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Abstract

Let p be a prime. We prove various analogues and generalizations of McEliece’s theorem

on the p-divisibility of weights of words in cyclic codes over a finite field of characteristic p.

Here we consider Abelian codes over various Galois rings. We present four new theorems on

p-adic valuations of weights. For simplicity of presentation here, we assume that our codes

do not contain constant words.

The first result has two parts, both concerning Abelian codes over Z/pdZ. The first part

gives a lower bound on the p-adic valuations of Hamming weights. This bound is shown to

be sharp: for each code, we find the maximum k such that pk divides all Hamming weights.

The second part of our result concerns the number of occurrences of a given nonzero symbol

s ∈ Z/pdZ in words of our code; we call this number the s-count. We find a j such that pj

divides the s-counts of all words in the code. Both our bounds are stronger than previous

ones for infinitely many codes.

The second result concerns Abelian codes over Z/4Z. We give a sharp lower bound on

the 2-adic valuations of Lee weights. It improves previous bounds for infinitely many codes.

The third result concerns Abelian codes over arbitrary Galois rings. We give a lower

bound on the p-adic valuations of Hamming weights. When we specialize this result to finite

fields, we recover the theorem of Delsarte and McEliece on the p-divisibility of weights in

Abelian codes over finite fields.

The fourth result generalizes the Delsarte-McEliece theorem. We consider the number

of components in which a collection c1, . . . , ct of words all have the zero symbol; we call this

the simultaneous zero count. Our generalized theorem p-adically estimates simultaneous

zero counts in Abelian codes over finite fields, and we can use it to prove the theorem of

N. M. Katz on the p-divisibility of the cardinalities of affine algebraic sets over finite fields.
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Summary of Notation and
Definitions

The following tables give the basic definitions and notations that hold throughout this thesis.

The section of Chapter 2 where an item first appears is given in the rightmost column.

Z the rational integers 2.1

Z+ the strictly positive rational integers 2.1

N the nonnegative rational integers 2.1

Q the rational numbers 2.1

p a rational prime 2.1

Zp the p-adic integers 2.1

Qp the p-adic rationals 2.1

ζn a root of unity of order n over Qp 2.1

Fpn the finite field with pn elements 2.1

Z/mZ the rational integers modulo m 2.1

GR(pm, n) the Galois ring of characteristic pm of order pmn 2.1

πm reduction modulo pm on Galois rings and on Zp[ζpn−1] 2.1

π∞ the identity map on Zp[ζpn−1] 2.1

τm the Teichmüller lift to characteristic pm on Galois rings 2.1

τ∞ the Teichmüller lift to characteristic 0 on Galois rings 2.1

vp the p-adic valuation in Qp(ζpn−1) and GR(pm, n) 2.1

Fr the Frobenius automorphism on Qp(ζpn−1) and GR(pm, n) 2.1

Trn2
n1

the trace from Qp(ζpn2−1) to Qp(ζpn1−1) and the trace from

GR(pm, n2) to GR(pm, n1)

2.1
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A a finite Abelian group with p - |A| 2.2

R[A] the group algebra with scalar ring R and group A 2.2

· pointwise multiplication in R[A] 2.2

(R[A], ·) R[A] equipped with pointwise multiplication 2.2

RA the R-algebra of functions from a group A into a ring R 2.2

∗ convolution in RA 2.2

(RA, ∗) RA equipped with convolution 2.2

〈·, ·〉 the bilinear pairing 2.2

δ(·, ·) the Kronecker delta 2.2

FT the Fourier transform 2.2

f̂ the Fourier transform of f 2.2

f̃ the scaled Fourier transform of f 2.2

d a positive integer; our usual Galois ring is GR(pd, e) 2.3

e a positive integer; our usual Galois ring is GR(pd, e) 2.3

q pe 2.3

e′ the least positive integer such that the exponent of A divides

qe′ − 1

2.3

q′ qe′ = pee′ 2.3

π πd, reduction modulo pd, also extended to elements of group

algebras and functions into Zp[ζq′−1]

2.3

τ τ∞, Teichmüller lift to characteristic 0, also extended to ele-

ments of group algebras and functions into GR(pd, ee′)

2.3

f̃ (i) the ith component in the canonical expansion of f̃ 2.3

f (i) the ith component in scaled-Fourier induced breakdown of f 2.3

Clq(a) the q-class of a ∈ A 2.3

ea the cardinality of the q-class of a ∈ A 2.3
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∏

y∈Y µy! for µ ∈ N[Y ] 2.5

prU the projection of account µ onto U 2.5
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Σµ the p-weighted summation of µ ∈ N[H] 2.5

Frµ(r)
∏

h∈H
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by replacing the indeterminate xk with ak for each k ∈ K
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Chapter 1

Introduction

Let p be a prime, let d and e be positive integers, and set q = pe. Let N denote the set

of nonnegative integers, and let Zp denote the ring of p-adic integers. We want a class of

rings that includes both finite fields and integer residue rings modulo prime powers, so we

introduce the Galois rings. Let ζpe−1 denote a root of unity of order pe − 1 over Zp. The

Galois ring GR(pd, e) is the quotient modulo pd of Zp[ζpe−1]. GR(pd, e) is a ring extension

of Z/pdZ wherein the reduction modulo pd of ζpe−1 is a root of unity of order pe − 1. Note

that GR(pd, 1) is the integer residue ring Z/pdZ, and GR(p, e) is the finite field Fpe = Fq.

Readers interested in more details on p-adic fields and Galois rings should consult Section

2.1.

We shall be interested in the group algebra GR(pd, e)[A], where A is a finite Abelian

group with p - |A|. We shall write A multiplicatively with identity 1A (or just 1 if there

is no cause for confusion). By ordering the elements of the group A in some fashion, say

A = {a1, . . . , an}, we can think of the element c =
∑

a∈A caa ∈ GR(pd, e)[A] as a word

of length n = |A| formed of symbols from the “alphabet” GR(pd, e), that is, we regard c

as the word ca1ca2 . . . can . An ideal of GR(pd, e)[A] is then called an Abelian code (over

GR(pd, e)). If A is a cyclic group, then an ideal of GR(pd, e)[A] is also called a cyclic code.

Cyclic codes form a large class of error-correcting codes, which includes various subclasses

(such as the Hamming codes, the Bose-Chaudhuri-Hocquenghem codes, and the punctured

Reed-Muller codes), all of great importance in coding theory [32]. Abelian codes with words

of length n form a subclass of the linear codes of length n over GR(pd, e), which are the

GR(pd, e)-submodules of GR(pd, e)n. Most research on Abelian and cyclic codes concerns
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codes over finite fields, but recent developments have started an interest in Abelian codes

over integer residue rings and even arbitrary Galois rings.

A weight function is simply a function wt: GR(pd, e)→ Z. We can think of this function

as assigning a particular weight to each symbol of our alphabet GR(pd, e). We extend wt

so that it also maps words into Z; the weight of the word c =
∑

a∈A caa ∈ GR(pd, e)[A]

is simply the sum of the weights of the letters in the word, i.e., wt(c) =
∑

a∈A wt(ca).

The most commonly used weight function is the Hamming weight, which maps 0 to 0 and

all other elements of GR(pd, e) to 1. We denote the Hamming weight function ham, so

that if c ∈ GR(pd, e)[A], then ham(c) is the number of nonzero coefficients in the sum

c =
∑

a∈A caa. In coding theory, typical weight functions (like the Hamming weight defined

above and the Lee weight defined below) give rise to metrics wherein the distance between

two words is the weight of their difference; if the weight function is Hamming weight,

then the associated distance, called the Hamming distance, simply measures the number of

positions where two words disagree. It will often be more convenient for us to use a weight

function, called the zero count, which is complementary to the Hamming weight. The zero

count function maps 0 to 1 and the rest of GR(pd, e) to 0. We denote the zero count function

by zer, so that if c ∈ GR(pd, e)[A], then zer(c) is the number of zero coefficients in the sum

c =
∑

a∈A caa, i.e., zer(c) = |A| − ham(c).

In this work, we are interested in p-adic estimates of weights of words in GR(pd, e)[A].

By a p-adic estimate of an integer n, we mean the knowledge of n modulo some power of

p. One common form of p-adic estimate is knowledge of the p-adic valuation of n, i.e., the

maximum k such that pk | n. Usually we shall place lower bounds on the p-adic valuations

of weights of words belonging to a code C ⊆ GR(pd, e)[A]. That is, we shall often furnish

some k such that all weights of words in C are divisible by pk. Sometimes we can also

assert that there is some word c ∈ C with pk+1 - wt(c). If we can say this, then we refer

to our bound on the p-adic valuation as sharp. Roughly speaking, the larger the code in

GR(pd, e)[A], the less likely it is that all weights of words will be divisible by some large

power of p.

For the rest of this chapter, we shall always assume that C is a code in GR(pd, e)[A].
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We use the Fourier transform to characterize our codes. Since the intricacies of the Fourier

transform with group algebras over Galois rings may be unfamiliar to the reader, we provide

a brief overview here. Readers who want more detail can find it in Sections 2.2 and 2.3.

To define a Fourier transform for GR(pd, e), we set e′ to be the least integer such that

qe′ − 1 is a multiple of the exponent of A, and we set q′ = qe′ . Then GR(pd, ee′) is a

ring extension of GR(pd, e) and contains roots of unity whose orders include all orders of

elements in A. Then we let X be the set of characters (multiplicative homomorphisms)

from A into GR(pd, ee′). The Fourier transform ĉ of c ∈ GR(pd, e)[A] is a function from

X to GR(pd, ee′) with ĉ(χ) =
∑

a∈A caχ(a)−1. We often refer to the values ĉ(χ) taken

by the Fourier transform at the various characters χ as the Fourier coefficients of c. By

applying a (non-canonical) isomorphism between X and A, we shall consider the domain

of ĉ to be A rather than X. The word c is uniquely determined by its Fourier transform,

and furthermore, ĉ(aq) = Fre(ĉ(a)) for all a ∈ A, where Fr is the Frobenius automorphism

(which can be defined on GR(pd, ee′) as the automorphism induced via reduction modulo

pd from the Frobenius automorphism on Zp[ζq′−1]). Since q is coprime to the order of A,

the action a 7→ aq partitions A into orbits that we shall call q-classes. We shall say that a

subset B of A is q-closed if B is a union of q-classes. With this terminology, c is uniquely

determined by its Fourier transform on a set R of representatives of q-classes. Indeed, the

Fourier transform followed by restriction to R is an isomorphism of GR(pd, e)-algebras from

GR(pd, e)[A] to the product of rings

∏
r∈R

GR(pd, eer), (1.1)

where er is the size of the q-class of r. Thus codes (ideals) in GR(pd, e)[A] are in one-to-one

correspondence with ideals in this product, which are just products of some selection of

ideals in the Galois rings GR(pd, eer). The ideals in GR(pd, eer) are (0) = (pd) ⊆ (pd−1) ⊆

· · · ⊆ (p) ⊆ (1) = GR(pd, eer). Thus, the Fourier transform followed by restriction to R
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maps our code C to an ideal of (1.1), say

∏
r∈R

pir GR(pd, eer), (1.2)

where ir ∈ {0, 1, . . . , d} for each r ∈ R. Knowledge of the integers ir characterizes C

completely. The support S of the Fourier transform of C is the union of the q-classes of

those r such that ir < d. Thus, when d = 1, the support S fully characterizes C, but when

d > 1, there can be multiple codes whose Fourier transforms have the same support. We

devise a generalization of the notion of support that will uniquely determine the code, even

when d > 1. For each j ∈ {0, 1, . . . , d − 1}, let Sj be the union of the q-classes of those r

such that ir ≤ j. Then our code C is fully characterized by the tower S0 ⊆ S1 ⊆ · · · ⊆ Sd−1,

which we call the tower of supports of C. The largest set Sd−1 in the tower is just S, the

support of the Fourier transform of the code. Note that a code in GR(pd, e)[A] is a free

GR(pd, e)-module if and only if all the sets in its tower of supports are identical.

For the rest of this introduction, we use S0 ⊆ S1 ⊆ · · · ⊆ Sd−1 to denote the tower

of supports of the Fourier transform of our code C ⊆ GR(pd, e)[A], and we let S be the

support of the Fourier transform, i.e., S = Sd−1. All Si, including Sd−1 = S, are q-

closed. As a simplifying assumption, we shall always assume 1A 6∈ S in this introduction.

This assumption is not necessary in these researches, but it will simplify this introductory

presentation. We do without this assumption in the rest of this thesis by introducing the

normalized weights in Section 2.4. Here we shall quote our own results and those of other

researchers with this simplifying assumption in force; the more general results are quoted

in the body of the thesis. We now have enough background to discuss the various results

that predate this work.

1.1 History

The most natural and convenient Galois rings to use in coding theory are the finite fields.

Thus, it is not surprising that the first p-adic estimates of weights were with Abelian codes

(usually cyclic) over finite fields. We begin by recalling that Mattson and Solomon [33]
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introduced the Fourier transform (also known as the Mattson-Solomon polynomial) into

the study of weights in cyclic codes. Solomon continued to study weights in cyclic codes

[50], and with McEliece produced some initial p-adic estimates of weights [51]. In the latter

paper, Solomon and McEliece, working with cyclic codes over F2, expressed the digits in

the base-2 expansion of the weight of a word c (with such digits regarded as elements of

F2) as polynomial functions of the Fourier coefficients of c. They proved that if C is a cyclic

code in F2[A] such that a ∈ S implies a−1 6∈ S, then ham(c) ≡ 0 (mod 4) for all c ∈ C. In

his thesis [35], McEliece found that this is an example of a much more general phenomenon.

If C ⊆ Fp[A] with A cyclic, one should consider (nonempty, finite) unity-product sequences

of elements of S, i.e., sequences of elements of S such that the product of the terms of

the sequence is 1A. Let ω(C) denote the minimum of the lengths of such sequences, and

set `(C) =
⌊

ω(C)−1
p−1

⌋
. Then McEliece asserts that ham(c) ≡ 0 (mod p`(C)), or equivalently,

that zer(c) ≡ |A| (mod p`(C)), for all c ∈ C. This is a generalization of the earlier Solomon-

McEliece result because the condition that a ∈ S implies a−1 6∈ S is equivalent to the

condition ω(C) ≥ 3, which then implies (when p = 2) that `(C) ≥ 2, and thus ham(c) ≡ 0

(mod 4).

All the rest of the results we present here, whether previous work or our own, are

analogous to this theorem of McEliece. In all cases, one must determine the “minimum

size” (in some appropriate sense) of unity-product sequences of elements in the support

S of the code (or sometimes in the set of pth powers of elements in S). The “larger” this

“minimum size,” the more powers of p divide the weights of words in the code. At times one

must place some sort of condition on the sequences, and at times the notion of the “size”

of the sequences must be refined beyond a simple count of how many terms occur. This

leads to a few variants of the parameters ω(C) and `(C) defined in the previous paragraph.

While it would be historically informative to introduce each new variant as it appears in

the literature, it would also make it difficult to take them all in at a glance. So we shall

define them all here and then await the appearance of each when we resume our historical

overview.

As stated above, ω(C) is the minimum length of a (nonempty) unity-product sequence of
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elements from S when d = e = 1, i.e., when our Galois ring GR(pd, e) is the prime field Fp. In

a general Galois ring, we define ω(C) as the minimum length of a (nonempty) unity-product

sequence of pth powers of elements of S, i.e., a sequence of the form apj1

1 , apj2

2 , . . . , apjn

n , with

each ai ∈ S and ji ∈ N. Since S is p-closed when e = 1, this definition coincides with our

original one. We then define `(C) =
⌊

ω(C)−pd−1

(p−1)pd−1

⌋
− d(e − 1). This reduces to our original

definition of `(C) when d = e = 1.

Sometimes we need to restrict our attention to the smaller class of unity-product se-

quences of elements of S (and their pth powers) that satisfy a certain additional condition

which we call the modular condition. We again use sequences of the form apj1

1 , apj2

2 , . . . , apjn

n

with each ai ∈ S and ji ∈ N, but consider only those in which pj1 + pj2 + · · · + pjn ≡ 0

(mod q − 1). We let ωmc(C) be the minimum length of such a sequence. If we reduce our

congruence modulo p− 1, we see that all our sequences here have length divisible by p− 1.

Indeed, if e = 1, then our sequences are simply sequences of elements in S, and they meet

the modular condition if and only if their length is divisible by p − 1. Thus, if p = 2 and

e = 1, ωmc(C) = ω(C). In all cases, we have ωmc(C) ≥ ω(C), and this inequality can be strict,

as we shall see later. We define `mc(C) =
⌊

ωmc(C)−pd−1

(p−1)pd−1

⌋
− d(e − 1). Thus `mc(C) ≥ `(C),

with equality when p = 2 and e = 1, but the inequality can be strict in other situations, as

we shall see in time.

Another new parameter will also be defined by considering unity-product sequences

of pth powers of elements in S, but here we shall need to record the set in the tower of

supports S0 ⊆ · · · ⊆ Sd−1 = S from which we took each term of our sequence. Thus our

new parameter will be sensitive to the structure of the tower of supports of our code. This

sensitivity is not unreasonable; the Fourier coefficients ĉ(a) for a ∈ Sd−1 r Sd−2 vary only

over the ideal (pd−1) in a Galois ring of characteristic pd, while those Fourier coefficients ĉ(b)

with b ∈ S0 range over an entire Galois ring. Thus we should expect the latter coefficients to

exert more influence on the weights of words. We shall only need to use this new parameter

(about to be defined) in cases where e = 1, so that pth powers of elements in Si are just

elements of Si itself (since each Si is p-closed when e = 1). Note that GR(pd, e) = Z/pdZ
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when e = 1. We consider (nonempty) unity-product sequences of the form

a
(0)
1 , . . . , a(0)

n0
, a

(1)
1 , . . . , a(1)

n1
, . . . , a

(d−1)
1 , . . . , a(d−1)

nd−1
,

where a
(i)
j ∈ Si for all i, j. Now we introduce a device that we call our scoring system. To

our sequence above, we assign a number called the score, which is equal to n0 + pn1 + · · ·+

pd−1nd−1, and we let ωss(C) be the minimum of the scores of such unity-product sequences.

We then let `ss(C) =
⌊

ωss(C)−pd−1

(p−1)pd−1

⌋
. It is not hard to see that ωss(C) ≥ ω(C), and thus

`ss(C) ≥ `(C), for any code C. If C is a free Z/pdZ-module, it is straightforward to show

that ωss(C) = ω(C) and `ss(C) = `(C) (see Proposition 4.22 of this thesis). Strict equality

can hold in other cases, as we shall soon find out.

We also introduce a parameter (which may not have appeared before this thesis) by

combining both the modular condition and the scoring system. Again, we need only use

this new parameter in cases where e = 1, so that GR(pd, e) = Z/pdZ and pth powers of

elements in Si are just elements of Si itself (since each Si is p-closed when e = 1). As in

the previous paragraph, we consider (nonempty) unity-product sequences of the form

a
(0)
1 , . . . , a(0)

n0
, a

(1)
1 , . . . , a(1)

n1
, . . . , a

(d−1)
1 , . . . , a(d−1)

nd−1
,

where a
(i)
j ∈ Si for all i, j. We further insist that our sequences meet the modular condition,

which, for e = 1, is equivalent to insisting that the sequences have length divisible by

p − 1. As before, the score of the above sequence is n0 + pn1 + · · · + pd−1nd−1, and we

let ωss
mc(C) be the minimum of the scores of such unity-product sequences. We then let

`ss
mc(C) =

⌊
ωss

mc(C)−pd−1

(p−1)pd−1

⌋
. It is not hard to show that ωss

mc(C) ≥ ωss(C), and thus `ss
mc(C) ≥

`ss(C), for any code C, with equality when p = 2. It is also straightforward to show that

ωss
mc(C) ≥ ωmc(C), and thus `ss

mc(C) ≥ `mc(C), for any code C, with equality when C is a free

Z/pdZ-module. Strict inequality may hold in the four inequalities just mentioned, as we

shall soon see.

In summary, we have four parameters, ω(C), ωmc(C), ωss(C), and ωss
mc(C), measuring

minimum “sizes” of various kinds of sequences, and four parameters, `(C), `mc(C), `ss(C),
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and `ss
mc(C), where each `-parameter is obtained from its corresponding ω-parameter by the

formula ` =
⌊

ω−pd−1

(p−1)pd−1

⌋
−d(e−1). The more decorations the parameter has, the higher it is

in general. That is, we always have ω(C) ≤ ωmc(C) ≤ ωss
mc(C) and ω(C) ≤ ωss(C) ≤ ωss

mc(C),

but ωmc(C) and ωss(C) are not strictly comparable. Furthermore, ω(C) = ωmc(C) and

ωss(C) = ωss
mc(C) when p = 2 and e = 1. Also ω(C) = ωss(C) and ωmc(C) = ωss

mc(C) when

e = 1 and C is a free Z/pdZ-module. On the other hand, we can find an infinite sequence of

cyclic codes over Galois rings where ω(C) < ωmc(C) < ωss(C) < ωss
mc(C), and where all the

differences between terms in this chain of inequalities simultaneously tend to infinity as C

runs through the sequence. See Proposition 4.22 of this thesis for details.

Now let us resume the thread of our history. We had left off where McEliece showed

[35] that if C ⊆ Fp[A] with A cyclic, then ham(c) ≡ 0 (mod p`(C)), or equivalently, zer(c) ≡

|A| (mod p`(C)), for all c ∈ C. Furthermore, McEliece showed that every nonzero symbol

(element of Fp) occurs a multiple of p`(C) times in any given c ∈ C. Delsarte generalized this

theorem from cyclic codes over Fp to Abelian codes over Fp [17], and McEliece generalized

this theorem from cyclic codes over Fp to cyclic codes over Fq, an arbitrary finite field of

characteristic p [36].

The next major discovery is also due to McEliece [37], who introduced the modular con-

dition to improve the above results, thus producing a sharp bound on the p-adic valuations

of Hamming weights in cyclic codes over Fp:

Theorem 1.1 (McEliece [37]). Let C be a code in Fp[A] with A cyclic and 1A not in

the support of the Fourier transform of C. Then ham(c) ≡ 0 (mod p`mc(C)), and there is

some c ∈ C with ham(c) 6≡ 0 (mod p`mc(C)+1). Equivalently, zer(c) ≡ |A| (mod p`mc(C)),

and there is some c ∈ C with zer(c) 6≡ |A| (mod p`mc(C)+1).

This is an improvement (since `mc(C) is sometimes greater than `(C)) and a sharpening

of the results in McEliece’s thesis. McEliece had already shown that in a cyclic code C over

Fp, the number of instances in each word c of any nonzero symbol is divisible by p`(C) [35].

In [37], he used the Theorem 1.1 to show that this is sharp. That is, for any given nonzero

r ∈ Fp, there is some c ∈ C such that the number of instances of r in c is not divisible by

p`(C)+1. The results of McEliece have been used in studies of weights in codes [27], [26],
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[57], [6], [56]. They have also been used in the study of highly nonlinear functions and

cross-correlation properties of m-sequences1 [24], [9], [10], [11], [14], [20], [8], [12].

The definitive result for Hamming weights of words in Abelian codes in Fq[A] with p - |A|

is due to Delsarte and McEliece [18]. They determined the correct generalization, for use

with an arbitrary finite field, of the modular condition that was introduced for prime fields

by McEliece.

Theorem 1.2 (Delsarte-McEliece [18]). Let C be a code in Fq[A] with 1A not in the

support of the Fourier transform of C. Then zer(c) ≡ |A| (mod p`mc(C)) for all c ∈ C,

and there is some c ∈ C with zer(c) 6≡ |A| (mod p`mc(C)+1). Equivalently, ham(c) ≡ 0

(mod p`mc(C)) for all c ∈ C, and there is some c ∈ C with ham(c) 6≡ 0 (mod p`mc(C)+1).

Thus Delsarte and McEliece give a sharp bound on the p-adic valuations of Hamming

weights in Abelian codes over finite fields. One particularly satisfying corollary of the

Delsarte-McEliece theorem is the theorem of Ax [2] on the cardinalities of affine algebraic

sets generated by low-degree polynomials over finite fields:

Theorem 1.3 (Ax [2]). Let f ∈ Fq[x1, . . . , xn] be a nonconstant polynomial of degree d.

Let ν be the least nonnegative integer greater than or equal to (n − d)/d. Let V (f) be the

set of zeroes of f in Fn
q . Then |V (f)| is divisible by qν .

Delsarte and McEliece showed that their theorem implies Ax’s by using a special cor-

respondence [28] between polynomial functions on Fn
q r {(0, . . . , 0)} and elements of the

group algebra Fq[A] with A the cyclic group of order qn − 1. We should also note that the

Delsarte-McEliece theorem has been further generalized by Ward, who considered group

algebras Fq[G] for more general groups, i.e., non-Abelian groups and groups G with |G|

divisible by p [58], [59], [60], [61].

As the study of error-correcting codes progressed, it became clear that codes over finite

rings other than fields, particularly codes over integer residue rings, were interesting. This

idea had occurred to various researchers in the 1970s and 1980s, e.g., see [4], [5], [52], [53],

[44], [49], [63]. Particularly significant is the result of Nechaev [41], who showed that the
1An m-sequence is a sequence of elements in Fq generated by a linear recurrence whose characteristic

polynomial is the minimal polynomial (over Fq) of a root of unity of order qk − 1 for some k.
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Kerdock code (a very good, but nonlinear code over F2) has a simple description in terms

of quaternary sequences (i.e., sequences of elements in Z/4Z). Interest in codes over Z/4Z

increased spectacularly when Hammons, Kumar, Calderbank, Sloane, and Solé showed that

the Kerdock code and a code equivalent to the Preparata code, when regarded as extended

cyclic codes over Z/4Z, are dual to each other [23]. These researchers made much use of

the weight function known as the Lee weight, which we shall denote lee : Z/4Z → Z, and

which is defined by lee(0) = 0, lee(1) = lee(3) = 1, and lee(2) = 2. There is a map, called

the Gray map, which is a distance-preserving bijection from (Z/4Z)k, equipped with Lee

distance, to F2k
2 , equipped with Hamming distance. Therefore, one can obtain binary codes

with large Hamming distance between codewords if one can obtain quaternary codes with

large Lee distance between codewords. Thus Lee weight is perhaps the most important

weight function to consider when working with codes over Z/4Z. More generally, the Lee

weight function lee : Z/pdZ → Z is obtained by setting lee(r) to be the minimum of the

absolute values of the elements in Z which equal r modulo pd.

Since the class of Galois rings includes both finite fields and integer residue rings modulo

prime powers, it is not unnatural for researchers to study cyclic codes over Galois rings, as

indeed they have begun to do [3], [64], [42], [54], [55], [19]. One desires analogues of the

theorems (such as those of Delsarte and McEliece) that have been worked out for Abelian

codes over finite fields.

Most published analogues of McEliece’s theorem for Abelian codes over Galois rings

(aside from those for codes over finite fields, which we have already discussed) treat of codes

over integer residue rings modulo prime powers, i.e., Galois rings of the form GR(pd, 1) =

Z/pdZ. The first result we discuss, due to Helleseth, Kumar, Moreno, and Shanbhag [25],

is actually stated as a result for Z/4Z-linear trace codes, which are extended cyclic codes

over Z/4Z, where A is a cyclic group of order 2n − 1 for some n > 1. Their result is easily

translated into an equivalent result for cyclic codes over Z/4Z:

Theorem 1.4 (Helleseth-Kumar-Moreno-Shanbhag [25]). Let C be a code in Z/4Z[A]

with A cyclic of order 2n− 1 for some n > 1, and with 1A not in the support of the Fourier

transform of C. Then lee(c) ≡ 0 (mod 2dω
ss(C)/2e−1) for all c ∈ C.
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Around the same time, Calderbank, Li, and Poonen [7] proved a theorem that is wider

in scope. They demonstrated that the Lee weights of words in any cyclic code over Z/4Z

are always divisible by 2dω(C)/2e−1. This theorem is more generally applicable than that of

Helleseth et al., since it does not assume that A is of order 2n − 1 for some n. However,

when we restrict to this special case, which Helleseth et al. treat, then their theorem is

stronger than that of Calderbank et al., since ωss(C) ≥ ω(C), and sometimes this inequality

is strict. For codes that are free Z/4Z-modules, one has ωss(C) = ω(C), so that the two

results coincide in this case. The results of Helleseth et al. and of Calderbank et al. have

been useful to coding theorists [48], [13].

Wilson generalized and strengthened the results of Calderbank, Li, and Poonen in an

unpublished manuscript [67].

Theorem 1.5 (Wilson [67]). Let C be a code in Z/2dZ[A] with A cyclic and 1A not in

the support of the Fourier transform of C. Then lee(c) is divisible by 2b(ω(C)−2)/2d−1c+1 for

all c ∈ C.

In the special case of cyclic codes over Z/4Z (i.e., when d = 2), Wilson’s theorem

asserts that weights are divisible by 2bω(C)/2c = 2`(C)+1, which is stronger than the result

2dω(C)/2e−1 of Calderbank, Li, and Poonen when ω(C) is even. If we further restrict A to be

cyclic of order 2n − 1 for some n > 1, then Wilson’s result is sometimes stronger than that

of Helleseth et al., for example, in the case when the codes are free Z/4Z-modules (where

the results of Helleseth et al. and Calderbank et al. coincide) with ω(C) even. On the other

hand, Wilson’s result can be worse than that of Helleseth et al., because one can construct a

sequence of codes (to which Theorem 1.4 applies) in which ωss(C)−ω(C) increases without

bound as C runs through the sequence (see Proposition 4.22 of this thesis). So the results

of Wilson and of Helleseth et al. are not strictly comparable.

Now let us consider zero counts and Hamming weights of codes in Z/pdZ[A]. The

results here mostly occur in the same papers where one finds the results for Lee weights.

Calderbank, Li, and Poonen [7] showed that Hamming weights in cyclic codes over Z/4Z

are always divisible by max
{
2dω(C)/2e−2, 2dω(C)/3e−1

}
. More generally, they showed that

Hamming weights in a cyclic code C over Z/2dZ are always divisible by 2dω(C)/2d−1e−2.
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Indeed, they showed that the number of instances of each nonzero symbol is always divisible

by 2dω(C)/2d−1e−2. If we specialize to d = 1, this shows that Hamming weights in cyclic codes

over F2 are divisible by ω(C) − 2 = `(C) − 1, which is a result inferior to that obtained by

McEliece in his thesis [35]. Again, the results of Calderbank et al. were generalized and

strengthened by Wilson. Wilson showed that for any code C in Z/pdZ[A] with A cyclic, the

Hamming weights of words are divisible by p`(C). More strongly, he showed the following

result:

Theorem 1.6 (Wilson [65]). Let C be a code in Z/pdZ[A] with A cyclic and 1A not in the

support of the Fourier transform of C. Then for any c ∈ C and r ∈ Z/pdZ with r 6= 0, the

number of occurrences of the symbol r in the word c is a multiple of p`(C) = p

⌊
ω(C)−pd−1

(p−1)pd−1

⌋
.

Note that the specialization of this theorem to p = 2 is stronger than the result of

Calderbank, Li, and Poonen. For Hamming weights in cyclic codes over Z/4Z, Wilson’s

result is stronger when ω(C) is even and greater than or equal to 6. More generally (for

d > 2 and when counting occurrences of any nonzero symbol), Wilson’s result is stronger

when ω(C) ≥ 2d and 2d−1 | ω(C). We should also compare Wilson’s results with those of

McEliece. For d = 1, i.e., when C is a cyclic code over Fp, Wilson’s results assert that each

nonzero symbol occurs a multiple of p`(C) times, which is the result of McEliece’s thesis

[35]. However, if we wish to know about the p-divisibility of Hamming weights, this is not

as strong as McEliece’s later result (Theorem 1.1), which states that Hamming weights are

divisible by p`mc(C) (which can be greater than p`(C)). Thus Wilson’s theorem does not

reduce to the strongest result available for cyclic codes over prime fields.

1.2 New Results

We present four new results in this thesis, after laying a foundation of preliminary material

(Chapter 2) and presenting our estimation method in abstract form (Chapter 3) to avoid

repetitive calculations. Our first result, presented in Chapter 4, concerns zero counts,

Hamming weights, and counts of nonzero symbols in words of Abelian codes over Z/pdZ.

Our second result, presented in Chapter 5, concerns Lee weights in Abelian codes over
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Z/4Z. The third new result, discussed in Chapter 6, concerns zero counts and Hamming

weights in Abelian codes over arbitrary Galois rings. The last result, presented in Chapter

7, generalizes the theorem of Delsarte and McEliece (Theorem 1.2) to count the number of

positions where a selection of words c1, . . . , ct ∈ Fq[A] simultaneously have the zero symbol.

From this we derive N. M. Katz’s generalization [30] of Ax’s theorem (Theorem 1.3). We

present each result in more detail below.

The first result (Chapter 4) consists of two theorems. One theorem concerns counts of

nonzero symbols in words:

Theorem 1.7 (Theorem 4.21). Let C be a code in Z/pdZ[A] with 1A not in the support

of the Fourier transform of C. Let r ∈ Z/pdZ with r 6= 0, and let c ∈ C. Then the number

of occurrences of the symbol r in the word c is a multiple of p`ss(C).

This improves Wilson’s result (Theorem 1.6) because `ss(C) ≥ `(C). Indeed, there exists

a sequence of codes such that `ss(C) − `(C) is unbounded (see Proposition 4.22). Since

Wilson’s result is stronger than the result of Calderbank, Li, and Poonen on the number

of instances of nonzero symbols, our new theorem here is also stronger than the results of

these researchers. Our other new theorem gives an even stronger result for zero counts and

Hamming weights:

Theorem 1.8 (Theorem 4.18). Let C be a code in Z/pdZ[A] with 1A not in the support of

the Fourier transform of C. Then zer(c) ≡ |A| (mod p`ss
mc(C)) for all c ∈ C, and zer(c) 6≡ |A|

(mod p`ss
mc(C)+1) for some c ∈ C. Equivalently, ham(c) ≡ 0 (mod p`ss

mc(C)) for all c ∈ C, and

ham(c) 6≡ 0 (mod p`ss
mc(C)+1) for some c ∈ C.

Thus we have a sharp lower bound on the p-adic valuations of Hamming weights of words

in Abelian codes over Z/pdZ. This strengthens the bound for Hamming weights that can

be deduced from Theorem 1.7, and so a fortiori improves the results of Wilson (Theorem

1.6) and of Calderbank, Li, and Poonen [7], as applied to Hamming weights. Unlike these

other theorems, Theorem 1.8 reduces to Theorem 1.1 of McEliece on Hamming weights in

codes over prime fields. We note in passing that Theorem 1.7 can be applied to obtain

lower bounds on 2-adic valuations of Lee weights of words in Abelian codes over Z/2dZ.
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When this is done, we obtain a result not strictly comparable to Wilson’s result on Lee

weights (Theorem 1.5); sometimes the one is better and sometimes the other is better.

Thus, by combining this new result with Wilson’s result, we obtain new improved bounds

on 2-divisibility of Lee weights in Z/2dZ[A].

The second result (Chapter 5) presented in this thesis concerns Lee weights in Abelian

codes over Z/4Z:

Theorem 1.9 (Theorem 5.12). Let C be a code in Z/4Z[A] with 1A not in the support

of the Fourier transform of C. Then we have lee(c) ≡ 0 (mod 2`ss(C)+1) for all c ∈ C, and

lee(c) 6≡ 0 (mod 2`ss(C)+2) for some c ∈ C.

Thus we have a sharp lower bound on the 2-adic valuations of Lee weights of words in

Abelian codes over Z/4Z. We first compare this result with the specialization to Z/4Z of

Wilson’s result (Theorem 1.5). The new result is stronger for Z/4Z-codes because `ss(C) ≥

`(C). Indeed, there exists a sequence of codes such that `ss(C) − `(C) is unbounded (see

Proposition 4.22). Since Wilson’s result is stronger than that of Calderbank, Li, and Poonen,

this new theorem is stronger than theirs as well. We should also compare this with the result

of Helleseth, Kumar, Moreno, and Shanbhag, which applies only to the special case when

our Abelian group A is cyclic of order 2n − 1 for some n > 1. The new theorem states

that the 2-adic valuations of weights are bounded below by `ss(C) + 1 = bωss(C)/2c, while

the result of Helleseth et al. gives a lower bound of dωss(C)/2e − 1. Thus, our result is

stronger when ωss(C) is even. In fact, if one were to take the maximum of the lower bounds

of Wilson and those of Helleseth et al. for codes in Z/4Z[A] with A cyclic of order 2n − 1,

Theorem 1.9 would still give a stronger bound for infinitely many codes (see the discussion

at the beginning of Chapter 5 for more details). It is especially satisfactory that our new

theorem includes the statement that the lower bound it furnishes is sharp.

The third result (Chapter 6) is an analogue of McEliece’s theorem for Abelian codes over

an arbitrary Galois ring GR(pd, e). To the author’s knowledge, no such result has appeared

in the literature at this time. We prove the following result:

Theorem 1.10 (Theorem 6.12). Let C be a code in GR(pd, e)[A] with 1A not in the

support of the Fourier transform of C. Then zer(c) ≡ |A| (mod p`mc(C)) for all c ∈ C, or
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equivalently, ham(c) ≡ 0 (mod p`mc(C)) for all c ∈ C.

If we set d = 1 in this theorem, we recover the Delsarte-McEliece theorem (Theorem

1.2), which is sharp. However, if we set e = 1 in this theorem, we only obtain a weakened

version of Theorem 1.8 (since `ss
mc(C) ≥ `mc(C)).

The fourth result (Chapter 7) is a generalization of the Delsarte-McEliece theorem (The-

orem 1.2). Our generalized version counts the number of components where a collection

c1, . . . , ct of codewords in Fq[A] simultaneously have the zero symbol. We extend the defini-

tion of zer so that zer(c1, . . . , ct) is this simultaneous zero count. To state the theorem, we

need a slight generalization of the parameter `mc(C). We suppose that C1, . . . , Ct are ideals

(codes) in Fq[A], and we let Γi be the support of the Fourier transform of Ci for each i. We

consider unity-product sequences of the form

apk1,1

1,1 , . . . , ap
k1,n1

1,n1
, . . . , apkt,1

t,1 , . . . , ap
kt,nt

t,nt

with ai,j ∈ Γi and ki,j ∈ N for each i and j. We insist that
∑ni

j=1 pki,j ≡ 0 (mod q − 1) for

each i ∈ {1, 2, . . . , t}. Note that this modular condition forces p−1 | ni for all i. We consider

the “size” of such a sequence to be
∑t

i=1 max
{

0, ni
p−1 − e

}
, and we set `mc(C1, . . . , Ct) to be

the minimum size of the sequences with these properties. It is not hard to show that when

we are working with a single codeword, i.e., when t = 1, this `mc(C1, . . . , Ct) becomes the

parameter `mc(C1) which we have already defined. Now we can state our theorem.

Theorem 1.11 (Theorem 7.14). Let t ≥ 1 and let C1, . . . , Ct be codes in Fq[A] with 1A not

in the supports of their Fourier transforms. Then zer(c1, . . . , ct) ≡ |A| (mod p`mc(C1,...,Ct))

for all c1 ∈ C1, . . . , ct ∈ Ct. There are some c1 ∈ C1, . . . , ct ∈ Ct such that zer(c1, . . . , ct) 6≡ |A|

(mod p`mc(C1,...,Ct)+1).

This theorem reduces to the Delsarte-McEliece theorem (Theorem 1.2) in the special

case t = 1. The Delsarte-McEliece theorem implies the result of Ax (Theorem 1.3) on the

p-divisibility of the cardinality of the zero set of a single polynomial over Fq. In the same

manner, our new theorem implies the generalization of Ax’s theorem by N. M. Katz on the

p-divisibility of the cardinality of the set of simultaneous zeros of a collection of polynomials
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over Fq.

Theorem 1.12 (N. M. Katz [30]). Let f1, . . . ft ∈ Fq[x1, . . . , xn] be nonconstant polyno-

mials of degrees d1 ≤ · · · ≤ dt, respectively. Let ν be the least nonnegative integer greater

than or equal to
(
n−

∑t
i=1 di

)
/dt. Let V (f1, . . . , ft) be the set of simultaneous zeroes of

f1, . . . , ft in Fn
q . Then |V (f1, . . . , ft)| is divisible by qν .

We also prove that N. M. Katz’s theorem is sharp in the sense that (using the notation

of the theorem) there exist homogeneous polynomials f1, . . . , ft of degrees d1, . . . , dt such

that pqν - |V (f1, . . . , ft)|. The proof of this form of sharpness by N. M. Katz has an easily

fixed flaw, which is discussed and repaired in Section 7.6. The author has not been able

prove that anyone had fixed this before he did, but notes that anyone could have.

1.3 Methods

Our point of departure is the counting polynomial method of Wilson [67], [65], which we

shall review here briefly, while casting it into our own notation. Let us assume for the

moment that we have an Abelian code C ⊆ Z/pdZ[A], and we wish to p-adically estimate

the weights of words in C. For concreteness, suppose m is a positive integer, and we want to

show that all weights vanish modulo pm. For the rest of this chapter, let π denote reduction

modulo pd. When e = 1, i.e., when our Galois ring GR(pd, e) is Z/pdZ, Wilson’s basic idea

is to devise a polynomial f(x) ∈ Q[x] that approximates modulo pm the lift of the weight

function, i.e., such that f(r) ≡ wt(π(r)) (mod pm) for all r ∈ Zp. We call such a polynomial

a counting polynomial. Then for c ∈ C ⊆ Z/pdZ[A], Wilson carefully devises a lifted word

C ∈ Zp[A] such that π(Ca) = ca for all a ∈ A, and such that Ĉ(a) = 0 whenever ĉ(a) = 0.

So wt(c) =
∑

a∈A wt(ca) =
∑

a∈A wt(π(Ca)) ≡
∑

a∈A f(Ca) (mod pm).

Now Wilson writes Ca in terms of its Fourier coefficients (i.e., uses the inverse Fourier

transform). To be consistent with the notation of this thesis (not with Wilson), we devise a

bilinear pairing 〈·, ·〉 from A×A into Qp(ζq′−1), which furnishes a non-canonical isomorphism

between A and the group of characters of A, namely, 〈a, ·〉 : A → Qp(ζq′−1) is the charac-

ter that we identify with the element a ∈ A. Then we write Ca = |A|−1∑
b∈A Ĉ(b)〈b, a〉.
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We want to calculate
∑

a∈A f(Ca), which approximates wt(c) modulo pm. For any k ∈ N,

we have Ck
a =

(
|A|−1∑

b∈S Ĉ(b)〈b, a〉
)k

= |A|−k∑
b1,...,bk∈S Ĉ(b1) . . . Ĉ(bk)〈b1 . . . bk, a〉, and

f(Ca) is a linear combination of such terms with k ≤ deg(f). Note that we are only sum-

ming over b ∈ S (rather than b ∈ A) since S is a support of ĉ (and thus, by the lifting

procedure, it is also a support of Ĉ). When we sum over a in A, we have
∑

a∈A Ck
a =

|A|1−k∑
b1,...,bk∈S
b1...bk=1A

Ĉ(b1) . . . Ĉ(bk). Then
∑

a∈A f(Ca) (which is congruent modulo pm to

wt(c)) is a linear combination of such terms for k ≤ deg(f). If deg(f) is less than the

minimum length of unity-product sequences of elements in S (i.e., if deg(f) ≤ ω(C)), then∑
a∈A f(Ca) = 0, and so wt(c) ≡ 0 (mod pm). In this way, Wilson obtained his results (The-

orems 1.5 and 1.6) by showing that one can find polynomials of low degree that approximate

lifts of the appropriate weight functions (Lee weight, Hamming weight, and weight func-

tions that count instances of particular symbols). The degree of the polynomial increases

as the desired p-adic accuracy of the approximation (measured here by m) increases. To

find such polynomials, Wilson performs some nontrivial calculations using the calculus of

finite differences. Indeed, the calculations we have shown here (which assume the counting

polynomial has already been found) are straightforward, while the existence of sufficiently

low degree counting polynomials is not obvious.

We need to modify Wilson’s counting polynomial method extensively in three ways

(at least) to provide what is needed to prove the new results presented here (Theorems

1.7–1.11). Note that Wilson’s method gives results (Theorems 1.5 and 1.6) in terms of

the parameter `(C) only, never in terms of `mc(C), `ss
mc(C), or `ss

mc(C). Thus our first two

challenges are to devise counting polynomials that respect the modular condition and the

scoring system described in Section 1.1 above. Thirdly, none of Wilson’s results furnish

proofs of sharpness. This is done by careful combinatorial analysis of terms in our p-adic

estimates of weights.

To make a counting polynomial that respects the modular condition, we introduce aver-

aging techniques. The averaging is straightforward if e = 1. Roughly speaking, we replace

a counting polynomial f(x) with g(x) = (p − 1)−1
∑p−2

i=0 f(ζi
p−1x), where ζp−1 is a root of

unity of order p − 1. This g(x) has all exponents of x divisible by p − 1, which is exactly



18

what is needed to enforce the modular condition on sequences in our calculations. In the

proof of Theorem 4.12 in Section 4.2, we use a generalization of this averaging procedure

to obtain a counting polynomial suitable for proving Theorem 1.8. There we have a poly-

nomial f(x0, . . . , xd−1) that respects the scoring system (more details on this below), and

we replace it with g(x0, . . . , xd−1) = (p − 1)−1
∑p−2

i=0 f(ζi
p−1x0, . . . , ζ

i
p−1xd−1) to produce a

polynomial that respects both the modular condition and the scoring system.

In the case where e > 1, the polynomials constructed by Wilson do not even approximate

lifted weight functions. For when e > 1, GR(pd, e) is the quotient of Zp[ζq−1] modulo pd,

so that we need a polynomial g(x) with g(r) = wt(π(r)) for all r ∈ Zp[ζq−1], but Wilson’s

polynomials are designed to give approximations only for r ∈ Zp. So before we even address

the modular condition, we must address a new challenge: finding counting polynomials for

use with Galois rings GR(pd, e) with e > 1. To do this, we perform an averaging procedure,

called trace-averaging, which is based on the trace Tr: Qp(ζq−1)→ Qp. The trace-averaging

procedure is somewhat technical even when d = 1 (i.e., for finite fields), and requires a great

deal of care when d > 1. Trace-averaging forms from Wilson’s polynomial a new polynomial

g(x0, . . . , xe−1) ∈ Qp(ζq−1)[x0, . . . , xe−1] with the property that g(r, Fr(r), . . . ,Fre−1(r)) ≡

zer(π(r)) (mod pm) for all r ∈ Zp[ζq−1], where Fr is the Frobenius automorphism. It turns

out that trace-averaging not only fills a void by providing counting polynomials for use

with Galois rings GR(pd, e) with e > 1, but the polynomials thus furnished also respect the

modular condition. In this way, we can obtain lower bounds on p-adic valuations of weights

in terms of `mc(C) instead of bounds based on `(C).

We also need to modify Wilson’s method to provide counting polynomials that respect

our scoring system, which was used to define the parameters ωss(C), `ss(C), ωss
mc(C), and

`ss
mc(C) introduced in Section 1.1 above. Instead of constructing a single-variable counting

polynomial f(x) ∈ Q[x] with the property that f(r) ≡ wt(π(r)) (mod pm) for all r ∈

Zp, we construct a multivariable polynomial f(x0, . . . , xd−1) that has the property that

f(r0, . . . , rd−1) ≡ wt(π(r0 + pr1 + · · ·+ pd−1rd−1)) (mod pm) for all r0, . . . , rd−1 ∈ Zp. The

degree of our polynomial in the variable xi will be roughly 1/pi times its degree in x0.

Then we decompose our codeword c ∈ GR(pd, e)[A] in a very specific way (this is the scaled
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Fourier-induced breakdown introduced in Section 2.3 and taken up again in Section 4.3).

The decomposition is of the form c = c(0) + pc(1) + · · ·+ pd−1c(d−1). Each c(i) is then lifted

to obtain a word C(i) ∈ Zp[A], and we compute
∑

a∈A f(C(0)
a , . . . , C

(d−1)
a ) to approximate

the weight. Precise details would be lengthy to state, but this method respects the scoring

system, so we can obtain new lower bounds on p-adic valuations of weights in terms of

`ss(C). We may also use an averaging technique to make a polynomial that respects both

the scoring system and the modular condition, so we can obtain strong lower bounds in

terms of `ss
mc(C).

In certain cases, we want to obtain sharp bounds on the p-adic valuations of weights

from the counting polynomial method. Some of our new counting polynomials are suitable

for this task, but they must be employed with great care to obtain proofs of sharpness.

Recall that Wilson uses a counting polynomial f(x) that approximates wt ◦π modulo pm,

and for which
∑

a∈A f(Ca) vanishes, to prove that wt(c) ≡ 0 (mod pm). Naturally, Wilson

chooses a polynomial f(x) that approximates wt ◦π as closely as possible, subject to the

constraint that the degree of f(x) be low enough that
∑

a∈A f(Ca) vanishes. To obtain a

sharp bound we use a counting polynomial g that approximates wt ◦π a little more pre-

cisely, say modulo pm+1, so that the sum
∑

a∈A g(Ca) does not entirely vanish, but becomes

a polynomial function of the lifted Fourier coefficients Ĉ(a). (We may actually be looking at

an analogous, but more complicated sum if we are using some of the more exotic multivari-

able polynomials discussed above, but the idea remains the same.) Then a combinatorial

analysis of
∑

a∈A g(Ca), regarded as a polynomial function of the lifted Fourier coefficients,

can be used to determine that, as c runs through our code C, the lifted Fourier coefficients

at some point take on values such that
∑

a∈A g(Ca) does not vanish modulo pm+1. This

combinatorial analysis can be quite intricate in certain cases, e.g., see the proof of Theorem

4.18.

Finally, we combine the trace-averaging method with techniques for dealing with mul-

tiple words to obtain a polynomial for counting simultaneous zeroes. This enables us to

prove Theorem 1.11. We obtain the result of N. M. Katz (Theorem 1.12) by deriving and

employing a slightly refined version of the result that punctured Reed-Muller codes are
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cyclic [28].

1.4 Sketch of the Contents

Chapter 2 is all preliminary material. Section 2.1 reviews p-adic fields and Galois rings, and

Sections 2.2 and 2.3 review the Fourier transform. Section 2.4 introduces the various weight

functions we shall consider, and introduces the notion of normalized weight, which is our

device for dealing with codes in which 1A is in the support of the Fourier transform (i.e.,

codes with constant words). Of particular note is Section 2.5, which introduces the notion

of accounts, which are simply functions from a set Y into the integers. Accounts that take

nonnegative values are regarded as multisets. This combinatorial device is indispensable for

making our equations (barely) compact enough to display conveniently on the page. Any

reader who wishes to understand the calculations performed here must be familiar with the

notations for accounts. Sections 2.6 and 2.7 include various combinatorial devices that we

employ to obtain our more precise results (such as proofs of sharpness). We recommended

that the reader pass over these sections and return to them only when the tools they describe

are actually employed (in parts of Chapters 4–7). Section 2.8 describes some notations we

use for multivariable polynomials as well as some basic facts about polynomials that we

shall need. The reader should be familiar with the notations set down there because they

are often used.

Chapter 3 provides abstract theorems that will give p-adic estimates of weights if one

can furnish an appropriate counting polynomial. Nothing is said about how to find counting

polynomials; this will be done in each of the succeeding chapters as the need arises.

In Chapter 4, we prove Theorems 1.8 and 1.7, while laying down the foundations needed

for all our counting polynomial constructions. Section 4.1 has some fundamental material

on the Newton expansion, which is the mathematical device underlying all our counting

polynomial constructions. We construct our counting polynomials in Section 4.2, some of

which will be used in Chapters 6 and 7. We show how to employ the polynomials in Section

4.3. The techniques and results of Sections 4.1–4.3 will be reused in Chapter 5. In Sections

4.4 and 4.5, we use our counting polynomials to prove Theorems 1.8 and 1.7, and in Section
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4.6 we compare these results with earlier work.

Chapter 5 is dedicated to proving Theorem 1.9. After discussing previous results and

comparing our new theorem with them (relying heavily on material from Section 4.6 for

the comparison), we spend the next two sections (5.1 and 5.2) specializing the notions of

Sections 4.2 and 4.3 for Lee weight. Thus we obtain a counting polynomial, which we use

in Section 5.3 to prove Theorem 1.9.

Chapter 6 is dedicated to proving Theorem 1.10. In Sections 6.1–6.3, we develop the

trace-averaging procedure to obtain an appropriate counting polynomial. We derive Theo-

rem 1.10 in Section 6.4 and show that we can recover some earlier results from this highly

general theorem in Section 6.5.

In Chapter 7, we prove Theorem 1.11 and relate it to the theorem of N. M. Katz

(Theorem 1.12). In Sections 7.1–7.3, we carry out a more specialized version (for finite

fields only) of the trace-averaging procedure of Chapter 6. Then in Section 7.4, we construct

our polynomial for counting simultaneous zeroes. We use this polynomial in Section 7.5 to

prove Theorem 1.11. In Section 7.6, we review the theorems of Chevalley-Warning, Ax,

and N. M. Katz. In Section 7.7, we show how to translate results about weights in group

algebras to results about cardinalities of affine algebraic sets over finite fields. In Section

7.8, we prove the theorem of N. M. Katz and the associated statement about its sharpness.
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Chapter 2

Preliminaries

In this chapter, we review the fundamental mathematics needed to state and prove our

results. We also introduce definitions, notations, and combinatorial devices that allow us

to describe and manipulate the objects that arise in this study. We discuss p-adic fields

and Galois rings in Section 2.1. Then we introduce the Fourier transform for the group

algebra R[A] (with R a fairly generic ring) in Section 2.2. In Section 2.3, we give more

specialized results on the Fourier transform in the case when R is a Galois ring or a ring

of integers in an unramified extension of the p-adics. In Section 2.4, we review weight

functions commonly used in algebraic coding theory. There we introduce the normalized

weight function, a device for simplifying the presentation of our results when our code has

the trivial character in the support of its Fourier transform (i.e., when our code contains

constant words).

The second half of this chapter deals more with notations and devices that make it easier

for us to state and prove our theorems. Section 2.5 is especially critical in this regard. There

we introduce the notion of an account (which is a generalization of a multiset) and tools

for manipulation of accounts. These accounts are ubiquitous in this thesis, so the reader

must be familiar with them, with their notation, and with the basic operations that can be

performed upon them. Section 2.6 introduces the procedures called collapse and reduction

of accounts. These devices are needed in our proofs of sharpness of lower bounds on p-

adic valuations of weights. The reader should probably skip this section until collapse and

reduction are actually used (beginning in Section 4.4). Section 2.7 introduces the Frobenius

action on accounts. This device is used to prove that certain quantities in our p-adic
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estimates, which we already know to be elements of Zp[ζq−1], are in fact elements of Zp. It

would be a good idea for readers to skip this section, and return to it only if they want to

understand the use of the Frobenius action in the proofs of Theorems 4.18, 5.12, 6.13, and

7.14. Section 2.8 includes notations we use with multivariable polynomials. There we also

include a basic fact about polynomials, which we use to prove that certain of our bounds

on p-adic valuations of weights are sharp.

2.1 Number Systems

Before we discuss p-adic fields and Galois rings, we fix certain conventions and notations

once and for all. We use integer to mean a rational integer unless further qualified. We let

Z denote the set integers, Z+ the set of strictly positive integers, N the set of nonnegative

integers, and Q the rational numbers. We always use p to denote a prime in N. We represent

the ring of integers modulo m as Z/mZ. We use Zp to denote the p-adic integers and Qp to

denote the p-adic rationals, which are described in Chapter II of [46]. We use ζn to denote

a root of unity of order n over Qp. We record the facts we need to know about Zp and Qp

here:

Proposition 2.1 (p-Adic Integers and Rationals). Zp is a discrete valuation ring of

characteristic 0 with the unique nonzero prime ideal generated by p, and Qp is the field of

fractions of Zp. Thus each nonzero element of Qp can be written uniquely as pmu with

m ∈ Z and u a unit in Zp, where the nonzero elements of Zp are precisely such elements

with m ≥ 0, and the units in Zp are precisely such elements with m = 0. Qp and Zp are

complete in the topology defined by this valuation. Zp contains ζp−1. The set consisting of

zero and the powers of ζp−1 is a set of representatives of the equivalence classes modulo p

in Zp. The quotient modulo p of Zp is the prime field Fp, whose cyclic group of units is

generated by the reduction modulo p of ζp−1. The quotient modulo pm of Zp is the integer

residue ring Z/pmZ. Each element of a ∈ Zp has a unique representation as
∑∞

i=0 aip
i,

where each ai is either zero or a power of ζp−1.

Proof. These are all either explicitly mentioned in, or readily apparent from, the discussion

in Chapter II of [46].
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We consider certain algebraic extensions of Qp whose behavior is similar.

Proposition 2.2 (Unramified Extensions of the p-Adics). Qp(ζpn−1) is a degree n

Galois extension of Qp, and the Galois group of Qp(ζpn−1) over Qp is the cyclic group

of order n generated by the automorphism Fr which takes ζpn−1 to ζp
pn−1. The elements

of Qp(ζpn−1) that are integral over Zp form the ring Zp[ζpn−1]. Zp[ζpn−1] is a discrete

valuation ring of characteristic 0 with the unique nonzero prime ideal generated by p, and

Qp(ζpn−1) is the field of fractions of Zp[ζpn−1]. Thus each nonzero element of Qp(ζpn−1)

can be written uniquely as pmu with m ∈ Z and u a unit in Zp[ζpn−1], where the nonzero

elements of Zp[ζpn−1] are precisely such elements with m ≥ 0, and the units in Zp[ζpn−1]

are precisely such elements with m = 0. Qp(ζpn−1) and Zp[ζpn−1] are complete in the

topology defined by this valuation. The set consisting of zero and the powers of ζpn−1 is

a set of representatives of the equivalence classes modulo p in Zp[ζpn−1]. The quotient

modulo p of Zp[ζpn−1] is the finite field Fpn, whose cyclic group of units is generated by the

reduction modulo p of ζpn−1. The automorphism Fr on Qp[ζpn−1] induces an automorphism

(which we shall also call Fr) on Fpn; this induced automorphism takes each element to

its pth power and it generates the Galois group of order n of Fpn over Fp. Furthermore,

Qp(ζpn1−1)∩Qp(ζpn2−1) = Qp(ζpgcd(n1,n2)−1) and Zp[ζpn1−1]∩Zp[ζpn2−1] = Zp[ζpgcd(n1,n2)−1].

Thus, Qp(ζpn1−1) ⊆ Qp(ζpn2−1) if and only if n1 | n2, and Zp[ζpn1−1] ⊆ Zp[ζpn2−1] if and

only if n1 | n2.

Proof. This follows from Proposition 16 (along with Corollary 1) in Chapter IV of [47],

assuming the theory developed in that book up until that point, most particularly Propo-

sitions 3 and 8 of Chapter II.

Let us examine in more detail the valuation mentioned in Propositions 2.1 and 2.2 above.

For a nonzero element a ∈ Qp(ζpn−1), the unique integer m such that a = pmu for some

unit u ∈ Zp[ζpn−1] is called the p-adic valuation of a. If a also lies in Qp(ζpn′−1), then it

is not hard to show that the p-adic valuation of a in this other field is precisely the same

as its p-adic valuation in the Qp(ζpn−1). Thus no reference to the field containing a is

necessary, and the p-adic valuation of a is simply denoted vp (a). We define vp (0) =∞, and

we consider∞ strictly greater than any integer and set anything plus∞ to∞. We say that
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two elements a and b are congruent modulo pm to mean that vp(a−b) ≥ m. Thus the notion

of equivalence of elements modulo powers of p is independent of which unramified extension

of Qp we regard as the ambient field. With these conventions, we have the following easily

verified properties of the p-adic valuation:

Lemma 2.3 (Properties of vp). For any a, b ∈ Qp(ζpn−1), we have the following:

(i) vp (a) =∞ if and only if a = 0.

(ii) vp (ab) = vp (a) + vp (b).

(iii) vp (a + b) ≥ min{vp (a), vp (b)}, with equality when vp (a) 6= vp (b).

For a ∈ Qp(ζpn−1), we also define the p-adic absolute value of a, denoted |a|p, to be

p−vp(a), where p−∞ is considered to be 0. The properties of vp translate into properties of

|·|p as follows:

Lemma 2.4 (Properties of |·|p). For any a, b ∈ Qp(ζpn−1), we have the following:

(i) |a|p = 0 if and only if a = 0.

(ii) |ab|p = |a|p|b|p.

(iii) |a + b|p ≤ max{|a|p, |b|p}, with equality when |a|p 6= |b|p.

Thus the p-adic absolute value provides a metric on Qp(ζpn−1), where the distance

between a and b is |a− b|p. This metric defines a topology on Qp(ζpn−1) that we call the

p-adic topology. It is this topology that is discussed in Propositions 2.1 and 2.2 above.

In Proposition 2.2, we saw that the finite fields of characteristic p can be obtained

as quotients modulo p of rings of algebraic integers in unramified extensions of Qp. We

shall also be interested in the quotients of these rings modulo powers of p. The Galois

ring of characteristic pm and order pmn, denoted GR(pm, n) is the quotient modulo pm of

Zp[ζpn−1]. Note that GR(p, n) is the finite field Fpn of order pn. Also note that GR(pm, 1) is

the integer residue ring Z/pmZ. The ring GR(pm, n) contains Z/pmZ as a subring and can

be thought of as an extension of Z/pmZ obtained by adjoining a root of unity of order pn−1.

Furthermore, the statements regarding intersections and containments of extensions of Qp
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and Zp in Proposition 2.2 imply that GR(pm, n1)∩GR(pm, n2) = GR(pm, gcd(n1, n2)), and

therefore GR(pm, n1) ⊆ GR(pm, n2) if and only if n1 | n2. In this case, GR(pm, n2) is a free

GR(pm, n1)-module. Note that GR(pm, n) is a principal ideal ring with m+1 ideals, namely

pj GR(pm, n2) for j = 0, 1, . . . ,m. Here p0 GR(pm, n2) is the entire ring and pm GR(pm, n2)

is the zero ideal. For more information on Galois rings, the reader should consult the book

of McDonald [34].

