D = 10 nm. There is also evidence of a rising

tail at D = 20 nm due to the bimodal distribution of nanocrystal concentrations

outlined in Fig. 4.7. The green line in Fig. 4.13 is the fit of the measured ηPL(D)

to a model described in Appendix B. This model accounts for the spatial distri-
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Figure 4.12: PL intensities at 780 nm vs. etch depth, D, for the reference (squares)
and coupled np-Au/nc-Si (circles) samples.

bution of nanocrystals in the sample, the r−6 decay of the enhanced local field,

which gives rise to enhancements with metal/emitter separation distance, r, and

emission quenching at very small separation distances.

It is clear that the presence of the np-Au layer in proximity to the nc-Si plays

a crucial role in determining the optical properties of the emitting centers. To

understand the physical origin of the increase in luminescence intensity, we begin

by noticing that, for a given photon flux, φ, the PL intensity of n optically active

emitting centers is directly proportional to the product of the number of excited

centers, n∗, and the radiative decay rate, Γrad. In particular, under steady-state

conditions, an analysis of the two-level system allows us to express this relationship

as

IPL ∝ n∗ · Γrad =
σφ

σφ + Γexp
· n · Γrad (4.3)

where σ is the excitation cross section, and the experimental decay rate, Γexp =

Γrad+Γnr , comprises the radiative as well as the non-radiative de-excitation paths.

As shown in Fig. 4.11, non-radiative recombination processes such as Auger

recombination are induced by high pump powers. In the low-excitation regime,
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Figure 4.13: PL intensity enhancement, ηPL, measured at 780 nm as a function
of etch depth, D (triangles). The solid line is a fit to the data using a model that
accounts for the spatial distribution of Si nanocrystals in Fig. 4.7 and the enhanced
local-field that decays as r−6 with separation distance. The solid line is a fit to
the data using the model described in Appendix B, which accounts for the spatial
distribution of Si nanocrystals and the decay of the enhanced local field.
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however, nc-Si is not plagued by such effects, and we thus perform the remainder

of the measurements in the present chapter with low power density excitation. In

this regime, Eq. (4.3) reduces to

IPL ∝ n · σφ

Γexp
· Γrad (σφ � Γexp) (4.4)

This equation indicates that, for a fixed number of optically active centers and a

constant photon flux, the PL intensity depends on measurable physical quantities

such as σ and Γexp, as well as on the radiative emission rate, Γrad, whose value is

mostly unknown. Since, for a given etch depth, φ and n are identical for both the

reference and the np-Au/nc-Si coupled samples, the PL intensity enhancement,

ηPL(D), can be formulated based on Eq. (4.4) as follows,

ηPL =
IPLnpg

IPLref
=

(
σnpg

σref
· Γrad·npg

Γrad·ref
· Γexp·ref

Γexp·npg

)
=

ησ · ηΓrad

ηΓexp

(σφ � Γexp) (4.5)

Here, the enhancements, ησ(D) = σnpg(D)/σref(D), ηΓrad
(D) = Γrad·npg(D)/

Γrad·ref (D), and ηΓexp(D) = Γexp·npg(D)/Γexp·ref (D) are increases in the effec-

tive excitation cross section, the radiative decay rate, and the experimental decay

rate, respectively, at etch depth D.

The effective excitation cross sections of the reference and coupled np-Au/nc-Si

samples, σref and σnpg , were determined from measurements of the PL rise time at

λdet = 780 ± 20 nm with a technique derived from the steady-state relationships

presented above.92, 93 The rise time, τon, defined as the average 1/e time required

for the PL intensity to reach its saturation value, is inversely related to σ, according

to the expression

1/τon(φ) = σφ + Γexp (4.6)

The turn-on rate, Γon = τon
−1, was measured as a function of the photon flux,

φ, in the reference and np-Au/nc-Si samples at each D; the results for Γon(D = 10

nm) are shown in Fig. 4.14 for the reference (squares) and coupled (circles) samples.

The absorbance, σ(D), is determined from the slope of these trends; σref was found
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Figure 4.14: Representative values of turn-on rate as a function of pump power
(at D = 10 nm) that are used with Eq. (4.6) to calculate the absorbance cross
sections for the reference (solid squares) and coupled (open circles) samples.

Figure 4.15: Effective excitation cross section enhancement, ησ, at 780 ± 20 nm
as a function of etch depth, D. The solid line is a fit to the data using the
model described in Appendix B, which accounts for the spatial distribution of Si
nanocrystals and the decay of the enhanced local field.
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Figure 4.16: Representative PL decay traces for the reference (black) and coupled
np-Au/nc-Si (red) samples at D = 10 nm.

to be essentially constant at∼ 1.5×10−16 cm2, while σnpg(D) was highly dependent

on D and always greater than or equal to σref (D). The inverted triangles reported

in Fig. 4.15 show the excitation cross section enhancement, ησ(D), as a function

of etch depth, D. The peak value is greater than 2 at D = 10−12.5 nm, meaning

that at the optimal separation distance, the effective excitation cross section for

the nc-Si emitting at 780 nm is enhanced by a factor of 2 in presence of the np-Au

layer. This enhancement alone, however, cannot account for the four-fold increase

in PL intensity in Fig. 4.13. Therefore, according to Eq. (4.5), either or both Γexp

and Γrad must also be affected by the np-Au layer.

Figure 4.16 shows representative curves for the experimental PL decay of both

samples at D = 10 nm. The decay of nc-Si emission intensity, IPL(t), is fitted with

a stretched exponential function,

IPL(t) = IPL,0 exp
[
− (Γexp · t)β

]
(4.7)

where IPL,0 is the initial PL intensity, t is the time, Γexp is the experimental

decay rate, and the parameter β is essentially constant at ∼ 0.75 for the samples
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Figure 4.17: Experimental decay rate enhancement, ηΓexp , at 780 ± 20 nm as a
function of etch depth, D. The solid line is a fit to the data using the model
described in Appendix B, which accounts for the spatial distribution of Si nano-
crystals and the decay of the enhanced local field.

considered in this chapter.

The PL intensity from the np-Au/nc-Si sample decays faster than the reference

sample, and this was true at all etch depths. In particular, the reference sample is

characterized by an experimental decay rate, Γexp·ref = 40−50 kHz, that is only

weakly dependent on D. However, the PL decay rate for the np-Au/nc-Si sample

is highly dependent on D, its values varying in the range of 55−105 kHz. The blue

triangles in Fig. 4.17 show the experimental decay rate enhancement, ηΓexp(D),

as a function of D. This ratio is greater than unity for all D, and it reaches its

maximum at 7.5 nm < D < 12.5 nm, where it has a value of ∼ 2. Interestingly, the

enhancement of experimental decay rate roughly equals the increase in excitation

cross section, in such a way that the two cancel each other out in Eq. (4.5), giving

as a result no net contribution to the PL intensity enhancement. Therefore, to

explain the experimentally observed four-fold PL intensity increase, we deduce

that the nc-Si radiative emission rate, Γrad, must also increase in the vicinity of a

np-Au film.
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Figure 4.18: Radiative decay rate enhancement, ηΓrad
, calculated with Eq. (4.5)

for nc-Si emitting at 780 nm coupled to the np-Au film. The solid line is a fit to
the data using the model described in Appendix B, which accounts for the spatial
distribution of Si nanocrystals and the decay of the enhanced local field.

We measured Γexp at Pex = 50 mW/mm2, and σ was calculated using values

of τon acquired at 5 < Pex < 100 mW/mm2. At these pump powers, σφ '

102−103 s−1 � Γexp ' 5 × 104 s−1. Thus we use Eq. (4.5), together with the

measured enhancements ηPL, ησ, and ηΓexp reported in Figs. 4.13, 4.15, and 4.17,

respectively, to estimate ηΓrad
directly for the nc-Si emitting at 780 ± 20 nm.

The results of this exercise are reported as inverted triangles in Fig. 4.18. The

enhancement ηΓrad
depends strongly on D, in particular it is greater than unity at

all separation distances with a peak of ∼ 4.5 at D = 7.5 nm. Indeed, this value

suggests that the increase in radiative decay rate reported in Fig. 4.18 is uniquely

responsible for the observed enhancement in PL intensity in Fig. 4.13.

On the basis of such an analysis, it is possible to give a quantitative estimate

of the absolute values of the radiative rate, and therefore the quantum efficiency,

of the nc-Si system. The enhancement in quantum efficiency, ηQ = Qnpg/Qref , is
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Figure 4.19: Quantum efficiency enhancement, ηQ, for nc-Si emitting at 780 nm
and coupled to the np-Au film, as calculated using Eq. (4.8). The solid line is a
fit to the data using the model described in Appendix B, which accounts for the
spatial distribution of Si nanocrystals and the decay of the enhanced local field.

a function of the decay rate enhancements, i.e.,

ηQ =
Qnpg

Qref
=

(
Γrad·npg

Γexp·npg
·
Γexp·ref

Γrad·ref

)
=

ηΓrad

ηΓexp

(4.8)

The inverted triangles in Fig. 4.19 show ηQ, as calculated from Eq. (4.8) using

the data for ηΓexp and ηΓrad
reported in Figs. 4.17 and 4.18. The enhancement in

quantum efficiency is dependent on D and has a peak of ∼ 2 for 5 nm < D < 12.5

nm.

From the definitions of the radiative and experimental rate enhancements, it

follows that

ηΓrad
= ηΓexp ·

(
Γexp·ref

Γrad·ref

)
−

(
Γnr·npg

Γrad·ref

)
(4.9)

Here, Γnr·npg is the non-radiative decay rate of the coupled sample. Because for

the reference sample, Γexp·ref = Γrad·ref + Γnr·ref is constant as a function of etch

depth D, we can reasonably assume that Γrad·ref and Γnr·ref are also constant.

Moreover, assuming that Γnr·npg is also approximately constant with D, a plot
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of ηΓrad
, shown in Fig. 4.18, versus ηΓexp , reported in Fig. 4.17, should give a

straight line, according to Eq. (4.9). In Fig. 4.20, the experimental values of

ηΓrad
and ηΓexp are reported in a scatter graph. The trend is clearly linear, and

indeed the data are very well fit (reduced χ2 = 0.14) by a straight line with slope,

(Γexp·ref/Γrad·ref) = 3.70 ± 0.90, and y-intercept, (−Γnr·npg/Γrad·ref ) = −3.33 ±

0.82. From this slope, and the measured value, Γexp·ref ∼ 45 kHz, we find for

the reference sample that Γrad·ref ∼ 12.4 kHz, as indicated by the dashed line in

Fig. 4.18. This measurement, corresponding to a radiative lifetime of 80 µs, is in

good agreement with the values estimated for Si nanocrystals in this size regime

by Garcia and coworkers,91 and within the range calculated by Delerue et al.94

The value of Qref for the reference sample is the inverse of the slope, i.e., 27%,

as indicated by the dashed line in Fig. 4.19. From this value and the values of

ηQ in Fig. 4.19, we estimate a peak enhanced quantum efficiency of 58% for nc-Si

coupled to the nanoporous gold layer.

The overall luminescence intensity enhancements, at 780 nm and integrated

over the entire spectrum, are consistent with the observed enhancements in σ

and Γrad, as well as Γexp. Indeed, we found that Γexp·npg/Γexp·ref > 1 for all

the separation distances D, as shown in Fig. 4.17. In principle, the presence of

np-Au can determine the increase in Γexp by enhancing both the radiative and non-

radiative decay channels. Here we want to investigate the relative importance of

the two recombination paths in more detail. The radiative decay rate is enhanced

by a factor of 4, as shown in Fig. 4.18, likely because of the increased local density

of states related to the presence of the np-Au film in proximity to the optically

active Si nanocrystals. As far as the non-radiative decay rate is concerned, for

the reference sample we find Γnr·ref = (Γexp·ref − Γrad·ref ) = 32.6 kHz. For the

np-Au/Si nanocrystal coupled sample, using the y-intercept of the straight line

that best fits the data in Fig. 4.20, i.e., (−Γnr·npg/Γrad·ref ) = −3.33, and using the

value of Γrad·ref = 12.4 kHz calculated above, we find Γnr·npg = 41.3 kHz. This

is indeed slightly greater than the reference value, meaning that the introduction

of some novel non-radiative decay paths for the Si nanocrystals by the np-Au film
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Figure 4.20: The decay rate enhancements, ηΓrad
and ηΓexp, are compared

and fit to a straight line (reduced χ2 = 0.14) as in Eq. (4.9). The slope,
(Γexp·ref/Γrad·ref) = 3.70 ± 0.90, indicates a radiative rate, Γrad·ref ∼ 12.4 kHz,
and a quantum efficiency of Qref ∼ 27% for the reference sample. The y-intercept,
(−Γnr·npg/Γrad·ref) = −3.33 ± 0.82, is indicative of a coupled sample non-radiative
rate, Γnr·npg ∼ 41.3 kHz.
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cannot be fully neglected.

4.5 Conclusions

In conclusion, the coupling of silicon nanocrystals to nanoporous gold gives rise

to up to eight-fold enhancements in photoluminescence intensity. Even at low

pump powers, we find that coupling nc-Si to np-Au at optimal separation distances

yields a four-fold enhancement in PL intensity at a detection wavelength of 780

nm, which was shown to be related to a four-fold enhancement in radiative decay

rate as a result of local-field effects. The effective excitation cross section and the

system quantum efficiency are enhanced by a factor of 2. These enhancements are

especially promising considering that, here with a wide distribution of nc-Si, they

contain contributions from a large number of far away unenhanced nanocrystals,

which limits the overall achievable emission enhancement. Also, most nanocrystals

are not resonant with the np-Au in the present work.

The techniques of the present chapter are particularly significant as they can

be used for more general purposes than determining enhancement factors; in Sec-

tion 4.4.4, we demonstrate that one can use the depth-dependent enhancement

measurements to quantify the radiative decay rate and quantum efficiency, two

quantities that are traditionally very difficult to evaluate.24 We determine that,

in the uncoupled reference sample, Γrad·ref ∼ 12.4 kHz, a true measure of the

excitonic recombination dynamics that is not obvious from the straightforward

measurement of the reference sample experimental decay rate, Γexp·ref ∼ 45 kHz.

