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ABSTRACT 

An analysis is performed of many standard and linearized electrooptic modulators known in 

the industry.  The transfer functions of these modulators are evaluated under a consistent set 

of performance figures of merit, which are gain and spur-free dynamic range, using a canonical 

set of optical link parameters.  The tolerance of the needed precision of the parameters of the 

linearization mechanisms of all of these modulators is compared over the entire interesting 

range of noise bandwidth. 

A computer program was written to analyze the frequency dependence of any modulator 

transfer function under any set of functional inputs.  The program is used to illustrate and 

compare the frequency dependence of the figures of merit of all of the modulators for which a 

d-c analysis was performed.  Further analysis looks at the effect of greater noise-bandwidth 

and recovering the frequency-dependent degradation of gain and dynamic range through re-

phasing techniques.  The gain of directional couplers is analyzed in-depth.   

Two novel modulator schemes are produced.  The first uses reflective wave techniques to 

retime the electrical and optical waves half way through the modulator.  The second uses 

fabrication geometry and properties of the linearization technique to make a more robust 

modulator (applicable to three of the modulators analyzed). 

A 94 GHz antenna-coupled directional coupler modulator was initially demonstrated using an 

old modulator chip from Finbar Sheehy.  A peculiar bug with the chip was uncovered.  And a 

new modulator experiment was constructed and many aspects of the experimental apparatus 

were optimized.   Though the revised experiment ultimately did not yield modulation side 

bands, it did couple a 94 GHz microwave signal into the optical waveguide, and many 

interesting challenges of high frequency electrooptic modulator fabrication were evaluated and 

improved upon. 
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C h a p t e r  1  

INTRODUCTION 

In the last few decades the field of optics has become very important.  Especially with the 

invention of optical fiber, technologies for the manipulation and transport of coherent light 

offer great advantages in a wide range of applications.  Optical systems are used to send 

information from as long a distance as across oceans, to as short a distance as the machine 

room or even the back-plane in an equipment chassis.  There are commercial fiber-optic 

products in telecom voice & data, computer networking, cable TV, and scientific 

measurement.  In the defense industry fiber-optic systems are used in similar applications, and 

in addition, they are used in antenna remoting and some advanced weaponry.  Fiber-optics 

promises significant bandwidth, above a terahertz, and low transport loss, 0.1 dB/km, all in a 

“light” cable. 

A basic fiber-optic data link consists of an electrical amplifier, a laser, a means of modulating 

the optical signal with the electrical signal, a length of fiber, an optical detector, and an 

electrical post-amplifier. The “intrinsic link” is the laser, modulator, fiber, and detector.  Link 

engineers select a set of optical components that when combined form a fiber-optic link to 

optimally meet the system requirements.  In component research and engineering, the aim is to 

improve the figures of merit of particular components of the fiber-optic link.  In this thesis 

electrooptic modulators are evaluated in the context of a normalized intrinsic link.  The 

application scope is 1-100 GHz analog links used for short range military applications, such as 

antenna remoting. However, many of the results apply to links more broadly in other 

applications. 

The electrooptic modulator is often the limiting component of an analog fiber-optic link.  The 

important figures of merit for the analog link are: gain, noise figure, dynamic range, and 

modulation bandwidth.  The gain of the link is defined as the electrical r-f output power of the 

photodetector divided by the input r-f drive power of the modulated signal.  Note that it is 
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possible for even an intrinsic link to have net positive power gain if sufficient optical laser 

power is used, as shown by Cox in Ref. [1.1].  The noise figure is the noise power out of the 

link divided by GkT0B (link gain, Boltzmann’s constant, room temperature taken as 290K, and 

noise bandwidth), usually expressed in dB.  Dynamic range is the peak power ratio of the 

signal to the dominant distortion term, also usually expressed in dB.  Bandwidth (sometimes 

termed “noise bandwidth”) is the electrical frequency range passed by the link.  It often is not 

possible to simultaneously optimize all of the figures of merit, so trade-off analysis is employed 

to evaluate modulators for different link configurations.  

There are two different approaches to optical modulation in the fiber-optic link, direct 

modulation of the laser and external modulation of the laser output.  Many links employ direct 

modulation, in which the modulation voltage is applied to the power supply of the laser.  

While simple, direct modulation is undesirable in noise-sensitive applications because it creates 

chirp, phase modulation that can be converted to amplitude modulation distortion in the 

receiver.  In high fidelity links, the modulation function is usually separated from the laser into 

an external component. There are three types of external modulators in common use today: 

electro-absorption modulators based on the semiconductors gallium arsenide or indium 

phosphide, electrooptic modulators based on polarized polymers, and electrooptic modulators 

based electrooptic crystals such as lithium niobate, and other materials.  The theoretical 

calculations in this thesis apply to all forms of high fidelity modulators, while the laboratory 

work focuses on high frequency LiNbO3 electrooptic modulators.  

The research undertaken for this thesis treats two important aspects of electrooptic 

modulation:  The first aspect is an analytical treatment of various schemes to improve the 

linearity of electrooptic modulators for use in high dynamic range analog microwave fiber-

optic links, with particular attention to the bandwidth limitations imposed by the linearization 

scheme employed.  The second aspect studied is an experimental demonstration with 

directional coupler modulators of the antenna-coupling scheme used by Sheehy, et al in Ref. 

[1.2] for Mach-Zehnder modulators. 



 

 

3
Thesis Organization   

Chapter 1 introduces the thesis topic. 

Chapter 2 gives a brief tutorial overview of the different kinds of lithium niobate electrooptic 

modulators treated in this research.  The Mach-Zehnder modulator (MZM) is by far the most 

common configuration used today, but the directional-coupler modulator (DCM) also offers 

some attractive characteristics.  The linearity and frequency limitations of both these 

modulators are introduced. 

Chapter 3 addresses distortion and its reduction in various electrooptic modulator 

configurations.  This work follows the work done in Ref. [3.8] but adds additional modulators 

and additional comparisons.  A consistent link model is defined against which to compare 

many different modulators and linearization schemes.  Gain, noise figure, and dynamic range 

are defined and calculated numerically for all of the different modulators, as appropriate for a 

single analog signal.  The modulators are further compared using composite triple beat and 

composite second-order distortion, the figure of merit for CATV, where multiple channels are 

transmitted over the link.  Finally, the modulators are compared for their sensitivity to 

manufacturing and bias parameters.   

Chapter 4 addresses the bandwidth limitations of different modulators and linearization 

schemes.  A numerical modulator simulation computer program is defined.  The program 

calculates the gain and dynamic range for the modulators defined in Chapter 2.  The question 

of whether a linearization scheme can be reoptimized for a particular frequency within the 

band-pass for high frequency operation is answered.  The effect of multiple electrode 

segments, “rephasing on the average,” on dynamic range is analyzed.  Much of this work was 

published in Ref. [4.2], but there are some extensions to this work that appear originally here. 

Chapter 5 introduces two modulator scheme improvements.  First it describes reflective- 

wave modulators, which use reflections at the crystal surface for the optical wave and an open 

circuit in the traveling wave electrode at a specific location to gain the effects of twice the 

crystal real estate and a one-time rephrasing of electrode segments.  This is “velocity matching 
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on the average” with a two segment electrode.  The technique is broadly applicable to 

different modulators.  It is covered in U.S. Patent 5,076,655.  The second modulator 

improvement uses “sensitivity splits.”  This technique applies to two well-known linearized 

modulators.  It significantly reduces the complexity of the modulator design by building 

asymmetry into the modulator, and then taking advantage of the fact that the modulators only 

need one precisely controlled degree of freedom, whereas the published version of the 

prototype modulator structure calls out for two precisely controlled degrees of freedom. 

Chapter 6 covers the laboratory work done on high-frequency antenna-coupled external 

modulators.  A 100 GHz directional coupler modulator is demonstrated.  This experiment 

follows on work done by Sheehy in Refs. [1.2] and [1.3]. A set of directional coupler 

modulators with different electrical lengths and different modulator electrode lengths (physical 

length) was fabricated and characterized.  The r-f feed structure for antenna-coupled 

modulators was optimized.  A successful demonstration of the basic operation of this device 

was made very early in the work, and further improvements were carried out.  Unfortunately, 

this portion of the study had to be abandoned (due to events beyond our control) before the 

improved device could be fully demonstrated. 

Chapter 7 covers suggestions for future work.  This is broken into a laboratory component 

and a theoretical component.   
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C h a p t e r  2  

ELECTROOPTIC MODULATOR FUNDAMENTALS 
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The Electrooptic Effect 

Electrooptic modulators of the variety studied in this thesis exploit the Pockel's effect. In 

crystals such as LiNbO3, the index of refraction varies linearly with the applied electric field, 

with the constant of proportionality depending on the orientation of the electric field with 

respect to the crystallographic axes.  The resulting change in the optical path length of the light 

passing through the crystal is proportional to the voltage applied to a set of electrodes.  Over a 

fixed physical length of crystal, this converts to a phase shift of the light passing through it.   

The effect of an applied electric field on the propagation of light is defined by the change of 

the indices of refraction in the tensor equation ∆(1/n2)=RE.  ∆(1/n2) gives the change in the 

index of refraction for the elements of the tensor ∆, R is the tensor of electrooptic 

coefficients, and E is the vector of the applied electric field. (See, for example Ref. [2.1]).  

There are six relevant indices of refraction from the index ellipsoid, three terms for the three 

principle directions (x, y, and z), and three cross terms.  An electric field has x, y, and z 

components, so in general this effect is described with a 6 x 3 tensor, R.  Each component 

∆(1/n2)i  for 1 < i < 6 is the dot product of the i-th row of R with the electric field vector.  In 

non-electrooptic crystals (centrosymmetric), all of the terms rij are zero.   Most electrooptic 

crystals have some degree of symmetry leading to many of the rij terms equaling zero. The 

electrooptic effect is generally very small, but the crystal lithium niobate (LiNbO3) possesses 

relatively large values of these electrooptic coefficients, and has other desirable properties 

(hardness, non-hydroscopic, etc.). As well, LiNbO3 is a “3m” symmetric crystal and has 8 non-

zero terms, of which there are 4 distinct absolute values, some terms are equal, and some are 

equal and opposite. For optical wavelengths of interest in this study1 the electrooptic constants 

are (in picometers per volt): 

• r13= r23 = 8.6 pm/V,  

 
1 These values are taken from Ref. [2.1] for the 0.633 µm.  That reference does not give the constants for 1.3 µm or 1.5 µm.  

The same values for r33 and r13 are listed in Ref. [2.3] but in that reference they are given for 1.5 µm.  Accordingly, the values 
are largely constant over 0.6 µm to 1.5 µm wavelengths.  They are about 10-20% smaller at 3.3 µm.  It is also assumed that 
the modulating frequency is above 10 MHz.  At lower frequencies, some of these constants can change considerably due to 
mechanical effects.  
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• r22 = -r12 = -r61 = 3.4 pm/V,  

• r33 = 30.8 pm/V,   

• r51 = r42 = 28 pm/V. 

The crystals are cut and used in an orientation to maximize the field projected onto the 

direction with the largest electrooptic effect.   Clearly, it would be inefficient to rely on the r13 

and r22 terms in LiNbO3.  While the formalism to describe the electrooptic effect is fairly 

complex, in practice there is only one scalar quantity used in the analysis of electrooptic 

modulators based on LiNbO3, that is r33 (30.8pm/V), which describes the effect of an applied 

electric field in the z-direction on an optical wave polarized in the z-direction.  For z-cut 

LiNbO3 the z-axis is normal to the crystal and the optical wave is “TM” polarized and for the 

x-cut LiNbO3, the x-axis is normal to the crystal and the optical field is “TE” polarized. 

Electrooptic Modulation in Bulk Crystals 

The basic mechanism for all electrooptic (E-O) modulators treated here is a voltage-dependent 

phase shift.  The optical and electrical fields must be oriented with respect to the crystal in 

such a way that a good phase shift is obtained.   The first E-O phase shifters were built using 

bulk crystals, and used either a longitudinal or transverse orientation of the electric field with 

respect to the direction of propagation of the optical wave.  The longitudinal method is not 

particularly desirable because the electric field direction and the optical path length are parallel.  

Thus, it increases the length of the crystal to increase the accumulated phase shift.  It also 

decreases the electric field for the same voltage applied to the crystal ends.  The net effect is no 

improvement in phase shift with increased crystal length.  Furthermore, the electrodes needed 

to apply the electric field in this direction typically interfere with the optical pathway.  The 

transverse mode of operation is more desirable, in that the field is applied normal to the 

direction of propagation, as shown in Figure 2 - 1a.  The optical phase shift (often termed 

“retardation”) can now be increased by increasing the length of the crystal without changing 

the strength of the applied electric field.   A second advantage is that the electrodes now do 
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not interfere with the optical beam.  Even so, it takes a lot of voltage to make an appreciable 

phase shift using bulk crystals.  The electrooptic induced change in electrical path length is 

given by Γ=(2πf/c)(Lm/d)no
3rV in the transverse configuration,  where Lm is the length of the 

crystal, d is the spacing between the electrodes, and r is the appropriate rij for the crystal 

orientation.  The half-wave voltage, or Vπ, is the voltage at which the optical beam has 

experienced an additional 1800 phase shift.  For a 1.3 µm beam in LiNbO3 in which the r33 

electrooptic coefficient used is about 4 kV assuming (ℓ/d) = 1.  If the crystal is four times 

longer than it is high, then Vπ is 1 kV. The voltages are even higher for crystals with smaller 

values of electrooptic coefficients, such as ammonium dihydrogen phosphate (ADP) or 

potassium dihydrogen phosphate (KDP) or their deuterated analogs.  

One might think that simply increasing (Lm/d) would solve the problem.  This is not the case.  

As a practical matter, it becomes increasingly difficult to fabricate long, thin crystals.  However, 

a more fundamental limitation occurs because of diffraction of the propagating light.  If the 

transverse dimension d is made very small, the light propagating through the crystal will spread 

more rapidly, and hit the sides of the crystal, thus being absorbed.  The optimum strategy for a 

light beam with a Gaussian transverse distribution is to place a Gaussian focus or beam waist 

half-way through the crystal, so that the propagation path is symmetrical.  With this strategy, 

there is still an optimum (l/d).    This is illustrated following the derivation for a Gaussian 

beam in a lens waveguide from Ref. [2.1].  Assuming in Figure 2 - 1b that the lens has a focal 

length ƒ, 2w0 is the beam waist diameter at the thin lens, 2w1 is the beam waist diameter at the 

minimum in the crystal, and θ is the beam diffraction angle of the far field, then  
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Figure 2 - 1: a) Bulk crystal modulator in transverse 
configuration, b) Illustration of Gaussian beam waists in 
a bulk crystal modulator. 

The diffraction angle θ illustrates the dependence of the initial beam waist.  A second useful 

parameter is the confocal beam parameter z0.  It is not the case that the distance L1 simply 

depends on the focal length of the lens.  If ƒ « z0 then L1≈ ƒ, if ƒ = z0 then L1= ƒ/2 = z0/2 

(the maximum value for L1), and if ƒ » z0 then L1 ≈  z0
2/ƒ.  So to maximize the distance from 

the lens to the beam waist 2w1, a focal length is chosen based on the fundamental parameter 

z0.  A few numerical examples illustrate this effect.  The modulator dimension “d” must be 

larger than the input beam waist 2w0 to avoid to losing optical energy at the input.  Suppose 

d=4w0, n=2.2, λ= 1.3µm, and L1=10 mm.  Then since d = 4 (λ L1/πn)1/2 we have  (L1/d) = 

0.25*(πn L1/ λ)1/2 = 58.  The ratio of (L1/d) can be arbitrarily large with a crystal of arbitrary 

length, but it is desirable to make the required half-wave voltage as low as possible with a 
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manufacturable crystal.  This can be achieved with the introduction of waveguides in the 

crystal. 

Waveguide Phase Modulators  

The ability to fabricate optical waveguides in electrooptic crystals removes this limitation on 

(L/d).  The waveguide eliminates diffraction, so that the crystal length may be made as long as 

required to achieve the desired sensitivity, limited only by optical loss in the crystal.  And the 

transverse dimension d is no longer limited by the fragility of crystal fabrication; the bulk of 

the crystal mechanically supports the in situ wavelength-scale waveguide.  This technique has 

reduced the Vπ by three orders of magnitude or more over the best bulk crystal modulators, 

making these devices suitable for a wide range of applications.   

To make an optical waveguide, photolithography is used to define a strip mask on the crystal 

surface. In titanium in-diffused waveguides, a thin metal layer of a few hundred angstroms, by 

several micrometers in width, is deposited through the mask and then in-diffused into the 

crystal by a heating it at very high temperature, around 1050º C.  The titanium atoms enter the 

crystal lattice slightly increasing the index of refraction in the crystal by about ∆n=0.01, as 

described in Ref. [2.3],2 creating a dielectric waveguide about 4 µm deep, centered about 2 µm 

below the crystal surface, and about 6 µm wide for single mode operation at an optical 

wavelength of 1310 nm.  The electric field is applied perpendicular to the waveguide, exciting 

the transverse mode of modulation. The electrodes are also defined by photolithography; they 

are located on the surface of the crystal, and separated by the thickness of the waveguide.  This 

reduces the required voltage to about 10 V for a half-wave phase shift over a modulator length 

of about 10mm.  By increasing the length and optimizing the electrode geometry, researchers 

have reduced the required voltage to about 2 V in modern LiNbO3 modulators, yielding (ℓ/d) 

= 2000. 

 
2 It is not well known whether the Ti is exchanged with the Nb, or it go interstitially.  In Ref. [2.11], Schmidt suggests that 

either case is plausible.  He reports single guide fabrication in LiNbO3 for the transition metals Ti, V, and Ni are a 
representative set.  
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A phase modulator is the simplest modulator to build.  Figure 2 - 2 shows a waveguide-

based lithium niobate phase modulator in the “x-cut” orientation.  There is a single optical 

waveguide parallel to the y-axis of the crystal.    The electrodes are fabricated as strips of metal 

(usually gold) on top of the crystal.  The gap between the waveguides is sized and positioned to 

maximize the electric field component along the direction of the crystal with the strongest 

electrooptic coefficient.  In case of “x-cut” lithium niobate, light propagates along the y-

direction, the z-direction is normal to the substrate, and the x-direction is along the surface, 

perpendicular to the direction of propagation.  The electric field lines penetrate down into the 

crystal, continue perpendicular to the waveguide in the z-direction of the crystal, and then go 

back up to the opposite electrode.  The fields are illustrated explicitly for both x-cut and z-cut 

modulators in Figure 2 - 3. 

Intensity Modulators Based on Mach-Zehnder Interferometers 

Phase modulation is not easy to use in a photonic link since photodetectors are sensitive only 

to intensity. Somehow, phase modulation must be converted to intensity modulation.  It is 

possible to use optical phase modulation, and then demodulate it by coherently converting the 

modulated signal to a lower (radio) frequency, then using an electronic phase detection system.  

Such systems have been demonstrated.  However, far and away the more popular approach is 

to convert the optical phase modulation to intensity modulation by using optical interference.  

Figure 2 - 4 shows one such configuration to do this, a Mach-Zehnder modulator (MZM), 

based on the famous Mach-Zehnder optical interferometer, and adapted to optical waveguide 

components.  A Mach-Zehnder modulator is typically built with two, phase modulators and 

two “Y-branches.”  The light enters a single waveguide and is then split equally into two paths 

through the two phase modulating sections.  The three-piece electrode structure produces the 

same strength electric field across both optical waveguides but with opposite directions of the 

field in the two, phase modulators.  This yields equal and opposite phase modulation in each 

waveguide, known as a “push-pull” configuration.  In the second Y-branch, the two optical 

waves are combined coherently (interfered), which yields a cosine-squared transfer function of 

intensity with applied voltage.  This transfer function is shown in Figure 2 - 5.  The voltage 

required to introduce enough phase shift to produce destructive interference so that the net 
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output is zero is termed “Vπ.” For analog applications, the modulator is typically d-c biased 

at Vπ/2, so that the optical output is 50% with no modulation applied.  Applying the 

modulation voltage in addition to this bias then results in intensity modulation about the most 

linear portion of the cosine-squared curve. That gives 3-db in optical loss from the modulator 

transfer function in addition to the mode-matching losses at the crystal interfaces and any 

propagation losses through the crystal.  A useful property of simple interference modulators 

like the MZM, with a cosine-squared transfer function, is that when biased at the half-wave 

point, all even-order harmonics of the modulating signal are zero, since all even-order 

derivatives of the cosine-squared function are zero at that point.  The distortion produced by 

the modulator is thus dominated by the odd-order intermodulation products and odd-order 

harmonics from the (non-zero) odd-order derivatives of the transfer function, which have  
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Figure 2 - 2: Phase Modulator based on in-diffused 
waveguides in an electrooptic crystal. 
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Figure 2 - 3: Schematic cross-section view of a phase 
modulator in an x-cut lithium niobate crystal (top 
schematic) and a z-cut lithium niobate crystal (bottom 
schematic).   

their maximum values at this bias point.  The third-order intermodulation is the strongest of 

these and is usually the limiting distortion. 

The MZM is relatively insensitive to small fabrication non-idealities in the Y-splits and phase 

lengths, making it the most commonly used external optical modulator in the industry. 

Unequal intensity splits or combinations in the Y-branches cause incomplete cancellation, or 

reduced extinction ratio in the output, not an important parameter in small-signal analog 

systems (although important in large-signal or digital modulation systems).  Unequal path 

lengths simply require shifting the bias voltage to the proper quadrature point. 
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Figure 2 - 4: Mach-Zehnder modulator based in 
indiffused waveguides in an electrooptic crystal. 

Waveguide Electrooptic Modulators Based on Directional 

Couplers 

Another basic modulator configuration is based on an optical directional coupler, with 

waveguides integrated into the E-O crystal surface, as in the MZM.  The directional coupler 

modulator (DCM) utilizes distributed interference to convert phase modulation to intensity 

modulation, and has a mathematically richer transfer function than the MZM, and for that 

reason is an interesting topic of research.  The derivatives of the transfer function do not 

exactly “line up” with each other, as they do for the cosine-squared transfer function of the 

MZM.  One novel result is that the third-order intermodulation product and the signal do not 

null at the same voltage, which makes it a good candidate for linearization  with “sub-octave” 

modulation; that is, modulation of less than an octave bandwidth, so that the second harmonic 

distortion is out of band and therefore does not limit the dynamic range.  Figure 2 - 6 shows a 
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Figure 2 - 5: Mach-Zehnder Modulator transfer 
function: normalized output intensity as a function of 
drive voltage (normalized to Vπ). 

directional coupler modulator.  There are two waveguides fabricated in the crystal, and they are 

spaced about 6 µm apart, comparable to the dimensions of the waveguides themselves.  This 

spacing is small enough that the evanescent tails of the modes in each waveguide can penetrate 

the other waveguide, and thus waves from each guide couple into the adjacent guide.  If the 

two optical waveguides have identical phase propagation constants, a complete transfer of the 

wave will occur in some length of guide (termed the “transfer length”), and then transfer back 

again and so forth down the guide.  If the two guides do not have the same propagation 

constants, then this transfer will be incomplete.  By adding electrodes as shown, the effective 

refractive index of the guides can be changed.  The electrodes are arranged so that the electric 

fields are in opposite directions through the two guides, and a significant differential shift can 

be made in the propagation constants, which results in a significant change in the transfer of 
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energy from one guide to the other.  The fields in the directional coupler are shown in 

Figure 2 - 7.  
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Figure 2 - 6: Directional Coupler Modulator based on 
indiffused waveguides in an electrooptic crystal.  The z-
direction of the crystal is used to create the modulation. 
Not shown in the figure, the waveguides are typically 
bent  through anti-symmetric “S” curves between the 
edge of the crystal and the active area of the modulator 
to provide more lateral separation of the two guides for 
ease in coupling light in and out. 

With two optical inputs and two optical outputs, the DCM has more possible configurations 

than the MZM, which has only one input and one output.  A typical DCM configuration 

might have all the optical power applied to one input guide, and be fabricated with a length 

that would result in a complete transfer to the other guide.  The electrodes would be biased so 

that the transfer is reduced to only about 50%, as in the MZM, and then the modulating 

voltage would be added to the bias to increase or decrease the output.  It turns out that 

modulation sensitivity is very similar to an MZM of the same length, but the transfer function 

has important differences. Figure 2 - 8 shows the transfer function of a directional coupler 

modulator. 
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Figure 2 - 7: Fields in a directional coupler modulator looking 
down the waveguides; the top view is of the crystal and electrodes, 
the bottom view is of the overlap of the optical field intensity 
between the two waveguides.  

The coupling is created by the same physical mechanism as in r-f and electronic directional 

couplers; and the governing equations are very similar.  The fields of one waveguide partially 

penetrate the other, and there is a transfer of optical energy.  In a modulator, the applied 

electrical field linearly changes the strength with which light couples from one guide to the 

next.  In approximate form, this device creates a sin2(x)/x2 transfer function.  Unlike the Mach-

Zehnder, it does not have the property that all even-order distortion terms cancel at a single 

bias point, and it is not as robust to fabrication errors, particularly those affecting the optical 

coupling, such as the guide-to-guide spacing and the size of the “tails.”  However, it can be 

employed in many configurations, the subject of future chapters of this thesis, which make it 

an interesting alternative to the straightforward Mach-Zehnder modulator. 

Fidelity in Electrooptic Modulators 

In analog applications, it is desirable to make a photonic link as high fidelity as possible.  While 

there are a number of parameters that determine link fidelity, one inherent limiting factor is the 

non-linearity of the modulator’s transfer function.  The modulators described in Figure 2 - 4 
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Figure 2 - 8: Transfer functions of both arms of a 
directional coupler modulator.  The bias voltage is 0.43 
VS. 

and Figure 2 - 6 are not linearized, and are often referred to as “normal” modulators in this 

thesis.  They introduce distortion products that limit the fidelity of the photonic link.  In 

general, it is the third-order intermodulation products that limit the fidelity since they fall very 

near the signal in frequency.3  A linearized modulator  employs some  scheme that nulls the 

third-order intermodulation product, so that the limiting distortion is due to the fifth-order 

intermodulation products, which occur at still higher signal levels   There are many such 

schemes to achieve linearization; they are analyzed in detail this thesis.  If greater than octave 

bandwidth is required, then whatever scheme is used to null the third-order products must also 

null the even-order products (particularly the second harmonic) as well.  It is generally a harder 

task to accomplish both simultaneously, but that is the challenge in broad-bandwidth 

modulators. 
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Frequency and Bandwidth Limitations in Electrooptic 

Modulators 

Frequency response (and bandwidth in the case of baseband modulators) is a key issue for 

external electrooptic modulators.  The modulators shown in Figure 2 - 4 and Figure 2 - 6 use 

lumped capacitance electrodes. Typically, an inductance L and a load resistor RL is placed in 

parallel with this capacitance to make an RLC circuit, with a 3-dB point given by 

∆f=1/(2πRLCmod).  Assuming the modulator has a 50 pF capacitance and the load resistance is 

50 Ω, then the 3-dB point is 64 MHz away from the center frequency.  This will have a 

bandwidth if f=2/(2πRLCmod), which is 128 MHz, but now centered at the desired operating 

frequency.  Modern communication systems require bandwidths in the GHz range, so the 

lumped capacitance electrode structures simply are not practical.  A different implementation 

is required.4   

Even for applications where the bandwidth of a resonant circuit is sufficient, there is a 

fundamental limitation to the frequency of operation of an electrooptic modulator that comes 

from the finite transit time of the modulated beam.  Essentially, the phase of the modulating 

voltage changes while the light is traversing the length of the crystal so that, effectively, the 

same voltage is not applied over the entire length.  This results in a net reduction from the 

peak retardation of   

1 M di

M d

er
i

− ω τ−
=

ω τ , (2.2)  

where τd from (2.2) is the transit time of light through the crystal, τd = nℓ/c, and ωM is the 

radial frequency of operation (see, for example Ref. [2.1]).  The modulation amplitude 

reduction factor is a sinc function of ωMτd.  Taking the absolute value of |r| = 0.9, gives a 

                                                                                                                                                 
3 For two signal components at f1 and f2, the third-order products are at 2f1-f2 and 2f2-f1, both only |f2-f1| away from a 

signal component. 