It does not make sense to consider the ring GR(pm1 , n) as a subring of GR(pm2 , n) when

m1 < m2, since the two rings have different characteristics. However, we do have a way

of relating elements of the one ring to elements of the other. Since m1 < m2, reduction

modulo pm1 furnishes an epimorphism from GR(pm2 , n) to GR(pm1 , n). Thus for m1 ≤ m2,

if a ∈ GR(pm2 , n), we define πm1(a) ∈ GR(pm1 , n) to be the reduction modulo pm1 of a.

Also, if a ∈ Zp[ζpn−1], we define πm1(a) ∈ GR(pm1 , n) to be the reduction modulo pm1 of

a. Since ζpn−1 is a root of unity of order pn − 1 over Qp and since π1(ζpn−1) is a root of

unity of order pn − 1 in Fpn (see Proposition 2.2 above), we know that πm(ζpn−1) is a root

of unity of order pn − 1 in GR(pm, n) for every positive integer m. As a convention, we

define π∞ to be the identity map on Zp[ζpn−1].

Now we wish to define a map from GR(pm1 , n) to GR(pm2 , n) when m1 < m2. Proposi-

tion 2.2 tells us that each element a ∈ Zp[ζpn−1] can be written uniquely as
∑∞

i=0 aip
i,

where each ai is either zero or a power of ζpn−1. We call this the canonical expan-

sion of a ∈ Zp[ζpn−1]. This implies that when m is a positive integer, each element a

of GR(pm, n) can be written uniquely as
∑m−1

i=0 aip
i, where each ai is either zero or a

power of πm(ζpn−1). We likewise call this the canonical expansion of a ∈ GR(pm, n).

For m1 ≤ m2 and a ∈ GR(pm1 , n), with canonical expansion a =
∑m1−1

i=0 aip
i, we de-

fine τm2(a) to be an element b ∈ GR(pm2 , n) with canonical expansion b =
∑m1−1

i=0 bip
i,

where bi = 0 whenever ai = 0 and bi = πm2(ζpn−1)j whenever ai = πm1(ζpn−1)j . We

also define τ∞(a) =
∑m1−1

i=0 cip
i, where ci = 0 whenever ai = 0 and ci = ζj

pn−1 when-

ever ai = πm1(ζpn−1)j . For each positive integer m, we call πm the Teichmüller lift to

characteristic pm and call τ∞ the Teichmüller lift to characteristic 0.

For m1 ≤ m2 in Z+∪{∞}, we have πm1 ◦πm2 = πm1 and τm2 ◦τm1 = τm2 . Furthermore,
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if a ∈ GR(pm1 , n), πm1(τm2(a)) = a, but if a ∈ GR(pm2 , n), then it is not always true that

τm2(πm1(a)) = a.

To summarize the relationships between the various unramified extensions of Qp and the

various Galois rings, we have the following commutative diagrams, where unmarked arrows

are inclusion maps:

Qp(ζpn−1) ←−−−− Zp[ζpn−1]
πm−−−−→ GR(pm, n) π1−−−−→ Fpnx x x x

Qp ←−−−− Zp
πm−−−−→ Z/pmZ π1−−−−→ Fp

and
Qp(ζpn−1) ←−−−− Zp[ζpn−1]

τ∞←−−−− GR(pm, n) τm←−−−− Fpnx x x x
Qp ←−−−− Zp

τ∞←−−−− Z/pmZ τm←−−−− Fp.

In each diagram, the two rows coincide when n = 1, and the last two columns coincide

when m = 1.

We transplant the notion of p-adic valuation from the unramified extensions of Qp to the

Galois rings. The p-adic valuation of a nonzero element a ∈ GR(pm, n), denoted vp (a), is

defined to be the greatest k such that a ∈ pk GR(pm, n). We define vp (0) =∞ in GR(pm, n).

Thus we have defined vp : GR(pm, n) → {0, 1, . . . ,m − 1,∞}. Note that for any m1 ∈ Z,

m2 ∈ Z+ ∪ {∞} with m1 ≤ m2, and a ∈ GR(pm1 , a), we have vp (τm2(a)) = vp (a). On the

other hand, if m1 ≤ m2 are positive integers and a ∈ GR(pm2 , n), then vp (πm1(a)) = vp (a)

if vp (a) < m1 or vp (a) = ∞, but vp (πm1(a)) = ∞ when m1 ≤ vp (a) < ∞. Likewise,

if a ∈ Zp[ζpn−1] and m1 is a positive integer, then vp (πm1(a)) = vp (a) if vp (a) < m1 or

vp (a) =∞, but vp (πm1(a)) =∞ when m1 ≤ vp (a) <∞.

In Proposition 2.2, we used Fr to denote the field automorphism of Qp(ζpn−1) that

fixes Qp pointwise and takes ζpn−1 to ζp
pn−1. Note that Fr restricted to Zp[ζpn−1] is an

automorphism of rings. We also used Fr to denote the field automorphism it induces on

Fpn through reduction modulo p; this automorphism takes every element to its pth power.

Because the automorphism Fr of the field Qp(ζpn−1) takes pm to pm, it permutes the ideal

pmZp[ζpn−1] of the ring Zp[ζpn−1], and thus induces an automorphism of the ring GR(pm, n)
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for each positive m through reduction modulo pm. This automorphism fixes pointwise the

subring GR(pm, 1) = Z/pmZ of GR(pm, n) and maps the element πm(ζpn−1) to πm(ζpn−1)p.

Throughout the thesis we call all of these automorphisms the Frobenius automorphism and

denote them all by Fr.

It is not difficult to show that Fr commutes with πm and τm for all m ∈ Z+∪{∞}. That

is, we have the commutative diagrams

Qp(ζpn−1) ←−−−− Zp[ζpn−1]
πm−−−−→ GR(pm, n) π1−−−−→ Fpn

Fr

y Fr

y Fr

y Fr

y
Qp(ζpn−1) ←−−−− Zp[ζpn−1]

πm−−−−→ GR(pm, n) π1−−−−→ Fpn

and
Qp(ζpn−1) ←−−−− Zp[ζpn−1]

τ∞←−−−− GR(pm, n) τm←−−−− Fpn

Fr

y Fr

y Fr

y Fr

y
Qp(ζpn−1) ←−−−− Zp[ζpn−1]

τ∞←−−−− GR(pm, n) τm←−−−− Fpn ,

where unlabeled arrows are inclusion maps.

Recall that Qp(ζpn1−1) ⊆ Qp(ζpn2−1) if and only if n1 | n2, and recall that GR(pn1 ,m) ⊆

GR(pn2 ,m) if and only if n1 | n2. Suppose n1 | n2. Since Fr generates the Galois group

Gal(Qp(ζpn2−1)/Qp) of order n2 and the Galois group Gal(Qp(ζpn1−1)/Qp) of order n1, we

see that Frn1 generates the Galois group Gal(Qp(ζpn2−1)/Qp(ζpn1−1)) of order n2/n1. Thus

an element of Qp(ζpn2−1) is in Qp(ζpn1−1) if and only if it is fixed by Frn1 . Likewise, for

any positive integer m, an element of GR(pm, n2) is in GR(pm, n1) if and only if it is fixed

by Frn1 . This can be checked by writing the canonical expansion of an arbitrary element of

GR(pm, n2) and applying Frn1 . If any coefficient is neither zero nor a power of πm(ζpn1−1),

the element will not be fixed by Frn1 ; otherwise the element will be fixed.

If n1 | n2, we define the trace map Trn2
n1

: Qp(ζpn2−1) → Qp(ζpn1−1) by Trn2
n1

(a) =∑(n2/n1)−1
j=0 Frn1j(a). Since Fr commutes with πm for all positive integers m, it induces

a trace map on the Galois rings, which we express with the same notation, i.e., we write

Trn2
n1

: GR(pm, n2) → GR(pm, n1). That this trace map is a surjective GR(pm, n1)-linear

map follows from the fact that Trn2
n1

: Qp(ζpn2−1) → Qp(ζpn1−1) is a surjective Qp(ζpn1−1)-

linear map. Of course Trn2
n1

: GR(p, n2) → GR(p, n1) is just the usual trace from Fpn2 to
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Fpn1 . Since Fr commutes with the maps πm and τm for all m ∈ Z+ ∪ {∞}, we also know

that Trn2
n1

commutes with πm and τm for all n1, n2 ∈ Z+ and m ∈ Z+ ∪ {∞}. In terms of

commutative diagrams, we have

Qp(ζpn2−1) ←−−−− Zp[ζpn2−1]
πm−−−−→ GR(pm, n2)

π1−−−−→ Fpn2

Tr
n2
n1

y Tr
n2
n1

y Tr
n2
n1

y Tr
n2
n1

y
Qp(ζpn1−1) ←−−−− Zp[ζpn1−1]

πm−−−−→ GR(pm, n1)
π1−−−−→ Fpn1

and
Qp(ζpn2−1) ←−−−− Zp[ζpn2−1]

τ∞←−−−− GR(pm, n2)
τm←−−−− Fpn2

Tr
n2
n1

y Tr
n2
n1

y Tr
n2
n1

y Tr
n2
n1

y
Qp(ζpn1−1) ←−−−− Zp[ζpn1−1]

τ∞←−−−− GR(pm, n1)
τm←−−−− Fpn1 ,

where unlabeled arrows are inclusion maps.

2.2 Group Algebras and the Fourier Transform

We now define the group algebra R[A], which is our basic object of study. Recall from

the last section that we always use p to denote a positive rational prime. We shall always

use A to denote a finite Abelian group with p - |A|. We write A multiplicatively with

identity 1A (or just 1 if there is no cause for confusion). Throughout this section, let R

be a commutative ring with multiplicative identity 1R (or just 1 if there is no cause for

confusion). We assume that the characteristic of R is 0 or a power of p and that |A| has a

multiplicative inverse in R.

An element f ∈ R[A] is written as a formal sum f =
∑

a∈A faa, with each coefficient fa

in R. We use the notation fa and f(a) interchangeably for the coefficient of a in f , as we

find it convenient. If f, g ∈ R[A] and c ∈ R, then the addition operation of R[A] is given by

(f+g)a = fa+ga, i.e., pointwise addition, and the R-scalar multiplication of R[A] is given by

(cf)a = cfa. The ring multiplication, called convolution, is given by (fg)a =
∑

a∈A fbgb−1a.

R[A] contains an isomorphic copy of R, namely {r1A : r ∈ R}, which includes 1R1A, the

multiplicative identity of R[A]. An ideal of R[A] is called an Abelian code (or just code) in

R[A], and elements of R[A] are often called codewords or just words. The constant words

are precisely those words f ∈ R[A] for which there exists an r ∈ R such that fa = r for all
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a ∈ A.

Another algebra of interest to us is RA, which consists of all functions from A to R,

with pointwise addition and multiplication of functions, i.e., (f + g)(a) = f(a) + g(a) and

(fg)(a) = f(a)g(a). We also have R-scalar multiplication (rf)(a) = rf(a) for r ∈ R and

a ∈ A. We use the notation f(a) and fa interchangeably for the value of f at a, as we find

it convenient. The multiplicative identity is the constant function equal to 1 everywhere.

Sometimes we shall combine elements of R[A] by means of pointwise multiplication or

combine elements of RA by convolution. Since these are not the proper multiplications

in these rings, we write f · g for the pointwise product of f, g ∈ R[A] and f ∗ g for the

convolution product of f, g ∈ RA. If we wish to equip R[A] with pointwise multiplication

as its multiplicative operation, we shall write (R[A], ·), and if we wish to equip RA with

convolution, we shall write
(
RA, ∗

)
to make these unusual circumstances apparent.

We analyze elements and ideals of group rings by means of the Fourier transform. In

order to have a satisfactory Fourier transform, |A| should be a unit in our ring of scalars R,

and R should contain roots of unity of order equal to the exponent of A (see Theorem 18

of [21]). The first condition is fulfilled by one of our initial assumptions about R. We also

assume that the second condition is fulfilled for the rest of this section.

We define a character of A into R to be a homomorphism from A into the group of

units of R. These characters, regarded as functions with pointwise multiplication, form an

Abelian group X, which we shall show to be isomorphic to A. Let a1, . . . , ak be elements

of A of orders n1, . . . , nk, such that each element of A can be written uniquely as ai1
1 . . . aik

k

with 0 ≤ ih < nh for each h. A character from A to R is uniquely determined by its values

on a1, . . . , ak. Let θh be a root of unity of order nh in R for each h. A character must take

ah to some power of θh; if a = ai1
1 . . . aik

k , we define χa to be the character that takes ah

to θih
h for all h. Then we note that if a, b ∈ A, then χab = χaχb, so that a 7→ χa is in fact

an isomorphism from A to our group X of characters. To make this isomorphism easier

to employ, we follow Delsarte [16] and introduce the pairing 〈·, ·〉 : A × A → R, defined so

that
〈
ai1

1 . . . aik
k , aj1

1 . . . ajk
k

〉
= θi1j1

1 . . . θikjk
k . Then χa(b) = 〈a, b〉, i.e., for each a ∈ A, the

character χa is the function 〈a, ·〉 : A → R. We now examine the basic properties of 〈·, ·〉.
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In the following lemma, and for the rest of this thesis, we use the Kronecker delta δ(x, y),

which equals 1 when x = y, and equals 0 otherwise.

Lemma 2.5 (Properties of 〈·, ·〉). For any a, b, c ∈ A and n ∈ Z, we have the following:

(i) 〈a, b〉 = 〈b, a〉.

(ii) 〈a, bc〉 = 〈a, b〉〈a, c〉.

(iii) 〈a, bn〉 = 〈a, b〉n.

(iv) 〈a, b〉 = 1 for all b ∈ A if and only if a = 1A.

(v)
∑

b∈A 〈a, b〉 = |A|δa,1A.

Proof. These are easy to verify.

Thus our pairing is symmetric and bilinear and establishes a (non-canonical) isomor-

phism from A to X. Now we are ready to introduce the Fourier transform in terms of our

pairing.

The Fourier transform of a function f ∈ R[A] is usually defined to be the function

g : X → R so that g(χ) =
∑

b∈A fbχ(b)−1. Using the isomorphism from A to X given by

a 7→ χa, we can consider the Fourier transform to have domain A instead of X, i.e., we

consider the Fourier transform of f to be the function h : A → R with h(a) = g(χa). We

take this as our standard definition for the Fourier transform; our bilinear pairing makes

this definition easy to state.

Let f ∈ R[A]. Then the Fourier transform of f , denoted FT(f) or f̂ , is the element of

RA with f̂(a) =
∑

b∈A fb

〈
b−1, a

〉
for all a ∈ A. The scaled Fourier transform of f , denoted

f̃ , is the element of RA with f̃(a) = |A|−1f̂(a) for all a ∈ A. We often call the values f̂(a)

for a ∈ A the Fourier coefficients of f and the values f̃(a) the scaled Fourier coefficients of

f .

The first thing we should note is that the Fourier transform is an R-algebra isomorphism.
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Proposition 2.6 (Fourier Transform is an Isomorphism). The Fourier transform is

an isomorphism of R-algebras from R[A] to RA with inverse given by

f(a) = |A|−1
∑
b∈A

f̂(b)〈b, a〉.

For f, g ∈ R[A], the Fourier transform of f · g is |A|−1f̂ ∗ ĝ.

The scaled Fourier transform is an R-module isomorphism from R[A] to RA with inverse

given by

f(a) =
∑
b∈A

f̃(b)〈b, a〉.

For f, g ∈ R[A], the scaled Fourier transform of fg is |A|f̃ g̃, and the scaled Fourier trans-

form of f · g is f̃ ∗ g̃.

Proof. It is well-known that the Fourier transform is an isomorphism of R-algebras that

takes convolution to pointwise multiplication. The facts about the scaled Fourier transform

follow easily by keeping track of the scale factors.

We also note that constant words have a very simple description via the scaled Fourier

transform.

Lemma 2.7 (Constant Words). The word f ∈ R[A] is the constant word with f(a) = r

for all a ∈ A if and only if f̃(1A) = r and f̃(a) = 0 for all a 6= 1A.

Proof. If f̃(1A) = r and f̃(a) = 0 for a 6= 1A, then by the inversion formula fb =∑
a∈A f̃(a)〈a, b〉 = r〈1A, b〉 = r for all b ∈ B. The scaled Fourier transform is a bijec-

tion, so the “only if” part follows immediately.

2.3 Group Algebras over GR(pd, e) and Zp[ζq−1]

Now we introduce the rings and group algebras that are of special interest to us. Through-

out this thesis, we let d and e denote positive integers, and we define q = pe. We shall

be concerned mostly with the group algebra GR(pd, e)[A] and its ideals (codes). For many



33

counting calculations, it will be advantageous to perform computations in a ring of charac-

teristic zero that resembles GR(pd, e) as much as possible. For this reason, we employ the

ring Zp[ζq−1], whose quotient modulo pd is GR(pd, e), and we also use the group algebra

Zp[ζq−1][A], whose quotient modulo pd is GR(pd, e)[A]. In this section, we shall describe

the structure of GR(pd, e)[A] and Zp[ζq−1][A] via the Fourier transform. Note that since

p - |A|, |A| is a unit in GR(pd, e) and Zp[ζq−1]. However, these rings may not contain roots

of unity of order equal to the exponent of A. Therefore, we extend our rings by adjoining

roots of unity. We choose e′ to be the least positive integer such that the exponent of A

divides qe′ − 1, and let q′ = qe′ = pee′ . Then we consider the ring Zp[ζq′−1] and its quotient

modulo pd, which is GR(pd, ee′). These rings contain the roots of unity of order qe′ − 1,

hence they have the roots of unity whose order is the exponent of A. Furthermore, since

ee′ is a multiple of e, we have Zp[ζq−1] ⊆ Zp[ζq′−1] and GR(pd, e) ⊆ GR(pd, ee′). So we

may consider GR(pd, e)[A] ⊆ GR(pd, ee′)[A] and Zp[ζq−1][A] ⊆ Zp[ζq′−1][A], and carry out

Fourier analysis within GR(pd, ee′)[A] and Zp[ζq′−1][A].

The Fourier transform was applied to cyclic codes over F2 by Mattson and Solomon

[33] and, more generally, to Abelian codes over F2 by MacWilliams [31]. Working with an

arbitrary finite field is no more difficult than working with F2, and the results generalize

naturally when fields are replaced with integer residue rings [43] or Galois rings [3], [54].

We are presenting the Fourier transform in a manner close to that of Delsarte and McEliece

[18] to facilitate comparison of our results with theirs. However, there are minor differences

in notation, and we write our group A multiplicatively, while they write theirs additively.

For the rest of the thesis, we use π without a subscript for πd, which is reduction modulo

pd. We shall use τ without a subscript for τ∞, which is the Teichmüller lift to characteristic

0. In the definition of the pairing 〈·, ·〉 given in the previous section, i.e.,

〈
ai1

1 . . . aik
k , aj1

1 . . . ajk
k

〉
=

k∏
h=1

θihjh
h

we shall use θh = ζnh
if our ring is Zp[ζq′−1], and we shall use θh = π(ζnh

) if our ring is

GR(pd, ee′). With these choices, the Fourier transform commutes with reduction modulo

pd. To notate this fact, for f =
∑

a∈A faa in Zp[ζq′−1][A], we let π(f) denote the element



34∑
a∈A π(fa)a ∈ GR(pd, ee′)[A], and for g ∈ Zp[ζq′−1]

A, we let π(g) denote the function

π ◦ g ∈ GR(pd, ee′)A. Then the diagrams

Zp[ζq′−1][A] FT−−−−→ Zp[ζq′−1]
A

π

y π

y
GR(pd, ee′)[A] FT−−−−→ GR(pd, ee′)A

(2.1)

and
Zp[ζq′−1][A] FT−1

←−−−− Zp[ζq′−1]
A

π

y π

y
GR(pd, ee′)[A] FT−1

←−−−− GR(pd, ee′)A

commute.

Although we introduced the algebras GR(pd, ee′)[A] and Zp[ζq′−1][A] to obtain a Fourier

transform, our real interest is in the elements of the smaller algebras GR(pd, e)[A] and

Zp[ζq−1][A]. Thus we would like to characterize FT(GR(pd, e)[A]) and FT(Zp[ζq−1][A]) as

subsets of GR(pd, ee′)A and Zp[ζq′−1]
A, respectively. We shall obtain several characteriza-

tions in Proposition 2.8 below, but first we need to make some definitions that will be used

there and which are critical to the techniques used in Chapters 4 and 5.

Recall from Section 2.1 the canonical expansion of elements in GR(pd, e) and Zp[ζq−1].

If f ∈ GR(pd, ee′)[A], for each a ∈ A we can write the canonical expansion f̃(a) =∑d−1
i=0 (f̃(a))(i)pi, where (f̃(a))(i) is always 0 or a power of π(ζq′−1). We define f (i) ∈

GR(pd, ee′)[A] so that f̃ (i)(a) = (f̃(a))(i) for all a ∈ A. Thus we have f̃ (0), . . . , f̃ (d−1) : A→

{0, 1, π(ζq′−1), . . . , π(ζq′−1)q′−2} and f̃ =
∑d−1

i=0 pif̃ (i). Note that the uniqueness of canoni-

cal expansions ensures that f̃ = g̃ if and only f̃ (i) = g̃(i) for all i ∈ {0, 1, . . . , d − 1}. Since

f̃ =
∑d−1

i=0 pif̃ (i), by the inverse scaled Fourier transform, we have f =
∑d−1

i=0 pif (i). Fur-

thermore, by the bijectivity of the scaled Fourier transform, f = g if and only if f (i) = g(i)

for all i ∈ {0, 1, . . . , d− 1}.

Likewise, if f ∈ Zp[ζq′−1][A], for each a ∈ A we can write the canonical expansion

f̃(a) =
∑∞

i=0(f̃(a))(i)pi, where (f̃(a))(i) is always 0 or a power of ζq′−1. As before, we define

f (i) ∈ Zp[ζq′−1][A] so that f̃ (i)(a) = (f̃(a))(i) for all a ∈ A. Thus we have each f̃ (i) : A →

{0, 1, ζq′−1, . . . , ζ
q′−2
q′−1} and f̃ =

∑∞
i=0 pif̃ (i). Now uniqueness of canonical expansions ensures
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that f̃ = g̃ if and only f̃ (i) = g̃(i) for all i ∈ N. Since f̃ =
∑∞

i=0 pif̃ (i), the inverse scaled

Fourier transform gives us f =
∑∞

i=0 pif (i). The bijectivity of the scaled Fourier transform

tells us that f = g if and only if f (i) = g(i) for all i ∈ N.

Now we give names to the functions we have defined in the previous two paragraphs.

Whether f ∈ GR(pd, ee′)[A] or Zp[ζq′−1][A], we call the sum f̃ =
∑

i p
if̃ (i) the canonical

expansion of f̃ , and we call f̃ (i) the ith component of the canonical expansion of f̃ . Whether

f ∈ GR(pd, ee′)[A] or Zp[ζq′−1][A], we call the sum f =
∑

i p
if (i) the scaled Fourier-induced

breakdown of f , and we call f (i) the ith component of the scaled Fourier-induced breakdown

of f . Note that if f ∈ GR(pd, e)[A] and if we set F ∈ Zp[ζq′−1][A] to have F̃ = τ ◦ f̃ , then

F̃ (i) = τ ◦ f̃ (i) and f̃ (i) = π ◦ F̃ (i) for all i ∈ {0, 1, . . . , d − 1}. Of course F̃ (i)(a) = 0 for all

a ∈ A when i ≥ d.

Now we are ready to characterize the image under FT of GR(pd, e)[A] in GR(pd, ee′)[A]

and the image under FT of Zp[ζq−1][A] in Zp[ζq′−1][A].

Proposition 2.8. For f ∈ GR(pd, ee′)[A], the following are equivalent:

(i) f ∈ GR(pd, e)[A].

(ii) f̂(aq) = Fre(f̂(a)) for all a ∈ A.

(iii) f̃(aq) = Fre(f̃(a)) for all a ∈ A.

(iv) f̃ (i)(aq) =
(
f̃ (i)(a)

)q
for all i ∈ {0, 1, . . . , d− 1} and a ∈ A.

(v) f (i) ∈ GR(pd, e)[A] for all i ∈ {0, 1, . . . , d− 1}.

Thus FT is an isomorphism of GR(pd, e)-algebras from GR(pd, e)[A] to the set of elements

g ∈ GR(pd, ee′)A that satisfy g(aq) = Fre(g(a)).

For f ∈ Zp[ζq′−1][A], the following are equivalent:

(i) f ∈ Zp[ζq−1][A].

(ii) f̂(aq) = Fre(f̂(a)) for all a ∈ A.

(iii) f̃(aq) = Fre(f̃(a)) for all a ∈ A.
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(iv) f̃ (i)(aq) =
(
f̃ (i)(a)

)q
for all i ∈ N and a ∈ A.

(v) f (i) ∈ Zp[ζq−1][A] for all i ∈ N.

Thus FT is an isomorphism of Zp[ζq−1]-algebras from Zp[ζq−1][A] to the set of elements

g ∈ Zp[ζq′−1]
A that satisfy g(aq) = Fre(g(a)).

Proof. To prove the first set of equivalences, let R = GR(pd, e), R′ = GR(pd, ee′), and I =

{0, 1, . . . , d− 1}. To prove the second set of equivalences, let R = Zp[ζq−1], R′ = Zp[ζq′−1],

and I = N. Then the rest of this proof works in either case.

Since Fr(|A|) = |A|, it is clear that (ii) and (iii) are equivalent. Note that Fre fixes 0 and

p and takes ζq′−1 and π(ζq′−1) to their qth powers. So Fre(f̃(a)) = Fre
(∑

i∈I f̃ (i)(a)pi
)

=∑
i∈I

(
f̃ (i)(a)

)q
pi. This, along with uniqueness of canonical expansions, shows that (iii)

and (iv) are equivalent.

Now we show that (i) and (iii) are equivalent. Note that 〈a, b〉 is a power of π(ζq′−1)

or ζq′−1 for all a, b ∈ A. Note also that Fre takes such elements to their qth powers. In

particular, Fre fixes an element r ∈ R′ if and only if r ∈ R. Since p - |A|, aq runs through

A as a runs through A. Thus

fa =
∑
b∈A

f̃(b)〈b, a〉

=
∑
b∈A

f̃(bq)〈bq, a〉

=
∑
b∈A

f̃(bq)〈b, a〉q,

so that

Fr−e(fa) =
∑
b∈A

Fr−e(f̃(bq))〈b, a〉. (2.2)

If f ∈ R[A], then Fre(fa) = fa for all a ∈ A, so that (2.2) becomes

fa =
∑
b∈A

Fr−e(f̃(bq))〈b, a〉.

Then the bijectivity of the scaled Fourier transform tells us that f̃(b) = Fr−e(f̃(bq)) for all
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b ∈ A. Conversely, if f̃(aq) = Fre(f̃(a)) for all a ∈ A, then (2.2) becomes

Fr−e(fa) =
∑
b∈A

f̃(b)〈b, a〉,

i.e., Fr−e(fa) = fa for all a ∈ A. This is equivalent to fa ∈ R for all a ∈ A.

Finally, since f =
∑

i∈I pif (i), it is clear that (v) implies (i). On the other hand, if we

assume (iv), then for each i ∈ I and a ∈ A, we have f̃ (i)(aq) =
(
f̃ (i)(a)

)q
= Fre(f̃ (i)(a)).

Since we have already proved the equivalence of (i) and (iii), we may apply it to see that

f (i) ∈ R[A] for all i ∈ I, i.e., that (v) holds.

We also investigate how the Fourier transform interacts with Teichmüller lifting. For

f =
∑

a∈A faa in GR(pd, ee′)[A], we let τ(f) denote the element
∑

a∈A τ(fa)a ∈ Zp[ζq′−1][A],

and for g ∈ GR(pd, ee′)A, we let τ(g) denote the function τ ◦ g ∈ Zp[ζq′−1]
A.

Lemma 2.9. Let f ∈ GR(pd, e)[A] and let F be the unique element in Zp[ζq′−1][A] such that

F̃ = τ ◦ f̃ . Then F ∈ Zp[ζq−1][A] and π(F ) = f . For each i ∈ N, we have F (i) ∈ Zp[ζq−1][A],

and π(F (i)) = f (i) for i ∈ {0, 1, . . . , d− 1}, while F (i) = 0 for i ≥ d.

Proof. By Proposition 2.8, we have f̃(aq) = Fre(f̃(a)) for all a ∈ A. Applying τ to both

sides, and recalling that τ commutes with Fr, we have τ(f̃(aq)) = Fre(τ(f̃(a))) for all a ∈ A,

i.e., F̃ (aq) = Fre(F̃ (a)) for all a ∈ A. Then Proposition 2.8 tells us that F ∈ Zp[ζq−1][A].

Since F̃ = τ(f̃), we have FT(|A|−1F ) = τ(f̃). Apply π to both sides of this equation,

commute π with FT by diagram (2.1), and recognize that π ◦ τ is the identity to obtain

FT(π(|A|−1F )) = f̃ . Thus π(|A|−1) FT(π(F )) = f̃ . Since the scaled Fourier transform is a

bijection, we have π(F ) = f .

Since f ∈ GR(pd, e)[A] and F ∈ Zp[ζq−1][A], we have f (i) ∈ GR(pd, e)[A] for all i ∈

{0, 1, . . . , d − 1} and F (i) ∈ Zp[ζq−1][A] for all i ∈ N by Proposition 2.8. Furthermore,

we have already noted (before Proposition 2.8) that F̃ (i) = 0 for i ≥ d; this is a simple

consequence of the definition of the Teichmüller lift. Thus F (i) = 0 for i ≥ d. Just before

this, we noted that F̃ (i) = τ ◦ f̃ (i) for all i ∈ {0, 1, . . . , d− 1}. Thus, by the first part of the

theorem, applied with f (i) in place of f , we have π(F (i)) = f (i).
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Proposition 2.8 above tells us that if f ∈ GR(pd, e)[A] or Zp[ζq−1][A], then f̂(a), f̂(aq),

f̂(aq2
), . . . are all determined by the value of f̂(a). We say that two elements a, b ∈ A

are q-equivalent if a = bqi
for some i ∈ Z, where powers of q here are construed as integers

modulo |A|. This defines an equivalence relation on A, called q-equivalence, which partitions

A into q-classes. We denote the q-class of a ∈ A by Clq(a) and denote |Clq(a)| by ea, so that

Clq(a) = {a, aq, . . . , aqea−1} and aqk
= a if and only if k | ea. This leads to the following

simple but important observation:

Lemma 2.10 (Sizes of q-Classes). For each a ∈ A, ea | e′.

Proof. We chose e′ so that the exponent of A divides qe′ − 1. Thus aqe′
= a, and so

ea | e′.

A subset of A is said to be q-closed if it is a union of q-classes. With our q-equivalence

terminology, Proposition 2.8 says that if f ∈ GR(pd, e)[A] or Zp[ζq−1][A], then f̂ (or f̃) is

uniquely determined by its values on a set of q-class representatives. We make this notion

more precise in the following proposition:

Proposition 2.11. Fix R a set of q-class representatives for A. Then the restriction

of domains to R is an GR(pd, e)-algebra isomorphism from FT(GR(pd, e)[A]) to U =∏
r∈R GR(pd, eer). Thus the Fourier transform followed by restriction of domains to R

is a GR(pd, e)-algebra isomorphism from GR(pd, e)[A] to U , and so induces a one-to-one

correspondence between the ideals (codes) in GR(pd, e)[A] and the ideals in U . The lat-

ter ideals can all be written uniquely as
∏

r∈R pir GR(pd, eer) where each ir ∈ {0, 1, . . . , d}.

Thus GR(pd, e)[A] has (d + 1)|R| ideals, and every ideal of GR(pd, e)[A] is principal. The

ideals in U that are free GR(pd, e)-modules are those with all ir ∈ {0, d}.

Proof. First we prove that restriction of domains to R maps FT(GR(pd, e)[A]) into U , i.e.,

we shall show that for each f ∈ GR(pd, e)[A] and each r ∈ R, f̂(r) ∈ GR(pd, eer). Of

course f̂(r) is in GR(pd, ee′). By Proposition 2.8, we know that f̂(rqer ) = Freer(f̂(r)). But

rqer = r, so that f̂(r) is fixed by Freer . Thus f̂(r) is in GR(pd, eer).

We also know that restriction of domains to R is injective on FT(GR(pd, e)[A]) since

the Fourier transform of a function f ∈ GR(pd, e)[A] is uniquely determined by its val-
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ues on a set of q-class representatives by Proposition 2.8. Furthermore, note that |U | =∏
r∈R

∣∣GR(pd, eer)
∣∣ =

∏
r∈R pdeer = pde

∑
r∈R er = pde|A| =

∣∣GR(pd, e)
∣∣|A|, so that |U | =∣∣GR(pd, e)[A]

∣∣ = ∣∣FT
(
GR(pd, e)[A]

)∣∣. Thus restriction of domains is also surjective. Clearly

restriction of domains preserves GR(pd, e)-scalar multiplication and pointwise addition and

multiplication. So it is a GR(pd, e)-algebra isomorphism from FT(GR(pd, e)[A]) to U . The

statements about correspondence of ideals, the form of ideals, and the number of ideals are

clear. In a free GR(pd, e)-module, for each element u that is annihilated by pd−1, there is

some element v with u = pv. This will clearly be violated in the ideal
∏

r∈R pir GR(pd, eer)

of U if we have any ir 6∈ {0, d}. But if ir ∈ {0, d} for all r ∈ R, then our ideal is a product of

extensions of GR(pd, e), each of which is a free GR(pd, e)-module. This proves the statement

about which ideals are free GR(pd, e)-modules.

Suppose that f is a function from A into a Galois ring or an unramified extension of

the p-adic field, and suppose that G is a set of such functions. For example, f might be the

Fourier transform of an element of GR(pd, e)[A] or Zp[ζq−1][A], and G might be the set of

Fourier transforms of words in an Abelian code. A support of f is a subset S of A such that

f(a) = 0 for all a 6∈ S. For k ∈ N, a support modulo pk of f is a subset S of A such that

f(a) ≡ 0 (mod pk) for all a 6∈ S. We also call a support modulo pk a pk-support. A support

(resp., support modulo pk) of G is a subset S of A that is a support (resp., support modulo

pk) of each g ∈ G. A support (resp., support modulo pk) S of a function or set of functions

is said to be minimal if there is no support (resp., support modulo pk) properly contained

in S. For example if f is a function, then its minimal support is {a ∈ A : f(a) 6= 0} and its

minimal pk-support is {a ∈ A : f(a) 6≡ 0 (mod pk)}. If we use the definite article with the

word “support”, i.e., if we say “the support” or “the pk-support” in any circumstance, we

mean the minimal one.

Now suppose that the range of f is GR(pd, ee′). For example, f might be the Fourier

transform of some element of GR(pd, e)[A]. For each k ∈ {0, 1, . . . , d − 1}, define Sk to be

the minimal pk+1-support of f . Then S0 ⊆ S1 ⊆ · · · ⊆ Sd−1 is called the tower of supports

of f . Each Sk is the same as the support of pd−k−1f , so that Sd−1 is the support of f .

Indeed, Sk = {a ∈ A : vp (f(a)) ≤ k}.
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Similarly, suppose that GR(pd, ee′) is the range of the functions in G. For example, G

might be the Fourier transform of some code in GR(pd, e)[A]. For each k ∈ {0, 1, . . . , d−1},

define Sk to be the minimal pk+1-support of G and then define the tower of supports of G

to be S0 ⊆ S1 ⊆ · · · ⊆ Sd−1. Each Sk is the same as the support of {pd−1−kg : g ∈ G}, so

that Sd−1 is the support of G. Indeed Sk is the set of a ∈ A such that there exists a g ∈ G

with vp (g(a)) ≤ k.

Note that the Frobenius automorphism preserves the p-adic valuations of elements in

GR(pd, ee′). Therefore, Proposition 2.8 shows us that if f ∈ GR(pd, e)[A], then vp(f̂(a)) is

constant as a varies over a q-class. Thus, the sets in the tower of supports of f̂ are q-closed.

Similarly, if G is the Fourier transform of a set of elements of GR(pd, e)[A], then the sets in

the tower of supports of G are q-closed. With this insight, we may rephrase the essential

content of Proposition 2.11 as follows:

Proposition 2.12. For each ideal (code) C in the group algebra GR(pd, e)[A], let T (C) be the

tower of supports of FT(C). Then T is a bijection between the set of ideals in GR(pd, e)[A]

and the set of towers of height d consisting of q-closed subsets of A.

Proof. First of all, T maps the ideals in GR(pd, e)[A] to towers of q-closed sets by the

comments preceding this proposition. Suppose we are given a tower of S0 ⊆ S1 ⊆ · · · ⊆ Sd−1

of q-closed subsets. For convenience, define S−1 = ∅ and Sd = A. Then define h to be the

function from A to GR(pd, ee′) such that h(a) = pj for all j ∈ {0, 1, . . . , d} and a ∈ SjrSj−1.

Then h is the Fourier transform of some g ∈ GR(pd, e)[A] by Proposition 2.8. If we set C

to be the ideal generated by g, then FT(C) is generated by h, and it is easy to see that

T (C) = S0 ⊆ S1 ⊆ · · · ⊆ Sd−1. So T is surjective.

To see that T is bijective, we show that the number of ideals in GR(pd, e)[A] equals the

number of towers of height d consisting of q-closed subsets of A. Proposition 2.11 tells us

that the latter number is (d + 1)n, where n is the number of q-classes of A. To calculate

the number of towers, note that

S0 ⊆ S1 ⊆ · · · ⊆ Sd−1 7→ S0, S1 r S0, . . . , Sd−1 r Sd−2, A r Sd−1
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establishes a bijective correspondence from the set of towers of height d consisting of q-

closed subsets of A to the set of (d+1)-tuples of pairwise disjoint q-closed subsets of A that

cover A. The number of these latter objects is (d + 1)n.

We finish this section with two more technical lemmas on how the scaled Fourier coef-

ficients parameterize an Abelian code over a Galois ring.

Lemma 2.13. Let C be an ideal (code) in GR(pd, e)[A] with tower of supports S0 ⊆ · · · ⊆

Sd−1, and set S−1 = ∅. Let R be a set of q-class representatives of A, and set Ri = R ∩ Si

for each i ∈ {−1, 0, 1, . . . , d−1}. Then each word c ∈ C is uniquely determined by the values

of {c̃(r) : r ∈ Rd−1}. These values are in
∏d−1

i=0

∏
r∈RirRi−1

pi GR(pd, eer), and as they run

through this product of ideals, the word c runs through C. Furthermore, |C| = q
∑d−1

i=0 |Si|. C

is a free GR(pd, e)-module if and only if S0 = S1 = · · · = Sd−1.

Proof. By Proposition 2.11, c is uniquely determined by the values in {ĉ(r) : r ∈ R}, hence

c is uniquely determined by the values in {c̃(r) : r ∈ R}. If r 6∈ Rd−1, then the q-class of r

is not in the q-closed set Sd−1, so that c̃(r) ≡ 0 (mod pd), i.e., c̃(r) = 0, for all c ∈ C. So c

is uniquely determined by the values in {c̃(r) : r ∈ Rd−1}.

Furthermore, we know that as c runs through C, the values {c̃(r) : r ∈ Rd−1} run through

some ideal of the ring
∏

r∈Rd−1
GR(pd, eer). If i ∈ {0, 1, . . . , d− 1} and r ∈ Ri r Ri−1, then

c̃(r) ≡ 0 (mod pi) for all c ∈ C, but c̃(r) 6≡ 0 (mod pi+1) for some c ∈ C. So c̃(r) must run

through the ideal pi GR(pd, eer). Thus

|C| =
d−1∏
i=0

∏
r∈RirRi−1

∣∣∣pi GR(pd, eer)
∣∣∣

=
d−1∏
i=0

∏
r∈RirRi−1

p(d−i)eer

= p
e

∑d−1
i=0 (d−i)

∑
r∈RirRi−1

er

= pe
∑d−1

i=0 (d−i)|SirSi−1|

= pe
∑d−1

i=0 |Si|

= q
∑d−1

i=0 |Si|.
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Again, if i ∈ {0, 1, . . . , d − 1} and r ∈ Ri r Ri−1, then c̃(r) runs through the ideal

pi GR(pd, eer). So, by the characterization of which ideals in
∏

r∈R GR(pd, eer) are free

GR(pd, e)-modules in Proposition 2.11, our ideal C is a free GR(pd, e)-module if and only if

Ri r Ri−1 = ∅ for i = 1, . . . , d− 1. This is equivalent to saying that R0 = R1 = · · · = Rd−1.

But each Ri is a set of q-class representatives of the q-closed set Si, so this last condition is

equivalent to S0 = · · · = Sd−1.

Lemma 2.14. Let C be an ideal (code) in GR(pd, e)[A] with tower of supports S0 ⊆ · · · ⊆

Sd−1. Let R be a set of q-class representatives of A and let Ri = Si∩R for i = 0, 1, . . . , d−1.

For each c ∈ C, let C be the element of Zp[ζq′−1][A] with C̃ = π ◦ c̃. Then c̃(i) and C̃(i) are

supported on Si for each c ∈ C. Also, c is uniquely determined by the values of {c̃(i)(r) : 0 ≤

i < d, r ∈ Ri}. As the word c runs through C, these values run through
∏d−1

i=0

∏
r∈Ri

Ui,r,

where Ui,r is the set containing 0 and all powers of π(ζqer−1). Equivalently, c is uniquely

determined by the values of {C̃(i)(r) : 0 ≤ i < d, r ∈ Ri}. As the word c runs through C,

these values run through
∏d−1

i=0

∏
r∈Ri

Vi,r, where Vi,r is the set containing 0 and all powers

of ζqer−1.

Proof. Suppose c̃(i)(a) 6= 0. Then c̃(a) =
∑d−1

i=0 c̃(i)(a)pi is not divisible by pi+1. So a ∈ Si

by the definition of the tower of supports. So c̃(i) is supported on Si. Since C̃(i) = τ ◦ c̃(i)

and τ(0) = 0, C̃(i) is also supported on Si.

The word c ∈ C is uniquely determined by {c̃(r) : r ∈ Rd−1} by Lemma 2.13. Now

c̃ =
∑d−1

i=0 pic̃(i), so c is uniquely determined by {c̃(i)(r) : 0 ≤ i < d, r ∈ Rd−1}. But

we have seen that c̃(i) is supported on Si, so c̃(i)(r) = 0 if r ∈ R r Si = R r Ri. So

c is uniquely determined by {c̃(i)(r) : 0 ≤ i < d, r ∈ Ri}. For each r ∈ R, we know that

c̃(r) ∈ GR(pd, eer) by Proposition 2.11. So c̃(i)(r) is zero or a power of π(ζqer−1) for all r ∈ R

and i ∈ {0, 1, . . . , d− 1}, i.e., c̃(i)(r) ∈ Ui,r. So the collection of {c̃(i)(r) : 0 ≤ i < d, r ∈ Ri}

runs through some subset of
∏d−1

i=0

∏
r∈Ri

Ui,r as c runs through C. Note that the cardinality

of this product is
∏d−1

i=0

∏
r∈Ri

qer = q
∑d−1

i=0

∑
r∈Ri

er = q
∑d−1

i=0 |Si|, which is the cardinality of

C by Lemma 2.13. Therefore the values of {c̃(i)(r) : 0 ≤ i < d, r ∈ Ri} run through all of∏d−1
i=0

∏
r∈Ri

Ui,r, and each distinct assignment of values corresponds to a different element

of C.
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Since C̃(i) = τ(c̃(i)) and c̃(i) = π(C̃(i)) for each i ∈ {0, 1, . . . , d − 1}, we see that the

elements{C̃(i)(r) : 0 ≤ i < d, r ∈ Ri} also uniquely determine c, and we see that these

values run through
∏d−1

i=0

∏
r∈Ri

Vi,r as c runs through C.

2.4 Weight Functions

We consider elements of GR(pd, e)[A] as words by regarding elements of GR(pd, e) as symbols

and by fixing some ordering of the group A. Thus if we order the elements of A as a1, . . . , an,

we consider c ∈ GR(pd, e)[A] to be the word ca1ca2 . . . can . In this scheme, the symbol at

position a in the word c ∈ A is simply ca.

There are many ways of reckoning weights of words in Abelian codes. For t a positive

integer, we define a t-wise weight function to be a function from wt: GR(pd, e)t → Z. Often

we omit reference to t and just call wt a weight function. If r1, . . . , rt ∈ GR(pd, e), then we

call wt(r1, . . . , rt) the weight of (r1, . . . , rt).

If we are given a t-wise weight function wt: GR(pd, e)t → Z, and a collection of words

c1, . . . , ct ∈ GR(pd, e)[A], we define the weight of (c1, . . . , ct) to be

∑
a∈A

wt(c1(a), . . . , ct(a)).

Indeed, we make the convention that the domain of wt is automatically extended to include

GR(pd, e)[A]t, and we set wt(c1, . . . , ct) to be the weight of (c1, . . . , ct) for each (c1, . . . , ct) ∈

GR(pd, e)[A]t.

For a given t-wise weight function wt: GR(pd, e)t → Z, we also introduce the corre-

sponding normalized weight function, wtnorm : GR(pd, e)[A]t → Z, which is defined as

wtnorm(c1, . . . , ct) = wt(c1, . . . , ct)− |A|wt(c̃1(1A), . . . , c̃t(1A))

for each (c1, . . . , ct) ∈ GR(pd, e)[A]t. Note that the normalized weight function is used only

for words, not single symbols. The normalized weight function is a device for simplifying

the presentation and proof of our results when our codes are allowed to have 1A in the

supports of their Fourier transforms.
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We introduce some of the basic weight functions that will be of interest to us. The

t-wise zero count function is the weight function zer : GR(pd, e)t → Z that has the values

zer(r1, . . . , rt) =


1 if r1 = · · · = rt = 0,

0 otherwise.

The 1-wise zero count function is simply known as the zero count function, and if c ∈

GR(pd, e)[A], then zer(c) is called the zero count of c. This is just the number of instances

of the zero symbol in the word. For arbitrary t, a t-wise zero count function is called a

simultaneous zero count function, and if c1, . . . , ct ∈ GR(pd, e)[A], then zer(c1, . . . , ct) is

called the simultaneous zero count of c1, . . . , ct. This is just the number of positions where

the words all simultaneously have the zero symbol.

Closely related to the zero count is the Hamming weight function ham: GR(pd, e)→ Z,

which has values

ham(r) =


0 if r = 0,

1 otherwise.

If c ∈ GR(pd, e)[A], then ham(c) is called the Hamming weight of c. This is just the number

of nonzero symbols in the word. Note that ham(r) = 1− zer(r) for r ∈ GR(pd, e), and that

ham(c) = |A| − zer(c) for c ∈ GR(pd, e)[A]. Thus

hamnorm(c) = ham(c)− |A|ham(c̃(1A))

= |A| − zer(c)− |A| [1− zer(c̃(1A))]

= − zer(c) + |A| zer(c̃(1A))

= −zernorm(c).

For each r ∈ GR(pd, e), there is the weight function symbr : GR(pd, e) → Z, called the
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r-count function, which is given by

symbr(s) =


1 if s = r,

0 otherwise.

Note that the (1-wise) zero count function zer is the same as symb0. If c ∈ GR(pd, e)[A],

then symbr(c) is called the r-count of c. This is the number of instances of the symbol r in

the word c.

If e = 1, there is the Lee weight function lee : Z/pdZ→ Z, given by

lee(r) = min{|k| : k ∈ Z, π(k) = r}

for all r ∈ Z/pdZ. That is, lee(π(k)) = k for k = 0, 1, . . . ,
⌊
pd/2

⌋
and lee(π(k)) = pd − k for

k =
⌈
pd/2

⌉
, . . . , pd − 1.

2.5 Accounts and Compact Notations

In this section, we introduce a class of objects known as accounts, which will simplify the

expression and proof of our results. If Y is a set, we define an account on Y to be a function

from Y into Z. If µ is an account on Y and y ∈ Y , we use the notation µy for the value of

µ at y. We say µ has k instances of y to mean µy = k. The set of accounts on Y , when

equipped with addition, forms an Abelian group that we denote by Z[Y ], and we sometimes

write and manipulate an account µ as if it were the formal sum
∑

y∈Y µyy. The multisets

with elements from Y are regarded in a natural way as the accounts on Y that take only

nonnegative values. The subsets of Y are regarded as the accounts on Y that take only

values 0 and 1. The set of multisets with elements from Y is denoted N[Y ].

Suppose that Y1 ⊆ Y2. Then we regard Z[Y1] as a subset of Z[Y2] by regarding each

µ : Y1 → Z as the function from Y2 to Z that vanishes on Y2 r Y1 and extends the original

function µ. In this way, we also have N[Y1] ⊆ N[Y2]. Conversely, if µ ∈ Z[Y2] is supported

on Y1, then we can regard µ as an element of Z[Y1] via restriction of domain. Indeed, we

often indicate that µ ∈ Z[Y2] is supported on Y1 by writing µ ∈ Z[Y1].



46

The size of an account µ on Y is
∑

y∈Y µy and is denoted |µ|. This is just the cardinality

of the account if the account is a set or a multiset. If µ is a multiset, we use the notation

µ! as a shorthand for
∏

y∈Y µy!. Thus there are |µ|!/µ! distinct ways of arranging the |µ|

elements of the multiset µ into an ordered |µ|-tuple. Multisets will be easier to use than

the sequences that are employed in the definitions of the parameters `(C), `mc(C), `ss(C),

and `ss
mc(C) that appear in Section 1.1 of the Introduction. Multisets are more natural than

sequences since the order of terms in these sequences is irrelevant.

Since we shall often be dealing with accounts on finite Cartesian products of sets, we

establish some conventions for dealing with accounts of k-tuples. If k is a positive integer,

and µ ∈ Z[B1 × · · · × Bk], then we write µb1,...,bk
instead of µ(b1,...,bk) for the value of µ at

(b1, b2, . . . , bk) ∈ B1 × B2 × · · · × Bk. If 1 ≤ j1 < j2 < · · · < js ≤ k, then we define the

projection of µ to Bj1×· · ·×Bjs , denoted prBj1
×···×Bjs

µ, to be the account on Bj1×· · ·×Bjs

with (
prBj1

×···×Bjs
µ
)

bj1
,...,bjs

=
∑

(c1,...,ck)∈B1×···×Bk
cj1

=bj1
,...,cjs=bjs

µc1,...,ck

for each bj1 , . . . , bjs ∈ Bj1 × · · · ×Bjs . Note that

prBj1
×···×Bjs

(µ1 + µ2) = prBj1
×···×Bjs

µ1 + prBj1
×···×Bjs

µ2.

For example, if µ ∈ Z[V × W ], then prW µ ∈ Z[W ] with (prW µ)w =
∑

v∈V µv,w for all

w ∈W .

Suppose that k ∈ N, j ∈ {1, 2, . . . , k−1}, µ ∈ Z[B1×· · ·×Bk], and b1 ∈ B1, . . . , bj ∈ Bj .

Then we define µb1,...,bj
to be the account in Z[Bj+1 × · · · × Bk] with (µb1,...,bj

)bj+1,...,bk
=

µb1,...,bj ,bj+1,...,bk
for all bj+1 ∈ Bj+1, . . . , bk ∈ Bk. For example, if µ ∈ Z[V ×W ] and v ∈ V ,

then µv ∈ Z[W ] with (µv)w = µv,w for all w ∈W .

Throughout this thesis, we let H = {0, 1, . . . , e−1}. If µ ∈ Z[H], we define the p-weighted

summation of µ, denoted Σµ, by

Σµ =
∑
h∈H

µhph (mod q − 1). (2.3)
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Note that Σ is a homomorphism from Z[H] into the group Z/(q − 1)Z under addition.

If µ ∈ Z[H] with Σµ = 0, we call µ a Delsarte-McEliece account; the Delsarte-McEliece

accounts form a subgroup of Z[H]. Recall the modular condition used in the definition of the

parameter ωmc(C) in Section 1.1 of the Introduction. There we wanted to find the minimum

length of unity-product sequences of the form apj1

1 , apj2

2 , . . . , apjn

n , where each ai is in some

q-closed subset S of A and each ji ∈ N, subject to the condition pj1 + pj2 + · · · + pjn ≡ 0

(mod q − 1). It harms nothing to further stipulate that each ji lie in H, for S is q-closed

and the congruence is modulo q − 1. Then the modular condition is equivalent to saying

that the multiset µ ∈ N[H] with elements j1, . . . , jn is Delsarte-McEliece. This modular

condition was discovered by Delsarte and McEliece [18], hence we attach their names to

accounts in Z[H] that correspond to it. The following fact is very useful and not difficult

to prove:

Lemma 2.15. A Delsarte-McEliece account in Z[H] has size divisible by p−1. The unique

nonempty Delsarte-McEliece multiset in N[H] of minimal cardinality has p− 1 instances of

each element of H, and thus has a cardinality of e(p− 1).

Proof. A very similar thing is proved in Lemma 2.1 of [61]. If µ ∈ Z[H] is a Delsarte-

McEliece account, reduce (2.3) modulo p − 1 to obtain 0 ≡
∑

h∈H µh (mod p − 1). If we

assume that µ is a nonempty Delsarte-McEliece multiset of minimal cardinality, then we

claim that µh < p for all h ∈ H. Otherwise, we could make a smaller nonempty Delsarte-

McEliece multiset µ′ by removing p copies of an element h and adding one copy of the

element h + 1 (where we treat h + 1 as 0 if h = e − 1). So 0 ≤ µh ≤ p − 1 for all h ∈ H

and not all µh are zero. If we had µh < p − 1 for any h, then 0 <
∑

h∈H µhph < q − 1,

contradicting the fact that µ is Delsarte-McEliece. So µh = p− 1 for all h ∈ H.

If µ ∈ N[H] and r ∈ Zp[ζq′−1] or GR(pd, ee′), we define Frµ(r) =
∏

h∈H

(
Frh(r)

)µh . Note

that Frµ(rs) = Frµ(r)Frµ(s) and that Frµ1+µ2(r) = Frµ1(r)Frµ2(r).

We shall often work with accounts of elements in A. We use multisets in N[A] instead of

the sequences of elements of A used to define the parameters ω(C) and `(C) in Section 1.1

of the Introduction. This is more natural, since the order of the sequences was irrelevant
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there. If λ ∈ Z[A], then we define the product of λ, denoted Πλ, to be

Πλ =
∏
a∈A

aλa .

Note that Π is a homomorphism from Z[A] (under addition) into the group A. If Πλ = 1A,

we say that λ is a unity-product account. If λ ⊆ Z[{1A}], then it is trivially unity-product,

and we say that λ is all-unity; otherwise λ is not all-unity. If f is a function from A into

GR(pd, ee′) or Zp[ζq′−1] (for example, f might be the Fourier transform of an element of

GR(pd, e)[A] or Zp[ζq−1][A]), then we define the evaluation of f at λ, denoted f(λ), by

f(λ) = Πa∈Af(a)λa .

Note that if F : A → Zp[ζq′−1] and f = π ◦ F , then π(F (λ)) = f(λ) for all λ ∈ Z[A]. Also

note that f(λ1 + λ2) = f(λ1)f(λ2).

Suppose for the rest of this section that I is a finite set. We shall often need to work

with accounts on sets like I ×H, I ×A, and I ×H ×A. Multisets in N[I ×A] will replace

the sequences used to define the parameters ωss(C), `ss(C), ωss
mc(C), and `ss

mc(C) in Section

1.1 of the Introduction. If λ ∈ Z[I ×A], then we define the product of λ, denoted Πλ, to be

Πλ =
∏

(i,a)∈I×A

aλi,a .

Note that Π is a homomorphism from Z[I × A] (under addition) into the group A. If

Πλ = 1A, we say that λ is a unity-product account. If λ ⊆ Z[I × {1A}], or, equivalently, if

prA λ ∈ N[{1A}], then λ is trivially unity-product, and we say that λ is all-unity; otherwise

λ is not all-unity.

We also shall work with accounts of elements in H × A. When e > 1, multisets in

N[H ×A] will replace the sequences used to define the parameters ωmc(C) and `mc(C) in

Section 1.1 of the Introduction. If λ ∈ Z[H × A], then we define the product of λ, denoted

Πλ, to be

Πλ =
∏

(h,a)∈H×A

aphλh,a .
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Note that Π is a homomorphism from Z[H × A] (under addition) into the group A. If

Πλ = 1A, we say that λ is a unity-product account. If λ ⊆ Z[H × {1A}], or, equivalently, if

prA λ ∈ Z[{1A}], then λ is trivially unity-product, and we say that λ is all-unity; otherwise

λ is not all-unity. If f is a function from A into GR(pd, ee′) or Zp[ζq′−1] (for example, f

might be the Fourier transform of an element of GR(pd, e)[A] or Zp[ζq−1][A]), then we define

the evaluation of f at λ, denoted f(λ), by

f(λ) = Π(h,a)∈H×AFrh(f(a))λh,a .

Note that if F : A → Zp[ζq′−1] and f = π ◦ F , then π(F (λ)) = f(λ) for all λ ∈ Z[A],

because π commutes with Fr. Also note that f(λ1 + λ2) = f(λ1)f(λ2). If λ ∈ Z[H × A],

then prH λ ∈ Z[H]. We say that λ is Delsarte-McEliece if and only if prH λ is a Delsarte-

McEliece account in Z[H], as defined above. Recall the modular condition used in the

definition of the parameter ωmc(C) in Section 1.1 of the Introduction. Suppose λ is a multiset

in N[H ×A] and suppose that its elements are (h1, a1), (h2, a2), . . . , (hn, an), listed with

multiplicity (but order is unimportant). Suppose we form the sequence aph1

1 , aph2

2 , . . . , aphn

n .

Then this sequence meets the modular condition ph1 + ph2 + · · ·+ phn ≡ 0 (mod q − 1) of

Section 1.1 if and only if Σ prH λ = 0, i.e., if and only if λ is Delsarte-McEliece. Concerning

the possible sizes of Delsarte-McEliece accounts in Z[H × A], Lemma 2.15 implies the

following:

Lemma 2.16. A Delsarte-McEliece account in Z[H × A] has size divisible by p − 1. A

nonempty Delsarte-McEliece multiset in N[H ×A] has cardinality at least e(p− 1).

Proof. If λ ∈ Z[H × A] is Delsarte-McEliece, then prH λ ∈ N[H] is Delsarte-McEliece and

has the same size. Then apply Lemma 2.15.

We shall need to consider accounts of elements in sets of the form I ×H ×A. Multisets

in N[I ×H ×A] will replace the sequences used to define the parameters ωmc(C1, . . . , Ct)

and `mc(C1, . . . , Ct) in Section 1.1 of the Introduction. If λ ∈ Z[I ×H × A], then we define
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the product of λ, denoted Πλ, to be

Πλ =
∏

(i,h,a)∈I×H×A

aphλi,h,a .

Note that Π is a homomorphism from Z[I ×H × A] (under addition) into the group A. If

Πλ = 1A, we say that λ is a unity-product account. If λ ⊆ Z[I×H×{1A}], or, equivalently,

if prA λ ∈ Z[{1A}], then λ is trivially unity-product, and we say that λ is all-unity; otherwise

λ is not all-unity.

2.6 Collapse and Reduction

The combinatorial devices in this section are used in the proofs of sharpness of some of our

lower bounds on the p-adic valuations of weights in codes. The reader should probably skip

this section until the concepts it describes are actually deployed (beginning in Section 4.4).

The proofs in this section are routine and often repetitious, for we need a few variants of

the same idea. Nonetheless, everything is done quite explicitly for the record.

We shall often have a multiset λ in N[A] or N[H ×A] and some element C ∈ Zp[ζq′−1][A]

such that we want to calculate C̃(λ). Recall from Proposition 2.8 that C̃(aq) = Fre(C̃(a)) for

all a ∈ A. Therefore it is quite possible that some multisets λ′ 6= λ could have C̃(λ′) = C̃(λ).

We sketch a brief example. Suppose d = e = 1, c ∈ Fp[A], and C ∈ Zp[ζq′−1][A] with

C̃ = τ ◦ c̃. Then each scaled Fourier coefficient c̃(a) lies in Fq′ , and thus each C̃(a) is

zero or a power of ζq′−1. Now suppose λ ∈ N[A] with λ 6= ∅, and choose a ∈ A with

λa 6= 0. Since p - |A|, there is some b ∈ A with bp = a. Set λ′ = λ − a + pb. Then

C̃(a) = Fr(C̃(b)) = C̃(b)p, where the second equality comes about because C̃(b) is zero or

a power of ζq′−1. So C̃(a) = 0 if and only if C̃(b) = 0. If these coefficients are both zero,

then C̃(λ) = 0 = C̃(λ′). Otherwise, C̃(λ′) = C̃(λ)C̃(a)−1C̃(b)q, so again C̃(λ′) = C̃(λ).

We devise a mechanism to help us determine when two multisets, λ and λ′, might have

C̃(λ) = C̃(λ′). If e = 1 (i.e., if q = p), if λ ∈ N[A], and if R is a set of p-class representatives

of A, we define the collapse of λ with respect to R, denoted CoR(λ), to be the multiset κ

in N[R] with each κr determined as follows: we set κr to be a number in {0, 1, . . . , per − 1}
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congruent modulo per − 1 to
∑er−1

i=0 piλ
rpi , with κr = 0 if and only if λ

rpi = 0 for all i. We

say λ collapses to κ with respect to R to mean κ = CoR(λ). We make the following simple

observation:

Lemma 2.17. Suppose that e = 1, S is a p-closed subset of A, and λ ∈ N[S]. Suppose R

is a set of p-class representatives of A. Then CoR(λ) ∈ N[R ∩ S].

Proof. If r ∈ R r S, then λa = 0 for all a ∈ Clp(r), since r 6∈ S, S is p-closed, and λ ∈ N[S].

Thus
∑er−1

i=0 λ
rpi pi = 0, so that (CoR(λ))r = 0 by the definition of CoR.

Now we can prove that in certain restricted circumstances, C̃ evaluated at λ is the same

as C̃ evaluated at the collapse of λ.

