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Abstract

Let p be a prime. We prove various analogues and generalizations of McEliece’s theorem
on the p-divisibility of weights of words in cyclic codes over a finite field of characteristic p.
Here we consider Abelian codes over various Galois rings. We present four new theorems on
p-adic valuations of weights. For simplicity of presentation here, we assume that our codes
do not contain constant words.

The first result has two parts, both concerning Abelian codes over Z/p?Z. The first part
gives a lower bound on the p-adic valuations of Hamming weights. This bound is shown to
be sharp: for each code, we find the maximum & such that p* divides all Hamming weights.
The second part of our result concerns the number of occurrences of a given nonzero symbol
s € Z/pZ in words of our code; we call this number the s-count. We find a j such that p?
divides the s-counts of all words in the code. Both our bounds are stronger than previous
ones for infinitely many codes.

The second result concerns Abelian codes over Z/47. We give a sharp lower bound on
the 2-adic valuations of Lee weights. It improves previous bounds for infinitely many codes.

The third result concerns Abelian codes over arbitrary Galois rings. We give a lower
bound on the p-adic valuations of Hamming weights. When we specialize this result to finite
fields, we recover the theorem of Delsarte and McEliece on the p-divisibility of weights in
Abelian codes over finite fields.

The fourth result generalizes the Delsarte-McEliece theorem. We consider the number
of components in which a collection ¢y, ..., ¢; of words all have the zero symbol; we call this
the simultaneous zero count. Our generalized theorem p-adically estimates simultaneous
zero counts in Abelian codes over finite fields, and we can use it to prove the theorem of

N. M. Katz on the p-divisibility of the cardinalities of affine algebraic sets over finite fields.
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Summary of Notation and
Definitions

The following tables give the basic definitions and notations that hold throughout this thesis.

The section of Chapter 2 where an item first appears is given in the rightmost column.

Z the rational integers 2.1
Zy the strictly positive rational integers 2.1
N the nonnegative rational integers 2.1

the rational numbers 2.1

a rational prime 2.1
Ly, the p-adic integers 2.1
Qp the p-adic rationals 2.1
Cn a root of unity of order n over Q, 2.1
Fpn the finite field with p™ elements 2.1
Z/mZ the rational integers modulo m 2.1
GR(p™,n) the Galois ring of characteristic p™ of order p™” 2.1
Tm reduction modulo p™ on Galois rings and on Z,[(yn—1] 2.1
Too the identity map on Z,[(pn—1] 2.1
Tm the Teichmiiller lift to characteristic p” on Galois rings 2.1
Too the Teichmiiller lift to characteristic 0 on Galois rings 2.1
Up the p-adic valuation in Qp,(¢yn—1) and GR(p™, n) 2.1
Fr the Frobenius automorphism on Q,((y»—1) and GR(p™,n) 2.1
Try? the trace from Qp((pr2—1) to Qp((pr1—1) and the trace from 2.1

GR(p™, n2) to GR(p™,n1)



X

a finite Abelian group with p 1 |A|

the group algebra with scalar ring R and group A
pointwise multiplication in R[A]

R[A] equipped with pointwise multiplication

the R-algebra of functions from a group A into a ring R
convolution in R4

RA equipped with convolution

the bilinear pairing

the Kronecker delta

the Fourier transform

the Fourier transform of f

the scaled Fourier transform of f

a positive integer; our usual Galois ring is GR(p?, e)
a positive integer; our usual Galois ring is GR(p?, e)

(&2

p

the least positive integer such that the exponent of A divides

g —1

qe/ — pee’

74, reduction modulo p?, also extended to elements of group

algebras and functions into Zy[(y_1]

Too, Leichmiiller lift to characteristic 0, also extended to ele-

ments of group algebras and functions into GR(p?, ee’)

the ith component in the canonical expansion of f

the ¢th component in scaled-Fourier induced breakdown of f

the g-class of a € A

the cardinality of the g-class of a € A

2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.3
2.3
2.3
2.3

2.3
2.3

2.3

2.3
2.3
2.3
2.3
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24
2.4
2.4
24
2.4
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5

2.5
2.6
2.6

wtrerm the normalized version of the weight function wt

zer the zero count or simultaneous zero count function

ham the Hamming weight function

symb,. the r-count function

lee the Lee weight function

Z[Y] the set of accounts on Y’

N[Y] the set of multisets of elements in YV

|| the size of account p

! [1,ev 1! for p € N[Y]

pry the projection of account p onto U

H the set {0,1,...,e—1}

Yu the p-weighted summation of p € N[H|

Frt(r) [her (B (r)"" for p e N[H]

I\ the product of the account A € N[A], N[I x A], N[H x A], or
N[I x H x A]

fN) the evaluation of f at A € N[A] or N[H x A]

Cogr(A) the collapse of A with respect to R

Red(\) the reduction of A

Fra the Frobenius action on A, Z[A], Z[I x A], H x A, Z[H x A],
and Z[I x H x A]

F{zj}jer) a polynomial with indeterminates in {z; : j € J}

R{z;}jes] the R-algebra of polynomials with coefficients in the ring R
and indeterminates in {z; : j € J}

xH for x a listing of the indeterminates in {z; : j € J} and

p € N[J], xt =[l;e; $?j
f({zr = axtrex) the polynomial or constant obtained from the polynomial f
by replacing the indeterminate xj with a; for each k € K

() the nth binomial coefficient polynomial



Chapter 1

Introduction

Let p be a prime, let d and e be positive integers, and set ¢ = p®. Let N denote the set
of nonnegative integers, and let Z, denote the ring of p-adic integers. We want a class of
rings that includes both finite fields and integer residue rings modulo prime powers, so we
introduce the Galois rings. Let (ye_1 denote a root of unity of order p® — 1 over Z,. The
Galois ring GR(p?, e) is the quotient modulo p? of Zy[(pe—1]. GR(p?e) is a ring extension
of Z/p?7Z wherein the reduction modulo p? of (pe—1 is a root of unity of order p® — 1. Note
that GR(p?, 1) is the integer residue ring Z/p?Z, and GR(p, e) is the finite field Fe = F,.
Readers interested in more details on p-adic fields and Galois rings should consult Section
2.1.

We shall be interested in the group algebra GR(p?, e)[A], where A is a finite Abelian
group with p 1 |A|. We shall write A multiplicatively with identity 14 (or just 1 if there
is no cause for confusion). By ordering the elements of the group A in some fashion, say
A = {a1,...,a,}, we can think of the element ¢ = 3", 4 csa € GR(p?,¢e)[A] as a word
of length n = |A| formed of symbols from the “alphabet” GR(p?,e), that is, we regard ¢
as the word ¢4, Cay - - - Cq,. An ideal of GR(p?,e)[A] is then called an Abelian code (over
GR(p%,e)). If A is a cyclic group, then an ideal of GR(p?, e)[A] is also called a cyclic code.
Cyclic codes form a large class of error-correcting codes, which includes various subclasses
(such as the Hamming codes, the Bose-Chaudhuri-Hocquenghem codes, and the punctured
Reed-Muller codes), all of great importance in coding theory [32]. Abelian codes with words
of length n form a subclass of the linear codes of length n over GR(p?, e), which are the

GR(p?, e)-submodules of GR(p?,e)". Most research on Abelian and cyclic codes concerns
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codes over finite fields, but recent developments have started an interest in Abelian codes
over integer residue rings and even arbitrary Galois rings.

A weight function is simply a function wt: GR(p?,e) — Z. We can think of this function
as assigning a particular weight to each symbol of our alphabet GR(p?, e). We extend wt
so that it also maps words into Z; the weight of the word ¢ = >, 4 caa € GR(p?, €)[4]
is simply the sum of the weights of the letters in the word, i.e., wt(c) = > 4 Wt(ca).
The most commonly used weight function is the Hamming weight, which maps 0 to 0 and
all other elements of GR(p? e) to 1. We denote the Hamming weight function ham, so
that if ¢ € GR(p? e)[A], then ham(c) is the number of nonzero coefficients in the sum
€= ,c4 Cat. In coding theory, typical weight functions (like the Hamming weight defined
above and the Lee weight defined below) give rise to metrics wherein the distance between
two words is the weight of their difference; if the weight function is Hamming weight,
then the associated distance, called the Hamming distance, simply measures the number of
positions where two words disagree. It will often be more convenient for us to use a weight
function, called the zero count, which is complementary to the Hamming weight. The zero
count function maps 0 to 1 and the rest of GR(pd ,€) to 0. We denote the zero count function
by zer, so that if ¢ € GR(p?, e)[A], then zer(c) is the number of zero coefficients in the sum
€= 4cACat, ie., zer(c) = |A| — ham(c).

In this work, we are interested in p-adic estimates of weights of words in GR(p?, e)[A].
By a p-adic estimate of an integer n, we mean the knowledge of n modulo some power of
p. One common form of p-adic estimate is knowledge of the p-adic valuation of n, i.e., the
maximum k such that p* | n. Usually we shall place lower bounds on the p-adic valuations
of weights of words belonging to a code C C GR(p?, e)[A]. That is, we shall often furnish
some k such that all weights of words in C are divisible by p*. Sometimes we can also
assert that there is some word ¢ € C with p*! { wt(c). If we can say this, then we refer
to our bound on the p-adic valuation as sharp. Roughly speaking, the larger the code in
GR(p?,e)[A], the less likely it is that all weights of words will be divisible by some large
power of p.

For the rest of this chapter, we shall always assume that C is a code in GR(p?,e)[A].
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We use the Fourier transform to characterize our codes. Since the intricacies of the Fourier
transform with group algebras over Galois rings may be unfamiliar to the reader, we provide
a brief overview here. Readers who want more detail can find it in Sections 2.2 and 2.3.

To define a Fourier transform for GR(p?, e), we set ¢’ to be the least integer such that
¢¢ — 1 is a multiple of the exponent of A, and we set ¢ = ¢°. Then GR(p% e€) is a
ring extension of GR(p?, e) and contains roots of unity whose orders include all orders of
elements in A. Then we let X be the set of characters (multiplicative homomorphisms)
from A into GR(p?, ee’). The Fourier transform ¢ of ¢ € GR(p?,e)[A] is a function from
X to GR(p% ee’) with é(x) = Y ,cacax(a)™!. We often refer to the values é(x) taken
by the Fourier transform at the various characters x as the Fourier coefficients of c¢. By
applying a (non-canonical) isomorphism between X and A, we shall consider the domain
of ¢ to be A rather than X. The word c is uniquely determined by its Fourier transform,
and furthermore, ¢(a?) = Fr®(é(a)) for all a € A, where Fr is the Frobenius automorphism
(which can be defined on GR(p?, ee’) as the automorphism induced via reduction modulo
p? from the Frobenius automorphism on Z,[(,_1]). Since g is coprime to the order of A,
the action a — a? partitions A into orbits that we shall call ¢-classes. We shall say that a
subset B of A is g-closed if B is a union of ¢-classes. With this terminology, ¢ is uniquely
determined by its Fourier transform on a set R of representatives of g-classes. Indeed, the
Fourier transform followed by restriction to R is an isomorphism of GR(p?, e)-algebras from

GR(p?, e)[A] to the product of rings

H GR(p?, ee,), (1.1)
reR
where e, is the size of the g-class of r. Thus codes (ideals) in GR(p?, €)[A] are in one-to-one

correspondence with ideals in this product, which are just products of some selection of

ideals in the Galois rings GR(p?, ee,.). The ideals in GR(p?, ee,) are (0) = (p?) C (p?~!) C

- C (p) € (1) = GR(p%, ee,). Thus, the Fourier transform followed by restriction to R



maps our code C to an ideal of (1.1), say

[17" GR®?, ee,), (1.2)
reR

where i, € {0,1,...,d} for each r € R. Knowledge of the integers i, characterizes C
completely. The support S of the Fourier transform of C is the union of the g-classes of
those r such that i, < d. Thus, when d = 1, the support S fully characterizes C, but when
d > 1, there can be multiple codes whose Fourier transforms have the same support. We
devise a generalization of the notion of support that will uniquely determine the code, even
when d > 1. For each j € {0,1,...,d — 1}, let S; be the union of the g-classes of those r
such that i, < 7. Then our code C is fully characterized by the tower So C S; C --- C Sy_1,
which we call the tower of supports of C. The largest set Sy_1 in the tower is just S, the
support of the Fourier transform of the code. Note that a code in GR(p?, e)[4] is a free
GR(p?, e)-module if and only if all the sets in its tower of supports are identical.

For the rest of this introduction, we use Sy C S1 C -+ C Sy_1 to denote the tower
of supports of the Fourier transform of our code C C GR(p?,¢e)[A], and we let S be the
support of the Fourier transform, ie., S = S; 1. All S;, including S;_1 = S, are ¢-
closed. As a simplifying assumption, we shall always assume 14 ¢ S in this introduction.
This assumption is not necessary in these researches, but it will simplify this introductory
presentation. We do without this assumption in the rest of this thesis by introducing the
normalized weights in Section 2.4. Here we shall quote our own results and those of other
researchers with this simplifying assumption in force; the more general results are quoted
in the body of the thesis. We now have enough background to discuss the various results

that predate this work.

1.1 History

The most natural and convenient Galois rings to use in coding theory are the finite fields.
Thus, it is not surprising that the first p-adic estimates of weights were with Abelian codes

(usually cyclic) over finite fields. We begin by recalling that Mattson and Solomon [33]
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introduced the Fourier transform (also known as the Mattson-Solomon polynomial) into
the study of weights in cyclic codes. Solomon continued to study weights in cyclic codes
[50], and with McEliece produced some initial p-adic estimates of weights [51]. In the latter
paper, Solomon and McEliece, working with cyclic codes over Fsy, expressed the digits in
the base-2 expansion of the weight of a word ¢ (with such digits regarded as elements of
[Fy) as polynomial functions of the Fourier coefficients of ¢. They proved that if C is a cyclic
code in Fa[A] such that a € S implies a=! ¢ S, then ham(c) = 0 (mod 4) for all ¢ € C. In
his thesis [35], McEliece found that this is an example of a much more general phenomenon.
If C C Fp[A] with A cyclic, one should consider (nonempty, finite) unity-product sequences
of elements of S, i.e., sequences of elements of S such that the product of the terms of
the sequence is 14. Let w(C) denote the minimum of the lengths of such sequences, and
set £(C) = {%J Then McEliece asserts that ham(c) = 0 (mod p‘(©)), or equivalently,
that zer(c) = |A| (mod p“©), for all ¢ € C. This is a generalization of the earlier Solomon-
McEliece result because the condition that a € S implies a=! ¢ S is equivalent to the
condition w(C) > 3, which then implies (when p = 2) that ¢(C) > 2, and thus ham(c) = 0
(mod 4).

All the rest of the results we present here, whether previous work or our own, are
analogous to this theorem of McEliece. In all cases, one must determine the “minimum
size” (in some appropriate sense) of unity-product sequences of elements in the support
S of the code (or sometimes in the set of pth powers of elements in S). The “larger” this
“minimum size,” the more powers of p divide the weights of words in the code. At times one
must place some sort of condition on the sequences, and at times the notion of the “size”
of the sequences must be refined beyond a simple count of how many terms occur. This
leads to a few variants of the parameters w(C) and ¢(C) defined in the previous paragraph.
While it would be historically informative to introduce each new variant as it appears in
the literature, it would also make it difficult to take them all in at a glance. So we shall
define them all here and then await the appearance of each when we resume our historical
overview.

As stated above, w(C) is the minimum length of a (nonempty) unity-product sequence of
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elements from S when d = e = 1, i.e., when our Galois ring GR(p?, e) is the prime field Fp. In

a general Galois ring, we define w(C) as the minimum length of a (nonempty) unity-product

sequence of pth powers of elements of S, i.e., a sequence of the form " , a§j2, - ,aﬂjn, with
each a; € S and j; € N. Since S is p-closed when e = 1, this definition coincides with our
original one. We then define ¢(C) = L%J — d(e — 1). This reduces to our original
definition of ¢(C) when d = e = 1.

Sometimes we need to restrict our attention to the smaller class of unity-product se-
quences of elements of S (and their pth powers) that satisfy a certain additional condition
which we call the modular condition. We again use sequences of the form a’fjl , agh, ... ,aﬁjn
with each a; € S and j; € N, but consider only those in which p/t 4+ p?2 4+ ... 4+ pi» = 0
(mod g — 1). We let wy,(C) be the minimum length of such a sequence. If we reduce our
congruence modulo p — 1, we see that all our sequences here have length divisible by p — 1.
Indeed, if e = 1, then our sequences are simply sequences of elements in S, and they meet
the modular condition if and only if their length is divisible by p — 1. Thus, if p = 2 and
e =1, wnc(C) =w(C). In all cases, we have wy,(C) > w(C), and this inequality can be strict,

_pd—1

as we shall see later. We define ¢,,,.(C) = L%J —d(e —1). Thus ¢,.(C) > ¢(C),
with equality when p = 2 and e = 1, but the inequality can be strict in other situations, as
we shall see in time.

Another new parameter will also be defined by considering unity-product sequences
of pth powers of elements in S, but here we shall need to record the set in the tower of
supports Sg C --- C Sy_1 = 5 from which we took each term of our sequence. Thus our
new parameter will be sensitive to the structure of the tower of supports of our code. This
sensitivity is not unreasonable; the Fourier coefficients é(a) for a € Sg_1 \ Sg_o vary only
over the ideal (p?~!) in a Galois ring of characteristic p?, while those Fourier coefficients ¢(b)
with b € Sy range over an entire Galois ring. Thus we should expect the latter coefficients to
exert more influence on the weights of words. We shall only need to use this new parameter

(about to be defined) in cases where e = 1, so that pth powers of elements in S; are just

elements of S; itself (since each S; is p-closed when e = 1). Note that GR(p?,e) = Z/pZ
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when e = 1. We consider (nonempty) unity-product sequences of the form

(0)
a, ,...,av(m,

0 oDl

1 (d-1) d—1
N S

(4)

where aji € §; for all 4, 5. Now we introduce a device that we call our scoring system. To

our sequence above, we assign a number called the score, which is equal to ng +pny +--- +
p?tng_1, and we let w** (C) be the minimum of the scores of such unity-product sequences.
We then let ¢%°(C) = [%J. It is not hard to see that w**(C) > w(C), and thus
£53(C) > 4(C), for any code C. If C is a free Z/p?Z-module, it is straightforward to show
that w*(C) = w(C) and ¢**(C) = ¢(C) (see Proposition 4.22 of this thesis). Strict equality
can hold in other cases, as we shall soon find out.

We also introduce a parameter (which may not have appeared before this thesis) by
combining both the modular condition and the scoring system. Again, we need only use
this new parameter in cases where e = 1, so that GR(p?,e) = Z/p?Z and pth powers of

elements in S; are just elements of S; itself (since each S; is p-closed when e = 1). As in

the previous paragraph, we consider (nonempty) unity-product sequences of the form

(0)
a; ,...,ago,

0 o0, 0.

1 (d-1) d—1
Jooal Y el

where agi) € S; for all 4, j. We further insist that our sequences meet the modular condition,

which, for e = 1, is equivalent to insisting that the sequences have length divisible by
p — 1. As before, the score of the above sequence is ng 4+ pni + --- + p? ng_1, and we
let w??.(C) be the minimum of the scores of such unity-product sequences. We then let
05.(C) = L%J. It is not hard to show that w;’.(C) > w**(C), and thus £;5.(C) >
055(C), for any code C, with equality when p = 2. It is also straightforward to show that
wis (C) > wme(C), and thus £55.(C) > €n,(C), for any code C, with equality when C is a free
Z/de—module. Strict inequality may hold in the four inequalities just mentioned, as we
shall soon see.

In summary, we have four parameters, w(C), wmc(C), w*(C), and w;5.(C), measuring

minimum “sizes” of various kinds of sequences, and four parameters, £(C), £,,.(C), £*°(C),
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and £5°.(C), where each ¢-parameter is obtained from its corresponding w-parameter by the
formula ¢ = L%J —d(e—1). The more decorations the parameter has, the higher it is
in general. That is, we always have w(C) < wpe(C) < wss.(C) and w(C) < w*(C) < ws.(C),
but wp(C) and w**(C) are not strictly comparable. Furthermore, w(C) = wp(C) and
w*(C) = w?.(C) when p =2 and e = 1. Also w(C) = w**(C) and wp(C) = wi.(C) when
e =1 and C is a free Z/p?Z-module. On the other hand, we can find an infinite sequence of
cyclic codes over Galois rings where w(C) < wmc(C) < w*(C) < w;3.(C), and where all the
differences between terms in this chain of inequalities simultaneously tend to infinity as C
runs through the sequence. See Proposition 4.22 of this thesis for details.

Now let us resume the thread of our history. We had left off where McEliece showed
[35] that if C C F,[A] with A cyclic, then ham(c) =0 (mod p‘(©)), or equivalently, zer(c) =
|A| (mod p‘©), for all ¢ € C. Furthermore, McEliece showed that every nonzero symbol
(element of F,)) occurs a multiple of p%©) times in any given ¢ € C. Delsarte generalized this
theorem from cyclic codes over F,, to Abelian codes over [F,, [17], and McEliece generalized
this theorem from cyclic codes over F,, to cyclic codes over [F,, an arbitrary finite field of
characteristic p [36].

The next major discovery is also due to McEliece [37], who introduced the modular con-

dition to improve the above results, thus producing a sharp bound on the p-adic valuations

of Hamming weights in cyclic codes over [F,:

Theorem 1.1 (McEliece [37]). Let C be a code in Fy[A] with A cyclic and 14 not in
the support of the Fourier transform of C. Then ham(c) = 0 (mod p‘me(©)), and there is
some ¢ € C with ham(c) # 0 (mod p*m<©)+1) . Equivalently, zer(c) = |A| (mod pfme(©)),

and there is some ¢ € C with zer(c) # |A| (mod ptme(©)+1),

This is an improvement (since £,,.(C) is sometimes greater than ¢(C)) and a sharpening
of the results in McEliece’s thesis. McEliece had already shown that in a cyclic code C over
[F,, the number of instances in each word ¢ of any nonzero symbol is divisible by p'© [35].
In [37], he used the Theorem 1.1 to show that this is sharp. That is, for any given nonzero
r € IFp, there is some ¢ € C such that the number of instances of r in ¢ is not divisible by

p“©+1 The results of McEliece have been used in studies of weights in codes [27], [26],
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[57], [6], [56]. They have also been used in the study of highly nonlinear functions and
cross-correlation properties of m-sequences® [24], [9], [10], [11], [14], [20], [8], [12].
The definitive result for Hamming weights of words in Abelian codes in F,[A] with p { |A]
is due to Delsarte and McEliece [18]. They determined the correct generalization, for use

with an arbitrary finite field, of the modular condition that was introduced for prime fields

by McEliece.

Theorem 1.2 (Delsarte-McEliece [18]). Let C be a code in Fy[A] with 14 not in the
support of the Fourier transform of C. Then zer(c) = |A| (mod p‘me(©)) for all ¢ € C,
and there is some ¢ € C with zer(c) # |A| (mod p'm<©+1). Equivalently, ham(c) = 0

(mod pfme©)) for all c € C, and there is some ¢ € C with ham(c) # 0 (mod pfme(©)+1),

Thus Delsarte and McEliece give a sharp bound on the p-adic valuations of Hamming
weights in Abelian codes over finite fields. One particularly satisfying corollary of the
Delsarte-McEliece theorem is the theorem of Ax [2] on the cardinalities of affine algebraic

sets generated by low-degree polynomials over finite fields:

Theorem 1.3 (Ax [2]). Let f € Fylx1,...,z,] be a nonconstant polynomial of degree 0.
Let v be the least nonnegative integer greater than or equal to (n —9)/d. Let V(f) be the
set of zeroes of f in Fy. Then |V (f)| is divisible by ¢”.

Delsarte and McEliece showed that their theorem implies Ax’s by using a special cor-
respondence [28] between polynomial functions on Fy ~ {(0,...,0)} and elements of the
group algebra F,[A] with A the cyclic group of order ¢" — 1. We should also note that the
Delsarte-McEliece theorem has been further generalized by Ward, who considered group
algebras F,[G] for more general groups, i.e., non-Abelian groups and groups G with |G|
divisible by p [58], [59], [60], [61].

As the study of error-correcting codes progressed, it became clear that codes over finite
rings other than fields, particularly codes over integer residue rings, were interesting. This
idea had occurred to various researchers in the 1970s and 1980s, e.g., see [4], [5], [52], [53],

[44], [49], [63]. Particularly significant is the result of Nechaev [41], who showed that the

! An m-sequence is a sequence of elements in F, generated by a linear recurrence whose characteristic
polynomial is the minimal polynomial (over Fy) of a root of unity of order ¢* — 1 for some k.
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Kerdock code (a very good, but nonlinear code over Fy) has a simple description in terms
of quaternary sequences (i.e., sequences of elements in Z/47). Interest in codes over Z/47Z
increased spectacularly when Hammons, Kumar, Calderbank, Sloane, and Solé showed that
the Kerdock code and a code equivalent to the Preparata code, when regarded as extended
cyclic codes over Z/4Z, are dual to each other [23]. These researchers made much use of
the weight function known as the Lee weight, which we shall denote lee: Z/4Z — 7, and
which is defined by lee(0) = 0, lee(1) = lee(3) = 1, and lee(2) = 2. There is a map, called
the Gray map, which is a distance-preserving bijection from (Z/4Z)F, equipped with Lee
distance, to F2¥, equipped with Hamming distance. Therefore, one can obtain binary codes
with large Hamming distance between codewords if one can obtain quaternary codes with
large Lee distance between codewords. Thus Lee weight is perhaps the most important
weight function to consider when working with codes over Z/4Z. More generally, the Lee
weight function lee: Z/p?Z — 7 is obtained by setting lee(r) to be the minimum of the
absolute values of the elements in Z which equal  modulo p®.

Since the class of Galois rings includes both finite fields and integer residue rings modulo
prime powers, it is not unnatural for researchers to study cyclic codes over Galois rings, as
indeed they have begun to do [3], [64], [42], [54], [55], [19]. One desires analogues of the
theorems (such as those of Delsarte and McEliece) that have been worked out for Abelian
codes over finite fields.

Most published analogues of McEliece’s theorem for Abelian codes over Galois rings
(aside from those for codes over finite fields, which we have already discussed) treat of codes
over integer residue rings modulo prime powers, i.e., Galois rings of the form GR(p?, 1) =
Z/p%Z. The first result we discuss, due to Helleseth, Kumar, Moreno, and Shanbhag [25],
is actually stated as a result for Z/4Z-linear trace codes, which are extended cyclic codes
over Z/47Z, where A is a cyclic group of order 2™ — 1 for some n > 1. Their result is easily

translated into an equivalent result for cyclic codes over Z/4Z:

Theorem 1.4 (Helleseth-Kumar-Moreno-Shanbhag [25]). Let C be a code in Z/AZ[A]
with A cyclic of order 2™ — 1 for some n > 1, and with 14 not in the support of the Fourier

transform of C. Then lee(c) = 0 (mod 2/«**(©)/21=1) for all ¢ € C.
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Around the same time, Calderbank, Li, and Poonen [7] proved a theorem that is wider
in scope. They demonstrated that the Lee weights of words in any cyclic code over Z/4Z
are always divisible by 2[¢(€)/21=1 " This theorem is more generally applicable than that of
Helleseth et al., since it does not assume that A is of order 2™ — 1 for some n. However,
when we restrict to this special case, which Helleseth et al. treat, then their theorem is
stronger than that of Calderbank et al., since w*(C) > w(C), and sometimes this inequality
is strict. For codes that are free Z/4Z-modules, one has w**(C) = w(C), so that the two
results coincide in this case. The results of Helleseth et al. and of Calderbank et al. have
been useful to coding theorists [48], [13].

Wilson generalized and strengthened the results of Calderbank, Li, and Poonen in an

unpublished manuscript [67].

Theorem 1.5 (Wilson [67]). Let C be a code in Z/29Z[A] with A cyclic and 14 not in
the support of the Fourier transform of C. Then lee(c) is divisible by ol@©)-2)/27 [ +1 for

allceC.

In the special case of cyclic codes over Z/4Z (i.e., when d = 2), Wilson’s theorem
asserts that weights are divisible by 21«(©)/2] = 24CO)+1 which is stronger than the result
2[w(©)/21=1 of Calderbank, Li, and Poonen when w(C) is even. If we further restrict A to be
cyclic of order 2™ — 1 for some n > 1, then Wilson’s result is sometimes stronger than that
of Helleseth et al., for example, in the case when the codes are free Z/4Z-modules (where
the results of Helleseth et al. and Calderbank et al. coincide) with w(C) even. On the other
hand, Wilson’s result can be worse than that of Helleseth et al., because one can construct a
sequence of codes (to which Theorem 1.4 applies) in which w**(C) — w(C) increases without
bound as C runs through the sequence (see Proposition 4.22 of this thesis). So the results
of Wilson and of Helleseth et al. are not strictly comparable.

Now let us consider zero counts and Hamming weights of codes in Z/p?Z[A]. The
results here mostly occur in the same papers where one finds the results for Lee weights.
Calderbank, Li, and Poonen [7] showed that Hamming weights in cyclic codes over Z/4Z
are always divisible by max{2[“’(c)/ 2]-2 glw(©)/ 3%1}. More generally, they showed that

Hamming weights in a cyclic code C over Z/27Z are always divisible by ofw(@/2] -2
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Indeed, they showed that the number of instances of each nonzero symbol is always divisible
by 2 [w(@/2074 =2 yf e specialize to d = 1, this shows that Hamming weights in cyclic codes
over Fy are divisible by w(C) — 2 = ¢(C) — 1, which is a result inferior to that obtained by
McEliece in his thesis [35]. Again, the results of Calderbank et al. were generalized and
strengthened by Wilson. Wilson showed that for any code C in Z/p?Z[A] with A cyclic, the
Hamming weights of words are divisible by p®(°). More strongly, he showed the following

result:

Theorem 1.6 (Wilson [65]). Let C be a code in Z/p?Z][A] with A cyclic and 14 not in the
support of the Fourier transform of C. Then for any c¢ € C and r € Z/p?Z with r # 0, the

w<C>—pd—1J

number of occurrences of the symbol r in the word ¢ is a multiple of p*©) = p{ (p=1pd=t

Note that the specialization of this theorem to p = 2 is stronger than the result of
Calderbank, Li, and Poonen. For Hamming weights in cyclic codes over Z/47Z, Wilson’s
result is stronger when w(C) is even and greater than or equal to 6. More generally (for
d > 2 and when counting occurrences of any nonzero symbol), Wilson’s result is stronger
when w(C) > 2¢ and 2?71 | w(C). We should also compare Wilson’s results with those of
McEliece. For d = 1, i.e., when C is a cyclic code over [F,,, Wilson’s results assert that each
nonzero symbol occurs a multiple of p!©) times, which is the result of McEliece’s thesis
[35]. However, if we wish to know about the p-divisibility of Hamming weights, this is not
as strong as McEliece’s later result (Theorem 1.1), which states that Hamming weights are
divisible by p‘me(€) (which can be greater than p“‘)). Thus Wilson’s theorem does not

reduce to the strongest result available for cyclic codes over prime fields.

1.2 New Results

We present four new results in this thesis, after laying a foundation of preliminary material
(Chapter 2) and presenting our estimation method in abstract form (Chapter 3) to avoid
repetitive calculations. Our first result, presented in Chapter 4, concerns zero counts,
Hamming weights, and counts of nonzero symbols in words of Abelian codes over Z/p?Z.

Our second result, presented in Chapter 5, concerns Lee weights in Abelian codes over
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Z/AZ. The third new result, discussed in Chapter 6, concerns zero counts and Hamming
weights in Abelian codes over arbitrary Galois rings. The last result, presented in Chapter
7, generalizes the theorem of Delsarte and McEliece (Theorem 1.2) to count the number of
positions where a selection of words ci, ..., ¢; € Fy[A] simultaneously have the zero symbol.
From this we derive N. M. Katz’s generalization [30] of Ax’s theorem (Theorem 1.3). We
present each result in more detail below.

The first result (Chapter 4) consists of two theorems. One theorem concerns counts of

nonzero symbols in words:

Theorem 1.7 (Theorem 4.21). Let C be a code in Z/pZ[A] with 14 not in the support
of the Fourier transform of C. Let v € Z/p%Z with r # 0, and let ¢ € C. Then the number

of occurrences of the symbol r in the word ¢ is a multiple of p*(©).

This improves Wilson’s result (Theorem 1.6) because ¢£°(C) > ¢(C). Indeed, there exists
a sequence of codes such that ¢*°(C) — ¢(C) is unbounded (see Proposition 4.22). Since
Wilson’s result is stronger than the result of Calderbank, Li, and Poonen on the number
of instances of nonzero symbols, our new theorem here is also stronger than the results of
these researchers. Our other new theorem gives an even stronger result for zero counts and

Hamming weights:

Theorem 1.8 (Theorem 4.18). Let C be a code in Z/p?Z[A] with 14 not in the support of
the Fourier transform of C. Then zer(c) = |A| (mod p%ic(©)) for all ¢ € C, and zer(c) # | A|
(mod plc©+1) for some ¢ € C. Equivalently, ham(c) = 0 (mod p'e(©) for all ¢ € C, and

ham(c) # 0 (mod pic©+1) for some ¢ € C.

Thus we have a sharp lower bound on the p-adic valuations of Hamming weights of words
in Abelian codes over Z/p?Z. This strengthens the bound for Hamming weights that can
be deduced from Theorem 1.7, and so a fortiori improves the results of Wilson (Theorem
1.6) and of Calderbank, Li, and Poonen [7], as applied to Hamming weights. Unlike these
other theorems, Theorem 1.8 reduces to Theorem 1.1 of McEliece on Hamming weights in
codes over prime fields. We note in passing that Theorem 1.7 can be applied to obtain

lower bounds on 2-adic valuations of Lee weights of words in Abelian codes over Z/2%7.
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When this is done, we obtain a result not strictly comparable to Wilson’s result on Lee
weights (Theorem 1.5); sometimes the one is better and sometimes the other is better.
Thus, by combining this new result with Wilson’s result, we obtain new improved bounds
on 2-divisibility of Lee weights in Z/29Z[A].
The second result (Chapter 5) presented in this thesis concerns Lee weights in Abelian

codes over Z/AZ:

Theorem 1.9 (Theorem 5.12). Let C be a code in Z/AZ[A] with 14 not in the support
of the Fourier transform of C. Then we have lee(c) = 0 (mod 2£SS(C)+1) for all c € C, and

lee(c) # 0 (mod 2¢°©)+2) for some ¢ € C.

Thus we have a sharp lower bound on the 2-adic valuations of Lee weights of words in
Abelian codes over Z/4Z. We first compare this result with the specialization to Z/4Z of
Wilson’s result (Theorem 1.5). The new result is stronger for Z/47Z-codes because £°°(C) >
¢(C). Indeed, there exists a sequence of codes such that ¢°*(C) — ¢(C) is unbounded (see
Proposition 4.22). Since Wilson’s result is stronger than that of Calderbank, Li, and Poonen,
this new theorem is stronger than theirs as well. We should also compare this with the result
of Helleseth, Kumar, Moreno, and Shanbhag, which applies only to the special case when
our Abelian group A is cyclic of order 2™ — 1 for some n > 1. The new theorem states
that the 2-adic valuations of weights are bounded below by ¢**(C) + 1 = |w**(C)/2], while
the result of Helleseth et al. gives a lower bound of [w**(C)/2] — 1. Thus, our result is
stronger when w**(C) is even. In fact, if one were to take the maximum of the lower bounds
of Wilson and those of Helleseth et al. for codes in Z/4Z[A] with A cyclic of order 2" — 1,
Theorem 1.9 would still give a stronger bound for infinitely many codes (see the discussion
at the beginning of Chapter 5 for more details). It is especially satisfactory that our new
theorem includes the statement that the lower bound it furnishes is sharp.

The third result (Chapter 6) is an analogue of McEliece’s theorem for Abelian codes over
an arbitrary Galois ring GR(pd, e). To the author’s knowledge, no such result has appeared

in the literature at this time. We prove the following result:

Theorem 1.10 (Theorem 6.12). Let C be a code in GR(p?,e)[A] with 14 not in the

support of the Fourier transform of C. Then zer(c) = |A| (mod p‘me(©)) for all ¢ € C, or
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equivalently, ham(c) = 0 (mod p“m<(©)) for all ¢ € C.

If we set d = 1 in this theorem, we recover the Delsarte-McEliece theorem (Theorem
1.2), which is sharp. However, if we set e = 1 in this theorem, we only obtain a weakened
version of Theorem 1.8 (since £55.(C) > £1c(C)).

The fourth result (Chapter 7) is a generalization of the Delsarte-McEliece theorem (The-
orem 1.2). Our generalized version counts the number of components where a collection
c1,...,¢ of codewords in Fy[A] simultaneously have the zero symbol. We extend the defini-
tion of zer so that zer(cq,. .., ¢:) is this simultaneous zero count. To state the theorem, we
need a slight generalization of the parameter ¢,,.(C). We suppose that Cy,...,C; are ideals
(codes) in [F4[A], and we let I'; be the support of the Fourier transform of C; for each i. We
consider unity-product sequences of the form

pFLl p’fl,nl ph.1 pltne
g ooy Qg reees g seees Gpp,

with a; ; € I'; and k; ; € N for each i and j. We insist that Z;“:l pFi =0 (mod ¢ — 1) for
eachi € {1,2,...,t}. Note that this modular condition forces p—1 | n; for all i. We consider
the “size” of such a sequence to be Zle max {0, p”T"l — e}, and we set £p.(Cy,...,Ct) to be
the minimum size of the sequences with these properties. It is not hard to show that when

we are working with a single codeword, i.e., when t = 1, this £,,.(Cy,...,C;) becomes the

parameter ,,.(C1) which we have already defined. Now we can state our theorem.

Theorem 1.11 (Theorem 7.14). Lett > 1 and let Cy, . ..,C; be codes in F,[A] with 14 not
in the supports of their Fourier transforms. Then zer(cy,...,¢;) = |A| (mod pfme(Cr-Ct))
foralley € Cy,... ¢ € Cy. There are somecy € Cy,...,c; € Cy such that zer(cy, ..., c;) Z |A|

(mod pemc(CLu-,ct)‘l’l) .

This theorem reduces to the Delsarte-McEliece theorem (Theorem 1.2) in the special
case t = 1. The Delsarte-McEliece theorem implies the result of Ax (Theorem 1.3) on the
p-divisibility of the cardinality of the zero set of a single polynomial over F,. In the same
manner, our new theorem implies the generalization of Ax’s theorem by N. M. Katz on the

p-divisibility of the cardinality of the set of simultaneous zeros of a collection of polynomials
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over [F,.

Theorem 1.12 (N. M. Katz [30]). Let f1,... f: € Fylz1,...,zy] be nonconstant polyno-
mials of degrees 01 < --- < 04, respectively. Let v be the least nonnegative integer greater
than or equal to (n — Zle Di) /0. Let V(f1,..., ft) be the set of simultaneous zeroes of

fi,- s fo in By Then |V (f1,..., fi)| is divisible by ¢”.

We also prove that N. M. Katz’s theorem is sharp in the sense that (using the notation
of the theorem) there exist homogeneous polynomials fi,..., f; of degrees d1,...,0; such
that pg” 1|V (f1,..., ft)]. The proof of this form of sharpness by N. M. Katz has an easily
fixed flaw, which is discussed and repaired in Section 7.6. The author has not been able

prove that anyone had fixed this before he did, but notes that anyone could have.

1.3 Methods

Our point of departure is the counting polynomial method of Wilson [67], [65], which we
shall review here briefly, while casting it into our own notation. Let us assume for the
moment that we have an Abelian code C C Z/p?Z[A], and we wish to p-adically estimate
the weights of words in C. For concreteness, suppose m is a positive integer, and we want to
show that all weights vanish modulo p™. For the rest of this chapter, let = denote reduction
modulo p?. When e = 1, i.e., when our Galois ring GR(p?, e) is Z/p?Z, Wilson’s basic idea
is to devise a polynomial f(z) € Q[z] that approximates modulo p" the lift of the weight
function, i.e., such that f(r) = wt(xw(r)) (mod p™) for all r € Z,. We call such a polynomial
a counting polynomial. Then for ¢ € C C Z/p?Z[A], Wilson carefully devises a lifted word
C € 7Zp|A] such that 7(C,) = ¢, for all a € A, and such that C(a) = 0 whenever é(a) = 0.
S0 WH() = Yo s WH(ea) = Cae WH(T(Ca)) = Fes £(Ca) (mod p™).

Now Wilson writes C, in terms of its Fourier coefficients (i.e., uses the inverse Fourier
transform). To be consistent with the notation of this thesis (not with Wilson), we devise a
bilinear pairing (-, -) from Ax A into Qp({g—1), which furnishes a non-canonical isomorphism
between A and the group of characters of A, namely, (a,): A — Qu(¢y—1) is the charac-

ter that we identify with the element a € A. Then we write C, = |A|™* Y obed C(b)(b, a).
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We want to calculate ), 4 f(Cq), which approximates wt(c) modulo p™. For any k € N,
we have CF = <|A|’1 Shes C(b) (b, a))k — Ay es CO1) ... Cby) (b - .. by, @), and
f(C,) is a linear combination of such terms with k < deg(f). Note that we are only sum-
ming over b € S (rather than b € A) since S is a support of ¢ (and thus, by the lifting
procedure, it is also a support of C'). When we sum over a in A, we have > acn CF =
|A|F Y bi,beES C(by)...C(by). Then > aca f(Ca) (which is congruent modulo p™ to
wt(c)) is b;mlbi;:e;; combination of such terms for & < deg(f). If deg(f) is less than the
minimum length of unity-product sequences of elements in S (i.e., if deg(f) < w(C)), then
> aca f(Cq) = 0,and so wt(c) =0 (mod p™). In this way, Wilson obtained his results (The-
orems 1.5 and 1.6) by showing that one can find polynomials of low degree that approximate
lifts of the appropriate weight functions (Lee weight, Hamming weight, and weight func-
tions that count instances of particular symbols). The degree of the polynomial increases
as the desired p-adic accuracy of the approximation (measured here by m) increases. To
find such polynomials, Wilson performs some nontrivial calculations using the calculus of
finite differences. Indeed, the calculations we have shown here (which assume the counting
polynomial has already been found) are straightforward, while the existence of sufficiently
low degree counting polynomials is not obvious.

We need to modify Wilson’s counting polynomial method extensively in three ways
(at least) to provide what is needed to prove the new results presented here (Theorems
1.7-1.11). Note that Wilson’s method gives results (Theorems 1.5 and 1.6) in terms of
the parameter ¢(C) only, never in terms of ¢,,.(C), ¢35.(C), or ¢55.(C). Thus our first two
challenges are to devise counting polynomials that respect the modular condition and the
scoring system described in Section 1.1 above. Thirdly, none of Wilson’s results furnish
proofs of sharpness. This is done by careful combinatorial analysis of terms in our p-adic
estimates of weights.

To make a counting polynomial that respects the modular condition, we introduce aver-
aging techniques. The averaging is straightforward if e = 1. Roughly speaking, we replace
a counting polynomial f(x) with g(z) = (p — 1)~} 25;()2 ( ;',71:1;), where (1 is a root of

unity of order p — 1. This g(x) has all exponents of x divisible by p — 1, which is exactly



18
what is needed to enforce the modular condition on sequences in our calculations. In the
proof of Theorem 4.12 in Section 4.2, we use a generalization of this averaging procedure
to obtain a counting polynomial suitable for proving Theorem 1.8. There we have a poly-
nomial f(zo,...,x4—1) that respects the scoring system (more details on this below), and
we replace it with g(zg,...,24_1) = (p — 1)~} 25;02 (C;;_lxo, e ;_1zd_1) to produce a
polynomial that respects both the modular condition and the scoring system.

In the case where e > 1, the polynomials constructed by Wilson do not even approximate
lifted weight functions. For when e > 1, GR(p?, e) is the quotient of Z,[(,—1] modulo p?,
so that we need a polynomial g(z) with g(r) = wt(m(r)) for all r € Zp[(4—1], but Wilson’s
polynomials are designed to give approximations only for r € Z,. So before we even address
the modular condition, we must address a new challenge: finding counting polynomials for
use with Galois rings GR(p?, ) with e > 1. To do this, we perform an averaging procedure,
called trace-averaging, which is based on the trace Tr: Q,((4—1) — Qp. The trace-averaging
procedure is somewhat technical even when d = 1 (i.e., for finite fields), and requires a great
deal of care when d > 1. Trace-averaging forms from Wilson’s polynomial a new polynomial

9(w0, ..., Te—1) € Qp(y-1)[0, - .., Te—1] with the property that g(r,Fr(r),...,Fr¢1(r))

zer(m(r)) (mod p™) for all r € Zy[(4—1], where Fr is the Frobenius automorphism. It turns
out that trace-averaging not only fills a void by providing counting polynomials for use
with Galois rings GR(p?, ¢) with e > 1, but the polynomials thus furnished also respect the
modular condition. In this way, we can obtain lower bounds on p-adic valuations of weights
in terms of £,,.(C) instead of bounds based on ¢(C).

We also need to modify Wilson’s method to provide counting polynomials that respect
our scoring system, which was used to define the parameters w**(C), £**(C), wy?.(C), and
275 (C) introduced in Section 1.1 above. Instead of constructing a single-variable counting
polynomial f(z) € Q[x] with the property that f(r) = wt(mw(r)) (mod p™) for all r €
Z,, we construct a multivariable polynomial f(zo,...,z4—1) that has the property that
f(ro,...,ra—1) = wt(m(ro +pri+ - +p¥trg_q)) (mod p™) for all ro,...,rq_1 € Zp. The
degree of our polynomial in the variable x; will be roughly 1/p’ times its degree in .

Then we decompose our codeword ¢ € GR(p?, €)[A] in a very specific way (this is the scaled
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Fourier-induced breakdown introduced in Section 2.3 and taken up again in Section 4.3).
The decomposition is of the form ¢ = ¢ + pc® + ... 4 p=1eld=D Each ¢ is then lifted
to obtain a word C)) € Z,[A], and we compute >, » f(C’((IO), . ,C[(ld_l)) to approximate
the weight. Precise details would be lengthy to state, but this method respects the scoring
system, so we can obtain new lower bounds on p-adic valuations of weights in terms of
¢°5(C). We may also use an averaging technique to make a polynomial that respects both
the scoring system and the modular condition, so we can obtain strong lower bounds in
terms of £5°.(C).

In certain cases, we want to obtain sharp bounds on the p-adic valuations of weights
from the counting polynomial method. Some of our new counting polynomials are suitable
for this task, but they must be employed with great care to obtain proofs of sharpness.
Recall that Wilson uses a counting polynomial f(x) that approximates wtor modulo p™,
and for which ) . 4 f(C,) vanishes, to prove that wt(c) =0 (mod p™). Naturally, Wilson
chooses a polynomial f(z) that approximates wtom as closely as possible, subject to the
constraint that the degree of f(x) be low enough that »_ ., f(C,) vanishes. To obtain a
sharp bound we use a counting polynomial g that approximates wtom a little more pre-
cisely, say modulo p"*1, so that the sum > we 9(Cq) does not entirely vanish, but becomes
a polynomial function of the lifted Fourier coefficients C'(a). (We may actually be looking at
an analogous, but more complicated sum if we are using some of the more exotic multivari-
able polynomials discussed above, but the idea remains the same.) Then a combinatorial
analysis of ). 4 9(C,), regarded as a polynomial function of the lifted Fourier coefficients,
can be used to determine that, as ¢ runs through our code C, the lifted Fourier coefficients
at some point take on values such that Y ., g(C,) does not vanish modulo p™*!. This
combinatorial analysis can be quite intricate in certain cases, e.g., see the proof of Theorem
4.18.

Finally, we combine the trace-averaging method with techniques for dealing with mul-
tiple words to obtain a polynomial for counting simultaneous zeroes. This enables us to
prove Theorem 1.11. We obtain the result of N. M. Katz (Theorem 1.12) by deriving and

employing a slightly refined version of the result that punctured Reed-Muller codes are
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cyclic [28].

1.4 Sketch of the Contents

Chapter 2 is all preliminary material. Section 2.1 reviews p-adic fields and Galois rings, and
Sections 2.2 and 2.3 review the Fourier transform. Section 2.4 introduces the various weight
functions we shall consider, and introduces the notion of normalized weight, which is our
device for dealing with codes in which 14 is in the support of the Fourier transform (i.e.,
codes with constant words). Of particular note is Section 2.5, which introduces the notion
of accounts, which are simply functions from a set Y into the integers. Accounts that take
nonnegative values are regarded as multisets. This combinatorial device is indispensable for
making our equations (barely) compact enough to display conveniently on the page. Any
reader who wishes to understand the calculations performed here must be familiar with the
notations for accounts. Sections 2.6 and 2.7 include various combinatorial devices that we
employ to obtain our more precise results (such as proofs of sharpness). We recommended
that the reader pass over these sections and return to them only when the tools they describe
are actually employed (in parts of Chapters 4-7). Section 2.8 describes some notations we
use for multivariable polynomials as well as some basic facts about polynomials that we
shall need. The reader should be familiar with the notations set down there because they
are often used.

Chapter 3 provides abstract theorems that will give p-adic estimates of weights if one
can furnish an appropriate counting polynomial. Nothing is said about how to find counting
polynomials; this will be done in each of the succeeding chapters as the need arises.

In Chapter 4, we prove Theorems 1.8 and 1.7, while laying down the foundations needed
for all our counting polynomial constructions. Section 4.1 has some fundamental material
on the Newton expansion, which is the mathematical device underlying all our counting
polynomial constructions. We construct our counting polynomials in Section 4.2, some of
which will be used in Chapters 6 and 7. We show how to employ the polynomials in Section
4.3. The techniques and results of Sections 4.1-4.3 will be reused in Chapter 5. In Sections

4.4 and 4.5, we use our counting polynomials to prove Theorems 1.8 and 1.7, and in Section
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4.6 we compare these results with earlier work.

Chapter 5 is dedicated to proving Theorem 1.9. After discussing previous results and
comparing our new theorem with them (relying heavily on material from Section 4.6 for
the comparison), we spend the next two sections (5.1 and 5.2) specializing the notions of
Sections 4.2 and 4.3 for Lee weight. Thus we obtain a counting polynomial, which we use
in Section 5.3 to prove Theorem 1.9.

Chapter 6 is dedicated to proving Theorem 1.10. In Sections 6.1-6.3, we develop the
trace-averaging procedure to obtain an appropriate counting polynomial. We derive Theo-
rem 1.10 in Section 6.4 and show that we can recover some earlier results from this highly
general theorem in Section 6.5.

In Chapter 7, we prove Theorem 1.11 and relate it to the theorem of N. M. Katz
(Theorem 1.12). In Sections 7.1-7.3, we carry out a more specialized version (for finite
fields only) of the trace-averaging procedure of Chapter 6. Then in Section 7.4, we construct
our polynomial for counting simultaneous zeroes. We use this polynomial in Section 7.5 to
prove Theorem 1.11. In Section 7.6, we review the theorems of Chevalley-Warning, Ax,
and N. M. Katz. In Section 7.7, we show how to translate results about weights in group
algebras to results about cardinalities of affine algebraic sets over finite fields. In Section

7.8, we prove the theorem of N. M. Katz and the associated statement about its sharpness.
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Chapter 2

Preliminaries

In this chapter, we review the fundamental mathematics needed to state and prove our
results. We also introduce definitions, notations, and combinatorial devices that allow us
to describe and manipulate the objects that arise in this study. We discuss p-adic fields
and Galois rings in Section 2.1. Then we introduce the Fourier transform for the group
algebra R[A] (with R a fairly generic ring) in Section 2.2. In Section 2.3, we give more
specialized results on the Fourier transform in the case when R is a Galois ring or a ring
of integers in an unramified extension of the p-adics. In Section 2.4, we review weight
functions commonly used in algebraic coding theory. There we introduce the normalized
weight function, a device for simplifying the presentation of our results when our code has
the trivial character in the support of its Fourier transform (i.e., when our code contains
constant words).

The second half of this chapter deals more with notations and devices that make it easier
for us to state and prove our theorems. Section 2.5 is especially critical in this regard. There
we introduce the notion of an account (which is a generalization of a multiset) and tools
for manipulation of accounts. These accounts are ubiquitous in this thesis, so the reader
must be familiar with them, with their notation, and with the basic operations that can be
performed upon them. Section 2.6 introduces the procedures called collapse and reduction
of accounts. These devices are needed in our proofs of sharpness of lower bounds on p-
adic valuations of weights. The reader should probably skip this section until collapse and
reduction are actually used (beginning in Section 4.4). Section 2.7 introduces the Frobenius

action on accounts. This device is used to prove that certain quantities in our p-adic
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estimates, which we already know to be elements of Zy[(;—1], are in fact elements of Z,. It
would be a good idea for readers to skip this section, and return to it only if they want to
understand the use of the Frobenius action in the proofs of Theorems 4.18, 5.12, 6.13, and
7.14. Section 2.8 includes notations we use with multivariable polynomials. There we also
include a basic fact about polynomials, which we use to prove that certain of our bounds

on p-adic valuations of weights are sharp.

2.1 Number Systems

Before we discuss p-adic fields and Galois rings, we fix certain conventions and notations
once and for all. We use integer to mean a rational integer unless further qualified. We let
Z denote the set integers, Z the set of strictly positive integers, N the set of nonnegative
integers, and Q the rational numbers. We always use p to denote a prime in N. We represent
the ring of integers modulo m as Z/mZ. We use Z, to denote the p-adic integers and Q, to
denote the p-adic rationals, which are described in Chapter II of [46]. We use (,, to denote
a root of unity of order n over Q,. We record the facts we need to know about Z, and Q,

here:

Proposition 2.1 (p-Adic Integers and Rationals). Z, is a discrete valuation ring of
characteristic 0 with the unique nonzero prime ideal generated by p, and Q, is the field of
fractions of Z,. Thus each nonzero element of Q, can be written uniquely as p™u with
m € Z and u a unit in Z,, where the nonzero elements of Z, are precisely such elements
with m > 0, and the units in Z, are precisely such elements with m = 0. Q, and Z, are
complete in the topology defined by this valuation. Z, contains (p—1. The set consisting of
zero and the powers of (p—1 s a set of representatives of the equivalence classes modulo p
in Zy. The quotient modulo p of Z, is the prime field ), whose cyclic group of units is
generated by the reduction modulo p of (,—1. The quotient modulo p™ of Z, is the integer
residue ring Z/p™7Z. Each element of a € Z, has a unique representation as Y .-, a;p’,

where each a; is either zero or a power of (p—_1.