4 Lumped capacitance electrodes are often used for d-c biasing.  In this case, they are a separate electrode structure from the 
modulating electrodes, and have no effect on the maximum frequency of operation.   
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maximum frequency of c/(4nℓ), or equivalently 1/(4td).  In LiNbO3, n=2.15, and for a 10 

mm modulator, this is 3.49 GHz. 

The solution to both the narrow bandwidth RC response of the electrode structure and the 

finite transit time of the optical beam is to use traveling wave electrodes.  In a traveling wave 

configuration, the electrodes become a transmission line.  The line is excited at the input end, 

the modulating electrical field propagates down the electrodes parallel to the propagation of 

the optical wave, and then is terminated in matching impedance at the end of the electrodes.  

The electrodes no longer form an RC filter; instead they become a transmission line with 

distributed inductance and capacitance. The issues of loss, reflections, and radiation must now 

be considered instead. 

The finite transit time problem is improved but not totally solved by the transmission line 

electrodes because there is generally a different velocity between the optical and r-f waves.  

The reduction factor expression now becomes  

(1 / ) 1 .
(1 / )

M d m oi n n

M d m o

er
i n

− ω τ − −
=

ω τ − n   (2.3) 

Taking the optical velocity to be c/no and the microwave velocity to be c/nm, this gives an 

improvement of the frequency at which |r| = 0.9 of |1/(1- nm/no)| over the previous value 

c/4noℓ.  When no = nm then the optical wave and the r-f wave are traveling with the same 

phase velocity and the there is no velocity mismatch. When nm = 0 (infinite microwave phase 

velocity) then the reduction factor is the same as the lumped electrode.  For lithium niobate 

the r-f phase velocity is slower than the optical phase velocity for waves traveling in parallel.  

For example, in LiNbO3 for fields in the z-direction, ne = 2.15.  For the microwave velocity, 

the electric permittivity is 28.  However, half of the electric field between the electrodes is in 

the air so it is appropriate to use the average permittivity (recall Figure 2 - 3).  The effective 

microwave index of refraction is taken as 

1/ 2
1/ 2 1 .

2
r

m mn ε +⎛ ⎞= ε = ⎜ ⎟
⎝ ⎠

 (2.4)  
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Here εr is the permittivity for the crystallographic axis of propagation.  For propagation in a 

lithium niobate crystal in which the electric field is equally split between the z-axis and the x-

axis,  εr=( εx εz)1/2 = (28*43) 1/2 = 34.7.  And thus nm= 4.2.  In a lithium niobate traveling wave 

modulator where both fields travel in parallel and are polarized in the same direction, the 

frequency at which |r| = 0.9 is c/4nℓ(1-n/nm) =  7.15 GHz for a 10 mm modulation section, 

an improvement of more than 2x over the “lumped element” electrodes, but clearly still 

frequency limited.  

Increasing Frequency Response of E-O Modulators by Velocity 

Matching 

Velocity-matching techniques are often used to improve the frequency response of the 

traveling wave modulator.  In Ref. [2.3] many velocity matching techniques are described and 

referenced.  In waveguide-based modulators the fields propagate down coplanar electrodes on 

the surface; some field lines penetrate into the crystal (these are useful for modulation) and 

other field lines are in the air.  While Eqn. (2.4) assumes an equal split,  it is possible to create 

thick enough electrodes so that more than half of the electric field is in air, resulting in nm = 

f(nair, nmb) = no.  This is done by up-plating the coplanar waveguide.  Unfortunately, this 

matching technique also decreases the modulator sensitivity to the electric field (increases Vπ) 

since the field drawn up into the air between the electrodes no longer passes through the 

optical waveguides. In addition to up-plating the electrodes, a thick SiO2 buffering layer can be 

deposited between the crystal and the electrodes.  The microwave index of refraction of SiO2 

is less than that of lithium niobate so the electric field that passes through the SiO2 layer also 

reduces the effective refractive index of the transmission line electrode structure. A number of 

successful high frequency modulator experiments have been made exploiting the velocity 

matching technique beyond 40 GHz, for example, velocity matching techniques were used to 

go above 30 GHz in Ref. [2.4] and truly exceptional work was done to get 100 GHz velocity 

matched modulators in ref. [2.5].   

This kind of velocity matching is a limited solution because it leads to loss in sensitivity, which 

must be made up by increasing the length of the modulator and, at such high frequencies, 
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electrode loss becomes a serious compounding problem.  In essence, the electrode loss will 

limit the “length” of the modulator no matter how long it is made physically.  An alternative 

technique that addresses the velocity mismatch problem is called “velocity matching on the 

average” and has been demonstrated in several forms. See, for example Ref. [2.6].  A velocity-

mismatched electrode may be divided into sections, where each section is typically made 

shorter than the maximum length of a useful modulating electrode at the target frequency, as 

determined by electrode loss and velocity mismatch.  The modulating electric field is then 

arranged to be “re-phased” at the beginning of each modulator section, so that it never gets 

too far out of step with the modulated optical wave; it is “velocity matched on the average.” 

One method of accomplishing this was the “phase reversal” modulator demonstrated by 

Alferness, et al [2.7] in which the electrode sections were made 180o long in phase (at some 

desired modulation frequency), then connected to the next electrode section with an electrical 

transposition, and so forth down the entire structure.  This assured “phase matching on the 

average,” but only at one frequency, where the sections are 180º in phase delay. This is not true 

velocity matching or true-time-delay matching.  The bandwidth of the modulator decreased as 

more sections were added. 

 Another technique was proposed and patented by Schaffner and Bridges, Ref. [2.8], in which 

the modulating signal is divided by a multi-branched transmission-line feed that has varying 

lengths that just compensate for the optical delay down the waveguide under the electrode 

structure.  Each section of the modulator is then fed at its entrance end with the proper delay 

to equal the optical delay to that section.  This is a true velocity matching scheme and has the 

advantage of not narrowing the bandwidth, but it does have the disadvantage of dividing the 

modulating signal by the number of paths, all of which have transmission loss. 

A third technique is the “antenna-coupled” technique proposed and patented by Bridges in 

Ref. [2.9], in which small antennas are put on the surface of the modulator and connected to 

the inputs of each section.  The modulator is then illuminated by a plane wave at the correct 

angle so that the modulating wave received at each antenna is in synchronism with the optical 

wave entering that section, as shown schematically in Figure 2 - 9.  This has the advantage of 

low-loss free-space transmission to the segment inputs, but now is limited to band-pass 
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operation by the bandwidth of the on-surface antennas and the wave radiating structure (but 

 

Figure 2 - 9: Schematic of antenna-coupled phase 
modulator.  The microwave signal is received by the 
antenna elements in synchronism with the arriving 
optical wave that travels through the waveguide.  
Selection of the appropriate angle of incidence of the 
microwave yields a velocity matched modulator “on the 
average,” discussed in Ref. [2.6]. 

not further narrowed by cascading, as in the phase reversal modulator).  The electrical signal 

power is also reduced by the number of sections used, but this is partially offset by the lower 

exponential attenuation in the modulating electrodes, as shown by Sheehy in Ref. [1.2]. The 

antenna-coupled structure has been demonstrated with MZMs again in Ref. [1.3] and with 

DCMs in Ref. [2.10], which is detailed in the last chapter of this thesis.  The issue of velocity 

mismatch limiting the gain of a simple modulator is well-known.  However, how velocity 

mismatch affects the various linearization schemes used with modulators was unknown before 
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the research treated in this thesis was undertaken.   This behavior is a major topic of this 

thesis, and the results turn out to be quite interesting. 
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C h a p t e r  3  

DISTORTION IN MODULATION 

 

 

 

 

 

 

 

 

Abstract 

This chapter addresses distortion in electrooptic intensity modulation.  A simple low frequency 

link model with a set of canonical link parameters is used, establishing a reference by which to 

compare modulation schemes. The gain, two-tone dynamic range, noise figure, and multi-tone 

dynamic range are defined. Seven different linearization schemes are compared with a 

numerical calculation of these quantities.  The bandwidth scaling of two-tone dynamic range is 

investigated and there is a systematic analysis of the sensitivity of the key parameters used in 

linearization schemes.  From this analysis, engineering conclusions are drawn of where it is 

appropriate to use linearized modulators. 
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Link Model 

Figure 3 - 1 shows a simple intensity modulated photonic link.  The intrinsic link consists of a 

low noise laser, an electrooptic modulator, a length of fiber, and a square-law detector.   

Electronic pre- and post-amplifiers are almost always included in actual practice, but with the 

exception of their signal bandwidth parameter, they are left out of the calculation.  Since there 

is modulator non-linearity, the performance calculation must be made numerically, and specific 

numerical values for the component parameters must also be used.  It is desirable to establish a 

reference link with which to compare modulation schemes; the numerical parameters from 

Ref. [3.8] are used here to compare with the results of their work, and these parameters are 

given in Table 3-1.  Note that these are “garden variety” values, not “best ever” results 

obtained only in research laboratories.  In fact, they are likely not as good as in the latest 

commercial fiber-optic links (available in 2005), but they suffice for a comparison of linearized 

modulator performance from one modulator to another.  This link is as simple as possible 

while still capturing the properties of the modulator. Non-linear effects in the fiber and the 

detector are ignored. While it would be appropriate to add such effects as Brouillin scattering, 

noise from optical amplification, and photodetector non-linearity to accurately model a link, 

these effects are unnecessary for the comparison of linearized modulation schemes and are left 

out. 

Table 3-1 shows the parameters associated with this link.  The laser has an optical power, PL, 

of 100 mW and a relative intensity noise (RIN) of -165 dB/Hz.  These parameters are no 

longer state of the art; now many links have optical powers of 200 - 300 mW and a RIN of      

-175 dB/Hz, but the parameters are left as stated for compatibility with the literature.  The 

modulator sensitivity, Vπ for Mach-Zehnder modulators (MZM) and VS for directional 

coupler modulators (DCM), is the voltage required to switch the output from unity to zero.  

The velocity mismatch and modulator length parameters are not required for the zero-

frequency analysis in this chapter, but they are included here to be used in the following 

chapter. They are necessary for the finite transit time calculation of modulator performance.  

The optical loss is a lumped optical loss equal to the sum of modal mismatch loss at the 

modulator-fiber interface, the net loss in the modulator itself, and losses in the fiber.  
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These parameters normalize the input r-f drive, the output optical intensity and the noise 

level of the electrooptic modulator.  Given this, and the d-c transfer function of each 

modulator, a standard Fourier analysis is applied to obtain gain, dynamic range, and noise 

figure for any electrooptic modulator.  While some of these figures of merit are analytically 

calculable for some modulators (i.e., for the simple MZM, the cosine-squared function can be 

expanded in a Bessel series), it is more systematic to design a numerical calculation and use it 

for every modulator. 

 
Figure 3 - 1: Canonical model of an optical link for 
evaluating external modulators. 

Analysis with One and Two Tones 

A computer program was written for the analysis in this thesis.  The program calculates the 

time domain output of a modulator, taking as its input the modulator transfer function and the 

input r-f excitation signal.  It works for any predefined transfer function and input signal.  The 

transfer functions for all of the modulators analyzed in this thesis have been defined in the 

program.  The input signal functions are sinusoidal, and have been developed to capture all of 

the effects described in this and later chapters: distortion, frequency effects, loss, reflections, 

and rephrasing structures.  This program will be described in more detail in Chapter 4.  
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Table 3-1: Canonical Link Parameters 

Parameter Symbol Value Units 

Laser Power PL 100 mW 

Laser Noise RIN -165 dBm/Hz 

Modulator Sensitivity Vπ, VS 10 V 

Modulator Impedance RM 50 Ω 

Velocity Mismatch (nmicro-nopt) ∆n 1.8 - 

Modulator Length ℓM 10 mm 

Optical Loss LO -10 dB 

Detector Responsivity ηD 0.7 A/W 

Detector Load RD 50 Ω 

Signal Bandwidth BW 1 or 106 Hz 

Maximum Photocurrent PLL0 ηD 7 mA 

 

Fourier analysis is used to calculate distortion, gain, and dynamic range of the modulators.  An 

input voltage of one, two, or multiple sinusoidal tones is applied to the modulator as an input 

to the optical transfer function.  The transfer function relates the output complex optical 

amplitude to the input complex optical amplitude by a modulator-specific and voltage 

dependent function, H(V) = AO/AI.  The output wave form from the detector is the squared 

absolute value of the optical amplitude.  Fourier analysis of the normalized photodetector 

output current wave form, |AO|2, yields the frequency components used to compute the 
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modulator figures of merit.  Note that the calculations ignore any deviation from ideal 

square law behavior of the photodetector, even though such deviations have been measured 

and are, in fact, important for links with high average currents on the photodetector, of 

example, see Ref [3.1].  For a clear comparison of the properties of low-distortion modulators, 

other components in the optical link are assumed to be ideal. 

Small signal gain is determined from single tone analysis. Let P(pIN,t) be the electrical signal 

power after the detector, given the modulator r-f drive power pIN. Let P~(pIN,f) be the Fourier 

transform of P(pIN,t).  The gain is 

10{ [ ( , )] ( )}.dB in inLog p f Log pGain ∼
= Ρ −  (3.1)  

The small signal gain is obtained by evaluating Eqn. (3.1) at sufficiently small pIN such that the 

log-log plot of P~(pIN,f) is linear with slope one. In practice, we take pIN = -100 dBm to 

determine small-signal gain, which is about the geometric mean of pSAT (the power that drives 

the modulator voltage to about Vπ and the precision of double precision floating point 

numbers.5  The frequency of the tone is set to an integer multiple of 2π so that the gain and 

any harmonics will fall precisely on the discrete samples of the FFT, making the calculation 

fast and accurate.  This frequency does not correspond to a physical frequency, and thus 

cannot be used to analyze the roll-off of the modulator until the finite transit time of the 

optical and electrical signals, and frequency-dependent r-f loss is introduced into the analysis 

(Chapter 4).  The phase in a single-tone analysis has no effect in an intensity modulated link.  

Single-tone analysis also gives harmonic distortion levels.  

Two-tone analysis captures the signal, harmonic distortion, and intermodulation distortion.  By 

convention, the amplitudes of the two tones are set equal, which gives the worst case 

distortion.  The frequencies are chosen to be consecutive integer multiples of 2π.  It makes no 

difference if they are more largely spaced, provided they remain integer multiples of 2π.  The 

input drive is represented functionally as  

 
5 A detailed analysis of numerical convergence is given in Chapter 4. 
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1( ) 0.5 (sin(2 ) sin(2 )).IN Mv t P R f t f t= π + 2π

−

) 0

 (3.2)  

The relative phase of the two tones makes no difference in the calculation.  In the time-

domain, the two tones form a harmonic oscillation at the mean frequency modulated by an 

envelope created by the beat of two signals.  Changing the relative phase of the two signals 

only modifies the phase of the envelope oscillation relative to a universal reference frame; it 

does not change the shape of the time-domain signal, and consequently the relative phase of 

the tones has no effect on the dynamic range. 

The spurious-free dynamic range, SFDRdB, is the power interval that spans the input power 

level at which the signal is just distinguishable from the link noise to the input power level at 

which the strongest distortion term becomes distinguishable from the noise.  The calculation 

of SFDRdB is 

~ ~
1 2 1( ) 10max{log[ ( ,2 )], log[ ( ,2 )]} ,dB IN IN IN dBD P P P f f P P f noise= −  (3.3) 

210log( 2 ),dB DC D DC Dnoise GkT RIN I R eI R kT= + ⋅ + +  (3.4)  

0 (min( | ),
dB ININ D Pp P ==  (3.5) 

~
0 110 log[ ( , )] .dB dBSFDR P p f noise= −  (3.6) 

This definition may seem overly complicated compared to the English definition just given, 

however, it allows for multiple roots in the intersection of the intermodulation curve with the 

noise level, something which commonly occurs in linearized modulators.  DdB(pIN) in Eqn (3.3) 

is the maximum of the intermodulation and second harmonic distortion terms minus the noise 

level in dB.  Eqn. (3.4) expresses the noise as the sum of the small signal gain times 

Boltzmann’s constant times temperature plus the laser RIN proportional to the square of the 

current times the detector load plus the shot noise 2eIDCRD plus kT from the terminating 

resistor, where IDC is the average photocurrent out of the detector.  The only significant 

sources of noise in the simple link model are the shot noise and the contribution from RIN.  
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Of the roots of DdB(pIN), p0 is the root that occurs at the lowest power level, in the event 

that DdB(pIN) intersects the noise level at more than one value of pIN.  SFDRdB is the difference 

between p0 and the input power level at which the signal intersects the noise level.  Since the 

log-log plot of the signal has slope one, this interval is equivalent to the signal power [dB] 

minus the noise power [dB] at the r-f drive power at which the distortion power equals the 

noise level. Figure 3 - 2 shows the dynamic range calculation for a simple Mach-Zehnder 

modulator.  In simple modulators, the log-log plots of the distortion terms are linear, 

intersecting the noise floor only once.  In linearized modulators, the distortion terms may be 

nulled at some discrete power level or levels.  Thus, they may cross the noise level more than 

once.  It is then necessary to find all of the roots of RdB, the distortion minus the noise, and use 

the root representing the lowest RF drive power in the definition of dynamic range.   

While dynamic range generally refers to all harmonics and intermodulation products, in non-

linearized modulators, there are two dominant distortion terms, the second harmonic, P~(pIN, 

2f0), and the third-order intermodulation product, P~(pIN, 2f0-f1). This thesis distinguishes two 

categories of linearized modulators, defined by their operating bandwidths.  If fUPPER and 

fLOWER are the upper and lower frequency edges of the operating band, then a sub-octave 

modulator has fUPPER < 2fLOWER and a super-octave modulator has fUPPER ≥ 2fLOWER.  Dynamic 

range is treated differently for each case.  Eqn. (3.3) applies to broadband, or super-octave 

modulators.  That is, DdB(pIN) is the maximum of the second harmonic and the 

intermodulation product.  In narrow band or sub-octave modulators, DdB(pIN) contains only 

the third-order intermodulation product, since the second harmonic falls outside the sub-

octave bandwidth.  

In multi-tone analysis there are N equally spaced tones of equal amplitude. This is used, for 

example, to describe the carriers of TV signals in a multi-channel cable TV system.  Unlike 

single and double tone analysis, the relative phases of the tones are now a critical factor in the 

analysis.  If all of the phases are locked and equal, the signal is a pulse in the time-domain, 
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Figure 3 - 2: The signal (gain) and third-order 
intermodulation product of a link using a Mach-
Zehnder modulator (MZM) and the parameters given in 
Table 3-1. Since there is no second harmonic distortion 
in a normally biased MZM, DdB equals the 
intermodulation product shown. DdB crosses the noise 
floor only once at an input power level of p0=-26 dBm.  
Since the signal has slope one, the dynamic range may 
be found from the difference between the signal and p0 
either horizontally or vertically in the plot, giving the 
familiar dynamic range triangle. 
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-

approximating a true delta function in the limit of large N.  And for any N, this gives the 

maximum signal excursion for a given input power level, making it the worst case for 

distortion.  A correlated but non-equal set of phases yields the best case, the Newman 

condition.  The most common relationship is an uncorrelated normal distribution of phases, 

which yields very good results statistically.  The multi-tone case will be discussed in more detail 

in the section on Multi-Tone Analysis at the end of this chapter. 

Linearized Modulators 

Many linearization schemes have been proposed in the literature, most of which consist of 

some combination of MZMs or DCMs and may bias the modulators away from the half-wave 

levels.  In fact, there are so many different variations that it has prompted one researcher, G. 

Betts, to make a “Darwin Chart,” from Ref. [3.2] reprinted here as Figure 3 - 3 with 

modifications.  The chart depicts the evolution of various linearization schemes from their 

early ancestors, the simple MZM and DCM.  The calculations prepared for this thesis cover 24 

different modulator transfer functions, although only six key modulators (seven including an 

unrealizable “reference” modulator) are analyzed in-depth in this chapter.  

Super Octave Modulators 

A superoctave modulator is any modulator in which the passband is more than an octave wide 

(i.e., as defined above, the upper cutoff frequency is more than two times the lower cutoff 

frequency).  This analysis addresses five broadband linearized modulators:  

1. An ideal limiter, which is not physically realizable (LMTR),  

2. Two Mach-Zehnder modulators in parallel optically (DPMZ),  

3. Two Mach-Zehnder modulators in cascade optically (CMZM),  

4. A directional coupler modulator with two passive bias sections in cascade 

(DCM2P),  

5. A directional coupler modulator fed in both input arms, optical signals with equal 

amplitude and phase, with a specific electrical length (YFDCM).  
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Based Approaches  Based Approaches 

Figure 3 - 3: a “Darwin chart” of many proposed 
linearized modulators, reprinted from reference [Betts] 
and revised.  Standard modulators MZM and DCM, 
sub-octave modulators SDSMZ and SDCM, and 
broadband modulators CMZM, YFDCM, DPMZ, and 
DCM2P.  Note the DSMZ is shown with an r-f split, it 
doesn’t need one for linearization, however using one 
results in a lower shot noise link. 
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Figure 3 - 4 shows the d-c transfer function for these five super-octave linearized 

modulators. The input voltage is normalized to Vπ or VS as appropriate. 

 

Figure 3 - 4: Five superoctave modulators: The ideal 
limiter LMTR; the directional coupler with two passive 
sections DCM2P; the dual parallel Mach-Zehnder 
DPMZM, the cascade Mach-Zehnder CMZM, and the 
Y-Fed directional coupler YFDCM.  Slopes may be 
either positive or negative about zero with no affect on 
linearity.  

The Ideal Limiter 

A limiter is an idealization of an intensity modulator.  Its output is a scaled copy of the input 

voltage, and it is hard limited at zero and one, the normalized maximum and minimum output.  

Although the transfer function is trivial around the bias point, the limiter is a useful analytical 

tool in system analysis. It sets an upper bound on the dynamic range improvement gained by 

linearizing a modulator, the difference between the system noise level and the power at which 

the laser is modulated from off to full intensity.  Any higher power level causes clipping 
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distortion.  In sub-carrier multiplexing, clipping is a major concern since the phases of the 

many carriers may randomly align and drive the modulator into its clipping regime (for real 

modulators this is an approximation).   

The normalized d-c transfer function (switching voltage and optical output both normalized to 

unity, with zero bias voltage at the operating point) for an ideal limiter is 

1min(max(0, ),1).nH = −
2

V  (3.7) 

The Dual Parallel Mach-Zehnder Modulator 

The DPMZ is described in Refs. [3.3] and [3.4] and shown schematically in Figure 3 - 3.  The 

optical and electrical input signals are split unequally between two Mach-Zehnder modulators, 

the output optical powers are combined incoherently in two photodetectors, and the electrical 

signals from the photodetectors are added. Both of the MZMs remain biased at their half-wave 

voltage, thus no even-order harmonic distortion is generated in either modulator.  The relative 

r-f and optical levels are chosen such that the third-order intermodulation distortion from each 

modulator is exactly the same, but the desired signals are different.  The relative phases of the 

modulation signals are chosen so that the IMD products exactly cancel.  While the signals do 

subtract, they do not completely cancel.  For example the bias points on the cosine-squared 

transfer function are chosen to have opposite slopes.  The signal level from this modulator 

may be a couple of dB below that of a single MZM, but the dynamic range is greatly improved.  

For example, one modulator has a large portion of the optical power, a small portion of the r-f 

power, and is biased at 0.5 Vπ.  The other modulator has the remainder of the r-f and optical 

power, and is biased at -0.5 Vπ. 

The normalized d-c transfer function of a Dual Parallel Mach-Zehnder modulator (DPMZ) is 

2 2sin ( ( 0.5)) (1 )sin ( 1 ( 0.5)).H P S V P S V= − + − − +  (3.8) 

The parameters, S and P of Eqn. (3.8), are the r-f and optical power splits, respectively.  An 

optimal point for these parameters is {0.1267, 0.9474}. However, there is a fairly large range of 

values for which some linearization is obtained provided that the splits are not too close to 
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zero (no cancellation) or too close to 0.5 (where signals would cancel along with the 

intermodulation distortion). The optimal points form a line segment in {S, P}, as will be 

discussed in Chapter 5.  

This modulator has many alternative implementations in addition to the one shown in Figure 3 

- 3.  First, the link may have two separate fibers, in which case, the photodetector currents are 

summed as shown in the figure.  Second, a 900 optical polarization rotator, may be inserted 

after one of the MZMs, putting the signals in polarization quadrature. The two signals are then 

combined in a single fiber, and detected in a single photodetector. Third, the two modulators 

can be driven by independent lasers at two slightly different wavelengths, and their outputs 

combined in a single fiber and detected by a single photodetector.  The alternate 

implementations are chosen to reduce complexity and cost, but result in some performance 

compromises.  For example, the polarization rotation scheme suffers from polarization cross 

talk in the fiber.   It is interesting to note that the first experimental demonstration of a “Dual 

MZM” was made by Johnson at MIT Lincoln Laboratories (Ref. [3.3]), using only one MZM, 

but propagating both TE and TM optical modes.  The sensitivity of TM and TE waves to the 

modulation voltage in lithium niobate is about 1:0.33, which is not the optimum of (0.1267)0.5 

= 0.356, but is pretty close.  The optical splitting ration was provided by rotation of the input 

polarization plane.  Since the TE and TM waves are orthogonally polarized, they add 

incoherently on a single photodetector. 

The Cascade Mach-Zehnder Modulator 

The dual series Mach-Zehnder (CMZM) is described in by Skeie in Ref [3.5].  It is similar to 

the DPMZ in that there are two MZMs, biased at their half-wave voltage, and there is an r-f 

split between the two modulators, which may be provided by an external broadband r-f power 

splitter, or by splitting the r-f power equally and making the two modulators of different 

lengths.  However, unlike the DPMZ the two modulators are in cascade, so there is no optical 

power split and the signals are coherently combined in the modulator, a major advantage over 

the DPMZ.  Note that a close inspection of the schematic shown in Figure 3 - 3 shows an 

ideal passive coupler to implement the 1:s2 split, the actual derivation of the modulator 
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properties developed in Ref. [3.5] defines the modulator with two ideal “combiners,” one 

after each MZM.  The transfer function for the DSMZ is 

( ) ( ) ( ) ( ),t c p c pM M M x M M k= γ × × γ × x  (3.9) 
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In Eqns. (3.9) - (3.11), ζ is the coupling parameter in the idea coupler and x and kx are the 

phase shifts in the MZM arms.  The r-f power split is represented by the k parameter, and the 

modulation signal is applied to both phase shifters.  The coupling parameter ζ is controlled by 

a bias voltage. Skeie gives the results of k=-0.5 and ζ = 27 degrees.  These results were verified 

in our calculations. 

Unfortunately, the ideal coupler needs a carefully controlled coupling angle and would likely 

need to be controlled by an active directional coupler (that is a directional coupler section with 

a tunable voltage) rather than simply depending on fabrication precision for the correct value 

of ζ.  A directional coupler reduces to the form in (3.10) when it has zero voltage, but with 

non-zero voltage there is both a power split and a phase split, defined below in Eqn. (3.12).  If 

the coupling function is performed by active modulator bias sections, then it requires two 

sections with different voltages to control both the power split and phase split independently.  

That is, it requires both a DCM and a phase shifter, or two DCM sections with different bias 

voltages.  The CMZM requires two ideal couplers and thus four passive sections in series 

optically, making it challenging to manufacture on a finite-sized lithium niobate wafer.6 As 

shown in Figure 3 - 6, the transfer function of the CMZM is very similar to that of the 

DPMZM over a range of {-0.5, 0.5} volts (normalized to Vπ), however they differ outside of 

that range. 
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The Directional Coupler with Two Passive Biases 

A DCM followed by two unmodulated but dc-biased electrode sections on the same 

underlying directional coupler makes a broadband linearized modulator (DCM2P), described 

by Farwell in Ref. [3.6], and shown schematically in Figure 3 - 3.  The electrode sections have 

electrical lengths {0.5π, 0.25π, 0.25π}, where the last two sections of length 0.25π have an 

electrical bias but no r-f drive.  The two passive sections with different bias voltages linearize 

the directional coupler modulator.  The lengths are not unique, but were chosen to be able to 

analyze a specific example.  The first and principal directional coupler modulator section is fed 

with the full optical input to one arm only and biased where its 2nd harmonic is nulled, no 

different from an ordinary directional coupler modulator.  The outputs from the two arms of 

this DCM section are complementary.  The two passive sections create a relative power split 

and phase shift between these two modulated signals.  As the two signals are coupled together 

through the passive sections, the third-order intermodulation product is nulled, but only with 

the correct power split and relative phase shift, introduced by the two passive sections.  This 

requires two degrees of freedom and hence there are two passive sections.7

The optical amplitude of a “simple” directional coupler modulator is given by 

11 12 1
*

12 11 2
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6 In Ref. [3.5] the difference between an ideal coupler and a DCM is not addressed.  As a double check of the need to keep the 

phases aligned, we ran the optimization routines on the DSMZ with one DCM electrode after each modulator phase shifter, 
and we were unable to obtain a linearized modulator.   

