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Abstract

This work is divided into two unrelated parts. In the first part, a full three-dimensional
particle tracking system was developed and tested. Three images, from three separate CCDs
placed at the vertices of an equilateral triangle, permit the three-dimensional location of
particles to be determined by triangulation. Particle locations measured at two different
times can then be used to create a three-component, three-dimensional velocity field. Key
developments are the ability to accurately process overlapping particle images, offset CCDs
to significantly improve effective resolution, treatment of dim particle images, and a hybrid
particle tracking technique ideal for three-dimensional flows when only two sets of images
exist. An in-depth theoretical error analysis was performed, which gives the important
sources of error and their effect on the overall system. This error analysis was verified
through a series of experiments, and a vortex flow measurement was performed.

In the second part, the problem of a cylindrically or spherically imploding and reflecting
shock wave in a flow initially at rest was examined. Guderley’s strong shock solution around
the origin was improved by adding two more terms in the series expansion solution for both
the incoming and the reflected shock waves. A series expansion was also constructed for
the case where the shock is still very far from the origin. In addition, a program based on
the characteristics method was written. Thanks to an appropriate change of variables, the
shock motion could be computed from virtually infinity to very close to the reflection point.
Comparisons were made between the series expansions, the characteristics program, and the
results obtained using an Euler solver. These comparisons showed that the addition of two

terms to the Guderley solution significantly increases the accuracy of the series expansion.
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Part 1

3DPTV: Advances and Error

Analysis






This part was done jointly with Christopher A. Mouton. The data analysis software was
designed by both of us, working in collaboration. My primary focus was the development of
the peak searching, the ray tracing, and the particle tracking algorithms whereas Chris took
care of the corresponding peak algorithm and of the assembly of the different functions into
a big software, usable through a graphical user interface. I also carried out the complete
error analysis. Our particular camera was designed by Chris and me, and was constructed
and manufactured by Bahram Valiferdowsi. The timing software that allowed for accurate
triggering of the CCDs and the lasers was entirely written by Chris. Finally, all the results

were taken jointly.






Nomenclature

Roman characters, lower case

d
dc

€;

5]

Ty

<

Yi

side length of test volume

distance between CCDs and lens plane

unit vector along the ¢th ray

ith calibration constant

radius of lens center positions

blur radius of particle image 4

time separation between frames

z-coordinate in camera axes

corrected z-coordinate in CCD space

z-coordinate of particle image i in CCD space (expressed in pixels)
y-coordinate in camera axes

corrected y-coordinate in CCD space

y-coordinate of particle image ¢ in CCD space (expressed in pixels)

z-coordinate (along camera axis)

Roman characters, upper case

A;
B4

)

E;
I

I

=

L

intensity amplitude of particle image 4

calibration constant

estimation of particle position error

identity matrix

coordinates of a particle image on the CCD i (expressed in pixels)

distance from camera to target



Yo

6
matrix used to obtain the ith particle position
number of particle images
coordinates of a point on the ith ray
position of target plane center image on CCD i
position of the ith lens
particle position
square pixel side length
velocity vector
z-coordinate of the lens optical center projection on a CCD

y-coordinate of the lens optical center projection on a CCD

Greek characters

AU error on velocity

(€)go  90% confidence interval of peak searching accuracy
A parametric coordinate on ray

Superscripts

C relative to CCDs

¢ relative to calibration

1 relative to lenses

P relative to particle position

relative to peak searching



Introduction

The ability to accurately map fluid velocity fields in three dimensions would provide re-
searchers with a much greater understanding of a wide variety of flows. A particularly
promising technique for velocity measurements is particle velocimetry. With this tech-
nique, images of particles are taken at different times, and based on their displacements
and the time separation, the velocity of these particles can be calculated. Unfortunately,
three-component three-dimensional velocimetry systems have lagged substantially behind
their two-dimensional counterparts. To remedy this situation, some researchers have devel-
oped methods using a single charged coupled device (CCD) [1] or several CCDs (generally
three or four) using either the epipolar technique [2, 3, 4, 5] or ray tracing [6, 7] for finding
corresponding peaks of intensity in particle images. Others are using a holographic system,
which although complicated, appears promising [8, 9]. Of particular interest is the work
done by Pereira et al. [3, 10] in developing a digital defocusing particle image velocimetry
(DDPIV) system. Their system uses three individual CCDs placed at the vertices of an
equilateral triangle, with all three CCDs having overlapping fields of view. The test section
can be placed anywhere in this overlap region. An image of every particle in the test sec-
tion is projected onto each CCD. When the CCD images are overlayed, the three images
of a particle will be located at the three corners of an equilateral triangle. One thing that
sets DDPIV apart from many other techniques is that the entire camera system is encased
in a single unit and can therefore be moved from facility to facility without any need for
realignment or recalibration. The DDPIV system uses the size and position of the image
triangle to determine the three-dimensional position of the corresponding particle. Subpixel
accuracy of a particle image location is obtained by having the particle image span more

than one pixel. With subpixel accuracy the overall resolution of the system is drastically



improved.

In the present work, we first revisited the design choices made by Pereira et al. and then
improved upon some of them. Also, a new and robust software package was developed. The
software that will be described is significantly different and improved from that of Pereira
et al., and is discussed in detail in Chapter 2. In particular, a ray tracing rather than a
defocusing algorithm is implemented in order to find the three-dimensional position of the
particles. These improvements provide increased accuracy of results. Furthermore, while
Pereira et al. used a three-dimensional correlation over voxels, we pursue direct particle
tracking using a hybrid technique. The system developed is referred to as three-dimensional
particle triangulation velocimetry (3DPTV) [5, 11].

It is essential for any experiment to have an estimate of the errors that can arise from
the system, both from the hardware and from the software. This work will present both
theoretically and experimentally the errors one can expect when using 3DPTV, in Chap-
ters 3 and 4. First, a thorough theoretical error analysis will be performed, followed by a
comparison of these error estimates with experimental results.

Lastly, in Chapter 4, are the results of experimental measurements of a sonic jet, and
of the flow around a delta wing at an angle of attack. The results show the ability of the
3DPTYV system to make measurements of interesting flows with a relatively large range of

velocities.



Chapter 1

Principle

Both the hardware setup of Pereira et al. [3, 10] for DDPIV and the hardware setup of
3DPTYV consist of a camera comprising three separate CCDs, which all view the same test
volume from different angles. The front plate of the camera consists of a mask, three lenses,
and three apertures. Behind each lens-aperture combination, there is a CCD. The need for
more than two CCDs and the suggestion that with three cameras, an equilateral triangle
is the optimum configuration, is discussed by Maas et al. [2]. The setup of Pereira et al. is
such that the center of a target plate is projected onto the center of each CCD. Figure 1.1
shows this for one of the CCDs. In this arrangement, the image of the test volume does
not fill the frame of the CCD; this is clearly sub-optimal. In order to make full use of all
the pixels of the CCD, 3DPTYV uses offsets, in which the CCDs are moved away from the
lens and away from the camera axis as shown in Figure 1.1. Since, with these offsets, the
image of the test volume covers more pixels, the system will have higher overall accuracy
and improved resolution.

The purpose of the lens is to give an acceptable range of particle image blur; therefore,
different focal lengths are used for the offset and no offset configurations. Since 3DPTV
does not rely on the defocusing principle, the restriction that the target plane be in focus,
as with DDPIV [3, 10], is not required.

It is important to note that the lens is not parallel to the target plane or to the CCDs.
The reason for that is to avoid lens aberrations as much as possible. Future camera designs
should have the lens axis intersect the center of the test volume to further reduce coma

aberration in the test volume.
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Figure 1.1: Maximum CCD utilization using offsets. The dashed out area of the CCD image
with no offset shows the area of the CCD not utilized.

In practice it is impossible to place the CCDs at their exact theoretical locations; there-
fore, careful alignment followed by calibration is required. In order to do this, a well designed
target is needed in addition to calibration software. Therefore, a target with 100 equally
spaced dots per square inch was designed. With this target placed at the target plane,
the CCDs should be aligned as carefully as possible. The calibration software, discussed
further in Section 2.3, then compares the measured and known dot locations and creates a
mapping to correct for errors in CCD placement as well as for lens aberrations and other
effects. The benefits of this calibration technique is the simplicity and speed at which an

accurate calibration can be made.

Once the camera has been aligned and calibrated, the images of a particle in the test
volume will appear at the vertices of an equilateral triangle on the overlayed CCD images.
The formation of triangles on the overlayed images is shown in Figure 1.2. It is only a
matter of ray tracing, as discussed in Section 2.4, to transform a triangle on the CCDs to

a particle location.

Particle tracking is done using a hybrid technique. Once all of the three-dimensional
positions are known, all that is required to determine the three components of the velocity
of the particles is to find corresponding particles in two successive frames separated by a
known time interval. This is discussed in detail in Section 2.6. The remainder of this section

will present the geometry of the 3DPTV system and the current camera system.
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Target Plane

Camera

CCD 3 Composite Image

Figure 1.2: Projection of a particle onto the CCDs. The composite image is formed by
overlaying the CCD images with correct offsets. The origin of the coordinates is at the
centroid of the three lenses.
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1.1 3DPTV Geometric Description

The design of the 3DPTV system involves many related parameters. Choosing the best
parameters for a set of particular requirements is truly a design exercise. That is to say,
there is no objective function that has to be maximized and compromises have to be made
between accuracy, test volume size and external size of the system, while satisfying numerous
practical constraints. The governing equations used in this design are presented in this

section.

1.1.1 Alignment

As explained before, the camera is composed of three CCDs placed at the vertices of an
equilateral triangle. The distance between the CCDs and the plane of the lenses, d¢, and
placement of each CCD are chosen so that the projection of the test volume fills the entire
CCD. Let the coordinates of the projection of the center of the target plane onto the ith
CCD be PZ-C. Each of the CCDs views the test volume through its own lens, which is located
at Pil. Note that the focal length of the lenses does not enter into any equations presented
in this paper and there is no constraint requiring that the target plane be in focus. The
focal length of the lenses will only change the degree to which particle images are blurred
on the CCDs and therefore should be chosen so that images of particles within the test
volume appear on the CCDs with an acceptable range of blur radii. Three-dimensional

vector positions P are measured with respect to the geometric center of the three lenses.