Proof. These are all either explicitly mentioned in, or readily apparent from, the discussion

in Chapter II of [46]. O
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We consider certain algebraic extensions of @, whose behavior is similar.

Proposition 2.2 (Unramified Extensions of the p-Adics). Q,((yn—1) is a degree n
Galois extension of Qp, and the Galois group of Q,((yn—1) over Q, is the cyclic group
of order n generated by the automorphism ¥Fr which takes (yn_1 to an_l. The elements
of Qp(Cprn—1) that are integral over Z, form the ring Zy[Cym—1]. Zp[Cm_1] is a discrete
valuation ring of characteristic O with the unique nonzero prime ideal generated by p, and
Qp(Cpn—1) s the field of fractions of Zy[Cpn—1]. Thus each nonzero element of Qp(Cpn—1)
can be written uniquely as p™u with m € Z and u a unit in Z,[(pn—1], where the nonzero
elements of Zp[Cyn—1] are precisely such elements with m > 0, and the units in Zy[(pn—1]
are precisely such elements with m = 0. Qp((n—1) and Zy[(pn_1] are complete in the
topology defined by this valuation. The set consisting of zero and the powers of (yn_1 s
a set of representatives of the equivalence classes modulo p in Zy[Cyn—1]). The quotient
modulo p of Zy|Cpn—1] is the finite field Fpn, whose cyclic group of units is generated by the
reduction modulo p of (yn_1. The automorphism Fr on Q,[(pn—1] induces an automorphism
(which we shall also call Fr) on Fpyn; this induced automorphism takes each element to
its pth power and it generates the Galois group of order n of Fpn over F,. Furthermore,
Qp(Gpr1—1) NQp(Gpra—1) = QP(Cngd("l’"Q)—l) and Zp[Cyr1—1] N Zp[Gpra—1] = Zp[Cpgcd(nwz)—1]~
Thus, Qp(Cpr1—1) € Qp(Cpra—1) if and only if ny | na, and Zy[Cpra—1] C Zp[Cyna—1] if and

only if n1 | na.

Proof. This follows from Proposition 16 (along with Corollary 1) in Chapter IV of [47],
assuming the theory developed in that book up until that point, most particularly Propo-

sitions 3 and 8 of Chapter II. 0

Let us examine in more detail the valuation mentioned in Propositions 2.1 and 2.2 above.
For a nonzero element a € Qp({yn—1), the unique integer m such that a = p™u for some
unit u € Zy[(pn_1] is called the p-adic valuation of a. If a also lies in @p(gpn,_l), then it
is not hard to show that the p-adic valuation of @ in this other field is precisely the same
as its p-adic valuation in the Q,((pn—1). Thus no reference to the field containing a is
necessary, and the p-adic valuation of a is simply denoted v, (a). We define v, (0) = oo, and

we consider oo strictly greater than any integer and set anything plus oo to co. We say that
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two elements a and b are congruent modulo p™ to mean that v,(a—b) > m. Thus the notion
of equivalence of elements modulo powers of p is independent of which unramified extension
of Q, we regard as the ambient field. With these conventions, we have the following easily

verified properties of the p-adic valuation:
Lemma 2.3 (Properties of v,). For any a,b € Q,((n—1), we have the following:
(1) vp(a) = o0 if and only if a = 0.

(i) v (ab) = vy (@) + vy (b).
(iii) vp (a4 b) > min{vy, (a), v, (b)}, with equality when vy (a) # vy ().

For a € Qu(¢pn—1), we also define the p-adic absolute value of a, denoted |a|p, to be

o0

p~ (@) where p~ is considered to be 0. The properties of vp, translate into properties of

||, as follows:
Lemma 2.4 (Properties of |-|p). For any a,b € Qu(¢pn—1), we have the following:
(i) lal, =0 if and only if a = 0.

(H) ’ab’p - ’a“p|b|p'
(iii) |a+ 0|, < max{|al,, [b],}, with equality when |a|, # [b],.

Thus the p-adic absolute value provides a metric on Q,({ym—1), where the distance
between a and b is |a — b[,. This metric defines a topology on Q,((yn—1) that we call the
p-adic topology. It is this topology that is discussed in Propositions 2.1 and 2.2 above.

In Proposition 2.2, we saw that the finite fields of characteristic p can be obtained
as quotients modulo p of rings of algebraic integers in unramified extensions of Q,. We
shall also be interested in the quotients of these rings modulo powers of p. The Galois
ring of characteristic p'™ and order p™", denoted GR(p™,n) is the quotient modulo p™ of
Zp|Cpn—1]. Note that GR(p, n) is the finite field Fp» of order p™. Also note that GR(p™, 1) is
the integer residue ring Z/p™Z. The ring GR(p™,n) contains Z/p™Z as a subring and can
be thought of as an extension of Z/p™Z obtained by adjoining a root of unity of order p™ —1.

Furthermore, the statements regarding intersections and containments of extensions of Q,
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and Z, in Proposition 2.2 imply that GR(p™, n1) NGR(p™, n2) = GR(p™, ged(n1, n2)), and
therefore GR(p™, n1) C GR(p™, ng) if and only if n; | ne. In this case, GR(p™, n2) is a free
GR(p™, n1)-module. Note that GR(p™, n) is a principal ideal ring with m+1 ideals, namely
P’ GR(p™, n2) for j = 0,1,...,m. Here p® GR(p™, nz) is the entire ring and p™ GR(p™, nz)
is the zero ideal. For more information on Galois rings, the reader should consult the book
of McDonald [34].

It does not make sense to consider the ring GR(p™', n) as a subring of GR(p"?,n) when
m1 < ma, since the two rings have different characteristics. However, we do have a way
of relating elements of the one ring to elements of the other. Since m; < ms, reduction
modulo p™! furnishes an epimorphism from GR(p"?,n) to GR(p™,n). Thus for m; < ma,
if a € GR(p™2,n), we define mp, (a) € GR(p™',n) to be the reduction modulo p™ of a.
Also, if a € Zp[(yn—1], we define 7, (a) € GR(p™',n) to be the reduction modulo p™* of
a. Since (pn_1 is a root of unity of order p"™ — 1 over Q, and since 7 ({m—1) is a root of
unity of order p" — 1 in F)» (see Proposition 2.2 above), we know that m,,({yn—1) is a root
of unity of order p" — 1 in GR(p™,n) for every positive integer m. As a convention, we
define 7 to be the identity map on Zj,[(pn—1].

Now we wish to define a map from GR(p™*,n) to GR(p™2,n) when m; < my. Proposi-
tion 2.2 tells us that each element a € Z,[(,n_1] can be written uniquely as > o0 a;p’,
where each a; is either zero or a power of (yn_1. We call this the canonical expan-
sion of a € Z,[(prn—1]. This implies that when m is a positive integer, each element a
of GR(p™,n) can be written uniquely as Z?Z)l a;p', where each a; is either zero or a
power of 7, ((n—1). We likewise call this the canonical expansion of a € GR(p™,n).

For m; < mg and a € GR(p™,n), with canonical expansion a = Z;ilo_l a;p’, we de-

fine 7p,,(a) to be an element b € GR(p™2,n) with canonical expansion b = 22110—1 bip',

where b; = 0 whenever a; = 0 and b; = me(gpn_l)j whenever a; = TI'ml(Cpn_l)j. We
also define 7 (a) = 2?20—1 c;p', where ¢; = 0 whenever a; = 0 and ¢; = an_l when-

ever a; = Wml(Cpn_1>j. For each positive integer m, we call m,, the Teichmdiiller lift to

characteristic p™ and call 7o, the Teichmdiller lift to characteristic 0.

For my < mg in Z4 U{oo}, we have 7y, 0Ty = T, and Ty, © Ty = Tim,. Furthermore,
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if a € GR(p™,n), mm, (Tmy(a)) = a, but if a € GR(p™2,n), then it is not always true that
Tmg (Tm, (@) = a.
To summarize the relationships between the various unramified extensions of Q, and the
various Galois rings, we have the following commutative diagrams, where unmarked arrows

are inclusion maps:

Qp(Cp"fl) — Zprnfl] s GR(p™,n) —— Fpn

| | I |

Qp A Ly s Z/p™L ——— Fyp

and
Qp(fp"—l) N Zpr"—l] —— GR(p™,n) «—— Fpn

I I I I

Q —— 7, <= Z)p"Z < F,
In each diagram, the two rows coincide when n = 1, and the last two columns coincide
when m = 1.

We transplant the notion of p-adic valuation from the unramified extensions of @, to the
Galois rings. The p-adic valuation of a nonzero element a € GR(p™, n), denoted v, (a), is
defined to be the greatest k such that a € p* GR(p™,n). We define v, (0) = oo in GR(p™, n).
Thus we have defined v,: GR(p™,n) — {0,1,...,m — 1,00}. Note that for any m; € Z,
mg € Z4 U {oo} with m; < mg, and a € GR(p™, a), we have v, (T, (a)) = vp (a). On the
other hand, if m; < my are positive integers and a € GR(p™?,n), then vy, (1, (a)) = v, (a)
if v, (a) < my or v, (a) = oo, but v, (7, (a)) = co when m; < v, (a) < co. Likewise,
if a € Z,[(pn—1] and m; is a positive integer, then vy, (my,, (a)) = v, (a) if v, (a) < my or
vp (@) = 00, but vy, (M, (a)) = co when m; < v, (a) < .

In Proposition 2.2, we used Fr to denote the field automorphism of Q,((y»—1) that
fixes Q, pointwise and takes (yn—1 to (). ;. Note that Fr restricted to Zy[Gpn-1] is an
automorphism of rings. We also used Fr to denote the field automorphism it induces on
Fpn through reduction modulo p; this automorphism takes every element to its pth power.
Because the automorphism Fr of the field Q,((yn—1) takes p™ to p™, it permutes the ideal

P ZLyp[Cprn—1] of the ring Z,[(yn—1], and thus induces an automorphism of the ring GR(p™, n)
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for each positive m through reduction modulo p™. This automorphism fixes pointwise the
subring GR(p™, 1) = Z/p™Z of GR(p"™,n) and maps the element 7y, ((pn_1) to T (Cn_1)P.
Throughout the thesis we call all of these automorphisms the Frobenius automorphism and
denote them all by Fr.
It is not difficult to show that Fr commutes with 7, and 7, for all m € Z U{oo}. That

is, we have the commutative diagrams

Qp((p”—l) N Zpr”—l] — GR(p™,n) —— Fpn

o o o o

Qp((p"fl) AR Zp[Cp"fl] —— GR(p™,n) —— Fpn

and
Qp((p”fﬂ A Zp[Cp”fl] e GR(pm,n) e Fpn

0| | o] 0|
Qp(Cpr—1) —— Zp[Gpr—1] «——— GR(p™,n) «—— Fpn,
where unlabeled arrows are inclusion maps.

Recall that Q,((pr1—1) € Qp((pra—1) if and only if ny | ng, and recall that GR(p"™*,m) C
GR(p™,m) if and only if n; | ny. Suppose nj | ne. Since Fr generates the Galois group
Gal(Qp(Cpr2—1)/Qp) of order ny and the Galois group Gal(Qp(¢pn1—1)/Qp) of order ny, we
see that Fr"! generates the Galois group Gal(Qp((pr2—1)/Qp(¢pn1—1)) of order ny/nq. Thus
an element of Q,((pr2—1) is in Qp(¢pn1—1) if and only if it is fixed by Fr"!. Likewise, for
any positive integer m, an element of GR(p"™, nsy) is in GR(p™,ny) if and only if it is fixed
by Fr™'. This can be checked by writing the canonical expansion of an arbitrary element of
GR(p™,n2) and applying Fr™. If any coefficient is neither zero nor a power of m,((yn1—1),
the element will not be fixed by Fr"™'; otherwise the element will be fixed.

If n1 | na2, we define the trace map Trp?: Qu(Gpra—1) — Qp(¢pri—1) by Trp%(a) =
Z;Z"O/ )=l gy (a). Since Fr commutes with 7, for all positive integers m, it induces
a trace map on the Galois rings, which we express with the same notation, i.e., we write
Trp2: GR(p™,n2) — GR(p™,n1). That this trace map is a surjective GR(p™, n1)-linear
map follows from the fact that Trp?: Qp((prz—1) — Qp(Cpra—1) is a surjective Qp((pm1-1)-

linear map. Of course Tr;;2: GR(p,n2) — GR(p,n1) is just the usual trace from Fyno to
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Fpn1. Since Fr commutes with the maps 7, and 7, for all m € Z; U {oo}, we also know
that Try? commutes with 7, and 7, for all ny;,ns € Zy and m € Z; U{occ}. In terms of

commutative diagrams, we have

@p(<pn2_1) - ZP[CP’W—I] LB GR(pm,nQ) L Fpnz

TrZ% l Tr:g l Tr:g l Tr:g l

Qp(fp”lfl) A Zp[(pnlfl] ST GR(p™,m1) B Fpna

and
Qp(Gpra—1) —— ZylGraa] <= GR(p™,np) <"~ Fpno

Try,? Trp? Tfﬁfl Terl
Qp(Gpr1—1) — Zp[Gpmi—1] —=— GR(p™,m) —"— Fpna,

where unlabeled arrows are inclusion maps.

2.2 Group Algebras and the Fourier Transform

We now define the group algebra R[A], which is our basic object of study. Recall from
the last section that we always use p to denote a positive rational prime. We shall always
use A to denote a finite Abelian group with p t |A|. We write A multiplicatively with
identity 14 (or just 1 if there is no cause for confusion). Throughout this section, let R
be a commutative ring with multiplicative identity 1z (or just 1 if there is no cause for
confusion). We assume that the characteristic of R is 0 or a power of p and that |A| has a
multiplicative inverse in R.

An element f € R[A] is written as a formal sum f =" _, fqa, with each coefficient f,
in R. We use the notation f, and f(a) interchangeably for the coefficient of a in f, as we
find it convenient. If f,g € R[A] and ¢ € R, then the addition operation of R[A] is given by
(f+9)a = fa+9a, i-e., pointwise addition, and the R-scalar multiplication of R[A] is given by
(¢f)a = cfa- The ring multiplication, called convolution, is given by (fg)a = > _,ca fo9b-1a-
R[A] contains an isomorphic copy of R, namely {rls : » € R}, which includes 1z14, the
multiplicative identity of R[A]. An ideal of R[A] is called an Abelian code (or just code) in
R[A], and elements of R[A] are often called codewords or just words. The constant words

are precisely those words f € R[A] for which there exists an r € R such that f, = r for all
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a € A.

Another algebra of interest to us is R4, which consists of all functions from A to R,
with pointwise addition and multiplication of functions, i.e., (f + g)(a) = f(a) + g(a) and
(fg)(a) = f(a)g(a). We also have R-scalar multiplication (rf)(a) = rf(a) for r € R and
a € A. We use the notation f(a) and f, interchangeably for the value of f at a, as we find
it convenient. The multiplicative identity is the constant function equal to 1 everywhere.

Sometimes we shall combine elements of R[A] by means of pointwise multiplication or
combine elements of R4 by convolution. Since these are not the proper multiplications
in these rings, we write f - g for the pointwise product of f,g € R[A] and f % g for the
convolution product of f,g € R4. If we wish to equip R[A] with pointwise multiplication
as its multiplicative operation, we shall write (R[A],-), and if we wish to equip R4 with
convolution, we shall write (RA, >x<) to make these unusual circumstances apparent.

We analyze elements and ideals of group rings by means of the Fourier transform. In
order to have a satisfactory Fourier transform, |A| should be a unit in our ring of scalars R,
and R should contain roots of unity of order equal to the exponent of A (see Theorem 18
of [21]). The first condition is fulfilled by one of our initial assumptions about R. We also
assume that the second condition is fulfilled for the rest of this section.

We define a character of A into R to be a homomorphism from A into the group of
units of R. These characters, regarded as functions with pointwise multiplication, form an
Abelian group X, which we shall show to be isomorphic to A. Let a,...,ar be elements
of A of orders ny,...,ng, such that each element of A can be written uniquely as aill e aZ’“
with 0 < iy, < ny, for each h. A character from A to R is uniquely determined by its values
onai,...,a. Let 0y be a root of unity of order ny in R for each h. A character must take
ayp, to some power of 0; if a = ail1 ... aZ’“, we define y, to be the character that takes ay,
to Hflh for all h. Then we note that if a,b € A, then Y. = XaXs, S0 that a — Yy, is in fact
an isomorphism from A to our group X of characters. To make this isomorphism easier
to employ, we follow Delsarte [16] and introduce the pairing (-,-): A x A — R, defined so
that <ai1 . ..ai’“,a{l ...ai’c> = G?jl ) ..9;’”’“. Then xq(b) = (a,b), i.e., for each a € A, the

character y, is the function (a,-): A — R. We now examine the basic properties of (-, ).
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In the following lemma, and for the rest of this thesis, we use the Kronecker delta 6(z,y),

which equals 1 when x = y, and equals 0 otherwise.

Lemma 2.5 (Properties of (-,-)). For any a,b,c € A and n € Z, we have the following:
(i) (a,b) = (b,a).

(ii) {(a,bc) = {(a,b){(a,c).

(iii) {(a,b"™) = (a,b)".

(iv) (a,b) =1 for allb e A if and only if a = 14.

(V) 2pea (a,b) = |A[da1,.
Proof. These are easy to verify. O

Thus our pairing is symmetric and bilinear and establishes a (non-canonical) isomor-
phism from A to X. Now we are ready to introduce the Fourier transform in terms of our
pairing.

The Fourier transform of a function f € R[A] is usually defined to be the function
g: X — R sothat g(x) = > 1ca fox(b)~!. Using the isomorphism from A to X given by
a — Xa, we can consider the Fourier transform to have domain A instead of X, i.e., we
consider the Fourier transform of f to be the function h: A — R with h(a) = g(xa). We
take this as our standard definition for the Fourier transform; our bilinear pairing makes
this definition easy to state.

Let f € R[A]. Then the Fourier transform of f, denoted FT(f) or f, is the element of
R4 with f(a) = bea fb<b_1,a> for all a € A. The scaled Fourier transform of f, denoted
f, is the element of R4 with f(a) = |A| ™' f(a) for all a € A. We often call the values f(a)
for a € A the Fourier coefficients of f and the values f(a) the scaled Fourier coefficients of
f-

The first thing we should note is that the Fourier transform is an R-algebra isomorphism.
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Proposition 2.6 (Fourier Transform is an Isomorphism). The Fourier transform is

an isomorphism of R-algebras from R[A] to R* with inverse given by

fla)=1A71 Y f0) (b, a).
beA
For f,g € R[A], the Fourier transform of f - g is |A[71f>|< g.
The scaled Fourier transform is an R-module isomorphism from R[A] to R* with inverse
given by

fla) =2 f(b){b,a).

beA
For f,g € R[A], the scaled Fourier transform of fg is |A|f§, and the scaled Fourier trans-
form of f-g isf*g.
Proof. Tt is well-known that the Fourier transform is an isomorphism of R-algebras that

takes convolution to pointwise multiplication. The facts about the scaled Fourier transform

follow easily by keeping track of the scale factors. O

We also note that constant words have a very simple description via the scaled Fourier

transform.

Lemma 2.7 (Constant Words). The word f € R[A] is the constant word with f(a) =1

for all a € A if and only if f(14) =7 and f(a) =0 for all a # 14.

Proof. If f(14) = r and f(a) = 0 for a # 14, then by the inversion formula f, =
Y acA f(a){a,b) = r(14,b) = r for all b € B. The scaled Fourier transform is a bijec-

tion, so the “only if” part follows immediately. O

2.3 Group Algebras over GR(p?,e) and Z,[¢, 1]

Now we introduce the rings and group algebras that are of special interest to us. Through-
out this thesis, we let d and e denote positive integers, and we define ¢ = p®. We shall

be concerned mostly with the group algebra GR(p?, e)[A] and its ideals (codes). For many
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counting calculations, it will be advantageous to perform computations in a ring of charac-
teristic zero that resembles GR(p?, e) as much as possible. For this reason, we employ the
ring Z,[C,—1], whose quotient modulo p? is GR(p?, e), and we also use the group algebra
Zp[¢4-1][A], whose quotient modulo p? is GR(p?, e)[A]. In this section, we shall describe
the structure of GR(p?, e)[A] and Z,[¢,—1][A] via the Fourier transform. Note that since
p 1Al |Al is a unit in GR(p?, e) and Z,[¢,—1]. However, these rings may not contain roots
of unity of order equal to the exponent of A. Therefore, we extend our rings by adjoining
roots of unity. We choose €’ to be the least positive integer such that the exponent of A
divides qe/ —1, and let ¢/ = qe/ = pee/. Then we consider the ring Z,[(,—1] and its quotient
modulo p?, which is GR(pd, ee’). These rings contain the roots of unity of order qe/ -1,
hence they have the roots of unity whose order is the exponent of A. Furthermore, since
ee’ is a multiple of e, we have Zp[(;—1] C Zp[¢y—1] and GR(p%,e) C GR(p?, ee’). So we
may consider GR(p?, e)[4] € GR(p?, ee’)[A] and Z,[¢4—1][A] C Zp[¢y-1][A4], and carry out
Fourier analysis within GR(p?, ee’)[A] and Z,[¢,—1][A].

The Fourier transform was applied to cyclic codes over Fo by Mattson and Solomon
[33] and, more generally, to Abelian codes over Fy by MacWilliams [31]. Working with an
arbitrary finite field is no more difficult than working with Fo, and the results generalize
naturally when fields are replaced with integer residue rings [43] or Galois rings [3], [54].
We are presenting the Fourier transform in a manner close to that of Delsarte and McEliece
[18] to facilitate comparison of our results with theirs. However, there are minor differences
in notation, and we write our group A multiplicatively, while they write theirs additively.

For the rest of the thesis, we use m without a subscript for 74, which is reduction modulo
p?. We shall use 7 without a subscript for 7, which is the Teichmiiller lift to characteristic

0. In the definition of the pairing (-,-) given in the previous section, i.e.,

k
11 i J1 Je\ thJh
<a1...ak,a1 "'ak>_H0h
h=1

we shall use 6, = (p, if our ring is Z,[(y—1], and we shall use 6, = 7((p,) if our ring is
GR(p?, ee’). With these choices, the Fourier transform commutes with reduction modulo

p®. To notate this fact, for f = >, 4 foa in Zy[(y_1][A], we let m(f) denote the element
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> aea(fa)a € GR(p% e€')[A], and for g € Zp[Cq/_l}A, we let 7(g) denote the function

mog € GR(p, ee’)A. Then the diagrams

ZplCyallA] ——  ZplCy)”

FT

and X
FT—
Zp[(q’—l][A} A Zp[Cq’—l]
GR(p", ee)[A] <5 GR(p, ec')
commute.

Although we introduced the algebras GR(p?, ee’)[A] and Z,[(,—1][A] to obtain a Fourier
transform, our real interest is in the elements of the smaller algebras GR(p?, e)[A] and
Zp[¢4—1][A]. Thus we would like to characterize FT(GR(p?, €)[A]) and FT(Z,[¢,-1][A]) as
subsets of GR(p?, ee’ )A and Zj [Cq/_l]A, respectively. We shall obtain several characteriza-
tions in Proposition 2.8 below, but first we need to make some definitions that will be used
there and which are critical to the techniques used in Chapters 4 and 5.

Recall from Section 2.1 the canonical expansion of elements in GR(p?, e) and Z,[¢,—1]-
If f € GR(p% ee')[A], for each a € A we can write the canonical expansion fla) =
Z?:_Ol(f(a))(")pi, where (f(a))® is always 0 or a power of m(Cy_1). We define f@) €
GR(p?, e¢')[A] so that f@)(a) = (f(a))® for all a € A. Thus we have f© ... fld-1. 4 -
{0,1,7(Cyr—1),- - - ,W(Cq/,l)qlfz} and f = Z?:_ol p'f@. Note that the uniqueness of canoni-
cal expansions ensures that f = § if and only f®) = g for all i € {0,1,...,d —1}. Since
f= Z?;ol p' f@_ by the inverse scaled Fourier transform, we have f = Z?;ol p f®. Fur-
thermore, by the bijectivity of the scaled Fourier transform, f = g¢ if and only if ) = ¢g(®
for all i € {0,1,...,d —1}.

Likewise, if f € Zp[(y—1][A], for each a € A we can write the canonical expansion
fla) =322, (f(a))Dp, where (f(a))® is always 0 or a power of (1. As before, we define
9 € Z,[¢y1][A] so that fO)(a) = (f(a))® for all @ € A. Thus we have each f(): A —

) - L
q'—2 _ o 7 £( : : : 5
{0,1,¢g—1,5-- -5 Cq,fl} and f=>"p @, Now uniqueness of canonical expansions ensures
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that f = § if and only f@ = G for all i € N. Since f = Yoo p'f® the inverse scaled
Fourier transform gives us f = >, p' @, The bijectivity of the scaled Fourier transform
tells us that f = ¢ if and only if f® = ¢ for all i € N.

Now we give names to the functions we have defined in the previous two paragraphs.
Whether f € GR(p%, ee)[A] or Z,[¢y—1][A], we call the sum f = 32, p'f@ the canonical
expansion of f , and we call f (@) the ith component of the canonical expansion of f . Whether
f € GR(p?, ee')[A] or Zy[¢y—1][A], we call the sum f = 3", p’f(®) the scaled Fourier-induced
breakdown of f, and we call f() the ith component of the scaled Fourier-induced breakdown
of f. Note that if f € GR(p% e)[A] and if we set F € Z,[Cy_1][A] to have F = 7 o f, then
FO =70 f0 and fO =70 FO for all i € {0,1,...,d — 1}. Of course F®(a) = 0 for all
a € A when ¢ > d.

Now we are ready to characterize the image under FT of GR(p?, e)[A] in GR(p?, ee’)[A]
and the image under FT of Z,[(;—1][A] in Zp[(y—1][A].

Proposition 2.8. For f € GR(p?, ee')[A], the following are equivalent:
(i) f € GR(p",e)[A].

(i) f(a%) = Fré(f(a)) for all a € A.

(iii) f(a?) = Fr¢(f(a)) for all a € A.

(iv) F@(a9) = (f@(a))q foralli € {0,1,...,d—1} and a € A.
(v) f9 e GR(p% e)[A] for alli € {0,1,...,d—1}.

Thus FT is an isomorphism of GR(p?, e)-algebras from GR(p?, e)[A] to the set of elements
g € GR(p, ee’)A that satisfy g(a?) = Fr¢(g(a)).

For f € Zy[(y—1][A], the following are equivalent:
(i) f € Zp[¢q-1][A].
(ii) f(a%) = Fr(f(a)) for all a € A.

(iii) f(a?) = Fr¢(f(a)) for all a € A.



36

(iv) f@(a?) = (ﬂ”(a))q forallie N and a € A.
(v) f9 € Z,[¢,-1][A] for all i € N.

Thus FT is an isomorphism of Z,[(q—1]-algebras from Zpy[Cq—1][A] to the set of elements

g € ZylGp 1" that satisfy g(a?) = Fre(g(a)).

Proof. To prove the first set of equivalences, let R = GR(p% ¢), R' = GR(p?, ee’), and I =
{0,1,...,d —1}. To prove the second set of equivalences, let R = Z,[(q—1], R’ = Zp[(y—1],
and I = N. Then the rest of this proof works in either case.

Since Fr(|A]) = | 4|, it is clear that (ii) and (iii) are equivalent. Note that Fr® fixes 0 and
p and takes ¢,y and 7((y_1) to their gth powers. So Fr¢(f(a)) = Fr° (Ziel £ (a)p’) =
Y icr < £ (a))q p'. This, along with uniqueness of canonical expansions, shows that (iii)
and (iv) are equivalent.

Now we show that (i) and (iii) are equivalent. Note that (a,b) is a power of 7({y—_1)
or (y—q for all a,b € A. Note also that Ir® takes such elements to their qgth powers. In

particular, Fr® fixes an element r € R’ if and only if » € R. Since p 1 |A|, a? runs through

A as a runs through A. Thus

fa = f(b)<b> a>

o
m
b

Fh)(?,a)

o
m
S

F09)(b,a)?,

o
m
b S

so that

Frc(fa) = > _ B *(f(b9) (b, a). (2.2)

beA

If f € R[A], then Fr®(f,) = f, for all a € A, so that (2.2) becomes

fo= "B (F(6) (b, a).

beA

Then the bijectivity of the scaled Fourier transform tells us that f(b) = Fr=¢(f(b9)) for all
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b e A. Conversely, if f(a?) = Fr®(f(a)) for all a € A, then (2.2) becomes

Fl"ie(fa) = Zf(bxb? a>,

beA

ie., Fr=¢(f,) = f, for all a € A. This is equivalent to f, € R for all a € A.
Finally, since f = >,; p'f® it is clear that (v) implies (i). On the other hand, if we
assume (iv), then for each i € I and a € A, we have f®)(a?) = <f(i) (a))q = Fr(f@(a)).

Since we have already proved the equivalence of (i) and (iii), we may apply it to see that

f@ e R[A] for all i € I, i.e., that (v) holds. O

We also investigate how the Fourier transform interacts with Teichmiiller lifting. For

J =2 aeca faain GR(p?, ee’)[A], we let 7(f) denote the element Y aca T(fa)a € Zp[Cy—1][A],

and for g € GR(p?, ee’)A, we let 7(g) denote the function 70 g € Zp[Cq/_l]A.

Lemma 2.9. Let f € GR(p%, e)[A] and let F be the unique element in Zy[Cy—1][A] such that
F=7of. Then F € Zp[Cy1][A] and 7(F) = f. For eachi € N, we have F) € 7Z,[¢,1][A],
and 7(FW) = fO fori e {0,1,...,d — 1}, while F®) =0 fori > d.

Proof. By Proposition 2.8, we have f(aq) = Fre(f(a)) for all @ € A. Applying 7 to both
sides, and recalling that 7 commutes with Fr, we have 7(f(a?)) = Fr¢(7(f(a))) for all a € A,
i.e., F(a?) = Fr¢(F(a)) for all a € A. Then Proposition 2.8 tells us that F' € Z,[¢,—1][A].

Since F' = 7(f), we have FT(JA| ' F) = 7(f). Apply 7 to both sides of this equation,
commute 7 with FT by diagram (2.1), and recognize that 7 o 7 is the identity to obtain
FT(n(|A|"'F)) = f. Thus 7(|A|"") FT(x(F)) = f. Since the scaled Fourier transform is a
bijection, we have 7(F') = f.

Since f € GR(p? e)[A] and F € Z,[¢,-1][A], we have ) € GR(p?, e)[A] for all i €
{0,1,...,d — 1} and F© € Z,[¢,~1][A] for all i € N by Proposition 2.8. Furthermore,
we have already noted (before Proposition 2.8) that F@) = 0 for i > d; this is a simple
consequence of the definition of the Teichmiiller lift. Thus F® = 0 for i > d. Just before
this, we noted that F() = 7o f(i) for all i € {0,1,...,d—1}. Thus, by the first part of the

theorem, applied with £ in place of f, we have 7(F®) = f(, O
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Proposition 2.8 above tells us that if f € GR(p?, e)[A] or Z,[C,_1][A], then f(a), f(a?),
f(a?), ... are all determined by the value of f(a). We say that two clements a,b € A
are g-equivalent if a = be' for some i € Z, where powers of ¢ here are construed as integers
modulo |A]. This defines an equivalence relation on A, called g-equivalence, which partitions
A into g-classes. We denote the g-class of a € A by Cl,(a) and denote |Cl,(a)| by €4, so that
Cly(a) = {a,a?,...,a% '} and a?" = a if and only if k | e,. This leads to the following

simple but important observation:
Lemma 2.10 (Sizes of ¢-Classes). For each a € A, e, | €.

Proof. We chose ¢’ so that the exponent of A divides ¢® — 1. Thus a¢° = a, and so

eq | €. O

A subset of A is said to be g-closed if it is a union of g-classes. With our g-equivalence
terminology, Proposition 2.8 says that if f € GR(p?, e)[A] or Z,[¢,-1][4], then f (or f) is
uniquely determined by its values on a set of ¢-class representatives. We make this notion

more precise in the following proposition:

Proposition 2.11. Fix R a set of q-class representatives for A. Then the restriction
of domains to R is an GR(p? e)-algebra isomorphism from FT(GR(p% e)[A]) to U =
[Ler GR(p% ee,). Thus the Fourier transform followed by restriction of domains to R
is a GR(p?, e)-algebra isomorphism from GR(p?, e)[A] to U, and so induces a one-to-one
correspondence between the ideals (codes) in GR(p?,e)[A] and the ideals in U. The lat-
ter ideals can all be written uniquely as [],cpp'™ GR(p?, ee,) where each i, € {0,1,...,d}.
Thus GR(p?, €)[A] has (d + 1)/Bl ideals, and every ideal of GR(p?, €)[A] is principal. The

ideals in U that are free GR(p?, €)-modules are those with all i, € {0,d}.

Proof. First we prove that restriction of domains to R maps FT(GR(p?, e)[A]) into U, i.e.,
we shall show that for each f € GR(p% e)[A] and each r € R, f(r) € GR(p% ee,). Of
course f(r) is in GR(p?, ee’). By Proposition 2.8, we know that f(r4") = Fr°r (f(r)). But
P = r, so that f(r) is fixed by Fr¢". Thus f(r) is in GR(p, ee,).

We also know that restriction of domains to R is injective on FT(GR(p, e)[A]) since

the Fourier transform of a function f € GR(p? e)[A] is uniquely determined by its val-
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ues on a set of g-class representatives by Proposition 2.8. Furthermore, note that |U| =
[Ler |GROA cer)| = [Lenp®r = pelrene = pleldl = |GR(p%, e)|", s0 that |U| =
|GR(pd, e)[AH = ‘FT (GR(pd, e) [A]) ‘ Thus restriction of domains is also surjective. Clearly
restriction of domains preserves GR(pd, e)-scalar multiplication and pointwise addition and
multiplication. So it is a GR(p?, e)-algebra isomorphism from FT(GR(p?, e)[A]) to U. The
statements about correspondence of ideals, the form of ideals, and the number of ideals are
clear. In a free GR(pd, e)-module, for each element u that is annihilated by p¢=1, there is
some element v with v = pv. This will clearly be violated in the ideal [],.p ' GR(p?, ee,)
of U if we have any i, ¢ {0,d}. But ifi, € {0,d} for all r € R, then our ideal is a product of
extensions of GR(p?, e), each of which is a free GR(p?, ¢)-module. This proves the statement

about which ideals are free GR(p?, e)-modules. O

Suppose that f is a function from A into a Galois ring or an unramified extension of
the p-adic field, and suppose that G is a set of such functions. For example, f might be the
Fourier transform of an element of GR(p?, €)[A] or Z,[¢,~1][A4], and G might be the set of
Fourier transforms of words in an Abelian code. A support of f is a subset S of A such that
f(a) =0for all a ¢ S. For k € N, a support modulo p* of f is a subset S of A such that
f(a) =0 (mod p*) for all a ¢ S. We also call a support modulo p* a p*-support. A support
(resp., support modulo p*) of G is a subset S of A that is a support (resp., support modulo
p¥) of each g € G. A support (resp., support modulo p¥) S of a function or set of functions
is said to be minimal if there is no support (resp., support modulo pk) properly contained
in S. For example if f is a function, then its minimal support is {a € A : f(a) # 0} and its
minimal p*-support is {a € A : f(a) Z 0 (mod p¥)}. If we use the definite article with the
word “support”, i.e., if we say “the support” or “the pF-support” in any circumstance, we
mean the minimal one.

Now suppose that the range of f is GR(p?,ee’). For example, f might be the Fourier
transform of some element of GR(p?, e)[A]. For each k € {0,1,...,d — 1}, define Sy, to be
the minimal p*+1-support of f. Then Sy € S; C --- C Sy_; is called the tower of supports
of f. Bach S, is the same as the support of p®*~1f so that S;_; is the support of f.
Indeed, Sy, ={a € A:v,(f(a)) <k}
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Similarly, suppose that GR(p?, ee’) is the range of the functions in G. For example, G
might be the Fourier transform of some code in GR(p?, e)[A]. For each k € {0,1,...,d—1},

k+1_support of G and then define the tower of supports of G

define Si to be the minimal p
tobe Sg € S; C --- C Sy_1. Each Sy is the same as the support of {p?~'1=%g: g € G}, so
that Sy_1 is the support of G. Indeed Sy, is the set of a € A such that there exists a g € G
with v, (g(a)) < k.

Note that the Frobenius automorphism preserves the p-adic valuations of elements in
GR(p?, ee’). Therefore, Proposition 2.8 shows us that if f € GR(p% €)[A], then v,(f(a)) is
constant as a varies over a g-class. Thus, the sets in the tower of supports of f are g-closed.
Similarly, if G is the Fourier transform of a set of elements of GR(p?, €)[A], then the sets in
the tower of supports of G are g-closed. With this insight, we may rephrase the essential

content of Proposition 2.11 as follows:

Proposition 2.12. For each ideal (code) C in the group algebra GR(p?, e)[A], let T(C) be the
tower of supports of FT(C). Then T is a bijection between the set of ideals in GR(p?, e)[A]

and the set of towers of height d consisting of g-closed subsets of A.

Proof. First of all, T maps the ideals in GR(p?, e)[A] to towers of g-closed sets by the
comments preceding this proposition. Suppose we are given a tower of So CS7 C --- C S5
of g-closed subsets. For convenience, define S_1 = () and S; = A. Then define h to be the
function from A to GR(p?, e€’) such that h(a) = p’ for all j € {0,1,...,d} and a € S;~.5;_1.
Then £ is the Fourier transform of some g € GR(p?, e)[A] by Proposition 2.8. If we set C
to be the ideal generated by g, then FT(C) is generated by h, and it is easy to see that
T(C)=5)CS1 C---CS41. So T is surjective.

To see that T is bijective, we show that the number of ideals in GR(p?, €)[A] equals the
number of towers of height d consisting of g-closed subsets of A. Proposition 2.11 tells us
that the latter number is (d + 1)™, where n is the number of g-classes of A. To calculate

the number of towers, note that

So S € CSq—1+— 50,51~ 80,...,84-1 N Sq—2, A~ Sq—1
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establishes a bijective correspondence from the set of towers of height d consisting of ¢-
closed subsets of A to the set of (d+ 1)-tuples of pairwise disjoint g-closed subsets of A that

cover A. The number of these latter objects is (d + 1)™. O

We finish this section with two more technical lemmas on how the scaled Fourier coef-

ficients parameterize an Abelian code over a Galois ring.

Lemma 2.13. Let C be an ideal (code) in GR(p?, e)[A] with tower of supports Sy C --- C
Sq_1, and set S_1 = (. Let R be a set of q-class representatives of A, and set R; = RN S;
for eachi € {—1,0,1,...,d—1}. Then each word c € C is uniquely determined by the values
of {&(r) : 7 € Rg—_1}. These values are in H?:_ol [l er,r_, p' GR(p?, ee,), and as they run
through this product of ideals, the word ¢ runs through C. Furthermore, |C| = qzzto1 1Sl ¢
is a free GR(p?, e)-module if and only if Sy = S1 = --- = Sq_1.

Proof. By Proposition 2.11, ¢ is uniquely determined by the values in {&(r) : » € R}, hence
¢ is uniquely determined by the values in {&(r) : » € R}. If r ¢ R4_1, then the g-class of r
is not in the g-closed set Sgq_1, so that &(r) =0 (mod p?), i.e., &r) = 0, for all ¢ € C. So ¢
is uniquely determined by the values in {é(r) : r € Rg_1}.

Furthermore, we know that as ¢ runs through C, the values {é(r) : r € R4} run through

some ideal of the ring [] GR(p% ee,). If i € {0,1,...,d — 1} and € R; ~ R;_1, then

TERd_1

&(r) =0 (mod p') for all ¢ € C, but &(r) # 0 (mod p**!) for some ¢ € C. So &(r) must run

through the ideal p' GR(p?, ee,). Thus

P’ GR(pd, eey)

=T I

=0 reR;~R;—_1

d—1
_ H H p(d—i)eer

=0 reR;~R;_1

d—1

€2.i—0 (d—i) ZreRi\Ri,l er

_ pez;?;g(dfi)\s,.\s,‘,1|
_ peE?;ol Si]

- ngtol Si]
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Again, if ¢ € {0,1,...,d — 1} and r € R; ~ R;_1, then &(r) runs through the ideal
p' GR(p? ee;). So, by the characterization of which ideals in []..; GR(p?, ee,) are free
GR(p?, e)-modules in Proposition 2.11, our ideal C is a free GR(p?, e)-module if and only if
Ri~R;j_y=0fori=1,...,d—1. This is equivalent to saying that Rg = Ry = -+ = Rgq_1.
But each R; is a set of g-class representatives of the g-closed set S, so this last condition is

equivalent to Sy = -+ = Sg_1. O

Lemma 2.14. Let C be an ideal (code) in GR(p?, e)[A] with tower of supports Sy C --- C
Sq_1- Let R be a set of q-class representatives of A and let R; = S;NR fori=0,1,...,d—1.
For each ¢ € C, let C' be the element of Zy[(y—1][A] with C =71 0é. Then &9 and C) are
supported on S; for each c € C. Also, ¢ is uniquely determined by the values of {¢)(r) : 0 <
i <d,r € R;}. As the word c runs through C, these values run through Hf:_ol [Ler, Uirs
where U, is the set containing 0 and all powers of m(Cper—1). Equivalently, c is uniquely
determined by the values of {CW(r) : 0 < i < d,r € R;}. As the word ¢ runs through C,

these values run through Hf:_ol HrERi Vir, where Vi, is the set containing 0 and all powers

of Cger—1.

Proof. Suppose &% (a) # 0. Then é&(a) = Z?;& &9 (a)p’ is not divisible by pitl. So a € S;
by the definition of the tower of supports. So & is supported on S;. Since C') = 7 o &®
and 7(0) = 0, C9 is also supported on S;.

The word ¢ € C is uniquely determined by {¢(r) : 7 € Rq—1} by Lemma 2.13. Now
¢ = Zf‘l;ol p'e® so ¢ is uniquely determined by {é?(r) : 0 < i < d,r € R4_;}. But
we have seen that @ is supported on S;, so ¢ (r)y =0ifr € RN S; = R~ R;. So
¢ is uniquely determined by {¢®(r) : 0 < i < d,r € R;}. For each r € R, we know that
&(r) € GR(p, ee,) by Proposition 2.11. So &%) (r) is zero or a power of 7((yer 1) for all 7 € R
and i € {0,1,...,d — 1}, i.e., & (r) € U;,. So the collection of {¢®(r):0<i < d,r € R;}
runs through some subset of H?:_ol IIc g, Ui as c runs through C. Note that the cardinality
of this product is H?;Ol [ler ¢ = ng;& 2rer; er _ quz_ol 5il which is the cardinality of
C by Lemma 2.13. Therefore the values of {¢)(r) : 0 < i < d,r € R;} run through all of
H?:_ol [ er, Uir, and each distinct assignment of values corresponds to a different element

of C.
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Since C = 7(¢®)) and &9 = 7(CY) for each i € {0,1,...,d — 1}, we see that the
elements{C(r) : 0 < i < d,r € R;} also uniquely determine ¢, and we see that these

values run through Hf:_ol [I,er, Vir as c runs through C. O

2.4 Weight Functions

We consider elements of GR(p?, e)[A] as words by regarding elements of GR(p?, €) as symbols
and by fixing some ordering of the group A. Thus if we order the elements of 4 as ay, ..., an,
we consider ¢ € GR(p?, e)[A] to be the word ¢4, cqy - - - Cq,,- In this scheme, the symbol at
position a in the word ¢ € A is simply c,.

There are many ways of reckoning weights of words in Abelian codes. For ¢ a positive
integer, we define a t-wise weight function to be a function from wt: GR(p?,e)! — Z. Often
we omit reference to ¢t and just call wt a weight function. If r1,...,r; € GR(p%,e), then we
call wt(ry,...,r) the weight of (ri,...,7¢).

If we are given a t-wise weight function wt: GR(p?, e)! — Z, and a collection of words

c1,...,c; € GR(p?, e)[A], we define the weight of (c1,...,ct) to be

Z wt(ci(a),...,c(a)).

acA

Indeed, we make the convention that the domain of wt is automatically extended to include
GR(p%e) [A]t, and we set wt(cq,. .., ¢) to be the weight of (¢q,...,¢) for each (¢1,...,¢) €
GR(p, e)[A]".

For a given t-wise weight function wt: GR(p?,e)! — Z, we also introduce the corre-

sponding normalized weight function, wt™™: GR(p?, e)[A]t — Z, which is defined as
wt" ™ (eq, ) = wi(er, ..y e) — [Alwt(é1(1a), ..., (1))

for each (ci,...,¢) € GR(p, e)[A]t. Note that the normalized weight function is used only
for words, not single symbols. The normalized weight function is a device for simplifying
the presentation and proof of our results when our codes are allowed to have 14 in the

supports of their Fourier transforms.
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We introduce some of the basic weight functions that will be of interest to us. The

t-wise zero count function is the weight function zer: GR(p?,e)! — Z that has the values

1 ifrp=---=r=0,
zer(ri,...,ry) =

0 otherwise.

The 1-wise zero count function is simply known as the zero count function, and if ¢ €
GR(p?, e)[A], then zer(c) is called the zero count of c. This is just the number of instances
of the zero symbol in the word. For arbitrary ¢, a t-wise zero count function is called a
simultaneous zero count function, and if c,...,c; € GR(p?,e)[A], then zer(cy,...,c) is
called the simultaneous zero count of c1,...,ct. This is just the number of positions where
the words all simultaneously have the zero symbol.

Closely related to the zero count is the Hamming weight function ham: GR(p?,e) — Z,

which has values

0 ifr=0,
ham(r) =

1 otherwise.

If c € GR(p?, e)[A], then ham(c) is called the Hamming weight of c. This is just the number
of nonzero symbols in the word. Note that ham(r) = 1 — zer(r) for » € GR(p%, e), and that
ham(c) = |A| — zer(c) for ¢ € GR(p?, e)[A]. Thus

ham"*™(¢) = ham(c) — |A|ham(é(14))
= |A| — zer(c) — |A| [1 — zer(¢(14))]
= —zer(c) + |A| zer(¢(14))

= —zer""™(c).

For each r € GR(p?,e), there is the weight function symb,: GR(p?,e) — Z, called the
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r-count function, which is given by

1 ifs=r,
symb,.(s) =

0 otherwise.

Note that the (1-wise) zero count function zer is the same as symbg. If ¢ € GR(p?, e)[A],
then symb,.(c) is called the r-count of c. This is the number of instances of the symbol r in
the word c.

If e =1, there is the Lee weight function lee: Z/p?Z — Z, given by
lee(r) = min{|k| : k € Z,7(k) =1}

for all r € Z/p?Z. That is, lee(n(k)) = k for k =0,1,...,|p?/2| and lee(n(k)) = p? — k for

k= (pd/ﬂ,...,pd—l.

2.5 Accounts and Compact Notations

In this section, we introduce a class of objects known as accounts, which will simplify the
expression and proof of our results. If Y is a set, we define an account on Y to be a function
from Y into Z. If ;1 is an account on Y and y € Y, we use the notation p, for the value of
wat y. We say pu has k instances of y to mean u, = k. The set of accounts on Y, when
equipped with addition, forms an Abelian group that we denote by Z[Y], and we sometimes
write and manipulate an account u as if it were the formal sum Zer tyy. The multisets
with elements from Y are regarded in a natural way as the accounts on Y that take only
nonnegative values. The subsets of Y are regarded as the accounts on Y that take only
values 0 and 1. The set of multisets with elements from Y is denoted N[Y].

Suppose that Y7 C Ys. Then we regard Z[Y]] as a subset of Z[Y3] by regarding each
w: Yy — Z as the function from Y5 to Z that vanishes on Y5 \ Y] and extends the original
function p. In this way, we also have N[Y;] C N[Y3]. Conversely, if p € Z[Y2] is supported
on Yi, then we can regard p as an element of Z[Y;] via restriction of domain. Indeed, we

often indicate that p € Z[Y>2] is supported on Y] by writing u € Z[Y1].
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The size of an account pon Y is 3 .y py and is denoted |u[. This is just the cardinality
of the account if the account is a set or a multiset. If y is a multiset, we use the notation
p! as a shorthand for [], oy p1y!. Thus there are [uf!/u! distinet ways of arranging the ||
elements of the multiset p into an ordered |u|-tuple. Multisets will be easier to use than
the sequences that are employed in the definitions of the parameters ¢(C), £,,.(C), £5°(C),
and £°¢ (C) that appear in Section 1.1 of the Introduction. Multisets are more natural than
sequences since the order of terms in these sequences is irrelevant.

Since we shall often be dealing with accounts on finite Cartesian products of sets, we
establish some conventions for dealing with accounts of k-tuples. If k is a positive integer,

and p € Z[B1 X --- X By, then we write up, .. p, instead of pg, 3, for the value of y at

k
(b1,b,...,bg) € By X By X ++- X Bi. If 1 < j1 < jo < -+ < js < k, then we define the
projection of p to Bj, X ---x Bj_, denoted PIg; x..xB;, M> tO be the account on Bj, x---x Bj,

with

(prleX---XBjS Iu’>b b = z /“LCI:-“vck
IS e en)EBL X X By,

Cjp =bjy 5-sCj5=bjs

for each bj,,...,b;, € Bj, x --- x Bj,. Note that

PIB; x--xBj, (1 + p2) = PrB; x--xBj;, M1 + Prp; x--xB;, H2-

For example, if p € Z[V x W], then pry, p € Z[W] with (pry p),, = > cy tow for all
weWw.

Suppose that k € N, j € {1,2,...,k—1}, p € Z[By x---x By], and by € By,...,b; € Bj.
Then we define pp, 5, to be the account in Z|Bji1 X -+ x By] with (/’Lb17-~~7bj)bj+17-u7bk =
Hbr,.bj bigr,by, fOr all i1 € Bjia,..., by € By. For example, if u € Z[V x W] and v € V,
then p, € Z[W] with (ty)w = flow for all w e W.

Throughout this thesis, welet H = {0, 1,...,e—1}. If u € Z[H], we define the p-weighted

summation of p, denoted X, by

Sp=>_ pp"  (mod g —1). (2.3)
heH
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Note that ¥ is a homomorphism from Z[H]| into the group Z/(¢ — 1)Z under addition.
If u € Z[H] with ¥u = 0, we call p a Delsarte-McEliece account; the Delsarte-McEliece
accounts form a subgroup of Z[H|. Recall the modular condition used in the definition of the
parameter wp(C) in Section 1.1 of the Introduction. There we wanted to find the minimum
length of unity-product sequences of the form afjl , a§j2, . ,aﬁjn, where each a; is in some
g-closed subset S of A and each j; € N, subject to the condition p/t + p2 + .- + pin =0
(mod ¢ — 1). It harms nothing to further stipulate that each j; lie in H, for S is g-closed
and the congruence is modulo ¢ — 1. Then the modular condition is equivalent to saying
that the multiset p € N[H] with elements ji,...,j, is Delsarte-McEliece. This modular
condition was discovered by Delsarte and McEliece [18], hence we attach their names to

accounts in Z[H] that correspond to it. The following fact is very useful and not difficult

to prove:

Lemma 2.15. A Delsarte-McEliece account in Z[H| has size divisible by p— 1. The unique
nonempty Delsarte-McEliece multiset in N[H] of minimal cardinality has p — 1 instances of

each element of H, and thus has a cardinality of e(p — 1).

Proof. A very similar thing is proved in Lemma 2.1 of [61]. If u € Z[H] is a Delsarte-
McEliece account, reduce (2.3) modulo p — 1 to obtain 0 =}, pn (mod p — 1). If we
assume that p is a nonempty Delsarte-McEliece multiset of minimal cardinality, then we
claim that pp < p for all h € H. Otherwise, we could make a smaller nonempty Delsarte-
McEliece multiset ' by removing p copies of an element h and adding one copy of the
element h + 1 (where we treat h+1as0if h=e—1). So0< pup, <p—1foral he H
and not all py, are zero. If we had p, < p — 1 for any h, then 0 < >, 4 pnp” < q—1,

contradicting the fact that p is Delsarte-McEliece. So pup =p — 1 for all h € H. O

If p € N[H| and r € Z,[(y—1] or GR(p?, e€’), we define Fr*(r) = [, cp (Frh(r))“h. Note
that Fr¥(rs) = Fr#(r)Fr(s) and that Fr*1T#2(r) = Fr#t (r)Fr#2(r).

We shall often work with accounts of elements in A. We use multisets in N[A] instead of
the sequences of elements of A used to define the parameters w(C) and ¢(C) in Section 1.1

of the Introduction. This is more natural, since the order of the sequences was irrelevant
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there. If A € Z[A], then we define the product of A, denoted II\, to be

I\ = H ate.

a€A

Note that II is a homomorphism from Z[A] (under addition) into the group A. If IIA = 14,
we say that \ is a unity-product account. If A C Z[{14}], then it is trivially unity-product,
and we say that A is all-unity; otherwise \ is not all-unity. If f is a function from A into

GR(p?,ee') or Zp[Cy—1] (for example, f might be the Fourier transform of an element of

GR(p?, e)[A] or Zp[¢4—1][A]), then we define the evaluation of f at A, denoted f()), by

FA) =Taeaf(a).

Note that if F': A — Zy[(y—1] and f = 7o F, then w(F (X)) = f(A) for all A € Z[A]. Also
note that f(A1 + A2) = f(A)f(A2).

Suppose for the rest of this section that I is a finite set. We shall often need to work
with accounts on sets like I x H, I x A, and I x H x A. Multisets in N[I x A] will replace
the sequences used to define the parameters w**(C), ¢°*(C), wss.(C), and £55.(C) in Section

1.1 of the Introduction. If A\ € Z[I x A], then we define the product of A, denoted I\, to be

I\ = H atie,

(,a)eIxA

Note that IT is a homomorphism from Z[I x A] (under addition) into the group A. If
II\ = 14, we say that A is a unity-product account. If X\ C Z[I x {14}], or, equivalently, if
praA € N[{14}], then A is trivially unity-product, and we say that A is all-unity; otherwise
A is not all-unity.