7 A DCM followed by one passive biased coupler section was proposed by Lam and Tangonen Ref. [3.7].  See also Bridges and 
Schaffner, Ref. [3.8], for further discussion.  With only one additional degree of freedom it is not possible to simultaneously 
zero both second harmonic and third-order IMD.  Thus this modulator falls in the sub-octave category discussed in the next 
section. 
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B(θ,VN) is a 2x1 vector of complex amplitudes corresponding to the outputs of the two 

waveguides in a directional coupler.  The parameter m11 is the “through arm,” that is, the 

amplitude of the optical wave that exits the same waveguide that it entered, and m12 is the 

“cross term,” that is, the amplitude of the optical wave that couples to the opposite waveguide 

from the one it entered.  The modulation voltage is normalized to the switching voltage VS by 

VN=V/VS.  The electrical length θ is equal the coupling coefficient of the modulator times the 

physical length κℓ.  A(θ,VN) is a unitary matrix; upon close inspection it is clear that the 

magnitude squared of the through-arm plus the magnitude squared of the cross term equals 

one for either input.  The transfer function for a DCM is given by 

2
1 11 1 12 2

2*
2 11 2 12 1

,

.

h m a jm a

h m a jm a

= ⋅ − ⋅
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The transfer function for a DCM2P is given by 
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The reference bias values for a DCM2P in normalized voltage for Eqn. (3.16) is {0.50529, 

0.73803, 0.77000}, which is the normalized bias voltage for the r-f, and 2nd and 3rd passive 

bias section, as in Ref. [3.8].  This modulator has the advantage of no r-f split and no optical 

split.  Furthermore, the only precise control needed is the bias voltage of the three directional 

coupler sections.  Bias voltages are the easiest modulator parameter to fine tune.  However, as 

will be shown Chapter 4, it is unusually difficult to preserve this linearization in the presence of 

velocity mismatch.   

The Y-fed Directional Coupler 

The Y-fed directional coupler modulator (YFDCM) has a Y-junction similar to a Mach-

Zehnder modulator, which feeds both inputs of a directional coupler modulator with signals of 

equal optical amplitude and phase, as shown schematically in Figure 3 - 3.  This modulator was 

first proposed in Ref. [3.9] in 1986.  The physical symmetry of this configuration forces the 
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transfer function to be anti-symmetric.  Similar to the MZM (and different from the DCM), 

all even-order harmonics are zero at the operating point, V=0.  He proposed an electrical 

length of 0.707π, which is an innovative implementation of a 1x2 switch in that allows a 

complete transfer of optical power, and does not require any bias as would be required in a 

MZM or DCM.  However, to use this structure as a linear modulator the electrical length 

should be π/2.  

There are many variations of this modulator created by changing the electrical length, adding a 

passive (and unbiased) section and changing the electrode topology.  As a matter of 

convention in this thesis, “standard YFDCM” is used to describe the Y-fed DCM with 

arbitrary electrical length, that may or may not be linearized.  YFDCM is taken to be a specific 

version of the linearized modulator based on Thaniyavarn’s topology but with electrical length 

1.43π.  There are other ways of linearizing the standard YFDCM.  First, it was found by Pucel, 

Ref. [3.10], that making the modulator a specific electrical length LA, followed by an additional 

passive coupling length LP (that is, without the modulation applied, and no bias) would cause 

the cubic distortion term to null, without upsetting the null of the second harmonic (after all, 

this is still an anti-symmetric device).  Pucel gives the linearized values as LA=0.6π (active 

length) and LP=0.6121π (passive length).  Second, in Ref. [3.11] Tavlykaev and Ramaswamy 

found that taking the YFDCM (as proposed by Thaniyavarn) and breaking the electrode and 

reversing the phase on the second section also creates a linearized modulator.  In other words 

a modulation voltage V is applied over LA and –V is applied over LB. They give values of LA = 

2.05π and LB = 0.5025π.  They also demonstrate this modulator experimentally in Ref. [3.12].8 

Third, in Ref. [3.13] it is shown that the standard YFDCM is linearized by simply increasing 

the electrical length of the modulated coupler to 1.4297π.  In the author’s analysis program, it 

is shown that for both the standard DCM and the standard YFDCM, there is always a range of 

voltages as a function of electrical length, in which the third-order intermodulation distortion 

is nulled without a corresponding signal null.  In the standard DCM this voltage can never be 

 
8 Tavlykaev and Ramaswamy use a different definition for dynamic range, which may be adequate for CATV applications, but 

is not the definition taken in this study.  They look at how close to the switching voltage the modulator transfer function can 
get before the error between the modulator and an ideal limiter is ±1%.  Their experimental results were positive under this 
definition.  However, the author of this study has not found that this modulator configuration gives good results for SFDR 
as defined in Eqn. (3.6).  
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zero for any electrical length, as there is no signal gain at that point.  However, for the 

standard YFDCM, this voltage is zero at the electrical length 1.4297π.   This is the only 

linearized YFDCM treated in detail in this thesis. 

The d-c transfer function of the YFDCM is found from Eqn. (3.15) taking one-half of the 

through-arm amplitude and one half of the cross-term amplitude of the DCM Eqn. (3.12), that 

is the terms a1 and a2 of vector AIN are each equal to ½ 
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The YFDCM is particularly sensitive to the optical phase in the Y-splitter.  An optical phase 

shift of 1800 in the input to the two arms completely cancels the signal and produces only 

second harmonic. To keep the second harmonic below the third-order intermodulation 

requires a phase error of less than one optical degree depending on the operating signal 

bandwidth, Ref. [3.13]. 

It is also helpful to represent the transfer functions in terms of the physical directional coupler 

parameters; length ℓ, electrically induced coupling δ, coupling coefficient κ, see Ref. [3.14]: 

( )2
2

1 sin .
2

H l 2
2

δκ
= − δ + κ

δ + κ
2  (3.19) 

Sub-Octave Modulators 

Sub-octave modulators produce significant second harmonic distortion, and are thus suitable 

for use over only a single octave of modulation frequency.  All harmonic distortion is then out 

of band, and only the intermodulation terms contribute to the nonlinear distortion.  These 

modulators are generally biased into a highly quadratic region of the modulator transfer 

function.  Specifically, the intermodulation distortion is nulled at the expense of second 

harmonic distortion, which is in excess of that of a standard DCM and MZM, but since the 
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extra harmonic distortion is out of band, it does not interfere with the signal. Sub-octave 

modulators are inherently simpler devices than super-octave modulators, since they need only 

null one type of distortion. Both a Mach-Zehnder and a directional coupler based sub-octave 

modulator can be made with one precision parameter (bias voltage) and no r-f split. 

The Sub-octave Dual Series Mach-Zehnder Modulator 

The Sub-octave modulator, the Dual Series Mach-Zehnder (SoDSMZ) is described by Betts in 

Refs. [3.15] and [3.16]. It consists of two simple MZMs in series optically, but in parallel 

electrically.  There is no required r-f split between the two modulators, and they both have the 

same bias.9 One monolithic electrode structure may cover two Mach-Zehnder optical 

interferometers.  Thus its fabrication is as simple as modifying the waveguide design from a 

standard Mach-Zehnder by placing a Y-junction combiner followed by a splitter in the center 

of the modulator.  The gain is reduced from a normal Mach-Zehnder by the fact that the 

modulator is effectively half as long (accommodating two modulators in series) and from the 

residual signal cancellation that is a necessary byproduct of the intermodulation cancellation. 

The d-c transfer function for this modulator is 

4cos ( ).H =  (3.20) 

A normalized bias voltage of Vb = 0.581 nulls the third-order intermodulation distortion 

(V=Vb+Vrf). 

The Sub-octave Directional Coupler Modulator 

The Sub-octave Directional Coupler (SoDCM) only differs from the normal directional 

coupler in its bias.  The d-c transfer function is given by Eqns. (3.12) - (3.14) just as a simple 

DCM.  The name SoDCM is used to indicate the sub-octave usage of the DCM. The optimal 

bias voltage is VB = 0.795 VS.  The usage of a DCM as a sub-octave modulator was first 

proposed by Bridges and Schaffner in Ref. [3.8].  This is the most simple linearization scheme 

 
9 However, in some implementation an r-f split is added (which adds complexity) and that results in a reduced average photo-

current level and subsequently a reduced shot noise.  This analysis treats the DSMZM with no r-f split. 
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conceptually, in that it is the only “simple” modulator that has a native linearization mode 

obtained through a precision voltage bias.10   

Comparison of  SoDCM and DSMZM 

Figure 3 - 5 shows the transfer function for the sub-octave Dual Series Mach-Zehnder 

Modulator (SoDSMZ) and the simple directional-coupler-based sub-octave modulators 

(SoDCM). These transfer curves are translated by the bias voltage such that the abscissa value 

is zero for no r-f drive and the voltage is normalized to either Vπ or VS.  The operating bias 

points are shown by a “+” sign on the graph.  A salient feature of these curves is the 

normalized optical output at the target bias, which in both cases is quite small, unlike the 

broadband and ordinary electrooptic modulators that are biased at or near the half power level.  

Even without looking at the frequency spectrum it is clear from the curvature about the biases 

that these modulators obtain their intermodulation suppression at the expense of large even-

order harmonic distortion. 

There is a substantial d-c optical attenuation at these biases.  The d-c output of the two 

modulators is 7% and 14% of the input optical level, a reduction of 11.5 dB11 and 8.5 dB, 

compared to only 3 dB for broadband modulators.  However in shot-noise-limited links, this 

results in improved link performance, since reducing the d-c optical level reduces the system 

noise level as well.  The small signal gain depends on the slope of the transfer function at the 

bias point.  In both cases moving from about the middle optical level to the sub-octave bias 

point reduces the small signal gain less than it reduces the shot noise resulting from the d-c 

optical level.  The sub-octave modulators can have a higher dynamic range than the super-

octave modulators for this reason. Of course, in a laser RIN-limited optical link, the 

performance is degraded by the loss of signal gain. 

 

 
10 That is, assuming it is just as easy to fabricate a directional coupler as an MZM.  The state of the art is such that 

manufacturers have had more success at making consistent, repeatable, MZMs than DCMs. 

11 This reduction is only for the through arm of the DCM.  The output of the cross arm has a complementary transfer function 
and thus a much larger zero signal optical power, resulting in significantly more shot noise, and a degraded dynamic range. 
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Figure 3 - 5: Two sub-octave modulators: the Dual 
Series Mach-Zehnder (DSMZM) and the suboctave 
directional coupler (SoDCM).  For reference both 
output arms of the DCM are shown; however, one 
should only use the arm with the low output 
photocurrent.  The biases are shown with hash marks at 
V=0.79 Vs for the SoDCM and V=0.58 Vπ for the 
DSMZM. 

Other Modulators 

This analysis has addressed two normal electrooptic modulators and five linearized 

electrooptic modulators (not counting the unrealizable ideal limiter). The number can grow 

substantially by introducing some minor alterations to the modulators.  In some cases, 

modulators have been left out because there is not a strong interest to build them.  For 

example, a triple parallel Mach-Zehnder has been proposed to null the fifth-order 

intermodulation distortion product; see Ref. [3.8].  In other cases, the modifications are not 

fundamental, such as replacing a Y-splitter with a passive directional coupler.  When minor 

variations are taken into account, the modulators count goes from 7 to over 20. 
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Performance of Electrooptic Modulators 

This section compares the performance of the linearized modulators described in the previous 

section. 

Ideal Performance 

The ideal performance is characterized by Eqn. (3.1) for gain and Eqn. (3.6) for the two-tone 

dynamic range. The calculation makes a number of assumptions.  First, the d-c transfer 

functions given in the previous section are approximations of the real behavior of the 

modulator.  The analysis ignores all electrooptic effects but the first order Pockel's effect and 

any other non-linearity in the materials present in the modulator.  (Though not well-

understood, there is evidence for “bias drift” in lithium niobate electrooptic modulators due to 

ion migration in the material under applied dc fields.  How this contributes to r-f modulation 

non-linearity is not understood at all).  The directional coupler equation is an approximation 

from coupled mode theory.  From the engineering point of view, the equations assume the 

waveguides are purely single mode, and that the optical fields are linearly polarized along the 

correct axis for the given modulator.  It is assumed that there is no radiation, loss, or reflection, 

and that the directional couplers and Y-junctions act as perfect couplers and combiners and 

the devices are perfectly symmetric.  Furthermore, it is also assumed that the detectors exhibit 

a perfect square law behavior, even though deviations are significant at high power levels, as 

noted before [3.1].   

Figure 3 - 6 shows the signals, noise, and nonlinear distortion terms of the five superoctave 

modulators defined above, the LMTR, DPMZ, CMZM, YFDCM, and the DCM2P.  The 

modulator linearization parameters were adjusted to maximize the dynamic range for the noise 

level shown, -161 dBm, appropriate to a 1 Hz noise bandwidth for a shot-noise limited link. 

For the link parameters given in Table 3.1, both thermal noise and laser RIN noise were 

essentially negligible.  It is important to note that the optimized linearization parameters will 

change with noise level due to the complicated behavior of the distortion curves with 

modulation drive power; they are not straight lines of slope 3, as they are for simple 

modulators.  The intermodulation distortion curves, when optimized, are approximately slope 

5 above the noise level and slope 3 below the noise level (ignoring the null at a specific input 
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power).  Changing the noise bandwidth will simply translate the noise level upward in dB, 

but the linearization parameters should be readjusted for maximum dynamic range at the 

desired noise level.  Note that the noise level for all of these modulators is the same, 

independent of photocurrent, since all are biased at 50% transmission.  Comparisons with 

other modulators may have to account for changed levels of average photocurrent, and thus 

shot noise level, for example, in comparing a simple DCM biased at its “normal” bias to 

eliminate second harmonic or at its “linearized” bias to null the third-order intermodulation 

distortion; the two conditions produce different shot noise levels for the two different biases. 

 

Figure 3 - 6: Power sweep of signal, second 
harmonic, and intermodulation distortion of five 
super-octave modulators, DPMZ, CMZM, DCM2P, 
YFDCM, and DCM2P and the ideal limiter 
reference assuming a signal bandwidth of 1-Hz.  
Note that the ordinate and abscissa dB scales are not 
the same size, so the “slope 1” signal does not 
appear at 45º 
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The modulators are shown together in Figure 3 - 6 to compare their different characteristics.  

The limiter has the largest gain, not surprisingly the ideal linearized modulator is the most 

efficient since it is not using any part of the signal to cancel distortion (note the gain is still 

worse than the standard modulators).  Impressively, the DCM2P has only a slightly lower gain.  

The CMZM and DPMZ have inferior gains, each about 6 dB lower than the DCM2P.  The 

second harmonic is not shown on this figure because in all cases but the DCM2P, there is no 

even-order harmonic distortion.  The intermodulation distortion for these modulators is 

shown as the representative distortion.  The maximum distortion-free r-f input level for the 

CMZM and DPMZ is higher than the DCM2P, but this does not translate to a higher dynamic 

range since it exactly makes up for the lower output signal level.  The distortion of the limiter 

comes in at a near vertical rise at an input level of 18 dBm.  This is purely clipping distortion. 

Figure 3 - 7 shows the power sweep of the DCM2P independently from the other super-

octave modulators.  In this figure, both the second harmonic and the intermodulation 

distortion appear in the plot window.  Like the intermodulation distortion, the second 

harmonic is only nulled at a single finite power level.  This property is the cause for the 

difficulty in using this modulator that will be illustrated in detail in Chapter 4.  Note that the 

two distortion terms appear to have the same shape in power levels above the null.  However, 

below the null, the second harmonic takes on “slope 2” and the third-order intermodulation 

term takes on “slope 3.”  

Figure 3 - 8 shows a power sweep of the signal and distortion terms for the two sub-octave 

linearized modulators: the SoDCM and the SoDSMZM. The signal level for the SoDCM is a 

little lower than the DCM2P (from Figure 3 - 7).   And that of the SoDSMZM is a little higher 

than the CMZM (again from Figure 3 - 7).  The second harmonics are plotted here, to 

illustrate how large they are, but this distortion is out of band, and therefore does not affect 

performance.  In the case of the SoDCM, there are two output arms.  The signals are the same 

but the noise is not.  The noise level is -170.8 dBm for the good arm of the SoDCM (-158.5 

dBm for the bad arm of the SoDCM) and -167.6 dBm for the SoDSMZM.  The plot assumes 

the output arm with the lower average photocurrent level is the one chosen.  The chosen noise 

levels are lower than the super-octave modulators and that accounts for a modest increase in 

dynamic range of the sub-octave modulators. 
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Figure 3 - 7: Power sweep of DCM2P showing both 
third-order intermodulation product and second 
harmonic distortion. 

All of the curves of the distortion in the linearized modulators of Figure 3 - 6 and Figure 3 - 8 

display a characteristic named the “kissing condition.”  The distortion is nulled at a finite 

power level.  The location of this null as a function of input power is controlled by the actual 

biases of the linearization mechanism in each modulator.  At power levels starting just below 

the null, the distortion comes back to a local maximum and then tapers off at slope 3 for IMD 

(or slope 2 in for the DCM2P where the second harmonic is also nulled at a finite power level) 

as the power is decreased further.  In optimizing the bias values, the null moves up to higher 

power levels, until that local maximum just “kisses” the noise floor.  Unfortunately, this 

condition is very sensitive to errors in bias and frequency effects (studied in Chapter 4).  Once 

a small error is introduced, and that local maximum rises above the noise floor, then the 

dynamic range is reduced discontinuously by a few dB.  Note this effect, as it explains the 
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peculiar discontinuous drop in dynamic range that occurs in some of the calculations later in 

this study.  

 

Figure 3 - 8: Power sweep of the signal, second 
harmonic and intermodulation distortion of two sub-
octave modulators, SoDCM and SoDSMZM compared 
to a “noise floor” assuming a 1-Hz signal. Note the 
noise floors are different because the average photo 
current is different. 

Table 3-2 summarizes the performance of standard, super-octave, and sub-octave 

modulators.12  The salient feature of the table is how similar modulators within a class are and 

how different they are from the other classes (not counting the unrealizable limiter).  The 

standard MZM and DCM are included for comparison; they both have nearly the same gain 

and dynamic range. Note that the difference between the gain of the DCM2P and that of both 

the DSMZ and DPMZ is 6 dB.  Given the similarity in performance of the linearized 

                                                 
12 Note that the noise figure for the DSMZ can be greatly reduced by the introduction of an r-f split, as reported in Ref. [3.15].  
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modulators, it is far more important to judge a modulator by its ease of manufacture, 

operation, and reliability, than by the performance calculations of idealized modulators. 

Table 3-2: Modulator Figures of Merit 

Modulator 

Gain 

(dB @ 1 Hz) 

Dynamic 

Range 

(dB @ 1 Hz) 

Dynamic 

Range 

(dB @ 4 MHz) 

Noise Figure 

(dB @ 1 Hz) 

Standard Modulators 
MZM -25.2 110.9 66.8 37.96 

DCM -24.8 110.4 66.4 37.93 

Super-octave Modulators 
Limiter -29.1 150.1 84.8 41.88 

DPMZ -36.0 130.1 77.4 48.57 

DSMZ -36.4 130.5 77.3 55.21 

DCM2P -30.5 130.3 77.2 43.27 

YFDCM -33.9 128.1 74.5 46.67 

Sub-octave Modulators 
SDSMZ -34.0 131.4 78.6 40.37 

SDCM -31.8 134.8 82.2 35.05 
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Noise Scaling 

Dynamic Range is a linear function of the logarithm of the noise bandwidth with a slope that 

depends on the degree of linearization, provided that the intermodulation is given by a simple 

slope on the log-log plot, which is not actually the case, as seen in Figure 3 - 6 and Figure 3 - 8, 

however it is a good approximation for the analysis of noise scaling.  This relationship is valid 

up until the r-f drive saturates the modulator.  The dynamic range of any modulator scales as 

1
1( ) | 10log( )

HzF
nD F D F

n∆ = ,−
∆ = − ∆  (3.21) 

where ∆F is the noise bandwidth and the parameter n is the order of the dominant distortion 

term.  In a standard modulator n=3, so that the dynamic range varies as the 2/3 power of the 

bandwidth, since there is no second harmonic and the modulator is limited by the third-order 

intermodulation term.  Recall Figure 3 - 2 in which the signal is a line with slope 1, and the 

third-order intermodulation product is a line with slope 3.  The “noise floor” is a third, 

horizontal line that forms a triangle with the signal and the intermodulation line.  The length of 

the base of this triangle is the dynamic range.  The vertical position of the noise line is 

proportional to the log(∆F), so from simple geometry, it is clear that the dynamic range goes as 

(∆F).2/3  In both the super-octave and sub-octave linearized modulators described above, the 

dominant distortion is the fifth-order intermodulation term, where n=5 and the slope is 4/5.13  

(More complicated realizable linearization schemes can result in even steeper slopes for 

intermodulation, for example, the triple MZM modulator discussed in Ref. [3.8], which has 

slope of 7 for distortion).  In the ideal limiter, n is nearly infinite and so is the slope of D(∆F), 

at the onset of clipping. 

In some systems, the noise bandwidth can be reduced to match the signal bandwidth, but in 

others it cannot. For example, if the signal is wide band or if one does not know what 

frequency the signal will have (e.g., signal surveillance) then it is necessary to design for a large 

                                                 
13 This is an approximation.  The actual noise curve is not a line with slope 5 because there is a finite null.  However, 

sufficiently far away the null, in the direction of greater signal power, the noise curve converges to a line of slope 5.  
Interestingly, sufficiently far away from the null in the direction of lower signal power, the noise curve converges to a line of 
slope 3. 
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system bandwidth. When the absolute dynamic range is critical, and the signal is narrow-

band, then reducing the noise bandwidth is a clear system objective.  The higher degree of 

linearization (larger n), the more the dynamic range increases per reduction in noise 

bandwidth.  However, some applications have fixed noise bandwidth such as the 6 MHz AM-

VSB (vestigial sideband) channels in CATV.  When the noise bandwidth isn't a design 

parameter, this scaling rule influences the decision to use a linearized modulator.  For example, 

Table 3-2 shows that the ideal limiter gives 15.3 dB above the SoDCM, the best third-order 

linearized modulator in the 1 Hz bandwidth, but only 2.6 dB above this modulator in a 4 MHz 

bandwidth application.  Assuming that one could make both an effectively ideal limiter and a 1 

Hz system at finite but high cost, it might make sense to employ the ideal limiter in the 1 Hz 

system, but probably not in the 4 MHz system.  A more realistic example, consider a 4 MHz 

super-octave system versus a 4 GHz system.  The linearized modulator increases the dynamic 

range by 10 dB in the 4 MHz system but only 3 dB in the 4 GHz system.  
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Figure 3 - 9: Dynamic range as a function of signal 
bandwidth ignoring finite transit time and losses of 
the MZM, LMTR, SoDCM, and DPMZ. 

Figure 3 - 9 illustrates the signal bandwidth scaling of the various types of modulators.  The 

MZM is the canonical non-linearized reference limited by third-order intermodulation, and the 

LMTR is the theoretical perfectly linearized modulator limited only by clipping.  These curves 

converge to a single point at which standard, third-order intermodulation linearized and 

“perfect” modulators become indistinguishable.14  To first-order, this convergence point is 

universal for links with identical canonical parameters, equivalent gains, and quiescent 

photocurrent levels.  The SoDCM and DPMZ are plotted within this window.  The SoDCM 

was chosen for its superior shot-noise performance, and the DPMZ because it is the most 

widely known super-octave modulator.  There is some clumpiness in the SoDCM and DPMZ 

curves, due to the difficulty of root finding in the dynamic range equations.  Interestingly, the 

SoDCM outperforms the LMTR at high signal bandwidth because it has a lower photocurrent 

level and hence lower shot noise level in the DCM through-arm, and it retains sufficient gain. 

Given these link parameters and a specified system bandwidth, an engineer then has three 

(possibly four) different specs for dynamic range depending only on whether he chooses a 

modulator on the curve with slope 1/2, 2/3, or 4/5 (or possibly 6/7).  Having chosen the class 

of modulator, choosing the actual modulator is an economic decision.  Much of the linearized 

modulator literature ranks modulators by their 1 Hz theoretical dynamic range; however the 

dynamic range differences for practical noise bandwidths will be considerably smaller, and the 

choice will depend more on cost and complexity.  It is important to identify the modulator's 

class, and then rank them by reliability and manufacturability. 

Pa ameter Sens iv y 

The idealized performance of electrooptic modulators given in the literature and summarized 

above assumes optimal control over fabrication and operating parameters.  Standard 

modulators have a bias voltage (either built in or applied during operation); and linearized 

 
14 The curves above 100 GHz are purely for theoretical illustration, in that LiNbO3 is electrically lossy at 1 THz.  Other 

physical assumptions may also break down at frequencies above 100 GHz. 
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modulators may have two additional bias voltages, or an optical split or coupling ratio and 

an r-f split in addition to regular modulator biases.  The tolerance for standard modulators is 

tight, and for linearized modulators at low noise bandwidth the requirements may be so severe 

that doubt is cast on whether the modulators could be successfully manufactured.  The 

tolerance becomes less severe with increasing noise bandwidth, however.   

Figure 3 - 10 shows dynamic range of a standard Mach-Zehnder modulator as a function of 

the error of its normalized bias voltage 0.5 Vπ.  There are eleven curves corresponding to 

decade increments of noise bandwidth from 1 Hz to 10 GHz. For each order of magnitude 

decrease in noise bandwidth, there is a 6 and 2/3 dB increase in dynamic range at zero error in 

bias, agreeing with the predictions of noise scaling.  Every curve consists of three 

discontinuous sections.  The central region is the intermodulation-product limited dynamic 

range.  This region is terminated on either side by two corners beyond which the dynamic 

range drops off dramatically.  This is the transition between intermodulation limited dynamic 

range and second-harmonic limited dynamic range.  The unrealistic 1 Hz bandwidth curve can 

only tolerate a 0.001 Vπ error before the dynamic range falls off, and by an error of 0.008 Vπ 

the dynamic range has lost 10 dB.  The modulator becomes less sensitive at higher noise levels.  

At a realistic system bandwidth of 1 MHz, the dynamic range is flat out to an error of 0.0085 

Vπ and doesn't lose 10 dB until the error in voltage is 0.09 Vπ.  For this reason, in the 

literature many results are now reported with 1 MHz bandwidths instead of the traditional 1 

Hz bandwidth.  The curves also illustrate why active feedback control is used on the bias 

voltage to minimize second harmonic content. 

Figure 3 - 11 shows the same sweeps for a sub-octave directional coupler modulator.  The 

dynamic range is purely a function of the intermodulation distortion. The parameter tolerance 

is tighter than that of simple Mach-Zehnder.  The 1 Hz curve loses a dB at a tolerance of 

about ±0.00005 VS and it loses 10 dB at ± 0.00075 VS.  Near the linearized optimum the drop 

off is very rapid, but by a 10% error the 1 Hz curve converges to around 110 dB.  This is the 

dynamic range of a standard directional coupler.  By spoiling the bias the modulator moves 

from the bandwidth scaling curve of slope 4/5 to that of slope 2/3, just as the Mach-Zehnder 

went from 2/3 to 1/2.  In other words, The SoDCM goes from being fifth-order IMD limited 
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Figure 3 - 10: the dynamic range of the simple MZM 
as a function of the bias voltage swept over ±10% 
of Vπ for 10 orders of magnitude of signal 
bandwidth from 1 Hz to 1 GHz. 

to third-order IMD limited, just as the MZM went from third-order IMD limited to second 

harmonic limited.  The SoDCM does not fall to the 1/2 line since its second harmonic 

distortion falls out of band.  The points at zero bias error are related across the 11 scans by a 

4/5 scaling law while the skirts of the curves are related by a 2/3 law.   