Lemma 2.18. Suppose that e = 1, λ ∈ N[A], and R is a set of p-class representatives

of A. Suppose that c ∈ Z/pdZ[A] such that c̃(a) is zero or a power of π(ζq′−1) for all

a ∈ A. Let C be the element in Zp[ζq′−1][A] with C̃ = τ ◦ c̃. Then c̃(λ) = c̃(CoR(λ)) and

C̃(λ) = C̃(CoR(λ)).

Proof. Since c̃ = π ◦ C̃, c̃(λ) = c̃(CoR(λ)) will follow from C̃(λ) = C̃(CoR(λ)). To prove the

latter, start with

C̃(CoR(λ)) =
∏
r∈R

C̃(r)(CoR(λ))r .

Note that C̃(r) is zero or a power of ζq′−1 (since c̃(r) is zero or a power of π(ζq′−1)),

and C̃(r) is also the Teichmüller lift of an element of GR(pd, er) by Proposition 2.11.

This means that C̃(r) is zero or a power of ζper−1, so that C̃(r)per − C̃(r) = 0. So

if the exponent (CoR(λ))r of C̃(r) is nonzero, we may replace it with any other posi-

tive integer in the same congruence class modulo per − 1. Thus, checking the definition

of CoR(λ), we have C̃(CoR(λ)) =
∏

r∈R C̃(r)
∑er−1

i=0 piλ
rpi =

∏
r∈R

∏er−1
i=0 Fri

(
C̃(r)

)λ
rpi

=∏
r∈R

∏er−1
i=0 C̃(rpi

)λ
rpi =

∏
a∈A C̃(a)λa = C̃(λ), where the second equality uses the fact

that C̃(a) is zero or a power of ζq′−1 for all a ∈ A, and the third equality uses Lemma 2.9

(to show that C ∈ Zp[A]) and Proposition 2.8 (to show that C̃(rpi
) = Fri

(
C̃(r)

)
).

For any e ≥ 1, we define a similar notion of collapse for multisets in N[H ×A]. If

λ ∈ N[H ×A], and if R is a set of q-class representatives of A, we define the collapse of λ
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with respect to R, denoted CoR(λ), to be the multiset κ ∈ N[R] with each κr determined

as follows: we set κr to be a number in {0, 1, . . . , qer − 1} congruent modulo qer − 1 to∑er−1
i=0

∑
h∈H qiphλ

h,rqi , with κr = 0 if and only if λ
h,rqi = 0 for all i and h. As before, we

say λ collapses to κ with respect to R to mean κ = CoR(λ). We now prove two basic facts

about this form of collapse, which are analogous to Lemmas 2.17 and 2.18.

Lemma 2.19. Suppose that S is a q-closed subset of A, and λ ∈ N[H × S]. Suppose that

R is a set of q-class representatives of A. Then CoR(λ) ∈ N[R ∩ S].

Proof. If r ∈ R r S, then λh,a = 0 for all a ∈ Clq(r) and h ∈ H, since r 6∈ S, S is q-

closed, and λ ∈ N[H ×S]. Thus
∑er−1

i=0

∑
h∈H qiphλ

h,rqi = 0, so that (CoR(λ))r = 0, by the

definition of CoR.

Lemma 2.20. Suppose that λ ∈ N[H ×A] and R is a set of q-class representatives of

A. Suppose that c ∈ GR(pd, e)[A] such that c̃(a) is zero or a power of π(ζq′−1) for all

a ∈ A. Let C be the element in Zp[ζq′−1][A] with C̃ = τ ◦ c̃. Then c̃(λ) = c̃(CoR(λ)) and

C̃(λ) = C̃(CoR(λ)).

Proof. Since c̃ = π ◦ C̃, c̃(λ) = c̃(CoR(λ)) will follow from C̃(λ) = C̃(CoR(λ)). To prove the

latter, we start with

C̃(CoR(λ)) =
∏
r∈R

C̃(r)(CoR(λ))r .

Note that C̃(r) is zero or a power of ζq′−1 (since c̃(r) is zero or a power of π(ζq′−1)), and

C̃(r) is also the Teichmüller lift of an element of GR(pd, eer) by Proposition 2.11. This

means that C̃(r) is zero or a power of ζqer−1, so that C̃(r)qer − C̃(r) = 0. So if the expo-

nent (CoR(λ))r of C̃(r) is nonzero, we may replace it with any other positive integer in the

same congruence class modulo qer − 1. Thus, checking the definition of CoR(λ), we have

C̃(CoR(λ)) =
∏

r∈R C̃(r)
∑er−1

i=0

∑
h∈H qiphλ

h,rqi =
∏

r∈R

∏er−1
i=0

∏
h∈H Frei+h

(
C̃(r)

)λ
h,rqi

=∏
r∈R

∏er−1
i=0

∏
h∈H Frh

(
C̃(rqi

)
)λ

h,rqi

=
∏

a∈A

∏
h∈H Frh

(
C̃(a)

)λh,a

= C̃(λ), where the sec-

ond equality uses the fact that C̃(a) is zero or a power of ζq′−1 for all a ∈ A, and the third

equality uses Lemma 2.9 (to show that C ∈ Zp[ζq−1][A]) and Proposition 2.8 (to show that

C̃(rqi
) = Frei

(
C̃(r)

)
).
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Given any multiset λ in N[A], N[I ×A], N[H ×A], or N[I ×H ×A], we say that λ

is reduced if λ has no more than p − 1 instances of any particular element. That is, for

λ ∈ N[Y ], λ is reduced if λy < p for all y ∈ Y . Reduced multisets will be especially easy

to work with. The next lemma shows that for each µ ∈ N[A], there is a unique reduced

multiset in N[A] that has the same collapse as µ.

Lemma 2.21 (Reduction Algorithm for N[A]). Suppose e = 1. Let R be a set of p-class

representatives of A. Let S be a p-closed subset of A and suppose that λ ∈ N[S]. Then there

exists a unique reduced element κ ∈ N[A] with CoR(κ) = CoR(λ). This κ is independent

of the choice of R. Furthermore, κ ∈ N[S], Πκ = Πλ, κ is all-unity if and only if λ is

all-unity, κ = ∅ if and only if λ = ∅, and |κ| = |λ| − k(p− 1) for some positive integer k if

λ is not reduced.

Proof. If λ = ∅ it is already reduced. It is not hard to see that CoR(∅) = ∅ and that no

other set collapses to the empty set.

Henceforth, we assume that λ 6= ∅. We shall form a finite sequence of nonempty multisets

λ(0), . . . , λ(m). Let λ(0) = λ. If λ(i) is not reduced, then let a ∈ A be such that (λ(i))a ≥ p,

and set λ(i+1) = λ(i)−pa+ap. Of course, λ(i+1) 6= ∅. Since S is p-closed, note that λ(i+1) ∈

N[S]. Also note that Πλ(i+1) = Πλ(i) and that λ(i+1) is all-unity if and only if λ(i) is all-unity

(since there are no elements of order p in A). We claim that CoR(λ(i+1)) = CoR(λ(i)). If

r ∈ R is not in the same p-class as a, it is clear that
(
CoR(λ(i+1))

)
r

=
(
CoR(λ(i))

)
r
. So let

s ∈ R be the representative of the p-class of a. Then choose j ∈ {0, 1, . . . , es − 1} so that

a = spj
. If j < es−1, then it is easy to show that

∑es−1
k=0 pkλ

(i+1)

spk =
∑es−1

k=0 pkλ
(i)

spk , so clearly(
CoR(λ(i+1))

)
s

=
(
CoR(λ(i))

)
s
. If j = es− 1, then it is easy to show that

∑es−1
k=0 pkλ

(i+1)

spk =(∑es−1
k=0 pkλ

(i)

spk

)
− pes + 1, so that

∑es−1
k=0 pkλ

(i+1)

spk ≡
∑es−1

k=0 pkλ
(i)

spk (mod pes − 1), and the

sums on both sides are strictly positive (since both λ(i+1) and λ(i) have elements in the

p-class of a). Thus, by the definition of CoR, we have
(
CoR(λ(i+1))

)
s

=
(
CoR(λ(i))

)
s

in this

case also. So we have shown CoR(λ(i+1)) = CoR(λ(i)).

Note that
∣∣λ(i+1)

∣∣ =
∣∣λ(i)

∣∣− (p− 1), so that this procedure must eventually terminate.

Let λ(m) be the last term; it must be reduced. Furthermore, λ(m) has all the properties

that the lemma claims for κ.
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Now we shall show that there is only one reduced µ ∈ N[A] such that CoR(µ) = CoR(λ).

This will follow if we show that no two reduced elements of N[A] collapse to the same ele-

ment of N[R]. So suppose that µ, ν ∈ N[A] are reduced multisets with CoR(µ) = CoR(ν),

and we shall show that µ = ν. Let r ∈ R be given. Since µ is reduced, we have

0 ≤
∑er−1

i=0 piµ
rpi ≤ per − 1, so that (CoR(µ))r =

∑er−1
i=0 piµ

rpi . Likewise, (CoR(ν))r =∑er−1
i=0 piν

rpi . So
∑er−1

i=0 piµ
rpi =

∑er−1
i=0 piν

rpi , and since 0 ≤ µ
rpi , ν

rpi < p for all i, we must

have µ
rpi = ν

rpi for all i. That is, µa = νa for all a ∈ Clp(r), but r ∈ R was arbitrary, so

µ = ν.

Although there might be many ways to construct the sequence λ(0), . . . , λ(m) in our

procedure above, this uniqueness property shows that the final term is always the same.

Note that we never used R in the definition of this sequence λ(0), . . . , λ(m), so the final

multiset in the sequence is independent of R.

This lemma shows us that if λ ∈ N[A], then there is a unique reduced κ ∈ N[A] such

that CoR(κ) = CoR(λ) for any set R of p-class representatives of A. This κ is called the

reduction of λ and is denoted Red(λ). With this new terminology, we have the following

immediate consequence of the above lemma:

Corollary 2.22. Suppose that e = 1, that λ1, λ2 ∈ N[A], and that R is a set of p-class

representatives of A. Then Red(λ1) = Red(λ2) if and only if CoR(λ1) = CoR(λ2).

In view of Lemma 2.18, we also have the following:

Corollary 2.23. Suppose that e = 1, that λ ∈ N[A], and that R is a set of p-class repre-

sentatives of A. Suppose that c ∈ Z/pdZ[A] such that c̃(a) is zero or a power of π(ζq′−1) for

all a ∈ A. Let C be the element in Zp[ζq′−1][A] with C̃ = τ ◦ c̃. Then c̃(λ) = c̃(Red(λ)) and

C̃(λ) = C̃(Red(λ)).

We transport the notion of reduction to elements of N[I ×A], where I is some finite set.

The reduction of λ ∈ N[I ×A] is the element κ ∈ N[I ×A] with κi = Red(λi) for all i ∈ I.

Then the following is an easy consequence of Lemma 2.21:

Corollary 2.24. Suppose e = 1. Let I be a finite set. For each i ∈ I, let Si be a p-

closed subset of A, and suppose that λ ∈ N[I ×A] with λi ∈ N[Si] for each i ∈ I. Then
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(Red(λ))i ∈ N[Si] for all i ∈ I, Π Red(λ) = Πλ, and Red(λ) is all-unity if and only if

λ is all-unity. Furthermore, for each i ∈ I, (Red(λ))i = ∅ if and only if λi = ∅, and

|(Red(λ))i| = |λi| − ki(p − 1) for some nonnegative integer ki. If λ is not reduced, at least

one of these ki is strictly positive. If R is a set of p-class representatives of A, then Red(λ)

has CoR([Red(λ)]i) = CoR(λi) for each i ∈ I.

We also have a reduction algorithm for multisets in N[H ×A] when e is an arbitrary

positive integer. It is only slightly more complicated than the algorithm of Lemma 2.21 for

multisets in N[A].

Lemma 2.25 (Reduction Algorithm for N[H ×A]). Let R be a set of q-class repre-

sentatives of A. Let S be a q-closed subset of A and suppose that λ ∈ N[H × S]. Then

there exists a unique reduced element κ ∈ N[H ×A], with CoR(κ) = CoR(λ). This κ is

independent of the choice of R. Furthermore, κ ∈ N[H ×S] and Σ prH κ = ΣprH λ, so that

κ is Delsarte-McEliece if and only if λ is Delsarte-McEliece. Also Πκ = Πλ, κ is all-unity

if and only if λ is all-unity, κ = ∅ if and only if λ = ∅, and |κ| = |λ| − k(p − 1) for some

positive integer k if λ is not reduced.

Proof. If λ = ∅ it is already reduced. It is not hard to see that CoR(∅) = ∅ and that no

other set collapses to the empty set.

Henceforth, we assume that λ 6= ∅. We shall describe an algorithm that will produce

a finite sequence of multisets λ(0), . . . , λ(m). Let λ(0) = λ. If λ(i) is not reduced, then let

(h, a) ∈ H ×A be such that (λ(i))h,a ≥ p. If h < e−1, set λ(i+1) = λ(i)−p(h, a)+(h+1, a),

and if h = e − 1, set λ(i+1) = λ(i) − p(e − 1, a) + (0, aq). Of course λ(i+1) 6= ∅. Since S is

q-closed, note that λ(i+1) ∈ N[S]. Also note that Πλ(i+1) = Πλ(i) and that λ(i+1) is all-unity

if and only if λ(i) is all-unity (since there is no element whose order is divisible by p in A).

Further, note that Σ prH λ(i+1) = ΣprH λ(i), so that λ(i+1) is Delsarte-McEliece if and only

if λ(i) is Delsarte-McEliece. We claim that CoR(λ(i+1)) = CoR(λ(i)). If r ∈ R is not in

the same q-class as a, it is clear that
[
CoR(λ(i+1))

]
r

=
[
CoR(λ(i))

]
r
. So let s ∈ R be the

representative of the q-class of a. Choose j ∈ {0, 1, . . . , es− 1} so that a = sqj
. If j < es− 1
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or h < e− 1, then it is easy to show that

es−1∑
n=0

∑
k∈H

qnpkλ
(i+1)

k,sqn =
es−1∑
n=0

∑
k∈H

qnpkλ
(i)

k,sqn ,

so clearly
[
CoR(λ(i+1))

]
s

=
[
CoR(λ(i))

]
s
. If j = es − 1 and h = e − 1, then it is easy to

show that
es−1∑
n=0

∑
k∈H

qnpkλ
(i+1)

k,sqn =

(
es−1∑
n=0

∑
k∈H

qnpkλ
(i)

k,sqn

)
− qes + 1,

so that
es−1∑
n=0

∑
k∈H

qnpkλ
(i+1)

k,sqn ≡
es−1∑
n=0

∑
k∈H

qnpkλ
(i)

k,sqn (mod qes − 1),

and the sums on both sides are strictly positive (since λ(i+1) and λ(i) each have some

element of the form (k, b) with b in the q-class of a). Thus, by the definition of CoR, we have[
CoR(λ(i+1))

]
s

=
[
CoR(λ(i))

]
s

in this case also. So we have shown CoR(λ(i+1)) = CoR(λ(i)).

Note that
∣∣λ(i+1)

∣∣ =
∣∣λ(i)

∣∣− (p− 1), so that this procedure must eventually terminate.

Let λ(m) be the last term; it must be reduced. Furthermore, λ(m) has all the properties

that the lemma claims for κ.

We now show that there is only one reduced µ ∈ N[H ×A] such that CoR(µ) = CoR(λ).

This will follow if we show that no two reduced elements of N[H ×A] collapse to the

same element of N[R]. So suppose that µ and ν ∈ N[H ×A] are reduced multisets with

CoR(µ) = CoR(ν), and we shall show that µ = ν. Let r ∈ R be given. Since µ is reduced,

we have 0 ≤
∑er−1

i=0

∑
h∈H qiphµ

h,rqi ≤ qer−1, so that (CoR(µ))r =
∑er−1

i=0

∑
h∈H qiphµ

h,rqi .

Likewise, (CoR(ν))r =
∑er−1

i=0

∑
h∈H qiphν

h,rqi . So we have

er−1∑
i=0

e−1∑
h=0

pie+hµ
h,rqi =

er−1∑
i=0

e−1∑
h=0

pie+hν
h,rqi ,

and since 0 ≤ µ
h,rqi , νh,rqi < p for all i, we must have µ

h,rqi = ν
h,rqi for all i and h. That

is, µh,a = νh,a for all a ∈ Clq(r) and h ∈ H, but r ∈ R was arbitrary, so µ = ν.

Although there might be many ways to construct the sequence λ(0), . . . , λ(m) in our

procedure above, this uniqueness property shows that the final term is always the same.
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Note that we never used R in the definition of this sequence λ(0), . . . , λ(m), so the final

multiset in the sequence is independent of R.

This lemma shows us that if λ ∈ N[H ×A], then there is a unique reduced κ ∈ N[H ×A]

such that CoR(κ) = CoR(λ) for any set R of q-class representatives of A. Using the same

terminology as we did for multisets in N[A], we call this κ the reduction of λ and denote it

by Red(λ). Then we obtain results analogous to Corollaries 2.22 and 2.23.

Corollary 2.26. Suppose that λ1, λ2 ∈ N[H ×A] and R is a set of q-class representatives

of A. Then Red(λ1) = Red(λ2) if and only if CoR(λ1) = CoR(λ2).

In view of Lemma 2.20, we have the following result:

Corollary 2.27. Suppose that λ ∈ N[H ×A] and R is a set of q-class representatives of

A. Suppose that c ∈ GR(pd, e)[A] such that c̃(a) is zero or a power of π(ζq′−1) for all

a ∈ A. Let C be the element in Zp[ζq′−1][A] with C̃ = τ ◦ c̃. Then c̃(λ) = c̃(Red(λ)) and

C̃(λ) = C̃(Red(λ)).

We transport the notion of reduction to elements of N[I ×H ×A], where I is some finite

set. The reduction of λ ∈ N[I ×H ×A] is the element κ ∈ N[I ×H ×A] with κi = Red(λi)

for all i ∈ I. Then we obtain an analogue of Corollary 2.24 above.

Corollary 2.28. Let I be a finite set. For each i ∈ I, let Si be a q-closed subset of A,

and suppose that λ ∈ N[I ×H ×A] with λi ∈ N[H × Si] for each i ∈ I. Then for each

i ∈ I, we have (Red(λ))i ∈ N[H × Si]. For each i ∈ I, (Red(λ))i is Delsarte-McEliece if

and only if λi is Delsarte-McEliece. Also Π Red(λ) = Πλ and Red(λ) is all-unity if and

only if λ is all-unity. Furthermore, for each i ∈ I, (Red(λ))i = ∅ if and only if λi = ∅, and

|(Red(λ))i| = |λi| − ki(p − 1) for some nonnegative integer ki. If λ is not reduced, at least

one of these ki is strictly positive. If R is a set of p-class representatives of A, then Red(λ)

has CoR([Red(λ)]i) = CoR(λi) for each i ∈ I.

2.7 The Frobenius Action on Accounts

The material in this section is used in various places (in the proofs of Theorems 4.18, 5.12,

6.13, and 7.14) to prove that certain terms in our p-adic estimates are fixed by the Frobenius
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automorphism Fr. This is done to prove that such terms, known to be in Zp[ζq′−1], are

actually elements of Zp (which is comforting, since they are supposed to be p-adic estimates

of elements of Z). Readers should probably ignore this section until they encounter the

Frobenius action in the proofs of the aforementioned theorems. The development here is

repetitious, as in the previous section, because we need several variants of the same idea.

The proofs are routine, but we include them with a fair amount of detail for the record.

When e = 1, i.e., when q = p, we introduce the Frobenius action, denoted FrA, on the

group A. We let FrA(a) = ap. Note that FrAe′(a) = aq′ = a, by our choice of e′ and q′. Thus

FrA is a permutation of A. Also note that the orbits of FrA are the p-classes. We extend FrA

to act on elements of Z[A] by sending
∑

a∈A λaa to
∑

a∈A λa FrA(a) =
∑

a∈A λaa
p. Note

that FrAe′(λ) = λ for any λ ∈ Z[A], so FrA is a permutation of Z[A]. Also note that FrA

preserves size. There are many other such useful properties that we summarize here:

Lemma 2.29. If e = 1, then FrA is a permutation of Z[A] with FrAe′ the identity. FrA

preserves size. FrA takes multisets to multisets and (FrA(λ))! = λ! for all λ ∈ N[A]. If

S is a p-closed set and λ ∈ Z[S], then FrA(λ) ∈ Z[S]. Additionally, FrA(λ) is all-unity if

and only if λ is all-unity. Further, Π FrA(λ) = (Πλ)p, so that FrA(λ) is unity-product if

and only if λ is unity-product. If c ∈ Z/pdZ[A] and C is the element of Zp[ζq′−1][A] with

C̃ = τ ◦ c̃, and if λ ∈ Z[A], then C̃(FrA(λ)) = Fr(C̃(λ)).

Proof. It has already been noted that FrA is a size-preserving permutation with FrAe′ the

identity. Since FrA permutes the elements of A, if we list the |A| coefficients in the formal

sum λ =
∑

a∈A λaa and then list the |A| coefficients in the formal sum FrA(λ) =
∑

a∈A λaa
p,

we get the same list modulo ordering. Thus λ takes multisets to multisets and FrA(λ)! = λ!.

Since the orbits of the action of FrA on A are p-classes, FrA always takes an element of a

p-closed set S into the same set S. So FrA takes Z[S] into itself. In particular, FrA

maps all-unity accounts to all-unity accounts, and furthermore, if FrA(λ) is all-unity, then

λ = FrAe′(λ) is all-unity. Note that Π FrA(λ) =
∏

a∈A a(FrA(λ))a =
∏

a∈A(ap)(FrA(λ))ap =∏
a∈A(ap)λa = (Πλ)p.

Finally, suppose that c ∈ Z/pdZ[A] and C is the element of Zp[ζq′−1][A] with C̃ = τ ◦ c̃.

Then by Lemma 2.9, we have C ∈ Zp[A]. Now suppose that λ ∈ Z[A]. Then C̃(FrA(λ)) =
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a∈A C̃(a)(FrA(λ))a =

∏
a∈A C̃(ap)(FrA(λ))ap =

∏
a∈A C̃(ap)λa . Now use Proposition 2.8 (rec-

ognizing that q = p since e = 1) to obtain C̃(FrA(λ)) =
∏

a∈A Fr(C̃(a))λa = Fr(C̃(λ)).

If I is a finite set, we extend the Frobenius action FrA to Z[I×A] so that if λ ∈ Z[I×A],

(FrA(λ))i = FrA(λi). We can easily deduce what we need to know about this action on

Z[I ×A] from the above lemma.

Corollary 2.30. If e = 1, then FrA is a permutation of Z[I × A] with FrAe′ the identity.

FrA preserves size. Furthermore, if λ ∈ Z[I ×A], then |(FrA(λ))i| = |λi| for all i ∈ I. Thus

prI FrA(λ) = prI λ. FrA takes multisets to multisets and (FrA(λ))! = λ! for all λ ∈ N[A]. If

Si is a p-closed set for each i ∈ I, and if λi ∈ Z[Si] for each i ∈ I, then (FrA(λ))i ∈ Z[Si]

for each i ∈ I. Additionally, FrA(λ) is all-unity if and only if λ is all-unity. Further,

Π FrA(λ) = (Πλ)p, so that FrA(λ) is unity-product if and only if λ is unity-product. Suppose

that ci ∈ Z/pdZ[A] for each i ∈ I and that Ci is the element of Zp[ζq′−1][A] with C̃i = τ ◦ c̃i

for each i ∈ I. If λ ∈ Z[I ×A], then
∏

i∈I C̃i([FrA(λ)]i) = Fr
(∏

i∈I C̃i(λ)
)
.

For any value of e, we also define the Frobenius action FrA as a function from the set

H ×A to itself, wherein

FrA(h, a) =


(h + 1, a) if h < e− 1,

(0, aq) if h = e− 1.

Note that FrAe(h, a) = (h, aq), and so FrAee′(h, a) = (h, aq′) = (h, a), by our choice of e′

and q′. Thus FrA is a permutation of H × A. Also note that the orbits of FrA are sets of

the form H ×B, where B is a q-class in A. We extend FrA to act on elements of Z[H ×A]

by sending
∑

(h,a)∈H×A λh,a(h, a) to
∑

(h,a)∈H×A λh,a FrA(h, a). Note that FrAee′(λ) = λ for

any λ ∈ Z[A], so FrA is a permutation of Z[H × A]. Also note that FrA preserves size.

There are many other such useful properties, analogous to those in Lemma 2.29, which we

summarize here:

Lemma 2.31. FrA is a permutation of Z[H × A] with FrAee′ the identity. FrA preserves

size. FrA takes multisets to multisets and (FrA(λ))! = λ! for all λ ∈ N[H ×A]. If S is a

q-closed set and λ ∈ Z[H × S], then FrA(λ) ∈ Z[H × S]. Additionally, FrA(λ) is all-unity
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if and only if λ is all-unity. Further, Π FrA(λ) = (Πλ)p, so that FrA(λ) is unity-product

if and only if λ is unity-product. We have Σ prH(FrA(λ)) = p (Σ prH λ), so that FrA(λ) is

Delsarte-McEliece if and only if λ is Delsarte-McEliece. If c ∈ GR(pd, e)[A] and C is the

element of Zp[ζq′−1][A] with C̃ = τ ◦ c̃, and if λ ∈ Z[H ×A], then C̃(FrA(λ)) = Fr(C̃(λ)).

Proof. It has already been noted above that FrA is a size-preserving permutation with FrAee′

the identity. Since FrA permutes the elements of H ×A, if we list the e|A| coefficients in

the formal sum λ =
∑

(h,a)∈H×A λh,a(h, a) and then list the e|A| coefficients in the formal

sum FrA(λ) =
∑

(h,a)∈H×A λh,a FrA(h, a), we get the same list modulo ordering. Thus λ

takes multisets to multisets and FrA(λ)! = λ!. Recall that the orbits of the action of FrA on

H × A are Cartesian products of H with q-classes. Thus, if S is q-closed, then FrA always

takes an element of H × S into the same set H × S. So FrA takes N[H × S] into itself.

Therefore FrA takes all-unity accounts to all-unity accounts, and furthermore, if FrA(λ) is

all-unity, then λ = FrAee′(λ) is all-unity.

We now show that Π FrA (λ) = (Πλ)p. First we verify this for the account that is

a singleton set {(h, a)}. We write this account as the formal sum 1(h, a), or just (h, a).

Indeed, if h < e − 1, we have Π FrA(h, a) = Π(h + 1, a) = aph+1
= (Π(h, a))p. On

the other hand, if h = e − 1, then Π FrA(e − 1, a) = Π(0, aq) = aq =
(
ape−1

)p
=

(Π(e− 1, a))p. Now we consider an arbitrary λ ∈ Z[H × A]. By the properties of Π, we

can calculate Π FrA(λ) = Π
(∑

(h,a)∈H×A λh,a FrA(h, a)
)

=
∏

(h,a)∈H×A (Π FrA(h, a))λh,a =∏
(h,a)∈H×A (Π(h, a))pλh,a =

[
Π
(∑

(h,a)∈H×A λh,a(h, a)
)]p

= (Πλ)p .

Next, we show that Σ prH FrA(λ) = p (Σ prH λ). First we check this for the sin-

gleton set (h, a) (we are representing it as a formal sum, since it is an account). In-

deed, if h < e − 1, then Σ prH FrA((h, a)) = Σ prH(h + 1, a) = ph+1 = pΣ prH(h, a). If

h = e − 1, recall that Σ: Z[H] → Z/(q − 1)Z, and then check Σ prH FrA((e − 1, a)) =

Σ prH(0, aq) = 1 = q = p(pe−1) = pΣ prH(e − 1, a) in Z/(q − 1)Z. Then, for an ar-

bitrary λ ∈ Z[H × A], we have Σ prH FrA(λ) = Σ prH

(∑
(h,a)∈H×A λh,a FrA(h, a)

)
=∑

(h,a)∈H×A λh,a (Σ prH FrA(h, a)) =
∑

(h,a)∈H×A λh,ap (Σ prH(h, a)). Therefore, we have

Σ prH FrA(λ) = pΣ prH

(∑
(h,a)∈H×A λh,a(h, a)

)
= pΣ prH λ. Since p is coprime to q − 1,

this means that Σ prH λ = 0 if and only if Σ prH FrA(λ) = 0, i.e., λ is Delsarte-McEliece if
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and only if FrA(λ) is Delsarte-McEliece.

Finally, suppose that c ∈ GR(pd, e)[A] and C is the element of Zp[ζq′−1][A] with C̃ = τ◦c̃.

Then by Lemma 2.9, we have C ∈ Zp[ζq−1][A]. Now suppose that λ ∈ Z[H × A]. We want

to show that C̃(FrA(λ)) = Fr(C̃(λ)). First we verify this when λ is the singleton set (h, a).

Indeed, if h < e−1, we have C̃(FrA((h, a))) = C̃((h+1, a)) = Frh+1(C̃(a)) = Fr
(
C̃((h, a))

)
.

On the other hand, if h = e − 1, then we have C̃(FrA((e − 1, a))) = C̃((0, aq)) = C̃(aq).

But now use Proposition 2.8 to get C̃(aq) = Fre(C̃(a)) = Fr
(
C̃((e− 1, a))

)
. Now let

λ be an arbitrary element of Z[H × A], and recall that C̃(λ1 + λ2) = C̃(λ1)C̃(λ2), so

that C̃(FrA(λ)) = C̃
(∑

(h,a)∈H×A λh,a FrA(h, a)
)

=
∏

(h,a)∈H×A

(
C̃ (FrA(h, a))

)λh,a

. Then

use our result for singleton sets to obtain C̃(FrA(λ)) =
∏

(h,a)∈H×A Fr
(
C̃ ((h, a))

)λh,a

=

Fr
[∏

(h,a)∈H×A

(
C̃ ((h, a))

)λh,a
]

= Fr
(
C̃(λ)

)
.

If I is a finite set, we extend the Frobenius action FrA to Z[I × H × A] so that if

λ ∈ Z[I ×H × A], then (FrA(λ))i = FrA(λi). We can easily deduce what we need to know

about this action on Z[I ×H ×A] from the above lemma.

Corollary 2.32. FrA is a permutation of Z[I × H × A] with FrAee′ the identity. FrA

preserves size of accounts. Furthermore, if λ ∈ Z[I × H × A], then |(FrA(λ))i| = |λi| for

all i ∈ I. FrA takes multisets to multisets and (FrA(λ))! = λ! for all λ ∈ N[I ×H ×A]. If

{Si}i∈I is a family of q-closed sets, and if λ ∈ Z[I ×H × A] with λi ∈ Z[H × Si] for each

i, then (FrA(λ))i ∈ Z[H × Si] for each i ∈ I. Additionally, FrA(λ) is all-unity if and only

if λ is all-unity. Further, Π FrA(λ) = (Πλ)p, so that FrA(λ) is unity-product if and only

if λ is unity-product. For each i ∈ I, Σ prH([FrA(λ)]i) = pΣ prH(λi). Thus (FrA(λ))i is

Delsarte-McEliece for all i ∈ I if and only if λi is Delsarte-McEliece for all i ∈ I. Suppose

ci ∈ GR(pd, e)[A] for each i ∈ I. Suppose that Ci is the element of Zp[ζq′−1][A] with

C̃i = τ ◦ c̃i for each i ∈ I. If λ ∈ Z[I ×H ×A], then
∏

i∈I C̃i ([FrA(λ)]i) = Fr
(∏

i∈I C̃(λi)
)
.

2.8 Polynomial Notations and Facts

This brief section develops some notations that we shall use to express and manipulate

polynomials. We also introduce the binomial coefficient polynomials here. Finally, we
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record some basic results about polynomials that we shall need when we want to prove that

bounds on p-adic valuations of weights are sharp.

Suppose that J is a finite index set with some (total) ordering, and suppose that we are

considering polynomials with coefficients in some ring R and indeterminates {xj : j ∈ J}. To

indicate that f is such a polynomial, we sometimes represent the list of all indeterminates

(arranged in order of increasing index) by x and write f(x) ∈ R[x]. We also use the

alternative notation f({xj}j∈J) ∈ R[{xj}j∈J ] to mean the same thing. If our index set is a

product of sets, say J = I ×K, then we shall abbreviate x(i,k) by xik.

The notion of accounts, introduced in the previous section, may be used to express such

polynomials more efficiently. For example, if µ ∈ N[J ], then xµ will be used as shorthand

for the monomial
∏

j∈J x
µj

j . Thus any polynomial f in our indeterminates x can be written

as f(x) =
∑

µ∈N[J ] fµxµ, where the coefficients fµ are in the ring R and almost all fµ are

zero. Furthermore, suppose we have a collection of elements {aj}j∈J in R. Then we may

represent the list of them (in order of increasing index) by a. Of course f(a) is the value of

the polynomial when each indeterminate xj is replaced by the value aj . For convenience of

expression, we introduce the notation f({xj = aj}j∈J), or just f({xj = aj}) if the index set

is clear, to mean the same thing as f(a). If J = {j1, . . . , js}, we can also use the notation

f({xj1 = aj1 , . . . , xjs = ajs}). If K ⊆ J and we have a collection of elements {ak}k∈K in

R, then we use the notation f({xk = ak}k∈K) to indicate the polynomial in the variables

{xi : i ∈ J r K} obtained when we replace the variable xk with ak for each k ∈ K. If

K = {k1, . . . , kt}, we can also use the notation f({xk1 = ak1 , . . . , xkt = akt}) to mean the

same thing.

We often make use of the binomial coefficient polynomials, which are defined as

(
x

n

)
=


0 if n < 0,

1 if n = 0,

x(x−1)...(x−n+1)
n! if n > 0.

Note that these polynomials, when regarded as functions, map N into N. They also map Zp

into Zp, by a simple argument employing the p-adic topology in the complete metric space
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Qp. For the binomial coefficient polynomials are p-adically continuous (being polynomials)

and N is dense in the closed set Zp.

We now present a basic result that we shall use every time we want to prove the sharpness

of our lower bounds on p-adic valuations of weights in codes. We follow it with a lemma

upon which it depends and a useful corollary of that lemma.

Lemma 2.33. Suppose that x = (x1, . . . , xn) is a list of indeterminates, and suppose that

for each i ∈ {1, . . . , n}, Si is a finite subset of Zp[ζq′−1] wherein no two elements are

congruent modulo p. Suppose that f(x) ∈ Qp(ζq′−1)[x] is not the zero polynomial, that m

is the minimum p-adic valuation of the coefficients of f(x), and that the degree of f in xi

is less than |Si| for each i. Then f(b1, . . . , bn) ≡ 0 (mod pm) for all b1, . . . , bn ∈ Zp[ζq′−1],

but there is some (a1, . . . , an) ∈ S1 × · · · × Sn such that f(a1, . . . , an) 6≡ 0 (mod pm+1).

Proof. By scaling the polynomial by a power of p, it suffices to prove this for m = 0. It is

clear that if the coefficients of f are in Zp[ζq′−1], and if we replace the indeterminates by

elements of Zp[ζq′−1], then the resulting value is in Zp[ζq′−1]. So it only remains to show

that there is some a ∈ S1 × · · · × Sn such that f(a) 6≡ 0 (mod p). Let f̄(x) ∈ Fq′ [x] be the

reduction modulo p of f , and for each i ∈ {1, . . . , n}, let S̄i ⊆ Fq′ be the set of elements

obtained by reducing the elements of Si modulo p. Note that f̄(x) is not the zero polynomial

since f has a coefficient with zero p-adic valuation. Also note that
∣∣S̄i

∣∣ = |Si| since no two

elements of Si are equivalent modulo p. Then we need to show that f̄(x) is nonzero at some

point in S̄1 × · · · × S̄n. But this follows from Lemma 2.34 below, a standard result.

Lemma 2.34. Suppose that K is a field, x = (x1, . . . , xn) is a list of indeterminates, and

suppose that Si is a finite subset of K for i = 1, . . . , n. Suppose that f(x) ∈ K[x] is not

the zero polynomial and that the degree of f in xi is less than |Si| for each i. Then there is

some (a1, . . . , an) ∈ S1 × · · · × Sn such that f(a1, . . . , an) 6= 0.

Proof. This is a well-known result, presented as Lemma 3.10 in [18].

Corollary 2.35. Suppose that K is a field, x = (x1, . . . , xn) is a list of indeterminates, and

suppose that Si is a finite subset of K for i = 1, . . . , n. Suppose that f(x), g(x) ∈ K[x] are
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distinct polynomials whose degrees in xi are less than |Si| for each i. Then there is some

(a1, . . . , an) ∈ S1 × · · · × Sn such that f(a1, . . . , an) 6= g(a1, . . . , an).
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Chapter 3

The Abstract Theorem

This brief chapter settles once and for all certain calculations that we shall use over and

over again. These calculations will accomplish the same end as those displayed in the

presentation of Wilson’s method at the beginning of Section 1.3, but here we consider

circumstances of much greater complexity. The higher degree of complexity is needed to

handle the more exotic forms of counting polynomials that we have devised (see Section 1.3

for a brief overview) and which we shall apply in the next chapters. What is presented here

are theorems (actually, one theorem in utmost generality and its corollaries) which take

as their input counting polynomials and give as their output p-adic estimates of weights.

Nowhere in this chapter do we learn how to construct good counting polynomials. In each

of the succeeding chapters, we consider different problems, and use various methods to

construct the appropriate counting polynomials. So the results in this chapter are merely

ghosts of theorems. They all need counting polynomials to be applied usefully. We begin

with a calculation which is essentially the repeated application of the distributive law and

of combinatorial repackaging of unwieldy sums over sets of sequences into more manageable

sums over multisets. We also make use of the fact that
∑

a∈A 〈a, b〉 is zero unless b = 1A;

this fact is the source of the unity-product condition that arises over and over in this work

(for example, in the definition of the parameters ω(C), `(C), and their relatives in the

Introduction).

Proposition 3.1. Suppose that t ≥ 1, I = {1, 2, . . . , t}, and C1, . . . , Ct ∈ Zp[ζq−1][A] . Let

x be the list of indeterminates in {xih : (i, h) ∈ I ×H}, listed in some order. Suppose that
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f(x) ∈ Qp(ζq−1)[x] with f(x) =
∑

µ∈N[I×H] fµxµ. Then

∑
a∈A

f
({

xih = Frh (Ci(a))
})

= |A|
∑

µ∈N[I×H]

µ!fµ

∑
λ∈N[I×H×A]
prI×H λ=µ

Πλ=1A

1
λ!

∏
i∈I

C̃i(λi).

Proof. By linearity, it suffices to consider f(x) = xµ for some µ ∈ N[I ×H] and show that

∑
a∈A

f
({

xih = Frh (Ci(a))
})

= |A|µ!
∑

λ∈N[I×H×A]
prI×H λ=µ

Πλ=1A

1
λ!

∏
i∈I

C̃i(λi). (3.1)

In this case,

∑
a∈A

f
({

xih = Frh (Ci(a))
})

=
∑
a∈A

∏
(i,h)∈I×H

Frh (Ci(a))µi,h ,

and we use the inversion formula for the scaled Fourier transform to obtain

∑
a∈A

f
({

xih = Frh (Ci(a))
})

=
∑
a∈A

∏
(i,h)∈I×H

Frh

(∑
b∈A

C̃i(b)〈b, a〉

)µi,h

. (3.2)

Now use the distributive law to get

Frh

(∑
b∈A

C̃i(b)〈b, a〉

)µi,h

=
∑

b1,b2,...,bµi,h
∈A

µi,h∏
j=1

Frh
(
C̃i(bj)〈bj , a〉

)
.

We convert this from a sum over sequences of length µi,h of elements in A to a sum over

multisets of size µi,h of elements in A. Recall that there are |ν|!
ν! distinct ways to arrange

the |ν| elements of a multiset ν into a sequence of length |ν|. Thus

Frh

(∑
b∈A

C̃i(b)〈b, a〉

)µi,h

=
∑

ν∈N[A]
|ν|=µi,h

µi,h!
ν!

∏
b∈A

Frh
(
C̃i(b)〈b, a〉

)νb

.
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We take the product of this over all h ∈ H and we apply the distributive law again to obtain

∏
h∈H

Frh

(∑
b∈A

C̃i(b)〈b, a〉

)µi,h

=
∑

ν0,...,νe−1∈N[A]
|ν0|=µi,0,...,|νe−1|=µi,e−1

∏
h∈H

[
µi,h!
νh!

∏
b∈A

Frh
(
C̃i(b)〈b, a〉

)(νh)b

]
.

Then we repackage the sum over sequences as a sum over multisets to get

∏
h∈H

Frh

(∑
b∈A

C̃i(b)〈b, a〉

)µi,h

=
∑

κ∈N[H×A]
prH κ=µi

∏
h∈H

[
µi,h!
κh!

∏
b∈A

Frh
(
C̃i(b)〈b, a〉

)κh,b

]

=
∑

κ∈N[H×A]
prH κ=µi

µi!
κ!

∏
(h,b)∈H×A

Frh
(
C̃i(b)〈b, a〉

)κh,b

.

Then we take the product of this over all i ∈ I and we apply the distributive law yet again

to obtain

∏
(i,h)∈I×H

Frh

(∑
b∈A

C̃i(b)〈b, a〉

)µi,h

=
∑

κ1,...,κt∈N[H×A]
prH κj=µj

∏
i∈I

µi!
κi!

∏
(h,b)∈H×A

Frh
(
C̃i(b)〈b, a〉

)(κi)h,b

 .

Convert the sum over sequences to a sum over multisets to get

∏
(i,h)∈I×H

Frh

(∑
b∈A

C̃i(b)〈b, a〉

)µi,h

=
∑

λ∈N[I×H×A]
prI×H λ=µ

∏
i∈I

µi!
λi!

∏
(h,b)∈H×A

Frh
(
C̃i(b)〈b, a〉

)λi,h,b

 ,

and so

∏
(i,h)∈I×H

Frh

(∑
b∈A

C̃i(b)〈b, a〉

)µi,h

=
∑

λ∈N[I×H×A]
prI×H λ=µ

µ!
λ!

∏
(i,h,b)∈I×H×A

Frh
(
C̃i(b)〈b, a〉

)λi,h,b

.

(3.3)

Now note that

Frh
(
C̃i(b)〈b, a〉

)λi,h,b

= Frh
(
C̃i(b)

)(λi)h,b

〈b, a〉p
hλi,h,b ,
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because 〈a, b〉 is always a power of ζq′−1, and Fr takes such roots of unity to their pth powers.

Then by Lemma 2.5, we have

Frh
(
C̃i(b)〈b, a〉

)λi,h,b

= Frh
(
C̃i(b)

)(λi)h,b
〈
bphλi,h,b , a

〉
.

If we take the product of both sides of this equation over all (i, h, b) ∈ I ×H ×A and use

the compact notations developed in Section 2.5, we obtain

∏
(i,h,b)∈I×H×A

Frh
(
C̃i(b)〈b, a〉

)λi,h,b

=

(∏
i∈I

C̃i(λi)

)
〈Πλ, a〉.

Using this with (3.3), we obtain

∏
(i,h)∈I×H

Frh

(∑
b∈A

C̃i(b)〈b, a〉

)µi,h

=
∑

λ∈N[I×H×A]
prI×H λ=µ

µ!
λ!

(∏
i∈I

C̃i(λi)

)
〈Πλ, a〉,

so that, in view of (3.2), we have

∑
a∈A

f
({

xih = Frh (Ci(a))
})

=
∑
a∈A

∑
λ∈N[I×H×A]
prI×H λ=µ

µ!
λ!

(∏
i∈I

C̃i(λi)

)
〈Πλ, a〉.

The only term on the right-hand side that has dependence on a is 〈Πλ, a〉. Using Lemma

2.5, we obtain

∑
a∈A

f
({

xih = Frh (Ci(a))
})

= |A|
∑

λ∈N[I×H×A]
prI×H λ=µ

Πλ=1A

µ!
λ!

∏
i∈I

C̃i(λi),

which is (3.1), which is what we need to show.

Now we use this calculation to derive our abstract theorem. Much of the theorem is

given over to dealing with the problem of codewords whose Fourier transforms do not vanish

at 1A. The normalized weight (see Section 2.4) is deployed to deal with this issue.

Theorem 3.2 (Abstract Theorem). Let m, t ≥ 1, I = {1, 2, . . . , t}, S1, . . . , St ⊆
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A, and c1, . . . , ct ∈ GR(pd, e)[A] with ĉi supported on Si for each i ∈ I. Suppose that

wt: GR(pd, e)t → Z is a t-wise weight function. For each i ∈ I, let Ci be the ele-

ment of Zp[ζq′−1][A] with C̃i = τ ◦ c̃i. Let x be a list (in some order) of the inde-

terminates in {xih : (i, h) ∈ I ×H}. Let f(x) =
∑

µ∈N[I×H] fµxµ ∈ Qp(ζq−1)[x] with

wt(π(r1), . . . , π(rt)) ≡ f
({

xih = Frh(ri)
})

(mod pm) for all r1, . . . , rt ∈ Zp[ζq−1]. Then

wtnorm(c1, . . . , ct) ≡ |A|
∑

µ∈N[I×H]

µ!fµ

∑
λ∈N[I×H×A],prI×H λ=µ

Πλ=1A,prA λ6∈N[{1A}]
prA(λ1)∈N[S1],...,prA(λt)∈N[St]

1
λ!

∏
i∈I

C̃i(λi) (mod pm).

(3.4)

Proof. Note that since ĉi is supported on Si, so is c̃i, and so is C̃i = τ ◦ c̃i (because

τ(0) = 0). Thus if λ ∈ N[I ×H ×A] with prA(λi) 6∈ N[Si] for some i ∈ I, then C̃i(λi) =∏
(h,a)∈H×A Frh(C̃i(a))λi,h,a = 0. Because of this, we claim that it will suffice for us to prove

the special case when S1 = S2 = · · · = St = A, i.e.,

wtnorm(c1, . . . , ct) ≡ |A|
∑

µ∈N[I×H]

µ!fµ

∑
λ∈N[I×H×A],prI×H λ=µ

Πλ=1A,prA λ6∈N[{1A}]

1
λ!

∏
i∈I

C̃i(λi) (mod pm), (3.5)

when c1, . . . , ct are allowed to be arbitrary in GR(pd, e)[A]. For if we consider some particular

c1, . . . , ct with each ĉi supported on Si, then we may restrict the sum to those λ with

prA(λi) ∈ N[Si] for all i ∈ I, and so obtain (3.4).

So we shall prove (3.5) for arbitrary c1, . . . , ct ∈ GR(pd, e)[A]. By Lemma 2.9, we know

that Ci ∈ Zp[ζq−1][A] and π(Ci) = ci for each i ∈ I, and we use our polynomial f to obtain

wt(c1(a), . . . , ct(a)) ≡ f
({

xih = Frh(Ci(a))
})

(mod pm)

for each a ∈ A, so that

wt(c1, . . . , ct) ≡
∑
a∈A

f
({

xih = Frh(Ci(a))
})

(mod pm).
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We can apply Proposition 3.1 to obtain

wt(c1, . . . , ct) ≡ |A|
∑

µ∈N[I×H]

µ!fµ

∑
λ∈N[I×H×A]
prI×H λ=µ

Πλ=1A

1
λ!

∏
i∈I

C̃i(λi) (mod pm).

Now we separate the sum into two parts to segregate those multisets λ that are all-unity,

thus obtaining

wt(c1, . . . , ct) ≡ |A|
∑

µ∈N[I×H]

µ!fµ

∑
λ∈N[I×H×A],prI×H λ=µ

Πλ=1A,prA λ∈N[{1A}]

1
λ!

∏
i∈I

C̃i(λi)

+ |A|
∑

µ∈N[I×H]

µ!fµ

∑
λ∈N[I×H×A],prI×H λ=µ

Πλ=1A,prA λ6∈N[{1A}]

1
λ!

∏
i∈I

C̃i(λi) (mod pm).

The first term on the right-hand side is a polynomial function of the terms Frh(C̃i(1A))

with i ∈ I and h ∈ H, i.e., there is some polynomial ρ(x) ∈ Qp(ζq−1)[x] so that

wt(c1, . . . , ct) ≡ ρ
({

xih = Frh[τ(c̃i(1A))]
})

+ |A|
∑

µ∈N[I×H]

µ!fµ

∑
λ∈N[I×H×A],prI×H λ=µ

Πλ=1A,prA λ6∈N[{1A}]

1
λ!

∏
i∈I

C̃i(λi) (mod pm), (3.6)

where we have used the fact that C̃i = τ ◦ c̃i.

For this paragraph, let us suppose that c1, . . . , ct are constant words in GR(pd, e)[A].

By Lemma 2.7, each word ci has c̃i(a) = 0 for a 6= 1A and ci(b) = c̃i(1A) for all b ∈ A. Since

τ(0) = 0, this means that for each i ∈ I we have C̃i(a) = 0 for a 6= 1A, so the second term

on the right-hand side of the congruence (3.6) vanishes, and we have

wt(c1, . . . , ct) ≡ ρ
({

xih = Frh[τ(c̃i(1A))]
})

(mod pm).

Since ci(b) = c̃i(1A) for all b ∈ A, we have

|A|wt (c̃1(1A), . . . , c̃t(1A)) ≡ ρ
({

xih = Frh[τ(c̃i(1A))]
})

(mod pm).
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Note that as we vary the word ci over all constant words, the Fourier coefficient c̃i(1A)

varies over GR(pd, e). Thus

|A|wt(r1, . . . , rt) ≡ ρ
({

xih = Frh(τ(ri))
})

(mod pm), (3.7)

for all r1, . . . , rt ∈ GR(pd, e).

Now we return to the consideration of arbitrary c1, . . . , ct ∈ GR(pd, e)[A]. Note that

c̃i(1A) = |A|−1∑
b∈A ci(b) ∈ GR(pd, e) for all i ∈ I. Thus we may employ (3.7) in (3.6) to

obtain

wt(c1, . . . , ct) ≡ |A|wt (c̃1(1A), . . . , c̃t(1A))

+ |A|
∑

µ∈N[I×H]

µ!fµ

∑
λ∈N[I×H×A],prI×H λ=µ

Πλ=1A,prA λ6∈N[{1A}]

1
λ!

∏
i∈I

C̃i(λi) (mod pm),

which is (3.5), which is what we were to show.

The following three corollaries are just specializations of the abstract theorem. That

they follow directly from the abstract theorem can be seen by those who are familiar enough

with the account notations and operations (see Section 2.5). For those readers who are not

at ease with accounts, we include the proofs, which are tedious set-theoretic manipulations.

Corollary 3.3 (Single-Word Weights over Galois Rings). Let m ≥ 1, S ⊆ A, and

c ∈ GR(pd, e)[A] with ĉ supported on S. Suppose that wt: GR(pd, e) → Z is a weight

function. Let C be the element of Zp[ζq′−1][A] with C̃ = τ ◦ c̃. Let x be a list (in some

order) of the indeterminates in {xh : h ∈ H}. Let f(x) =
∑

µ∈N[H] fµxµ ∈ Qp(ζq−1)[x] with

wt(π(r)) ≡ f
({

xh = Frh(r)
})

(mod pm) for all r ∈ Zp[ζq−1]. Then

wtnorm(c) ≡ |A|
∑

µ∈N[H]

µ!fµ

∑
λ∈N[H×S],prH λ=µ

Πλ=1A,prA λ6∈N[{1A}]

C̃(λ)
λ!

(mod pm). (3.8)

Proof. Set t = 1, I = {1}, S1 = S, c1 = c, and C1 = C. Let y be a list (in some order) of

the indeterminates in {yih : (i, h) ∈ I ×H}, and let g(y) =
∑

µ∈N[I×H] gµyµ with gµ = fµ1 .
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Then wt(π(r1)) ≡ g
({

y1,h = Frh(r1)
})

(mod pm) for all r1 ∈ Zp[ζq−1]. So by the abstract

theorem above, keeping in mind that t = 1, I = {1}, S1 = S, c1 = c, and C1 = C, we have

wtnorm(c) ≡ |A|
∑

µ∈N[I×H]

µ!gµ

∑
λ∈N[I×H×A],prI×H λ=µ

Πλ=1A,prA λ6∈N[{1A}]
prA(λ1)∈N[S]

1
λ!

C̃(λ1) (mod pm).

Note that µ 7→ prH µ is a bijection from N[I ×H] to N[H]. Let Φ: N[H] → N[I ×H] be

the inverse of this map. Likewise, note that λ 7→ prH×A λ is a bijection from N[I ×H ×A]

to N[H ×A]. Let Ψ: N[H ×A]→ N[I ×H ×A] be the inverse of this map. Because these

maps Φ and Ψ are bijective, they enable us to re-index our sums. We do this, noting that

λ1 = prH×A λ, to get

wtnorm(c) ≡ |A|
∑

ν∈N[H]

Φ(ν)!gΦ(ν)

∑
κ∈N[H×A],prI×H Ψ(κ)=Φ(ν)
ΠΨ(κ)=1A,prA Ψ(κ) 6∈N[{1A}]

prA κ∈N[S]

1
Ψ(κ)!

C̃(κ) (mod pm).

Note that Φ(ν)! = ν! and Ψ(κ)! = κ!. Also recall that gµ = fµ1 = fprH µ, so that gΦ(ν) =

fν . Further, note that (prI×H Ψ(κ))1,h = (prH κ)h for all h ∈ H, so that prI×H Ψ(κ) =

Φ(prH κ). So, by the bijectivity of Φ, the condition prI×H Ψ(κ) = Φ(ν) is equivalent to the

condition prH κ = ν. Also note that ΠΨ(κ) = Πκ and prA Ψ(κ) = prA κ. Thus, we have

wtnorm(c) ≡ |A|
∑

ν∈N[H]

ν!fν

∑
κ∈N[H×A],prH κ=ν

Πκ=1A,prA κ 6∈N[{1A}]
prA κ∈N[S]

1
κ!

C̃(κ) (mod pm),

and note that the conditions κ ∈ N[H ×A] and prA κ ∈ N[S] can be combined into the

single condition κ ∈ N[H × S] to obtain (3.8).

Corollary 3.4 (Multi-Word Weights over Z/pdZ). Let m, t ≥ 1, I = {1, 2, . . . , t},

S1, . . . , St ⊆ A, and c1, . . . , ct ∈ Z/pdZ[A] with ĉi supported on Si for each i ∈ I. Suppose

that wt: (Z/pdZ)t → Z is a t-wise weight function. For each i ∈ I, let Ci be the element

of Zp[ζq′−1][A] with C̃i = τ ◦ c̃i. Let x be a list (in some order) of the indeterminates in

{xi : i ∈ I}. Let f(x) =
∑

µ∈N[I] fµxµ ∈ Qp[x] with wt(π(r1), . . . , π(rt)) ≡ f ({xi = ri})
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(mod pm) for all r1, . . . , rt ∈ Zp. Then

wtnorm(c1, . . . , ct) ≡ |A|
∑

µ∈N[I]

µ!fµ

∑
λ∈N[I×A],prI λ=µ

Πλ=1A,prA λ6∈N[{1A}]
λ1∈N[S1],...,λt∈N[St]

1
λ!

∏
i∈I

C̃i(λi) (mod pm). (3.9)

Proof. Here we have H = {0}. We let the y denote a list (in some order) of the indetermi-

nates in {yih : (i, h) ∈ I ×H}, and we let g(y) =
∑

µ∈N[I×H] gµyµ with gµ = fprI µ. Then

wt(π(r1), . . . , π(rt)) ≡ g
({

yi,0 = Fr0(ri)
})

(mod pm) for all r1, . . . , rt ∈ Zp. Thus, by our

abstract theorem above, we have

wtnorm(c1, . . . , ct) ≡ |A|
∑

µ∈N[I×H]

µ!gµ

∑
λ∈N[I×H×A],prI×H λ=µ

Πλ=1A,prA λ6∈N[{1A}]
prA(λ1)∈N[S1],...,prA(λt)∈N[St]

1
λ!

∏
i∈I

C̃i(λi) (mod pm).

Note that µ 7→ prI µ is a bijection from N[I ×H] to N[I]. Let Φ: N[I] → N[I ×H] be the

inverse of this map. Likewise, note that λ 7→ prI×A λ is a bijection from N[I ×H ×A] to

N[I ×A]. Let Ψ: N[I ×A]→ N[I ×H ×A] be the inverse of this map. Because these maps

Φ and Ψ are bijective, they enable us to re-index our sums to obtain

wtnorm(c1, . . . , ct) ≡

|A|
∑

ν∈N[I]

Φ(ν)!gΦ(ν)

∑
κ∈N[I×A],prI×H Ψ(κ)=Φ(ν)
ΠΨ(κ)=1A,prA Ψ(κ) 6∈N[{1A}]

prA([Ψ(κ)]1)∈N[S1],...,prA([Ψ(κ)]t)∈N[St]

1
Ψ(κ)!

∏
i∈I

C̃i([Ψ(κ)]i)

(mod pm).

Note that Φ(ν)! = ν! and Ψ(κ)! = κ!. Also recall that gµ = fprI µ, so that gΦ(ν) = fν .

Further, note that (prI×H Ψ(κ))i,0 = (prI κ)i for all i ∈ I, so that prI×H Ψ(κ) = Φ(prI κ).

So, by the bijectivity of Φ, the condition prI×H Ψ(κ) = Φ(ν) is equivalent to the condition

prI κ = ν. Also note that ΠΨ(κ) = Πκ and prA Ψ(κ) = prA κ. Finally, for each i ∈ I and

a ∈ A, we have [prA([Ψ(κ)]i)]a =
∑

h∈H([Ψ(κ)]i)h,a = ([Ψ(κ)]i)0,a = [Ψ(κ)]i,0,a = κi,a =
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(κi)a, so that prA([Ψ(κ)]i) = κi. Thus, we have

wtnorm(c1, . . . , ct) ≡ |A|
∑

ν∈N[I]

ν!fν

∑
κ∈N[I×A],prI κ=ν

Πκ=1A,prA κ 6∈N[{1A}]
κ1∈N[S1],...,κt∈N[St]

1
κ!

∏
i∈I

C̃i([Ψ(κ)]i) (mod pm). (3.10)

Now, note that for each i ∈ I and κ ∈ N[I ×A], we have

C̃i([Ψ(κ)]i) =
∏

(h,a)∈H×A

= Frh(C̃i(a))([Ψ(κ)]i)h,a ,

but H = {0}, so that we have

C̃i([Ψ(κ)]i) =
∏
a∈A

C̃i(a)([Ψ(κ)]i)0,a .

Since ([Ψ(κ)]i)0,a = [Ψ(κ)]i,0,a = κi,a = (κi)a, we have

C̃i([Ψ(κ)]i) =
∏
a∈A

C̃i(a)(κi)a

= C̃i(κi),

which, when substituted into (3.10), gives (3.9), which is what we were to prove.

Corollary 3.5 (Single-Word Weights over Z/pdZ). Let m ≥ 1, S ⊆ A, and c ∈

Z/pdZ[A] with ĉ supported on S. Suppose that wt: Z/pdZ → Z is a weight function. Let

C be the element of Zp[ζq′−1][A] with C̃ = τ ◦ c̃. Let f(x) =
∑

j∈N fjx
j ∈ Qp[x] with

wt(π(r)) ≡ f(r) (mod pm) for all r ∈ Zp. Then

wtnorm(c) ≡ |A|
∑
j∈N

j!fj

∑
λ∈N[S],|λ|=j

Πλ=1A,λ6∈N[{1A}]

C̃(λ)
λ!

(mod pm). (3.11)

Proof. Set t = 1, I = {1}, S1 = S, c1 = c, and C1 = C. Let y be the list of indeterminates

in {yi : i ∈ I} (which consists of the single indeterminate y1) and let g(y) =
∑

µ∈N[I] gµyµ,

where gµ = fµ1 . Then wt(π(r1)) ≡ g ({y1 = r1}) (mod pm) for all r1 ∈ Zp. So by Corollary
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3.4, keeping in mind that t = 1, I = {1}, S1 = S, c1 = c, and C1 = C, we have

wtnorm(c) ≡ |A|
∑

µ∈N[I]

µ!gµ

∑
λ∈N[I×A],prI λ=µ

Πλ=1A,prA λ6∈N[{1A}]
λ1∈N[S]

1
λ!

C̃(λ1) (mod pm).

Note that µ 7→ |µ| (which is the same as µ 7→ µ1) is a bijection from N[I] to N. Let

Φ: N → N[I] be the inverse of this map. Likewise, note that λ 7→ prA λ is a bijection

from N[I ×A] to N[A]. Let Ψ: N[A]→ N[I ×A] be the inverse of this map. Because these

maps Φ and Ψ are bijective, they enable us to re-index our sums. We do this, noting that

λ1 = prA λ, to get

wtnorm(c) ≡ |A|
∑
j∈N

Φ(j)!gΦ(j)

∑
κ∈N[A],prI Ψ(κ)=Φ(j)

ΠΨ(κ)=1A,prA Ψ(κ) 6∈N[{1A}]
κ∈N[S]

1
Ψ(κ)!

C̃(κ) (mod pm).

Note that Φ(j)! = j! and Ψ(κ)! = κ!. Also recall that gµ = fµ1 = f|µ|, so that gΦ(j) = fj .

Further, note that (prI Ψ(κ))1 = |κ|, so that prI Ψ(κ) = Φ(|κ|). So, by the bijectivity of

Φ, the condition prI Ψ(κ) = Φ(j) is equivalent to the condition |κ| = j. Also note that

ΠΨ(κ) = Πκ and prA Ψ(κ) = κ. Thus, we have

wtnorm(c) ≡ |A|
∑
j∈N

j!fj

∑
κ∈N[A],|κ|=j

Πκ=1A,κ 6∈N[{1A}]
κ∈N[S]

1
κ!

C̃(κ) (mod pm).

The condition κ ∈ N[A] is redundant, given the condition κ ∈ N[S], so we are done.

Having set down this abstract theorem and its corollaries, we are now ready to obtain

p-adic estimates of weights as soon as we construct appropriate counting polynomials. We

present our four main results in the next four chapters, each of which includes the construc-

tion of polynomials and the application of such polynomials with the abstract theorem (or

one of its corollaries) to obtain weight congruences.
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Chapter 4

Zero Counts, Hamming Weights,
and Generic Weights in Z/pdZ[A]

In this chapter, we investigate p-adic valuations of weights in Abelian codes over Z/pdZ.