We also shall work with accounts of elements in H x A. When e > 1, multisets in
N[H x A] will replace the sequences used to define the parameters wy,.(C) and £,,.(C) in
Section 1.1 of the Introduction. If A € Z[H x A], then we define the product of A, denoted
II\, to be

I\ = H QP M
(h,a)eHx A
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Note that II is a homomorphism from Z[H x A] (under addition) into the group A. If
IIA = 14, we say that X is a unity-product account. If X C Z[H x {14}], or, equivalently, if
pry A € Z[{14}], then X is trivially unity-product, and we say that A is all-unity; otherwise
A is not all-unity. If f is a function from A into GR(p?,ee’) or Z,[(y—1] (for example, f
might be the Fourier transform of an element of GR(p?, €)[A] or Z,[¢,-1][A]), then we define

the evaluation of f at A\, denoted f(X), by

f) = H(h,a)eHxAFrh(f(a)))\h’a'

Note that if F': A — Z,[(y—1] and f = 7o F, then n(F(\)) = f(\) for all A € Z[A],
because m commutes with Fr. Also note that f(A; + A2) = f(A1)f(N2). If A € Z[H x A],
then pry A € Z[H]. We say that X is Delsarte-McEliece if and only if pry A is a Delsarte-
McEliece account in Z[H]|, as defined above. Recall the modular condition used in the
definition of the parameter wy,.(C) in Section 1.1 of the Introduction. Suppose A is a multiset

in N[H x A] and suppose that its elements are (hi,a1), (he,a2),..., (hn,ay), listed with

h h B
multiplicity (but order is unimportant). Suppose we form the sequence af ', a5 ..., ah

Then this sequence meets the modular condition p™ 4 p"2 + ... + pP» =0 (mod ¢ — 1) of
Section 1.1 if and only if X pry A = 0, i.e., if and only if A is Delsarte-McEliece. Concerning
the possible sizes of Delsarte-McEliece accounts in Z[H x A], Lemma 2.15 implies the

following:

Lemma 2.16. A Delsarte-McFEliece account in Z[H x A] has size divisible by p — 1. A

nonempty Delsarte-McFEliece multiset in N[H x A] has cardinality at least e(p — 1).

Proof. If A € Z[H x A] is Delsarte-McEliece, then pry A € N[H] is Delsarte-McEliece and

has the same size. Then apply Lemma 2.15. O

We shall need to consider accounts of elements in sets of the form I x H x A. Multisets
in N[I x H x A] will replace the sequences used to define the parameters wy,.(Ci,...,Ct)

and £pc(Cy,...,Ct) in Section 1.1 of the Introduction. If A € Z[I x H x A], then we define
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the product of X\, denoted II\, to be

I\ = H aP"Niha,
(3,h,a)EIX Hx A
Note that II is a homomorphism from Z[I x H x A] (under addition) into the group A. If
II\ = 14, we say that A is a unity-product account. If X C Z[I x H x {14}], or, equivalently,
ifpry A € Z[{14}], then A is trivially unity-product, and we say that A is all-unity; otherwise

A is not all-unity.

2.6 Collapse and Reduction

The combinatorial devices in this section are used in the proofs of sharpness of some of our
lower bounds on the p-adic valuations of weights in codes. The reader should probably skip
this section until the concepts it describes are actually deployed (beginning in Section 4.4).
The proofs in this section are routine and often repetitious, for we need a few variants of
the same idea. Nonetheless, everything is done quite explicitly for the record.

We shall often have a multiset A in N[A] or N[H x A] and some element C' € Zj[(y—1][A]
such that we want to calculate C'()\). Recall from Proposition 2.8 that C'(a9) = Fr®(C/(a)) for
all a € A. Therefore it is quite possible that some multisets X’ # X could have C'(X) = C(\).
We sketch a brief example. Suppose d = e = 1, ¢ € F,[A], and C € Zy[(y_1][A] with
C = 7 0¢& Then each scaled Fourier coefficient &(a) lies in Fy, and thus each C(a) is
zero or a power of (y_1. Now suppose A € N[A] with A # (), and choose a € A with
Ao # 0. Since p 1 |A|, there is some b € A with ¥ = a. Set N = XA — a + pb. Then
C(a) = Fr(C(b)) = C(b)?, where the second equality comes about because C(b) is zero or
a power of (1. So C(a) = 0 if and only if C(b) = 0. If these coefficients are both zero,
then C(\) = 0 = C(X). Otherwise, C(\) = C(A\)C(a)~1C(b)?, so again C'(N) = C(\).

We devise a mechanism to help us determine when two multisets, A and X/, might have
C(A\)=C\). Ife =1 (ie., if ¢ = p), if A € N[A], and if R is a set of p-class representatives
of A, we define the collapse of N\ with respect to R, denoted Cogr()), to be the multiset x

in N[R] with each r, determined as follows: we set , to be a number in {0,1,...,p° — 1}
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congruent modulo p°" — 1 to Zf;al p'A i, with s, = 0 if and only if A,y = 0 for all i. We

rps

say A collapses to k with respect to R to mean kK = Cor(\). We make the following simple

observation:

Lemma 2.17. Suppose that e = 1, S is a p-closed subset of A, and A € N[S]. Suppose R

is a set of p-class representatives of A. Then Cor(\) € N[RN S].

Proof. If r € RS, then A\, = 0 for all a € Cl,(r), since r ¢ S, S is p-closed, and A € N[S].
Thus Zf;gl AP =0, so that (Cog(A)), = 0 by the definition of Cog. O

Now we can prove that in certain restricted circumstances, C' evaluated at A is the same

as C evaluated at the collapse of A.

Lemma 2.18. Suppose that e = 1, A € N[A], and R is a set of p-class representatives
of A. Suppose that ¢ € Z/p?Z[A] such that &(a) is zero or a power of 7(Cy—1) for all
a € A. Let C be the element in Zy[Cy_1][A] with C = 70 & Then &) = &Cogr(\)) and

C(A) = C(Cor(N).

Proof. Since &¢ = o, &\) = &Cog(\)) will follow from C'()\) = C(Cog())). To prove the
latter, start with
C(Cor(N) = [] C(r)( o,

reR
Note that C(r) is zero or a power of (y_; (since &r) is zero or a power of m((y_1)),
and C(r) is also the Teichmiiller lift of an element of GR(p%e,) by Proposition 2.11.
This means that C(r) is zero or a power of (per_1, so that C(r)?” — C(r) = 0. So
if the exponent (Cog())), of C(r) is nonzero, we may replace it with any other posi-
tive integer in the same congruence class modulo p® — 1. Thus, checking the definition
of Cog(A), we have C(Cor(V)) = [LepCr) =m0 PXwt = [[_p [ Fr? (é(r))kﬂ’i _
[Lcr et é’(rpi)/\rpi = [L.ca C(a)*s = C(N), where the second equality uses the fact
that C (a) is zero or a power of (y_; for all @ € A, and the third equality uses Lemma 2.9

(to show that C' € Z,[A]) and Proposition 2.8 (to show that C(r') = Fr! (C’(r))) O

For any e > 1, we define a similar notion of collapse for multisets in N[H x A]. If

A € N[H x A], and if R is a set of g-class representatives of A, we define the collapse of A
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with respect to R, denoted Cog(\), to be the multiset ~ € N[R] with each k, determined
as follows: we set k, to be a number in {0,1,...,¢° — 1} congruent modulo ¢~ — 1 to
Zf;gl Y oheH qiph)\h’rqi, with x, = 0 if and only if )\h,r‘li =0 for all ¢ and h. As before, we
say A collapses to k with respect to R to mean k = Cor(\). We now prove two basic facts

about this form of collapse, which are analogous to Lemmas 2.17 and 2.18.

Lemma 2.19. Suppose that S is a q-closed subset of A, and A € N[H x S]. Suppose that

R is a set of q-class representatives of A. Then Cogr()\) € N[RN S].

Proof. If r € R~ S, then A\, = 0 for all a € Cly(r) and h € H, since r ¢ S, S is ¢-
closed, and A € N[H x S]. Thus Zf;al Y oheH qiph)\h .t = 0, s0 that (Cog()))r = 0, by the

definition of Cog. 0

Lemma 2.20. Suppose that A € N[H x A] and R is a set of q-class representatives of
A. Suppose that ¢ € GR(p?,e)[A] such that &(a) is zero or a power of m((y—1) for all
a € A. Let C be the element in Zp[Cy_1][A] with C = 70 & Then &) = &Cogr()\)) and

C(N\) = C(Cogr(N)).

Proof. Since ¢ = o, &\) = &Cog(\)) will follow from C'()\) = C(Cog())). To prove the
latter, we start with

C(Con() = [ €)@,

reR
Note that C(r) is zero or a power of (y_1 (since &(r) is zero or a power of 7((y_1)), and
C(r) is also the Teichmiiller lift of an element of GR(p?, ee,) by Proposition 2.11. This
means that C(r) is zero or a power of (yer_1, so that C(r)?” — C(r) = 0. So if the expo-
nent (Cog())), of C(r) is nonzero, we may replace it with any other positive integer in the
same congruence class modulo ¢ — 1. Thus, checking the definition of Cog()), we have
O(Cor(N) = TLep O~ et ™ st - T 10 [Ty B (0 =
[Ler Hféal [hen Fr" <é(7“qi)>/\h’mi = acallnen Fr” (é(a)yh’a = C(X), where the sec-
ond equality uses the fact that C~'(a) is zero or a power of (y_; for all @ € A, and the third
equality uses Lemma 2.9 (to show that C' € Z,[(;,—1][A]) and Proposition 2.8 (to show that
C(ri') = Fre (C’(r))). O
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Given any multiset A in N[A], N[I x A], N[H x A], or N[I x H x A], we say that A
is reduced if X\ has no more than p — 1 instances of any particular element. That is, for
A € N[Y], X is reduced if Ay < p for all y € Y. Reduced multisets will be especially easy
to work with. The next lemma shows that for each u € N[A], there is a unique reduced

multiset in N[A] that has the same collapse as p.

Lemma 2.21 (Reduction Algorithm for N[A]). Suppose e = 1. Let R be a set of p-class
representatives of A. Let S be a p-closed subset of A and suppose that A\ € N[S]. Then there
exists a unique reduced element k € N[A] with Cor(k) = Cor(\). This k is independent
of the choice of R. Furthermore, k € N[S|, Ik = I\, k is all-unity if and only if \ is
all-unity, k = 0 if and only if X =0, and || = |\| — k(p — 1) for some positive integer k if

A 18 not reduced.

Proof. If A = () it is already reduced. It is not hard to see that Cog()) = @) and that no
other set collapses to the empty set.

Henceforth, we assume that A # (). We shall form a finite sequence of nonempty multisets
MO XM Let A = X, If A9 is not reduced, then let a € A be such that (A?)), > p,
and set A0TD = X0 — pa 4 aP. Of course, At £ (). Since S is p-closed, note that A(t1) ¢
N[S]. Also note that TIA(+1) = TIA®) and that A*+Y is all-unity if and only if A®) is all-unity
(since there are no elements of order p in A). We claim that Cop(A#*+1D) = Cop(A\®). If
r € R is not in the same p-class as a, it is clear that (COR()\(i+1)))T = (COR()\(i)))T. So let
s € R be the representative of the p-class of a. Then choose j € {0,1,...,es — 1} so that
a=sP.If j < es—1, then it is easy to show that Ze“_l k)\ (i+1) ZZS_Ol pk)\ > S0 clearly
(Cor ()\(i+1))) = (COR()\(”)) If j = e — 1, then it is easy to show that ¢! k)\(“rl)
(Z o P /\() ) —p% 41, so that y *7 ! k)\(Hl) = ZZ“';O pk)\ip)k (mod p® — 1), and the
sums on both sides are strictly positive (since both A1) and A®) have elements in the
p-class of a). Thus, by the definition of Cog, we have (COR(/\(”I)))S = (COR<)\(i)))S in this
case also. So we have shown Cor(A+D) = Cog(A?).

Note that ‘)\(”1)‘ = ‘)\(i)‘ — (p—1), so that this procedure must eventually terminate.
Let A be the last term; it must be reduced. Furthermore, A\(™) has all the properties

that the lemma claims for k.
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Now we shall show that there is only one reduced p € N[A] such that Cor(u) = Cor(A).
This will follow if we show that no two reduced elements of N[A] collapse to the same ele-
ment of N[R]. So suppose that u,v € N[A] are reduced multisets with Cogr(p) = Cog(v),
and we shall show that y = v. Let r € R be given. Since p is reduced, we have
0 < Y5 pip, < po — 1, so that (Cog(p)), = S5 pip . Likewise, (Cog(v)), =
Zf’"olplu So Zf’"olp’uﬂ, = Zfrolplu pis and since 0 <y i, v i < p for all i, we must
have p1 i = v i for all i. That is, s = v, for all a € Cly(r), but r € R was arbitrary, so
uw=v.

Although there might be many ways to construct the sequence A, ..., A(™) in our
procedure above, this uniqueness property shows that the final term is always the same.
Note that we never used R in the definition of this sequence A, ... A" so the final

multiset in the sequence is independent of R. ]

This lemma shows us that if A\ € N[A], then there is a unique reduced x € N[A] such
that Cog(k) = Cog(A) for any set R of p-class representatives of A. This k is called the
reduction of A and is denoted Red(\). With this new terminology, we have the following

immediate consequence of the above lemma:

Corollary 2.22. Suppose that e = 1, that A\1, A\ € N[A], and that R is a set of p-class

representatives of A. Then Red(A1) = Red(A2) if and only if Cor(A1) = Cogr(A2).
In view of Lemma 2.18, we also have the following:

Corollary 2.23. Suppose that e = 1, that A € N[A], and that R is a set of p-class repre-
sentatives of A. Suppose that ¢ € Z/p?Z[A] such that &(a) is zero or a power of w((y—1) for
alla € A. Let C be the element in Zy[Cy—1][A] with C = 7 0é. Then &\) = éRed())) and
C(\) = C(Red(N)).

We transport the notion of reduction to elements of N[I x A], where [ is some finite set.
The reduction of A € N[I x A] is the element x € N[I x A] with x; = Red()\;) for all i € I.

Then the following is an easy consequence of Lemma 2.21:

Corollary 2.24. Suppose e = 1. Let I be a finite set. For each i € I, let S; be a p-
closed subset of A, and suppose that A € N[I x A] with \; € N[S;] for each i € I. Then
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(Red(X)); € N[S;] for all i € I, TIRed(\) = TIA\, and Red(A) is all-unity if and only if
A is all-unity. Furthermore, for each i € I, (Red(\)); = 0 if and only if \; = 0, and
[(Red(N))i| = || — ki(p — 1) for some nonnegative integer k;. If X is not reduced, at least
one of these k; is strictly positive. If R is a set of p-class representatives of A, then Red(\)
has Cogr([Red(\)];) = Cor(\;) for each i€ I.

We also have a reduction algorithm for multisets in N[H x A] when e is an arbitrary
positive integer. It is only slightly more complicated than the algorithm of Lemma 2.21 for

multisets in N[A].

Lemma 2.25 (Reduction Algorithm for N[H x A]). Let R be a set of q-class repre-
sentatives of A. Let S be a q-closed subset of A and suppose that A € N[H x S]. Then
there ezists a unique reduced element k € N[H x A], with Cor(k) = Cogr(\). This k is
independent of the choice of R. Furthermore, k € N[H x S| and X pry k = Xpry A, so that
K s Delsarte-McFEliece if and only if X is Delsarte-McFEliece. Also Ilk = I\, k is all-unity
if and only if X is all-unity, k = 0 if and only if A =0, and |c| = |\| — k(p — 1) for some

positive integer k if X is not reduced.

Proof. If X = ) it is already reduced. It is not hard to see that Cog() = @ and that no
other set collapses to the empty set.

Henceforth, we assume that A # (). We shall describe an algorithm that will produce
a finite sequence of multisets MO A Leg MO = X Tf A is not reduced, then let
(h,a) € H x A be such that (A\()), , > p. Ifh < e—1, set A+ = XO —p(h,a)+ (h+1,a),
and if h = e — 1, set AUHD = XD — p(e — 1,a) 4 (0,a9). Of course A0V =£ (). Since S is
g-closed, note that A(+1) € N[S]. Also note that TIN(T1) = TIA®) and that A1) is all-unity
if and only if A is all-unity (since there is no element whose order is divisible by p in A).
Further, note that X pry At = B pr o A9 so that A+ is Delsarte-McEliece if and only
if A is Delsarte-McEliece. We claim that Cogr(A+Y) = Cop(A®). If 7 € R is not in
the same g¢-class as a, it is clear that [COR()\(””)L = [COR()\(i))]T. So let s € R be the

representative of the g-class of a. Choose j € {0,1,...,e5s—1} so that a = 57 Ifj<es—1
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or h < e —1, then it is easy to show that

es—1 es—1

n, ky(i+1) n ky(2)
DD AN =D D AN s
n=0 ke H n=0 ke H

so clearly [COR(A(H_”)]S = [COR()\(Z'))}S. If j =es—1and h = e — 1, then it is easy to

show that
es—1 es—1
n, ky (i+1) n, k es
5 il = (5 S ) -
n=0 ke H n=0 keH
so that
es—1 es—1
+1)
oY dPN =D A (mod g 1),
n=0 ke H n=0 ke H

and the sums on both sides are strictly positive (since A+ and A(® each have some
element of the form (k, b) with b in the g-class of a). Thus, by the definition of Cogr, we have
[Cor(ATHD)] = [Cor(A®)] _ in this case also. So we have shown Cor(A+D) = Cor(AD).

Note that ‘)\(”1)‘ = ‘)\(i)‘ — (p—1), so that this procedure must eventually terminate.
Let A(™ be the last term; it must be reduced. Furthermore, A(™) has all the properties
that the lemma claims for k.

We now show that there is only one reduced p € N[H x A] such that Cor(u) = Cog(A).
This will follow if we show that no two reduced elements of N[H x A] collapse to the
same element of N[R]. So suppose that p and v € N[H x A] are reduced multisets with
Cogr(p) = Cogr(v), and we shall show that = v. Let r € R be given. Since pu is reduced,

we have 0 < 335701 5%, gl o < g 1, 50 that (Cor(i)r = 33701 S e 0P 1y ot
Likewise, (Cor(v))r = > 7, 1Zhqup Vy, pai - S0 we have

er—1e—1 er—1le—1
ie+h o ie+h )
DIDIELTIED 5 DL

=0 h=0 =0 h=0

and since 0 < p, i,V 4 < p for all 4, we must have p, . = v, . forall i and h. That
is, fiha = Vnq for all a € Cly(r) and h € H, but r € R was arbitrary, so yu = v.
Although there might be many ways to construct the sequence AO M) iy our

procedure above, this uniqueness property shows that the final term is always the same.



57
Note that we never used R in the definition of this sequence A, ... A" so the final

multiset in the sequence is independent of R. 0

This lemma shows us that if A\ € N[H x A], then there is a unique reduced x € N[H x A]
such that Cog(k) = Cog()) for any set R of g-class representatives of A. Using the same
terminology as we did for multisets in N[A], we call this x the reduction of A and denote it

by Red(A). Then we obtain results analogous to Corollaries 2.22 and 2.23.

Corollary 2.26. Suppose that A1, Ao € N[H x A] and R is a set of q-class representatives
of A. Then Red(A1) = Red(\2) if and only if Cor(A1) = Cor(A2).

In view of Lemma 2.20, we have the following result:

Corollary 2.27. Suppose that A € N[H x A] and R is a set of q-class representatives of
A. Suppose that ¢ € GR(p?,e)[A] such that &(a) is zero or a power of m((y—1) for all
a € A. Let C be the element in Zy[Cy—1][A] with C = 70 & Then &) = &Red()\)) and

C(\) = C(Red(N)).
We transport the notion of reduction to elements of N[/ x H x A], where I is some finite

set. The reduction of A € N[I x H x A] is the element x € N[I x H x A] with x; = Red()\;)

for all ¢ € I. Then we obtain an analogue of Corollary 2.24 above.

Corollary 2.28. Let I be a finite set. For each i € I, let S; be a q-closed subset of A,
and suppose that A € N[I x H x A] with \; € N[H x S;] for each i € I. Then for each
i € I, we have (Red())); € N[H x S;]. For each i € I, (Red())); is Delsarte-McEliece if
and only if \; is Delsarte-McEliece. Also IIRed(\) = IIX and Red(X) is all-unity if and
only if X is all-unity. Furthermore, for each i € I, (Red(\)); = 0 if and only if \; =0, and
|(Red(N))i| = || — ki(p — 1) for some nonnegative integer k;. If X is not reduced, at least
one of these k; is strictly positive. If R is a set of p-class representatives of A, then Red(\)
has Cogr([Red(N)]i) = Cor(\;) for each i € 1.

2.7 The Frobenius Action on Accounts

The material in this section is used in various places (in the proofs of Theorems 4.18, 5.12,

6.13, and 7.14) to prove that certain terms in our p-adic estimates are fixed by the Frobenius
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automorphism Fr. This is done to prove that such terms, known to be in Zy[(y_1], are
actually elements of Z,, (which is comforting, since they are supposed to be p-adic estimates
of elements of Z). Readers should probably ignore this section until they encounter the
Frobenius action in the proofs of the aforementioned theorems. The development here is
repetitious, as in the previous section, because we need several variants of the same idea.
The proofs are routine, but we include them with a fair amount of detail for the record.

When e = 1, i.e., when ¢ = p, we introduce the Frobenius action, denoted Fra, on the
group A. We let Fry (a) = a”. Note that Fra® (a) = a? = a, by our choice of ¢’ and ¢’. Thus
Frp is a permutation of A. Also note that the orbits of Fra are the p-classes. We extend Frp
to act on elements of Z[A] by sending > .. 4 A to > c4 AaFra(a) = > c 4 Aaa”. Note
that Fra® (A) = A for any A € Z[A], so Fra is a permutation of Z[A]. Also note that Fry

preserves size. There are many other such useful properties that we summarize here:

Lemma 2.29. If e = 1, then Frp is a permutation of Z[A] with Fra® the identity. Fra
preserves size. Fra takes multisets to multisets and (Fra(A))! = Al for all X € N[A]. If
S is a p-closed set and X\ € Z[S], then Fra(\) € Z[S]. Additionally, Fra(\) is all-unity if
and only if X is all-unity. Further, LFra(\) = (IIN)?, so that Fra(\) is unity-product if
and only if X is unity-product. If ¢ € Z/p Z[A] and C is the element of Zy[Cy_1][A] with
C =10¢ and if X € Z[A], then C(Fra()\)) = Fr(C(\)).

Proof. 1t has already been noted that Fra is a size-preserving permutation with Fr A€ the
identity. Since Fra permutes the elements of A, if we list the |A| coefficients in the formal
sum A = ) 4 Aqa and then list the |A| coefficients in the formal sum Fra(\) = >° 2 4 Aad?,
we get the same list modulo ordering. Thus A takes multisets to multisets and Fra (A)! = AL
Since the orbits of the action of Fry on A are p-classes, Frp always takes an element of a
p-closed set S into the same set S. So Fry takes Z[S] into itself. In particular, Fra
maps all-unity accounts to all-unity accounts, and furthermore, if Fra () is all-unity, then
A = Fra€()\) is all-unity. Note that TTFra(\) = [[ o4 aFaMa = [T, _ 4 (a?)Fraer =
[Taca(@?)e = (TIN)P.

Finally, suppose that ¢ € Z/p?Z[A] and C is the element of Z, [, _1][A] with C=roé

Then by Lemma 2.9, we have C' € Z,[A]. Now suppose that A € Z[A]. Then C(Fra()\)) =
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[Toea Cla)Frae =TT, C(a?)FraM)ar =TT _, C(aP)*s. Now use Proposition 2.8 (rec-

ognizing that ¢ = p since e = 1) to obtain C(Fra(\)) = [loca Fr(C(a))* = Fr(C(\). O

If I is a finite set, we extend the Frobenius action Fra to Z[I x A] so that if A € Z[I x A],
(Fra(X))i = Fra(\;). We can easily deduce what we need to know about this action on

Z[I x A] from the above lemma.

Corollary 2.30. If e = 1, then Fra is a permutation of Z[I x A] with Fra® the identity.
Fra preserves size. Furthermore, if X\ € Z[I x A], then |(Fra(X)):| = |\i| for alli € I. Thus
pr; Fra(A) = pry A. Fra takes multisets to multisets and (Fra(X))! = Al for all X € N[A]. If
S; is a p-closed set for each i € I, and if \; € Z[S;] for each i € I, then (Fra(X)); € Z[S;]
for each i € I. Additionally, Fra(X) is all-unity if and only if \ is all-unity. Further,
ITFra (M) = (TIN)P, so that Fra () is unity-product if and only if X is unity-product. Suppose
that ¢; € Z/p?Z[A] for each i € I and that C; is the element of Zp[Cy—1][A] with C; = T 0 ¢

ﬁrmmiGI_UAGZUxALMMJLQCMEAMm):E(H%ﬂZQ».

For any value of e, we also define the Frobenius action Fra as a function from the set

H x A to itself, wherein

(h+1,a) ifh<e-—1,
Fra(h,a) =

(0,a%)  ifh=e—1.

Note that Fra®(h,a) = (h,a?), and so Fra® (h,a) = (h,a?) = (h,a), by our choice of ¢
and ¢’. Thus Frp is a permutation of H x A. Also note that the orbits of Fry are sets of
the form H x B, where B is a g-class in A. We extend Fra to act on elements of Z[H x A]
by sending >, yemrxa Ahalhs @) 0 32 e prxca Ana Fra(h, a). Note that Fra® (\) = A for
any A\ € Z[A], so Frp is a permutation of Z[H x A]. Also note that Frp preserves size.
There are many other such useful properties, analogous to those in Lemma 2.29, which we

summarize here:

Lemma 2.31. Frp is a permutation of Z[H x A] with Fra® the identity. Fra preserves
size. Fra takes multisets to multisets and (Fra(\))! = Al for all A € N[H x A]. If S is a

q-closed set and A € Z[H x S], then Fra(\) € Z[H x S|. Additionally, Fra(\) is all-unity
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if and only if X is all-unity. Further, IIFra(\) = (IT\)?, so that Fra(\) is unity-product
if and only if X is unity-product. We have X pry(Fra(X)) = p(Xprg A), so that Fra(\) is
Delsarte-McEliece if and only if X is Delsarte-McEliece. If ¢ € GR(p?, e)[A] and C is the
element of Z[Cy—1][A] with C =7 0¢, and if X € Z[H x A], then C(Fra()\)) = Fr(C()\)).

Proof. Tt has already been noted above that Fry is a size-preserving permutation with Fr N
the identity. Since Frp permutes the elements of H x A, if we list the e|A| coefficients in
the formal sum A = 3~ \ycprua Ana(h, @) and then list the e|A| coefficients in the formal
sum Fra(A) = 3 ¢, oyemrsa Ao Fra(h,a), we get the same list modulo ordering. Thus A
takes multisets to multisets and Fra (A)! = Al. Recall that the orbits of the action of Fra on
H x A are Cartesian products of H with ¢-classes. Thus, if S is ¢g-closed, then Frp always
takes an element of H x S into the same set H x S. So Fra takes N[H x S] into itself.
Therefore Frp takes all-unity accounts to all-unity accounts, and furthermore, if Fra(A) is
all-unity, then A = Fra® ()) is all-unity.

We now show that ITFrp (A) = (IIN)”. First we verify this for the account that is
a singleton set {(h,a)}. We write this account as the formal sum 1(h,a), or just (h,a).
Indeed, if h < e — 1, we have IIFra(h,a) = I(h + 1,a) = o = (II(h,a))’. On
the other hand, if h = e — 1, then IIFra(e — 1,a) = I1(0,a?) = a? = (ape_l)p =
(II(e — 1,a))?. Now we consider an arbitrary A € Z[H x A]. By the properties of II, we
can calculate ITFra(\) = II (Z(h,a)EHXA A FrA(h,a)) = H(Iw)eHxA (ITFra (h, )Mo =
inayemxa (IT(h, a))PAme = [H (Z(h,a)eHxA Ana(h, a))}p = (IIN)P.

Next, we show that Y pry Fra(\) = p(Zpry A). First we check this for the sin-
gleton set (h,a) (we are representing it as a formal sum, since it is an account). In-
deed, if h < e — 1, then X pry Fra((h,a)) = Spry(h +1,a) = p"*' = pSpry(h,a). If
h = e — 1, recall that ¥: Z[H] — Z/(q — 1)Z, and then check X pry Fra((e — 1,a)) =
Ypry(0,af) =1 = q = p(p°!) = pSpryle — 1,a) in Z/(q — 1)Z. Then, for an ar-
bitrary A € Z[H x A], we have YpryFra(\) = Xpry (Z(h,a)GHXA )\hvaFrA(h,a)> =
> hayerxA Ma (Eprg Fra(h,a)) = 32, pemsa Anap (B prg(h,a)). Therefore, we have
YpryFra(\) = pXpry (Z(h@)eHxA Ana (P, a)) = pXpry A. Since p is coprime to g — 1,
this means that X pry A = 0 if and only if X pry Fra(\) = 0, i.e., A is Delsarte-McEliece if
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and only if Fra (A) is Delsarte-McEliece.

Finally, suppose that ¢ € GR(p?, e)[A] and C is the element of Z,[(y—1][A] with C = Toé.
Then by Lemma 2.9, we have C € Z,[(;,—1][A]. Now suppose that A € Z[H x A]. We want
to show that C(Fra()\)) = Fr(C()\)). First we verify this when X is the singleton set (h, a).
Indeed, if h < e—1, we have C(Fra((h, a))) = C((h+1,a)) = Ft"*+1(C(a)) = Fr (é((m a))).

On the other hand, if h = e — 1, then we have C(Fra((e — 1,a))) = C((0,a%)) = C(a?).

Fr | Homerea (€ (ha)) ™| =1 (GO) .

If I is a finite set, we extend the Frobenius action Fry to Z[I x H x A] so that if
A€ Z[I x H x A], then (Fra(A)); = Fra(A;). We can easily deduce what we need to know

about this action on Z[I x H x A] from the above lemma.

Corollary 2.32. Fry is a permutation of Z[I x H x A] with Fra®® the identity. Fra
preserves size of accounts. Furthermore, if X € Z[I x H x A], then |(Fra(X))i| = |\i| for
all i € I. Frp takes multisets to multisets and (Fra(X))! = Al for all X € N[I x H x A]. If
{S:}ier is a family of q-closed sets, and if X\ € Z[I x H x A] with \; € Z[H x S;] for each
i, then (Fra(N)); € Z[H x S;] for each i € I. Additionally, Fra(X) is all-unity if and only
if X is all-unity. Further, TIFra(X\) = (IIN)?, so that Fra(\) is unity-product if and only
if A is unity-product. For each i € I, X pry([Fra(N)]i) = pXprg(Ni). Thus (Fra(XA)); is
Delsarte-McEliece for all i € I if and only if \; is Delsarte-McEliece for all i € I. Suppose
ci € GR(p% e)[A] for each i € I. Suppose that C; is the element of Zy[(y—1][A] with

Ci=T7o¢; foreachi € I. If N\ € Z[I x H x A], then [ [;c; C; ([Fra(M)];) = Fr (Hiel CN'()\l)>

2.8 Polynomial Notations and Facts

This brief section develops some notations that we shall use to express and manipulate

polynomials. We also introduce the binomial coefficient polynomials here. Finally, we
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record some basic results about polynomials that we shall need when we want to prove that
bounds on p-adic valuations of weights are sharp.

Suppose that J is a finite index set with some (total) ordering, and suppose that we are
considering polynomials with coefficients in some ring R and indeterminates {z; : j € J}. To
indicate that f is such a polynomial, we sometimes represent the list of all indeterminates
(arranged in order of increasing index) by x and write f(x) € R[x]. We also use the
alternative notation f({z;};cs) € R[{z;};cs] to mean the same thing. If our index set is a
product of sets, say J = I X K, then we shall abbreviate z(; ) by @i.

The notion of accounts, introduced in the previous section, may be used to express such
polynomials more efficiently. For example, if x € N[.J], then x* will be used as shorthand
for the monomial [ jeJ m?j . Thus any polynomial f in our indeterminates x can be written
as f(x) = EueN[J] fux#, where the coefficients f,, are in the ring R and almost all f, are
zero. Furthermore, suppose we have a collection of elements {a;};c; in R. Then we may
represent the list of them (in order of increasing index) by a. Of course f(a) is the value of
the polynomial when each indeterminate x; is replaced by the value a;. For convenience of
expression, we introduce the notation f({z; = a;};ecr), or just f({z; = a;}) if the index set
is clear, to mean the same thing as f(a). If J = {j1,...,js}, we can also use the notation
f{zj = ajy,...,zj, = aj,}). If K C J and we have a collection of elements {ay}rex in
R, then we use the notation f({zr = ai}rex) to indicate the polynomial in the variables
{z; : i € J~ K} obtained when we replace the variable x; with aj for each k € K. If
K = {ki,...,k}, we can also use the notation f({zp, = ak,,...,2r, = ak,}) to mean the
same thing.

We often make use of the binomial coefficient polynomials, which are defined as

0 if n <0,

x
n) =1 if n =0,

x(:c—l)...(|a:—n+1)

if n>0.

Note that these polynomials, when regarded as functions, map N into N. They also map Z,

into Zjp, by a simple argument employing the p-adic topology in the complete metric space
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Qp. For the binomial coefficient polynomials are p-adically continuous (being polynomials)
and N is dense in the closed set Z,,.
We now present a basic result that we shall use every time we want to prove the sharpness
of our lower bounds on p-adic valuations of weights in codes. We follow it with a lemma

upon which it depends and a useful corollary of that lemma.

Lemma 2.33. Suppose that x = (z1,...,xy) is a list of indeterminates, and suppose that
for each i € {1,...,n}, S; is a finite subset of Z,[(y—1] wherein no two elements are
congruent modulo p. Suppose that f(x) € Qu((y—1)[x] is not the zero polynomial, that m
is the minimum p-adic valuation of the coefficients of f(x), and that the degree of f in x;
is less than |S;| for each i. Then f(bi,...,b,) =0 (mod p™) for all by,... b, € Zy[(y—1],

but there is some (a1, ...,a,) € S; X --- x Sy, such that f(ay,...,a,) #Z0 (mod p™+!).

Proof. By scaling the polynomial by a power of p, it suffices to prove this for m = 0. It is
clear that if the coefficients of f are in Zy[(y_1], and if we replace the indeterminates by
elements of Zp[(y—1], then the resulting value is in Zp[(y—1]. So it only remains to show
that there is some a € Sy x --- x S, such that f(a) # 0 (mod p). Let f(x) € Fy[x] be the
reduction modulo p of f, and for each i € {1,...,n}, let S; C F, be the set of elements
obtained by reducing the elements of S; modulo p. Note that f(x) is not the zero polynomial
since f has a coeflicient with zero p-adic valuation. Also note that ‘S’Z‘ = |.5;| since no two
elements of S; are equivalent modulo p. Then we need to show that f(x) is nonzero at some

point in S; x --- x S,,. But this follows from Lemma 2.34 below, a standard result. L]

Lemma 2.34. Suppose that K is a field, x = (x1,...,xy,) is a list of indeterminates, and
suppose that S; is a finite subset of K fori = 1,...,n. Suppose that f(x) € K[x] is not
the zero polynomial and that the degree of f in x; is less than |S;| for each i. Then there is

some (a,...,an) € S1 X -+ X Sy, such that f(ay,...,an) # 0.
Proof. This is a well-known result, presented as Lemma 3.10 in [18]. O

Corollary 2.35. Suppose that K is a field, x = (1, ...,xy) is a list of indeterminates, and

suppose that S; is a finite subset of K for i =1,...,n. Suppose that f(x),g(x) € K[x] are
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distinct polynomials whose degrees in x; are less than |S;| for each i. Then there is some

(a1,...,an) € S1 X -+ X Sy, such that f(ay,...,an) # glai,...,an).
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Chapter 3

The Abstract Theorem

This brief chapter settles once and for all certain calculations that we shall use over and
over again. These calculations will accomplish the same end as those displayed in the
presentation of Wilson’s method at the beginning of Section 1.3, but here we consider
circumstances of much greater complexity. The higher degree of complexity is needed to
handle the more exotic forms of counting polynomials that we have devised (see Section 1.3
for a brief overview) and which we shall apply in the next chapters. What is presented here
are theorems (actually, one theorem in utmost generality and its corollaries) which take
as their input counting polynomials and give as their output p-adic estimates of weights.
Nowhere in this chapter do we learn how to construct good counting polynomials. In each
of the succeeding chapters, we consider different problems, and use various methods to
construct the appropriate counting polynomials. So the results in this chapter are merely
ghosts of theorems. They all need counting polynomials to be applied usefully. We begin
with a calculation which is essentially the repeated application of the distributive law and
of combinatorial repackaging of unwieldy sums over sets of sequences into more manageable
sums over multisets. We also make use of the fact that ) 4 (a,b) is zero unless b = 14;
this fact is the source of the unity-product condition that arises over and over in this work
(for example, in the definition of the parameters w(C), ¢(C), and their relatives in the

Introduction).

Proposition 3.1. Suppose thatt > 1, I ={1,2,...,t}, and C1,...,Cy € Zp[(q—1][A] . Let

x be the list of indeterminates in {x;, : (i,h) € I x H}, listed in some order. Suppose that
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F(%) € QulGy)d with £(x) = X penrsy ux. Then

Sr({rn=nt@@)}) =14 Y w160
a€A pEN[Ix H] AEN[IxHxA] = i€l

Pryy i A=[
IIA=14

Proof. By linearity, it suffices to consider f(x) = x* for some pu € N[/ x H] and show that

S f({rn=mt@@p}) =1 Y LTG0 (3.1)

acA AeN[IxHxA] " i€l
Pryx g A=H
IA=14

In this case,

Zf({x,h—Fr }) S I ®(Cila)y,

acA a€A (i,h)eIxH

and we use the inversion formula for the scaled Fourier transform to obtain

Zf({wih:Frh(C’i(a))}):Z [ = (Z@(bxb,@)%h. (3.2)

acA ac€A (i,h)eIxH beA

Now use the distributive law to get

Hi,h Hi,h

138 <Z Ci()(b, a>> = ) I1&" (Oi(bj)<bj,a>) :
beA b17b27~--,b,ui‘h€A j=1

We convert this from a sum over sequences of length p; 5 of elements in A to a sum over

multisets of size p;; of elements in A. Recall that there are |Z| distinct ways to arrange

the |v| elements of a multiset v into a sequence of length |v|. Thus

~ Hi,h . ~ y
h (bzA Ci(b) (0, a>) = Z[A] “?brgw (Cya))™.
S veN S

|W=Mm
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We take the product of this over all h € H and we apply the distributive law again to obtain

Hih
H el (Z @(b)<b, a>> _ Z H [Mm H o) ( ))(Vh)b] .
heH beA " uo,...,ue‘,lel\‘I[A] heH " beA

VO|=Mi,05--|Ve—1|=Hie—1

Then we repackage the sum over sequences as a sum over multisets to get

Hih
1" (Z@(b)(b,@) = Y JI [“”L [ ( >) ]
heH beA KREN[HxA] heH T beA

erN i

| ~ K
S| " (Ci() (b, a))
nperﬁ[ilgﬁ] (h,b)eHxA

Then we take the product of this over all ¢ € I and we apply the distributive law yet again

to obtain

Hih
II =" (ZQ(b)(b,a})

(i,h)eIxH

- ¥ I1|% ‘“ 1 = (éi(bxb,a))(”")""’

K1y, it EN[HXA] 1€l (h b)eHxA
Pry Kj=H;

Convert the sum over sequences to a sum over multisets to get
Hi,h
h A M h(F it
[ = (z o a>) - Y IO IO et (o).

(i,h)eIxH beA XeN[IxH x A] i€l (h b)eHx A
DIy A=p

and so

i,h
- ! ~ Aishb
[ = (Z C(b)(b, a>> - > 4 10 Frh< () (b, a)) .
(¢,h)eIxH beA AEN[Ix H x A] (4,h,b)EIXHXA

Prry g A=p

Now note that

B (i) b.a)) " = Bt (Gie)



68
because (a, b) is always a power of (1, and Fr takes such roots of unity to their pth powers.

Then by Lemma 2.5, we have
b A ijhib ~ (Mi)nb hy
Fr (Ci(b)(b, a>) — Fy (Ci(b)) <bp Aa>

If we take the product of both sides of this equation over all (i,h,b) € I x H x A and use

the compact notations developed in Section 2.5, we obtain

(i,h,b)EIxHx A
Using this with (3.3), we obtain
_ Hi,h M' ~
I = (Z Ci(b) (b, a>) = > % (H cz-w)) (I, a),

i,h)el X S € X H X
h)yelIxH beA AeN[IXHxA
Prrsw g A=p

so that, in view of (3.2), we have

Zf({xih:Frh (Ci(a))}> S g‘:(na(m> (I\, ).
a€A aeAAIe)S[I;I){ij] © \ier

The only term on the right-hand side that has dependence on a is (ITA, a). Using Lemma

2.5, we obtain

S r({ra=m @@} =14 Y KTG00.
el

acA AEN[Ix H x A]
Prrsm A=H
IIA=1,4
which is (3.1), which is what we need to show. O

Now we use this calculation to derive our abstract theorem. Much of the theorem is
given over to dealing with the problem of codewords whose Fourier transforms do not vanish

at 14. The normalized weight (see Section 2.4) is deployed to deal with this issue.

Theorem 3.2 (Abstract Theorem). Let m,t > 1, I = {1,2,...,t}, S1,...,5 C
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A, and c1,...,c; € GR(p?, e)[A] with & supported on S; for each i € I. Suppose that
wt: GR(p%,e)t — Z is a t-wise weight function. For each i € I, let C; be the ele-
ment of Zp[Cy_1][A] with C; = 70 &. Let x be a list (in some order) of the inde-
terminates in {xi, ¢ (i,h) € I x H}. Let f(x) = 3 enpxm fux! € Qp(Gg-1)[x] with
wt(m(r1),...,7(re)) = f ({zm = Frh(ri)}) (mod p™) for all ry,...,r¢ € Zp[Cq—1]. Then

W ey, ) =AYl > IGO0 (mod ™)

HEN[I X H] XeN[IxHxA|,pryy g A=p el
TIIA=14,pr 4 A¢N[{14}]
pra(A1)€EN[S1],...,pr 4 (Ar) EN[S¢]

(3.4)
Proof. Note that since ¢ is supported on S;, so is ¢, and so is C; = 7 o & (because
7(0) = 0). Thus if A € N[I x H x A] with pr()\;) & N[S;] for some i € I, then Cj(\;) =
Hinaersa Fr(C;(a)) e = 0. Because of this, we claim that it will suffice for us to prove

the special case when S =S, =--- =5, = A, i.e.,

Wt (e e = | A Z ! f, Z %Héi()\i) (mod p™), (3.5)

REN[Ix H] AEN[IXHxXA],pry g A=p i€l
HA=14,pr4 AZN[{14}]

when ¢y, ..., ¢ are allowed to be arbitrary in GR(p?, €)[A]. For if we consider some particular
c1,...,¢ with each ¢ supported on S;, then we may restrict the sum to those A with
pr4(A;) € N[S;] for all ¢ € I, and so obtain (3.4).

So we shall prove (3.5) for arbitrary ci,...,¢; € GR(p?, e)[A]. By Lemma 2.9, we know

that C; € Zp[(4—1][A] and 7(C;) = ¢; for each i € I, and we use our polynomial f to obtain

wt(cr(a), ..., c(a)) = f ({:ph - Frh(Ci(a))}) (mod p™)

for each a € A, so that

wi(er, e =3 f ({xh - Frh(C’i(a))}> (mod p™).

a€A



70

We can apply Proposition 3.1 to obtain

1 ~ m
wi(er,oa) =AY plfy Y G IIGO)  (moedp™).
pEN[Ix H] AEN[IxHxA] = i€l
Prry g A=p
TIA=14

Now we separate the sum into two parts to segregate those multisets A that are all-unity,

thus obtaining

wiler,-.ye) = Al S0 i, 3 %HCE’(M)

HEN[Ix H] AEN[IXHXA],pryy g A=p iel
IIA=14,pry )\GN[{IAH

Al S ) SO0 (mod pm).

REN[I x H] AEN[IXHxXA],prry g A=p i€l
IIA=14,pr 4 AZN[{14}]

The first term on the right-hand side is a polynomial function of the terms Fr(C;(14))

with 4 € I and h € H, i.e., there is some polynomial p(x) € Q,(¢,—1)[x] so that

wifer,.. ... ) = p ({oa = B @) })
ALY > ST (mod pm), (3:6)

pEN[I x H] AEN[IXHxXAlpry, g A=p i€l
HA=14,pr4 A¢N[{14}]

where we have used the fact that C’z = ToOg.

For this paragraph, let us suppose that ci,...,c; are constant words in GR(p?, e)[A].
By Lemma 2.7, each word ¢; has ¢;(a) = 0 for a # 14 and ¢;(b) = ¢;(14) for all b € A. Since
7(0) = 0, this means that for each i € I we have C;(a) = 0 for a # 14, so the second term

on the right-hand side of the congruence (3.6) vanishes, and we have

wt(c1,...,c) =p ({xlh = FI‘h[T(éi(lA))]}> (mod p™).

Since ¢;(b) = ¢;(14) for all b € A, we have

AWt (Z1(14), ..., &(14)) = p ({xh - Frh[T(Ei(lA))]}> (mod p™).
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Note that as we vary the word ¢; over all constant words, the Fourier coefficient ¢;(14)

varies over GR(p?, e). Thus

|A|wt(r1,...,r¢) = p ({xh - Frh(T(Ti))}> (mod p™), (3.7)

for all 71,...,7 € GR(p?, e).
Now we return to the consideration of arbitrary ci,...,¢; € GR(p?,e)[A]. Note that
Gi(1y) = AT > peaci(b) € GR(p%e) for all i € I. Thus we may employ (3.7) in (3.6) to

obtain

wt(cr, ..., ) = |A|wt (€1(14),...,¢(1a))

1 ~ m
+ |A] Z iy Z Nl HCi()\i) (mod p™),
WEN[I x H] AEN[IXHxXAl,prry g A=p i€l
OA=14,pr4 AZN[{14}]

which is (3.5), which is what we were to show. O

The following three corollaries are just specializations of the abstract theorem. That
they follow directly from the abstract theorem can be seen by those who are familiar enough
with the account notations and operations (see Section 2.5). For those readers who are not

at ease with accounts, we include the proofs, which are tedious set-theoretic manipulations.

Corollary 3.3 (Single-Word Weights over Galois Rings). Let m > 1, S C A, and
c € GR(p?, e)[A] with ¢ supported on S. Suppose that wt: GR(p?,e) — Z is a weight
function. Let C be the element of Zp[Cy_1][A] with C = 7o & Let x be a list (in some
order) of the indeterminates in {zp : h € H}. Let f(x) =}, e fux" € Qp((g—1)[x] with
wt(m(r)) = f ({zr, = Fr"(r)}) (mod p™) for all v € Zy[(4—1]. Then

wer@=al Y Y Y ey @)

HEN[H] AeN[H X S],pry A=p
TIA=14,pr 4 AZN[{14}]

Proof. Set t =1, I ={1}, S1 =S5, c1 = ¢, and C; = C. Let y be a list (in some order) of

the indeterminates in {yn : (i,h) € I x H}, and let g(y) = >_ enprx i) 9u¥" With gy = fu, .
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Then wt((r1)) = g ({y1,, = Ft"(r1)}) (mod p™) for all 1 € Z,[(,—1]. So by the abstract

theorem above, keeping in mind that t =1, I = {1}, S;1 = S, ¢; = ¢, and ;] = C, we have

W) = Al S g > HCOD) (mod ™).

HEN[I X H] AEN[IXHxA],priy g A=p

TIA=14,pr 4, A@N[{14}]
pr4(M1)EN[S]

Note that p +— pry p is a bijection from N[/ x H] to N[H]|. Let ®: N[H| — N[I x H]| be
the inverse of this map. Likewise, note that A — pry, 4 A is a bijection from N[/ x H x A]
to N[H x A]. Let W: N[H x A] — N[I x H x A] be the inverse of this map. Because these
maps ® and ¥ are bijective, they enable us to re-index our sums. We do this, noting that

Al =PIy A, to get

norm — 1 ~ m
Wt () = 1Al Y B(1)\ga,) 3 0 (mod 5.
veN[H] KEN[H X Al,pr;y g ¥(k)=2(v) )

MW (r)=1a,pry ¥(r)ZN[{1a}]
pr4 KEN[S

Note that ®(v)! = v! and ¥(x)! = k!. Also recall that g, = fu, = fpr,, u, s0 that go) =
fv. Further, note that (pry, g V(k))1n = (pryK), for all h € H, so that pr;,z ¥(k) =
®(pry k). So, by the bijectivity of ®, the condition pr;, ; V(x) = ®(v) is equivalent to the
condition pry £ = v. Also note that II¥ (k) = Ilx and pry ¥(k) = pry x. Thus, we have
1 -~
wrome) =14 S Wf Y L) (mod pM,

|
K
veN[H] KEN[H X A],pr g k=v

IIk=14,pry figN[{lA}]
pr4 KEN[S]

and note that the conditions x € N[H x A] and pry x € N[S] can be combined into the

single condition x € N[H x S| to obtain (3.8). O

Corollary 3.4 (Multi-Word Weights over Z/p?Z). Let m,t > 1, I = {1,2,...,t},
S1,...,8: C A, and cy,...,c; € Z/p Z[A] with & supported on S; for each i € I. Suppose
that wt: (Z/p®Z) — 7 is a t-wise weight function. For each i € I, let C; be the element
of ZplCy—1][A] with C; = 70 &. Let x be a list (in some order) of the indeterminates in

{wi i e I}, Let f(x) = X en fux! € Qp[x] with wi(w(r1),...,7(r)) = f ({@i =7i})
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(mod p™) for all ri,...,r¢ € Z,. Then

1 -
Wt (e, o) = ALY > ;HCZ-(M) (mod p™).  (3.9)
peEN[I] AeN[IxA],pr;A=p i€l
IA=14,pry AZN[{14}]
A EN[S1],..., At EN[S¢]

Proof. Here we have H = {0}. We let the y denote a list (in some order) of the indetermi-
nates in {y;, : (i,h) € I x H}, and we let g(y) = >_ enprxm) 9u¥" with gy = for, . Then
wt(m(r1),...,m(re)) = g ({yi0 = Fr°(rs)}) (mod p™) for all r1,...,7; € Zy. Thus, by our

abstract theorem above, we have

1 .
thorm(cl’ o 7Ct) = ‘A’ Z H!g,u, Z ﬁ H Cz()\z) (mOd pm).

HEN[I X H] AEN[IXHXA],pryy g A=p iel
IA=14,pr 4 AZN[{14}]
pr4 (A1) €EN[S1],....pr 4 (M) EN[S¢]

Note that p — pr;u is a bijection from N[ x H] to N[I]. Let ®: N[I] — N[I x H] be the
inverse of this map. Likewise, note that A\ — pr;, 4 A is a bijection from N[I x H x A] to
N[I x A]. Let ¥: N[I x A] — N[I x H x A] be the inverse of this map. Because these maps

® and ¥ are bijective, they enable us to re-index our sums to obtain

wt' " (e, )

1 _
Al D> () lgaw) > T () [T S
veN(I] KEN[IXA],priy g ¥(k)=P(v) ’

W (r)=14,pr 4 ¥(r)EN[{14}]
pra([W(r)]1)EN[S1],....pra ([W(x)]e) EN[St]

(mod p™).

Note that ®(v)! = v! and ¥(x)! = x!. Also recall that g, = fur, 4, s0 that geu) = fu.
Further, note that (pry,z ¥(k))io = (pryk); for all i € I, so that pr;, g V(k) = ®(pryK).
So, by the bijectivity of ®, the condition pr;, ; V(k) = ®(v) is equivalent to the condition
pr; k = v. Also note that II¥ (k) = Ik and pry ¥U(k) = pry k. Finally, for each ¢ € I and

a € A, we have [pry([W(r)]i)], = 2Zpen((Y(K))ha = ((P(K)]i)oe = [Y(K)lioa = Kia =
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(K2)as 50 that pro([¥(x)];) = ;. Thus, we have

Wt ey, o) = Al Y v, > %H@([Mﬂ)h) (mod p™).

veNI] REN[IxA],pr; k=v i€l
Tlk=14,pr4 k¢N[{14}]
K1EN[S1],..., 5t EN[S¢]

Now, note that for each i € I and x € N[I x A], we have

G = [[ =m"Cila)¥®Nna,
(h,a)EH XA

but H = {0}, so that we have
Ci([¥(K)];) = H Ci(a) (¥ @li)oa.
acA
Since ([¥(k)]i)o,a = [Y(K)]i0,a = Kia = (Ki)a, We have

)

Ci([¥(w)]i) = [ ] Cila) e

a€A

= Ci(ra),

which, when substituted into (3.10), gives (3.9), which is what we were to prove.