Figure 3 - 12 shows the logarithm of the tolerance as a function of the logarithm of signal 

bandwidth of a MZM.  The curves are points of equal reduction from the optimal dynamic 

range at that noise bandwidth.  There are ten curves from 1 dB degradation through 10 dB. It 

is remarkable that the relationship is almost perfectly linear. Only on the 10 dB curve near a 

saturated bandwidth is it not linear to the eye, and that is at a 25% error in bias.  It turns out 

that every modulator addressed in this study demonstrates this linear relationship. 
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Figure 3 - 11: The dynamic range of the SoDCM swept 
over ±2% of the optimal 1-Hz bias voltage 0.79 VS for 
10 orders of magnitude of signal bandwidth, 1 Hz to 1 
GHz.  At larger noise BW the discontinuous drop in 
dynamic range is a result of the “kissing condition” 
described above. 

Comparing the linearized modulators treated in this study presented some problems in that the 

linearization is accomplished by varying different physical parameters of the modulator in the 

different cases.  However, if all the parameters are sensibly normalized such a comparison is 

valid.  Voltages in Mach-Zehnder and directional coupler based modulators are normalized by 

Vπ and VS, respectively.  Optical and r-f splits (or optical coupling ratios) are normalized so 

that unity represents a complete transfer.  The electrical length of directional couplers is 

normalized to unity for a full transfer.  This is unconventional; normally a full transfer is 0.5π.  

It was done for comparison to the other parameters that are all normalized to unity.  

Additionally, most of the modulators have multiple parameters.  For simplicity, every 

parameter but the one being swept was held at its optimal value.  In fact similar errors in 
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multiple parameters are found to compound the error, but only subtly. That is, if multiple 

parameters are swept at the same time, the resulting performance degradation is a little worse 

then if just one parameter is swept, but it is not substantial, and in the interest of keeping the 

dimensionality of the problem space low, only one parameter is swept at a time.  The author 

looked at a number of cases, but did not do so exhaustively; this was enough to see that the 

interaction of errors in multiple bias parameters goes like the “sum of the squares.”  

 

 

Figure 3 - 12: Lines of equal dynamic range reduction 
with bias error in a MZM. 
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Table 3-3: Modulator Parameter Sensitivity 

Modulator Parameter Slope Intercept 

I(1-dB) 

Intercept 

I(3-dB) 

Intercept 

I(10-dB) 

Standard Modulators (no distortion cancellation) 
Simple MZ VBIAS 0.164 -2.99 -2.97 -2.08 

Simple DCM VBIAS 0.164 -3.02 -2.72 -2.12 

Sub-octave Modulators (third-order IMD cancellation, second harmonic out of band) 
SDCM VBIAS 0.199 -4.64 -4.20 -3.26 

SDSMZ VBIAS 0.198 -4.28 -3.82 -2.86 

Broadband Modulators (third-order IMD cancellation, no second harmonic) 
DPMZ RF Split 0.209 -4.35 -3.89 -3.08 

DPMZ Optical Split 0.213 -4.53 -4.07 -3.02 

DSMZ RF Split 0.214 -3.98 -3.51 -2.57 

DSMZ Coupler Angle 0.209 -4.28 -3.84 -2.97 

YFDCM Electrical Length 0.201 -3.87 -3.41 -2.34 

Broadband Modulators –  DCM2P (third-order IMD & second harmonic cancellation)
DCM2P VBIAS-1 0.282 -5.11 -4.85 -4.08 

DCM2P VBIAS-2 0.299 -4.80 -4.60 -3.91 
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Calculations similar to those shown in Figure 3 - 10 and Figure 3 - 11 were performed for all 

eleven unique modulator parameters, and the data were reduced to create similar log-

bandwidth-log-tolerance plots such as shown in Figure 3 - 12.  Below a log-tolerance of about 

-0.5 all curves were linear, giving them a characteristic slope and 1 Hz intercept.  Table 3-3 

summarizes the dynamic range versus parameter errors for all modulator parameters.  It shows 

the tolerances at the 1 dB, 3 dB, and 10 dB degradation levels.  All of the log-bandwidth-log-

tolerance curves have nearly identical slopes for a given modulator parameter.  The values 

given in the slope column are an average of the slopes of the ten curves (1 dB to 10 dB). The 1 

dB, 3 dB, and 10 dB columns contain the value of the log-tolerance at 1 Hz signal bandwidth 

only.  Other noise bandwidths are calculated with the slope and the 1 Hz intercept.  The 

tolerance for any signal bandwidth to experience an n dB dynamic range reduction (ignoring 

transit time and r-f losses) can be found for any parameter in the table with the relationship 

1 1
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The table has three categories of modulator parameters, those in standard modulators, sub-

octave linearized modulators and super-octave linearized modulators (except the DCM2P), 

and the DCM2P, broken out separately.  Parameters of similar slope are grouped together.  

The standard MZM and DCM have the same slope and nearly the same intercepts.  A 1 dB 

reduction of dynamic range at 1 Hz (109 dB absolute dynamic range) would require a 

normalized accuracy of 0.001, or for the canonical parameters (Vπ or VS = 10 V) about a 10 

millivolt accuracy.  A more realistic 1 MHz signal on the 3 dB line could withstand an 18% 

error, or a 180 millivolt error in the reference link.  The sub-octave and super-octave 

modulators (except the DCM2P) require a (1 Hz, 1 dB) accuracy of 30 - 100 parts in a million, 

and a (1 MHz, 3 dB) accuracy of 1 - 6 parts in one thousand.  The DCM2P has a questionably 

attainable (1 Hz, 1 dB) accuracy of 10 parts in one million, but it is only a little worse than the 

other linearized modulators at (1 MHz, 3 dB). 
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There are many different electrooptic intensity modulators, yet the tolerances of these 

parameters are remarkably similar.  There are only three salient numbers in the table.  They are 

the average slopes of categories one, two, and three.  In fact, it makes little difference whether 

the modulator is a DCM or a MZM, whether it uses one technique for linearization or another; 

the distinction of the categories is more fundamental.15  It is only the type of distortion 

cancellation that determines the slope of the log-tolerance-log-bandwidth lines.  In the first 

category (standard modulators), the second harmonic is nulled to the level of the uncancelled 

third-order distortion term. This yields a slope of 0.164. In the second category the third-order 

IMD is nulled and the second harmonic plays no part in the linearizing mechanism.  The 

second harmonic is out of band in the sub-octave modulators and in the DPMZ, DSMZ, and 

YFDCM, the harmonic cancellation occurs by a different and more robust mechanism than 

the third-order cancellation, e.g., device symmetry.  This yields a slope of about 0.21. In the 

DCM2P the same linearization mechanism nulls both the second harmonic and the third-

order distortion.  The critical sensitivity of the DCM2P results from using the sensitive 

linearization technique to null the second harmonic distortion to the level of the nulled third-

order IMD.  There is about 50 dB of second harmonic distortion suppression in the DCM2P 

at a 1 Hz bandwidth.  Thus in comparison to the SoDCM of Figure 3 - 11, the DCM2P is on 

the 4/5 slope scaling curve, but when there is an error in the bias it does not drop down to the 

2/3 slope curve, but instead it falls all the way to the 1/2 slope curve.  This effect is unique to 

the DCM2P of the modulators covered in this study. 

Important engineering lessons can be drawn from the analysis of ideal performance and 

parameter tolerance. Table 3-3 shows that in dynamic range performance there are basically 

two types of modulators, standard and third-order linearized modulators.  Among the 

linearized modulators the only noticeable performance difference comes from the average 

photocurrent level of the modulator.  This gives a couple of extra dB of dynamic range to the 

sub-octave modulators.  Table 3-3 also shows that the parameter sensitivity of these two types 

(with the exception of the DCM2P at low signal bandwidths) is nearly identical over all the 

parameters within each type.  This study covers eight different modulators, and if some subtle 

 
15 The different techniques and types of modulators may have significantly different weights in terms of manufacturability; this 

point refers only to the idealized mathematical models. 
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permutations were included, it could number above 20.  Yet, the calculated ideal 

performance and parameter sensitivity is incredibly similar across all modulators within each 

class.  The conclusion is that modulators should be chosen by their manufacturability and 

reliability. 

Multi-Tone Analysis 

The effects and consequences of more than two simultaneous signals being applied to a non-

linear system are substantially more complex and require a different evaluation scheme than 

simply “dynamic range.” There are many ways to have “more than two signals.”  In this 

dissertation, the special case of N signals, equally spaced and of equal amplitude, is treated 

since this situation is encountered in cable television (CATV), as well as other sub-carrier 

multiplexed systems.    

As stated briefly in the section “Analysis with One and Two Tones,” if N (N > 2) equally 

spaced, equal amplitude tones are applied to a non-linear system, then, unlike the one- and 

two-tone analysis, the relative phases of the tones is important.  If all of the sinusoids are in 

phase at one point in time, then they add to N times the amplitude.  As time progresses, they 

run out of phase, and the amplitude decreases.  However, they will again add to N times the 

amplitude at a time T = 1/FD later, where FD is the frequency interval between tones.  The 

result is a train of pulses with amplitude N and width ~ 1/N.  As N → ∞ the shape of the 

wave approaches a delta function.  Even for finite N (consider the carriers of 100 TV channels 

on a typical cable TV system) the peak amplitude is quite high compared to that estimated 

from the total average power.  Clearly, this is an undesirable situation for transmission through 

a non-linear system. 

Two other cases are common in the literature.  According to Ref. [3.18], and subject to their 

assumptions, the best case performance for sub-carrier systems is given by distributing the 

phases φk = (π/N)k2 for k = 1, 2, …, N.  This is an extension of the Newman phases.  In 

practical sub-carrier multiplexed communication systems, the phases are neither correlated in 

the best case, nor correlated in the worst case.  The practical case is where the N tones have a 

random distribution of phases, and the amplitude can be treated statistically. 



 

 

63
Three or more tones create multiple noise terms at each frequency location, and create a 

type of intermodulation distortion, previously untreated in this work, the so-called triple beats.  

In two-tone analysis, intermodulation distortion arises from one tone beating with the second 

harmonic of the other tone, f2 - 2f1, occurring at f2 + ∆f and f1 - 2f2 occurring at f1 - ∆f 

assuming the tones are spaced by ∆f.  There are only two distortion terms.  In multi-tone 

analysis there are many more distortion terms, some of which are triple beats.  Some of these 

terms appear at the frequency of the fundamental tones. For example, the triple beat, f1 + f2 - 

f3 occurs at f2, as does the two-frequency intermodulation term 2f3 - f4.16  A thorough 

treatment of this phenomenon is given in Ref. [3.19], from which the definitions in this study 

are taken.  The number of distortion terms at each frequency grows dramatically with the 

number of tones in the sub-carrier multiplexed system.  The single frequency with the most 

distortion terms is the center frequency of all the tones. 

With this proliferation of distortion terms, it becomes advantageous to construct a single 

composite term from multiple terms that fall on one frequency, as in ref [3.19].  The 

composite triple beat (CTB) is the sum of the powers of all intermodulation distortion terms 

at any given frequency.  The product of the equivalent triple beat with the power of a single 

triple beat gives the analytic value of the CTB assuming the phases of the tones are randomly 

distributed.  The equivalent triple beat is the total number of individual triple beats plus one-

fourth the total number of two-frequency intermodulation beats, since the latter are found to 

be one-fourth the strength of the former, also from ref [3.18].  The composite second-order 

(CSO) is the sum of the powers of all the second harmonic distortion terms.  For example, 

(2f2) and (f1 + f3) are both second order distortion for the CSO at f4.  The analytical method of 

calculation is the same as that of the CTB except that all terms are equally weighted. 

In this work, the numerical calculation of the composite terms is similar to the method of 

experimental measurement.  In the laboratory, a series of N frequency synthesizers are 

incoherently combined, fed into a non-linear transducer, and the transducer output is analyzed 

on a spectrum analyzer.  The synthesizer corresponding to the frequency of interest is turned 
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off. The distortion suppression (CTB + CSO) is the difference between the power levels at 

the off-signal frequency and an adjacent channel. There are two implicit assumptions: first, all 

on-tones have the same power level, and second, the on-signal is sufficiently larger than its 

own composite distortion, that the presence of this distortion has no effect on the 

measurement. The numerical calculation takes the exact same approach.  Since this method 

obtains the total composite distortion at any frequency, a distinction between CSO and CTB 

cannot be made, without carefully choosing the location of the signal band in the simulation. 

Triple Beat Calculations for Electrooptic Modulators 

Figure 3 - 13 shows the time domain of the samples used to calculate the composite triple beat 

for the MZ and DPMZ modulators.  Thirty tones of equal amplitude and equal frequency 

spacing are chosen.  The power level was selected to match the desired operating range to 

optimize the composite triple beat suppression, under the Newman phase distribution.  The 

correlated phases are also shown but at the same power level (if the phases were really 

correlated, then the desired operating level would be about 7.5 dB lower).  This was chosen to 

illustrate the pulse train that occurs with correlated phases.  An arbitrary number of samples 

was chosen (1024), and the samples cover one complete period.  Notice that for the correlated 

phases, at the beginning and the end of the sample train, there is a peak 3 - 4 times greater than 

the peak amplitude in the Newman phase case, but that for most of the time, the correlated 

phases has a lower peak than the Newman phases.  It is desirable to minimize the maximum 

signal excursion from the bias point.  Only deterministic pulse trains are analyzed.  It is 

assumed that an uncorrelated pulse train would appear slightly better than the Newman 

condition for most, but not all, random seeds!  

Figure 3 - 14 shows the power sweep of a standard Mach-Zehnder modulator with the 

canonical link parameters from Table 3-1.  In this case the noise bandwidth was taken to be 6 

MHz.  The assumption is that each channel is spaced by 6 MHz and filtered to its spacing.  

And that the noise bandwidth from the other 29 channels does not contribute.  This gives a 

 
16 Here “two-tones” refers to the fact that this distortion term arises from only two of the N tones.  Intermodulation distortion 

of the type (2f1 ± f2) will be referred to as two-frequency, while intermodulation of the form (f1 ± f2 ± f3) will be referred to 
as triple beat. 
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noise level of -93.4 dBm.  The signal from the two-tone test is also shown, that is slope 1.  

For the input power levels of interest, the signal strength for all cases (two-tone, Newman 

phases CTB and correlated phases CTB) have the same signal level.  When the correlated 

phases CTB is at the same level of the signal this assumption breaks down.  The three 

distortion terms have the same slope since they are all based on third-order products.  The 

CTB crosses the noise level at a lower power level.  

 

Figure 3 - 13: Time-domain samples of 30 tones in a 
Mach-Zehnder modulator; when the phases are 
correlated, a pulse is formed, when the phases are 
related by the Newman condition, the peaks are nearly 
optimally averaged. 

CATV channels generally need 52 dB of suppression, see Ref. [3.20].  The two-tone dynamic 

range is 64.7 dB, nearly 13 dB more than required.  However, the Newman CTB dynamic 
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range is 53.7 dB, and the correlated CTB dynamic range is 46.7 dB.  Thus this simple link 

model is barely good enough for 30 channels.  Note that modern CATV experiments that use 

a simple MZM external modulator may have better link parameters than are assumed in Table 

3-1. 

 

Figure 3 - 14: Power sweeps of 30 tones in a MZM.  
The two-tone results are shown for comparison, 
including two-tone SFDR, noise level, and signal level.  
The Newman CTB dynamic range is about 11 dB worse 
than the two-tone SFDR, and the correlated CTB is 7.5 
dB worse still. 

Figure 3 - 15 shows the same 30 channel measurement but with a linearized modulator:  the 

DPMZM.  The DPMZM successfully nulls both the Newman phase CTB and correlated 

phase CTB.  The two-tone dynamic range is 75.4 dB at the 6 MHz noise level.  The Newman 

CTB dynamic range is 62.4 dB and the correlated phase CTB is 54 dB.  Of course, the 

correlated phase case is not generally analyzed, because it is so bad, and, if designed for, 
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systems are generally highly overbuilt.  An interesting negative effect is that the difference 

between the two-tone case and the Newman phase dynamic range is 13 dB, while it was only 

11 dB for the Mach-Zehnder modulator.  There is not an obvious answer for this, though it is 

clear from the plot that the shape of the two curves does not match as closely as it did in the 

standard Mach-Zehnder modulator plot. 

 

Figure 3 - 15: 30 tone CTB in a linearized modulator.  
The modulator choice is the DPMZM.   

This leads to the basic question: Is 9 dB worth it?  Calculations were run for 90, 120, 150, 180, 

210, 240, 270, and 300 channels with the DPMZ (not plotted).  The 300 channel calculations 

give 54 dB dynamic range for the Newman phase relationship.  The increase in the number of 

channels leads to an equivalent reduction in the dynamic range, in this range of operation.  

Therefore, linearized modulators offer great potential for increasing the bandwidth of CATV, 

or other sub-carrier systems. 
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The author speculates that a very high bandwidth system could be built using sub-octave 

modulators.  Recall from noise scaling that as the system bandwidth increases, the ability to 

reduce shot noise becomes a more significant contribution to the reduction in dynamic range.  

Many sub-carrier systems are in the 1 - 10 MHz per channel range.  At this noise bandwidth, a 

well-optimized sub-octave modulator would yield a significantly higher dynamic range.  

However the trick would be in building a sub-carrier system that is sub-octave.  For example 

consider a system of 1000 5 MHz channels in which the lowest channel starts at 5 GHz.   The 

author did not get to an in-depth analysis of the sub-octave modulators in sub-carrier systems.  

It is left as a subject for future work. 
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C h a p t e r  4  

BANDWIDTH OF LINEARIZED ELECTROOPTIC MODULATORS 

 

 

 

 

 

 

 

 

Abstract 

Many schemes have been proposed to make high dynamic range analog r-f photonic links by 

linearizing the transfer function of the link's modulator, as described in the previous chapter.  

This chapter studies the degrading effects of finite transit time and optical and electrical 

velocity dispersion on such linearization schemes.  The majority of the linearization 

techniques, but not all, experience a reduction in dynamic range with increasing frequency far 

more severe than the corresponding reduction in gain.  However, much of the lost dynamic 

range in some of these modulators may be regained by segmenting and rephasing the r-f 

transmission line. Additionally, this chapter addresses some novel properties of the gain 

function of directional coupler-based modulators. 
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Finite Transit Time Computation 

A major aspect of this thesis is the development and application of a general computational 

tool for the analysis of all electrooptic modulators.  This tool was designed to cover the basic 

building blocks of DCM and MZMs, and linearized modulators composed of multiple 

modulator blocks in various configurations.  It models arbitrary, but functionally defined, r-f 

inputs.  It is used for frequency-dependent analysis of all modulation figures of merit.  

Background 

The general problem of the frequency-dependent transfer function of a directional coupler 

modulator has no analytic solution.  The underlying mathematical complexity comes from 

wave dispersion and finite transit time.  The electrical wave, which creates a modulation 

envelope in the optical wave, travels at a different velocity then the optical wave, and the 

coupling interaction of the optical waves in the modulator may be distributed over a distance 

of many wavelengths of the modulation frequency in high frequency applications.   The Mach-

Zehnder is simpler (and an analytic representation exists) because the interaction between the 

electrical and optical wave accumulates a phase change over the modulator length, and then 

the interaction between the two optical waves occurs effectively instantly as the optical waves 

are interfered in a Y-junction.  There have been some attempts at approximating the solution 

to the directional coupler, see for example Ref. [3.10].   However, it is also possible to solve 

this problem numerically as shown in Ref. [3.11]. 

At high frequency, this problem is solved numerically without ever developing an analytic 

transfer function that is accurate at the frequency of interest.  A modulator may be represented 

as a cascade of short modulator sections where the output of the n-th modulator section is the 

input of the (n+1)-th modulator section.  The applied voltage to the (n+1)-th modulator 

section is the voltage that was applied to the previous section, but at a time that is adjusted for 

the difference in velocity between the optical and electrical waves, ∆t = ∆x/(νO- νM).  The 

overall output is found by matrix multiplication of all of the transfer function sections, each of 

which has a corrected optical input and electrical input from the previous stage.  By dividing 

the modulator into enough sections, an accurate output can always be calculated.  Each section 

is sufficiently short that the interaction is small compared to a modulation wavelength, and 
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thus the transfer function section approximates the low frequency or d-c behavior that is 

known. 

Farwell used this method to investigate the frequency response of the distortion terms in the 

DCM2P and a Quad Mach-Zehnder modulator, designed to null the third-order and fifth-

order IMD.  Following Farwell’s solution scheme, a computer program in the C language was 

written and used to investigate several linearized modulators.  Though the basic computation 

scheme is the same as Farwell’s, this analysis investigates many more modulators, both super-

octave and sub-octave, and many other physical effects than Ref. [4.1], such as larger signal 

bandwidths, electrode re-phasing, band-pass dynamic range re-optimization, and band-pass 

high frequency gain of the DCM and YFDCM.  Some of the results presented here were 

published by Cummings and Bridges in Ref. [4.2] in 1998.  Additional results developed since 

then are also presented here.  It has been found that some (but not all) linearized modulators 

display a frequency limitation that is much more severe than what would normally be 

associated with the frequency dependence of the gain of the modulator. 

Wave Velocity Mismatch 

In the program, it is assumed that there is traveling wave propagation along a microwave 

transmission line with velocity c/nm, and this wave modulates an optical signal in the optical 

waveguide that is traveling at c/no.  From the perspective of the microwave wave front, it 

appears as if the optical wave is moving relatively at a velocity of c/(nm-no).   If there were no 

difference in wave velocity, it would appear to the microwave wave front as if the optical wave 

were stationary, and then the microwave would have the entire interaction distance to build up 

the modulation.  However since the two waves travel at different velocities, over a long 

enough interaction length (relative to the modulation wavelength), the microwave modulates 

the optical wave, and then unmodulates it, and then remodulates it, etc.  In phase modulators 

and MZMs, the total accumulated phase change along this interaction length can be found 

with a simple integral, despite the wave dispersion.  But in directional couplers, where the 

optical wave is also coupling into an adjacent waveguide along this interaction length, no exact 

analytical solution exists to describe the propagation of the two optical waves and the r-f wave. 
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τ

A modulator transfer function is represented by a matrix with terms that describe the output 

the complex optical amplitude as a function of all of the input optical amplitudes of that 

waveguide section.  Complicated modulators may be represented by a matrix cascade for the 

series sections.  Additional modulator functions such as Y-branches, phase shifts, and 

combiners all have simple matrix representations. 

Mathematical description of  the modulator analysis program 

Let AIN(t) and AOUT(t) be the input and output complex vectors of the optical wave in the 

overall modulator.  For a system with K parallel waveguides, AIN(t) and AOUT(t) are Kx1 

vectors.  However, here, all of the modulators analyzed are at most two waveguide systems so 

AIN(t) and AOUT(t) are 2x1 vectors.  Let H(V,ℓ) be the overall transfer function matrix, where V 

is the normalized modulator drive voltage and ℓ is the active length of the overall modulator.  

If the optical and electrical waves travel at the same velocity, or if the operating frequency is so 

low that V is effectively constant over ℓ, then the output after a transit time of τ is given by 

( ) [ ( ), ] ( ).OUT INA t H V t l A t= − τ × −  (3.23) 

Even if there is a significant difference in velocity of the two waves as they travel the distance 

ℓ, over a short enough section of the guide ∆x, the change in the complex optical amplitudes 

may be described with the d-c transfer function.  This is the basis for the frequency-dependent 

calculation.  Let x be the coordinate along the optical waveguide.  Then for a short section 

0
lim ( , V( , ), ] ( , ).
x

A x x t t x x t t x A x t
∆ →

− ∆ −∆ )×Η[ −∆ −∆ ∆ →  (3.24)  

The optical and electrical signals are now functions of two variables, x and t.  In Eqn. (3.24) 

the elapsed time equals the incremental length divided by the velocity along the electrical 

transmission electrodes, ∆t = ∆x/ν. 

Let there be N equally spaced increments of x, and M equally spaced increments of t, and let 

x0=0 and xN=ℓ.  The modulator is divided into N sections over which each of the optical and 

electrical fields are approximately constant.  The finite product of the resulting N unitary d-c 

transfer matrices gives the overall transfer function matrix from AIN(t) to AOUT(t).  Let A(x0,t) 
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= AIN(t), and A(xN,t) = AOUT(t), and note that AOUT(t) = 0 for t < xN/ν.  The approximate 

modulator transfer function is 

1
1

0

( ) , , ( ).
N

N k
OUT i k i IN i M

k

x lA t H V x t A t
N

−
− −

−
=
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The function V(x, t) representing the two tone test is now 
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 (3.26) 

The parameter γ depends on the operating frequency f0, the difference between the effective 

optical and electrical indices ∆n, and the active length ℓ.  It is important to note that the 

calculated results depend solely on γ and not on ∆n, ℓ, and f0 independently.  Thus the results 

of different lengths or relative wave velocities at different frequencies will be the same if γ is 

the same.  The results are universal in the sense that they apply to more than the “worst case” 

velocity mismatch, which is ∆n = 1.8 for lithium niobate modulators, with simple coplanar 

strip line transmission lines.  Any change in ∆n, f0, or ℓ can be accounted for by a simple 

rescaling of the frequency axis for the gain and dynamic range plots. 

Eqn. (3.25) is general and is the basis for the frequency dependent computations in the model.  

However, when the active region of a modulator consists of only simple phase shifts, as it does 

for the Mach-Zehnder modulator, a further simplification may be made.  The transfer function 

is just a diagonal matrix of exponentials.  Instead of multiplying exponentials, their arguments 

are summed.  This is equivalent to integrating the location variable out of the voltage function.  

That is 

0
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The approximation introduced in Eqn. (3.28) is a substitution of a summation for an 

integral; the relationship between AOUT and H shown in Eqn. (3.27) is exact.  It may seem odd 

to use an approximation for a function for which a trivial analytic solution exists, that is the 

integral of Eqn. (3.26).  However, this is done to mirror the calculation technique for 

directional couplers and to support the modeling of modulator voltage functions which may 

not have an analytic integral representation.  

 

Figure 4 - 1: The convergence of the calculation of the 
gain of a simple MZM to its analytic value with an 
increasing number of modulator sections.  The error is 
the magnitude of the calculated gain (not in dB) minus 
the analytical value normalized by the d-c analytical 
value for the gain.  The curves of the log-log plot are 
for 5, 10, 20, and 40 GHz. 
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In the C program, the number of temporal increments M are restricted to powers of 2, so 

that a radix-2 FFT algorithm may be used for the spectral analysis.17  Figure 4 - 1 shows the 

convergence of the gain of a simple Mach-Zehnder Modulator compared to the analytic value 

as a function of the number of spatial sections N at 5, 10, 20, and 40 GHz.  The error is 

normalized, and thus the y-axis value “one” corresponds to a 3 dB error and “0.1” 

corresponds to a 0.4 dB error in the calculated gain.  The curves in Figure 4 - 1 are linear until 

the error is 6 - 7 orders of magnitude below the d-c value of the gain, that is adding modulator 

sections linearly reduces the error until the convergence saturates at a normalized error of 

about 10.-6  The r-f drive power for the small signal gain calculation was chosen to be -100 

dBm.  Whether in the calculation for gain or dynamic range, the numbers have components 

that differ by 6 - 7 orders of magnitude.  Since these components occupy the same mantissa, 

there is a loss in accuracy not recovered by the floating decimal point.  Double precision 

numbers must be used to attain a satisfactory accuracy. 

It is interesting to note that the calculated points form a horizontal line across the curves in the 

linear regime.  This indicates that doubling γ (by doubling the frequency for instance) exactly 

requires a doubling of the modulator sections to achieve the same error.  Efficient code allows 

the calculation hundreds of frequency points with a 128-point FFT and a comparable number 

of spatial increments in seconds on a 100 MHz x86 desk-top machine (as used when this 

research was begun). 

