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Abstract

A surface parameterization is a function that maps coordinates in a 2-dimensional parameter space

to points on a surface. This thesis investigates two kinds of parameterizations for surfaces that are

disc-like in shape. The first is a map from a region of the plane to the surface. The second is a

mapping from one surface to another, which defines a correspondence between them. The main

challenge in both cases is the construction of a smooth map with low distortion. In this thesis we

present a variational approach to surface parameterization that addresses these challenges.

The first contribution of this thesis is the development of a variational framework for parame-

terizations. This framework encompasses the mapping of a region of the plane to a surface that is

isomorphic to a disc, and the mapping between such surfaces. It is based on the rich mathematical

theory built up over decades in the study of rational mechanics. Because of its roots in mechanics,

our parameterizations are guaranteed to be smooth and locally bijective, and optimal parameteriza-

tions which minimize a variational energy are known to exist. A proof of existence is given for the

case of optimal parameterizations in the plane.

Our second contribution is a set of algorithms to construct parameterizations for surface trian-

gulations. We describe in detail free-boundary methods that use standard numerical optimization

algorithms for the computation of optimal parameterizations. A flexible set of parameters is offered

to the user to formulate preferences for the trade-off between angle, area and length distortion in

parameterizations in the plane. In the specification of a correspondence between surfaces, we pro-

vide user control through feature lines which are mapped as sets onto corresponding feature lines.

Additionally we allow for a partial correspondence of the surfaces which is particularly important

for correlating surfaces with boundaries.

Our third contribution is an analysis of the performance of the algorithms based on our imple-

mentations. Our testing focuses on parameterizations of physically-acquired triangle mesh data.

The efficiency of our methods is measured by analyzing the rate of convergence of the energy min-

imization, and execution times are shown to be quite reasonable. Robustness is established in the
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presence of large deformations in the parameterizations and the stability of our parameterizations is

demonstrated under different discretizations of the surfaces.

Our fourth contribution is a set of concrete, compelling applications of surface parameterization.

Non-trivial examples which draw from texture mapping, morphing and facial animation provide

further evidence and insight into the versatility of our parameterization framework.
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Chapter 1

Introduction

Parametric surfaces have a long and illustrious history in the fields of computer graphics, computer-

aided geometric design and engineering. Their success is largely due to the ease in which they

represent the physical, analytic and visual properties of surfaces in space, i.e., the boundaries of

three-dimensional shapes, which makes them amenable to simulation, manufacturing and visual-

ization applications. Early boundary representations were built from piecewise-smooth parametric

patches, which provide flexibility in design but have practical limitations in the level of detail that

they can model. The advent of laser range scan technology in the last decade has provided the world

with high-resolution models of physical objects with millions to billions of sample points. How-

ever, the triangulated surfaces generated from this data have no inherent parameterization, and thus

parameterizing these surfaces has been an active area of research in recent years.
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In this thesis we investigate parameterizations of surface triangulations in two contexts. The first

context considers parameterizations which are defined as mappings from a disc-like region of the

plane to the embedded surface. We present a rigorous variational framework for the construction of

low-distortion parameterizations with free boundaries, based on the rich mathematical theory built

up over decades in the study of rational mechanics. With a view toward the theory of elasticity, we

treat the parameterization problem as one of finding an optimal deformation of an initial parameter

domain in the plane. Starting with some basic axioms in the continuous setting, we derive a defor-

mation energy which provides combined control over angle, area and length distortion in a unified

framework. Because of its roots in mechanics, our method comes with analytic guarantees: our pa-

rameterizations are smooth and locally bijective, and we provide proof of the existence of optimal

parameterizations that minimize our energy. Our continuous model of the parameterization problem

lets us use straightforward finite element methods to discretize our energy. This in turn allows us to

leverage the extensive and mature body of work in numerical optimization to construct optimal pa-

rameterizations using a free-boundary method that uses standard numerical optimization algorithms

for the energy minimization, with well-known performance guarantees. The finite element approach

allows us to retain analytic guarantees of smoothness and bijectivity for the discrete parameteriza-

tions. Furthermore we provide a proof of convergence to the continuous solution in the limit of

triangle grid refinement. The performance of our parameterization algorithm is demonstrated on

surfaces reconstructed from physical data measurements. This data is particularly difficult to pro-

cess due to its geometric complexity and the high variability of the data samples. We use a range of

energy parameters to highlight the flexibility and variety of parameterizations that one can achieve

with our energy. The resulting parameterizations have very low angle, area and length distortion

overall and the different distortion measurements reflect the trade-offs in the choice of parameters.

In the second context we describe a method to find a correspondence between two surfaces that

are isomorphic to a disc. This correspondence can also be interpreted as a parameterization of a

region of a surface over a manifold domain embedded in space. Our approach draws upon well-

developed methods in global image matching to correlate two surfaces via a non-rigid deformation

in their parameter domains. To do so we map geometric characteristics into the parameter plane and

modify the standard image matching energies to correctly account for the geometry of the surfaces.

This decouples the discretization of the surface from the discretization of the matching deformation,

and thus the level of detail in the correspondence mapping can be chosen independently of the reso-

lution of the surface triangulation. We present a multiresolution algorithm using regular image grids
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that allows us to overcome problems with robustness and computational efficiency seen in previous

methods that pursue mappings between surfaces directly in the embedding space. User control over

the match is given through feature lines which are mapped as sets onto corresponding feature lines,

which provides the user with a wide variety of techniques to fine-tune the correspondence if desired.

We allow for a partial correspondence of the surfaces, which is particularly important for matching

surfaces of disc topology, especially in boundary regions. The existence and global injectivity of the

matching deformations is guaranteed such that the resulting deformations are smooth and bijective.

1.1 Related Work

The body of relevant literature is quite broad due to the wide span of fields in which parameteri-

zations are studied. Most relevant to our treatment of parameterizations on triangulated surfaces is

the recent body of research from the graphics literature. In the context of correspondences between

surfaces, we draw upon work in image matching, in particular the non-linear approaches which

deal directly with the large deformation setting. Relevant work from the graphics literature covers

approaches which pursue direct mappings between surfaces in R3.

Parameterization

The most desirable property to achieve in a parameterization is isometry. This implies intuitively

that all of the properties of the surface are represented in the corresponding parameter domain.

Strictly speaking, a map between two surfaces is an isometry if their first fundamental forms co-

incide. It is well known that isometric parameterizations exist only if the surface itself is locally

flat, i.e. developable. A broad variety of algorithms have been proposed to construct such param-

eterizations for embedded triangle meshes (for a recent survey see the comprehensive overview by

Floater and Hormann [19]). Generically these algorithms are distinguished by the way they measure

distortion.

Distortion is a measurement of change in the first fundamental form of the mapping between

the surface and the parameter domain, i.e., how much the metric induced by the parameterization

deviates from the identity. There are many possible ways to measure deviation from the identity.

For example, Sander et al. consider the minimization of a variety of norms (`2, `∞) of the singular

values of the Jacobian [44], while Hormann and Greiner minimize the condition number of the

Jacobian [25]. Degener et al. extend this work by adding a term that penalizes area distortion [14].
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The maximum eigenvalue of the Jacobian and its inverse were used by Sorkine et al. [47]. These

approaches all involve difficult algorithms and it is unclear what guarantees can be made of the

resulting parameterizations.

Other free-boundary methods are primarily concerned with controlling angle distortion. On

one hand we find methods which attempt to construct conformal parameterizations directly. These

include the minimization of harmonic energy with natural boundary conditions [15], which turns

out to be equivalent to a least-squares optimal discrete approximation of conformal parameteriza-

tions [29]. The case of closed, arbitrary genus surfaces (possibly after constructing a double cover)

was treated by Gu and Yau [24] based on discrete Riemann surface theory [33]. Direct minimization

of the change of angle was pursued by Sheffer and de Sturler [46], who used a highly non-linear

minimization procedure. Kharevych et al. approached discrete conformal parameterizations by de-

riving a convex energy based on the intersection angles of circles on the surface triangulation [26].

In this class of methods the focus is entirely on controlling angle distortion, with the exception of

Desbrun et al. who also define a separate authalic energy to control the change of area (although

only in the presence of Dirichlet boundary conditions).

In all of these approaches, the interaction between area, angle and length distortion is not eas-

ily controlled or well understood from a mathematical perspective, e.g., little is known about the

existence of solutions. With the exception of methods based on harmonic or conformal maps [15,

24, 26, 29], most of the previous work is formulated in the discrete setting of surface triangulations

where these results are unknown.

Image Matching

In image processing, registration is often approached as a variational problem. One asks for a de-

formation which maps structures in the reference image A onto corresponding structures in the

template image B on some image domain ω. In the case of unimodal images with a direct cor-

respondence of the image intensities IA and IB , the energy
∫
ω (IB(ξ)− IA(φ(ξ)))2 dξ measures

the least-squares error of the match. We extend this idea to surface matching through a bending

energy which measures the matching defect with respect to curvatures. It is well established that

the associated minimization problem is ill-posed if one considers the infinite dimensional space of

deformations [7, 48]. This is generally addressed by choosing a suitable regularization. Motivated

by models from continuum mechanics, one may ask for a deformation that is additionally controlled

by elastic stresses on images regarded as elastic sheets. For example see the early work of Bajcsy
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and Broit [3] and more recent, significant extensions by Grenander and Miller [20]. In our surface

matching problem, we consider surfaces as thin shells. Besides the bending which we mentioned,

surface deformations also lead to tangential stretching and shearing, which gives a real physical

interpretation to the elastic stresses that are treated as a regularization in the resulting model. In

particular, if large displacements are necessary to ensure a proper match, a regularization based on

non-linear elasticity with its built-in control of length, area and volume changes is indispensible.

Cohen [11] considered polyconvex elastic functionals and Droske and Rumpf [18] used this type

of regularization to guarantee global injectivity and well-posedness. We incorporate these ideas to

avoid folding in our surface matches. In essence, non-rigid image matching is a well developed and

powerful tool which we will exploit for surface matching.

3D Registration and Correspondence

Motivated by the ability to scan geometry with high fidelity, a number of approaches have been de-

veloped in the graphics literature to bring such scans into correspondence. Early work used param-

eterizations of the meshes over a common parameter domain to establish a direct correspondence

between them [28]. Typically these methods are driven by user-supplied feature correspondences

which are then used to drive a mutual parameterization. The main difficulty is the management of

the proper alignment of selected features during the parameterization process [27, 43, 45] and the

algorithmic issues associated with the management of irregular meshes and their effective overlay.

Special methods have been developed for situations in which a large number of scans of similar

objects, albeit with great geometric variety, are to be brought into correspondence, for example for

purposes of statistical analysis. These are typically geared towards establishing a correspondence

against a template model. Blanz and Vetter [5] used cylindrical scans resulting in height “images”

which were matched through a modified optical flow. Allen et al. [1] fit a high resolution template

mesh to scans of the human body. They computed non-rigid deformations for the template by

minimizing an error functional which performs well in the presence of holes and poorly sampled

data, provided that the two surfaces are in similar poses. Such template-based approaches can also

be very helpful during the acquisition itself. Zhang et al. [50] present a method for meshing dynamic

range data using a surface fitting approach. In their method, a template mesh is fitted to a registered

stereo pair of depth maps and the fitting is achieved by minimizing a depth matching energy and

a regularization energy. Recently, Gu and Vemuri [23] considered matches of topological spheres

through conformal maps with applications to brain matching. Their energy measures the defect of



6

the conformal factor and — similar to our approach — the defect of the mean curvature. However

they do not measure the correspondence of feature sets or tangential distortion, and thus do not

involve a regularization energy for the ill-posed energy minimization. Furthermore, they seek a one-

to-one correspondence, whereas we must address the difficult problem of partial correspondences

between surfaces with boundaries.

1.2 Contributions

The contributions documented in this thesis summarizes work performed by the author and collabo-

rators in papers [10, 17, 30, 31]. The theoretical foundation for the variational methods was largely

investigated by Dr. Martin Rumpf, with additional collaboration by Dr. Ulrich Clarenz, Marc Droske

and the author. The theorems and their proofs contained herein are the work of Dr. Martin Rumpf.

Some parts of the implementation of the surface matching algorithm are owned by Marc Droske.

The first contribution of this thesis is the development of a variational framework for parame-

terizations. This framework encompasses the mapping of a region of the plane to a surface that is

isomorphic to a disc, and the mapping between such surfaces. It is based on the rich mathematical

theory built up over decades in the study of rational mechanics. Because of its roots in mechanics,

our parameterizations are guaranteed to be smooth and locally bijective, and optimal parameteriza-

tions which minimize a variational energy are known to exist. A proof of existence is given in this

thesis for the case of optimal parameterizations in the plane.

Our second contribution is a set of algorithms to construct parameterizations for surface trian-

gulations. We describe in detail free-boundary methods that use standard numerical optimization

algorithms for the computation of optimal parameterizations. A flexible set of parameters is offered

to the user to formulate preferences for the trade-off between angle, area and length distortion in

parameterizations in the plane. In the specification of a correspondence between surfaces, we pro-

vide user control through feature lines which are mapped as sets onto corresponding feature lines.

Additionally we allow for a partial correspondence of the surfaces which is particularly important

for correlating surfaces with boundaries.

Our third contribution is an analysis of the performance of the algorithms based on our imple-

mentations. Our testing focuses on parameterizations of physically-acquired triangle mesh data.

The efficiency of our methods is measured by analyzing the rate of convergence of the energy min-

imization, and execution times are shown to be quite reasonable. Robustness is established in the
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presence of large deformations in the parameterizations and our parameterizations are stable under

different discretizations of the surfaces.

Our fourth contribution is a set of concrete, compelling applications of surface parameterization.

Non-trivial examples which draw from texture mapping, morphing and facial animation provide

further evidence and insight into the versatility of our parameterization framework.