Thus we set e = 1 throughout this chapter. The two main results we obtain are Theorems

4.18 and 4.21, specializations of which were presented in the Introduction as Theorems 1.8

and 1.7. We recall these specializations here:

Theorem 4.1 (Theorem 4.18, specialized). Let C be a code in Z/pdZ[A] with 1A not

in the support of the Fourier transform of C. Then zer(c) ≡ |A| (mod p`ss
mc(C)) for all c ∈ C,

and zer(c) 6≡ |A| (mod p`ss
mc(C)+1) for some c ∈ C. Equivalently, ham(c) ≡ 0 (mod p`ss

mc(C))

for all c ∈ C, and ham(c) 6≡ 0 (mod p`ss
mc(C)+1) for some c ∈ C.

Theorem 4.2 (Theorem 4.21, specialized). Let C be a code in Z/pdZ[A] with 1A not in

the support of the Fourier transform of C. Let r ∈ Z/pdZ with r 6= 0, and let c ∈ C. Then

the number of occurrences of the symbol r in the word c is a multiple of p`ss(C).

In order to understand these theorems, one must understand the definitions of `ss(C)

and `ss
mc(C) given in Section 1.1 of the Introduction. The parameters `ss(C) and `ss

mc(C)

are defined there using unity-product sequences of elements in the support of the Fourier

transform of the code. In this chapter, and indeed in the rest of the thesis, they will be

defined (equivalently) using multisets rather than sequences. For this reason, knowledge of

the notations for accounts in Section 2.5 will be indispensable in this chapter.

The above theorems (or rather, more general forms of them) are proved using Corollary

3.4 and suitable counting polynomials. In Section 4.1, we introduce the Newton expansion,
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which is the basic tool for constructing counting polynomials. In Section 4.2, we construct

our counting polynomials. Note that we do not construct a single-variable polynomial f that

approximates the lift of a weight function wt. That is, we do not construct f(x) ∈ Qp[x]

so that f(r) ≡ wt(π(r)) (mod pm) for all r ∈ Zp, and then use it with Corollary 3.5

to approximate weights. Rather, we construct a multivariable polynomial f(x0, . . . , xd−1)

that will approximate weights in a somewhat strange fashion, namely f(r0, . . . , rd−1) ≡

wt(π(r0 + pr1 + · · · + pd−1rd−1)) (mod pm) for all r0, . . . , rd−1 ∈ Zp. This polynomial is

designed to respect the scoring system described in Section 1.1 of the Introduction. There

the scoring system was described for use with sequences; in Section 4.2 the scoring system

is defined (equivalently) in terms of multisets. In Section 4.2, we do not speak specifically

about weight functions, but show how to make counting polynomials that approximate

functions F (x0, . . . , xd−1) that have the property that

F (x0, x1, . . . , xd−2, xd−1) = F (x0 + pd, x1, . . . , xd−2, xd−1)

= F (x0, x1 + pd−1, . . . , xd−2, xd−1)

= . . .

= F (x0, x1, . . . , xd−2 + p2, xd−1)

= F (x0, x1, . . . , xd−2, xd−1 + p).

For any weight function wt: Z/pdZ→ Z, the function wt(π(x0 +px1 + · · ·+pd−1xd−1)) will

have this property.

In Section 4.3, we introduce the notion of a sectioned weight function. For wt: Z/pdZ→

Z, the sectioned weight function wtsec : (Z/pdZ)d → Z is given by wtsec(r0, . . . , rd−1) =

wt(r0 + pr1 + · · ·+ pd−1rd−1). Thus the polynomials developed in Section 4.2 approximate

sectioned weight functions. Then Section 4.3 shows how the scaled Fourier-induced break-

down of codewords (introduced in Section 2.3) works together with the sectioned weight

functions. Indeed, the scaled Fourier-induced breakdown expresses a codeword c as a linear

combination
∑d−1

i=0 pic(i), and so wt(c) = wtsec(c(0), . . . , c(d−1)).

In Sections 4.4 and 4.5, we use our counting polynomials that approximate sectioned
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weights, along with Corollary 3.4, to prove the theorems that are the goals of this chapter.

In Section 4.4, we introduce the parameter `ss
mc(C) using multisets, and then prove Theorem

4.18, which is a generalized version of Theorem 1.8 (Theorem 4.1 above). In Section 4.5,

we introduce the parameter `ss(C) using multisets, and then prove Theorem 4.21, which is

a generalized version of Theorem 1.7 (Theorem 4.2 above).

Finally, in Section 4.6, we compare our results with previous ones. Since previous results

used the parameters `mc(C) and `(C) (see Section 1.1 of the Introduction), we introduce these

parameters (using multisets here rather than the sequences of the Introduction). Then we

compare (in Proposition 4.22) the relative magnitudes of `(C), `mc(C), `ss(C), and `ss
mc(C),

thus enabling us to compare our results with past results.

4.1 Finite Differences and Newton Expansions

In this section, we let D stand for any subset of Zp such that r ∈ D implies r + 1 ∈ D (so

D could be N or Z or all of Zp). We consider the Qp-vector space of functions f : D → Qp.

We define the finite difference operator, denoted ∆, to be the operator on this space with

(∆F )(x) = F (x + 1)− F (x).

We also define the translation (or shift) operator, denoted T , to be the operator in this

space with

(TF )(x) = F (x + 1).

Note that ∆ = T − Id, where Id is the identity operator.

We also let t be a positive integer and consider the Qp-vector space of functions of the

form F : Dt → Qp. We define the finite difference operator in variable xk, denoted ∆k, to

be the operator on the space of such functions with

(∆kF )(r0, . . . , rt−1) = F (x0, . . . , xk−1, 1 + xk, xk+1, . . . , xt−1)− F (x0, . . . , xt−1).

Similarly, we define the translation (or shift) operator in variable xk, denoted Tk, to be the
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operator in this space with

(TkF )(x0, . . . , xt−1) = F (xx, . . . , xk−1, 1 + xk, xk+1, . . . , xt−1).

Note that ∆k = Tk − Id.

For multivariable scenarios, we adopt the simplifying notation that for any letter a,

the corresponding boldface letter a stands for the t-tuple a0, . . . , at−1. We also use the

abbreviations xn = xn0
0 · · ·x

nt−1

t−1 and

(
x
n

)
=
(

x0

n0

)
. . .

(
xt−1

nt−1

)
.

Furthermore, we set ∆n = ∆n0
0 . . .∆nt−1

t−1 . For convenience, we introduce the t-tuples

e0, . . . , et−1, where ej
i = 0 if i 6= j and ei

i = 1. We also use 0 to represent the t-tuple

of all zeroes. For any j-tuple a0, . . . , aj−1, we use the notation Box(a0, . . . , aj−1) to denote

the set {0, 1, . . . , a0} × · · · × {0, 1, . . . , aj−1}.

Note that ∆j
k = (Tk − Id)j =

∑j
i=0(−1)j−i

(
j
i

)
T i

k. Also note that all the operators ∆j

and Tk are pairwise commutative. Furthermore, substitution of a number bj ∈ Zp for a

variable xj commutes with Tk and ∆k if k 6= j. That is, if j 6= k, then

Tk(F (x0, . . . , xj−1, bj , xj+1, . . . , xt−1)) = (TkF )(x0, . . . , xj−1, bj , xj+1, . . . , xt−1)

and

∆k(F (x0, . . . , xj−1, bj , xj+1, . . . , xt−1)) = (∆kF )(x0, . . . , xj−1, bj , xj+1, . . . , xt−1)

for all bj ∈ Zp. In the following lemma, we note that the values that a function takes on Nt

are deducible from the values of its finite differences at the origin:

Lemma 4.3. Let t ≥ 1, F : Dt → Qp, and b ∈ Nt. Then

F (b) =
∑

i∈Box(b)

(∆iF )(0)
(
b
i

)
.
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Proof. We induct on t. For t = 1, we must show that F (b0) =
∑b0

i0=0(∆
i0
0 F )(0)

(
b0
i0

)
. We use

∆i0
0 =

∑i0
j=0(−1)i0−j

(
i0
j

)
T j

0 to calculate

b0∑
i0=0

(∆i0
0 F )(0)

(
b0

i0

)
=

b0∑
i0=0

i0∑
j=0

(−1)i0−j

(
i0
j

)
F (j)

(
b0

i0

)
.

Since
(
i0
j

)(
b0
i0

)
=
(
b0
j

)(
b0−j
i0−j

)
, we have

b0∑
i0=0

(∆i0
0 F )(0)

(
b0

i0

)
=

b0∑
i0=0

i0∑
j=0

(−1)i0−j

(
b0

j

)(
b0 − j

i0 − j

)
F (j)

=
b0∑

j=0

b0∑
i0=j

(−1)i0−j

(
b0

j

)(
b0 − j

i0 − j

)
F (j)

=
b0∑

j=0

F (j)
(

b0

j

) b0−j∑
k=0

(−1)k

(
b0 − j

k

)
.

But
∑b0−j

k=0 (−1)k
(
b0−j

k

)
= 0 unless j = b0 (in which case it is 1), so that

b0∑
i0=0

(∆i0
0 F )(0)

(
b0

i0

)
= F (b0).

Now suppose that t > 1 and that the lemma holds for functions with t − 1 or fewer

variables. Set G(x0) = F (x0, b1, . . . , bt−1), so that by the base case we have

G(b0) =
b0∑

i0=0

(∆i0
0 G)(0)

(
b0

i0

)
,

or, since substitution of b1, . . . , bt−1 for x1, . . . , xt−1 commutes with application of ∆0,

F (b0, . . . , bt−1) =
b0∑

i0=0

(∆i0
0 F )(0, b1, . . . , bt−1)

(
b0

i0

)
.

Define Fj(x1, . . . , xt−1) = (∆j
0F )(0, x1, . . . , xt−1) for j = 0, . . . , b0, so that

F (b0, . . . , bt−1) =
b0∑

i0=0

Fi0(b1, . . . , bt−1)
(

b0

i0

)
.
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Now apply the induction hypothesis to the functions Fi0 to obtain

F (b0, . . . , bt−1) =
b0∑

i0=0

b1∑
i1=0

· · ·
bt−1∑

it−1=0

(∆i1
1 . . .∆it−1

t−1 Fi0)(0, . . . , 0)
(
b
i

)
. (4.1)

But note that

(∆i1
1 . . .∆it−1

t−1 Fi0)({x1 = 0, . . . , xt−1 = 0})

=
(
∆i1

1 . . .∆it−1

t−1

[
(∆i0

0 F )({x0 = 0})
])

({x1 = 0, . . . , xt−1 = 0}).

Then use the fact that the substitution of the value 0 for the indeterminate x0 commutes

with the finite difference operators ∆1, . . . ,∆t−1, and the fact that ∆0 commutes with

∆1, . . . ,∆t−1 to obtain

(∆i1
1 . . .∆it−1

t−1 Fi0)(0, . . . , 0) = (∆i0
0 . . .∆it−1

t−1 F )(0, . . . , 0),

which, with (4.1), completes the proof.

Corollary 4.4. Let F : Dt → Qp and b ∈ N. Then f(x) =
∑

i∈Box(b)

(
∆iF

)
(0)
(
x
i

)
is

the unique polynomial in Qp[x] that agrees with F on Box(b) and whose degree in each

indeterminate xk is less than or equal to bk.

Proof. If we evaluate f(x) at any point a ∈ Box(b), we note that
(
ai
i1

)
= 0 if i1 > ai, and

so we obtain

f(a) =
∑

i∈Box(a)

(∆iF )(0)
(
a
i

)
,

which equals F (a) by the lemma. Corollary 2.35 tells us that there is no other polynomial

agreeing with F on Box(b) and having the degree of each xk at most bk.

If {ci}i∈Nt is a family of elements of Qp, then

∑
i∈Nt

ci

(
x
i

)

gives a well-defined function from Nt to Qp, because
(aj

ij

)
= 0 if ij > aj , so that all but
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finitely many terms vanish in our sum when we substitute x = a. Furthermore, if all the

coefficients ci are elements of Zp, then this function maps Nt into Zp, since each binomial

coefficient maps N into Zp. In fact, we shall show that all functions from Nt to Qp can be

obtained in this form.

Proposition 4.5. Let F : Nt → Qp. Then there exists a unique family {fi}i∈Nt of coeffi-

cients in Qp such that

F (x) =
∑
i∈Nt

fi

(
x
i

)
. (4.2)

In fact, fi = (∆iF )(0). Furthermore, for any m ∈ Z, we have F (Nt) ⊆ pmZp if and only if

fi ∈ pmZp for all i ∈ Nt.

Proof. First we show that the proposed coefficients work. Let b ∈ Nt. Since
(
bi
i1

)
= 0 if

i1 > bi, we have ∑
i∈Nt

(∆iF )(0)
(
b
i

)
=

∑
i∈Box(b)

(∆iF )(0)
(
b
i

)
,

but the last expression is equal to F (b) by Lemma 4.3 above.

To show uniqueness it suffices to show that if {ci}i∈Nt is a family of coefficients in Qp,

not all zero, then the function

C(x) =
∑
i∈Nt

ci

(
x
i

)
does not vanish everywhere. Choose j subject to cj 6= 0 and j0 + · · ·+ jt−1 minimal. Then

C(j) =
∑

i∈Box(j)

ci

(
j
i

)
,

since
(
jk
ik

)
vanishes when ik > jk for any k. But by the minimality property of j, all terms

in the summation have ci = 0, except the term with i = j. So C(j) = cj 6= 0.

Finally, if m ∈ Z and if all the coefficients fi are in pmZp, then clearly F maps all of Nt

into pmZp, since the binomial coefficient polynomials map N into N. Conversely, if m ∈ Z

and F maps all of Nt into pmZp, then all the finite differences fi = (∆iF )(0) are also in

pmZp.

We call the expansion in (4.2) the Newton expansion of the function F . If G : Zp
t → Zp,
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we define the Newton expansion of G to be the Newton expansion of the restriction of G

to Nt. The coefficients in the expansion are called the Newton coefficients. In general, the

Newton expansion of G : Zp
t → Zp need not agree with G on Zp

t r Nt (e.g., consider what

happens if G is the characteristic function of Nt), but the general case will not concern

us. We are interested in approximating certain well-behaved functions with polynomials.

We say that a polynomial f(x) ∈ Qp[x] approximates G (uniformly) modulo pm on Zp
t to

mean that f(r) ≡ G(r) (mod pm) for all r ∈ Zp
t. The following lemma shows that we can

obtain polynomial approximations to G in certain circumstances by truncating the Newton

expansion:

Lemma 4.6. Let F : Zp
t → Qp be a p-adically continuous function and let

∑
i∈Nt fi

(
x
i

)
be

its Newton expansion. Suppose that there is some finite subset S of Nt such that fi ≡ 0

(mod m) for all i 6∈ S. Then the polynomial f(x) =
∑

i∈S fi

(
x
i

)
has the property that

f(b) ≡ F (b) (mod pm) for all b ∈ Zp
t.

Proof. Let G(x) = F (x) − f(x). We want to show that G maps all of Zp
t into pmZp, i.e.,

that G−1(pmZp) = Zp
t. Note that G has a Newton expansion whose coefficients all vanish

modulo pm, so by Proposition 4.5, G maps Nt into pmZp, i.e., Nt ⊆ G−1(pmZp). Also note

G is p-adically continuous since F (as given) and f (a polynomial) are continuous. Note

that pmZp is a closed subset of Qp in the p-adic topology, so G−1(pmZp) is a closed set. So

we know that G−1(pmZp) is a closed set containing Nt, but Nt is a dense subset of Zp
t, so

G−1(pmZp) = Zp
t.

In the next section, we shall be concerned with functions invariant under certain transla-

tions. Thus it will be important to know the effects of translation on the Newton expansion

of a function. The reader should recall our compact vectorial notations introduced at the

beginning of this section.

Lemma 4.7. Let F : Dt → Zp have Newton expansion
∑

i∈Nt fi

(
x
i

)
, let k ∈ {0, 1, . . . , t−1},

and let j ∈ N. Then the translated function T j
kF has Newton expansion

∑
i∈Nt gi

(
x
i

)
with

coefficients gi =
∑j

h=0

(
j
h

)
fi+hek .
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Proof. We prove this by induction on j. The j = 0 case is trivial. Suppose j = 1. Let

b ∈ Nt be given. Then

(TkF )(b) =
∑
i∈Nt

fi

(
b + ek

i

)
.

Now we use Pascal’s identity
(
x+1
n

)
=
(
x
n

)
+
(

x
n−1

)
to obtain

(TkF )(b) =
∑
i∈Nt

fi

[(
b
i

)
+
(

b
i− ek

)]
,

so that

(TkF )(b) =
∑
i∈Nt

fi

(
b
i

)
+
∑
i∈N

fi

(
b

i− ek

)
,

since all but finitely many terms of these sequences vanish. Recall the convention that(
x
−1

)
= 0, so we have

(TkF )(b) =
∑
i∈Nt

fi

(
b
i

)
+
∑
i∈Nt

ik≥1

fi

(
b

i− ek

)

=
∑
i∈Nt

fi

(
b
i

)
+
∑
i∈Nt

fi+ek

(
b
i

)

=
∑
i∈Nt

(
fi + fi+ek

)(b
i

)
,

which proves our lemma in the case j = 1.

Now suppose j > 1. Let Φ = T j−1
k F , which has Newton expansion

∑
i∈Nt ϕi

(
x
i

)
with

ϕi =
∑j−1

h=0

(
j−1
h

)
fi+hek . By the base case proved above, the Newton expansion of TkΦ =

T j
kF is

∑
i∈Nt gi

(
x
i

)
with gi = ϕi + ϕi+ek . So, recalling our convention that

(
x
−1

)
= 0 and

Pascal’s identity, we have

gi =
j−1∑
h=0

(
j − 1

h

)
fi+hek +

j−1∑
h=0

(
j − 1

h

)
fi+(h+1)ek

=
j∑

h=0

((
j − 1

h

)
+
(

j − 1
h− 1

))
fi+hek

=
j∑

h=0

(
j

h

)
fi+hek .
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4.2 Construction of Counting Polynomials

Now we use Newton expansions and Lemma 4.6 to make polynomials that will be used to

p-adically approximate weights. For a positive integer t, consider a function F (x0, . . . , xt−1)

from Zp
t to Qp. We say that F is (p, t)-periodic if

T pt

0 F = T pt−1

1 F = · · · = T p
t−1F = F.

Note that such functions are p-adically continuous; in fact, they are constant on a sufficiently

small neighborhood of any given point.

Given a t-tuple of integers n = (n0, . . . , nt−1), we define |n| = n0 + · · ·+ nt−1, and if all

the elements of the t-tuple are nonnegative, we define n! = n0!n1! · · ·nt−1!. We define the

score of n, denoted Sc(n), to be

Sc(n0, . . . , nt−1) =
t−1∑
i=0

pini.

Note that for any n, we have

Sc (n) ≡ |n| (mod p− 1). (4.3)

For s ∈ N and n ∈ Zt, we define the s-tier of n, denoted Tis(n), to be

Tis(n0, . . . , nt−1) = max
{

0,

⌊
Sc(n0, . . . , nt−1)− ps−1

(p− 1)ps−1

⌋}
.

In this section, we shall always want to calculate the t-tiers of t-tuples.

For k ∈ {0, 1, . . . , t − 1}, a t-tuple n = (n0, . . . , nt−1) is said to be k-starting if n0 =

· · · = nk−1 = 0 and nk 6= 0. The t-tuple n is said to be k-critical if it is k-starting

and Tit
(
n + ek

)
> Tit (n). A t-tuple is said to be critical if it is k-critical for any k ∈

{0, 1, . . . , t−1}. The critical t-tuples will be important when we want to prove the sharpness

of our bounds on p-adic valuations of weights. We first give a characterization of critical

t-tuples.
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Lemma 4.8. Let k ∈ {0, 1, . . . , t − 1} and let n = (n0, . . . , nt−1) ∈ Nt. Then n is k-

critical if and only if it is k-starting and Sc (n) = [(Tit (n) + 1) (p− 1) + 1] pt−1− pk. Thus

|n| ≡ Sc (n) ≡ 0 (mod p− 1) if n is k-critical. If n is k-critical and nk, . . . , nt−2 < p, then

nk = · · · = nt−2 = p− 1 and nt−1 = (p− 1) (Tit (n) + 1).

Proof. Suppose that n is k-critical. By definition n is k-starting, and furthermore, we have

Tit
(
n + ek

)
> Tit (n), so that Sc

(
n + ek

)
≥ [(Tit (n) + 1) (p− 1) + 1] pt−1. Thus

Sc (n) ≥ [(Tit (n) + 1) (p− 1) + 1] pt−1 − pk.

On the other hand, by the definition of t-tier,

Sc (n) < [(Tit (n) + 1) (p− 1) + 1] pt−1.

Sc (n) is a multiple of pk since n is k-starting. But there is only one multiple of pk that

satisfies both our inequalities for Sc (n), namely, Sc (n) = [(Tit (n) + 1) (p− 1) + 1] pt−1−pk.

Note that this score is divisible by p− 1 and that Sc (n) ≡ |n| (mod p− 1) by (4.3).

Conversely, suppose n is k-starting and Sc (n) = [(Tit (n) + 1) (p− 1) + 1] pt−1 − pk.

Then Sc
(
n + ek

)
= [(Tit (n) + 1) (p− 1) + 1] pt−1, so that Tit

(
n + ek

)
= Tit (n) + 1 >

Tit (n). So n is k-critical.

Now suppose n is k-critical and nk, . . . , nt−2 < p. By the first part of the lemma,

we know that Sc (n) ≡ pt−1 − pk (mod pt−1), so that nkp
k + · · · + nt−2p

t−2 ≡ pt−1 − pk

(mod pt−1). By the upper bounds on nk, . . . , nt−2, we have 0 ≤ nkp
k + · · · + nt−2p

t−2 ≤

pt−1 − pk, which is a range shorter in length that pt−1. Therefore, our congruence modulo

pt−1 for nkp
k + · · · + nt−2p

t−2 exactly determines the value to be pt−1 − pk, which forces

nk = · · · = nt−2 = p−1. Thus Sc (n) = (nt−1 +1)pt−1−pk, and the first part of this lemma

then tells us that nt−1 = (Tit (n) + 1) (p− 1).

The next two lemmas show that the coefficients in the Newton expansion of a (p, t)-

periodic function satisfy certain recursion relations. These relations are used to show that

the Newton coefficients fi of a (p, t)-periodic function tend to zero (in the p-adic sense) as

Sc (i) tends to infinity.
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Lemma 4.9. Let F : Zp
t → Zp be (p, t)-periodic with Newton expansion

∑
i∈Nt fi

(
x
i

)
, let

k ∈ {0, 1, . . . , t− 2}, and let h ∈ Nt with hk ≥ p. Then fh−pek+ek+1 = fh +
∑p−1

j=1

(
p
j

)
fh−jek .

Proof. Since F is (p, t)-periodic, we have T p
k F = Tk+1F . Then employ Lemma 4.7 on both

sides of this equation to compute the Newton coefficient for the (h − pek)-term (i.e., the

coefficient in front of
(

x
h−pek

)
in the Newton expansion). We obtain

p∑
i=0

(
p

i

)
fh−pek+iek =

1∑
j=0

(
1
j

)
fh−pek+jek+1 .

The i = 0 term on the left matches the j = 0 term on the right, and the i = p term on the

left is just fh, so we get

fh +
p−1∑
i=1

(
p

i

)
fh−pek+iek = fh−pek+ek+1 .

Now re-index the sum on the left with j = p− i to obtain what we were to prove.

Lemma 4.10. Let F : Zp
t → Zp be (p, t)-periodic with Newton expansion

∑
i∈Nt fi

(
x
i

)
, and

let h ∈ Nt with ht−1 ≥ p. Then fh +
∑p−1

j=1

(
p
j

)
fh−jet−1 = 0.

Proof. Since F is (p, t)-periodic, we have T p
t−1F = F . Then employ Lemma 4.7 on the left-

hand side to compute the Newton coefficient for the (h − pet−1)-term (i.e., the coefficient

in front of
(

x
h−pet−1

)
in the Newton expansion). We obtain

p∑
i=0

(
p

i

)
fh−pet−1+iet−1 = fh−pet−1 .

The i = 0 term on the left matches the right-hand side, and the i = p term on the left is

just fh, so we get

fh +
p−1∑
i=1

(
p

i

)
fh−pet−1+iet−1 = 0.

Now re-index the sum on the left with j = p− i to obtain what we were to prove.

Now we show that the above recursions force the Newton coefficients fi of a (p, t)-periodic

function F to decay (p-adically) as the t-tier of i increases. Furthermore, we obtain some
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additional information on fi when i is critical. This latter information will be critical in

proofs of the sharpness of certain of our bounds on the p-adic valuations of weights in codes.

Theorem 4.11. Let F : Zp
t → Zp be (p, t)-periodic with Newton expansion

∑
n∈Nt fn

(
x
n

)
.

Then vp (fn) ≥ Tit (n) for all n ∈ N. Furthermore, suppose that

F (r0, . . . , rt−1) =


1 if r0 + pr1 + · · ·+ pt−1rt−1 ≡ 0 (mod pt),

0 otherwise,
(4.4)

for all r0, . . . , rt−1 ∈ Zp. Then f0 = 1, and if n is critical, we have fn ≡ (−p)Tit(n)

(mod pTit(n)+1).

Proof. First we devise a well-ordering relation � on Nt, and then we induct with respect

to the ordering. If m,n ∈ Nt with Sc (m) < Sc (n), then m ≺ n. Among the elements

of Nt that have the same score, we order them lexicographically, i.e., (m0, . . . ,mt−1) ≺

(n0, . . . , nt−1) means that there is some i such that the two t-tuples agree in positions 0

to i − 1, but mi < ni. There are only finitely many elements of Nt with a given score, so

the lexicographic ordering well-orders the elements of like score. Thus ≺ is a well-ordering

relation.

First we prove the lower bound on the p-adic valuation of the Newton coefficients by

induction with respect to our ordering. By Proposition 4.5, we know that all Newton

coefficients of F are in Zp, and there is nothing more to show for those elements, such as

(0, . . . , 0), whose t-tier is zero. So assume that n = (n0, . . . , nt−1) with Tit (n) > 0, or

equivalently, that Sc (n) ≥ pd.

Let us first examine the case when nj ≥ p for some j < t− 1. By Lemma 4.9 above, we

have

fn−pej+ej+1 = fn +
p−1∑
i=1

(
p

i

)
fn−iej .

Then note that n − pej + ej+1 has the same score (and thus the same t-tier) as n, but
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n− pej + ej+1 ≺ n. Therefore, by induction vp

(
fn − pej + ej+1

)
≥ Tit (n). So

fn +
p−1∑
i=1

(
p

i

)
fn−iej ≡ 0 (mod pTit(n)). (4.5)

Now note that the t-tuples n − iej in the sum over i have strictly lower scores than n,

but Sc(n − iej) = Sc (n) − ipj ≥ Sc (n) − (p − 1)pt−1, since i ≤ p − 1 and j ≤ t − 1.

Thus Tit
(
n− iej

)
≥ Tit (n) − 1 for i = 1, . . . , p − 1. Then, since n − iej ≺ n, we can use

the induction hypothesis to say that vp (fn−iej ) ≥ Tit (n) − 1. On the other hand, all the

binomial coefficients
(
p
i

)
with 0 < i < p are divisible by p, so the terms of the sum over i in

(4.5) all have p-adic valuation at least Tit (n). So fn ≡ 0 (mod pTit(n)).

Next we examine the case when nj < p for all j < t− 1. Then Sc (n) < pt−1 +nt−1p
t−1,

but since Tit (n) > 0, we must have nt−1 ≥ p. We now apply Lemma 4.10 to obtain

fn +
p−1∑
i=1

(
p

i

)
fn−iet−1 = 0. (4.6)

Now note that the t-tuples n − iet−1 in the sum over i have strictly lower scores than n,

but Sc(n− iet−1) ≥ Sc (n)− (p− 1)pt−1, since i ≤ p− 1. Thus Tit
(
n− iet−1

)
≥ Tit (n)− 1

for i = 1, . . . , p− 1. Then, since n− iet−1 ≺ n, we can use the induction hypothesis to say

that vp (fn−iet−1) ≥ Tit (n) − 1. On the other hand, all the binomial coefficients
(
p
i

)
with

0 < i < p are divisible by p, so the terms of the sum over i in (4.6) all have p-adic valuation

at least Tit (n). So fn ≡ 0 (mod pTit(n)). This completes the induction proof of the lower

bound on p-adic valuations of coefficients.

Now suppose that F satisfies (4.4). Then f0 = (∆0F )(0) = F (0) = 1. We prove

the congruence for Newton coefficients with critical indices by induction with respect to

our ordering. For the base of our induction, we shall prove the congruence for all critical

n = (n0, . . . , nt−1) with ni < p for all i. So suppose that k ∈ {0, 1, . . . , t − 1} and n =

(n0, . . . , nt−1) is k-critical with ni < p for all i. Then by Lemma 4.8 above, we have

n0 = · · · = nk−1 = 0, nk = · · · = nt−2 = p− 1, and nt−1 = (p− 1) (Tit (n) + 1). This forces

Tit (n) = 0 and nt−1 = p− 1. So n0 = · · · = nk−1 = 0 and nk = · · · = nt−1 = p− 1 and we
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must show fn ≡ 1 (mod p). Let S = {0, 1, . . . , p− 1} and consider truncation

f(x0, . . . , xt−1) =
∑

ik,...,it−1∈S

f0,...,0,ik,...,it−1

(
xk

ik

)
. . .

(
xt−1

it−1

)
(4.7)

of the Newton expansion for F . By Corollary 4.4, this polynomial agrees with F (x1, . . . , xt)

on the set U = {(r0, . . . , rt) : r0 = · · · = rk−1 = 0, rk ∈ S, . . . , rt−1 ∈ S}. That is,

f(r0, . . . , rt−1) =


1 if r0 + · · ·+ pt−1rt−1 ≡ 0 (mod pt),

0 otherwise,

for all r ∈ U . This is equivalent to saying that

f(r0, . . . , rt−1) =


1 if rk + · · ·+ pt−k−1rt−1 ≡ 0 (mod pt−k),

0 otherwise,

for all r ∈ U . But the only way that rk + · · · + pt−k−1rt−1 can vanish modulo pt−k as we

vary rk, . . . , rt−1 over S = {0, 1, . . . , p− 1} is for rk = · · · = rt−1 = 0. That is

f(r0, . . . , rt−1) =


1 if rk = · · · = rt−1 = 0,

0 otherwise,

for all r ∈ U . Lemma 4.4 also tells us that f(x1, . . . , xt) is the unique polynomial in

Qp[xk, . . . , xt−1] of degree at most p − 1 in each indeterminate that takes these values on

U . So we know that

f(x1, . . . , xt) =
t−1∏
i=k

(−1)p−1

(
xi − 1
p− 1

)
.

Note that the coefficient of the monomial xp−1
k · · ·xp−1

t−1 in f(x1, . . . , xt−1) is
(

(−1)p−1

(p−1)!

)t−k
.

But the only term in the definition (4.7) of f that can give rise to a monomial of this

degree is the term with ik = · · · = it−1 = p − 1, and so, matching coefficients, we see that

fn = (−1)(p−1)(t−k) ≡ 1 (mod p).

Now the induction step. We suppose that n = (n0, . . . , nt−1) is k-critical and has nj ≥ p
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for some j. We first examine the case when j < t − 1. Of course j ≥ k since ni = 0 for

i < k. In this case, consider the t-tuple m = n− pej + ej+1. This new t-tuple has the same

score (and therefore the same t-tier) as n, but it is lexicographically lower, hence m ≺ n.

By Lemma 4.9 above, we have

fm = fn +
p−1∑
i=1

(
p

i

)
fn−iej . (4.8)

Now note that the t-tuples n − iej in the sum over i have strictly lower scores than n,

but Sc(n − iej) = Sc (n) − ipj ≥ Sc (n) − (p − 1)pj , since i ≤ p − 1. By Lemma 4.8,

Sc (n) = [(Tit (n) + 1) (p− 1) + 1] pt−1 − pk, so that

Sc(n− iej) ≥ [(Tit (n) + 1) (p− 1) + 1] pt−1 − pk − (p− 1)pj

for i = 1, . . . , p−1. Thus Tit
(
n− iej

)
≥
⌊
Tit (n) + 1− pk+(p−1)pj

(p−1)pt−1

⌋
for i = 1, . . . , p−1. But

recall that k ≤ j < t−1, so that pk +(p−1)pj ≤ pj+1 ≤ pt−1, so that Tit
(
n− iej

)
= Tit (n)

for i = 1, . . . , p − 1. Thus, by the first part of the theorem, we have vp (fn−iej ) ≥ Tit (n)

for i = 1, . . . , p − 1. Since the binomial coefficients
(
p
i

)
with 0 < i < p are divisible by p,

this means that all the terms in the sum over i in (4.8) vanish modulo pTit(n)+1. So

fm ≡ fn (mod pTit(n)+1) (4.9)

Now we claim that m = n− pej + ej+1 is k-starting. Since n is k-starting, this is obvious

if j > k. Otherwise we would have k = j < t − 1, and then note that Sc (n) ≡ −pk

(mod pk+1) by Lemma 4.8, which implies that nk ≡ −1 (mod p); since p ≤ nj = nk, this

means that nk ≥ 2p− 1, so that mk ≥ p− 1 > 0. Thus m is indeed k-starting. Also recall

that Sc (m) = Sc (n), so Lemma 4.8 tells us that m is k-critical like n. Since m ≺ n with

Tit (m) = Tit (n), the induction hypothesis tells us that fm ≡ (−p)Tit(n) (mod pTit(n)+1).

This, combined with (4.9), completes the induction step in the case where nj ≥ p for some

j < t− 1.

So we are left to analyze the case where n is a k-critical t-tuple with nt−1 ≥ p and
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nj < p for all j < t− 1. We now apply Lemma 4.10 to obtain

fn +
p−1∑
i=1

(
p

i

)
fn−iet−1 = 0. (4.10)

Now note that the t-tuples n − iet−1 in the sum over i have strictly lower scores than n.

If 0 < i ≤ p − 2, then Sc(n − iet−1) ≥ Sc (n) − (p − 2)pt−1. By Lemma 4.8, Sc (n) ≥

(Tit (n) + 1) (p− 1)pt−1, so that Sc(n− iet−1) ≥ [Tit (n)(p− 1) + 1] pt−1 for 0 < i ≤ p− 2.

Therefore, Tit
(
n− iet−1

)
≥ Tit (n) for 0 < i ≤ p − 2. Then the first part of the theorem

tells us that vp (fn−iet−1) ≥ Tit (n) for such i. Since the binomial coefficients
(
p
i

)
with

0 < i < p− 1 are divisible by p, this means that the i = 1, . . . , p− 2 terms in the sum over

i in (4.10) vanish modulo pTit(n)+1. So

fn ≡ −pfn−(p−1)et−1 (mod pTit(n)+1). (4.11)

Let m = n − (p − 1)et−1. Note that since nt−1 ≥ p, we have Sc (n) ≥ pt, so Tit (n) ≥ 1.

Then note that Sc (m) = Sc (n) − (p − 1)pt−1 ≥ pt−1, so that Tit (m) = Tit (n) − 1. By

Lemma 4.8, Sc (n) = [(Tit (n) + 1) (p− 1) + 1] pt−1 − pk, so that

Sc (m) = [Tit (n)(p− 1) + 1] pt−1 − pk

= [(Tit (m) + 1) (p− 1) + 1] pt−1 − pk.

Note that m is k-starting just like n, so that Lemma 4.8 tells us that m is k-critical. Fur-

thermore, m ≺ n, so we may apply the induction hypothesis to it to obtain fm ≡ (−p)Tit(m)

(mod pTit(m)+1). Combining this with (4.11), and recalling that Tit (n) = Tit (m) + 1, we

obtain fn ≡ (−p)Tit(n) (mod pTit(n)+1). This completes the induction proof.

With this knowledge of the Newton expansions of (p, t)-periodic functions, we now

construct polynomials that p-adically approximate such functions.

Theorem 4.12. Let m ≥ 1 and let F : Zp
t → Zp be (p, t)-periodic. There exists a poly-
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nomial

f(x) =
∑
n∈Nt

Tit(n)<m

fn

(
x
n

)
, (4.12)

with all fn ∈ Zp, such that f(r) ≡ F (r) (mod pm) for all r ∈ Zp
t. For each n ∈ Nt with

Tit (n) < m, we have vp (fn) ≥ Tit (n).

Suppose further that

F (r) =


1 if r0 + pr1 + · · ·+ pt−1rt−1 ≡ 0 (mod pt),

0 otherwise,
(4.13)

for all r ∈ Zp
t. Then f0 = 1 and if n ∈ Nt is critical with Tit (n) < m, we also have

fn ≡ (−p)Tit(n) (mod pTit(n)+1). Furthermore, if F is as given in (4.13), there exists a

polynomial

g(x) =
∑

n∈Nt,Tit(n)<m
|n|≡0 (mod p−1)

gnxn

in Qp[x] such that (i) g(r) ≡ F (r) (mod pm) for all r ∈ Zp
t, (ii) g0 = 1, and (iii) if n is

critical with Tit (n) = m− 1, then n!gn ≡ (−p)m−1 (mod pm).

Proof. Recall that any (p, t)-periodic function is p-adically continuous. Therefore, the ex-

istence of the polynomial f for a generic (p, t)-periodic function F is guaranteed by ap-

plying Theorem 4.11 and Lemma 4.6, with the set S in Lemma 4.6 equal to the set

{n ∈ Nt : Tit (n) < m}. (This set is finite because only finitely many n have a certain

t-tier.) Indeed, the coefficient fn of our polynomial f is precisely the Newton coefficient for

the term
(
x
n

)
in the Newton expansion of F . Thus the bounds on valuations of coefficients

and the congruences for certain coefficients (in the special case when F is given by (4.13))

follow from the bounds and congruences given in Theorem 4.11. Furthermore, if F is given

by (4.13), we have f0 = 1.

Now suppose that F is given by (4.13). Given the polynomial f described in the first
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half of the theorem, consider the polynomial

g(x) =
1

p− 1

p−2∑
h=0

f(ζh
p−1x).

Since ζp−1 is a unit in Zp, we have F (ζh
p−1r) = F (r) for all h ∈ Z and r ∈ Zp

t. Thus

f(ζh
p−1r) ≡ f(r) (mod pm) for all h ∈ Z and r ∈ Zp

t. Therefore g(r) ≡ f(r) ≡ F (r)

(mod pm) for all r ∈ Zp
t. Note that if we expand out the terms

(
x
n

)
to write f(x) =∑

n∈Nt

Tit(n)<m

cnxn, then

g(x) =
∑

n∈Nt,Tit(n)<m
|n|≡0 (mod p−1)

cnxn. (4.14)

In particular, g(x) has the same constant term as f(x), namely, 1. Suppose h is k-critical

with Tit (h) = m− 1. We want to calculate the coefficient of xh in g(x). Since h is critical,

|h| ≡ 0 (mod p − 1) by Lemma 4.8. Thus g(x) and f(x) have the same coefficient for xh,

namely, ch. We want to relate ch to the coefficients fn in (4.12). Thus, we want to see

which terms in the sum in (4.12) might involve the monomial xh. Note that the monomial

xh can occur in
(
x
n

)
only if nj ≥ hj for all j and only if nj = 0 for all j such that hj = 0. So

the monomial xh can occur in
(
x
n

)
only if n is k-starting and Sc (n) ≥ Sc (h). But since h

is k-critical, Lemma 4.8 shows that any k-starting t-tuple with a strictly higher score than

Sc (h) will be in a higher t-tier; such t-tuples are not included in our sum. So we need only

consider those t-tuples n in our sum that are k-starting, that have the same score as h, and

that have nj ≥ hj for all j. But the second condition forces equality in all the inequalities

of the third condition, showing that the only term in the sum in (4.12) that can involve the

monomial xh is the term with n = h. So the coefficient of xh in f(x) is ch = fh
h! . This is

also the coefficient of xh in g(x), as we noted above. Now h!ch = fh, and recall that fh is

the Newton coefficient for the
(
x
h

)
-term in the Newton expansion of F . So we know from

Theorem 4.11 that fh ≡ (−p)m−1 (mod pm).

In later chapters, we shall also want single-variable polynomials p-adically approximating

certain functions that are constant on cosets of ptZp in Zp. Such approximations as we need

can be obtained easily from the polynomials we just constructed.
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Corollary 4.13. Let m ≥ 1 and let F : Zp → Zp be a function with F (a) = F (b) whenever

a ≡ b (mod pt). Let dj = [j(p− 1) + 1]pt−1 − 1 for j ∈ N. There exists a polynomial

f(x) =
dm∑
n=0

fn

(
x

n

)
,

with all fn ∈ Zp such that f(r) ≡ F (r) (mod pm) for all r ∈ Zp. If n > dj then vp (fn) ≥ j.

Suppose further that

F (r) =


1 if r ≡ 0 (mod pt),

0 otherwise,
(4.15)

for all r ∈ Zp. Then f0 = 1 and if n = dj for some j = 1, 2, . . . ,m, then we have

fn ≡ (−p)j−1 (mod pj). Furthermore, if F is as in (4.15), there exists a polynomial

g(x) =
∑

0≤n≤dm
p−1|n

gnxn

of degree dm in Qp[x] such that (i) g(r) ≡ F (r) (mod pm) for all r ∈ Zp, (ii) g0 = 1, and

(iii) dm!gdm ≡ (−p)m−1 (mod pm).

Proof. We set F ∗(x) = F (x0 + px1 + · · ·+ pt−1xt−1), and it is not hard to check that F ∗ is

(p, t)-periodic. So Theorem 4.12 provides us with a polynomial

f∗(x) =
∑
n∈Nt

Tit(n)<m

f∗n

(
x
n

)

in Qp[x] that agrees with F ∗(x) modulo pm everywhere on Zp
t. In particular, we have

f∗(r, 0, 0, . . . , 0) ≡ F (r) (mod pm) for all r ∈ Zp. So if we set f(x) = f∗(x, 0, 0, . . . , 0), we

obtain a polynomial in Qp[x] of the form

f(x) =
∑
n∈N

Tit(n,0,0,...,0)<m

f∗(n,0,0,...,0)

(
x

n

)
,

which agrees with F (x) modulo pm on Zp. So f(x) =
∑dm

n=0 f∗(n,0,0,...,0)

(
x
n

)
. If n > dj , then
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Tit (n, 0, 0, . . . , 0) ≥ j, so we know that vp

(
f∗(n,0,0,...,0)

)
≥ j from Theorem 4.12.

Now suppose that F (x) is given by (4.15). Then F ∗(x) is given by (4.13), and so

Theorem 4.12 gives us additional information. If n = dj for some j ∈ {1, . . . ,m}, then

(n, 0, 0, . . . , 0) is 0-starting and Sc ((n, 0, 0, . . . , 0)) = dj = [j(p − 1) + 1]pt−1 − 1, so that

(n, 0, 0, . . . , 0) is of t-tier j − 1, and by Lemma 4.8 we see that (n, 0, 0, . . . , 0) is critical.

Thus, from Theorem 4.12, we know that f∗(n,0,0,...,0) ≡ (−p)j−1 (mod pj). Also f∗(0,...,0) = 1

from Theorem 4.12.

Furthermore, Theorem 4.12 furnishes a polynomial

g∗(x) =
∑

n∈Nt,Tit(n)<m
|n|≡0 (mod p−1)

g∗nx
n

in Qp[x] that agrees with F ∗(x) modulo pm on Zp
t and has g(0,...,0) = 1. Furthermore, if n

is critical and of t-tier m− 1, then n!gn ≡ (−p)m−1 (mod pm). Set g(x) = g∗(x, 0, 0, . . . , 0),

so that

g(x) =
∑
n∈N

Tit(n,0,0,...,0)<m
p−1-n

g∗(n,0,0,...,0)x
n,

and g(x) agrees with F (x) modulo pm on Zp. Now g(x) =
∑

0≤n≤dm
p−1-n

g∗(n,0,0,...,0)x
n and has

constant term 1. Furthermore, if n = dm, then (n, 0, 0, . . . , 0) is 0-critical and of t-tier m−1

by the calculation in the previous paragraph, so that we know dm!g∗(dm,0,0,...,0) ≡ (−p)m−1

(mod pm) from Theorem 4.12.

4.3 Sectioned Weights

In this section, we show how the polynomials of Theorem 4.12 are relevant to estimating

weights. Before we do this, we discuss some preliminaries that will be vital to understanding

the rest of the chapter. Recall that in this chapter we have set e = 1, so that we are working

with codes in the algebra Z/pdZ[A]. We continue the convention (started in Section 4.1) that

for any letter a, the corresponding boldface letter a stands for the t-tuple a0, . . . , at−1, but

for the rest of the chapter, we specialize to the case when t = d, so that a = (a0, . . . , ad−1).
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We set I = {0, 1, . . . , d − 1} and consider accounts in Z[I] to be d-tuples of integers, i.e.,

we identify µ ∈ Z[I] with the d-tuple (µ0, µ1, . . . , µd−1) ∈ Zd. Then for µ ∈ Z[I], the score

of µ, denoted Sc (µ), is defined to be
∑d−1

i=0 piµi, following the definition in Section 4.2. For

s ∈ N, the s-tier of µ, denoted Tis(µ), is also defined just as in Section 4.2. In fact, we

shall be interested only in d-tiers here. Therefore, for the rest of this chapter, we define

tier to mean d-tier and write Ti to mean Tid. So Ti (µ) = max
{

0,
⌊

Sc(µ)−pd−1

(p−1)pd−1

⌋}
. We also

transport the notion of score and tier to elements of Z[I × A]. The score of λ ∈ Z[I × A],

denoted Sc (λ), is just Sc (prI λ), and the tier of λ, denoted Ti (λ), is just Ti (prI λ). This

means that Sc (λ) =
∑d−1

i=0 pi|λi| and Ti (λ) = max
{

0,
⌊

Sc(λ)−pd−1

(p−1)pd−1

⌋}
. So of course

Sc (λ) ≡ |λ| (mod p− 1) (4.16)

for any λ ∈ Z[I×A]. We also transport to Z[I×A] the notion of an account being k-starting

or k-critical (for k ∈ I); to say that λ ∈ Z[I × A] is k-starting (resp., k-critical) is to say

that prI λ is k-starting (resp., k-critical). In consonance with our established terminology,

we say that λ is critical to mean that it is k-critical for some k.

Throughout this chapter, we suppose that we have a code C ⊆ Z/pdZ[A] and S0 ⊆ S1 ⊆

· · · ⊆ Sd−1 is the tower of supports of the Fourier transform of C. We suppose that not all

the Si are subsets of {1A}, i.e., that at least one of the Si contains an element of A that is

not the identity. Otherwise we have a trivial situation: C consists only of constant words,

and then wt(c) = |A|wt(c̃(1A)) for all c ∈ C, i.e., wtnorm(c) = 0 for all c ∈ C.

If we have a weight function wt: Z/pdZ→ Z, we define a related d-wise weight function,

called the sectioning of wt, denoted wtsec : (Z/pdZ)d → Z, which is defined by

wtsec(r0, . . . , rd−1) = wt(r0 + pr1 + · · ·+ pd−1rd−1)

for all r0, . . . , rd−1 ∈ Z/pdZ.

Recall the canonical expansion of the scaled Fourier transform and the scaled Fourier-

induced breakdown of codewords, which were defined in Section 2.3 (before Proposition 2.8).

For c ∈ C and i ∈ I, c(i) denotes the ith component of the scaled Fourier-induced breakdown
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of c, and c̃(i) denotes the ith component in the canonical expansion of c̃. Throughout

this chapter, we often use the more convenient symbol ci as a synonym for c(i). Thus

c =
∑d−1

i=0 pic(i) =
∑d−1

i=0 pici and c̃ =
∑d−1

i=0 pic̃(i) =
∑d−1

i=0 pic̃i.

The scaled Fourier-induced breakdown of our word is designed to work with the sec-

tioned weight function. Note that Proposition 2.8 tells us that c(i) ∈ Z/pdZ[A] for all

i ∈ {0, 1, . . . , d−1}, so we can apply our sectioned weight function to these words to obtain

wtsec(c(0), . . . , c(d−1)) =
∑
a∈A

wtsec(c(0)
a , . . . , c(d−1)

a )

=
∑
a∈A

wt(c(0)
a + · · ·+ pd−1c(d−1)

a )

=
∑
a∈A

wt(ca),

so that (using the synonym ci for c(i))

wtsec(c0, . . . , cd−1) = wt(c). (4.17)

Also note that

wtnorm
sec (c0, . . . , cd−1) = wtsec(c0, . . . , cd−1)− |A|wtsec(c̃0(1A), . . . , c̃d−1(1A))

= wt(c)− |A|wt(c̃0(1A) + · · ·+ pd−1c̃d−1(1A))

= wt(c)− |A|wt(c̃(1A)),

that is,

wtnorm
sec (c0, . . . , cd−1) = wtnorm(c). (4.18)

Now we show that the sectioned weight functions lift to (p, d)-periodic functions. We

examine the function F : Zp
d → Z given by

F (r) = wtsec(π(r0), . . . , π(rd−1)).



99

Note that for any j ∈ I, k ∈ N, and r ∈ Zp
d, we have

F (r + kej) = wtsec(π(r0), π(r1), . . . , π(rj−1), k + π(rj), π(rj+1), . . . , π(rd−1))

= wt(π(r0) + pπ(r1) + · · ·+ pd−1π(rd−1) + kpj).

Therefore, if j < d− 1,

F (r + pej) = F (r + ej+1),

and

F (r + ped−1) = wt(π(r0) + pπ(r1) + · · ·+ pd−1π(rd−1) + pd)

= wt(π(r0) + pπ(r1) + · · ·+ pd−1π(rd−1))

= wtsec(π(r0), . . . , π(rd−1))

= F (r).

Thus F is (p, d)-periodic. So F , which is the lift of our sectioned weight function, can be

approximated using the polynomials of Theorem 4.12. We use such approximations in the

next two sections to prove the main results (Theorems 4.18 and 4.21) of this chapter.

4.4 Zero Count and Hamming Weight

In this section, we shall prove Theorem 4.18, our sharp lower bound on the p-adic valuations

of Hamming weights of words of codes in Z/pdZ[A]. In order to p-adically estimate zero

counts, we construct a set Λss
mc(C) of multisets in N[I ×A] and use Λss

mc(C) to define the

parameter `ss
mc(C), which had been defined in Section 1.1 of the Introduction by way of

sequences. We prefer the multiset-based definition here because it will make our calculations

easier. We define

Λss
mc(C) = {λ ∈ N[I ×A] : λ0 ∈ N[S0], . . . , λd−1 ∈ N[Sd−1],

Πλ = 1A,prA λ 6∈ N[{1A}], |λ| ≡ 0 (mod p− 1)}. (4.19)



100

We claim that Λss
mc(C) is nonempty. By assumption, we have some k such that there exists

a ∈ Sk with a 6= 1A. Let n be the group-theoretic order of a. Then note that the multiset

λ with (p − 1)n instances of the pair (k, a) and no other elements is a unity-product but

not all-unity multiset in N[I × A] with (p− 1)n elements and with λi ∈ N[Si] for all i ∈ I.

Since Λss
mc(C) 6= ∅, we may set

ωss
mc(C) = min

λ∈Λss
mc(C)

Sc (λ) (4.20)

and

`ss
mc(C) = min

λ∈Λss
mc(C)

Ti (λ) = max
{

0,

⌊
ωss

mc(C)− pt−1

(p− 1)pt−1

⌋}
. (4.21)

At this point we begin to use the notion of reduction defined in Section 2.6. We prove a

lemma about how reduction affects scores and tiers of accounts.

Lemma 4.14. Suppose that λ ∈ N[I ×A] is k-starting. Then Red(λ) ∈ N[I ×A] is k-

starting. If λ is not reduced, then Sc (Red(λ)) = Sc (λ)−j(p−1)pk for some positive integer

j. If λ ∈ Λss
mc(C), then Red(λ) ∈ Λss

mc(C). Furthermore, if λ ∈ Λss
mc(C) with Ti (λ) = `ss

mc(C),

then Ti (Red(λ)) = `ss
mc(C).

Proof. Since λi = ∅ for i < k and λk 6= ∅, we have (Red(λ))i = ∅ for i < k and (Red(λ))k 6= ∅

by Lemma 2.24. So Red(λ) is k-starting. Furthermore, if λ is not reduced, then for each

i ∈ {k, k+1, . . . , d−1}, we have |Red(λi)| = |λi|−ji(p−1) for some ji ∈ N, and at least one

of jk, . . . , jd−1 is strictly positive. Thus Sc (Red(λ)) = Sc (λ) −
∑d−1

i=k (p − 1)piji. The last

sum is a strictly positive integer multiple of (p−1)pk. Now suppose that λ ∈ Λss
mc(C). Then

|Red(λ)| ≡ |λ| ≡ 0 (mod p− 1), and Lemma 2.24 shows us that λ is unity-product and not

all-unity with λi ∈ N[Si] for all i ∈ I. So Red(λ) ∈ Λss
mc(C). Since reduction never increases

score, it never increases tier. So if λ ∈ Λss
mc(C) and Ti (λ) = `ss

mc(C), by the minimality of

`ss
mc(C), we must have Ti (Red(λ)) = `ss

mc(C) also.

We also note some particular properties of those λ ∈ Λss
mc(C) of minimal tier. These

facts are used to prove the sharpness of our bound on the p-adic valuations of Hamming

weights.
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Lemma 4.15. Let Λ` be the set of all λ ∈ Λss
mc(C) that are reduced and have Ti (λ) = `ss

mc(C).

Then

(i) Λ` 6= ∅.

(ii) If we chose λ ∈ Λ` with prI λ = (|λ0|, . . . , |λd−1|) lexicographically minimal, then λ is

critical.

(iii) If λ ∈ Λ` is critical, then there is no κ ∈ Λss
mc(C) with κ 6= λ, Red(κ) = λ, and

Ti (κ) = `ss
mc(C).

(iv) Thus, there exists a critical λ ∈ Λ` such that there is no κ ∈ Λss
mc(C) with κ 6= λ,

Red(κ) = λ, and Ti (κ) = `ss
mc(C).

Proof. By definition, {µ ∈ Λss
mc(C) : Ti (µ) = `ss

mc(C)} is not empty, so take κ in this set and

let λ = Red(κ). Then λ ∈ {µ ∈ Λss
mc(C) : Ti (µ) = `ss

mc(C)} by Lemma 4.14. This proves (i).

Now suppose λ ∈ Λ` is chosen so that prI λ = (|λ0|, . . . , |λd−1|) lexicographically mini-

mal. Set k ∈ I so that λ is k-starting and set a ∈ Sk so that λ(k,a) > 0. We now divide the

proof into cases for different values of k.

If k = d − 1, then the condition |λ| ≡ 0 (mod p − 1) means that (|λ0|, . . . , |λd−1|) =

(0, 0, . . . , 0, (p−1)n) for some integer n. This n must be strictly positive since ∅ is all-unity,

hence not in Λss
mc(C). Note that `ss

mc(C) = Ti (λ) = n − 1, so Sc (λ) = n(p − 1)pd−1 =

(Ti (λ) + 1)(p− 1)pd−1. Thus λ is critical by Lemma 4.8.

In the case where k < d − 1, let µ = λ − (k, a) + (k + 1, a). Since Sk ⊆ Sk+1, we

have µj ∈ N[Sj ] for all j. Also note that Πµ = Πλ = 1A, that prA µ = prA λ 6∈ N[{1A}],

and that |µ| = |λ|, so that |µ| ≡ 0 (mod p − 1). So µ ∈ Λss
mc(C). Set ν = Red(µ), which

is in Λss
mc(C) by Lemma 4.14. Note that µ is k-starting or (k + 1)-starting, and so ν is

also k-starting or (k + 1)-starting by Lemma 4.14. Furthermore, Lemma 2.24 tells us that

|νk| ≤ |µk| = |λk| − 1, so that prI ν is lexicographically less than prI λ. This means that

ν 6∈ Λ`. Since ν ∈ Λss
mc(C) and ν is reduced, this means that Ti (ν) > Ti (λ) = `ss

mc(C). So

Sc (ν) ≥ [(p−1)(`ss
mc(C)+1)+1]pd−1. Since ν = Red(µ), we have Sc (µ) ≥ [(p−1)(`ss

mc(C)+
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1) + 1]pd−1 by Lemma 4.14. So

Sc (λ)− pk + pk+1 ≥ [(p− 1)(`ss
mc(C) + 1) + 1]pd−1,

and thus

Sc (λ) ≥ [(p− 1)(`ss
mc(C) + 1) + 1]pd−1 − (p− 1)pk. (4.22)

Of course, since λ is k-starting, its score is a multiple of pk. Since λ ∈ Λss
mc(C), we have

|λ| ≡ 0 (mod p−1), so Sc (λ) ≡ 0 (mod p−1) by (4.16). So Sc (λ) is a multiple of (p−1)pk.

Note that the right-hand side of inequality (4.22) is

[(p− 1)(`ss
mc(C) + 1) + 1]pd−1 − (p− 1)pk ≡ pk (mod (p− 1)pk).

Since Sc (λ) ≡ 0 (mod (p− 1)pk), we can improve inequality (4.22) to get

Sc (λ) ≥ [(p− 1)(`ss
mc(C) + 1) + 1]pd−1 − (p− 1)pk + (p− 2)pk

= [(p− 1)(`ss
mc(C) + 1) + 1]pd−1 − pk,

but since Ti (λ) = `ss
mc(C), we have Sc (λ) < [(p−1)(`ss

mc(C)+1)+1]pd−1. Since λ is k-starting,

pk | Sc (λ), so that our last two inequalities force Sc (λ) = [(p−1)(`ss
mc(C)+1)+1]pd−1−pk.

Then Lemma 4.8 tells us that λ is k-critical. This proves (ii).

Suppose that λ ∈ Λ` is k-critical and µ ∈ Λss
mc(C) with µ 6= λ and Red(µ) = λ. We shall

show that Ti (µ) > `ss
mc(C). Since λ is k-starting, so is µ by Lemma 4.14. Furthermore, µ is

not reduced since it is not equal to λ, so Sc (µ) ≥ Sc (λ) + pk(p − 1) by Lemma 4.14. But

Sc (λ) = [(p− 1)(`ss
mc(C)+1)+1]pd−1− pk by Lemma 4.8, so Sc (µ) ≥ [(p− 1)(`ss

mc(C)+1)+

1]pd−1 + (p− 2)pk, which forces Ti (µ) > `ss
mc(C). This proves (iii), and (iv) follows from (i),

(ii), and (iii).

We recall the counting polynomials we devised in the Section 4.2 and cast them into the

notation of this section.
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Theorem 4.16 (part of Theorem 4.12). For each m ≥ 1, there exists a polynomial

f (m)(x) =
∑

µ∈N[I],Ti(µ)<m
|µ|≡0 (mod p−1)

f (m)
µ xµ

in Qp[x] with the property that f (m)(r0, . . . , rd−1) ≡ zersec(π(r0), . . . , π(rd−1)) (mod pm) for

all r0, . . . , rd−1 ∈ Zp. If µ ∈ N[I] is critical and Ti (µ) = m − 1, then µ!f (m)
µ ≡ (−p)m−1

(mod pm).

Proof. The polynomial f (m)(x) here is just g(x) from Theorem 4.12 with t = d, where

we have used our identification of d-tuples with accounts in N[I] and noted that for any

r0, . . . , rd−1 ∈ Zp,

zersec(π(r0), . . . , π(rd−1)) = zer(π(r0) + · · ·+ pd−1π(rd−1))

= zer(π(r0 + · · ·+ pd−1rd−1)),

so that zersec(π(x0), . . . , π(xd−1)) is the function F (x0, . . . , xd−1) defined in (4.13) of The-

orem 4.12. The polynomial g(x) of that theorem approximates F (x) modulo pm on all of

Zp
d.

Now we are ready to estimate zero counts. The following proposition is the main calcu-

lation:

Proposition 4.17. Let C be a code in Z/pdZ[A]. Let m ≥ 1 and let f (m)(x) be the poly-

nomial described in Theorem 4.16. For each c ∈ C and i ∈ I, we let Ci be the element of

Zp[ζq′−1][A] such that C̃i = τ ◦ c̃i. For any c ∈ C, we have

zernorm(c) ≡ |A|
∑

λ∈Λss
mc(C)

Ti(λ)<m

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod pm),

where Λss
mc(C) is as defined in (4.19) above.
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Proof. By Corollary 3.4, we have

zernorm
sec (c0, . . . , cd−1) ≡ |A|

∑
µ∈N[I]

µ!f (m)
µ

∑
λ∈N[I×A],prI λ=µ

Πλ=1A,prA λ6∈N[{1A}]
λ0∈N[S0],...,λd−1∈N[Sd−1]

1
λ!

∏
i∈I

C̃i(λi) (mod pm).

By (4.18), the left-hand side becomes zernorm(c). We can restrict the sum over µ to those

µ with Ti (µ) < m and |µ| ≡ 0 (mod p − 1), since f
(m)
µ = 0 otherwise (by Theorem 4.16).

With this restriction on µ, the condition that prI λ = µ implies |λ| ≡ 0 (mod p − 1). So

the inner sum on the right-hand side sums over those λ ∈ Λss
mc(C) with prI λ = µ. Thus

zernorm(c) ≡ |A|
∑

µ∈N[I],Ti(µ)<m
|µ|≡0 (mod p−1)

µ!f (m)
µ

∑
λ∈Λss

mc(C)
prI λ=µ

1
λ!

∏
i∈I

C̃i(λi) (mod pm)

≡ |A|
∑

µ∈N[I],Ti(µ)<m
|µ|≡0 (mod p−1)

∑
λ∈Λss

mc(C)
prI λ=µ

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod pm),

but then the condition on the cardinality of µ can be dropped (if |µ| is not divisible by

p− 1, then neither is |λ| if λ = prI µ, so then there is no λ ∈ Λss
mc(C) with prI λ = µ). Also,

the condition λ = prI µ means that λ and µ will always have the same score and tier, so we

can shift the condition on tier to the sum over λ. Thus

zernorm(c) ≡ |A|
∑

µ∈N[I]

∑
λ∈Λss

mc(C)
prI λ=µ
Ti(λ)<m

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod pm)

≡ |A|
∑

λ∈Λss
mc(C)

Ti(λ)<m

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod pm).