One possible lens configuration is

1311 = (O,’I”, 0) ) (1.1)
Py = (@;0 : (1.2)
P = (—@,_{ﬁ) , (1.3)

where r is the radius of the circle on which the centers of the lenses lie. If the camera is

perfectly aligned, the position of the projections of the target plane center onto the CCDs
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for this lens configuration will be

PP = (07 % (L +dc), —dc> ; (1.4)
PE = (;/—E(me),—%(fzmc),—dc), (1.5)
PE = (-2—\/L§(L+dc),—é(L+dc),—dc>. (1.6)

1.1.2 2-D Projections

Suppose that a particle is at position (z,y, z) with respect to the geometric center of the
three lenses. Using geometric optics it is possible to find the pixel coordinates, I;, of the

particle image on CCD 4, given P! and P¢:

B x r(L—z)— Ly

Il = < Szd07 S2L dC> s (17)
_(-2Lz+V3r(L—2), —-r(L—=z)—2Ly

L= < 25%L 4o, 25%L dc |- (18)
_(-2Lz—V3r(L—2), —-r(L—=z)—2Ly

Is = < 25%L 4o, 25%L dc |- (1.9)

where S is the side length of a square pixel. I is measured in pixels in the plane of each
individual CCD with respect to the point where the center of the target plane is projected
onto the respective CCD. Using these coordinates, the side length, s, of the equilateral

triangle formed by corresponding particle images on the overlayed CCD images is given by

5= %dc. (1.10)

1.1.3 CCD Offsets

Offsetting the CCDs significantly improves the accuracy of the 3DPTV system. The increase

in the useful area can be calculated by looking at the additional area covered in the offset
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configuration, as seen in Figure 1.1. This calculation will produce a ratio of useful CCD

surface area between the system with and without offsets that is given by

St _ (2<Ld+2r<fz—z>><d+z>>2 | (1.11)

Ld(d+2(r+ z))

Sno offset

This formula supposes that the test volume is a cube with side-length d and it assumes a
limited range of values for r, d, L and z. For other value ranges similar formulas can be
found. Note that by offsetting the CCDs, the projection of the center of the target plane
onto the CCDs no longer corresponds to the middle pixels, as is seen in Figure 1.2. Clearly,

this increased useful area will result in an improved accuracy over that without offsets.

1.2 Current Camera Configuration

The camera used in the experiments is designed to investigate a 50 x 50 x 50 mm? test
volume. Each sensor is composed of 1024 x 1024 px, each pixel is square with a side length
of 6.45 pm. Three lenses are placed at the corners of an equilateral triangle inscribed in a
circle of radius of 42.5 mm. The target plate used for alignment was placed 625 mm from the
camera. The z-range of the test volume is 517 mm to 567 mm from the camera. Equation
1.11 shows that because of offsets there is a 58% increase in the number of pixels used

relative to the setup without the offsets.
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Chapter 2

Data Processing Program

The data processing program was written to convert a set of three images into 3-D positions
and, when required, to compute a velocity field from these results. To achieve this, several
computational routines are performed. First, the images are preprocessed to remove noise.
Next, a peak searching algorithm looks for peaks in each image by performing a least-
squares curve fit. This least-squares fitting allows for both overlapping particle images and
sub-pixel accuracy. Once the peaks in each image have been found, an epipolar search is
employed to find corresponding peaks. The locations of the peaks are then used to calculate
the three-dimensional particle position by ray tracing, whereas DDPIV uses the defocusing
principle [3, 10]. With particle positions known in two successive frames, particle tracking

can be performed.

2.1 Image Pre-Processing

The images have both systematic noise, that is to say noise at specific spatial frequencies,
and random noise. To remove the systematic noise, the images are Fourier transformed,
spatial frequencies of noise inherent to the camera system are removed, after which an in-
verse Fourier transform is performed. From this point on, the images are stored as a matrix
of double precision numbers so that minimum additional discretization error is introduced.
In order to remove random noise, a smoothing filter Gaussian blurs the images. By per-
forming a Gaussian blur a particle image with a Gaussian distribution will remain Gaussian,

whereas the random noise will be reduced. Because of the details of the current 3DPTV
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program the additional Gaussian blur reduces the error associated with the algorithm; this

is discussed further in Section 2.2.

2.2 Peak Search

The two most critical parts of the 3DPTV program are the peak search, which finds the
location of each particle image, and the calibration subroutines. In fact, since they are the
only two subroutines that deal with actual images and noise, the accuracy of the results
depends on the robustness of these two subroutines. Searching for peaks can be very
time-consuming when the particle density is high. Because of the computation time and
importance of this subroutine, it must be both robust and efficient.

When investigating a three-dimensional volume, the total number of illuminated par-
ticles should be high. However, as more particles are introduced into the volume, finding
individual particles becomes increasingly difficult, especially when the particle images are
blurred. Three possible solutions to this problem are listed here. All three involve surface
fitting of a function in order to obtain sub-pixel accuracy. One solution to this problem is to
reduce the total number of particles to a point where virtually no particle images overlap, in
which case all that is required is to find all the local maxima and fit a single surface around
each maximum. This solution gives excellent image location accuracy, but produces only a
small number of particle images. A second solution is to have a relatively high number of
particles, while still just finding local maxima and fitting a single surface around each max-
imum. This solution essentially ignores particle image overlapping and therefore results in
some particles being located with excellent accuracy, while others are located with virtually
no accuracy; however, this provides for a larger number of total particle images than the
first solution. The third solution, which is implemented here, is to have a relatively high
number of particles, but not to rely on local maxima. This solution calls for a least-squares
optimization of a number of surfaces and provides very good accuracy for a large number of
particles. The reason that a least-squares optimization is the best solution is that when the
particle density is high, two distinct particle images often overlap. In this case, two particle

images do not necessarily create two local maxima and the local maximum that is formed
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Figure 2.1: Overlapping particles.

is not, in general, at a particle position. The example in Figure 2.1 shows that using local
maxima as a criterion, as in the second solution, will often produce very inaccurate results.
In the figure, one particle is centered at 0 px and one at 1 px, while the best Gaussian curve
fit is centered at 0.42 px. This clearly shows that when particle images overlap, the number
of local maxima is not the number of particles and that the position of a local maximum is
not directly related to particle positions.

From this discussion, we see that we cannot draw many conclusions from the number
of local maxima. For the purposes of the current theoretical and experimental results,
a Gaussian intensity distribution is used. If there are N particle images, the intensity

distribution on the CCD, Ay, is

N
At(xvy) = ZAZ F(r), (2'1)
i=1
where
o (- xi)Q?;r (v —u) (2.2)
b;

In this expression, A; and (x;,y;) are the intensity maximum and the center position of the
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Figure 2.2: Blob selection. The white dots represent the blob pixels and the white dots
with black circles show the centers of the particle images.

1th particle image on the CCD, respectively. The blur radius, 7, is defined as the radius
at which the intensity reaches 10% of its maximum value. In experiments, the intensity
distribution is known and all the variables subscripted with ¢ are unknown. This forms
a system of size 4N that needs to be solved, with N also being unknown. Typically, N
is on the order of 10,000, which gives about 40,000 variables to solve for simultaneously,
while solving for N itself. The purpose of the peak search algorithm is to solve for N, x;,
vi, Ai, and 7, where, for most applications, x;, y;, and N are the variables of interest.
By adopting this method, the particle image positions of two or more overlapping particle
images can be calculated, whereas solution two would simply find one incorrect particle
image position.

Since, in fact, real particle images do not have an exact Gaussian intensity distribution,
the fitting function, F(7), can easily be changed from a Gaussian to a more complicated
function. However, for most applications simply using a Gaussian function is sufficient since

particle images are near Gaussian.

To increase the speed of the program, the problem is split into a set of uncoupled smaller
problems. To do that, the concept of a blob is introduced. In this thesis, a blob is defined

as the set of all pixels that have an intensity level higher than a given threshold and that
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are connected (i.e., are neighbors). If this threshold is sufficiently small, blobs can be
considered as separate problems (i.e., particles in one blob do not influence the intensity of
other blobs). The concept of a blob is illustrated by example in Figure 2.2. In this figure, all
the pixels marked with a white dot belong to the same blob, and the white dots with black
circles correspond to particle image locations. The definition of a blob used here varies
from that used by Stiier et al. [12] and Kieft et al. [4] in the fact that the current authors
allow a blob to contain more than one particle image. Maas et al. [2] allow for multiple
particle images in a blob; however, the method they use to find the particle image centers

is significantly different.

Inside each blob, the program tries to find the exact number and the position of the
particle images. For a given blob, there are IV}, particle images, for which the initial guess
is based on the number of local maxima above a certain threshold, Ny,, and the position of
these local maxima. It is clear that if the noise has a relatively small amplitude, Ny, < NVy,.
The program was written so that the guessed number of particles, Ny, can only increase,
if needed, to reach Ny,. Therefore, the subroutine must ensure that the guessed number of

particles never becomes higher than Ny, (i.e., Ny, < Ny < Ny).

Particles are added if the least-squares surface fit of the sum of N, surfaces leads to
relatively large errors. A particle is added where the error is a local maximum. However,
to keep Ny, < Ny, two particles cannot be added at the same iteration if they are closer

than a given distance, usually three times the maximum blur radius.

Because it is so critical to ensure that the number of local maxima is indeed below the
number of true particle images in a given blob, it is important to remove local maxima as-
sociated with noise. To do this, a Gaussian blur is applied during the image pre-processing.
The Gaussian blur is useful because local maxima due to noise are leveled out, while Gaus-

sian image distributions remain Gaussian.

To further decrease the processing time for large particle image densities, large blobs
are split into smaller overlapping ones. The purpose of this splitting is not to isolate
individual particle images, but rather to decouple the problem into a set of smaller problems.

Therefore, this splitting is unrelated to the blob splitting of Maas et al. [2]. To avoid
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Ay As

Figure 2.3: Blob splitting to minimize calculation time. This blob is split into three over-
lapping parts (A, B, and C). In part A, only the results from subparts 1 and 2 are kept;
in B, only the results in 2 are kept; and in C, only the results in 2 and 3 are kept. This
method splits the problem into three subproblems that are smaller than the original one.
Note that the splitting on this figure is done only in one direction; it can also be done in
the other direction or in both at the same time.

inaccuracies due to cropped data, only the particle images that are found in the center part
of the split blobs are recorded as explained in Figure 2.3. The split blobs are overlapped in
such a way as to ensure that their center parts will cover the entire blob.

To increase the computation speed even further, regions of a blob where the error is
very low are locked and only the other regions of the blob where the error is still important
are recalculated. Again, a minimum distance is used; that is to say, the error surrounding a
particle must not only be low at the particle location but also low within this given minimum

distance.

2.3 Calibration

The calibration process is a very important part of the program, as it drastically reduces
the errors in the measurements. All the relations that were derived in previous sections
assume that the camera is exactly aligned. For example, for the alignment error to be
of the same order as the error associated with peak searching, each CCD, in our current
camera configuration and without calibration, would have to have pitch and yaw angles of
0°4+0.5°, a roll angle of 0°+£0.0025° , and a position in z and in x, y that is accurate within
1 pm and 100 nm, respectively. This accuracy is not feasible in practice. Furthermore, the
lens aberrations create errors that are 100 times larger than the errors in peak searching.

For all these reasons, a calibration correction is essential.
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The concept of the calibration is that using a target placed at a well-known position, a
mapping from the actual CCD locations to virtual CCD locations can be created. Since the
positions of all the dots on the target are assumed to be exactly known, the exact image
positions on the virtual CCDs can be computed using ray tracing with theoretical lens and
CCD locations. By identifying all the dots on the real CCDs, a mapping is created from
each real CCD to each virtual CCD.