Also, we determine that the quantum efficiency of the reference sample of sili-

con nanocrystals in fused silica is Qref ∼ 27%. The two-fold enhancement in Q

therefore brings the system’s effective quantum efficiency to well over 50%, a very

promising value. The initially high quantum efficiency, however, limits the extent

to which plasmon coupling can enhance the overall emission; this quantity can of

course never exceed 100%.

In spite of the complex structure of the nanoporous gold and the non-resonant
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nature of the interactions, an analysis of the results of this chapter in the context

of a model that we describe in Appendix B indicates that, with an optimized nano-

structured sample consisting of a single, uniform (straggle . 1 nm) monolayer of

nc-Si resonant with np-Au, we can envisage enhancements in radiative decay rate,

absorbance cross section and quantum efficiency, and therefore in PL intensity, by

as much as two orders of magnitude. Such an increase in Si nanocrystal emission

rate would make nc-Si competitive with direct band gap light emitters, enable us

to fabricate brighter Si nanocrystal LEDs, and possibly even permit optical gain

in an all-silicon device fabrication process.
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Chapter 5

Spectrally Tunable Silicon Nanocrystal

Emission from Coupling to Regular Silver

Nanoparticle Arrays

5.1 Introduction

Since the observation in 1990 of strong room-temperature photoluminescence from

porous silicon,4, 5 significant worldwide interest has been directed toward silicon-

based photonics for integrated optoelectronics. An integral part of such systems

is a Si-based, power-efficient light emitter. Toward that end, silicon nanocrystals

(nc-Si) have been intensively investigated as light sources. In the previous chap-

ter, we observed enhanced photoluminescence intensity, absorbance cross section,

radiative decay rate, and quantum efficiency from nc-Si coupled to nanostruc-

tured gold. The possibility of obtaining enhanced emission, and, in particular, of

achieving enhanced radiative decay rates upon coupling radiative dipole emission

to metal nanostructures provides an opportunity to use nc-Si, already an inher-

ently efficient light emitter, as a bright, competitive light source. This increased

radiative emission has been attributed to electromagnetic coupling between the

semiconductor active dipole emitters and surface plasmons in the metal,61 an ef-

fect that is predicted to be stronger at frequencies near the plasmon resonance. We

therefore seek to examine the resonant nature of the enhancement effect introduced
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in Chapter 3.

In the present chapter, we report an enhancement of photoluminescence (PL) in

systems of nc-Si coupled to silver nanoparticle arrays fabricated by electron-beam

lithography. Silver was chosen to give the strongest possible plasmonic effects,

because this noble metal suffers the least from Ohmic losses and produces the

strongest resonances among all metals with plasmon resonances at visible frequen-

cies. The surface plasmon resonance of arrays of Ag nanoparticles (np-Ag) depends

on the particle diameter and the array pitch, and can thus be tuned by adjusting

these parameters. When the surface plasmon resonance of the np-Ag arrays is

tuned throughout the nc-Si emission spectrum, we observe a significant correla-

tion between the frequency at which the PL emission is enhanced and the surface

plasmon resonance frequency. This is a strong indication that the enhancement

process is a resonant one. From the observed behavior, we can further conclude

that the observed PL enhancement is caused by an enhancement of the radiative

decay rate of the nc-Si.

5.2 Theory

The nanoporous gold (np-Au) to which nc-Si was coupled in Chapter 4 has a very

broad extinction spectrum, as was shown in Fig. 4.8. That spectrum was the

result of the very broad distribution of features in the np-Au film. These shapes

range from sphere-like Au particles to elongated rods with aspect ratios of up to

∼ 4:1. According to Mie-Gans theory, the broad extinction spectrum in Fig. 4.8 is

consistent with absorbances from such a wide distribution.80 Nanoporous gold is

therefore not an ideal material with which to take advantage of resonant effects.

In the present chapter, we therefore make use of arrays of silver nanoparticles.

The plasmon resonance frequency of a cylindrical Ag nanoparticle is principally

determined by the aspect ratio, i.e., the ratio of the diameter to the height. As

the nanoparticle size becomes comparable to the wavelength of light, the particle

size also affects the plasmon resonance frequency, although radiative losses and
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retardation effects are secondary factors. Finally, as discussed in Chapter 3, when

the np-Ag are arranged in arrays, the extent of coupling between adjacent particles

strongly influences the plasmon resonance frequency of the array. Such coupling

can be tuned via changes in the interparticle spacing.

5.3 Experimental

5.3.1 Sample Fabrication

Silicon Nanocrystal Formation

As in the previous chapter, silicon nanocrystals (nc-Si) were produced by ion im-

plantation of 11 keV Si+ ions to a fluence of 1.7× 1016 cm−2 into a 1.6 mm thick

fused quartz strip (Technical Glass Products). The implanted quartz was annealed

in Ar for 20 min at each of 200 and 450 ◦C, and then for 30 min at 1000 ◦C to

form nc-Si with typical diameters of 3−5 nm.41 The samples were subsequently

heated in a forming gas (10% H2, 90% N2) for 30 min at 450 ◦C to eliminate emis-

sion from defect states in the SiO2 matrix.42 This protocol was determined in

Section 4.4.2 to yield a Gaussian depth distribution of nc-Si in the SiO2, with a

peak concentration at a depth of 19.2 nm. After nc-Si formation, the center of the

nanocrystal distribution was brought to a depth, ∆, of 8, 13, or 18 nm from the

surface by etching in 2.3% HF(aq). The etch rate was 0.25 nm/s, as determined

by spectroscopic ellipsometry (Sentech SE-850) on an analogous sample of SiO2 on

a Si substrate. As was described in Section 4.4.1 of Chapter 4, ellipsometry also

indicated that after etching, the surface roughness was less than ± 0.2 nm.

Electron-Beam Lithography Patterning of Silver Nanoparticle Arrays

To investigate resonant plasmonic effects, the nc-Si-doped SiO2 was coupled to np-

Ag arrays. The surface of the nanocrystal-doped quartz was cleaned for 20 min in

a 5:1:1 H2O:H2O2:NH4OH solution at 70 ◦C. Figure 5.1 illustrates the sequence by

which the clean nc-Si-doped silica sample (Fig. 5.1(a)) was patterned by electron-

beam lithography. A first layer of 2% in chlorobenzene 495 K molecular weight
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(MW) polymethyl methacrylate (PMMA) was spun on the sample surface at 750

rpm for 5 s, then 2500 rpm for 45 s. This layer was polymerized by baking at

175 ◦C for 90 s, yielding a resist layer 70 nm thick, as verified by profilometry. A

second layer of 2% 950 K MW PMMA was spun on top of the first layer. This

heavier resist layer was spun at 750 rpm for 5 s, then 4000 rpm for 45 s, and baked

at 175 ◦C for 90 s. Profilometry indicated the total thickness of the two layers to

be 145 nm. Such a bilayer resist system has been previously shown to improve

liftoff in electron-beam lithography by making use of the different sensitivities of

the layers to the electron beam.95 Following this spinning and annealing, a 17 nm

layer of Ge was deposited on top of the PMMA double layer by thermal evaporation

to provide a conductive target for the electron beam. The resulting stack is shown

in Fig. 5.1(b). An electron beam with current ∼ 150 pA was next used to pattern

100 µm×100 µm arrays of circles in the Ge-coated PMMA resist, as schematized in

Fig. 5.1(c). The top Ge layer was removed by reactive-ion etching (RIE) in a 50%

CHF, 50% Ar plasma for 20 s, and the exposed PMMA bilayer was developed in a

1:2 mixture of 4-methyl-2-pentanone (MIBK) and isopropyl alcohol. As illustrated

in Fig. 5.1(d), the lower molecular weight PMMA layer on the bottom is more

sensitive to the electron beam, and thus upon developing this layer an undercut

evolves. In an ultra-high-vacuum (UHV) electron-beam evaporation chamber, a 2

nm Si wetting layer and a 20 nm Ag layer were deposited onto the structure. The

resultant sample, in Fig. 5.1(e), was finally exposed to acetone for PMMA liftoff,

leaving the np-Ag arrays on nc-Si-doped fused silica shown in cross section in Fig.

5.1(f).

5.3.2 Physical Characterization of the Silver Nanoparticle Arrays

Upon liftoff of the resist bilayer, the resulting structure is composed of cylindrical

Ag nanoparticles in arranged a 100 µm × 100 µm square lattice, as sketched in

Fig. 5.2. The electron-beam exposure in Section 5.3.1 was chosen to produce

circular arrays with controllable pitch, p, in the range of 200−500 nm, and the

particle diameters, d, were controlled by adjusting the electron beam dwell time
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Figure 5.1: Schematic of the electron-beam lithography process for creating silver
nanoparticle arrays. (a) Si nanocrystal (nc-Si)-doped fused silica. (b) nc-Si-doped
fused silica coated with 70 nm of 495 K MW PMMA, 75 nm of 950 K MW PMMA,
and 17 nm of Ge. (c) Exposure of the stack with an electron beam. (d) After
removal of the Ge top layer by RIE, the PMMA bilayer is developed in MIBK,
and an undercut evolves in the lower molecular weight layer. (e) UHV electron-
beam evaporation of 2 nm Si and 20 nm Ag. (f) Liftoff of the resist leaves behind
Ag nanoparticles adhered to the nc-Si-doped silica via a 2 nm Si adhesion layer.
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Figure 5.2: Schematic of the sample consisting of Si nanocrystals (nc-Si) separated
from arrays of silver nanoparticles (np-Ag) by a distance, ∆. Each Ag nanoparticle
has a height, h = 20 nm, a diameter, d, and sits on a 2-nm-thick Si adhesion layer.
The nanoparticles are arranged in square lattices with pitch, p.

for each array. The diameters could not be predicted accurately, so scanning

electron microscopy (SEM) was utilized to determine the exact diameters of the

cylinders in each array after fabrication. To compensate for the presence of the

insulating silica substrate, a low voltage (2.5 kV) SEM beam was utilized.

5.3.3 Optoelectronic Characterization

Measurements of Array Resonances via Transmission Spectroscopy

Each array of np-Ag with height h = 20 nm was characterized by a distinct pitch, p

(200−500 nm), particle diameter, d (100−440 nm), and thus particle aspect ratio,

a = d/h (5−22). As a consequence of these geometric differences, the arrays had

distinct plasmon resonance frequencies,80 which were determined by measuring the

transmission spectrum through each np-Ag array. For the transmission measure-

ments, the arrays were illuminated with a white light source incident through a

60× microscope objective. The lamp used for this purpose provides strong illu-

mination between 400 and 900 nm; its spectrum peaks at ∼ 620 nm and has a

full-width at half maximum of ∼ 200 nm. The transmitted light was collected with

a 20× microscope objective.

The spectral transmittance through each array of np-Ag on top of nc-Si-doped

fused silica was normalized by the transmittance through a nearby region devoid
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of np-Ag. Relative to the np-Ag, the silicon nanocrystals have an extremely lim-

ited absorbance cross section. Regardless, any contribution from the nc-Si was

explicitly removed by the normalization.

Photoluminescence Spectroscopy to Characterize the Nanocrystal Emis-

sion

Photoluminescence (PL) spectra were acquired under excitation from a frequency-

doubled Nd:YAG (yttrium aluminum garnet) laser operating at λex = 532 nm

focused through a microscope objective to a 10 µm diameter spot. A relatively

high pump power of Pex = 105 mW/mm2 was used to ensure operation near the

saturated pump power regime, where the PL emission is limited by the radiative

decay rate and is independent of the quantum efficiency.

The PL intensity was recorded using a thermoelectrically cooled charge-coupled

device (CCD) detector (sensitivity range 200−1100 nm) in conjunction with a 30

cm focal length grating spectrograph. A dichroic filter that absorbs wavelengths

below 550 nm was used to eliminate incident laser light from the detector. For the

sample schematized in Fig. 5.2, Si nanocrystal excitation and PL emission collec-

tion were both performed through the “top” (np-Ag array) side and through the

“back” (quartz substrate) side of the sample. All combinations of these geome-

tries gave similar results for the enhancement magnitude and spectral dependence,

indicating that the Si/Ag system was acting as a coupled entity. Since these differ-

ent configurations gave no consistent differences in PL, measurements made in the

different configurations were averaged to improve the statistics. Reference lumi-

nescence spectra were obtained for each array from a nearby region of nc-Si-doped

quartz not located under a np-Ag array.
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5.4 Results and Discussion

5.4.1 Scanning Electron Microscopy of the Silver Nanoparticle

Arrays

Scanning electron microscopy (SEM) was used to examine the Ag nanoparticle

arrays of this chapter. The characteristic particle diameter in each sample was

determined by finding the average width in SEM of ≥ 25 particles in each image.

1.75 µm × 1.3 µm subsections of the SEM images of one series of np-Ag arrays

are displayed in Fig. 5.3. These micrographs show a progression of arrays with

a constant 400 nm pitch and increasing particle sizes. The average diameters in

these samples, indicated on each panels of this figure, are 135, 140, 165, 185, 190,

230, 260, and 320 nm, respectively.

From the SEM images, it was also possible to identify series of Ag nanoparticle

arrays with constant particle diameters. In Fig. 5.4, we present one such series.

Here, the particles all have 165 nm diameters, and the arrays have increasing

pitches, p = 200, 300, 400, and 500 nm, as indicated on the respective panels.

5.4.2 Measurements of Enhanced Photoluminescence

For the PL measurements in the present chapter, we targeted the high pump

power regime, where the PL emission is limited by the radiative decay rate and is

independent of quantum efficiency. The PL intensity is in general given by

IPL ∝ σφ

σφ + Γexp
· n · Γrad (5.1)

where the PL intensity, IPL, depends on the number of nanocrystals, n; the ex-

citation cross section, σ; the pump flux, φ; the radiative decay rate, Γrad; and

the experimental decay rate, Γexp = Γrad + Γnr . However, in the high-excitation

regime, where σφ � Γexp, Eq. (5.1) reduces to

IPL ∝ n · Γrad (σφ � Γexp) (5.2)
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Figure 5.3: 1.75 µm × 1.3 µm SEM images at 38 400× magnification of a series of
Ag nanoparticle arrays with p = 400 nm and d = 135−320 nm.
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Figure 5.4: 1.6 µm × 1.2 µm SEM images at 38 400× magnification of a series of
Ag nanoparticle arrays with d = 165 nm and p = 200−500 nm.