Now we derive our generalization of McEliece’s Theorem.

Theorem 4.18. Let C be a code in Z/pdZ[A]. With `ss
mc(C) as defined in (4.21), we have

zernorm(c) ≡ 0 (mod p`ss
mc(C)) for all c ∈ C, and zernorm(c) 6≡ 0 (mod p`ss

mc(C)+1) for some

c ∈ C. Equivalently, hamnorm(c) ≡ 0 (mod p`ss
mc(C)) for all c ∈ C, and hamnorm(c) 6≡ 0

(mod p`ss
mc(C)+1) for some c ∈ C. More precisely, if f (`ss

mc(C)+1)(x) is the polynomial described
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in Theorem 4.16, and if we let Ci be the element of Zp[ζq′−1][A] such that C̃i = τ ◦ c̃i for

each i ∈ I and c ∈ C, then

zernorm(c) ≡ |A|
∑

λ∈Λss
mc(C)

Ti(λ)=`ss
mc(C)

(prI λ)!f (`ss
mc(C)+1)

prI λ

λ!

∏
i∈I

C̃i(λi) (mod p`ss
mc(C)+1), (4.23)

and the expression on the right-hand side assumes values in p`ss
mc(C)Zp for all c ∈ C, but

there is some c ∈ C such that this expression is not in p`ss
mc(C)+1Zp.

Proof. If `ss
mc(C) = 0, the congruence zernorm(c) ≡ 0 (mod p`ss

mc(C)) for all c ∈ C is obvious.

If `ss
mc(C) > 0, we use Proposition 4.17 above (setting m = `ss

mc(C)) to obtain

zernorm(c) ≡ |A|
∑

λ∈Λss
mc(C)

Ti(λ)<`ss
mc(C)

(prI λ)!f (`ss
mc(C))

prI λ

λ!

∏
i∈I

C̃i(λi) (mod p`ss
mc(C)),

where f (`ss
mc(C))(x) is the polynomial described in Theorem 4.16, and Λss

mc(C) is as defined in

(4.19). But by the definition of `ss
mc(C) as the minimum tier of any element in Λss

mc(C), we see

that the sum on the right-hand side of this congruence is empty, thus proving zernorm(c) ≡ 0

(mod p`ss
mc(C)).

Now we prove that zernorm(c) is not always divisible by p`ss
mc(C)+1, along with the more

precise statements at the end of the statement of the theorem, including congruence (4.23).

Note that the claim that zernorm(c) 6≡ 0 (mod p`ss
mc(C)+1) for some c ∈ C is not trivial if

`ss
mc(C) = 0, so we allow for this possibility. In any case, we use Proposition 4.17 again, but

this time with m = `ss
mc(C) + 1, to get

zernorm(c) ≡ |A|
∑

λ∈Λss
mc(C)

Ti(λ)=`ss
mc(C)

(prI λ)!f (`ss
mc(C)+1)

prI λ

λ!

∏
i∈I

C̃i(λi) (mod p`ss
mc(C)+1),

with f (`ss
mc(C)+1)(x) ∈ Qp[x] as described in Theorem 4.16. We have omitted to sum over

those λ with Ti (λ) < `ss
mc(C), for there are no such λ ∈ Λss

mc(C) by the definition of `ss
mc(C).
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This last congruence is (4.23), which we were to show. Let

Y (c) = |A|
∑

λ∈Λss
mc(C)

Ti(λ)=`ss
mc(C)

(prI λ)!f (`ss
mc(C)+1)

prI λ

λ!

∏
i∈I

C̃i(λi),

which is the right-hand side of (4.23). Note that the coefficients of f (`ss
mc(C)+1)(x) are in

Qp (see Theorem 4.16) and note that C̃i(a) ∈ Zp[ζq′−1] for all i ∈ I and a ∈ A (because

C̃(a) ∈ Zp[ζq′−1] for all a ∈ A). Thus Y (c) ∈ Qp(ζq′−1). We shall show that Y (c) is actually

in the smaller field Qp. To do this, it suffices to show that it is fixed by Fr. We now use the

Frobenius action FrA introduced in Section 2.7. By Lemma 2.30, we note that FrA restricted

to Λss
mc(C) is a permutation of Λss

mc(C). Furthermore, by the same lemma, we note that if

λ ∈ Λss
mc(C), then prI FrA(λ) = prI λ. So FrA preserves score and tier. So FrA permutes the

set of λ ∈ Λss
mc(C) with Ti (λ) = `ss

mc(C). Thus we have

Y (c) = |A|
∑

λ∈Λss
mc(C)

Ti(λ)=`ss
mc(C)

(prI FrA(λ))!f (`ss
mc(C)+1)

prI FrA(λ)

FrA(λ)!

∏
i∈I

C̃i([FrA(λ)]i).

By Lemma 2.30, we have prI FrA(λ) = FrA(λ), FrA(λ)! = λ!, and
∏

i∈I C̃i([FrA(λ)]i) =

Fr
(∏

i∈I C̃i(λi)
)
, so that

Y (c) = |A|
∑

λ∈Λss
mc(C)

Ti(λ)=`ss
mc(C)

(prI λ)!f (`ss
mc(C)+1)

prI λ

λ!
Fr

(∏
i∈I

C̃i(λ)i

)
.

Since the coefficients of f (`ss
mc(C)+1)(x) are in Qp (see Theorem 4.16), we have

Y (c) = Fr

|A| ∑
λ∈Λss

mc(C)
Ti(λ)=`ss

mc(C)

(prI λ)!f (`ss
mc(C)+1)

prI λ

λ!

∏
i∈I

C̃i(λi)


= Fr(Y (c)),

so that Y (c) ∈ Qp. We have already proved that zernorm(c) ≡ 0 (mod p`ss
mc(C)) for all c ∈ C.

Since zernorm(c) ≡ Y (c) (mod p`ss
mc(C)+1) (this is (4.23)), we know that Y (c) ∈ p`ss

mc(C)Zp
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for all c ∈ C. So to finish our proof, we must show that there is some c ∈ C such that

zernorm(c) ≡ Y (c) (mod p`ss
mc(C)+1) does not vanish modulo p`ss

mc(C)+1.

To prove this, we shall use the notion of collapse introduced in Section 2.6. Note that

c̃i(a) is zero or a power of π(ζq′−1) for all a ∈ A and i ∈ I, since c̃i is the ith component of

the canonical expansion of c̃. We let R be a set of p-class representatives of A and apply

Lemma 2.18 to (4.23) to obtain

zernorm(c) ≡ |A|
∑

λ∈Λss
mc(C)

Ti(λ)=`ss
mc(C)

(prI λ)!f (`ss
mc(C)+1)

prI λ

λ!

∏
i∈I

C̃i(CoR(λi)) (mod p`ss
mc(C)+1).

If we define Λ` to be the set of elements of Λss
mc(C) that are reduced and of tier `ss

mc(C), we

have

zernorm(c) ≡ |A|
∑
λ∈Λ`

∑
µ∈Λss

mc(C)
Ti(µ)=`ss

mc(C)
Red(µ)=λ

(prI µ)!f (`ss
mc(C)+1)

prI µ

µ!

∏
i∈I

C̃i(CoR(λi)) (mod p`ss
mc(C)+1),

since the reduction of any µ ∈ Λss
mc(C) with Ti (µ) = `ss

mc(C) is an element λ of Λ` by Lemma

4.14, and for such a µ, we have CoR(µi) = CoR(λi) for i ∈ I by Lemma 2.24. For each

λ ∈ Λ`, set

Bλ = |A|
∑

µ∈Λss
mc(C),Ti(µ)=`ss

mc(C)
Red(µ)=λ

(prI µ)!f (`ss
mc(C)+1)

prI µ

µ!
, (4.24)

which is an element of Qp since the coefficients f
(`ss

mc(C)+1)
µ are in Qp. Then

zernorm(c) ≡
∑
λ∈Λ`

Bλ

∏
i∈I

C̃i(CoR(λi)) (mod p`ss
mc(C)+1). (4.25)

Note that the right-hand side of (4.25) is a Qp-linear combination of terms of the form

Dλ =
∏
i∈I

∏
r∈R∩Si

C̃i(r)(CoR(λi))r , (4.26)

where we have restricted the second product of (4.26) to R∩Si in view Lemma 2.17 and the

fact that λi ∈ N[Si] for all λ ∈ Λss
mc(C) and i ∈ I. Note that no two terms Dλ and Dλ′ with
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λ, λ′ ∈ Λ` have exactly the same exponents for all the terms C̃i(r), since that would imply

that CoR(λi) = CoR(λ′i) for all i, which would force λ = λ′, since λ and λ′ are reduced (see

Corollary 2.22). Also note that the exponent (CoR(λi))r of C̃i(r) in Dλ is less than per by

the definition of CoR. (Recall that er denotes the cardinality of the p-class of r in A.) As we

vary c over all words in C, Lemma 2.14 tells us that the values in {C̃i(r) : i ∈ I, r ∈ R∩Si}

vary over
∏

i∈I

∏
r∈R∩Si

Vi,r, where Vi,r is the set containing 0 and all the powers of ζper−1.

Since no two elements of Vi,r are equal to each other modulo p, and since |Vi,r| = per , which

is strictly greater than the highest exponent of C̃i(r) appearing in any term (4.26) of (4.25),

we may apply Lemma 2.33 to conclude that the minimum p-adic valuation of the right-hand

side of (4.25) as c runs through C is precisely the minimum of the p-adic valuations of the

coefficients Bλ as λ runs through Λ`. So the first half of the theorem tells us that all such

coefficients have p-adic valuation at least `ss
mc(C). We shall show that one such coefficient

has p-adic valuation precisely `ss
mc(C); this will complete our proof.

By Lemma 4.15, there exists a critical κ ∈ Λ` such that there is no µ ∈ Λss
mc(C) with

µ 6= κ, Ti (µ) = `ss
mc(C), and Red(µ) = κ. Thus the coefficient Bκ, as defined in (4.24), is

just

Bκ = |A|
(prI κ)!f (`ss

mc(C)+1)
prI κ

κ!
.

Since κ is reduced, we have κi,a < p for all i ∈ I and a ∈ A by definition, so the denominator

of the fraction is a p-adic unit. Since |A| is coprime to p, we have

vp (Bκ) = vp

(
(prI κ)!f (`ss

mc(C)+1)
prI κ

)
.

Since κ is critical and Ti (κ) = `ss
mc(C), this means that prI κ ∈ N[I] is critical and of tier

`ss
mc(C), so that Theorem 4.16 tells us that vp

(
(prI κ)!f (`ss

mc(C)+1)
prI κ

)
= `ss

mc(C). This completes

our proof that there is some word c with zernorm(c) 6≡ 0 (mod p`ss
mc(C)+1).

The statements about hamnorm come immediately, since we showed that hamnorm(c) =

−zernorm(c) in Section 2.4.



109

4.5 Generic Weights

In this section, we consider an arbitrary weight function wt: Z/pdZ → Z and devise lower

bounds on the p-adic valuations of weights (as measured with wt) of words of codes in

Z/pdZ[A]. Note that wt might be symbr for some r ∈ Z/pdZ, so that we might be counting

the number of instances of a particular symbol in our codewords. We form the sectioned

weight wtsec : (Z/pdZ)d → Z as described in Section 4.3, and we follow a course not unlike

that of the previous section, where we were considering zero counts and Hamming weights.

However, here we do not prove the sharpness of our lower bounds, so the proof of Theorem

4.21 here will be considerably simpler than the proof of Theorem 4.18 in the previous section.

In order to p-adically estimate generic weights, we construct a set Λss(C) of multisets

in N[I ×A] and use Λss(C) to define the parameter `ss(C), which had been defined using

sequences in Section 1.1 of the Introduction. We prefer the multiset-based definition here

because it will make our calculations easier. We define

Λss(C) = {λ ∈ N[I ×A] : λ0 ∈ N[S0], . . . , λd−1 ∈ N[Sd−1],Πλ = 1A,prA λ 6∈ N[{1A}]}.

(4.27)

Note that Λss
mc(C), which was defined in the last section, is a subset of Λss(C). The multisets

in Λss
mc(C) are the multisets λ ∈ Λss(C) that satisfy the additional modular condition |λ| ≡ 0

(mod p − 1). Thus Λss(C) is nonempty, for we showed that Λss
mc(C) is nonempty. Since

Λss
mc(C) 6= ∅, we may set

ωss(C) = min
λ∈Λss(C)

Sc (λ) (4.28)

and

`ss(C) = min
λ∈Λss(C)

Ti (λ) = max
{

0,

⌊
ωss(C)− pd−1

(p− 1)pd−1

⌋}
. (4.29)

Note that since Λss
mc(C) ⊆ Λss(C), we have ωss

mc(C) ≥ ωss(C) and `ss
mc(C) ≥ `ss(C). In

Proposition 4.22 of Section 4.6, we shall see that `ss
mc(C) is strictly greater than `ss(C) for

infinitely many codes.

We recall the counting polynomials that we devised in Section 4.2 and cast them into

the notation of this section.
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Theorem 4.19 (part of Theorem 4.12). Let wt: Z/pdZ → Z be an arbitrary weight

function. For each m ≥ 1, there exists a polynomial

f (m)(x) =
∑

µ∈N[I]
Ti(µ)<m

f (m)
µ xµ

in Qp[x] with the property that f (m)(r0, . . . , rd−1) ≡ wtsec(π(r0), . . . , π(rd−1)) (mod pm) for

all r0, . . . , rd−1 ∈ Zp.

Proof. Consider the function F : Zp
d → Z given by F (r) = wtsec(π(r1), . . . , π(rd−1)) for

all r ∈ Zp
d. This function is (p, d)-periodic by the discussion at the end of Section 4.3.

Therefore, we may apply Theorem 4.12 with t = d to obtain a polynomial

h(x) =
∑
n∈Nt

Ti(n)<m

hn

(
x
n

)
,

with all hn ∈ Zp, such that h(r) ≡ F (r) (mod pm) for all r ∈ Zp
d. If we expand out any

term
(
x
n

)
into a Q-linear combination of monomials, all monomials xj that appear have

ji ≤ ni for all i ∈ I, so that Ti (j) ≤ Ti (n). Thus we can write

h(x) =
∑
n∈Nt

Ti(j)<m

cjxj,

with all cj ∈ Qp. Since we identify elements of N[I] with d-tuples, this is precisely the form

of polynomial that we were seeking.

Now we are ready to estimate weights. The following proposition is the basic calculation:

Proposition 4.20. Let wt: Z/pdZ→ Z be an arbitrary weight function. Let C be a code in

Z/pdZ[A]. Let m ≥ 1 and let f (m)(x) be the polynomial described in Theorem 4.19, which

approximates wtsec(π(·), . . . , π(·)) modulo pm. For each c ∈ C and i ∈ I, we let Ci be the
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element of Zp[ζq′−1][A] such that C̃i = τ ◦ c̃i. For any c ∈ C, we have

wtnorm(c) ≡ |A|
∑

λ∈Λss(C)
Ti(λ)<m

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod pm),

where Λss(C) is as defined in (4.27) above.

Proof. By Corollary 3.4, we have

wtnorm
sec (c0, . . . , cd−1) ≡ |A|

∑
µ∈N[I]

µ!f (m)
µ

∑
λ∈N[I×A],prI λ=µ

Πλ=1A,prA λ6∈N[{1A}]
λ0∈N[S0],...,λd−1∈N[Sd−1]

1
λ!

∏
i∈I

C̃i(λi) (mod pm).

By (4.18), the left-hand side becomes wtnorm(c). Note that the inner sum on the right-hand

side sums over those λ ∈ Λss(C) with prI λ = µ. We can restrict the sum over µ to those µ

with Ti (µ) < m, since f
(m)
µ = 0 otherwise (by Theorem 4.19). Thus

zernorm(c) ≡ |A|
∑

µ∈N[I]
Ti(µ)<m

µ!f (m)
µ

∑
λ∈Λss(C)
prI λ=µ

1
λ!

∏
i∈I

C̃i(λi) (mod pm)

≡ |A|
∑

µ∈N[I]
Ti(µ)<m

∑
λ∈Λss(C)
prI λ=µ

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod pm),

but then condition λ = prI µ means that λ and µ will always have the same score and tier,

so we can shift the condition on tier to the sum over λ. Thus

zernorm(c) ≡ |A|
∑

µ∈N[I]

∑
λ∈Λss(C)
prI λ=µ
Ti(λ)<m

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod pm)

≡ |A|
∑

λ∈Λss(C)
Ti(λ)<m

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod pm).

Now we can set bounds on the p-adic valuations of weights.

Theorem 4.21. Let wt: Z/pdZ → Z be an arbitrary weight function. Let C be a code in

Z/pdZ[A]. With `ss(C) as defined in (4.29), we have wtnorm(c) ≡ 0 (mod p`ss(C)) for all
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c ∈ C.

Proof. For each c ∈ C and i ∈ I, we let Ci be the element of Zp[ζq′−1][A] such that C̃i =

τ ◦ c̃i. If `ss(C) = 0, the congruence wtnorm(c) ≡ 0 (mod p`ss(C)) for all c ∈ C is trivial. If

`ss
mc(C) > 0, we use Proposition 4.20 above (setting m = `ss(C)) to obtain

wtnorm(c) ≡ |A|
∑

λ∈Λss(C)
Ti(λ)<`ss(C)

(prI λ)!f (`ss(C))
prI λ

λ!

∏
i∈I

C̃i(λi) (mod p`ss(C)),

where f (`ss(C))(x) is the polynomial described in Theorem 4.19, and Λss(C) is as defined

in (4.27). But by the definition of `ss(C) as the minimum tier of any element in Λss(C),

we see that the sum on the right-hand side of this congruence is empty, thus proving the

theorem.

4.6 Comparison with Previous Work

Many of the previous results on zero counts and other weights in Abelian codes over Z/pdZ

do not use the parameters ωss
mc(C), `ss

mc(C), ωss(C), and `ss(C) introduced in Sections 4.4

and 4.5. They instead use parameters like ωmc(C), `mc(C), ω(C), and `(C), which were

discussed (along with the aforementioned parameters) in Section 1.1 of the Introduction.

The latter group of parameters can be computed solely from knowledge of the support of the

Fourier transform of the code, while the former group of parameters requires full knowledge

of the tower of supports. We shall define the parameters ωmc(C), `mc(C), ω(C), and `(C)

in this section using a construction with multisets. These parameters were defined in the

Introduction using sequences, but we shall prefer the multiset-based definitions to facilitate

comparison with the parameters ωss
mc(C), `ss

mc(C), ωss(C), and `ss(C), which we have already

defined.

First of all, we recall from Section 4.2 the definitions of the score and s-tier of a t-

tuple. For (n0, . . . , nt−1) ∈ Zt, we defined the score, Sc (n0, . . . , nt−1) = n0 + · · ·+ pt−1nt−1,

and the s-tier, Tis(n0, . . . , nt−1) = max
{

0,
⌊

Sc(n0,...,nt−1)−ps−1

(p−1)ps−1

⌋}
. In Section 4.3, we set the

convention (which we retain here) that I = {0, 1, . . . , d − 1}, so that elements µ ∈ Z[I]
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are simply d-tuples (µ0, . . . , µd−1). We also made the convention (which still holds for the

remainder of this chapter) that the term “tier” always means d-tier and Ti always means

Tid. Thus Ti (n0, . . . , nt−1) = max
{

0,
⌊

Sc(n0,...,nt−1)−pd−1

(p−1)pd−1

⌋}
. Furthermore, we extended the

notion of score and tier to accounts λ ∈ Z[I × A], so that the score of λ ∈ Z[I × A] is the

score of prI λ ∈ Z[I], and the tier of λ ∈ Z[I×A] is the tier of prI λ ∈ Z[I]. Then we defined

`ss
mc(C) and `ss(C) in Sections 4.4 and 4.5 using scores and tiers of multisets in N[I ×A].

We shall also use these notions with 1-tuples, i.e., with single numbers, in this section.

Thus for n ∈ Z, we have Sc (n) = n, and Ti (n) = max
{

0,
⌊

n−pd−1

(p−1)pd−1

⌋}
. We also transport

the notion of score and tier to elements of Z[A]. The score of λ ∈ Z[A], denoted Sc (λ), is

just Sc (|λ|) = |λ|, and the tier of λ, denoted Ti (λ), is just Ti (|λ|). Because Sc (λ) = |λ|

for λ ∈ Z[A], we shall usually use |·| rather than Sc (·) for such accounts.

Recall that we are always considering a code C ⊆ Z/pdZ[A] with tower of supports

S0 ⊆ · · · ⊆ Sd−1. We shall always set S = Sd−1, which is the minimal support of the

Fourier transform. We continue to assume that at least one of the sets Si contains an

element a ∈ A r {1A}. Thus S contains this element a. We define

Λmc(C) = {λ ∈ N[S] : Πλ = 1A,prA λ 6∈ N[{1A}], |λ| ≡ 0 (mod p− 1)}. (4.30)

We claim that Λmc(C) is nonempty. By assumption, there exists a ∈ S with a 6= 1A. Let n

be the group-theoretic order of a. Then note that the multiset λ with (p− 1)n instances of

the element a and no other elements is a unity-product but not all-unity multiset in N[S]

with (p− 1)n elements. Since Λmc(C) 6= ∅, we may set

ωmc(C) = min
λ∈Λmc(C)

|λ| (4.31)

and

`mc(C) = min
λ∈Λmc(C)

Ti (λ) = max
{

0,

⌊
ωmc(C)− pd−1

(p− 1)pd−1

⌋}
. (4.32)

We also define

Λ(C) = {λ ∈ N[S] : Πλ = 1A,prA λ 6∈ N[{1A}]}. (4.33)
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Since Λmc(C) ⊆ Λ(C), we know that Λ(C) is not empty. Thus we may set

ω(C) = min
λ∈Λ(C)

|λ| (4.34)

and

`(C) = min
λ∈Λ(C)

Ti (λ) = max
{

0,

⌊
ω(C)− pd−1

(p− 1)pd−1

⌋}
. (4.35)

Most previous works use the parameters `mc(C) and `(C). Therefore, we compare them

with each other and with `ss
mc(C) and `ss(C). The proof of the following proposition is

straightforward, but lengthy, so we delay its appearance until the end of this section.

Proposition 4.22. Let e = 1. For any code C ⊆ Z/pdZ[A], we have

(i) ω(C) ≤ ωmc(C) and `(C) ≤ `mc(C);

(ii) ωss(C) ≤ ωss
mc(C) and `ss(C) ≤ `ss

mc(C);

(iii) ω(C) ≤ ωss(C) and `(C) ≤ `ss(C); and

(iv) ωmc(C) ≤ ωss
mc(C) and `mc(C) ≤ `ss

mc(C).

If p = 2, then equality holds in (i) and (ii). If C is a free Z/pdZ-module, then equality holds

in (iii) and (iv). Thus for d = 1, equality holds in (iii) and (iv).

For each p > 2 and d > 1, there are infinitely many codes such that the inequalities in

(i)–(iv) are simultaneously strict, with `(C) < `mc(C) < `ss(C) < `ss
mc(C). Indeed, we can

find a family of codes where, for any M , there exists a code in the family such that each

term in our chain of inequalities is greater than the last by M or more.

If p = 2, then for each d > 1, there are infinitely many codes such that the inequalities

in (iii) (or equivalently, in (iv)) are strict and where ω(C) and ωss(C) are even. Indeed, we

can find a family of codes wherein `ss(C)− `(C) and ωss(C)−ω(C) are unbounded as C runs

over the family.

For each p > 2 and d ≥ 1, there are infinitely many codes that are free Z/pdZ-modules

such that strict inequality holds in (i) (or equivalently, in (ii)). Indeed, we can find a family

of codes wherein `mc(C)− `(C) is unbounded as C runs over the family.
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In all instances of strict inequality mentioned above, the groups A underlying the codes

can be chosen to be cyclic, and the codes themselves can be chosen so that 1A is not in the

supports of their Fourier transforms. Furthermore, in instances where p = 2, the groups A

can be chosen to be cyclic groups, each of which has order 2n − 1 for some integer n (but

not the same integer n for all codes).

Finally, for p = 2 and for each d ≥ 1, there exist infinitely many cyclic codes C, each of

length 2n − 1 for some n, that are free Z/2dZ-modules with 1A not in the supports of their

Fourier transforms, and that have ω(C) even.

Now that we have some notion of the relationship between the four parameters `(C),

`mc(C), `ss(C), and `ss
mc(C), we can compare our theorems with previous results. The

strongest result on Hamming weights and zero counts in Abelian codes over Z/pdZ was

published by this author as part of this research program.

Theorem 4.23 (D. J. Katz [29]). Let C be a code in Z/pdZ[A]. With `mc(C) as defined

in (4.32), we have zernorm(c) ≡ 0 (mod p`mc(C)) for all c ∈ C. Equivalently, hamnorm(c) ≡ 0

(mod p`mc(C)) for all c ∈ C.

Theorem 4.18 gives a stronger lower bound on p-adic valuations of normalized weights

because `ss
mc(C) ≥ `mc(C) by Proposition 4.22. Indeed, Proposition 4.22 shows that `ss

mc(C) >

`mc(C) for infinitely many codes. Furthermore, Theorem 4.18 shows that the bounds it

furnishes are sharp, while Theorem 4.23 here includes no information about sharpness,

even though its bound is sharp for free Z/pdZ-modules. This sharpness is a consequence of

Theorem 4.18 and the fact (from Proposition 4.22) that `ss
mc(C) = `mc(C) when C is a free

Z/pdZ-module.

The strongest result on generic weights is due to Wilson, although a slightly generalized

version has been published by the author as part of this research program.

Theorem 4.24 (Wilson [65]). Let C be a code in Z/pdZ[A] with A cyclic and with 1A not

in the support S of the Fourier transform of C. Let `(C) be as defined in (4.35). For any

r ∈ Z/pdZ with r 6= 0 and any c ∈ C, the number of instances of symbol r in c is divisible

by p`(C).
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The author generalized this result of Wilson to produce a version that assumes neither

that A is cyclic nor that 1A 6∈ S. Recall from Section 2.4 that symbr is the weight function

that counts the number of instances of the symbol r in a codeword c. Thus symbnorm
r (c) is

the number of instances of r in c unless c̃(1A) = r, in which case symbnorm
r (c) is −|A| plus

the number of instances of r.

Theorem 4.25 (D. J. Katz [29]). Let C be a code in Z/pdZ[A]. Let `(C) be as defined

in (4.35). For any r ∈ Z/pdZ, we have symbnorm
r ≡ 0 (mod p`(C)).

Theorem 4.21 is stronger than both of these (Theorems 4.24 and 4.25). For Theorem

4.21 can be applied with the weight function wt set equal to symbr, thus giving a theorem

resembling Theorem 4.25 above, but with `ss(C) in place of `(C). Proposition 4.22 tells us

that `ss(C) ≥ `(C) for all codes and that `ss(C) > `(C) for infinitely many codes. Thus

Theorem 4.21 is stronger than Theorems 4.25 and 4.24 for infinitely many codes.

The first analogues of McEliece’s theorem for Hamming weights and generic weights

in Abelian codes over Z/pdZ were the results of Calderbank, Li, and Poonen [7]. We

shall see that these results are weaker than Theorems 4.23 and 4.24 presented above, and

hence weaker than Theorems 4.18 and 4.21 proved in this thesis. For Hamming weights,

Calderbank, Li, and Poonen give a theorem for cyclic codes over Z/4Z.

Theorem 4.26 (Calderbank-Li-Poonen [7]). Let p = 2 and let C be a code in Z/4Z[A]

with A cyclic and 1A not in the support S of the Fourier transform of C. Then ham(c) is

divisible by max
{

2
⌈

ω(C)
2

⌉
−2

, 2
⌈

ω(C)
3

⌉
−1
}

.

Note that when Z/pdZ = Z/4Z, `mc(C) = `(C) (by Proposition 4.22), and `(C) =

max
{

0,
⌊

ω(C)
2

⌋
− 1
}

(see (4.35)). Note also that ω(C) ≥ 2, since we cannot have a unity-

product and not all-unity element of N[A] with less than two elements. Thus, for admissible

values of ω(C), we have `mc(C) ≥ max
{⌈

ω(C)
2

⌉
− 2,

⌈
ω(C)

3

⌉
− 1
}

, with equality when ω(C)

is 2, 4, or an odd number, and with strict inequality (the left-hand side is one larger than

the right) when ω(C) is an even number greater than or equal to 6. Thus, Theorem 4.26 is

not as strong Theorem 4.23, and hence not as strong as Theorem 4.18.

For generic weights, Calderbank, Li, and Poonen give a theorem for cyclic codes over

Z/2dZ.
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Theorem 4.27 (Calderbank-Li-Poonen [7]). Let p = 2 and let C be a code in Z/2dZ[A]

with A cyclic and 1A not in the support S of the Fourier transform of C. Then for any

nonzero symbol r ∈ Z/pdZ, the number of instances of r in any c ∈ C is divisible by

2
⌈

ω(C)

2d−1

⌉
−2.

Note that when p = 2, we have `(C) = max
{

0,
⌊

ω(C)
2d−1

⌋
− 1
}

(see (4.35)). When ω(C) <

2d, neither Theorem 4.24 nor Theorem 4.27 tells us anything, so we shall compare the two

results when ω(C) ≥ 2d. Note that `(C) ≥
⌈

ω(C)
2d−1

⌉
− 2 for all values of ω(C) ≥ 2d, with the

left-hand side greater by one if 2d−1 | ω(C). Otherwise the two sides of our inequality are

equal. Thus, Theorem 4.27 is not as strong as Theorem 4.24, and hence not as strong as

Theorem 4.21.

In the case when d = 1, i.e., in the case when Z/pdZ is the prime field Fp, we shall

recover from Theorem 4.18 the theorem of McEliece on the zero counts of cyclic codes over

Fp (Theorem 1 of [37], presented in part as Theorem 1.1). When d = 1, all codes are

free Z/pdZ-modules (since they are Fp-vector spaces), so `ss
mc(C) = `mc(C) by Proposition

4.22. The following theorem synthesizes the actual content of the theorem McEliece stated,

along with other comments made in McEliece’s paper, while adapting it to the notation

and terminology of this thesis. The only sense in which it is more general than the theorem

of McEliece is that McEliece assumes that the group A is cyclic. Since removing this

assumption is not difficult, we have labeled the theorem here as “slightly generalized.”

Indeed, Delsarte and McEliece [18] later removed this assumption when they generalized this

theorem to Abelian codes over arbitrary finite fields (see Theorem 1.2 in the Introduction).

Theorem 4.28 (McEliece [37], slightly generalized). Let d = 1. Let C be a code in

Fp[A]. For each c ∈ C, we let C be the element of Zp[ζq′−1][A] such that C̃ = τ ◦ c̃. Let

Λmc(C) and `mc(C) be as defined in (4.30) and (4.32). Then for each c ∈ C, we have

zernorm(c) ≡ |A|(−p)`mc(C)
∑

λ∈Λmc(C)
|λ|=(`mc(C)+1)(p−1)

C̃(λ)
λ!

(mod p`mc(C)+1), (4.36)
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where λ! is a unit in Zp for each λ ∈ Λmc(C) with |λ| = (`mc(C) + 1)(p− 1). Furthermore,

∑
λ∈Λmc(C)

|λ|=(`mc(C)+1)(p−1)

C̃(λ)
λ!

assumes values in Zp, and so zernorm(c) ≡ 0 (mod p`mc(C)). There is some c ∈ C such that

zernorm(c) 6≡ 0 (mod p`mc(C)+1).

We defer the derivation of this theorem from Theorem 4.18 for a moment to develop some

tools that will help in the proof. These tools will also be useful in the proof of Proposition

4.22, which, as promised, concludes this section.

We have been comparing the results of this chapter, which use the parameters `ss
mc(C)

and `ss(C), with previous results, which use the parameters `mc(C) and `(C). Since `mc(C)

and `(C) are based on cardinalities of multisets in N[A] and `ss
mc(C) and `ss(C) are based

on cardinalities of multisets in N[I ×A], we first devise a correspondence between such

accounts that will help us to relate these parameters.

For the rest of this section, let Φ: N[I ×A] → N[A] be defined by Φ(λ) =
∑

i∈I λi,

and let ΨN[A] → N[I ×A] be defined so that Ψ(κ) is the multiset λ with λi = ∅ for all

i ∈ {0, 1, . . . , d − 2} and λd−1 = κ. Then we have the following basic facts about these

maps:

Lemma 4.29. Let λ ∈ N[I ×A] and κ ∈ N[A]. Then

(i) Φ ◦Ψ is the identity on N[A], so that Φ is surjective and Ψ is injective.

(ii) Φ and Ψ preserve the cardinality of multisets.

(iii) ΠΦ(λ) = Πλ and ΠΨ(κ) = Πκ.

(iv) Φ(λ) is all-unity if and only if λ is all unity; Ψ(κ) is all-unity if and only if κ is

all-unity.

(v) If λi ∈ N[Si] for all i ∈ I, then Φ(λ) ∈ N[S], and if κ ∈ N[S], then (Ψ(κ))i ∈ N[Si] for

all i ∈ I.
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(vi) Φ(Λss(C)) = Λ(C) and Φ(Λss
mc(C)) = Λmc(C).

(vii) If λ ∈ N[I ×A], then |Φ(λ)| ≤ Sc (λ) and Ti (Φ(λ)) ≤ Ti (λ).

(viii) If κ ∈ N[A], then Sc (Ψ(κ)) = pd−1|κ| and Ti (Ψ(κ)) ≥ Ti (κ).

(ix) If d = 1, then Ψ and Φ are inverses of each other, |Φ(λ)| = Sc (λ), Ti (Φ(λ)) = Ti (λ),

and Φ(λ)! = λ!.

Proof. The first two statements are obvious. To prove (iii), we note that we have ΠΦ(λ) =

Π
(∑

i∈I λi

)
=
∏

i∈I (Πλi) = Πλ. Then ΠΨ(κ) = ΠΦ(Ψ(κ)) = Πκ. The fourth statement

is obvious. To prove (v), note that S = Sd−1 and that Si ⊆ Sd−1 for all i ∈ I. Thus if

λi ∈ N[Si] for all i ∈ I, then we clearly have Φ(λ) ∈ N[S]. Conversely, if κ ∈ N[S], then

(Ψ(κ))d−1 ∈ N[Sd−1] and (Ψ(κ))i = ∅ ∈ N[Si] for i < d−1. To prove (vi), note that (iii)–(v)

show that Φ(Λss(C)) ⊆ Λ(C) and Ψ(Λ(C)) ⊆ Λss(C). Since Φ is a left-inverse of Ψ, this proves

that Φ(Λss(C)) = Λ(C). Likewise, (ii)–(v) show that Φ(Λss
mc(C)) ⊆ Λmc(C) and Ψ(Λmc(C)) ⊆

Λss
mc(C). Again, since Φ is a left-inverse of Ψ, this proves that Φ(Λss

mc(C)) = Λmc(C). For

(vii), note that |Φ(λ)| = |λ| ≤ Sc (λ). For (viii), note that Sc (Ψ(κ)) = pd−1|Ψ(κ)| = pd−1|κ|.

For (ix), Ψ and Φ are clearly inverses when d = 1. Furthermore, if d = 1 and λ ∈ N[I ×A],

then we have Sc (λ) = |λ| = |Φ(λ)| and Φ(λ)! = λ0! = λ!.

Now we give the proof McEliece’s theorem (Theorem 4.28) as a consequence of Theorem

4.18.

Proof of Theorem 4.28. Note that here I = {0}, so that for any λ ∈ Λss
mc(C), the account

prI λ is the 1-tuple with entry |λ0| = |λ|. Further, if λ ∈ Λss
mc(C), then Sc (λ) = |λ| and

Ti (λ) = max
{

0,
⌊
|λ|−1
p−1

⌋}
= |λ|

p−1 − 1, where the last equality uses the fact that |λ| ≡ 0

(mod p− 1) and |λ| > 0 for all λ ∈ Λss
mc(C). Therefore, to say that λ ∈ Λss

mc(C) is of tier m

is precisely to say that |λ| = (m + 1)(p − 1). With this in mind, we specialize congruence

(4.23) in Theorem 4.18 for the case d = 1 to obtain

zernorm(c) ≡ |A|
∑

λ∈Λss
mc(C)

|λ|=(`ss
mc(C)+1)(p−1)

|λ|!f (`ss
mc(C)+1)

|λ|

λ!
C̃0(λ0) (mod p`ss

mc(C)+1),
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where f (`ss
mc(C)+1)(x) is the polynomial described in Theorem 4.16. Equivalently, we have

zernorm(c) ≡ |A|
∑

λ∈Λss
mc(C)

|λ|=(`mc(C)+1)(p−1)

|λ|!f (`mc(C)+1)
|λ|

λ!
C̃0(λ0) (mod p`mc(C)+1), (4.37)

since `ss
mc(C) = `mc(C) when d = 1 by Proposition 4.22. Let

Y (c) =
∑

λ∈Λss
mc(C)

|λ|=(`mc(C)+1)(p−1)

[(`mc(C) + 1)(p− 1)]!f (`mc(C)+1)
(`mc(C)+1)(p−1)

λ!
C̃0(λ0),

which is the right-hand side of congruence (4.37). By Theorem 4.18 (along with the fact

that `ss
mc(C) = `mc(C) from Proposition 4.22), we know that Y (c) assumes values in p`mc(C)Zp

for all c ∈ C, but that there is some c ∈ C such that Y (c) is not in p`mc(C)+1Zp. We shall

show that Y (c) is closely related to the right-hand side of congruence (4.36).

To do this, we use the maps Φ: N[I × A] → N[A] and Ψ: N[A] → N[I × A] defined

before Lemma 4.29. In Lemma 4.29, (ix), (vi), (ii) we see that Φ is a bijection with inverse

Ψ, Φ(Λss
mc(C)) = Λmc(C), and Φ preserves cardinality, so Ψ establishes a bijection between

{κ ∈ Λmc(C) : |κ| = `ss
mc(C)} and {λ ∈ Λss

mc(C) : |λ| = `ss
mc(C)}. Thus we may re-index our

sum

Y (c) = |A|
∑

κ∈Λmc(C)
|κ|=(`mc(C)+1)(p−1)

[(`mc(C) + 1)(p− 1)]!f (`mc(C)+1)
(`mc(C)+1)(p−1)

Ψ(κ)!
C̃0([Ψ(κ)]0).

Furthermore, by the definition of Ψ and the fact that d = 1, we have [Ψ(κ)]0 = κ. We also

have C̃0 = C̃ by the definition of the canonical expansion and since d = 1. Also note that

Lemma 4.29, (ix) tells us that Ψ(κ)! = κ!. So we have

Y (c) = |A|
∑

κ∈Λmc(C)
|κ|=(`mc(C)+1)(p−1)

[(`mc(C) + 1)(p− 1)]!f (`mc(C)+1)
(`mc(C)+1)(p−1)

C̃(κ)
κ!

.

This is quite close to the right-hand side of (4.36). Now note that the 1-tuple (`mc(C) +

1)(p−1) is critical (see the definition before Lemma 4.8) and of tier `mc(C), so that Theorem
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4.16 tells us that [(`mc(C) + 1)(p− 1)]!f (`mc(C)+1)
(`mc(C)+1)(p−1) ≡ (−p)`mc(C) (mod p`mc(C)+1). Since

f (`mc(C)+1)(x) ∈ Qp[x] by Theorem 4.16, this means that there is some unit u ∈ Zp with

u ≡ 1 (mod p) such that u[(`mc(C) + 1)(p − 1)]!f (`mc(C)+1)
(`mc(C)+1)(p−1) = (−p)`mc(C). Since Y (c)

always vanishes modulo p`mc(C), we have Y (c) ≡ uY (c) (mod p`mc(C)+1) for all c ∈ C.

Recall that Y (c) was defined to be the right-hand side of (4.37). Thus we have

zernorm(c) ≡ Y (c) (mod p`mc(C)+1)

≡ uY (c) (mod p`mc(C)+1)

= |A|(−p)`mc(C)
∑

κ∈Λmc(C)
|κ|=(`mc(C)+1)(p−1)

C̃(κ)
κ!

,

which gives us (4.36). We know that u is a unit in Zp, that Y (c) ∈ p`mc(C)Zp for all c ∈ C,

and that Y (c) 6∈ p`mc(C)+1Zp for some c ∈ C. So we know that uY (c) ∈ p`mc(C)Zp for all

c ∈ C and that uY (c) 6∈ p`mc(C)+1Zp for some c ∈ C. Thus

∑
κ∈Λmc(C)

|κ|=(`mc(C)+1)(p−1)

C̃(κ)
κ!

is an element of Zp for all c ∈ C and is not an element of pZp for some c ∈ C. So zernorm ≡ 0

(mod p`mc(C)) for all c ∈ C, and zernorm 6≡ 0 (mod p`mc(C)+1) for some c ∈ C.

Finally, we claim that all κ ∈ Λmc(C) with |κ| = (`mc(C) + 1)(p − 1) are reduced. If

not, then Lemma (2.21) would give us a ν ∈ Λmc(C) with |ν| ≤ `mc(C)(p − 1), so that

Ti (ν) < `mc(C), thus contradicting the definition of `mc(C). Thus all κ ∈ Λmc(C) with

|κ| = (`mc(C) + 1)(p− 1) have κa < p for all a ∈ A, so that κ! is a unit in Zp.

We conclude this chapter with the proof of Proposition 4.22.

Proof of Proposition 4.22. Looking at definitions (4.33), (4.30), (4.27), and (4.19) of Λ(C),

Λmc(C), Λss(C), and Λss
mc(C), we see that Λ(C) ⊇ Λmc(C) and Λss(C) ⊇ Λss

mc(C). This shows

that ω(C) ≤ ωmc(C) and ωss(C) ≤ ωss
mc(C), so that `(C) ≤ `mc(C) and `ss(C) ≤ `ss

mc(C), which

proves (i) and (ii).

Let λ ∈ Λss(C) with Sc (λ) and Ti (λ) minimal, i.e., Sc (λ) = ωss(C) and Ti (λ) = `ss(C).
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Then by Lemma 4.29, (vi) and (vii), we have Φ(λ) ∈ Λ(C), |Φ(λ)| ≤ Sc (λ) = ωss(C),

and Ti (Φ(λ)) ≤ Ti (λ) = `ss(C). So ω(C) ≤ ωss(C) and `(C) ≤ `ss(C). This proves (iii).

By the same argument, if λ ∈ Λss
mc(C) with Sc (λ) = ωss

mc(C) and Ti (λ) = `ss
mc(C), then

Φ(λ) ∈ Λmc(C) with |Φ(λ)| ≤ Sc (λ) = ωss
mc(C) and Ti (Φ(λ)) ≤ Ti (λ) = `ss

mc(C), so that

ωmc(C) ≤ ωss
mc(C) and `mc(C) ≤ `ss

mc(C). This proves (iv).

If p = 2, then the condition |λ| ≡ 0 (mod p − 1) in the definitions (4.30) and (4.19)

of Λmc(C) and Λss
mc(C) is trivial, so that Λmc(C) = Λ(C) (compare (4.30) with (4.33)) and

Λss
mc(C) = Λss(C) (compare (4.19) with (4.27)). Thus, equality holds in (i) and (ii) in this

case.

Suppose that C is a free Z/pdZ-module in this paragraph. Then S0 = · · · = Sd−1 = S

by Lemma 2.13. Let κ ∈ Λ(C). Then we set λ ∈ N[I ×A] so that λ0 = κ and λi = ∅

for all i ∈ I with i 6= 0. Since κ ∈ N[S] and S0 = S, we have λ0 ∈ N[S0], and of course

λi ∈ N[Si] for all i 6= 0. Also Πλ = Πλ0 = Πκ = 1A, and λ is not all-unity since κ is not

all-unity. So λ ∈ Λss(C). Furthermore, if we originally had κ ∈ Λmc(C), then |λ| = |κ| ≡ 0

(mod p − 1), so that λ ∈ Λss
mc(C). So λ ∈ Λss(C) (resp., λ ∈ Λss

mc(C)) if κ ∈ Λ(C) (resp.,

κ ∈ Λmc(C)). Also note that Sc (λ) = |κ|, so that Ti (λ) = Ti (κ). Suppose we had chosen

κ ∈ Λ(C) (resp., κ ∈ Λmc(C)) so that |κ| = ω(C) and Ti (κ) = `(C) (resp., |κ| = ωmc(C) and

Ti (κ) = `mc(C)). Then the λ that we have derived from κ by the procedure outlined above

has λ ∈ Λss(C) with Sc (λ) = |κ| = ω(C) and Ti (λ) = Ti (κ) = `(C) (resp., λ ∈ Λss
mc(C)

with Sc (λ) = |κ| = ωmc(C) and Ti (λ) = Ti (κ) = `mc(C)). Thus ωss(C) ≤ ω(C) and

`ss(C) ≤ `(C) (resp., ωss
mc(C) ≤ ωmc(C) and `ss

mc(C) ≤ `mc(C)). These inequalities, combined

with the opposite inequalities (iii) (resp., (iv)), show that ωss(C) = ω(C), `ss(C) = `(C),

ωss
mc(C) = ωmc(C), and `ss

mc(C) = `mc(C) when C is a free Z/pdZ-module. If d = 1, all codes

are free Fp-modules, since all Fp-modules (i.e., Fp-vector spaces) are free.

We construct two families of codes (for arbitrary p and d) that will allow us to prove

our inequalities to be strict for infinitely many codes. To help us in our proofs, we define

the p-ary weight of any nonnegative integer k, denoted wp(k), to be the sum of the digits

in the p-ary expansion of k, i.e., if k = k0 + k1p + · · ·+ ksp
s with 0 ≤ kj < p for all j, then

wp(k) = k0 + · · ·+ ks.
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The first construction: Set m > 0 and let n = p2(d−1)+m. We let A be the cyclic group

of order (pn − 1)/(p − 1) generated by γ. For each k, set Tk = {γj : j ∈ N, wp(j) = k}.

Note that since wp(pj) = wp(j), each set Tk is p-closed. We set S0 = T1, S1 = T1 ∪ Tp, . . . ,

Sd−1 = T1 ∪ Tp ∪ · · · ∪ Tpd−1 . These are p-closed sets, which form the tower of supports of

our code C, whose Fourier transform has minimal support S = Sd−1.

We claim that 1A 6∈ S. For if this were not the case, then we would have 1A ∈ Tpk for

some k ∈ {0, 1, . . . , d−1}. That is, we could write 1A = γj for some j ∈ N with wp(j) = pk.

Thus we would have some j ∈ N with wp(j) = pk and j ≡ 0 (mod (pn − 1)/(p − 1)). So

we would have a sequence of pk elements, each a power of p, whose sum vanishes modulo

(pn−1)/(p−1). We can reduce each element of the sequence modulo pn−1 to get a sequence

of pk elements, with each element in {1, p, . . . , pn−1}, where the sum of the sequence vanishes

modulo (pn − 1)/(p − 1). If any element pi ∈ {1, p, . . . , pn−1} occurs more than p times in

the sequence, replace p occurrences of it with a single occurrence of either pi+1 (if i < n−1)

or with a single occurrence of 1 (if i = n− 1). If we continue to do this until no element of

{1, p, . . . , pn−1} occurs more than p times, then we obtain a nonempty sequence of at most

pk elements, with each element in {1, p, . . . , pn−1}, where the sum of the sequence vanishes

modulo (pn − 1)/(p− 1) and where no term is repeated more than p− 1 times. Thus, the

sum of this last sequence is at most (p− 1)(1 + p + · · ·+ pn−1) = pn − 1. So the sum of the

last sequence is j(pn − 1)/(p − 1) for some positive j ≤ p − 1. Since p-ary representations

are unique, we know that our last sequence has precisely j instances of each element of

{1, p, . . . , pn−1}. So our last sequence has at least n terms. Thus p2(d−1)+m = n ≤ pk ≤ pd−1,

which is a contradiction since m > 0. So indeed 1A is not in the minimal support of the

Fourier transform of our code.

Now we want to calculate ωss
mc(C), ωss(C), ωmc(C), and ω(C) for our code. We shall often

convert statements about multisets into statements about sequences, and vice versa, in our

calculations. We say that a sequence of elements in A is unity-product to mean that the

product of the elements in the sequence is 1A. Before begin our calculations, we make an

observation that will simplify the computation.

Observation: We claim that if we want to calculate ωss(C) (resp., ωss
mc(C)), then it suffices
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to compute the minimum score among those λ in Λss(C) (resp., Λss
mc(C)) with λi = ∅ for

i > 0. For if λi,a > 0 for some i > 0 and a ∈ Si, then note that a ∈ Tpj for some j ≤ i.

By the definition of Tpj , the element a can be written as a product of a sequence of pj

elements in T1, say a1, . . . , apj . Then consider the account κ = λ − (i, a) +
∑pj

k=1(0, ak).

This account has the same product as λ, so it is unity-product, and it is clearly not all-unity

since 1A 6∈ T1. Furthermore S0 = T1, so λ0 ∈ N[S0], and of course λi ∈ N[Si] for i > 0.

If λ is in Λss
mc(C), then note that |κ| = |λ| + pj − 1, so |κ| ≡ |λ| ≡ 0 (mod p − 1). All of

this shows that if λ is in Λss(C) (resp., Λss
mc(C)), then κ is also in Λss(C) (resp., Λss

mc(C)).

Furthermore Sc (κ) = Sc (λ) + pj − pi ≤ Sc (λ). We can keep repeating this procedure

until we obtain an account ν ∈ Λss(C) (resp., Λss
mc(C)) with ν1 = · · · = νd−1 = ∅ and

Sc (ν) ≤ Sc (λ). So there exists an account λ in Λss(C) (resp., Λss
mc(C)) of minimal score

such that λ1 = · · · = λd−1 = ∅. This observation shows that

ωss(C) = min {|λ| : λ ∈ N[S0],Πλ = 1A} (4.38)

and

ωss
mc(C) = min {|λ| : λ ∈ N[S0],Πλ = 1A, |λ| ≡ 0 (mod p− 1)} . (4.39)

These facts will be used in the next two paragraphs to calculate ωss(C) and ωss
mc(C).

By the observation (4.39), we see that computing ωss
mc(C) is tantamount to finding the

minimum of the lengths of the (nonempty) unity-product sequences consisting of elements

in S0 = T1 and having lengths divisible by p−1. (We also must be sure that not all terms in

a given sequence are equal to 1A, but since 1A 6∈ S0, this is automatic.) Since the elements

in our sequence are from T1 = {γ, γp, . . . , γpn−1}, our task is tantamount to finding the

minimum length of a nonempty sequence of integers in E = {1, p, . . . , pn−1} with the sum

of the sequence congruent to 0 modulo (pn− 1)/(p− 1) and with the length of the sequence

divisible by p−1. Suppose we have such a minimum-length sequence. Note that no element

of E occurs more than p − 1 times, for if pj occurred p or more times, we could replace

p instances of pj with a single instance of pj+1 (if j < n − 1) or a single instance of 1 (if

j = n−1) to obtain another sequence, shorter by p−1 elements, whose sum is also divisible
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by (pn − 1)/(p − 1). So we already know that the length of our sequence is less than or

equal to n(p − 1), and the sum of its terms is at most pn − 1, with equality occurring if

and only if we have exactly p− 1 instances of each element in E. Furthermore, since each

element in the sequence is congruent to 1 modulo p−1, the sum of the sequence will also be

congruent to zero modulo p−1. Now note that (pn−1)/(p−1) ≡ n ≡ 1 (mod p−1), and so

gcd(p−1, (pn−1)/(p−1)) = 1. So the sum of the elements in our sequence will be congruent

to zero modulo pn − 1. Since we know that the sum of our elements is strictly positive and

at most pn − 1, this means the sum of our elements is exactly pn − 1, so our sequence has

p− 1 instances of each element of E. Thus ωss
mc(C) = n(p− 1) = (p− 1)p2(d−1)+m.

The computation of ωss(C) is similar to that of ωss
mc(C). By the observation (4.38), we

see that computing ωss(C) is tantamount to finding the minimum of the lengths of the

(nonempty) unity-product sequences consisting of elements in S0 = T1. This, in turn, is

tantamount to finding the minimum length of a nonempty sequence of integers in E =

{1, p, . . . , pn−1} with the sum of the sequence congruent to 0 modulo (pn − 1)/(p − 1).

Suppose we have such a minimum-length sequence. Note that no element of E occurs more

than p − 1 times, by the same argument used in the previous paragraph, where we were

computing ωss
mc(C). So we already know that the length of our sequence is less than or

equal to n(p − 1), and the sum of its terms is at most pn − 1. The sum of our sequence

is strictly positive, so it is k(pn − 1)/(p − 1) for some k ∈ {1, 2, . . . , p − 1}. Note that

wp(k(pn − 1)/(p − 1)) = kn ≥ n for all k ∈ {1, 2, . . . , p − 1}, and wp(a) = 1 for all

a ∈ E. Further, note that wp(a + b) ≤ wp(a) + wp(b) for any a, b ∈ N; this is a well-

known fact (proved in [18] as Lemma 3.7). So we cannot have fewer than n terms in our

sequence; otherwise the p-ary weight of the sum would be less than n, contradicting what

we just showed. On the other hand, we can have precisely n elements in our sequence:

1 + p + · · ·+ pn−1 = (pn − 1)/(p− 1). So ωss(C) = n = p2(d−1)+m.

Now we compute ωmc(C). This is tantamount to finding the minimum length of a

(nonempty) unity-product sequence of length divisible by p − 1 consisting of elements of

S = Sd−1 = T1 ∪Tp ∪ · · · ∪Tpd−1 . Suppose we have such a minimum-length sequence, and it

has s(p−1) elements. For any given term a in the sequence, there is some j ∈ {0, 1, . . . , d−1}
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such that a ∈ Tpj , so we can write a as a product of a selection of pj terms in T1 = S0.

Suppose we replace each a in our minimal sequence with such a selection whose product

is a. We get a new sequence consisting of elements in S0, the length of this new sequence

is divisible by p − 1, and the product of the elements in this sequence is 1A. Since each

replacement removes one element and adds at most pd−1 in its place, the length of this new

sequence is at most s(p − 1)pd−1. If we set λ0 equal to the multiset of the terms in this

sequence and let λi = ∅ for i ∈ {1, 2, . . . , d− 1}, then we have an element λ of Λss
mc(C) with

Sc (λ) = s(p− 1)pd−1, so that s(p− 1)pd−1 ≥ ωss
mc(C). But ωss

mc(C) = n(p− 1), so spd−1 ≥ n,

and thus s ≥ pd−1+m. So our sequence has at least (p− 1)pd−1+m elements. We claim that

it has precisely this many elements; we shall construct a unity-product sequence of elements

of Tpd−1 ⊆ Sd−1 = S with this many elements. Actually, we do something equivalent: we

shall construct a sequence of (p − 1)pd−1+m integers whose p-ary weights are all pd−1 and

whose sum is congruent to 0 modulo (pn − 1)/(p− 1). In fact, the sum of our integers will

be pn − 1, which is an integer of p-ary weight n(p − 1) = pd−1(p − 1)pd−1+m. As such,

pn − 1 can be written as the sum of (p − 1)pd−1+m integers of p-ary weight pd−1. (Write

pn−1 as a sum of pd−1(p−1)pd−1−m powers of p, using its p-ary expansion. Group these in

groups of pd−1. The p-ary weight of the sum of each group is precisely pd−1 since there are

no “carries” when we add, for there are only p − 1 occurrences of any pj with 0 ≤ j < n.)

Thus, we have shown that ωmc(C) = (p− 1)pd−1+m.

Finally, we compute ω(C). This is tantamount to finding the minimum length of a

(nonempty) unity-product sequence consisting of elements of S = Sd−1 = T1∪Tp∪· · ·∪Tpd−1 .

Suppose we have such a minimum-length sequence, and it has s elements. We proceed by

the same argument in the previous paragraph to obtain a new unity-product sequence of

length at most spd−1 consisting of elements in S0. If we set λ0 equal to the multiset of the

terms in this sequence and let λi = ∅ for i ∈ {1, 2, . . . , d − 1}, then we have an element

λ of Λss(C) with Sc (λ) = spd−1, so that spd−1 ≥ ωss(C). But ωss(C) = n, so spd−1 ≥ n,

and thus s ≥ pd−1+m. We claim that s = pd−1−m precisely; we shall construct a unity-

product sequence of elements of Tpd−1 ⊆ Sd−1 = S with this many elements. Actually, we do

something equivalent: we shall construct a sequence of pd−1+m integers whose p-ary weights
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are all pd−1 and whose sum is congruent to 0 modulo (pn − 1)/(p− 1). In fact, the sum of

our integers will be (pn − 1)/(p − 1), which is an integer of p-ary weight n = pd−1pd−1+m.

As such, (pn−1)/(p−1) can be written as the sum of pd−1+m integers of p-ary weight pd−1.

(See the argument used at the end of the previous paragraph.) Thus, we have shown that

ω(C) = pd−1+m.

To summarize: In our first construction, we have shown ω(C) = pd−1+m, ωmc(C) = (p−

1)pd−1+m, ωss(C) = p2(d−1)+m, and ωss
mc(C) = (p−1)p2(d−1)+m. Thus `(C) = (pm−1)/(p−1),

`mc(C) = pm−1, `ss(C) = (pd−1+m−1)/(p−1), and `ss
mc(C) = pd−1+m−1. Recall that m is an

arbitrary positive integer. If p > 2 and d > 1, we have `(C) < `mc(C) < `ss(C) < `ss
mc(C). In

fact, as m tends to infinity, the difference between any two terms in our chain of inequalities

tends to infinity. If p = 2 and d > 1, then `(C) < `ss(C), and note that ω(C) = 2d−1+m

and ωss(C) = 22(d−1)+m are even in these cases. Furthermore, as m tends to infinity, the

differences `ss(C)− `(C) and ωss(C)− ω(C) tend to infinity.

Now we make a second construction, a family of codes that are free Z/pdZ-modules such

that `(C) < `mc(C) (or equivalently, `ss(C) < `ss
mc(C)) if p > 2. We let p and d be arbitrary

until further notice.

The second construction: We again set m > 0, let n = p2(d−1)+m, and let A be the cyclic

group of order (pn − 1)/(p − 1) generated by γ. As before, for each k, we set Tk = {γj :

j ∈ N, wp(j) = k}, a p-closed set. This time, however, we set S0 = · · · = Sd−1 = T1. This

is the tower of supports of our code C, which is a free Z/pdZ-module by Lemma 2.13, and

whose Fourier transform has minimal support S = Sd−1 = T1. As in the first construction,

we note that 1A is not in the minimal support S of the Fourier transform of our code.

First we compute ωmc(C). This is tantamount to finding the minimum length of a

(nonempty) unity-product sequence of length divisible by p − 1 whose terms are elements

in S = T1. We have already done this in the computation of ωss
mc(C) in the previous

construction. The minimum length of such a sequence is n(p− 1). So ωmc(C) = n(p− 1) =

(p− 1)p2(d−1)+m.

Next we compute ω(C). This is tantamount to finding the minimum length of a

(nonempty) unity-product sequence whose terms are elements in S = T1. We have al-
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ready done this in the computation of ωss(C) in the previous construction. The minimum

length of such a sequence is n. So ωmc(C) = n = p2(d−1)+m.

To summarize: In our second construction, we have shown ω(C) = p2(d−1)+m and

ωmc(C) = (p − 1)p2(d−1)+m. Thus `(C) = (pd−1+m − 1)/(p − 1) and `mc(C) = pd−1+m − 1.

If p > 2, we have `(C) < `mc(C) for any m. As m tends to infinity, the difference between

`(C) and `mc(C) tends to infinity.

Note that in both the first and second constructions, the group A was always a cyclic

group, and 1A was never in the minimal support of the Fourier transform of the code. When

p = 2, we were working with A the cyclic group of order 2n − 1. Finally, note that if we

set p = 2 in the second construction, then our codes are free Z/2dZ-modules and have ω(C)

even.
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Chapter 5

Lee Weights in Z/pdZ[A]

We now discuss analogues of McEliece’s theorem for the Lee weight function lee : Z/pdZ→

Z. See Section 2.4 for the definition of Lee weight. We set e = 1 throughout the chapter,

so that we are working with codes in the algebra Z/pdZ[A]. We always suppose that we

have a code C ⊆ Z/pdZ[A] and that S0 ⊆ S1 ⊆ · · · ⊆ Sd−1 is the tower of supports of the

Fourier transform of C. We set S = Sd−1, which is the support of the Fourier transform

of our code C. We suppose that not all the Si are subsets of {1A}, i.e., that at least one

of the Si contains an element of A that is not the identity. Otherwise we have a trivial

situation: C consists only of constant words and then wt(c) = |A|wt(c̃(1A)) for all c ∈ C,

i.e., wtnorm(c) = 0 for all c ∈ C.

We shall continue to use the set Λss(C) and the associated parameters ωss(C) and `ss(C)

as defined in (4.27), (4.28), and (4.29). Our analogue of McEliece’s theorem for generic

weight functions (Theorem 4.21) can be specialized immediately for the Lee weight to give

the following:

Theorem 5.1 (Theorem 4.21, specialized). Let C be a code in Z/pdZ[A]. With `ss(C)

as defined in (4.29), we have leenorm(c) ≡ 0 (mod p`ss(C)) for all c ∈ C.

For odd p, this is superior to a previous result of the author, given below as Theorem

5.2. The previous result uses the parameter `(C) defined in (4.35). We should keep this

parameter in mind for the rest of this chapter, along with the set Λ(C) and the parameter

ω(C), as defined in (4.33) and (4.34). The result on Lee weights for p an odd prime was

published by the author as a portion of the research program described in this thesis.
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Theorem 5.2 (D. J. Katz [29]). Let p be odd. Let C be a code in Z/pdZ[A]. With `(C)

as defined in (4.35), we have leenorm(c) ≡ 0 (mod p`(C)) for all c ∈ C.