1.3 Overview

This thesis is organized as follows. The next chapter presents a variational framework for parame-

terization in two parts. The first of these, entitled surface parameterization, describes a variational

approach to parameterizations in the plane. The second, surface matching, is concerned with the

correspondence mapping between two surfaces. The derivations therein define the basic compo-

nents of the parameterization energies with particular attention given to the geometric interpretation

of the energy integrands.

Chapter 3 describes the parameterization and matching algorithms in detail. Both procedures

take user parameters that provide flexibility in the optimal parameterization, especially in the way

it deals with distortion. The numerical optimization methods that perform the energy minimization

are fully detailed to aid in implementation.

In Chapter 4 we analyze the performance and robustness of the algorithms through a series of

tests using physically-acquired data. Chapter 5 describes a variety of compelling applications of sur-

face parameterization. This thesis concludes with a summary of our contributions and a discussion

of avenues for future research.
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Chapter 2

Variational Framework

This chapter develops the variational framework for surface parameterizations. We begin with pa-

rameterizations that map disc-like surfaces to the plane in Section 2.1, and then turn our attention

to mappings from one embedded surface to another in Section 2.2. In our approach we consider pa-

rameterizations as deformations of the surface. For parameterizations in the plane, this amounts to

“flattening” the surface. For defining a correspondence between two surfaces, we think of deform-

ing one surface to match the shape of the other. In fact both points of view are compatible, whereby

a parameterization in the plane can be thought of as matching to a planar surface. From this per-

spective, our treatment of distortion falls within a general framework that separates tangential stress

from stress due to bending of the surface normals. The latter is not considered for parameterizations

in the plane because the curvature of the surface goes to zero everywhere under the parameterization

deformation.
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2.1 Surface Parameterization

The goal of surface parameterization is the construction of a smooth map with low distortion from

a given surface patch to a region of the plane. Our approach starts with an initial parameterization

from the embedded surface into R2 and then composes this map with another from R2 to itself.

In doing so, we turn the problem of defining a parameterization into finding an optimal non-rigid

deformation of the parameter domain. We develop a variational approach based on insights from

rational mechanics which performs an energy relaxation over a set of non-rigid deformations in the

plane. This gives us a unified framework for surface parameterization that incorporates the trade-

offs between different distortion measurements and provides clear mathematical statements as to the

properties of this energy. In what follows, we develop this variational approach in the continuous

setting, which we will later discretize to the space of surface triangulations.

2.1.1 Definition of a Parameterization

A parameterization is a mapping from the plane onto a given surface, or in the case of its inverse,

from the surface onto the plane. Consider a smooth surfaceM⊂ R3 and a parameterization

x : ω →M

on a parameter domain ω ⊂ R2. For a parameterization to be properly defined, its inverse x−1

cannot allow the surface to fold onto itself in the plane. In this case x is locally bijective, and we

say that the parameterization is admissible. A metric g is defined on ω,

g = DxTDx

where Dx ∈ R3,2 is the Jacobian of the parameterization x. Roughly speaking, the metric g is a

function which relates distances in the parameter domain ω to distances on the surfaceM. It acts

on tangent vectors v, w on ω with

(g v) · w = Dxv ·Dxw

which is simply the inner product of tangent vectors Dxv,Dxw onM, where products are given

in matrix notation. It follows that the metric describes the distortion of an infinitesimal area of the

domain under the parameterization function.
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2.1.2 Measuring Distortion in a Parameterization

Let us now focus on the distortion from the surface M onto the parameter domain ω under the

inverse parameterization x−1. This distortion is measured by the inverse metric g−1 ∈ R2,2. Just as√
tr(ATA) measures the average change of length under a linear mapping A,

√
tr(g−1) measures

the average change of length of tangent vectors under the mapping from the surface onto the param-

eter plane. Additionally,
√

det(g−1) measures the corresponding change of area. In terms of the

eigenvalues Γ ≥ γ of g−1 we obtain

a = tr(g−1) = Γ + γ , d = det(g−1) = Γ γ .

The condition for a conformal parameterization is Γ = γ, and thus

(Γ− γ)2/d =
Γ
γ

+
γ

Γ
− 2 = a2/d− 4

is a normalized, scale-invariant measure of the lack of conformality. The normalization is done so

that a conformal mapping yields a value of zero for better numerical conditioning.

In what follows, we will use the quantities a, d and a2/d − 4 to account for length, area and

angle distortion, respectively. For an admissible parameterization we have Γ, γ > 0 everywhere and

therefore a, d > 0 and a2/d− 4 ≥ 0, i.e., our measures of distortion are strictly non-negative.

2.1.3 Measuring Distortion in a Deformation

In our approach, we suppose that a parameter map x of the surface patchM is defined in an initial

step. We will assume that x and its parameter domain ω are fixed from now on. As mentioned

above, we start with this fixed initial parameterization x : ω →M and use an invertible Euclidean

deformation φ : ω → R2 to derive a new parameterization

x[φ] = x ◦ φ−1

over the parameter domain ω[φ] := φ(ω). For the inverse we obtain x−1[φ] = φ ◦ x−1. Obviously,

any smooth parameterization x̃ of the surface patchM can be written as x̃ = x[φ] for φ := x̃−1 ◦x.

The complete mapping is illustrated in Figure 2.1.
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M φ

x

x[φ]

ω

φ(ω)

x1

x2

x3

ξ1

ξ2

Figure 2.1: The parameterization function x[φ] := x◦φ−1 is a mapping from the parameter domain
ω[φ] := φ(ω) to the surface patchM.

We will now study the distortion which arises from the deformation φ. To motivate our definition

of distortion, for the moment let us replace the surface patchM with a Euclidean domain Ω ⊂ R2.

A fundamental assumption from the theory of elasticity [9, 32] tells us that all distortion measures

for a given deformation φ : Ω → R2, such as length, area or angle distortion, can be expressed

in terms of the deformation tensor Dφ. Thus measuring the distortion of a mapping is directly

linked to measuring the elastic energy of the associated deformation. A fundamental result of

rational mechanics states that the elastic stress induced in an isotropic elastic material by some

deformation φ depends solely on the principal invariants of the Cauchy-Green strain tensor C =

DφDφT . In the case of deformations in R2, these invariants are the trace tr(C) and determinant

det(C). In our setting, we replace the elastic body Ω ⊂ R2 by our surface patch M and we

consider parameterizations as elastic surface deformations to leverage these fundamental theorems

from classical elasticity. The Cauchy-Green strain tensor we use here is defined by

C[φ] := Dφg−1DφT

which generalizes the standard definition in that we obtain the classical Cauchy-Green tensor when

M is flat (g = 1I, the Euclidean metric). Note that (C[φ])−1 is the metric tensor g[φ] of the

parameterization x[φ] induced by the deformation φ. With this observation we can give a geometric

interpretation of the elastic surface deformation. As in the case of the initial parameterization,

a =
√

tr C[φ] =
√

tr(g−1[φ]) is a measure of length distortion under the mapping φ ◦ x−1 and

d =
√

detC[φ] =
√

det(g−1[φ]) measures area distortion. Furthermore, a2/d − 4 provides us

with a measure of angle distortion. Thus tr(C[φ]) and det(C[φ]) are natural variables for an energy

that measures the distortion in a parameterization.
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2.1.4 A Variational Approach from First Principles

A theory for the deformation of elastic bodies has been developed over many decades, and is covered

in many classical texts [9, 32, 39]. By approaching parameterizations from the context of classical

elasticity, we obtain mathematical guarantees in the continuous setting which we will later extend to

triangulated surfaces via a standard finite element discretization. We will now derive our parameter-

ization energy from the first principles of elasticity (2.1), frame indifference (2.2) and isotropy (2.3),

taking into account our geometric setting.

� Elasticity: The energy depends solely on the distortion tensor D(φ ◦ x−1). Therefore the total

energy of a parameterization deformation φ and thus of the corresponding parameterization x[φ]

is given by

E[φ] =
∫
M
WM(D(φ ◦ x−1)(x)) dA (2.1)

where WM : R2,3 → R is an energy density which we will specify later.

� Frame Indifference: The energy is independent of Euclidean motions r(ξ) = Rξ + b of the

parameter domain φ(ω), where R ∈ SO(2) denotes a rotation and b ∈ R2 is a translation. Thus

for any deformation φ : ω → R2 we have

WM(RD(φ ◦ x−1)) = WM(D(φ ◦ x−1)) (2.2)

where D(r ◦ φ ◦ x−1) = RD(φ ◦ x−1) by the chain rule.

� Isotropy: The energy does not depend on directions on M. If u : M → M is any smooth

mapping fromM onto itself which is locally a rotation at some point x ∈ M, then the energy

density at x is not affected by this transformation. Being “locally a rotation” here means that

up to first order, the deformation is a rotation Q around x in the tangent space TxM. Using the

chain rule again (i.e., D(φ ◦ x−1 ◦ u) = D(φ ◦ x−1)Q) we find

WM(D(φ ◦ x−1)Q) = WM(D(φ ◦ x−1)) (2.3)

for any rotation Q on TxM.

From these first principles we are able to deduce a representation formula for the parameteri-

zation energy. Here we make use of two additional facts. Because the initial parameterization is
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fixed, we can integrate over the parameter domain in R2 instead of the embedded surface. It is then

through the metric tensor g ∈ R2,2 that the initial parameterization from the region in R2 to the

surface enters into our energy. Furthermore, since the elastic deformation is given as the minimizer

of an elastic energy integrand, the energy density too must depend only on the principal invariants

of C[φ] and not the full deformation tensor Dφ ∈ R2,2. This leads us to the following general form

for our parameterization energy.

Theorem 2.1 (Representation of the energy) LetM be a smooth surface patch, which is param-

eterized by an initial parameterization x over a set ω ⊂ R2. Under the assumptions of elastic-

ity (2.1), frame indifference (2.2) and isotropy (2.3), there exists a function W : R2 → R such

that WM(D(φ ◦ x−1)(x)) = W (ιC[φ])
√

det g where ιA = (tr(A),det(A)) are the two principal

invariants of A ∈ R2,2 and the Cauchy-Green strain tensor is defined by

C[φ] = Dφg−1DφT .

Furthermore, the expression g ∈ R2,2 is the metric tensor w.r.t. the parameterization x, i.e., g =

DxTDx. Thus, the parameterization energy can be written as

E[φ] =
∫

ω
W

(
tr(C[φ]),det(C[φ])

)√
det g dξ . (2.4)

A proof of this theorem appears in Appendix A.1. The representation (2.4) has two significant

practical advantages. First, we simplify the energy densityW to a function of two variables, namely

the principal invariants tr(C[φ]),det(C[φ]), which reduces the computational overhead of treating

the full deformation tensor Dφ as a 4-dimensional variable. Second, by describing the new param-

eterization in terms of a deformation φ of the initial parameter domain ω, we avoid a free-boundary

problem which would involve complicated integrals on the boundary.

It comes as no surprise that the principal invariants of the distortion tensor C[φ] appear in our

energy (2.4). Indeed, a number of earlier works have arrived at energies based on the principal

invariants by using similar considerations in the discrete geometric setting. However as we shall

see below, by deriving from these fundamental axioms of classical elasticity we are able to make

concrete statements about its theoretical properties.
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2.1.5 Minimal Energy Parameterizations

The previous theorem describes an energy which is supposed to capture the distortion of a parame-

terization as a function of the principal invariants of the Cauchy-Green strain tensor. As suggested

in Section 2.1.3, our energy density should therefore be a function of a = tr(C[φ]) (length control),

d = det(C[φ]) (area control) and a2/d − 4 (conformality control). Following Theorem 2.1, we

propose to use the energy density

W (a, d) = αla+ αa

(
d+ ( αl

αa
+ 1) d−1

)
+ αc

(
a2/d− 4

)
(2.5)

The three terms control the preservation of length, area and conformality of the chart x ◦ φ−1, and

thus simultaneously capture all of our measures of distortion. Note that the second term controls

both area expansion with d and area compression through d−1. The parameters αl, αa and αc are

chosen by the user according to the relative importance of length, area and angle distortion in the

parameterization. These parameters must satisfy certain conditions to guarantee that the parame-

terization problem is well-posed. We start with the requirement that an isometry is an α-optimal

parameterization, i.e., a parameterization which minimizes the energy defined by a given set of pa-

rameters α = (αl, αa, αc). We will refer to these simply as “optimal parameterizations” in what

follows. Based on a Taylor expansion of the energy density (2.5) close to an isometry, we show in

Appendix A.1 that an isometry is at least a local minimizer of the energy if

αl > 0 , αa > 0 , αc ≥ 0 (2.6)

A further analysis provides additional insight into these restrictions:

� We require a non-zero length parameter αl > 0 to guarantee the existence of a minimal energy

deformation. Without this restriction one will not have a bounded minimizing sequence in the

space of deformations, e.g., without a penalty on length the energy is invariant under shearing

deformations.

� A non-zero area parameter αa > 0 is critical to ensure local injectivity, and is directly responsi-

ble for preventing folds in the discrete setting of triangulations. Control over area compression

through d−1 also prevents the parameterization from collapsing to a point in the domain, i.e., as

occurs in linear elasticity without the presence of boundary constraints.

� The balancing factor
(

αl
αa

+ 1
)

between area expansion and compression appears when one asks
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for a positive definite Hessian at an energy minimum, e.g., for the sake of applying standard

algorithms in numerical optimization to find a minimizing deformation.

Consequently, the direct control of length and area through αl, αa > 0 plays a crucial role in the

proof of existence.

2.1.6 Existence of Optimal Parameterizations

Guaranteeing the existence of a solution is essential for a numerical algorithm to robustly generate

a parameterization. Therefore we will now give a rigorous and fairly general statement on the

existence of an optimal parameterization.