(3.10)

O

Corollary 3.5 (Single-Word Weights over Z/piZ). Let m > 1, S C A, and ¢ €

7./p%Z] A] with ¢ supported on S. Suppose that wt: Z/p*Z — 7 is a weight function. Let

C be the element of Zy[Cy_1][A] with C = 7 o0& Let f(z) = > jen fiz? € Qplx] with

wt(m(r)) = f(r) (mod p™) for all r € Zy,. Then

norm - é )\ m
wt M (¢) = |A\Z]!fj Z il) (mod p™).
jEN AEN[S], | N=j ’

IIA=14A¢ZN[{14}]

(3.11)

Proof. Set t =1, 1 ={1}, 51 =5, ¢c;1 =¢,and C; = C. Let y be the list of indeterminates

in {y; : i € I't (which consists of the single indeterminate y1) and let g(y) = >_ enp 9u¥"

where g, = fu,. Then wt(7w(r1)) = g ({y1 =r1}) (mod p™) for all 71 € Z,. So by Corollary
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3.4, keeping in mind that t =1, I = {1}, S1 = S, ¢1 = ¢, and C; = C, we have

norm 1~ m
wt™ ™ () = |A] Y plgy > 7€) (mod p™).
WENII] AeN[IxA],pr;A=p
IA=14,pr4 AZN[{14}]
A1 EN[S]

Note that g — || (which is the same as p — py) is a bijection from N[I] to N. Let
®: N — N[I] be the inverse of this map. Likewise, note that A — pry A is a bijection
from N[I x A] to N[A]. Let ¥: N[A] — N[I x A] be the inverse of this map. Because these
maps ® and ¥ are bijective, they enable us to re-index our sums. We do this, noting that

A1 =Dpry A, to get

norm — - 1 S m
Wt (¢) = 4] Y 8()lgay ) FogiC) (mod ™)
jEN REN[A],pr; ¥ (r)=S(j) '

MV (k)=14,pry V(k)¢N[{14}]
KEN][S]

Note that ®(j)! = j! and ¥(x)! = k!. Also recall that g, = fu, = f,, so that ga(;) = fj-
Further, note that (pr; U(k)); = |k, so that pr; U(k) = ®(|x|). So, by the bijectivity of
®, the condition pr; ¥(k) = ®(j) is equivalent to the condition |k| = j. Also note that
¥ (k) =k and pry ¥(k) = k. Thus, we have

wt (e) = |A] Zj!fj Z %é(/ﬁ) (mod p™).

jeN KEN[A]|x|=j
ITk=14,~¢N[{14}]
KENIS]
The condition x € N[A] is redundant, given the condition x € N[S], so we are done. O

Having set down this abstract theorem and its corollaries, we are now ready to obtain
p-adic estimates of weights as soon as we construct appropriate counting polynomials. We
present our four main results in the next four chapters, each of which includes the construc-
tion of polynomials and the application of such polynomials with the abstract theorem (or

one of its corollaries) to obtain weight congruences.
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Chapter 4

Zero Counts, Hamming Weights,
and Generic Weights in Z/p?Z]A]

In this chapter, we investigate p-adic valuations of weights in Abelian codes over Z/p?Z.
Thus we set e = 1 throughout this chapter. The two main results we obtain are Theorems
4.18 and 4.21, specializations of which were presented in the Introduction as Theorems 1.8

and 1.7. We recall these specializations here:

Theorem 4.1 (Theorem 4.18, specialized). Let C be a code in Z/p?Z[A] with 14 not
in the support of the Fourier transform of C. Then zer(c) = |A| (mod p‘mc©)) for all ¢ € C,

and zer(c) # |A| (mod p‘nc©)*1) for some ¢ € C. Equivalently, ham(c) = 0 (mod p%ic(©))

for all ¢ € C, and ham(c) # 0 (mod p‘mc©+1) for some ¢ € C.

Theorem 4.2 (Theorem 4.21, specialized). Let C be a code in Z./p?Z[A] with 14 not in
the support of the Fourier transform of C. Let r € Z/p?Z with r # 0, and let ¢ € C. Then

the number of occurrences of the symbol v in the word ¢ is a multiple of p**(©).

In order to understand these theorems, one must understand the definitions of ¢%°(C)
and £5°.(C) given in Section 1.1 of the Introduction. The parameters ¢**(C) and ¢;°.(C)
are defined there using unity-product sequences of elements in the support of the Fourier
transform of the code. In this chapter, and indeed in the rest of the thesis, they will be
defined (equivalently) using multisets rather than sequences. For this reason, knowledge of
the notations for accounts in Section 2.5 will be indispensable in this chapter.

The above theorems (or rather, more general forms of them) are proved using Corollary

3.4 and suitable counting polynomials. In Section 4.1, we introduce the Newton expansion,
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which is the basic tool for constructing counting polynomials. In Section 4.2, we construct
our counting polynomials. Note that we do not construct a single-variable polynomial f that
approximates the lift of a weight function wt. That is, we do not construct f(x) € Qp[x]
so that f(r) = wt(n(r)) (mod p™) for all » € Z,, and then use it with Corollary 3.5
to approximate weights. Rather, we construct a multivariable polynomial f(zq,...,24-1)
that will approximate weights in a somewhat strange fashion, namely f(rg,...,rq_1) =
wt(m(ro + pr1 + -+ + p?trg_1)) (mod p™) for all rg,...,7q_1 € Z,. This polynomial is
designed to respect the scoring system described in Section 1.1 of the Introduction. There
the scoring system was described for use with sequences; in Section 4.2 the scoring system
is defined (equivalently) in terms of multisets. In Section 4.2, we do not speak specifically
about weight functions, but show how to make counting polynomials that approximate

functions F'(zo,...,xq—1) that have the property that

F(zo, 21, 2a_2,24-1) = F(xo +pL 21, .., 2a_2,24-1)

d—1

= F(xo,x1 +p" ", ..., 84-2,Ta—1)

2
- F(x07x1a' ey Ld—2 +p 7$d—1)

= F(zo,x1,...,%Z4-2,Td—1 + D).

For any weight function wt: Z/p?Z — 7Z, the function wt(m(zo + pry +- -+ p?tag_1)) will
have this property.

In Section 4.3, we introduce the notion of a sectioned weight function. For wt: Z/p?Z —
Z, the sectioned weight function wteee: (Z/p?Z)? — 7Z is given by wteee(T0,...,74—1) =
wt(rg 4+ pri+ - -+ +p?~'rg_1). Thus the polynomials developed in Section 4.2 approximate
sectioned weight functions. Then Section 4.3 shows how the scaled Fourier-induced break-
down of codewords (introduced in Section 2.3) works together with the sectioned weight
functions. Indeed, the scaled Fourier-induced breakdown expresses a codeword c¢ as a linear

d—1 i (i

combination ) ;) pie® | and so wt(c) = Wtsec(c(0)7 el c(d—l))‘

In Sections 4.4 and 4.5, we use our counting polynomials that approximate sectioned
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weights, along with Corollary 3.4, to prove the theorems that are the goals of this chapter.
In Section 4.4, we introduce the parameter ¢7°.(C) using multisets, and then prove Theorem
4.18, which is a generalized version of Theorem 1.8 (Theorem 4.1 above). In Section 4.5,
we introduce the parameter ¢°°(C) using multisets, and then prove Theorem 4.21, which is
a generalized version of Theorem 1.7 (Theorem 4.2 above).

Finally, in Section 4.6, we compare our results with previous ones. Since previous results
used the parameters £,,,.(C) and ¢(C) (see Section 1.1 of the Introduction), we introduce these
parameters (using multisets here rather than the sequences of the Introduction). Then we
compare (in Proposition 4.22) the relative magnitudes of £(C), €n.(C), £°*(C), and £35.(C),

thus enabling us to compare our results with past results.

4.1 Finite Differences and Newton Expansions

In this section, we let D stand for any subset of Z, such that r» € D implies 7 + 1 € D (so
D could be N or Z or all of Z,). We consider the Q,-vector space of functions f: D — Q,.

We define the finite difference operator, denoted A, to be the operator on this space with
(AF)(x) = F(z+1) — F(x).

We also define the translation (or shift) operator, denoted T, to be the operator in this
space with

(TF)(z) = F(z + 1).

Note that A =T — Id, where Id is the identity operator.
We also let ¢ be a positive integer and consider the Q,-vector space of functions of the
form F': D' — Q,. We define the finite difference operator in variable z, denoted Ay, to

be the operator on the space of such functions with

(AkF)(T(), . ,T't_l) = F(.%'(),. cs Th—1, L + Ty T, - - - ,[13,5_1) - F(.%'(), ce ,.’Bt_l).

Similarly, we define the translation (or shift) operator in variable xy, denoted T}, to be the
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operator in this space with
(ThF)(xo0,- -y 2i-1) = F(Tg, .oy Tp—1, 1L+ Tp, Thg1, - -, Ty—1).

Note that A, =T — Id.
For multivariable scenarios, we adopt the simplifying notation that for any letter a,

the corresponding boldface letter a stands for the ¢-tuple ag,...,a;—1. We also use the

nQo 1

abbreviations x" = x and

o) -(G)-Co)

Furthermore, we set A™ = AJ°...A/";'. For convenience, we introduce the t-tuples

Nt —
e xtfl

0 t—1 I : P
e’,...,e" ", where ef = 0if i # j and e} = 1. We also use 0 to represent the ¢-tuple

of all zeroes. For any j-tuple ao, ..., a;_1, we use the notation Box(ao, ...,a;—1) to denote
the set {0,1,...,&0} X oo X {0,1,...,CL]‘_1}.

Note that Af; = (T}, — Id)? = Zgzo(—l)j_i(g)T,i. Also note that all the operators A;
and T}, are pairwise commutative. Furthermore, substitution of a number b; € Z, for a

variable x; commutes with T}, and Ay, if k # j. That is, if j # k, then

Ty (F (o, mj—1,b5, 211, w-1)) = (T F) (w0, - ., 251, bj, Tj1, o, Te1)

and

Ak(F($0, N ,ZL‘jfl, bj,.%’jJrl, N ,Qj‘tfl)) = (AkF)(xo, N ,.%j,l, bj, ijrl, N ,ZL‘tfl)

for all b; € Z,,. In the following lemma, we note that the values that a function takes on N*

are deducible from the values of its finite differences at the origin:

Lemma 4.3. Lett > 1, F: D' — Q,, and b € N'. Then

F(b)= Y  (A'F)(0) C’)

icBox(b)
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Proof. We induct on t. For t = 1, we must show that F(by) = Zm O(AZOF)(O)(I;S). We use
AP = S o(—1)io—d (ZJO)Tg to calculate

Ssmo(y) =3 s () o )

Since (Z]O) (1?0) = (bo) (bo 9) we have

io 3/ \ig—j
bo bo lo
> (AP F)(0) (1?0> = ) J(bo) (bo ‘7) ()
i0=0 ‘o o= O] 0 J/ \w=J
by bo
=3 > (M) ()R
j=0 o= SIS0
bo bo J _
-2 70 (5) 5o (")
=0 k=0
But Y007 (—1)* (*-7) = 0 unless j = by (in which case it is 1), so that

i(AEOF )(0) <b0> = F(by).

7
i0—0 0

Now suppose that t > 1 and that the lemma holds for functions with ¢ — 1 or fewer

variables. Set G(xo) = F(zo,b1,...,bi—1), so that by the base case we have

Glbo) = SO (AEG)0) <¢0>7

7
i0—0 0

or, since substitution of by, ...,b;_1 for x1,...,x;_1 commutes with application of A,

bo
F(bo,....bim1) = Y (ARF)(0,by, ..., b 1)([)2).

i9=0

Define Fj(x1,...,2¢—1) = (A{)F)(O,:Ul, .oyx¢—1) for =0,...,bp, so that

bo
b
F(bo,....bim1) = Y Fig(br,... b 1)( 0).

i0=0 to
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Now apply the induction hypothesis to the functions F;, to obtain
b() bl bt—l ) . b
Flbo,...;bi1) = > =+ > (Agl...A;t_—mo)(o,...,O)(,). (4.1)
i0=041=0  i4—1=0

But note that

(AL AT E) ({21 =0, @1 = 0})

= (A .. Al (AP {zo = 0D)]) (fz1 =0, 201 = 0}).

Then use the fact that the substitution of the value 0 for the indeterminate xy commutes
with the finite difference operators Aq,...,A;_1, and the fact that Ay commutes with

A1, ..., A1 to obtain
(A AT F)(0,...,0) = (A L ATLF)(0,. .., 0),

which, with (4.1), completes the proof. O

Corollary 4.4. Let F: D' — Q, and b € N. Then f(x) = > icBox(b) (ATF) (0)(%) s
the unique polynomial in Qp[x]| that agrees with F' on Box(b) and whose degree in each

indeterminate xy, is less than or equal to by,.

Proof. If we evaluate f(x) at any point a € Box(b), we note that (‘le) =0 if i1 > a;, and

so we obtain

fay= 3 (AF)0) (a)

i€cBox(a)
which equals F'(a) by the lemma. Corollary 2.35 tells us that there is no other polynomial

agreeing with ' on Box(b) and having the degree of each xj at most by. O
If {ci}ient is a family of elements of @, then
x
()
i
ieNt

gives a well-defined function from N’ to Q,, because (‘zﬂ) = 0if ¢; > a;, so that all but
J
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finitely many terms vanish in our sum when we substitute x = a. Furthermore, if all the
coefficients ¢; are elements of Z,, then this function maps N into Z,, since each binomial
coefficient maps N into Z,. In fact, we shall show that all functions from N’ to Q, can be

obtained in this form.

Proposition 4.5. Let F: N* — Q,. Then there exists a unique family {fi}ient of coeffi-

cients in Q, such that

P =3k (") (12)

ieNt
In fact, f; = (A'F)(0). Furthermore, for any m € Z, we have F(N') C p™Z, if and only if

fi € p"Z, for all i€ N

Proof. First we show that the proposed coefficients work. Let b € N'. Since (fl) =0 if

1

i1 > b;, we have

Sano(;) = ¥ ano(}).

ieNt icBox(b)
but the last expression is equal to F'(b) by Lemma 4.3 above.
To show uniqueness it suffices to show that if {c¢;}jene is a family of coefficients in Qp,

not all zero, then the function

Cx) =« (’f)

ieNt
does not vanish everywhere. Choose j subject to ¢; # 0 and jo + - - - + j;—1 minimal. Then
CG= > « (j>7
i
ieBox(j)

since (z:) vanishes when iy > j for any k. But by the minimality property of j, all terms
in the summation have ¢; = 0, except the term with i =j. So C(j) = ¢; # 0.

Finally, if m € Z and if all the coefficients f; are in p™Z,, then clearly F maps all of N*
into p™Zj,, since the binomial coefficient polynomials map N into N. Conversely, if m € Z

and F' maps all of N’ into p™Z,, then all the finite differences f; = (AIF)(0) are also in

mep- Il

We call the expansion in (4.2) the Newton ezpansion of the function F. If G: Z,' — 7Z,,
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we define the Newton expansion of G to be the Newton expansion of the restriction of G
to N, The coefficients in the expansion are called the Newton coefficients. In general, the
Newton expansion of G Z," — Z, need not agree with G on Z," \ N’ (e.g., consider what
happens if G is the characteristic function of N*), but the general case will not concern
us. We are interested in approximating certain well-behaved functions with polynomials.
We say that a polynomial f(x) € Q,[x] approzimates G (uniformly) modulo p™ on Z," to
mean that f(r) = G(r) (mod p™) for all r € Z,". The following lemma shows that we can
obtain polynomial approximations to G in certain circumstances by truncating the Newton

expansion:

Lemma 4.6. Let F': Zpt — Qp be a p-adically continuous function and let ) ;v fi (’1‘) be
its Newton expansion. Suppose that there is some finite subset S of Nt such that f; = 0
(mod m) for all i ¢ S. Then the polynomial f(x) = Y ;g fi(}) has the property that
f(b) = F(b) (mod p™) for all b € Z,".

Proof. Let G(x) = F(x) — f(x). We want to show that G maps all of Z," into p™Z,, i.e.,
that G~1(p™Z,) = Z,". Note that G has a Newton expansion whose coefficients all vanish
modulo p™, so by Proposition 4.5, G maps N! into p™Z,, i.e., Nt C G~1(p™Z,). Also note
G is p-adically continuous since F' (as given) and f (a polynomial) are continuous. Note
that p™Z, is a closed subset of @, in the p-adic topology, so G_l(mep) is a closed set. So
we know that Gil(mep) is a closed set containing N!, but N’ is a dense subset of Zpt, SO

G~ (p™Zy) = Z,". O

In the next section, we shall be concerned with functions invariant under certain transla-
tions. Thus it will be important to know the effects of translation on the Newton expansion
of a function. The reader should recall our compact vectorial notations introduced at the

beginning of this section.

Lemma 4.7. Let F: D' — 7, have Newton expansion > ;o fi(5), let k € {0,1,...,t—1},

and let j € N. Then the translated function TgF has Newton expansion ) ;. i (’1‘) with

coefficients g; = Z%zg (fl) fithek-
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Proof. We prove this by induction on j. The j = 0 case is trivial. Suppose j = 1. Let
b € N! be given. Then

(T4 F) (b Zfl<b+.e>

ieNt

Now we use Pascal’s identity (x“) =)+ (,%,) to obtain

n

o= £a[(0) (%)

(T3F)( Zfl( )+§fi<ibek>,

ieNt

so that

since all but finitely many terms of these sequences vanish. Recall the convention that

(_xl) = 0, so we have

mo- Sall) 4, %)

ieNt ieNt
i >1

=S A (3)+ 3 e (3)

ieNt icN?

= Z (fi+ firer) (l:),

ieNt

which proves our lemma in the case j = 1.
Now suppose 7 > 1. Let & = Tg_lF , which has Newton expansion » ;-\t ¢i (’l‘) with
= Y7L (771 fiiror. By the base case proved above, the Newton expansion of Tp® =
170 (7Y fipner By the b d above, the Newt f T3, ®
TgF is D iene 0i(3) with g5 = ¢i + @j4er. So, recalling our convention that (%)) = 0 and

Pascal’s identity, we have

-1 1

j—1 (i1
( >f1+hek + Z < )fi+(h+1)ek

h=

03+ ()
(1) fsres- =

=
I
Q.

Il
- 1 10

>
Il
=)
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4.2 Construction of Counting Polynomials

Now we use Newton expansions and Lemma 4.6 to make polynomials that will be used to
p-adically approximate weights. For a positive integer ¢, consider a function F'(zg,...,z;—1)

from Z," to Q,. We say that F is (p,t)-periodic if
t t—1
TWFE=1""F=...=T" F=F.

Note that such functions are p-adically continuous; in fact, they are constant on a sufficiently
small neighborhood of any given point.

Given a t-tuple of integers n = (ng,...,n¢—1), we define [n| = ng + -+ -+ ny_1, and if all
the elements of the t-tuple are nonnegative, we define n! = ng!nq!---n;_1!. We define the

score of n, denoted Sc(n), to be
=1
Sc(ngy ... ,np—1) = Zp’ni.
i=0
Note that for any n, we have
Sc(n) = |n| (mod p—1). (4.3)

For s € N and n € Z!, we define the s-tier of n, denoted Ti s(n), to be

) Se(ng, ..., ng—1) —p*~!
T cey ) = .
is(no,...,n¢—1) = max {O, { =Dy

In this section, we shall always want to calculate the t-tiers of ¢t-tuples.
For k € {0,1,...,t — 1}, a t-tuple n = (ng,...,ny—1) is said to be k-starting if ng =
- =mni_1 = 0 and ng # 0. The t-tuple n is said to be k-critical if it is k-starting
and Ti; (n+e*) > Ti;(n). A t-tuple is said to be critical if it is k-critical for any k €
{0,1,...,t—1}. The critical t-tuples will be important when we want to prove the sharpness
of our bounds on p-adic valuations of weights. We first give a characterization of critical

t-tuples.
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Lemma 4.8. Let k € {0,1,...,t — 1} and let n = (ng,...,ni—1) € N'. Then n is k-
critical if and only if it is k-starting and Sc (n) = [(Ti; (n) +1) (p — 1) + 1] p'~! — p¥. Thus
In| =Sc(n) =0 (mod p — 1) if n is k-critical. If n is k-critical and n, ..., ni_2 < p, then

ng=--=mn_9=p—1andni_1 = (p—1) (Tiy (n) + 1).

Proof. Suppose that n is k-critical. By definition n is k-starting, and furthermore, we have

Ti; (n +e*) > Ti; (n), so that Sc (n+e*) > [(Ti; (n) + 1) (p — 1) + 1] p'~'. Thus
Sc(n) > [(Ti; (n) + 1) (p— 1) + 1] p~ ' = p*.
On the other hand, by the definition of t-tier,
Sc(n) < [(Tig(n) +1) (p— 1) + 1] p'~".

Sc(n) is a multiple of p* since n is k-starting. But there is only one multiple of p* that
satisfies both our inequalities for Sc (n), namely, Sc (n) = [(Ti; (n) + 1) (p — 1) + 1] p' 1 —p*.

Note that this score is divisible by p — 1 and that Sc(n) = |n| (mod p — 1) by (4.3).

Conversely, suppose n is k-starting and Sc(n) = [(Ti; (n) + 1) (p — 1) + 1] p*~t — pF.

Then Sc (n+e*) = [(Ti (n) + 1) (p — 1) + 1] p'~1, so that Ti; (n+e*) = Tiy(n) +1 >
Ti; (n). So n is k-critical.

Now suppose n is k-critical and ng,...,nt—2 < p. By the first part of the lemma,

1 2 t—1 k

we know that Sc(n) = pt~! — pF (mod p'1), so that ngpF + - +ny_opt=2 = p=1 —p

(mod p'~1). By the upper bounds on ny,...,ni 2, we have 0 < ngp? + -+ + ny_op'=2 <

p!~! — p*, which is a range shorter in length that p!~'. Therefore, our congruence modulo

pt=1 for npp® + - 4+ ny_op'~? exactly determines the value to be pt~! — p*, which forces
ng=---=mns_9=p—1. Thus Sc(n) = (ns_1 +1)p'~t —p*, and the first part of this lemma
then tells us that n,—1 = (Ti; (n) + 1) (p — 1). O

The next two lemmas show that the coefficients in the Newton expansion of a (p,t)-
periodic function satisfy certain recursion relations. These relations are used to show that
the Newton coefficients f; of a (p,t)-periodic function tend to zero (in the p-adic sense) as

Sc (i) tends to infinity.
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Lemma 4.9. Let F': Zpt — Zyp be (p,t)-periodic with Newton expansion Y ;- fi (’1‘), let

ke{0,1,...,t=2}, and let h € N' with hy > p. Then fy_perporrt = fu+ 302t () facjer-

Proof. Since F' is (p,t)-periodic, we have T,fF = Ti+1F. Then employ Lemma 4.7 on both
sides of this equation to compute the Newton coefficient for the (h — pe*)-term (i.e., the

coeflicient in front of (hj;;ek) in the Newton expansion). We obtain
L. L

Z <7;>fh_pek+iek - Z ( > Tn—pek+jer+1-
i=0 =0

The ¢ = 0 term on the left matches the j = 0 term on the right, and the ¢ = p term on the

left is just fn, so we get

p—1
p
fut Z <Z> fhfpek+iek‘ = fhfpek+ek+1 .
i=1

Now re-index the sum on the left with j = p — ¢ to obtain what we were to prove. O

Lemma 4.10. Let F': Zpt — Ly be (p,t)-periodic with Newton expansion Y ;- fi (’1‘), and
let h € N with hy—y > p. Then fn+ > 22; () fujer-1 = 0.

Proof. Since F'is (p,t)-periodic, we have T} ;F' = F. Then employ Lemma 4.7 on the left-
hand side to compute the Newton coefficient for the (h — pe’~!)-term (i.e., the coefficient

in front of (h—p);tfl) in the Newton expansion). We obtain

=~ (p
Z (Z->fh—pet1+iet1 = fh—petfl'
i=0

The ¢ = 0 term on the left matches the right-hand side, and the ¢ = p term on the left is

just fn, so we get
p—1
p
o+ Z (2> fh—pet*1+iet*1 =0.
i=1
Now re-index the sum on the left with j = p — i to obtain what we were to prove. ]

Now we show that the above recursions force the Newton coefficients f; of a (p, t)-periodic

function F' to decay (p-adically) as the ¢-tier of i increases. Furthermore, we obtain some
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additional information on f; when 1i is critical. This latter information will be critical in

proofs of the sharpness of certain of our bounds on the p-adic valuations of weights in codes.

Theorem 4.11. Let F: Z," — Z, be (p,t)-periodic with Newton expansion Y nent fn (’;)

Then vy (fn) > Ti; (n) for all n € N. Furthermore, suppose that

1 ifro+pri+-+p7 1 =0 (mod p'),
F(To, ey thl) = (44)

0 otherwise,

for all ro,...,1—1 € Zy,. Then fo = 1, and if n is critical, we have fn = (—p)Tie(n)

(mod pTim+1),

Proof. First we devise a well-ordering relation < on N, and then we induct with respect
to the ordering. If m,n € N! with Sc(m) < Sc(n), then m < n. Among the elements
of Nt that have the same score, we order them lexicographically, i.e., (mog,...,m_1) <
(ng,...,my—1) means that there is some ¢ such that the two ¢-tuples agree in positions 0
to i — 1, but m; < n;. There are only finitely many elements of N’ with a given score, so
the lexicographic ordering well-orders the elements of like score. Thus < is a well-ordering
relation.

First we prove the lower bound on the p-adic valuation of the Newton coefficients by
induction with respect to our ordering. By Proposition 4.5, we know that all Newton
coefficients of F' are in Z,, and there is nothing more to show for those elements, such as
(0,...,0), whose t-tier is zero. So assume that n = (ng,...,n;—1) with Ti; (n) > 0, or
equivalently, that Sc (n) > p?.

Let us first examine the case when n; > p for some j < ¢ — 1. By Lemma 4.9 above, we

have
p—1 f
fn—pej+ej+1 = frl + Z <i>fn—iej‘
=1

Then note that n — pe/ + /7! has the same score (and thus the same t-tier) as n, but
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n — pe’ + e/t < n. Therefore, by induction v, (fn — pel + ejﬂ) > Ti; (n). So

p—1
fn+ ; <];> fa—iei =0 (mod pTit(n)). (4.5)

Now note that the t-tuples n — i€’ in the sum over i have strictly lower scores than n,
but Sc(n — ie’) = Sc(n) —ip? > Sc(n) — (p — )p'~L, since i < p—1and j <t — 1.
Thus Ti; (n — iej) >Ti;(n) —1fori=1,...,p— 1. Then, since n —ie/ < n, we can use
the induction hypothesis to say that v, (fy_sei) > Tit (n) — 1. On the other hand, all the
binomial coefficients (ZZ) with 0 < ¢ < p are divisible by p, so the terms of the sum over i in
(4.5) all have p-adic valuation at least Ti; (n). So fn =0 (mod pTit(™)),

1

Next we examine the case when nj < p for all j < ¢—1. Then Sc (n) < p'~! +ny_1p'~1,

but since Ti; (n) > 0, we must have n;—; > p. We now apply Lemma 4.10 to obtain

p—1
Jo+ Z (ZZ> Jo—iet-1 = 0. (46)
=1

t=1in the sum over i have strictly lower scores than n,

Now note that the t-tuples n — ie
but Sc(n —ie~!) > Sc(n) — (p—1)p'~?, since i <p—1. Thus Ti; (n — e’ ') > Ti; (n) — 1
for i =1,...,p — 1. Then, since n —ie’~! < n, we can use the induction hypothesis to say
that vp (fu_set-1) > Ti¢ (n) — 1. On the other hand, all the binomial coefficients (¥) with
0 < i < p are divisible by p, so the terms of the sum over ¢ in (4.6) all have p-adic valuation
at least Ti; (n). So fn =0 (mod pT*#(™). This completes the induction proof of the lower
bound on p-adic valuations of coefficients.

Now suppose that F satisfies (4.4). Then fo = (A°F)(0) = F(0) = 1. We prove
the congruence for Newton coefficients with critical indices by induction with respect to
our ordering. For the base of our induction, we shall prove the congruence for all critical
n = (ng,...,n—1) with n; < p for all i. So suppose that k& € {0,1,...,t — 1} and n =
(no,...,m¢—1) is k-critical with n; < p for all i. Then by Lemma 4.8 above, we have
ngp=--=ng_1=0,np=---=n_a=p—1,and ny_1 = (p — 1) (Ti; (n) + 1). This forces

Tiy(n)=0and n;_y =p—1. Song=---=ng_1 =0and ngy =---=mn_1 = p—1 and we
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must show f, =1 (mod p). Let S ={0,1,...,p— 1} and consider truncation

F@or o @e)) = > foripsins (xk) . <“””“) (4.7)

£ ik i1—1
Tyeenyit—1 €S

of the Newton expansion for F. By Corollary 4.4, this polynomial agrees with F'(x1,..., ;)

on the set U = {(rg,...,1¢) 9=+ =rg_1=0,r, €S,...,7—1 € S}. That is,

1 ifrg+---+p~tr_1=0 (mod p'),
f(T’O,...,Tt_l) =

0 otherwise,

for all r € U. This is equivalent to saying that

1 ifrpg+--+pF 11 =0 (mod pt_k),
f(?"o, ey thl) =
0 otherwise,

for all r € U. But the only way that r, + - -- + p'~*~1r,_; can vanish modulo p'~* as we
vary rg,...,re—p over S ={0,1,...,p—1}isfor rp = --- =r,_1 = 0. That is
1 ifrg=---=r_1=0,
f(T07 B ,Tt_l) -

0 otherwise,

for all r € U. Lemma 4.4 also tells us that f(z1,...,2¢) is the unique polynomial in
Qplzk, ..., x¢—1] of degree at most p — 1 in each indeterminate that takes these values on

U. So we know that

fl@r,...,m) = ﬁ(_l)p—l (xz - 1>‘

i=k p—1

a1 t—k
Note that the coefficient of the monomial xi_l e xf__ll in f(zy,...,21) is ((p%l))') )

But the only term in the definition (4.7) of f that can give rise to a monomial of this
degree is the term with i, = --- = 4,1 = p — 1, and so, matching coeflicients, we see that
fo = (=1)@=DE=F) =1 (mod p).

Now the induction step. We suppose that n = (ng,...,n—1) is k-critical and has n; > p
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for some j. We first examine the case when j < t — 1. Of course j > k since n; = 0 for
i < k. In this case, consider the t-tuple m = n — pe/ +e’*!. This new t-tuple has the same
score (and therefore the same t-tier) as n, but it is lexicographically lower, hence m < n.

By Lemma 4.9 above, we have

p—1
fm = fn + Z <ZZ> fnfiej’ (48)
=1

Now note that the t-tuples n — i€’ in the sum over i have strictly lower scores than n,
but Sc(n — ie/) = Sc(n) —ip/ > Sc(n) — (p — 1)p/, since i < p — 1. By Lemma 4.8,

Sc(n) = [(Ti; (n) +1) (p— 1) + 1] pt~' — p*, so that

Sc(n—ie!) > [(Tiy(n) + 1) (p— 1) + 1]p" " = p* — (p — 1)p?

(p—1)p*~1
recall that k < j < t—1, so that p*+ (p—1)p’ < p/™! < p'~1 so that Ti; (n — ie’) = Ti; (n)

fori=1,...,p—1. Thus Ti; (n — ie/) > {Tit (n)+1-— MJ fori=1,...,p—1. But

for i = 1,...,p — 1. Thus, by the first part of the theorem, we have vy, (f,_jei) > Ti; (n)
fori=1,...,p — 1. Since the binomial coefficients (’;) with 0 < ¢ < p are divisible by p,

this means that all the terms in the sum over 4 in (4.8) vanish modulo pT#™+1, So
fo = fa  (mod pT(™+L) (4.9)

Now we claim that m = n — pe/ + /1! is k-starting. Since n is k-starting, this is obvious
if j > k. Otherwise we would have £ = j < t — 1, and then note that Sc(n) = —p”
(mod p**!) by Lemma 4.8, which implies that ny = —1 (mod p); since p < n; = ny, this
means that ng > 2p — 1, so that mg > p — 1 > 0. Thus m is indeed k-starting. Also recall
that Sc (m) = Sc(n), so Lemma 4.8 tells us that m is k-critical like n. Since m < n with
Ti; (m) = Ti; (n), the induction hypothesis tells us that fm, = (—p)T#™ (mod pTim+1),
This, combined with (4.9), completes the induction step in the case where n; > p for some
j<t-—1

So we are left to analyze the case where n is a k-critical t-tuple with n,—; > p and
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n; < p for all j <t —1. We now apply Lemma 4.10 to obtain

p—1
Jn + Z (f) Jn—iet-1 = 0. (410)
=1

=1 in the sum over i have strictly lower scores than n.

Now note that the t-tuples n — ie
If 0 < i < p—2, then Sc(n —ie*~1) > Sc(n) — (p — 2)p'~!. By Lemma 4.8, Sc(n) >
(Ti; (n) + 1) (p— 1)p'~L, so that Sc(n —ie'~!) > [Ti; (n)(p— 1) + 1]p" L for 0 <i < p—2.
Therefore, Ti; (n - iet_l) > Ti; (n) for 0 < i < p — 2. Then the first part of the theorem
tells us that vy (fn_jet-1) > Ti; (n) for such i. Since the binomial coefficients (¥) with

0 < i < p—1 are divisible by p, this means that the i = 1,...,p — 2 terms in the sum over

i in (4.10) vanish modulo pT#(™+1So

fn = _pfn—(p—l)et*1 (mod pTit(n)+1)' (411)

Let m = n — (p — 1)e!~!. Note that since n;_; > p, we have Sc(n) > p', so Ti; (n) > 1.
Then note that Sc(m) = Sc(n) — (p — 1)p'~! > p'~!, so that Ti; (m) = Ti; (n) — 1. By

Lemma 4.8, Sc (n) = [(Ti; (n) + 1) (p — 1) + 1] p'~! — p*, so that

Sc (m) = [Ti; (n)(p — 1) + 1] p'~" — p*

= [(Ti; (m) + 1) (p— 1) + 1] p'~ = p*.

Note that m is k-starting just like n, so that Lemma 4.8 tells us that m is k-critical. Fur-
thermore, m < n, so we may apply the induction hypothesis to it to obtain fi, = (—p)Tit(m)
(mod pTi(™)+1) " Combining this with (4.11), and recalling that Ti; (n) = Ti; (m) + 1, we

obtain fu = (—p)T*®™ (mod pT*(™+1) This completes the induction proof. O

With this knowledge of the Newton expansions of (p,t)-periodic functions, we now

construct polynomials that p-adically approximate such functions.

Theorem 4.12. Let m > 1 and let F: Z," — Z, be (p,t)-periodic. There exists a poly-
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nomial

fK= > fa Ci) , (4.12)

neN?
Tii(n)<m

with all fn € Zp, such that f(r) = F(r) (mod p™) for all v € Z,'. For each n € N' with
Ti; (n) < m, we have vy, (fn) > Ti¢ (n).

Suppose further that

1 ifro+pri+-—-+p7 1 =0 (mod pt),
F(r) = (4.13)

0 otherwise,

for allx € Z,'. Then fo = 1 and if n € N' is critical with Ti; (n) < m, we also have
fa = (=p)T™ (mod pT#M+) . Furthermore, if F is as given in (4.13), there exists a

polynomzial

9(x) = § gnX"
neNt Ti;(n)<m
In|=0 (mod p—1)

in Qp[x] such that (i) g(r) = F(r) (mod p™) for all v € Z,', (ii) go = 1, and (i) if n is

critical with Ti; (n) = m — 1, then nlg, = (—p)™ ! (mod p™).

Proof. Recall that any (p,t)-periodic function is p-adically continuous. Therefore, the ex-
istence of the polynomial f for a generic (p,t)-periodic function F' is guaranteed by ap-
plying Theorem 4.11 and Lemma 4.6, with the set S in Lemma 4.6 equal to the set
{n € N' : Ti; (n) < m}. (This set is finite because only finitely many n have a certain
t-tier.) Indeed, the coefficient fy, of our polynomial f is precisely the Newton coefficient for
the term (i) in the Newton expansion of F' . Thus the bounds on valuations of coefficients
and the congruences for certain coefficients (in the special case when F' is given by (4.13))
follow from the bounds and congruences given in Theorem 4.11. Furthermore, if F' is given
by (4.13), we have fo = 1.

Now suppose that F' is given by (4.13). Given the polynomial f described in the first
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half of the theorem, consider the polynomial
1 2
g(x) = p—1 Z f(CIZ‘le)-
h=0

Since (p—1 is a unit in Z,, we have F(¢ r) = F(r) for all h € Z and r € Z,'". Thus
f( ;Llr) = f(r) (mod p™) for all h € Z and r € Z,". Therefore g(r) = f(r) = F(r)
(mod p™) for all r € Z,". Note that if we expand out the terms (¥) to write f(x) =

Y nent CaX", then
Tit(n)<m

g(x) = Z cnX". (4.14)

neN? Tig(n)<m

In[=0  (mod p—1)
In particular, g(x) has the same constant term as f(x), namely, 1. Suppose h is k-critical
with Ti; (h) = m — 1. We want to calculate the coefficient of x® in g(x). Since h is critical,
|h| =0 (mod p — 1) by Lemma 4.8. Thus g(x) and f(x) have the same coefficient for x?,
namely, c¢,. We want to relate ¢ to the coefficients fy, in (4.12). Thus, we want to see
which terms in the sum in (4.12) might involve the monomial x". Note that the monomial
xP can occur in (ﬁ) only if n; > h; for all j and only if n; = 0 for all j such that h; = 0. So
the monomial x® can occur in (¥) only if n is k-starting and Sc (n) > Sc (h). But since h
is k-critical, Lemma 4.8 shows that any k-starting ¢-tuple with a strictly higher score than
Sc (h) will be in a higher ¢-tier; such ¢-tuples are not included in our sum. So we need only
consider those t-tuples n in our sum that are k-starting, that have the same score as h, and
that have n; > h; for all j. But the second condition forces equality in all the inequalities
of the third condition, showing that the only term in the sum in (4.12) that can involve the
monomial x" is the term with n = h. So the coefficient of x" in f(x) is ¢, = % This is
also the coefficient of x" in g(x), as we noted above. Now hlecy, = fp, and recall that fi, is

the Newton coefficient for the (’}i)—term in the Newton expansion of F. So we know from

Theorem 4.11 that fi, = (—p)™ ! (mod p™). O

In later chapters, we shall also want single-variable polynomials p-adically approximating
certain functions that are constant on cosets of pth in Z,. Such approximations as we need

can be obtained easily from the polynomials we just constructed.
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Corollary 4.13. Let m > 1 and let F': Z;, — 7, be a function with F'(a) = F(b) whenever

a=b (mod p'). Let d; = [j(p — 1) + 1]p!~! — 1 for j € N. There exists a polynomial

dm x
f(@) = nZ:jofn (n)

with all f, € Z;, such that f(r) = F(r) (mod p™) for allr € Zy. If n > d; then v, (fn) > j.
Suppose further that

1 ifr=0 (mod pt),
F(r)= (4.15)

0 otherwise,

for all r € Zy,. Then fo = 1 and if n = d; for some j = 1,2,...,m, then we have

fn=(=p)~L (mod p’). Furthermore, if F is as in (4.15), there exists a polynomial

of degree dy, in Qp[z] such that (i) g(r) = F(r) (mod p™) for all r € Zy, (i) go = 1, and

(iii) dim'ga,, = (—p)™ " (mod p™).

Proof. We set F*(x) = F(zo+px1+ -+ +p~tr_1), and it is not hard to check that F* is

(p, t)-periodic. So Theorem 4.12 provides us with a polynomial

re- X n(3)

neN?
Ti¢(n)<m

in Qp[x] that agrees with F*(x) modulo p™ everywhere on Z,". In particular, we have
f*(r,0,0,...,0) = F(r) (mod p™) for all r € Z,. So if we set f(z) = f*(z,0,0,...,0), we

obtain a polynomial in Qp[z] of the form

flz) = Z ffkn,o,o,...,o) <z) J

neN
Tiy(n,0,0,...,0)<m

which agrees with F'(z) modulo p™ on Z,. So f(z) = Ziﬁo fn.0.0,...0) (7). If n > dj, then
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Ti; (n,0,0,...,0) > j, so we know that v, (f(*nOO 0)) > 4 from Theorem 4.12.

Now suppose that F(x) is given by (4.15). Then F*(x) is given by (4.13), and so
Theorem 4.12 gives us additional information. If n = d; for some j € {1,...,m}, then
(n,0,0,...,0) is O-starting and Sc((n,0,0,...,0)) = d; = [i(p — 1) + 1]p"~! — 1, so that
(n,0,0,...,0) is of t-tier j — 1, and by Lemma 4.8 we see that (n,0,0,...,0) is critical.
Thus, from Theorem 4.12, we know that f7 oo o = (—p)’~! (mod p’). Also fo,.00 =1
from Theorem 4.12.

Furthermore, Theorem 4.12 furnishes a polynomial

9" (x) = > InX"
neN? Ti;(n)<m
[n|=0 (mod p—1)

in Q,[x] that agrees with F™*(x) modulo p™ on Zpt and has g(,.. 0y = 1. Furthermore, if n
is critical and of ¢-tier m — 1, then n!g, = (—p)™ ! (mod p™). Set g(z) = g*(z,0,0,...,0),
so that

g(x) = Z gzkn,o,o,...,o)xna

neN
Tit(1,0,0,...,0)<m
p—1in

*

and g(x) agrees with F'(z) modulo p™ on Z,. Now g(x) = Y o<n<d,, 9(0,0,0,...0

p—1n
constant term 1. Furthermore, if n = d,,, then (n,0,0,...,0) is O-critical and of ¢t-tier m — 1

)x” and has
by the calculation in the previous paragraph, so that we know dm!gz‘ 4 0,0,..0) = (—p)mt

(mod p™) from Theorem 4.12. O

4.3 Sectioned Weights

In this section, we show how the polynomials of Theorem 4.12 are relevant to estimating
weights. Before we do this, we discuss some preliminaries that will be vital to understanding
the rest of the chapter. Recall that in this chapter we have set e = 1, so that we are working
with codes in the algebra Z/p?Z[A]. We continue the convention (started in Section 4.1) that
for any letter a, the corresponding boldface letter a stands for the t-tuple ag,...,a;—1, but

for the rest of the chapter, we specialize to the case when ¢ = d, so that a = (ag,...,aq-1).
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We set [ = {0,1,...,d — 1} and consider accounts in Z[I] to be d-tuples of integers, i.e.,
we identify p € Z[I] with the d-tuple (o, ft1,- - -, pqg—1) € Z%. Then for u € Z[I], the score
of p, denoted Sc (p), is defined to be Zf:_ol p* i, following the definition in Section 4.2. For
s € N, the s-tier of p, denoted Tis(u), is also defined just as in Section 4.2. In fact, we
shall be interested only in d-tiers here. Therefore, for the rest of this chapter, we define
tier to mean d-tier and write Ti to mean Tig. So Ti(p) = max {O, {%J } We also
transport the notion of score and tier to elements of Z[I x A]. The score of A € Z[I x A],

denoted Sc (A), is just Sc (pry A), and the tier of A, denoted Ti(A), is just Ti(pr;A). This

means that Sc (\) = Z?:_ol p'|A\;| and Ti(A\) = max {0, [%J } So of course

Sc(A) =|A] (mod p—1) (4.16)

for any A € Z[I x A]. We also transport to Z[I x A] the notion of an account being k-starting
or k-critical (for k € I); to say that A € Z[I x A] is k-starting (resp., k-critical) is to say
that pr; A is k-starting (resp., k-critical). In consonance with our established terminology,
we say that A is critical to mean that it is k-critical for some k.

Throughout this chapter, we suppose that we have a code C C Z/p?Z[A] and Sy C S; C
-+« C Sy_1 is the tower of supports of the Fourier transform of C. We suppose that not all
the S; are subsets of {14}, i.e., that at least one of the S; contains an element of A that is
not the identity. Otherwise we have a trivial situation: C consists only of constant words,
and then wt(c) = |A| wt(¢(14)) for all ¢ € C, i.e., wt""™(¢) = 0 for all ¢ € C.

If we have a weight function wt: Z/p?Z — 7Z, we define a related d-wise weight function,

called the sectioning of wt, denoted wtgec: (Z/p?Z)* — Z, which is defined by

Wtsee (705 - > Ta1) = Wt(ro +pri + - +p?rg_y)
for all 7, ...,7q_1 € Z/pZ.
Recall the canonical expansion of the scaled Fourier transform and the scaled Fourier-
induced breakdown of codewords, which were defined in Section 2.3 (before Proposition 2.8).

For c € C and i € I, ¢ denotes the ith component of the scaled Fourier-induced breakdown
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of ¢, and &9 denotes the ith component in the canonical expansion of ¢. Throughout
this chapter, we often use the more convenient symbol ¢; as a synonym for ¢(. Thus
¢= i pe =Y ple and &= Y5 pd) = {5 pe.
The scaled Fourier-induced breakdown of our word is designed to work with the sec-
tioned weight function. Note that Proposition 2.8 tells us that ¢9 € Z/p?Z[A] for all

i€{0,1,...,d—1}, so we can apply our sectioned weight function to these words to obtain

Wtsec(c(0)7 oo 7c(d71)) - Z Wtsec(0a0)7 C 7ng71))

acA
=St + )
acA
=Y wt(ca),
acA
so that (using the synonym ¢; for ¢(?)
Wtsec (€0, - - -, C€4—1) = wt(c). (4.17)
Also note that
Wt?&rm(Co, RN Cdfl) = Wtsec(coa - ,Cdfl) — ’A’Wtsec(ég(lA), - ,Edfl(lA))

= wt(c) — |A| wt(Go(1a) + - - + pP1E_1(14))

= wt(c) — [A[wt(E(1a)),

that is,

Whgee (COy - - -5 Cd—1) = Wt (c). (4.18)

Now we show that the sectioned weight functions lift to (p,d)-periodic functions. We

examine the function F': Zpd — 7 given by

F(r) = wtgee(m(10), -« -, 7(rg—1))-
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Note that for any j € I, k€ N, and r € Zpd, we have

F(r + ke’) = Wteee(n(10), (1), - - ., 7(rj—1), b+ 7(r;), m(rjg1)y - - 7(ra_1))

= wt(7(ro) + pr(r1) + - - - + p? 1w (rg_1) + kp?).

Therefore, if j <d —1,
F(r+pel) = F(r +¢&™),

and

F(r +pe’™) = wt(n(ro) + pr(r1) + -+ p* 'w(ra1) + p7)

= wt(n(ro) + pr(r1) + -+ p* I (ra_1))
= Wtsec(ﬂ'(ro), . ,W(Td_l))

= F(r).

Thus F is (p,d)-periodic. So F', which is the lift of our sectioned weight function, can be
approximated using the polynomials of Theorem 4.12. We use such approximations in the

next two sections to prove the main results (Theorems 4.18 and 4.21) of this chapter.

4.4 Zero Count and Hamming Weight

In this section, we shall prove Theorem 4.18, our sharp lower bound on the p-adic valuations
of Hamming weights of words of codes in Z/p?Z[A]. In order to p-adically estimate zero
counts, we construct a set ASS.(C) of multisets in N[/ x A] and use A$S.(C) to define the
parameter £55 (C), which had been defined in Section 1.1 of the Introduction by way of
sequences. We prefer the multiset-based definition here because it will make our calculations

easier. We define

A (C)={XNeN[I x A : Ao € N[Sp],...,A\d—1 € N[S4_1],

I\ = L4, praA ¢ N{La}, A =0 (mod p—1)}. (4.19)
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We claim that A$S.(C) is nonempty. By assumption, we have some k such that there exists
a € Si with a # 14. Let n be the group-theoretic order of a. Then note that the multiset
A with (p — 1)n instances of the pair (k,a) and no other elements is a unity-product but
not all-unity multiset in N[I x A] with (p — 1)n elements and with \; € N[S;] for all i € I.

Since A$?.(C) # 0, we may set

55 (C) = in Sc(\ 4.20
wpre(C) Aemin c(A) (4.20)
and
SS _ : . _ wfic(c) - pt_l
5.(C) = /\ell{l%il(c) Ti(\) = max {0, { (p— Tpi—T . (4.21)

At this point we begin to use the notion of reduction defined in Section 2.6. We prove a

lemma about how reduction affects scores and tiers of accounts.

Lemma 4.14. Suppose that A € N[I x A] is k-starting. Then Red(\) € N[I x A] is k-
starting. If X is not reduced, then Sc (Red()\)) = Sc (\) —j(p—1)p* for some positive integer
Jj. If X € A22.(C), then Red(X) € AsS.(C). Furthermore, if A € AsS.(C) with Ti(\) = £55.(C),
then Ti(Red(X)) = £25.(C).

Proof. Since \; = ) for i < k and A\ # (), we have (Red(\)); = 0 for i < k and (Red(\))x # 0
by Lemma 2.24. So Red(\) is k-starting. Furthermore, if A is not reduced, then for each
ie{k,k+1,...,d—1}, we have |[Red(\;)| = |Ai| —ji(p—1) for some j; € N, and at least one
of jk,...,Jd—1 is strictly positive. Thus Sc (Red())) = Sc () — Z?:_kl (p — 1)p'ji;. The last
sum is a strictly positive integer multiple of (p — 1)p*. Now suppose that A € A3%.(C). Then
[Red(A)| = |\ =0 (mod p— 1), and Lemma 2.24 shows us that A is unity-product and not
all-unity with \; € N[S;] for all € I. So Red(\) € A?%.(C). Since reduction never increases
score, it never increases tier. So if A € AfS.(C) and Ti(A) = £55.(C), by the minimality of

255 (C), we must have Ti(Red(\)) = £55.(C) also. O

We also note some particular properties of those A € A’ (C) of minimal tier. These
facts are used to prove the sharpness of our bound on the p-adic valuations of Hamming

weights.
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Lemma 4.15. Let Ay be the set of all X € A2 (C) that are reduced and have Ti(\) = €55.(C).
Then

(i) A #£0.

(ii) If we chose A € Ay with pry A = (|Xol, ..., |Ad—1|) lexicographically minimal, then X is

critical.

(iii) If X € Ay is critical, then there is no k € AJS.(C) with k # A, Red(k) = X, and
Ti(k) = 055.(C).

(iv) Thus, there exists a critical X € Ay such that there is no k € AS5.(C) with k # ),

Red(k) = A, and Ti (k) = £57.(C).

Proof. By definition, {p € A%5.(C) : Ti(u) = €25.(C)} is not empty, so take  in this set and
let A = Red(x). Then A € {u € AJ3.(C) : Ti(n) = £5;.(C)} by Lemma 4.14. This proves (i).

Now suppose A € Ay is chosen so that pr; A = ([Agl,. .., |\¢—1|) lexicographically mini-
mal. Set k € I so that A is k-starting and set a € Sy so that Ay, ,) > 0. We now divide the
proof into cases for different values of k.

If £k = d— 1, then the condition |[A\| = 0 (mod p — 1) means that (|Ao|,..., | \a-1]) =
(0,0,...,0,(p—1)n) for some integer n. This n must be strictly positive since ) is all-unity,
hence not in A%5.(C). Note that £55.(C) = Ti(\) = n — 1, so Sc(\) = n(p — 1)p?~! =
(Ti(\) +1)(p — 1)p?~!. Thus A is critical by Lemma 4.8.

In the case where k < d — 1, let p = X\ — (k,a) + (k + 1,a). Since Sy C Ski1, we
have p1; € N[S;] for all j. Also note that Iy = IIA = 14, that pryp = pry A & N[{14}],
and that |u| = |A|, so that |u| =0 (mod p —1). So p € AZ.(C). Set v = Red(u), which
is in A$%.(C) by Lemma 4.14. Note that p is k-starting or (k + 1)-starting, and so v is
also k-starting or (k + 1)-starting by Lemma 4.14. Furthermore, Lemma 2.24 tells us that
lve| < |pr] = [Ak| — 1, so that pr;v is lexicographically less than pr; A. This means that
v & Ay Since v € AP .(C) and v is reduced, this means that Ti(v) > Ti(\) = £;5.(C). So
Sc(v) > [(p—1)(£5.(C) +1) +1]p?~L. Since v = Red(u), we have Sc () > [(p—1)(£25.(C) +
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1) 4+ 1]p?~! by Lemma 4.14. So

Se(A) = p" + 9" = [(p — ) (£re(C) + 1) + 1p™ Y,

and thus

Sc(A) 2 [(p = (L (C) + 1) + 1p™ ' — (p — 1)p". (4.22)

Of course, since \ is k-starting, its score is a multiple of p*. Since A € A%5.(C), we have
Al =0 (mod p—1),s0Sc(A\) =0 (mod p—1) by (4.16). So Sc () is a multiple of (p—1)p*.

Note that the right-hand side of inequality (4.22) is

[(p— 1)(€55.C) + 1) +1]p* ' = (p— Dp" =p*  (mod (p — 1)p").

Since Sc (A) =0 (mod (p — 1)p¥), we can improve inequality (4.22) to get

Sc(A) 2 [(p = D)(re(C) +1) + 1p™ ! = (p = 1)p* + (p — 2)p"

=[(p— D)(€55.(C) + 1) + 1p* ' = p",

but since Ti (\) = £55.(C), we have Sc (\) < [(p—1)(£55.(C)+1)+1]p?~1. Since ) is k-starting,
p* | Sc (M), so that our last two inequalities force Sc (\) = [(p — 1)(£55.(C) +1) + 1]p?~1 —pF.
Then Lemma 4.8 tells us that A is k-critical. This proves (ii).

Suppose that A € Ay is k-critical and p € ASS.(C) with p # A and Red(p) = A\. We shall
show that Ti(u) > €55.(C). Since A is k-starting, so is p by Lemma 4.14. Furthermore, p is
not reduced since it is not equal to \, so Sc (i) > Sc()\) + p*(p — 1) by Lemma 4.14. But
Sc(A) = [(p— 1)(£55,(C) + 1)+ 1p! — p by Lemma 4.8, so Se (1) > [(p— 1)(€25,(C) + 1) +
1p?=1 4 (p — 2)p*, which forces Ti (u) > £55.(C). This proves (iii), and (iv) follows from (i),
(ii), and (iii). O

We recall the counting polynomials we devised in the Section 4.2 and cast them into the

notation of this section.
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Theorem 4.16 (part of Theorem 4.12). For each m > 1, there exists a polynomial

M= > X
HGN[I}>T1(“)<m
|ul=0  (mod p—1)
in Qp[x] with the property that f™ (rg, ... rq_1) = zersec(m(ro), ..., m(rq_1)) (mod p™) for
all ro, ..., r4—1 € Zp. If p € N[I] is critical and Ti(p) = m — 1, then u'f ™ = (—p)m—t

(mod p™).