This regime of high excitation powers is also the regime of near-saturated pho-

toluminescence, where increases in pump power have little effect on the intensity of

PL emission. We verified that we were in the near-saturated regime by measuring

the PL intensity, integrated from λ = 650−950 nm, as a function of pump power,

Pex. The results for the reference sample (no Ag nanoparticles) and a representa-

tive coupled nc-Si/np-Ag sample are displayed in Figs. 5.5(a) and (b), respectively.

Here, the PL intensity is highly dependent on Pex for low powers, but increases in

PL intensity with Pex are more subtle at higher powers. As indicated by the arrow

in Fig. 5.5, the pump power used in the present chapter, Pex = 105 mW/mm2,

falls within the near-saturated emission regime.

To check for PL signal uniformity over the range of the 100 µm×100 µm particle

arrays, as well as over the range of the Ag-free reference areas, the samples were

mounted on a translation stage and the PL intensity, integrated from λ = 640−950

nm, was measured in 10-µm steps. Figure 5.6(a) shows a single np-Ag array, as seen
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Figure 5.5: Photoluminescence intensity of (a) the reference sample and (b) a
representative coupled sample as a function of pump power. The arrow indicates
the 105 mW/mm2 pump power at which the experiments in the present chapter
were performed.
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in the 60× microscope objective used for PL excitation. Here, the array occupies

the image center. The results of a two-dimensional PL scan of this sample, which

has d = 320 nm, p = 400 nm, and ∆ = 8 nm, is shown in Fig. 5.6(b). The

PL intensity emitted from the array region was approximately twice that emitted

from the uncoupled nanocrystals in the reference areas, and the PL intensity was

essentially constant with position in both areas. The spatial resolution of this

measurement was not sufficient to identify differences in PL intensity at length

scales smaller than the pitch.

Figure 5.7 shows the correspondence between the spectral position and shape

of the nc-Si PL enhancement and the surface plasmon resonance of a typical cou-

pled np-Ag array/nc-Si system (d = 190 nm, p = 400 nm, and ∆ = 13 nm). The

normalized transmission spectrum of the array is shown in Fig. 5.7(a). This spec-

trum exhibits a dip centered at 710 nm that is attributed to extinction due to the

resonant excitation of dipole plasmon modes in the Ag nanoparticles. The photo-

luminescence spectrum was measured for the same sample. As is reported in Fig.

5.7(b), the PL intensity on the array, Iarr, was enhanced significantly compared to

the nc-Si PL intensity in the reference area, Iref , especially at wavelengths where

the plasmon mode is resonant. Figure 5.7(c) shows the PL enhancement spec-

trum, ηPL(λ) = Iarr(λ)/Iref(λ). The enhancement spectrum features correspond

strongly to those in the transmission spectrum; both curves peak at λ = 710 nm

and have similar widths.

5.4.3 Resonantly Enhanced Emission

Figure 5.8 shows the normalized transmission and PL enhancement spectra of six

samples with np-Ag arrays of fixed pitch and depth, p = 400 nm and ∆ = 13 nm.

In this figure, the particle diameter increases from top to bottom panel, with d =

165, 185, 190, 230, 260, and 320, respectively. As d is increased, the transmission

dip grows larger in magnitude and shifts to larger wavelengths. The decreased

transmission may be attributed to an increase in Ag coverage. The shift of the

minimum transmission wavelength can be understood qualitatively as resulting
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Figure 5.6: Characterization of a representative 100 µm × 100 µm np-Ag array
(center) and the surrounding Ag-free region (periphery). (a) Image of the array
through a 60× optical microscope objective. (b) PL intensity map in 10-µm steps,
integrated from λ = 640−950 nm. Here, p = 400 nm, d = 320 nm, and ∆ = 8 nm.
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Figure 5.7: Optical characterization of a representative sample (p = 400 nm,
d = 320 nm, and ∆ = 13 nm). (a) Normalized transmission through the Ag
nanoparticle array. (b) PL intensity from nc-Si in the absence (bottom curve)
and presence (top curve) of np-Ag. (c) PL intensity enhancement in the coupled
system (ratio of the curves in (b)).
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from the increases in d (from 165 to 320 nm) and the concomitant increases in the

aspect ratio, a (from 8 to 16), both of which are known to cause a red shift of the

surface plasmon resonance in the plane of these arrays.80

The PL enhancement spectra (Fig. 5.8) exhibit a red shift with increasing d and

a that is similar to the trend in transmission dips, establishing a strong correlation

between the PL enhancement and the surface plasmon resonance. This correspon-

dence is illustrated for 187 different samples in Fig. 5.9, in which the wavelength

of minimum transmission is correlated with the maximum PL enhancement wave-

length. The observed trend is well-fitted by a straight line with a slope of 0.97

± 0.03 and a y-intercept of 14 ± 17 nm. Despite variations in ∆, p, and d, the

1:1 spectral correspondence between the nc-Si PL enhancement and the np-Ag

array plasmon resonance indicates that the PL enhancement can be consistently

ascribed to an increase in radiative decay rate due to the resonant coupling of the

nc-Si with the collective surface plasmon dipole modes of the np-Ag. Furthermore,

no luminescence enhancements were observed for samples that showed transmis-

sion dips resonant with the λex = 532 nm excitation source, demonstrating that

the increased PL intensity cannot be attributed to an increased absorption of the

pump beam.

In the present chapter, we consider samples of nc-Si coupled to arrays of np-

Ag. The periodic silver structure acts as a grating for emitted light, so when

considering the magnitude of PL intensity enhancement in these samples, the ar-

ray periodicity must be taken into account. The angle at which diffracted light is

emitted depends on the array pitch and the emission wavelength. Thus, to com-

pare samples of different pitches, the collection angle must be limited such that

only the zeroth order diffracted beam is collected, or the emitted intensity must

truly be integrated over all wavelengths to ensure that all diffracted orders are

included. In our experiments, we select the former solution, and use a microscope

objective with a limited angle of collection. Still, there is a risk of collecting emis-

sion from the first-order diffracted light, especially at small pitches, so the best

way to examine PL intensity enhancement magnitudes is to compare the emission
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Figure 5.8: PL intensity enhancement (solid lines) and normalized transmission
spectra (dashed lines) for samples with p = 400 nm and ∆ = 13 nm; d increases
from the top to bottom panels, with d = 165, 185, 190, 230, 260, and 320 nm,
respectively.
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Figure 5.9: Correspondence between the wavelength of minimum transmission
and the wavelength of maximum PL enhancement for 187 different samples. The
dashed line is a best fit of the data to a straight line, λtrans = (0.97± 0.03)λPL +
(14± 17).

Figure 5.10: Comparison between the maximum magnitude of PL enhancement
and the wavelength at which this maximum is reached for 97 different samples
with 400-nm pitch.
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from a series of samples with a constant pitch. Accordingly, Fig. 5.10 shows the

magnitude of the maximum PL intensity enhancement as a function of wavelength

for 97 different samples with 400-nm pitch. Coupling nc-Si to Ag nanoparticle ar-

rays produces up to six-fold intensity enhancements. Furthermore, the greatest of

these increases are observed at short emission wavelengths, where arrays of smaller

nanoparticles are resonant. It is expected that only nc-Si positioned closer to Ag

particles than the typical plasmon coupling range of ∼ 50 nm will experience an

enhanced emission rate.61 It follows then that the number of Si nanocrystals cou-

pled to Ag nanoparticles increases with particle coverage. The fact that a smaller

overall PL enhancement is found for larger particles thus implies that the emission

enhancement per Si nanocrystal must be greater near smaller Ag particles. This

behavior is consistent both with trends in radiative damping of the excited plasmon

mode and with trends in local-field enhancement as a function of particle size; the

former, which limits the radiative decay rate enhancement, is more significant for

larger nanoparticles,96 while the local-field enhancement about a metal nanopar-

ticle decreases with decreasing radius of curvature, i.e., with increasing particle

size.81 The samples considered in Fig. 5.10 have d = 100−370 nm and ∆ = 8−18

nm, yet the magnitude of enhancement was found to depend most strongly on d.

This indicates that, in this regime of loosely coupled particles, the pitch has a more

subtle influence, and that effects due to the Si/Ag separation distances were likely

obfuscated by the large (∼ 14 nm) spread in nc-Si depths about the average depth,

∆. We will explore all of these trends with full-field electromagnetic simulations

in Chapter 6.

5.5 Conclusions

In conclusion, we have observed up to six-fold enhancements in the PL intensity of

Si nanocrystals upon coupling them to Ag nanoparticle arrays. The enhancement

can be spectrally controlled across the emission spectrum of the nc-Si by tuning

the surface plasmon resonance frequency of the np-Ag between 600 and 900 nm.
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This can be accomplished by varying the nanoparticle diameter and the array

pitch. Coupling to engineered plasmonic structures thus provides an interesting

approach to controlling the emission rate and the emission spectrum of silicon

nanocrystals.
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Chapter 6

Full-Field Electromagnetic Simulations of

Enhanced Silicon Nanocrystals

6.1 Introduction

The interesting optoelectronic properties of semiconductor nanocrystals have at-

tracted much attention in recent years. The energetics of these zero-dimensional

quantum dots are unlike those of their bulk material counterparts, which makes

them suitable for diverse and exciting applications ranging from biological sens-

ing to light-emitting devices. Silicon nanocrystals (nc-Si) with dimensions below

∼ 5 nm have proven to be efficient light emitters, with emission energies that are

size-tunable throughout the visible spectrum. One important advantage of using

these silicon light emitters is that they can be fabricated in a CMOS-compatible

manner, for example by ion implantation. However, the overall brightness of nc-Si

is limited by their slow decay rate, 104−105 s−1, a result of the indirect band gap

in silicon. A method for enhancing the overall brightness is therefore desirable.

As outlined in Chapter 3, an emitter in the intense local field near the surface

of a metal particle or rough metal surface will demonstrate a modified radiative

decay rate, quantum efficiency, and photoluminescence (PL) intensity.61–63 Re-

cent experimental studies have shown that increased emission from semiconductor

quantum dots can be realized via plasmon enhancement interactions,35,36 and in

Chapters 4 and 5, we confirmed that this technique can be extended to the emission
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of silicon nanocrystals by coupling them to nanoporous gold and silver nanopar-

ticles, respectively. Unfortunately, in those studies, the ensemble measurements

made using far-field measurement techniques obscured the more subtle details of

the enhancement.

In the present chapter, we use full-field finite-integration time-domain studies

to examine the near-field physics that give rise to our far-field experimental ob-

servations. By simulating systems analogous to those measured experimentally,

we verify our interpretations of the three key experimental results of the previ-

ous chapter: (1 ) Measurements of transmission through arrays of cylindrical silver

nanoparticles show a dip at the plasmon resonance frequency. This frequency de-

pends on the particle diameter and the interparticle spacing, and it can be tuned

throughout the nc-Si emission spectrum. (2 ) The . six-fold enhancements in PL

intensity of emitters ∼ 10 nm beneath the particles is due to a . six-fold field

intensity enhancement in their plane. (3 ) Given a constant pitch, a greater PL

enhancement is observed for nc-Si coupled to smaller particles despite a lower par-

ticle coverage; this must result from very large peak local-field intensities about

the small particles.

In addition to verifying the experimental results and interpretations (1 )−(3 ),

we can use electromagnetic simulations to probe effects that could not be resolved

in our experiments. For example, the ion-implantation fabrication technique used

to create the nc-Si gave rise to a large spread in their depths. In our computations,

we can more precisely monitor how the magnitude of the enhanced field falls off

with increased depth. As well, in our calculated results, we can identify the max-

imum field enhancement and map the field profile, rather than merely detecting

the spatial average.
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6.2 Theory

6.2.1 Photoluminescence Intensity Manipulations in an Enhanced

Local Field

Recent studies have demonstrated enhanced photoluminescence from semiconduc-

tor quantum dots and quantum wells in close proximity to noble metal films

and nanostructures.35–37 This phenomenon of plasmon-enhanced light emission

demonstrates that, by engineering the near-field coupling between semiconduc-

tor and metallic structures, the optically induced emission from semiconductor

nanocrystals can be altered and enhanced. Here, we apply the theory of plasmon

enhancement, introduced in Chapter 3, to nanocrystal photoluminescence. This

analysis is done for the limiting case of high pump flux, the regime in which the

measurements of Chapter 5 were made.

The PL intensity, IPL, of a nanocrystal emitter is given by

IPL = N
σφ

σφ + Γexp
Γrad (6.1)

where N is the number of active emitters, σ is the absorbance cross section, φ

is the excitation pump flux, Γrad is the radiative decay rate and the total decay

rate, Γexp, is the sum of the decay rates along both radiative and non-radiative

pathways. In the limit of a large pump flux, Eq. (6.1) becomes

IPL = NΓrad (σφ � Γexp) (6.2)

and in this regime, for a constant population of emitters, N , the enhancement in

PL intensity from IPL,0 to IPL,enh is equal to the radiative rate enhancement from

Γrad,0 to Γrad,enh , i.e.,

IPL,enh

IPL,0
=

Γrad,enh

Γrad,0
(σφ � Γexp) (6.3)
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In Eq. (3.4) of Chapter 3, we expressed the enhanced radiative decay rate as

Γrad,enh = Γrad,0 |L(ωPL)|2 (6.4)

where L(ωPL) = Eenh(ωPL)/E0(ωPL) is the field enhancement factor at the PL

emission frequency. In the limit of a large pump flux, we therefore expect that,

since the experimentally observed PL intensity enhancement is proportional to the

radiative rate enhancement, it too will be equal to the enhanced field intensity,

|Eenh(ωPL)|2, normalized by the incident field intensity, |E0(ωPL)|2, i.e.,

IPL,enh

IPL,0
= |L(ωPL)|2 =

|Eenh(ωPL)|2

|E0(ωPL)|2
(σφ � Γexp) (6.5)

6.2.2 Electromagnetic Simulations

As in Chapter 3, the simulations in this chapter were performed by three-dimensional

full-field electromagnetic simulations utilizing finite-element integration techniques

to solve Maxwell’s equations.86

The experimental samples of Chapter 5, to which we compared our calculations,

consisted of 100 µm × 100 µm square arrays of cylindrical silver nanoparticles (np-

Ag) 20 nm in height and having a range of diameters, d = 100−500 nm, and pitches

(particle center-to-center spacings), p = 200−500 nm. The nanoparticles rested

on a 2 mm thick substrate of fused silica doped with nc-Si at a depth ∆ ∼ 10 nm

beneath the base of the np-Ag plane.