Theorem 2.2 (Existence of an Optimal Parameterization) LetM be a smooth surface patch, which

is parameterized by an initial parameterization x over a set ω ⊂ R2. Furthermore, consider the

energy in (2.5) over a set of admissible deformations φ, which are continuous and have detφ > 0.

Then for parameters αl, αa, αc which satisfy (2.6), there exists an admissible, minimizing deforma-

tion φ̃.

We defer the proof to Appendix A.2. The theorem states that for any smooth surface patch

M and initial parameterization x, there exists an optimal parameterization for any valid choice of

parameters α satisfying (2.6). This parameterization is formulated by x[φ̃] = x◦ φ̃−1, where φ̃ is an

admissible deformation that minimizes the energy (2.5). Furthermore, φ̃ is in the set of admissible

deformations, meaning that φ̃ is continuous and locally bijective (i.e., det φ̃ > 0 everywhere).

Since the initial parameterization x is required to be locally bijective, it follows that the optimal

parameterization x[φ̃] := x ◦ φ̃−1 is guaranteed to be free of folds in its parameter domain ω[φ̃] :=

φ̃(ω).

In certain applications, one is interested in obtaining an exactly area-preserving parameteriza-

tion (i.e., Γ γ = 1). This is summarized in the following statement.

Corollary 2.3 (Existence of an Optimal, Area-Preserving Parameterization) Under the assump-

tions of Theorem 2.2, and for the modified set of admissible deformations φ with det g−1[φ] = 1,

there exists a minimizing deformation φ̃.

The proof is given in Appendix A.2. The existence of such parameterizations is well known [13,

24, 37], and in this case there exist entire families of parameterizations. This additional degree



16

of freedom can be exploited in the general energy (2.5) to optimize a secondary criterion while

maintaining an exactly area-preserving parameterization.
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2.2 Surface Matching

A correspondence between two surface patches, MA and MB , can be regarded as a non-rigid

spatial deformation

φM :MA → R3

such that corresponding regions of MA are mapped onto regions of MB . Instead of formulat-

ing these maps directly in R3, we match geometric characteristics and user-defined features in the

parameter domain. The main benefit of this approach is that it simplifies the problem of finding

correspondences for surfaces embedded in R3 to a matching problem in two dimensions.

Our motivation comes from a variational approach for matching images through an energy re-

laxation over a set of non-rigid deformations in the plane [18, 20], where the optimal match is

achieved by the mapping that minimizes a suitable energy. To ensure that the actual geometry of

the surface patches is treated properly in our approach, the energy on the deformations from on

parameter space to the other will measure:

� (regularization energy) smoothness of the deformation in terms of tangential distortion,

� (bending energy) bending of normals through the proper correspondence of curvature, and

� (feature energy) the proper correspondence of important surface and texture features.

Furthermore, it will consistently take into account the proper metrics on the parameter domains,

which ensures that we are actually treating a deformation from one surface onto the other even

though all computations are performed in 2D.

2.2.1 A Physical Interpretation of the Matching Deformation

Consider the first surface to be a thin shell which we press into a mould of the second surface (Fig-

ure 2.2). One can distinguish between stresses induced by stretching and compression, and stressed

induced by bending that occurs in the surface as it is being pressed. Thus φM can be regarded as

the deformation of such a thin shell. We assume this deformation to be elastic. The regularization

energy in (2.7) will measure the induced in-plane stresses, and the concrete energy density in (2.8)

allows control over length and area-distortion in this surface-to-surface deformation. Since we are

aiming for a proper correspondence of shape, we will incorporate the bending of normals in our

energy with (2.9). Finally, the matching of feature sets in (2.10) will provide user-specified land-

marks to guide the surface deformation. In what follows, we will develop the variational approach

step-by-step.
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MA
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Figure 2.2: A physical interpretation of φM as pressing a thin shellMA into a mould of the surface
MB being matched. The bending (1) and stretching (2) of the thin shell is measured in our matching
energy, and minimized by the optimal match φM.

2.2.2 Measuring Distortion in a Deformation

The distortion in a parameterization was the subject of Section 2.1.2 in the previous chapter, where

it was shown that the distortion from the surface patchM onto the parameter domain ω under the

inverse parameterization x−1 is measured by the inverse metric g−1 ∈ R2,2. Specifically,
√

tr(g−1)

measures the average change of length of tangent vectors under the mapping from the surface onto

the parameter plane. Additionally,
√

det(g−1) measures the corresponding change of area. We will

use these quantities in the following sections to account for the distortion of length and area on the

surface as we formulate our matching energy in the parameter domain.

The above discussion now applies to the parameter maps xA and xB of the surfacesMA and

MB . We suppose that these parameterizations are defined in an initial step and we assume that xA

and xB as well as the corresponding parameter domains ωA and ωB are fixed from now on. Their

metrics are denoted by gA and gB , respectively. We will now study the distortion which arises from

a deformation of the first parameter domain onto the second parameter domain. First, let us consider

deformations φ : ωA → ωB which are one-to-one. This deformation between parameter domains

induces a deformation between the surface patches φM :MA →MB defined by

φM := xB ◦ φ ◦ x−1
A .

Let us emphasize that we do not actually expect a one-to-one correspondence between surface

patches. Later we will relax this assumption and in particular allow for deformations φ with

φ(ωA) 6⊂ ωB . The complete mapping is illustrated in Figure 2.3.

Now let us focus on the distortion from the surfaceMA onto the surfaceMB . In elasticity, the
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Figure 2.3: The matching function φM := xB ◦ φ ◦ x−1
A is a mapping between the corresponding

shaded regions of the two surfaces. The partial correspondence is defined on ωA[φ] := ωA ∩
φ−1(ωB).

distortion under an elastic deformation φ is measured by the Cauchy-Green strain tensor DφTDφ.

We wish to adapt this definition to measure distortion between tangent vectors on the two surfaces,

as we did with the metric g in Section 2.1.3. Therefore, we properly incorporate the metrics gA and

gB at the deformed position and obtain the distortion tensor G[φ] ∈ R2,2 given by

G[φ] = g−1
A DφT (gB ◦ φ)Dφ ,

which acts on tangent vectors on the parameter domain ωA, where products are denoted in ma-

trix notation. Mathematically, this tensor is defined implicitly via the identity (gA G[φ] v) · w =

(gB ◦ φ)Dφv ·Dφw for tangent vectors v, w on the surfaceMA and their images as tangent vec-

torsDφv, Dφw onMB , where here we have identified tangent vectors on the surfaces with vectors

in the parameter domains.

As in the parameterization case, one observes that
√

tr(G[φ]) measures the average change of

length of tangent vectors fromMA when being mapped to tangent vectors onMB and
√

det(G[φ])

measures the change of area under the deformation φM. Thus tr(G[φ]) and det(G[φ]) are natural

variables for an energy density in a variational approach measuring the regularity of a surface de-
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formation,

Ereg[φ] =
∫

ωA

W
(
tr(G[φ]),det(G[φ])

)√
det gA dξ . (2.7)

This simple class of energy functionals was previously derived in Chapter 2.1 from a set of natural

axioms for measuring the distortion of a single parameterization. In particular, the following energy

density

W (a, d) = αla+ αa

(
d+ ( αl

αa
+ 1) d−1

)
(2.8)

accounts for length distortion with a = a(A) = tr(G[φ]), area expansion with d = d(A) =

det(G[φ]) and area compression with d−1 in a similar manner to (2.5). The parameters αl, αa > 0

are typically chosen by the user according to the relative importance of length and area distortion.

2.2.3 Measuring Bending in a Deformation

When we press a given surfaceMA into the thin mould of the surfaceMB , a major source of stress

results from the bending of normals. We assume these stresses to be elastic as well and to depend

on changes in normal variations under the deformation. Variations of normals are represented in

the metric by the shape operator. We defer the derivation of the shape operators SA and SB of the

surface patchesMA andMB to Appendix B.1, where we end up with tr(SB ◦ φ) − tr(SA) as a

measure for the bending of normals. Since the trace of the shape operator is the mean curvature, we

can instead aim to compare the mean curvature hB = tr(SB) of the surfaceMB at the deformed

position φM(x) and the mean curvature hA = tr(SA) of the surfaceMA. A similar observation

was used in [21] to define a bending energy for discrete thin shells. This proposed simplification

neglects any rotation of directions due to the deformation, e.g., if the deformation aligns a curve

with positive curvature on the first surface to a curve with negative curvature on the second surface

and vice versa, an energy depending solely on hB ◦ φ − hA does not recognize this mismatch.

Nevertheless, in practice the bending energy

Ebend[φ] =
∫

ωA

(hB ◦ φ− hA)2
√

det gA dξ (2.9)

turns out to be effective and sufficient. By minimizing this energy, we ensure that the deformation

properly matches mean curvature on the surfaces.
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2.2.4 Matching Features

Frequently, surfaces are characterized by similar geometric or texture features, which should be

matched properly as well. Therefore we will incorporate a correspondence between one-dimensional

feature sets in our variational approach to match characteristic lines drawn on the surface. In par-

ticular, we prefer feature lines to points for the flexibility afforded to the user, as well as to avoid

the theoretical problems introduced by point constraints [9]. We will denote the feature sets by

FMA
⊂ MA and FMB

⊂ MB on the respective surfaces. Furthermore, let FA ⊂ ωA and

FB ⊂ ωB be the corresponding sets on the parameter domains. We are aiming for a proper match

of these sets via the deformation, i.e.,

φM(FMA
) = FMB

or in terms of differences, FMA
\ φ−1

M(FMB
) = ∅ and FMB

\ φM(FMA
) = ∅. A rigorous way to

reflect this in our variational approach is with a third energy contribution,

EF [φ] = H1(FMA
\ φ−1

M(FMB
)) +

H1(FMB
\ φM(FMA

)) (2.10)

where H1(A) is the one-dimensional Hausdorff measure of a set A on the corresponding surface.

Roughly speaking, this gives a symmetric measurement of the size of the mismatch of the features.

This type of energy does not lend itself to a robust numerical minimization. Therefore, we will

instead consider a suitable approximation of (2.10) that involves the distance on the surface to the

feature sets, and define

Ẽε
F [φ] =

∫
ωA

(
ηε ◦ dA(ξ)

)(
θε ◦ dB(φ(ξ))

)√
det gA dξ +∫

ωB

(
ηε ◦ dB(ξ)

)(
θε ◦ dA(φ−1(ξ))

)√
det gB dξ (2.11)

where dA(·) = distA(·,A) and dB(·) = distB(·,A) are distance functions on the parameter do-

mains ωA and ωB with respect to some set A on the corresponding surface. Note that we measure

distance either in the metric gA on ωA or in the metric gB on ωB . Additionally, we define the
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localization functions

ηε(s) = 1
ε max

(
1− s

ε , 0
)
, θε(s) = min

(
s2

ε , 1
)

which act as cut-off functions. For Lipschitz continuous feature sets and bi-Lipschitz continuous

deformations, we observe that Ẽε
F [φ] → EF [φ] as ε → 0, which motivates our approximation. In

view of the later discretization, we can reformulate the second term in (2.11) as

∫
ωA

(
ηε ◦ dB(φ(ξ))

)(
θε ◦ dA(ξ)

)√
det gB(φ(ξ)) detDφdξ .

2.2.5 Partial Correspondence

Usually, we cannot expect that φM(MA) = MB , particularly near the boundary where certain

subregions of MA will have no corresponding counterpart on MB and vice versa. Therefore,

we must allow for points on MB with no pre-image in MA under a matching deformation φM,

and points on MA which are not correlated to points on MB via φM (cf. Figure 2.3). Thus we

must adapt the variational formulation accordingly. If φ(ωA) 6= ωB , then φM is now defined on

xA(ωA[φ]) only, where

ωA[φ] := φ−1 (φ(ωA) ∩ ωB)

is the corresponding subset of the parameter domain ωA. Furthermore, we define new energies (with

modifications marked in red):

Ebend[φ] =
∫

ωA[φ]
(hB ◦ φ− hA)2

√
det gA dξ , (2.12)

EF [φ] = H1(ωA[φ] ∩ FMA
\ φ−1

M(FMB
)) +

H1(FMB
\ φM(ωA[φ] ∩ FMA

)) . (2.13)

For an energy that controls tangential distortion, it is still helpful to control the regularity of the

deformation outside the actual matching domain ωA[φ], where we would like to allow significantly

larger deformations by using a “softer” elastic material. Hence we will suppose that gB , which is

initially only defined on ωB , is extended to R2 and takes on values that are relatively small to allow

for greater stretching.

In the minimization algorithm, we need descent directions which will involve derivatives of

these energies with respect to the deformation φ. In taking these derivatives, integrals over the
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variable boundary ∂ωA[φ] will appear. Since these are tedious to treat numerically, we will rely

on another approximation for the sake of simplicity. Our strategy here is to change the domain of

integration ωA[φ] to a superset ω which extends beyond the boundary ∂ωA[φ]. Doing so means

that special treatment of boundary integrals is no longer necessary, although we are now required to

evaluate the integrands of the energies outside of ωA, and similarly for deformed positions outside

of ωB . To achieve this, we will extend our surface quantities onto ω \ ωA and ω \ ωB , respectively,

by applying a harmonic extension with natural boundary conditions on ∂ω to gA, gB and hA, hB

(e.g., we define hA as the solution of Laplace’s equation on ω \ ωA with vanishing flux on ∂ω).

Additionally, we introduce a regularized characteristic function

χε
A(ξ) = max(1− ε−1dist(ξ,A), 0) (2.14)

to cause the energy contributions to be ignored at some distance ε away from ωA[φ]. Thus, instead

of dealing with a deformation dependent-domain ω[φ] in the definition of our different energy con-

tributions, we always integrate over the whole image domain ω and insert the product of the two

regularized characteristic functions

χε(ξ) = χε
ωA

(ξ)χε
ωB

(φ(ξ))

as an additional factor in the energy integrand. We apply this modification to the energy Ebend (2.9)

and the already regularized energy Ẽε
F (2.11) and denote the resulting energies by

Eε
bend and Eε

F , (2.15)

respectively.