Proof. The polynomial f(™(x) here is just g(x) from Theorem 4.12 with ¢t = d, where
we have used our identification of d-tuples with accounts in N[I] and noted that for any

T0y..-5Td—1 € Zp:

z€eec(T0(10), . . ., w(rq_1)) = zer(m(ro) + - - 4+ p 7w (ra_1))

d—1

=zer(m(ro+ -+ p* rg_1)),

so that zersee(m(zg), ..., m(xq—1)) is the function F(zo,...,x4—1) defined in (4.13) of The-
orem 4.12. The polynomial g(x) of that theorem approximates F'(x) modulo p™ on all of
Z,°. O

Now we are ready to estimate zero counts. The following proposition is the main calcu-

lation:

Proposition 4.17. Let C be a code in Z/p?Z[A]. Let m > 1 and let f(™(x) be the poly-
nomial described in Theorem 4.16. For each ¢ € C and i € I, we let C; be the element of

ZplCqy—1][A] such that C; =710¢. For any ¢ € C, we have

pr 'r
zer"™(c) = | A| Z (pr; ) pr HC’ (mod p™),

AEASS.(C) iel
Ti(A\)<m

where A3 .(C) is as defined in (4.19) above.
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Proof. By Corollary 3.4, we have

1 -
zerin™ (co, - ., cq—1) = [A] Y plfim™ > VHCQ(AZ-) (mod p™).

REN[I] AEN[Ix A],pr; A=p el
IA=14.pr 4 A¢N[{14}]
X0 €NI[So],-.-;,Aa—1EN[Sq_1]

By (4.18), the left-hand side becomes zer™™(c). We can restrict the sum over u to those
w with Ti(u) < m and |p] =0 (mod p — 1), since f,sm) = 0 otherwise (by Theorem 4.16).
With this restriction on p, the condition that pr; A = p implies |A| = 0 (mod p — 1). So

the inner sum on the right-hand side sums over those A € A$S.(C) with pr; A = p. Thus

1 .
zer"™ (¢) = | A > pl i Y N [IC:N)  (mod p™)
REN[I],Ti(w)<m AEASS (C) " el
|#|=0  (mod p—1) pry A=p
— pl"[ Pr[ m
= |A| > > H Ci(\) (mod p™),
HEN[I], Ti(n)<m AEAZS (C) iel

|#|=0 (mod p—1)  pryA=p

but then the condition on the cardinality of p can be dropped (if |p| is not divisible by
p — 1, then neither is |A| if A = pr; p, so then there is no A € A% (C) with pr; A = u). Also,
the condition A = pr; i means that A and p will always have the same score and tier, so we

can shift the condition on tier to the sum over A\. Thus

norm E |A’ Z Z prI Prl HC mod pm)

peN[I]  XeAss.(C) el
pry A=p
Ti(A\)<m
(pry MU,
= |4] Z TPIHCZ'()%) (mod p™). u
AEAT(C) ' el
Ti(A\)<m

Now we derive our generalization of McEliece’s Theorem.

Theorem 4.18. Let C be a code in Z/p?Z[A]. With £55.(C) as defined in (4.21), we have
zer™™ (¢) = 0 (mod p%ic©)) for all ¢ € C, and zer"™(c) # 0 (mod p'mec©+1) for some
¢ € C. Equivalently, ham™™(¢) = 0 (mod p%ic©) for all ¢ € C, and ham"™(c) % 0

(mod plc©+1) for some ¢ € C. More precisely, if fEne(©+1)(x) is the polynomial described
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in Theorem 4.16, and if we let C; be the element of Zy[Cy—1][A] such that C; =T0¢ for

eachi €I and c € C, then

(pr; )\)!f(fi,fc(c)-i-l) ~
Zernorm(c) = ‘A| Z ;\)'rl A H Cz()\z) (mOd pﬁgC(C)+1)7 (4‘23)
AEAE,(C) ' i€l

Ti(\)=£52.(C)

and the expression on the right-hand side assumes values in pﬁfrfe(c)Zp for all c € C, but

there is some ¢ € C such that this expression is not in p@sﬁc(c)“Zp.

Proof. If £35.(C) = 0, the congruence zer™™(c) = 0 (mod p‘me(©)) for all ¢ € C is obvious.

If 2% (C) > 0, we use Proposition 4.17 above (setting m = ¢55.(C)) to obtain

(¢32.(€)
pry M!S - os
™) = Al Y (Prr ) I G (mod p(©)),
ACAT (€) ’ el
Ti)<z(0)

where f(énc(€))(x) is the polynomial described in Theorem 4.16, and A%.(C) is as defined in
(4.19). But by the definition of £55.(C) as the minimum tier of any element in A$.(C), we see
that the sum on the right-hand side of this congruence is empty, thus proving zer"*™(c) = 0
(mod pfc©)).

Now we prove that zer™™(c) is not always divisible by plre©+1 along with the more
precise statements at the end of the statement of the theorem, including congruence (4.23).
Note that the claim that zer"®™(c) % 0 (mod p‘me(©)+1) for some ¢ € C is not trivial if
055 (C) = 0, so we allow for this possibility. In any case, we use Proposition 4.17 again, but

this time with m = £;°.(C) + 1, to get

(653:(C)+1)
pr )\ 'f rmc ~ ss
zer™ ™ (¢) = | 4] g (pr; ) ;\)'1)\ | | Ci(\)  (mod pfme©+1)
AEAT(C) ' iel

Ti(A)=£77.(C)

with fmne(©+1)(x) € Q,[x] as described in Theorem 4.16. We have omitted to sum over

those A with Ti(\) < £5°.(C), for there are no such A € AJ?.(C) by the definition of £55.(C).
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This last congruence is (4.23), which we were to show. Let

(o VU5
Y(e)=14 Y ;f T1S:0),
AEASE.(C) ’ i€l
Ti(A)={7:.(C)

which is the right-hand side of (4.23). Note that the coefficients of f(¢c(©)+1)(x) are in
Qp (see Theorem 4.16) and note that Cj(a) € Zy[¢y—1] for all i € T and a € A (because
C(a) € Zp[Cy—1] for all a € A). Thus Y(c) € Qp(Cy—1). We shall show that Y (c) is actually
in the smaller field Q,. To do this, it suffices to show that it is fixed by Fr. We now use the
Frobenius action Frp introduced in Section 2.7. By Lemma 2.30, we note that Fra restricted
to ASS.(C) is a permutation of AJ?.(C). Furthermore, by the same lemma, we note that if
A€ A5.(C), then pry Fra(A) = pry A. So Fra preserves score and tier. So Fra permutes the
set of A € A;5.(C) with Ti(\) = £55.(C). Thus we have

(pry Fra () f om0

pry Fra(A)
Fra(\)! g CillFra (Vi)

Y =4 )

AEAT(C)
Ti(A)=£7(C)

By Lemma 2.30, we have pr;Fra(A) = Fra(\), Fra(\)! = AL, and [[,.; Ci([Fra(\)];) =
Fr (Hiel CN'Z()\l)>, so that

Y(e)=14] > ; Fr(JJGiNi )
AEAZE.(C) ' iel

Ti(N)=£37:(C)

Since the coefficients of f(nc(©)+1)(x) are in Q, (see Theorem 4.16), we have

(o M5 Y
Y(e) =Fr | |A4] Z ;I HCiO\z‘)

AEASE.(C) ’ i€l
Ti(A)=£5:.(C)

= Fr(Y(c)),

so that Y (c) € Q. We have already proved that zer"™(c) = 0 (mod pe(©)) for all ¢ € C.
Since zer"™(c) = Y'(c) (mod pfme(©)+1) (this is (4.23)), we know that Y(c) € p“ic(©7,
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for all ¢ € C. So to finish our proof, we must show that there is some ¢ € C such that
zer™™ (¢) = Y(¢) (mod p%ic(©+1) does not vanish modulo pfc(©+1,
To prove this, we shall use the notion of collapse introduced in Section 2.6. Note that
¢i(a) is zero or a power of w((y—1) for all @ € A and i € I, since ¢; is the ith component of
the canonical expansion of ¢. We let R be a set of p-class representatives of A and apply

Lemma 2.18 to (4.23) to obtain

(pry MU OF

zer"™(c) = | A| Z )\'rf H ;(Copr(A (mod pfme(©)F1),
AEAZS.(C) ) el

Ti(N)=£7(C)

If we define Ay to be the set of elements of AJ%.(C) that are reduced and of tier £7.(C), we

have

norm (prl ,u)' F()ﬁ?/clf(C)+1) A 055 (C)+1
=140 > [1Ci(Cor(Xi)) (mod pfclth),

! ,
AeAy  peAss.(C) el
Ti(p) =tz (C)
Red(p)=X

since the reduction of any p € A% (C) with Ti(u) = £55.(C) is an element A of Ay by Lemma

4.14, and for such a p, we have Cog(u;) = Cogr(A\;) for ¢ € I by Lemma 2.24. For each

A€ Ay, set )

| eSS (€)+1
By = 4] > (pry ) fp, : (4.24)

HEASE.(C) Ti()=155.(C) -
Red(p)=A
which is an element of QQ, since the coefficients f, Ene©+D) are in Qp. Then

P 2 p-

zer™™(c) = Y By[[ Ci(Cor(X)) (mod pfme(©F). (4.25)

AEA, el

Note that the right-hand side of (4.25) is a Qp-linear combination of terms of the form

Dy=T[ TI Citr)Cont)r, (4.26)

i€l r€RNS;

where we have restricted the second product of (4.26) to RN.S; in view Lemma 2.17 and the

fact that \; € N[S;] for all A € A% (C) and i € I. Note that no two terms Dy and Dy with
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X, N € Ay have exactly the same exponents for all the terms C’i(r), since that would imply
that Cog(\;) = Cor(A}) for all 4, which would force A = X, since A and X’ are reduced (see
Corollary 2.22). Also note that the exponent (Cog(Xi)), of Ci(r) in Dy is less than p by
the definition of Cog. (Recall that e, denotes the cardinality of the p-class of r in A.) As we
vary ¢ over all words in C, Lemma 2.14 tells us that the values in {Ci(r) : i € I, € RNS;}
vary over Hie I Hre RAS; Vir, where V; ;. is the set containing 0 and all the powers of (per_1.
Since no two elements of V; , are equal to each other modulo p, and since |V; .| = p®", which
is strictly greater than the highest exponent of C;(r) appearing in any term (4.26) of (4.25),
we may apply Lemma 2.33 to conclude that the minimum p-adic valuation of the right-hand
side of (4.25) as ¢ runs through C is precisely the minimum of the p-adic valuations of the
coefficients B) as A runs through Ay. So the first half of the theorem tells us that all such
coefficients have p-adic valuation at least £55.(C). We shall show that one such coefficient
has p-adic valuation precisely ¢5°.(C); this will complete our proof.

By Lemma 4.15, there exists a critical k € Ay such that there is no p € AJ.(C) with
w# Kk, Ti(u) = €55.(C), and Red(u) = k. Thus the coefficient B,;, as defined in (4.24), is

just
(ory #) firs Y
k!

By = |A|

Since k is reduced, we have k; , < p for all i € I and a € A by definition, so the denominator

of the fraction is a p-adic unit. Since |A| is coprime to p, we have
35 (C)+1
0y (Bi) = vy ((pry ) 5@+,

Since k is critical and Ti (k) = £;5.(C), this means that pr;x € N[I] is critical and of tier

055 (C), so that Theorem 4.16 tells us that v, ((prI /@)!fl;(,ff’f,%(c)ﬂ)) = (35 .(C). This completes

I
our proof that there is some word ¢ with zer™™(c) # 0 (mod p%ic(©+1),

norm

The statements about ham come immediately, since we showed that ham"*"™(c) =

—zer"™(¢) in Section 2.4. O
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4.5 Generic Weights

In this section, we consider an arbitrary weight function wt: Z/p?Z — Z and devise lower
bounds on the p-adic valuations of weights (as measured with wt) of words of codes in
7/p?7Z[A]. Note that wt might be symb, for some r € Z/p?Z, so that we might be counting
the number of instances of a particular symbol in our codewords. We form the sectioned
weight Wteee: (Z/p?Z)¢ — Z as described in Section 4.3, and we follow a course not unlike
that of the previous section, where we were considering zero counts and Hamming weights.
However, here we do not prove the sharpness of our lower bounds, so the proof of Theorem
4.21 here will be considerably simpler than the proof of Theorem 4.18 in the previous section.

In order to p-adically estimate generic weights, we construct a set A% (C) of multisets
in N[I x A] and use A**(C) to define the parameter ¢**(C), which had been defined using
sequences in Section 1.1 of the Introduction. We prefer the multiset-based definition here

because it will make our calculations easier. We define

A*(C) ={A e N[I x Al : Ao € N[Sp], ..., Ad—1 € N[Sg—1], TN =14,pry A € N[{14}]}.
(4.27)
Note that A%%.(C), which was defined in the last section, is a subset of A**(C). The multisets
in A% (C) are the multisets A € A**(C) that satisfy the additional modular condition |A| = 0

(mod p — 1). Thus A**(C) is nonempty, for we showed that A$S.(C) is nonempty. Since

A5 (C) # 0, we may set

*(C)= min Sc(A 4.28
w*(C) Ao c(A) (4.28)
and
o B ' ) _ U.)SS(C) _ pd—l
%5(C) = Aer/r\{gl.gc) Ti(\) = max {0, L = ptT . (4.29)
Note that since A (C) C A**(C), we have w:? (C) > w®*(C) and £35.(C) > ¢*5(C). In

Proposition 4.22 of Section 4.6, we shall see that £5.(C) is strictly greater than ¢**(C) for
infinitely many codes.
We recall the counting polynomials that we devised in Section 4.2 and cast them into

the notation of this section.
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Theorem 4.19 (part of Theorem 4.12). Let wt: Z/p?Z — 7 be an arbitrary weight

function. For each m > 1, there exists a polynomial

fme) =3 S
HEN[I]
Ti(pu)<m

in Qp[x] with the property that f(m)(ro, ey Td—1) = Whgee(m(r0), . .., T(rg—1)) (mod p™) for

all ro,...,74—1 € Zyp.

Proof. Consider the function F: Z,% — Z given by F(r) = wteee(m(r1),...,m(rq_1)) for
all v € Zpd. This function is (p, d)-periodic by the discussion at the end of Section 4.3.

Therefore, we may apply Theorem 4.12 with ¢ = d to obtain a polynomial

hx)= > ha (ﬁ)

neN?
Ti(n)<m

with all hy € Z,, such that h(r) = F(r) (mod p™) for all r € Z,%. If we expand out any
term (i) into a Q-linear combination of monomials, all monomials xJ that appear have

ji <n; for all i € I, so that Ti(j) < Ti(n). Thus we can write

h(x) = Z ¢,

neNt
Ti(j)<m

with all ¢; € Q,. Since we identify elements of N[I] with d-tuples, this is precisely the form

of polynomial that we were seeking. O
Now we are ready to estimate weights. The following proposition is the basic calculation:

Proposition 4.20. Let wt: Z/pZ — 7 be an arbitrary weight function. Let C be a code in
Z/pZ[A]. Let m > 1 and let £ (x) be the polynomial described in Theorem 4.19, which

approximates Wisee(w(+), ..., m(-)) modulo p™. For each ¢ € C and i € I, we let C; be the
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element of Z,[Cy—1][A] such that C; = 7 0 &. For any c € C, we have

pr r
wt' (c) = |A] Z (br; ) p e HC’ (mod p™),
AEA®3(C) iel
Ti(A\)<m

where A**(C) is as defined in (4.27) above.

Proof. By Corollary 3.4, we have

1 ~
Wheee (€05 -+ -5 Ca—1) = |A] Z u!f,ﬁm) Z N HCi()\i) (mod p™).

HeN[I] AEN[IXA],pr; A=p el
HA=14,pr 4 AZN[{14}]
X0 EN[So],--sAd—1EN[Sg_1]

By (4.18), the left-hand side becomes wt"*™™(c). Note that the inner sum on the right-hand
side sums over those A € A**(C) with pr; A = . We can restrict the sum over p to those p

with Ti(u) < m, since fﬁm) = 0 otherwise (by Theorem 4.19). Thus

zer"™(c) = | 4| Z M!flgm) Z N HC (mod p™)

HeN[I] AEA®5(C) el
Ti(p)<m pry A=p
PTI
LIPSy ©r i e mod
HEN[I] XeAss(C iel

Ti(u)<m pry A= u

but then condition A = pr; 4 means that A and p will always have the same score and tier,

so we can shift the condition on tier to the sum over A\. Thus

norm = |A’ Z Z prl Prl HC HlOd pm)

peN[I]  XeAss(C i€l
pry A= ,U
Ti(A)<m
(prr MU
= |4] Z TPIHQ‘()\@‘) (mod p™). u
AEA®S(C) ’ i€l
Ti(\)<m

Now we can set bounds on the p-adic valuations of weights.

Theorem 4.21. Let wt: Z/pZ — Z be an arbitrary weight function. Let C be a code in
Z/pZ[A]. With £55(C) as defined in (4.29), we have wt**™(¢) = 0 (mod p**(©)) for all
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celC.

Proof. For each ¢ € C and i € I, we let C; be the element of Z,[(y_1][A] such that C; =
70 ¢&. If £55(C) = 0, the congruence wt"™(¢) = 0 (mod p**©) for all ¢ € C is trivial. If
255 (C) > 0, we use Proposition 4.20 above (setting m = ¢*(C)) to obtain

e )y 11 -
wttm(e) =[A] Y P[] G (moed pT9),

AEAS3(C) icl
Ti(\)<t%%(C)

where f(*(€)(x) is the polynomial described in Theorem 4.19, and A®(C) is as defined
in (4.27). But by the definition of ¢**(C) as the minimum tier of any element in A®**(C),
we see that the sum on the right-hand side of this congruence is empty, thus proving the

theorem. O

4.6 Comparison with Previous Work

Many of the previous results on zero counts and other weights in Abelian codes over Z/p?7Z
do not use the parameters w;>.(C), £;5.(C), w**(C), and ¢**(C) introduced in Sections 4.4
and 4.5. They instead use parameters like wp,c(C), €me(C), w(C), and £(C), which were
discussed (along with the aforementioned parameters) in Section 1.1 of the Introduction.
The latter group of parameters can be computed solely from knowledge of the support of the
Fourier transform of the code, while the former group of parameters requires full knowledge
of the tower of supports. We shall define the parameters wy,(C), £mc(C), w(C), and ¢(C)
in this section using a construction with multisets. These parameters were defined in the
Introduction using sequences, but we shall prefer the multiset-based definitions to facilitate
comparison with the parameters w3’ (C), £:5.(C), w**(C), and £*°(C), which we have already
defined.

First of all, we recall from Section 4.2 the definitions of the score and s-tier of a t-

tuple. For (ng,...,n_1) € Z, we defined the score, Sc (ng,...,n_1) = no+---+p"~tng_1,

and the s-tier, Tis(ng,...,nt—1) = max {0, Lsc(no(’;ﬁ;;‘jzl_pklj } . In Section 4.3, we set the

convention (which we retain here) that I = {0,1,...,d — 1}, so that elements p € Z[I]
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are simply d-tuples (o, ..., puq—1). We also made the convention (which still holds for the

remainder of this chapter) that the term “tier” always means d-tier and Ti always means

Tig. Thus Ti(ng,...,ni—1) = max {O, LSc(no(,Z.).jS;;z;p d_lJ } . Furthermore, we extended the
notion of score and tier to accounts A € Z[I x A], so that the score of A € Z[I x A] is the
score of pry A € Z[I], and the tier of A € Z[I x A] is the tier of pr; A € Z[I]. Then we defined
255 (C) and ¢2%(C) in Sections 4.4 and 4.5 using scores and tiers of multisets in N[/ x A].
We shall also use these notions with 1-tuples, i.e., with single numbers, in this section.

_pd—1

Thus for n € Z, we have Sc (n) = n, and Ti(n) = max {O, [(;—IPTJ } We also transport
the notion of score and tier to elements of Z[A]. The score of A € Z[A], denoted Sc (A), is
just Sc (|A]) = ||, and the tier of A, denoted Ti(A), is just Ti(|A]). Because Sc(\) = ||
for A\ € Z[A], we shall usually use |-| rather than Sc (-) for such accounts.

Recall that we are always considering a code C C Z/p?Z[A] with tower of supports
So € --- C S4_1. We shall always set S = S;_1, which is the minimal support of the

Fourier transform. We continue to assume that at least one of the sets S; contains an

element a € A~ {14}. Thus S contains this element a. We define
Ame(C) = {A € N[S] : T\ = La,pry A € N{La}, A\ =0 (mod p— 1)} (4.30)

We claim that A,,.(C) is nonempty. By assumption, there exists a € S with a # 14. Let n
be the group-theoretic order of a. Then note that the multiset A with (p — 1)n instances of
the element a and no other elements is a unity-product but not all-unity multiset in N[S]

with (p — 1)n elements. Since Ay,.(C) # 0, we may set

wme(C) = | min |l (4.31)
and
N . . N wmc(c) - pd_l
gmc(C) = AEIX}rlLIcl(C) Ti (A) = max {07 \\(p—l)]fd_l . (432)

We also define

A(C) = {A € N[S] : TIA = 14, pry A & N[{14}]}. (4.33)
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Since Ape(C) € A(C), we know that A(C) is not empty. Thus we may set

= min |\ 4.34
“(€) = min, [N (434)

and

(01 = iy, T = fo |29 ) ws

Most previous works use the parameters ¢;,,.(C) and ¢(C). Therefore, we compare them

with each other and with £57.(C) and ¢**(C). The proof of the following proposition is

straightforward, but lengthy, so we delay its appearance until the end of this section.
Proposition 4.22. Let e = 1. For any code C C 7Z/p?Z[A], we have
(i) w(C) < wme(C) and £(C) < £ (C);
(if) w*(C) < wie(C) and £3%(C) < £3.(C);
(iii) w(C) < w*¥(C) and ¢(C) < ¢%5(C); and
(iv) Wme(C) S wss.(C) and b (C) < £55,(C).

If p = 2, then equality holds in (i) and (ii). If C is a free Z/p®Z-module, then equality holds
in (iii) and (iv). Thus for d =1, equality holds in (iii) and (iv).

For each p > 2 and d > 1, there are infinitely many codes such that the inequalities in
(1)-(iv) are simultaneously strict, with £(C) < lme(C) < £55(C) < £55.(C). Indeed, we can
find a family of codes where, for any M, there exists a code in the family such that each
term in our chain of inequalities is greater than the last by M or more.

If p = 2, then for each d > 1, there are infinitely many codes such that the inequalities
in (iil) (or equivalently, in (iv)) are strict and where w(C) and w**(C) are even. Indeed, we
can find a family of codes wherein ¢%*(C) —¢(C) and w**(C) —w(C) are unbounded as C runs
over the family.

For each p > 2 and d > 1, there are infinitely many codes that are free 7/pZ-modules
such that strict inequality holds in (1) (or equivalently, in (ii)). Indeed, we can find a family

of codes wherein Ly,.(C) — €(C) is unbounded as C runs over the family.
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In all instances of strict inequality mentioned above, the groups A underlying the codes
can be chosen to be cyclic, and the codes themselves can be chosen so that 14 is not in the
supports of their Fourier transforms. Furthermore, in instances where p = 2, the groups A
can be chosen to be cyclic groups, each of which has order 2™ — 1 for some integer n (but
not the same integer n for all codes).

Finally, for p =2 and for each d > 1, there exist infinitely many cyclic codes C, each of
length 2" — 1 for some n, that are free Z/2%Z-modules with 14 not in the supports of their

Fourier transforms, and that have w(C) even.

Now that we have some notion of the relationship between the four parameters ¢(C),
lme(C), £°5(C), and ¢5°.(C), we can compare our theorems with previous results. The
strongest result on Hamming weights and zero counts in Abelian codes over Z/p?Z was

published by this author as part of this research program.

Theorem 4.23 (D. J. Katz [29]). Let C be a code in Z)p Z[A]. With £y,.(C) as defined
in (4.32), we have zer"™(c) = 0 (mod p‘<(©)) for all ¢ € C. Equivalently, ham™™(c) = 0

(mod pfme©)) for all c € C.

Theorem 4.18 gives a stronger lower bound on p-adic valuations of normalized weights
because £55.(C) > €me(C) by Proposition 4.22. Indeed, Proposition 4.22 shows that £55.(C) >
lme(C) for infinitely many codes. Furthermore, Theorem 4.18 shows that the bounds it
furnishes are sharp, while Theorem 4.23 here includes no information about sharpness,
even though its bound is sharp for free Z/p?Z-modules. This sharpness is a consequence of
Theorem 4.18 and the fact (from Proposition 4.22) that £55.(C) = £,,c(C) when C is a free
7./p?Z-module.

The strongest result on generic weights is due to Wilson, although a slightly generalized

version has been published by the author as part of this research program.

Theorem 4.24 (Wilson [65]). Let C be a code in Z/p?7Z[A] with A cyclic and with 14 not
in the support S of the Fourier transform of C. Let £(C) be as defined in (4.35). For any

r € Z/p'Z with r # 0 and any ¢ € C, the number of instances of symbol r in c is divisible

by pg(c) .
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The author generalized this result of Wilson to produce a version that assumes neither
that A is cyclic nor that 14 ¢ S. Recall from Section 2.4 that symb, is the weight function
that counts the number of instances of the symbol 7 in a codeword ¢. Thus symb}*"™(c) is
the number of instances of r in ¢ unless ¢(14) = r, in which case symb}*™(c) is —|A| plus

the number of instances of 7.

Theorem 4.25 (D. J. Katz [29]). Let C be a code in Z/p?Z[A]. Let £(C) be as defined

in (4.35). For any r € Z/p®Z, we have symbE°™ = 0 (mod p“(©)).

Theorem 4.21 is stronger than both of these (Theorems 4.24 and 4.25). For Theorem
4.21 can be applied with the weight function wt set equal to symb,., thus giving a theorem
resembling Theorem 4.25 above, but with ¢°*(C) in place of ¢(C). Proposition 4.22 tells us
that ¢°°(C) > £¢(C) for all codes and that ¢**(C) > ¢(C) for infinitely many codes. Thus
Theorem 4.21 is stronger than Theorems 4.25 and 4.24 for infinitely many codes.

The first analogues of McEliece’s theorem for Hamming weights and generic weights
in Abelian codes over Z/p?Z were the results of Calderbank, Li, and Poonen [7]. We
shall see that these results are weaker than Theorems 4.23 and 4.24 presented above, and
hence weaker than Theorems 4.18 and 4.21 proved in this thesis. For Hamming weights,

Calderbank, Li, and Poonen give a theorem for cyclic codes over Z/47Z.

Theorem 4.26 (Calderbank-Li-Poonen [7]). Let p =2 and let C be a code in Z/AZ[A]

with A cyclic and 14 not in the support S of the Fourier transform of C. Then ham(c) is
o ’7%“72 (Mw,l

divisible by max ¢ 21 2 ,21°8 .

Note that when Z/p?Z = Z/AZ, {.(C) = £(C) (by Proposition 4.22), and ¢(C) =
max {O, L@J - 1} (see (4.35)). Note also that w(C) > 2, since we cannot have a unity-
product and not all-unity element of N[A] with less than two elements. Thus, for admissible
values of w(C), we have £,,.(C) > max { {@—‘ -2, {@W - 1}, with equality when w(C)
is 2, 4, or an odd number, and with strict inequality (the left-hand side is one larger than
the right) when w(C) is an even number greater than or equal to 6. Thus, Theorem 4.26 is
not as strong Theorem 4.23, and hence not as strong as Theorem 4.18.

For generic weights, Calderbank, Li, and Poonen give a theorem for cyclic codes over

7.)247.
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Theorem 4.27 (Calderbank-Li-Poonen [7]). Let p = 2 and let C be a code in 7./297[A]
with A cyclic and 14 not in the support S of the Fourier transform of C. Then for any

nonzero symbol v € Z/p%Z, the number of instances of r in any ¢ € C is divisible by

ol5is]-2.

Note that when p = 2, we have ¢(C) = max {0, [;}E’ZJ - 1} (see (4.35)). When w(C) <
2¢_ neither Theorem 4.24 nor Theorem 4.27 tells us anything, so we shall compare the two

results when w(C) > 2¢. Note that £(C) > Bd(fﬂ — 2 for all values of w(C) > 27, with the

left-hand side greater by one if 271 | w(C). Otherwise the two sides of our inequality are
equal. Thus, Theorem 4.27 is not as strong as Theorem 4.24, and hence not as strong as
Theorem 4.21.

In the case when d = 1, i.e., in the case when Z/de is the prime field F,, we shall
recover from Theorem 4.18 the theorem of McEliece on the zero counts of cyclic codes over
F, (Theorem 1 of [37], presented in part as Theorem 1.1). When d = 1, all codes are
free Z/p?Z-modules (since they are F,-vector spaces), so £55.(C) = £;c(C) by Proposition
4.22. The following theorem synthesizes the actual content of the theorem McEliece stated,
along with other comments made in McEliece’s paper, while adapting it to the notation
and terminology of this thesis. The only sense in which it is more general than the theorem
of McEliece is that McEliece assumes that the group A is cyclic. Since removing this
assumption is not difficult, we have labeled the theorem here as “slightly generalized.”
Indeed, Delsarte and McEliece [18] later removed this assumption when they generalized this

theorem to Abelian codes over arbitrary finite fields (see Theorem 1.2 in the Introduction).

Theorem 4.28 (McEliece [37], slightly generalized). Let d = 1. Let C be a code in
Fu[A]. For each ¢ € C, we let C be the element of Zp[Cy_1][A] such that C = 170 é. Let
Ape(C) and £,c(C) be as defined in (4.30) and (4.32). Then for each ¢ € C, we have

C(\
zer™™ (c) = \A[(—p)gmc(c) Z L (mod pemc(C)—H), (4.36)

Al
AEAm(C)
[A=(lme(C)+1)(p—1)
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where N is a unit in Zy for each X € Ape(C) with |A| = (bye(C) + 1)(p — 1). Furthermore,
T C(\)
Al

AEAme(C)
IAl=(lme(C)+1)(p—1)

assumes values in Z,, and so zer™™(c) = 0 (mod p’m<(©)). There is some ¢ € C such that

zer"™ (¢) # 0 (mod plme(©)+1),

We defer the derivation of this theorem from Theorem 4.18 for a moment to develop some
tools that will help in the proof. These tools will also be useful in the proof of Proposition
4.22, which, as promised, concludes this section.

We have been comparing the results of this chapter, which use the parameters ¢55.(C)
and £°°(C), with previous results, which use the parameters ¢,,.(C) and ¢(C). Since ,,.(C)
and /¢(C) are based on cardinalities of multisets in N[A] and ¢35.(C) and ¢*°(C) are based
on cardinalities of multisets in N[I x A], we first devise a correspondence between such
accounts that will help us to relate these parameters.

For the rest of this section, let ®: N[I x A] — N[A] be defined by ®(\) = > ..; A,
and let WN[A] — N[I x A] be defined so that W(k) is the multiset A with \; = () for all
i €{0,1,...,d — 2} and A\y_1 = k. Then we have the following basic facts about these

maps:

Lemma 4.29. Let A € N[I x A] and x € N[A]. Then
(i) ® oW is the identity on N[A], so that ® is surjective and ¥ is injective.
(ii) ® and U preserve the cardinality of multisets.

(iii) II®(A) =X and [T¥Y (k) = Ik.

(iv) ®(N\) is all-unity if and only if X is all unity; V(k) is all-unity if and only if k is

all-unity.

(v) If \; € N[S;] for alli € I, then ®(\) € N[S], and if k € N[S], then (V(k)); € N[S;] for

alli e 1.
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(vi) ®(A**(C)) = A(C) and B(A7.(C)) = Ame(C).

(vii) If A € NI x A], then |®(N\)| < Sc(N) and Ti(®(N)) < Ti(N).
(viii) If k € N[A], then Sc (¥ (x)) = p~!|k| and Ti (¥ (x)) > Ti(k).

(ix) Ifd =1, then ¥ and ® are inverses of each other, |®(\)| = Sc (A), Ti(®(N\)) = Ti(N),
and (M) = AL

Proof. The first two statements are obvious. To prove (iii), we note that we have II®(\) =
I (Y ;cr Ai) = ILies (IIN) = TIA. Then ¥ (k) = I®(¥(k)) = Ilk. The fourth statement
is obvious. To prove (v), note that S = Sy_1 and that S; C Sy_1 for all ¢ € I. Thus if
Ai € N[S;] for all i € I, then we clearly have ®(\) € N[S]. Conversely, if x € N[S], then
(U(k))g—1 € N[Sg_1] and (¥(k)); = 0 € N[S;] for i < d—1. To prove (vi), note that (iii)—(v)
show that ®(A*(C)) € A(C) and U(A(C)) C A**(C). Since ? is a left-inverse of W, this proves
that ®(A**(C)) = A(C). Likewise, (ii)—(v) show that ®(AS7.(C)) C Ape(C) and ¥(A,,.(C)) C
A%8 (C). Again, since @ is a left-inverse of W, this proves that ®(AS5.(C)) = Ame(C). For
(vii), note that |®(\)| = |A| < Sc (\). For (viii), note that Sc (¥ (x)) = p?~1|¥ (k)| = p?~!|x|.
For (ix), ¥ and & are clearly inverses when d = 1. Furthermore, if d =1 and X\ € N[I x A],
then we have Sc (A) = [A| = |®(N)| and ®(A)! = Ag! = Al O

Now we give the proof McEliece’s theorem (Theorem 4.28) as a consequence of Theorem

4.18.

Proof of Theorem 4.28. Note that here I = {0}, so that for any A € A’ (C), the account
pry A is the 1-tuple with entry |[Ao| = |A|. Further, if A € A (C), then Sc(\) = |A| and
Ti(\) = max {O, U;"%IIJ} = z% — 1, where the last equality uses the fact that |A| = 0
(mod p—1) and || > 0 for all A € AJ?.(C). Therefore, to say that A € AS.(C) is of tier m
is precisely to say that |[A\| = (m + 1)(p — 1). With this in mind, we specialize congruence
(4.23) in Theorem 4.18 for the case d = 1 to obtain
Al |f‘(f|frfc(c)+1)
A Z TCO()\O) (mod pEmC(C)H);

AEASS (C)
[A=(£52c(C)+1) (p—1)

Zernorm (C)
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where f (Zﬁc(c)“)(x) is the polynomial described in Theorem 4.16. Equivalently, we have

4] > — 5 Co(M)  (mod pme©@F) (4.37)
AEASS(C) '
[Al=(lmc(C)+1)(p—1)

Zernorm (C)

since €55 (C) = £me(C) when d = 1 by Proposition 4.22. Let

[(bme(C) + 1)(p — DY)
Y(c) = 2. Y el EE=D Gy (),
AEAZS(C) '
[A=(lme(C)+1)(p—1)

which is the right-hand side of congruence (4.37). By Theorem 4.18 (along with the fact
that £33 (C) = £me(C) from Proposition 4.22), we know that Y (c) assumes values in p‘m<(©)7Z,
for all ¢ € C, but that there is some ¢ € C such that Y(c) is not in pfm<(©)+17, = We shall
show that Y'(c) is closely related to the right-hand side of congruence (4.36).

To do this, we use the maps ®: N[I x A] — N[A] and ¥: N[A] — N[I x A] defined
before Lemma 4.29. In Lemma 4.29, (ix), (vi), (ii) we see that ® is a bijection with inverse
U, &(A.(C)) = Ape(C), and @ preserves cardinality, so U establishes a bijection between
{k € Appe(C) 1 |k| = £5.(C)} and {X € AJ5.(C) : |A| = £5:.(C)}. Thus we may re-index our

sum

[(lme(C) + )0 = DI o)
\IJ(K)‘ (Lme(C)+1)( DC()([‘P(H)]())

Y(e) =14 >

KEAme(C)
|5]=(bmc(C)+1)(p—1)

Furthermore, by the definition of ¥ and the fact that d = 1, we have [¥(k)]o = k. We also
have Cy = C by the definition of the canonical expansion and since d = 1. Also note that

Lemma 4.29, (ix) tells us that ¥(x)! = kl. So we have

Y(c) = [A] > [(€pe(C) + 1) (p — 1))t fUme@+D (k)

(Lme(C)+1)(p—1) Kl
KEAm(C)

|K|=(Eme(C)+1)(p—1)

This is quite close to the right-hand side of (4.36). Now note that the 1-tuple (£,.(C) +

1)(p—1) is critical (see the definition before Lemma 4.8) and of tier £,,.(C), so that Theorem
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4.16 tells us that [(£(C) +1)(p — 1)]!f((e£:f((g))-t11))(p—1) = (—p)tme©) (mod plme(©)+1) Since

fEnel©+)(x) € Q,[x] by Theorem 4.16, this means that there is some unit u € Z, with
u =1 (mod p) such that u[(£p.(C) + 1)(p — 1)]!f((f$:((g)):11))(p71) = (—p)tm<(©). Since Y(c)
always vanishes modulo p™e(©)| we have Y (¢) = uY (¢) (mod pfme(©)+1) for all ¢ € C.

Recall that Y'(c) was defined to be the right-hand side of (4.37). Thus we have

zer"™(¢) = Y(¢) (mod plme(©)F1)

=uY(c) (mod p'me©+1)
C(k
—Al(=p)© S ),

KEAm(C)
|K|=(lmc(C)+1)(p—1)

which gives us (4.36). We know that u is a unit in Z,, that Y (c) € p'm(©Z, for all ¢ € C,
and that Y(c) ¢ pme(©+1Z, for some ¢ € C. So we know that uY (c) € p‘m<(©)Z, for all

¢ € C and that uY (c) ¢ p‘m<(©+1Z, for some ¢ € C. Thus

>
k!
HeAmc(c)
|k]=lme(C)+1)(p—1)

is an element of Z, for all ¢ € C and is not an element of pZ, for some c € C. So zer"*™ =0

(mod pfme(©)) for all ¢ € C, and zer™™ # 0 (mod p'm<(©)+1) for some ¢ € C.

Finally, we claim that all K € Ay,e(C) with || = (€ne(C) + 1)(p — 1) are reduced. If
not, then Lemma (2.21) would give us a v € Apo(C) with [v| < £5c(C)(p — 1), so that
Ti(v) < €me(C), thus contradicting the definition of £,,.(C). Thus all K € Apc(C) with

|k] = (bme(C) +1)(p — 1) have K, < p for all a € A, so that k! is a unit in Z,. O
We conclude this chapter with the proof of Proposition 4.22.

Proof of Proposition 4.22. Looking at definitions (4.33), (4.30), (4.27), and (4.19) of A(C),
Apc(C), A%(C), and AS:.(C), we see that A(C) D Ape(C) and A**(C) DO Af5.(C). This shows
that w(C) < wme(C) and w**(C) < wis.(C), so that £(C) < €,c(C) and £55(C) < ¢55.(C), which
proves (i) and (ii).

Let A € A®*$(C) with Sc (A) and Ti () minimal, i.e., Sc (\) = w*(C) and Ti(\) = £5°(C).
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Then by Lemma 4.29, (vi) and (vii), we have ®(\) € A(C), |P(N)| < Sc(N) = w*(C),
and Ti(®(N)) < Ti(A\) = £5°(C). So w(C) < w**(C) and £(C) < ¢%5(C). This proves (iii).
By the same argument, if A € A%5.(C) with Sc(\) = wi5.(C) and Ti(A) = ¢55.(C), then
D(N\) € Ape(C) with [P(N)] < Sc(N) = wis (C) and Ti(®(N)) < Ti(A) = £55.(C), so that
Wime(C) < wis (C) and £, (C) < £55.(C). This proves (iv).

If p = 2, then the condition [A\| = 0 (mod p — 1) in the definitions (4.30) and (4.19)
of Ape(C) and AP (C) is trivial, so that Ay,.(C) = A(C) (compare (4.30) with (4.33)) and
A2 .(C) = A**(C) (compare (4.19) with (4.27)). Thus, equality holds in (i) and (ii) in this
case.

Suppose that C is a free Z/p?Z-module in this paragraph. Then Sp = --- = S;_; = S
by Lemma 2.13. Let x € A(C). Then we set A € N[I x A] so that \g = x and \; = ()
for all i € I with ¢ # 0. Since k € N[S] and Sy = S, we have A\g € N[Sp], and of course
Ai € N[S;] for all i # 0. Also IIA = IT\g = IIk = 14, and A is not all-unity since £ is not
all-unity. So A € A®5(C). Furthermore, if we originally had x € A,,.(C), then [A| = |g| =0
(mod p — 1), so that A € A%’ (C). So A € A*5(C) (resp., A € A%%.(C)) if k € A(C) (resp.,
k € Ame(C)). Also note that Sc (A) = |k], so that Ti(\) = Ti(k). Suppose we had chosen
k € A(C) (resp., k € Ape(C)) so that |k| = w(C) and Ti (k) = ¢(C) (resp., |k| = wme(C) and
Ti(k) = lme(C)). Then the A that we have derived from x by the procedure outlined above
has A € A*(C) with Sc(\) = |k] = w(C) and Ti(\) = Ti(k) = £(C) (resp., A € A3.(C)
with Sc(A) = |k| = wme(C) and Ti(A\) = Ti(k) = €pe(C)). Thus w*¥(C) < w(C) and
055(C) < L(C) (resp., wis (C) < wme(C) and €35 (C) < €ie(C)). These inequalities, combined
with the opposite inequalities (iii) (resp., (iv)), show that w®**(C) = w(C), ¢**(C) = £(C),
wES(C) = wme(C), and £35,(C) = £e(C) when C is a free Z/p?Z-module. If d = 1, all codes
are free Fp-modules, since all Fp-modules (i.e., F,-vector spaces) are free.

We construct two families of codes (for arbitrary p and d) that will allow us to prove
our inequalities to be strict for infinitely many codes. To help us in our proofs, we define
the p-ary weight of any nonnegative integer k, denoted wy(k), to be the sum of the digits
in the p-ary expansion of k, i.e., if K = ko + kip+ --- + ksp® with 0 < k; < p for all j, then

wp(k) =ko+ -+ + ks.
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2d=1)+m We let A be the cyclic group

The first construction: Set m > 0 and let n = p
of order (p" —1)/(p — 1) generated by v. For each k, set T, = {7/ : j € N,w,(j) = k}.
Note that since wy(pj) = wp(j), each set T, is p-closed. We set Sy =11, S1 =T1UT), ...,
Sg—1=T1UT,U---UT,-1. These are p-closed sets, which form the tower of supports of
our code C, whose Fourier transform has minimal support S = Sy_1.

We claim that 14 ¢ S. For if this were not the case, then we would have 14 € T for
some k € {0,1,...,d—1}. That is, we could write 14 = 47 for some j € N with wy(j) = p*.
Thus we would have some j € N with w,(j) = p* and j = 0 (mod (p" — 1)/(p — 1)). So
we would have a sequence of p* elements, each a power of p, whose sum vanishes modulo
(p"—1)/(p—1). We can reduce each element of the sequence modulo p™ —1 to get a sequence
of p* elements, with each element in {1, p, ..., p" '}, where the sum of the sequence vanishes
modulo (p” —1)/(p — 1). If any element p’ € {1,p,...,p" 1} occurs more than p times in
the sequence, replace p occurrences of it with a single occurrence of either p**! (if i < n—1)
or with a single occurrence of 1 (if i = n — 1). If we continue to do this until no element of
{1,p,...,p" '} occurs more than p times, then we obtain a nonempty sequence of at most
p* elements, with each element in {1,p,...,p" '}, where the sum of the sequence vanishes

2

modulo (p"™ —1)/(p — 1) and where no term is repeated more than p — 1 times. Thus, the
sum of this last sequence is at most (p —1)(1+p+---+p" 1) = p® — 1. So the sum of the
last sequence is j(p™ — 1)/(p — 1) for some positive j < p — 1. Since p-ary representations
are unique, we know that our last sequence has precisely j instances of each element of

d—1

= < pF < ptl,

{1,p,...,p" '}. Soour last sequence has at least n terms. Thus P
which is a contradiction since m > 0. So indeed 1,4 is not in the minimal support of the
Fourier transform of our code.

Now we want to calculate w;?.(C), w**(C), wmc(C), and w(C) for our code. We shall often
convert statements about multisets into statements about sequences, and vice versa, in our
calculations. We say that a sequence of elements in A is unity-product to mean that the
product of the elements in the sequence is 14. Before begin our calculations, we make an
observation that will simplify the computation.

Observation: We claim that if we want to calculate w®*(C) (resp., w:?.(C)), then it suffices
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to compute the minimum score among those A in A**(C) (resp., A%%.(C)) with \; = 0 for
i > 0. Forif \;, > 0 for some ¢ > 0 and a € S;, then note that a € T},; for some j < 1.
By the definition of T}, the element a can be written as a product of a sequence of P’

elements in 77, say ai,...,a,;. Then consider the account k = A\ — (i,a) + 21,:;1(0,%).

P -
This account has the same product as ), so it is unity-product, and it is clearly not all-unity
since 14 ¢ T1. Furthermore Sy = 711, so A\g € N[Sp], and of course \; € N[S;] for ¢ > 0.
If X is in A35,(C), then note that |k| = [A| +p’ — 1, s0 |k| = [A| =0 (mod p — 1). All of
this shows that if A is in A**(C) (resp., Aj5.(C)), then x is also in A®**(C) (resp., AS:.(C)).
Furthermore Sc (k) = Sc()\) + p/ — p' < Sc(\). We can keep repeating this procedure

until we obtain an account v € A%(C) (resp., AS3.(C)) with vy = -+ = vg_1 = 0 and

Sc(v) < Sc(A). So there exists an account A in A**(C) (resp., AS:.(C)) of minimal score

such that A\ = --- = A\j_1 = 0. This observation shows that
W (C) =min {|A] : A € N[Sp], TN =14} (4.38)
and
wps (C) = min {|A| : A € N[Sp],[IN =14,|A| =0 (mod p—1)}. (4.39)

These facts will be used in the next two paragraphs to calculate w**(C) and w??.(C).

By the observation (4.39), we see that computing w??.(C) is tantamount to finding the
minimum of the lengths of the (nonempty) unity-product sequences consisting of elements
in Sy = T and having lengths divisible by p—1. (We also must be sure that not all terms in
a given sequence are equal to 14, but since 14 ¢ Sy, this is automatic.) Since the elements
in our sequence are from 77 = {v,~?,... ,'ypwl}, our task is tantamount to finding the
minimum length of a nonempty sequence of integers in £ = {1,p,..., p"_l} with the sum
of the sequence congruent to 0 modulo (p™ —1)/(p— 1) and with the length of the sequence
divisible by p—1. Suppose we have such a minimum-length sequence. Note that no element
of E occurs more than p — 1 times, for if p/ occurred p or more times, we could replace
p instances of p/ with a single instance of p’*! (if j < n — 1) or a single instance of 1 (if

j = n—1) to obtain another sequence, shorter by p— 1 elements, whose sum is also divisible
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by (p" —1)/(p — 1). So we already know that the length of our sequence is less than or
equal to n(p — 1), and the sum of its terms is at most p™ — 1, with equality occurring if
and only if we have exactly p — 1 instances of each element in E. Furthermore, since each
element in the sequence is congruent to 1 modulo p—1, the sum of the sequence will also be
congruent to zero modulo p—1. Now note that (p” —1)/(p—1) =n =1 (mod p—1), and so
ged(p—1,(p"—1)/(p—1)) = 1. So the sum of the elements in our sequence will be congruent
to zero modulo p™ — 1. Since we know that the sum of our elements is strictly positive and
at most p" — 1, this means the sum of our elements is exactly p™ — 1, so our sequence has
p — 1 instances of each element of E. Thus wss.(C) = n(p — 1) = (p — 1)p?d-D+m,

The computation of w**(C) is similar to that of w;?>.(C). By the observation (4.38), we
see that computing w?®*(C) is tantamount to finding the minimum of the lengths of the
(nonempty) unity-product sequences consisting of elements in Sy = 7;. This, in turn, is
tantamount to finding the minimum length of a nonempty sequence of integers in £ =
{1,p,...,p" '} with the sum of the sequence congruent to 0 modulo (p" — 1)/(p — 1).
Suppose we have such a minimum-length sequence. Note that no element of F occurs more
than p — 1 times, by the same argument used in the previous paragraph, where we were
computing w??.(C). So we already know that the length of our sequence is less than or
equal to n(p — 1), and the sum of its terms is at most p” — 1. The sum of our sequence
is strictly positive, so it is k(p™ — 1)/(p — 1) for some k € {1,2,...,p — 1}. Note that
wp(k(p” — 1)/(p — 1)) = kn > n for all k € {1,2,...,p — 1}, and wp(a) = 1 for all
a € E. Further, note that wy(a + b) < wy(a) + wy(b) for any a,b € N; this is a well-
known fact (proved in [18] as Lemma 3.7). So we cannot have fewer than n terms in our
sequence; otherwise the p-ary weight of the sum would be less than n, contradicting what
we just showed. On the other hand, we can have precisely n elements in our sequence:
I4p+-+p"=p"—1)/(p—1). So w*(C) =n = p*d-D+m,

Now we compute wp,e(C). This is tantamount to finding the minimum length of a
(nonempty) unity-product sequence of length divisible by p — 1 consisting of elements of
S=584-1=T1UT,U---UT 1. Suppose we have such a minimum-length sequence, and it

has s(p—1) elements. For any given term a in the sequence, there is some j € {0,1,...,d—1}
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such that a € T,;, so we can write a as a product of a selection of P’ terms in Ty = Sp.
Suppose we replace each a in our minimal sequence with such a selection whose product
is a. We get a new sequence consisting of elements in Sy, the length of this new sequence

is divisible by p — 1, and the product of the elements in this sequence is 14. Since each

d—1

replacement removes one element and adds at most p®~" in its place, the length of this new

sequence is at most s(p — 1)p?~1. If we set \g equal to the multiset of the terms in this
sequence and let \; =) for i € {1,2,...,d — 1}, then we have an element A of A%5.(C) with

Sc(A) = s(p—1)p?~, so that s(p—1)p?~1 > w3 (C). But wss.(C) = n(p—1), so sp?=! > n,

d—14+m

and thus s > p%~ 17, So our sequence has at least (p—1)p elements. We claim that

it has precisely this many elements; we shall construct a unity-product sequence of elements

of Tpa-1 C Sg—1 = S with this many elements. Actually, we do something equivalent: we

d—14+m d—1

shall construct a sequence of (p — 1)p integers whose p-ary weights are all p and

whose sum is congruent to 0 modulo (p™ —1)/(p — 1). In fact, the sum of our integers will

be p” — 1, which is an integer of p-ary weight n(p — 1) = p?1(p — 1)p?1+™. As such,

d—14+m

p™ — 1 can be written as the sum of (p — 1)p integers of p-ary weight p?=!. (Write

d—1—m

p" —1 as a sum of pd_l(p —1)p powers of p, using its p-ary expansion. Group these in

1

groups of p¢~1. The p-ary weight of the sum of each group is precisely p?~! since there are

no “carries” when we add, for there are only p — 1 occurrences of any p’/ with 0 < j < n.)
Thus, we have shown that wp,.(C) = (p — 1)p¢=1+m.

Finally, we compute w(C). This is tantamount to finding the minimum length of a
(nonempty) unity-product sequence consisting of elements of S = Syq_1 = T1UT,U- - -UT 1.
Suppose we have such a minimum-length sequence, and it has s elements. We proceed by
the same argument in the previous paragraph to obtain a new unity-product sequence of

! consisting of elements in Sy. If we set \g equal to the multiset of the

length at most sp?—
terms in this sequence and let \; = ) for ¢ € {1,2,...,d — 1}, then we have an element
X of A%5(C) with Sc(\) = sp?~!, so that sp?~! > w**(C). But w*(C) = n, so sp®~! > n,
and thus s > p@ 17, We claim that s = p?~1=™ precisely; we shall construct a unity-
product sequence of elements of Tj,a-1 C Sg—1 = S with this many elements. Actually, we do

d—14+m

something equivalent: we shall construct a sequence of p integers whose p-ary weights



127

d—1

are all p®~ and whose sum is congruent to 0 modulo (p™ —1)/(p — 1). In fact, the sum of

our integers will be (p™ —1)/(p — 1), which is an integer of p-ary weight n = pd=1pd=1+m,

d—1+m d—1

As such, (p"—1)/(p—1) can be written as the sum of p integers of p-ary weight p

(See the argument used at the end of the previous paragraph.) Thus, we have shown that
w(C) = pt1+m.

To summarize: In our first construction, we have shown w(C) = p@ 4™, w,,.(C) = (p —
1P+, 9(C) = p214m and s, (C) = (p—1)p* @D+, Thus £(C) = (1) /(p—1),
lne(C) = p™—1,£55(C) = (p~ ™ —1)/(p—1), and £25.(C) = p?~1+™—1. Recall that m is an
arbitrary positive integer. If p > 2 and d > 1, we have £(C) < £,.(C) < £55(C) < £35.(C). In
fact, as m tends to infinity, the difference between any two terms in our chain of inequalities
tends to infinity. If p = 2 and d > 1, then ¢(C) < £°*(C), and note that w(C) = 2¢-14m
and w**(C) = 22(4=D+™ are even in these cases. Furthermore, as m tends to infinity, the
differences ¢°*(C) — ¢(C) and w**(C) — w(C) tend to infinity.

Now we make a second construction, a family of codes that are free Z/p?Z-modules such
that £(C) < 1c(C) (or equivalently, £5°(C) < £35.(C)) if p > 2. We let p and d be arbitrary
until further notice.

The second construction: We again set m > 0, let n = p2(@=D+m and let A be the cyclic
group of order (p" — 1)/(p — 1) generated by ~. As before, for each k, we set Ty = {77 :
Jj € Nywy(j) = k}, a p-closed set. This time, however, we set Sp = --- = S3_1 = T3. This
is the tower of supports of our code C, which is a free Z/p?Z-module by Lemma 2.13, and
whose Fourier transform has minimal support S = Sy_1 = T1. As in the first construction,
we note that 14 is not in the minimal support S of the Fourier transform of our code.