Computations were conducted on a system that best emulated the experimental

samples given the restrictions of the simulation package.86 The fabricated 100 µm

× 100 µm arrays were essentially infinite from the perspective of the measurements

taken at the center of the array with a beam focused to a ∼ 10 µm2 spot. This

was verified in Fig. 5.6, which showed essentially no variation in PL intensity with

position over the majority of the array. We therefore simulated the arrays by using

von Karman periodic boundary conditions to make a two-dimensional infinite array

of np-Ag. The simulation was done over the volume of four particles arranged in
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a box 2p wide and 300 nm deep. This 1200p2 nm2 volume was divided into 1.25p2

grid cells, refined to give the greatest detail in the area about the Ag particles.

Similar simulations have previously been shown to correspond well to experiments

by Sweatlock et al.83 The simulated np-Ag were cylinders of height 20 nm. The

particle diameters and the pitches in each array were chosen to correspond exactly

to those examined experimentally, based on scanning electron microscopy (SEM)

of the samples.

The Ag dielectric function was approximated using a modified Drude model

fitted to tabulated data over the wavelength range of interest.87 The dielectric

function of silver, εAg, as a function of radial frequency, ω, was thus given by the

Drude relation,

εAg (ω) = 5.45− 0.73
ω2

b,Ag

ω2 + iωγAg
(6.6)

where the bulk plasmon frequency is ωb,Ag = 1.72× 1016 rad s−1, and the plasmon

decay rate is γAg = 8.35× 1013 s−1.

Simulations were performed with sample geometries selected to emulate the

experimental conditions as accurately as possible. Since our software package does

not allow for an interface to lie along a periodic boundary,86 we replaced the

fused silica (εSiO2 = 2.2) under the nanoparticles, and the air (εair = 1) around

and above the nanoparticles by an effective medium. Figure 6.1 shows a cross-

sectional view of the enhanced local field about a silver nanoparticle. Using an

iterative technique, we determined that 70% of the field emanating from a resonant

Ag nanoparticle lies beside and above the particle, so we chose an effective medium

with dielectric constant εeff = (0.7εSiO2 + 0.3εair) = 1.36. The subtle inhomogene-

ity in the field profile in this figure results from an incomplete subtraction of the

plane wave, which is incident along the y-axis.

In the experiments of Chapter 5, the array plasmon resonance was measured

by far-field transmission in a microscope. A white light source illuminated the

array normal to the surface and the transmitted light spectrum was measured and

compared to the transmission through nc-Si-doped SiO2 without Ag nanoparticles.
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Figure 6.1: Cross-sectional view of the simulated enhanced local field about a
silver nanoparticle. 70% of this field lies above the dashed line, which denotes the
air/SiO2 interface of the experimental system, not present in our simulations.

The photoluminescence was also measured experimentally by far-field microscopy.

There, the samples were excited normal to the surface by a 532 nm laser line, and

emission was collected normal to the surface. The PL enhancement was calculated

by comparing the emission spectrum and intensity of nc-Si under each Ag array

to that of nanocrystals far away from Ag arrays with all else held constant.

In our simulations, the spectral response of the np-Ag array was determined by

illuminating the particle assemblies by a plane wave incident normal to the plane

of particles, along the y-axis. The wave was polarized in the x-direction. After 75

fs, the incident plane wave was interrupted. In the absence of an applied external

field, the plasmon mode decayed; this ringdown was observed for 100 fs, and a

Fourier transform of the time decay behavior gave the characteristic oscillation

frequency, or plasmon resonance, of the mode.

The near-field optoelectronic response was subsequently obtained by illuminat-

ing the particles at the np-Ag array resonant frequency with a plane wave normal

to the sample and allowing the array to store energy for 100 fs. At this point of

maximum energy storage, the local-field profile could be investigated. After Eq.

(6.5), we expect the photoluminescence enhancement due to plasmon coupling to

be proportional to the field intensity, |E|2. Therefore, in the place of modeling
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the actual emission from nc-Si embedded in SiO2 beneath np-Ag, in the present

chapter, we monitored the value of |E|2 integrated spatially over the plane of the

emitters, i.e., in a plane 10 nm below the bottom of the np-Ag array. This mean

field intensity was also integrated over an optical cycle to provide the time-averaged

value of the local-field intensity; this is needed for comparison with the experimen-

tal measurements, which were acquired over the course of several seconds.

6.3 Results and Discussion

In this chapter, we use finite-integration simulations. These account for finite-

size, geometry, and coupling effects, thus permitting us to explore complicated as-

semblies of large, non-ellipsoidal, interacting nanoparticles whose electromagnetic

properties cannot be treated analytically. This technique allows us to determine

the plasmon resonance modes and accompanying electric field profiles for the np-

Ag arrays. Furthermore, based on the results of our computations, we can apply

our analytical understanding of the optical properties of metals to interpret the

trends that follow from the calculations.

6.3.1 Plasmon Resonance Modes

A two-step process is used to determine the frequency of the plasmon resonance

mode of the silver cylinder arrays. First, the Ag particles are illuminated and

allowed to absorb energy. Next, the incident field is switched off and the electric

field amplitude is observed as the excited mode decays. The ringdown of a typical

np-Ag array, with d = 155 nm and p = 400 nm, is presented in Fig. 6.2(a). A

temporal Fourier transform of the decaying field yields the spectral response of the

system, and the plasmon response spectrum corresponding to the time decay in

Fig. 6.2(a) is presented in Fig. 6.2(b); this shows a dipolar plasmon resonance at

705 nm.

While holding the pitch constant at 400 nm, the average particle diameter was

increased from 135 nm to 320 nm. This corresponds to the eight samples that
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Figure 6.2: Silver nanoparticle array plasmon resonance determination for a char-
acteristic array (d = 155 nm, p = 400 nm). (a) Electric field ringdown with time.
(b) A temporal Fourier transform identifies the dipolar plasmon mode at 705 nm.
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Figure 6.3: Computed and experimentally determined (black squares and red cir-
cles, respectively) resonance frequencies for arrays of np-Ag with constant pitch,
p = 400 nm.

were shown in the series of SEM micrographs in Fig. 5.3. In Fig. 6.3, the exper-

imentally derived resonance frequencies (circles), determined from the frequency

of minimum transmission through each array, are compared to the experimentally

determined plasmon resonance frequency of such an array (squares). There is a

very strong agreement between the two methods, which indicates that the model

system considered in our computations is a good analog for the experimental sys-

tem, and which also confirms that the transmission dips measured experimentally

are indeed manifestations of the excitation of a resonant plasmon mode.

At this constant pitch, the resonance frequency decreases with increasing par-

ticle size. Here, since we consider a constant particle height, h = 20 nm, a larger

diameter reflects an increased aspect ratio, a = d/h. The decreasing resonance

frequency with increasing particle size is consistent with the analytical result for

oblate spheroids, which indicates that the resonance frequency is a function of the

aspect ratio.80

We subsequently considered a set of np-Ag arrays with the diameter held con-

stant at 165 nm, and pitch increasing from 200 to 500 nm, corresponding to the
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Figure 6.4: Computed and experimentally determined (black squares and red cir-
cles, respectively) resonance frequencies for arrays of np-Ag with constant diame-
ter, d = 165 nm.

experimental series imaged by SEM in Fig. 5.4. Additionally, we examined the be-

havior of an isolated Ag nanoparticle of the same size. This last case, which repre-

sents an array with infinite pitch, was not accessible experimentally. The plasmon

resonance frequencies of the arrays are shown in Fig. 6.4, where the computed res-

onances (squares) are compared to the experimental values (circles). Here, again,

there is good agreement between the computational and experimental results. In

this series, the resonance frequency decreases as the interparticle spacing increases,

and indeed the isolated single particle has the lowest resonant frequency. This re-

sult would be counter-intuitive for very closely spaced, infinitesimally small metal

particles, but, as discussed in Chapter 3, it is consistent with previous results for

more widely spaced, finite-sized particles where long-range electrodynamic inter-

actions prevail.85

The single particle result in Fig. 6.4 further illustrates the necessity of perform-

ing computational studies with cylindrical discs, rather than resorting to approx-

imating cylinders with analytically solvable analogs like oblate spheroids. In this

figure, a cylindrical particle with a 165 nm diameter and a 20 nm thickness has a
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resonance frequency of 409 THz. However, the analytical treatment of an oblate

silver spheroid, with a long-axis diameter of 165 nm and a short-axis diameter of

20 nm, using the same Drude model of silver as in Eq. (6.6), yields a resonance

frequency of 508 THz.80

The experimental and computational resonance frequencies in Figs. 6.3 and 6.4

were determined from the extrema of the measured transmission and the calculated

spectral response, respectively. In Figs. 6.5 and 6.6, we compare the spectra from

which these peaks were derived. Figure 6.5 displays the experimental transmission

measurements (dashed lines) and the computational spectral response curves (solid

lines) for arrays with pitch, p = 400 nm and diameter, d = 140−260 nm. The

particle diameters decrease from the top panel to the bottom one, with d = 260,

230, 190, 185, 165, and 140 nm, respectively.

In our experiments, the depth of the transmission peak was a measure of both

the absorbance and the scattering. Unfortunately, these two effects could not be

deconvolved, since the maximum absorbance and scattering frequencies are ex-

pected to be approximately equal. The experimental transmission measurements

in Figs. 6.5 and 6.6 (dashed lines) are therefore not a direct measure of the plas-

mon absorption strength and, correspondingly, we noted no correlation between

the magnitude of transmission on resonance and the PL intensity enhancement.

However, the calculated spectral responses in Figs. 6.5 and 6.6 (solid lines), were

obtained from a temporal Fourier transform of the field intensity decay with time.

Despite the complexity of the relationship between field intensity and energy in

metals, these computed spectral responses still provide qualitative measures of the

amount of energy absorbed into the particle, and the amplitude of these curves is

related to the particle plasmon mode strength. In Fig. 6.5, the spectral response

increases with decreasing particle size. This result of weaker plasmon resonance

strength for larger particle size is consistent with our experimental observations of

greater PL enhancement effects upon coupling to smaller metal nanoparticles, as

will be further discussed in Section 6.3.2.

Figure 6.6 presents the computational and experimental spectra for the case of
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Figure 6.5: Computed field intensity spectral response curves (solid lines) and
experimental transmission measurements (dashed lines) for np-Au arrays with p =
400 nm and d = 260, 230, 190, 185, 165, and 140 nm (from top to bottom).
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a series of arrays with a fixed diameter (165 nm) and variable pitches (p = 200−500

nm). Here, the magnitude of the spectral response, and hence the plasmon res-

onance strength, increases with increasing pitch. This increased field intensity

amplitude is also acompanied by a spectral narrowing, which indicates an increase

in the plasmon mode dephasing time, T2. The arrays under consideration have

pitches that are on the order of the resonance wavelength. We can therefore at-

tribute the trends in Fig. 6.6 to wavelength-scale interparticle coupling effects. In

the top panel, the resonance excitation wavelength of 587 nm has an effective wave-

length of 432 nm in the εeff = 1.36 medium surrounding the np-Ag. This array has

a pitch of 200 nm, and neighboring particles are therefore separated by half a wave-

length. Such a spacing has a detrimental effect on the strength on interparticle

coupling and thus on the strength of the collective plasmon resonance. Conversely,

in the bottom panel of Fig. 6.6, the effective wavelength of the resonance is 534

nm, which nearly coincides with the pitch of 500 nm. Here, interparticle coupling

has a constructive effect on the strength of the plasmon resonance.

6.3.2 Enhanced Local Field

In addition to obtaining spectral information, we determined the field intensity

throughout the three-dimensional space about each np-Ag array with electromag-

netic simulations. We illustrate our results for an array with d = 135 nm and

p = 400 nm, excited at its computed resonance frequency of 633 nm, in Figs.

6.7 and 6.8. Figure 6.7 displays the electric field intensity at a cut along a plane

through the center of the Ag particles. The incident light is polarized in the x-

direction. Figure 6.8 shows a cut along the plane where, in the experimental case,

the nc-Si emitters would reside. This is a plane parallel to the Ag nanoparticle

plane at depth, ∆ = 10 nm, below the base of the nanoparticles.

In the experiments in Chapter 5, the nc-Si were distributed uniformly across a

plane. A measure of the average field intensity experienced by the emitters in this

plane was thus found computationally by integrating the field intensities over the

area of the plane. For example, the average field intensity felt by a nc-Si emitter
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Figure 6.6: Computed field intensity spectral response curves (solid lines) and
experimental transmission measurements (dashed lines) for np-Au arrays with d =
165 nm and p = 200, 300, 400, and 500 nm (from top to bottom).
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Figure 6.7: Instantaneous enhanced field intensity in the plane of the np-Ag array.
Here, four contour lines represent an order of magnitude change in the x-component
of the field intensity. d = 135 nm, p = 400 nm, and λexc = 633 nm.
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Figure 6.8: Instantaneous enhanced field intensity profile in a plane 10 nm be-
neath the base of the np-Ag array. Here, four contour lines represent an order of
magnitude change in the x-component of the field intensity. d = 135 nm, p = 400
nm, and λexc = 633 nm.
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Figure 6.9: Computed and experimentally determined (black squares and blue
triangles, respectively) enhancement factors for arrays of np-Ag with constant
pitch, p = 400 nm.

in the plane beneath an array of d = 135 nm, p = 400 nm np-Ag was found by

integrating the field intensity plotted in Fig. 6.8 over the area of that figure. This

intensity was further normalized by the incident field, and time averaged over an

optical cycle. For each sample, we expect the average measured PL enhancement

to be equal to the normalized average computed field intensity, as predicted by

Eq. (6.5).