2.2.6 Definition of the Matching Energy

We are now ready to collect the different cost functionals and define the global matching energy.

Depending on the user’s preference, we introduce weights βbend, βreg, βF for the approximate en-

ergies in (2.15) — we have found that βbend = 1, βreg = 0.01, βF = 5 work well — and define the

global energy

Eε[φ] = βbendE
ε
bend[φ] + βreg Ereg[φ] + βF E

ε
F [φ] (2.16)
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which measures the quality of a matching deformation φ on the domain ω. Finally, in the limit

ε→ 0 we obtain a weighted sum of (2.7), (2.12) and (2.13):

E[φ] = βbendEbend[φ] + βreg Ereg[φ] + βF EF [φ] . (2.17)

We call a matching deformation β-optimal if it minimizes the energy (2.17) for a specific set of

parameters β = (βbend, βreg, βF ). One can prove the existence, global injectivity, and regularity

of β-optimal matching deformations [17]. Because of this proof, we can expect to obtain smooth

deformations that are free of folds and singularities.
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Chapter 3

Algorithms

The variational framework described in the previous chapter provides us with a solid foundation

on which to design numerical methods for generating parameterizations. In the discrete setting, we

assume that the surface patches are given as triangle meshes. In this chapter, we provide the algo-

rithms for generating optimal, discrete surface parameterizations and surface matches, respectively.

The general procedure is the same for both of these methods. We begin with an initial mapping of

the surface to a triangulated parameter domain. A straightforward finite element discretization fol-

lows, which describes the function space of elastic deformations over this domain. We then employ

standard methods from numerical optimization to generate an optimal deformation that minimizes

a variational energy. The energy, which is defined at the discrete level, properly accounts for the

geometry of the surface through the discrete metric of the initial parameterization. The algorithms

are guaranteed to generate an optimal mapping that retains the analytic properties which we derived

earlier, including smoothness and local bijectivity. We will now turn to the description and analysis

of the surface parameterization algorithm, followed by the surface matching algorithm in the second

half of this chapter.
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3.1 The Parameterization Algorithm

We shall now describe our algorithm to construct an optimal parameterization for a discrete surface

patch. We assume that the surface patchM is provided as a manifold triangle mesh with boundary.

A discrete parameterization x : ω → M is a piecewise-affine mapping on the triangles in the

parameter domain ω ⊂ R2 to the corresponding triangles in R3. The algorithm generates an optimal,

discrete deformation φ̃ : ω → R2 which we apply directly to the planar triangulation ω to obtain the

optimal parameter domain ω[φ̃] := φ̃(ω) (cf. Figure 2.1). The final parameterization is fully defined

by the coordinates assigned to the vertices of the triangles in ω[φ̃] (e.g., as “texture coordinates” for

texture mapping, Figure 3.1).

Figure 3.1: For a surface mesh (left, 36k triangles), a parameterization is computed, depicted
through a texture map (middle). The parameter domain (right) is optimized through the minimiza-
tion of energy functions which control length, area and angle distortion (shown clockwise from top
right; dark regions indicate higher energy).

The user controls the parameterization through the choice of parameters α = (αl, αa, αc) that

balance the trade-off between length, area and angle distortion, respectively. For example, specify-

ing a larger value for αa will result in a parameterization that is biased toward low area distortion at

the expense of greater length and angle distortion, etc. The parameters must satisfy the conditions

stated in (2.6), namely

αl > 0 , αa > 0 , αc ≥ 0 .

In practice, we normalize the parameters using αl + αa + αc = 1 for the sake of better numerics.
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We will now turn to the main steps in the algorithm:

1. Construct an initial parameterization of the surface.

2. Optimize the parameterization through a discrete deformation of the parameter

domain that minimizes the energy E[·] defined in (2.5).

3.1.1 Initial Parameterization

Our algorithm requires that an initial parameterization be provided for the subsequent optimization

of the parameter domain. With this optimization step in mind, we desire an initial parameterization

that is close to optimal to make the energy minimization more efficient. It follows that this parame-

terization should already have low distortion. Moreover we advocate choosing an initial parameter-

ization with natural boundary conditions over a constrained boundary, e.g., a convex polygon in the

plane. In the latter case one often encounters extreme shearing and compression in the boundary

elements which is difficult to correct through numerical optimization.

For this purpose we use the natural conformal map [15] in our examples (also known as the least-

squares conformal map [29]). This parameterization has low angle distortion and natural boundary

conditions, and is cheap to compute since it only requires the solution of a sparse linear system.

Other free-boundary parameterization algorithms can be used (e.g., [26, 46]) provided that the initial

parameterization is admissible (cf. Section 2.1.2).

Recall from Section 2.1.5 that the energy (2.5) is a function of the principal invariants of the

inverse metric g−1. On inspection only the conformal (third) term in the energy is unaffected by

uniformly scaling the surface patchM or the parameter domain ω. In practice we would like the

parameterization energy to be scale-invariant. In many applications the scale of the ambient space

in R3 and the parameter space in R2 are chosen independently and therefore a parameterization

energy that identifies these scales does not fit within the application framework. Furthermore, it

is unreasonable to expect the numerical optimization method to make up the difference in scale

during the energy minimization, as this requires extra computation and can become a source of

instability due to the large magnitude of the gradients for the length and area terms. One solution is

to reformulate the energy so that these terms are scale-invariant. However a simpler solution is to

uniformly scale the parameter domain by a factor σ prior to the optimization step. Following [44],

we let σ be the ratio of the surface area versus the area of the domain triangulation, so that σ = 1
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for any isometric parameterization of a developable surface. When the optimal parameterization is

constructed, the parameter domain is returned to its original scale using the inverse scale factor σ−1.

3.1.2 Finite Element Discretization

Suppose that ω is an admissible triangle mesh in the parameter space R2, and let T denote the

triangles of ω. A discrete deformation φ : ω → R2 is a vector-valued function, whose components

are piecewise-affine, continuous functions. For these deformations we have to evaluate the discrete

counterpart of energy functional (2.5),

E[φ] =
∑
T∈ω

W
(
tr(C[φ]),det(C[φ])

)√
det g |T |

with the area of a triangle in the plane denoted by |T |. On each triangle T ∈ ω, a constant Cauchy-

Green strain tensor is defined by C[φ] := Dφg−1DφT where the derivative Dφ and the discrete

metric g are constant matrices in R2,2.

Besides evaluating the discrete energy for a given deformation φ, we have to compute the gra-

dient ∇E[φ] and (optionally) the Hessian ∇2E[φ] in the actual minimization algorithm in Sec-

tion 3.1.3, which requires the differentiation of the discrete energy with respect to the discrete de-

formation. All the necessary expressions to assemble these matrices are provided in Appendix B.2.

A necessary condition for a discrete deformation φ to minimize the energy is ∇E[φ] = 0. Due

to our assumption of frame indifference (2.2) the energy is invariant under Euclidean motion. To

remove these degrees of freedom we add two constraints on the zero moment M0(φ) to eliminate

translations, and one on the angular momentum M1(φ) to cancel rotations:

M0(φ) :=
∫

ω
φ(ξ) dξ = 0

M1(φ) :=
∫

ω

[
φ(ξ)2ξ1 − φ(ξ)1ξ2

]
dξ = 0

To provide the necessary normalization with respect to rigid body motions, we employ Lagrange

multipliers for the moment constraints. Effectively, the discrete energy E[φ] is replaced by a modi-

fied energy

Ē[φ, λ] = E[φ] +

 λ1

λ2

 ·M0(φ) + λ3M1(φ) .
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Instead of solving ∇E[φ] = 0 for φ one now solves the equation ∇Ē[φ] = 0 for the deformation φ

and the Lagrange multipliers λ1, λ2, λ3. To find the minimum of this energy with a Newton method

one also needs the Hessian. Based on ∇2E[φ] we obtain

∇2Ē[φ, λ] =

 ∇2Ē[φ] M

MT 0


using

M =

 m 0 −m

0 m m

 ,

where m is the vector of masses of the nodal basis functions, i.e., mk :=
∑
N k

1
3 |T | with N k

denoting the set of triangles incident to vertex k = 1, · · ·, n. Note that while this new Hessian

∇2Ē[φ, λ] is not positive definite, it does not pose a problem for our algorithm as we explain below.

3.1.3 Numerical Optimization

We use an iterative approach to find a sequence of discrete deformations {φi}i=0···N such that φN

minimizes the discrete energy E[·], i.e., E[φ0] > E[φ1] > · · · > E[φN ] and ∇E[φN ] = 0. The

optimal deformation φ̃ = φN thus generates the final, optimal parameterization x[φ̃] := x ◦ φ̃−1.

Because our energy is polyconvex, it has multiple local minima and therefore it is non-trivial

to guarantee that one will find a global minimum. Our strategy is to find a local energy minimum

starting from a reasonable initial guess, namely, the initial parameterization in Section 3.1.1. It

follows that the minimizing sequence of deformations begins with φ0 being the identity function.

// Find an optimal deformation φ̃ that minimizes E[·]
φ0 ← 0, i← 0
repeat

// Choose a search direction and step size
compute the search direction ψi

calculate the step size τi
if ‖τiψi‖2 < ε then φ̃← φi and stop

// Update the deformation
φi+1 ← φi + τiψi

i← i+ 1

Figure 3.2: Pseudo-code for the optimization algorithm.



30

We use a simple line search method to find φ̃ (Figure 3.2). Each iteration of the line search

computes a search direction ψi and then decides how far to step in this direction. The iteration is

given by

φi+1 ← φi + τiψi

Many classical numerical methods can be used to compute ψi (Figure 3.2, search direction).

There is a typical trade-off between performance, in terms of the number of iterations to converge to

the minimum, and the complexity of algorithm, which is related to what local model of the energy

landscape is used in selecting the search direction. For example, the simplest gradient descent

method relies only on the local gradient, i.e., ψi = ∇E[φi], but it has poor convergence properties.

We chose to use a Newton method in our implementation because it guarantees a quadratic rate of

convergence close to an optimal solution (Chapter 3, [38]). It computes ψi by solving a sparse linear

system,

∇2Ē[φi, λ]

 ψi

µ

 =

 ∇E[φi, λ]

0

 (3.1)

where µ ∈ R3 appears due to the Lagrange multipliers in Ē[·]. For the solution of the linear

saddle-point problem (3.1), one could apply Uzawa’s algorithm [8]. We simply use a precondi-

tioned conjugate gradient algorithm. We have never observed any difficulty in practice even though

theoretically the matrix∇2Ē[φi, λ] is not positive definite. As a preconditioner, we apply a diagonal

preconditioning to ∇2Ē.

The next step is to determine the step size τi for the iteration (Figure 3.2, step size). We require

τi to be chosen such that the energy decreases at each iteration. We accomplish this with a simple

step size control algorithm that uses the Armijo condition [38] to guarantee sufficient decrease of

the energy functional (Figure 3.3). The parameters control how aggressively the algorithm is in

taking large steps — we find that τi = 1, ρ = 0.8, c = 0.5 work well in practice.

// Choose τi > 0, ρ, c ∈ (0, 1)
repeat until E[φi + τiψi] ≤ E[φi] + cτi∇E[φi]Tψi

τi ← ρ τi

Figure 3.3: Pseudo-code for the step size control algorithm.
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Beside asking for sufficient decrease of the energy, one must be concerned with taking legal

steps. Our concern lies in the fact that an illegal step φi + τiψi that generates an inadmissible

deformation could actually lower the energy. This problem can be seen directly from our energy

functional (2.5). If a triangle element T reverses its orientation due to a fold in the deformation,

one can experience a negative energy value. One can address this issue by defining E[φ] to be

unbounded for detφ < 0, which is a natural extension of E[·] since E[φ]→∞ as detφ→ 0. This

is equivalent to simply disallowing a step for which det(φi + τiψi) ≤ 0 on any triangle T .

We stop the line search method when the update is sufficiently small in the L2 norm, controlled

by the threshold parameter ε > 0 (Figure 3.2, stop). If we have reached a local minimum, i.e.,

∇E[φi] ≈ 0, then we have achieved the optimal deformation φ̃ = φi.

The line search will also terminate if no further progress can be made to reduce the energy. This

“locking” can occur when the line search gets lost in the energy landscape because of a poor choice

for the initial parameterization. In this case, a simple continuation method on the energy parameters

α can be used to set up a series of easier optimization problems,

H(φ, θ) = E[φ]|α=(1−θ)α0+θα1

where the blend parameter θ ∈ [0, 1] is chosen from a monotonically increasing sequence {θj}j=0···J

that transforms the energy landscape from E[·]|α0 to the desired energy E[·]|α1 . The motivation

comes from choosing α0 so that the initial parameterization is close to an optimal solution of

E[·]|α0 = H(·, θ0). The minimizer of H(·, θj) is used as the initial parameterization for the next

problem in the sequence, H(·, θj+1). Thus by completing this sequence one obtains the optimal

deformation φ̃ as the minimizer of E[·]|α1 = H(·, θJ). Generally speaking, naı̈ve continuation

methods of this form can fail in practice [38]. However we have found this approach to be entirely

sufficient for transforming solutions of one energy to another.



32

3.2 The Matching Algorithm

In Chapter 2.2 we developed a variational framework for matching surface patches without regard

to a particular discretization. Now we will describe our method for constructing a match based

on a straightforward discretization using finite elements. We assume that the surface patchesMA

and MB are given as triangle meshes. In the initial step, we generate parameterizations which

define triangulated parameter domains ωA and ωB using the approach described in Section 3.1.