Typically, the target is a flat plate containing a grid of more than 500 dots. The mapping
is created by fitting functions of several variables. These functions are chosen to be able
to represent any kind of rotation and translation, and to correct for the main errors that

appear due to lens aberrations.

For the camera misalignment, three possible rotations and three possible displacements
have to be corrected. Only six variables are therefore needed [13, 6]; however, it is much
easier to compute the calibration mapping by introducing 2 additional non-physical fitting

parameters. The six variable mapping function [13, 6] can then be written as

o B1 + Bax + Bsy

, 2.3

1—|—B7$—|—Bgy ( )

Y:B4+B5CC+Bﬁy’ (24)
1+B7$+Bgy

where X, Y denote the mapped location, and x, y the actual locations. Note that the
individual coefficients are not directly related to those of the previous authors [13, 6]. In
addition to this, radial distortion is assumed due to lens aberrations. Two additional con-
stants (Xo and Yp), not related to By through Bg, are introduced to locate the projection
of the optical center of the lens onto the CCD, and six to create a mapping based on

radius (k;). The corrected locations finally become

6
T=X+(X-Xo)> kR, (2.5)
=1
6 .
T=Y+ (Y -Y5)> kR, (2.6)

=1
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where T and g are the final corrected values on the virtual CCD and where

R= \/(X—X0)2+(Y—Y0)2. (2.7)

Similar mapping functions have been used by other researchers [13, 6].

2.4 Epipolar Search and Ray Tracing

The three CCDs are equally spaced along the circumference of a circle and view the same
volume. This means that one particle is projected onto a different location on each of
the CCDs, since each CCD images the particle from a different location. If the three
CCD images are overlayed, as shown in Figure 1.2, the three particle images will form
the corners of a near-equilateral triangle [3, 10]. Complications will clearly arise when
the image contains many thousands of particles, and it is no longer obvious which three
peaks correspond to a specific particle. In order to find these corresponding peaks, a search
algorithm using epipolar lines is employed [2, 3, 4], then ray tracing is used to find the point
of closest intersection of the three rays and the RMS distance from the rays to this point.
Consider a ray originating from the ith CCD, which is given by P; = P + \;e;, where P
is the center of the ith lens, e; is the unit vector pointing from the particle image to the
lens center of the ith CCD, and J\; is a scalar. The estimated position, PP, of the particle

is given by minimizing the function
3
> (P - P")? (2.8)
=1

over all possible \;, which gives an optimum \; = (PP — PZ-O) - €;. The RMS error, E.,

associated with this \; and the three rays is
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Figure 2.4: Triangle formation by searching on epipolar lines. Selecting a particle image on
the first CCD, possible corresponding particle images are selected on the other two CCDs
by defining search areas. Among all the possible triangles that can then be found with the
selected particle images, the only one that is kept is the one leading to the minimum error
as defined by Equation 2.9.

Minimizing the error with respect to the particle position, P, produces a linear system,

3 3
(Z MZ-> PP = (Z MiPiO> , (2.10)
=1 =1

where

M, =¢e;®e; — I, (2.11)

I being the identity matrix and the symbol ® representing the outer product. The point of
closest intersection of the three rays, PP, can then easily be solved for. Substituting this

point back into equation 2.9 gives the error associated with the three rays.

Since any one particle image may have multiple possible corresponding particle images,
the combination that has the lowest RMS error, i.e., the one for which the three rays come
closest to intersecting, is considered the correct one. In addition, no particle image may

be part of more than one set of corresponding particle images. The process is shown in
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Figure 2.4.
If different media are involved, the rays are traced toward the test volume and are de-
flected each time the refractive index changes. Equations 2.8 to 2.10 are still valid provided
that e; is the direction of the ray in the test volume and P is the position of one of the

points of the ray in the test volume.

2.5 Peak Level

A key enhancement of the system is the ability to include hard-to-detect particle images.
These are images that are so weak that the signal-to-noise ratio of the particle image
intensity is close to one. Rather than ignoring these peaks, as they may indeed correspond
to particles, they are recorded as weak peaks. Peaks that are above the given threshold
are simply recorded as strong peaks. A peak may also be recorded as a weak peak if the
blob to which it belongs is very crowded. Because weak peaks may not correspond to real
particles, they may only belong to an equilateral triangle whose other vertices are formed by
strong peaks. Since the sub-pixel accuracy of weak peaks is in general much less than that
of a strong peak, they are not considered when converting from triangles to 3-D positions.
In this case, the particle location is simply the point of closest intersection of the rays

emanating from the two strong peaks.

2.6 Particle Tracking

The DDPIV technique developed by Pereira et al. [3, 10] performs 3-D cross correlations on
interrogation voxels in order to construct the velocity field. This technique was not chosen
for two reasons. The primary reason is that the density of particles is very low in 3-D, even
with 8,000 particles in the test volume, very large correlation volumes would be required. To
illustrate this, in 2-D, 8,000 particles would represent about 90 particles in each direction;
whereas in 3-D, they represent only 20 particles in each direction. In addition, PIV produces
an average velocity in interrogation regions; therefore, flow features can be lost in regions

of high velocity gradients. This and other benefits of PTV are discussed by Kim et al.
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[14]. One of the general limitations of PTV is that it requires accurately locating individual
particle images; however, in 3DPTV this does not present any additional problems since
these particle image locations must be computed in order to find the three-dimensional
particle positions.

In the current data processing program, the final velocity field is constructed using a
particle tracking method. Since only one set of particle pairs is considered, trajectories
cannot be used to help find corresponding pairs as is done by Malik et al. [15], Stiier et
al. [12], and Willneff [16]. The current particle tracking algorithm uses a hybrid process
similar to the two-dimensional process used by Kim et al. [14]. First, a rough velocity
field is built using a 3-D correlation. The domain is divided into small correlation voxels
that overlap. The correlation voxel from one frame is offset by the local displacement in
the second frame. The resulting vector is the one that gives the best correlation between
the original correlation box and the offset box. At the same time, simple direct particle
tracking is performed for particles that have only one possible corresponding particle in
the other frame. A weighted average between the correlation and the simple direct particle
tracking is then evaluated. Appropriate weights are assigned to all the vectors so that the
correlation approach has more influence where it is more accurate (i.e., where the particle
density is high) and the simple particle tracking has more influence where the density is low.
This hybrid approach is only used to form a first guess of the actual velocity field. Using
this average field as a first guess, a complete particle tracking is performed. The program
iterates the velocity field several times. In each iteration bad vectors are suppressed and
good ones are added. Specifically, a vector is considered good if it is within a certain number
of standard deviations of the surrounding vectors. If it is outside this range, the vector is
considered bad. It is important to note that the final velocity field is formed only by particle

tracking.
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Chapter 3

Theoretical Error Analysis

Without a thorough understanding of the errors associated with 3DPTV, the results have
very little meaning. Because of this, a detailed error analysis was performed, both theoret-
ically and experimentally. The error can be broken up into two uncorrelated parts. The
first part is the error due to inaccuracies in calibration and in construction. The second
part is the error due to the fact that peak searching is performed on discretized images.
In this section the theoretical error analysis is presented. All calculations have been done
assuming that the measurements have a Gaussian distribution. Note that the errors are
estimated using a 90% confidence limit. The 90% confidence limit of ¢ is denoted (g)g,-

Specifically for a sample with average -, 90% of the observations will be within the interval

[v = (9907 + {9 g0]-

3.1 Calibration Error

As discussed earlier, calibration is a key step in 3DPTV. Without calibration the CCDs
must be placed with an unattainable accuracy. Of course, the calibration is not exact either.
Errors in calibration arise from several sources. These include residual lens aberrations and
the imperfect placement of the test target. There are also errors due to imprecision in the
placement of the lenses. Since these errors cannot be measured, it is not necessary to derive
the exact effect of these errors on velocity measurements. Rather, it is useful to understand

the form of the measurement errors.

The errors in calibration will produce errors in the position of a particle, APS. We can
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then write the errors in velocities due to calibration errors as
OAPf OAPf OAP?

AUS = =21, i e 1
Uf = =55 Ut =5, U+ 5,0 (3.1)

where i is either x, y, or z. This can be written more simply as

AUE = U] F, (% i, z,A> | (3.2)

where A is the set of all parameters that describe the camera and the calibration setup.
F; is a dimensionless function that describes the effect of the imprecisions of the camera
construction and of the calibration setup on the measured velocities. It is important to note

that the error on measured velocities is proportional to the magnitude of velocity.

In order to compare with experiments, which were done using a plate in the z—y plane,
the error, AUY, is integrated over a z—y plane in the test volume to form the plate-averaged

error, AU?. The bar denotes a plate-averaged value defined as
1 d/2 d/2
g= E/ gdxdy, (3.3)
—d/2J—d/2

where d is the side length of the test volume. The experiments were done by translating

a plate. This means that the velocities were the same for all points on the plate. We can

therefore write the plate-averaged error, AUY, as

= AT — \U\E(% Yy a. A). (3.4)

Since F; is a function of z and y, we can measure the amount that individual points vary
from the plate-averaged value, (AUZ-C — AUZ-C). We then define of to be the range in which
90% of the variances fall. From the definition of of, we see that it will also be proportional

to |U|.
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3.2 Peak Searching Error

A 2-D error analysis for DDPIV was done by Pereira et al. [3, 10]; however, since their
analysis is only two-dimensional it cannot be applied directly to the actual three-dimensional
system. Pereira et al. [10] begin their error analysis by considering an error in particle
placement and its effect on the images. Because of this difference, the results of the current

error analysis are significantly different from those of Pereira et al..