First we compute wp(C). This is tantamount to finding the minimum length of a
(nonempty) unity-product sequence of length divisible by p — 1 whose terms are elements
in S = T1. We have already done this in the computation of w;?.(C) in the previous
construction. The minimum length of such a sequence is n(p — 1). So wm(C) =n(p—1) =
(p— 1)pAd—b+m,

Next we compute w(C). This is tantamount to finding the minimum length of a

(nonempty) unity-product sequence whose terms are elements in S = 7;. We have al-
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ready done this in the computation of w**(C) in the previous construction. The minimum

length of such a sequence is 1. S0 wye(C) = n = pd-H+m,

2(d—1)+m 414

To summarize: In our second construction, we have shown w(C) = p
Wme(C) = (p — 1)pd=D+m  Thus £(C) = (p~1+™ — 1)/(p — 1) and £,,(C) = p?~1+™ — 1.
If p > 2, we have ¢(C) < £pc(C) for any m. As m tends to infinity, the difference between
¢(C) and £,-(C) tends to infinity.

Note that in both the first and second constructions, the group A was always a cyclic
group, and 14 was never in the minimal support of the Fourier transform of the code. When
p = 2, we were working with A the cyclic group of order 2" — 1. Finally, note that if we

set p = 2 in the second construction, then our codes are free Z/2?Z-modules and have w(C)

even. OJ
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Chapter 5

Lee Weights in Z/p?Z|[A]

We now discuss analogues of McEliece’s theorem for the Lee weight function lee: Z/p?Z —
Z. See Section 2.4 for the definition of Lee weight. We set e = 1 throughout the chapter,
so that we are working with codes in the algebra Z/p?Z[A]. We always suppose that we
have a code C C Z/de[A] and that Sy € S C --- C Sy_; is the tower of supports of the
Fourier transform of C. We set S = S;_1, which is the support of the Fourier transform
of our code C. We suppose that not all the S; are subsets of {14}, i.e., that at least one
of the S; contains an element of A that is not the identity. Otherwise we have a trivial
situation: C consists only of constant words and then wt(c) = |A| wt(é(14)) for all ¢ € C,
ie., wt"™(¢c) =0 for all c € C.

We shall continue to use the set A**(C) and the associated parameters w®*(C) and £°*(C)
as defined in (4.27), (4.28), and (4.29). Our analogue of McEliece’s theorem for generic
weight functions (Theorem 4.21) can be specialized immediately for the Lee weight to give

the following:

Theorem 5.1 (Theorem 4.21, specialized). Let C be a code in Z/p®Z[A]. With £55(C)

as defined in (4.29), we have lee®™™(¢) = 0 (mod p*©)) for all c € C.

For odd p, this is superior to a previous result of the author, given below as Theorem
5.2. The previous result uses the parameter ¢(C) defined in (4.35). We should keep this
parameter in mind for the rest of this chapter, along with the set A(C) and the parameter
w(C), as defined in (4.33) and (4.34). The result on Lee weights for p an odd prime was

published by the author as a portion of the research program described in this thesis.
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Theorem 5.2 (D. J. Katz [29]). Let p be odd. Let C be a code in Z./p?Z][A]. With £(C)
as defined in (4.35), we have lee®™(¢) = 0 (mod p‘©)) for all ¢ € C.

Theorem 5.1 is superior to Theorem 5.2 since £5(C) > ¢(C) by Proposition 4.22. Indeed,
that proposition shows that strict inequality holds for infinitely many codes. The author is
not aware of any other analogues McEliece’s theorem for Lee weights in Z/p?Z[A] with odd
.

For p = 2, more work has been done. Wilson proved the following result for codes in

VAPXYAVAR

Theorem 5.3 (Wilson [67]). Let p = 2. Let C be a code in Z/2%Z[A] with A cyclic and

14 not in the support of the Fourier transform of C. With ¢(C) as defined in (4.35), we

w(C)—2

have lee(c) =0 (mod 2L 2d-1 JH) for all c € C.

It is not difficult to remove Wilson’s assumptions that A is cyclic and 14 ¢ S. This

generalization was presented by the author:

Theorem 5.4 (D. J. Katz [29]). Let p = 2. Let C be a code in Z/29Z[A]. With ((C) as

w(C)—2

defined in (4.35), we have lee"™(c¢) =0 (mod 2{ 2d-1 JH) forall c € C.

To compare this theorem with Theorem 5.1, we must compare ¢*°(C) = V;;E?J -1

with V;SZ?J +1. By Proposition 4.22, we can make a family of codes where w**(C) — w(C)
is unbounded as C ranges over the family. Thus, there are infinitely many codes where
55(C) > [%J + 1, and thus where Theorem 5.1 is stronger than Theorem 5.4. On
the other hand, if we consider codes that are free Z/29Z-modules, then for these codes
we have w**(C) = w(C) and ¢**(C) = ¢(C) by Proposition 4.22. In this case, we see that

Theorem 5.1 states that the normalized Lee weight has 2-adic valuation at least ¢°%(C) =

0C) = max{O, L;d(f” - 1} < L‘”é?_;?J + 1. So in this case, Theorem 5.1 is weaker than
Theorem 5.4. Note that L%J + 1 is always strictly positive (since w(C) cannot be 1 or
0, because any element of A(C) is a unity-product but not all-unity multiset, and hence has

at least two elements). Indeed, if we assume d > 2 (in the d = 1 case, Lee weight coincides

with Hamming weight on Fy, and we already have a sharp bound for p-adic valuations of

Hamming weights), then we have VéSEZJ + 1 > max { BCIQJ , 1} =/4(C) + 1, so in fact
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Theorem 5.4 is stronger than Theorem 5.1 in all cases when d > 2 and C is a free Z/29Z-
module. Since the two theorems (5.1 and 5.4) are not strictly comparable, one should use
whichever gives a stronger 2-divisibility criterion.

There are other results in the literature that treat of the special case of Lee weights in
Abelian codes over Z/4Z. The first result, due to Helleseth, Kumar, Moreno, and Shanbhag,
is not phrased as a theorem for Abelian codes, but rather for Z/4Z-linear trace codes. To
connect it with our results, we define the Z/4Z-linear trace code of length 2™ with tower
of supports Sg C Sy as follows: Let n > 1, let A be the cyclic group of order 2™ — 1,
let Sy € S be 2-closed subsets of A, and let C be the cyclic code of length 2 — 1 with
tower of supports Sy C S;j. Then the Z/4Z-linear trace code of length 2" with tower of
supports Sg C 57 is obtained from C by appending to the end of each word ¢ € C the symbol
¢(14). We write each of these extended words as (¢|¢(14)). When we discuss Z/4Z-linear
trace codes, we always let C be the underlying cyclic code, and we write C®** for the Z/47Z-
linear trace code. If ¢ € C***, the Lee weight of a codeword is simply the sum of the Lee
weights of the letters in the word, i.e., lee(c|¢(14)) = lee(c) + lee(¢(14)), and so we have

lee(c|é(14)) = lee(c) — |Allee(é(14)) (mod 2™) since |A| = 2™ — 1, i.e.,

lee(c|é(14)) = lee™™(c) (mod 2M). (5.1)

That is, the Lee weight of a word in C®* is congruent modulo 2" to the normalized Lee
weight of the corresponding word in C. Now we can present the theorem of Helleseth,

Kumar, Moreno, and Shanbhag,.

Theorem 5.5 (Helleseth-Kumar-Moreno-Shanbhag [25]). Suppose that C®** is the
Z./AZ-linear trace code of length 2™ with tower of supports Sy C Si. Then lee(c) = 0

(mod 2[«**(©)/21=1) for all ¢ € Co*.
In view of (5.1), we have the following equivalent statement:

Theorem 5.6 (equivalent to Theorem 5.5). Let n > 1 and suppose that C C Z/AZ[A]
with A the cyclic group of order 2* — 1. Then lee™™(¢) = 0 (mod 2[«**©)/21=1) for all

celC.
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Proof. The equivalence of this theorem and the previous one will follow immediately from
(5.1) if we can show that n > [w®¥(C)/2] — 1. But recall that the minimal support S = 5;
of the Fourier transform of our code C is always assumed to contain some a with a # 14.

2n_1, because sets in the tower of supports are 2-closed.

Of course S; contains a,a?,...,a
Note that a?"~! = 14, and let A € N[I x A] be the multiset with \g = () and A; the multiset
with one instance of each of a,a?,... ,a2n71. Then A is an element of A(C) with score 2n,

proving that w®(C) < 2n. Thus [w**(C)/2] — 1 < n. O

Note that this theorem is superior to Theorem 5.1 if we specialize Theorem 5.1 to cyclic
codes of length 2" — 1 over Z/4Z. For in this case, Theorem 5.1 asserts that the normalized
Lee weight has 2-adic valuation at least £°*(C) = |w**(C)/2] — 1. Theorem 5.6 is not strictly
comparable to the specialization of Theorem 5.4 to cyclic codes of length 2" — 1 over Z/47Z,
which asserts that the normalized Lee weight is divisible by |w(C)/2]|. Proposition 4.22 tells
us that we can find an infinite family of such codes in which w**(C) —w(C) is unbounded as C
runs over the family. Thus the specialization of Theorem 5.4 to cyclic codes of length 2" —1
is weaker than Theorem 5.6 for infinitely many codes. On the other hand, if we restrict our
attention to codes that are free Z/4Z-modules, then w**(C) = w(C) and ¢*°(C) = ¢(C) by
Proposition 4.22, and then Theorem 5.4 (specialized to cyclic codes of length 2™ — 1 that
are free Z/4Z-modules) is stronger than Theorem 5.6. For Theorem 5.4 asserts that the
normalized Lee weight has 2-adic valuation at least |w(C)/2], while Theorem 5.6 asserts
that the 2-adic valuation is at least [w**(C)/2] —1 = [w(C)/2] — 1. These bounds are equal
if w(C) is odd, but the former is greater than the latter by 1 if w(C) is even. Proposition 4.22
shows that there are infinitely many cyclic codes C, each of length 2" — 1 for some integer
n (but not the same n for all the codes), that are free Z/4Z-modules with w(C) even.

One should note that Wilson’s result (Theorem 5.3) was an improvement of a result of
Calderbank, Li, and Poonen. Like Wilson, these authors assume that A is a cyclic group

and that 14 € S.

Theorem 5.7 (Calderbank-Li-Poonen [7]). Suppose that C C Z/AZ[A] with A cyclic
and 14 not in the support of the Fourier transform of C. Then lee(c) = 0 (mod 2/«(€)/21-1)

forallceC.
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Note that it is not as strong as the specialization of Theorem 5.3 to codes over Z/4Z,
which asserts that the Lee weights have 2-adic valuation at least |w(C)/2|. So Theorem
5.3 gives strictly more information when w(C) is even, as it is for infinitely many codes (see
Proposition 4.22). Note that Theorem 5.6 is narrower in scope than Theorem 5.7, since the
former only considers the case when A is cyclic of order 2" — 1 for some n > 1. However,
in this special case, Theorem 5.6 is stronger, since w**(C) > w(C) by Proposition 4.22.

The goal of this chapter is to make a single sharp lower bound for 2-adic valuations
of Lee weights in Abelian codes over Z/4Z. To this end, we shall prove Theorem 5.12, a
slightly specialized form of which was presented in the Introduction as Theorem 1.9. Here

we present a simplified version that contains the essence of what we shall prove later.

Theorem 5.8 (Theorem 5.12, simplified). Let C be a code in Z/AZ[A]. Then we have
lee"™(c) = 0 (mod 2¢°©)*1Y) for all ¢ € C, and lee™™(c) # 0 (mod 2¢°°©)+2) for some

ceC.

This theorem is stronger (for codes over Z/47Z) than all the results above. It is stronger
than Theorem 5.1 (specialized to codes over Z/47), which asserts that the 2-adic valuations
of normalized Lee weights are at least £*(C). Theorem 5.8 is also stronger than Theorem
5.3 and its generalization, Theorem 5.4, when these are specialized to codes over Z/4Z.
The latter theorems assert that the 2-adic valuations of normalized Lee weights are at least
|lw(C)/2] = £(C) + 1, and ¢°*(C) > £(C) by Proposition 4.22. Indeed, the same proposition
tells us that there is a family of cyclic codes (with 14 not in the minimal supports of
their Fourier transforms) such that ¢5¥(C) — ¢(C) is unbounded as C varies over the family.
Theorem 5.8 is then stronger than Theorem 5.7 since Theorem 5.3 is stronger than Theorem
5.7. Finally, Theorem 5.8 (when specialized to cyclic codes with A of order 2" —1) is stronger
than Theorem 5.6. For Theorem 5.6 asserts that the 2-adic valuations of normalized Lee
weights are at least [w®*(C)/2]| — 1, while Theorem 5.8 asserts a lower bound of |w**(C)/2].
The latter bound is no better when w**(C) is odd, but is greater by one when w**(C) is even.
Indeed, by Proposition 4.22, we can make a family of codes where the underlying group of
each code is cyclic with order 2" — 1 for some n (not the same n for each code), where 14 is

not in the minimal support of the Fourier transform of any code, where w(C) and w®*(C) are
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even for all the codes, and where w*(C) — w(C) is unbounded as C runs through the family.
For this family, Theorem 5.8 will give a stronger lower bound on the 2-adic valuations of
Lee weights of codewords than one would get by taking the maximum of all the bounds
furnished by all the other theorems mentioned above.

The methods used in this chapter are similar to those of the previous chapter. Readers
should familiarize themselves with the material in that chapter first. In Section 5.1, we
specialize the definitions and conventions of Section 4.3 so that we can use them for Lee
weights in Abelian codes over Z/47. In Section 5.2, we use techniques like those of Section
4.2 to produce counting polynomials that can be used to estimate Lee weights. We then

use these polynomials in Section 5.3 to prove Theorem 5.12 (Theorem 5.8 above).

5.1 Sectioned Lee Weight

For the rest of this chapter, we set p = 2 and d = 2, so that our codes are ideals in
Z/AZ[A]. Our goal is to prove Theorem 5.12. The method we shall use is quite similar
to the method we used to prove Theorem 4.18 in Chapter 4. We shall devise a counting
polynomial that will approximate the sectioning of the Lee weight (see Section 4.3 for the
notion of a sectioning of a weight function, which we review below). We shall then use our
polynomial in conjunction with Corollary 3.4 to give 2-adic estimates of Lee weights in our
codes.

We review the notions of Section 4.3, specializing them for p = 2 and d = 2 here. We
use the convention that for any letter a, the corresponding boldface letter a stands for the
ordered pair (ag,a;). We set I = {0, 1} and consider accounts in Z[I] to be pairs of integers,
i.e., we identify u € Z[I] with the pair (uo,u1) € Z?. We use abbreviated notations that
are the specialization to pairs of the compact notations for ¢-tuples in Section 4.1. So we

use abbreviation that if u € Z[I], then x* = z{°2]" and

()=o) G

Furthermore, we set A* = AF°A'. We set € = (1,0) and e' = (0,1). We also use 0 to
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represent (0,0).
We use the definitions of the score and the s-tier, as set down in Section 4.2. We

specialize these notions here for p = d = 2. Thus, if u € Z[I], then Sc(u) = po + 211

and Tis(p) = max{O, {822(,“” — 1}. In fact, we shall be interested only in d-tiers here.
Therefore, for the rest of the chapter, we define tier to mean d-tier and write Ti to mean
Tiy. This is the same convention adopted in Section 4.3 of Chapter 4 and used to the end
of that chapter. Here we have specialized to the case d = 2, so Ti = Tiy = Tis. Thus
Ti(p) = max{O, L%J — 1} =max {0, | 4| + p1 — 1}. Note that Ti(u) = || 4+ — 1
unless = (0,0) or (1,0). We also use notion of k-starting and k-critical from Section 4.2.
When we specialize these for p = d = 2, we see that a multiset p € N[I] is O-critical if and
only if ug is odd and Sc(u) > 3, and p is 1-critical if and only if p is 1-starting. We also
transport the notion of score and tier to elements of Z[I x A]. The score of A € Z[I x A],
denoted Sc (M), is just Sc(pry A), and the tier of A, denoted Ti(A), is just Ti(pr; A). This
means that Sc(A) = |Ao| + 2|A1] and Ti(\) = max{(), [SCT()‘)J - 1}. Along with this, we
transport to Z[I x A] the notion of an account being k-starting or k-critical (for k € I); to
say that A € Z[I x A] is k-starting (resp., k-critical) is to say that pr; A is k-starting (resp.,
k-critical). As in Section 4.2, we say that A is critical to mean that it is k-critical for some
k. Thus, X is O-starting if Ag # (), and X is 1-starting if A\ = ) and A\; # 0. Furthermore, \
is O-critical if and only if |\o| is odd and Sc (\) > 3, and A is 1-critical if and only if A\g = ()
and A\ # 0, i.e., if and only if \ is 1-starting.

For the rest of this chapter, we suppose that we have a code C C Z/4Z[A] and Sy C S;
is the tower of supports of the Fourier transform of C. As always, we let S be the support
of the Fourier transform of C, so S = 57 here. We continue to assume that not all the S;
are subsets of {14}, i.e., that at least one of the S; contains an element of A that is not the
identity.

We now devise the sectioning of our Lee weight function lee: Z/47 — 7, according to
the definition given in Section 4.3. We review the definition here for our special case. The

sectioning of lee is a 2-wise weight function denoted leege.: (Z/47)? — Z, and defined by

leegec (10, 71) = lee(ro + 2r1),
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for all ro,r; € Z/4Z.

Recall the canonical expansion of the scaled Fourier transform and the scaled Fourier-
induced breakdown of codewords, which we defined in Section 2.3 (before Proposition 2.8).
For c € C and i € I, ¢ denotes the ith component of the scaled Fourier-induced breakdown
of ¢, and &9 denotes the ith component in the canonical expansion of ¢. Throughout
this chapter, we often use the more convenient symbol ¢; as a synonym for ¢(?. Thus

c=c 4+ 2¢M = ¢y +2¢; and é = &0 + 26D = & 4 2¢;. By (4.17) in Section 4.3, we have
leegec(co, 1) = lee(c),
and by (4.18) in the same section, we have

leezo ™ (co, €1) = lee™™(c). (5.2)

Now we consider the lift of leeg, that is, the function F': Zy? — Z given by F(r) =
leesee(m(10), m(1)). By the last paragraph of Section 4.3, we see that F(r+2e") = F(r+e!)
and F(r+2e') = F(r). Thus F is (2, 2)-periodic, using the definition of (p, t)-periodic from

Section 4.2. This is the function that we shall approximate with a counting polynomial.

5.2 Construction of Counting Polynomials

We are ready to construct a counting polynomial to use with Corollary 3.4 in our estimation

of Lee weights in Z/4Z[A].

Theorem 5.9. Let F': 7> — 7 be given by

0 ifro+2r1 =0 (mod 4),

F(r)=41 ifrg+2r1=1,3 (mod 4),

2 ifro+2r1 =2 (mod4),

\

i.e., F'(r) = leesec(m(ro), m(r1)). Suppose that 3 cni Fl (Z) is the Newton expansion of F.
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Then Fo0y = 0 and if p = (o, 1) # (0,0), then F, = (—1)H+1oleo/2l+mn yphere
( 3 ) 14 J2)

1 ifi=-1,0,1 (mod 8),

Vi 0 ifi=2,6 (mod 8),

-1 ifi=3,4,5 (mod 8).

\

Thus va(F,) > Ti(p) + 1 unless p = (1,0).

Proof. First we devise a well-ordering relation < on N2, and then we induct with respect to
the ordering. If u, v € N2 with Sc (1) < Sc (v), then we declare ;1 < v. Among the elements
of N? that have the same score, we order them lexicographically, i.e., K = (Ko, k1) < A =
(Mo, A1) means that kg < Ag or that kg = A9 and k1 < A;. There are only finitely many
elements of N2 with a given score, so the lexicographic ordering well-orders the elements of
like score. Thus < is a well-ordering relation.

As the base of our induction, we use Proposition 4.5 to compute a few of the Newton
coefficients. We compute Fg o) = (A0 F)(0,0) = 0, Foo = (A0 F)(0,0) = F(1,0) —
F(0,0) =1, Flo1y = (A®YF)(0,0) = F(0,1) — F(0,0) = 2, and F(; ;) = (ALVF)(0,0) =
F(1,1) = F(1,0) = F'(0,1) + F(0,0) =1 -1 -2+ 0 = —2. Note that these values for F{; ;)
with 0 <1¢,7 <1 are as we claim them to be in the statement of the theorem.

Now we proceed by induction to compute F, where ;19 > 2 or 1 > 2. First we examine
the case when py > 2. Recall that F' is (2,2)-periodic by the discussion at the end of
Section 5.1. So we use Lemma 4.9 to see that Fj, (o1 = Fj, + 2F,_(1), i.e., F), =

F

ut(—2,1) — 2F),_(1,0)- Note that p+ (—2,1) has the same score as p but is lexicographically

lower, so 4 (—2,1) < p. Also ¢ — (1,0) has a lower score than p does, so u — (1,0) < p.
Thus we may apply our induction hypothesis to F}, (_g 1) and F),_(1 ). Furthermore, note
that neither o+ (—2,1) nor p — (1,0) is (0,0) (the latter is not (0,0), since po > 2). Thus

we have F, = (—1)ll2lro/2my, o 9(—1)lml2lmo=1)/2]+my ) by induction. So

(=1)lel+tgleo/2 (o y — 5y, 9) if pg is even,
F, =
(_1)|u|+12L#0/2J+m(2%0_1 — Yuo—2) if po is odd.
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Note that ;1 — yj—2 = «; if j is even. Note also that 2v;_1 — vj_o = ; if j is odd. So
F, = (—1)lHH12lmo/2l4m ey, iyhich is what we need to show.
Now we examine the case when py > 2. Here we use Lemma 4.10 to see that F), +

2F,

©0,1) =0, ie, F, = =2F,  (o,—1). Note that p + (0, —1) has a lower score than pu does,
so 1+ (0, —=1) < p. Thus we may apply our induction hypothesis to F),| ¢ ). Furthermore,
note that p+(0, —1) is not (0, 0), since yg > 2. Thus we have F,, = —2(—1)#2lro/2l+m=1, -
by induction. So F), = (—1)H+12lro/2l4n1 ““which is what we need to show.

Finally, recall that for p € N[I], Ti(p) = |po/2) + g1 — 1 unless p = (0,0) or (1,0).

Also recall that F{g gy = 0. Thus va(F),) > Ti(pu) + 1 for p # (1,0). O

Now we can truncate the Newton expansion in our theorem to obtain counting polyno-

mials.

Theorem 5.10. Let F': Zy? — Z be given by

0 ifro+2r1 =0 (mod4),

F(r)=141 if ro+2r1 =1,3 (mod 4),

2 ifrg+2r; =2 (mod 4),

\

i.e., F(r) = leesee(m(ro), m(r1)) = lee(n(rg + 2r1)). Then the polynomial f)(x) = zq has
the property that f(r) = F(r) (mod 2) for all r € Zs2.

For each m > 2, there exists a polynomial

£ (x) = Fm (X> : (5.3)
HeN[I] H
Ti(pu)<m—1

with all Flsm) € Zy, such that f0™(r) = F(r) (mod 2™) for all v € Zy%. Furthermore,

F(((TO)) =0 and if p # (0,0) with Ti(u) < m — 1, we have Flsm) = (—1)lelH1oluo/2 iy, o
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where

1 ifi=-1,0,1 (mod 8),

7%=90 fi=2,6 (mod3),

-1 ifi=3,4,5 (mod 8).

We can write f™(x) = 3 HEN[] fl(Lm)x“, with all fl(lm) € Q2 and fopy = 0. If pu is
Ti(p)<m—1

critical with Ti () = m — 2, then plf, = (—1)HF12m=1y “and vy (u!f,) =m — 1.

Proof. Tt is almost immediate that f (1)(x) = 1z approximates F' modulo 2 on Zy. We prove
the rest of the theorem. Let m > 2. Recall from the discussion at the end of Section 5.1
that F is (2,2)-periodic. A (p,t)-periodic function is p-adically continuous, as noted in
Section 4.2. Therefore, the existence of the polynomial f(™ approximating F' modulo 2
is guaranteed by applying Theorem 5.9 and Lemma 4.6, with the set S in Lemma 4.6 equal
to the set {u € N[I] : Ti(u) < m — 1}. (This set is finite because only finitely many pu
have a certain tier.) Indeed, the coefficient F}, of our polynomial f is precisely the Newton
coefficient for the term (Z) in the Newton expansion of F'. Since Theorem 5.9 tells us that
vo(Fy,) > Ti(p) + 1 (unless p = (1,0), which has tier 0), the set S includes all p such that
va(F),) < m, so that Lemma 4.6 is truly applicable.

We can expand out the terms (l’j) in our expression (5.3) to obtain

IRROEID DN S
]

neN(T
Ti(pu)<m—1
Note that (ﬁ) has no constant term unless = (0,0), so ((870)) = F(([To)) =0.

Suppose that v € N[I] is critical and of tier m — 2. We want to compute the coefficient
f£m) in terms of the coefficients F, L(Lm). The only terms F, lsm) (/’j) in the expansion (5.3) which
have the monomial x” are those with pg > vg and @1 > vy, with ug = 0 if vy = 0, and with
p1 =0if vy =0.

Thus, if v is O-critical, we need only consider terms F, ém) (’;) in the expansion (5.3) with

w=v+(i,7) for some i,j > 0. But because v is O-critical, v + (i, j) will have tier strictly

higher than Ti(rv) = m — 2 unless (¢,7) = (0,0). So the only term in the expansion (5.3)
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we need to consider is F,Em) (’V‘)
Likewise, if v is 1-critical, we need only consider terms F, lsm) (2) in the expansion (5.3)
with p = v + (0, ) for some j > 0. But because v is 1-critical, v + (0,7) will have tier
strictly higher than Ti(rv) = m — 2 unless j = 0. So the only term in the expansion (5.3)
we need to consider is F,fm) (’;)
In both cases, the coefficient fém) of X" in f (m) (x) is %F,,(m) Thus we have v! fy(m) =
(—1)'”‘“2”‘_1%(J by what we already know about the coefficient F,,(m). Note that if v is

O-critical, then vg is odd, and if v is 1-critical, then vy is zero. But ve (7;) = 0 if 7 is odd or

zero, so if v is critical, then v (V!fém)) =m — 1. O

5.3 Lee Weights in Z /47 A]

Now we are almost ready to state and prove our theorem on Lee weights in Abelian codes
over Z/4Z. The reader should recall the definitions of A**(C), w**(C), and ¢£**(C) in (4.27),

(4.28), and (4.29). We begin with a calculation that 2-adically approximates Lee weights.

Proposition 5.11. Let C be a code in Z/AZ[A]. For each c € C and i € I, we let C; be the
element of Za[Cy_1][A] such that C; = T 0 &. Let m > 2 and let fU™(x) be the polynomial

described in Theorem 5.10. For any c € C, we have

(pr; A)!f(In),\ =
Al > Tpl [[C:(x) (mod p™),
AEA®3(C) ’ icl
Ti(A)<m—1

leenorm (C)

where A*5(C) is as defined in (4.27) above. We always have lee™™ (¢) =0 (mod 2).

Proof. By Corollary 3.4, we have

1 -
leelr™ (co, c1) = |A] Y plf{™ > 5 I1 G (mod 27).
pEN[I] AeN[IxA],pr; A=p i€l
TIA=14,pr 4 A¢N[{14}]
A0 €N[So], 1 EN[S1]

By (5.2), the left-hand side becomes lee"*™ (c¢). We can restrict the sum over u to those p

with Ti(u) < m — 1, since f,sm) = 0 otherwise (by Theorem 5.10). The conditions on the
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inner sum, other than the condition pr; A\ = p, are tantamount to saying that A € A%(C).

Thus

lee™™(c) = | 4| Z u!fﬁ(tm) Z N HC’ (mod 2™)

peN(I] aeAs(c) el
Ti(p)<m—1 pry A=p
pr r
= |4| Z Z (Pri A p —— e HC (mod 2™),
HeN(I] AEA®5(C) iel

Ti(u)<m—1  pryA=p

and the condition A = pr; p implies that A and p will always have the same score and tier,

so we can shift the condition on tier to the sum over A\. Thus

e =14 Y. Y (prI (Pry VLA HC’ (mod 2)

HeNI]  AEA®S(C) iel
pry A=p
Ti(A)<m—1
(P NS -
=4 > TPIHCZ-(M) (mod 2™),
AEA®3(C) ’ i€l
Ti(A)<m—1

which is what we were to show.
Now we approximate normalized Lee weight modulo 2. Here we use the polynomial
f(l)(x) = 20 = x(10 from Theorem 5.10. We apply Corollary 3.4 with this polynomial to

obtain

1 -
leegee " (co, c1) = |A] Z Z N Hci()\i) (mod 2).
Tiel

HeN[I] AEN[I X A],pr; A=p
IA=14,pr 4 AZN[{14}]
Mo €N[So],A1EN[S1]

As before, (5.2) shows that the left-hand side is lee"™(c). Now f, = 0 unless p = (1,0),

so that we have

norm —_ 1 0
lee™™ (c) = |A| £}, 3 5 LI G (mod 2).
AEN[Ix A],pr; A=(1,0) * i€l
IIA=14,pr4 AQN[{IAH
Mo €N[So],\1EN[S1]

But now note that if pr; A = (1,0), then |A\| = 1, and then A cannot simultaneously be
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unity-product and not all-unity. So the sum on the right-hand side is empty, and we have

lee"™™(¢) =0 (mod 2). O

Now we can prove our sharp lower bound on the 2-adic valuations of normalized Lee

weights of words of codes in Z/47Z]A].

Theorem 5.12. Let C be a code in Z/AZ[A]. With £°*(C) as defined in (4.29), we have
lee™™(¢) = 0 (mod 2°°©OF1) for all ¢ € C, and lee™™(c) # 0 (mod 27 ©+2) for some
c € C. More precisely, if fC°(©+2)(x) is the polynomial described in Theorem 5.10, and if
we let C; be the element of Zo[(y—1][A] such that C; = 70 & for eachi € I and c € C, then
(£=2(C)+2)
)!fprI A

norm (I)r_[A = SS
lee™™(c) = [A] > N [IC:(N)  (mod 27°€)+2), (5.4)

AEA®S(C) iel
Ti(\)=¢55(C)

and the expression on the right-hand side assumes values in 2817y for all ¢ € C, but

there is some ¢ € C such that this expression is not in 2¢€)+27,.

Proof. When ¢%(C) = 0, the congruence zer™™(¢) =0 (mod 2) for all ¢ € C comes imme-
diately from Proposition 5.11 above. If £5¥(C) > 0, we use Proposition 5.11 above (setting

m = £**(C) + 1) to obtain

(pr; )\)!fr()fjsic)ﬂ)

lee™™(c) = |A] ) N [IC:(N)  (mod 27+,
AEA®3(C) ’ iel
Ti(\)<t*5(C)

where f(*(©)+1)(x) is the polynomial described in Theorem 5.10, and A%(C) is as defined in
(4.27). But by the definition of £**(C) as the minimum tier of any element in A**(C), we see
that the sum on the right-hand side of this congruence is empty, thus proving lee"*™ (¢) = 0
(mod 267 (©)+1),

¢) is not always divisible by 20°(€)+2 along with the more

Now we prove that lee™™(

precise statements at the end of the statement of this theorem, including congruence (5.4).

In the rest of the proof, we return to considering ¢°*(C) arbitrary (possibly zero). We use
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Proposition 5.11 again, but this time with m = ¢**(C) + 2, to get

leenorm (C)

(prI )\)'f(fs A ~ ss
Al > )3 ! [IC:x)  (mod p™©)+2),
AEA®3(C) ) icl
Ti(A\)=£5(C)

with f(£°(©+2)(x) € Qq[x] as described in Theorem 5.10. We have omitted to sum over A

with Ti () < £%5(C) since there are no such A € A*(C) by the definition of £*°(C). This last

congruence is (5.4), which we were to show. Let

(pry NSO
Y(e)=14] > ;}’ [T,
AEA®*(C) ’ i€l
Ti(\)=£55(C)

which is the right-hand side of (5.4). Note that the coefficients of f*(©)+2)(x) are in Q
(see Theorem 5.10), and note that Ci(a) € Za[Cy_1] for all i € T and a € A (because
C(a) € Za[Cy 1] for all a € A). Thus Y(c) € Qa(Cy—1). We shall show that Y (c) is actually
in the smaller field Q5. To do this, it suffices to show that it is fixed by Fr. We use the
Frobenius action Frp introduced in Section 2.7. By Lemma 2.30, we note that Fra restricted
to A®5(C) is a permutation of A**(C). Furthermore, by the same lemma, we note that if
A € A%5(C), then pr; Fra(A\) = pry A. So Fra preserves score and tier. Thus Fry permutes
the set of A € A**(C) with Ti(\) = ¢**(C). So we have

(pryFra(M)!f (= €)12)

pry Fra( )\)
SO gc [Fra(M)ls)-

Y =14 )

AEA**(C)
Ti(X)=¢°5(C)

By Lemma 2.30, we have pr;Fra(A) = pry A, Fra(A)! = Al and [[,.; C Ci([Fra(N)]i) =
Fr (Hiel C’Z()\z)), so that

r lff“ C)+2) )
Yo =4 > (pry )Ap! AT, o (Hc&m).

AEA®S(C) icl
Ti(X)=£55(C)
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Since the coefficients of f(**(©)+2)(x) are in Qy (see Theorem 5.10), we have

(pry VIO
Y =F |4 Y B [1¢:0)
AEA®*(C) ’ iel
Ti(\)=£55(C)

= Fr(Y(c)),

so that Y (¢) € Qy. We have already proved that lee™™(¢) = 0 (mod 2¢°°(©)+1) for all ¢ € C.
Since lee™™(¢) = Y (¢) (mod 2¢°(©)+2) (this is (5.4)), we know that Y (¢) € 26417, for
all ¢ € C. So to finish our proof, we must show that there is some ¢ € C such that
lee™™ (¢) = Y(¢) (mod 2¢°(©)+2) does not vanish modulo 2¢*(€)+2

To prove this, we shall use the notions of collapse and reduction introduced in Section
2.6. Note that ¢;(a) is a zero or a power of w((y_1) for all a € A and i € I, since ¢; is the
ith component of the canonical expansion of ¢. We let R be a set of p-class representatives
of A and apply Lemma 2.18 to (5.4) to obtain

) fpe 5(C)+2) ]

(pry A)! ss
Al > N [ICi(Cor(Xi)) (mod 2°°(€)+2),
AEA®3(C) el
Ti(\)=£55(C)

leel’lOI‘m (C)

If we define Ay to be the set of elements of A**(C) that are reduced and of tier £**(C), we

have

FE©+2)

norm (pr /’L) T = EE}
) = 4] Z Z ! Mp' e HC’Z‘(COR(A,-)) (mod 2¢°(€)+2),

AEA, ueA“ ©) ) i€l

Ti() =>4 (C)
Red(p)=X

since the reduction of any p € A**(C) with Ti(u) = £°*(C) is an element A of Ay by Lemma
4.14, and for such a p, we have Cogr(u;) = Cogr(A\;) for ¢ € I by Lemma 2.24. For each

A€ Ay, set
(> (C)+2)

r 'or
i(w)

7
HEAS(C), Ti(u)=£2(C)
Red(p)=X\
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(£2=(C)+2)

which is an element of Qg since the coefficients f, are in Q2. Then
lee™™(c) = Y By[[Ci(Cor(Ni)) (mod 2°°(€)+2), (5.6)
AEAy i€l

Note that the right-hand side of (5.6) is a Q2-linear combination of terms of the form

Dy=[1 II Gitr)icortor, (5.7)

i€l r€RNS;

where we have restricted the second product of (5.7) to RN S; in view Lemma 2.17 and
the fact that \; € N[S;] for all A € A**(C). Note that no two terms Dy and Dy with
A\, X € Ay have exactly the same exponents for all the terms Cj(r), since that would imply
that Cog(\;) = Cor(A}) for all 4, which would force A = X, since A and X’ are reduced (see
Corollary 2.22). Also note that the exponent (Cog(\;)), of Ci(r) in Dy, is less than 2¢" by
the definition of Cog. (Recall that e, denotes the cardinality of the 2-class of r in A.) As we
vary ¢ over all words in C, Lemma 2.14 tells us that the values in {C;(r) : i € I,r € RN S;}
vary over [ [, HTGRO& Vir, where V; ;. is the set containing 0 and all the powers of (aer_1.
Since no two elements of V; , are equal to each other modulo 2, and since |V | = 2°7, which
is strictly greater than the highest exponent of Cy(r) appearing in any term (5.7) of (5.6), we
may apply Lemma 2.33 to conclude that the minimum of the 2-adic valuations of codeword
weights in C is precisely the minimum of the 2-adic valuations of the coefficients B) as A
runs over Ay. So the first half of the theorem tells us that all such coefficients have 2-adic
valuation at least £**(C) 4+ 1. We shall show that one such coefficient has 2-adic valuation
precisely ¢°5(C) + 1; this will complete our proof.

We now wish to use Lemma 4.15, which provides facts about elements of tier ¢55.(C)
in AJ.(C). Since p = 2, we have A .(C) = A**(C) (compare the definitions in (4.19)
and (4.27)), and so £35.(C) = ¢%°(C) (compare the definitions in (4.21) and (4.29) or see
Proposition 4.22). Thus Lemma 4.15 is applicable here, and tells us that there exists a
critical k € Ay such that there is no p € A**(C) with u # &, Ti(u) = £°*(C), and Red(p) = k.
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Thus the coefficient By, as defined in (5.5), is just

(pry &)! fer A+

B, = |A] -

Since & is reduced, we have x; , < 2 for all 7 € I and a € A by definition, so the denominator

of the fraction is 1. Since |A] is coprime to 2, we have

v2 (By) = v2 ((prI ﬂ)!féﬁjséc)ﬂ))

Since k is critical and Ti(k) = ¢%°(C), this means that pr;x € N[I] is critical and of
tier £5(C), so that Theorem 5.10 tells us that v ((prI n)!flgfjséc)”)) — ¢(C) + 1. This

completes our proof that there is some word ¢ € C with lee"™™(c) # 0 (mod 2¢°(©)+2). O
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Chapter 6

Zero Counts and Hamming
Weights in GR(p?, e)[A]

In this chapter, we investigate the p-adic behavior of zero counts and Hamming weights in
Abelian codes over arbitrary Galois rings. The main result of this chapter is Theorem 6.12,
which was presented (in a specialized form) in the Introduction as Theorem 1.10. We recall

the specialized version here:

Theorem 6.1 (Theorem 6.12, specialized). Let C be a code in GR(p?, e)[A] with 14
not in the support of the Fourier transform of C. Then zer(c) = |A| (mod p'me(©)) for all

c € C, or equivalently, ham(c) = 0 (mod p’me(©)) for all ¢ € C.

In order to understand this theorem, one must understand the definition of 4,,.(C) given
in Section 1.1 of the Introduction. There we defined /,,,.(C) using unity-product sequences
that consisted of elements in the support of the Fourier transform of the code, along with
the pth powers of such elements. In this chapter, we shall define ¢,,.(C) equivalently using
multisets rather than sequences. In the special case where e = 1, we shall recover the
multiset-based definition of ¢,,.(C) given in (4.32) of Chapter 4. For arbitrary e, the con-
struction that gives £,,,.(C) is somewhat more complicated. As always, the reader must be
familiar with the definitions and notations for accounts in Section 2.5 to understand our
presentation of such matters.

To prove the above theorem, we shall devise counting polynomials that will enable us
to use Corollary 3.3 to p-adically approximate zero counts of words in Abelian codes over

an arbitrary Galois ring GR(p?, e). Looking at Corollary 3.3, we can see that we need, for
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each m > 1, a polynomial f™(zg,21,...,2¢-1) € Qp((4—1)[w0, 21, . - ., Te_1] such that

1 (modp™) ifr=0 (mod p?),

F (e Fr(r), ... Fr(r)) (6.1)

0 (mod p™) otherwise,

for all r € Zp[(4—1]. The first three sections (6.1-6.3) of this chapter will be dedicated to the
construction of such polynomials. In Section 6.4, we shall employ them to prove Theorem
6.12 (the more precise version of Theorem 6.1 above). In Section 6.5, we compare our
results with previous work. Since we are not aware of any prior generalization of McEliece’s
theorem to codes over arbitrary Galois rings, we consider the special cases d = 1 (codes
over F;) and e = 1 (codes over Z/p?Z) and compare with existing results in these scenarios.

Our starting point for the counting polynomial construction is Corollary 4.13 to Theorem

4.12, whose relevant contents we repeat here:

Proposition 6.2 (part of Corollary 4.13). Let t,m > 1 and set di,, = [m(p — 1) +

1]p'=t — 1. Then there exists a polynomial

@) = > gltmar

0<n<ds,m
p—1|n

of degree dy m in Qplx] such that

1 (modp™) ifr=0 (mod pl),
g™ (r) =

0 (mod p™) otherwise,

for all r € Z,,. Furthermore, dtﬂm!gg:::) = (—p)™ ! (mod p™).

(t,m)

Sog approximates uniformly modulo p™ the characteristic function of the ideal p'Z,

in the ring Z,. However, the polynomial f(™) that we seek (see (6.1)) must approximate
the characteristic function of the ideal p?Z,[¢,—1] in the ring Z,[¢;,—1]. So we need to adapt

(t,m)

the polynomials ¢ to work on this larger domain. The basic insight is to apply the trace

to elements of Zy[(4—1] to obtain elements of Z,, and then apply the polynomials gt™m) to
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the resulting elements in Z,. However, this path is fraught with technical difficulties, which
we shall now examine and overcome.

Before moving on, we fix some common notations. Throughout this chapter, x will
denote the list zg,...,z_1 of indeterminates and Tr will stand for Tr{. Recall from Sec-
tion 2.5 that H ={0,1,...,e — 1}. We identify accounts in N[H] with e-tuples of integers:
w € N[H] is identified with the e-tuple (g, . .., tte—1). Thus the notation x* is shorthand for
zh0a" z*7 as described in Section 2.8. Also recall from Section 2.5 the compact nota-

Lo

tion that if 1 € N[H] and a € Q,(¢y—1) or a € GR(p%, e€’), then Fr*(a) = [[ e (Frh(a))“h.

6.1 Trace and the p-Adic Valuation

The main difficulty with the trace function is that it does not preserve p-adic valuation.
That is, for any ¢ > 1, we can have a € Zy[(;—1] with a # 0 (mod p') but with Tr(a) =0
(mod p'). This can be seen by taking some a = m(¢,—1)* € F, such that Tr(a) = 0
and setting b = Céil. Then commutativity of Tr with m; shows that Tr(b) = 0 (mod p).
Thus Tr(p!=1b) = p!~1 Tr(b) = 0 (mod p'), even though p'~'b # 0 (mod p'). In doing this
exercise, we should have noted that trace does respect p-adic valuation in a certain sense:
it never decreases p-adic valuation, for Tr(p'r) = p' Tr(r).

We could exploit this property by setting R; to be a set of representatives of the equiva-
lence classes modulo p* in Z,[¢, 1] and considering the average |Ry| ™" > R, g™ (Tr(rz)).
If a € Zp[(q—1] with a = p?( @y, and we vary r over Ry, the value ru should run through
a set of representatives of equivalence classes modulo p’ in Z,[¢,—1]. Thus, by the commu-
tativity of m; with Tr, the values Tr(ru) (mod p') should always run through the same set
in Z/p'Z as r runs through Ry, regardless of the exact value of the unit u. Therefore, since
Tr(ra) = p*»(@ Tr(ru), the values of Tr(ra) (mod p') should vary over a subset of Z/p'Z
that depends only on v, (a). Because the value modulo p™ of g™ (s) is sensitive only
to the congruence class modulo p' of s € Z,, this means that |R;|™" > ver, 9™ (Tr(ra))
should depend only on the p-adic valuation of a. This sketch has given the essence of the
procedure, but it is not perfect in all details. It can be improved upon by replacing the

set Ry with a smaller set of elements that nonetheless still have enough “p-adic uniformity”
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to give a viable averaging procedure. The motivation for this substitution is that we can
divide by fewer powers of p when we perform the averaging, thus minimizing the loss of
p-adic accuracy of the final averaged function.
To set up our averaging procedure, which we call trace-averaging, we need precise ver-
sions of all the ideas in the previous paragraph. In particular, we must compute how
many of the elements of GR(p', e) with a given valuation k are taken by trace to 0. So for

ke {0,1,...,t — 1,00}, we define

}{r € GR(p',e) 1 vy (r) =k, Tr(r) = 0}|

e = e GROF0) vy (1) = k) (6.2)

We want to compute these fractions. Their values are given in Lemma 6.4 below, which is
the goal of this section.

Recall that Tr(a) = ZZ;%) Fr"*(a) and that Tr is a Z/p'Z-linear map from GR(p', e) to
Z/p'Z. Tr: GR(p',e) — Z/p'Z is also surjective because Tr: Z,[(,—1] — Z, is surjective
and Tr commutes with m;. This leads to a simple result, which will help in our proof of

Lemma 6.4.

Lemma 6.3. Let t > 1. For each a € GR(p',e), there is some b € GR(p',e) with a = b

(mod p) and Tr(b) € {0,1,...,p —1}.

Proof. Let a € GR(p% e) and let v € {0,1,...,p — 1} C Z/p'Z with u = Tr(a) (mod p).
Then choose v € Z/p'Z with Tr(a) — u = pv, and choose w € GR(p!,e) with Tr(w) = v.
Set b = a — pw and note that Tr(b) = Tr(a) — p Tr(w) = Tr(a) — pv = u. O

Using this lemma, we construct a set U of representatives of equivalence classes modulo
p in GR(p', e) such that Tr(u) € {0,1,...,p — 1} for each u € U. We insist that 0 be the
representative in U for the class pGR(p?, e). We also define a set V = {u € U : Tr(u) = 0},
and we note that 0 € V. For the rest of this section, U and V' will denote these sets.

Since U is a set of representatives of equivalence classes modulo p in GR(p!, ), we have
|U| = ¢, and each element of a € GR(p', e) can be written uniquely as Z';f;(l) a;p’, with each
a; € U. By the commutativity of 71 with Tr, the number of elements in U that are mapped

by trace into p (Z/ptZ) is the same as the number of elements in [F, that are mapped by
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trace to 0, i.e., ¢/p. So |V| = q/p. Now we are ready to calculate the fractions n}.

Lemma 6.4. Lett > 1. For 0 < k <t, we have
‘{r € GR(p', e) v, (r) = k}} =(q— l)qtflflC

and

{r € GR(',€) : vp () = k, Te(r) = 0}] = <z _ 1> (Z)t_l_k.

Thus, with n}, as defined in (6.2), we have

t _ (4= P\ —t+k
M, <q_1>p .

Furthermore, nt, = 1.

Proof. Since 0 is the only element of GR(p%, e) with infinite valuation, clearly n, = 1.
So henceforth we assume that k is a nonnegative integer less than ¢t. As noted above,
each element r € GR(p!, e) can be written uniquely as Zﬁ;é rip', with each 7; € U. The
valuation of this element is & if and only if ro = --- = r;_1 = 0 and 7 # 0. Since |U| = ¢,
this means that |{r € GR(p', ) : v, (r) = k}| = (¢ — 1)¢""'~*. The trace of this element r
is Tr(r) = S_iZg p* Tr(r;). Since Tr(u) € {0,1,...,p — 1} for all u € U, we see that the last
expression is simply the p-ary expansion of r. Thus, Tr(r) = 0 if and only if Tr(r;) = 0 for
all 4, i.e., if and only if 7; € V for all 4. Thus, the elements r € GR(p!,e) with v, (r) = k
and Tr(r) = 0 are those with rg = -+- =711 =0, rp € V {0}, and rg41,...,74-1 € V.
So [{r € GR(p',€) : vy (r) = k}| = (% - 1) (ﬂ>t_1_k. Then the value we claimed for 7},

P
follows. O

This lemma shows us that although trace does not preserve the p-adic valuation, the

probability that an element a € GR(p!, €) has Tr(a) = 0 increases as v, (a) increases.
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6.2 Trace-Averaged Characteristic Functions

Now we devise the averaging procedure that we sketched at the beginning of Section 6.1.
It will be simpler at first to consider the effects of this averaging on the exact characteristic

function of the ideal pth in Z,, rather than on the polynomial approximations thereto.

Lemma 6.5. Let t > 1 and suppose that Fy: Z, — {0,1} is the characteristic function of
p'Zy, in Z,. Let R be a set of representatives of equivalence classes modulo p* in Zy[Cy—1]% .

Define FtT: Zp|Cq—1] — Z by FtT(x) = rer Ft(Tr(rx)). Then

pr@ (1-1) (1) o) <t,

(g—1)g"* if vp (a) > t,

for any a € Zp[Cy—1]. Thus FtT, as defined here, is independent of the choice of the set R.

Proof. Let a € Z,[(4—1]. First let us consider the case when v, (a) > t. Then v, (ra) >t
for all r € R, so vp(Tr(ra)) > t for all » € R. So Fy(Tr(ra)) = 1 for all » € R, and
SO FtT(a,) = |R|. Since R is a set of representatives of equivalence classes modulo p in
Zyp[Cq—1], the cardinality of R is equal to the number of elements of GR(p', €) that do not
vanish modulo p. So by Lemma 6.4, |R| = (¢ — 1)¢' .

Now let us consider the case when v, (a) < t. Write a = p*b with b € Z,[(,—1]*. Asr
runs through R, the value m(r) runs through the units of GR(p', €), and so m;(rb) also runs
through the units of GR(p’, ¢). We employ canonical expansions of elements of GR(p', ) to

=1y, then m;(ra) has canonical

see that if 7;(rb) has canonical expansion ug+puj +---+p
expansion pFug4pF T ug +- - -+ pluy_1_p. That is, the value of 74(ra) depends only on the
equivalence class modulo p'~* of 7;(rb). As r runs through R, we see that 7;_j(rb) ranges
over the units of GR(pt*k, e), taking each value an equal number of times. Thus, as r runs
through R, the value m¢(ra) ranges over {s € GR(p',e) : v, (s) = k}, taking each value in

this set an equal number of times. Therefore, as  runs through R, Tr(m(ra)) must achieve

the value 0 precisely 7} |R| times. Since Tr commutes with 7, this means that Tr(ra) = 0
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(mod p') for precisely n}|R| values of  in R. So

F/(a) = n}|R|
— q—7p —t+k o 1 t—1
- 1) p~ (g —1)q

+G6) D

We now have a function FtT: Zp|Cq—1] — Z that is sensitive to the p-adic valuation of its
argument, but not to the specific equivalence class modulo p’ in which its argument lies. We
now make linear combinations of the functions FtT for various ¢ to produce the characteristic

function of the ideal p'Z,[C;—1] in Zp[Cp—1]-

Lemma 6.6. For each t > 1, let Fj: ZplCq—1] — Z be as defined in Lemma 6.5. Define
G: Zp[Cq—1] = Z by

d—1
G(z) = (p_’ﬁ [F;(x) - <Z - 1) (1 + ;Fj(:c)ﬂ .

Then G is the characteristic function of p@Z,[C4—1] in Zp[Cy—1].

Proof. First, let us suppose that a € dep[Cq,l]. Then using the definition of G and the

values of Fj(a,) from Lemma 6.5 above, we have

P [ q =
G(a) = o _Fj(a) - (p — 1) (1 + ;Fj(a)ﬂ

P q = :
T hoDg (¢—1)g" " - <p - 1) (1 + ‘:1(q - 1)q”>]

(2

On the other hand, suppose that b € Z,[(;,—1] with v, (b) < d. Set k = v, (b). Then by
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the definition of G, we have

d—1
G(b) = ﬁ [F;(b) - (Z - 1) (1 + 2F§(b)>] . (6.3)

Using the values of F;(b) given in Lemma 6.5, we have

k

k
L+ F ) =1+ (¢ - 1)g
=1

=1

k
=49

and
o= £ ()
i=k+1 i=k+1 p p
q d—1 q k
A
q d—1
=p" (=) -4~
p
and so
q « q ¢\
S—1) |1+ FE'( :pk<—1><> :
() (o gre) - (1)
By Lemma 6.5, this is equal to F;(b). So (6.3) tells us that G(b) = 0 in this case. O

At this point, we could use the averaging technique in the lemma we just proved to
obtain a polynomial-based approximation to the characteristic function G of p?Z,[¢,—1] in
Zp|Cq—1]. For G is seen to be a linear combination of the functions F; (as defined in Lemma
6.5), and each F;r is an averaged version of the characteristic function F; of the ideal pin in
Z,,. Since the polynomial g™ of Proposition 6.2 approximates F; uniformly modulo p™ on
Zy, we could perform the same averaging technique on g™ to obtain a function G(>™) that
approximates Fj uniformly modulo p™ on Zp[(;,—1]. In fact, to obtain an approximation
modulo p™ of G, we should have an approximation modulo p™%~1 of each FiT, since we

multiply each Fj by a coefficient with p-adic valuation —de+1 to get the linear combination
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that equals G. (See the lemma above for these coefficients.) Thus, we would start with the
polynomials g(#™=14de) () for i = 1,...,d. So we would need to work with polynomials
of degree as high as [(m — 1+ de)(p — 1) + 1]p?~' — 1 (the degree of g(¢™~1%4de)) in this
procedure.

We would like to keep the degrees of the polynomials we use as low as possible to
keep the calculations with Corollary 3.3 as simple as possible. If we devise an averaging
procedure more carefully, we can arrange so that we do not need to divide by so many
powers of p in our calculations, thus allowing us to start with less p-adically accurate
(hence lower degree) polynomial approximations. We shall still average a function f(z) by
taking > . p f(Tr(rx)) for some set R of units in Z,[(4—1], but we shall not always use an
entire set of representatives of the equivalence classes modulo p' in Z,[(,—1]*.