Figure 6.9 compares the computed time-averaged field intensity enhancement

in the nc-Si plane (squares) to the measured PL intensity enhancement of the nc-

Si emitters (triangles) for np-Ag arrays with a 400 nm pitch. The two quantities

agree, and our electromagnetic simulations of the field intensity are therefore good

predictors for the PL enhancement effect of Chapter 5.

Figure 6.10 compares the measured PL intensity enhancement for nc-Si emitters

(triangles) to the computed time-averaged field intensity enhancement in their

plane (squares) for np-Ag arrays with d = 165 nm and p = 200−500 nm. Here,

there is a very poor agreement between the experiments and the calculations.

We ascribe this lack of correspondence to the unrealistic perfect symmetry in
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the simulated samples. In our discussion of Fig. 6.6, we stated that due to the

relationship between resonance wavelength and pitch in the different arrays, the

strength of the plasmon mode in the p = 500 nm array benefits from nearly

perfect constructive interference, while that of the p = 200 nm array suffers from

almost complete destructive interference. From Fig. 6.10 then, it appears that as

a result of the unrealistic perfect symmetry, the simulations overestimate these

long-range coupling effects, leading in the present case to an undershooting at

small pitches and an exaggeration at large pitches. The red circles in Fig. 6.10

show the calculated field intensity enhancement in the plane beneath isolated Ag

nanoparticles. Here, interparticle coupling is explicitly removed, and the variation

in field intensity with pitch is due solely to differences in np-Ag coverage. Except

for at the smallest pitches, these calculations agree much more strongly with the

experimental results, indicating that the experimental configuration destroys the

symmetry of the system. The experimental results of Chapter 5 can be primarily

ascribed to the effect of uncoupled Ag nanoparticles.

The spatially averaged field intensity is a good metric for comparison with

ensemble measurements. However, the field intensity profiles in Figs. 6.7 and 6.8

also provide further insight into the design of a more ideal system. For instance,

the field intensity map of the nc-Si plane in Fig. 6.8 indicates that the field is lowest

directly under the Ag nanoparticles, and that it also decreases from the particle

edges outward toward the spaces between the particles. Given the geometry of nc-

Si in a plane beneath the np-Ag, it would thus be ideal to limit the Si nanocrystals

to a ring around the Ag nanoparticle circumferences. This could be achieved by

using the metal particles as a shadow mask for the removal of silicon nanocrystals

in less favorable positions.

A further understanding of the np-Ag arrays is gained by integrating successive

planes in depth to obtain the average field intensity at each depth. Figure 6.11

shows the decay of the integrated field intensity as a function of depth for arrays

with p = 400 nm and d = 135, 185, and 320 nm. For all diameters, the field

intensity decrease with depth is well fitted by an exponential with a 1/e decay
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Figure 6.10: Computed (squares and circles) and experimentally determined (tri-
angles) enhancement factors for arrays of np-Ag with constant diameter, d = 165
nm. As discussed in the text, due to the unrealistic perfect symmetry in the simu-
lated samples, the experimentally observed enhancement agrees more strongly with
computations for uncoupled Ag nanoparticles (red circles) than with the computed
enhancement factors for coupled arrays of Ag nanoparticles (black squares).

Figure 6.11: Decay of the integrated field intensity enhancement as a function of
depth from the base of the np-Ag array for p = 400 nm and d = 135 nm (black
squares), 185 nm (red circles), and 320 nm (blue triangles).
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length of 8 ± 2 nm (dashed lines). This result implies that in designing an ideal

experimental system, though it is best to place the nc-Si reasonably close to the

Ag nanoparticles, some spatial separation can be tolerated. Additionally, it is not

imperative that the emitters be perfectly aligned; a 2−4 nm distribution of depths

would have only minor effects.

6.4 Conclusions

The electromagnetic simulations presented in this chapter verified an important

assumption of Chapter 5, that the energy of minimum transmission through np-Ag

arrays, at which a maximum nc-Si PL enhancement was observed, is the plasmon

resonance frequency of these arrays. From our calculations, we also determined

that the maximum field intensity about a small particle is indeed much greater

than that about a larger particle; this effect is strong enough to compensate for

the low surface coverage in small particle arrays. Finally, we showed that the

field intensity decays exponentially with increasing depth beneath the plane of the

metal nanoparticles. This suggests further experiments with carefully controlled

emitter depths to probe this relationship.

Accurate simulations have a great predictive power. In designing future ex-

periments, we can now foretell the resonance frequency of a nanoparticle array

a priori , which could be important when coupling metals to emitters with sharp

emission spectra, for instance dyes and direct band gap semiconductor materials.

In such situations, resonant coupling could only occur if the metal array was care-

fully designed to have a plasmon resonance spectrum that overlapped the precise

emission spectrum.

Finally, the results in this chapter give insight into the local-field intensity as

a function of position on a scale smaller than that which we measure with far-field

optics. This suggests the possibility of using near-field scanning optical microscopy

(NSOM) to map the field lines experimentally, but as well, this indicates that

simulated field intensity maps can be used to gain the understanding needed to
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design optimized optical devices, in which the emitters reside in areas of high field

concentration.
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Chapter 7

Enhanced Electroluminescence

7.1 Introduction

From the experimental and computational studies in the previous three chapters,

it is clear that coupling to plasmonic metal nanostructures holds much promise for

enhancing the photoluminescence intensity and radiative rate of silicon nanocrys-

tal (nc-Si) emitters. Within the context of this project, the ultimate application

of plasmon enhancement effects is one that incorporates the benefits of metal

nanoparticles into CMOS-compatible, nc-Si-based light-emitting diodes (LEDs).

Consequently, we have paired silicon nanocrystals in field-effect light-emitting

diodes (FELEDs) to silver nanoparticle arrays and rough silver films.

The emission of such coupled devices, which can be excited electrically as well

as optically, displays the first evidence of enhanced electroluminescence (EL) from

nc-Si coupled to nanostructured silver. The properties of plasmon-enhancement in

nc-Si FELEDs are discussed in the present chapter.

7.2 Experimental

7.2.1 Fabrication of a Metal-Coupled FELED

The metal-coupled light-emitting devices studied in this chapter build upon the

nc-Si FELEDs introduced by Walters et al.9 In the present study, we modify such
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basic nc-Si FELED devices for the specific purpose of metal nanoparticle coupling.

The initial FELEDs are MOS ring gate transistor structures that were fab-

ricated at a 300 nm wafer fabrication facility at Intel Corporation in Hillsboro,

OR;97 they are therefore fully compatible with CMOS fabrication technology. In

this process, a 15 nm thick dry thermal oxide was grown on a p-type silicon wafer

at 900 ◦C. Si+ ions were then implanted into the oxide to an average depth of

10 nm and to a peak excess silicon concentration of 20%, according to Monte

Carlo simulations performed using the SRIM package.40 The implanted wafers

were annealed for 5 min at 1050 ◦C in 2% oxygen in argon to nucleate and grow

silicon nanocrystals (nc-Si) in the SiO2 layer. Following nc-Si formation, a 40 nm

polysilicon layer was deposited above the nc-Si-doped SiO2 by low-pressure chemi-

cal vapor deposition at 600 ◦C. Subsequently, the ring gate MOS transistor pattern

was created in this stack using standard photoresist patterning and reactive ion

etching techniques to remove both the polysilicon gate and the nc-Si-doped SiO2

from the source and drain regions in a single-mask process. Finally, the sample

was implanted with a blanket deposition of P+ and As+ to dope the source, drain,

and gate regions degeneratively.

The samples fabricated as above provided a good starting point for constructing

metal-coupled nc-Si FELED devices. However, in this initial structure, there was

a 50 nm gap between the mean nc-Si position and the device surface; some post-

processing modifications were therefore necessary to lessen the gap and permit the

near-field coupling of Ag nanoparticles and silicon nanocrystals. Consequently, we

developed a controllable chemical etch procedure to thin the top polysilicon gate.

First, the native oxide was removed from the silicon surface with a 5 s etch in

buffered hydrofluoric acid (7.2% HF(aq), 36% NH4F(aq) v/v). Then, following a

rinse in 18 MΩ·cm resistivity water, the silicon was etched for 10 s in a solution

of 1 mL HF and 150 mL nitric acid (HNO3). This solution etches polysilicon at

a rate of ∼ 2 nm/s, and may also slightly roughen the surface in the process.98

We thus reduced the top gate thickness from 40 to 17 nm, a thickness that was

later characterized by spectral ellipsometry over the range of 300−820 nm using a



120

Figure 7.1: Schematic of the metal-coupled silicon nanocrystal FELED. Arrays of
20 nm thick Ag nanoparticles sit on a 17 nm polysilicon gate. Under the gate, a
15 nm thick SiO2 film contains nc-Si emitters at an average depth of 10 nm. The
gate is biased with a voltage, Vgate, relative to the p-type Si back contact.

Sentech SE-850 ellipsometer.

An Ohmic contact to the gate was subsequently made by photolithographical

patterning and the thermal evaporation of a 10 nm thick chrome wetting layer and

a 200 nm gold pad. The p-type silicon backside of the device was metalized by the

thermal evaporation of a 200 nm thick aluminum layer, followed by a 12 h anneal

at 100 ◦C.

The thinned devices were covered with Ag nanostructures using an electron-

beam lithography procedure very similar to the protocol described in Chapter 5.

Briefly, the samples were coated with two layers of PMMA and exposed to an

electron beam to pattern 50 µm × 50 µm square arrays of circles on the surface,

where each array had a predetermined pitch (center-to-center separation distance)

and circle diameter. In the limiting case where we selected very large diameters,

the entire 50 µm × 50 µm area was exposed. Following the development of the

exposed PMMA, 20 nm of Ag was deposited on the sample by thermal evaporation,

and after a gentle liftoff in acetone, arrays of cylindrical Ag nanoparticles 20 nm
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in height, or a continuous, 20 nm thick Ag film in the case of the highest electron-

beam exposures, remained on the surface.

This final sample is schematized in Fig. 7.1. Here, the top gate is biased

relative to the p-type Si back contact with a voltage, Vgate. As has been previously

described, the heavily doped source and drain regions provide electrons for charge

injection and subsequent exciton formation in the nc-Si.9

7.2.2 Optoelectronic Characterization

The photoluminescence (PL) and electroluminescence (EL) of the coupled nc-Si

were measured in an inverted microscope. For this purpose, the devices were

mounted on a homemade package to which the gate contacts were connected using

gold wires adhered with a wedge bonder. An image of the sample thus prepared

is shown in Fig. 7.2(a). The np-Ag arrays on top of this sample are seen through

a 10× microscope objective in Fig. 7.2(b).

The optical excitation for PL spectroscopy was provided by the 488 nm line of

an Ar+ laser at low pump power (Pex < 10 mW/mm2). For EL, the sample was

driven electrically with a square wave from a 20 MHz arbitrary function generator

with a 10 MΩ output termination. The EL measurements in this chapter were

made with an electrical signal frequency of 5 kHz and wave amplitudes of 5−9

Vrms.

Emission was collected in the microscope through a 50× objective, and the field

of view was limited to 20 µm × 20 µm with 2000-µm slits downstream of the ob-

jective. The signal was detected using a rectangular silicon charge-coupled device

(CCD) detector array (sensitivity range 20−1100 nm) cooled with liquid nitrogen

to −132 ◦C, in conjunction with a 27.5 cm focal length grating spectrograph. For

PL, an additional dichroic filter was used in front of the monochromator entrance

to cut off scattered laser illumination. Luminescence enhancements were calculated

by comparing the photo- or electroluminescence of nc-Si coupled to nanostructured

Ag to the emission of nearby nc-Si in a region devoid of Ag, where the reference

spectrum was acquired under identical excitation and collection conditions.
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Figure 7.2: (a) Image of the packaged plasmon-coupled nc-Si FELED device, and
(b) 10× microscope image of the np-Ag arrays on its surface.
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7.3 Results and Discussion

The arrays of Ag nanoparticles (np-Ag), fabricated as described above, were im-

aged by scanning electron microscopy (SEM). Figure 7.3 shows micrographs of six

arrays of isolated np-Ag with different diameters and pitches. Both under optical

and under electrical pumping conditions, the nc-Si emission was strongly affected

by the presence of np-Ag arrays. The black curve in Fig. 7.4(a) shows the PL in-

tensity spectrum of the nc-Si in the absence of Ag (black curve). The introduction

of np-Ag arrays produces an enhancement in the PL intensity, and, for a fixed

400 nm pitch, this enhancement increases with particle diameter to a maximum

enhancement of 1.25.

For the same samples, the electroluminescence spectra are displayed in Fig.

7.4(b). This emission was obtained upon biasing the sample with a 5 kHz, 7 Vrms

signal. As was true for the PL results, coupling nc-Si to np-Ag arrays gives rise to

an enhancement in the EL intensity of the Si nanocrystals, and this effect grows

with increasing particle diameter. Here, a maximum enhancement of 1.75 is found

for nc-Si paired with the largest-diameter np-Ag arrays.

The trend of increasing luminescence with nanoparticle size is opposite to the

effect that we observed upon coupling nc-Si in SiO2 to very similar np-Ag arrays

in Chapter 5. There, the greatest PL enhancements were seen for the smallest

Ag nanoparticles. However, one important difference between those nc-Si-doped

SiO2 samples and the nc-Si FELEDs in the present chapter is the texture of the

surface onto which Ag is evaporated. Figure 7.5 shows a 25× 25 µm2 atomic force

microscopy (AFM) scan of the Si surface. This figure indicates that thinning the

FELED gate in a HF/HNO3 solution produces surface roughness on the scale of

. 5 nm. As a result, there are two levels of metal features in the np-Ag arrays on

the FELED surface: the Ag nanoparticles, with diameters on the order of 100 nm,

and the nanometer-scale roughness at the particle/gate interface. We therefore

attribute the nc-Si electroluminescence enhancements in the present chapter to

local-field concentration about the nanoscale roughness on the nanoparticle sur-
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Figure 7.3: 1.5 µm× 1.2 µm SEM images at 60 000× magnification of isolated Ag
nanoparticle arrays on top of a nc-Si FELED top gate.
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Figure 7.4: (a) Photoluminescence and (b) electroluminescence from nc-Si. Upon
coupling to arrays of isolated Ag nanoparticles, the emission intensity increases
from that of the reference sample (black curve). For these arrays with fixed 400
nm pitch, the PL and EL emission intensities both increase with increasing particle
diameters.
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Figure 7.5: 25 µm × 25 µm atomic force microscope image of the rough poly-
Si surface onto which the Ag particles are evaporated, showing an rms surface
roughness of . 5 nm.

face, and not to the metal nanoparticles themselves. Accordingly, we ascribe the

phenomenon of increased enhancement with increased diameter to the concomitant

increase in surface coverage that is achieved with larger particles.