Theorem 5.1 is superior to Theorem 5.2 since `ss(C) ≥ `(C) by Proposition 4.22. Indeed,

that proposition shows that strict inequality holds for infinitely many codes. The author is

not aware of any other analogues McEliece’s theorem for Lee weights in Z/pdZ[A] with odd

p.

For p = 2, more work has been done. Wilson proved the following result for codes in

Z/2dZ[A]:

Theorem 5.3 (Wilson [67]). Let p = 2. Let C be a code in Z/2dZ[A] with A cyclic and

1A not in the support of the Fourier transform of C. With `(C) as defined in (4.35), we

have lee(c) ≡ 0 (mod 2
⌊

ω(C)−2

2d−1

⌋
+1) for all c ∈ C.

It is not difficult to remove Wilson’s assumptions that A is cyclic and 1A 6∈ S. This

generalization was presented by the author:

Theorem 5.4 (D. J. Katz [29]). Let p = 2. Let C be a code in Z/2dZ[A]. With `(C) as

defined in (4.35), we have leenorm(c) ≡ 0 (mod 2
⌊

ω(C)−2

2d−1

⌋
+1) for all c ∈ C.

To compare this theorem with Theorem 5.1, we must compare `ss(C) =
⌊

ωss(C)
2d−1

⌋
− 1

with
⌊

ω(C)−2
2d−1

⌋
+1. By Proposition 4.22, we can make a family of codes where ωss(C)−ω(C)

is unbounded as C ranges over the family. Thus, there are infinitely many codes where

`ss(C) ≥
⌊

ω(C)−2
2d−1

⌋
+ 1, and thus where Theorem 5.1 is stronger than Theorem 5.4. On

the other hand, if we consider codes that are free Z/2dZ-modules, then for these codes

we have ωss(C) = ω(C) and `ss(C) = `(C) by Proposition 4.22. In this case, we see that

Theorem 5.1 states that the normalized Lee weight has 2-adic valuation at least `ss(C) =

`(C) = max
{

0,
⌊

ω(C)
2d−1

⌋
− 1
}
≤
⌊

ω(C)−2
2d−1

⌋
+ 1. So in this case, Theorem 5.1 is weaker than

Theorem 5.4. Note that
⌊

ω(C)−2
2d−1

⌋
+ 1 is always strictly positive (since ω(C) cannot be 1 or

0, because any element of Λ(C) is a unity-product but not all-unity multiset, and hence has

at least two elements). Indeed, if we assume d ≥ 2 (in the d = 1 case, Lee weight coincides

with Hamming weight on F2, and we already have a sharp bound for p-adic valuations of

Hamming weights), then we have
⌊

ω(C)−2
2d−1

⌋
+ 1 ≥ max

{⌊
ω(C)
2d−1

⌋
, 1
}

= `(C) + 1, so in fact
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Theorem 5.4 is stronger than Theorem 5.1 in all cases when d ≥ 2 and C is a free Z/2dZ-

module. Since the two theorems (5.1 and 5.4) are not strictly comparable, one should use

whichever gives a stronger 2-divisibility criterion.

There are other results in the literature that treat of the special case of Lee weights in

Abelian codes over Z/4Z. The first result, due to Helleseth, Kumar, Moreno, and Shanbhag,

is not phrased as a theorem for Abelian codes, but rather for Z/4Z-linear trace codes. To

connect it with our results, we define the Z/4Z-linear trace code of length 2n with tower

of supports S0 ⊆ S1 as follows: Let n > 1, let A be the cyclic group of order 2n − 1,

let S0 ⊆ S1 be 2-closed subsets of A, and let C be the cyclic code of length 2n − 1 with

tower of supports S0 ⊆ S1. Then the Z/4Z-linear trace code of length 2n with tower of

supports S0 ⊆ S1 is obtained from C by appending to the end of each word c ∈ C the symbol

c̃(1A). We write each of these extended words as (c|c̃(1A)). When we discuss Z/4Z-linear

trace codes, we always let C be the underlying cyclic code, and we write Cext for the Z/4Z-

linear trace code. If c ∈ Cext, the Lee weight of a codeword is simply the sum of the Lee

weights of the letters in the word, i.e., lee(c|c̃(1A)) = lee(c) + lee(c̃(1A)), and so we have

lee(c|c̃(1A)) ≡ lee(c)− |A| lee(c̃(1A)) (mod 2n) since |A| = 2n − 1, i.e.,

lee(c|c̃(1A)) ≡ leenorm(c) (mod 2n). (5.1)

That is, the Lee weight of a word in Cext is congruent modulo 2n to the normalized Lee

weight of the corresponding word in C. Now we can present the theorem of Helleseth,

Kumar, Moreno, and Shanbhag.

Theorem 5.5 (Helleseth-Kumar-Moreno-Shanbhag [25]). Suppose that Cext is the

Z/4Z-linear trace code of length 2n with tower of supports S0 ⊆ S1. Then lee(c) ≡ 0

(mod 2dω
ss(C)/2e−1) for all c ∈ Cext.

In view of (5.1), we have the following equivalent statement:

Theorem 5.6 (equivalent to Theorem 5.5). Let n > 1 and suppose that C ⊆ Z/4Z[A]

with A the cyclic group of order 2n − 1. Then leenorm(c) ≡ 0 (mod 2dω
ss(C)/2e−1) for all

c ∈ C.
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Proof. The equivalence of this theorem and the previous one will follow immediately from

(5.1) if we can show that n ≥ dωss(C)/2e − 1. But recall that the minimal support S = S1

of the Fourier transform of our code C is always assumed to contain some a with a 6= 1A.

Of course S1 contains a, a2, . . . , a2n−1
, because sets in the tower of supports are 2-closed.

Note that a2n−1 = 1A, and let λ ∈ N[I×A] be the multiset with λ0 = ∅ and λ1 the multiset

with one instance of each of a, a2, . . . , a2n−1
. Then λ is an element of Λ(C) with score 2n,

proving that ωss(C) ≤ 2n. Thus dωss(C)/2e − 1 < n.

Note that this theorem is superior to Theorem 5.1 if we specialize Theorem 5.1 to cyclic

codes of length 2n− 1 over Z/4Z. For in this case, Theorem 5.1 asserts that the normalized

Lee weight has 2-adic valuation at least `ss(C) = bωss(C)/2c−1. Theorem 5.6 is not strictly

comparable to the specialization of Theorem 5.4 to cyclic codes of length 2n− 1 over Z/4Z,

which asserts that the normalized Lee weight is divisible by bω(C)/2c. Proposition 4.22 tells

us that we can find an infinite family of such codes in which ωss(C)−ω(C) is unbounded as C

runs over the family. Thus the specialization of Theorem 5.4 to cyclic codes of length 2n−1

is weaker than Theorem 5.6 for infinitely many codes. On the other hand, if we restrict our

attention to codes that are free Z/4Z-modules, then ωss(C) = ω(C) and `ss(C) = `(C) by

Proposition 4.22, and then Theorem 5.4 (specialized to cyclic codes of length 2n − 1 that

are free Z/4Z-modules) is stronger than Theorem 5.6. For Theorem 5.4 asserts that the

normalized Lee weight has 2-adic valuation at least bω(C)/2c, while Theorem 5.6 asserts

that the 2-adic valuation is at least dωss(C)/2e− 1 = dω(C)/2e− 1. These bounds are equal

if ω(C) is odd, but the former is greater than the latter by 1 if ω(C) is even. Proposition 4.22

shows that there are infinitely many cyclic codes C, each of length 2n − 1 for some integer

n (but not the same n for all the codes), that are free Z/4Z-modules with ω(C) even.

One should note that Wilson’s result (Theorem 5.3) was an improvement of a result of

Calderbank, Li, and Poonen. Like Wilson, these authors assume that A is a cyclic group

and that 1A 6∈ S.

Theorem 5.7 (Calderbank-Li-Poonen [7]). Suppose that C ⊆ Z/4Z[A] with A cyclic

and 1A not in the support of the Fourier transform of C. Then lee(c) ≡ 0 (mod 2dω(C)/2e−1)

for all c ∈ C.
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Note that it is not as strong as the specialization of Theorem 5.3 to codes over Z/4Z,

which asserts that the Lee weights have 2-adic valuation at least bω(C)/2c. So Theorem

5.3 gives strictly more information when ω(C) is even, as it is for infinitely many codes (see

Proposition 4.22). Note that Theorem 5.6 is narrower in scope than Theorem 5.7, since the

former only considers the case when A is cyclic of order 2n − 1 for some n > 1. However,

in this special case, Theorem 5.6 is stronger, since ωss(C) ≥ ω(C) by Proposition 4.22.

The goal of this chapter is to make a single sharp lower bound for 2-adic valuations

of Lee weights in Abelian codes over Z/4Z. To this end, we shall prove Theorem 5.12, a

slightly specialized form of which was presented in the Introduction as Theorem 1.9. Here

we present a simplified version that contains the essence of what we shall prove later.

Theorem 5.8 (Theorem 5.12, simplified). Let C be a code in Z/4Z[A]. Then we have

leenorm(c) ≡ 0 (mod 2`ss(C)+1) for all c ∈ C, and leenorm(c) 6≡ 0 (mod 2`ss(C)+2) for some

c ∈ C.

This theorem is stronger (for codes over Z/4Z) than all the results above. It is stronger

than Theorem 5.1 (specialized to codes over Z/4Z), which asserts that the 2-adic valuations

of normalized Lee weights are at least `ss(C). Theorem 5.8 is also stronger than Theorem

5.3 and its generalization, Theorem 5.4, when these are specialized to codes over Z/4Z.

The latter theorems assert that the 2-adic valuations of normalized Lee weights are at least

bω(C)/2c = `(C) + 1, and `ss(C) ≥ `(C) by Proposition 4.22. Indeed, the same proposition

tells us that there is a family of cyclic codes (with 1A not in the minimal supports of

their Fourier transforms) such that `ss(C)− `(C) is unbounded as C varies over the family.

Theorem 5.8 is then stronger than Theorem 5.7 since Theorem 5.3 is stronger than Theorem

5.7. Finally, Theorem 5.8 (when specialized to cyclic codes with A of order 2n−1) is stronger

than Theorem 5.6. For Theorem 5.6 asserts that the 2-adic valuations of normalized Lee

weights are at least dωss(C)/2e− 1, while Theorem 5.8 asserts a lower bound of bωss(C)/2c.

The latter bound is no better when ωss(C) is odd, but is greater by one when ωss(C) is even.

Indeed, by Proposition 4.22, we can make a family of codes where the underlying group of

each code is cyclic with order 2n− 1 for some n (not the same n for each code), where 1A is

not in the minimal support of the Fourier transform of any code, where ω(C) and ωss(C) are
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even for all the codes, and where ωss(C)−ω(C) is unbounded as C runs through the family.

For this family, Theorem 5.8 will give a stronger lower bound on the 2-adic valuations of

Lee weights of codewords than one would get by taking the maximum of all the bounds

furnished by all the other theorems mentioned above.

The methods used in this chapter are similar to those of the previous chapter. Readers

should familiarize themselves with the material in that chapter first. In Section 5.1, we

specialize the definitions and conventions of Section 4.3 so that we can use them for Lee

weights in Abelian codes over Z/4Z. In Section 5.2, we use techniques like those of Section

4.2 to produce counting polynomials that can be used to estimate Lee weights. We then

use these polynomials in Section 5.3 to prove Theorem 5.12 (Theorem 5.8 above).

5.1 Sectioned Lee Weight

For the rest of this chapter, we set p = 2 and d = 2, so that our codes are ideals in

Z/4Z[A]. Our goal is to prove Theorem 5.12. The method we shall use is quite similar

to the method we used to prove Theorem 4.18 in Chapter 4. We shall devise a counting

polynomial that will approximate the sectioning of the Lee weight (see Section 4.3 for the

notion of a sectioning of a weight function, which we review below). We shall then use our

polynomial in conjunction with Corollary 3.4 to give 2-adic estimates of Lee weights in our

codes.

We review the notions of Section 4.3, specializing them for p = 2 and d = 2 here. We

use the convention that for any letter a, the corresponding boldface letter a stands for the

ordered pair (a0, a1). We set I = {0, 1} and consider accounts in Z[I] to be pairs of integers,

i.e., we identify µ ∈ Z[I] with the pair (µ0, µ1) ∈ Z2. We use abbreviated notations that

are the specialization to pairs of the compact notations for t-tuples in Section 4.1. So we

use abbreviation that if µ ∈ Z[I], then xµ = xµ0
0 xµ1

1 and

(
x
µ

)
=
(

x0

µ0

)(
x1

µ1

)
.

Furthermore, we set ∆µ = ∆µ0
0 ∆µ1

1 . We set e0 = (1, 0) and e1 = (0, 1). We also use 0 to



135

represent (0, 0).

We use the definitions of the score and the s-tier, as set down in Section 4.2. We

specialize these notions here for p = d = 2. Thus, if µ ∈ Z[I], then Sc (µ) = µ0 + 2µ1

and Tis(µ) = max
{

0,
⌊

Sc(µ)
2s−1

⌋
− 1
}

. In fact, we shall be interested only in d-tiers here.

Therefore, for the rest of the chapter, we define tier to mean d-tier and write Ti to mean

Tid. This is the same convention adopted in Section 4.3 of Chapter 4 and used to the end

of that chapter. Here we have specialized to the case d = 2, so Ti = Tid = Ti2. Thus

Ti(µ) = max
{

0,
⌊

Sc(µ)
2

⌋
− 1
}

= max
{
0,
⌊µ0

2

⌋
+ µ1 − 1

}
. Note that Ti (µ) =

⌊µ0

2

⌋
+ µ1 − 1

unless µ = (0, 0) or (1, 0). We also use notion of k-starting and k-critical from Section 4.2.

When we specialize these for p = d = 2, we see that a multiset µ ∈ N[I] is 0-critical if and

only if µ0 is odd and Sc (µ) ≥ 3, and µ is 1-critical if and only if µ is 1-starting. We also

transport the notion of score and tier to elements of Z[I × A]. The score of λ ∈ Z[I × A],

denoted Sc (λ), is just Sc (prI λ), and the tier of λ, denoted Ti (λ), is just Ti (prI λ). This

means that Sc (λ) = |λ0| + 2|λ1| and Ti (λ) = max
{

0,
⌊

Sc(λ)
2

⌋
− 1
}

. Along with this, we

transport to Z[I ×A] the notion of an account being k-starting or k-critical (for k ∈ I); to

say that λ ∈ Z[I ×A] is k-starting (resp., k-critical) is to say that prI λ is k-starting (resp.,

k-critical). As in Section 4.2, we say that λ is critical to mean that it is k-critical for some

k. Thus, λ is 0-starting if λ0 6= ∅, and λ is 1-starting if λ0 = ∅ and λ1 6= ∅. Furthermore, λ

is 0-critical if and only if |λ0| is odd and Sc (λ) ≥ 3, and λ is 1-critical if and only if λ0 = ∅

and λ1 6= ∅, i.e., if and only if λ is 1-starting.

For the rest of this chapter, we suppose that we have a code C ⊆ Z/4Z[A] and S0 ⊆ S1

is the tower of supports of the Fourier transform of C. As always, we let S be the support

of the Fourier transform of C, so S = S1 here. We continue to assume that not all the Si

are subsets of {1A}, i.e., that at least one of the Si contains an element of A that is not the

identity.

We now devise the sectioning of our Lee weight function lee : Z/4Z → Z, according to

the definition given in Section 4.3. We review the definition here for our special case. The

sectioning of lee is a 2-wise weight function denoted leesec : (Z/4Z)2 → Z, and defined by

leesec(r0, r1) = lee(r0 + 2r1),
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for all r0, r1 ∈ Z/4Z.

Recall the canonical expansion of the scaled Fourier transform and the scaled Fourier-

induced breakdown of codewords, which we defined in Section 2.3 (before Proposition 2.8).

For c ∈ C and i ∈ I, c(i) denotes the ith component of the scaled Fourier-induced breakdown

of c, and c̃(i) denotes the ith component in the canonical expansion of c̃. Throughout

this chapter, we often use the more convenient symbol ci as a synonym for c(i). Thus

c = c(0) + 2c(1) = c0 + 2c1 and c̃ = c̃(0) + 2c̃(1) = c̃0 + 2c̃1. By (4.17) in Section 4.3, we have

leesec(c0, c1) = lee(c),

and by (4.18) in the same section, we have

leenorm
sec (c0, c1) = leenorm(c). (5.2)

Now we consider the lift of leesec, that is, the function F : Z2
2 → Z given by F (r) =

leesec(π(r0), π(r1)). By the last paragraph of Section 4.3, we see that F (r+2e0) = F (r+e1)

and F (r+2e1) = F (r). Thus F is (2, 2)-periodic, using the definition of (p, t)-periodic from

Section 4.2. This is the function that we shall approximate with a counting polynomial.

5.2 Construction of Counting Polynomials

We are ready to construct a counting polynomial to use with Corollary 3.4 in our estimation

of Lee weights in Z/4Z[A].

Theorem 5.9. Let F : Z2
2 → Z be given by

F (r) =


0 if r0 + 2r1 ≡ 0 (mod 4),

1 if r0 + 2r1 ≡ 1, 3 (mod 4),

2 if r0 + 2r1 ≡ 2 (mod 4),

i.e., F (r) = leesec(π(r0), π(r1)). Suppose that
∑

µ∈N[I] Fµ

(
x
µ

)
is the Newton expansion of F .
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Then F(0,0) = 0 and if µ = (µ0, µ1) 6= (0, 0), then Fµ = (−1)|µ|+12bµ0/2c+µ1γµ0, where

γi =


1 if i ≡ −1, 0, 1 (mod 8),

0 if i ≡ 2, 6 (mod 8),

−1 if i ≡ 3, 4, 5 (mod 8).

Thus v2(Fµ) ≥ Ti (µ) + 1 unless µ = (1, 0).

Proof. First we devise a well-ordering relation � on N2, and then we induct with respect to

the ordering. If µ, ν ∈ N2 with Sc (µ) < Sc (ν), then we declare µ ≺ ν. Among the elements

of N2 that have the same score, we order them lexicographically, i.e., κ = (κ0, κ1) ≺ λ =

(λ0, λ1) means that κ0 < λ0 or that κ0 = λ0 and κ1 < λ1. There are only finitely many

elements of N2 with a given score, so the lexicographic ordering well-orders the elements of

like score. Thus ≺ is a well-ordering relation.

As the base of our induction, we use Proposition 4.5 to compute a few of the Newton

coefficients. We compute F(0,0) = (∆(0,0)F )(0, 0) = 0, F(1,0) = (∆(1,0)F )(0, 0) = F (1, 0) −

F (0, 0) = 1, F(0,1) = (∆(0,1)F )(0, 0) = F (0, 1) − F (0, 0) = 2, and F(1,1) = (∆(1,1)F )(0, 0) =

F (1, 1)− F (1, 0)− F (0, 1) + F (0, 0) = 1− 1− 2 + 0 = −2. Note that these values for F(i,j)

with 0 ≤ i, j ≤ 1 are as we claim them to be in the statement of the theorem.

Now we proceed by induction to compute Fµ where µ0 ≥ 2 or µ1 ≥ 2. First we examine

the case when µ0 ≥ 2. Recall that F is (2, 2)-periodic by the discussion at the end of

Section 5.1. So we use Lemma 4.9 to see that Fµ+(−2,1) = Fµ + 2Fµ−(1,0), i.e., Fµ =

Fµ+(−2,1)−2Fµ−(1,0). Note that µ+(−2, 1) has the same score as µ but is lexicographically

lower, so µ + (−2, 1) ≺ µ. Also µ− (1, 0) has a lower score than µ does, so µ− (1, 0) ≺ µ.

Thus we may apply our induction hypothesis to Fµ+(−2,1) and Fµ−(1,0). Furthermore, note

that neither µ + (−2, 1) nor µ− (1, 0) is (0, 0) (the latter is not (0, 0), since µ0 ≥ 2). Thus

we have Fµ = (−1)|µ|2bµ0/2c+µ1γµ0−2 − 2(−1)|µ|2b(µ0−1)/2c+µ1γµ0−1 by induction. So

Fµ =


(−1)|µ|+12bµ0/2c+µ1(γµ0−1 − γµ0−2) if µ0 is even,

(−1)|µ|+12bµ0/2c+µ1(2γµ0−1 − γµ0−2) if µ0 is odd.
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Note that γj−1 − γj−2 = γj if j is even. Note also that 2γj−1 − γj−2 = γj if j is odd. So

Fµ = (−1)|µ|+12bµ0/2c+µ1γµ0 , which is what we need to show.

Now we examine the case when µ1 ≥ 2. Here we use Lemma 4.10 to see that Fµ +

2Fµ−(0,1) = 0, i.e., Fµ = −2Fµ+(0,−1). Note that µ + (0,−1) has a lower score than µ does,

so µ+(0,−1) ≺ µ. Thus we may apply our induction hypothesis to Fµ+(0,−1). Furthermore,

note that µ+(0,−1) is not (0, 0), since µ1 ≥ 2. Thus we have Fµ = −2(−1)|µ|2bµ0/2c+µ1−1γµ0

by induction. So Fµ = (−1)|µ|+12bµ0/2c+µ1γµ0 , which is what we need to show.

Finally, recall that for µ ∈ N[I], Ti (µ) = bµ0/2c + µ1 − 1 unless µ = (0, 0) or (1, 0).

Also recall that F(0,0) = 0. Thus v2(Fµ) ≥ Ti (µ) + 1 for µ 6= (1, 0).

Now we can truncate the Newton expansion in our theorem to obtain counting polyno-

mials.

Theorem 5.10. Let F : Z2
2 → Z be given by

F (r) =


0 if r0 + 2r1 ≡ 0 (mod 4),

1 if r0 + 2r1 ≡ 1, 3 (mod 4),

2 if r0 + 2r1 ≡ 2 (mod 4),

i.e., F (r) = leesec(π(r0), π(r1)) = lee(π(r0 + 2r1)). Then the polynomial f (1)(x) = x0 has

the property that f (1)(r) ≡ F (r) (mod 2) for all r ∈ Z2
2.

For each m ≥ 2, there exists a polynomial

f (m)(x) =
∑

µ∈N[I]
Ti(µ)<m−1

F (m)
µ

(
x
µ

)
, (5.3)

with all F
(m)
µ ∈ Z2, such that f (m)(r) ≡ F (r) (mod 2m) for all r ∈ Z2

2. Furthermore,

F
(m)
(0,0) = 0 and if µ 6= (0, 0) with Ti (µ) < m − 1, we have F

(m)
µ = (−1)|µ|+12bµ0/2c+µ1γµ0,
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where

γi =


1 if i ≡ −1, 0, 1 (mod 8),

0 if i ≡ 2, 6 (mod 8),

−1 if i ≡ 3, 4, 5 (mod 8).

We can write f (m)(x) =
∑

µ∈N[I]
Ti(µ)<m−1

f
(m)
µ xµ, with all f

(m)
µ ∈ Q2 and f(0,0) = 0. If µ is

critical with Ti (µ) = m− 2, then µ!fµ = (−1)|µ|+12m−1γµ0 and v2 (µ!fµ) = m− 1.

Proof. It is almost immediate that f (1)(x) = x0 approximates F modulo 2 on Z2. We prove

the rest of the theorem. Let m ≥ 2. Recall from the discussion at the end of Section 5.1

that F is (2, 2)-periodic. A (p, t)-periodic function is p-adically continuous, as noted in

Section 4.2. Therefore, the existence of the polynomial f (m) approximating F modulo 2m

is guaranteed by applying Theorem 5.9 and Lemma 4.6, with the set S in Lemma 4.6 equal

to the set {µ ∈ N[I] : Ti (µ) < m − 1}. (This set is finite because only finitely many µ

have a certain tier.) Indeed, the coefficient Fµ of our polynomial f is precisely the Newton

coefficient for the term
(
x
µ

)
in the Newton expansion of F . Since Theorem 5.9 tells us that

v2(Fµ) ≥ Ti (µ) + 1 (unless µ = (1, 0), which has tier 0), the set S includes all µ such that

v2(Fµ) < m, so that Lemma 4.6 is truly applicable.

We can expand out the terms
(
x
µ

)
in our expression (5.3) to obtain

f (m)(x) =
∑

µ∈N[I]
Ti(µ)<m−1

f (m)
µ xµ.

Note that
(
x
µ

)
has no constant term unless µ = (0, 0), so f

(m)
(0,0) = F

(m)
(0,0) = 0.

Suppose that ν ∈ N[I] is critical and of tier m− 2. We want to compute the coefficient

f
(m)
ν in terms of the coefficients F

(m)
µ . The only terms F

(m)
µ

(
x
µ

)
in the expansion (5.3) which

have the monomial xν are those with µ0 ≥ ν0 and µ1 ≥ ν1, with µ0 = 0 if ν0 = 0, and with

µ1 = 0 if ν1 = 0.

Thus, if ν is 0-critical, we need only consider terms F
(m)
µ

(
x
µ

)
in the expansion (5.3) with

µ = ν + (i, j) for some i, j ≥ 0. But because ν is 0-critical, ν + (i, j) will have tier strictly

higher than Ti (ν) = m − 2 unless (i, j) = (0, 0). So the only term in the expansion (5.3)
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we need to consider is F
(m)
ν

(
x
ν

)
.

Likewise, if ν is 1-critical, we need only consider terms F
(m)
µ

(
x
µ

)
in the expansion (5.3)

with µ = ν + (0, j) for some j ≥ 0. But because ν is 1-critical, ν + (0, j) will have tier

strictly higher than Ti (ν) = m − 2 unless j = 0. So the only term in the expansion (5.3)

we need to consider is F
(m)
ν

(
x
ν

)
.

In both cases, the coefficient f
(m)
ν of xν in f (m)(x) is 1

ν!F
(m)
ν . Thus we have ν!f (m)

ν =

(−1)|ν|+12m−1γν0 by what we already know about the coefficient F
(m)
ν . Note that if ν is

0-critical, then ν0 is odd, and if ν is 1-critical, then ν0 is zero. But v2 (γi) = 0 if i is odd or

zero, so if ν is critical, then v2

(
ν!f (m)

ν

)
= m− 1.

5.3 Lee Weights in Z/4Z[A]

Now we are almost ready to state and prove our theorem on Lee weights in Abelian codes

over Z/4Z. The reader should recall the definitions of Λss(C), ωss(C), and `ss(C) in (4.27),

(4.28), and (4.29). We begin with a calculation that 2-adically approximates Lee weights.

Proposition 5.11. Let C be a code in Z/4Z[A]. For each c ∈ C and i ∈ I, we let Ci be the

element of Z2[ζq′−1][A] such that C̃i = τ ◦ c̃i. Let m ≥ 2 and let f (m)(x) be the polynomial

described in Theorem 5.10. For any c ∈ C, we have

leenorm(c) ≡ |A|
∑

λ∈Λss(C)
Ti(λ)<m−1

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod pm),

where Λss(C) is as defined in (4.27) above. We always have leenorm(c) ≡ 0 (mod 2).

Proof. By Corollary 3.4, we have

leenorm
sec (c0, c1) ≡ |A|

∑
µ∈N[I]

µ!f (m)
µ

∑
λ∈N[I×A],prI λ=µ

Πλ=1A,prA λ6∈N[{1A}]
λ0∈N[S0],λ1∈N[S1]

1
λ!

∏
i∈I

C̃i(λi) (mod 2m).

By (5.2), the left-hand side becomes leenorm(c). We can restrict the sum over µ to those µ

with Ti (µ) < m − 1, since f
(m)
µ = 0 otherwise (by Theorem 5.10). The conditions on the
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inner sum, other than the condition prI λ = µ, are tantamount to saying that λ ∈ Λss(C).

Thus

leenorm(c) ≡ |A|
∑

µ∈N[I]
Ti(µ)<m−1

µ!f (m)
µ

∑
λ∈Λss(C)
prI λ=µ

1
λ!

∏
i∈I

C̃i(λi) (mod 2m)

≡ |A|
∑

µ∈N[I]
Ti(µ)<m−1

∑
λ∈Λss(C)
prI λ=µ

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod 2m),

and the condition λ = prI µ implies that λ and µ will always have the same score and tier,

so we can shift the condition on tier to the sum over λ. Thus

leenorm(c) ≡ |A|
∑

µ∈N[I]

∑
λ∈Λss(C)
prI λ=µ

Ti(λ)<m−1

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod 2m)

≡ |A|
∑

λ∈Λss(C)
Ti(λ)<m−1

(prI λ)!f (m)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod 2m),

which is what we were to show.

Now we approximate normalized Lee weight modulo 2. Here we use the polynomial

f (1)(x) = x0 = x(1,0) from Theorem 5.10. We apply Corollary 3.4 with this polynomial to

obtain

leenorm
sec (c0, c1) ≡ |A|

∑
µ∈N[I]

µ!f (1)
µ

∑
λ∈N[I×A],prI λ=µ

Πλ=1A,prA λ6∈N[{1A}]
λ0∈N[S0],λ1∈N[S1]

1
λ!

∏
i∈I

C̃i(λi) (mod 2).

As before, (5.2) shows that the left-hand side is leenorm(c). Now fµ = 0 unless µ = (1, 0),

so that we have

leenorm(c) ≡ |A|f (1)
(1,0)

∑
λ∈N[I×A],prI λ=(1,0)
Πλ=1A,prA λ6∈N[{1A}]

λ0∈N[S0],λ1∈N[S1]

1
λ!

∏
i∈I

C̃i(λi) (mod 2).

But now note that if prI λ = (1, 0), then |λ| = 1, and then λ cannot simultaneously be
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unity-product and not all-unity. So the sum on the right-hand side is empty, and we have

leenorm(c) ≡ 0 (mod 2).

Now we can prove our sharp lower bound on the 2-adic valuations of normalized Lee

weights of words of codes in Z/4Z[A].

Theorem 5.12. Let C be a code in Z/4Z[A]. With `ss(C) as defined in (4.29), we have

leenorm(c) ≡ 0 (mod 2`ss(C)+1) for all c ∈ C, and leenorm(c) 6≡ 0 (mod 2`ss(C)+2) for some

c ∈ C. More precisely, if f (`ss(C)+2)(x) is the polynomial described in Theorem 5.10, and if

we let Ci be the element of Z2[ζq′−1][A] such that C̃i = τ ◦ c̃i for each i ∈ I and c ∈ C, then

leenorm(c) ≡ |A|
∑

λ∈Λss(C)
Ti(λ)=`ss(C)

(prI λ)!f (`ss(C)+2)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod 2`ss(C)+2), (5.4)

and the expression on the right-hand side assumes values in 2`ss(C)+1Z2 for all c ∈ C, but

there is some c ∈ C such that this expression is not in 2`ss(C)+2Z2.

Proof. When `ss(C) = 0, the congruence zernorm(c) ≡ 0 (mod 2) for all c ∈ C comes imme-

diately from Proposition 5.11 above. If `ss(C) > 0, we use Proposition 5.11 above (setting

m = `ss(C) + 1) to obtain

leenorm(c) ≡ |A|
∑

λ∈Λss(C)
Ti(λ)<`ss(C)

(prI λ)!f (`ss(C)+1)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod 2`ss(C)+1),

where f (`ss(C)+1)(x) is the polynomial described in Theorem 5.10, and Λss(C) is as defined in

(4.27). But by the definition of `ss(C) as the minimum tier of any element in Λss(C), we see

that the sum on the right-hand side of this congruence is empty, thus proving leenorm(c) ≡ 0

(mod 2`ss(C)+1).

Now we prove that leenorm(c) is not always divisible by 2`ss(C)+2, along with the more

precise statements at the end of the statement of this theorem, including congruence (5.4).

In the rest of the proof, we return to considering `ss(C) arbitrary (possibly zero). We use
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Proposition 5.11 again, but this time with m = `ss(C) + 2, to get

leenorm(c) ≡ |A|
∑

λ∈Λss(C)
Ti(λ)=`ss(C)

(prI λ)!f (`ss(C)+2)
prI λ

λ!

∏
i∈I

C̃i(λi) (mod p`ss(C)+2),

with f (`ss(C)+2)(x) ∈ Q2[x] as described in Theorem 5.10. We have omitted to sum over λ

with Ti (λ) < `ss(C) since there are no such λ ∈ Λss(C) by the definition of `ss(C). This last

congruence is (5.4), which we were to show. Let

Y (c) = |A|
∑

λ∈Λss(C)
Ti(λ)=`ss(C)

(prI λ)!f (`ss(C)+2)
prI λ

λ!

∏
i∈I

C̃i(λi),

which is the right-hand side of (5.4). Note that the coefficients of f (`ss(C)+2)(x) are in Q2

(see Theorem 5.10), and note that C̃i(a) ∈ Z2[ζq′−1] for all i ∈ I and a ∈ A (because

C̃(a) ∈ Z2[ζq′−1] for all a ∈ A). Thus Y (c) ∈ Q2(ζq′−1). We shall show that Y (c) is actually

in the smaller field Q2. To do this, it suffices to show that it is fixed by Fr. We use the

Frobenius action FrA introduced in Section 2.7. By Lemma 2.30, we note that FrA restricted

to Λss(C) is a permutation of Λss(C). Furthermore, by the same lemma, we note that if

λ ∈ Λss(C), then prI FrA(λ) = prI λ. So FrA preserves score and tier. Thus FrA permutes

the set of λ ∈ Λss(C) with Ti (λ) = `ss(C). So we have

Y (c) = |A|
∑

λ∈Λss(C)
Ti(λ)=`ss(C)

(prI FrA(λ))!f (`ss(C)+2)
prI FrA(λ)

FrA(λ)!

∏
i∈I

C̃i([FrA(λ)]i).

By Lemma 2.30, we have prI FrA(λ) = prI λ, FrA(λ)! = λ!, and
∏

i∈I C̃i([FrA(λ)]i) =

Fr
(∏

i∈I C̃i(λi)
)
, so that

Y (c) = |A|
∑

λ∈Λss(C)
Ti(λ)=`ss(C)

(prI λ)!f (`ss(C)+2)
prI λ

λ!
Fr

(∏
i∈I

C̃i(λi)

)
.
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Since the coefficients of f (`ss(C)+2)(x) are in Q2 (see Theorem 5.10), we have

Y (c) = Fr

|A| ∑
λ∈Λss(C)

Ti(λ)=`ss(C)

(prI λ)!f (`ss(C)+2)
prI λ

λ!

∏
i∈I

C̃i(λi)


= Fr(Y (c)),

so that Y (c) ∈ Q2. We have already proved that leenorm(c) ≡ 0 (mod 2`ss(C)+1) for all c ∈ C.

Since leenorm(c) ≡ Y (c) (mod 2`ss(C)+2) (this is (5.4)), we know that Y (c) ∈ 2`ss(C)+1Z2 for

all c ∈ C. So to finish our proof, we must show that there is some c ∈ C such that

leenorm(c) ≡ Y (c) (mod 2`ss(C)+2) does not vanish modulo 2`ss(C)+2.

To prove this, we shall use the notions of collapse and reduction introduced in Section

2.6. Note that c̃i(a) is a zero or a power of π(ζq′−1) for all a ∈ A and i ∈ I, since c̃i is the

ith component of the canonical expansion of c̃. We let R be a set of p-class representatives

of A and apply Lemma 2.18 to (5.4) to obtain

leenorm(c) ≡ |A|
∑

λ∈Λss(C)
Ti(λ)=`ss(C)

(prI λ)!f (`ss(C)+2)
prI λ

λ!

∏
i∈I

C̃i(CoR(λi)) (mod 2`ss(C)+2).

If we define Λ` to be the set of elements of Λss(C) that are reduced and of tier `ss(C), we

have

leenorm(c) ≡ |A|
∑
λ∈Λ`

∑
µ∈Λss(C)

Ti(µ)=`ss(C)
Red(µ)=λ

(prI µ)!f (`ss(C)+2)
prI µ

µ!

∏
i∈I

C̃i(CoR(λi)) (mod 2`ss(C)+2),

since the reduction of any µ ∈ Λss(C) with Ti (µ) = `ss(C) is an element λ of Λ` by Lemma

4.14, and for such a µ, we have CoR(µi) = CoR(λi) for i ∈ I by Lemma 2.24. For each

λ ∈ Λ`, set

Bλ = |A|
∑

µ∈Λss(C),Ti(µ)=`ss(C)
Red(µ)=λ

(prI µ)!f (`ss(C)+2)
prI µ

µ!
, (5.5)
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which is an element of Q2 since the coefficients f
(`ss(C)+2)
µ are in Q2. Then

leenorm(c) ≡
∑
λ∈Λ`

Bλ

∏
i∈I

C̃i(CoR(λi)) (mod 2`ss(C)+2). (5.6)

Note that the right-hand side of (5.6) is a Q2-linear combination of terms of the form

Dλ =
∏
i∈I

∏
r∈R∩Si

C̃i(r)(CoR(λi))r , (5.7)

where we have restricted the second product of (5.7) to R ∩ Si in view Lemma 2.17 and

the fact that λi ∈ N[Si] for all λ ∈ Λss(C). Note that no two terms Dλ and Dλ′ with

λ, λ′ ∈ Λ` have exactly the same exponents for all the terms C̃i(r), since that would imply

that CoR(λi) = CoR(λ′i) for all i, which would force λ = λ′, since λ and λ′ are reduced (see

Corollary 2.22). Also note that the exponent (CoR(λi))r of C̃i(r) in Dλ is less than 2er by

the definition of CoR. (Recall that er denotes the cardinality of the 2-class of r in A.) As we

vary c over all words in C, Lemma 2.14 tells us that the values in {C̃i(r) : i ∈ I, r ∈ R∩Si}

vary over
∏

i∈I

∏
r∈R∩Si

Vi,r, where Vi,r is the set containing 0 and all the powers of ζ2er−1.

Since no two elements of Vi,r are equal to each other modulo 2, and since |Vi,r| = 2er , which

is strictly greater than the highest exponent of C̃i(r) appearing in any term (5.7) of (5.6), we

may apply Lemma 2.33 to conclude that the minimum of the 2-adic valuations of codeword

weights in C is precisely the minimum of the 2-adic valuations of the coefficients Bλ as λ

runs over Λ`. So the first half of the theorem tells us that all such coefficients have 2-adic

valuation at least `ss(C) + 1. We shall show that one such coefficient has 2-adic valuation

precisely `ss(C) + 1; this will complete our proof.

We now wish to use Lemma 4.15, which provides facts about elements of tier `ss
mc(C)

in Λss
mc(C). Since p = 2, we have Λss

mc(C) = Λss(C) (compare the definitions in (4.19)

and (4.27)), and so `ss
mc(C) = `ss(C) (compare the definitions in (4.21) and (4.29) or see

Proposition 4.22). Thus Lemma 4.15 is applicable here, and tells us that there exists a

critical κ ∈ Λ` such that there is no µ ∈ Λss(C) with µ 6= κ, Ti (µ) = `ss(C), and Red(µ) = κ.
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Thus the coefficient Bκ, as defined in (5.5), is just

Bκ = |A|
(prI κ)!f (`ss(C)+2)

prI κ

κ!
.

Since κ is reduced, we have κi,a < 2 for all i ∈ I and a ∈ A by definition, so the denominator

of the fraction is 1. Since |A| is coprime to 2, we have

v2 (Bκ) = v2

(
(prI κ)!f (`ss(C)+2)

prI κ

)
.

Since κ is critical and Ti (κ) = `ss(C), this means that prI κ ∈ N[I] is critical and of

tier `ss(C), so that Theorem 5.10 tells us that v2

(
(prI κ)!f (`ss(C)+2)

prI κ

)
= `ss(C) + 1. This

completes our proof that there is some word c ∈ C with leenorm(c) 6≡ 0 (mod 2`ss(C)+2).
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Chapter 6

Zero Counts and Hamming
Weights in GR(pd, e)[A]

In this chapter, we investigate the p-adic behavior of zero counts and Hamming weights in

Abelian codes over arbitrary Galois rings. The main result of this chapter is Theorem 6.12,

which was presented (in a specialized form) in the Introduction as Theorem 1.10. We recall

the specialized version here:

Theorem 6.1 (Theorem 6.12, specialized). Let C be a code in GR(pd, e)[A] with 1A

not in the support of the Fourier transform of C. Then zer(c) ≡ |A| (mod p`mc(C)) for all

c ∈ C, or equivalently, ham(c) ≡ 0 (mod p`mc(C)) for all c ∈ C.

In order to understand this theorem, one must understand the definition of `mc(C) given

in Section 1.1 of the Introduction. There we defined `mc(C) using unity-product sequences

that consisted of elements in the support of the Fourier transform of the code, along with

the pth powers of such elements. In this chapter, we shall define `mc(C) equivalently using

multisets rather than sequences. In the special case where e = 1, we shall recover the

multiset-based definition of `mc(C) given in (4.32) of Chapter 4. For arbitrary e, the con-

struction that gives `mc(C) is somewhat more complicated. As always, the reader must be

familiar with the definitions and notations for accounts in Section 2.5 to understand our

presentation of such matters.

To prove the above theorem, we shall devise counting polynomials that will enable us

to use Corollary 3.3 to p-adically approximate zero counts of words in Abelian codes over

an arbitrary Galois ring GR(pd, e). Looking at Corollary 3.3, we can see that we need, for
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each m ≥ 1, a polynomial f (m)(x0, x1, . . . , xe−1) ∈ Qp(ζq−1)[x0, x1, . . . , xe−1] such that

f (m)(r, Fr(r), . . . ,Fre−1(r)) ≡


1 (mod pm) if r ≡ 0 (mod pd),

0 (mod pm) otherwise,
(6.1)

for all r ∈ Zp[ζq−1]. The first three sections (6.1–6.3) of this chapter will be dedicated to the

construction of such polynomials. In Section 6.4, we shall employ them to prove Theorem

6.12 (the more precise version of Theorem 6.1 above). In Section 6.5, we compare our

results with previous work. Since we are not aware of any prior generalization of McEliece’s

theorem to codes over arbitrary Galois rings, we consider the special cases d = 1 (codes

over Fq) and e = 1 (codes over Z/pdZ) and compare with existing results in these scenarios.

Our starting point for the counting polynomial construction is Corollary 4.13 to Theorem

4.12, whose relevant contents we repeat here:

Proposition 6.2 (part of Corollary 4.13). Let t, m ≥ 1 and set dt,m = [m(p − 1) +

1]pt−1 − 1. Then there exists a polynomial

g(t,m)(x) =
∑

0≤n≤dt,m

p−1|n

g(t,m)
n xn

of degree dt,m in Qp[x] such that

g(t,m)(r) ≡


1 (mod pm) if r ≡ 0 (mod pt),

0 (mod pm) otherwise,

for all r ∈ Zp. Furthermore, dt,m!g(t,m)
dt,m

≡ (−p)m−1 (mod pm).

So g(t,m) approximates uniformly modulo pm the characteristic function of the ideal ptZp

in the ring Zp. However, the polynomial f (m) that we seek (see (6.1)) must approximate

the characteristic function of the ideal pdZp[ζq−1] in the ring Zp[ζq−1]. So we need to adapt

the polynomials g(t,m) to work on this larger domain. The basic insight is to apply the trace

to elements of Zp[ζq−1] to obtain elements of Zp, and then apply the polynomials g(t,m) to
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the resulting elements in Zp. However, this path is fraught with technical difficulties, which

we shall now examine and overcome.

Before moving on, we fix some common notations. Throughout this chapter, x will

denote the list x0, . . . , xe−1 of indeterminates and Tr will stand for Tre
1. Recall from Sec-

tion 2.5 that H = {0, 1, . . . , e− 1}. We identify accounts in N[H] with e-tuples of integers:

µ ∈ N[H] is identified with the e-tuple (µ0, . . . , µe−1). Thus the notation xµ is shorthand for

xµ0
0 xµ1

1 . . . x
µe−1

e−1 as described in Section 2.8. Also recall from Section 2.5 the compact nota-

tion that if µ ∈ N[H] and a ∈ Qp(ζq′−1) or a ∈ GR(pd, ee′), then Frµ(a) =
∏

h∈H

(
Frh(a)

)µh .

6.1 Trace and the p-Adic Valuation

The main difficulty with the trace function is that it does not preserve p-adic valuation.

That is, for any t ≥ 1, we can have a ∈ Zp[ζq−1] with a 6≡ 0 (mod pt) but with Tr(a) ≡ 0

(mod pt). This can be seen by taking some a = π1(ζq−1)k ∈ Fq such that Tr(a) = 0

and setting b = ζk
q−1. Then commutativity of Tr with π1 shows that Tr(b) ≡ 0 (mod p).

Thus Tr(pt−1b) = pt−1 Tr(b) ≡ 0 (mod pt), even though pt−1b 6≡ 0 (mod pt). In doing this

exercise, we should have noted that trace does respect p-adic valuation in a certain sense:

it never decreases p-adic valuation, for Tr(ptr) = pt Tr(r).

We could exploit this property by setting Rt to be a set of representatives of the equiva-

lence classes modulo pt in Zp[ζq−1] and considering the average |Rt|−1∑
r∈Rt

g(t,m)(Tr(rx)).

If a ∈ Zp[ζq−1] with a = pvp(a)u, and we vary r over Rt, the value ru should run through

a set of representatives of equivalence classes modulo pt in Zp[ζq−1]. Thus, by the commu-

tativity of πt with Tr, the values Tr(ru) (mod pt) should always run through the same set

in Z/ptZ as r runs through Rt, regardless of the exact value of the unit u. Therefore, since

Tr(ra) = pvp(a) Tr(ru), the values of Tr(ra) (mod pt) should vary over a subset of Z/ptZ

that depends only on vp (a). Because the value modulo pm of g(t,m)(s) is sensitive only

to the congruence class modulo pt of s ∈ Zp, this means that |Rt|−1∑
r∈Rt

g(t,m)(Tr(ra))

should depend only on the p-adic valuation of a. This sketch has given the essence of the

procedure, but it is not perfect in all details. It can be improved upon by replacing the

set Rt with a smaller set of elements that nonetheless still have enough “p-adic uniformity”
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to give a viable averaging procedure. The motivation for this substitution is that we can

divide by fewer powers of p when we perform the averaging, thus minimizing the loss of

p-adic accuracy of the final averaged function.

To set up our averaging procedure, which we call trace-averaging, we need precise ver-

sions of all the ideas in the previous paragraph. In particular, we must compute how

many of the elements of GR(pt, e) with a given valuation k are taken by trace to 0. So for

k ∈ {0, 1, . . . , t− 1,∞}, we define

ηt
k =

∣∣{r ∈ GR(pt, e) : vp (r) = k, Tr(r) = 0}
∣∣

|{r ∈ GR(pt, e) : vp (r) = k}|
. (6.2)

We want to compute these fractions. Their values are given in Lemma 6.4 below, which is

the goal of this section.

Recall that Tr(a) =
∑e−1

h=0 Frh(a) and that Tr is a Z/ptZ-linear map from GR(pt, e) to

Z/ptZ. Tr : GR(pt, e) → Z/ptZ is also surjective because Tr: Zp[ζq−1] → Zp is surjective

and Tr commutes with πt. This leads to a simple result, which will help in our proof of

Lemma 6.4.

Lemma 6.3. Let t ≥ 1. For each a ∈ GR(pt, e), there is some b ∈ GR(pt, e) with a ≡ b

(mod p) and Tr(b) ∈ {0, 1, . . . , p− 1}.

Proof. Let a ∈ GR(pd, e) and let u ∈ {0, 1, . . . , p − 1} ⊆ Z/ptZ with u ≡ Tr(a) (mod p).

Then choose v ∈ Z/ptZ with Tr(a) − u = pv, and choose w ∈ GR(pt, e) with Tr(w) = v.

Set b = a− pw and note that Tr(b) = Tr(a)− p Tr(w) = Tr(a)− pv = u.

Using this lemma, we construct a set U of representatives of equivalence classes modulo

p in GR(pt, e) such that Tr(u) ∈ {0, 1, . . . , p − 1} for each u ∈ U . We insist that 0 be the

representative in U for the class pGR(pt, e). We also define a set V = {u ∈ U : Tr(u) = 0},

and we note that 0 ∈ V . For the rest of this section, U and V will denote these sets.

Since U is a set of representatives of equivalence classes modulo p in GR(pt, e), we have

|U | = q, and each element of a ∈ GR(pt, e) can be written uniquely as
∑t−1

i=0 aip
i, with each

ai ∈ U . By the commutativity of π1 with Tr, the number of elements in U that are mapped

by trace into p
(
Z/ptZ

)
is the same as the number of elements in Fq that are mapped by
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trace to 0, i.e., q/p. So |V | = q/p. Now we are ready to calculate the fractions ηt
k.

Lemma 6.4. Let t ≥ 1. For 0 ≤ k < t, we have

∣∣{r ∈ GR(pt, e) : vp (r) = k}
∣∣ = (q − 1)qt−1−k

and ∣∣{r ∈ GR(pt, e) : vp (r) = k, Tr(r) = 0}
∣∣ = (q

p
− 1
)(

q

p

)t−1−k

.

Thus, with ηt
k as defined in (6.2), we have

ηt
k =

(
q − p

q − 1

)
p−t+k.

Furthermore, ηt
∞ = 1.

Proof. Since 0 is the only element of GR(pt, e) with infinite valuation, clearly ηt
∞ = 1.

So henceforth we assume that k is a nonnegative integer less than t. As noted above,

each element r ∈ GR(pt, e) can be written uniquely as
∑t−1

i=0 rip
i, with each ri ∈ U . The

valuation of this element is k if and only if r0 = · · · = rk−1 = 0 and rk 6= 0. Since |U | = q,

this means that
∣∣{r ∈ GR(pt, e) : vp (r) = k}

∣∣ = (q − 1)qt−1−k. The trace of this element r

is Tr(r) =
∑t−1

i=0 pi Tr(ri). Since Tr(u) ∈ {0, 1, . . . , p− 1} for all u ∈ U , we see that the last

expression is simply the p-ary expansion of r. Thus, Tr(r) = 0 if and only if Tr(ri) = 0 for

all i, i.e., if and only if ri ∈ V for all i. Thus, the elements r ∈ GR(pt, e) with vp (r) = k

and Tr(r) = 0 are those with r0 = · · · = rk−1 = 0, rk ∈ V r {0}, and rk+1, . . . , rt−1 ∈ V .

So
∣∣{r ∈ GR(pt, e) : vp (r) = k}

∣∣ =
(

q
p − 1

)(
q
p

)t−1−k
. Then the value we claimed for ηt

k

follows.

This lemma shows us that although trace does not preserve the p-adic valuation, the

probability that an element a ∈ GR(pt, e) has Tr(a) = 0 increases as vp (a) increases.
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6.2 Trace-Averaged Characteristic Functions

Now we devise the averaging procedure that we sketched at the beginning of Section 6.1.

It will be simpler at first to consider the effects of this averaging on the exact characteristic

function of the ideal ptZp in Zp, rather than on the polynomial approximations thereto.

Lemma 6.5. Let t ≥ 1 and suppose that Ft : Zp → {0, 1} is the characteristic function of

ptZp in Zp. Let R be a set of representatives of equivalence classes modulo pt in Zp[ζq−1]×.

Define F †
t : Zp[ζq−1]→ Z by F †

t (x) =
∑

r∈R Ft(Tr(rx)). Then

F †
t (a) =


pvp(a)

(
q
p − 1

)(
q
p

)t−1
if vp (a) < t,

(q − 1)qt−1 if vp (a) ≥ t,

for any a ∈ Zp[ζq−1]. Thus F †
t , as defined here, is independent of the choice of the set R.

Proof. Let a ∈ Zp[ζq−1]. First let us consider the case when vp (a) ≥ t. Then vp (ra) ≥ t

for all r ∈ R, so vp (Tr(ra)) ≥ t for all r ∈ R. So Ft(Tr(ra)) = 1 for all r ∈ R, and

so F †
t (a) = |R|. Since R is a set of representatives of equivalence classes modulo pt in

Zp[ζq−1]×, the cardinality of R is equal to the number of elements of GR(pt, e) that do not

vanish modulo p. So by Lemma 6.4, |R| = (q − 1)qt−1.

Now let us consider the case when vp (a) < t. Write a = pkb with b ∈ Zp[ζq−1]×. As r

runs through R, the value πt(r) runs through the units of GR(pt, e), and so πt(rb) also runs

through the units of GR(pt, e). We employ canonical expansions of elements of GR(pt, e) to

see that if πt(rb) has canonical expansion u0 + pu1 + · · ·+ pt−1ui, then πt(ra) has canonical

expansion pku0+pk+1u1+ · · ·+pt−1ut−1−k. That is, the value of πt(ra) depends only on the

equivalence class modulo pt−k of πt(rb). As r runs through R, we see that πt−k(rb) ranges

over the units of GR(pt−k, e), taking each value an equal number of times. Thus, as r runs

through R, the value πt(ra) ranges over {s ∈ GR(pt, e) : vp (s) = k}, taking each value in

this set an equal number of times. Therefore, as r runs through R, Tr(πt(ra)) must achieve

the value 0 precisely ηt
k|R| times. Since Tr commutes with πt, this means that Tr(ra) ≡ 0
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(mod pt) for precisely ηt
k|R| values of r in R. So

F †
t (a) = ηt

k|R|

=
(

q − p

q − 1

)
p−t+k(q − 1)qt−1

= pk

(
q

p
− 1
)(

q

p

)t−1

.

We now have a function F †
t : Zp[ζq−1]→ Z that is sensitive to the p-adic valuation of its

argument, but not to the specific equivalence class modulo pt in which its argument lies. We

now make linear combinations of the functions F †
t for various t to produce the characteristic

function of the ideal ptZp[ζq−1] in Zp[ζq−1].

Lemma 6.6. For each t ≥ 1, let F †
t : Zp[ζq−1] → Z be as defined in Lemma 6.5. Define

G : Zp[ζq−1]→ Z by

G(x) =
p

(p− 1)qd

[
F †

d (x)−
(

q

p
− 1
)(

1 +
d−1∑
i=1

F †
i (x)

)]
.

Then G is the characteristic function of pdZp[ζq−1] in Zp[ζq−1].

Proof. First, let us suppose that a ∈ pdZp[ζq−1]. Then using the definition of G and the

values of F †
i (a) from Lemma 6.5 above, we have

G(a) =
p

(p− 1)qd

[
F †

d (a)−
(

q

p
− 1
)(

1 +
d−1∑
i=1

F †
i (a)

)]

=
p

(p− 1)qd

[
(q − 1)qd−1 −

(
q

p
− 1
)(

1 +
d−1∑
i=1

(q − 1)qi−1

)]

=
p

(p− 1)qd

[
(q − 1)qd−1 −

(
q

p
− 1
)

qd−1

]
= 1.

On the other hand, suppose that b ∈ Zp[ζq−1] with vp (b) < d. Set k = vp (b). Then by
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the definition of G, we have

G(b) =
p

(p− 1)qd

[
F †

d (b)−
(

q

p
− 1
)(

1 +
d−1∑
i=1

F †
i (b)

)]
. (6.3)

Using the values of F †
i (b) given in Lemma 6.5, we have

1 +
k∑

i=1

F †
i (b) = 1 +

k∑
i=1

(q − 1)qi−1

= qk

and

d−1∑
i=k+1

F †
i (b) =

d−1∑
i=k+1

pk

(
q

p
− 1
)(

q

p

)i−1

= pk

[(
q

p

)d−1

−
(

q

p

)k
]

= pk

(
q

p

)d−1

− qk,

and so (
q

p
− 1
)(

1 +
d−1∑
i=1

F †
i (b)

)
= pk

(
q

p
− 1
)(

q

p

)d−1

.

By Lemma 6.5, this is equal to F †
d (b). So (6.3) tells us that G(b) = 0 in this case.

At this point, we could use the averaging technique in the lemma we just proved to

obtain a polynomial-based approximation to the characteristic function G of pdZp[ζq−1] in

Zp[ζq−1]. For G is seen to be a linear combination of the functions F †
i (as defined in Lemma

6.5), and each F †
i is an averaged version of the characteristic function Fi of the ideal piZp in

Zp. Since the polynomial g(i,m) of Proposition 6.2 approximates Fi uniformly modulo pm on

Zp, we could perform the same averaging technique on g(i,m) to obtain a function G(i,m) that

approximates F †
i uniformly modulo pm on Zp[ζq−1]. In fact, to obtain an approximation

modulo pm of G, we should have an approximation modulo pm+de−1 of each F †
i , since we

multiply each F †
i by a coefficient with p-adic valuation −de+1 to get the linear combination
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that equals G. (See the lemma above for these coefficients.) Thus, we would start with the

polynomials g(i,m−1+de)(x) for i = 1, . . . , d. So we would need to work with polynomials

of degree as high as [(m − 1 + de)(p − 1) + 1]pd−1 − 1 (the degree of g(d,m−1+de)) in this

procedure.

We would like to keep the degrees of the polynomials we use as low as possible to

keep the calculations with Corollary 3.3 as simple as possible. If we devise an averaging

procedure more carefully, we can arrange so that we do not need to divide by so many

powers of p in our calculations, thus allowing us to start with less p-adically accurate

(hence lower degree) polynomial approximations. We shall still average a function f(x) by

taking
∑

r∈R f(Tr(rx)) for some set R of units in Zp[ζq−1], but we shall not always use an

entire set of representatives of the equivalence classes modulo pt in Zp[ζq−1]×.

Here we define the sets used in our averaging construction; these definitions will remain

in force for the rest of this chapter. For each positive t, let GR(pt, e)≡1 be the subgroup

of GR(pt, e)× consisting of all elements that are congruent to 1 modulo p. Since Z/ptZ ⊆

GR(pt, e), we have (Z/ptZ)× ⊆ GR(pt, e)×, and so (Z/ptZ)≡1 is a subgroup of GR(pt, e)≡1.

Let GR(pt, e)] be a set of representatives of equivalence classes modulo (Z/ptZ)≡1 in the

group GR(pt, e)≡1, where we insist that 1 ∈ GR(pt, e)]. Note that if t = 1, then Z/ptZ = Fp,

GR(pt, e) = Fq, and so (Z/ptZ)≡1 = GR(pt, e)≡1 = {1}, and thus GR(pt, e)] = {1}. Also

note that if e = 1, then GR(pt, e) = Z/ptZ, and so GR(pt, e)≡1 = (Z/ptZ)≡1, and thus

GR(pt, e)] = {1}. Now we lift our sets to subsets of Zp[ζq−1]× with the Teichmüller lift.

Let Ut = τ
(
(Z/ptZ)≡1

)
and Vt = τ

(
GR(pt, e)]

)
. Since τ lifts elements of Z/ptZ into Zp,

we have Ut ⊆ Zp
×. Furthermore, if t = 1 or e = 1, we have Vt = {τ(1)} = {1}. Let

Wt = {uζj
q−1v : u ∈ Ut, 0 ≤ j < q − 1, v ∈ Vt}.

Each element in GR(pt, e)× can be represented uniquely as a product of a power of

πt(ζq−1) and an element in GR(pt, e)≡1. Each element in GR(pt, e)≡1 can be represented

uniquely as a product of an element in (Z/ptZ)≡1 and an element in GR(pt, e)]. Therefore,

each element of GR(pt, e)× can be represented uniquely as a product u
(
πt(ζq−1)j

)
v with

u ∈ (Z/ptZ)≡1, 0 ≤ j < q − 1, and v ∈ GR(pt, e)]. Thus, πt(Wt) = GR(pt, e)×, and Wt

is a set of representatives of the equivalence classes modulo pt in Zp[ζq−1]×. Now we can
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describe our improved averaging procedure.

Lemma 6.7. Let t ≥ 1 and let Ft : Zp → {0, 1} be the characteristic function of ptZp in

Zp. Let F †
t be as defined in Lemma 6.5. Let Vt be as defined above in this section. Define

F ∗
t : Zp[ζq−1]→ Z by F ∗

t (x) =
∑q−2

j=0

∑
v∈Vt

Ft(Tr(ζj
q−1vx)). Then F ∗

t (x) = p−t+1F †
t (x).

Proof. Use Wt as the set R of representatives of equivalence classes modulo pt in Zp[ζq−1]×

in Lemma 6.5 to get

F †(x) =
∑

w∈Wt

Ft(Tr(wx))

=
∑
u∈Ut

q−2∑
j=0

∑
v∈Vt

Ft

(
Tr
(
uζj

q−1vx
))

.

Note that Ut ⊆ Zp
× and Tr is Zp-linear. Also note that Ft(ux) = Ft(x) for any u ∈ Ut

because Ft is the characteristic function of the ideal pt in Zp. Thus

F †(x) =
∑
u∈Ut

q−2∑
j=0

∑
v∈Vt

Ft

(
u Tr

(
ζj
q−1vx

))

=
∑
u∈Ut

q−2∑
j=0

∑
v∈Vt

Ft

(
Tr
(
ζj
q−1vx

))
= |Ut|F ∗(x),

and note that |Ut| =
∣∣(Z/ptZ)≡1

∣∣ = pt−1 to finish the proof.

Now we linearly combine the functions F ∗
i to obtain the characteristic function of

pdZp[ζq−1] in Zp[ζq−1].

Lemma 6.8. For each t ≥ 1, let F ∗
t : Zp[ζq−1] → Z be as defined in Lemma 6.7. Define

J : Zp[ζq−1]→ Z by

J(x) =
pd

(p− 1)qd

[
F ∗

d (x)−
(

q

p
− 1
)(

p−d+1 +
d−1∑
i=1

p−d+iF ∗
i (x)

)]
.

Then J is the characteristic function of pdZp[ζq−1] in Zp[ζq−1].
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Proof. For each t ≥ 1, we define F †
t : Zp[ζq−1]→ Z as in Lemma 6.5. Then Lemma 6.6 tells

us that

G(x) =
p

(p− 1)qd

[
F †

d (x)−
(

q

p
− 1
)(

1 +
d−1∑
i=1

F †
i (x)

)]

is the characteristic function of pdZp[ζq−1] in Zp[ζq−1]. Now Lemma 6.7 tells us that F †
t (x) =

pt−1F ∗
t (x) for each t ≥ 1, so that

G(x) =
p

(p− 1)qd

[
pd−1F ∗

d (x)−
(

q

p
− 1
)(

1 +
d−1∑
i=1

pi−1F ∗
i (x)

)]

=
pd

(p− 1)qd

[
F ∗

d (x)−
(

q

p
− 1
)(

p−d+1 +
d−1∑
i=1

p−d+iF ∗
i (x)

)]

= J(x),

which is what we were to show.