We consider here the three-dimensionality of the system and accurately analyze the
errors caused by the peak searching algorithm. To start with, the peak searching algorithm
has a limited accuracy with which it can find the centroid of a blurred particle. This causes
an error in the image position. The 90% confidence limit of particle image location is (€)q,
in both the xz- and y-directions. In order to find the errors in the particle position due
to errors in particle image positions, a particle in 3-D space is projected onto each CCD.
Errors are then added to the = and y placement of these images. This is to say, using the

equations in Section 1.1.2, we have

B x r(L—z)— Ly

I, = < Szdc + A$1, 5oL do + Ay1> s (35)
[ —2Lz+V3r(L—2) —r(L—z)—2Ly

IQ = < 9921 dC + ACCQ, 29521, dC + Ayg : (36)
[ —2Lx—V3r(L—2) —r(L—z)—2Ly

Ig = < QSZL dC + A.Ig, QSZL dC + Ayg : (37)

where Az; and Ay; have the same 90% confidence interval ((Az;)gy = (AYi)gy = (€)gg)-
Then the particle images, with error added, are projected back into three-dimensional space
and the point of closest ray intersection is considered the particle position. The error in
particle position is then the distance from the original particle position to the particle
position found after errors were added. To simplify the results obtained, several assumptions

. 2 2 2
were made: 72 < 22, 22 < 2%, and y? < z2. For our system, the ratios 73, 27, and % are
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less than 1%. To first order, this gives the following errors

—z8 3
APP = i (Azy + Az + Axs) + Vi (Azy — Axg) + L (2Ay; — Ay — Ays) |,
3dc 2r 2r
(3.8)
—2zS V3
AP) = 3dc ((Ayl + Ays + Ays) + 731 (Azy — Ax3) + 2% (2Ay1 — Ays — Ay3)> ,
(3.9)
—2%25 (V3 1
APP = © \/—— (Azg — Azs) + = (2Ay1 — Aya — Ays) | . (3.10)
3dcr 2 2

The distribution of the particle position errors, APP, is unbiased, i.e., u} = 0. Again, i is
either z, y, or z. The 90% confidence limits of particle locations can then be evaluated and

are

N
(APP)g = \/376107“5 (€)90 » (3.11)
(APP) _27\/7"2"“/25” (3.12)
v/ " T Bdor €/90 > .
2
z
(APP)gy = \/gdcrs (€)oo - (3.13)
In the case of velocimetry, the 90% confidence limits of velocities are simply
V2 2y/2(r? + 22?)
AUP)oy = — (APP)gy = ————=5(€)¢g, 3.14
(AUD) g0 i (APY)gq 3 tudor (€)oo (3.14)
vz CIGETT)
AUPY = —(APP) =—"——"-85(¢)y,, 3.15
< Y >90 tS < Yy >90 \/gtsdc’l" < >90 ( )
V2 22\/2/3
(AU )gy = Z (APP)gy = todor S {€)gp - (3.16)

It is assumed that there is negligible error associated with the time separation, t5, which

for modern timing systems is true. The ratios of these confidence limits take a very simple
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(AUZ)gy _ (APD)gy _ 2 (3.17)
(AURYgy  (APDYgy Vr2it a2 '
(AU?Y)gq _ (AP)gq _ S (3.18)
(AU)gy  (APJ)gg 72 4 42

If we integrate the errors in a z—y plane contained in the test volume, which will be useful
for comparisons with experiments, we find that the 90% confidence limit of plate-averaged

velocities due to peak searching, oP, are

2V 1212 4 d2

o0 = oF <AU$>90 <AUy>90 Tyt Cl (3.19)
2./2/3
S b :72’

oP <AUZ>90 oS oo (3.20)

where d is the side length of the test volume. The ratios of these confidence intervals are

ot of 232

. 3.21
or oy V122 4+ @2 (3:21)

These ratios are typically of order 15. The errors in positions and ratios of errors in Equa-
tions 3.19 through 3.21 will be assumed to be the errors over the entire x—y plane for
simplicity. This assumption will result in a maximum relative difference between Equations

3.17 and Equation 3.21 in the test volume of

12r2 + d?
STy (3:22)
which for the current situation is approximately 9%.

One can expect the error to decrease if the time separation increases. However tg is
limited because the particles must not leave the test volume between frames and, because,
if the corresponding particles are separated by a large distance, it can be difficult to get
these corresponding particles back, and if we do, the velocity obtained will just be a time-

integrated average.
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3.2.1 Best Linear Unbiased Estimate (BLUE)

It is interesting to examine the algorithms used by DDPIV and 3DPTV to determine particle
position, in particular, whether or not these algorithms produce the best linear unbiased
estimates (BLUE) of the actual particle position. Kajitani et al. [17] perform an error
analysis independent of any particle locating algorithm. First, they consider how a small
perturbation of the particle position will affect its image locations. To do that, they let
(Az, Ay, Az) be the perturbation of the particle position and they let (Az;, Ay;) be
the perturbation of its image on CCD 4. The following equation can then be written for
1=1,2,3:

olI; oI, oI,

where I; is the coordinate of the particle image on CCD ¢ and is given in Section 1.1.2.

This leads to the following system:

Axq —z 0 T
Ayq 0 —z wy-—r

Azx
Axo dc | =2 0 x— @r
Ayg 0 —Z Y + %7“

Az
Axs -z 0 x4+ @r
Ayg 0 —Z Y + %7“

Now, they assume the opposite—they have perturbations of (Az;, Ay;) and they would
like to find what perturbations this induces on the particle position. The system 3.24 is
overdetermined and an optimal solution in the least square sense can be obtained. It can
be shown that a linear overdetermined system of the form Ax = b has an optimal solution

in the least-square sense of the form

z=(AT4)7" ATp, (3.25)
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where the superscripts T and (= correspond to the transpose and the inverse of a ma-

trix [18]. Applying this to their system, they get

A.Il
Ayy
Ax T T 7“—1—@90 —%:c r—@x —%:c
—zS8 Axg
Ay :3rdc 0 r+y @y T—%y —@y r—%y ) (3.26)
Ay
Az 0 =z VEPS —32 B —32
2 2 2 2
A{lfg
Ays

Assuming that Az; and Ay; are errors that have a 90% confidence interval (€)q,, we can

find the 90% confidence interval of the particle positions

2y/2(r? 4+ 22
(Az)gy = %S
z2y/2 (r? 4+ 22)

\/gtsdcr

52
(AUz)gy = L (Az)gy = tST\/jr%S (€)go - (3:29)

<AUx>9o = <€>9o ) (3.27)

(AUy>90 = (Ay>9o = S <€>907 (3.28)

R IR

These results do not consider any particular algorithm to find the position of a particle
knowing its image positions on the CCDs. This means that, unlike what is claimed by
Kajitani et al. [17], these results are not necessarily the errors of DDPIV or 3DPTV, but
they are the errors in the least-square sense that one can obtain with the best possible
algorithm. In this case, the best possible algorithm refers to the algorithm that will lead
to the minimum least-square error in particle position, given errors on the particle images.
Comparing these results with ours, we see that we have the exact same expressions, which
means that our ray tracing algorithm is BLUE under these conditions. Note that although
Kajitani et al. didn’t prove it, the algorithm used by DDPIV is also BLUE.
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3.3 Combined Error

The error due to peak searching and calibration can then be joined to form a combined
error. From Section 3.2 we see that the expected value of the velocity error due to peak
searching algorithm is zero; therefore, the expected value of the total error, u;, is just that

C

due to calibration error, i.e., p; = pus.

Since calibration error is proportional to velocity,
the combined mean error will also be proportional to velocity. Both calibration and peak
searching contribute to the deviation error. Because the errors due to peak searching and
calibration are uncorrelated, the combined 90% confidence limit of plate-averaged velocity

deviation, o, is

oi =/ (09)% + (cP)?, (3.30)

where i is x, y, or z. If the medium surrounding the camera does not have a constant index
of refraction, the combined error is slightly different. However, the error is of the same

order.
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Chapter 4

Results

In this section, several results will be presented. The first two of these are theoretical results
to examine the highest accuracy that can be obtained using our data analysis program
(Sections 4.1 and 4.2). A movable plate is then examined to experimentally determine the
errors in displacements (Section 4.3). A slightly less serious but quite impressive result
is then presented, which shows, using a doll face, how well a surface can be represented
in a single measurement (Section 4.4). A supersonic flow result will then be presented
(Section 4.5). Finally, measurements of the vortex generated by the tip of a delta wing,

conducted in a water tunnel, are presented in Section 4.6.

4.1 Peak Searching

A synthetic image containing 10,000 particles with known positions was created. Each
particle had a Gaussian intensity distribution. In this paper, a particle image radius is
defined as the radius at which the intensity of the image reaches 10% of its maximum. The
particle image radii in the test of the peak searching algorithm varied between 2px and
4px. The intensity, position, and radius of each of the particle images were completely
random, within the constraint range. Because there were 10,000 particle images distributed
over 1 Mpx many of the particle images overlapped.

The program successfully identified 9,911 particles out of 10,000. The missing particles
are mostly those with neighbors within 0.5 px, that is to say, they are so close that they

are virtually indistinguishable. For each of the particles that were found, the closest real
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Figure 4.1: Cumulative distribution function of particles.

particle was selected in order to evaluate the errors. These results are shown in Figure 4.1.
The error is smaller than 0.01 px in each direction for most of the peaks (87.7%) and for the
vast majority (94.3%), is closer than 0.02 px to their actual location. The 90% confidence
limit is 0.0117 px (which corresponds to (€)q, in Equations 3.19 and 3.20), while the mean
error is 0.00926 px. It is also interesting to note that only 8,446 local maxima exist on
the image. This means that routines using simple local maxima fitting would find at most
6,892 correct particle images. The remaining local maxima will contain two or more particle
images, which cannot be computed correctly using local maxima fitting. The key to getting
accurate results is having a good fitting function. For these theoretical results, a Gaussian
fitting function was used in the peak searching routine, and each particle image was given
a Gaussian distribution; therefore, these results represent the best possible accuracy of the

peak searching algorithm.

4.2 Synthetic Images

An important test of the 3DPTV system was the processing of synthetic images. These

images allow for a complete testing of the program, including triangle formation and trian-
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gulation calculations.

The domain was divided into 21 planes perpendicular to the camera axis. In each of
these planes, 400 particles were randomly distributed and their images were added to form
the synthetic images. Therefore, each synthetic image contained 8,400 particle images. Each
particle image was Gaussian blurred with a 10% blur radius of approximately 3 px. A total
of 300 sets of images were created and then processed. In each of the planes, the results
were averaged to evaluate the errors (i.e., each symbol on Figures 4.2 and 4.3 represents an
average of 120,000 results).

As expected, the mean error tends to zero. In each of the planes, the mean error is less
than 0.005 ym in the z- and y-directions, and less than 0.05 ym in the z-direction.

The 90% confidence limit was also evaluated and is shown in Figure 4.2. As expected,
this error varies according to Equations 3.19 and 3.20. The (€)qy, value was set to 0.05.
This value is a little larger than expected in Section 4.1. Two reasons can be found to
explain that difference. First, in Section 4.1, the density of particle images is constant over
the entire CCD; however, for this test case, the density of particles is constant in the test
volume and hence the particle image density is not constant. The second reason is that in
Section 4.1, to create the synthetic images, the pixel intensity level was determined by the
value of each Gaussian surface at the center of the pixel; however, in this section, the pixel
intensity level was obtained by integrating the Gaussian surface over the entire pixel. It is
important to note that in actuality, the pixel level is somewhere between these two cases.

The actual intensity of each pixel is given by

S/2 rS/2
Ay —/ W(z,y) A(z,y) dzdy, (4.1)
—5/2.J-5/2

where Ay is the intensity of the pixel, A(x,y) is the intensity distribution of the light
hitting the pixel, and W (x,y) is the sensitivity distribution of the pixel. This sensitivity
distribution is higher at the center of the pixel and decreases toward the edges. The two
extreme cases are W (x,y) = K&(x,y) §(z,y) and W (z,y) = K/S?, where K is a constant.
These two cases correspond to the results in Section 4.1 and in this section, respectively. If

we can assume a Gaussian distribution of light and no noise, one can expect that the actual
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Figure 4.2: 90% confidence limit of particle positions from synthetic images.

pixel sensitivity distribution will lead to errors that are between these two extremes.
The ratio of the 90% confidence limit of the positions was also evaluated, as is shown
in Figure 4.3, and shows a very good agreement with the trend line obtained theoretically

from Equation 3.21.