Here we define the sets used in our averaging construction; these definitions will remain
in force for the rest of this chapter. For each positive ¢, let GR(p!, e)El be the subgroup
of GR(p!, e)X consisting of all elements that are congruent to 1 modulo p. Since Z/p'Z C
GR(p!, e), we have (Z/p'Z)* C GR(pt,e)”, and so (Z/p'Z)=" is a subgroup of GR(p?, 6)51.
Let GR(p', e)ﬁ be a set of representatives of equivalence classes modulo (Z/p'Z)="' in the
group GR(p', e)El, where we insist that 1 € GR(p?, e)ﬁ. Note that if t = 1, then Z/p'Z = Fp,

GR(p',e) = Fy, and so (Z/p'Z)=' = GR(p', ) "= {1}, and thus GR(pt,e)Ij = {1}. Also
note that if e = 1, then GR(p',e) = Z/p'Z, and so GR(pt,e)El = (Z/p'Z)=', and thus
GR(p!, e)ﬁ = {1}. Now we lift our sets to subsets of Zp[(;—1]* with the Teichmiiller lift.
Let Uy = 7 ((Z/p'Z)=') and V; = 7 (GR(pt,e)ﬁ>. Since 7 lifts elements of Z/p'Z into Z,,
we have U; C Z,*. Furthermore, if ¢t = 1 or e = 1, we have V; = {7(1)} = {1}. Let
W = {uCg_lv:ue U,0<j<q—1,v€eV}

Each element in GR(pt,e)X can be represented uniquely as a product of a power of
m(Cy—1) and an element in GR(p', e)zl. Each element in GR(p', e)El can be represented
uniquely as a product of an element in (Z/p'Z)=! and an element in GR(p?, e)ﬁ. Therefore,
each element of GR(p, e)X can be represented uniquely as a product u (Wt((q_l)j ) v with
u € (Z/p'Z)7, 0 < j<qg—1,and v € GR(pt,e)ﬁ. Thus, m(W;) = GR(p!,e)™, and W;

is a set of representatives of the equivalence classes modulo p' in Z,[(,—1]*. Now we can
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describe our improved averaging procedure.

Lemma 6.7. Let t > 1 and let Fy: Z, — {0,1} be the characteristic function of p'Z, in
L. Let FtT be as defined in Lemma 6.5. Let V; be as defined above in this section. Define

FY¥: ZplCya1] — Z by Ff(x) = Z?;(Q) eV Ft(Tr(Cgflvx)). Then Ff(x) = p—t+1FtT(a:).

Proof. Use W; as the set R of representatives of equivalence classes modulo p’ in ZLp[Cq—1]*

in Lemma 6.5 to get

Fi(z) = Y F(Tr(wz))

weWy

= Z qZQ Z Fy (Tr (u gflvx)) .

uclUs j=0 veV;

Note that Uy C Z,” and Tr is Zy-linear. Also note that Fy(uz) = Fi(z) for any u € Uy

because F} is the characteristic function of the ideal p’ in Z,. Thus

Fi(z) = Z qz_é Z F (u Tr ({g_lvx))

uclU; j=0 veVy

D N ACICD)

uelUy j=0 veV;
= |U:|F* (),
and note that |Uy| = |(Z/p'Z)="'| = p'~! to finish the proof. O

Now we linearly combine the functions F;* to obtain the characteristic function of

dep [Cg—1] in Zp[Cg—1]-

Lemma 6.8. For each t > 1, let F}': Zp[C4—1] — Z be as defined in Lemma 6.7. Define

J: ZplCq—1] — Z by

d d—1 ‘
gl ) o)

=1

Then J is the characteristic function of piZy[Cy—1] in Zp[Cp—1]-
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Proof. For each t > 1, we define FtT: Zp|C4—1] — Z as in Lemma 6.5. Then Lemma 6.6 tells

d—1
G(z) = @_’W [Fg(x) - (Z - 1) (1 + ;Fj(x)ﬂ

is the characteristic function of p?Z,[¢;—1] in Zp[¢;—1]. Now Lemma 6.7 tells us that FJ (x) =

us that

p' "L (z) for each t > 1, so that

d—1 '
o0~ g i = (3-1) (10 )|
d d—1
= oo _pl)qd [FZZ(OC) — (; — 1> (pd“ + ;pd+iﬂ*($)>]

which is what we were to show. O

This lemma provides an archetype for the polynomial approximations that will be de-

vised in the next section.

6.3 Trace-Averaged Counting Polynomials

Now we shall apply our averaging procedures to polynomials. If we were to apply one of our
averaging procedures (like those used in Lemma 6.5 or Lemma 6.7) directly to a polynomial,
we would obtain a polynomial function of the terms {Frh (x):he H } In general, such
functions need not be polynomials in z. For example, f(z) = Fr(z) — x vanishes on all of
Zyp, but not on all of Zy[(;—1], so it cannot be a polynomial in Qp,(¢4—1)[x]. Although we
could proceed with the larger class of “polynomials with automorphisms applied to their
indeterminates,” we prefer to work with polynomials in the usual sense. Therefore, we
shall define a slightly different averaging procedure that takes single-variable polynomials
to multivariable polynomials.

If f(x) € Qp[z] and t > 1, we define the t-trace-average of f(x), denoted T, f(x), to be
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the multivariable polynomial in Q,({,—1)[x] given by

Tif(xo, ..y Teo1) ZZf(ZFr .17’ h)-

7=0veV; heH

These polynomials are designed to be evaluated at elements of Z,[(,—1]¢ that are equal to

(a,Fr(a),...,Fr¢"!(a)) for some a € Z,[¢,—1], since

T f(a,Fr(a),..., Z Z f (Tr A 11)a)) (6.4)

7=0veW

for all a € Zy[(;—1]. The next lemma investigates how ¢-trace-averaging affects a polyno-
mial. The reader should recall the material from Section 2.5 on multisets, including the
definition of a Delsarte-McEliece multiset. The reader should also recall the compact nota-
tions introduced there, some of which were reviewed at the beginning of this chapter (just

prior to Section 6.1).

Lemma 6.9. Suppose that t > 1 and f(z) = Y., fiz" is a polynomial in Qplx] of degree
n. For each p € N[H], set py, =), cy, Fr¥(v). Then for all t,e > 1, we have

n

Tfx) = (- ity Y P (6.5)

|
=0 penm M
Ypu=0,|pl=i

Thus T, f(x) is of degree at most n. Ift =1 or e =1, then p,, =1 for all p € N[H]|, and

so we have

n . -
Tfx) = (-0 itfi Y. S
i=0 pEN[H] e

Ep=0,|p|=i

Proof. Since %; is Qp-linear, it suffices to consider f(z) = ™. Then we have

T f(x) Z (Z Fr ' 11) h)
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We want to sum over multisets of elements in H rather than sequences. Recall that if
€ N[H], there are 11 distinct ways of arranging the elements of y into a sequence of
K ! y M K

terms. Thus, we have

a2 ! ; Hh
=YY 3 BT (B¢ )
j=0veV; ,uEN[H] heH
|l
q—2

|ul=n
=n Z —X“ZFr“ ZFr“
M‘EI‘\][H} veVy
ul=n

and so, using the definition of p; , given in the statement of the lemma, we have

Tif(x Z pt’“X“ZFr“ u1) (6.6)

HEN[H]
lul=n

Let us examine the last sum in our last expression, i.e.,

This sum will be zero unless ), p'un =0 (mod g—1), i.e., unless Xy = 0, in which case

the sum is ¢ — 1. So, returning to (6.6), we have

p7

LX) =(¢g—n! Y ;,“ X,
uN[H]
Eu=0,lul=n

Thus (6.5) holds for any monomial f(z) = 2™, and so, by Q,-linearity, for any polynomial.
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If pu € N[H], the degree of x* is |u|, so the degree of the polynomial T, f(x) is not higher
than the degree of f(z). Furthermore, if ¢t =1 or e = 1, then V; = {1}, so that p;,, =1 for

all p € N[H]. O

Now we are ready to construct a polynomial approximating the characteristic function

of the ideal p?Z,[C;—1] in Zy[Cq-1]-
Proposition 6.10. Let m > 1. For each t,n > 1, let ¢ be the polynomial described in

Proposition 6.2. For eacht € {1,2,...,d}, set G&™ (x) = Tpglbmted=t)(x). Let

gy — P
) (p—1)¢?

dm) () (4 _ —d+1 = —d+i (im)
G\ (x) o +) p et (x)

=1

Then

1 (modp™) ifa=0 (mod p?),
™ (a,Fr(a),. .., Fr*"l(a)) mod 7) ¥ (mod #/)

0 (mod p™) otherwise,

for all a € Zp[¢y—1]- Let dp = [(m + (e — 1)d)(p — 1) + 1Jp?~! — 1. We can write

fm) = Z flsm)xu,

HEN[H]

where all the coefficients fﬁm) are in Qp(Cq—1). Thus, the degree of ) is at most dy,.

t:mted—t) gpproximates uniformly modulo p™ted—t the

Proof. Proposition 6.2 says that g
characteristic function of the ideal p'Z,, in Z,. We call this characteristic function F}, as in
Lemma 6.7. We shall show that G™) the averaged version of g(t’m+ed_t), approximates

the function F} defined in Lemma 6.7. By (6.4), we have

q—2
G (a,Fr(a),. .., Fr*"Ya)) = Z Z gbmred=t) (y( Z_lva))

7=0veV;

q—2
Z Z Ft(Tl"(Cgflva)) (mod pm-i-ed—t)

7=0veV;

Ft* (CL) (HlOd pm—i-ed—t)
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for each a € Zp[(4—1]. Thus

pd (d,m) e—1 pd * m
WG " (a,Fr(a),...,Fr " (a)) = mFd (a) (mod p™) (6.7)

for all a € Zy[(,—1], and for each i € {1,2,...,d — 1}, we have

p? q d+i (i
— m <p — 1) pi +1G(z’m) (CL7 Fr(a), . ,Freil(a))

d )
_(pf)w (Z — 1> p*d+szi*(a) (IIlOd pm). (68)

Now add congruence (6.7) and all the congruences (6.8) for i = 1,2,...,d—1, and then add

the constant —ﬁ <% — 1) p~ %! to both sides of the resulting congruence to obtain

£ (a,Fr(a),..., Fr*"}(a))
d

p q d—1 ‘
m [F;(a) - <p - 1> <pd+1 + Zderszi*(a))] (IIlOd pm)

i=1

for all a € Zy[(4—1]. By Lemma 6.8, the right-hand side of this congruence is J(a), where J
is the characteristic function of p?Z,[¢,—1] in Zp[¢,—1] - This proves that f(™)(x) takes the
values (modulo p™) we claimed on all of Zy[(;—1].

Lemma 6.9 shows us that for each i € {1,2,...,d}, we may write the polynomial
GO (x) = > uEBinm fo’m)x“, where B; ,, is the set of all Delsarte-McEliece multisets p €
N[H] such that |u| is less than or equal to the degree [(m+ed—i)(p—1)+1]p*~t—1 of the poly-

(i;m+ed=i) W claim that the maximum of these degrees is the degree of gldm+ed—d)

nomial g
ie., [(m+(e—1)d)(p—1)+1]p?~! —1, which is the value d,, defined in the statement of this

proposition. We prove our claim by showing that N (i) = [(m +ed —i)(p — 1) + 1]p*~t — 1
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is an increasing function of i for 1 <4 < d. Note that if 1 < i < d, then

N(@+1)=N@) =[(m+ed—i—1)(p—1)+1p" = [(m+ed—i)(p—1)+1p"!
=[(m+ed—i—1pp—1)+p—(m+ed—i)(p-1)—1]p""
=[(m+ed—i—1plp—1)—(m+ed—i—1)(p—1)p""
=(m+ed—i—1)(p—1)%""
> (m+ (e = 1)d)(p— 1)*p"

> 0.

Thus By, € Baym € -+ C Bgm. So each Gm) can be written G- = > G’ff’m)x“,

NeBd,m

and so f(™) can also be written

fm) = Z fﬁm)x“

/"GBd,m

= > LT

neN[H]

Thus the degree of f(™ is at most d,,,. We know from Proposition 6.2 that the coefficients
of each g™ (x) are in Q,. Thus the coefficients of G(*"™(x), and hence the coefficients of

™) (x), are in Qp(¢q—1) by the definition of the i-trace-average of a polynomial. O

This proposition gives us the counting polynomials that we shall use with Corollary 3.3

to estimate zero counts of words in GR(p?, e)[A].

6.4 Zero Count and Hamming Weight

We are now ready to investigate the p-adic behavior of zero counts of words in GR(p?, e)[A].
Throughout this chapter, we suppose that we have a code C C GR(p?, ¢)[A] and that S is
the minimal support of the Fourier transform of C. We suppose that S is not a subset of
{14}, i.e, that S contains an element of A that is not the identity. Otherwise we have a

trivial situation: C consists only of constant words, and then zer(c) = |A|zer(¢(14)) for all
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ceC.
Before we present our calculations, we define the parameter ¢,,.(C) first mentioned in
Section 1.1 of the Introduction. There ¢,,.(C) was defined using sequences; here we define

it (equivalently) using multisets. First we define
Apc(C) ={NeN[H x S]: IIN =14,pry A € N[{1a}],Xprg A = 0}. (6.9)

Note that the last condition on A states that A is Delsarte-McEliece. We claim that A,.(C)
is nonempty. By assumption there exists a € S with a # 14. Let n be the group-theoretic
order of a. Consider the multiset A with (¢ — 1)n instances of the pair (0,a) and no other
elements. This A is a unity-product but not all-unity multiset in N[H x S] with ¥ pry A = 0.
S0 Apme(C) # 0. Note that Lemma 2.16 tells us that all elements of A,,.(C) have cardinality
divisible by p — 1 and greater than or equal to e(p —1). For each A € A,.(C), we define the
tier of A, denoted Ti(\), to be

Ti (A) = max {o, LMJ —dfe — 1)} | (6.10)

Since Aye(C) # 0, we may set

mc = i A 11
melC) Aeglcl(c)| | (6.11)
and
. . Wmc(c) - ple }
Ume(C) = Ti(\) = 0, |22 2 | _dle—1). 6.12
(© = min_ Ti(Y) max{ [ | e 1) (6.12)

In Section 6.5, we shall show that when e = 1, these parameters wy,.(C) and ¢,,.(C) are the
same as the parameters with the same names defined in (4.31) and (4.32).

Now we can state and prove our p-adic estimates of zero counts. We start by combining
Corollary 3.3 with the counting polynomials from Proposition 6.10 to provide estimates

modulo an arbitrary power of p.

Proposition 6.11. Let C be a code in GR(p% e)[A]. Let m > 1 and let f0™)(x) be the

polynomial described in Proposition 6.10. For each ¢ € C, we let C be the element of
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Zp[Cy—1][A] such that C =7 0. For any c € C, we have

(m)
pry M!f, ~
Zernorm<c) = ‘A’ § (L[A)'pH)\ C()\) (mOd p?ﬂ)7

AEAm(C)
Ti(A)<m

where Apc(C) is as defined in (6.9).

Proof. Note that the polynomial f(™)(x) in Proposition 6.10 has the property that
£ (a,Fr(a),...,Fr*"Y(a)) = zer(n(a)) (mod p™)

for all a € Z,[C4-1]- Set dp, = [(m+ (e — 1)d)(p— 1) + 1]p?~1 — 1, which is the upper bound

on the degree of f(™)(x) given in Proposition 6.10. Then Corollary 3.3 tells us that

norm m é A m
zer"™(c) = | 4| E ,u!flg ) g )(\') (mod p™).
REN[H] AEN[H x S],pry A=p ’
IIA=14,pr4 AZN[{14}]

We may restrict the sum over u to the set of Delsarte-McEliece multisets with cardinality
less than d,,, because Proposition 6.10 tells us that f,ﬁm) = 0 if p does not meet these

additional conditions. So

norm m )\ m
zer"™ (c) = | 4| E u!f;s ) E )(\') (mod p™).
uEN[H] AEN[H x S],pry A=p ’
Su=0,|p|<dm IA=14,pry AgN[{14}]

Since the sum over A has the condition pry A = u, the condition ¥p = 0 in the first sum
can be replaced by the condition ¥ prg A = 0 in the second sum, which shows that the

second sum is the sum over those A € A;,.(C) with pry A = p. We use this, and the fact
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that |pry A| = ||, to obtain

norm m C~’ >\ m
zer"M(c) = |A] E ,U,!f‘L(L ) E )(\') (mod p™)
WEN[H] AEAme(C) T
|l <dm pry A=p

rg AT
a0 Y B a0y (med p)

Al
HEN[H]  AEAM(C)
A <dm,pry A=p

(m)
er)‘!fr A = m
=4 ) —PE2 C(\) (mod p™).

Al
AEAme(C)
M<dm

We claim that the condition |A| < dy, is equivalent to Ti(\) < m; showing this will finish
the proof. Note that Ti(A) < m if and only if L%J —d(e —1) < m, and this
is equivalent to |\ — p?~! < (m + d(e — 1))(p — 1)p?~!. This, in turn, is equivalent to

IA| < [(m+d(e—1))(p—1)+ 1]p?~!, which is equivalent to [A| < d,. O

This calculation leads immediately to an analogue of McEliece’s theorem for Abelian

codes over Galois rings.

Theorem 6.12. Let C be a code in GR(p?, €)[A]. With £,,.(C) as defined in (6.12), we have
zer™™(¢) = 0 (mod ptme(©)) for all ¢ € C. Equivalently, ham™™(¢) = 0 (mod pm(©)) for

all c € C.

Proof. If £;,.(C) = 0, then the claims of the theorem are trivial. So assume £,,.(C) > 0
henceforth. For each ¢ € C, we let C be the element of Z,[¢,_1][A] with C' = 70 & By
Proposition 6.11 above (setting m = £,,.(C)), we have

(€me(0))
pry Mfo, -
KIS Sl )A,p’“ C(\)  (mod p'me(©),

AEAM(C)
Ti(A) <lme(C)

zer"" ()

where f(éme(C))(x) is the polynomial described in Proposition 6.10, and A,,.(C) is as defined
in (6.9). By the definition of ¢;,.(C) as the minimum tier of any element of A,,.(C), the
sum on the right-hand side is empty, thus giving the desired congruence for zer"*™. The

congruence for ham"*™ follows immediately from the fact that ham"*™(¢) = —zer"™(c)
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for all ¢ € GR(p?, e)[A], as was shown in Section 2.4. O

For the remainder of this chapter, we shall see how these results compare with earlier
results in the special cases when d = 1 and e = 1. In the d = 1 case, we obtain in fullness
the theorem of Delsarte and McEliece [18]. When we set e = 1, we obtain a weakened form

of Theorem 4.18.

6.5 Comparison with Previous Work

At the beginning of this chapter, we noted that we are not aware of any generalization of
McEliece’s theorem to codes over arbitrary Galois rings. So we have no such results with
which to compare Proposition 6.11 and Theorem 6.12. Instead, we show here that we can
obtain previous results if we specialize to the case d = 1 (codes over ;) and to the case
e =1 (codes over Z/p?Z).

First we show that we can retrieve the theorem of Delsarte and McEliece from Propo-
sition 6.11 in the special case when d = 1. Before we proceed, we note that when d = 1,
we have Ti()\) = max {0, [@%J —(e— 1)} If we apply this to a Delsarte-McEliece ele-
ment A € N[H x A], then we note that |\| is divisible by p — 1 (see Lemma 2.16). Thus
Ti(A\) = max {0, ]J%‘l — e} for all A with ¥ pry A = 0 (and thus for all A € A;,,(C)). Lemma
2.16 tells us that nonempty Delsarte-McEliece multisets have cardinality at least e(p — 1),
SO

A

Ti(\) = o1 ° (6.13)

for all nonempty Delsarte-McEliece multisets A € N[H x A] (and thus for all A € A,,.(C)).
Now we are ready to present the Delsarte-McEliece theorem. Although the following

theorem is cast into our own notation and terminology, it is equivalent to the original.

Theorem 6.13 (Delsarte-McEliece [18]). Let C be a code in Fy[A]. For each ¢ € C, let
C' be the element of Zp[Cy—1][A] such that C = 7 0 &. Let Aype(C) and £ye(C) be as defined
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in (6.9) and (6.12). Then for any c € C, we have

I O CEC I DR c B PR IO NN

Al
AEAM(C)
Ti(A)=lme(C)

Zerl’lOl‘n’l (C)

where ! is a unit in Z, for each X\ € Apc(C) with Ti(X) = £ye(C). Furthermore,

C(\)

> o
AEAM(C)
Ti(A)=lme(C)

assumes values in Z,, and so zer"™(c) = 0 (mod p'm<(©)) for all ¢ € C. There is some

¢ € C such that zer™™(¢) Z 0 (mod pﬁmc(c)ﬂ),

Proof. Throughout this proof, we have d = 1, since our Galois ring GR(p?,e) is the field

[F,. We apply Proposition 6.11 with m = £,,.(C) + 1 to obtain

(pry MmO
Al ) ;'H C(\)  (mod plme@©+1y, (6.15)
AEA(C '
Ti()\):znfc()c)

Zernorm (C)

where fUme(©)+1)(x) is the polynomial described in Proposition 6.10, and where we have
used the fact that £,,.(C) is the minimum tier of the elements in A,,.(C) to rewrite the
condition Ti(A) < £pe(C) 4+ 1 in the sum as Ti(\) = e (C).

Let us examine the coefficients of polynomial f(me(€©)+1)(x). The only ones that actually
matter for our calculation are those of the form féﬁgi\(c)ﬂ) where A € Ay e(C) with Ti(A) =
lme(C). By (6.13), the last condition is equivalent to |A\| = (p — 1)(€nme(C) + €). So we are
interested in the coefficients fp(f"“(c)ﬂ) with u Delsarte-McEliece and |u| = (p—1) (e (C) +
e). For brevity we set n = (p — 1)(€ne(C) + €).

Since d = 1, Proposition 6.10 tells us that

Umc@+) (x) = L qUbne@+1) gy - _47P
/ (x) (p—1)q (x) (p—1)q

where

G Eme(C)+1) (x) = glg(l,fmc(C)Jre) (x)

)
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where, in turn, g(l’emc(c)“) (x) is the polynomial described in Proposition 6.2. There we
find that g(1fme(©)+e) () has degree n, and if we write g(Lfme(©)+e)(z) = > i—0 9527, then
nlg, = (—p)tme©te=1 (mod pfme(©)+¢), Lemma 6.9 tells us that if y € N[H] is Delsarte-
McEliece with |u| = n, then the coefficient of x# in G(1fme(©)+1)(x) is (q_luw. Thus, for

any Delsarte-McEliece multiset © € N[H] with |p| = n, we have

plg—1 1
flme©+D) = ( )n!gn—

(p—1qg " pl
Thus, returning to (6.15), we have
—1 Z(A
zer"™(¢) = |A’p(q )n!gn Z &') (mod pfme©)+1), (6.16)
(p—1yg xeroy M

Ti(A\)=Lme(C)

Recall that nlg, = (—p)ime©+e=1 (mod pfme(©)+e) and that |A| is always assumed to

be coprime to p. Thus we have

plg—1) plg—1) lmc(C)+e—1 Cmc(C)+1
A nlg, = —p)metITe mod p ’
Al e = 1410 (7) ( )
so that
-1 3
|A|p(q )n'gn = |A|(_1)8 1(_p)€mc(c) (mOd pévrw(c)""l)‘ (617)

(p—1)g

We now use the notion of reduction introduced in Section 2.6. We claim that all X\ €
Ape(C) with Ti(A) = £,,(C) are reduced. For if any A € A,,.(C) were not reduced, then
Red(\) € Ape(C) by Lemma 2.25, and furthermore (by the same lemma), |[Red(\)| < |A| —
(p—1), so Ti(Red(X\)) < Ti(A) by (6.13). Thus no A € A,,-(C) of minimal tier can be non-
reduced. This means that A! is a unit in Z,, for each A € A;,.(C) with Ti(X) = £,,,.(C). Since
scaled Fourier coefficients always lie in Zp[Cy—1], this means that > \cx ¢) Tioy=,m.(0) %
is in Zy[Cy—1], i.e., has nonnegative p-adic valuation. We use this fact and (6.17) in (6.16)
to obtain

norm e— é)\
e (e) = [A[(—1) ()@ 3 CA g e,

Al
AEAm(C)
Ti(A)=lrme(C)
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which is (6.14), which we were to show. Since }\cx  (¢) Ti(\)=tme(C) % has nonnegative

valuation, we always have
zer™™(¢) =0 (mod pime(©)),

For the rest of the proof, we define Ay to be the set of A € A,o(C) with Ti () = £y,c(C).
We shall show that >y, % assumes values in Z,. Since it assumes values in Zy[(y—1],
it suffices to show that it is fixed by Fr. We use the Frobenius action Fra introduced in
Section 2.7. Lemma 2.31 tells us that Frp restricted to A,,.(C) is a permutation of A,.(C).
By the same lemma, Fra preserves the sizes of multisets, so it also preserves their tiers.

Thus Frp restricts to a permutation of Ay, and so

CN) _ x~ C(Fra(n)
2 > (Fra(A)t

Al
AEA, AEA,

By Lemma 2.31, we have
$ C) _
|
AEA, Al

— Ty Z@

Al
V)

Fr(C(\))
Al
SV

A

This shows that our sum is indeed an element of Z,.
Finally, we must show that there is some ¢ € C such that zer"™(c) # 0 (mod p‘me(©)+1),
In view of (6.14), it suffices to show that
C(A
Z >(\') #0 (mod p)

AEA,

for some ¢ € C. We shall use the notion of collapse introduced in Section 2.6. Let R be a

set of g-class representatives of A. Note that ¢(a) € Fy for all a € A, so that é(a) is always
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zero or a power of 7m({y—1). Thus, by Lemma 2.20, we have

C(\ C(Cog(A
ZL:Z (Cogr(N))

Al Al '
/\EAg )\EA@

so it suffices to show that the right-hand side, i.e.,

C(Copr(A
Al
ANy
does not vanish modulo p for some ¢ € C. Note that the expression (6.18) is a Q)-linear

combination of terms of the form

Dy = H C(r)(CorN)r (6.19)
rERNS

where we have restricted the product to RN S in view of Lemma 2.19 and the fact that
A € N[H x S] for all A € Ay,e(C). Note that no two terms Dy and Dy with A\, \ € Ay have
exactly the same exponents for all the terms C(r), since that would imply that Cop(\) =
Cog()'). This, in turn, would force A = X, since A and X are reduced (see Corollary 2.26).
Also note that the exponent (Cog())), of C(r) in Dy is less than ¢ by the definition of
Copg. (Recall that e, denotes the cardinality of the g-class of 7 in A.) As we vary ¢ over all
words in C, Lemma 2.14 tells us that the values in {C(r) : » € RNS} vary over [[,.c prg Vo
where V(. is the set containing 0 and all the powers of (4er_1. Since no two elements of
Vb, are equal to each other modulo p, and since |Vp | = ¢°, which is strictly greater than
the highest exponent of C(r) appearing in any term (6.19) of (6.18), we may apply Lemma
2.33 to conclude that the minimum p-adic valuation achieved by (6.18) as ¢ runs through
C is precisely the minimum of the p-adic valuations of the coefficients % for A € Ay. But
we have already shown that each A! is a unit in Z,, so (6.18) does not vanish modulo p for

some ¢ € C. n

Now we show that if e = 1, i.e., if GR(p?, e) = Z/p?Z, we obtain a weakened version of
Theorem 4.18. We set e = 1 for the rest of this chapter. Thus we have ¢ = p and H = {0}.

If A € N[H x A], then ¥prg A = |A| = |Ao|, where these cardinalities are regarded as
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elements of Z/(p — 1)Z. Thus X is Delsarte-McEliece if and only if [A\g] = 0 (mod p — 1).
Since H = {0}, note that IT\ = II (A¢) and pry A = Ag. Thus our definition (6.9) of Apc(C)

is equivalent to
Ame(C) = {A € N[{0} x ] : TT(ho) = 14, Ao & N[{14}],[Xo[ =0 (mod p—1)}.
So the multisets in A,,.(C) are in one-to-one correspondence with the multisets in
Kine(C) = {r € N[S] : TIk = 14,k € N[{14}], || =0 (mod p — 1)},

by the correspondence ®: A,,.(C) — Kp,(C) that maps A to A\g. Note that K,,.(C) is
identical to the definition (4.30) of A,,.(C) used in Chapter 4 (but, of course, different
from the definition of A,,.(C) used here). The correspondence ® preserves the cardinality
of multisets, so that minyey,,.(c) [\ = Mmingeg,, )| Thus the parameter wp.(C), as
defined in (6.11) of this chapter, is identical (in the case e = 1) to the parameter of the
same name, as defined in (4.31) of Chapter 4. When we specialize our definition (6.10) of

tier to the case e = 1, we obtain

: A= p™! J }
Ti(A) =max< 0, | ————| -
W { {(p — Dptt
Note that this exactly matches the notion of tier used in Chapter 4 (see the discussion at
the beginning of Section 4.3). When e = 1, our definition (6.12) of ¢,,.(C) becomes

ne(C) = | i Ti() = max {0, {WJ } .

Thus the parameter ¢,,.(C), as defined here, is identical (in the case e = 1) to the parameter
of the same name, as defined in (4.32) of Chapter 4.
Now we are in a position to compare the specialization of Theorem 6.12 (when e = 1)

with previous results. Here is the specialization:

Corollary 6.14 (to Theorem 6.12, equivalent to Theorem 4.23). Let e = 1 and
let C be a code in Z/p?Z[A]. Let me(C) be as defined in (4.32) (or, equivalently as in
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Il
o

(6.12)). Then zer™™(c) = 0 (mod p‘me©)) for all ¢ € C. Equivalently, ham"*™ (c)

(mod pfm©)) for all ¢ € C.

We note that this corollary of Theorem 6.12 is Theorem 4.23, which was shown to be a
weakened version of Theorem 4.18 in Section 4.6. It is not surprising that we do not recover
our best results for codes over Z/p?Z from Theorem 6.12, for it uses the parameter £,,.(C),
which is sensitive only to the support of the Fourier transform of the code, but not sensitive

to the structure of the tower of supports of the Fourier transform.
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Chapter 7

Simultaneous Zeroes in F|A]

Let us recall that the Delsarte-McEliece theorem (Theorem 1.2) gives p-adic estimates of
the zero counts of words in an ideal (code) C of F,[A]. The version we record here is more
general than Theorem 1.2 of the Introduction; here we allow for the possibility that 14 is

in the support of the Fourier transform of our code.

Theorem 7.1 (Delsarte-McEliece [18]). Let C be a code in F4[A]. Let £,.(C) be as
defined in (6.12). Then zer"®™(¢) = 0 (mod p‘me(©)) for all ¢ € C, and there is some ¢ € C

with zer™™(c¢) Z 0 (mod pemc(c)-i-l).

Even this version is not as detailed as what Delsarte and McEliece actually proved; the
full version is given as Theorem 6.13 in Section 6.5. In this chapter we shall prove a gener-
alization (Theorem 7.14) of this theorem, which will p-adically estimate the simultaneous
zero count of a finite collection of words cy,...,¢; € Fy[A]. (See Section 2.4 for a definition
of the simultaneous zero count.) We recall the simplified version of Theorem 7.14 which

was presented in the Introduction.

Theorem 7.2 (Theorem 7.14, simplified). Let t > 1 and let Cq,...,C; be codes in
Fo[A] with 14 not in the supports of their Fourier transforms. Then zer(ci,...,ct) = |A]
(mod pzmc(cl"“’c’f)) forallcy € Cy,...,ct € Cy. There are some ¢y € Cq,...,c € Cy such that

zer(cy,. .., c;) Z |A| (mod plme(CroCo)F1),

In order to understand this theorem, one must recall the definition of ¢,,.(C1,...,Ct),
which was presented just before the statement of the theorem itself in Section 1.2. This

parameter was defined there using unity-product sequences that consisted of elements in
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the various supports of the Fourier transforms of the codes, along with the pth powers of
such elements. In this chapter, we shall define ¢,,.(C1,...,C;) equivalently using multisets
rather than sequences. In the special case where ¢ = 1, we shall recover the multiset-based
definition of ¢,,.(C) given in (6.12) of Chapter 6. As always, the reader must be familiar
with the definitions and notations for accounts in Section 2.5 to understand our presentation
of such matters.

To prove our generalization of the Delsarte-McEliece theorem, we shall devise counting
polynomials that will enable us to use Theorem 3.2 to p-adically approximate simultaneous
zero counts. The first four sections (7.1-7.4) of this chapter will be dedicated to the con-
struction of such polynomials. In Section 7.5, we shall employ them to prove Theorem 7.14
(the more precise version of Theorem 7.2 above). In the rest of the chapter, we show that
the theorem of N. M. Katz (Theorem 1.12) is a consequence of Theorem 7.14. In Section
7.6, we discuss the theorems of Chevalley-Warning, Ax, and N. M. Katz. In Section 7.7,
we discuss preliminary results that are used to obtain the theorem of N. M. Katz from
Theorem 7.14. This includes a refined analysis of the result of Kasami, Lin, and Peterson,
which states that punctured Reed-Muller codes are cyclic [28]. In Section 7.8, we prove the
theorem of N. M. Katz and an associated statement on the sharpness of the theorem.

Before we proceed with our polynomial construction, we set some definitions and nota-
tions that will hold throughout the chapter. We fix d = 1, so that our Galois ring GR(p?, e)
is the finite field F;. We set ¢ a positive integer and set I = {1,2,...,¢}. The set I will
index our collection of ¢t codewords ¢y, . .., ¢; € Fy[A]. In the next four sections (7.1-7.4), we
shall construct a counting polynomial in the te indeterminates in {x;,: i € I,h € H}. This
counting polynomial will be used with Theorem 3.2 to p-adically estimate simultaneous zero
counts in [F,[A]. For each i € I, we use x; to denote the list of indeterminates with first
index equal to 1, i.e.,

Xi = X305 Li, 1y -+ Lie—1-

Indeed, we adopt the convention (for the rest of the chapter) that if a is a letter, then the
boldface letter a will always indicate the e-tuple ag, . .., a.—1. Note that e-tuples of integers

can be identified with accounts on H: p € Z[H] is identified with the e-tuple po, ..., fre—1.
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We use x to denote our full list of indeterminates, i.e.,

X=X1,..,X¢

=T1,0,T1,1y-+-yT1,e—1,22,0,L2,15--+,L2e—1y---,Tt,0, Lt 1y, Tte—1-

We also adopt the convention that if a is any letter, then a will always indicate the ¢t-tuple

of e-tuples

al,..., = aLo, al,l, e ,al,e_l, ag,o, CL271, ceey a27e_1, ceey at’o, at,l, e ,am_l.

Note that t-tuples of e-tuples of integers can be identified with accounts on I x H, i.e.,
if u € Z[I x HJ, then we identify each p; € Z[H| with an e-tuple, as already noted.
Then p is identified with the t-tuple of e-tuples uq, ..., u;. We adopt the convention that
a® =ljen ai’f and aP = [Linerxn a?,iizh-

We devise a function for measuring the size of Delsarte-McEliece multisets in N[H].
Recall from Lemma 2.15 that all Delsarte-McEliece multisets have cardinality divisible by
p — 1, and that the nonempty ones have cardinality at least e(p — 1). We introduce the

symbol oo and define W: Z — N U {oco} by

0 if n =0,
W(n) = g —¢ ifp—1[nandn=>e(p—1), (7.1)
00 otherwise.

In conjunction with calculations involving this function, we use the convention that oco plus
anything is 0o, and that oo is greater than any integer. We extend the definition of W so
that if a1, ..., a; is a t-tuple of integers, then W(ay,...,a;) = W(ay) + -+ W(ay).

Since W is used to measure cardinalities of multisets, we make special notations to
streamline its use in such cases. If u € Z[H], then we define L(p) = W (|u|). Note that
Lemma 2.15 implies that L(u) < oo if u is a Delsarte-McEliece multiset. If pq,...,

is t-tuple of accounts in Z[H]|, then we define L(p1,...,ux) = L(p1) + -+ + L(pug) =
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W(|ual, .-, |pk])- An account v € Z[I x HJ is considered to be the t-tuple vy,..., 14 of
accounts in Z[H], so we have L(v) = > ,.; W(|vi]).

We transplant the streamlined notations of the last paragraph to accounts in Z[H x A].
If A € Z[H x A], we set L(A) = W(JA|). If A1, ..., A\ is a t-tuple of accounts in Z[H x A], then
we set L(A1, ..., ) = W(|A1]) + -+ W(|A¢]). An account k € Z[I x H x A] is considered
to be the t-tuple k1, ..., s of accounts in Z[H x A], so we have L(k) = > ,.; W(|r4|).

Throughout this chapter, we always use Tr (without indices) to mean Tr{. Thus Tr
denotes the trace from F, to F), and the trace from Q,((,—1) to Qp, where context indicates

which version is being used.

7.1 Averaged Polynomials

The goal of Sections 7.1-7.4 is the construction of a counting polynomial f™) (x) € Q,[x]

that has the property that

0 otherwise,

for all a1,...,a; € Zp[(q—1]. We essentially use the trace-averaging method of Chapter 6,
although we do so in a somewhat more careful fashion to simplify our calculations later.
In our constructions, we use averaged versions of the binomial coefficient polynomials.

We set

(= ()
n p—1 P n
This polynomial maps Z, into Z, since (fb) maps Zjy, into Z,. It is easy to see the effect that

this form of averaging has on polynomials; we record it as a lemma without proof.

Lemma 7.3. Let f(z) =Y 1 fiz" € Qplz]. Then

-2

1 X ; ;
S G = Y s
p §=0 0<i<n

p—1|i
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In particular, {Z} involves only monomials whose degrees are multiples of p — 1.

We introduce another form of averaged binomial coefficient polynomial. Set

e o e SIS

=0

Note that [%’} = 1. The following lemma shows how [ﬁ can be used to map an element of

Zp|Cq—1] into Zy,.

Lemma 7.4. For each a € Zy[(q—1], [a’Fr(a)"';l’Fre_l(a)} = q,% q:g (TY(Cé_la))7 which is an

element of Zy.

Proof. For a € Zp[(4—1], we have

a,Fr(a),. .. ,Frel(a)] 1 <

n

Since ¢} ja is in Zy[Cy—1], its trace is in Z,, and (;;) maps Z,, into Z,. O

Now we are ready to see how the form of averaging used in the definition (7.2) of m

affects polynomials.

Lemma 7.5. Let f(z) =Y 1 fiz" € Qplz]. Then

q—2 n
Z (Zc;”lyh>:2ﬂfi >

j= heH 1=0 HEN[H],|p|=1
Yu=0

}_n

Proof. By linearity, we may assume that f(z) = ™. Then

15(24‘(57’1%) =*Z > quyh

i heH 7=0 hi,...hn€H i=1
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We recast the final sum as a sum over multisets rather than sequences to get

1§<quyh> :152 ik quh

J heH 7=0 ueN[H heH
lul=n

where we recall that a multiset u € N[H] of cardinality n can be arranged into n!/u! distinct

n-tuples of elements in H. Then, using our compact notation y*, we have

q—2 . q—2
S (Tan) <Y w e

j=0 \heH J=0 pueN[H] 'heH
lul=n
q—2 E
— | ] heHMhp
w Y L)X
UEN[H] J=0
|ul=n
"
—n! Z Y-
ut’
REN[H],|p|=n
Yu=0

where the last equality comes about since the sum over j will be ¢ — 1 or zero, respectively,

depending on whether ¥y = 0 or not. O

This gives rise to the useful observation that m vanishes entirely for certain values of

Corollary 7.6. For 0 <n <e(p—1), [Y] =0.

Proof. Suppose that 0 < n < e(p —1). Then f(z) = (?) is a polynomial of the form
f(z) =371, fiz". So [Y] = 0 follows from Lemma 7.5 and the fact (from Lemma 2.15) that

there are no nonempty Delsarte-McEliece multisets of cardinality less than e(p — 1). O

Now we know enough about our averaged binomial coefficient polynomials to employ
them in the construction of counting polynomials.
7.2 Polynomials on 7Z,

Our first step in the construction of the polynomial f(™(x) described at the beginning of

Section 7.1 is to make a version of f(™)(x) in the special case when t = 1 and e = 1. The
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latter condition means that ¢ = p, so that (,—1 is a root of unity of order p — 1, and so
Zp|Cq—1] = Zy. So we seek a polynomial ™) () that maps pZy, into 1 + p™Z,, and maps

the units of Z, into p™Z,. Fortunately, such a polynomial has already been found.

Proposition 7.7 (Wilson [66], [65]). For any m > 1, there exists a polynomial

with each f; € Zy, and with the property that

1 (mod p™) ifa=0 (mod p),
fla) =

0 (mod p™) otherwise,

for all a € Zy,. Furthermore vy(f;) > k whenever i > k(p — 1). In addition, fy = 1 and

Trp—1) = (—p)k_l (mod pk) when 0 < k < m.

Proof. A polynomial with all the desired properties is given by Corollary 4.13, specialized

with t = 1. O

For the purposes of keeping our calculations simple, we shall want a counting polynomial
whose form is slightly different from that of the polynomial we just obtained. We can
construct a polynomial of the same degree, but with the added property that it has an
expansion in terms of the functions {(pfl)k}. To do this, we shall employ the following

result:

Lemma 7.8. Ifn >0, then

for some coefficients ci, € Zy.

Proof. We proceed by induction on n, with the n = 0 case trivial. In fact, all cases where
p — 1 | n are trivial. So suppose that n > 0 and p — 1 t n. As our induction hypothesis,
we assume that if m < n, then {:1} is a Zp-linear combination of the polynomials {(p fl)z.}
with (p —1)i < m.
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By Lemma 7.3, {i} has degree strictly less than n. We can write {fl} as a linear

combination of the binomial coefficient polynomials

{1-5() 9

where ¢y = {2} and ¢; = {1]1} — E{;& C; (z) for 0 < j < n. These ¢; are elements of Z,, since

<

{*} maps Z, into Z,. We average both sides of (7.3) to obtain

-2 n—1
- 29N [
p—le=1 n J

Jj=0

But Lemma 7.3 shows that {2} has only monomials whose degrees are divisible by p — 1,

so that by the same lemma, we have ﬁ Zi;g {Cﬁalz} = {fL} Thus

(-5t

J=0

Now the induction hypothesis shows that the terms {f} on the right-hand side are Z,-linear

combinations of functions {k(px_l)} with k(p —1) <n — 1. O
Now we can obtain the polynomial we want.

Proposition 7.9. For each m > 1, there exists a polynomial

hoy= Y hi{”f }
0<i<m(p-1) '
p—1Ji
with each h; € Zp, ho = 1, hj;_1) = (—p)?~! (mod p?) for 0 < j < m, and with the
property that

1 (mod p™) ifa=0 (mod p),
h(a) =

0 (mod p™) otherwise,

for all a € Zy.
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Proof. Let f(z) = Zﬁ(g -U fi (f) be the polynomial furnished by Proposition 7.7. If we set

then since v,((p—1) = 0, we have f((gfla) = f(a) (mod p™) for all a € Z;, and j € N. Thus
g(a) = f(a) (mod p™) for all a € Z,,.

By Lemma 7.8, g(x) can be written as
x
glx) = > gi{i},

where g;(,—1) is of the form

m(p—1)
Gitp—1) = fip—1) + Z i fi,
j=i(p—1)+1
for some coefficients c; € Z;,. Since vy,(f;) > i for j > i(p — 1), we have g;,_1) = fip-1) =

(—p)*~! (mod p*) for i > 0. Note that go = g(0) = f(0) =1 (mod p™), so that if we set

T
hz)=1+ Y gi{i},
0<i<m(p—1)
p—1Ji

then h(a) = g(a) = f(a) (mod p™) for all @ € Z,. This h(z) has all the properties we
seek. ]

7.3 Polynomials on Z,[(, 1]

In Proposition 7.9, we obtained a polynomial that approximates uniformly modulo p™ the
characteristic function of the ideal pZ, in the ring Z,. In this section, we want to generalize
this to obtain a polynomial that approximates uniformly modulo p” the characteristic

function of the ideal pZ,[(;—1] in the ring Z,[(;—1]. In terms of our goal for Sections 7.1-
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7.4, i.e., the polynomial f(™ (x;) described at the beginning of Section 7.1, this section

provides the construction of f(™ in the special case when ¢ = 1, just as the polynomial

we found in Proposition 7.9 is the special case of f(™) when ¢t = 1 and e = 1. This last

polynomial will be the foundation of our construction here.

We shall begin to use the multivariable polynomials m in this section. Consider the

averaging procedure that is used to obtain m from (fl) It is essential to the upcoming

construction to note that if we apply this procedure to {fl}, then we also obtain B’Z ]

Lemma 7.10. For any n > 0, we have
1 Z > hen Cq 1?/h y
q—1& n n|

Proof. Sincep—1|qg—1, (-1 = Cqrq for some integer m. Thus

=0 q_lk:op_ljzo
—2 q—2
1 ”Z 1 <
p_ljzoq_lkzo
p—2 q—2
_ 1 3 1 <ZheH
p_lj:Oq_lk:O
p—2 q—2 hk+
p_ljzoq_lkzo
-2 q—2
1 ”Z 1 <
p_ljzoq_lkzo
q—2
_ 1 ZheHCq 1Yh
qg—1 n
k=0

I
L
S <
—_

n

n

n

phj phk
p—15g—1

ZheH Cq 1yh)

‘Ii {zhech y} 1 1 (czlzheHcgh’iyh>
1

> heH Cp 16¢— 1?Jh>

")

Now we use this averaging method to construct the polynomial we want.

The con-

struction is a refined variation on the d = 1 case of Proposition 6.10. To understand this

construction, given as the next proposition, the reader should recall the definition of the

function W given in equation (7.1) above.
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Proposition 7.11. For each m > 1, there exists a polynomial

hy)= > hi[ﬂ,

i€EN
W (i)<m

with each h; € Zy, ho = 1, hi = (=1)"H(=p)" @ (mod pW O+1) for each i > 0, and with

the property that

1 (mod p™) ifa=0 (mod p),

h(a,Fr(a),...,Fr*Y(a)) = (7.4)
0 (mod p™) otherwise,
for all a € Zp[Cy—1].
Proof. Let f(z) be the polynomial of Proposition 7.9 that has
1 (mod p™te=1l) ifa=0 (mod p),
fla) =
0 (mod p™*t¢~1) otherwise,
for all a € Z,. Set g(y) = ;1-;8 X hen Cé’fiyh). Then for each a € Z,[(4—1], we have

_ —2 ]
g(a,Fr(a),...,Fr*"1(a)) = Z?:o (Tr(¢]_a)).

Note that Tr maps Z,[(,—1] into Z,,, and recall that Tr commutes with reduction modulo
p. If a € Zp[(4—1] with a = 0 (mod p), then (g_la (mod p) is 0 in [, for all j, and so
Tr((éfla) (mod p) is 0 in [, for all j. Therefore f(Tr( gfla)) = 1 (mod p™*te~1) for all
4, and so g(a,Fr(a),...,Fr*1(a)) = ¢ — 1 (mod p™*+e1) for all a € Z,[¢,—1] with a =0
(mod p).

On the other hand, if a € Z,[(4—1] with a # 0 (mod p), then nga (mod p) runs
through the units of F; as j runs from 0 to ¢ — 2. Since Tr is a F,-linear map from [F, onto
Fp, Tr(Cg_la) (mod p) runs through F,, taking each nonzero value precisely ¢/p times and
taking the value zero precisely (g/p) — 1 times. Thus g(a,Fr(a),...,Fr*"1(a)) = (¢/p) — 1
(mod p™te=1) for all a € Z,[(,—1] with a #Z 0 (mod p).

Now we set h(y) = Lr5,9(Y) — =fj5> so that h(a, Fr(a), ... ,Fre=1(a)) is the desired

value modulo p™ for each a € Zy[(;—1] (as in (7.4)). It remains to show that h(y) has the
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desired form. Recall that the polynomial f(z) supplied by Proposition 7.9 has the form

x
f@)y= > fi{ Z. }
0<i<(m+e—1)(p—1)

p—1]s

where each f; € Zy, fo =1, and fj,_1) = (—p)’~! (mod p’) for 0 < j < m+e—1. Then

q—2 kph
oo ¥ R
0<i<(m+e—1)(p—1) k=0
p—1|i

D R [y]
0<i< (mte—1)(p—1)
p—1Ji

where we have used Lemma 7.10 in the second equality. Now fy = 1, so that
y pla—1) |y
=[]+ ¥ sl
0<i<(m+e—1)(p—1)

p—1Ji

Corollary 7.6 above shows that B’] =0 when 0 <i < e(p—1), so that

—ly
=[]+ = apep]
0 e(pq)gig(qnflte,l)(pfl) (p—1)g i
p—12

Then observe that the last sum indexes over all strictly positive integers i for which W (i) <

m. Furthermore, for any such integer i, we have f; = (—p)"/®~)=1 (mod p"/ =), so that

fim = (-1 (=p)"?  (mod p"" @), O

7.4 Counting Polynomials

Now we are ready to construct the polynomial f(™(x) announced at the beginning of
Section 7.1 as the goal of Sections 7.1-7.4. We shall use this polynomial to derive our
generalization of the Delsarte-McEliece theorem. We build on the polynomial furnished by

Proposition 7.11, which is the special case of f("™) when ¢t = 1.
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Proposition 7.12. For any m,t > 1, there exists a polynomial f(™ (x) with coefficients in

Qp and variables in {x;, :i € I,h € H} such that

1 (mod p™) ifar=---=a; =0 (mod p),
0 (mod p™) otherwise,
for all ay,...,a; € Zp[Cy—1]. Furthermore, f™)(x) is of the form
m _ (m) X
LD S | find (7:6)
i1,...,it€N j=1L%
W(il,...,it)<m
with each cgﬁ)”7it € Zyp, co,..0 =1, and
A = ()T (W) (mod pF it (77)
We can also write
fm) (x) = Z ﬁm)éﬂa (7.8)
neN[I x H]
Yur=--=2ut=0
L(p1,...,put)<m
where each fﬁm) € Qp.
Furthermore, if u € N[I x H] with ¥p3 = -+ = Xy = 0 and L(py, ..., u) = m — 1,

i.e., if i is a t-tuple of Delsarte-McEliece multisets with W (|p1|) + -+ + W (|ue|) = m — 1,

then fﬁm) = 70‘“1';!"‘“” , so that

t . — m
M‘f[[&m) = (_1)(6—1) ijl(l_(s(“‘]lvo))(_p)m 1 (mod p )

Proof. Let

hy)= Y h m

€N
W(i)<m

(7.9)

be the polynomial furnished by Proposition 7.11. Note that hg = 1 and h; € Z, with

vp(hi) = W (i) for all i. Then set g(x) = h(x1)---h(x¢). Note that g(x) takes the values
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modulo p™ that we desire on Z,[(,—1]" (as in (7.5)), and it has the form

t
{Xj]
.|
1 L

9(x) = > hiy - - - hi,
01,..,0t EN 7
W (i1),....W(it)<m

with each h;, -+~ h;, € Zy, bl =1, and

hiy iy, = (—1)E D Eim(07005.0) (_pyWineit)  (od pW (i +1),
The only way in which g(x) might not comply with the conditions we seek in (7.6) is that

it might contain some terms of the form

t
.
ho-ot TT ]
j=15"

for which W (iy) + --- 4+ W(i¢) > m. For these terms, h;, - --h;, vanishes modulo p™, and

note that [¥/] maps each point (a, Fr(a),...,Fr°"!(a)) € Zy[(4—1]¢ into Z,. So we may drop

5
these terms without changing the value modulo p™ that the polynomial takes at relevant

points in Zy[¢,—1]*. That is, set

f(x) = > hiy - - - hi, ! [jﬂ

i1,..,0t EN 7
W(i1)+-+W (i) <m

This shows that there is a polynomial of form (7.6) that satisfies (7.5).
To get the second expression for f(x), use Lemma 7.5 to write

t

X

T — E 1 ot
[} - F.“flv-w/»ltxl X,
L

J=1 B, it EN[H]
[p1]<in,.. |pe | <ie
Ypr=--=2pu=0
where each 'y, . ., € Qp. We do this for all such terms with W (i1, ...,4;) < m, since these

are the ones appearing in (7.6). Note that since each p; in our expression is a Delsarte-

McEliece multiset, we have L(u;) # oo. Since each |u;| < i;, we have L(u;) < W(i;), and
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so L(p1,...,ue) < m. Therefore, whenever iy, ..., iy € N with W (iy,...,4) < m, we have

t
Y
N - H1 e
[,}— E G-yt
1 LU

J HeN[I x H]
L(p1,epit)<m
Sty ==Yy, =0

for some coefficients G, € Q,. We may substitute this into the first expression (7.6) for
f(x) to obtain the second expression (7.8) for f(x).

Suppose we have a t-tuple p = (u1,...,ut) of Delsarte-McEliece multisets with L(p1,

..y ) = m — 1. Then Lemma 7.5 shows that there is no x* = x/"---x}" term in the

polynomial H§:1 [’;ﬂ] unless i; > |p;| for all j, and unless i; = 0 for all j such that |p;| = 0.

(For the second condition, note that (fl) has no constant term unless n = 0, so that m has

no constant term unless n = 0.) If i; > |u;| for all j and 45 > || for some particular ,

then either we have iy, > |ug| = 0, or we have W (iy,... i) > L(p1,..., ) = m — 1. Thus,

if we are considering H;-Zl [’:j] where W (i1,...,4) < m, then there is no x* = z/* - - z}"

term unless i; = |u;| for j = 1,...,t. In this case, Lemma 7.5 tells us that the coefficient
. t 1 e TTE L 1 . .

for the term x# = x}* - x}" in [[;_, [Ift;\] is [[j—1 7,1 = 71+ So if we compare (7.6) with

(7.8), we see that
(m)

Clplliel — p(m)
pto TR
The congruence (7.9) for p! f,gm) then follows from this and (7.7). O

With this polynomial, we are now ready to prove our generalization of the Delsarte-

McEliece theorem.

7.5 Simultaneous Zero Count in F [A]

For the remainder of this chapter, we suppose that we have a family of codes Cy,...,C; C
F,[A]. For each i € I, let S; be the minimal support of the Fourier transform of C;. We
suppose that not all the S; are subsets of {14}, i.e., that at least one of the S; contains
an element of A that is not the identity. Otherwise we have a trivial situation: each C;

consists only of constant words and then zer(ci,...,c;) = |A|zer(¢i(14),...,¢(14)) for all
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C1 ECl,...,Ct ECt.
Before we present our calculations, we define the parameter ¢,,.(Cy,...,C;) first men-
tioned in Section 1.1 of the Introduction. There £,,.(C1, . ..,C;) was defined using sequences;

here we define it (equivalently) using multisets. First we define

Ame(Cry. .., C) ={NEN[I x H x A] : pry(A1) € N[S1],...,pra(M) € N[xS],

AN =14,prag A€ N{1a}],Xpry(A) =---=Zpry(\) =0}, (7.10)

We claim that A,,.(C1,...,C;) is nonempty. By assumption we have some k € I such that
there exists a € S; with a # 14. Let n be the group-theoretic order of a. Consider the
multiset A that has (¢ — 1)n instances of the pair (k,0,a) and no other elements. Then A
is a unity-product but not all-unity multiset in N[I x H x A]. Furthermore \; € N[H x S;]
and Xpry(A\;) =0 forallie I. So A € Ape(Cy, ..., Ct). Since Ape(Cr, ..., Cr) # 0, we may
set

lne(Cr,. .., C) = i L(\). 7.11
(€)= min L) (7.11)

Note that if A € Ape(Cy,...,Ct), then \; is a Delsarte-McEliece multiset for each i, so
L(X) = L(A1, ..., \) is always finite and nonnegative by the comments following (7.1). At
the end of this section, we shall show that when ¢ = 1 the parameter ¢,,.(C1,...,C;), as
defined here, is the same as £,,,.(C1), as defined in (6.12).