Because of the difficult algorithmic details, we do not wish to deal with effectively overlaying two

triangulations during the numerical solver stage. Consequently we discretize the domain onto a

regular grid (“image”) and evaluate the associated surface quantities needed in the energies at each

pixel (in effect we may think of this as a geometry image [22]).

This setup has two principal advantages: (1) the resolution of the original meshes is decoupled

from the resolution used in the image domain and (2) multiscale algorithms are far simpler to im-

plement in the regularly sampled image grid than over arbitrary triangle meshes (even if flat). In

particular, we can use higher sampling rates in the image domain to alleviate aliasing problems. Ad-

ditionally, the image pyramids used by a hierarchical solver have far more efficient memory access

patterns on modern processors than one achieves with arbitrary meshes.

We now turn to the basic components of the implementation:

1. Construct parameterizations for the surface patches.

2. (optional) Select matching features on the surfaces with separate texture maps.

3. Evaluate the metric and mean curvature by scan converting the surface triangulation

in the parameter domain.

4. Apply a finite element discretization and optimize the matching deformation using a

multiscale approach to minimize the energy Eε[·] defined in (2.16).

3.2.1 Surface Patch Parameterization

We are interested in low distortion parameterizations to ensure an adequate sampling and to keep the

energy landscape as nice as possible. Recall that the metric of the parameterization enters into our

energy formulation. Therefore, parameterizations with unnecessarily large gradients only serve to

make the energy minimization problem harder. We address these issues by applying the algorithm
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Figure 3.4: A brief overview of our surface matching process: The two surfaces to be matched are
parameterized (top); we generate images of mean curvature, the metric and user-defined feature
sets on a 256×256 grid (middle); an optimal matching deformation is then found through a global
energy relaxation in the parameter domain using fast multiscale algorithms. The match is prop-
erly defined in 3D by incorporating the metric in the matching energy. A finely detailed texture is
transferred to the first surface, and a 50% morph is created (bottom). The match took under 3 min.
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in Section 3.1 to parameterize the surfaces. In practice, we find that αl = αa = αc = 1
3 works

nicely for this purpose.

Once both surfaces have been parameterized, we perform a rough alignment by applying a

normalizing transformation such that the parameter domains are subsets of the domain ω := [0, 1]2.

Due to the feature energy contribution from (2.11) and the hierarchical nature of the minimization

algorithm this rough alignment is entirely sufficient.

3.2.2 Feature Set Construction

The user can control the match by identifying sets of similar features on the surface patches. The

cost functionalEε
F [·] from (2.11) helps to guide the energy minimization to match the corresponding

features. Marking the desired feature set FA is most easily accomplished in the image domains.

Figure 3.5 gives examples of these, showing the texture images mapped onto the surfaces. The

actual feature sets are the boundaries of the (pixel) regions drawn by the user on the texture image.

Note that when we match features, we do not constrain points since this would break the regularity

of the deformation. Instead, we match feature curves which permits sliding of the deformation

along the curve.

There are many ways in which features can be used to control a match:

� Coarse control of the match is achieved by roughly selecting corresponding geometric features

and gradually decreasing βF to zero as the multiscale method goes to finer resolutions (Fig-

ure 3.5a).

� Precise control over matching texture features (e.g., on the face, etc.) is achieved by selecting

the corresponding pixels in the feature set image (Figure 3.5b).

� Lines of symmetry drawn as features allow deformations tangential to the feature boundary, but

prevent deformations that are transverse to it (Figure 3.5c).

In general, features tend to localize the matching deformation, i.e., the feature boundaries partition

the domain into deformable regions and minimize the deformation between these regions. This

is useful when the surface is composed of regions with different elastic properties and prevents

excessive “sliding” of the surface (e.g., the highly deformable face versus the forehead, Figure 3.5d).

Sometimes it is necessary to relax the regularization energy to allow very large deformations in a

certain region (e.g., opening the mouth, Figure 3.5e). We achieve this by decreasing βreg in the

selected region.



35

a a

c

c cc

c c

b

d

d d d

e
b b

e
b

A A

AB

B

B

Figure 3.5: Examples of user-defined feature sets: (a) coarse registration of geometric features; (b)
aligning texture features; (c) lines of symmetry; (d) preventing smooth, rigid regions from sliding;
and (e) increasing the elasticity of highly deformable regions.

The distance maps used in the definition of the feature energy are discretized by an upwind

scheme for the corresponding Eikonal equations [40] (Figure 3.6c). We used the particular upwind

finite element algorithm of Bornemann [6] since it fits well with our overall finite element frame-

work. Multiple sets of overlapping features are accounted for by taking the distance to the nearest

feature to create a single distance map.

3.2.3 Evaluation of Surface Properties

The matching energy needs to evaluate surface quantities such as the mean curvatures hA, hB , met-

ric tensors gA, gB , distance to the feature setsFA,FB , and signed distance to the domain boundaries

∂ωA, ∂ωB in the case of (2.14). Since all of these are constants in the energy they only need to be

discretized into appropriate textures once in the beginning. We achieve this through rendering the

flattened triangulations with appropriate values at the vertices interpolated across triangles (Fig-

ure 3.6).
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a b c d

Figure 3.6: Surface properties are evaluated once and rasterized into images for (a) mean curvature
hA; (b) the metric tensor gA, with components shown as rgb values; (c) the distance map for the
feature set FA, shown in red; and (d) the distance map for the characteristic function χε

A, with the
domain boundary ∂ωA in blue.

For hA we use the magnitude of the mean curvature normal [16, 34]. The sign is chosen accord-

ing to the surface normal, which we take to be the area-weighted sum of triangle normals around

a vertex. Other measurements for the mean curvature would work equally well (see [34] for a sur-

vey). Since gA is symmetric and constant over each triangle element, we can evaluate its three

unique components as a function of the triangle vertices. The calculation of the Jacobian of the pa-

rameterization over a triangle is well documented in the parameterization literature (e.g., see [44]).

The distance map for FA is described above and illustrated in Figure 3.6c. To compute the distance

map for the characteristic function, we rasterize the domain of MA and then generate its signed

distance field in a similar manner to FA (Figure 3.6d).

3.2.4 Multiscale Finite Element Method

The total energy E[·] is highly non-linear. In particular the bending energy causes many local min-

ima in the energy landscape over the space of deformations. We take a multiscale approach, solving

a sequence of matching problems from coarse to fine scales. This type of method is frequently

applied and well understood in image processing [2], allowing for a robust and efficient global

minimization on complicated energy landscapes (Figure 3.7).

To begin, let us define a sequence of energies (Eσk)k=0,··· ,m corresponding to scale parameters

σ0 > σ1 > · · · > σm = 0, which act as filter parameters and range from coarse to fine scale.

In essence the energy landscape is smoothed, enabling “basin catching” at coarse levels to provide

good starting guesses for subsequently finer levels. Note that it is not necessary to compute the

exact minimizer on every coarse scale. Instead we apply a non-linear conjugate gradient method

with respect to the standardL2 metric on the space of deformations, and use the Armijo condition for

step size control [38] (Figure 3.7, minimize). We stop iterating as soon as the update is sufficiently

small in the L2 norm. In practice this proves to be a good heuristic to ensure that at the time we stop
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// Build the image pyramid
for k = m downto 0 do

filter images at level k using σk

// Optimize φk from coarse to fine scales
φ0 ← 0
for k = 0 to m do

minimize Eσk starting with φk

if k < m then prolongate φk to φk+1

Figure 3.7: Pseudo-code for the multiscale algorithm.

on level k with a deformation φk, this deformation is already in the contraction region of the global

minimum on the next finer scale k + 1 (Figure 3.7, prolongate). The prolongation of φk to φk+1 is

performed using bilinear interpolation.

k = 8 k = 7 k = 6 k = 5

Figure 3.8: The mean curvature function hA is extended to the full image domain ω and successively
restricted to coarser grids k = 8, · · · , 0 from the multigrid pyramid.

It remains for us to define the scale of energies. First, we replace the functions on the surfaces as

they appear in the different energy functionals by pre-filtered, smoothed representations (Figure 3.7,

filter). A Gaussian filter of width σk is used to define the smoothing on the surfaces MA and

MB . Exploiting the connection between Gaussian filtering and the fundamental solution of the

heat equation, we replace the mean curvatures hA and hB (appearing in the bending energy) by

pre-filtered mean curvature functions hσk
A and hσk

B . This amounts to applying the appropriate filter

kernels to the corresponding hA and hB images. Figure 3.8 shows images representing a scale of

filtered mean curvature functions hσk
A on the parameter domain of a surface MA. Similarly, we

filter the metric tensors gA and gB component-wise.

The regularization parameter ε in the definition of the energies also depends on the sequence of

scale parameters and is set to ε(σk) = 2σk. For the matching problems considered in this paper,

we start with σ0 = 1, and define σk = 1
2σk−1 for k = 1, · · · m. In our examples the parameter

domains are discretized with a 256×256 grid and have a maximal number of m = 8 scales.
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Chapter 4

Analysis

This chapter investigates the performance and robustness of the algorithms. We will demonstrate

through a series of experiments the characteristic behaviour of these algorithms in practical test

scenarios. The tests focus on parameterizations of physically-acquired triangle mesh data. Physical

surfaces undeniably provide the largest variety of detail across many scales, so much so that modern

aquisition methods often have difficulty producing data that is suitable for use without further pro-

cessing. Establishing parameterizations for this data is one important form of pre-processing. Our

challenge lies in the wide variety of shapes and the varying quality of the triangle meshes, which

tax the performance and robustness of our numerical methods in different ways. We show evidence

of efficiency and stability through our implementation of parameterization.
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4.1 Surface Parameterization

The following provides demonstrations of the parameterization algorithm in Section 3.1. These

feature typical but nonetheless challenging examples of parameterizations aimed at measuring the

performance of our method. Fundamentally, we expect that the parameterizations generated for

discrete surfaces uphold the principles that we established in our variational model for continuous

surfaces (cf. Section 2.1). The central tenet is the existence of a continuous and locally bijective

parameterization that is optimal for a given set of parameters α = (αl, αa, αc), which is summarized

in Theorem 2.2. Moreover, the parameterization should be robust subject to different triangulations

of the surface geometry, due to the finite element discretization of the parameterization energy in

Section 3.1.2. Finally, we expect the distortion in the parameterizations to be distributed in relative

accordance with the user’s choice of parameters α. The following examples show that all of these

requirements are satisfied in our implementation.

4.1.1 Convergence of the Optimization Algorithm

For global energy minimization methods one is typically concerned with the rate of convergence

to an optimal solution (if convergence occurs at all) and the number of iterations spent in the min-

imization algorithm. Figure 4.1 plots the energy decay for a series of examples, in which a quasi-

conformal initial parameterization due to [15, 29] is optimized based on our own nearly conformal

energy (αc � αl, αa). The vertical axis measures the L2 norm of the energy gradient on a logarith-

mic scale, i.e., log10

(
‖∇E[·]‖2

)
. The trend of these graphs shows that when the deformation φi is

sufficiently close to the optimal solution, the Newton method achieves its optimal quadratic rate of

convergence. In all of these examples the maximum step size (β = 1) was chosen at each iteration

which further supports the choice of a Newton method for our problem.

M V F α = (αl, αa, αc) Iterations Time
igea 7427 14611 (0.5, 0.5, 99) 4 0m59s

maxplanck 8991 17755 (1, 1, 98) 7 2m27s
mannequin 2732 5420 (0.5, 0.5, 99) 12 0m16s

sphere 4159 8184 (0.5, 0.5, 99) 5 0m17s
476 864 (1, 1, 98) 4 515ms

stampedpart 1815 3456 (1, 1, 98) 4 0m03s
7085 13824 (1, 1, 98) 5 1m03s

Table 4.1: Performance figures for examples of nearly conformal parameterizations (V, F denote #
vertices and # faces, respectively, for triangle meshM).
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Figure 4.1: Plots of the energy decay for the sequence of deformations computed in the parame-
terization energy minimization algorithm. A quadratic rate of convergence is experienced near the
optimal solution.

We can take a closer look at this process by inspecting the intermediate parameterizations that

are generated during the minimization. Due to the invariants of our algorithm, these parameteri-

zations are guaranteed to be admissible. Figure 4.2 depicts the intermediate deformations acting

on a rectilinear grid in the initial parameter domain ω. Notice that much of the optimization is

involved in improving the area distortion of the initial parameterizations. Since solutions of the

natural conformal parameterization do not have direct control over the area factor, this result is not

surprising. The final, optimal deformation is a Möbius transformation since the conformality of the

parameterization is preserved under this mapping.

The overall performance of our implementation is summarized in Table 4.1. Performance figures

were recorded on a 2 GHz Pentium IV processor. For each example, an initial quasi-conformal

parameterization is optimized according to the energy defined by α (shown as percentile values

of 1). In all of our tests, the global energy minimization algorithm converges in relatively few

iterations. More iterations are typically required when the initial parameterization is significantly

more distorted than the optimal parameterization.
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(a) i = 1 i = 2 i = 3 i = 4

(b) i = 3 i = 6 i = 9 i = 12

Figure 4.2: A sequence of deformations is generated by the global energy minimization algorithm,
shown here acting on a grid in the parameter domain for (a) the stamped mechanical part and
(b) the mannequin.

4.1.2 Convergence of the Continuation Method

The energy landscape that expresses the relationship between the initial parameterization and the

optimal parameterization can be very complex: since the parameterization energy is polyconvex,

it contains many local minima. Global optimization methods perform quite well when the initial

parameterization is sufficiently close to the optimal solution, but they can quickly break down if a

global minimum is nowhere in sight.