4.3 Experimental Verification

A movable plate test case was performed using a flat plate with an array of white dots
on a black background. There were 100 dots per square inch. The plate was placed at z-
positions of 469, 494, 519, 529, 539, 549, 559, 569, 594, and 619 mm from the camera. The
plate was then moved in three equal increments of 2.54 mm in the y-direction for each of the
z-locations, which resulted in a total of six displacement vectors for each z-position (three
displacements of 2.54 mm, two displacements of 5.08 mm, and one displacement of 7.62 mm).
Similarly the plate was moved in three equal increments of 2.54 mm in the z-direction for

each z-position.
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Figure 4.3: Ratio of the 90% confidence limits of particle positions from synthetic images.

First, the mean error was evaluated, and as expected is proportional to the displacement
as shown in Equation 3.4. Figure 4.4 shows the relative mean error obtained for 2.54 mm and
5.08 mm displacements; each data point is an average of three and two values, respectively.
In this plot, the 7.62 mm results are not shown since they correspond to the average of the
three 2.54 mm results.

Even though the mean errors are very small, all within 2%, they are larger than expected.
One reason for some of the inaccuracy, besides the camera system itself, is lack of precision
in the testing setup. In particular, the precision with which the testing target could be
moved was on the order of the mean errors.

The 90% confidence limit of the displacements was also evaluated. The results are
plotted in Figure 4.5. Each symbol is the average of the 90% confidence limits from three
and two data sets in the 2.54 mm and the 5.08 mm cases, respectively.

One can directly note that the results depend on the displacement distance of the plate.
Our theory tells us that error due to peak searching (Section 3.2) does not depend on

the displacement, whereas the error due to calibration (Section 3.1) is proportional to the
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velocity (or, for a given time separation, the displacement). As Equation 3.30 shows, the

combined 90% confidence limit of plate-averaged displacement, <ADZ~>90, can be written as

(AD;),, = tsy/ (09)* + (oP)*. (4.2)

Since, for most flow measurements, the displacement of the particles will be smaller
than 2.54mm, it is interesting to analyze the results for this particular displacement, as
this represents the worst case scenario. Figure 4.6 therefore gives an upper bound for the
90% confidence limit one can expect with the 3DPTV setup. According to these results, the
90% confidence limit in the test volume remains under 5.2 ym in the z- and y-directions,
and under 66 ym in the z-direction.

To be able to compare with some of the results obtained previously, it is necessary
to separate the constant part of the 90% confidence limit from its varying part, as in
Equation 4.2. Using the results shown in Figure 4.5, one can obtain these two terms.

The constant part of the 90% confidence limit of displacement can be obtained theoret-

ically from Equations 3.19 and 3.20. Both the theoretical values and the experimental data
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are shown in Figure 4.7. For the theoretical curves, the (€)q, value was found by performing
a single least-squares fit to all the data inside the volume. This fit produced an (€)q, value
of 0.069 px. This value is fairly close but higher than the one obtained with synthetic images
in Section 4.2. The discrepancy in the results for low z-position comes from the fact that
the dots on the plate appear very blurred and that the amplitude of the peaks becomes

very low.

Another important result is the ratio of the constant parts of the error. According to
theory, the ratio between the x or y constant part of the 90% confidence limit, and the
z constant part of the 90% confidence limit is given by Equation (3.21). The theoreti-
cal, parameter-free curve, as well as the experimental values for this ratio are shown in

Figure 4.8.

The varying part of the 90% confidence limit is presented in Figure 4.9. These errors
remain quite small (1 gm per mm in x or y and 10 um per mm in z); however, part of the
error may be due to lack of robustness of the test setup, in particular the placement and

precision of the testing target.
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Figure 4.10: Three-dimensional solid imaging of a doll face. Left: black doll’s face with
white dots. Right: contours of doll’s face from measurements with the camera. These
results were taken with an older version camera having less accuracy but able to image a
10 x 10 x 10 cm? volume.

4.4 3D Solid Imaging

An additional capability of the 3SDPTV system is 3-D solid imaging. To illustrate this
capability the system was used to image the face of a doll. This was done by painting a
doll face black, and putting a large number of white dots on the face. While it is hard to
make analytic conclusions from the results, Figure 4.10 shows excellent resolution of the
face. Some of the roughness on the image is possibly due to the fact that some of the white
dots were large and non-circular. Note that these results were obtained using an old version
camera, which did not take advantage of offsets or of calibration. This camera was able to

investigate a 10 x 10 x 10 cm?® volume but with a much lower accuracy.

4.5 Sonic Jet Injection

The 3DPTV system was used to image a supersonic gas flow. Three-dimensional particle

tracking measurements in supersonic flows are particularly challenging and present many
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problems not seen in slower flows or in two-dimensional particle tracking. First, in order for
the particles to respond quickly to the flow, they must be very small. In addition, since we
have to illuminate a volume instead of a sheet, the illumination intensity is much smaller.
These two factors lead to particles that become very hard to detect.

Experiments using a sonic jet injector with 1 um diameter olive oil droplets were con-
ducted. Even with a 200 mJ Nd:YAG laser the intensity of the light scattered by the parti-
cles was very low and detection was very difficult. Despite the very low signal-to-noise ratio
(about 1) the 3DPTV system was able to produce an accurate velocity field. Figure 4.11
shows an instantaneous velocity field containing 224 vectors, which is approximately 35
vectors per cubic centimeter. The particles were accelerated to sonic speeds through a con-
verging nozzle with an outlet diameter of 7mm. The region downstream of the injector
nozzle was kept in vacuum; therefore, the particles continued to accelerate to supersonic
speeds after exiting the injector. The speed of the particles ranged between 350 m/s and
500 m/s.

The original plan to study transverse jet injection into a supersonic gas flow had to
be abandoned because we lacked the funds to upgrade the laser system to a level where a

sufficiently large number of vectors could be acquired.

4.6 Delta Wing Experiment

Measurements of the vortex generated by a delta wing were conducted in a water tunnel
at the University of Washington. A delta wing with a 65.5° sweep angle was placed at a
25° angle of attack. The free-stream speed of the tunnel was 10 cm/s. The results presented
below were obtained by time-averaging multiple vector fields.

Figure 4.12 shows the experimental setup. In both views the location of the laser beam
with respect to the delta wing is shown. The side view shows the placement of the camera
and the glass of the water tunnel. The coordinate system, ¢, is centered at the tip of the
delta wing. 71 is along the centerline of the delta wing, i5 is in the plane of the delta wing
and perpendicular to the centerline, and i3 is perpendicular to the surface of the delta wing.

Three slices of the velocity field are shown in Figure 4.13. The color represents the
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Figure 4.12: Delta wing setup for three-dimensional velocity measurements of a tip gener-
ated vortex.
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magnitude of the velocity. The contours correspond to increments of 0.02 cm/s. Starting at
an 41 of 110 mm we see a high speed region, which corresponds to the vortex core. We see
that at 71 = 180 mm vortex breakdown has occurred as there is no longer a high speed core.
The low speed region corresponds to the secondary vortex. The slices have been cropped
at the delta wing.

An in-plane vector field plot at iy = 145 mm is shown in Figure 4.14. The vortex is
clearly seen in the figure. Since the vector field created by 3DPTYV is not on a regular grid,
the data were interpolated onto a uniform grid. i3 = 0 mm corresponds to the bottom of

the delta wing, which is shown as an outline in the figure.
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Figure 4.13: Three-dimensional slices (at ¢; of 110 mm, 145mm and 180 mm) showing the
breakdown of a vortex generated by a delta wing. The colors represent the magnitude of
the flow velocity. Note that the slices are cropped at the wing location and that the wing
is vertical. The position of the slices relative to the delta wing is shown in the lower part

of the figure.
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Conclusions and Recommendations

In conclusion, the 3-D particle triangulation velocimetry technique that was implemented
has been shown to produce excellent results in terms of accuracy. The errors were of the
order of the best accuracy that can be achieved with the translation stages used. The upper
bound estimate for the mean error is only 2% of the displacement and the 90% confidence
interval is less than 5.2 ym in the z-, y-directions and less than 66 ym in the z-direction,

for a 50x50x50 mm? volume. These errors agree with the theoretical error analysis.

Several improvements can be made to increase the accuracy of the camera or to broaden
its use. First, a substantial accuracy improvement in z can be obtained by increasing the
radius of the lens positions, r, while still keeping the CCDs in a compact unit. One way
of obtaining a large r is by physically separating the cameras, as many researchers do
[2, 12, 16, 4]; however, physically separating the cameras is not recommended because of
the additional calibration required and the lack of convenience when moving experiments.
The camera used for the experiments maintained its calibration for over a year even though
the camera was moved and used in several different test setups. Furthermore, preliminary
experiments show that the accuracy in all directions can also be increased by focusing the
camera inside the test volume (by reducing L and so increasing dc). At the same time,
the blur radius will be reduced and the number of overlapping particles will be significantly
decreased, allowing for either a larger number of particles or for a lower processing time.
Because of lens limitations, even these focused images will span multiple pixels. To minimize

lens aberrations the axes of the lenses should intersect the center of the test volume.
The 3DPTYV system was designed to be able to measure a wide variety of fluid flows
as well as solid surfaces. In order to determine three-dimensional locations, individual

particles must be found; this lends itself to direct particle tracking. In addition, particle
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tracking, as opposed to a statistical method, works well even when there are low densities
or large gradients. Since the velocity field is formed directly from the particle positions
and not by averaging over several particles, it is important that these particles be found
with a great deal of accuracy. In order to achieve high accuracy, a calibration process is
essential. This calibration process corrects for the imperfect placement of the CCDs, for
lens aberrations, and for other effects. Since the particle images are blurred they will often
overlap on the CCD images. Because of this, a simple search for local maxima will produce
very inaccurate results; therefore, the current software performs a least-squares optimization

of a fitting function, which produces very good results.
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Part 11

Extension of Guderley’s Solution

for Converging Shock Waves
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Nomenclature

Roman characters, lower case

ay

kth expansion coefficient of shock position

kth normalized expansion coefficient of shock position

kth additional expansion coefficient of shock position (weak shock)

kth normalized additional expansion coefficient of shock position (weak shock)
speed of sound

ith eigenvector of the Euler differential equations in the (7, ) coordinates
arbitrary function

unknown exponent in shock position expansion

arbitrary integer

exponent in Guderley’s solution

radial coordinate of a point

time

velocity

Roman characters, upper case

C
Dy

integration constant

denominator of f

numerator of f

pressure

node k in the characteristic program
radial position of shock

velocity of shock
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normalized velocity of shock (Ug = (C]—IS)

non-singular normalization of the shock velocity (Us = Hg—f)