If increased surface coverage is predicted to yield greater emission enhance-

ments, then coupling nc-Si to a continuous rough Ag film should provide the great-

est enhancements. We therefore examined the effect of coupling nc-Si emitters to

a 50 µm×50 µm continuous Ag film. Figure 7.6(a) shows the EL emission spectra

of nc-Si in the absence of Ag (black curve) and when coupled to the 20 nm thick

Ag film (red curve). This emission was measured while biasing the FELED with a

5 kHz, 9 Vrms signal. The magnitude of enhancement, determined from the ratio

of the red and black curves in Fig. 7.6(a), is plotted in Fig. 7.6(b). Here, the EL

intensity is enhanced by a factor of up to 2.4, a more important enhancement than

was seen for coupling nc-Si to any array of isolated Ag nanoparticles.

To check for EL signal uniformity over the area of the 50 µm × 50 µm Ag

film, as well as over an area where nc-Si is not coupled to Ag, a map of the EL
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Figure 7.6: (a) Electroluminescence spectrum from nc-Si in a region devoid of Ag
(black curve) and coupled to a 20 nm thick continuous rough Ag film (red curve).
(b) Magnitude of electroluminescence enhancement, given by the ratio of the red
and black curves in (a).
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Figure 7.7: EL intensity map over a 100 µm × 100 µm region of the nc-Si FELED,
including a 50 µm × 50 µm area (top right) where the nc-Si are coupled to a rough
Ag film. The emission is integrated from λ = 600-1100 nm.

emission was acquired using the 1340× 100 pixel CCD detector in imaging mode.

Figure 7.7 shows this map of EL emission intensity, integrated from 600−1100

nm. The intensity is constant over the array and roughly double the intensity of

emission from nc-Si in the reference region. From this measurement, we infer that

the coupled nc-Si emission occurs through the 20 nm thick Ag film.

In the FELED, nc-Si electroluminescence is observed due to the radiative re-

combination of excitons that are created by the sequential injection of charges into

the nanocrystals via Fowler-Nordheim tunneling.99 The field in the nc-Si-doped

SiO2 tunnel layer depends on the applied gate voltage, so, at greater voltages, Si

nanocrystals farther from the source and drain regions can be excited. The EL

intensity thus increases with voltage.

An EL enhancement effect that results from the near-field coupling of nc-Si

with surface plasmon modes should depend on the separation distance between

the nanostructured metal and the Si emitter, as discussed in Chapter 6. The nc-

Si attained with higher gate voltages are closer to the top gate and thus nearer
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Figure 7.8: EL enhancement as a function of applied gate voltage. The RMS gate
voltages are 6, 7, 8, and 9 V (from bottom to top).

to the Ag above that gate. EL enhancements from coupling to plasmonic modes

in the rough metal film should therefore increase with voltage. Such a trend

was indeed observed for the nc-Si FELEDs. In Fig. 7.8, the EL enhancement

is plotted for four different gate voltages between 6 and 9 Vrms. Here, the EL

enhancement increases with increasing applied voltage, and thus with decreasing

Ag/nc-Si separation distances. This effect must therefore be the consequence of

near-field electromagnetic coupling.

We finally comment on the nature of the enhancements measured in the present

chapter for nc-Si emitters in FELED devices coupled to nanostructured Ag. Unlike

the PL enhancements observed in Chapter 5, which were characterized by strong

spectral features, in Fig. 7.6, we see only a weak dependence of EL enhancement

on emission wavelength. We attribute the weakness of this relationship to the

absence of a sharp plasmon resonance in the rough metal film in the wavelength

range over which the nc-Si emits. The lack of sharp plasmon resonances may be

due to a large spread of feature sizes and shapes in the rough surface, as was the

case for the nanoporous gold films of Chapter 4. However, it is equally possible

that the rough Ag surfaces that give rise to EL enhancements do have a sharp
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plasmon peak, but that the frequency of this peak does not overlap with the

emission spectrum. These possibilities deserve further investigation, and future

experiments should be designed based on different sample geometries in order to

attain resonant enhancements.

7.4 Conclusions

In conclusion, by coupling nc-Si emitters to nanostructured silver, we have ob-

served enhancements in the electroluminescence intensity of nc-Si FELEDs. The

voltage dependence of this enhancement indicates that the enhancement is a func-

tion of the Ag/nc-Si separation distance. It is therefore consistent with near-field

electromagnetic coupling between nc-Si emitters and the enhanced local field about

the silver. Because the enhancement increases with increasing Ag nanoparticle di-

ameter, and is greatest for the limiting case of a continuous Ag film, we ascribe

the plasmonic effects to features on the rough surface of the Ag nanoparticles and

films.

The enhanced electroluminescence demonstrated in this chapter is an exciting

and promising result. With improved device design, we can expect resonant inter-

actions between the nc-Si emitters and the Ag plasmon modes, leading to an even

greater increase in the EL emission intensity. This is an important step toward

fabricating very bright nc-Si LEDs for device integration.
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Chapter 8

Conclusions and Outlook

The aim of this thesis was to further our understanding of the photophysics of

silicon nanocrystals (nc-Si), a goal which we achieved by a combination of exper-

imental and computational studies. In this work, we began by exploring the role

of surface states in the electronic structure of nc-Si, and then we moved on to a

thorough investigation of the enhancement of nc-Si emission via near-field coupling

to the surface plasmon modes of metal nanostructures.

The most important conclusions that can be drawn from this thesis are the

formation of a theoretically predicted, oxygen-related interband surface state on

nc-Si, the demonstration of enhanced photoluminescence and electroluminescence

from nc-Si in the presence of nanostructured gold and silver, and the ability to

predict luminescence enhancement effects with electromagnetic calculations.

8.1 Summary

The surface-state studies are described in Chapter 2. Working with nc-Si made by

ion implantation, we developed a selective etching procedure that gave us access

to the surface of nanocrystals that are generally protected by an embedding oxide

matrix. This process yielded freestanding nc-Si that could be subjected to ambient

oxidation. By analyzing the responses of nanocrystals with different sizes to air

exposure, we identified that in nc-Si with diameters less than ∼ 2.8 nm, oxidation

concomitant with a decrease in particle size does not lead to an increase in emission
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energy. In this small-nanocrystal size regime, excitonic radiative recombination

therefore occurs from a surface state. These experimental results confirmed several

theoretical predictions about oxygen-related intergap states. Unfortunately, our

investigations of nc-Si surfaces suffered from weak photoluminescence intensities

that ultimately limited the measurement signals. This disadvantage motivated

the second half of the thesis, which involved an investigation into the plasmon

enhancement of nc-Si emission.

Many important results and insights came out of our exploration of plasmon-

enhanced emission. The photoluminescence experiments in Chapters 4 and 5

are the first demonstrations of enhanced luminescence from nc-Si. These stud-

ies proved that increased emission can be realized in many different experimental

configurations; while a thick and rough nanoporous gold film was used to enhance

nc-Si emission in Chapter 4, the same effect was achieved by coupling nanocrystals

to well-defined arrays of cylindrical silver nanoparticles in Chapter 5. Through the

two sets of experiments described in those chapters, we identified many features

of plasmon-enhanced luminescence.

Firstly, the enhancement of photoluminescence intensity upon coupling to the

plasmon modes of metal nanoparticles is caused by changes in several properties

that collectively determine the dynamics of nc-Si emitters. These attributes in-

clude the radiative decay rate, the absorbance cross section, and the quantum

efficiency. The electromagnetic coupling of nc-Si to metal nanoparticles also leads

to an enhancement of the non-radiative decay pathways of the emitter, induc-

ing an increased non-radiative decay rate that can decrease the overall emission.

Fortunately, it is possible to access a regime where the beneficial enhancements

overcome this adverse consequence. By varying the separation distance between

nc-Si and metal nanostructures, we also determined that there is a strong distance

dependence to the plasmon enhancement effect; it is therefore readily attributed to

near-field electromagnetic coupling. Finally, plasmon enhancement is a resonant

process that is strongest at frequencies near the characteristic oscillation frequency

of the plasmon mode supported by the metal nanoparticle or nanostructure.
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Studying the experimental system with a computational implementation of

Maxwell’s equations in Chapter 6 further elucidated the electromagnetic interac-

tions that give rise to plasmon-enhanced emission. From this investigation, we

found a strong correlation between the local electric field concentration and the

extent of plasmon enhancement. As outlined in Chapter 3, previous theoretical

treatments of plasmonic interactions have predicted that the radiative decay rate

enhancement is proportional to the increase in local field intensity; in this thesis,

a comparison of our experimental observations to the results of our computational

analysis led us to the same conclusion.

One overarching goal of this project was to demonstrate a bright, silicon-based

emitter for integrated optoelectronics. This was only possible after attaining a

strong understanding of plasmon-enhanced nc-Si photoluminescence. Following

that exploration, in Chapter 7, we applied the notion of plasmon enhancement to

nc-Si that were electrically excited via a field-effect mechanism. The nc-Si field-

effect light-emitting diodes showed enhanced electroluminescence upon coupling

to silver nanostructures. A distance dependence was inferred from the depen-

dence of this enhancement on voltage; this relationship points toward a near-field

electromagnetic coupling effect.

8.2 Future Outlook

Though some very exciting new physics were explored in the course of this project,

enhancements of more than an order of magnitude were never achieved, even from

resonantly tuned systems. This can be attributed to ensemble averaging; unlike

surface-enhanced Raman spectroscopy (SERS), which derives from highly non-

linear enhancement effects, plasmon-enhanced emission is a linear process, and it

therefore depends on the response of the average emitter. In our systems, though

some of the nanocrystals were located at positions of high field concentration,

the average emitter experienced only a subtly enhanced local electric field. The

ensemble analysis done for the results of Chapter 4 and the field profile maps
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Figure 8.1: A strategy for increasing plasmon enhancements: replacing (a) the
layer of randomly distributed nc-Si with (b) a layer in which the nanocrystals are
concentrated beneath the metal nanoparticle periphery.

computed in Chapter 6 showed that the variation of enhancement with position can

depend on the separation distance between the nanocrystal and the metal surface

or the proximity of the emitter to a specific feature, such as a curved particle

edge. Additionally, as has been found to be true for SERS, a further analysis of

less well-ordered systems would likely demonstrate that large enhancements can

be expected for emitters in the near field of “hot spots” like bumps and bends in

a rough film.

To observe the greatest effects from the plasmon enhancement of nc-Si lumi-

nescence, it will be necessary to improve the metal-semiconductor sample design

to more precisely control the relative positions, shapes, and orientations of the

components. In this Section, we present several strategies for improving system

architecture in order to increase emission from nc-Si.

The simulations in Chapter 6 yielded the field profiles about excited arrays of

silver nanoparticles. For example, Fig. 6.8 showed the field profile in the plane

of nc-Si 10 nm beneath an array of Ag particles with 135 nm diameter and 400

nm pitch. From this map, it was clear that the field intensity is greatest under

the periphery of the nanoparticles, and lowest both far from the nanoparticles and

directly beneath the nanoparticles. It is therefore important to let the simulation

results guide the design of a new structure. As illustrated in Fig. 8.1(a), in the
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Figure 8.2: A strategy for increasing plasmon enhancements: replacing (a) the cur-
rent samples, where the nc-Si dipole emitters are randomly oriented with respect
to the Ag nanoparticles, with (b) a system of aligned nc-Si and Ag nanoparticles.

present samples, the nc-Si are randomly dispersed throughout their plane. Even

while maintaining the structure of Chapter 5, which is composed of coplanar layers

of nc-Si and Ag nanoparticles, subtle variations in sample design can yield large

improvements in the net extent of plasmon coupling. The simulations of Chapter

6 indicate that a better design is the one schematized in Fig. 8.1(b), where the

nc-Si are concentrated beneath the circumference of the metal nanoparticles. Such

a structure could be accomplished by invoking an additional lithography step to

selectively implant Si+ in prefered locations, by using metal nanoparticles as a

shadow mask for Si+ implantation, or by using the known effect of locally enhanced

heating about metal nanoparticles100 to selectively nucleate nc-Si only in close

proximity to the Ag nanoparticle.

The nc-Si in the present samples are spherical nanocrystals embedded in a ho-

mogeneous environment. Therefore, in addition to being located at a distribution

of positions relative to the metal nanoparticles, the dipole moments of the nc-Si

in the present samples have arbitrary orientations. As indicated in Fig. 8.2(a), at

optical frequencies, the metal nanoparticles will be polarized in their plane, while

each nc-Si dipole will emit in a different direction. As a result, only a subset of the

Si nanocrystals are aligned to experience maximum plasmon enhancement effects.

To optimize the coupling between nc-Si and metal nanoparticles, it is desirable to

replace this distribution of polarization directions with the case illustrated in Fig.

8.2(b), where the dipole moments of the nc-Si and the metal nanoparticles are all
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Figure 8.3: A strategy for increasing plasmon enhancements: replacing (a) en-
semble averaged measurements with (b) a collection of Si nanocrystals joined to
individual Ag nanoparticles at fixed separation distances.

aligned. This could be accomplished by creating systems of aligned anisotropic

Si and Ag nanorods, perhaps by the ion irradiation of samples, which has been

previously shown to deform metallo-dielectric core/shell colloids.101 Alternatively,

this prefered dipole orientation might be achieved by embedding spherical nc-Si

and Ag nanoparticles in a medium with a graded dielectric constant.