This lemma provides an archetype for the polynomial approximations that will be de-

vised in the next section.

6.3 Trace-Averaged Counting Polynomials

Now we shall apply our averaging procedures to polynomials. If we were to apply one of our

averaging procedures (like those used in Lemma 6.5 or Lemma 6.7) directly to a polynomial,

we would obtain a polynomial function of the terms
{
Frh(x) : h ∈ H

}
. In general, such

functions need not be polynomials in x. For example, f(x) = Fr(x) − x vanishes on all of

Zp, but not on all of Zp[ζq−1], so it cannot be a polynomial in Qp(ζq−1)[x]. Although we

could proceed with the larger class of “polynomials with automorphisms applied to their

indeterminates,” we prefer to work with polynomials in the usual sense. Therefore, we

shall define a slightly different averaging procedure that takes single-variable polynomials

to multivariable polynomials.

If f(x) ∈ Qp[x] and t ≥ 1, we define the t-trace-average of f(x), denoted Ttf(x), to be
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the multivariable polynomial in Qp(ζq−1)[x] given by

Ttf(x0, . . . , xe−1) =
q−2∑
j=0

∑
v∈Vt

f

(∑
h∈H

Frh(ζj
q−1v)xh

)
.

These polynomials are designed to be evaluated at elements of Zp[ζq−1]e that are equal to

(a,Fr(a), . . . ,Fre−1(a)) for some a ∈ Zp[ζq−1], since

Ttf(a,Fr(a), . . . ,Fre−1(a)) =
q−2∑
j=0

∑
v∈Vt

f
(
Tr(ζj

q−1va)
)

(6.4)

for all a ∈ Zp[ζq−1]. The next lemma investigates how t-trace-averaging affects a polyno-

mial. The reader should recall the material from Section 2.5 on multisets, including the

definition of a Delsarte-McEliece multiset. The reader should also recall the compact nota-

tions introduced there, some of which were reviewed at the beginning of this chapter (just

prior to Section 6.1).

Lemma 6.9. Suppose that t ≥ 1 and f(x) =
∑n

i=0 fix
i is a polynomial in Qp[x] of degree

n. For each µ ∈ N[H], set ρt,µ =
∑

v∈Vt
Frµ(v). Then for all t, e ≥ 1, we have

Ttf(x) = (q − 1)
n∑

i=0

i!fi

∑
µ∈N[H]

Σµ=0,|µ|=i

ρt,µ

µ!
xµ. (6.5)

Thus Ttf(x) is of degree at most n. If t = 1 or e = 1, then ρt,µ = 1 for all µ ∈ N[H], and

so we have

Ttf(x) = (q − 1)
n∑

i=0

i!fi

∑
µ∈N[H]

Σµ=0,|µ|=i

xµ

µ!
.

Proof. Since Tt is Qp-linear, it suffices to consider f(x) = xn. Then we have

Ttf(x) =
q−2∑
j=0

∑
v∈Vt

(∑
h∈H

Frh(ζj
q−1v)xh

)n

=
q−2∑
j=0

∑
v∈Vt

∑
h1,...,hn∈H

n∏
i=1

Frhi(ζj
q−1v)xhi

.
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We want to sum over multisets of elements in H rather than sequences. Recall that if

µ ∈ N[H], there are |µ|!
µ! distinct ways of arranging the elements of µ into a sequence of |µ|

terms. Thus, we have

Ttf(x) =
q−2∑
j=0

∑
v∈Vt

∑
µ∈N[H]
|µ|=n

|µ|!
µ!

∏
h∈H

(
Frh(ζj

q−1v)xh

)µh

=
q−2∑
j=0

∑
v∈Vt

∑
µ∈N[H]
|µ|=n

n!
µ!

Frµ(ζj
q−1)Frµ(v)xµ

= n!
∑

µ∈N[H]
|µ|=n

1
µ!

xµ
∑
v∈Vt

Frµ(v)
q−2∑
j=0

Frµ(ζj
q−1),

and so, using the definition of ρt,µ given in the statement of the lemma, we have

Ttf(x) = n!
∑

µ∈N[H]
|µ|=n

ρt,µ

µ!
xµ

q−2∑
j=0

Frµ(ζj
q−1). (6.6)

Let us examine the last sum in our last expression, i.e.,

q−2∑
j=0

Frµ(ζj
q−1) =

q−2∑
j=0

∏
h∈H

Frh(ζj
q−1)

µh

=
q−2∑
j=0

∏
h∈H

ζjphµh
q−1

=
q−2∑
j=0

ζ
j
∑

h∈H phµh

q−1 .

This sum will be zero unless
∑

h∈H phµh ≡ 0 (mod q−1), i.e., unless Σµ = 0, in which case

the sum is q − 1. So, returning to (6.6), we have

Ttf(x) = (q − 1)n!
∑

µN[H]
Σµ=0,|µ|=n

ρt,µ

µ!
xµ.

Thus (6.5) holds for any monomial f(x) = xn, and so, by Qp-linearity, for any polynomial.



160

If µ ∈ N[H], the degree of xµ is |µ|, so the degree of the polynomial Ttf(x) is not higher

than the degree of f(x). Furthermore, if t = 1 or e = 1, then Vt = {1}, so that ρt,µ = 1 for

all µ ∈ N[H].

Now we are ready to construct a polynomial approximating the characteristic function

of the ideal pdZp[ζq−1] in Zp[ζq−1].

Proposition 6.10. Let m ≥ 1. For each t, n ≥ 1, let g(t,n) be the polynomial described in

Proposition 6.2. For each t ∈ {1, 2, . . . , d}, set G(t,m)(x) = Ttg
(t,m+ed−t)(x). Let

f (m)(x) =
pd

(p− 1)qd

[
G(d,m)(x)−

(
q

p
− 1
)(

p−d+1 +
d−1∑
i=1

p−d+iG(i,m)(x)

)]
.

Then

f (m)(a,Fr(a), . . . ,Fre−1(a)) ≡


1 (mod pm) if a ≡ 0 (mod pd),

0 (mod pm) otherwise,

for all a ∈ Zp[ζq−1]. Let dm = [(m + (e− 1)d)(p− 1) + 1]pd−1 − 1. We can write

f (m) =
∑

µ∈N[H]
Σµ=0,|µ|≤dm

f (m)
µ xµ,

where all the coefficients f
(m)
µ are in Qp(ζq−1). Thus, the degree of f (m) is at most dm.

Proof. Proposition 6.2 says that g(t,m+ed−t) approximates uniformly modulo pm+ed−t the

characteristic function of the ideal ptZp in Zp. We call this characteristic function Ft, as in

Lemma 6.7. We shall show that G(t,m), the averaged version of g(t,m+ed−t), approximates

the function F ∗
t defined in Lemma 6.7. By (6.4), we have

G(t,m)(a,Fr(a), . . . ,Fre−1(a)) =
q−2∑
j=0

∑
v∈Vt

g(t,m+ed−t)(Tr(ζj
q−1va))

≡
q−2∑
j=0

∑
v∈Vt

Ft(Tr(ζj
q−1va)) (mod pm+ed−t)

≡ F ∗
t (a) (mod pm+ed−t)
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for each a ∈ Zp[ζq−1]. Thus

pd

(p− 1)qd
G(d,m)(a,Fr(a), . . . ,Fre−1(a)) ≡ pd

(p− 1)qd
F ∗

d (a) (mod pm) (6.7)

for all a ∈ Zp[ζq−1], and for each i ∈ {1, 2, . . . , d− 1}, we have

− pd

(p− 1)qd

(
q

p
− 1
)

p−d+iG(i,m)(a,Fr(a), . . . ,Fre−1(a))

≡ − pd

(p− 1)qd

(
q

p
− 1
)

p−d+iF ∗
i (a) (mod pm). (6.8)

Now add congruence (6.7) and all the congruences (6.8) for i = 1, 2, . . . , d−1, and then add

the constant − pd

(p−1)qd

(
q
p − 1

)
p−d+1 to both sides of the resulting congruence to obtain

f (m)(a,Fr(a), . . . ,Fre−1(a))

≡ pd

(p− 1)qd

[
F ∗

d (a)−
(

q

p
− 1
)(

p−d+1 +
d−1∑
i=1

p−d+iF ∗
i (a)

)]
(mod pm)

for all a ∈ Zp[ζq−1]. By Lemma 6.8, the right-hand side of this congruence is J(a), where J

is the characteristic function of pdZp[ζq−1] in Zp[ζq−1] . This proves that f (m)(x) takes the

values (modulo pm) we claimed on all of Zp[ζq−1].

Lemma 6.9 shows us that for each i ∈ {1, 2, . . . , d}, we may write the polynomial

G(i,m)(x) =
∑

µ∈Bi,m
G

(i,m)
µ xµ, where Bi,m is the set of all Delsarte-McEliece multisets µ ∈

N[H] such that |µ| is less than or equal to the degree [(m+ed−i)(p−1)+1]pi−1−1 of the poly-

nomial g(i,m+ed−i). We claim that the maximum of these degrees is the degree of g(d,m+ed−d),

i.e., [(m+(e−1)d)(p−1)+1]pd−1−1, which is the value dm defined in the statement of this

proposition. We prove our claim by showing that N(i) = [(m + ed− i)(p− 1) + 1]pi−1 − 1
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is an increasing function of i for 1 ≤ i ≤ d. Note that if 1 ≤ i < d, then

N(i + 1)−N(i) = [(m + ed− i− 1)(p− 1) + 1]pi − [(m + ed− i)(p− 1) + 1]pi−1

= [(m + ed− i− 1)p(p− 1) + p− (m + ed− i)(p− 1)− 1]pi−1

= [(m + ed− i− 1)p(p− 1)− (m + ed− i− 1)(p− 1)]pi−1

= (m + ed− i− 1)(p− 1)2pi−1

≥ (m + (e− 1)d)(p− 1)2pi−1

> 0.

Thus B1,m ⊆ B2,m ⊆ · · · ⊆ Bd,m. So each G(i,m) can be written G(i,m) =
∑

µ∈Bd,m
G

(i,m)
µ xµ,

and so f (m) can also be written

f (m) =
∑

µ∈Bd,m

f (m)
µ xµ

=
∑

µ∈N[H]
Σµ=0,|µ|≤dm

f (m)
µ xµ.

Thus the degree of f (m) is at most dm. We know from Proposition 6.2 that the coefficients

of each g(t,n)(x) are in Qp. Thus the coefficients of G(i,m)(x), and hence the coefficients of

f (m)(x), are in Qp(ζq−1) by the definition of the i-trace-average of a polynomial.

This proposition gives us the counting polynomials that we shall use with Corollary 3.3

to estimate zero counts of words in GR(pd, e)[A].

6.4 Zero Count and Hamming Weight

We are now ready to investigate the p-adic behavior of zero counts of words in GR(pd, e)[A].

Throughout this chapter, we suppose that we have a code C ⊆ GR(pd, e)[A] and that S is

the minimal support of the Fourier transform of C. We suppose that S is not a subset of

{1A}, i.e., that S contains an element of A that is not the identity. Otherwise we have a

trivial situation: C consists only of constant words, and then zer(c) = |A| zer(c̃(1A)) for all



163

c ∈ C.

Before we present our calculations, we define the parameter `mc(C) first mentioned in

Section 1.1 of the Introduction. There `mc(C) was defined using sequences; here we define

it (equivalently) using multisets. First we define

Λmc(C) = {λ ∈ N[H × S] : Πλ = 1A,prA λ 6∈ N[{1A}],Σ prH λ = 0}. (6.9)

Note that the last condition on λ states that λ is Delsarte-McEliece. We claim that Λmc(C)

is nonempty. By assumption there exists a ∈ S with a 6= 1A. Let n be the group-theoretic

order of a. Consider the multiset λ with (q − 1)n instances of the pair (0, a) and no other

elements. This λ is a unity-product but not all-unity multiset in N[H × S] with Σ prH λ = 0.

So Λmc(C) 6= ∅. Note that Lemma 2.16 tells us that all elements of Λmc(C) have cardinality

divisible by p− 1 and greater than or equal to e(p− 1). For each λ ∈ Λmc(C), we define the

tier of λ, denoted Ti (λ), to be

Ti (λ) = max
{

0,

⌊
|λ| − pd−1

(p− 1)pd−1

⌋
− d(e− 1)

}
. (6.10)

Since Λmc(C) 6= ∅, we may set

ωmc(C) = min
λ∈Λmc(C)

|λ| (6.11)

and

`mc(C) = min
λ∈Λmc(C)

Ti (λ) = max
{

0,

⌊
ωmc(C)− pd−1

(p− 1)pd−1

⌋
− d(e− 1)

}
. (6.12)

In Section 6.5, we shall show that when e = 1, these parameters ωmc(C) and `mc(C) are the

same as the parameters with the same names defined in (4.31) and (4.32).

Now we can state and prove our p-adic estimates of zero counts. We start by combining

Corollary 3.3 with the counting polynomials from Proposition 6.10 to provide estimates

modulo an arbitrary power of p.

Proposition 6.11. Let C be a code in GR(pd, e)[A]. Let m ≥ 1 and let f (m)(x) be the

polynomial described in Proposition 6.10. For each c ∈ C, we let C be the element of
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Zp[ζq′−1][A] such that C̃ = τ ◦ c̃. For any c ∈ C, we have

zernorm(c) ≡ |A|
∑

λ∈Λmc(C)
Ti(λ)<m

(prH λ)!f (m)
prH λ

λ!
C̃(λ) (mod pm),

where Λmc(C) is as defined in (6.9).

Proof. Note that the polynomial f (m)(x) in Proposition 6.10 has the property that

f (m)(a,Fr(a), . . . ,Fre−1(a)) ≡ zer(π(a)) (mod pm)

for all a ∈ Zp[ζq−1]. Set dm = [(m + (e− 1)d)(p− 1) + 1]pd−1− 1, which is the upper bound

on the degree of f (m)(x) given in Proposition 6.10. Then Corollary 3.3 tells us that

zernorm(c) ≡ |A|
∑

µ∈N[H]

µ!f (m)
µ

∑
λ∈N[H×S],prH λ=µ

Πλ=1A,prA λ6∈N[{1A}]

C̃(λ)
λ!

(mod pm).

We may restrict the sum over µ to the set of Delsarte-McEliece multisets with cardinality

less than dm, because Proposition 6.10 tells us that f
(m)
µ = 0 if µ does not meet these

additional conditions. So

zernorm(c) ≡ |A|
∑

µ∈N[H]
Σµ=0,|µ|≤dm

µ!f (m)
µ

∑
λ∈N[H×S],prH λ=µ

Πλ=1A,prA λ6∈N[{1A}]

C̃(λ)
λ!

(mod pm).

Since the sum over λ has the condition prH λ = µ, the condition Σµ = 0 in the first sum

can be replaced by the condition Σ prH λ = 0 in the second sum, which shows that the

second sum is the sum over those λ ∈ Λmc(C) with prH λ = µ. We use this, and the fact
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that |prH λ| = |λ|, to obtain

zernorm(c) ≡ |A|
∑

µ∈N[H]
|µ|≤dm

µ!f (m)
µ

∑
λ∈Λmc(C)
prH λ=µ

C̃(λ)
λ!

(mod pm)

≡ |A|
∑

µ∈N[H]

∑
λ∈Λmc(C)

|λ|≤dm,prH λ=µ

prH λ!f (m)
prH λ

λ!
C̃(λ) (mod pm)

≡ |A|
∑

λ∈Λmc(C)
|λ|≤dm

prH λ!f (m)
prH λ

λ!
C̃(λ) (mod pm).

We claim that the condition |λ| ≤ dm is equivalent to Ti (λ) < m; showing this will finish

the proof. Note that Ti (λ) < m if and only if
⌊

|λ|−pd−1

(p−1)pd−1

⌋
− d(e − 1) < m, and this

is equivalent to |λ| − pd−1 < (m + d(e − 1))(p − 1)pd−1. This, in turn, is equivalent to

|λ| < [(m + d(e− 1))(p− 1) + 1]pd−1, which is equivalent to |λ| ≤ dm.

This calculation leads immediately to an analogue of McEliece’s theorem for Abelian

codes over Galois rings.

Theorem 6.12. Let C be a code in GR(pd, e)[A]. With `mc(C) as defined in (6.12), we have

zernorm(c) ≡ 0 (mod p`mc(C)) for all c ∈ C. Equivalently, hamnorm(c) ≡ 0 (mod p`mc(C)) for

all c ∈ C.

Proof. If `mc(C) = 0, then the claims of the theorem are trivial. So assume `mc(C) > 0

henceforth. For each c ∈ C, we let C be the element of Zp[ζq′−1][A] with C̃ = τ ◦ c̃. By

Proposition 6.11 above (setting m = `mc(C)), we have

zernorm(c) ≡ |A|
∑

λ∈Λmc(C)
Ti(λ)<`mc(C)

(prH λ)!f (`mc(C))
prH λ

λ!
C̃(λ) (mod p`mc(C)),

where f (`mc(C))(x) is the polynomial described in Proposition 6.10, and Λmc(C) is as defined

in (6.9). By the definition of `mc(C) as the minimum tier of any element of Λmc(C), the

sum on the right-hand side is empty, thus giving the desired congruence for zernorm. The

congruence for hamnorm follows immediately from the fact that hamnorm(c) = −zernorm(c)
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for all c ∈ GR(pd, e)[A], as was shown in Section 2.4.

For the remainder of this chapter, we shall see how these results compare with earlier

results in the special cases when d = 1 and e = 1. In the d = 1 case, we obtain in fullness

the theorem of Delsarte and McEliece [18]. When we set e = 1, we obtain a weakened form

of Theorem 4.18.

6.5 Comparison with Previous Work

At the beginning of this chapter, we noted that we are not aware of any generalization of

McEliece’s theorem to codes over arbitrary Galois rings. So we have no such results with

which to compare Proposition 6.11 and Theorem 6.12. Instead, we show here that we can

obtain previous results if we specialize to the case d = 1 (codes over Fq) and to the case

e = 1 (codes over Z/pdZ).

First we show that we can retrieve the theorem of Delsarte and McEliece from Propo-

sition 6.11 in the special case when d = 1. Before we proceed, we note that when d = 1,

we have Ti (λ) = max
{

0,
⌊
|λ|−1
p−1

⌋
− (e− 1)

}
. If we apply this to a Delsarte-McEliece ele-

ment λ ∈ N[H ×A], then we note that |λ| is divisible by p − 1 (see Lemma 2.16). Thus

Ti (λ) = max
{

0, |λ|
p−1 − e

}
for all λ with Σ prH λ = 0 (and thus for all λ ∈ Λmc(C)). Lemma

2.16 tells us that nonempty Delsarte-McEliece multisets have cardinality at least e(p− 1),

so

Ti (λ) =
|λ|

(p− 1)
− e (6.13)

for all nonempty Delsarte-McEliece multisets λ ∈ N[H ×A] (and thus for all λ ∈ Λmc(C)).

Now we are ready to present the Delsarte-McEliece theorem. Although the following

theorem is cast into our own notation and terminology, it is equivalent to the original.

Theorem 6.13 (Delsarte-McEliece [18]). Let C be a code in Fq[A]. For each c ∈ C, let

C be the element of Zp[ζq′−1][A] such that C̃ = τ ◦ c̃. Let Λmc(C) and `mc(C) be as defined
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in (6.9) and (6.12). Then for any c ∈ C, we have

zernorm(c) ≡ |A|(−1)e−1(−p)`mc(C)
∑

λ∈Λmc(C)
Ti(λ)=`mc(C)

C̃(λ)
λ!

(mod p`mc(C)+1), (6.14)

where λ! is a unit in Zp for each λ ∈ Λmc(C) with Ti (λ) = `mc(C). Furthermore,

∑
λ∈Λmc(C)

Ti(λ)=`mc(C)

C̃(λ)
λ!

assumes values in Zp, and so zernorm(c) ≡ 0 (mod p`mc(C)) for all c ∈ C. There is some

c ∈ C such that zernorm(c) 6≡ 0 (mod p`mc(C)+1).

Proof. Throughout this proof, we have d = 1, since our Galois ring GR(pd, e) is the field

Fq. We apply Proposition 6.11 with m = `mc(C) + 1 to obtain

zernorm(c) ≡ |A|
∑

λ∈Λmc(C)
Ti(λ)=`mc(C)

(prH λ)!f (`mc(C)+1)
prH λ

λ!
C̃(λ) (mod p`mc(C)+1), (6.15)

where f (`mc(C)+1)(x) is the polynomial described in Proposition 6.10, and where we have

used the fact that `mc(C) is the minimum tier of the elements in Λmc(C) to rewrite the

condition Ti (λ) < `mc(C) + 1 in the sum as Ti (λ) = `mc(C).

Let us examine the coefficients of polynomial f (`mc(C)+1)(x). The only ones that actually

matter for our calculation are those of the form f
(`mc(C)+1)
prH λ where λ ∈ Λmc(C) with Ti (λ) =

`mc(C). By (6.13), the last condition is equivalent to |λ| = (p − 1)(`mc(C) + e). So we are

interested in the coefficients f
(`mc(C)+1)
µ with µ Delsarte-McEliece and |µ| = (p−1)(`mc(C)+

e). For brevity we set n = (p− 1)(`mc(C) + e).

Since d = 1, Proposition 6.10 tells us that

f (`mc(C)+1)(x) =
p

(p− 1)q
G(1,`mc(C)+1)(x)− q − p

(p− 1)q
,

where

G(1,`mc(C)+1)(x) = T1g
(1,`mc(C)+e)(x),
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where, in turn, g(1,`mc(C)+e)(x) is the polynomial described in Proposition 6.2. There we

find that g(1,`mc(C)+e)(x) has degree n, and if we write g(1,`mc(C)+e)(x) =
∑n

j=0 gjx
j , then

n!gn ≡ (−p)`mc(C)+e−1 (mod p`mc(C)+e). Lemma 6.9 tells us that if µ ∈ N[H] is Delsarte-

McEliece with |µ| = n, then the coefficient of xµ in G(1,`mc(C)+1)(x) is (q−1)n!gn

µ! . Thus, for

any Delsarte-McEliece multiset µ ∈ N[H] with |µ| = n, we have

f (`mc(C)+1)
µ =

p(q − 1)
(p− 1)q

n!gn
1
µ!

.

Thus, returning to (6.15), we have

zernorm(c) ≡ |A|p(q − 1)
(p− 1)q

n!gn

∑
λ∈Λmc(C)

Ti(λ)=`mc(C)

C̃(λ)
λ!

(mod p`mc(C)+1). (6.16)

Recall that n!gn ≡ (−p)`mc(C)+e−1 (mod p`mc(C)+e) and that |A| is always assumed to

be coprime to p. Thus we have

|A|p(q − 1)
(p− 1)q

n!gn ≡ |A|
p(q − 1)
(p− 1)q

(−p)`mc(C)+e−1 (mod p`mc(C)+1),

so that

|A|p(q − 1)
(p− 1)q

n!gn ≡ |A|(−1)e−1(−p)`mc(C) (mod p`mc(C)+1). (6.17)

We now use the notion of reduction introduced in Section 2.6. We claim that all λ ∈

Λmc(C) with Ti (λ) = `mc(C) are reduced. For if any λ ∈ Λmc(C) were not reduced, then

Red(λ) ∈ Λmc(C) by Lemma 2.25, and furthermore (by the same lemma), |Red(λ)| ≤ |λ| −

(p− 1), so Ti (Red(λ)) < Ti (λ) by (6.13). Thus no λ ∈ Λmc(C) of minimal tier can be non-

reduced. This means that λ! is a unit in Zp for each λ ∈ Λmc(C) with Ti (λ) = `mc(C). Since

scaled Fourier coefficients always lie in Zp[ζq′−1], this means that
∑

λ∈Λmc(C),Ti(λ)=`mc(C)
C̃(λ)

λ!

is in Zp[ζq′−1], i.e., has nonnegative p-adic valuation. We use this fact and (6.17) in (6.16)

to obtain

zernorm(c) ≡ |A|(−1)e−1(−p)`mc(C)
∑

λ∈Λmc(C)
Ti(λ)=`mc(C)

C̃(λ)
λ!

(mod p`mc(C)+1),
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which is (6.14), which we were to show. Since
∑

λ∈Λmc(C),Ti(λ)=`mc(C)
C̃(λ)

λ! has nonnegative

valuation, we always have

zernorm(c) ≡ 0 (mod p`mc(C)).

For the rest of the proof, we define Λ` to be the set of λ ∈ Λmc(C) with Ti (λ) = `mc(C).

We shall show that
∑

λ∈Λ`

C̃(λ)
λ! assumes values in Zp. Since it assumes values in Zp[ζq′−1],

it suffices to show that it is fixed by Fr. We use the Frobenius action FrA introduced in

Section 2.7. Lemma 2.31 tells us that FrA restricted to Λmc(C) is a permutation of Λmc(C).

By the same lemma, FrA preserves the sizes of multisets, so it also preserves their tiers.

Thus FrA restricts to a permutation of Λ`, and so

∑
λ∈Λ`

C̃(λ)
λ!

=
∑
λ∈Λ`

C̃(FrA(λ))
(FrA(λ))!

.

By Lemma 2.31, we have

∑
λ∈Λ`

C̃(λ)
λ!

=
∑
λ∈Λ`

Fr(C̃(λ))
λ!

= Fr

∑
λ∈Λ`

C̃(λ)
λ!

 .

This shows that our sum is indeed an element of Zp.

Finally, we must show that there is some c ∈ C such that zernorm(c) 6≡ 0 (mod p`mc(C)+1).

In view of (6.14), it suffices to show that

∑
λ∈Λ`

C̃(λ)
λ!
6≡ 0 (mod p)

for some c ∈ C. We shall use the notion of collapse introduced in Section 2.6. Let R be a

set of q-class representatives of A. Note that c̃(a) ∈ Fq′ for all a ∈ A, so that c̃(a) is always
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zero or a power of π(ζq′−1). Thus, by Lemma 2.20, we have

∑
λ∈Λ`

C̃(λ)
λ!

=
∑
λ∈Λ`

C̃(CoR(λ))
λ!

,

so it suffices to show that the right-hand side, i.e.,

∑
λΛ`

C̃(CoR(λ))
λ!

, (6.18)

does not vanish modulo p for some c ∈ C. Note that the expression (6.18) is a Qp-linear

combination of terms of the form

Dλ =
∏

r∈R∩S

C̃(r)(CoR(λ))r , (6.19)

where we have restricted the product to R ∩ S in view of Lemma 2.19 and the fact that

λ ∈ N[H × S] for all λ ∈ Λmc(C). Note that no two terms Dλ and Dλ′ with λ, λ′ ∈ Λ` have

exactly the same exponents for all the terms C̃(r), since that would imply that CoR(λ) =

CoR(λ′). This, in turn, would force λ = λ′, since λ and λ′ are reduced (see Corollary 2.26).

Also note that the exponent (CoR(λ))r of C̃(r) in Dλ is less than qer by the definition of

CoR. (Recall that er denotes the cardinality of the q-class of r in A.) As we vary c over all

words in C, Lemma 2.14 tells us that the values in {C̃(r) : r ∈ R∩S} vary over
∏

r∈R∩S V0,r,

where V0,r is the set containing 0 and all the powers of ζqer−1. Since no two elements of

V0,r are equal to each other modulo p, and since |V0,r| = qer , which is strictly greater than

the highest exponent of C̃(r) appearing in any term (6.19) of (6.18), we may apply Lemma

2.33 to conclude that the minimum p-adic valuation achieved by (6.18) as c runs through

C is precisely the minimum of the p-adic valuations of the coefficients 1
λ! for λ ∈ Λ`. But

we have already shown that each λ! is a unit in Zp, so (6.18) does not vanish modulo p for

some c ∈ C.

Now we show that if e = 1, i.e., if GR(pd, e) = Z/pdZ, we obtain a weakened version of

Theorem 4.18. We set e = 1 for the rest of this chapter. Thus we have q = p and H = {0}.

If λ ∈ N[H ×A], then Σ prH λ = |λ| = |λ0|, where these cardinalities are regarded as
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elements of Z/(p − 1)Z. Thus λ is Delsarte-McEliece if and only if |λ0| ≡ 0 (mod p − 1).

Since H = {0}, note that Πλ = Π(λ0) and prA λ = λ0. Thus our definition (6.9) of Λmc(C)

is equivalent to

Λmc(C) = {λ ∈ N[{0} × S] : Π (λ0) = 1A, λ0 6∈ N[{1A}], |λ0| ≡ 0 (mod p− 1)}.

So the multisets in Λmc(C) are in one-to-one correspondence with the multisets in

Kmc(C) = {κ ∈ N[S] : Πκ = 1A, κ 6∈ N[{1A}], |κ| ≡ 0 (mod p− 1)},

by the correspondence Φ: Λmc(C) → Kmc(C) that maps λ to λ0. Note that Kmc(C) is

identical to the definition (4.30) of Λmc(C) used in Chapter 4 (but, of course, different

from the definition of Λmc(C) used here). The correspondence Φ preserves the cardinality

of multisets, so that minλ∈Λmc(C) |λ| = minκ∈Kms(C) |κ|. Thus the parameter ωmc(C), as

defined in (6.11) of this chapter, is identical (in the case e = 1) to the parameter of the

same name, as defined in (4.31) of Chapter 4. When we specialize our definition (6.10) of

tier to the case e = 1, we obtain

Ti (λ) = max
{

0,

⌊
|λ| − pd−1

(p− 1)pd−1

⌋}
.

Note that this exactly matches the notion of tier used in Chapter 4 (see the discussion at

the beginning of Section 4.3). When e = 1, our definition (6.12) of `mc(C) becomes

`mc(C) = min
λ∈Λmc(C)

Ti (λ) = max
{

0,

⌊
ωmc(C)− pd−1

(p− 1)pd−1

⌋}
.

Thus the parameter `mc(C), as defined here, is identical (in the case e = 1) to the parameter

of the same name, as defined in (4.32) of Chapter 4.

Now we are in a position to compare the specialization of Theorem 6.12 (when e = 1)

with previous results. Here is the specialization:

Corollary 6.14 (to Theorem 6.12, equivalent to Theorem 4.23). Let e = 1 and

let C be a code in Z/pdZ[A]. Let `mc(C) be as defined in (4.32) (or, equivalently as in
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(6.12)). Then zernorm(c) ≡ 0 (mod p`mc(C)) for all c ∈ C. Equivalently, hamnorm(c) ≡ 0

(mod p`mc(C)) for all c ∈ C.

We note that this corollary of Theorem 6.12 is Theorem 4.23, which was shown to be a

weakened version of Theorem 4.18 in Section 4.6. It is not surprising that we do not recover

our best results for codes over Z/pdZ from Theorem 6.12, for it uses the parameter `mc(C),

which is sensitive only to the support of the Fourier transform of the code, but not sensitive

to the structure of the tower of supports of the Fourier transform.
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Chapter 7

Simultaneous Zeroes in Fq[A]

Let us recall that the Delsarte-McEliece theorem (Theorem 1.2) gives p-adic estimates of

the zero counts of words in an ideal (code) C of Fq[A]. The version we record here is more

general than Theorem 1.2 of the Introduction; here we allow for the possibility that 1A is

in the support of the Fourier transform of our code.

Theorem 7.1 (Delsarte-McEliece [18]). Let C be a code in Fq[A]. Let `mc(C) be as

defined in (6.12). Then zernorm(c) ≡ 0 (mod p`mc(C)) for all c ∈ C, and there is some c ∈ C

with zernorm(c) 6≡ 0 (mod p`mc(C)+1).

Even this version is not as detailed as what Delsarte and McEliece actually proved; the

full version is given as Theorem 6.13 in Section 6.5. In this chapter we shall prove a gener-

alization (Theorem 7.14) of this theorem, which will p-adically estimate the simultaneous

zero count of a finite collection of words c1, . . . , ct ∈ Fq[A]. (See Section 2.4 for a definition

of the simultaneous zero count.) We recall the simplified version of Theorem 7.14 which

was presented in the Introduction.

Theorem 7.2 (Theorem 7.14, simplified). Let t ≥ 1 and let C1, . . . , Ct be codes in

Fq[A] with 1A not in the supports of their Fourier transforms. Then zer(c1, . . . , ct) ≡ |A|

(mod p`mc(C1,...,Ct)) for all c1 ∈ C1, . . . , ct ∈ Ct. There are some c1 ∈ C1, . . . , ct ∈ Ct such that

zer(c1, . . . , ct) 6≡ |A| (mod p`mc(C1,...,Ct)+1).

In order to understand this theorem, one must recall the definition of `mc(C1, . . . , Ct),

which was presented just before the statement of the theorem itself in Section 1.2. This

parameter was defined there using unity-product sequences that consisted of elements in
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the various supports of the Fourier transforms of the codes, along with the pth powers of

such elements. In this chapter, we shall define `mc(C1, . . . , Ct) equivalently using multisets

rather than sequences. In the special case where t = 1, we shall recover the multiset-based

definition of `mc(C) given in (6.12) of Chapter 6. As always, the reader must be familiar

with the definitions and notations for accounts in Section 2.5 to understand our presentation

of such matters.

To prove our generalization of the Delsarte-McEliece theorem, we shall devise counting

polynomials that will enable us to use Theorem 3.2 to p-adically approximate simultaneous

zero counts. The first four sections (7.1–7.4) of this chapter will be dedicated to the con-

struction of such polynomials. In Section 7.5, we shall employ them to prove Theorem 7.14

(the more precise version of Theorem 7.2 above). In the rest of the chapter, we show that

the theorem of N. M. Katz (Theorem 1.12) is a consequence of Theorem 7.14. In Section

7.6, we discuss the theorems of Chevalley-Warning, Ax, and N. M. Katz. In Section 7.7,

we discuss preliminary results that are used to obtain the theorem of N. M. Katz from

Theorem 7.14. This includes a refined analysis of the result of Kasami, Lin, and Peterson,

which states that punctured Reed-Muller codes are cyclic [28]. In Section 7.8, we prove the

theorem of N. M. Katz and an associated statement on the sharpness of the theorem.

Before we proceed with our polynomial construction, we set some definitions and nota-

tions that will hold throughout the chapter. We fix d = 1, so that our Galois ring GR(pd, e)

is the finite field Fq. We set t a positive integer and set I = {1, 2, . . . , t}. The set I will

index our collection of t codewords c1, . . . , ct ∈ Fq[A]. In the next four sections (7.1–7.4), we

shall construct a counting polynomial in the te indeterminates in {xih : i ∈ I, h ∈ H}. This

counting polynomial will be used with Theorem 3.2 to p-adically estimate simultaneous zero

counts in Fq[A]. For each i ∈ I, we use xi to denote the list of indeterminates with first

index equal to i, i.e.,

xi = xi,0, xi,1, . . . , xi,e−1.

Indeed, we adopt the convention (for the rest of the chapter) that if a is a letter, then the

boldface letter a will always indicate the e-tuple a0, . . . , ae−1. Note that e-tuples of integers

can be identified with accounts on H: µ ∈ Z[H] is identified with the e-tuple µ0, . . . , µe−1.
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We use x to denote our full list of indeterminates, i.e.,

x = x1, . . . ,xt

= x1,0, x1,1, . . . , x1,e−1, x2,0, x2,1, . . . , x2,e−1, . . . , xt,0, xt,1, . . . , xt,e−1.

We also adopt the convention that if a is any letter, then a will always indicate the t-tuple

of e-tuples

a1, . . . ,at = a1,0, a1,1, . . . , a1,e−1, a2,0, a2,1, . . . , a2,e−1, . . . , at,0, at,1, . . . , at,e−1.

Note that t-tuples of e-tuples of integers can be identified with accounts on I × H, i.e.,

if µ ∈ Z[I × H], then we identify each µi ∈ Z[H] with an e-tuple, as already noted.

Then µ is identified with the t-tuple of e-tuples µ1, . . . , µt. We adopt the convention that

ab =
∏

h∈H abh
h and ab =

∏
(i,h)∈I×H a

bi,h

i,h .

We devise a function for measuring the size of Delsarte-McEliece multisets in N[H].

Recall from Lemma 2.15 that all Delsarte-McEliece multisets have cardinality divisible by

p − 1, and that the nonempty ones have cardinality at least e(p − 1). We introduce the

symbol ∞ and define W : Z→ N ∪ {∞} by

W (n) =


0 if n = 0,

n
p−1 − e if p− 1 | n and n ≥ e(p− 1),

∞ otherwise.

(7.1)

In conjunction with calculations involving this function, we use the convention that ∞ plus

anything is ∞, and that ∞ is greater than any integer. We extend the definition of W so

that if a1, . . . , at is a t-tuple of integers, then W (a1, . . . , at) = W (a1) + · · ·+ W (at).

Since W is used to measure cardinalities of multisets, we make special notations to

streamline its use in such cases. If µ ∈ Z[H], then we define L(µ) = W (|µ|). Note that

Lemma 2.15 implies that L(µ) < ∞ if µ is a Delsarte-McEliece multiset. If µ1, . . . , µt

is t-tuple of accounts in Z[H], then we define L(µ1, . . . , µk) = L(µ1) + · · · + L(µk) =
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W (|µ1|, . . . , |µk|). An account ν ∈ Z[I × H] is considered to be the t-tuple ν1, . . . , νt of

accounts in Z[H], so we have L(ν) =
∑

i∈I W (|νi|).

We transplant the streamlined notations of the last paragraph to accounts in Z[H ×A].

If λ ∈ Z[H×A], we set L(λ) = W (|λ|). If λ1, . . . , λt is a t-tuple of accounts in Z[H×A], then

we set L(λ1, . . . , λt) = W (|λ1|) + · · ·+ W (|λt|). An account κ ∈ Z[I ×H ×A] is considered

to be the t-tuple κ1, . . . , κt of accounts in Z[H ×A], so we have L(κ) =
∑

i∈I W (|κi|).

Throughout this chapter, we always use Tr (without indices) to mean Tre
1. Thus Tr

denotes the trace from Fq to Fp and the trace from Qp(ζq−1) to Qp, where context indicates

which version is being used.

7.1 Averaged Polynomials

The goal of Sections 7.1–7.4 is the construction of a counting polynomial f (m)(x) ∈ Qp[x]

that has the property that

f
({

xih = Frh(ai)
})
≡


1 if a1 ≡ · · · ≡ at ≡ 0 (mod p),

0 otherwise,

for all a1, . . . , at ∈ Zp[ζq−1]. We essentially use the trace-averaging method of Chapter 6,

although we do so in a somewhat more careful fashion to simplify our calculations later.

In our constructions, we use averaged versions of the binomial coefficient polynomials.

We set {
x

n

}
=

1
p− 1

p−2∑
i=0

(
ζi
p−1x

n

)
.

This polynomial maps Zp into Zp since
(
x
n

)
maps Zp into Zp. It is easy to see the effect that

this form of averaging has on polynomials; we record it as a lemma without proof.

Lemma 7.3. Let f(x) =
∑n

i=0 fix
i ∈ Qp[x]. Then

1
p− 1

p−2∑
j=0

f(ζj
p−1x) =

∑
0≤i≤n
p−1|i

fix
i.
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In particular,
{

x
n

}
involves only monomials whose degrees are multiples of p− 1.

We introduce another form of averaged binomial coefficient polynomial. Set

[
y
n

]
=
[
y0, . . . , ye−1

n

]
=

1
q − 1

q−2∑
i=0

(∑
h∈H ζiph

q−1yh

n

)
. (7.2)

Note that
[
y
0

]
= 1. The following lemma shows how

[
y
n

]
can be used to map an element of

Zp[ζq−1] into Zp.

Lemma 7.4. For each a ∈ Zp[ζq−1],
[
a,Fr(a),...,Fre−1(a)

n

]
= 1

q−1

∑q−2
i=0

(
Tr(ζi

q−1a)
n

)
, which is an

element of Zp.

Proof. For a ∈ Zp[ζq−1], we have

[
a,Fr(a), . . . ,Fre−1(a)

n

]
=

1
q − 1

q−2∑
i=0

(∑
h∈H ζiph

q−1 Frh(a)
n

)

=
1

q − 1

q−2∑
i=0

(∑
h∈H Frh(ζi

q−1a)
n

)

=
1

q − 1

q−2∑
i=0

(
Tr(ζi

q−1a)
n

)
.

Since ζi
q−1a is in Zp[ζq−1], its trace is in Zp, and

(
x
n

)
maps Zp into Zp.

Now we are ready to see how the form of averaging used in the definition (7.2) of
[
y
n

]
affects polynomials.

Lemma 7.5. Let f(x) =
∑n

i=0 fix
i ∈ Qp[x]. Then

1
q − 1

q−2∑
j=0

f

(∑
h∈H

ζjph

q−1yh

)
=

n∑
i=0

i!fi

∑
µ∈N[H],|µ|=i

Σµ=0

yµ

µ!
.

Proof. By linearity, we may assume that f(x) = xn. Then

1
q − 1

q−2∑
j=0

(∑
h∈H

ζjph

q−1yh

)n

=
1

q − 1

q−2∑
j=0

∑
h1,...,hn∈H

n∏
i=1

(ζjphi

q−1 yhi
).
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We recast the final sum as a sum over multisets rather than sequences to get

1
q − 1

q−2∑
j=0

(∑
h∈H

ζjph

q−1yh

)n

=
1

q − 1

q−2∑
j=0

∑
µ∈N[H]
|µ|=n

n!
µ!

∏
h∈H

(ζjph

q−1yh)µh ,

where we recall that a multiset µ ∈ N[H] of cardinality n can be arranged into n!/µ! distinct

n-tuples of elements in H. Then, using our compact notation yµ, we have

1
q − 1

q−2∑
j=0

(∑
h∈H

ζjph

q−1yh

)n

=
n!

q − 1

q−2∑
j=0

∑
µ∈N[H]
|µ|=n

yµ

µ!

∏
h∈H

ζjµhph

q−1

= n!
∑

µ∈N[H]
|µ|=n

yµ

µ!

(
1

q − 1

) q−2∑
j=0

ζ
j
∑

h∈H µhph

q−1

= n!
∑

µ∈N[H],|µ|=n
Σµ=0

yµ

µ!
,

where the last equality comes about since the sum over j will be q− 1 or zero, respectively,

depending on whether Σµ = 0 or not.

This gives rise to the useful observation that
[
y
n

]
vanishes entirely for certain values of

n.

Corollary 7.6. For 0 < n < e(p− 1),
[
y
n

]
= 0.

Proof. Suppose that 0 < n < e(p − 1). Then f(x) =
(
x
n

)
is a polynomial of the form

f(x) =
∑n

i=1 fix
i. So

[
y
n

]
= 0 follows from Lemma 7.5 and the fact (from Lemma 2.15) that

there are no nonempty Delsarte-McEliece multisets of cardinality less than e(p− 1).

Now we know enough about our averaged binomial coefficient polynomials to employ

them in the construction of counting polynomials.

7.2 Polynomials on Zp

Our first step in the construction of the polynomial f (m)(x) described at the beginning of

Section 7.1 is to make a version of f (m)(x) in the special case when t = 1 and e = 1. The
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latter condition means that q = p, so that ζq−1 is a root of unity of order p − 1, and so

Zp[ζq−1] = Zp. So we seek a polynomial f (m)(y) that maps pZp into 1 + pmZp, and maps

the units of Zp into pmZp. Fortunately, such a polynomial has already been found.

Proposition 7.7 (Wilson [66], [65]). For any m ≥ 1, there exists a polynomial

f(x) =
m(p−1)∑

i=0

fi

(
x

i

)
,

with each fi ∈ Zp, and with the property that

f(a) ≡


1 (mod pm) if a ≡ 0 (mod p),

0 (mod pm) otherwise,

for all a ∈ Zp. Furthermore vp(fi) ≥ k whenever i > k(p − 1). In addition, f0 = 1 and

fk(p−1) ≡ (−p)k−1 (mod pk) when 0 < k ≤ m.

Proof. A polynomial with all the desired properties is given by Corollary 4.13, specialized

with t = 1.

For the purposes of keeping our calculations simple, we shall want a counting polynomial

whose form is slightly different from that of the polynomial we just obtained. We can

construct a polynomial of the same degree, but with the added property that it has an

expansion in terms of the functions
{

x
(p−1)k

}
. To do this, we shall employ the following

result:

Lemma 7.8. If n ≥ 0, then {
x

n

}
=
∑

0≤k≤n
p−1|k

ck

{
x

k

}
,

for some coefficients ck ∈ Zp.

Proof. We proceed by induction on n, with the n = 0 case trivial. In fact, all cases where

p − 1 | n are trivial. So suppose that n > 0 and p − 1 - n. As our induction hypothesis,

we assume that if m < n, then
{

x
m

}
is a Zp-linear combination of the polynomials

{
x

(p−1)i

}
with (p− 1)i ≤ m.
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By Lemma 7.3,
{

x
n

}
has degree strictly less than n. We can write

{
x
n

}
as a linear

combination of the binomial coefficient polynomials

{
x

n

}
=

n−1∑
j=0

cj

(
x

j

)
, (7.3)

where c0 =
{

0
n

}
and cj =

{
j
n

}
−
∑j−1

i=0 ci

(
j
i

)
for 0 < j < n. These cj are elements of Zp, since{

x
n

}
maps Zp into Zp. We average both sides of (7.3) to obtain

1
p− 1

p−2∑
k=0

{
ζk
p−1x

n

}
=

n−1∑
j=0

cj

{
x

j

}
.

But Lemma 7.3 shows that
{

x
n

}
has only monomials whose degrees are divisible by p − 1,

so that by the same lemma, we have 1
p−1

∑p−2
k=0

{
ζk
p−1x
n

}
=
{

x
n

}
. Thus

{
x

n

}
=

n−1∑
j=0

cj

{
x

j

}
.

Now the induction hypothesis shows that the terms
{

x
j

}
on the right-hand side are Zp-linear

combinations of functions
{

x
k(p−1)

}
with k(p− 1) ≤ n− 1.

Now we can obtain the polynomial we want.

Proposition 7.9. For each m ≥ 1, there exists a polynomial

h(x) =
∑

0≤i≤m(p−1)
p−1|i

hi

{
x

i

}

with each hi ∈ Zp, h0 = 1, hj(p−1) ≡ (−p)j−1 (mod pj) for 0 < j ≤ m, and with the

property that

h(a) ≡


1 (mod pm) if a ≡ 0 (mod p),

0 (mod pm) otherwise,

for all a ∈ Zp.
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Proof. Let f(x) =
∑m(p−1)

i=0 fi

(
x
i

)
be the polynomial furnished by Proposition 7.7. If we set

g(x) =
1

p− 1

p−2∑
j=0

f(ζj
p−1x)

=
m(p−1)∑

i=0

fi

{
x

i

}
,

then since vp(ζp−1) = 0, we have f(ζj
p−1a) ≡ f(a) (mod pm) for all a ∈ Zp and j ∈ N. Thus

g(a) ≡ f(a) (mod pm) for all a ∈ Zp.

By Lemma 7.8, g(x) can be written as

g(x) =
∑

0≤i≤m(p−1)
p−1|i

gi

{
x

i

}
,

where gi(p−1) is of the form

gi(p−1) = fi(p−1) +
m(p−1)∑

j=i(p−1)+1

cjfj ,

for some coefficients cj ∈ Zp. Since vp(fj) ≥ i for j > i(p− 1), we have gi(p−1) ≡ fi(p−1) ≡

(−p)i−1 (mod pi) for i > 0. Note that g0 = g(0) ≡ f(0) ≡ 1 (mod pm), so that if we set

h(x) = 1 +
∑

0<i≤m(p−1)
p−1|i

gi

{
x

i

}
,

then h(a) ≡ g(a) ≡ f(a) (mod pm) for all a ∈ Zp. This h(x) has all the properties we

seek.

7.3 Polynomials on Zp[ζq−1]

In Proposition 7.9, we obtained a polynomial that approximates uniformly modulo pm the

characteristic function of the ideal pZp in the ring Zp. In this section, we want to generalize

this to obtain a polynomial that approximates uniformly modulo pm the characteristic

function of the ideal pZp[ζq−1] in the ring Zp[ζq−1]. In terms of our goal for Sections 7.1–
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7.4, i.e., the polynomial f (m)(x1) described at the beginning of Section 7.1, this section

provides the construction of f (m) in the special case when t = 1, just as the polynomial

we found in Proposition 7.9 is the special case of f (m) when t = 1 and e = 1. This last

polynomial will be the foundation of our construction here.

We shall begin to use the multivariable polynomials
[
y
n

]
in this section. Consider the

averaging procedure that is used to obtain
[
y
n

]
from

(
x
n

)
. It is essential to the upcoming

construction to note that if we apply this procedure to
{

x
n

}
, then we also obtain

[
y
n

]
.

Lemma 7.10. For any n ≥ 0, we have

1
q − 1

q−2∑
k=0

{∑
h∈H ζkph

q−1yh

n

}
=
[
y
n

]
.

Proof. Since p− 1 | q − 1, ζp−1 = ζm
q−1 for some integer m. Thus

1
q − 1

q−2∑
k=0

{∑
h∈H ζphk

q−1yh

n

}
=

1
q − 1

q−2∑
k=0

1
p− 1

p−2∑
j=0

(
ζj
p−1

∑
h∈H ζphk

q−1yh

n

)

=
1

p− 1

p−2∑
j=0

1
q − 1

q−2∑
k=0

(∑
h∈H ζj

p−1ζ
phk
q−1yh

n

)

=
1

p− 1

p−2∑
j=0

1
q − 1

q−2∑
k=0

(∑
h∈H ζphj

p−1ζ
phk
q−1yh

n

)

=
1

p− 1

p−2∑
j=0

1
q − 1

q−2∑
k=0

(∑
h∈H ζ

ph(k+jm)
q−1 yh

n

)

=
1

p− 1

p−2∑
j=0

1
q − 1

q−2∑
k=0

(∑
h∈H ζphk

q−1yh

n

)

=
1

q − 1

q−2∑
k=0

(∑
h∈H ζphk

q−1yh

n

)
=
[
y
n

]
.

Now we use this averaging method to construct the polynomial we want. The con-

struction is a refined variation on the d = 1 case of Proposition 6.10. To understand this

construction, given as the next proposition, the reader should recall the definition of the

function W given in equation (7.1) above.
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Proposition 7.11. For each m ≥ 1, there exists a polynomial

h(y) =
∑
i∈N

W (i)<m

hi

[
y
i

]
,

with each hi ∈ Zp, h0 = 1, hi ≡ (−1)e−1(−p)W (i) (mod pW (i)+1) for each i > 0, and with

the property that

h(a,Fr(a), . . . ,Fre−1(a)) ≡


1 (mod pm) if a ≡ 0 (mod p),

0 (mod pm) otherwise,
(7.4)

for all a ∈ Zp[ζq−1].

Proof. Let f(x) be the polynomial of Proposition 7.9 that has

f(a) ≡


1 (mod pm+e−1) if a ≡ 0 (mod p),

0 (mod pm+e−1) otherwise,

for all a ∈ Zp. Set g(y) =
∑q−2

j=0 f(
∑

h∈H ζphj
q−1yh). Then for each a ∈ Zp[ζq−1], we have

g(a,Fr(a), . . . ,Fre−1(a)) =
∑q−2

j=0 f(Tr(ζj
q−1a)).

Note that Tr maps Zp[ζq−1] into Zp, and recall that Tr commutes with reduction modulo

p. If a ∈ Zp[ζq−1] with a ≡ 0 (mod p), then ζj
q−1a (mod p) is 0 in Fq for all j, and so

Tr(ζj
q−1a) (mod p) is 0 in Fp for all j. Therefore f(Tr(ζj

q−1a)) ≡ 1 (mod pm+e−1) for all

j, and so g(a,Fr(a), . . . ,Fre−1(a)) ≡ q − 1 (mod pm+e−1) for all a ∈ Zp[ζq−1] with a ≡ 0

(mod p).

On the other hand, if a ∈ Zp[ζq−1] with a 6≡ 0 (mod p), then ζj
q−1a (mod p) runs

through the units of Fq as j runs from 0 to q− 2. Since Tr is a Fp-linear map from Fq onto

Fp, Tr(ζj
q−1a) (mod p) runs through Fp, taking each nonzero value precisely q/p times and

taking the value zero precisely (q/p) − 1 times. Thus g(a,Fr(a), . . . ,Fre−1(a)) ≡ (q/p) − 1

(mod pm+e−1) for all a ∈ Zp[ζq−1] with a 6≡ 0 (mod p).

Now we set h(y) = p
(p−1)qg(y) − q−p

(p−1)q , so that h(a,Fr(a), . . . ,Fre−1(a)) is the desired

value modulo pm for each a ∈ Zp[ζq−1] (as in (7.4)). It remains to show that h(y) has the
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desired form. Recall that the polynomial f(x) supplied by Proposition 7.9 has the form

f(x) =
∑

0≤i≤(m+e−1)(p−1)
p−1|i

fi

{
x

i

}
,

where each fi ∈ Zp, f0 = 1, and fj(p−1) ≡ (−p)j−1 (mod pj) for 0 < j ≤ m + e− 1. Then

g(y) =
∑

0≤i≤(m+e−1)(p−1)
p−1|i

fi

q−2∑
k=0

{∑
h∈H ζkph

q−1yh

i

}

=
∑

0≤i≤(m+e−1)(p−1)
p−1|i

fi(q − 1)
[
y
i

]
,

where we have used Lemma 7.10 in the second equality. Now f0 = 1, so that

h(y) =
[
y
0

]
+

∑
0<i≤(m+e−1)(p−1)

p−1|i

fi
p(q − 1)
(p− 1)q

[
y
i

]
.

Corollary 7.6 above shows that
[
y
i

]
= 0 when 0 < i < e(p− 1), so that

h(y) =
[
y
0

]
+

∑
e(p−1)≤i≤(m+e−1)(p−1)

p−1|i

fi
p(q − 1)
(p− 1)q

[
y
i

]
.

Then observe that the last sum indexes over all strictly positive integers i for which W (i) <

m. Furthermore, for any such integer i, we have fi ≡ (−p)i/(p−1)−1 (mod pi/(p−1)), so that

fi
p(q − 1)
(p− 1)q

≡ (−1)e−1(−p)W (i) (mod pW (i)+1).

7.4 Counting Polynomials

Now we are ready to construct the polynomial f (m)(x) announced at the beginning of

Section 7.1 as the goal of Sections 7.1–7.4. We shall use this polynomial to derive our

generalization of the Delsarte-McEliece theorem. We build on the polynomial furnished by

Proposition 7.11, which is the special case of f (m) when t = 1.
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Proposition 7.12. For any m, t ≥ 1, there exists a polynomial f (m)(x) with coefficients in

Qp and variables in {xih : i ∈ I, h ∈ H} such that

f (m)
({

xih = Frh(ai)
})
≡


1 (mod pm) if a1 ≡ · · · ≡ at ≡ 0 (mod p),

0 (mod pm) otherwise,
(7.5)

for all a1, . . . , at ∈ Zp[ζq−1]. Furthermore, f (m)(x) is of the form

f (m)(x) =
∑

i1,...,it∈N
W (i1,...,it)<m

c
(m)
i1,...,it

t∏
j=1

[
xj

ij

]
, (7.6)

with each c
(m)
i1,...,it

∈ Zp, c0,...,0 = 1, and

c
(m)
i1,...,it

≡ (−1)(e−1)
∑t

j=1(1−δ(ij ,0))(−p)W (i1,...,it) (mod pW (i1,...,it)+1). (7.7)

We can also write

f (m)(x) =
∑

µ∈N[I×H]
Σµ1=···=Σµt=0
L(µ1,...,µt)<m

f (m)
µ xµ, (7.8)

where each f
(m)
µ ∈ Qp.

Furthermore, if µ ∈ N[I ×H] with Σµ1 = · · · = Σµt = 0 and L(µ1, . . . , µt) = m − 1,

i.e., if µ is a t-tuple of Delsarte-McEliece multisets with W (|µ1|) + · · ·+ W (|µt|) = m− 1,

then f
(m)
µ =

c|µ1|,...,|µt|
µ! , so that

µ!f (m)
µ ≡ (−1)(e−1)

∑t
j=1(1−δ(|µj |,0))(−p)m−1 (mod pm). (7.9)

Proof. Let

h(y) =
∑
i∈N

W (i)<m

hi

[
y
i

]

be the polynomial furnished by Proposition 7.11. Note that h0 = 1 and hi ∈ Zp with

vp(hi) = W (i) for all i. Then set g(x) = h(x1) · · ·h(xt). Note that g(x) takes the values
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modulo pm that we desire on Zp[ζq−1]te (as in (7.5)), and it has the form

g(x) =
∑

i1,...,it∈N
W (i1),...,W (it)<m

hi1 · · ·hit

t∏
j=1

[
xj

ij

]
,

with each hi1 · · ·hit ∈ Zp, ht
0 = 1, and

hi1 · · ·hit ≡ (−1)(e−1)
∑t

j=1(1−δ(ij ,0))(−p)W (i1,...,it) (mod pW (i1,...,it)+1).

The only way in which g(x) might not comply with the conditions we seek in (7.6) is that

it might contain some terms of the form

hi1 · · ·hit

t∏
j=1

[
xj

ij

]

for which W (i1) + · · · + W (it) ≥ m. For these terms, hi1 · · ·hit vanishes modulo pm, and

note that
[xj

ij

]
maps each point (a,Fr(a), . . . ,Fre−1(a)) ∈ Zp[ζq−1]e into Zp. So we may drop

these terms without changing the value modulo pm that the polynomial takes at relevant

points in Zp[ζq−1]te. That is, set

f(x) =
∑

i1,...,it∈N
W (i1)+···+W (it)<m

hi1 · · ·hit

t∏
j=1

[
xj

ij

]
.

This shows that there is a polynomial of form (7.6) that satisfies (7.5).

To get the second expression for f(x), use Lemma 7.5 to write

t∏
j=1

[
xj

ij

]
=

∑
µ1,...,µt∈N[H]

|µ1|≤i1,...,|µt|≤it
Σµ1=···=Σµt=0

Γµ1,...,µtx
µ1
1 · · ·x

µt
t ,

where each Γµ1,...,µt ∈ Qp. We do this for all such terms with W (i1, . . . , it) < m, since these

are the ones appearing in (7.6). Note that since each µj in our expression is a Delsarte-

McEliece multiset, we have L(µj) 6= ∞. Since each |µj | ≤ ij , we have L(µj) ≤ W (ij), and
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so L(µ1, . . . , µt) < m. Therefore, whenever i1, . . . , it ∈ N with W (i1, . . . , it) < m, we have

t∏
j=1

[
xj

ij

]
=

∑
µ∈N[I×H]

L(µ1,...,µt)<m
Σµ1=···=Σµt=0

Gµxµ1
1 · · ·x

µt
t ,

for some coefficients Gµ ∈ Qp. We may substitute this into the first expression (7.6) for

f(x) to obtain the second expression (7.8) for f(x).

Suppose we have a t-tuple µ = (µ1, . . . , µt) of Delsarte-McEliece multisets with L(µ1,

. . . , µt) = m − 1. Then Lemma 7.5 shows that there is no xµ = xµ1
1 · · ·x

µt
t term in the

polynomial
∏t

j=1

[xj

ij

]
unless ij ≥ |µj | for all j, and unless ij = 0 for all j such that |µj | = 0.

(For the second condition, note that
(
x
n

)
has no constant term unless n = 0, so that

[
y
n

]
has

no constant term unless n = 0.) If ij ≥ |µj | for all j and ik > |µk| for some particular k,

then either we have ik > |µk| = 0, or we have W (i1, . . . , it) > L(µ1, . . . , µt) = m− 1. Thus,

if we are considering
∏t

j=1

[xj

ij

]
where W (i1, . . . , it) < m, then there is no xµ = xµ1

1 · · ·x
µt
t

term unless ij = |µj | for j = 1, . . . , t. In this case, Lemma 7.5 tells us that the coefficient

for the term xµ = xµ1
1 · · ·x

µt
t in

∏t
j=1

[ xj

|µj |
]

is
∏t

j=1
1

µj !
= 1

µ! . So if we compare (7.6) with

(7.8), we see that
c
(m)
|µ1|,...,|µt|

µ!
= f (m)

µ .

The congruence (7.9) for µ!f (m)
µ then follows from this and (7.7).

With this polynomial, we are now ready to prove our generalization of the Delsarte-

McEliece theorem.

7.5 Simultaneous Zero Count in Fq[A]

For the remainder of this chapter, we suppose that we have a family of codes C1, . . . , Ct ⊆

Fq[A]. For each i ∈ I, let Si be the minimal support of the Fourier transform of Ci. We

suppose that not all the Si are subsets of {1A}, i.e., that at least one of the Si contains

an element of A that is not the identity. Otherwise we have a trivial situation: each Ci

consists only of constant words and then zer(c1, . . . , ct) = |A| zer(c̃1(1A), . . . , c̃t(1A)) for all
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c1 ∈ C1, . . . , ct ∈ Ct.

Before we present our calculations, we define the parameter `mc(C1, . . . , Ct) first men-

tioned in Section 1.1 of the Introduction. There `mc(C1, . . . , Ct) was defined using sequences;

here we define it (equivalently) using multisets. First we define

Λmc(C1, . . . , Ct) = {λ ∈ N[I ×H ×A] : prA(λ1) ∈ N[S1], . . . ,prA(λt) ∈ N[×St],

Πλ = 1A,prA λ 6∈ N[{1A}],Σ prH(λ1) = · · · = ΣprH(λt) = 0}. (7.10)

We claim that Λmc(C1, . . . , Ct) is nonempty. By assumption we have some k ∈ I such that

there exists a ∈ Sk with a 6= 1A. Let n be the group-theoretic order of a. Consider the

multiset λ that has (q − 1)n instances of the pair (k, 0, a) and no other elements. Then λ

is a unity-product but not all-unity multiset in N[I ×H ×A]. Furthermore λi ∈ N[H × Si]

and Σ prH(λi) = 0 for all i ∈ I. So λ ∈ Λmc(C1, . . . , Ct). Since Λmc(C1, . . . , Ct) 6= ∅, we may

set

`mc(C1, . . . , Ct) = min
λ∈Λmc(C1,...,Ct)

L(λ). (7.11)

Note that if λ ∈ Λmc(C1, . . . , Ct), then λi is a Delsarte-McEliece multiset for each i, so

L(λ) = L(λ1, . . . , λt) is always finite and nonnegative by the comments following (7.1). At

the end of this section, we shall show that when t = 1 the parameter `mc(C1, . . . , Ct), as

defined here, is the same as `mc(C1), as defined in (6.12).