Non-Linearized Modulators: The Standard  MZM, DCM, and 

Y-Fed DCM 

The most common electrooptic modulator is the simple Mach-Zehnder interferometer  

modulator configuration (MZM) as described in Chapter 2.  Its analytic solution is a cosine-

squared transfer function, and the gain is a sinc function of the frequency-length-index 

product γ.  When biased at the half-wave voltage, V=0.5 Vπ, it attains its maximum linearity 

 
17 It is customary to use the FFT algorithm which is O(Nlog(N)), instead of the DFT algorithm, which is O(N2).  However, it 

should be noted that the algorithm to compute the modulator output is O(N2), so the time spent in the FFT algorithm is 
inconsequential if the number of spatial increments is similar to the number of temporal increments. 
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and dynamic range.  All even-order harmonics are identically zero, so the intermodulation 

distortion products solely determine the dynamic range, even in a super-octave system. The 

signal decays with frequency, but the intermodulation product decays identically, so that the 

dynamic range is independent of frequency.  The range of r-f drive power (in dB), over which 

there are no spurs above the noise, shifts with a change in frequency, but it does not expand or 

contract.  Given its analytical simplicity and widespread use, the MZM is used first to evaluate 

the accuracy of the numerical calculation, and then for a comparison with the results for 

linearized modulators. 

Figure 4 - 2 shows the calculations for gain and dynamic range of an analog r-f link using a 

simple MZM with traveling wave electrodes and the link parameters given in Table 3.1.  The 

length ℓ = 10mm and the maximum velocity mismatch represented by ∆n = 1.8 (non-velocity 

matched lithium niobate) are used.  The gain has the form sin(πγ)2/(πγ)2 with zeros at 

multiples of 16.2 GHz (where γ = 1 for the canonical parameters from Table 3.1), and a low 

frequency link gain of -25.5 dB (also appropriate for the link parameters).  The dynamic range 

is flat across frequency because the signal and the intermod experience the same roll-off as a 

function of frequency.  The null in the second harmonic is not disturbed by the velocity 

mismatch.   

Figure 4 - 3 shows the analogous calculations for a simple directional coupler modulator with 

the optical input fed into one arm, and a bias voltage of 0.43 VS.  The low frequency gain is -

24.8 dB, 0.7 dB better than Mach-Zehnder.18  The first null of the gain of the DCM occurs at 

26 GHz compared to 16.2 GHz for the MZM, even though both modulators have the same 

frequency-length-mismatch product γ.  The first lobe of the gain curve does not correspond to 

the sinc function of the Mach-Zehnder.  However, subsequent nulls of the DCM are periodic 

with a 16.2 GHz period, just as in the MZM, resulting from the underlying γ of the DCM.   

 
18 The comparison of the gain bandwidth product between the MZM and the DCM assumes that Vπ = VS; that is, the 

modulators have the same normalization “on-off” voltages.  While these voltages should be similar in the same 
manufacturing process, they should not be identical because the electrode geometries and crystal orientations of the two 
modulator types differ. 
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Figure 4 - 2: Gain and dynamic range of a standard Mach-
Zehnder modulator from d-c to 30 GHz using the canonical 
parameters of Table 3.1.  The dynamic range uses the left 
hand vertical axis and the gain uses the right hand vertical 
axis. 

The frequency at which the gain has fallen by 3 dB is 40% higher than that of the Mach-

Zehnder modulator with the same index-length product, γ.   The dynamic range of the DCM 

compares unfavorably to that of the MZM at higher frequencies, which comes from the 

appearance of the second harmonic.  At low frequencies it is similar to that of the MZM, and 

it is approximately flat with frequency.  However, there is a kink in the curve at 1.8 GHz (left 

vertical arrow), after which the dynamic range decays rapidly with frequency.  Unlike the 

MZM, where all even-order derivatives of the transfer function are identically zero when the 

modulator is biased at 0.5 Vπ, in the directional coupler only the second derivative is zero at its 

optimal bias, 0.43 VS.  Distortion migrates from non-zero fourth, sixth, eighth, … order 

derivatives to the frequency at which the second harmonic occurs.  It does so rapidly with 

increasing modulation frequency, and it equals the third-order intermodulation product at 1.8 
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GHz.  At higher frequencies, distortion from these non-zero even derivatives limits the 

dynamic range. The dynamic range that would result from third-order intermodulation 

distortion with the second harmonic ignored is also shown with the label “D. R. (Intermod).”  

0.43 VS is not the correct bias point to optimize this modulator in a sub-octave system.  

However, the dynamic range based on the intermod only is shown here to illustrate the effect 

of the second harmonic on the DCM.   

 

Figure 4 - 3: Gain and dynamic range of a simple directional 
coupler modulator with traveling wave electrodes biased at the 
0.43 VS.  “D.R.” is the dynamic range, which is second harmonic 
limited.  “D.R. (Intermod)” would be the D.R. if there were no 
second harmonic.   

Y-Fed Directional Coupler Modulator 

The dynamic range of a standard YFDCM is superior to that of the DCM.  This modulator 

does not have third-order suppression because the electrical length is 0.5π19 instead of 1.43π 

                                                 
19 In Ref. [3.9] Thaniyavarn proposed an electrical length of (1/√2)π.  This is the correct electrical length for a complete transfer 

for a YFDCM (necessary for a 1x2 switch).  The plot uses 0.5π for a consistent comparison to the DCM and MZM. 
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for the linearized YFDCM. Unlike the ordinary DCM it is always limited by third-order 

intermodulation.  The transfer function is anti-symmetric around the d-c operating point, just 

like the MZM.  There is a slight roll-off in the dynamic range frequency response, but 

compared to the MZM the roll-off is not appreciable until the MZM is already close to its gain 

null.  From these results, the best non-linearized modulator for super-octave applications is a 

Y-Fed DCM with electrical length 0.5π.  The transfer function of a Y-fed DCM is anti-

symmetric around the VB = 0.0 operating point for any electrical length.  The anti-symmetry 

property makes all higher even-order harmonics zero, just as in the case of the MZM biased at 

the quadrature point.  In this instance the different coupling mechanisms in the MZM and 

standard YFDCM makes less of a difference then distinction between the DCM and the 

standard YFDCM, namely, that only the second harmonic is nulled in the DCM at the super-

octave operating point, V = 0.43 VS. 

 

Figure 4 - 4: Non-linearized Y-fed DCM gain and 
dynamic range with the same modulation parameters as 
Figure 4 - 2 and Figure 4 - 3. 
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Broadband Linearized Modulators 

The frequency dependence of the dynamic range was calculated for the four linearized super-

octave, modulators: the dual parallel Mach-Zehnder (DPMZM), the directional coupler with 

two passive sections (DCM2P), the cascade Mach-Zehnder modulator (CMZM), and the Y-

fed directional coupler modulator with electrical length 1.43π (YFDCM).  Figure 4 - 5 shows 

the dynamic range as a function of frequency for 0 to 8 GHz for these four modulators with 

the canonical link parameters used in Chapter 3.  Figure 4 - 6 is the same calculation repeated 

to show more detail in the range 0 to 250 MHz where the dynamic range changes dramatically 

for three of the four.  

 

Figure 4 - 5: Dynamic range comparison of four broadband 
linearized modulators: DPMZ, DCM2P, DSMZM, and YFDCM-
1.43.  The DPMZ is independent of frequency, the DSMZM and 
YFDCM are moderately susceptible to frequency, and the 
DCM2P's response drops precipitously with frequency. 
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Figure 4 - 6: Dynamic range comparison of four broadband 
linearized modulators: DPMZM, DCM2P, CMZM, and YFDCM, 
shown here from 0 to 0.25 GHz.  

F equency Independence of  the DPMZ r

The DPMZM has two identical, single Mach-Zehnder modulators in parallel optically and 

electrically but with unequal levels of optical and r-f power driving the two modulators. Both 

modulators are biased at the voltage, 0.5 Vπ, but with opposite slopes, so the modulators are 

180º out of phase.  Most of the optical power and a small fraction of the r-f power drive one 

modulator.  The remainder of optical power and the r-f power drive the other modulator, 

creating relatively larger distortion products than in the first modulator.  The two signals are 

combined incoherently in the photodetector.  The r-f and optical splits are adjusted so that the 

distortion terms cancel exactly, but the signals do not.  Since these two paths are in parallel, the 

effects of velocity mismatch apply equally to each MZM.  Thus the distortion terms still 

precisely cancel regardless of frequency, and this is the result shown in Figure 4 - 5 and Figure 

4 - 6.  While the DPMZM is robust to velocity mismatch, in practice it is hard to make 
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broadband.  A precise r-f power split must be maintained over the desired frequency band.  

If the split varies with frequency, the dynamic range will decrease at all but the narrow 

frequency at which the r-f split is correct. 

F equency Dependence of  the CMZM 

The Cascade Mach-Zehnder modulator was introduced as a series analogy to the DPMZM, of 

which the principle advantage is that there is only one optical path to the photodetector.  

Unfortunately the series nature of the modulator breaks the symmetry that protects the 

DPMZM from frequency-dependent dynamic range degradation.  The dynamic range is 

reduced 3 dB by about 10 MHz, and 10 dB in 105 MHz, as shown in Figure 4 - 6, an expanded 

version of Figure 4 - 5.  If ∆n = 0.18 through velocity matching techniques, for example, then 

the 3 and 10 dB frequency points would increase by a factor of 10.  Since velocity mismatch 

only effects the linearization mechanism which is nulling the third-order intermodulation 

product, the CMZM remains above (or equal to) the Mach-Zehnder modulator reference line 

at all frequencies.  Similar to the DPMZM, this modulator is hard to build in that it requires an 

accurate broad-band split in the r-f drive power. 

F equency Dependence of  the YFDCM 

The linearized YFDCM exhibits the most gradual dynamic range roll-off of any of the 

broadband modulators except the DPMZM.  Although the YFDCM has an anti-symmetrical 

transfer function about its operating point, there is no symmetry between the signal and the 

distortion cancellation mechanisms.  In Figure 4 - 5, the YFDCM maintains 10 dB of 

linearization above the MZM at about 450 MHz.  Interestingly, its dynamic range falls below 

the MZM reference line at about 3.3 GHz and nulls at approximately 8 GHz.  This comes 

from the gain null in the YFDCM.  As shown in the discussion at the end of this chapter, 

standard Y-fed DCMs become band-pass modulators with electrical lengths above θ = π.  The 

main passband of the modulator begins after 8 GHz, where unfortunately the dynamic range is 

the standard 110 dB.  

The YFDCM modulator presents a real fabrication challenge.  Although it is a simple structure 

with no precision biases, the linearization comes from careful control of the electrical length of 

the modulating electrodes.  It may be significantly more difficult to control the electrical length 
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to adequate precision than it is to control a bias voltage.  While the physical length of the 

electrodes can be made precisely by photolithography, the electrical length also depends on the 

coupling constant between the optical waveguides, κ, and this in turn depends on the 

waveguide in-diffusion process.  The successful fabrication of directional couplers depends on 

highly reproducible values of κ, and this has to date been very difficult to do, as reported in 

Ref. [3.13].   

F equency Dependence of  the DCM2P 

The linearized directional coupler with two passive sections can be adjusted to provide high 

dynamic range with both intermodulation and second harmonic reduction in the absence of 

velocity mismatch.  However, it suffers severely from velocity mismatch as shown in Figure 4 - 

5 and Figure 4 - 6.  By 80 MHz it is no better than the ordinary MZM and by 8 GHz it is 18 

dB worse than the ordinary MZM. From the data, the DCM2P starts losing its dynamic range 

advantage at very low frequency, and loses 10 dB by about 10 MHz. 

Unlike the DPMZM, in the DCM2P the mismatch between the r-f drive and the modulated 

signal velocities upsets the critical distortion cancellation conditions.  Of the other three 

broadband linearized modulators in this analysis, the linearization mechanism only nulls the 

third-order intermodulation distortion.  The second harmonic distortion, and all other even-

order harmonic distortion terms, are nulled as a result of the anti-symmetric transfer function 

of the underlying simple modulator (MZM and standard YFDCM) and the linearization 

scheme does not interfere with even-order harmonic elimination.  Thus the frequency 

dependent degradation in linearization only applies to the third-order intermodulation 

cancellation. In the DCM2P, both second-order harmonic and third-order intermodulation 

distortion terms are nulled by the same mechanism, and so frequency dependent degradation 

applies to both forms of distortion.  As discussed in Chapter 3, second harmonic cancellation 

requires much stricter tolerances than intermodulation cancellation to the same power level for 

narrow signal bandwidths. Thus when the cancellation is upset in the DCM2P the effects are 

more drastic than the other linearized modulators.  This makes the DCM2P uniquely bad.  

One could argue that with the velocity matching techniques discussed in Chapter 2, it would 

be possible to achieve a 100 MHz 3 dB point (1 Hz signal bandwidth) in this modulator, but 
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that would require ∆n < 0.05.  It is doubtful that it should ever be the modulator of choice 

even for a link with such a narrow signal bandwidth. 

While the DCM2P does have the advantage that linearization is achieved with precision bias 

control instead of precision fabrication, the voltage on the bias electrodes must be maintained 

to a very high accuracy.  This requires active bias stabilization. The original experiments on this 

modulator were performed at audio frequencies by Farwell in his Ph.D. dissertation, Ref. [4.3] 

where the narrow bandwidth effects would not be noticed.  Subsequently, measurements at 1 

and 2 GHz were reported by Schaffner in Ref. [4.4]; however, these were single-frequency 

measurements, with the bias values hand-optimized for the operating frequency.  No 

bandwidth measurements around 1 and 2 GHz were made in that study.   

Sub-octave Linearized Modulators 

In sub-octave applications, the second harmonic may be ignored; the third-order IMD alone 

determines the dynamic range.  Two sub-octave modulators are analyzed in this section: (1) the 

sub-octave dual series Mach-Zehnder modulator (SoDSMZM), as described in Refs. [3.15] and 

[3.16], which has two MZMs in series optically, and the same bias level on each Mach-Zehnder 

modulator, and a single r-f electrode covering both modulators;20 and (2) a sub-octave 

directional coupler modulator (SoDCM), i.e., a directional coupler biased at 0.79 VS instead of 

0.43 VS as described in Ref. [3.8].  Unlike the MZM, in the simple directional coupler 

modulator, the third-order intermodulation distortion and the signal null at different voltages, 

0.79 VS for the IMD and 1.0 VS for the signal.  Thus no extra electrode sections (as in the 

DCM2P) are needed to make a sub-octave directional coupler modulator. 

Figure 4 - 7 shows the dynamic range as a function of frequency for the SoDSMZM and 

SoDCM compared to the standard MZM reference (horizontal dotted line).  For both 

modulators, the dynamic range at zero frequency is superior to that of the four super-octave 

modulators in this analysis.  As discussed in Chapter 3, there is no fundamental difference in 

 
20 There are other cascaded Mach-Zehnders proposed in the literature.  One can reduce the noise figure, increasing the 

dynamic range, with a linearization point that requires different bias levels for each Mach-Zehnder modulator; also described 
in Ref. [3.15].  One can also split the r-f to reduce the loss and accumulated phase error on the second modulator. 
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the amount of non-linear distortion among modulators that null the third-order distortion 

terms.  However, the average photocurrent and hence the shot-noise is very small in the 

SoDSMZM and in one arm of the SoDCM.  And the resulting low shot noise accounts for the 

improved dynamic range.  This is dramatically illustrated by the inferior dynamic range of the 

SoDCM if the other output arm is used, in which case the noise level is 12.31 dB higher.  Even 

though there is still a frequency roll-off, it should be stressed that the SoDCM is a good 

candidate sub-octave modulator given its simplicity.  It is just a standard directional coupler 

modulator evaluated at a different bias voltage.  It does not require two modulators, there is no 

r-f or optical split, and the electrical length θ is not particularly critical around 0.5π; any errors 

in θ can be compensated by adjusting VB. 

 

Figure 4 - 7: Dynamic range comparison of two sub-octave 
linearized modulators: SoDSMZM and SoDCM with a 1 Hz noise 
bandwidth. 
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The SoDSMZM dynamic range is a couple of dB lower than that of the SoDCM at zero 

frequency, and the dynamic range rolls off more rapidly.  The initial difference comes from the 

higher average photocurrent level in the SoDSMZM.  The roll-off is more rapid due to the 

gain null at 8 GHz of the SoDSMZM.21  Notice that the roll-off is less rapid than in the case of 

the most analogous super-octave linearized modulator, the CMZM.  In the CMZM there is an 

r-f split between the two modulators.  It is inferred from these plots that the distortion 

cancellation is more rapidly disturbed in the CMZM from the addition of the error in the r-f 

split caused by the velocity mismatch between the r-f and optical waves. 

The dynamic ranges of these sub-octave modulators suffer from velocity mismatch, but 

generally less severely than super-octave modulators, with the exception of the DPMZM.  The 

sub-octave modulators are much simpler than super-octave modulators.  Sub-octave 

modulators should be considered for applications in which system design permits their use. 

The Effects of Noise Bandwidth 

In Chapter 3 the effects of noise bandwidth were analyzed in two respects: the total dynamic 

range of a link and the tolerance needed in the modulator parameters to be within 1 dB, 3 dB, 

and 10 dB of that optimal dynamic range.  Scaling laws were shown for each of the modulators 

depending on the underlying non-linear distortion mechanism, e.g. second-harmonic or third-

order intermodulation distortion.  The velocity mismatch-frequency-length product parameter 

γ is analogous to any of the other modulator parameters that govern linearization; for instance, 

if the band edges of operation ±∆γ are considered to be the “tolerance” of γ around the design 

frequency.22    Every modulator has a frequency “tolerance” that is linear (in log-log space) 

over many orders of magnitude similar to the other parameter tolerance plots shown in 

Chapter 3.  At higher noise bandwidths, the dynamic range is reduced by the ordinary scaling 

laws, but the tolerance requirement is similarly reduced.  Since the two-tone analysis in 

 
21 The SoDSMZM has a gain null at 8.1 GHz instead of 16.2 GHz because it was assumed that the modulator is 2x as long, in 

order to keep the same Vπ as the DPMZ and MZM. 

22 It is only a good analogy if allowances are made that different modulators have different inherent sensitivities to frequency. 
The DPMZM is theoretically independent of frequency if one ignores the frequency-dependence of the required r-f power 
splitter, and among the frequency-dependent modulators there are varying degrees of sensitivity. 
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preceding plots was done for 1 Hz signal bandwidths, it suggests greater frequency 

sensitivity than occurs in links with realistic noise bandwidths.  

Figure 4 - 8 through Figure 4 - 12 show the dynamic range of photonic links using all of the 

modulators covered in this study at three signal bandwidths, 1 kHz, 1 MHz, and 1 GHz. The 

linearization parameters have been readjusted to maximize the dynamic range at zero 

frequency for each noise bandwidth case.  Together with the previous figures showing a 1 Hz 

bandwidth, nine orders of magnitude in intervals of three orders of magnitude are shown.  For 

traveling wave modulators with the canonical link parameters of Table 3-1, most applications 

would be limited to within a few GHz.23  Together the plots show the evolution from 1 Hz to 

a 1 GHz, but generally a narrower range occurs in typical systems. For this reason and for the 

sake of brevity only the plots for a 1 kHz and 1 MHz noise bandwidth are described in detail. 

A photonic link has both an absolute bandwidth range, and a noise bandwidth that may be 

different parameters.  For example, in antenna remoting, the link must pass some large range 

of frequencies from the antenna to a remote receiver, but the electronic receiver searching for 

signals over this large range need only have a noise bandwidth large enough to accommodate 

the desired signal, assuming that signal is filtered in front of the modulator.  This distinction is 

important because the modulator must have good gain over the entire bandwidth range, but 

the system dynamic range and the sensitivity to linearization parameters depends on the noise 

that gets through the signal filters after the modulator.  In another example, consider a future 

CATV system with 200 channels.  Channels are about 4.5 MHz bandwidth on sub-carriers 

separated by 6 MHz, starting from baseband, 200 channels requires a frequency range of 1.2 

GHz.  If the desired channel is demultiplexed after the modulator, then the noise bandwidth 

that effects the dynamic range sensitivity is 4.5 MHz bandwidth after filtering.  A modulator 

for such a link would require flat gain and dynamic range out to 1.2 GHz (super-octave) but 

the dynamic range and sensitivity to frequency, as well as the modulation parameters discussed 

in Chapter 3, would be calculated with the 4.5 MHz noise bandwidth.   

 
23 Again, recall that these curves are all for ∆n = 1.8.  Changing ℓ or ∆n will require rescaling the abscissa.  Good velocity 

matching, for example ∆n=0.18 instead of ∆n = 1.8, with a loss of a factor of two in sensitivity requiring a new length of 2ℓ, 
will multiply the abscissa values by 5. 



 88 

 

Figure 4 - 8: Dynamic range comparison with 1 kHz signal 
bandwidth of four super-octave modulator configuration: 
DPMZM, CMZM, DCM2P, and YFDCM.  The modulator 
parameters have been adjusted to give the maximum dynamic 
range for a 1 kHz noise bandwidth. 

Figure 4 - 10 shows a dynamic range sweep from 0 to 8 GHz in which the signal bandwidth is 

1 MHz.  The results are similar to the 1 Hz case but the roll-off in dynamic range with 

frequency is less severe.  The DCM2P is still the least robust to frequency variation.  However, 

it becomes less sensitive to velocity mismatch more rapidly with noise bandwidth than any 

other modulator.  In the 1 MHz signal bandwidth calculation, the DCM2P loses 3 dB at about 

150 MHz and 10 dB at 1 GHz; by comparison, the 10 dB point at 1 Hz was 10 MHz.  This 

comparison isn’t completely fair, because at 1 MHz there is less total linearization advantage; 

the DCM2P is only about 10 dB above the MZM at d-c, versus 20 dB in the 1 Hz case.  Recall 

in Table 3-3, the slope of the log-tolerance-log-bandwidth scaling line equals about 5 for the 

DCM2P, the highest of any modulator linearization parameter (of any modulator covered in 

this study).  It is this high because the linearization mechanism linearizes the second harmonic 
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as well as the third-order distortion, and the effect is that an increase in noise bandwidth 

quickly increases the tolerance.   We have drawn an analogy between the tolerances of the 

 

Figure 4 - 9: Dynamic range comparison with 1 kHz signal 
bandwidth of two sub-octave modulators: SoDCM and 
SoDSMZM; and the two non-linearized directional coupler 
modulator variants: the DCM and the standard YFDCM. 

linearization parameters and the range of frequency operation, ∆γ.  The tolerance scaling in 

this analogy holds, and thus while the DCM2P seems hopeless at 1 Hz, it might have limited 

applications in links with 1 MHz or greater signal bandwidths.  The YFDCM and the CMZM 

both show less sensitivity to frequency, though the improvement is not as dramatic as in the 

DCM2P because in the YFDCM and the CMZM the linearization scheme only nulls the third-

order IMD and not the second harmonic distortion.  While these modulators are improved, 

their dynamic range bandwidth is still significantly smaller than their bandwidth limitation 

from signal gain.  Note also, in the case of the YFDCM, the relatively low frequency at which 

the gain nulls appears to contribute to the rapid roll-off in dynamic range.   
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Figure 4 - 10: Dynamic range comparison with 1 MHz signal 
bandwidth of four super-octave modulator configuration: 
DPMZM, CMZM, DCM2P, and YFDCM. 

Figure 4 - 11 shows a dynamic range sweep from 0 to 8 GHz in which the signal bandwidth is 

1 MHz, the same sweep as in Figure 4 - 10; however, now the standard DCM and sub-octave 

modulators are shown.  The break in the dynamic range of the standard DCM, where the 

second harmonic overtakes the third-order intermodulation distortion, occurs at 4.2 GHz 

instead of 1.8 GHz and the dynamic range has not reached the natural second harmonic level 

(the slope = 1/2 line from chapter 3) by 8 GHz.  The sub-octave modulators, SoDCM and 

SoDSMZM, exhibit flatter frequency performance.  The SoDCM only loses 10 dB over 8 

GHz at which time it still has a 6 dB advantage over the MZM reference.  Since this is a sub-

octave modulator, it would be optimized for its target band-pass frequency range.  Thus in a 1 

GHz system centered at say 2 GHz it would be fairly independent of frequency.  The figure 

highlights the performance of the SoDCM.  At d-c its dynamic range of 88.8 dB is about 19 

dB better than the MZM.  This is nearly the improvement that the super-octave modulators 

get at d-c for 1 Hz signal bandwidth! 
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Figure 4 - 11: Dynamic range comparison with 1 MHz signal 
bandwidth of two sub-octave modulators: SoDCM and DSMZM; 
and the standard DCM. 

For completeness, Figure 4 - 12 shows the dynamic ranges of the modulators in Figure 4 - 10 

and Figure 4 - 11, but this time with a 1 GHz bandwidth.  All of the effects illustrated in this 

figure are predicted from the descriptions of Figure 4 - 10 and Figure 4 - 11. 

These figures help illustrate a point made in Chapter 3 on the benefit of sub-octave 

modulation.  It is clear that larger signal bandwidths reduce the link dynamic range by the 

scaling law of the modulator, hence the MZM reference line is lower in each plot of higher 

noise bandwidths.  It is also the case, that since linearized modulators scale with a (4/5) slope, 

and standard modulators scale with a (2/3) slope, that the dynamic range advantage one gains 

by using a linearized modulator in place of a standard modulator decreases with larger noise 

bandwidths.  The difference between the levels of the MZM reference line and that of the 
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DPMZM illustrate this.  It is 20 dB at 1 Hz but only 6 dB at 1 GHz.  However, the 

increased dynamic range that comes from the reduced photocurrent level of sub-octave 

modulators is independent of noise bandwidth. For the SoDCM, it is 6 dB at 1 Hz yielding a 

total 26 dB above the MZM reference, and 6 dB at 1 GHz yielding a total of 12 dB above the 

MZM reference.  At high enough noise bandwidths this becomes a major fraction of the total 

linearization, and more than half at 1 GHz.  The larger the noise bandwidth, the more it pays 

to use a sub-octave modulator where possible. 

 

Figure 4 - 12: Dynamic range comparison with 1 GHz signal 
bandwidth of four super-octave modulator configuration: 
DPMZM, CMZM, DCM2P, and YFDCM; and the sub-octave 
modulators: SoDSMZM and SoDCM; and the standard DCM. 

Re-optimization of  Sub-octave Modulators for Band-Pass Applications 

Figure 4 - 13 shows that the bias voltage of the SoDCM controls the frequency of the dynamic 

range optimum.  Small adjustments in the bias around the d-c value of 0.79 VS allow the full 

recovery of the low-frequency dynamic range optimum at any center frequency.  
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Unfortunately, this results in a relatively narrow operating bandwidth around the re-

optimization frequency.  And the bandwidth decreases as the center frequency is increased.  

But, recall that the actual dynamic range bandwidth also depends on the noise bandwidth as 

discussed in Chapter 3.  For Figure 4 - 13 and Figure 4 - 14, the noise bandwidth is 1 Hz.  For 

practical values of noise bandwidth, the peaks shown will be lower in value, but broader in 

frequency.   

 

Figure 4 - 13: Re-optimization of the SoDCM by slightly adjusting 
the bias voltage around 0.79 VS to fully recover the low frequency 
dynamic range optimum, but only over a narrow bandwidth. 

Figure 4 - 14 shows the re-optimization of the SoDSMZM at the same frequencies as was 

shown in Figure 4 - 13 for the SoDCM.  It is also possible to re-optimize the SoDSMZM at 

frequencies above zero.  However, notice that in moving from zero-frequency to 2 GHz 

operation in the SoDSMZM the optimal bias changes by 2.2% while in the case of the 

SoDCM it only changed by 0.36%.  The percentage change in optimal bias voltage is even 
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more pronounced moving from 2 GHz to 4 GHz, 10.5% versus 0.93%.  The 6 GHz curve 

looks like it was omitted, however it just does not optimize well.  And the bias voltage that the 

optimization routine found is about a 30% change from the 4 GHz curve and is a smaller 

value even though the progression had been larger bias values from one curve to the next.  