Greek characters

Q time scaling constant in strong shock expansion

I6] constant

2% ratio of specific heats

€ number that can take the values 1 or -1

n non-dimensional variable (n = %)

0 non-dimensional variable (8 = %:)

A ith eigenvalue of the Euler differential equations in the (7, #) coordinates

v symmetry of the problem (1 for planar, 2 for axisymmetric, and 3 for spherical)

£ intermediate variable for strong shock expansion

m intermediate variable for strong shock expansion

0 density

o intermediate variable for strong shock expansion

T characteristic time

Ts scaled characteristic time used in the strong shock expansion

Tw scaled characteristic time used in the weak shock expansion

10) intermediate variable for strong shock expansion
intermediate variable for strong shock expansion

w intermediate variable for strong shock expansion

Subscripts

1 relative to the first expansion term

2 relative to the second expansion term

3 relative to the third expansion term

I relative to region I

11 relative to region II
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111 relative to region III

v relative to region IV

S relative to shock

Superscripts

1 relative to the limit for n tending to infinity (region IV)
S relative to the shock between regions I and II

T transpose of a matrix

(—=1)  inverse of a function

* relative to the condition on shock trajectory
* relative to the singular point in region 11
+ relative to either the incoming or the reflected shock case

- relative to the incoming shock case (regions I and II)

+ relative to the reflected shock case (regions III and IV)
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Introduction

The problem of an imploding shock wave is important from a fundamental gas-dynamical
point of view, and has important applications ranging from detonation and fusion initiation
to the destruction of kidney stones. It was first investigated by Guderley [19]. He considered
a cylindrical or spherical shock wave, initially at a very large radius and propagating inward
through a perfect gas at rest and reflecting from the axis or center. As the shock approaches

the center, it accelerates.

Guderley considered only the case where the shock is already so intense that the strong
form of the shock jump relations apply. For that case he found a similarity solution, in
which the shock radius is obtained as a power of the time relative to the time at which it
reaches the center, with an exponent that is smaller than one, so that the shock strength
becomes infinite at the center. The value of the exponent is the same for the incoming and
reflected waves. It has since been recalculated with greater accuracy than Guderley’s by
several researchers. In 1988, Hafner [20] derived the equations in Lagrangian coordinates
and used power series to solve these. Doing so, he was able to find the exponent value with
a very high number of significant digits.

The problem was also studied by Chester [21], Chisnell [22], and Whitham [23] with
approximate methods, specifically geometrical shock dynamics. In their solutions, the ex-
ponent in the expression for the Mach number as a function of shock radius for the spherical
case is exactly twice that for the cylindrical case. This approximate result differs from the
exact one by less than one percent. The method is quite simple and fairly accurate.

More recently, Chisnell [24] described the imploding shock problem analytically, along
with the flow generated behind it, by making a few analytical assumptions. The exponent

values that he found, using approximate equations, are fairly close to their exact values,
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which indicates that his descriptions are valid. Chisnell also investigated the converging
shock behavior when the specific heat ratio, -, tends to 1 or to infinity.

Finally, Lee used a quasi-similar approximation and was able to find the approximate
flow behavior even for finite Mach numbers [25]. His solution agrees very well with the
exact solution.

Although suggested by Guderley in 1942, the power solution was, to our knowledge,
never extended as a power series. This power series would allow for an increased range of
acceptable Mach numbers, allowing the solution to remain valid a bit farther from the point
of reflection.

The aim of the present work is to revisit the derivation of the Guderley solution, and
to obtain a power series solution both for the incoming and reflected shocks, in which the
Guderley solution is the first term. Such a solution would apply in and near the strong-shock
limit. Also, we seek a series solution for the case of an initially infinitesimally weak shock
at initially infinite radius as it propagates inward. Furthermore, we also aim to compute
the flow field in this case using the method of characteristics. Finally, we want to compare
the results with numerical simulations.

In the following chapters, we will first define accurately the imploding-reflecting shock
problem. The problem will then be posed, dimensional analysis will be used to guide the
solution strategy, and finally, the general equations will be given (Chapter 1). Then the
Guderley solution will be explained and two additional terms will be added. An expan-
sion will also be formed for a very weak shock located very far from the reflection point
(Chapter 2). A special characteristic algorithm, designed to find the complete imploding
shock solution from infinity to the origin, will be explained (Chapter 3). Finally, some
comparative results, between expansions, characteristic solutions, and an Euler solver, will

be presented (Chapter 4).
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Chapter 1

Problem Definition

This chapter is divided into three parts. In the first part, the general notations used in the
present work are introduced. In the second part, some dimensional analysis is performed to
understand the form of the solution one can expect. And finally in the last part, the basic

equations are introduced.

1.1 General Notations

Consider the one-dimensional problem of a shock propagating through an inviscid perfect
gas at rest, from infinity, and reflecting at the origin. This shock can have either spherical
(v = 3), cylindrical (v = 2), or planar symmetry (v = 1). In the last case, we can imagine
the problem as being a shock reflecting from a wall. Guderley defines the problem such that
it has no characteristic length; the shock comes from infinity and reflects towards infinity
[19].

The independent variables are the radius r and the time ¢. The shock position is given
by Rs(t) and its velocity is Us(t). The origin of the independent variables is such that the

shock reflects when » =0 and t = 0, i.e.,
R4(0) = 0. (1.1)

In this configuration, the incoming part of the shock is characterized by ¢ < 0 and the
reflected part, by t > 0. The medium is a perfect gas with a ratio of specific heats v, and

the flow upstream of the incoming shock is at rest with pressure P; and density pr (see
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Figure 1.1: Problem notations for the incoming shock.

Figure 1.1). Note that the notation in this work is slightly different from that chosen by

Guderley [19], because it is more suited to the improvements that are made.

The entire problem can be divided into four separate regions. Region I is the undisturbed
flow (t < 0 and r < R¢(t)). In this region, the density and the pressure are constant and
the flow is at rest. Region II corresponds to the flow behind the incoming shock (¢t < 0
and r > Rs(t)). Region III corresponds to the flow upstream of the reflected shock (¢ > 0
and r > Rs(t)). And, finally, region IV corresponds to the flow downstream of the reflected
shock (¢ > 0 and r < Rs(t)).

Figure 1.2 shows these four regions, as well as the shapes of the different families of
characteristics. First a particle trajectory is shown by the thin solid curves. In region I, the
flow is at rest and the particle trajectories are just lines of constant r. After the incoming
shock, the gas flows towards the center but slows down in time due to the accumulation of
mass. After the reflected shock, the flow is directed away from the center and slows down
to eventually come to rest when the pressure becomes constant in the whole domain. The
second family of characteristics is defined by % = u+c and is represented by dotted curves.
In region I, these are straight lines representing waves moving at the speed of sound. After
the incoming shock, they are deflected toward the center and they stop at the shock. In
fact, the second family of characteristics in region IV represents waves that travel faster
than the shock and stop when they reach it. Finally, the last family of characteristics is

defined by % = u — c and is represented by dashed curves. In region I, these characteristics
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— Shock position

—— First characteristic family (particle trajectory): % =u
------- Second characteristic family: % =u+tc

——- Third characteristic family: % =u-—c

---- Last characteristic reaching the incoming shock

Figure 1.2: Sketch of the r—t diagram of the problem. The shock position is represented by

the thick curves. The three different characteristic families are represented as well: % =u
(solid curves), % = u + ¢ (dotted curves), and % = u — ¢ (dashed curves), where u and ¢
are the local velocity and speed of sound of the flow, respectively.
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are also straight lines that describe waves moving at the speed of sound. They stop at
the incoming shock since, in region II, they travel faster than the shock. The third family
of characteristics in region II or III reaching the reflected shock is just deflected by the
reflected shock. Note that the particular characteristic that reaches the shock at t = 0 is
of particular importance since it is the boundary of the incoming shock influence domain.
This characteristic leads to singularities in the equations as explained in later chapters.
Note that since, in region III, no information comes from the reflected shock, regions II
and III could be computed together. The notations are such that fi refers to the value of

f in region I, fir to the value of f in region II, etc.

1.2 Dimensional Analysis

The important variables of the problem were introduced in Section 1.1. First, v is the
constant that defines which type of symmetry we are considering. Second, pr, P; define the
flow properties of the undisturbed region (region I), and ~y is the specific heat ratio of the
perfect gas. Third, ¢ and r are the independent variables of the problem. And finally, the
radius of the shock is given by R;.

According to Buckingham’s Pi Theorem, since we have seven variables, we can form
four independent non-dimensional numbers. We can take for example the following non-
dimensional parameters

crt Ry

v, 7, 02?7 77:77
S

where ¢y is the speed of sound of the undisturbed flow (¢; = 1/7p—113‘). These four non-
dimensional variables are enough to describe the complete solution of the problem. This
means that under the coordinates (0, n), we may expect a universal solution for a fixed ~y

and a given symmetry. The density, pressure, and velocity can be expressed as

p= plﬁ(V777 0777) ) (12)

P = PIF(V7’Y7'9777) ) (13)

u = Clﬂ(y777 97 77) : (14)
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The differential equations that define the universal solution in these coordinates are derived

later in Section 3.

We can also investigate the shock motion by introducing the velocity of the shock Us =

dRs
dt -

Since the shock is located at n = 1, we have
Us = KV (1,7, 0) (1.5)
where K- is the inverse function of K. This last expression can be rewritten as
0= K(V,’)/,US) , (1.6)
where K is an unknown function and where the normalized velocity Uy is defined as

Us = (1.7)

Us
1
This equation is very useful to compare results since it does not involve any kind of
initial conditions on the shock position. However, it is not very convenient to make direct
predictions of the shock position. In fact, Equation 1.6 involves three variables (¢, Rs(t),
and Ug(t)), and is a non-linear differential equation for Rs(t). This can be seen if we write

the equation as

crt 1 dRs(t)
R:(t) = K(z/,’y, p— ) . (1.8)

To find a more suitable equation, we drop the independent variable ¢ and force the
condition that the shock goes through R} with a normalized velocity U:. We now have five

non-dimensional parameters that we can choose to be

*

) USu Us'

|

w o

v, 7,

An equation linking these parameters can be written

% = f(l/,’y,Us,U:> , (1.9)

S
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where we have the condition that

1= f(u ~, U;,U;) . (1.10)

To simplify the equation even further, assume that we know the normalized velocity of the
shock at another location (Us = U, " at r = R}*). We have that
Ry Ry

f(u v, Us, Us ) R = R**f(l/ v, Us, U, ) (u,’y,U:,U;‘*) f(y,fy,Us,U:) , (1.11)

where we have defined the function g such that

*

*x
Rs

(1/ O T ) (1.12)

Equation 1.11 is always true and in particular for Uy = U :,
F(rr LT = g(vrn T T £ (03, T TL) = o(v7, T, TY)) (1.13)

where we have used the condition in Equation 1.10. Combining Equations 1.9, 1.11, and

1.13, we obtain ( )
Ry B f V777U57U:*
= f(y,%U:,Uz*) (1.14)

w

This last equation is valid for any Uz* that can be arbitrarily chosen the same for any
problem. In the present work, it was chosen that U:* = —2. A new function F' can now be

defined such that

F(u,’y,Us) = f(y,fy,Us, —2) , (1.15)

which finally leads to the following relation:

& _ FwUs) (1.16)

with

F(v,vy,—-2) = 1. (1.17)
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This last relation is particularly interesting since it means that all the curves (Rg, Us) can
be collapsed onto a single one using an appropriate scaling factor. In other words, F' can be
plotted once, and for all different cases. The Ry axis is just scaled so that the curve passes
through (R?, U,). Introducing the characteristic time 7 such that

*
S [ — (1.18)

—x 9
CIF<V, v, US>
we can rewrite Equation 1.16 as

R _

Cl—i =F(v,7,Us). (1.19)
According to the definition of the function F', we can note that ¢;7 is the radius at which
the incoming shock has a Mach number of 2. Mathematically, no initial conditions can
exist since the shock is initiated at infinity; however, we can imagine two cases in which
the infinitely weak initial shock has different strengths at the same very large value of Ry,
which means that these two cases will lead to different solutions in the full domain. We

can therefore distinguish the different cases by the value of 7, which is then equivalent to

artificial initial conditions.