To p-adically estimate simultaneous zero counts in Fq[A], we combine Theorem 3.2 with

Proposition 7.12.

Proposition 7.13. Let t, m ≥ 1, let f (m)(x) be the polynomial described in Proposition

7.12, and write

f (m)(x) =
∑

µ∈N[I×H]
Σµ1=···=Σµt=0

L(µ)<m

f (m)
µ xµ,

where each f
(m)
µ ∈ Qp. For each c1 ∈ C1, . . . , ct ∈ Ct, let C1, . . . , Ct be the elements of



189

Zp[ζq′−1][A] such that C̃i = τ ◦ c̃i for each i. Then for each c1 ∈ C1, . . . , ct ∈ Ct, we have

zernorm(c1, . . . , ct) ≡ |A|
∑

λ∈Λmc(C1,...,Ct)
L(λ)<m

f
(m)
prI×H λ

(prI×H λ)!
λ!

t∏
i=1

C̃i(λi) (mod pm),

where Λmc(C1, . . . , Ct) is as defined in (7.10) above.

Proof. Note that if f (m)(x) is the polynomial described in Proposition 7.12, and a1, . . . , at ∈

Zp[ζq−1], we have f
({

xih = Frh(ai)
})
≡ zer(π(a1), . . . , π(at)) (mod pm). Thus we may

apply Theorem 3.2, to obtain

zernorm(c1, . . . , ct) ≡ |A|
∑

µ∈N[I×H]

µ!f (m)
µ

∑
λ∈N[I×H×A],prI×H λ=µ

Πλ=1A,prA λ6∈N[{1A}]
prA(λ1)∈N[S1],...,prA(λt)∈N[St]

1
λ!

∏
i∈I

C̃i(λi) (mod pm).

We can restrict the sum over µ to those µ with L(µ) < m and Σµ1 = · · · = Σµt = 0,

since f
(m)
µ = 0 otherwise (see Proposition 7.12). With this restriction on µ, the condition

prI×H λ = µ implies that Σ prH(λi) = 0 for all i ∈ I. Thus the inner sum on the right-hand

side sums over those λ ∈ Λmc(C1, . . . , Ct) with prI×H λ = µ. So

zernorm(c1, . . . , ct) ≡ |A|
∑

µ∈N[I×H],L(µ)<m
Σµ1=···=Σµt=0

µ!f (m)
µ

∑
λ∈Λmc(C1,...,Ct)

prI×H λ=µ

1
λ!

∏
i∈I

C̃i(λi) (mod pm)

≡ |A|
∑

µ∈N[I×H]
L(µ)<m

∑
λ∈Λmc(C1,...,Ct)

prI×H λ=µ

f
(m)
prI×H λ

(prI×H λ)!
λ!

∏
i∈I

C̃i(λi) (mod pm).

The condition λ = prI×H µ also implies that the condition L(µ) < m in the first sum can

be replaced with the condition L(λ) < m in the second sum, and so

zernorm(c1, . . . , ct) ≡ |A|
∑

µ∈N[I×H]

∑
λ∈Λmc(C1,...,Ct)

L(λ)<m,prI×H λ=µ

f
(m)
prI×H λ

(prI×H λ)!
λ!

∏
i∈I

C̃i(λi) (mod pm)

≡ |A|
∑

λ∈Λmc(C1,...,Ct)
L(λ)<m

f
(m)
prI×H λ

(prI×H λ)!
λ!

∏
i∈I

C̃i(λi) (mod pm).

Now we can prove our generalization for simultaneous zero counts of the Delsarte-
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McEliece theorem.

Theorem 7.14. Let t ≥ 1 and let Λmc(C1, . . . , Ct) and `mc(C1, . . . , Ct) be as defined in (7.10)

and (7.11) above. For each c1 ∈ C1, . . . , ct ∈ Ct, let C1, . . . , Ct be the elements of Zp[ζq′−1][A]

such that C̃i = τ ◦ c̃i for each i. Then for each c1 ∈ C1, . . . , ct ∈ Ct, we have

zernorm(c1, . . . , ct) ≡ p`mc(C1,...,Ct)
∑

λ∈Λmc(C1,...,Ct),
L(λ)=`mc(C1,...,Ct)

Γλ

t∏
i=1

C̃i(λi) (mod p`mc(C1,...,Ct)+1),

(7.12)

where

Γλ =
|A|
λ!

(−1)`mc(C1,...,Ct)+(e−1)
∑t

i=1(1−δ(|λi|,0)).

Γλ is a unit in Zp for each λ ∈ Λmc(C1, . . . , Ct) such that L(λ) = `mc(C1, . . . , Ct). Further-

more, ∑
λ∈Λmc(C1,...,Ct),

L(λ)=`mc(C1,...,Ct)

Γλ

t∏
i=1

C̃i(λi)

assumes values in Zp, and so zernorm(c1, . . . , ct) ≡ 0 (mod p`mc(C1,...,Ct)) for all words c1 ∈

C1, . . . , ct ∈ Ct. There are some c1 ∈ C1, . . . , ct ∈ Ct such that zernorm(c1, . . . , ct) 6≡ 0

(mod p`mc(C1,...,Ct)+1).

Proof. Throughout this proof we use `mc as an abbreviation for `mc(C1, . . . , Ct). We apply

Proposition 7.13 with m = `mc + 1 to obtain

zernorm(c1, . . . , ct) ≡ |A|
∑

λ∈Λmc(C1,...,Ct)
L(λ)=`mc

f
(`mc+1)
prI×H λ

(prI×H λ)!
λ!

t∏
i=1

C̃i(λi) (mod p`mc+1), (7.13)

where f (`mc(C)+1)(x) is the polynomial described in Proposition 7.12, and where we have

rewritten the L(λ) < `mc + 1 condition in the sum as L(λ) = `mc, since `mc is defined to be

the minimum value of L(λ) for any λ ∈ Λmc(C1, . . . , Ct).

We investigate the coefficients of polynomial f (`mc+1)(x). The only ones that actually

matter for our calculation are those of the form fprI×H λ for λ ∈ Λmc(C) with L(λ) = `mc.

Since L(prI×H λ) = L(λ) by the definition of L, this means that we need only consider

f
(`mc+1)
µ with L(µ) = `mc. Further, we can narrow our attention to those f

(`mc+1)
µ with
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all of µ1, . . . , µt Delsarte-McEliece, since λ ∈ Λmc(C1, . . . , Ct) implies that (prI×H λ)i is

Delsarte-McEliece for all i ∈ I. Then Proposition 7.12 tells us that for all such µ, we have

µ!f (m)
µ ≡ (−1)(e−1)

∑t
j=1(1−δ(|µj |,0))(−p)`mc (mod p`mc+1).

So for all λ ∈ Λmc(C1, . . . , Ct), we have

(prI×H λ)!f (`mc+1)
prI×H λ ≡ (−1)(e−1)

∑t
j=1(1−δ(|λj |,0))(−p)`mc (mod p`mc+1), (7.14)

where we have noted that
∣∣(prI×H λ)j

∣∣ = |prH(λj)| = |λj |.

We now use the notion of reduction introduced in Section 2.6. We claim that all

λ ∈ Λmc(C1, . . . , Ct) with L(λ) = `mc are reduced. To see this, let us suppose that κ ∈

Λmc(C1, . . . , Ct) with κ not reduced. Then Red(κ) ∈ Λmc(C1, . . . , Ct) by Lemma 2.28, and fur-

thermore (by the same lemma) |[Red(κ)]i| ≤ |κi| for all i ∈ I, and |[Red(κ)]j | ≤ |κj |−(p−1)

for some j ∈ I. This means that κj 6= ∅, and so by the same lemma, Red(κj) 6= ∅, so that

L([Red(κ)]j) ≤ L(κj) − 1. Of course L([Red(κ)]i) ≤ L(κi) for all i ∈ I, so we have

L(Red(κ)) ≤ L(κ)− 1. Since Red(κ) ∈ Λmc(C1, . . . , Ct), this means that L(Red(κ)) ≥ `mc,

and so L(κ) > `mc. This completes our proof that all elements λ in Λmc(C1, . . . , Ct) with

L(λ) = `mc are reduced.

Since all λ ∈ Λmc(C1, . . . , Ct) with L(λ) = `mc are reduced, λ! is a unit in Zp for each

such λ. In particular, recall our claim in the statement of the theorem that the terms

Γλ =
|A|
λ!

(−1)`mc(C1,...,Ct)+(e−1)
∑t

i=1(1−δ(|λi|,0))

are units in Zp for all λ ∈ Λmc(C1, . . . , Ct) such that L(λ) = `mc. This is now clear. Also

note that the scaled Fourier coefficients C̃i(a) always lie in Zp[ζq′−1], so that 1
λ!

∏
i∈I C̃i(λi)

is in Zp[ζq′−1], i.e., has nonnegative p-adic valuation, for all λ ∈ Λmc(C1, . . . , Ct) such that

L(λ) = `mc. We use this fact, the congruence (7.14), and the definition of Γλ to deduce
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from (7.13) that

zernorm(c1, . . . , ct) ≡ p`mc
∑

λ∈Λmc(C1,...,Ct)
L(λ)=`mc

Γλ

t∏
i=1

C̃i(λi) (mod p`mc+1), (7.15)

which is the first congruence (7.12) that we were to prove. Since the coefficients Γλ occurring

in the sum on the right-hand side are units in Zp and since the scaled Fourier coefficients

are always in Zp[ζq′−1], the right-hand side vanishes modulo p`mc to give

zernorm(c1, . . . , ct) ≡ 0 (mod p`mc).

For the rest of the proof, we define Λ` to be the set of λ ∈ Λmc(C1, . . . , Ct) with

L(λ) = `mc. We now show that
∑

λ∈Λ`
Γλ
∏

i∈I C̃i(λi) assumes values in Zp. Since it

assumes values in Zp[ζq′−1], it suffices to show that it is fixed by Fr. We use the Frobe-

nius action FrA introduced in Section 2.7. By Lemma 2.32, we note that FrA restricted to

Λmc(C1, . . . , Ct) is a permutation of Λmc(C1, . . . , Ct). We also note that |[FrA(λ)]i| = |λi| for

all λ ∈ Λmc(C1, . . . , Ct) and i ∈ I, so that L(FrA(λ)) = L(λ) for all λ ∈ Λmc(C1, . . . , Ct).

Thus FrA permutes the elements of Λ`, and so

∑
λ∈Λ`

Γλ

∏
i∈I

C̃i(λi) =
∑
λ∈Λ`

ΓFrA(λ)

∏
i∈I

C̃i([FrA(λ)]i).

From Lemma 2.32, we have learned that |[FrA(λ)]i| = |λi| for all i ∈ I, and we also learn

that (FrA(λ))! = λ!. Thus, ΓFrA(λ) = Γλ for all λ. Using this fact and invoking Lemma 2.32

again on the product
∏

i∈I C̃i([FrA(λ)]i), we have

∑
λ∈Λ`

Γλ

∏
i∈I

C̃i(λi) =
∑
λ∈Λ`

Γλ Fr

(∏
i∈I

C̃i(λi)

)

= Fr

∑
λ∈Λ`

Γλ

∏
i∈I

C̃i(λi)

 ,

where we have used the fact that Γλ ∈ Zp in the second equality. This finishes the proof

that
∑

λ∈Λ`
Γλ
∏

i∈I C̃i(λi) is in Zp.
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To finish the proof, we must show that there are some c1 ∈ C1, . . . , ct ∈ Ct such that

zernorm(c1, . . . , ct) 6≡ 0 (mod p`mc+1). In view of (7.12), it suffices to show that

∑
λ∈Λ`

Γλ

∏
i∈I

C̃i(λi) 6≡ 0 (mod p)

for some c1 ∈ C1, . . . , ct ∈ Ct. To do this, we shall use the notion of collapse introduced in

Section 2.6. Let R be a set of q-class representatives of A. Note that C̃i(a) is zero or a

power of π(ζq′−1) for each i ∈ I and a ∈ A, since C̃i(a) is the Teichmüller lift of c̃i(a) ∈ Fq′ .

By Lemma 2.20, we have

∑
λ∈Λ`

Γλ

∏
i∈I

C̃i(λi) =
∑
λ∈Λ`

Γλ

∏
i∈I

C̃i(CoR(λi)),

so it suffices to show that the right-hand side, i.e.,

∑
λ∈Λ`

Γλ

∏
i∈I

C̃i(CoR(λi)) (7.16)

does not vanish modulo p for some c1 ∈ C1, . . . , ct ∈ Ct. Note that the expression (7.16) is

a Zp-linear combination of terms of the form

Dλ =
∏
i∈I

∏
r∈R∩Si

C̃i(r)(CoR(λi))r , (7.17)

where we have restricted the second product to R ∩ Si in view of Lemma 2.19 and because

λi ∈ N[H × Si] for all λ ∈ Λmc(C1, . . . , Ct) and i ∈ I. Note that no two terms Dλ and

Dλ′ with λ, λ′ ∈ Λ` have exactly the same exponents for all the terms C̃i(r), since that

would imply that CoR(λi) = CoR(λ′i) for all i ∈ I, which would force λ = λ′, since λ and

λ′ are reduced (see Corollary 2.26). Also note that the exponent (CoR(λi))r of C̃i(r) in

Dλ is less than qer by the definition of CoR. (Recall that er denotes the cardinality of

the q-class of r in A.) For each i ∈ I, as we vary ci over Ci, Lemma 2.14 tells us that

the values in {C̃i(r) : r ∈ R ∩ Si} vary over
∏

r∈R∩Si
V0,r where V0,r is the set containing

0 and all the powers of ζqer−1. So as we vary c1, . . . , ct over C1 × · · · × Ct, the values in
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{C̃i(r) : i ∈ I, r ∈ R ∩ Si} vary over
∏

i∈I

∏
r∈R∩Si

V0,r. Since no two elements of V0,r

are equal to each other modulo p, and since |V0,r| = qer , which is strictly greater than the

highest exponent of C̃i(r) appearing in any term (7.17) of (7.16), we may apply Lemma

2.33 to conclude that the minimum p-adic valuation achieved by (7.16) as c1, . . . , ct runs

through C1 × · · · × Ct is precisely the minimum of the p-adic valuations of the coefficients

Γλ for λ ∈ Λ`. But we have already shown that each Γλ is a unit in Zp, so 7.16 does not

vanish modulo p for some c1 ∈ C1, . . . , ct ∈ Ct.

We can obtain the Delsarte-McEliece theorem (Theorem 7.1) by setting t = 1 in the

theorem we have just proved. In fact, we recover the precise version of the Delsarte-McEliece

theorem (Theorem 6.13) in full detail, as we now show. We suppose that t = 1 for the rest

of this section, so that I = {1}.

Consider the size-preserving bijection Φ : Z[I × H × A] → Z[H × A] that takes λ to

λ1. Then Φ restricts to a bijection from Λmc(C1), as defined in (7.10) here, to Λmc(C1), as

defined in (6.9) in Chapter 6.

Consider the notion of the tier of an account λ ∈ N[H ×A], denoted by Ti (λ) and

defined in (6.10) in Chapter 6. In (6.13) of Section 6.5, we showed that Ti (κ) = |κ|
(p−1) − e

if κ is a nonempty Delsarte-McEliece multiset in N[H ×A]. (Of course Ti (∅) = 0 by the

definition (6.10) of tier.) Therefore L(λ) = L(λ1) = Ti (λ1) = Ti (Φ(λ)) for any λ in Λmc(C1)

(with Λmc(C1) as defined in (7.11) here). Thus `mc(C1), as defined in (7.11) here, is equal

to `mc(C1), as defined in (6.12) in Chapter 6.

Now we can use Φ to identify the range of summation {λ ∈ Λmc(C1) : L(λ) = `mc(C1)}

in (7.12) of Theorem 7.14 with the range of summation {λ ∈ Λmc(C1) : Ti (λ) = `mc(C1)}

in (6.14) of Theorem 6.13. In Theorem 7.14, we have Γλ = |A| (−1)`mc(C1)+(e−1)

(Φ(λ))! for all λ in

the sum in (7.12), since λ 6= ∅ implies λ1 6= ∅ and since λ! = λ1! = (Φ(λ))!. Thus, in view

of our correspondence Φ, the coefficients in (7.12) of Theorem 7.14 match those in (6.14) of

Theorem 6.13, and so we can recover the latter theorem from the former.

For the rest of this chapter, we shall apply Theorem 7.14 to the study of algebraic sets

over finite fields. First we provide some historical background on such researches.
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7.6 Theorems of Chevalley-Warning, Ax, and N. M. Katz

After proving Theorem 7.1, Delsarte and McEliece employed their result to prove a theorem

of Ax on the cardinalities of algebraic sets over finite fields. If f1, . . . , ft ∈ Fq[x1, . . . , xn],

then we use V (f1, . . . , ft) to denote the subset of Fn
q consisting of the simultaneous zeroes of

f1, . . . , ft. Just as the Delsarte-McEliece theorem counts the zeroes of a word in an Abelian

code, so the Ax theorem counts the zeroes of a polynomial.

Theorem 7.15 (Ax [2]). Let f ∈ Fq[x1, . . . , xn] be a nonconstant polynomial of degree d.

Let ν be the least nonnegative integer greater than or equal to (n − d)/d. Then |V (f)| is

divisible by qν .

Ax’s proof is based upon the Stickelberger theorem on Gauss sums. The Ax theorem is

an improvement of the theorem of Warning [62], which shows that p divides |V (f)| when

the degree d of f is less than the number n of variables. Warning’s theorem generalizes and

strengthens a theorem of Chevalley [15], which shows that if n > d and f has no constant

term, then f has a nontrivial zero.

Ax also proved that his theorem is sharp in the sense that when n > d, there exists a

polynomial f of degree d such that |V (f)| is not divisible by pqd(n−d)/de. Write n = ad + b

with 0 < b ≤ d, and set

g(x1, . . . , xad) =


0 if a = 0,

x1 . . . xd + · · ·+ x(a−1)d+1 . . . xad otherwise.

When n > d, i.e., when a > 0, Ax shows that

f(x1, . . . , xn) =


g(x1, . . . , xad) if b = 1,

g(x1, . . . , xad) + xad+1 . . . xn otherwise,
(7.18)

is a polynomial of degree d with |V (f)| not divisible by pqd(n−d)/de. Of course, f is homo-
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geneous if and only if b = 1 or b = d. Modifying this construction slightly, we set

h(x1, . . . , xn) =


g(x1, . . . , xad) if a > 0 and b = 1,

g(x1, . . . , xad) + xad+1 . . . xn−1x
d−b+1
n otherwise,

which is always homogeneous of degree d. Note that |V (h)| is clearly not divisible by p if

n ≤ d, i.e., if a = 0. If n > d, it is not hard to show that |V (h)| = |V (f)|, where f is as

defined in (7.18). Thus we have the following statement of sharpness:

Proposition 7.16 (Homogeneous Sharpness of Ax’s Theorem). Let n, d ≥ 1 and

let ν be the least nonnegative integer greater than or equal to (n − d)/d. Then there is a

homogeneous polynomial f ∈ Fq[x1, . . . , xn] of degree d such that |V (f)| is not divisible by

pqν .

Delsarte and McEliece show that Theorem 7.15 is a consequence of their own theorem

(Theorem 7.1) applied to the algebra Fq[A] where A is the cyclic group of units in the field

Fqn . Their proof makes use of a correspondence between the elements of this algebra and

polynomial functions on the punctured affine space Fn
q r {(0, . . . , 0)}. In this correspon-

dence, polynomials of low degree correspond to elements of the group algebra whose Fourier

transforms have small supports (see Corollary 2 of [28] and Theorem 5.1 of [18]). We shall

revisit this correspondence soon.

The papers of Chevalley [15] and Warning [62] also tell us about V (f1, . . . , ft) for a

collection f1, . . . , ft of polynomials in Fq[x1, . . . , xn]. In particular, Warning shows that if

the sum of the degrees of the polynomials is less than the number n of variables, then p

divides |V (f1, . . . , ft)|. N. M. Katz generalized the theorem of Ax in the same direction to

give a result for algebraic sets determined by collections of polynomials.

Theorem 7.17 (N. M. Katz [30]). Let f1, . . . ft ∈ Fq[x1, . . . , xn] be nonconstant polyno-

mials of degrees d1 ≤ · · · ≤ dt, respectively. Let ν be the least nonnegative integer greater

than or equal to
(
n−

∑t
i=1 di

)
/dt. Then |V (f1, . . . , ft)| is divisible by qν .

N. M. Katz’s proof is based on Dwork’s p-adic theory of the zeta function [22], [45]. The

paper of N. M. Katz also includes the following claim of sharpness for this result:
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Proposition 7.18 (Homogeneous Sharpness of N. M. Katz’s Theorem). Let n

and d1 ≤ · · · ≤ dt be positive integers, and let ν be the least nonnegative integer greater

than or equal to
(
n−

∑t
i=1 di

)
/dt. Then there are homogeneous polynomials f1, . . . , ft ∈

Fq[x1, . . . , xn] of degrees d1, . . . , dt such that |V (f1, . . . , ft)| is not divisible by pqν .

When n ≤
∑t

i=1 di, N. M. Katz constructs homogeneous polynomials of the prescribed

degrees such that V (f1, . . . , ft) is a single point. When n >
∑t

i=1 di, he uses the same

construction to form homogeneous polynomials f1, . . . , ft−1 of the prescribed degrees that

involve the first d1 + · · · + dt−1 indeterminates and that simultaneously vanish only when

these variables are all zero. Then it suffices to find a homogeneous polynomial ft of degree

dt in n′ = n −
∑t−1

i=1 di indeterminates that vanishes on a subset B of Fn′
q with |B| not

divisible by pqν . Since ν =
⌈(

n−
∑t

i=1 di

)
/dt

⌉
= d(n′ − dt)/dte, this argument shows

that to demonstrate Proposition 1.5, it suffices to prove the t = 1 case, which is precisely

Proposition 7.16 proved here. In his paper, N. M. Katz incorrectly asserts ([30], page 498,

lines 2–3) that the paper of Ax [2] contains Proposition 7.16, whereas we have seen that

Ax’s construction (shown in equation (7.18) above) is not always homogeneous. In any

case, we have seen in the discussion preceding Proposition 7.16 that this deficiency is easily

overcome.

It should be noted that improvements to Theorem 7.17 have been obtained in [1], [38],

[39], and [40]. The researchers in last three papers were motivated by ideas in coding theory,

in particular, the work of McEliece on p-divisibility of weights in cyclic codes.

Since the Ax theorem is a consequence of the Delsarte-McEliece theorem, it is natural

to ask whether the theorem of N. M. Katz is the consequence of Theorem 7.14. We answer

this question affirmatively in this rest of this chapter.

7.7 Polynomials and Group Algebras

To show that Theorem 7.14 implies the theorem of N. M. Katz, we make use of an Fq-

algebra epimorphism Ψ from Fq[x1, . . . , xn] to the group algebra (Fq[A], ·), where A is the

group of units of Fqn , and where one should note that multiplication in Fq[x1, . . . , xn]

is transformed to pointwise multiplication in Fq[A] rather than to the usual convolution
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operation. For the rest of this chapter, we set n to be a positive integer and we set A = F×qn ,

which is a cyclic group of order qn − 1. It is important to note that henceforth we shall

always consider Fq[A] with convolution and (Fq[A], ·) as one and the same Fq-vector space,

and we use the two different multiplication operations as the need arises. As per our

convention, we always explicitly note when we are using pointwise multiplication, since it

is not the standard multiplicative operation. For example, although Ψ is an Fq-algebra

homomorphism from Fq[x1, . . . , xn] to (Fq[A], ·), we shall often consider the situation when

a subset of Fq[x1, . . . , xn] is mapped by Ψ to a convolution ideal (i.e., a code) in Fq[A]. The

epimorphism Ψ that we shall employ is the same one used by Delsarte and McEliece [18]

to prove Ax’s theorem (Theorem 7.15) from their own theorem (Theorem 7.1). We shall

present Ψ below after some preliminary discussion on polynomial functions in affine space.

First note that all functions from Fn
q to Fq are polynomial functions because the domain

is finite. Let I be the ideal in Fq[x1, . . . , xn] generated by xq
1 − x1, . . . , xq

n − xn and let

I′ be the ideal generated by I and (xq−1
1 − 1) · · · (xq−1

n − 1). Notice that I is the ideal of

polynomials vanishing on Fn
q . Thus any function from Fn

q to Fq can be uniquely represented

as a polynomial in Fq[x1, . . . , xn] reduced modulo I, i.e., a polynomial in which any exponent

of an indeterminate is less than q. Note also that I′ is the ideal of polynomials vanishing on

the set Fqn r {(0, . . . , 0)}, which we call the punctured affine space. Thus any polynomial

function on the punctured affine space is uniquely represented by a polynomial reduced

modulo I′, i.e., a polynomial in which any exponent of an indeterminate is less than q and

where the total degree is less than n(q − 1). We are concerned with polynomial functions

on the punctured affine space because the epimorphism Ψ that we plan to use induces an

isomorphism from Fq[x1, . . . , xn]/I′ to the algebra (Fq[A], ·).

We now show that we can restrict our attention to polynomials of degree less than

n in the rest of this chapter. The conclusion of N. M. Katz’s theorem (Theorem 7.17)

is trivial if the sum of the degrees d1 + · · · + dt is greater than or equal to the number

n of variables, or equivalently, when the parameter ν defined there is zero. When d1 +

· · · + dt ≥ n, the statement regarding sharpness (Proposition 7.18) asserts that there are

homogeneous polynomials f1, . . . , ft of degrees d1, . . . , dt such that p - |V (f1, . . . , ft)|. This
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can be demonstrated by simple constructions. If t ≥ n, then let each fi = xdi

min{i,n}, so that

V (f1, . . . , ft) = {(0, . . . , 0)}. If t < n, then partition the set {x1, . . . , xn} into t nonempty

sets P1, . . . , Pt with |Pi| ≤ di, and then let fi be a monomial of total degree di involving

precisely those indeterminates in Pi. In this case,

|V (f1, . . . , ft)| =
t∏

i=1

(
q|Pi| − (q − 1)|Pi|

)
≡ (−1)t+n (mod p).

Thus we can confine our attention to the case when d1 + · · · + dt < n, so that all the

polynomials have degrees less than n. The reductions modulo I and modulo I′ of such

polynomials are always identical to each other.

Now we describe the Fq-algebra epimorphism Ψ from Fq[x1, . . . , xn] to the group algebra

(Fq[A], ·) (recall that A = F×qn in the rest of this chapter). We follow the presentation in the

beginning of Section 5 of [18]. Fix an Fq-basis (α1, . . . , αn) of Fqn . Then set Fn
q r{(0, . . . , 0)}

in bijective correspondence with F×qn by the mapping (u1, . . . , un) 7→ u1α1 + · · · + unαn.

Each polynomial f(x1, . . . , xn) then corresponds to the function Ψ(f) : F×qn → Fq given by

Ψ(f)(u1α1 + · · · + unαn) = f(u1, . . . , un). Since Ψ(f) is a function from A to Fq, we may

regard it as an element of the group algebra Fq[A], i.e., Ψ(f) is regarded as the formal sum∑
a∈A caa with ca = Ψ(f)(a). Note that Ψ preserves Fq-scalar multiplication and pointwise

addition and multiplication of functions, so it is a homomorphism of Fq-algebras from

Fq[x1, . . . , xn] to (Fq[A], ·). Since I′ is the ideal of polynomials that vanish on the punctured

affine space, I′ is the kernel of Ψ. Furthermore, each function from Fn
q r {(0, . . . , 0)} to

Fq is representable by a unique polynomial reduced modulo I′, so each element of Fq[A]

has a unique Ψ-preimage among such polynomials. So Ψ is an Fq-algebra epimorphism and

induces an Fq-algebra isomorphism from Fq[x1, . . . , xn]/I′ to (Fq[A], ·). The definition of Ψ

remains in force for the rest of this chapter.

Determining the set of simultaneous zeroes of a collection of polynomials is almost the

same thing as determining the set of simultaneous zeroes of their images under Ψ. As

(u1, . . . , un) runs through Fn
q r {(0, . . . , 0)}, the quantity u1α1 + · · · + unαn runs through
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A. So we have the following observation:

Lemma 7.19. Let f1, . . . , ft ∈ Fq[x1, . . . , xn]. Then

|V (f1, . . . , ft)| = zer(Ψ(f1), . . . ,Ψ(ft)) +
t∏

i=1

δ (fi(0, . . . , 0), 0) .

The map Ψ is especially useful inasmuch as it maps low-degree polynomials to elements

of Fq[A] whose Fourier transforms have small supports. The correspondence between the

degree of f and the support of the Fourier transform of Ψ(f) is given in Corollary 2 of

[28] and is restated in terms closer to those of this thesis in Theorem 5.1 of [18]. Here

we need to establish this correspondence in a way that is sensitive to whether or not our

polynomials are homogeneous, so we shall present and prove a theorem (Theorem 7.21) that

is a refinement of the result just mentioned.

Before we can prove Theorem 7.21, we need concrete expressions for the Fourier trans-

form and Fourier inversion formula for our algebra Fq[A]. Recall that A = F×qn is a cyclic

group of order qn − 1. Also recall that in Section 2.3 we defined e′ to be the least integer

such that qe′ − 1 is divisible by the exponent of A, and we set q′ = qe′ . So plainly e′ = n

here. Note that Fqn = Fq′ is the quotient modulo p of Zp[ζq′−1]. By convention, we have

π = πd, and since d = 1 in this chapter, we have π = π1, that is, reduction modulo p. Since

π(ζq′−1) is a root of unity of order q′ − 1 in Fq′ , we see that A = F×q′ is the cyclic group

generated by π(ζq′−1). We set γ = π(ζq′−1) for convenience. The bilinear pairing introduced

in Section 2.2 can then be taken as the function
〈
γi, γj

〉
= ζij

q′−1. This is used to define the

Fourier transform of functions in Zp[ζq′−1][A], which is given by

f̂(γi) =
qn−2∑
j=0

f(γj)ζ−ij
q′−1,

with inversion formula

f(γi) = |A|−1
qn−2∑
j=0

f̂(γj)ζij
q′−1.
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This, in turn, induces the Fourier transform for functions f ∈ Fq′ [A], which is given by

f̂(γi) =
qn−2∑
j=0

f(γj)γ−ij ,

and the inversion formula is

f(γi) = |A|−1
qn−2∑
j=0

f̂(γj)γij . (7.19)

We shall use this formula in our proof of Theorem 7.21 below.

To describe the correspondence between the degree of f and the support of the Fourier

transform of Ψ(f), we introduce the concept of the q-ary weight of a nonnegative integer,

following [28] and [18]. If k ∈ N, write the q-ary expansion k =
∑∞

i=0 kiq
i, where 0 ≤ ki < q

for each i. Then the q-ary weight of k, denoted wq(k), is
∑∞

i=0 ki. We extend the notion

of q-ary weight to elements of F×qn ; for any element β ∈ F×qn , we choose the unique integer

k with 0 ≤ k < qn − 1 such that β = γk. Then the q-ary weight of β, denoted wq(β), is

the q-ary weight of the integer k. Note that wq(γ) = 1, except in the case when q = 2 and

n = 1, wherein wq(γ) = 0. We pause to state some other facts about the q-ary weight that

we shall find useful later.

Lemma 7.20. Let m ≥ 1, let j, k, j1, . . . , jm be nonnegative integers, and let a, a1, . . . ,

am ∈ A. Then we have the following:

(i) wq(j) ≤ j.

(ii) If 0 ≤ j < qn − 1 and j ≡ k (mod qn − 1), then wq(j) ≤ wq(k).

(iii) wq(j) ≡ j (mod q − 1).

(iv) wq(aq) = wq(a).

(v) wq(γqj
) = 1 unless n = 1 and q = 2.

(vi)
∑e−1

s=0 wq(pj+s) = (q − 1)/(p− 1).

(vii) wq (
∑m

i=1 ji) ≤
∑m

i=1 wq(ji).
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(viii) wq (
∏m

i=1 ai) ≤
∑m

i=1 wq(ai).

(ix) wq (
∑m

i=1 ji) ≡
∑m

i=1 wq(ji) (mod q − 1).

(x) wq (
∏m

i=1 ai) ≡
∑m

i=1 wq(ai) (mod q − 1).

(xi) If 0 <
∑m

i=1 wq(ji) < n(q − 1), then
∑m

i=1 ji 6≡ 0 (mod qn − 1).

(xii) If 0 <
∑m

i=1 wq(ai) < n(q − 1), then
∏m

i=1 ai 6= 1A.

(xiii) If 0 < m < n(q−1), wq(a1) = · · · = wq(am) = 1, and a =
∏m

i=1 ai, then 0 < wq(a) ≤ m

and wq(a) ≡ wq(m) (mod q − 1).

(xiv) wq (
∏m

i=1 ji) ≤
∏m

i=1 wq(ji).

Proof. These are all routine; we refer the reader to [18] for more details. The inequality

(i) is clear. Lemma 3.6 of [18] contains (ii). Congruence (iii) follows immediately from the

definition of wq. The equality (iv) follows from the fact that

(
γi0+i1q+···+in−1qn−1

)q
= γin−1+i0q+i1q2+···+in−2qn−1

.

Then (v) follows from (iv) and the fact that wq(γ) = 1 unless n = 1 and q = 2. A routine

calculation gives (vi). Lemma 3.7 of [18] contains (vii), and (viii) follows from this and (ii).

The congruences (ix) and (x) follow easily from (iii). Lemma 3.6 of [18] states that if j > 0

and j ≡ 0 (mod qn − 1), then wq(j) ≥ n(q − 1). This fact, along with (vii), proves (xi).

Then (xii) follows from (xi). Claim (xiii) follows from (xii), (viii), (x), and (iii). Lemma 3.7

of [18] contains (xiv).

With this notion of q-ary weight, we can relate the degree of the polynomial f to the

support of the Fourier transform of Ψ(f). We do so in the following theorem, which is a

refined version of Corollary 2 in [28] and Theorem 5.1 in [18]:

Theorem 7.21. Let d be an integer with 0 ≤ d < n(q − 1). Then Ψ maps the Fq-vector

space of polynomials in Fq[x1, . . . , xn] of degree less than or equal to d onto the Fq-vector

space of functions in Fq[A] whose Fourier transforms are supported on the q-closed subset
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Υd = {a ∈ A : wq(a) ≤ d}. Furthermore, if d > 0, then Ψ maps the Fq-vector space of

polynomials in Fq[x1, . . . , xn] that are homogeneous of degree d onto the Fq-vector space of

functions in Fq[A] whose Fourier transforms are supported on the q-closed subset Ωd = {a ∈

A : 0 < wq(a) ≤ d, wq(a) ≡ wq(d) (mod q − 1)}.

Proof. That Υd and Ωd as defined above are q-closed comes from the fact that wq(aq) =

wq(a) for any a ∈ A by Lemma 7.20(iv). Ψ maps the set of constant polynomials onto the

set of constant functions in Fq[A]; these are precisely the functions whose Fourier transforms

are supported on {1A} = Υ0. This special case of the first claim, together with the second

claim regarding homogeneous polynomials, implies the first claim in its entirety. So we shall

prove the second claim.

We fix d with 0 < d < n(q − 1) for the rest of the proof. Note that these bounds on d

allow us to exclude case when q = 2 and n = 1, which is pathological.

First we show that Ψ maps the homogeneous polynomials of degree d to functions whose

Fourier transforms are supported on Ωd. To do this, it suffices to consider monomials of

degree d. Recall that α1, . . . , αn is an Fq-basis of Fqn . Suppose that f ∈ Fq[x1, . . . , xn] is

a nonzero homogeneous polynomial of degree one, i.e., a nonzero linear polynomial with

no constant coefficient. Then consider the function ϕ : Fqn → Fq given by ϕ(u1α1 + · · · +

unαn) = f(u1, . . . , un), where u1, . . . , un range over Fq. Comparing the definition of ϕ

with the definition of Ψ(f), we see that Ψ(f) is just the restriction of ϕ to F×qn . This

function ϕ is a nontrivial Fq-linear functional on Fqn , hence is of the form ϕ(u) = Trne
e (βu)

for some β ∈ F×qn . In particular, consider polynomials of the form f(x1, . . . , xn) = xi

for i ∈ {1, . . . , n}. Set ξi = Ψ(xi) for each i. Then there is some βi ∈ F×qn such that

ξi(u) = Trne
e (βiu) for all u ∈ F×qn . One can use (7.19) and the bijectivity of the Fourier

transform to check that ξ̂i is the function in (Fqn)A that has ξ̂i(γqj
) = |A|βqj

i for all j and

ξ̂i(a) = 0 for a 6∈ {γqj
: 0 ≤ j < n}. So by Lemma 7.20(v), ξ̂i is supported on Ω1. (Recall

that we have excluded the case when q = 2 and n = 1.)

We wish to show that an arbitrary monomial f(x1, . . . , xn) = xd1
1 · · ·xdn

n with d1 + · · ·+

dn = d has the Fourier transform of Ψ(f) supported on Ωd. To do this, we use nonstandard

multiplications in our algebras, i.e., we use pointwise multiplication in Fq[A] and convolution
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in FA
q . We adopt the notation that ε•k is the pointwise product of k copies of ε ∈ Fq′ [A]

and η∗k is the convolution product of k copies of η ∈ (Fq′)A. Since Ψ is an Fq-algebra

homomorphism from Fq[x1, . . . , xn] into (Fq[A], ·), we have Ψ(f) = ξ•d1
1 · ξ•d2

2 · . . . · ξ•dn
n .

Recall from Proposition 2.6 that if g1 · g2 = h, then ĥ = |A|−1ĝ1 ∗ ĝ2. So the Fourier

transform of Ψ(f) is |A|1−dξ̂∗d1
1 ∗ · · · ∗ ξ̂∗dn

n . We want to show that this is supported on Ωd.

In the previous paragraph, we observed that each ξ̂i is supported on Ω1. If Y, Z ⊆ A, we

define the convolution of Y and Z, denoted Y ∗ Z, to be {y ∗ z : y ∈ Y, z ∈ Z}, and we

define Y ∗k to be the convolution product of k copies of Y . Then the Fourier transform of

Ψ(f) is supported on Ω∗d
1 , so it suffices to show that Ω∗d

1 ⊆ Ωd. Each element of Ω1 has

unit q-ary weight. Thus each element in Ω∗d
1 is a product of d elements of unit q-ary weight.

Since 0 < d < n(q − 1), Lemma 7.20(xiii) shows that each a ∈ Ω∗d
1 has 0 < wq(a) ≤ d

and wq(a) ≡ wq(d) (mod q − 1), i.e., that a ∈ Ωd. So Ω∗d
1 ⊆ Ωd, and therefore Ψ maps

homogeneous polynomials of degree d into the set of functions whose Fourier transforms are

supported on Ωd.

Now it remains to show that Ψ maps the set P of homogeneous polynomials of degree d

onto the set R of functions whose Fourier transforms are supported on Ωd. We just showed

that Ψ(P ) ⊆ R; now we want to show that Ψ(P ) = R. Since the sets involved are finite, it

will suffice to show that |Ψ(P )| ≥ |R|. Recall that the ideal I′, defined at the beginning of

this section, is the kernel of Ψ. If we let Q be the set of reductions modulo I′ of elements

in P , then Ψ(Q) = Ψ(P ) and Ψ is injective when restricted to Q. So it will suffice to show

that |Q| ≥ |R|. Recall that the set Ωd is q-closed, so Lemma 2.13 tells us that |R| = q|Ωd|.

So we need to show that |Q| ≥ q|Ωd|. Since the polynomials in P are of degree less

than n(q − 1), their reductions modulo I and reductions modulo I′ are the same. The set

Q of reductions modulo I of the elements in P is the Fq-vector space whose basis is the

set M of monomials of the form xe1
1 . . . xen

n where 0 ≤ ei < q, 0 < e1 + · · · + en ≤ d, and

e1 + · · ·+ en ≡ d (mod q− 1). Q contains M because any nonconstant monomial of degree

u can be replaced with an equivalent monomial modulo I of degree u+(q− 1) by replacing

an indeterminate xi with xq
i . That M spans Q follows from the fact that any monomial

of degree d reduces modulo I to a nonconstant monomial of degree d − k(q − 1) for some
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k ≥ 0.

Thus Q = q|M |, and so we need to show that |M | ≥ |Ωd|. We shall devise an injection

θ from Ωd into M . For any β ∈ Ωd, write β = γe1+e2q+···+enqn−1
with 0 ≤ ei < q for

all i and e1 + · · · + en < n(q − 1). These ei are uniquely determined by β. Then set

θ(β) = xe1
1 . . . xen

n . Note that each ei has 0 ≤ ei < q, and note that not all ei are equal to

q − 1. Thus wq(β) = e1 + · · · + en, and since β ∈ Ωd, we know that 0 < e1 + · · · + en ≤ d

and e1 + · · · + en ≡ wq(d) (mod q − 1). Since Lemma 7.20(iii) tells us that wq(d) ≡ d

(mod q − 1), we know that θ(β) ∈ M . Furthermore, since the ei are uniquely determined

by β, θ is injective.

7.8 Proof of the Theorem of N. M. Katz

Now we use Ψ to translate Theorem 7.14 from a statement about words in Abelian codes

into a statement about polynomials. This gives us the following theorem, from which we

shall deduce both the theorem of N. M. Katz (Theorem 7.17) and the associated statement

concerning sharpness (Proposition 7.18).

Theorem 7.22. Let n, t ≥ 1 and let S1, . . . , St be q-closed subsets of A, with at least one

Si not a subset {1A}. For each i, let Ci be the convolution ideal (code) in Fq[A] consisting

of those functions whose Fourier transforms are supported on Si. Let F1, . . . ,Ft be sets

of polynomials of degree less than n(q − 1) in Fq[x1, . . . , xn] such that Ψ(Fi) = Ci. Let

`mc(C1, . . . , Ct) be as defined in (7.11). For any f1 ∈ F1, . . . , ft ∈ Ft, we have

|V (f1, . . . , ft)| ≡ 0 (mod p`mc(C1,...,Ct)), (7.20)

and there is some such selection of f1, . . . ft with

|V (f1, . . . , ft)| 6≡ 0 (mod p`mc(C1,...,Ct)+1). (7.21)

Proof. Suppose fi ∈ Fi for each i, and set ϕi = Ψ(fi). Then ϕi ∈ Ci, so that ϕ̂i is supported

on Si. Furthermore, as we vary fi over Fi, ϕi varies over the entire convolution ideal Ci of
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functions in Fq[A] whose Fourier transforms are supported on Si. Thus Theorem 7.14 tells

us that

zernorm(ϕ1, . . . , ϕt) ≡ 0 (mod p`mc(C1,...,Ct)) (7.22)

for any f1 ∈ F1, . . . , ft ∈ Ft, and

zernorm(ϕ1, . . . , ϕt) 6≡ 0 (mod p`mc(C1,...,Ct)+1) (7.23)

for some such selection of f1, . . . , ft.

Note that

ϕ̂i(1A) =
∑
a∈A

(ϕi)a

= −fi(0, . . . , 0) +
∑

a1,...,an∈Fq

fi(a1, . . . , an).

It is not difficult to see that
∑

a1,...,an∈Fq
xe1

1 . . . xen
n = 0 unless q − 1 | e1, . . . , en and

e1, . . . , en > 0. So polynomials of degree less than n(q − 1) vanish when we sum them

over all points in Fn
q . We are assuming that our polynomials fi are of degree less than

n(q − 1), so that ϕ̂i(1A) = −fi(0, . . . , 0). Thus ϕ̃i(1A) = |A|−1ϕ̂i(1A) is zero if and only

if fi(0, . . . , 0) = 0. So zer(ϕ̃1(1A), . . . , ϕ̃t(1A)) =
∏t

i=1 δ(fi(0, . . . , 0), 0). Thus, returning to

(7.22) and (7.23), we have

zer(ϕ1, . . . , ϕt) ≡ |A|
t∏

i=1

δ(fi(0, . . . , 0), 0) (mod p`mc(C1,...,Ct))

for any f1 ∈ F1, . . . , ft ∈ Ft, and

zer(ϕ1, . . . , ϕt) 6≡ |A|
t∏

i=1

δ(fi(0, . . . , 0), 0) (mod p`mc(C1,...,Ct)+1)

for some such selection of f1, . . . , ft.
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Then apply Lemma 7.19 to see that

|V (f1, . . . , ft)| ≡ (|A|+ 1)
t∏

i=1

δ(fi(0, . . . , 0), 0) (mod p`mc(C1,...,Ct))

for any f1 ∈ F1, . . . , ft ∈ Ft, and

|V (f1, . . . , ft)| 6≡ (|A|+ 1)
t∏

i=1

δ(fi(0, . . . , 0), 0) (mod p`mc(C1,...,Ct)+1)

for some such selection of f1, . . . , ft. We note that |A| + 1 = qn, which vanishes modulo

p`mc(C1,...,Ct)+1 if `mc(C1, . . . , Ct) < en.

So the proof will be complete once we show that `mc(C1, . . . , Ct) < en. Consider

Λmc(C1, . . . , Ct), as defined in equation (7.10) of Section 7.5. Recall that in (7.11) we defined

`mc(C1, . . . , Ct) = min
λ∈Λmc(C1,...,Ct)

L(λ). We shall prove that `mc(C1, . . . , Ct) < en by finding

an element λ ∈ Λmc(C1, . . . , Ct) with L(λ) < en.

We represent accounts as formal sums in our construction of λ; see Section 2.5 to recall

this notation. By our assumption about the sets Si, we choose k ∈ {1, 2, . . . , t} such that

Sk contains some element a 6= 1A. Then set λk = (p− 1)
∑n−1

j=0

∑
h∈H(h, aqj

), and set λi to

be the empty set for all i 6= k. This defines λ ∈ N[I ×H ×A]. Since Sk is q-closed, λk is an

element of N[Sk×H]; for i 6= k, λi is clearly in N[Si×H]. Each prH λi with i 6= k is trivially

a Delsarte-McEliece multiset, and prH λk is the Delsarte-McEliece multiset with n(p − 1)

instances of each element in H. Furthermore prA λ 6∈ N[{1A}] since a 6= 1A. Finally

Πλ =

n−1∏
j=0

e−1∏
h=0

aqjph

p−1

=

(
ne−1∏
i=0

api

)p−1

= a(p−1)
∑ne−1

i=0 pi

= aqn−1

= 1A.
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So λ ∈ Λmc(C1, . . . , Ct), and note that L(λ) = L(λk) = e(n− 1) < en.

We shall now show how this theorem can be regarded as an inchoate form of the theorem

of N. M. Katz (Theorem 7.17) and the associated statement of sharpness (Proposition 7.18).

We recall the content of these results for convenience. Theorem 7.17 states that if f1, . . . ft ∈

Fq[x1, . . . , xn] are nonconstant polynomials of degrees d1 ≤ · · · ≤ dt, respectively, and if we

set ν to be the least nonnegative integer greater than or equal to
(
n−

∑t
i=1 di

)
/dt, then

|V (f)| is divisible by qν . Proposition 7.18 states that there exist homogeneous polynomials

f1, . . . , ft ∈ Fq[x1, . . . , xn] of degrees d1, . . . , dt such that |V (f1, . . . , ft)| is not divisible by

pqν . At the beginning of Section 7.7, we showed that these results are easy to obtain when

n ≤ d1 + · · ·+ dt, so we shall assume that n > d1 + · · ·+ dt henceforth.

We now introduce a useful notation that will be used in the rest of this section. The

reader should first recall the definitions of Λmc(C1, . . . , Ct) and `mc(C1, . . . , Ct) in (7.10) and

(7.11). If Ξ1, . . . ,Ξt are q-closed subsets of A, then define

Λ(Ξ1, . . . ,Ξt) = Λmc(D1, . . . ,Dt), (7.24)

where D1, . . . ,Dt are the codes in Fq[A] such that Ξi is the support of FT(Di) for each i.

Likewise, define

`(Ξ1, . . . ,Ξt) = `mc(D1, . . . ,Dt). (7.25)

This will provide a convenient notation, as it will be easier to focus on the supports of the

Fourier transforms of the ideals than to focus on the ideals themselves.

If we want to prove Theorem 7.17, we use Theorem 7.22 in the case where each collection

Fi of polynomials is equal to the set of f ∈ Fq[x1, . . . , xn] with deg(f) ≤ di. Then Theorem

7.21 tells us that Ψ(Fi) is the code in Fq[A] whose Fourier transform has minimal support

Υdi , as defined in that theorem. So we set each Si = Υdi in Theorem 7.22. If we can prove

that `(Υd1 , . . . ,Υdt) = eν, then (7.20) in Theorem 7.22 will imply Theorem 7.17.

If we want to prove Proposition 7.18, we use Theorem 7.22 in the case where each

collection Fi of polynomials is equal to the set of homogeneous f ∈ Fq[x1, . . . , xn] with

deg(f) ≤ di. Then Theorem 7.21 tells us that Ψ(Fi) is the code in Fq[A] whose Fourier
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transform has minimal support Ωdi , as defined in that theorem. So we set each Si = Ωdi in

Theorem 7.22. If we can prove that `(Ωd1 , . . . ,Ωdt) = eν, then (7.21) in Theorem 7.22 will

imply Proposition 7.18.

We prove that `(Υd1 , . . . ,Υdt) = `(Ωd1 , . . . ,Ωdt) = eν in Proposition 7.23 below, thus

finishing our proof of Theorem 7.17 and Proposition 7.18. Before we do this, we pause to

note that Theorem 7.22 can be regarded not only as an inchoate form of the theorem of

N. M. Katz and the associated statement of sharpness, but also as an inchoate generalization

of these results. For we can employ Theorem 7.22 in cases where the sets S1, . . . , St are

not all sets of the form Υj or all sets of the form Ωj . That is, we may prescribe finer

constraints on each polynomial fi than merely setting the maximum degree or insisting

that it be homogeneous of a certain degree. We must qualify this theorem as being an

inchoate generalization of the theorem of N. M. Katz, since we obtain a true generalization

only if we can calculate `(S1, . . . , St) for the particular selection of S1, . . . , St that we are

considering. We finish this chapter with the promised calculation of `(S1, . . . , St) when

S1, . . . , St are the sets relevant to the theorem of N. M. Katz and the associated statement

of sharpness.

Proposition 7.23. Let n, t ≥ 1, let d1 ≤ · · · ≤ dt be positive integers with d1 + · · ·+dt < n,

and let ν =
⌈
(n−

∑t
i=1 di)/dt

⌉
. Let Υj and Ωj be the sets defined in Theorem 7.21, and let

Λ and ` be the functions defined in equations (7.24) and (7.25) above. Then

`(Υd1 , . . . ,Υdt) = `(Ωd1 , . . . ,Ωdt) = eν.

Proof. Write Υ as a shorthand for (Υd1 , . . . ,Υdt) and Ω as a shorthand for (Ωd1 , . . . , Ωdt).

Since Ωj ⊆ Υj for all j, Λ(Ω) ⊆ Λ(Υ), and so `(Ω) ≥ `(Υ). Therefore it suffices to show that

`(Υ) ≥ eν and `(Ω) ≤ eν. It will be useful for the reader to review the compact notations

in Section 2.5, since these are used extensively in this proof.

First we show that `(Υ) ≥ eν, using an approach based on the proof by Delsarte and

McEliece (see Lemma 5.1 of [18]) that Ax’s theorem (Theorem 7.15) follows from their own
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theorem (Theorem 7.1). Suppose that λ ∈ Λ(Υ). Since Πλ = 1A, we have

t∏
i=1

∏
a∈A

∏
h∈H

aphλi,h,a = 1A,

or equivalently,
t∏

i=1

qn−2∏
j=0

∏
h∈H

γjphλ
i,h,γj = 1A,

so that
t∑

i=1

qn−2∑
j=0

∑
h∈H

jphλi,h,γj ≡ 0 (mod qn − 1).

Thus
t∑

i=1

qn−2∑
j=0

∑
h∈H

jph+sλi,h,γj ≡ 0 (mod qn − 1) (7.26)

for any s ≥ 0. Furthermore, since prA λi 6∈ N[{1A}] for some i, we know that λi,h,γj 6= 0

for some i ∈ {1, . . . , t}, h ∈ H, and j ∈ {0, . . . , qn − 2} with j 6= 0. So the sum in (7.26) is

a sum of nonnegative numbers, at least one of which is strictly positive. Thus, by Lemma

7.20(xi), we know that

t∑
i=1

qn−2∑
j=0

∑
h∈H

wq

(
jph+sλi,h,γj

)
≥ n(q − 1)

for any s ≥ 0. So by Lemma 7.20(xiv),(i), we know that

t∑
i=1

qn−2∑
j=0

∑
h∈H

wq(j)wq(ph+s)λi,h,γj ≥ n(q − 1)

for any s ≥ 0. Since λi ∈ N[H × Υdi ], λi,h,a can be nonzero only if wq(a) ≤ di, i.e., λi,h,γj

can be nonzero only for those j ∈ {0, . . . , qn − 2} with wq(j) ≤ di. Thus

t∑
i=1

di

qn−2∑
j=0

∑
h∈H

wq(ph+s)λi,h,γj ≥ n(q − 1),

or equivalently,
t∑

i=1

di

∑
h∈H

wq(ph+s)(prH(λi))h ≥ n(q − 1),
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for any s ≥ 0. For each i, define ui so that ui = 0 if |λi| = 0 and ui = 1 otherwise. Then

t∑
i=1

di

(
−ui(q − 1) +

∑
h∈H

wq(ph+s)(prH(λi))h

)
≥

(
n−

t∑
i=1

di

)
(q − 1), (7.27)

for any s ≥ 0. Lemma 7.20(iii) tells us that

∑
h∈H

wq(ph+s)(prH(λi))h ≡
∑
h∈H

ph+s(prH(λi))h (mod q − 1),

and since prH(λi) is Delsarte-McEliece for each i, the right-hand side of this congruence is

zero modulo q − 1. Thus the terms

−ui(q − 1) +
∑
h∈H

wq(ph+s)(prH(λi))h

on the left-hand side of (7.27) are multiples of q − 1. These terms are also nonnegative

because ui = 0 when λi = ∅ and ui = 1 when |λi| > 0; in the latter case the sum over H is

strictly positive. Thus

dt

t∑
i=1

(
−ui(q − 1) +

∑
h∈H

wq(ph+s)(prH(λi))h

)
≥

(
n−

t∑
i=1

di

)
(q − 1),

and then

t∑
i=1

(
−ui(q − 1) +

∑
h∈H

wq(ph+s)(prH(λi))h

)
≥

⌈
n−

∑t
i=1 di

dt

⌉
(q − 1)

= ν(q − 1)

for any s ≥ 0. Now sum both sides of the inequality over s ∈ H to get

t∑
i=1

(
−uie(q − 1) +

∑
h∈H

(
q − 1
p− 1

)
(prH(λi))h

)
≥ eν(q − 1)
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by Lemma 7.20(vi). Since
∑

h∈H(prH(λi))h = |prH(λi)| = |λi|, we have

t∑
i=1

(−uie(p− 1) + |λi|) ≥ eν(p− 1).

Recall that ui = 0 if |λi| = 0 and ui = 1 otherwise. Thus |λi| − uie(p − 1) = (p − 1)L(λi),

and so
t∑

i=1

L(λi) ≥ eν,

that is, L(λ) ≥ eν. Since λ ∈ Λ(Υ) was arbitrary, this proves that `(Υ) ≥ eν.

Now we prove that `(Ω) ≤ eν by constructing explicitly an element λ ∈ Λ(Ω) with

L(λ) = eν. We first define accounts that will be the building blocks of λ. For nonnegative

integers u, v with 0 < v − u < n, define the multiset

Bv
u = (p− 1)

∑
h∈H

(
h, γ

∑v−1
j=u qj

)
.

Observe that Bv
u ∈ N[H ×A] and that prH Bv

u is the Delsarte-McEliece multiset with p− 1

instances of each element in H. Also note that

ΠBv
u =

(∏
h∈H

γph
∑v−1

j=u qj

)p−1

= γ(p−1)
∑e−1

h=0 ph
∑v−1

j=u qj

= γ(p−1)
∑ev−1

i=eu pi
,

and so

ΠBv
u = γqv−qu

. (7.28)

We claim that Bv
u ∈ N[H × Ωv−u]. To prove this, it suffices to show that α = γ

∑v−1
j=u qj

is

an element of Ωv−u. Note that α is a product of v − u elements of the form γqj
. Our given

assumption n > d1 + · · ·+ dt forces n > 1, so that Lemma 7.20(v) shows that wq(γqj
) = 1

for all j. So α is a product of v − u elements of unit q-ary weight. Since 0 < v − u < n,

Lemma 7.20(xiii) tells us that 0 < wq(α) ≤ v−u and wq(α) ≡ wq(v−u) (mod q−1). That

is, α ∈ Ωv−u.
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Set D(i) =
∑i

j=1 di for i = 0, . . . , t and D(i) = D(t) + (i− t)dt for i = t + 1, . . . , t + ν.

By the definition of ν, D(t + ν − 1) < n and n ≤ D(t + ν) < n + dt. Since d1 + · · ·+ dt < n,

we have D(t + ν) < 2n. Let r = D(t + ν) − n, so that 0 ≤ r < n. Since D(0) = 0 and

D(t + ν) ≥ n, there must be some positive i0 with i0 ≤ t + ν such that D(i0 − 1) ≤ r <

D(i0). Furthermore i0 < t + ν, for if D(t + ν − 1) ≤ r < D(t + ν), then we would have

dt = D(t + ν)−D(t + ν − 1) ≥ D(t + ν)− r = n, in contradiction to our assumption that

d1 + · · ·+ dt < n.

We now continue our construction, approaching closer to our goal of forming an element

λ ∈ Λ(Ω) with L(λ) = eν. Note that D(i)−D(i− 1) = dmin{i,t} for all i with 1 ≤ i ≤ t + ν,

so that 0 < D(i)−D(i− 1) < n for all such i. For each i ∈ {1, . . . , t+ ν} with i 6= i0, define

µi = B
D(i)
D(i−1). Define

µi0 = B
D(i0)
D(i0−1) −

(
0, γ

∑D(i0)−1

j=D(i0−1)
qj
)

+
(

0, γ
1−qr+

∑D(i0)−1

j=D(i0−1)
qj
)

.

We claim that each µi is a multiset in N[H ×A] with prH µi a Delsarte-McEliece multiset.

This is clear for i 6= i0 in light of what we have already proved about the accounts Bv
u

above. Since prH µi0 = prH B
D(i0)
D(i0−1), prH µi0 is Delsarte-McEliece. Since B

D(i0)
D(i0−1) is a

multiset with p− 1 instances of the element
(

0, γ
∑D(i0)−1

j=D(i0−1)
qj
)

, µi0 has at least p− 2 ≥ 0

instances of this element. Clearly µi0 has a nonnegative number of instances of every other

element, and so it is a multiset.

We claim that each µi is an element of N[H×Ωdmin{i,t} ]. Since D(i)−D(i−1) = dmin{i,t}

for all i ∈ {1, . . . , t + ν}, what we have already proved about the accounts Bv
u shows that

B
D(i)
D(i−1) ∈ N[H×Ωdmin{i,t} ]. This proves our claim for i 6= i0, and also shows that proving the

i = i0 case is tantamount to showing that β = γ
1−qr+

∑D(i0)−1

j=D(i0−1)
qj

is an element of Ωdmin{i0,t} .

Since D(i0 − 1) ≤ r < D(i0), we see that β is a product of D(i0) −D(i0 − 1) = dmin{i0,t}

elements of the form γqj
. Recall that our condition n > d1 + · · · + dt forces n > 1, so

that Lemma 7.20(v) shows that wq(γqj
) = 1 for all j. Thus β is a product of dmin{i0,t}

elements of unit q-ary weight. Since 0 < dmin{i0,t} < n, Lemma 7.20(xiii) tells us that

0 < wq(β) ≤ dmin{i0,t} and wq(β) ≡ wq(dmin{i0,t}) (mod q − 1), i.e., that β ∈ Ωdmin{i0,t} . So

each µi is indeed an element of N[H × Ωdmin{i,t} ].
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Now we are ready to construct λ. For i < t, let λi = µi. Let λt =
∑t+ν

j=t µj . This

defines λ ∈ N[I ×H ×A]. We claim that λ ∈ Λ(Ω). Note that what we have proved

about the accounts µi tells us immediately that prH(λi) is a Delsarte-McEliece multiset

and λi ∈ N[H × Ωdi ] for each i ∈ {1, . . . , t}. Since the λi are all nonempty and since

1A 6∈ Ωj for all j > 0, we also know that prA λ 6∈ N[{1A}]. In light of what we have just

shown, our claim that λ ∈ Λ(Ω) will be established if we can show that Πλ = 1A. Note that

Πλ = (Πµ1) · · · (Πµt+ν) . (7.29)

If i 6= i0, then µi = B
D(i)
D(i−1), so (7.28) shows that Πµi = γqD(i)−qD(i−1)

. For i = i0, we have

Πµi0 =
(

γ
∑D(i0)−1

j=D(i0−1)
qj
)−1(

γ
1−qr+

∑D(i0)−1

j=D(i0−1)
qj
)

ΠB
D(i0)
D(i0−1)

= γ1−qr
γqD(i0)−qD(i0−1)

.

Substituting the values of Πµi we just calculated into (7.29), we obtain

Πλ = γ1−qr
t+ν∏
i=1

γqD(i)−qD(i−1)

= γ1−qr
γqD(t+ν)−qD(0)

.

Note that D(0) = 0 and D(t+ ν) = n+ r, so we have Πλ = γqn+r−qr
= 1A. Thus λ ∈ Λ(Ω).

Now note that |µi| = e(p − 1) for all i, so that |λi| = e(p − 1) for i < t and |λt| =

(ν + 1)e(p − 1). Thus L(λi) = 0 for i < t and L(λt) = eν. Therefore L(λ) = eν, and so

`(Ω) ≤ eν. This completes our proof.
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