The reason is that the transfer function of the SoDSMZM goes through a null at 8 GHz.  

While the MZM nulls at 16 GHz, the SoDSMZM was modeled in the canonical link as a 

modulator of twice the length (20 mm) since it has two r-f modulating sections in series.   

     

Figure 4 - 14: Re-optimization of the SoDSMZM.  Adjusting the 
bias voltage fully recovers the low frequency dynamic range 
optimum, but only over a narrow bandwidth. 

Figure 4 - 15 shows the curves of Figure 4 - 13 recalculated with a 1 MHz signal bandwidth.  

The bandwidth of the linearization is greater than in the 1 Hz case, but the re-optimization is 

still narrow band.  The breaks on the left side of the curves of 2, 4, and 6 GHz come from a 

discontinuity in the equation for dynamic range.  This effect arises from the “kissing 

condition” and was described in Chapter 3. 
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There are two interesting points from both of these modulators, which also apply to the 

super-octave modulators.  First, as any modulator approaches its null, the required change in 

bias voltage to re-optimize increases.  This results in the re-optimization having a narrower 

bandwidth with each band-pass region of increasing frequency.  Second, the critical control of 

bias voltage will doubtless require the use of pilot tones to minimize the second harmonic or 

IMD at low signal bandwidths.  However, the results of Figure 4 - 13 through Figure 4 - 15 

indicate that these pilot tones will have to be within the band of interest, not at low 

frequencies, and such a feedback circuit is more challenging to engineer.  

 

Figure 4 - 15: the dynamic range of the SoDCM re-optimized at 2, 
4, and 6 GHz, this time assuming a 1-MHz signal bandwidth. 

Bandwidth Recovery with Periodic Rephasing 

The most direct way of increasing the bandwidth of linearized modulation is to arrange for 

velocity matching by one or another transmission fabrication technique described in Chapter 
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2.  However, there are limits to the accuracy with which the match can be accomplished, 

and they all sacrifice modulator sensitivity.  An alternative method of obtaining increased 

bandwidth is to periodically correct the phase delay in the modulator transmission line 

electrodes.  This is done by breaking the transmission line into a number of segments and 

rephasing (more accurately, “re-timing”) the signal at the beginning of each segment. This is 

velocity-matching “on the average.” The technique has been used successfully in a number of 

forms as described in Chapter 2; see also Ref. [2.3].  The numerical solver written for this study 

is capable of calculating such periodically re-phased modulators.  The modulator is 

incrementally velocity mismatched for a few matrices and then re-phased for the next set of 

matrices, and so on.  This calculation assumes that the re-phasing is done as a correction in 

time delay independent of frequency.  Some schemes, for example the phase reversal 

technique of Ref. [2.7], are quite narrow band because they are correctly re-phased at only one 

frequency.  Others, such as the corporate feed and the antenna segmenting technique, also 

summarized in Ref. [2.6], which use geometric “true time delays” are inherently broadband. 

 

Figure 4 - 16: Dynamic range versus frequency for the simple 
DCM with multiple electrode segments, at 1 Hz and 1 MHz.  The 
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breaks between occur where the second-harmonic distortion 
becomes more significant than the IMD. 

Figure 4 - 16 shows the results of this calculation for the standard DCM link with the 

parameters previously used, but with the modulator's transmission line having one, two, three, 

and four segments.  The curve representing a single segment repeats the result in Figure 4 - 3 

(no rephasing) for reference.  In the 1 Hz case, with only two segments (one rephasing), the 

bandwidth over which the dynamic range is flat improves vastly, and using four segments gives 

an essentially flat dynamic range.  Note that the null that appears at 26 GHz for the one-

segment modulator (not shown in the figure), occurs at 104 GHz, a frequency four times 

higher, in the four-segment case. The 1 MHz case is also plotted, and all other plots of re-

phased modulator electrodes will be done at a noise bandwidth of 1 MHz.24  In the 1 MHz 

case, a single rephrasing gives essentially flat dynamic range. Of course, it would still be 

preferable to use a standard MZM for non-linearized modulators in broad-band links since it 

has no second harmonic and thus does not require re-phasing to eliminate it.  That is, unless 

rephrasing is also desired to increase the gain bandwidth of the MZM and the DCM. 

The results for the DCM2P super-octave modulator remain discouraging, even with re-

phasing. Figure 4 - 17 shows the dynamic range for one to eight re-phased electrode segments.  

This plot spans an 8 GHz range, which is enough to capture the interesting effects of the 

bandwidth of linearized modulation and its recovery.  Recall that previous plots of the 

DCM2P, done with a 1 Hz noise bandwidth, and no recovery mechanism, showed the loss of 

linearization in the MHz range instead of the GHz range.  This plot also assumes ideal 

directional coupler modulator sections, perfect bias control, and no electrode loss.  Given the 

modulator’s sensitivity to its two passive bias voltages, it is unlikely that this modulator is 

suitable for microwave applications of relatively narrow noise bandwidth.  As described above, 

the sensitivity to velocity mismatch and linearization parameters become less severe with 

increasing signal bandwidth faster than any other modulator.   

 
24 In general, re-phasing adds considerable device complexity (an exception can be made in some cases for reflection 

modulators, see Chapter 4).  And so, during the evaluation of these schemes, the realistic 1-MHz signal bandwidth is used to 
avoid the conclusion that an excessive amount of rephrasing is necessary. 
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There is an interesting and unexplained effect in the DCM2P.   The dynamic range recovery 

is not monotonic in the number of re-phasing sections.  In particular, three is slightly better 

than four and seven is significantly better than eight.  The author does not have a good 

physical argument for this effect.   The modulation is applied to a single section in the 

DCM2P, which makes these results counterintuitive.  The DCM2P is already a complicated 

structure without re-phasing.  This mystery is left as an open item for future work. 

 

Figure 4 - 17: dynamic range versus frequency for the DCM2P 
with one to eight electrode segments, calculated with a 1 MHz 
noise bandwidth.  While rephasing yields improvements, the 
results remain inferior to other modulators. 

Figure 4 - 18 shows the effects of rephasing on the YFDCM.  The curve for three and four 

segments show a sustained improvement in the frequency dependence of the dynamic range.  

The potential for further improvements by re-phasing are discussed further in at the end of 

this chapter in the section on band-pass operation of DCMs. 
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Figure 4 - 18: Dynamic Range of Re-phased YFDCM (θ=1.43π) 
for one to four electrode segments, computed with a 1 MHz noise 
bandwidth. 

An interesting result of the application of rephasing is seen in both of the serial MZM 

modulators: the CMZM and the SoDSMZM.  The frequency-dependence of the dynamic 

range is shown in Figure 4 - 19 and Figure 4 - 20.  In both figures, the curve labeled “1 

segment,” refers to one set of traveling wave electrodes spanning the two Mach-Zehnder 

modulators (with an unrealistic zero distance assumed between the two modulators).  This is 

simply a repeat of the curves in Figure 4 - 10 and Figure 4 - 11.  The interesting point is that 

with only one re-phasing (2 segments) the modulators exhibit frequency independent 

performance.  Breaking the electrodes into three segments yields an improvement over one 

segment, but not as good as two or any even number of segments, all of which yield frequency 

independent dynamic range.  In this case, the improvement is not monotonic with re-phasing, 

the optimum is for the r-f to be re-phased once at the second modulator.   
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Figure 4 - 19: Dynamic range of a re-phased CMZM with one, 
two, and three electrode segments calculated at 1 MHz signal 
bandwidth.  The CMZM with two segments (or any even number) 
has a dynamic range that is independent of frequency. 

This phenomenon results from the symmetry of the modulator.  The degree of modulation of 

a Mach-Zehnder with finite transit time is described exactly by Eqn. (3.27).  This describes 

both a lumped electrode with finite transit time and a traveling wave modulator with velocity 

mismatch between the r-f and optical modulation wave.  The integral gives the accumulated 

phase shift over the length of the modulator.  The differential phase shift in each arm of the 

Mach-Zehnder is then converted to modulation by a lumped interference mechanism, the 

second Y-branch.  If two MZMs are in series, each modulator is the same length, and the r-f 

wave and optical modulation envelope are re-phased at the second modulator, then the 

accumulated phase shift is the same on each modulator.  Thus the only effect frequency can 

have is on the sensitivity of the overall modulator, it cannot effect the linearization of the 

modulator.  The effects of frequency simplify to a measure of the phase error at the second 

modulator.  Thus in the case of three segments, the phase error is non-zero at the second 
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modulator because the modulator is re-phased at 1/3 and 2/3 of its total effective length.  

There is less phase error than in the case of one segment but more than the case of two 

segments.  While the performance does not monotonically improve with the number of 

segments, it does monotonically improve with a reduction in phase error at the second 

modulator. An additional point: the CMZM is more sensitive than the SoDSMZM to a given 

amount of phase error as demonstrated by the more rapid roll-off in the one and three 

segment cases.  As stated above this is a result of the added complexity in the r-f split of the 

CMZM over the SoDSMZM. 

 

Figure 4 - 20: Dynamic range of the SoDSMZM with one, 
two, and three electrode segments, calculated with a 1 MHz 
signal bandwidth.  Note that two segments (or any even 
number) give frequency independent dynamic range. 

A similar dramatic improvement is obtained in the SoDCM, biased at the 0.79 VS point, as 

shown in Figure 4 - 21.  The curve from Figure 4 - 11 is shown for reference along with curves 

for two, three, and four electrode segments.  The curve for one segment initially shows a deep 
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roll-off in dynamic range and then a more gradual roll-off, with only 5 dB of dynamic 

range improvement over the standard MZM remaining at 8 GHz. With just two segments, the 

roll-off is made gradual over the whole range.  With four segments, there is 14 dB of dynamic 

range improvement remaining at 8 GHz.  This figure assumes a 1 MHz noise bandwidth.  As a 

comparison to super-octave modulators, even though the two electrode-segment CMZM 

(shown in Figure 4 - 19) has no roll-off, the dynamic range of the two electrode-segment 

SoDCM is better (shown in Figure 4 - 21) up to 6.5 GHz. 

 

Figure 4 - 21: Dynamic range versus frequency for the SDCM with 
1, 2, 3, and 4 electrode segments, calculated with a 1 MHz signal 
bandwidth.  Note the initial drop-off of curves 2 - 4 dB is a result 
of the “kissing condition” described in Chapter 3. 

Segmenting the r-f electrode has a low-frequency gain penalty. While flattening the gain vs. 

bandwidth curve, it also lowers the absolute gain at low frequencies. The reduction occurs 

from splitting the r-f power into the re-phased paths. When the r-f drive power is split N ways 

to feed the N electrodes, the voltage at the input to each electrode section is reduced by √N, as 
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described by Sheehy in Ref. [1.3].  Figure 4 - 22 shows the calculated gain of a simple 

MZM with one, two, three, and four electrode segments.  Above some cross-over frequency 

each curve has a better absolute gain then the curve with one fewer electrode segments. 

 

Figure 4 - 22: The gain of a standard MZM with multiple electrode 
segments. 

Bandpass Features of Directional Coupler-Based Modulators 

The frequency-dependent gain of modulators using directional couplers such as the standard 

DCM and the standard YFDCM is a mathematically rich function, but not analytically 

solvable, unlike the gain function of a MZM.  An approximation for a small velocity mismatch 

exists in the literature, Ref. [3.10], but it is not accurate in our regime of interest and in fact 

does not even satisfy conservation of energy.  Using the numerical calculation method 

developed for this study, we have discovered interesting properties of the gain function of a 

simple directional coupler and a Y-fed directional coupler modulator.  This section treats some 
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of these interesting properties, particularly the possibility of band-pass operation of DCM-

based modulators at very high frequencies with reasonable bandwidths, even though velocity 

mismatched. 

The gain functions of a MZM and a directional coupler-based modulator have the functional 

dependencies 
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( , , ).DCM BG F V θ= γ  (3.30) 

The function A(VB) in the MZM gain expression contains all of the link parameters of Table  

3-1 that establish the gain at zero frequency.  The bias voltage dependence is in A, indicating 

that while an off-biased MZM has a non-optimal gain, the voltage does not effect the 

frequency profile of the gain in any way.  In a directional coupler the bias voltage and the 

electrical length both affect the frequency profile of the gain function, and this dependency 

must be explored numerically, which also means that an explicit modulator must be chosen.  

The standard DCM and the standard Y-fed DCM were both studied.  Although the Y-fed 

modulator has a more complicated zero frequency transfer function, it actually has a simpler 

frequency profile and a simpler functional form since VB=0 is the desired bias condition.  

Thus, the Y-fed DCM is addressed first. 

The Gain of  a Y Fed Directional Coupler -

Figure 4 - 23 shows the gain of a Y-fed directional coupler modulators with electrical lengths 

0.5π, 1.5π, 3.5π, and 5.5π.  The standard value is (1/√2)*π for the Y-fed DCM proposed in 

Ref. [3.9] and that of the linearized modulator is 1.43π, proposed in Ref. [3.11] are sufficiently 

similar to the curves of electrical length 0.5π and 1.5π.  This figure shows that the Y-fed DCM 

is essentially a band-pass modulator for the lengths 1.5π and longer.  Given acceptable 

conductor losses, r-f reflections, and radiation, we could operate this modulator at any higher 

frequency by simply increasing the electrical length with no need to velocity match the 

modulator.  Moreover, the passbands for length 1.5π, 3.5π, etc. are nearly twice as wide as a 
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low-pass modulator (0.5π).  The modulator for θ=0.5π has a few extra dB in gain, but after 

θ=π there is no further reduction in the optimum passband gain, for larger electrical lengths, 

which occur at higher frequencies.  This represents the transition from a low θ modulator to a 

high θ modulator. 

 

Figure 4 - 23: The gain of a Y-fed DCM for VB=0 and the 
electrical length, θ=(2n+1) π/2 for n=0, 1, 2, and 3. 

Notice that the zero frequency values for the different sweeps are decaying with θ even though 

for θ = (n+1)π/2 (n integer) the DC value is a local optimum.  This is counterintuitive since 

there is an underlying sinusoid that has the form sin(ℓ(∆β2 + κ2)1/2) in all directional couplers 

(recall that κ is the inherent coupling coefficient between the two coupled waves of a DCM 

and ∆β is the electrooptically induced term for the differential coupling).  If we increase θ, ℓ, or 

κ why should that reduce the sensitivity?  This effect is further illustrated in Figure 4 - 24.  

Notice that the transfer functions become less sensitive at their bias voltage V=0 for increasing 

electrical lengths.  Further note that every curve with θ > π/2, the voltage at which the peak 
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transfer occurs is greater, and that the greater the electrical length, the smaller the zero 

voltage sensitivity, the larger the voltage at which it regains its peak sensitivity. 

 

Figure 4 - 24: The transfer function of Y-fed DCMs 
with electrical length θ = (2n+1) π/2, for n=0, 1, 2, 3, 
and 4.  This figure illustrates the reduction of sensitivity 
at V=0 for higher electrical lengths, but notice that for 
any higher electrical length, there is still a voltage at 
which the sensitivity is only about 3 dB down from the 
that of the modulator with θ = π/2. 

There is a very simple first-order approximation for (γ-θ) small of the gain function for Y-Fed 

directional coupler modulators.  This expression works best for the second and higher lobes of 

Figure 4 - 23, θ≥3π/2.  The approximation is 
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A is a scalar value representing the zero-frequency link gain.  This expression is accurate 

around the passband; it gives the location and width with high accuracy and almost gives the 

precise shape.  It is sufficiently accurate that the difference from the numerical method results 

would not likely be verifiable in an experimental setting.  It is inaccurate in the side lobes, 

especially many side lobes away from the passband.   It shows the gain of the Y-fed DCM has 

approximately the same frequency profile as the MZM, a sinc-squared function, provided that 

γ in the MZM gain expression is replaced by (γ-θ).  The electrical length θ is a controlled 

fabrication parameter over a wide range,25 making the DCM a promising candidate for a high-

frequency band-pass modulator. 

It is desirable to have an expression of the Y-fed DCM gain that also correctly models the 

behavior for θ ≤ π. The following expression contains a multiplicative correction for the side 

lobes and the first curve with θ = π/2  
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 (3.32) 

This expression is very accurate.  It predicts all of the curves in Figure 4 - 23.  It should be 

used for building band-pass modulators based on the Y-fed DCM.   Expressions (3.31) and 

(3.32) were “discovered” by the author, but not derived.  Their accuracy was empirically 

ascertained. 

Figure 4 - 25 shows a Y-fed directional coupler with electrical lengths between 0.5π and 1.5π.  

The modulator is biased at its point of anti-symmetry VB=0.  These curves show many 

interesting effects of directional couplers and the effects of velocity mismatch.  First, notice 

that the peak gain at f = 0 is actually achieved for θ = 0.4π, not θ = 0.5π.  Additionally, for 

lengths that are not integral multiples of 0.5π, the gain does not null completely although it can 

fall by at least 25 dB.  This occurs because there are really two optical paths in a directional 

                                                 
25 It is not easy to fabricate a specific electrical length that is repeatable.  However, it is controllable over a wide range.  That is 

by reducing the spacing of the two waveguides in a directional coupler while keeping the length the same, the electrical 
length goes up very fast (exponentially), and one could make a modulator from a wide range of electrical lengths.  However, 
it is hard to keep the electrical length controlled to within one part in ten. 
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coupler and if their null positions do not exactly coincide there will be residual modulation. 

Second, notice the position of the nulls.  A standard MZM with the same length and velocity 

mismatch nulls at 16.2 GHz.  The standard Y-fed DCM nulls at 25 GHz, an improvement of 

almost 40% over the Mach-Zehnder at the 3 dB point.  This is a one-time effect; the nulls after 

the first are separated by about 16 GHz, resulting from the underlying sinc(πγ) variation of the 

modulator.  The curve of θ = 1.5π is the same curve in both Figure 4 - 23 and Figure 4 - 25, 

showing the passband property in more detail in the second plot. 

   

Figure 4 - 25: The gain of a Y-fed DCM with bias voltage 
VB=0 and electrical length θ=0.4π, 0.5π, 0.6π, 0.7π, 1.0π, 1.2π, 
and 1.5π   

The electrical length may be chosen to make a flatter modulator response over a wide band 

even in the presence of loss.  The 0.6π curve is flat, losing only 1 dB out to 10 GHz, unlike the 

response for an electrical length of 0.5π or the response for a MZM.  An electrical length of 

0.6π - 1.0π demonstrates a variable amount of peaking.  The zero frequency value may be 3 - 

10 dB below the optimum, but some of this is regained such that at around 10 - 15 GHz the 
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response is only a couple of dB below the optimum.  Given this novel property and a 

known value for frequency-dependent conductor losses, the electrical length may be chosen to 

compensate for the electrode losses, providing a flatter response over a wide band.  Equalizing 

the response of a traditional link can require complex and expensive microwave networks.  

There is a genuine opportunity with this modulator to inexpensively and compactly make a 

broadband link with a flat frequency response. 

The Gain of  a S andard D rectional Coupler Modulator 

The calculations shown in Figure 4 - 26 and Figure 4 - 27 are a repeat of the calculations 

shown in Figure 4 - 23 and Figure 4 - 25, but for a standard directional coupler modulator (all 

the optical input into one arm of the directional coupler) in place of a Y-fed DCM.  This 

calculation is a little less straightforward than that for the Y-fed DCM in that the bias voltage is 

not zero, and the appropriate bias voltage depends on the electrical length.  The bias voltage 

used for each modulator length was chosen to maximize the zero frequency gain, giving a 

consistent operating point to compare the various electrical lengths.  However, the result is a 

slightly different operating point than one would ordinarily chose to null the second harmonic, 

which would also be different for each electrical length. 

Figure 4 - 26 shows similar behavior to the Y-fed DCM, but contains a few key differences 

that make it a less suitable candidate for a band-pass modulator.26 First, notice that although 

the zero frequency gain response decreases with increasing modulator length, it does not fall as 

rapidly as that of the Y-fed DCM.  In the Y-fed DCM it was shown the transfer function goes 

to zero gain at infinite electrical length about zero bias voltage, however the DCM has no such 

property.  There is a secondary lobe at higher frequencies as also occurred in the case of the y-

fed DCM, but now the secondary lobe in gain reaches a lower maximum than the 

corresponding value at zero frequency, unlike the YFDCM.  This lobe shifts in frequency with 

the form and location, sin2(π(γ-θ))/ π2(γ-θ)2, and becomes lower in peak gain the longer the 

 
26 “Band-pass” here does not mean sub-octave, but means operation in the higher frequency lobes of the gain transmission 

function of the velocity mismatched case; in this case the optimum gain response is shifted in frequency from zero to some 
higher frequency by increasing the electrical length.  The DCM is a great candidate for sub-octave modulators.    
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modulator.  Thus, the “long” standard DCM seems to be a less attractive bandpass 

modulator than the Y-fed DCM. 

 

Figure 4 - 26: The gain of DCM with the electrical length, 
θ=(2n+1) π/2 for n=0, 1, 2, 3, and 4, and bias voltage chosen 
to optimize the gain at f=0. Choosing a bias to optimize the 
gain at the maximum passband frequency makes about 0.5 dB 
improvement for all curves. 

Figure 4 - 27 shows the DCM with normalized electrical lengths between 0.5π and 1.5π.  This 

behavior is similar to that of Figure 4 - 25 except that the gain penalty is more severe.  For a 

flat or peaking response, there is little reason to use this modulator when the Y-fed version 

preserves near optimal gain.  An electrical length of 1.3π is quite interesting in that it does not 

null until 40 GHz, but at a penalty of being down 16 dB from the optimum gain.  This is over 

twice the frequency of the Mach-Zehnder null, and has not yet become a band-pass 

modulator. 
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Figure 4 - 27: Gain of the DCM with curves 
representing multiple electrical lengths between 0.5π 
and 1.5π. 
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C h a p t e r  5  

MODULATOR IMPROVEMENTS 

 

 

 

 

 

 

 

Abstract 

Many schemes have been proposed to make high dynamic range analog r-f photonic links by 

linearizing the transfer function of the link's modulator.  However there is not yet a clear 

winning modulator that is highly robust to velocity mismatch and at the same time easy to 

manufacture and maintain sensitive linearization parameters. This chapter covers two novel 

techniques used to enhance modulator performance. First it covers reflective-wave 

modulators, a broadly applicable technique that effectively gives one modulator rephasing 

without ever splitting the r-f. Then a technique is described to create an effective r-f split 

without actually making one, giving a “sensitivity split” useful in making the DPMZM and 

SoDSMZ.  
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Reflective Traveling Wave Modulators 

Research into high frequency modulation focuses on equalizing the velocity of the electrical 

and optical waves, as they travel through the lithium niobate modulator structure.  One can 

either speed up the electrical wave or slow down the optical wave.  Most research focuses on 

speeding up the electrical wave.  There are two standard methods for this.  One matches the 

inherent velocities as described in Chapter 2. A large buffering layer of a low index insulator 

(usually SiO2) is placed between the electrooptic crystal and the electrode, and the electrodes 

are made with a large vertical height.  Both actions lift the fields out of the crystal and reduce 

the microwave index of refraction, which increases the electrical wave's velocity.  This 

technique has the disadvantage of reducing the field penetration to the crystal, lowering the 

sensitivity.  It is also difficult to grow a large uniform buffering layer.  However, velocity 

matching is useful, and it may also be combined with the method described below.  The 

rephasing concept was presented in the previous chapter, and a different method of re-phasing 

will be described in the next chapter.   

Recall that the rephasing technique allows the electrical wave to “catch up” to the optical wave 

at discrete points.  There is velocity mismatch over each segment, but this time delay is not 

allowed to accumulate from one segment to the next.  The modulator is said to be velocity 

matched “on the average.” This scheme works as long as each segment is small enough. There 

are two patents on this work. U.S. Patent 5,076,655. Ref. [2.9], covers the use of an antenna 

array to drive the segments.  The array is phased at the correct reception angle to velocity 

match on the average.  U.S. Patent 5,291,565, Ref. [2.8], describes a coplanar waveguide splitter 

with different electrical path lengths to achieve the correct average velocity. These schemes 

have two disadvantages.  First, splitting the electrical wave N ways reduces the voltage on the 

electrode by 1/√N. Second, the r-f electrode is more complicated than in a traditional 

modulator, leading to higher losses and difficulty in fabrication.  In addition, the antenna-

coupled system is inherently a passband system, limited by the bandwidth of the antenna 

elements and the r-f radiating system. 

Current schemes do not try to slow down the optical wave. Creating an optical path delay by 

putting bends in the optical waveguide would be unacceptably lossy.  Waveguides in 
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electrooptic crystals are weakly-guiding, and they leak light when they have only slight 

bends.  However, reflective modulators can have optical paths that are longer than the 

electrical paths without introducing bends.  This is the basis for the following scheme, which 

resulted in U.S. Patent 5,886,807; see Ref. [5.1]  

Traveling Wave Ref ective Modulators 

 

Figure 5 - 1: Phase modulator in reflective traveling 
wave configuration. 

In a reflective modulator, the light enters one side of the crystal, traverses the modulator, 

encounters a reflective coating at the end of the crystal, and then traverses the modulator 

backwards, leaving at the same place that it entered.  These modulators are normally made 

with lumped constant electrodes.  Figure 5 - 1 shows a phase modulator in the proposed 

reflective traveling wave configuration.  The optical wave and the electrical wave travel 

together over a distance L1.  The electrical wave then encounters an open-circuit transmission-

line termination.  This creates a reflected r-f wave with the same magnitude and phase as the 

incident r-f wave.  The optical wave continues to the end of the crystal where it encounters a 

reflective coating.  The coating reflects the optical wave with unit magnitude and without 

introducing any phase shift into the optical modulation signal.  The optical wave rejoins the 

electrical wave after an additional distance of 2L2.  The key is to pick values for L1 and L2 such 

that the waves are re-phased at the beginning of the return trip. 

Given L1 we can solve for L2
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For LiNbO3, nm = 4.0 and no =2.2, thus L2 = 0.41 L1.  The modulator must be 41% longer 

than the r-f electrode.  This extra real estate can be usefully employed.  Most modulators have 

at least one d-c bias electrode.  There is nothing wrong with putting the bias electrode between 

the r-f electrode and the reflective end of the modulator provided there is no capacitive 

coupling of r-f into the bias electrode. 

This modulator is now similar to a phase modulator with length 2L1 and two electrode 

segments with the electrical and optical wave re-phased at the second segment.  However, 

since it does not actually split the r-f power, the electrical wave is √2 larger than it would be in 

the modulator with two physical segments.  It uses half the real estate and has twice the gain 

(+3 dB) of the analogous phase modulator. 

This technique may be combined with velocity matching techniques to yield a higher 

frequency modulator.  Velocity matching techniques reduce the inherent velocity dispersion in 

the crystal.  Partial velocity matching may be used on a traveling wave reflective modulator to 

achieve higher bandwidths.  It is often simple to reduce the refractive index difference 

somewhat, but hard to null it exactly.  For example, with great care, velocity matched simple 

MZMs and phase modulators, Ref. [5.2], have been made with 3 dB bandwidth of 40 GHz. 

From [5.3], this is not easy to do.   In any event, as nm → no, L2 → 0. 

There is now the problem of separating optical input and output ports.  This will require an 

optical directional coupler, which introduces 6 dB optical loss, or an optical circulator.  The 

circulator introduces a second problem.  To use a circulator, a polarization shift of λ/4 is 

placed between the circulator and the modulator.  The light from the laser is vertically 

polarized, it is then circularly polarized in the modulator, and then on the return path after a 
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second trip through the polarizer, it is horizontally polarized.    But circular polarization in 

the modulator is non-optimal because the TE configuration has three times the electrooptic 

sensitivity as the TM configuration.  However, this is the method that has been successfully 

demonstrated experimentally in the literature.  Reflective wave modulators were introduced in 

Ref. [5.4].  They have been used in the hunt to reduce the Vπ, and the first MZM with a Vπ < 

2V was reported in Ref. [5.5] and summarized in Ref. [5.7].  These researchers have also 

demonstrated a reflective modulator with Vπ < 0.9 V, and an intrinsic r-f link with gain; see 

Ref. [5.6].27 Clearly, the problem of separating the input light and the output light is 

surmountable.  As an interesting confirmation of Ref. [5.3], the velocity matching parameters 

of [5.5] were ∆n = 0.06, not nearly as good as the velocity matching in Ref. [5.2].  It appears 

quite reasonable for high frequency applications to use good velocity matching (∆n ≤ 0.1) in 

combination with the technique described here, instead of requiring excellent velocity 

matching (∆n ≤ 0.02), a hard to obtain goal. 