Ultimately, to circumvent ensemble averaging, the ideal system for plasmon

enhancement is one where each nanocrystal is carefully positioned relative to the

metal nanostructures. As schematized in Fig. 8.3, it is desirable to shift from

the present case (Fig. 8.3(a)), where the nanocrystals are randomly positioned

at an average depth, ∆, to a case in which individual nanocrystals are linked to

individual metal nanoparticles (Fig. 8.3(b)) . Strategies for selectively coupling a

nanocrystal to a metal particle in a specific position and at a fixed distance can be

found in biology.102 Indeed, the marriage of nano-optoelectronics and biology holds

much promise for addressing this challenge; we stand to gain a lot by incorporating

biological linker groups such as DNA, which are naturally nanoscale objects, into

the design of semiconductor systems.

8.3 Conclusions

The technique of plasmon enhancement is by no means a new one, but it is still

a recent arrival in the community of semiconductor quantum dot emitters. It is

our hope that the present work, which has explored plasmon-enhanced emission
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from nc-Si, predicted potential enhancements of up to two orders of magnitude,

and demonstrated plasmon-enhanced nc-Si electroluminescence, will generate more

enthusiasm about using plasmonics to enhance the performance of semiconductor

emitters. In particular, nc-Si, which are plagued by extremely long radiative life-

times, have much to gain from these electromagnetic enhancement techniques.

Furthermore, we believe that plasmon enhancement is a powerful and gen-

eral phenomenon. While the present work may one day lead to the incorpora-

tion of a plasmon-enhanced nc-Si light-emitting diode as the optical emitter in

a microdevice, it is likely that plasmon enhancement has not yet found its ulti-

mate applications. Some very important advances are yet to come in the field of

plasmon-enhanced silicon photonics. One intriguing possibility is the actualiza-

tion of a plasmon-enhanced solar cell in which nc-Si absorbers are enhanced by

the presence of metal nanostructures that double as electrical connectors. Given

the current advanced level of nanofabrication, which takes advantage of lithogra-

phy, self-assembly, and other patterning techniques, and the existing infrastructure

for silicon device fabrication, now is the perfect time to further develop plasmon-

enhanced silicon photonics. Then, the tools of plasmon enhancement that we

have developed in this thesis can bring a new level of sophistication to the field of

semiconductor nanocrystal optoelectronics and shine a new light on nc-Si emitters.
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Appendix A

Physical and Chemical Manipulations of

Freestanding Silicon Nanocrystals

A.1 Introduction

In Chapter 2, freestanding silicon nanocrystals (nc-Si) were deposited on a solid

substrate by etching away the SiO2 matrix in which they were created. The proce-

dure that we developed for the purpose of the oxidation studies in Chapter 2, which

involves the implantation of Si+ ions into SiO2 followed by a high-temperature an-

neal before a careful etch in buffered hydrofluoric acid, is outlined in Section 2.2.1.

Relative to the embedded nc-Si samples, etched nc-Si turned out to be difficult sam-

ples for optical characterization due to their reduced photoluminescence emission,

and to the fact that their emission bleaches when photoexcited in air. However, as

the etching produces samples of Si nanocrystals adhered by van der Waals forces

to a bulk silicon substrate, these supported nanocrystals provide a very flexible

system for physical and chemical manipulations using conventional surface science

methods. In this appendix, we summarize some of the manipulations that we were

able to perform.
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A.2 Physical Manipulations of Silicon Nanocrystal Sur-

face Density

The silicon nanocrystals were made by ion implantation of Si+ ions into a thermal

oxide layer on Si(100). The effect of various implantation energies and fluences

were determined by the Monte Carlo simulation program SRIM.40 The average

implantation depth is determined by the energy, and the quantity of nanocrys-

tals is determined by the dose. Results for simulations of the implantations used

in Chapter 2 and the present appendix are shown in Fig. A.1. By controlling

the implantation producing the embedded nanocrystal sample, the structure of

the etched sample is determined. The submonolayer coverage etched samples in

Chapter 2 were made by implanting 5-keV Si+ ions to a fluence of 1.3×1016 cm−2

into 15 nm thick silicon dioxide films (Fig. A.1(a)). Alternatively, we were able to

produce samples of many monolayers of nc-Si by beginning from the implantation

of 35-keV Si+ ions to a fluence of 4.0×1016 cm−2 into 100 nm thick silicon dioxide

films.

Figure A.2 shows a non-contact atomic force microscope (AFM) image of the

35-keV Si+ sample after etching in buffered HF. In contrast to the AFM of the

5-keV Si+ sample in Fig. 2.2, this AFM shows a high coverage many monolayers

thick of silicon nanocrystals with heights . 5 nm. In order to verify that the

nanocrystals were not sintered to the Si substrate, as well as to test the possibility

of altering the surface density of nanocrystals, the sample in Fig. A.2 was sonicated

in 18 MΩ·cm resistivity water for 5 s and then rinsed in water. Figure A.3 shows the

non-contact AFM scan of this sonicated sample: the nanocrystal size remains the

same, but their coverage is reduced to less than a monolayer. This result indicates

that fine-tuning of nanocrystal density is possible, and that the nanocrystals are

physisorbed, not chemically bound, to the surface.
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Figure A.1: Simulated ion implantation profiles of Si+ into a thermal oxide film
from Monte Carlo calculations. (a) 5-keV Si+ ions implanted into 15 nm of SiO2

18 MΩ·cm resistivity water to a fluence of 1.3 × 1016 cm−2. (a) 35-keV Si+ ions
implanted into 100 nm of SiO2 to a fluence of 4.0× 1016 cm−2.
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Figure A.2: 2.5 µm × 3.0 µm non-contact AFM image of nanocrystals made by
implanting 35-keV Si+ ions to 4.0 × 1016 cm−2 into 100 nm of SiO2 and then
etching in buffered HF.

Figure A.3: 3.0 µm × 3.0 µm non-contact atomic force microscope image of the
sample in Fig. A.2 after sonicating for 15 s in acetone and rinsing in 18 MΩ·cm
resistivity water.
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A.3 Chemical Surface Modifications of Silicon Nano-

crystals on a Silicon Support

In samples of silicon nanocrystals created by nucleation and growth in a SiO2

matrix, the surface Si atoms are generally bound to oxygen. Freshly etched nc-

Si surfaces, on the other hand, are terminated by hydrogen atoms, but these

systems are not stable toward oxidation in air. Thus, the majority of experimental

investigations into the photophysics of nc-Si have focused on oxygen-terminated

samples. In order to gain insight into the fundamental properties of indirect band

gap semiconductor nanocrystals, as well as to understand experimental results

including reports of optical inversion, a reference system that is free of oxygen-

related surface states is desired. Bansal et al. and Royea et al. showed that fully

methylated bulk silicon surfaces demonstrate enhanced resistance toward oxidation

in air, while exhibiting electrochemical properties that are very similar to those of

their hydrogenated counterparts.103–105 We can expect the oxidation rate of well

prepared methyl-terminated nc-Si to be similarly slowed, and thus such samples

would be conducive to studies in air. This stable system could serve as a substitute

for hydrogen-terminated particles in optical measurements, and allow the optical

effects intrinsic to the crystal to be studied in an environment free of deep surface

states. Methylated nc-Si would also be suitable for device applications where

the existence of an insulator such as SiO2 is undesirable. Finally, synthesizing

methylated particles would be a first step toward producing an array of silicon

nanocrystals with different surface groups and therefore tailored band gaps for

optoelectronic applications.

A.3.1 Surface Chemistry of Silicon Nanocrystals

The exposed surfaces of the etched nanocrystal samples described in Chapter 2

provide a platform not only for the ambient air oxidation studies described in that

chapter, but also for preliminary studies of solution chemistry surface modifica-

tions. The surface chemistry used for this purpose was adapted from the bulk sur-
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face halogenation/Grignard method developed by Bansal et al.103–105 One impor-

tant modification from the bulk surface procedure is that the nanocrystal/substrate

samples could not be sonicated for cleaning purposes since, as indicated by the

change in surface coverage between Figs. A.2 and A.3, such a procedure would

remove nanocrystals from the silicon surface. The sonication processing typically

used for reactions on bulk silicon surfaces was therefore replaced by a thorough

rinsing. Also, care was taken to keep the sample horizontal and face-up in the

solution, especially when removing it from a liquid through the meniscus.

The chemical modifications begin as described in Section 2.2.1. Briefly, a sam-

ple of nc-Si embedded in 15 nm of SiO2 is cleaned in a 5:1:1 H2O:H2O2:NH4OH

solution at 80 ◦C for 10−20 min followed by a rinse in 18 MΩ·cm resistivity wa-

ter. The nanocrystals are subsequently removed from the SiO2 and deposited

onto the silicon substrate with a 40 s chemical etch in buffered hydrofluoric acid

(7.2% HF(aq), 36% NH4F(aq) v/v), with great care taken to hold the samples

horizontally as they are removed from the etching solution. This first step pro-

duces hydrogen-terminated silicon nanocrystals on a H-terminated silicon (100)

substrate.

The H-terminated nc-Si are then introduced into a nitrogen-purged glove box

for the subsequent processing steps. In this oxygen-free environment, the surfaces

of nc-Si supported on the Si substrate are chlorinated by heating in a saturated

solution of PCl5 in chlorobenzene with a few grains of the radical initiator benzoyl

peroxide, at 90−100 ◦C for 45 min. This produces chlorine-terminated nc-Si on a Si

substrate, which are cleaned by rinsing in anhydrous tetrahydrofuran (THF) and

anhydrous methanol, and dried under flowing N2 gas. Still in the nitrogen-purged

environment, the chlorine-terminated sample is immersed in a 3.0 M solution of

CH3MgBr in diethyl ether. The reaction solution is heated at 70−80 ◦C for 2.5 h.

The methyl-terminated nanocrystals on a methyl-terminated Si(100) surface are

cleaned by rinsing in anhydrous THF and anhydrous methanol.

A non-contact AFM scan of a sample after this chlorination/methylation se-

quence is shown in Fig. A.4. This scan shows that silicon nanocrystals remain on
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Figure A.4: 3.5 µm × 3.5 µm non-contact atomic force microscope image of silicon
nanocrystals on a silicon substrate after the chlorination and methylation reactions.

the surface despite the numerous reaction and rinsing steps involved. However, the

sample appears dirtier than prior to chemical reactions. Still, AFM indicates that

there is some potential for using substrate-supported nc-Si in chemical reactions,

since nanocrystals remain on the surface despite exposure to harsh reagents, high

temperatures, and multiple rinses.

A.3.2 X-Ray Photoelectron Spectroscopy

Given that the chemically modified samples consist of a submonolayer coverage

of silicon nanocrystals on a silicon substrate, it was impossible to use X-ray pho-

toelectron spectroscopy (XPS) to probe the nanocrystals alone; XPS is unable to

discern the surface chemistry of the nc-Si from that of the Si(100) base on which

they were deposited. However, we could still use XPS to monitor the surface

chemistry of the Si substrate/Si nanocrystal combination. Previous studies on

bulk (111) and (100) silicon have determined that, though a hydrogen-terminated

silicon surface will oxidize in air within minutes, surface methylation confers resis-

tance to such oxidation.103–105 We therefore used XPS to probe whether the same



145

behavior could be observed in the methylated Si substrate/Si nanocrystal sample.

The Si(2p) region of the XP spectrum shows up at 99−105 BeV, and we look

for signatures of the surface chemistry in core level shifts in this signal. The Si (2p)

binding energy increases steadily with oxidation state, from 99.3 BeV for Si0 to

103.3 BeV for the Si4+ oxidation state.45 As was shown in Fig. 2.5, upon removal

from the buffered HF etching solution, the XP spectrum of Si substrates with Si

nanocrystals contains a single peak at 99.5 BeV, demonstrating that the nanocrys-

tals and the Si surface were oxide-free. However, left in air, these samples oxidized

within minutes. Fig. A.5(a) shows the XP spectrum of a sample of Si nanocrystals

on Si(100) one week after hydrogen-termination by etching in BHF. This Si(2p)

signal has two components: a peak centered at 99.5 BeV from unoxidized Si, and

a peak at 103.5 BeV indicating a large degree of surface oxidation. Since a mono-

layer of silicon is ∼ 0.6 nm thick and the XPS escape depth is ∼ 3.0 nm, this

spectrum is consistent with the growth of a full monolayer of native silicon oxide

on the surfaces of the nanocrystals and the substrate . In contrast, Fig. A.5(b)

shows the XPS spectrum of a sample of methylated silicon nanocrystals on silicon

after one week in air; a comparison of this scan to the one in Fig. A.5(a) shows

no evidence of oxidation. This is consistent with the methylation reaction being a

successful way to prevent the oxidation of the surface of silicon nanocrystals.

A.3.3 Photoluminescence Spectroscopy

Optoelectronic characterization by photoluminescence (PL) spectroscopy was used

to monitor the effect of the surface modifications on the silicon nanocrystals. This

technique can indicate the presence or absence of covalently bonded groups on

the surface of defect-free nanocrystals as described in Chapter 2. It is also a

good indicator of the quality of the nanocrystal, since defects such as dangling

bonds will quench the band-to-band PL and themselves luminesce at 500−600

nm.42 Figure A.6 shows the PL spectra of samples at different stages of the

methylation sequence. All of the unembedded samples were examined one week

after chemical treatment, by which point we expect the hydrogen- and chlorine-
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Figure A.5: XP spectra of Si nanocrystals on Si(100) substrate (a) one week in air
after hydrogen termination by etching and (b) one week in air after methylation.
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terminated samples to be oxidized. The PL spectrum from the initial sample of

silicon nanocrystals embedded in SiO2 is given in Fig. A.6(a). This sample emits

with a peak at 775 nm, consistent with the radiative recombination of quantum

confined excitons of Si nanocrystals in the 3 to 4 nm diameter size regime. Figure

A.6(b) shows the PL spectrum of a similar sample that was stored in ambient air

for one week after it was etched and H-terminated. This sample emits with a peak

at 725 nm, consistent with radiative recombination of quantum confined excitons

of Si nanocrystals that are smaller than the nanocrystals in Fig. A.6 due to the

etching process.