We can go a bit further and define the inverse function F(—1) such that

Uy =FD <V,’y, —) . (1.20)

Starting from the definition of Uy, and using the fact that 7 is constant, we can write that

R
_ 1dr, d&
U. = — = _d 1.21
R (121)

which, when used with Equation 1.20, leads to a differential equation for g;

in terms of %:

dE
dCI; = p-1) (V,'y, CR;_;) . (1.22)
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This expression can be rewritten as

R,
T —a (1.23)
FED (l/,’)/, gj_) T

We can define a function G such that

(-1
GV (v, v,z /F( Nya)’ (1.24)

GV (v, 7,0) = (1.25)

Solving Equation 1.23, we can find the general expression of Rg in terms of ¢ and of the

imposed conditions:

Rs = CITG(V,’)/, ;) . (1.26)

The series expansions will be written in the same form as Equation 1.26. The functions
F, G and K are very important and will be used to make comparisons between the differ-
ent series expansions, the solution from a characteristics program and Euler computations

(Section 4.4).

1.3 Problem Equations

The gas properties in each of the four regions are continuous. Since we consider an inviscid

perfect gas, the Euler equations can be used. These are

dp Op ou (v—=1)pu

a"ﬁ‘ a +0E+T—O, (1.27)
ou Oou 10P
o e T O (1:28)

oP oP ~P (@ 8,0) 0

ot Ty tu

— 1.2
ot or (1.29)

where p, u, and P are the density, the flow velocity, and the pressure, respectively. In addi-
tion, the regions are connected together either by shock jump conditions or by continuity.

Between regions I and II, we have shock jump conditions with an upstream region at rest,
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1.€.,

+1
pu(t, Re(t)) = pr—2L - (1.30)
o142 (U—gt))
Ut)\ 2
P - p27( ) 10
1 (t, Bs(t)) = P , (1.31)

e, 2 (0) = 220

1- (U:Et)>2] . (1.32)

Regions II and III are connected by imposing that the values remain continuous across their

common boundary, i.e.,

prr(0,7) = prr(0,7), (1.33)
Pyi(0,7) = Pi(0,7), (1.34)
urrr(0,7) = ugp (0,7) . (1.35)

And finally, regions IIT and IV are also connected by shock jump conditions, but this time,

the upstream flow is not at rest anymore, i.e.,

+1
PIV(t, Rs(t)) - PIH(t, RS (t)) s crr(t, Rs(t)) 27 (1'36)
7142 [—Usa)—ufnaﬂs(t))]
Udt)—urn(t, RN ]2 | 1

n B 2y [ e BAD) } t1-7

v (t, Rs(t)) = Pu(t, Rs(t)) po : (1.37)

et Ro(®) 12
y—1+2 Ustliu t RdL

ury (t, Ro(t)) = Us(t) + [ummi (¢, Ro(t)) — Us(2)] [ ()t Be(t)) (1.38)

vy+1

Now that all the regions are connected together, the only additional condition is that the
flow has no velocity at » =0, i.e.,

ury (t,0) = 0. (1.39)

There are no initial conditions since the shock starts infinitely far from the origin and

Equations 1.27 to 1.39 completely define the problem.
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Chapter 2

Series Expansion Solutions

To obtain a simple solution, it is useful to find the limiting behaviors of the shock in the
form of a series. Guderley obtained the first term of the expansion series solution close to
the origin, for r < ¢;7 (or equivalently, for Mg > 1). In the next paragraphs, we will first
transform the equations to make them more suitable for solving the expansion problems
(Section 2.1). Guderley’s solution will then be examined (Section 2.2) and extended with
two additional terms (Section 2.3). Expansions will also be formed for the weak shock case,
i.e., for r > ¢r7, or for Mg — 1 <« 1 (Section 2.4). These can be very useful as initial
conditions if we use a numerical method to find the solution in the whole domain. Finally,

we will summarize briefly what we have found (Section 2.5).

2.1 Initial Change of Variables

Looking at Figure 1.2, we see that the four regions have complicated shapes that are not
known a priori. It is much easier to transform these regions into regions with fixed shapes to
know exactly where the shock jump conditions have to be applied. This can be performed

easily by making the change of variables

(t, ) = (n,7),

where

<
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The shock jump conditions now occur at = 1 and under this change of variables,
Figure 1.2 is transformed into Figure 2.1. Note that the transformation is not a bijection,!
this is the reason why Figure 2.1 is composed of two parts, the first for ¢ < 0 and the second
for t > 0. To facilitate further calculations, the velocity of the shock is now expressed in
terms of its position instead of in terms of time directly (Us(Rs(t)) instead of Us(t)). Using

these definitions, we can also transform the derivatives to

9 _omo
ot 0Ot on
Us(nr) 0
= — 2.2
r on’ (2.2)
90, mo
or  Or  Oron
o no
= 12 2.
or ron (2:3)

Using these expressions, we can write the Euler equations in terms of the new variables,

9 (pu) O (pu) op 3 _
r o n on + Us(nr) an + (v —1)pu=0, (2.4)
ou ou oP oP
pur == + p [Us(nr) — nu] on + (e 778_77 =0, (2.5)
o0 (P 0 (P
ura <p_7> + [Us(nr) — nu] 5’_77 (ﬁ) =0. (2.6)

2.2 Guderley’s Solution

Guderley’s work was focused on the region close to r = 0 (r < ¢;7). In that region, it
can be assumed that between regions I and II, the strong shock jump conditions are valid
[19]. Note that this assumption cannot be made for the reflected shock between III and IV.
In fact, although the reflected shock velocity tends to infinity when r tends to 0, its Mach
number is finite since the speed of sound tends to infinity as well. Furthermore, Guderley

hypothesized that under the strong shock assumption, the shock position can be written as

LA transformation that is one-to-one and onto.
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Ry
y = T
I
1 — — <0
0
.
Ry
y = 2
\
N 1\Y
\
\
\\
1 — t>0
N
\
\
\ 111
\
\
\
\
0 \
— Shock position r

First characteristic family (particle trajectory): % =u

"""" Second characteristic family: % =u-tc
——- Third characteristic family: % =u—c

---- Last characteristic reaching the incoming shock

Figure 2.1: Sketch of the n—r diagram for the problem. The shock position is represented

by the thick lines. The three different kinds of characteristics are shown as well: % =u
dr

(solid curves), % = u + ¢ (dotted curves), and % = u — ¢ (dashed curves), where u and ¢
are the local velocity and speed of sound of the flow, respectively. The crosses correspond
to the same point in the (7, t) domain. Note the particular shape of the last characteristic
reaching the incoming shock. In the n—r diagram, it reaches r = 0 at a finite n that is
different from 1, this leads to a singularity in the domain.
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proportional to time to a power n*. Using the notations introduced in Equation 1.26, this

means that

e = (1) )

where 5% is a constant that takes the value 5~ in the incoming shock case, and 7 in the
reflected shock case. In all the following sections, the superscript + refers to a value that
has different values in the incoming and in the reflected case, and the superscripts — and +
refer to the incoming and to the reflected cases, respectively. To simplify the expressions in

later sections, it is more convenient to write Equation 2.7 as

+

Ry(t) = o7 (a%?s)n : (2.8)

+

where o™ is a constant that is chosen to be —1 for the incoming shock, and that has an

unknown constant positive value (a™) for the reflected shock, and where

o= (7)) T (2.9)

The exponent n* is an unknown constant and, based on the work so far, its value is not
necessarily the same in the incoming and in the reflected cases. Its value lies between 0 and
1 since Rs(0) = 0 and the speed of the shock tends to infinity when ¢ tends to 0. Once again,
note that although the results are the same, this notation differs from that of Guderley.

From Equation 2.8, we can find the shock velocity, which is

Us(Ry) = qZ—i (t(RS)>ni_1

+ Oéi?s
+ nifl
n Ry nE
=c— . 2.10
R (Cﬁs> (2.10)

Since the shock position will be valid only for Ry < ¢7g, the solution that we obtain is
only valid for small . In addition, since the characteristics coming from the shock are only

correct for small ¢ (or small Rs), we find that the solution is only correct for t < 7.

The method to solve this simplified problem will be discussed in the following sections.
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New shock jump conditions can first be written and new variables can be introduced (Sec-
tion 2.2.1). From the resulting equations, the problem can be solved for n* and then for

ot (Section 2.2.2).

2.2.1 Self-Similar Problem

We can first write the new shock jump conditions for the incoming case. These conditions
are found by taking the leading term of Equations 1.30 through 1.32 when Ug(Rs) is much

bigger than ¢ (i.e., for a very large incoming shock Mach number). These new conditions

are
+1
pr(1,7) :pﬂ_l, (2.11)
2 (Us(Rs), 1\ >
Pi(l,r)=H ! d S)n 1)
v+ 1 C1
iy 2(n* 1)
2 n
_ g2 ) ( )T (2.12)
v+1 CITs
2
uri(l,r) = ﬁUs(RS)nq
4+ nifl
2n r nt
=— , 2.13
CI’Y +1 (CIFS> ( )
where we used the fact that (Rs),_; = r and that in the incoming case o~ = —1. These
equations suggest that we try a solution of the form
p(n,r) = p1p1(n) (2.14)
2(nt-1)
nt 2 r\ noF
P(n,r) = PPi(n) (—i> ( — ) , (2.15)
« CITs
nifl
(n,7) ()" (2.16)
u(n,r) = cu — .
m, 1u1(" C!:t 1T 9

where p1(n), Pi(n), and ui(n) are unknown functions of n only. The subscripts 1, 2, and 3

denote the first, second, and third terms in the expansions. Using this, Equations 2.4 to 2.6
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become

pr(m)ur(n) + [n70= —w ()] phn) = pr(m) () =0, (2.17)

1
1_TLT

2PL(n) + o1 () wi () +Apa () i (n) [ 7E —w(n)| = P =0, (218)

[pr(n) i) = Prn) )] [ = ()] + = 2= ) wa ) PoC) =0, (219)

where /

expresses the derivative of the variable with respect to 7. Since these equations
no longer depend on r, the assumed form of the variable is acceptable and the problem
becomes self-similar. Note that these equations are valid in each of the three unknown

regions (II, ITI, and IV). The shock jump conditions between regions I and II are now

v+1
1) =—— 2.20
Pl,H( ) 7_17 ( )
2y
Pr(l) = ——, 2.21
() = -2 (2:21)
V=— (2.22)
U111 = ’)/—i- 1. .