Application to Useful Modulators 

Figure 5 - 2 shows MZM and DCM reflection modulators using this “velocity matching” 

scheme.  The MZM has similar attributes to the phase modulator of Figure 5 - 1.  The DCM 

has an added feature: the designer can choose the electrical length to be either π/2 or π.  If it is 

the former, then all of the optical power will come out of the cross waveguide.  If it is the 

latter case, then all of the power will come out of the through waveguide.  Depending on the 

system, one or the other may be desirable.  In some remote applications, it is desirable to have 

only one fiber and not to have the laser near the modulator.  In this case the designer would 

choose the MZM or a DCM with the electrical length = π; however, in other applications of 

DCMs the designer could choose electrical length = π/2 which would not require an optical 

circulator.  Note also that the bias electrodes conveniently fit in the space allocated for delaying 

the optical wave; that is, L2.  For the simple MZM and DCM, the bias does not need to be 

separate from the r-f electrode, but making it so simplifies the r-f connection. 

 
27 An “intrinsic link with gain” means that the r-f output/r-f input > 1, without any r-f amplifier in the path.  The source of the 

gain comes from the combination of a high power laser, a low Vπ modulator, and minimizes the losses in the system.  It is a 
tour de force. 
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Figure 5 - 2: MZM and DCM reflection modulators, 
using bias electrodes in the space of L2. 

The reflective scheme is especially useful in linearized electrooptic modulators.  The linearized 

dual series Mach-Zehnder (DSMZM) is shown in Figure 5 - 3.  A DCM2P cannot be built 

with a reflection modulator because it is not symmetric about the centerline of the crystal.  

However, one could imagine many configurations of one or two DCMs + passive sections 

that are symmetric about the centerline.  The author speculates that one or more of those 

configurations is linearizable.  The SoDSMZM consists of two Mach-Zehnders in series.  This 

modulator is covered in detail in chapters 3 and 4.  It is possible to linearize it with the same 

bias on both Mach-Zehnders modulators.  This is critical for its use as a reflective modulator 

because the reflection images the second Mach-Zehnder. 

Dynamic Range of  Re ective Modulators fl

The re-phased reflected wave is especially useful in linearized electrooptic modulators.  These 

modulators use sensitive cancellation techniques which are disturbed by only a slight amount 

of velocity mismatch.  A linearization scheme may yield an extra 20 dB of dynamic range at 
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low frequencies, but the fidelity is quickly lost.  The reduction of dynamic range from 

velocity mismatch happens much more quickly than the reduction in gain for most 

modulators, even though the reduction in gain is normally considered the limiting factor, in the 

literature.    

 

Figure 5 - 3: DSMZM reflection modulators. 

The CMZM and SoDSMZM are perhaps the most noteworthy of these cases. Recall Figure 4 - 

19 and Figure 4 - 20, from the previous chapter, which show the calculated dynamic range for 

a typical lithium niobate CMZM and SoDSMZM modulator. When a singly segmented 

traveling wave electrode structure is used for either of these linearized modulators, there is an 

initial 20 and 24 dB improvement, respectively, in the dynamic range.  But the dynamic range 

degrades dramatically with increasing frequency due to velocity mismatch.  For both 

modulators, the reduction in dynamic range is a function of the phase error at the second 

MZM only.  When the electrical and optical waves are re-phased once at the second MZM, 

velocity mismatch does not spoil the enhanced dynamic range at all.  The traveling wave 

reflective modulator has this condition automatically.  This modulator is only limited by gain.  

The 3 dB gain point in the calculation is about 8 GHz for the SoDSMZM.  Many linearized 

modulators were analyzed in Chapter 4, most exhibit a similar rapid roll-off when there is no 

re-phasing of the electrical and optical waves, but only series CMZM and SoDSMZM are flat 

with a single re-phasing at the second Mach-Zehnder. 
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This reflection method enables an efficient implementation of the precision r-f split in the 

CMZM modulator.  The phase reversal method has the drawback that the r-f split is negative, 

that is, the two modulators are 180 degrees out of phase.  By simply using a short circuit 

instead of an open circuit at the reflection end of the modulator, the proper phase reversal is 

achieved.   

Conclusion 

Electrooptic modulators can be made in a reflective traveling wave configuration.  The input 

end of the electrical transmission line is matched to the signal source and the far end is 

terminated in an open circuit.  The optical waveguide extends past the end of the transmission 

line by a fixed distance which the electrode length and the indices of refraction determine.  A 

reflective coating is put on the end of the crystal.  This scheme has three main advantages.  

First, it uses only half of the real estate of the crystal.  Second, there is one re-phasing of the 

electrical and optical waves without introducing any added geometric complexity over a simple 

traveling wave structure.  And third, the re-phasing comes without splitting the r-f power, 

which results in a 3 dB gain over a modulator with two separate electrode segments.  Higher 

bandwidth performance may be attained by combining this scheme with some amount of 

conventional velocity matching.  When applied to linearized modulators, specifically the 

CMZM and the SoDSMZM, the inherent re-phasing can preserve the enhanced dynamic 

range.  Without the re-phasing, there would be a rapid degradation in dynamic range caused by 

the velocity mismatch, which is more rapid than the degradation in gain, the original reason 

researchers started looking into reflective-wave modulators. 
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Sensitivity Splits 

It was argued in Chapter 3 that it is more important to evaluate modulators by the number and 

type of linearization parameters than only by their peak dynamic range.  Bias voltage 

parameters are more easily controlled than coupler electrical lengths and optical and r-f levels.  

From the d-c analyses in that chapter, it was concluded that the best linearization schemes use 

exclusively voltage parameters.  In Chapter 4, this conclusion is qualified by the observation 

that modulation schemes have vastly different responses to velocity mismatch.  The dual 

parallel Mach-Zehnder modulator and, to a lesser degree the Cascade Mach-Zehnder 

modulator, become attractive.  Furthermore, though the sub-octave dual series Mach-Zehnder 

modulator is assumed not to have an r-f split, in the literature a lower noise figure, and higher 

dynamic range, SoDSMZM can be achieved by splitting the r-f.  In this section a method for 

achieving a robust r-f split is described. 

Sensitivity Split in the Dual Parallel Mach-Zehnder 

The DPMZM has two linearization parameters: an r-f and an optical split.  These parameters 

must achieve a tolerance given in Table 3-3, which is prohibitively challenging with the normal 

implementations of the splits: an unbalanced Y-junction for the optical split and a microwave 

directional coupler for the r-f split.  Even if adequate accuracy were attained in the microwave 

split at one frequency, it is also challenging to maintain that accuracy over the microwave 

signal bandwidth.  Figure 5 - 4 and Figure 5 - 5 show properties that can be exploited to 

achieve a practical implementation of the DPMZM modulation scheme. 
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Figure 5 - 4: The optimal optical split as a function of 
the RF split.   

The original publication of the DPMZM in Ref. [3.3] and subsequent summary publications 

such as Ref. [3.4] refer to either one optimal r-f and optical split, or a set of distinct optimal 

points.  However, only one degree of freedom is required to achieve the linearization.  The 

basic MZMs in the linearization scheme are biased at their point of anti-symmetry, generating 

no even-order harmonic distortion.  The two precise signal levels are only used in nulling the 

third-order intermodulation distortion term.  There is a redundancy in the degrees of freedom 

of the modulator. Figure 5 - 4 demonstrates this by plotting that optimal optical split as a 

function of the r-f split.  This forms a curve of points that correspond to a local optimum in 

dynamic range.  Holding either r-f or the optical split constant, and optimizing the other split 

leads to a point on this curve.  Figure 5 - 5 shows the value of the optimum versus the r-f split. 

There is a global optimum, however, the curve is nearly flat over a wide range.  If the r-f split is 



 122 
imprecise but at least uneven, the linearization mechanism still works given precise control 

of the optical split. And this is the idea behind a sensitivity split. 

 

Figure 5 - 5: The optimal dynamic range as a function 
of the RF split of the DPMZ; at every value of the r-f 
split the optical split has been re-optimized 

In the implementation of a DPMZM, the r-f path consists of one transmission line and the r-f 

power is never split.  Figure 5 - 6 shows such a modulator schematically. 1) shows a top-down 

view of the optical waveguides of the modulator, 2) shows the waveguides again, but with a 

push-pull electrode structure on top of them, 3) and 4) show end views of the waveguides and 

electrodes for the two different Mach-Zehnders labeled B and C. Circles represent the 

waveguides and rectangles show the electrodes above them.  The key difference between 3) 

and 4) is that in 3) the waveguides of MZM B are centered in the region of the crystal that has 

the strongest electric fields, while in 4) the waveguides of MZM C are off-center just enough 

to build in a distinct sensitivity split between the two Mach-Zehnder modulators.  That is, even 
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though there is one uniform electrode, the effect of that electrode on the modulation in the 

two Mach-Zehnders is different. 

1) 

2) r-f bias
bias 

3) 
MZM 

4) 
MZM  

Figure 5 - 6: A DPMZ with a precise optical split and an 
imprecise “sensitivity” split implemented by the 
structure of the waveguides, so the RF is never 
physically split. 

Block A is a passive directional coupler with DC electrodes only.  The optical split between the 

path to the MZMs B and C is set approximately by the choice of coupler length and the 

applied voltage is used only for fine tuning.  The coupler controls the optical output to the 

precision of the bias voltage, which may be set after fabrication and even dynamically during 

operation.  The directional coupler introduces a phase shift between the output and the 

photodetector.  If two distinct fibers, two distinct laser wavelengths, or two distinct 

polarization states are used, then this phase shift is irrelevant because the currents of the two 

signals are summed in the photodetector incoherently.  However, one proposal in the 

literature, Ref. [2.3], uses one laser, one polarization, and one fiber, and combines the two 



 124 
MZM outputs in a passive directional coupler.   This configuration requires an additional 

phase shifter, used to keep the two signals in phase quadrature so that they don’t interfere.  If 

the single output fiber approach is used with the sensitivity split shown here, then the phase 

change introduced by the coupler section A will need to be counteracted in addition to the 

precision phase shift to guarantee that the two signals are in quadrature.  This is could be 

located at block D.  Or alternatively, the directional coupler at block A could consist of two 

bias electrodes, which with different voltages is enough to give a precise power split and phase 

split, thus eliminating a need for a separate phase shift region at block D.  

MZMs B and C appear in series spatially, but they are parallel, each modulator is fed from a 

different optical path.  The r-f flows through one continuous transmission line element that 

passes over both B and C.  This creates a time delay between the two modulation signals, but 

the path length from the input to the output of this chip is the same for both the optical signal 

that traverses modulator B and the one that traverses C.   While it is beneficial to avoid 

physically splitting the r-f, the total roll-off, governed by the entire length of the traveling wave 

electrode structure, is now twice as long as the individual MZMs.  For frequency regimes in 

which microwave loss is significant, other approaches (such as the antenna segmented 

approach discussed in Chapter 2) may need to be combined with this approach. 

Figure 5 - 5 shows that the r-f power split must be uneven. The schematic diagrams B) and C) 

from Figure 5 - 6 show how this unevenness is obtained. The waveguides in MZM C are 

intentionally placed non-optimally so that the sensitivity of the MZM is reduced because the 

modulation field within the optical waveguide is no longer optimally aligned with the direction 

for maximum modulation of the polarized optical wave in the x-cut crystal.  If the waveguides 

are not directly centered in the waveguide gap, the sensitivity will be reduced, and then the two 

modulators will have different sensitivities, creating an effective r-f split, even though the r-f 

power has never been split.  Obviously this positioning cannot be manufactured to yield a 

precise split. However any split between 1:20 and 1:4 yields near optimal dynamic range 

provided the optical split is precise and configurable after fabrication.  The end result is a 

realizable modulator for which the dynamic range performance is robust to frequency. 
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rSensitivity Split in other Mach-Zehnde  based linearized modulators 

Sensitivity splits are easily employed in the cascade and series Mach-Zehnder modulators.  

Since the two MZMs are in series, there is no need to alter the layout of the MZMs.  This 

technique could be used to construct a CMZM that requires an r-f split, or it could be used to 

construct a SoDSMZM in which an r-f split was used to get to a lower total noise figure, and 

thus better dynamic range, than what can be achieved with the SoDSMZM analyzed in 

Chapter 3 and Chapter 4 (that has no r-f split).   In fact, in Ref. [2.3], G. Betts indicates that 

this r-f split does not need to be precise. 

Figure 5 - 7 shows the sensitivity split concept applied to a SoDSMZM.  In this modulator 

there is one optical path that traverses both Mach-Zehnders.  The r-f is split by the off-

alignment of the waveguides as depicted in schematic 3) versus 2).  This effective r-f split need 

not be a precision split.  However, different biases must be applied to the Mach-Zehnders, 

unlike the version of the DSMZM studied in Chapter 3, Chapter 4, and in the reflective-wave 

modulators of this chapter.  The different biases are implemented by segmenting the bias 

electrode as shown in schematic 1).  It is not necessary to segment the r-f electrode. 
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Figure 5 - 7: The waveguide an electrode structure of a 
sensitivity split to implement a SoDSMZM in which the 
two separate drive strength is applied to each Mach-
Zehnder to reduce the noise figure of the modulator. 

r-f ground

bias

1) 

2) 

3) 



 

 

127
C h a p t e r  6  

MILLIMETER-WAVE DIRECTIONAL COUPLER MODULATORS 

 

 

 

 

 

 

Abstract 

The laboratory work of this thesis demonstrates the 94 GHz directional coupler modulator for 

the first time, and makes improvements in the efficiency of the components that go into the 

link experiment.  The work picked up where Finbar Sheehy, a previous Ph.D. student of Prof. 

Bridges left off, Ref [1.3].  An already built, but non-functional, DCM chip was analyzed by the 

author in a Caltech SURF project and then in a Caltech Senior Thesis.  This chip was used to 

successfully demonstrate operation at 94 GHz DCM.  Another DCM chip was built with the 

same design, and an entirely new DCM was designed and built.  The r-f feed system was 

redesigned and built.  New carrier components to house the modulator were built, and the 

experiment was moved from all free space components to a mixture of fiber and free space 

components.  New measurements were taken with the complete system, but successful 

operation was not obtained.  The ultimate reason is speculated to be a processing issue in the 

fabrication of the modulator chip.  The project was abandoned because new chips were no 

longer obtainable from our source, the Hughes Research Laboratories. 
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An Introductory Note 

The research described in this chapter is chronologically the first undertaken in the author’s 

graduate studies.  It was an extension of a Summer Undergraduate Research Fellowship 

(SURF) project in the summer of 1993 and a senior thesis in Electrical Engineering in the 

academic year 1993 - 94.  This extension was almost purely experimental, and was an attempt 

to improve the antenna-coupled directional coupler modulator successfully demonstrated 

during the author’s senior year Refs. [6.1] and [6.2].  Many improvements were incorporated 

into a new modulator chip and millimeter-wave excitation structure during the years 1994 - 

1999, and these are presented here for the record.  But an overall demonstration of the 

improved modulator was not realized, and the project had to be abandoned due to events 

largely outside the author’s control, as described below. 

Background Work up to the Fall of 1994 

Directional coupler modulators (DCM) suffer a roll-off in sensitivity with increasing frequency 

due to velocity mismatch, just as Mach-Zehnder modulators (MZM) do, as previously 

described in Chapter 4.  However, the -3 dB frequency in modulation sensitivity is about 40% 

higher for a simple DCM than a simple MZM of the same length and velocity mismatch, thus 

making it an attractive candidate for high frequency applications.  But a linearized modulator 

based on a DCM is much more adversely affected by velocity mismatch than a linearized 

modulator based on a MZM, as previously discussed in Chapter 4.  Thus it was important to 

see if the  antenna-coupling scheme to counter the adverse effects of velocity mismatch would 

work as well with DCMs as with MZMs.  This demonstration was initiated by Finbar Sheehy, a 

previous graduate student in the group, who designed a DCM with an array of simple dipole 

antennas on the surface of z-cut lithium niobate as part of his Ph.D. research.  The design is 

given in Sheehy’s thesis and the supporting contract final report, Refs. [6.3] and [6.4]. 

The mask used to make Sheehy’s modulator is shown in Figure 6 - 1.  There were 12 

modulators on each 3” diameter wafer.  A string of millimeter-wave dipoles connected to short 

modulating electrode sections occupies the center section of each modulator.  At either end of 

this string of dipoles there is a short d-c bias electrode section to bias the modulator to the 
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proper operating point. These separate bias sections were used in lieu of making d-c 

connections to the dipoles themselves.  

  

Figure 6 - 1 Actual electrode mask used in FTS-1 
design, to make 12 modulators on a 3” diameter 
LiNbO3 wafer. The gaps between electrode pairs do not 
show at this scale.  The particular modulator used in the 
transfer function measurements is the fourth from top 
edge.  This mask was designed by Finbar Sheehy. 

Sheehy’s modulator design was fabricated at Hughes Research Laboratories (now HRL, LLC) 

under an informal arrangement to assist the work at Caltech.  Sheehy set up the DCM chip in 

the laboratory and attempted to make it work.  While some asymmetrical modulation 
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sidebands could be observed when the modulator was operated at 94 GHz, he could make 

no sense of the transfer function of the modulator. This was the situation when he finished his 

Ph.D. work, graduating in 1993. 

 

Figure 6 - 2:  D-c transfer function of Sheehy’s DCM.  
The curve with data points is the experimental 
measurement and the curve without data points is the 
best-fit for the theory for a modulator of the design 
length, assuming perfect directional coupler symmetry. 

The problem of understanding what was happening with this modulator was given to the 

author, then an undergraduate student, as a Summer Undergraduate Research Fellowship 

(SURF) summer project.  Upon measuring the d-c transfer of the bias electrodes, it became 

clear that there must have been some asymmetry in the underlying optical directional coupler.  
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Figure 6 - 2 compares a sample theoretical bias electrode curve for a symmetrical 

directional coupler modulator (solid curve) with the measured transfer curve.  Note that the 

theoretical curve is an even function around zero bias.  Since all such curves must be even 

functions, it is clear that no set of modulator parameters could result in a fit to the 

experimental data.  However, assuming that the underlying optical directional coupler has a 

built-in asymmetry in the ∆βs, the voltage induced optical coupling constants, then a good fit 

to the experimental data could be obtained, as illustrated in Figure 6 - 3.  Although the origin 

of the built-in asymmetry was not understood at the time, measuring its value allowed the 

modulator to be biased at the correct operating point

  

Figure 6 - 3: (a) Curve fit to experimental data assuming 
a static asymmetry ∆βs of 1.7 radian/meter, fitting data 
of -70 V< V < +70 V.  (b), the same as (a), but using 
data -80 V < V < +20 V. 
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The asymmetric transfer function is modeled based on Eqns. (3.12) and (3.14).  The cross 

term m12 is rewritten in terms of the physical parameters, ∆β and κ,  and ∆β now consists of a 

static term and an electrooptically induced term, ∆β = ∆βS + ∆βe.  Taking the magnitude 

squared of the complex amplitude to get the intensity 
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Demonstrating this modulator at 94 GHz was undertaken as a senior thesis project during the 

academic year 1993 - 94. The experimental set up was the same as that used by Sheehy, shown 

in conceptually in Figure 2 - 9 schematically and described later in Figure 6 - 10.   

The modulation depth was deduced by taking the ratio of the sideband amplitude to the carrier 

amplitude displayed on the scanning Fabry-Perot output.  The millimeter-wave power was 

measured with a calibrated W-band bolometer head.  The resulting performance of 0.2 

[m2/Watt] was reported at the PSAA-IV conference in 1994 [Ref. 6.1].  This modulation 

sensitivity corresponds to a Vπ  of about 40 volts for a conventional 50 ohm modulator, which 

is not all that good for a conventional low-frequency, 9 mm active length modulator, but it  

was good enough to be interesting for a 94 GHz modulator (not commercially available in 

1994, nor now).  Unfortunately, this particular modulator chip also had a very bad optical 

transmission, about -20 dB optical loss. 

Figure 6 - 4 shows the actual detected side bands from a picture of the oscilloscope taken 

during the experimental demonstration.  There are two sidebands in view, and they are 

indicated by hand-drawn arrows shown in the scan of the Polaroid.   The measurement 

technique (using a Fabry-Perot interferometer) is not the most sensitive, and it is difficult to 

see the sidebands above the skirt of the optical carrier.  However the resulting modulation is 

good considering the frequency of operation.  From these results, an important next step is 

improving the efficiency of the system to demonstrate a stronger modulation signal. 
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Figure 6 - 4: Oscilloscope Polaroid of the operation of 
directional coupler antenna-coupled modulator at 94 
GHz.  The hand drawn arrows point to the two side 
bands that are just distinguishable from the skirt 

The origin of the built-in ∆β or the high optical loss was unknown at the time the modulator 

was successfully demonstrated.  However, after the PSAA meeting, while photocopying the 

waveguide masks used by Hughes to fabricate the modulator, “mouse-bite” defects were 

discovered on the mask:  Chips of the mask metal had broken off along the edges of the 

waveguide regions.  These chips resembled a “bite,” as if a microscopic mouse had bit into the 

metal coating, hence the name.  Such defects are known in the mask-making industry, and are 

attributed to various causes.  Two such causes are (1) a dirty glass substrate causing adhesion 

problems when the metal is deposited, and (2) electrostatic discharge when the mask is used 

over a lithium niobate (pyroelectric) wafer.  It turns out that Hughes was experiencing “mouse 
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bite” defects on a number of masks just at the time they were discovered on the particular 

waveguide mask used in Sheehy’s DCM.  There was an ongoing argument between Hughes 

and the mask maker, Align-Rite, with Hughes citing cause (1) when the mask was made at 

Align-Rite, and Align-Rite asserting cause (2) when the mask was used at Hughes.  This 

argument was never settled, but for the Sheehy modulators, the damage was already done.  

Upon close inspection of the modulator under a microscope, it was verified that the “mouse-

bite” defects in the mask had been faithfully transferred to Sheehy’s modulator waveguides, 

resulting in a significant “bulge” in the waveguide width at every defect. A photograph of these 

defects, along with a schematic drawing to make them clearer is shown in Figure 6 - 5. 

This was the explanation for both the deduced ∆βs and the high optical loss:  The two 

waveguides clearly had different defects and thus different ∆βs, and each defect scattered light 

out of the waveguide into the surrounding substrate (excess loss).  

Modulator Fabrication Work Beginning in the Fall of  1994 

A new directional coupler waveguide mask, identical to the original one designed by Sheehy 

was fabricated on z-cut lithium niobate (but without the “mouse bites”), and received in mid 

1994. New modulator chips were fabricated with this mask by Hughes and delivered to 

Caltech.  These chips exhibited reasonable optical loss (-8 dB), and the transfer functions of 

the bias sections were now symmetrical about zero bias (as a DCM with ∆β = 0 should be). 

However, the transfer functions exhibited very little change in transmission with voltage 

applied to the bias sections. After some investigation, it turned out that the original directional 

coupler design parameters determined by Dr. Cel Gaeta at Hughes Research Labs 

(unpublished) were incorrect.  Following Gaeta’s data, Sheehy had used the wrong dimensions 

in his directional coupler modulator design.  The waveguides in the coupler were too far apart, 

resulting in too little coupling.  The bias sections of the coupler could not adjust the modulator 

to the proper condition for the antenna-coupled sections to work.  In fact, the only reason that 

the results reported in Ref. [6.1] were obtained was due to the static ∆βs and the light scattering 

introduced by the mouse bites!  The new modulator, without the mouse bites, was too 

insensitive to bias properly. 
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Figure 6 - 5: “Mouse-bite” defects (a) on LINC-1 
directional coupler waveguide mask used to make 
Sheehy’s DCM, and (b) a schematic representation of 
these defects. 
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Fortunately, this error had also been discovered at Hughes, and Gaeta was already in the 

process of making new measurements of the directional coupler properties.  Using Gaeta’s 

new directional coupler parameters, a new waveguide and electrode masks were designed.  The 

new electrode mask layout (Denoted UVC-el-1) is shown in Figure 6 - 6.  Eleven different 

antenna-coupled DCMs are on the mask, along with some simple directional coupler test 

sections.  The modulators have various combinations of antenna sections and d-c bias sections 

(heavy lines).  The gap between the bias electrodes is too small (6 µm) to be resolved on this 

figure.  The masks were fabricated by Align-Rite, but without the mouse bites, and sent to 

Hughes Research Laboratories for modulator fabrication. 

 

 

Figure 6 - 6:  Electrode mask UVC-el-1 for 11 different antenna-
coupled directional coupler modulators, Ref. [6.3] 

The antenna-plus-transmission-line-segments are arrayed in the center of each modulator.  The 

large black rectangles at the ends are the bias sections, which are connected to contact pads at 

the right and left edges of the mask.  Various combinations of bias electrode length and 
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position, and antenna array length and position were included.  The shorter horizontal 

traces at the top and bottom of the pattern are simple transmission lines for conventional 

DCMs. 

 94 GHZ Directional Coupler Modulator Fabrication 

Work on this new modulator began early in 1996, when we received new contractual funding 

from Rome Laboratories after an 18 month gap in funding.  HRL had fabricated the 

directional coupler titanium in-diffused waveguides and applied a silicon dioxide buffer layer.  

This wafer was returned to Caltech in May to have the electrodes applied.  Since this was the 

author’s first experience with making the electrodes, and the Hughes process could not be 

duplicated, a number of preliminary experiments were followed to gain some experience with 

the procedures.   Prof. Axel Scherer generously agreed to help with his laboratory facilities for 

this processing.  Prof. Scherer uses negative photo resist while HRL uses positive resist and a 

“lift off” gold process (which is why the masked needed to be copied and reversed, the process 

by which the “mouse bites” were originally discovered).  Tests of spinning-on and evaluating 

negative resist on glass slides were followed to build up an understanding for the 

characteristics of negative resist. Good results could be obtained, but that the exposure time 

and level were much more critical than with the positive resist that had previously been used 

(at Caltech and HRL). 

Using negative resist, a uniform gold layer is evaporated over the entire surface of the lithium 

niobate wafer.  Then the photo resist is spun on, dried, and exposed with the electrode mask. 

The photo resist is developed and washed away everywhere except over the gold where the 

modulator electrode pattern is desired.  Then the rest of the gold is etched away in the exposed 

regions with a reactive ion etching (RIE) process. 

The use of negative photo resist created some difficulty in the fabrication process that may be 

relevant to the ultimate unsuccessful results obtained for this modulator.  With the negative 

resist process, the edges of the metallic regions were less well-defined than when positive resist 

was used.  This became a concern in the region between the two electrodes forming the 
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traveling wave transmission line and the region between the halves of the bias electrodes.  

These gaps are only a few microns.  After the first etching step, some conductivity between 

these electrodes was measured, indicating there was still some gold bridging the gap.  This 

required spinning on more resist, exposing the mask again (with the difficulties of realigning it 

to exactly the same position, developing, and continuing the etching process.  The 

consequence of over-etching would be the removal of the traveling wave electrodes 

themselves, so it was important to get the exact total etching time correct.  The time was 

judged to be correct if there were high d-c resistance between the two electrodes.  However, 

the resulting structure likely had continuously varying thickness “filets” across the gap.  This 

may have greatly upset the distribution of transverse electric field between the electrodes. 

 Since a simple evaporated gold coating without a chromium underlayer was used (in order to 

allow the gold to be more easily etched off), the result was a very fragile gold electrode pattern.  

To protect this fragile layer, a silicon dioxide overcoating was applied.  The modulator 

substrates were returned to HRL for this coating, since HRL was willing to continue helping 

the experiment with that processing step, and the author was not yet experienced in using the 

silicon dioxide sputtering apparatus in Prof. Scherer’s lab.  When the wafer was received back 

from HRL, another photo resist layer was spun on and exposed with a mask that gave 

electrical access to the bias pads in the underlying gold electrode layer.  Using this mask, 

contact holes were etched through the silicon dioxide protective layer. The modulators on the 

wafer were checked for dc short circuits.  None were found.  The wafer was returned to HRL 

to be sawed into two 1” by 2” substrates, which were then polish-cut on the ends.  