Figures A.6(c) and (d) show the PL spectra of samples one week after chlorine-

termination and methyl-termination, respectively. Unfortunately, though AFM

indicates that there are indeed nanocrystals present in these samples, we see no

emission from quantum-confined excitons in Figs. A.6(c) and (d), only emission at

∼ 550 nm, with a PL decay lifetime of < 400 ns, that is characteristic of defect

state emission. The chlorination and methylation procedures clearly damage the

nanocrystals to the point where their emission was no longer observed and a less

harsh variation on the techniques described in this appendix must be developed

to produce defect-free surface-functionalized silicon nanocrystals.

A.4 Silicon Nanocrystals on Fused Silica Substrates

It is convenient to utilize the well-developed method of creating silicon nanocrystals

in silicon dioxide via Si+ ion implantation and annealing. However, it is difficult

to characterize silicon nanocrystals on a silicon substrate by XPS, and impossible

to measure the UV-visible absorption of nanocrystals on such opaque samples. As

an attempt to circumvent such challenges while still taking advantage of using a

Si-doped SiO2 precursor, we examined the possibility of creating samples of sili-

con nanocrystals supported on fused silica rather than silicon. For this purpose,

fused silica substrates were implanted with Si+ ions. Annealing such samples in

Ar at 1100 ◦C as was done with the SiO2-on-silicon samples did not yield photo-
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Figure A.6: Photoluminescence spectra at samples at various stages of chemical
manipulations. (a) Silicon nanocrystals embedded in SiO2. (b) One week in air
after silicon nanocrystals have been removed from SiO2 and hydrogen-terminated
through etching. (c) One week in air after hydrogen-terminated samples have
been chlorine-terminated in PCl5 with benzoyl peroxide. (d) One week in air after
chlorine-terminated samples have been methyl-terminated in methyl magnesium
bromide.
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luminescent samples, implying that no nanocrystals were formed in the silica. We

attribute this to the complete oxidation of the implanted silicon, presumably due

to the increased wetting of fused silica relative to that of a thin oxide on Si, and

develop some small modifications to address this difference. In particular, rather

than annealing the Si+-doped silica in Ar at 1100 ◦C for 5 min, the fused silica

samples were annealed in Ar at 250 ◦C for 20 min, then 450 ◦C for 20 min to dry

the samples, and subsequently annealed in Ar at 1000 ◦C for 30 min to nucleate

and grow nanocrystals. According to PL spectroscopy, this produced embedded

silicon nanocrystals in the silica.

Due to the high surface sensitivity of the XPS technique, the Si(2p) region of

such a sample (not shown) shows only a Si4+ peak at 104 BeV from the fused

silica; the embedded nanocrystals are hidden from the X-ray beam and cannot be

detected. Etching away the surface SiO2 in these samples would be expected to

leave silicon nanocrystals supported by an all-SiO2 base, and in an XPS measure-

ment of this combination, any unoxidized Si signal can be attributed to the silicon

nanocrystal cores. The XP spectrum of this sample after 30, 60, or 90 s of etching

in buffered HF (BHF) are displayed in Fig. A.7, and the insets of this figure show

a schematic of our interpretation of the evolution of the sample with etch time.

Etching for 30 s in BHF gave rise to a partially etched sample with silicon nano-

crystals mostly uncovered but not making up the entire surface. Figure A.7(a)

shows the XP spectrum of the Si(2p) region of such a sample; there is a large bulk

Si0 peak at 100 BeV and a small Si4+ peak from SiO2 at 104 BeV. Figure A.7(b)

shows the same region for a sample that has been etched for 60 s; here, the Si(2p)

region shows only a Si0 peak at 100 BeV, implying that the entire surface consists

of silicon nanocrystals. Finally, after a 90 s etch in buffered HF, the nanocrystals

are entirely washed off the surface of the fused silica; the XP spectrum of such a

sample in Fig. A.7(c) has a signal that originates only from the oxidized Si4+ of

SiO2.

The differences in hydrophobicity between silicon and SiO2 decrease the like-

lihood that nanocrystals will remain on the SiO2 substrate when immersed in a
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Figure A.7: XP spectra of a sample of silicon nanocrystals in fused silica im-
mediately after (a) 30 s immersion in buffered hydrofluoric acid (BHF), (b) 60 s
immersion in BHF, (c) 90 s immersion in BHF. The insets are schematics of sample
configurations consistent with the XP spectra.
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solution. Indeed, it seems that only partially embedded nc-Si remain on the sur-

face at all; fully freestanding nanocrystals are washed away. This makes silicon

nanocrystals on a silica substrate unsuitable for chemical modifications, during

which it is desirable to have access to the entire nanocrystal surface.

A.5 Conclusions

This appendix summarized the various physical and chemical manipulations we

attempted during the course of our investigations of freestanding silicon nano-

crystals prepared by the selective etching of nc-Si-doped SiO2. Though perhaps

not an ideal technique, this method still does produce freestanding nc-Si that are

available for nanocrystal surface studies. There exist several colloidal106–109 and

aerosol110–113 chemistry synthetic methods for the fabrication of silicon nanocrys-

tals with diameters less than . 5 nm, yet these techniques are in their infancy. It

is therefore desirable to take advantage of existing, well-developed methods for the

synthesis of silicon nanocrystals within silicon dioxide. Hopefully the techniques

outlined here will be of use for further surface chemistry and single-particle studies.
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Appendix B

Mathematical Model for Deconvolving

Ensemble Measurements

B.1 Introduction

In Section 4.4.4, we record the photoluminescence (PL) intensity, IPL; absorbance

cross section, σ; experimental decay rate, Γexp; radiative decay rate, Γrad; and

quantum efficiency, Q, from silicon nanocrystals (nc-Si) coupled to nanoporous

gold (np-Au). Each of these optoelectronic properties is dependent on the metal/

semiconductor separation distance, which is varied by increasing the etch depth, D.

The enhancements of these factors, i.e., ηPL, ησ, ηΓexp , ηΓrad
, and ηQ, respectively,

are plotted as a function of D in Figs. 4.13, 4.15, 4.17, 4.18, and 4.19, respectively.

In all cases, these enhancements peak at 7.5 nm < D < 12.5 nm, and have

a rising tail at D ∼ 17.5−20 nm. Our results can be interpreted in the context

of a model that accounts for local-field effects as well as the spatial distribution

of nanocrystals in the sample. The nanocrystals closest to the np-Au will be

most affected by its presence because the strength of the enhanced local field is

expected to decay with metal/emitter separation distance, r, as r−6. At extremely

small nc-Si/np-Au separations, however, luminescence quenching processes must

be considered,74 and if np-Au directly contacts a Si nanocrystal, electronic charge

transfer could also quench luminescence.9 The green lines in Figs. 4.13, 4.15, 4.17,

4.18, and 4.19 are fits produced by applying this model to our data, and we describe
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the model in the present appendix.

B.2 Model for the Quantitative Analysis of Ensemble

Results

From a qualitative perspective, the non-monotonic trends in enhancements in Figs.

4.13, 4.15, 4.17, 4.18, and 4.19, including the rising tail at D ∼ 20 nm, is unsurpris-

ing when the bimodal distribution of 780 nm emitters within the nc-Si distribution,

indicated in the red curve of Fig. 4.7, is considered. We interpret the trend quan-

titatively in the context of a model that accounts for three important factors.

Firstly, the spatial distribution of 780 nm emitters, N , introduced in Eq. (4.2)

as a function of the distance from the unetched surface, d, is reformulated as a

function of etch depth, D, and metal/emitter separation distance in the etched

sample, r = d− D, i.e.,

N(r, D) = Ntotal(r, D) ×
{

exp
[

−2
(7.05)2

· ((r + D)− 9.6)2
]

+ exp
[

−2
(7.05)2

· ((r + D) − 28.8)2
]}

(B.1)

where

Ntotal(r, D) = exp
{

−2
(14.1)2

· ((r + D) − 19.2)2
}

(B.2)

Secondly, we consider that the Si nanocrystals are subjected to a field that is

the sum of the applied field, Eapp and the enhanced local field. The latter decays

from its maximum value of fenh ·Eapp, where fenh is the enhancement factor, with

r as r−6. The total field is then

E(r)
Eapp

= fenh · r−6 + 1 (B.3)

Thirdly, we consider that, at extremely small nc-Si/np-Au separations, lumi-

nescence quenching processes occur,74 and if np-Au directly contacts a Si nano-

crystal, electronic charge transfer can also quench luminescence.9 We approximate
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that these mechanisms act to quench all luminescence over a dead zone of width,

z.

We monitor the evolution of enhancements of five different physical properties,

ηPL, ησ, ηΓexp , ηΓrad
, and ηQ. Each one is enhanced in a field, E(r), according to

its own constant interaction factor, which we designate as χPL, χσ , χΓexp , χΓrad
,

and χQ, respectively.

The enhancement in PL intensity, ηPL(D), is the ratio of the sum of enhanced

intensities (integrated from z ≤ r < ∞ because emission is quenched at positions

r ≤ z) to the sum of the reference intensities. This enhancement is therefore given

by

ηPL(D) =
χPL

∫ ∞
z drN(r, D)E(r)

∫ ∞
0 drN(r, D)

(B.4)

Whereas the measured photoluminescence intensity is the sum of emission in-

tensity from each nanocrystal, measurements of the other optical properties con-

sidered in this appendix and in Chapter 4 detect average values, and the functional

form of their enhancements is slightly different from ηPL in Eq. (B.4). The en-

hancement in absorbance cross section, ησ, is

ησ(D) =
χσ

∫ ∞
z drN(r, D)E(r)/

∫∞
z drN(r, D)

∫ ∞
0 drN(r, D)/

∫∞
0 drN(r, D)

=
χσ

∫ ∞
z drN(r, D)E(r)
∫ ∞
z drN(r, D)

(B.5)

The enhancement in experimental decay rate, ηΓexp , radiative decay rate, ηΓrad
,

and quantum efficiency, ηQ, are, respectively,

ηΓexp(D) =
χΓexp

∫ ∞
z drN(r, D)E(r)

∫ ∞
z drN(r, D)

(B.6)
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ηΓrad
(D) =

χΓrad

∫ ∞
z drN(r, D)E(r)

∫ ∞
z drN(r, D)

(B.7)

ηQ(D) =
χQ

∫ ∞
z drN(r, D)E(r)
∫ ∞
z drN(r, D)

(B.8)

B.3 Conclusions and Predictions

The data of Figs. 4.13, 4.15, 4.17, 4.18, and 4.19 were fit to the predicted trends of

Eqs. (B.4)−(B.8). Two very interesting quantities can be deduced from these fits.

Firstly, this analysis determines the dead zone width, z. The best fits obtained with

our model give z = 1.6 nm. In other words, at metal/semiconductor separation

distances less than 1.6 nm, quenching processes become more important than

enhancement effects, and the emission is decreased.

Secondly, fitting our data to this model gives us the interaction factors, χPL,

χσ , χΓexp , χΓrad
and χQ. A significant limitation on the enhancement magnitudes

attained in Chapter 4 is the wide distribution in nanocrystal positions. The optical

phenomena reported in the present appendix and in Chapter 4 contain some con-

tributions from Si nanocrystals strongly coupled to np-Au, but we cannot neglect

the large contribution from non-interacting nanocrystals far from the np-Au. With

the present distribution, N(r, D) in Eq. (B.1), we measure a maximum of ηPL ∼ 4

at D = 10 nm. Replacing N(r, D = 10 nm) by an idealized, much narrower,

distribution of emitters,

N ′(r) = exp
{

−2
(14.1)2

· (r − 1.75)2
}

(B.9)

yields a PL intensity enhancement, ηPL, greater than 50.

Despite the fact that the measurements in Chapter 4 are obscured and damp-

ened by the wide distribution of silicon nanocrystal positions in the sample, the

analysis in the present appendix gives good insight for the design of more ideal-

istic coupled metal/semiconductor systems. We predict that with close coupling
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(∼ 1.6 nm separation distances) and narrowing spatial distributions, a much larger

enhancement can be obtained in a system very similar to the one at hand.
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Applied Physics Letters 88, 181115 (2006).

[26] X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, Physical Review

Letters 93, 107403 (2004).

[27] G. S. Solomon, M. Pelton, and Y. Yamamoto, Physical Review Letters 86,

3903 (2001).

[28] M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, Applied

Physics Letters 71, 1198 (1997).

[29] P. G. Kik, M. L. Brongersma, and A. Polman, Applied Physics Letters 76,

2325 (2000).

[30] K. S. Min and H. A. Atwater, Applied Physics Letters 72, 1884 (1998).

[31] R. Ragan, K. S. Min, and H. A. Atwater, Materials Science and Engineering

B 87, 204 (2001).

[32] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chemical Physics Let-

ters 26, 163 (1974).

[33] J. Gersten and A. Nitzan, Journal of Chemical Physics 73, 3023 (1980).

[34] A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, Optics Letters 5,

368 (1980).

[35] K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi,

Physical Review Letters 89, 117401 (2002).

[36] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko,

I. Nabiev, U. Woggon, and M. Artemyev, Nano Letters 2, 1449 (2002).

[37] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer,

Nature Materials 3, 601 (2004).



160

[38] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franz, and F. Priolo, Nature 408,

440 (2000).

[39] M. H. Nayfeh, S. Rao, N. Barry, J. Therrien, G. Belomoin, A. Smith, and

S. Chaieb, Applied Physics Letters 80, 121 (2002).

[40] J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of

Ions in Solids, Volume 1, Pergamon Press, New York, 1985.

[41] K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma,

and A. Polman, Applied Physics Letters 69, 2033 (1996).

[42] K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma,

and A. Polman, Applied Physics Letters 68, 2511 (1996).

[43] M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, and H. A.

Atwater, Applied Physics Letters 72, 2577 (1998).

[44] T. Feng, Silicon Nanocrystal Charging Dynamics and Memory Device Appli-

cations, Ph.D. thesis, California Institute of Technology, 2005.

[45] J. F. Moulden, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of

X-Ray Photoelectron Spectrocopy, Perkin-Elmer Corporation, Eden Prairie,

MN, 1992.

[46] M. S. Hybertsen, Physical Review Letters 72, 1514 (1994).

[47] Y. Kanemitsu, Physics Reports 263, 1 (1995).
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