Continuation methods provide a strategy to gradually change the energy landscape allowing

one to transform the optimal parameterization for one set of parameters α0 to the solution for a

second parameter set α1 (cf. Section 3.1.3). Our strategy is quite naı̈ve: after finding the optimal

parameterization for the energy corresponding to parameters α0, we use this solution as the initial

parameterization for the optimization of the energy defined by α1. Table 4.2 lists the number of

iterations and the execution time for the optimization of E[φ]|α1 , starting from a parameterization

φ̃ that minimizes E[·]|α0 (cf. Table 4.1). Although our continuation method is simple, it proves to

be entirely effective. One can often take large steps between α0 and α1 in the continuation method

when the initial parameterization minimizes E[·]|α0 . In practice, smaller steps must be taken when

a large deformation is needed to obtain an optimal parameterization. This is most noticeable when

one of the three energy terms (αl, αa, αc) dominates the others (cf. the mannequin, Table 4.2). This

issue is exaggerated when one desires an area-preserving parameterization, as these solutions often

come at the price of large shear deformations that hinder numerical performance (cf. Figure 4.6-5).
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M α0 α1 Iterations Time
igea (0.5, 0.5, 99) (33.3, 33.3, 33.3) 6 0m54s

maxplanck (1, 1, 98) (33.3, 33.3, 33.3) 16 3m56s
sphere (0.5, 0.5, 99) (99, 0.5, 0.5) 7 0m25s

(0.5, 0.5, 99) (3, 3, 94) 10 0m10s
mannequin (90, 5, 5) (20, 20, 60) 12 0m12s

(60, 20, 20) (33.3, 33.3, 33.3) 5 0m05s

Table 4.2: Performance figures for optimal parameterizations obtained using the continuation
method. The iterations refer to the steps taken in the energy minimization of E[·]|α1 , starting from
an initial parameterization that minimizes E[·]|α0 .

4.1.3 Robustness to Surface Discretization

The continuous energy model that we use has several distinct advantages. Since our energy is

defined in the continuous setting, the solution to the minimization problem is insensitive to the

particular discretization of the surface. This fact can be observed because different discretizations

minimize consistent approximations of the same continuous energy functional. In Figure 4.3, we

consider the successive refinement of a triangular grid that represents a stamped mechanical part.

Notice how the parameterization converges rapidly, and its main features are apparent even at the

coarsest resolution. Not surprisingly, the number of Newton steps taken for each of these examples

is nearly identical (cf. Table 4.1).

Figure 4.3: Successive refinement of a triangulation demonstrates the stability of the parameteri-
zation, due to the fact that the different discretizations minimize consistent approximations of the
same continuous energy functional.
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Figure 4.4: The parameterization is controlled by parameters α = (αl, αa, αc) which capture the
trade-off between length, area and angle preservation, respectively. Texture maps of the initial
parameterization on the left and solutions for different parameter settings are shown on top, with
the parameter domain beneath. A plot of the maximum, minimum and mean distortion is shown
below. Notice that the measured distortion tends to reflect the trade-offs in the choice of parameters.

®=(.005,.005,.99) ®=(.005,.99,.005) ®=(.99,.005,.005)

Figure 4.5: Flattening the earth. The sphere is opened with a semi-circular cut and its parameter-
ization is optimized for angle, area and length preservation, respectively. Here texture maps show
the deformation of the surface in the parameter domain.
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4.1.4 Distortion in Optimal Parameterizations

Figure 4.4 demonstrates our algorithm for a variety of parameter values. Given the initial parameter-

ization on the left, each parameterization on the right is obtained by minimizing the corresponding

energy. The relative importance of the three competing parameters αl, αa, αc is reflected in the

distortion of the final parameterization. Recall that distortion can be measured as a function of

the maximum and minimum eigenvalues Γ, γ of the first fundamental form of the parameteriza-

tion function. We calculate the mean distortion for a parameterization as the arithmetic sum of the

contributions from each triangle in our discretization. Popular measures of distortion for angles

(
√

Γ/γ), area (
√

Γ γ) and length (
√

Γ + γ) for Figure 4.4 are reported in the bottom graphs, where

the extreme deformations in the parameterization functions clearly show the trade-offs between the

different distortion measures. This correspondence is further explored in Figure 4.5, which demon-

strates the effect of minimizing the different energy terms on parameterizations of a sphere that has

been cut.

4.1.5 Comparison to Related Work

We have presented a parameterization method that gives the user flexible control over the trade-off

between area, length and angle distortion. Figure 4.4 demonstrates this control with examples that

range from angle preserving to area preserving, and a comprehensive balance with length distortion

(a)Distortion (b) (c) (d) (e)

1.1842
1.4526
1.0694

1.3072
1.7459
1.0740

1.2835
1.6784
1.0747

1.0635
1.1326
1.1969

1.0397
1.0808
1.2580

1.1972
1.4886
1.0693

1.0365
1.0694
1.2780

®=(.005,.005,.99) ®=(.99,.005,.005)

Angle
Area
Length

Figure 4.6: A comparison of related work to parameterizations generated by our method. Unlike
other methods, we are not restricted to optimizing for only one notion of distortion, as demonstrated
in the table of mean distortion measurements above. The related work considered here includes
(a) [15, 29], (b) [46], (c) [25], (d) [14] with θ = 1 and (e) [44].
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in the rest. This contrasts our method from previous work, which largely focused on optimizing

for only one measure of distortion, or possibly using linear combinations of energies. Figure 4.6

demonstrates that this trade-off is highly effective. For example, when emphasizing conformality,

we achieve a smaller mean distortion than methods which were geared towards the construction

of conformal mappings. The same is true for the stretch minimization (note however that we only

minimize length distortion with respect the L2 norm, not the L∞ norm as in [44]). Because of the

inherent non-linearity of our method, we find that the discrete conformal mappings which result

from linear systems provide us with an excellent starting point for our optimization.

4.2 Surface Matching

We continue our investigation of the parameterization algorithms with an analysis of the surface

matching method. At the heart of this approach lie the parameterizations generated in the previous

section which are rasterized as images of the geometric properties to be matched. Our experiments

feature models of faces because of the high variability in detail and the size of features. As well, the

degree of scrutiny that we subject them to allows one to be more critical of the correspondences in

our examples.

0.0305

0.031

0.0315

0.032

0.0325

0 10 20 30 40 50 60 70

Energy vs. iterations

Figure 4.7: Plot of the energy decay for the sequence of deformations computed in the matching
energy minimization algorithm on multiple scales. The staircase-like behaviour results from the
jumps onto the next finer scale (marked “×”), which may increase the energy temporarily.
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B A k = 4 k = 5 k = 6 k = 7 k = 8

B A k = 4 k = 5 k = 6 k = 7 k = 8

Figure 4.8: For a matching pair A,B, the matching algorithm generates deformations from coarse to
fine scales. The feature sets effectively guide the optimization algorithm at coarser scales. At finer
scales, features can be removed to match purely by shape (bottom).

4.2.1 Convergence of the Optimization Algorithm

To analyze the rate of convergence of the matching algorithm we consider plotting the energy of

the system at each iteration of the global minimization algorithm. Figure 4.7 shows a representative

energy decay which exhibits a characteristic staircase-like behaviour at the change in levels in the

multiscale algorithm. One can experience a temporary increase in the energy at these transitional

points as more detail is introduced to the refined image.

It is also useful to track the progress of the algorithm by analyzing the intermediate deformations

in the plane. Figure 4.8 illustrates the sequence of deformations that are generated my the multiscale

optimization algorithm. The optimal deformations φ̃k that minimize Eσk [·] are guaranteed to be

smooth and bijective. Notice how the features serve to guide the match in the coarser stages of

the optimization. In the lower example, the feature energy is eliminated at finer scales to allow the

match to be optimized based purely on the geometry of the surfaces. This technique is very effective

at providing guidance at coarser levels for matches that involve large deformations.

Execution times for our examples are given in Table 4.3, which lists the matching pairs, the

sizes of the triangle meshes, and the number of iterations and computation times for the energy

minimization. Performance figures were recorded on a 3.6 GHz Intel Pentium IV processor, on

which the computation time to generate the geometry images in the examples is negligible. The

number of iterations at each level of the multiscale energy minimization algorithm is determined by

a threshold on the energy decrease (we use a cut-off value of 10−6 in our experiments). In general

we have observed that a larger cut-off gives very similar results in a fraction of the time, since this

greatly reduces the number of iterations at the finest levels.
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MA MB VA VB Iterations Time
lily lilygrin 12614 13512 44 0m59s

lilygrin lilysmile 13512 14032 59 2m31s
lily weiwei 12614 14265 65 2m57s
igea maxplanck 14611 17755 101 5m45s

armadillo gargoyle 84935 75914 55 0m17s

Table 4.3: Performance figures for the matching examples (VA, VB denote # vertices for the triangle
meshesMA,MB respectively).

4.2.2 Robustness to Image Discretization

In taking an image processing approach to defining a correspondence between two surfaces, one

must be concerned with the discretization of the geometric properties into images. This discretiza-

tion is controlled by the parameterizations of the surfaces to the plane, and therefore the approxi-

mation of the surface properties in the images is subject to the distortion in the parameterizations.

Figure 4.9 features a match between two surfaces which have a high degree of distortion in their

parameterizations. The distortion is balanced according to the algorithm in Section 3.1, however the

shapes of the surfaces nonetheless involve a large area factor in flattening them to the plane. As we

illustrate here, our correspondence behaves well despite the large deformation between the surfaces

and the distortion in the image domain.

In the presence of a gross misalignment of the images, such as a 180◦ rotation of one of the

image domains in Figure 4.10, one cannot expect the optimization algorithm to correct the image

registration. However this example shows that our algorithm robustly computes an optimal defor-

mation that is smooth and free of folds. For illustration purposes, the second model is rotated in the

blend to make the marked features more visible.

4.2.3 Partial Correspondence

A difficult challenge for matching disc-like surfaces is the presence of a partial correspondence,

where certain regions have no matching counterpart under the correspondence. This is particularly

prevalent in boundary regions, where it is actually quite undesirable to define the mapping because

no practical correspondence exists.

Figure 4.11 demonstrates the robust treatment of a partial correspondence in the presence of

large deformations in the matching. This example is made even more challenging due to the gross

differences in the surfaces and mismatched features. We find that using coarse features as hints and

relying on the bending energy for accuracy at finer resolutions is a good strategy in this case.
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A (A+B) / 2 B

Figure 4.9: Large deformations are often needed to match surfaces that have very different shapes.
A checkerboard is texture mapped onto the first surface as it morphs to the second surface (top).
The matching deformation shown in the parameter domain (bottom) is smooth and regular, even
where the distortion is high (e.g., around the outlines of the mouth and eyes).

A B (A+B) / 2

Figure 4.10: Our method guarantees that the resulting match is well-behaved, even in the presence
of gross misalignments such as the 180◦ rotation of the left image shown here. The 50% morph on
the right is smooth and regular (features in the domain are marked with arrows on the surface).

4.2.4 Comparison to Related Work

We have presented an approach to surface matching that addresses the problems with robustness and

computational efficiency seen in previous methods. One class of algorithms is based on partitioning

the surfaces into a common network of parametric domains. This either requires a great deal of

user interaction to do the partitioning by hand [28, 43] or involves a difficult algorithm with some

user guidance to get a good partitioning [27, 45]. The combinatoric complexity of the meshes
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A B←A B

Figure 4.11: For surfaces with boundaries, a partial correspondence is often desired. The cor-
respondence is defined where their parameter domains intersect under the matching deformation
(bottom). In this domain, quantities such as texture maps can be mapped between the surfaces
(center). The unmatched regions are in black.

determines the performance of these methods, which can be quite costly (on the order of hours).

The final matching can only be controlled by changing the parametric domain layout, and it is

not clear whether very fine features, for example from texture maps, can be matched with high

precision. Our method neither experiences these performance drawbacks nor is the user responsible

for manually partitioning the surfaces.

Another class of methods matches a template surface to range scan data directly in 3D [1, 50].

These methods are particularly well suited to matching surfaces when a parameterization cannot

easily be computed, such as in the presence of holes. However these algorithms require a manual

3D alignment and the surfaces must be in similar poses to get good results from their matching

of normals. In contrast, we can handle large deformations (cf. Figure 4.9) and different poses

(cf. Figure 5.4), and only require a coarse alignment of the parameter domains to get a good match.

Unlike previous methods, the smoothness, bijectivity and existence of our solutions is guaranteed.

In practice, our matching algorithm robustly computes an optimal deformation that is smooth and

free of folds (Figure 4.10). It is well known in image matching [20] that uniqueness of solutions



50

cannot be guaranteed, nor is this a normal practical requirement: typically an application does not

seek a unique match, but instead desires a smooth correspondence function with a good correlation

between salient features. We provide this through the analytic guarantees of our approach and the

flexibility afforded to the user to construct good matches.
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Chapter 5

Applications

With our new tools in hand, we will now consider some classical applications of surface parameter-

izations. Common tasks in computer graphics like texture mappping and 3D morphing benefit from

the versatility and robustness of our approach. This chapter features non-trivial examples of these

applications and also looks at a novel approach to facial animation. These examples are particularly

challenging because they use physically-acquired data that have unique problems to overcome.
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5.1 Texture Mapping

Texture mapping is one of the most venerable applications of parameterizations for triangle meshes.

This simple form of surface illustration is accomplished by assigning 2D texture coordinates to the

vertices in the mesh. Each triangle is rendered with the pixels of a texture image that lie within

its 2D pre-image defined by the coordinates at its vertices. This rudimentary technique nonetheless

offers a incredible improvement in the level of detail one can achieve from rendering triangles, and

it is an indispensible tool in both low– and high–end computer-generated visual effects.

Figure 5.1: Photographs of the subject are used to generate the texture image.