A mechanical support structure for the modulator substrate was designed and given to 

Caltech’s central machine shop for fabrication, as shown in Figure 6 - 7.  The substrate is 

mounted on a carrier oriented in a vertical plane.  Both sides of the substrate are accessible so 

that the d-c bias voltages may be applied with probes on the front side and the millimeter-

wave illumination applied with a slab waveguide from the back side.  A vertical steel plate 

surrounds the carrier so that the magnetic-based probe holders may be positioned on it.  A 

close-up of the modulator mounted on its carrier is shown in Figure 6 - 8, and a further 

enlargement is shown in Figure 6 - 9.  In this figure, the dipole-plus-transmission-line-

segments are seen more clearly against the end of the lithium niobate slab waveguide 
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contacting the modulator chip from behind (white rectangle).  The large rectangles at either 

end of the dipole array are the bias electrodes.  (The gap in between the bias electrodes and the 

transmission line electrodes is too small to be seen, even in this blow-up.)  

Optical transmission measurements were initially made at 633 nm, and the transmission 

appeared to be good (although multimode, since the waveguides were designed for 1.3 

micrometer wavelength).  At first, GRIN-lens-terminated fibers were used to do the optical 

input and output coupling at 1.3 micrometers. 

  

Figure 6 - 7: Photograph of the modulator mounting 
structure. The modulator is installed and the probes are 
positioned to apply d-c biases.  The r-f feed is applied to 
the back side. 

Between the experimental work on the first chip (with the “mouse bites”) and the third chip, 

shown in Figure 6 - 6, the entire laboratory was converted to single-mode, polarization-
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preserving fiber with FP/APC connectors, so that every source, detector, and 

input/output fiber could be interchanged easily with minimum realignment.  This work was 

done by graduate student Lee Burrows.  While most of the changeover went smoothly, the 

input/output coupling fibers proved very troublesome.  The measurements of the GRIN-lens-

terminated fibers proved them to be inadequate in their optical quality; they were mechanically 

unusable.  Also, a great deal of difficulty was experienced in using commercial fiber chucks 

from Newport Corporation (non-axial position and drift in alignment), and eventually these 

were abandoned in favor of a Caltech-designed and fabricated fiber holder.  After a lot of 

trials, it was found that butt-coupled fibers in the Caltech chucks would work the best as the 

input source for all of the labs’ experiments. 

 

   

Figure 6 - 8: Modulator chip mounted on the 
mechanical carrier stage.  The r-f feed can be seen 
positioned to apply the r-f signal from the backside on 
the third modulator from the top. 

The modulator was set up, and transmission measurements were made at 1.3 micrometers 

with the new fiber-coupled components.  The transmission loss averaged about -8 dB for the 

several modulators on the substrate.  While not “commercial quality,” it is much better than 
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the -20 dB of the chip with the “mouse bite” waveguides.   The d-c electrode sections were 

biased and exhibited the proper transfer function form, indicating that Gaeta’s new values for 

the coupling parameters were correct and had been used correctly in the design of the 

modulator.  Bias was applied for several days to assure that drift would not be a problem with 

these chips. The bias points appeared to be sufficiently stable for the measurements. 

 

Figure 6 - 9: Blown up view of the modulator chip and 
millimeter-wave slab guide. 

R-F Waveguide and Coupling Measurements 

 A 94 GHz Varian VRC-2113B23 klystron purchased in the late 1970s was tested, using a 

power supply borrowed from Prof. David Rutledge’s group.  The 94 GHz tube still measured 

approximately 80 mW output over its 90.75 to 97.75 GHz tuning range. 

The millimeter-wave coupling structure used to excite the antennas on the modulator utilizes a 

tapered, low dielectric constant dielectric slab waveguide “expansion fan” to increase the width 
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of the slab waveguide from the 0.100 inch width (2.54 mm) of WR-10 waveguide out to 

the length of the antenna array on the modulator, approximately 10 mm.  The wide end of the 

fan is butt-coupled to a lithium niobate slab waveguide (εr = 28) through a “quarter-wave” 

section of intermediate dielectric constant to minimize reflections.  The lithium niobate 

waveguide is cut in a wedge of the correct angle for velocity matching, and is glued to the 

backside of the modulator chip.  This coupling scheme is shown schematically in Figure 6 - 10.  

It was used successfully by Sheehy in Refs. [1.2] and [1.3], and by Cummings in Refs. [6.1] and 

[6.2], but it was not truly optimized for those measurements.  

 

Figure 6 - 10: Slab dielectric waveguide coupling scheme 
for millimeter-wave modulators. 

To optimize the coupling of the millimeter-wave modulation into the modulator, reflections at 

the junctions between the various slab waveguide sections must be minimized.  This must be 

done by trial and error, since no accurate theory exists for the metal-waveguide-to-slab wedge 

junction, or for slab-to-slab junctions using a “quarter-wave” matching section.   To carry out 
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this optimization, transmission measurements of the two such structures, coupled “back-

to-back” were made with variously sized matching layers.  It can be assumed that the 

transmission loss from the WR-10 waveguide to the modulator would be approximately half 

the loss (in dB) of the overall transmission.  A photograph of a back-to-back slab waveguide 

arrangement is shown in Figure 6 - 11.  Two polypropylene tapered slab waveguides are 

coupled to a uniform section of lithium niobate through “quarter-wave” thicknesses of an 

intermediate dielectric constant material, Stycast.®  

 

 

Figure 6 - 11: Photograph of a “back-to-back” coupling 
structure.  

 

In the measurement setup, the fanned-out sections of slab waveguide were inserted into W-

band horns.  The overall transmission was measured and compared to the signal measured 

with the metal waveguide connected “flange-to-flange.”  To remove the effects of detector 

non-linearity, a precision attenuator was used to keep the detector signal level the same for 

both the transmission through the entire structure and the transmission through just flange-to-

flange WR-10.  

Many combinations of fan dimensions, and matching section dielectric constants and 

thicknesses were evaluated.  Polypropylene (εr = 2.2) 1 mm thick was originally used for the 

expansion fans.  The 1 mm thickness is a good match for the 1.25 mm height of WR-10 

waveguide and the 0.656 mm width of the dipoles on the lithium niobate substrate.  It also 
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gives a reasonably well-confined mode on the slab.  In the case of infinite plane-wave 

transmission through a dielectric interface, a “quarter-wave” matching layer should have a 

dielectric constant equal to the geometric mean of polypropylene and lithium niobate, (2.2 x 

28)1/2 = 7.8, and should have a thickness of 0.25x (3.2 mm/√7.8) = 0.28 mm (or an odd 

multiple thereof).  Of course, in the slab waveguide coupling structure, the fields are not fully 

confined to the dielectric material.  The effective dielectric constant of the guide will be 

reduced in all cases.  Simple slab waveguide theory, such as in Ref. [6.5] for example, shows 

how to calculate the change in effective dielectric constant.  For the polypropylene guide 1 mm 

thick at 94 GHz, the effective dielectric constant is 0.60 x 2.2 = 1.32.  For the lithium niobate 

guide 1 mm thick at 94 GHz, it is 0.916 x 28 = 25.6.  For the intermediate dielectric constant  

 

Figure 6 - 12:  Plot of dielectric constant correction 
factor as a function of dielectric constant for a 1 mm 
thick slab waveguide at 94 GHz. 
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material in the vicinity of 8, the correction factor is about 0.72.  These factors are for TM0 

propagation in the slab, as is correct for this setup.  For TE0 propagation, the correction values 

are somewhat larger.  Figure 6 - 12 shows the dielectric constant correction factor for both 

TE0 and TM0 modes as a function of the slab dielectric constant for 1 mm thick slab 

waveguides at 94 GHz. 

One might think that knowing these correction factors for the effective dielectric constant, the 

“quarter-wave” matching formula could be recalculated for an ideal match.  Unfortunately, in 

addition to the change in propagation velocity and wave impedance, there will be a mismatch 

in the spatial distribution of the modes in the three regions, so that there will be a 

“discontinuity” reflection, even if the mode velocities and wave impedances are correctly 

arranged for “quarter-wave” matching.  At the time of this work, no reasonable theory exists 

for these discontinuities.  For these reasons, a trial and error approach was followed, using the 

materials at hand rather than ordering special values of dielectric constant.

An additional problem arose as the back-to-back measurements proceeded, that of mechanical 

instability.  Polypropylene is a flexible plastic material, and it proved difficult to maintain a flat, 

rigid structure while making the measurements.  Sheehy also had this problem, but decided to 

simply “live with it.”  This time, in the interest of using a more rigid material, fused silica (1 

mm thick) was chosen for the expansion fans.  Fused silica has a dielectric constant of εr =4.0 

at millimeter-wave frequencies, so that the optimum (infinite plane wave approximation) 

matching dielectric constant would be (4 x 28)1/2 = 10.6, and a quarter wave would be 0.25x 

(3.2 mm/√10.6) = 0.25 mm thick.  The correction factor for a 1 mm thick slab at 94 GHz is 

0.572, so the effective dielectric constant is 2.3.  For a matching slab 1 mm thick at 94 GHz 

with dielectric constant about 10, the correction factor is 0.765 for the TM0 mode.  However, 

the transmission losses were a few dB higher then in the guides based on polypropylene, so the 

fused silica slab was abandoned for the flexible but low loss polypropylene. 

It is difficult to make actual quarter-wave layers because they are so thin.  The dielectric 

material was Emerson and Cuming Stycast® artificial dielectric.  This material is made from a 

high dielectric constant powder suspended in a low loss plastic matrix.  The dielectric constant 
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is controlled by the fraction of the powder used.  It is not a strong material, and thin 

sections break easily.  The most successful method found to make thin layers was to cut as thin 

a piece as possible with a saw, then glue it to the dielectric fan and lap it to the desired 

thickness with sandpaper on glass.  Even so, the material would generally break off during 

attempts to make to make sections actually one quarter wavelength in thickness.  Typically, 

odd numbers of quarter wavelengths were used to gain some material strength.  However, the 

absolute accuracy required is the same. 

Stycast 10 Back-to-Back Feed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

Layer thickness in millimeters

Tr
an

sm
is

si
on

"Infinite Plane"

"Slab"

 

Figure 6 - 13: a) A layer of Stycast between two 
polypropylene feeds, the rectangle is larger than the 
polypropylene. b) A slab layer of Stycast between two 
polypropylene feeds; the dimensions are the same as the 
polypropylene.  

Figure 6 - 13 shows two types of matching layers with a dielectric with εr = 10 between the 

two polypropylene feeds (no lithium niobate section).  The first experiment recreated the 
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matching layer used in the original Sheehy experiment.  This layer is an “infinite plane 

layer” in that the width and height dimensions of the dielectric material are a few millimeters 

greater transversely than the polypropylene waveguide.  Thus the fields are entirely in the 

dielectric material.   In this back-to-back feed, odd multiples of 1/4 λ minimize transmission 

and even multiples maximizes transmission.   Unlike a quarter-wave matching layer, the back-

to-back experiment goes from low dielectric to high dielectric back to low dielectric.  In the 

experiment, a wavelength appears to be about 1 mm since there are maxima at 0.5 mm and 1.0 

mm and minima at 0.25 mm and 0.75 mm.  This corresponds to theory, λ= c/f = 

3*1011/(94*109*√10) = 1.01 mm.  However the maximum and minimum transmission is not 

simply calculable.    It stands to reason, that the “infinite matching layer” would have a lower 

peak transmission than a slab guide matching layer because the modes are less well-matched 

transversely.  The second plot in Figure 6 - 13 shows a similar experiment, but with a slab 

matching layer of Stycast 10 material.  Notice that the peak transmission, 81% at 2.43 mm, is 

higher than the peak transmission of the infinite plane matching layer, 76% at 0.53 mm, even 

though there are considerable losses in Stycast 10 material, and a layer of 2.43 mm should have 

less transmission than a layer of 0.53 mm.  The peak transmission of the slab should occur at 2 

wavelengths (that is an integer number of ½ wavelengths in the range of 2 – 3 mm).  With the 

correction factor for TM0 we would expect a length of 2.29 mm (the corrected guide 

wavelength is 1.14 mm).  The experimental peak is at 2.43 mm.  We should not expect exact 

values of λ/4, however, since there are discontinuity effects at both ends of the matching layer 

that will produce reflections in addition to those at the surfaces themselves.  The shape and 

smoothness of the graph is non-ideal.   This most likely comes from the difficulty of 

controlling the dimensions in the highly non-precise “hand-sanding” method of building these 

layers. 

Given that Stycast 10 is lossy, and the slab layer is difficult to “hand-sand,” the experiment was 

duplicated for a slab layer of Stycast 5 material.  This is shown in Figure 6 - 14.   Theory with 

the approximate correction factor predicts a guide wavelength of 1.61 mm.  This would give a  

maxima at 0.81 mm, 1.61 mm, and 2.42 mm etc, and a minima at 1.21 mm, 2.01 mm, and 2.82 

mm, and so forth.  From the data, it appears that there is a periodicity of twice that.  However, 

there is a lot variation.  The experiment was not refined until the data corresponded well to 
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theory, given the challenge of creating precision dimensions with this material at the 

frequency of interest.  However, note that the maximum transmission at 94% is pretty good.  

Since Stycast 5 and Stycast 10 are both reasonable candidates for a matching material to 

lithium niobate, both materials were used to produce the r-f feed, but since the Stycast 5 

material appears to yield a higher transmission rate, it was favored.   
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Figure 6 - 14: A slab layer of Stycast 5 between two 
polypropylene feeds. 

The best results obtained for matching from WR-10 to a polypropylene dielectric fan, through 

a matching layer to a lithium niobate section and back again were flange-to-flange losses of 

11.6 to 12.2 dB.  Note that an equivalent length (about 40 cm) of WR-10 waveguide would 

have a loss of about 1.5 dB.  Two different matching layer configurations gave the same range 

of losses: 
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(1) 2.0 mm of εr = 5 material (5/4 λ). 

(2) 2.6 mm of εr = 10 material (9/4 λ).  

These were the smallest pieces that could reasonably be used with the equipment at hand. 

An attempt was made to reduce losses that originate as radiation from the dielectric 

discontinuities by layering copper foil on each side of the slab waveguide assembly.  

Transmission losses increased about 3 dB with the copper foil in place.  Actually, this is the 

expected value from theory, since the currents induced in the copper walls add loss compared 

to the negligible loss in the exterior dielectric (air) when they are absent.  While it is unclear 

how much loss came from radiation and reflections from the discontinuities in the slab guide, 

the measurements indicate that the losses in the two copper walls are 3 dB worse. 

The foil-clad waveguide has the merit that the modes can be calculated exactly, and theoretical 

values of dielectric constant and length can be obtained for the proper match.   And the 

transverse distributions of the TM0 mode are forced to match by the confining metal 

conductors.  However, the additional loss observed experimentally seemed to argue against 

using the foil-clad waveguide, so that approach was abandoned. 

Table 6-1: Feed Transmission Measurements  

Feed Description Transmission 

Topology in Sheehy experiment: Polypropylene, Stycast 10 infinite 

plane matching layer, lithium niobate 
0.15 

Polypropylene, optimal width Stycast 10 slab layer, lithium niobate 0.22 

Polypropylene, optimal width Stycast 5 slab layer, lithium niobate 0.38 
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Table 6-1 shows the key results of the back-to-back feed measurements.  It appears that a 

3x improvement over the original feed construction was achieved.  However, construction of 

the feed is so mechanically unstable and non-reproducible that such a conclusion really cannot 

be claimed definitively.   In any event, the combination of fan and matching layers given above 

would exhibit about 2 - 3 dB of loss (estimate) between the WR-10 waveguide and the bottom 

surface of the modulator. 

94 GHz Measurements 

The overall setup for the actual modulation measurements is shown in Figure 6 - 15.  A 94 

GHz klystron is on the left, mounted in a large finned block. A cooling fan blows on the fins.  

A ferrite isolator is used to eliminate reflections back into the klystron.  Following the isolator, 

a -20 dB cross-guide directional coupler is used to sample the klystron output for the precision 

absorption wave meter.  The main signal continues through WR-10 waveguide to a millimeter-

wave horn and the dielectric slab fan (obscured behind the modulator support structure in this 

photograph).   

 

Figure 6 - 15:  Photograph of the overall modulator 
measurement setup. 
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The optical power to the modulator at 1.3 microns was input via a butt-coupled fiber 

mounted in a precision 3-axis motion.  The modulator output was imaged with a microscope 

objective lens onto a scanning Fabry-Perot (SFP) interferometer (right edge of Figure 6 - 15) 

used to detect modulation sidebands.  (Recall that there was no available photodetector with 

94 GHz response.  Instead, the modulator is evaluated by looking for sidebands in the optical 

spectrum).  The free spectral range of the SFP was 2.00 GHz, so there would be the order of 

50 times aliasing in observing the sidebands.  However, the frequency of the klystron was 

measured with an Alpha Industries model W551 wave meter, with absolute accuracy of 0.2%, 

(about 200 MHz at 94 GHz) so it is fairly discernable where the klystron-induced sidebands 

should occur within the 2.00 GHz display range. The measurement technique was essentially 

the same as the measurement that had proven successful before, Ref. [6.1], except now the 

mechanical structure was much more stable, and the new modulator chip exhibited lower 

optical loss and a reasonable transfer function compared to the “mouse bite” modulator of 

Ref. [6.1]. 

Unfortunately, the expected modulation sidebands were not observed.  Many variations on the 

measurement were made (described below), but none produced sidebands visible on the 

oscilloscope trace of the SFP output. In the course of these measurements, a curious 

phenomenon was observed, one for which no explanation, only speculation, is reported, and 

that is also described below. 

One difference from the old measurement was the source laser.  The experiment used an ATX 

model 1.3AMPU 1.3 micron Nd-YAG laser, one capable of about 150 mW output.  The old 

experiment used an Amoco Laser Company (later, ATX) model ALC 1320-EHS laser that 

produced only 5 mW maximum output power, the only laser available for the experiment 

within the contract budget at the time.  In an ordinary photonic link, the link gain is 

proportional to the laser power, which motivated the switch to the higher power laser.  

However, in the detection scheme, the measurement is of the relative height of the sideband 

and the carrier, as detected on the SFP display.  This ratio is independent of laser power, as 

long as the modulation sideband is visible above the oscilloscope noise level.  However, the 

sideband must also be somewhat above the “skirt” of the carrier as displayed on the 
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oscilloscope screen.  (The “skirt” results from the finite width of the SFP filter. To 

minimize the interference from the skirts of the carrier, it is best to tune the modulation 

frequency to a value halfway between the aliased “carriers” on the SFP.  For a 2.00 GHz SFP 

free spectral range, this means the modulation frequency should be chosen at odd numbers of 

GHz:  91.00, 93.00, 95.00, or 97.00 GHz for the tuning range of the klystron.  Operation at 

92.00, 94.00, or 96.00 GHz would result in modulation sidebands that fall exactly on the 

aliased carriers on the display and would be completely undetectable. 

An unfortunate disadvantage of the new high power laser was that it seldom operated with a 

single optical mode, typically oscillating at three or four optical frequencies simultaneously.  (It 

was supposed to be a truly single-frequency laser, and often was when it was new.  But by the 

time measurements were taken on this modulator, the components within the laser had 

changed so that it never operated at a single frequency).  As a consequence, the SFP 2.00 GHz 

display was cluttered with several aliased “carriers” from all the frequencies output from the 

laser.  Each of these carriers should display sidebands, but with multiple modes, it became 

more difficult to find a modulation frequency that would place any sidebands at the low points 

among all the aliased carrier skirts.   

After some frustrating days with the high power laser, the experiment was re-instrumented 

with the 5 mW output original laser.  This made the oscilloscope display less cluttered, but also 

failed to produce any visible sidebands.  And, or course, the risk was now that the sidebands 

were actually below the oscilloscope noise level. 

The next attempt at improving the measurement involved building a new higher-gain, lower-

noise amplifier for the photodetector. This assumes that the measurement was limited by the 

photodetector amplifier noise, not the built-in oscilloscope amplifier noise.  The design proved 

a bit tricky to do.  The eventual configuration used a special op-amp as a trans-admittance 

amplifier for the photodetector, one with very low equivalent current noise rather than the 

more usual low equivalent voltage noise.  This is done because the photodiode source looks 

like a current source rather than a voltage source.  The op-amp that was selected was the 

Analog Devices 795, the lowest current-noise op-amp that the author could find.  The 

feedback resistor in the first stage was 20 MΩ, so the output of the amplifier is 20 volts per 
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microamp of input current.  With this amplifier, the noise level viewed on the SFP output 

on the oscilloscope was amplifier-noise-limited.  However, even with this improved amplifier, 

there were still no discernable modulation sidebands. 

In an attempt to further improve the sensitivity of the setup, the SFP amplifier output was fed 

to a “lock-in amplifier” (audio phase-synchronous detector) as well as the oscilloscope.  The 

klystron power supply had built-in square-wave modulation capability at 1000 Hz, and this was 

enabled.  Thus the DCM was now being fed a W-band signal that is 100% on-off modulated at 

1000 Hz.  With this arrangement, a very narrow equivalent bandwidth of the synchronous 

detection process could be used.  Of course, the scans of the SFP must be done very slowly to 

accommodate the long integration time of the lock-in.  Typically, this required scanning the 

SFP manually, observing the deflection of the meter on the lock-in.  Even using this technique, 

still no modulation sidebands were found at locations in the SFP frequency scan where they 

were predicted them to be from the precision W-band frequency meter.  From the “heroic” 

detection improvements on the original measurements of the “mouse-bite” modulator, the 

author is forced to conclude that the present modulator chip is at least three orders of 

magnitude less sensitive that the old modulator, for reasons not understood, but which are due 

to faulty chip fabrication in some way. 

It was in the course of making the synchronous detection measurements that a new and, so 

far, unexplained phenomenon was discovered. There were repeatable synchronously detected 

outputs from the SFP detector/amplifier combination when the SFP was tuned to the steep 

slope of an aliased carrier signal! 

The behavior was as if the applied millimeter-wave modulation were frequency-modulating the 

optical signal at 1000 Hz, and then “slope detection” of that FM was used by tuning the 

optical filter of the SFP to have its steep slope tuned to the optical carrier frequency.  It was 

then checked that this phenomenon was, indeed, coupled into the modulator via the 

millimeter-wave slab waveguide, rather than by stray pickup in the bench wiring.  It was. 

The only hypothesis at this point is that the modulator chip itself is somehow “detecting” the 

W-band signal, and using the “detected” output (a 1000 Hz square wave) to produce phase 
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modulation (which would be indistinguishable from frequency modulation in this 

experiment).  It may be possible that the process of evaporating and etching the electrodes 

several times on this one chip (using the negative resist process in Prof. Scherer’s lab, rather 

than the positive resist “gold lift-off” method that HRL used on the original modulator) had 

inadvertently left a thin conductive layer bridging the transmission line electrodes, which acted 

as a “thin-film bolometer” that “shorts out” the millimeter-wave signal, but heats and cools 

rapidly enough to phase modulate the underlying optical waveguides.  Admittedly, this 

explanation is grasping at straws.  The only way to check for sure is to make another 

modulator chip by the original processes used at HRL (or by successfully developing the 

negative resist process) and find successful results.   Unfortunately, by the time these 

measurements were made, HRL had decided to go out of the modulator fabrication business 

entirely, so there was no opportunity to have them make additional modulator chips.  Since the 

contract support from Rome Labs had also run out, there was no opportunity to make 

additional modulator chips at Caltech.  At this point, it was decided to abandon the “improved 

antenna-coupled directional coupler modulator” demonstration, and concentrate of the 

linearized modulator work described in chapter 3 - 5. 
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C h a p t e r  7  

SUGGESTIONS FOR FUTURE WORK 
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There are many frontiers left in the development of high-frequency, high-fidelity analog 

modulators, both theoretical and experimental.  Some of these are listed below. 

Theoretical Analysis 

This thesis focused on the basics of intensity modulators, and two-tone analysis of a 

modulator in a simple link model.  It merely touched on CTB and CSO analysis.  There are 

significant additional questions to ask along those lines, for example Ref. [1.1] suggests that no 

clean relationship exists between two-tone analysis to determine the SRDR and the CTB and 

CSO analysis in multi-channel systems.  

One simple theoretical expansion of the techniques developed for this thesis research is the 

addition of finite r-f loss to the traveling wave electrodes.  Actually this capability already exists 

in the modulator analysis program, but was not actually used in the calculation.  The effects of 

such losses on the linearization process would be especially interesting.  Similarly, one could 

include transmission line non-uniformity, such as tapered coupling, dispersion, etc. to see what 

effects these would have on the modulator characteristics and linearization techniques. 

This thesis (and much of the research and development in the wider modulator community) 

has dealt only with intensity modulators, since intensity-modulated signals are the easiest to 

detect.  A simple photodiode turns the modulated intensity into a current replicating the 

original modulation signal.  However, it is well-known that true amplitude modulation, where 

the optical field amplitude rather the intensity follows the information signal, generally 

produces better dynamic range performance.  Detection typically requires an optical 

heterodyne system to translate the modulated optical electric field into a modulated r-f electric 

field, where it can be further translated to the original information signal.  It is this added 

complexity that has kept optical amplitude modulation from being widely used.  It turns out 

that all the modulators considered in this thesis, including the linearized modulators, have 

analogous performance as amplitude modulators, with minor modification in optical structure 

and operating biases.  Future research should include an extension of the performance analysis 

to amplitude modulated optical links. 
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Experimental Work 

On the experimental side of high-fidelity optical links, one is struck by how few experimental 

demonstrations have been made compared to the number of theoretical publications that have 

appeared.  Certainly, a fruitful area of development would be simply to confirm experimentally 

the predictions of this thesis and other published schemes.  It is clear that to do so, one must 

have one’s own modulator chip fabrication facility, one that is capable of precise parameter 

control, such as the coupling constant in lithium niobate waveguide directional couplers.  

Without such careful control, it would be difficult to proceed.  However, with such capability, 

it would be interesting to explore several areas experimentally as listed below. 

The basic idea of making an antenna-coupled millimeter-wave modulator based on a 

directional coupler optical structure was proven very early on, albeit with a defective optical 

directional coupler structure (the “mouse bites”), Ref. [6.3].  This program was aimed at 

improving and optimizing the structure (mainly by removing these serious defects that were 

discovered in the original design).  Unfortunately, we were unable to demonstrate our 

improvements, due to limited chip fabrication availability. 

In the meantime, a new directional coupler structure has come to light that would be a much 

better choice for an antenna-coupled structure, the Y-fed DCM, Ref. [3.9].  This structure  was 

described in detail in  Chapter 4 of this thesis, since it is also a good candidate for linearization.  

The Y-fed DCM is simply a DCM with equal optical powers fed to the two input arms, rather 

than all of the optical input fed into one arm.  Due to this symmetrical feed, the transfer 

function changes dramatically.  As discussed in Chapter 3, “zero” is automatically the correct 

bias for this modulator.  This means that an antenna-coupled modulator need only the 

antenna-plus-transmission-line-segments to couple the r-f into the modulator.  No extra bias 

electrodes are required (or desired, for that matter).  This structure is a “natural” for antenna-

coupled devices.  Any future demonstration of antenna-coupled directional coupler 

modulators should use this much simpler configuration. 
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Another experimental area would be to confirm the predictions in this thesis for the 

improved bandwidth of the reflection modulators.  These are relatively simple to make in the 

MZM versions, and should offer a significant improvement at low cost. 

Once the directional coupler fabrication precision is established, an experimental 

demonstration of the “band-pass” characteristics of the DCM and YFDCM would be in order. 

Finally it should be noted that the accuracy of photolithography defining the antenna 

structures is not even challenged at 100 GHz.  It would be interesting to try modulating light at 

higher frequencies using the antenna-coupled schemes up to the point where lithium niobate 

has significant absorption, 0.5 THz. 

One could also develop variations on the antenna elements themselves, such as “Vee” 

antennas with gain replacing simple dipoles, as suggested in Sheehy’s thesis (but not 

demonstrated) could be investigated experimentally. 
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