To p-adically estimate simultaneous zero counts in Fy[A], we combine Theorem 3.2 with

Proposition 7.12.

Proposition 7.13. Let t,m > 1, let f(")(x) be the polynomial described in Proposition

7.12, and write
)= Y e,

HEN[I X H]

where each f;sm) € Qp. For each c1 € Cyi,...,¢c; € Cy, let Cq,...,Cy be the elements of
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ZplCqy—1][A] such that Ci=710¢ for each i. Then for each ¢ € Cq,...,c; € C¢, we have

t
norm m pr A)! =~ m
e, ey= )Y PRI A ) (mod p)
AEAm(CryeesCt) ) i=1

L(X)<m

where Apc(Ci, ..., Ct) is as defined in (7.10) above.

Proof. Note that if f(™) (x) is the polynomial described in Proposition 7.12, and ay,...,a; €
Zp[Cq—1), we have f ({zip =TFr"(a;)}) = zer(m(ar),...,m(ar)) (mod p™). Thus we may

apply Theorem 3.2, to obtain

norm 1 ~
zer"™™M (e, ... ) = |A| Z pt i) Z N Hci(/\i) (mod p™).
HEN[I x H] XeN[IxHxA],pryy g A=p el
IA=14,pr 4 AZN[{14}]
pr 4 (A1)EN[S1],....pr 4 (Ae) EN[S¢]
We can restrict the sum over p to those p with L(p) < m and Ypup = -+ = Xy = 0,

since f,gm) = 0 otherwise (see Proposition 7.12). With this restriction on yu, the condition
Prry g A = p implies that ¥ pry(A;) = 0 for all ¢ € I. Thus the inner sum on the right-hand

side sums over those A € A,,.(C1,...,Ct) with pry g A= p. So

1 .
zer"™(cy, ..., ¢) = |A] Z M!f,sm) Z + 11 Ci(Ai)  (mod p™)
wEN[Ix H],L(p)<m AEAme(C1,..,Cr) ~ GET
Spr=--=3%,,=0 Pryy g A=
(pr A)! ~ m
S D DD DR A v | (SICORCTFOOE
REN[IXH] AEAmc(Ci,...,Ct) ' iel
L(p)<m Pryx g A=

The condition A = pry, ; p also implies that the condition L(x) < m in the first sum can

be replaced with the condition L(A) < m in the second sum, and so

norm m pr A)! ~ m
zerm(ey, ey = 4] Y T g (IX;)H@(M (mod p™)

PEN[IXH] AEAme(CryniCe) icl
L(A\)<m,prjy g A=p

SV TR D MH@W) (mod p™).

Prrscp A A
AEAme(Ce,...,Ct) iel
L(\)<m

Now we can prove our generalization for simultaneous zero counts of the Delsarte-
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McEliece theorem.

Theorem 7.14. Lett > 1 and let Ape(Ch,y ..., Ct) and lpe(C, . .., Cy) be as defined in (7.10)
and (7.11) above. For eachci € Cy,...,c; € Cy, let Ch, ..., Cy be the elements of Zy[(y—1][A]

such that C; = 70 ¢; for each i. Then for each ¢y € Cq,...,c; € Ct, we have

t
Zernorm(Ch o 7Ct) = pZmC(Cl,...,Ct) Z F)\ H éz(Az) (mOd pfmc(CLA..,Ct)-l-l),
)\EAmc(cla---vct)v =
L()\):ch(clz-“vci) ( )

7.12

where

A _ _s(Ih
I, = |)\'|( )€ COHe=1) Sy (1=8(1Ai]0))

Iy is a unit in Zy for each A\ € Apye(Cr, ..., C) such that L(A) = €pe(Ci,...,Ct). Further-

more,

t

>, Dlam
)\eAmc(Cly-“aCt)’ i=1
L(N)=lmc(C,..,Ct)

assumes values in Zy, and so zer"™(cy,...,c¢;) = 0 (mod ptme(CCY for all words ¢; €

Ci,...,ct € Ci. There are some ¢1 € Ci,...,¢c¢ € C¢ such that zer™™(cy,...,¢;) Z 0

(mod pemc(CLu-,Ct)‘l’l) .

Proof. Throughout this proof we use /,,. as an abbreviation for £,,.(Cy,...,C;). We apply

Proposition 7.13 with m = £,,. + 1 to obtain

2! t
zer™™ (e, ... ) = A Z féﬁchrl) prIXH H Ai)  (mod pe’m“)a (7.13)

T A
)\eAmc(CLN-,Ct) i=1
L=t

where f(fme(©)+1)(x) is the polynomial described in Proposition 7.12, and where we have
rewritten the L(A) < £, + 1 condition in the sum as L(\) = £;,., since £, is defined to be
the minimum value of L(A) for any A € Ape(Cy, ..., Cy).

We investigate the coefficients of polynomial f (ZWH)(;). The only ones that actually
matter for our calculation are those of the form fy;, ., A for A € Ape(C) with L(A) = £y
Since L(pry,g A) = L(\) by the definition of L, this means that we need only consider

f;(fmCH) with L(p) = lpe. Further, we can narrow our attention to those f(emCH) with
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all of uy,...,us Delsarte-McEliece, since A € A,,.(Cy,...,C;) implies that (pry gz A); is

Delsarte-McEliece for all ¢ € I. Then Proposition 7.12 tells us that for all such p, we have
— t_ — .
'u,'flgm) = (_1)(6 1) ]:1(1 5(‘#]'70))(_p)zmc (mod pzmc‘i‘l).
So for all A € Ap,e(Cy,...,Ct), we have

(prys g ML) = (1) =D 5 000N L0) (_pylme (mod plmetl), (7.14)

Prrxg A

where we have noted that |(prle )\)j‘ = |prg(A)| = |Aj].

We now use the notion of reduction introduced in Section 2.6. We claim that all
A € Ape(Cy, ..., Cy) with L(X) = £y are reduced. To see this, let us suppose that xk €
Ane(Cy, ..., Cy) with £ not reduced. Then Red(k) € Ape(Cy, ..., Ci) by Lemma 2.28, and fur-
thermore (by the same lemma) |[Red(x)];| < |k;| for all i € I, and |[Red(k)];| < |xj|—(p—1)
for some j € I. This means that x; # (), and so by the same lemma, Red(k;) # 0, so that
L([Red(r)];) < L(k;) — 1. Of course L([Red(k)];) < L(k;) for all i € I, so we have
L(Red(k)) < L(k) — 1. Since Red(k) € Apne(Cy,-..,Ct), this means that L(Red(k)) > e,
and so L(k) > lpe. This completes our proof that all elements A in Ay,.(Cy, ..., C¢) with
L(X) = Uy are reduced.

Since all A € Ape(Cr, ..., Cr) with L(X\) = £y, are reduced, A! is a unit in Z, for each

such A. In particular, recall our claim in the statement of the theorem that the terms
A DS (1—8(Du
T = |M|(_1)fmc(c1,...,ct>+<e DY, (1-5(7:10)
are units in Z, for all A\ € Ay,c(C1,...,C;) such that L(\) = £,.. This is now clear. Also
note that the scaled Fourier coefficients C;(a) always lie in Z,[C, 1], so that 3 [ Lier Ci(\)

is in Zp[(q—1], i-e., has nonnegative p-adic valuation, for all A € Ay,(Cy,...,C;) such that

L(\) = pe. We use this fact, the congruence (7.14), and the definition of 'y to deduce
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from (7.13) that

t
Zernorm(cl’ L )Ct) = pgmc Z )\ H éz()\z) (mod pémc+1), (715)
AEAm(Cr,...,Ct) =1
L(N)=tm

which is the first congruence (7.12) that we were to prove. Since the coefficients I' occurring
in the sum on the right-hand side are units in Z, and since the scaled Fourier coefficients

are always in Z,[(y—1], the right-hand side vanishes modulo plme to give
zer™™(cy, ..., ¢;) =0 (mod pme).

For the rest of the proof, we define Ay to be the set of A € Ape(Cy,...,C) with
L(A) = lpe. We now show that >y x, IaTlies Ci(\i) assumes values in Z,. Since it
assumes values in Zy[(y—1], it suffices to show that it is fixed by Fr. We use the Frobe-
nius action Frp introduced in Section 2.7. By Lemma 2.32, we note that Fra restricted to
Ape(Cy, ..., Cy) is a permutation of Ap,(Cy,...,C;). We also note that |[Fra(A)];| = |\ for
all X € Ape(Cr,...,C) and i € I, so that L(Fra(X)) = L(A) for all A € Ape(Cr,...,Ch).

Thus Frp permutes the elements of Ay, and so
DTG = ) Tryon [T CilFra()])
NeA, el AeA, iel

From Lemma 2.32, we have learned that |[Fra(A\)];| = |\ for all ¢ € I, and we also learn
that (Fra(A))! = Al Thus, T'p,, (n) = 'y for all A. Using this fact and invoking Lemma 2.32

again on the product [[,.; Ci([Fra(N)]:), we have

S G ZFAFY([! (A))

AEA, el AEA,

where we have used the fact that I'y € Z, in the second equality. This finishes the proof

that Z)\EAZ I Hie[ C’z()\z> is in Zy.
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To finish the proof, we must show that there are some ¢; € Cy,...,¢; € C¢ such that

zer™™ (¢, ... ;) Z 0 (mod pfmetl). In view of (7.12), it suffices to show that

S A JCin) #0  (mod p)

NeA, el

for some ¢; € Cq,...,¢; € C;. To do this, we shall use the notion of collapse introduced in
Section 2.6. Let R be a set of g-class representatives of A. Note that C’i(a) is zero or a
power of 7((,_1) for each i € T and a € A, since C;(a) is the Teichmiiller lift of &(a) € F.

By Lemma 2.20, we have

Z FAHCN'Z()\Z) = Z F)\Héi(COR()‘i))a

AEA, i€l AEA, i€l

so it suffices to show that the right-hand side, i.e.,

> ][ Ci(Cor(n)) (7.16)

AEA, el

does not vanish modulo p for some ¢; € Cq,...,¢; € C;. Note that the expression (7.16) is

a Zy-linear combination of terms of the form

Dy=]] ] Ci(r)(Corrr, (7.17)

i€l reRNS;

where we have restricted the second product to RN S; in view of Lemma 2.19 and because
Ai € N[H x S;] for all A € Ape(Cy,...,C) and @ € I. Note that no two terms D) and
Dy with X\, ) € A, have exactly the same exponents for all the terms C’i(r), since that
would imply that Cog(A;) = Cogr(A}) for all i € I, which would force A = X, since A and
N are reduced (see Corollary 2.26). Also note that the exponent (Cog()\;)), of Cy(r) in
D) is less than ¢ by the definition of Cog. (Recall that e, denotes the cardinality of
the g-class of r in A.) For each i € I, as we vary ¢; over C;, Lemma 2.14 tells us that
the values in {C‘Z(r) :r € RN S;} vary over HTGRO& Vo,r where Vp, is the set containing

0 and all the powers of (ger—1. So as we vary ci,...,c; over C; X --- X Cy, the values in
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{Ci(r) : i € I,r € RN S;} vary over [[,c; [I,erns, Vor- Since no two elements of Vg,
are equal to each other modulo p, and since |Vp,| = ¢°, which is strictly greater than the
highest exponent of C;(r) appearing in any term (7.17) of (7.16), we may apply Lemma
2.33 to conclude that the minimum p-adic valuation achieved by (7.16) as ci,..., ¢ runs
through C; x --- x C; is precisely the minimum of the p-adic valuations of the coefficients
I'y for A € Ay. But we have already shown that each I'y is a unit in Z,, so 7.16 does not

vanish modulo p for some ¢; € Cq,..., ¢ € Cs. O

We can obtain the Delsarte-McEliece theorem (Theorem 7.1) by setting ¢ = 1 in the
theorem we have just proved. In fact, we recover the precise version of the Delsarte-McEliece
theorem (Theorem 6.13) in full detail, as we now show. We suppose that ¢t = 1 for the rest
of this section, so that I = {1}.

Consider the size-preserving bijection ® : Z[I x H x A] — Z[H x A] that takes A to
A1. Then @ restricts to a bijection from A;,.(C1), as defined in (7.10) here, to Ape(C1), as
defined in (6.9) in Chapter 6.

Consider the notion of the tier of an account A € N[H x A], denoted by Ti(\) and
defined in (6.10) in Chapter 6. In (6.13) of Section 6.5, we showed that Ti (k) x| e

~— -1

if k is a nonempty Delsarte-McEliece multiset in N[H x A]. (Of course Ti(0)) = 0 by the

definition (6.10) of tier.) Therefore L(\) = L(A\1) = Ti (A1) = Ti(®(N)) for any A in A, (Ch)
(with Aj,e(Cy1) as defined in (7.11) here). Thus ¢,,.(C1), as defined in (7.11) here, is equal
t0 £me(C1), as defined in (6.12) in Chapter 6.

Now we can use ¢ to identify the range of summation {\ € Ayc(C1) 1 L(A) = £e(C1)}
in (7.12) of Theorem 7.14 with the range of summation {\ € A;,.(C1) : Ti(A) = £e(C1)}
—1)tme(C)+(e=1)

@O for all X\ in

the sum in (7.12), since X # ) implies A\; # 0 and since A\l = A\;! = (®(A))!. Thus, in view

in (6.14) of Theorem 6.13. In Theorem 7.14, we have I'y = \A|(

of our correspondence ®, the coefficients in (7.12) of Theorem 7.14 match those in (6.14) of
Theorem 6.13, and so we can recover the latter theorem from the former.
For the rest of this chapter, we shall apply Theorem 7.14 to the study of algebraic sets

over finite fields. First we provide some historical background on such researches.
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7.6 Theorems of Chevalley-Warning, Ax, and N. M. Katz

After proving Theorem 7.1, Delsarte and McEliece employed their result to prove a theorem
of Ax on the cardinalities of algebraic sets over finite fields. If fi,..., fi € Fylz1,..., 2],
then we use V'(f1,..., fi) to denote the subset of Iy consisting of the simultaneous zeroes of
f1,---, fr- Just as the Delsarte-McEliece theorem counts the zeroes of a word in an Abelian

code, so the Ax theorem counts the zeroes of a polynomial.

Theorem 7.15 (Ax [2]). Let f € Fy[z1,...,zy] be a nonconstant polynomial of degree 0.
Let v be the least nonnegative integer greater than or equal to (n —0)/d. Then |V (f)| is

divisible by q" .

Ax’s proof is based upon the Stickelberger theorem on Gauss sums. The Ax theorem is
an improvement of the theorem of Warning [62], which shows that p divides |V (f)| when
the degree 0 of f is less than the number n of variables. Warning’s theorem generalizes and
strengthens a theorem of Chevalley [15], which shows that if n > 0 and f has no constant
term, then f has a nontrivial zero.

Ax also proved that his theorem is sharp in the sense that when n > 0, there exists a
polynomial f of degree 9 such that |V (f)| is not divisible by pg(»=2/°1. Write n = ad + b

with 0 < b <0, and set

0 if a =0,
9(1,. .. Tad) =

T1...To+ + Tg_1)o41---Tap Otherwise.

When n > 0, i.e., when a > 0, Ax shows that

g(T1, ..., Tad) ifb=1,
flxe,. ... xn) = (7.18)
9(x1,. .., Tad) + Taot1 ... Ty otherwise,

is a polynomial of degree d with |V (f)| not divisible by pgl(»=?/?1. Of course, f is homo-
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geneous if and only if b =1 or b = 0. Modifying this construction slightly, we set

9(z1, ..., Tap) ifa>0andb=1,

0—b+1

9(T1, .- s Tad) + Taptl - - 1T otherwise,

which is always homogeneous of degree 9. Note that |V (k)| is clearly not divisible by p if
n <0, ie.,if a=0. If n >0, it is not hard to show that |V (h)| = |V (f)|, where f is as

defined in (7.18). Thus we have the following statement of sharpness:

Proposition 7.16 (Homogeneous Sharpness of Ax’s Theorem). Let n,0 > 1 and
let v be the least nonnegative integer greater than or equal to (n —0)/0. Then there is a

homogeneous polynomial f € Fylx1,...,z,] of degree d such that |V (f)| is not divisible by

v

pg .

Delsarte and McEliece show that Theorem 7.15 is a consequence of their own theorem
(Theorem 7.1) applied to the algebra F,[A] where A is the cyclic group of units in the field
Fgn. Their proof makes use of a correspondence between the elements of this algebra and
polynomial functions on the punctured affine space Fy \ {(0,...,0)}. In this correspon-
dence, polynomials of low degree correspond to elements of the group algebra whose Fourier
transforms have small supports (see Corollary 2 of [28] and Theorem 5.1 of [18]). We shall
revisit this correspondence soon.

The papers of Chevalley [15] and Warning [62] also tell us about V(f1,..., f;) for a
collection fi,..., f; of polynomials in Fy[z1,...,z,]. In particular, Warning shows that if
the sum of the degrees of the polynomials is less than the number n of variables, then p
divides |V (f1,..., ft)|- N. M. Katz generalized the theorem of Ax in the same direction to

give a result for algebraic sets determined by collections of polynomials.

Theorem 7.17 (N. M. Katz [30]). Let fi,... f; € Fylx1,...,z,] be nonconstant polyno-
mials of degrees 01 < --- < 0y, respectively. Let v be the least nonnegative integer greater

than or equal to (n - Zle Di) /0¢. Then |V (f1,..., ft)| is divisible by ¢”.

N. M. Katz’s proof is based on Dwork’s p-adic theory of the zeta function [22], [45]. The

paper of N. M. Katz also includes the following claim of sharpness for this result:
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Proposition 7.18 (Homogeneous Sharpness of N. M. Katz’s Theorem). Let n
and 01 < --- < ¢ be positive integers, and let v be the least nonnegative integer greater
than or equal to (n — Zi:l Di) /0i. Then there are homogeneous polynomials fi,..., fi €

Fylz1,...,2n] of degrees 01,...,0: such that |V (fi,..., ft)| is not divisible by pq”.

When n < 22:1 0;, N. M. Katz constructs homogeneous polynomials of the prescribed
degrees such that V(fi,..., f;) is a single point. When n > >"/_,d;, he uses the same
construction to form homogeneous polynomials fi,..., f—1 of the prescribed degrees that
involve the first 01 + - -- + 0;_1 indeterminates and that simultaneously vanish only when
these variables are all zero. Then it suffices to find a homogeneous polynomial f; of degree
% inn =n-— Zf;i 0; indeterminates that vanishes on a subset B of IFZ;' with |B| not
divisible by pg”. Since v = [(n— St 0;) /o¢| = [(n' —0¢)/04], this argument shows
that to demonstrate Proposition 1.5, it suffices to prove the t = 1 case, which is precisely
Proposition 7.16 proved here. In his paper, N. M. Katz incorrectly asserts ([30], page 498,
lines 2-3) that the paper of Ax [2] contains Proposition 7.16, whereas we have seen that
Ax’s construction (shown in equation (7.18) above) is not always homogeneous. In any
case, we have seen in the discussion preceding Proposition 7.16 that this deficiency is easily
overcome.

It should be noted that improvements to Theorem 7.17 have been obtained in [1], [38],
[39], and [40]. The researchers in last three papers were motivated by ideas in coding theory,
in particular, the work of McEliece on p-divisibility of weights in cyclic codes.

Since the Ax theorem is a consequence of the Delsarte-McEliece theorem, it is natural
to ask whether the theorem of N. M. Katz is the consequence of Theorem 7.14. We answer

this question affirmatively in this rest of this chapter.

7.7 Polynomials and Group Algebras

To show that Theorem 7.14 implies the theorem of N. M. Katz, we make use of an F,-
algebra epimorphism ¥ from Fg[z1, ..., xy] to the group algebra (IF,[A],-), where A is the
group of units of Fyn, and where one should note that multiplication in Fglzq,..., 2]

is transformed to pointwise multiplication in Fy[A] rather than to the usual convolution
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operation. For the rest of this chapter, we set n to be a positive integer and we set A = F;n,
which is a cyclic group of order ¢" — 1. It is important to note that henceforth we shall
always consider [F,[A] with convolution and (IF,[A],-) as one and the same Fg-vector space,
and we use the two different multiplication operations as the need arises. As per our
convention, we always explicitly note when we are using pointwise multiplication, since it
is not the standard multiplicative operation. For example, although ¥ is an [F,-algebra
homomorphism from Fy[z1,...,z,] to (F4[A],-), we shall often consider the situation when
a subset of Fy[z1,...,z,] is mapped by V¥ to a convolution ideal (i.e., a code) in F,[A]. The
epimorphism ¥ that we shall employ is the same one used by Delsarte and McEliece [18]
to prove Ax’s theorem (Theorem 7.15) from their own theorem (Theorem 7.1). We shall
present W below after some preliminary discussion on polynomial functions in affine space.

First note that all functions from Fy to Fy are polynomial functions because the domain
is finite. Let J be the ideal in Fy[z1,...,2,] generated by z{ — z1, ..., a} — z,, and let
3’ be the ideal generated by J and (:v(ffl —1)--- (247" = 1). Notice that J is the ideal of
polynomials vanishing on Fg. Thus any function from Fy to F, can be uniquely represented
as a polynomial in Fy[z1, ..., z,] reduced modulo J, i.e., a polynomial in which any exponent
of an indeterminate is less than ¢q. Note also that J’ is the ideal of polynomials vanishing on
the set Fgn ~ {(0,...,0)}, which we call the punctured affine space. Thus any polynomial
function on the punctured affine space is uniquely represented by a polynomial reduced
modulo 7, i.e., a polynomial in which any exponent of an indeterminate is less than ¢ and
where the total degree is less than n(q — 1). We are concerned with polynomial functions
on the punctured affine space because the epimorphism W that we plan to use induces an
isomorphism from Fg[zy,...,2,]/J to the algebra (F,[A],-).

We now show that we can restrict our attention to polynomials of degree less than
n in the rest of this chapter. The conclusion of N. M. Katz’s theorem (Theorem 7.17)
is trivial if the sum of the degrees 07 + --- + 0; is greater than or equal to the number
n of variables, or equivalently, when the parameter v defined there is zero. When 01 +
-+« 40y > n, the statement regarding sharpness (Proposition 7.18) asserts that there are

homogeneous polynomials f1,..., f; of degrees 01,...,0; such that pt |V (f1,..., ft)|- This
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can be demonstrated by simple constructions. If ¢ > n, then let each f; = :cf;in (i} SO that
V(fi,--., fr) ={(0,...,0)}. If t < n, then partition the set {z1,...,x,} into t nonempty
sets Pp,..., P, with |P;| < 9;, and then let f; be a monomial of total degree 9; involving

precisely those indeterminates in P;. In this case,

t

V(fL,...,f)| = H (q|PZ~| —(g— 1)|PZ-\)

i=1

= (-1 (mod p).

Thus we can confine our attention to the case when 07 + --- + 0; < n, so that all the
polynomials have degrees less than n. The reductions modulo J and modulo J’ of such
polynomials are always identical to each other.

Now we describe the Fy-algebra epimorphism ¥ from Fg[z1,. .., z,] to the group algebra
(Fg[A], ) (recall that A = F, in the rest of this chapter). We follow the presentation in the
beginning of Section 5 of [18]. Fix an Fy-basis (a1, ..., an) of Fgn. Then set Fy ~{(0,...,0)}
in bijective correspondence with F;n by the mapping (ui,...,up) — uiy + -+ + UpQuy.
Each polynomial f(z1,...,z,) then corresponds to the function W(f): qun — [, given by
U(f)(uioq + -+ +upoy) = f(u1,...,uy). Since ¥(f) is a function from A to F,, we may
regard it as an element of the group algebra F,[A], i.e., U(f) is regarded as the formal sum
Y acA Ca@ With cq = W(f)(a). Note that ¥ preserves [F -scalar multiplication and pointwise
addition and multiplication of functions, so it is a homomorphism of F,-algebras from
Fylz1,...,25] to (Fg[A],-). Since ¥’ is the ideal of polynomials that vanish on the punctured
affine space, 7' is the kernel of W. Furthermore, each function from Fy ~ {(0,...,0)} to
[F, is representable by a unique polynomial reduced modulo ¥, so each element of Fy[A]
has a unique W-preimage among such polynomials. So V¥ is an F,-algebra epimorphism and
induces an Fg-algebra isomorphism from F,[z1, ..., 2,]/T to (F4[A4],-). The definition of ¥
remains in force for the rest of this chapter.

Determining the set of simultaneous zeroes of a collection of polynomials is almost the
same thing as determining the set of simultaneous zeroes of their images under W. As

(u1,...,up) runs through Fy ~ {(0,...,0)}, the quantity uic + -+ + upay, runs through
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A. So we have the following observation:

Lemma 7.19. Let f1,..., ft € Fy[z1,...,2,]. Then

t

IV (fi,. s fo)l :zer(\Il(fl),...,\Il(ft))—|—H5(f2-(0,...,0),0).

i=1

The map WV is especially useful inasmuch as it maps low-degree polynomials to elements
of Fy[A] whose Fourier transforms have small supports. The correspondence between the
degree of f and the support of the Fourier transform of W(f) is given in Corollary 2 of
[28] and is restated in terms closer to those of this thesis in Theorem 5.1 of [18]. Here
we need to establish this correspondence in a way that is sensitive to whether or not our
polynomials are homogeneous, so we shall present and prove a theorem (Theorem 7.21) that
is a refinement of the result just mentioned.

Before we can prove Theorem 7.21, we need concrete expressions for the Fourier trans-
form and Fourier inversion formula for our algebra F,[A]. Recall that A = F;n is a cyclic
group of order ¢" — 1. Also recall that in Section 2.3 we defined €’ to be the least integer
such that ¢¢ — 1 is divisible by the exponent of A4, and we set ¢ = ¢¢. So plainly ¢/ = n
here. Note that Fgn = [y is the quotient modulo p of Zp[(,—1]. By convention, we have
m = g, and since d = 1 in this chapter, we have m = 71, that is, reduction modulo p. Since
7({y—1) is a root of unity of order ¢' — 1 in Fy, we see that A = IF;, is the cyclic group
generated by 7((y—1). We set v = m({y—1) for convenience. The bilinear pairing introduced
in Section 2.2 can then be taken as the function <7i, ’yj> = Qg_l. This is used to define the

Fourier transform of functions in Z,[(,—1][A], which is given by

with inversion formula

qn_ ..
$60 = AT X FNG
j:
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This, in turn, induces the Fourier transform for functions f € Fy[A], which is given by

q"—2
COE DN ICHLA
§=0
and the inversion formula is
qm—2

= A" Z f(y (7.19)

We shall use this formula in our proof of Theorem 7.21 below.

To describe the correspondence between the degree of f and the support of the Fourier
transform of WU(f), we introduce the concept of the g-ary weight of a nonnegative integer,
following [28] and [18]. If k € N, write the g-ary expansion k =2, kiq', where 0 < k; < ¢
for each i. Then the g-ary weight of k, denoted wq(k), is > ;= ki. We extend the notion
of g-ary weight to elements of IE‘an; for any element § € F;n, we choose the unique integer
k with 0 < k < ¢™ — 1 such that § = +*. Then the g-ary weight of 3, denoted wqe(B), is
the g-ary weight of the integer k. Note that wy(v) = 1, except in the case when ¢ = 2 and
n = 1, wherein wy(y) = 0. We pause to state some other facts about the g-ary weight that

we shall find useful later.

Lemma 7.20. Let m > 1, let j,k,j1,...,Jm be nonnegative integers, and let a, ay, ...,

am € A. Then we have the following:
(i) we(j) < J.
(i) f0<j<q"—1andj=k (mod q" —1), then wy(j) < wy(k).
(i) we(j) =j (mod ¢ —1).
(iv) wq(a?) = wy(a).
(v) wg(y") =1 unlessn =1 and q = 2.
(Vi) Yo we(™) = (¢ = 1)/(p - 1).
(vil) wq (3032 i) < 22320 we(di)-
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(viii) wq ([T ai) < 3232 wq(ai).

(ix) wq (323, Ji) = 22351 we(Ji) (mod ¢ —1).

(x) wq ([T:21 @) = 3232 wy(as) (mod g —1).

(xi) If 0 <32 we(ji) <nlq—1), then 332, ji #0 (mod ¢" — 1).
(xii) If0 < S, wglai) < n(g— 1), then [[7%y a; # 14.

(xiii) If0 < m < n(g—1), we(ar) = -+ = wg(am) =1, anda = [ a;, then 0 < wq(a) < m

and wg(a) = wg(m) (mod g — 1).

(xiv) wq (ITi24 i) < T2y wq(di)-

Proof. These are all routine; we refer the reader to [18] for more details. The inequality
(i) is clear. Lemma 3.6 of [18] contains (ii). Congruence (iii) follows immediately from the

definition of w,. The equality (iv) follows from the fact that

(,Yio+z‘1q+---+in,1q"_1 ) 1 — ,Yinﬂ+iotI+i1l12+---+in72qn_l .

Then (v) follows from (iv) and the fact that wy(y) = 1 unless n = 1 and ¢ = 2. A routine
calculation gives (vi). Lemma 3.7 of [18] contains (vii), and (viii) follows from this and (ii).
The congruences (ix) and (x) follow easily from (iii). Lemma 3.6 of [18] states that if j > 0
and j = 0 (mod ¢" — 1), then wy(j) > n(g — 1). This fact, along with (vii), proves (xi).
Then (xii) follows from (xi). Claim (xiii) follows from (xii), (viii), (x), and (iii). Lemma 3.7

of [18] contains (xiv). O

With this notion of ¢g-ary weight, we can relate the degree of the polynomial f to the
support of the Fourier transform of W(f). We do so in the following theorem, which is a

refined version of Corollary 2 in [28] and Theorem 5.1 in [18]:

Theorem 7.21. Let d be an integer with 0 < 0 < n(q — 1). Then ¥ maps the Fq-vector
space of polynomials in Fylxy,...,x,] of degree less than or equal to d onto the F,-vector

space of functions in Fy[A] whose Fourier transforms are supported on the g-closed subset
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To = {a € A: wy(a) < 0}. Furthermore, if 0 > 0, then U maps the Fq-vector space of
polynomials in Fylz1, ..., zy] that are homogeneous of degree © onto the Fy-vector space of
functions in F,[A] whose Fourier transforms are supported on the g-closed subset 2y = {a €

A0 < wg(a) <o, wy(a) = wy(d) (mod g —1)}.

Proof. That YTy and Qp as defined above are g-closed comes from the fact that wg(a?) =
wg(a) for any a € A by Lemma 7.20(iv). ¥ maps the set of constant polynomials onto the
set of constant functions in F[A]; these are precisely the functions whose Fourier transforms
are supported on {14} = Y. This special case of the first claim, together with the second
claim regarding homogeneous polynomials, implies the first claim in its entirety. So we shall
prove the second claim.

We fix 0 with 0 < ? < n(q — 1) for the rest of the proof. Note that these bounds on d
allow us to exclude case when ¢ = 2 and n = 1, which is pathological.

First we show that ¥ maps the homogeneous polynomials of degree 0 to functions whose
Fourier transforms are supported on 5. To do this, it suffices to consider monomials of
degree 0. Recall that aq, ..., is an Fg-basis of Fgn. Suppose that f € Fylzq,...,xy] is
a nonzero homogeneous polynomial of degree one, i.e., a nonzero linear polynomial with
no constant coefficient. Then consider the function ¢: Fgn — Fy given by ¢(ujoq + - -+ +
Unay) = f(ui,...,uy), where uq,...,u, range over F,. Comparing the definition of ¢
with the definition of W(f), we see that W(f) is just the restriction of ¢ to F.. This
function ¢ is a nontrivial Fy-linear functional on Fgn, hence is of the form ¢(u) = Trl¢(Bu)
for some [ € qun. In particular, consider polynomials of the form f(z1,...,z,) = =;
for i € {1,...,n}. Set & = W(x;) for each i. Then there is some §; € Fy. such that
§i(u) = Trg®(Biu) for all uw € . One can use (7.19) and the bijectivity of the Fourier
transform to check that & is the function in (Fgn)? that has &(7) = |A| ﬂfj for all j and
i(a) =0for a & {7 : 0 < j < n}. So by Lemma 7.20(v), & is supported on Q;. (Recall
that we have excluded the case when ¢ =2 and n = 1.)

We wish to show that an arbitrary monomial f(x1,...,2,) = 23" -+ 22" with 9y +-- - +
0, = 0 has the Fourier transform of ¥(f) supported on 5. To do this, we use nonstandard

multiplications in our algebras, i.e., we use pointwise multiplication in F,[A] and convolution
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in IE“,‘;‘. We adopt the notation that £** is the pointwise product of k copies of € € Fy[A]
and n** is the convolution product of k copies of n € (Fq/)A. Since ¥ is an F,-algebra
homomorphism from Fy[zy,...,2,] into (F,[A],-), we have W(f) = &% - &% - ... . o0,
Recall from Proposition 2.6 that if g; - go = h, then h = ]A\_lg] % ga. So the Fourier
transform of W(f) is |A|17°§Ai‘°1 s - % £ We want to show that this is supported on Q.
In the previous paragraph, we observed that each fz is supported on 4. If Y, Z C A, we
define the convolution of Y and Z, denoted Y * Z, to be {yxz : y € Y,z € Z}, and we
define Y** to be the convolution product of k copies of Y. Then the Fourier transform of
U(f) is supported on Q3% so it suffices to show that Q}° C ;. Each element of Q; has
unit g-ary weight. Thus each element in Q3° is a product of ? elements of unit g-ary weight.
Since 0 < ® < n(g — 1), Lemma 7.20(xiii) shows that each a € Q}° has 0 < wy(a) <
and wg(a) = wy(d) (mod ¢ — 1), ie., that a € Qp. So Q7° C Oy, and therefore ¥ maps
homogeneous polynomials of degree 0 into the set of functions whose Fourier transforms are
supported on .

Now it remains to show that ¥ maps the set P of homogeneous polynomials of degree 0
onto the set R of functions whose Fourier transforms are supported on ;. We just showed
that ¥(P) C R; now we want to show that W(P) = R. Since the sets involved are finite, it
will suffice to show that |U(P)| > |R|. Recall that the ideal J’, defined at the beginning of
this section, is the kernel of W. If we let @ be the set of reductions modulo J’ of elements
in P, then ¥(Q) = ¥(P) and ¥ is injective when restricted to @. So it will suffice to show
that |Q| > |R|. Recall that the set €, is g-closed, so Lemma 2.13 tells us that |R| = ¢/®!.

So we need to show that |Q| > ¢/®l. Since the polynomials in P are of degree less
than n(q — 1), their reductions modulo J and reductions modulo J’ are the same. The set
@ of reductions modulo J of the elements in P is the F-vector space whose basis is the
set M of monomials of the form z{*...z& where 0 < e < ¢, 0<e;+---+ e, <0, and
e1+---+e, =0 (mod ¢ —1). Q contains M because any nonconstant monomial of degree
u can be replaced with an equivalent monomial modulo J of degree u + (¢ — 1) by replacing

an indeterminate z; with z!. That M spans @ follows from the fact that any monomial

of degree ? reduces modulo J to a nonconstant monomial of degree @ — k(¢ — 1) for some
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k> 0.

Thus Q = ¢/, and so we need to show that [M| > |Q|. We shall devise an injection
0 from € into M. For any 8 € Qo, write 3 = yerTe2at+end" ™" with 0 < ¢; < ¢ for
all i and e; + -+ + e, < n(qg —1). These e; are uniquely determined by 3. Then set
0(5) = x7* ... x& . Note that each e; has 0 < e; < ¢, and note that not all e; are equal to
q — 1. Thus wy(8) = e1 + -+ + ep, and since B € Qp, we know that 0 < e; +---+e, <D
and e; + -+ + e, = wy(0) (mod g — 1). Since Lemma 7.20(iii) tells us that wy(d) = 0
(mod g — 1), we know that 6(5) € M. Furthermore, since the e; are uniquely determined

by 3, 0 is injective. O

7.8 Proof of the Theorem of N. M. Katz

Now we use ¥ to translate Theorem 7.14 from a statement about words in Abelian codes
into a statement about polynomials. This gives us the following theorem, from which we
shall deduce both the theorem of N. M. Katz (Theorem 7.17) and the associated statement

concerning sharpness (Proposition 7.18).

Theorem 7.22. Let n,t > 1 and let Sy,..., St be g-closed subsets of A, with at least one
S;i not a subset {14}. For each i, let C; be the convolution ideal (code) in Fy[A] consisting
of those functions whose Fourier transforms are supported on S;. Let Fi,...,F: be sets
of polynomials of degree less than n(q — 1) in Fylz1,..., 2, such that W(F;) = C;. Let
line(Ciy ..., Cy) be as defined in (7.11). For any fi1 € F1, ..., fi € Fi, we have

V(fiy.s f)| =0 (mod pfme€rnColy, (7.20)
and there is some such selection of f1,... f: with
V(fi,. oy f)] £0  (mod pfmeCrmnCotly, (7.21)

Proof. Suppose f; € F; for each i, and set ¢; = W(f;). Then ¢; € C;, so that ¢; is supported

on S;. Furthermore, as we vary f; over F;, y; varies over the entire convolution ideal C; of
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functions in Fy[A] whose Fourier transforms are supported on S;. Thus Theorem 7.14 tells
us that

2er"™ (o1, o) =0 (mod pime(CrC)) (7.22)

for any f; € Fi,..., fr € Ft, and

ZeI,norm((pl, o Sot) £0 (mod pfmc(Cl,-..,Ct)-i-l) (7.23)

for some such selection of fi,..., f:.
Note that
Gi(1a) = (#i)a
a€A
=—£(0,....,00+ Y filar,...,an).
ai,...,an€Fq

It is not difficult to see that > , . cp .. xé = 0 unless ¢ — 1 | eg,...,e, and
€l,...,en > 0. So polynomials of degree less than n(q — 1) vanish when we sum them

over all points in Fy. We are assuming that our polynomials f; are of degree less than
n(q — 1), so that $;(14) = —fi(0,...,0). Thus @;(14) = |A| " $i(14) is zero if and only
if £;(0,...,0) = 0. So zer(@¢1(1a),...,7e(14)) = [Ti—; 6(f:(0,...,0),0). Thus, returning to
(7.22) and (7.23), we have

t
zer(1,. .., 00) = |Al ] 6(£:(0,...,0),0)  (mod pfme(Cr-C0))
=1
for any f; € Fi,..., fr € F;, and
t
zer(o1,- .. 1) 2 [A T 0(£(0,...,0),0) (mod prme(CrCet)

i=1

for some such selection of f1,..., f;.
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Then apply Lemma 7.19 to see that
t
V(f1,- - £l = (A + 1) T 6(£(0,...,0),0)  (mod pfme(©r--C))
i=1

for any f1 € F1,..., ft € Ft, and

t

V(fis-o o)l # A+ D T 8(£i(0,.-,0),0)  (mod pime(Crr-Ce)tty

i=1
for some such selection of fi,..., f;. We note that |A| + 1 = ¢", which vanishes modulo
plmeCiCOL 4 ¢ (Cy, ..., C) < en.
So the proof will be complete once we show that ¢,,.(Ci,...,C;) < en. Consider

Ape(Cyy ..., Cr), as defined in equation (7.10) of Section 7.5. Recall that in (7.11) we defined
lne(Ciy .., C) = /\GAmIcr(l(i??,.-.,Ct)L(/\). We shall prove that £,,,.(C1,...,C;) < en by finding
an element A € Ap(C1,...,C) with L(A) < en.

We represent accounts as formal sums in our construction of A; see Section 2.5 to recall
this notation. By our assumption about the sets S;, we choose k € {1,2,...,t} such that
Sk contains some element a # 14. Then set A\ = (p— 1) E;:Ol > oher(h a?), and set \; to
be the empty set for all ¢ # k. This defines A € N[I x H x A]. Since Sy, is ¢g-closed, Ay is an
element of N[Sy, x H|; for i # k, \; is clearly in N[S; x H]. Each pry A; with ¢ # k is trivially
a Delsarte-McEliece multiset, and pry Ax is the Delsarte-McEliece multiset with n(p — 1)

instances of each element in H. Furthermore pry A € N[{14}] since a # 14. Finally

—1 5

— oD
mn__

= aq 1

=14.
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So A € Ape(Cy, ..., Cy), and note that L(\) = L(Ag) =e(n—1) < en. O

We shall now show how this theorem can be regarded as an inchoate form of the theorem
of N. M. Katz (Theorem 7.17) and the associated statement of sharpness (Proposition 7.18).
We recall the content of these results for convenience. Theorem 7.17 states that if fi,... f; €
Fy[z1,...,x,] are nonconstant polynomials of degrees 01 < --- <9y, respectively, and if we
set v to be the least nonnegative integer greater than or equal to (n — Zﬁzl Di) /04, then
[V (f)] is divisible by ¢”. Proposition 7.18 states that there exist homogeneous polynomials
fi,.., fr € Fylza, ..., @] of degrees 91,...,0; such that |V(f1,..., fi)| is not divisible by
pq”. At the beginning of Section 7.7, we showed that these results are easy to obtain when
n <01+ -+ 0, so we shall assume that n > 01 + - - - + 0; henceforth.

We now introduce a useful notation that will be used in the rest of this section. The
reader should first recall the definitions of Ap,o(Cy,...,Ct) and £, (Ch, ..., Ct) in (7.10) and

(7.11). If =4, ..., Z; are g-closed subsets of A, then define
AEq, ..., Z) = Ape(Dy, ..., Dy), (7.24)

where Dy, ..., D, are the codes in Fy[A] such that Z; is the support of FT(D;) for each i.
Likewise, define

UZ1,.. . B = bpe(Dr, ..., Dy). (7.25)

This will provide a convenient notation, as it will be easier to focus on the supports of the
Fourier transforms of the ideals than to focus on the ideals themselves.

If we want to prove Theorem 7.17, we use Theorem 7.22 in the case where each collection
F; of polynomials is equal to the set of f € Fy[z1,...,z,] with deg(f) < ;. Then Theorem
7.21 tells us that W(F;) is the code in Fy[A] whose Fourier transform has minimal support
T5,, as defined in that theorem. So we set each S; = T5, in Theorem 7.22. If we can prove
that ¢(Yo,,..., YTo,) = ev, then (7.20) in Theorem 7.22 will imply Theorem 7.17.

If we want to prove Proposition 7.18, we use Theorem 7.22 in the case where each
collection F; of polynomials is equal to the set of homogeneous f € Fylxy,...,z,] with

deg(f) < 9;. Then Theorem 7.21 tells us that ¥(F;) is the code in Fy[A] whose Fourier
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transform has minimal support (2y,, as defined in that theorem. So we set each S; = (2, in
Theorem 7.22. If we can prove that ¢(Qq,,...,%,) = ev, then (7.21) in Theorem 7.22 will
imply Proposition 7.18.

We prove that £(Ta,,..., To,) = €(Qoy,...,8%,) = ev in Proposition 7.23 below, thus
finishing our proof of Theorem 7.17 and Proposition 7.18. Before we do this, we pause to
note that Theorem 7.22 can be regarded not only as an inchoate form of the theorem of
N. M. Katz and the associated statement of sharpness, but also as an inchoate generalization
of these results. For we can employ Theorem 7.22 in cases where the sets S1,...,5; are
not all sets of the form T; or all sets of the form ;. That is, we may prescribe finer
constraints on each polynomial f; than merely setting the maximum degree or insisting
that it be homogeneous of a certain degree. We must qualify this theorem as being an
inchoate generalization of the theorem of N. M. Katz, since we obtain a true generalization
only if we can calculate ¢(S1,...,S;) for the particular selection of S7,...,S; that we are
considering. We finish this chapter with the promised calculation of ¢(Si,...,S;) when
S1,...,S5; are the sets relevant to the theorem of N. M. Katz and the associated statement

of sharpness.

Proposition 7.23. Let n,t > 1, let 01 < --- < 0 be positive integers with 014+ --+0; < n,
and let v = [(n — St 0;)/0¢]. Let T and Q; be the sets defined in Theorem 7.21, and let
A and ¢ be the functions defined in equations (7.24) and (7.25) above. Then

K(Tal,. . .,Tat) = K(Qal,. . .,Qgt) = ev.

Proof. Write Y as a shorthand for (Y5,,...,To,) and © as a shorthand for (Qy,, ..., ,).
Since ; C Y for all j, A(Q2) C A(T), and so £(2) > £(Y). Therefore it suffices to show that
(YY) > ev and £(§2) < ev. It will be useful for the reader to review the compact notations
in Section 2.5, since these are used extensively in this proof.

First we show that ¢(Y) > ev, using an approach based on the proof by Delsarte and

McEliece (see Lemma 5.1 of [18]) that Ax’s theorem (Theorem 7.15) follows from their own
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theorem (Theorem 7.1). Suppose that A € A(T). Since IIA = 14, we have

t
W
[[TL LT = 1

i=1acAheH
or equivalently,
t q"—2 -
H AP it =14,
i=1 j=0 heH
so that
t q"-2
Z jph)\z‘yhﬂ/j =0 (modq¢"™—1).
i=1 j=0 heH
Thus
t q"—2
Z Z jph“/\i,hﬁj =0 (modg¢"—1) (7.26)

i=1 j=0 heH
for any s > 0. Furthermore, since pry A; ¢ N[{14}] for some i, we know that A, ,; # 0
for some i € {1,...,t}, h € H, and j € {0,...,¢" — 2} with j # 0. So the sum in (7.26) is
a sum of nonnegative numbers, at least one of which is strictly positive. Thus, by Lemma

7.20(xi), we know that

n

t q"—2
Z Z Wq (jph+s)‘i,h,'yj> >n(qg—1)

i=1 j=0 heH

for any s > 0. So by Lemma 7.20(xiv),(i), we know that

t
> wa(§)we(P" )N pri > 1lg — 1)

for any s > 0. Since \; € N[H x Ty,], Ain,a can be nonzero only if wy(a) <0y, ie., Ay 45

can be nonzero only for those j € {0,...,¢" — 2} with w,(j) < ;. Thus

t q"—2

Zai Z Z wa(P" )Ny prs =g — 1),

or equivalently,

D0 Y w" ) (pry (A)n > n(g — 1),

i=1 heH
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for any s > 0. For each i, define w; so that u; = 0 if |\;] = 0 and u; = 1 otherwise. Then
ZDZ<_qu_1 —|—qu ") (pry (M) )_(n—ZD) (¢g—1), (7.27)
heH

for any s > 0. Lemma 7.20(iii) tells us that

> we@" ) prp(M\a))w = Y P prg(A))n  (mod ¢ — 1),

heH heH

and since pry()\;) is Delsarte-McEliece for each 4, the right-hand side of this congruence is

zero modulo ¢ — 1. Thus the terms
—ui(g = 1)+ Y we(@"*) (pry (X))
heH

on the left-hand side of (7.27) are multiples of ¢ — 1. These terms are also nonnegative
because u; = 0 when \; = () and u; = 1 when |\;| > 0; in the latter case the sum over H is

strictly positive. Thus

0 Z <—Ui(q - 1) + Z wq(pthS)(er(Ai))h) > <n _ Zm]) (q . 1)’

heH

and then

>, (—uz (@—1)+ > we(®")( (Ai))h> > {” — %iﬂ ﬂ (g—1)
i=1 heH ¢

=v(g—1)

for any s > 0. Now sum both sides of the inequality over s € H to get

Z (-Uie(q —1+ ) <§:1> (er()‘i))h> >ev(g—1)



212
by Lemma 7.20(vi). Since ),y (pry(Ai))n = [pry(Ai)| = |Ai], we have

t

S (~uielp — 1) + i) = ev(p — 1),

=1

Recall that u; = 0 if |\;| = 0 and u; = 1 otherwise. Thus |\;| —ue(p — 1) = (p — 1)L(N;),

and so

that is, L(\) > ev. Since A € A(Y) was arbitrary, this proves that £(T) > ev.
Now we prove that ¢(2) < ev by constructing explicitly an element A € A(Q) with
L(\) = ev. We first define accounts that will be the building blocks of A. For nonnegative

integers u, v with 0 < v — u < n, define the multiset

BY=(p—1) Z (h’,}/z;;iqj) .

heH

Observe that B! € N[H x A] and that pry By is the Delsarte-McEliece multiset with p — 1

instances of each element in H. Also note that

p—1
B, = (H AN qj)

heH
— AP Eer ie
—) et pt
= AP DXz P
and so

[IBY =~ 7", (7.28)

We claim that By, € N[H x Q,_,]. To prove this, it suffices to show that oo = 'yzﬂv';; 7 s
an element of €,_,. Note that « is a product of v — u elements of the form fyqj. Our given
assumption n > 01 + - -- + 0; forces n > 1, so that Lemma 7.20(v) shows that wq(vqj) =1
for all j. So « is a product of v — u elements of unit ¢g-ary weight. Since 0 < v —u < n,
Lemma 7.20(xiii) tells us that 0 < wg(a) < v—wu and wy(o) = wy(v—u) (mod g—1). That

is, a € Qy_y.
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Set D(i) = Z;Zlbi fori=0,...,t and D(i) = D(t) + (i —t)o; for i =t +1,...,t +v.
By the definition of v, D(t+v —1) <nandn < D(t+v) <n+70. Since 01 +---+0; < n,
we have D(t +v) < 2n. Let r = D(t + v) — n, so that 0 < r < n. Since D(0) = 0 and
D(t + v) > n, there must be some positive igp with ig < t + v such that D(ijp — 1) < r <
D(ip). Furthermore ig < t + v, for if D(t+v —1) < r < D(t + v), then we would have
% =D(t+v)—D({t+v—1)> D(t+v)—r =n, in contradiction to our assumption that
0+ +0: < n.

We now continue our construction, approaching closer to our goal of forming an element
A € A(2) with L()\) = ev. Note that D(i) — D(i — 1) = ypingiey for all i with 1 <i <t +v,

so that 0 < D(i) — D(i — 1) < n for all such i. For each i € {1,...,t+ v} with ¢ # 4o, define

D(3)

D(i—1)" Define

wi = B
. D(ig)—1 r Dy
fig = 358811) — (0 =Dl ¢ > + (0,71 B ”qJ) :

We claim that each p; is a multiset in N[H x A] with pry p; a Delsarte-McEliece multiset.

This is clear for i # ip in light of what we have already proved about the accounts B;,

. . . D(i .
above. Since pry p;, = pry B ((lo) 1y Pra pig i Delsarte-McEliece. Since BD((ES)—l) is a

D(ig)—1

multiset with p — 1 instances of the element (O ’yzﬂ Dig-1) ¥’ ), Wi, has at least p —2 >0
instances of this element. Clearly p;, has a nonnegative number of instances of every other
element, and so it is a multiset.

We claim that each p; is an element of N[H x {2, ]. Since D(i) — D(i—1) = dini}

min{s,t}
for all : € {1,...,t + v}, what we have already proved about the accounts B;, shows that

D(i)
D(i-1)

1 = ig case is tantamount to showing that 3 = ~

B € N[H x This proves our claim for ¢ # iy, and also shows that proving the
1— qT+Z]D(ZL?()’Lol b ¢

mm{i,t}]'

is an element of {0y fiout}®

Since D(ig — 1) < r < D(ip), we see that (3 is a product of D(ig) — D(io — 1) = dpmingig,¢}
elements of the form 'yqj. Recall that our condition n > 01 + --- + 04 forces n > 1, so
that Lemma 7.20(v) shows that wq('yqj) = 1 for all j. Thus 3 is a product of Dpingig.¢}

elements of unit g-ary weight. Since 0 < dpin(iosy < 1, Lemma 7.20(xiii) tells us that

0 < wg(B) < Vminfigry and wy(B) = wq(Omingie,y) (mod ¢ — 1), ie., that B € Oy .. So

min{ig,t}

each y; is indeed an element of N[H x (% . .. ].
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Now we are ready to construct A\. For ¢ < ¢, let \; = pu;. Let A\, = Zj;’; ;. This
defines A € N[I x H x A]. We claim that A € A(Q2). Note that what we have proved
about the accounts p; tells us immediately that prg()\;) is a Delsarte-McEliece multiset
and A\, € N[H x Qy,] for each i € {1,...,t}. Since the )\; are all nonempty and since
14 & Q; for all j > 0, we also know that pry A & N[{14}]. In light of what we have just

shown, our claim that A\ € A(Q2) will be established if we can show that IIA = 14. Note that

IIA = (Ipg) - - - (T ptgw) - (7.29)

D(2)
D(i—1)

gP (&) _gD(i=1)

If i # ig, then p; = B so (7.28) shows that ITy; =~ . For i = ig, we have

D(ig)—1 D(ig)—1

N\ —1 .
- J 1—qg"4+> 07 J D(i
Hpiy = (72J—D“O-“q > <v =pli ¢ > mBpe) )

_ 1_qr7qD(iO)_qD(¢071).

Substituting the values of IIy; we just calculated into (7.29), we obtain

t+v ) )
I\ — ryl_qr Hrqu(z)_qD(z—l)
1=1

_ ,Ylqu,qu“Jr“)qu(O).

Note that D(0) = 0 and D(t+v) = n+47, so we have IIA = 47"""=¢" = 1,4. Thus A € A(Q).
Now note that |u;| = e(p — 1) for all 4, so that |\;| = e(p — 1) for i < ¢t and |N| =

(v+ 1)e(p—1). Thus L(X\;) = 0 for i < t and L(\;) = ev. Therefore L(\) = ev, and so

£(Q) < ev. This completes our proof. O
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