The central goal and biggest challenge for texture mapping is to achieve high quality (possibly

photo-realistic) effects, often on a limited memory budget. This affects the choice of texture coor-

dinates (i.e., the surface parameterization) in two ways. Primarily, the sampling of the image space

must provide enough detail for the 3D rendered triangles. One can always guarantee a sufficient

sampling rate by increasing the resolution of the image itself, but this is not a practical solution

under memory constraints. Therefore to achieve a suitable sampling rate, one desires a parameter-

ization with low distortion, particularly through the control of length [44]. However since an artist

often uses image editing software to design the texture image, it is desirable to have low shear dis-

tortion by introducing some control over angles. A secondary concern is the appearance of visual

artifacts, especially when the surface is animated (e.g., through a time-varying free-form deforma-

tion). Kinks and folds in the texture map are unacceptable if one aims to promote the suspension of

disbelief. Thus one also requires that the parameterization is smooth and bijective.
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Our method of surface parameterization is well suited to these challenges, since the texture

coordinates that we generate have all of these qualities by construction. The following example

is a demonstration of texture mapping that uses 3D facial data captured with structured-light for

the geometry acquisition and digital photography for the image acquisition. The data consists of a

triangle mesh (Figure 5.2a) and two colour photographs of the subject taken from different angles

(Figure 5.1). Texture coordinates are assigned to each triangle in the mesh, corresponding to the

appropriate region of the photograph. As is, the data is unsuitable for further processing for the

following reasons:

1. The mesh surface is non-manifold and has extraneous data around the boundaries.

2. The triangle mesh is noisy due to low-confidence sample points from the acquisition, partic-

ularly at grazing angles and on reflective surfaces such as the eyes.

3. The parameterization is not continuous since the texture map is built from two photographs.

First the mesh is repaired by removing non-manifold artifacts, and then the face is extracted as a

manifold subset of the original surface (Figure 5.2b). To address the second problem, we smooth

the surface by displacing the mesh vertices in the normal direction [16]. The resulting surface is fit

for texture mapping. We proceed to construct a parameterization of this surface that balances angle,

area and length distortion appropriately. Then through this parameterization, a new texture image

is generated by rendering the triangles of the original triangle mesh in the new parameter domain

(Figure 5.2d). This image is now ready for final editing and is then applied to the new surface as a

texture map (Figure 5.2c).

(a) (b) (c) (d)

Figure 5.2: Texture mapping physically-acquired data: (a) the original triangle mesh; (b) the mesh
is smoothed and the face extracted; (c,d) a new texture image is generated in the parameter domain
and texture mapped on the face, using a parameterization constructed with our method.



54

5.2 3D Morphing

Morphing is a celebrated technique for special effects, famous for “wolf-man” transformations on

the silver screen [49]. Simply put, a morph is an animation that transforms one object into another,

with the most common subject being human (or human-like) faces. The central element in a morph

is the correspondence between the before and after images. In 2D morphing, this correspondence

is a map from one image to another, while in 3D one needs a point-wise correspondence between

two surfaces. The simplest morphing technique is a linear blend between the objects which is

evaluated over time to generate an animation. The quality of the correspondence is critical because

any mismatch will be glaringly obvious in the cross-fade between the objects.

Our surface matching method provides an approach to defining a correspondence for 3D mor-

phing. One begins by constructing a correspondence φM for surfacesMA andMB . Then for each

point x onMA, the corresponding point onMB is given by

φM(x) := (xB ◦ φ ◦ x−1
A )(x)

which is defined on xA(ωA[φ]). The morph is then animated over time t ∈ [0, 1] with

M(t) := (1− t)MA + t φM(MB)

Examples of 3D morphing are given as sequences of animation stills in Figure 5.3. Matching faces

is particularly challenging because of the incredible degree of scrutiny that they receive. Notice that

the salient features are perfectly matched, and the deformation in time is smooth. Both of these qual-

ities are a direct result of the control of shape and feature matching that is inherent in our approach.

The high quality of these examples is prohibitively difficult to achieve with other methods, where

the correspondences must often be painstakingly generated by hand. In particular, semi-automatic

methods typically require the user to specify point constraints that can break the regularity of the de-

formation, and manually producing consistent mesh representations of the surfaces is both tedious

and limited by the resolution of meshes that a human can process. In contrast, the user interaction

in our approach is limited to drawing corresponding features on the surfaces. The time to generate a

polished morph is about an hour for a user who is familiar with the system, and is typically spent by

adding features and rendering an animation sequence, which only takes a few minutes to generate.
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Figure 5.3: Examples of 3D morphing. The correspondence between the surface pairs is generated
by matching the shape and user-selected features of one surface to the other.
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5.3 Facial Animation

“Blend shapes” is a popular technique for facial animation [41, 42]. In it, multiple key expressions

are modeled for the subject. Intermediate expressions are then generated by a linear combination

of the key models. Like 3D morphing, this blending requires a consistent parameterization between

the keys, and therefore this approach to facial animation has the same challenges. In light of the

shortcomings of other 3D morphing techniques, the artist typically resorts to deforming a template

mesh into the key expressions by hand, so that the correspondence between the poses is defined

implicitly by the mesh structure.

Our surface matching technique provides an alternative approach that lifts the user from these

restrictions. Since our correspondence is defined independently from the actual triangulation, we

can use high resolution meshes for the key expressions. The only consistency that we require is an

identification of the salient features of the face at each key pose, for example the eyes, mouth and

lines of symmetry in the face (cf. Figure 3.5).

Figure 5.4 shows an example of a proof-of-concept implementation of this technique. Here

the goal is to produce a continuous animation sequence by realistically blending between three

keyframe poses of the same subject. This is particularly challenging, due to the presence of features

that are either rigid or highly deformable (i.e. the eyes and mouth, respectively). We mask out these

“holes” with features in order to match their boundaries precisely. The animation has two segments,

one which morphs betweenMA,MB and the other betweenMB,MC . We begin by matching the

surfaces pairwise to get φAB and φBC . Then we use φAB to morph betweenMA andMB in the

first segment, and in the second segment we apply the composition φBC ◦ φAB to blend φAB(MA)

with MC , thus guaranteeing a seamless transition. A sequence of animation stills is shown in

Figure 5.5. The eyes and mouth are masked out because unlike the skin, they do not undergo elastic

deformations. The same mesh can be used throughout the animation in order to save on memory

resources in the application. More key expressions can be easily added by matching to a similar

key model and remeshing it with the template structure (typically the neutral expression) using an

extension of our 3D morphing technique. In this scenario, selective regions of the key poses are

typically given different blending ratios to compose more complicated expressions.
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A B C A′ B′ C′

Figure 5.4: Morphing through keyframe poses A,B,C is accomplished through pair-wise matches
A→B and B→C. Starting with A we blend its shape into B using A→B, and then morph to
C by applying A→B followed by B→C. The texture from A is used throughout. Because of the
close similarity in the poses, one can expect the intermediate blends A′, B′, C ′ to correspond very
well with the original keyframes A,B,C, respectively.

Figure 5.5: Facial animation using blend shapes. The initial surface and texture is animated through
three key expressions that were generated from 3D scans of the same subject.
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Chapter 6

Conclusion

We have presented two methods of surface parameterization. By deriving our approach from a

rigorous variational formulation in the continuous setting, we have guaranteed the quality of our

parameterizations and the performance of the algorithms which construct them. This chapter sum-

marizes our contributions and motivates further exploration in directions such as parameterizations

of higher genus surfaces, geodesic curves in deformation space and free-form deformations of dis-

crete parametric surfaces.
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6.1 Summary

In chapter 2 of this thesis, we developed a rigorous variational framework for surface parameteriza-

tion. We addressed two important classes of parametric mappings, namely, parameterizations over

a region of the plane, and correspondences that map between two surfaces. A critical distinguishing

trait of our approach is its roots in the classical theory of rational mechanics. From this foundation

we are able to bring theoretical guarantees along with our treatment of parameterizations, including

proof of the existence of variationally optimal parameterizations.

Chapter 3 described a set of algorithms for constructing parameterizations of triangle meshes.

Due to the theoretical underpinnings of the previous chapter, we apply a straightforward finite el-

ement method toward the discretization of our parameterization energies over the space of surface

triangulations. This leads to flexibility in the design of the energy minimization method, which is

chosen from the mature and extensive body of work in numerical optimization. Our implementation

provides user control over the parameterization, particularly in the way that distortion is handled.

An analysis of our algorithms was provided in Chapter 4. We focus our experimentation on

range scan data of physical surfaces. The triangle meshes obtained from this process are particularly

challenging to parameterize due to the high degree of variability in the shapes of the surfaces and the

quality of the discretization. We demonstrated the efficiency of our algorithms through an analysis

of the energy minimization and by the fast execution times for our examples. Finally, we showed

our methods are robust in a challenging set of examples. In all cases, we generate parameterizations

that are smooth, bijective and have low distortion.

Chapter 5 presented a variety of applications of surface parameterization. First high-quality

texture maps were created from range scan data and photographs of the subject’s face. These pa-

rameterizations were then featured in novel applications of 3D morphing to highlight the versatility

of our surface correspondences. Our approach to surface matching is a major contribution to sur-

face parameterizations in its own right, as well as a clever application of our parameterizations in

the plane.
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6.2 Future Work

The work presented here invites many possible directions for continued research.

Parameterizations of Higher Genus Surfaces Continuing the theme of parameterization to sur-

faces that are not homeomorphic to a disc requires one to address challenging theoretical and practi-

cal problems. Cylindrical, spherical, toroidal and higher genus domains do not embed into the plane

and therefore new variational approaches to optimal parameterization must be derived to extend the

properties of our planar parameterizations to the arbitrary topology setting. A new approach based

on overlapping parametric patches on the surface addresses the instability of high dynamic range

parameterizations and has a direct application toward texture mapping in character animation. As

the resolution of triangulated surfaces escalates due to high-precision range scan data and next-

generation modeling tools, the desire to process these surfaces must be met by non-linear multigrid

methods on unstructured triangle grids that provide stable and efficient algorithms for parameteri-

zation and other variational methods.

Geodesic Curves in Deformation Space Given a correspondence between surfaces in a discrete

sequence sampled over time, it is natural to ask for an optimal surface deformation which interpo-

lates each surface in turn to achieve a realistic, smooth animation (e.g., facial animation of a live

actor or a synthetic character). One may also ask to apply this deformation to an entirely new sur-

face, whereby it must adapt to the shape of the second subject. Both scenarios are related to finding

shortest paths in a space of deformations that is described by a time-dependent variational energy.

Our previous work on surface matching provides both a tool for the correspondences and a frame-

work for a deformation energy that measures the variation of shape over time subject to user control

over the animation.

Free-Form Deformation of Discrete Parametric Surfaces The practical and theoretical guaran-

tees of our previous work on surface parameterization introduces discrete parametric surfaces as a

new geometric modeling primitive. Leveraging the mature body of modeling and animation tech-

niques built up through the decades of study of parametric surface patches, one can develop new

methods for the free-form deformation of discrete parametric surfaces. The aim of this research is

to overcome the limitations of geometric modeling with subdivision surfaces, the de facto standard

of modern-day commercial animation, while providing all of its benefits. The challenges of this en-
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deavour will require new methods in surface remeshing, parametric correspondence, and free-form

deformation techniques.
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Appendix A

Surface Parameterization

A.1 Representation of the Parameterization Energy

Theorem A.1 (Representation of the energy) LetM be a smooth surface patch, which is param-

eterized by an initial parameterization x over a set ω ⊂ R2. Under the assumptions of elastic-

ity (2.1), frame indifference (2.2) and isotropy (2.3), there exists a function W : R2 → R such

that WM(D(φ ◦ x−1)(x)) = W (ιC[φ])
√

det g where ιA = (tr(A),det(A)) are the two principal

invariants of A ∈ R2,2 and the Cauchy-Green strain tensor is defined by

C[φ] = Dφg−1DφT .

Furthermore, the expression g ∈ R2,2 is the metric tensor w.r.t. the parameterization x, i.e., g =

DxTDx. Thus, the parameterization energy can be written as

E[φ] =
∫

ω
W

(
tr(C[φ]),det(C[φ])

)√
det g dξ .

Proof Due to our assumptions, g−1 is symmetric, uniformly positive definite and uniformly bounded.

SupposeA is an arbitrary invertible matrix in R2,2. By the polar decomposition theorem there exists

an orthogonal matrix Q such that A = QU where U = (ATA)
1
2 is symmetric and positive definite.

Hence, by the assumption of frame indifference (2.2) we obtain

Ŵ (A) = Ŵ (QU) = Ŵ (U) = Ŵ ((ATA)
1
2 )
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Next, we define W̃ (C) := Ŵ (C
1
2 ) for all symmetric, positive definite matrices C and obtain

Ŵ (A) = W̃ (ATA)

From this and the assumption of isotropy (2.3) one deduces

W̃ (ATA) = Ŵ (A) = Ŵ (AQ) = W̃ (QTATAQ)

for all g-orthogonal matrices Q. In particular, for symmetric, positive definite matrices C we get

W̃ (C) = W̃ (QTCQ) (A.1)

Next, we show that whenever ιg−1A = ιg−1B for symmetric, positive definite matrices A,B ∈ R2,2,

then W̃ (A) = W̃ (B). Thus, we immediately deduce that there is a function W such that W̃ (A) =

W (ιg−1A) and hence for general matrices A ∈ R2,2,

Ŵ (A) = W̃ (ATA) = W (ιg−1AT A)

which is the assertion in our theorem.

First, we observe that for any symmetric matrix A, the matrix g−1A is g-self adjoint. Indeed,

(g−1A)∗ = g−1AT g−1g = g−1A. Thus, we deduce that g−1A and g−1B diagonalize with respect

to the scalar product “·g” and we obtain

g−1A = λ1r1(g r1)T + λ2r2(g r2)T

g−1B = µ1s1(g s1)T + µ2s2(g s2)T

with gri · rj = δij and gsi · sj = δij . Due to our assumption ιg−1A = ιg−1B we achieve µi = λi

after a possible reordering. Furthermore, there exists a g-orthogonal matrix Q with Qsi = ri. Thus

we get
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A = gg−1A =
∑
i=1,2

λigQsi(gQsi)T

=
∑
i=1,2

λigQsis
T
i Q

T g

=
∑
i=1,2

λiQ
−T gsis

T
i gQ

−1

= Q−T g
∑
i=1,2

λisi(gsi)TQ−1

= Q−T gg−1BQ−1

= Q−TBQ−1

Here we have used the fact that gQ−1 = QT g holds for g-orthogonal matrices Q and that Q−1 is

g-orthogonal if Q is g-orthogonal, which implies gQ = g(Q−1)−1 = Q−T g. Now, (A.1) applied to

the g-orthogonal matrix Q−1 leads to

W̃ (A) = W̃ (Q−TBQ−1) = W̃ (B) ,

which is what we have claimed above. Finally, we obtain for the principal invariants

tr(g−1DφTDφ) = tr(Dφg−1DφT ) ,

det(g−1DφTDφ) = (det g)−1(detDφ)2 .

Lemma A.2 Suppose M is a smooth surface, and x is an initial parameterization of M over a

set ω ⊂ R2. A deformation φ which turns the parameterization x[φ] into an isometry is a local

minimizer of the elastic energy E[·] with the density defined in (2.5) if

αl > 0 , αa > 0 , αc ≥ 0 .
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Proof Let us take derivatives of the energy integrand W with respect to the inverse metric q =

Ag−1AT in the direction of an arbitrary symmetric matrix C ∈ R2,2:

∂qW (ιq)(C) = αltr(C) + αa

(
det q − ( αl

αa
+ 1)(det q)−1

)
tr(q−1C)

+αc

(
2

tr(q)
det(q)

tr(C)− tr(q)2

det(q)
tr(q−1C)

)
,

∂2
qW (ιq)(C,C) = αa

(
det q + ( αl

αa
+ 1)(det q)−1

)
tr(q−1C)2

+αa

(
( αl

αa
+ 1)(det q)−1 − det q

)
tr(q−1Cq−1C)

+αc

(
2

tr(C)2

det(q)
− 2

tr(q)tr(C)tr(q−1C)
det(q)

+
tr(q)2

det(q)
tr(q−1C)2 +

tr(q)2

det(q)
tr(q−1Cq−1C)

)

One can verify that q = 1I is a local extremum of W (ιq). Under our usual assumptions every

diffeomorphism φ : ω → φ(ω) induces a positive definite inverse metric q = g−1[φ]. Hence, q = 1I

is a local minimizer of W (ιq) if ∂2
qW (ι1I) is positive definite. This leads to

∂2
qW (ι1I)(C,C) = (αl + 2αa) tr(C)2 + αl tr(C2) + 6αc tr(C)2 > 0

for all symmetric matrices C 6= 0. Here we have used the fact that tr(C2) > 0 for any symmetric

matrixC withC 6= 0, and we have taken into account that ∂qW (ι1I)(C) = 0 to obtain the inequality.

It follows that the inequality holds if (2.6) is satisfied.

A.2 Existence of Optimal Parameterizations

Theorem A.3 (Existence of an Optimal Parameterization) Let M be a smooth surface patch,

which is parameterized by an initial parameterization x over a set ω ⊂ R2. Furthermore, con-

sider the energy in (2.5) over a set of admissible deformations φ, which are continuous and locally

bijective. Then for parameters αl, αa, αc which satisfy (2.6), there exists an admissible, minimizing

deformation φ̃.

Proof Based on a classical result in the calculus of variations the proof is quite straightforward.

Let us briefly sketch the main ingredients. We follow the well-known procedure of the direct meth-

ods in the calculus of variations [12, 35, 36], in particular the proof of the existence of minimizers

for such polyconvex energy functions by Ball [4] (see also the monograph by Ciarlet [9], Theorem

7.7-1). Here, we only give a brief summary of the arguments. From the bi-Lipschitz assumption
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on the initial parameterization we deduce that g−1 ∈ L∞(ω) and it is uniformly positive definite.

Hence,
√

tr(Ag−1AT ) is actually a norm on linear mappings A ∈ R2,2.

The growth conditions imply that for every constant C there exists a ball BR(0) in A with

radius R such that E[φ] > C outside BR(0). Thus, there exists a minimizing sequence (φk)k∈N

with
∥∥Dφk

∥∥
L2(ω)

and
∥∥detDφk

∥∥
L2(ω)

being uniformly bounded. Due to the constraint on the zero

moment and a generalized Poincaré inequality, the H1,2(ω) norm of φk is also uniformly bounded.

Because of the reflexivity of H1,2(ω) × L2(ω) we can extract a weakly convergent subsequence

from the minimizing sequence.

Applying well-known results on the weak continuity of the determinant we get that (φk,detDφk)

converges weakly to (φ,detDφ). Furthermore, Ball proved that for the limit deformation detDφ >

0 holds almost everywhere in ω. Due to the convexity of W in both arguments we finally obtain a

result on weak sequentially-lower semicontinuity and thus establish the existence of an admissible,

minimizing deformation.

Corollary A.4 (Existence of an Optimal, Area-Preserving Parameterization) Under the assump-

tions of Theorem A.3, and for the modified set of admissible deformations φ with det g−1[φ] = 1,

there exists a minimizing deformation φ̃.

Proof We can reformulate the additional constraint requiring that detDφ =
√

det g. But detDφ

is weakly continuous on the original set of admissible deformations. Hence the modified addmis-

sible set is weakly closed. Thus, we can proceed as in the proof of Theorem A.3. We only have

to ensure that there is at least one area preserving, homeomorphic parameterization x[φ̄] for some

deformation φ̄. But the existence of such a parameterization has been established by Moser and

Dacorogna [13, 37].

A.3 Variations of the Parameterization Energy

The concrete formulas for the derivatives of the energy density Ŵ (A) = W (ιAg−1AT ) defined

in (2.5) are provided here. The fully discrete ∇Ē and ∇2Ē are given by

(∇Ē)ik =
∑

T∈ωh

|T | ∂AŴ (A(T ))(Bik(T ))
√

detG(T ) ,

(∇2Ē)ikjl =
∑

T∈ωh

|T | ∂2
AŴ (A(T ))(Bik(T ), Bjl(T ))

√
detG(T ) ,
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where A(T ) = DΦ|T as above and Brs(T ) = DΦrs|T . Furthermore,

∂AŴ (A)(C) = αl
∂a

∂A
(C) + αa

(
1− βd−2

) ∂d
∂A

(C)

+αc

(
2a
d

∂a

∂A
(C)− a2

d2

∂d

∂A
(C)

)
,

∂2
AŴ (A)(C,H) = αl

∂2a

∂A2
(C,H) + β

(
2d−3

) ∂d
∂A

(C)
∂d

∂A
(H)

+αa

(
1− βd−2

) ∂2d

∂A2
(C,H)

+αc

(
2a
d

∂2a

∂A2
(C,H) +

2
d

∂a

∂A
(C)

∂a

∂A
(H)

− 2a
d2

∂a

∂A
(C)

∂d

∂A
(H)− a2

d2

∂2d

∂A2
(C,H)

− 2a
d2

∂d

∂A
(C)

∂a

∂A
(H) +

2a2

d3

∂d

∂A
(C)

∂d

∂A
(H)

)
,

and using the fact that ∂A(A−1)(C) = −A−1CA−1,

∂a

∂A
(C) = 2 tr(Ag−1CT ) ,

∂2a

∂A2
(C,H) = 2 tr(Hg−1CT ) ,

∂d

∂A
(C) = 2 det2(A)det−1(g)tr(A−1C) ,

∂2d

∂A2
(C,H) = 2 det2(A)det−1(g)(2tr(A−1C)tr(A−1H)− tr(A−1HA−1C)) .
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Appendix B

Surface Matching

B.1 Shape Operators

We define the shape operator S ∈ R2,2 of the surfaceM with respect to the parameterization x as

the representation of the normal variation in the metric, i.e.

(g S v) · w = Dnv ·Dxw ,

where n is the normal field on M. Thus SA = g−1
A (DxA)TDnA. For SB[φ] at the deformed

position φM(x) with respect to the metric gA, we obtain

(gA SB[φ] v) · w = D(nB ◦ φ) v ·D(xB ◦ φ)w

= (DnB ◦ φ)Dφv · (DxB ◦ φ)Dφw

and deduce from this

SB[φ] = g−1
A DφT (DxB ◦ φ)T (DnB ◦ φ)Dφ

= g−1
A DφT (gB ◦ φ) (SB ◦ φ)Dφ,
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where SB is the shape operator of the surfaceMB taking into account the original metric gB . Up

to a factor of 1
2 , the average change of the normal variation on the tangent space TxMA is given by

tr(SB[φ]− SA) = tr(g−1
A DφT (gB ◦ φ) (SB ◦ φ)Dφ− SA)

= tr((SB ◦ φ)Dφg−1
A DφT (gB ◦ φ)− SA)

= tr((SB ◦ φ)DφG[φ]Dφ−1 − SA)

Let us neglect for the moment the impact of the metric distortion G[φ] and suppose that φM is an

isometry and thus G[φ] = 1I. In doing so, we have completely decoupled bending from tangential

distortion. Finally, this gives tr(SB ◦ φ)− tr(SA) as a local measure for bending.

B.2 Variations of the Matching Energy

Here we collect the different contributions of the matching energy in (2.16) and compute variations

in directions ϑ. We deal with an energy

E[φ] =
∫

ω
χε I dξ

where χε = χε
ωA
χε

ωB
(φ) is the regularized characteristic function and the actual energy integrand

I splits into different contributions Ibend + Ireg + IF resulting from the energies Ereg (2.7), Ebend

(2.9) and Ẽε
F (2.11):

Ibend := (hB(φ)− hA)2
√

det gA

Ireg := W (trG[φ],detG[φ])
√

det gA

IF := ηε(dA)θε(dB(φ))
√

det gA +

ηε(dB(φ))θε(dA)
√

det gB(φ) detDφ .

The variation of the energy in a direction ϑ is given by

E′[φ](ϑ) :=
d
dε
E[φ+ εϑ]

∣∣∣∣
ε=0

=
∫

ω
(∂φχ

ε · ϑ) I + χε (∂DφI : Dϑ+ ∂φI · ϑ) dξ ,
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where “·” indicates the Euclidean scalar product and “:” is a scalar product on matrices with

A : B = tr(ATB). Hence, the discrete L2 energy gradient is the vector of these integrals over

directional derivatives of the different integrands in directions of the finite element basis on the

space of deformations.

Hence, the computation of these derivatives with respect to the arguments φ andDφ is a straight-

forward, albeit involved, application of the chain rule. In particular, for the variation of the regular-

ized characteristic function we obtain

∂φχ
ε · ϑ = χε

ωA
∇χε

ωB
(φ) · ϑ ,

for the integrand of the bending energy (which does not depend on Dφ)

∂φIbend · ϑ = 2(∇hB(φ) · ϑ) (hB(φ)− hA)
√

det gA,

and for the integrand of the regularization energy (2.8)

∂φIreg · ϑ =
(
αl∂φa · ϑ+ αa

(
1− αa − αl

αa d2

)
∂φd · ϑ

)√
det gA ,

∂DφIreg : Dϑ =
(
αl∂Dφa : Dϑ+ αa

(
1− αa − αl

αa d2

)
∂Dφd : Dϑ

)√
det gA ,

with

∂Dφa : Dϑ = 2tr(g−1
A DφT gB(φ)Dϑ) ,

∂φa · ϑ = tr(g−1
A DφT (∇gB(φ) · ϑ)Dφ) ,

∂Dφd : Dϑ = 2(det gA)−1 det gB(φ) (detDφ)2tr(Dφ−1Dϑ) ,

∂φd · ϑ = (det gA)−1 det gB(φ) (detDφ)2 · tr
(
g−1
B (φ)(∇gB(φ) · ϑ)

)
.

Here we define ∇gB(φ) · w ∈ R2,2 by

(∇gB(φ) · w)ij =
∑

k

∂k(gB)ij(φ)wk .
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Finally, we obtain for the integrand of the feature energy

∂φIF · ϑ = ηε(dA) (θε)′(dB(φ))(∇dB(φ) · ϑ)
√

det gA

+ (ηε)′(dB(φ))(∇dB(φ) · ϑ) θε(dA)
√

det gB(φ) detDφ

+ ηε(dB(φ)) θε(dA)
tr(g−1

B (φ)(∇gB(φ) · w))

2
√

det gB(φ)
detDφ ,

∂DφIF : Dϑ = ηε(dB(φ)) θε(dA)
√

det gB(φ) detDφtr(Dφ−1Dϑ) .
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[34] MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. H. Discrete differential-

geometry operators for triangulated 2-manifolds. Vis. Math. (2002).



75

[35] MORREY, C. Quasi-convexity and lower semicontinuity of multiple integrals. Pac. J. Math.

2 (1952), 25–53.

[36] MORREY, C. Multiple Integrals in the Calculus of Variations. Springer–Verlag, New York,

1966.

[37] MOSER, J. On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965),

286–294.

[38] NOCEDAL, J., AND WRIGHT, S. J. Numerical Optimization. Springer Series in Operations

Research. Springer-Verlag, New York, 1999.

[39] OGDEN, R. W. Non-Linear Elastic Deformations. John Wiley, 1984.

[40] OSHER, S. J., AND SETHIAN, J. A. Fronts propagating with curvature dependent speed:

Algorithms based on Hamilton–Jacobi formulations. J. of Comp. Physics 79 (1988), 12–49.

[41] PARKE, F. I. Computer generated animation of faces. In ACM’72: Proceedings of the ACM

annual conference (1972), pp. 451–457.

[42] PARKE, F. I. A parametric model for human faces. PhD thesis, University of Utah, Salt Lake

City, Utah, 1974.
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