Once again, we did not assume anything yet about the value of the exponent n*. Us-
ing the change of variables defined earlier, the continuity conditions between II and III

(Equations 1.33 to 1.35) become

p111(0) = p111(0), (2.23)
Ao (%) (22) o o) (=) S
uy,111(0) Z—i <CI;S> o = —u1n(0)n” <CI;S> = . (2.25)

These conditions have to be satisfied for all . This is only possible if we impose the
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condition that n* = nT =n~ = n. The final continuity conditions between II and III are

p1111(0) = p1,1(0) ,

P mi(0)
(a+)2 = Pl,H(O) )

uy,111(0)
e —u,11(0)

It is also possible to write the shock jump conditions in the reflected case:

v+1
priv(1) = p1u(1) 4o P ’
7 p1,111(1)[1*u1,111(1)]2
pl,III(l)[l*ul,III(l)]2
Puv(1) = Pun(1) 2y Py (1) t1-7
1, 1, ~ +1 )
N 142 P (1)

Ul,IV(l) =1+ [ul,HI(l) — 1]

pl’IH(l)[lful,IH(l)]Q

v+1

Finally, since n < 1, the final condition (Equation 1.39) becomes

nlilglo urv(n) = 0.

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

All these last equations define a self-similar problem that gives a first approximation of the

solution to the implosion problem around the point of reflection (r < ¢;75). Equations 2.17

to 2.19 form a non-linear system of differential equations that can be further simplified by

applying a last change of variables:

$1(n) = "7%“1("7) ;

B i Py (n)
M) = o — ()]

(2.33)

(2.34)
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The system of equations (Equations 2.17 to 2.19) can be rewritten as follows:

pi(n) | véi(n) —ndy(n)

o) T 1-d)
Q) oy nmi(n) ¢1(n) + né1(n)* — d1(n)

m) |2 0B e [ 0) = i )] + e ~0,
A )] 2 2nei(n) + nndi(n)

! {(V Do " mml T T - e .

with the conditions 2.20 to 2.22, and 2.26 to 2.32, becoming

v+1

1 = —

p1u(1) N1
2

]_ = —

¢1,(1) g
2

1 = —

7Tl,II( ) ’Y‘i‘l’

p1111(0) = p1,11(0) ,
é1,11(n) n
—a
n—0 ¢111(n)
lim 7T1,HI(77) _ (a+)2’
n—0 1 11(N)

i

(v+ 11— ¢rm()]
) [ = ¢ ()] + 2y (1)’
2 —2ymym(l) + (v — 1) ¢1,m(1)

priv(1) = p1m(1) -1

1) = ,
é1,1v(1) o
2—-2¢1m(1) — (v — 1) m,m(1)
1 — ) ) ,
m11v (1) o
tim 2V _
n—oo

(2.35)
(2.36)

(2.37)

(2.38)
(2.39)
(2.40)

(2.41)

(2.42)
(2.43)
(2.44)
(2.45)
(2.46)

(2.47)

In addition, we should note that, since P yv(n) is not singular, 7”1—‘2’(77) (I —¢1,1v(n)) has to

nn

be finite even when 7 tends to infinity. The differential equation system can be rearranged
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vy ¢iln) (1 =ngi(n) + m(n) (2 = 2n — nywei(n))
1) = w1 (1= 1) — (1)) ’ (2.48)
24+ y—=2-ny+n¥—-2+y—w) (1 —¢1(n)] d1(n) +
mn) nymi(n) (2 —v) ¢1(n) — 2]
) - (= S ) (= 10— 3m () » (249)
pim) 21 —n)m(m) +éi(n) [ —nv+n (v —1)di(n)] (2.50)
p1(n) nn (1= ¢1(n)) (1 — ¢1(n) — ymi(n)) ' '

The problem can be solved by taking ¢; as the independent variable instead of 7. This

leads finally to the system

24 [y=2-ny+nv-2+7—y)(1—¢1) 1+
nymi(d1) [(2 —v) é1 — 2]

M) =m ) S e A= nb) T m@n @~ 2o —mwen] 0 0D
n(é) n(l—¢1—1m(¢1)) (252)
n(¢1)  é1(1—né1) +m(e1) (2 —2n —nyver)’ '
pi(e) 20 -n)m(d)+ ¢ (1 —nvtn—1)d) (2.53)
pi(#1) (1 —¢1)[¢1 (1 —ne1) +mi(d1) (2 = 2n — nywér)] '
It is possible to find a first integral to this system:
() = C m(¢1)2" (1= gy 2o DA (250
n(¢1)

where C' is a constant that takes a different value in each region. The problem is now
relatively easy to solve since Equation 2.51 can first be considered alone to solve for 71 (¢1).
Then, Equation 2.52 can be integrated to find n(¢1). p1(¢1) is obtained using the first
integral that has just been found. Finally, note that since some variables are tending to
0, it is better to find P; and u; by integrating them rather than by using the variable
definitions 2.33 and 2.34.
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Figure 2.2: Zero and pole locations of the right-hand side of the 7} (¢1) equation for v = 2,
v = 1.4, and n = 0.85. The circles are the particular points that are intersections of the
zero and the pole curves. The cross is the location of the initial point in region II.

2.2.2 Discussion and Solution of the Problem

First, consider the limiting values of the problem. In region II, just downstream of the shock,
¢1,11 and 7 11 are given exactly by the shock jump conditions (Equations 2.39 and 2.40). At
the junction between I and III, py, P;, and u; are continuous and finite, meaning that, since
7 tends to 0, ¢1 and 7 tend also to 0 at the junction (see Equations 2.33 and 2.34). Finally
in region IV, when 7 tends to infinity, P v needs to be finite, meaning that m; 1v (1 — ¢1,1v)
needs to tend to infinity as well. In addition, ¢; cannot change sign within a region, and

71 (1 — ¢1) remains always positive.

In the problem, v and ~ are fixed. For each value of n, we can plot, in the (¢1, m) plane,
the zeros and poles of the right-hand side of Equations 2.51 to 2.53. This is represented
in Figures 2.2, 2.3, and 2.4 for the equations for 7 (¢1), log(n(¢1))’, and log(pi(¢1)),
respectively. In these plots, the value of n was chosen arbitrarily to give a qualitative

understanding of the nature of the problem.

In region II, the solution trajectory has to go from the initial point to (0, 0). Along that

trajectory, the variables have to remain continuous. The only way this is possible is if the
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Figure 2.3: Zero and pole locations of the right-hand side of the log(n(¢1))’ equation for
v=2,v=14, and n = 0.85. The circles are the particular points that are intersections of
the zero and the pole curves. The cross is the location of the initial point in region II.
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Figure 2.4: Zero and pole locations of the right-hand side of the log(pi(¢1))" equation for
v=2,v=14, and n = 0.85. The circles are the particular points that are intersections of
the zero and the pole curves. The cross is the location of the initial point in region II.
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trajectory crosses a pole when it is also a zero. In fact, it can be shown that if it does not
do so, the solution will not be smooth within the region. The only two acceptable points,

(¢7, m7), where that occurs simultaneously in each of the three figures (Figures 2.2 to 2.4),

are at

2(1—n)—~v(1 —nv 2(1—n)—~v(1—n)? =81 —n)ny(r—1
PRI ORRT >+¢[<2m(>y_vl<) Posi-mme-1
o= L —Jb’{’ (2.56)
and at

2(1—n)—~v(1—nv)—+/[2(1 =n)—~(1 —n)? =81 —n)ny (v —1
o 2mm =) J[(gm()yl() Posu-mme-y
o=l —Vqﬁ’{' (2.58)

For these intersections to exist, the square root has to be non-imaginary, which means that

one of the two following conditions has to be satisfied:

A4 2y —3) + 720 — (29)2 (v — 1)

n < IS AT 0) =8 (2.59)
44+ 2y —3)+ 720+ (29)2 (v — 1)

n> e ¥ e . (2.60)

It is now conceptually easy to find n since it corresponds to the value for which the trajectory
crosses one of the circled points. It is important to note that the singular point corresponds
to a point on the limiting characteristic. That particular characteristic reaches r = 0 at
t = 0 and is represented in characteristic sketches by a dash-dot-dot curve.

Consider now the trajectory in region IV. By examining Equation 2.51, we can find

that the only way (b“—‘i(n) can tend to infinity while keeping ﬂ“—‘g’(n) (1 —¢11v(n)) finite,
nn nn

is such that the trajectory becomes tangent to the pole curve around its singularity (at

Pr1v = 2%—;7)) This condition leads to a specific value of a® (a~ being —1).

To compute the results, the equations are integrated with a fourth-order scheme de-
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scribed in Appendix A. In region II, the solution is integrated from the singularity towards
the initial condition and a shooting method, iterating on n using a Newton-Raphson algo-
rithm, is performed until the trajectory passes through the initial conditions. Then, it is
integrated from the singularity towards (0, 0). The limit of the differential equations at the
singularity is found using the L’Hopital theorem. The limit of 7} (¢1) is found by solving

the system
0

N_, ON_,
m(P1) m1(P1)
oy m(o1) + —g5

omlpr) © 99
™ (61) = 351(,( 2 3D~<1¢1> , (2.61)
1

w1 (o1)
87r1(1¢>11) Wi(¢1) + 091

when (¢1, m1) tends to (47, 77) and where the functions Ny and Dy represent the numerator
and the denominator of f, respectively. After obtaining the complete solution in region II,
we iterate on the value of ¢1 v just downstream of the shock. At each iteration, we start to
integrate region IV from ¢ 1v = 2(71_;771) towards the chosen value of ¢; 1v behind the shock.
Using inverted shock jump conditions, we get these values upstream of the shock in region
IIT and we integrate the equations towards (0, 0). If the ¢1 v and a™ values are correctly

chosen, P, p1, and u; are continuous between II and III.

Each time a variable or its derivative tends to infinity, the corresponding differential
equation is modified to avoid singularities. In other words, if the variable f behaves like
(C — ¢1)", the equation for f’(¢1) is replaced by an equation for 7/(¢1) where f(¢1) =
f(¢1) (C — ¢1). All the limiting behaviors of the variables are given in Appendix C. Finally,
since, inside region III, 7} (¢1) can become infinite and then change sign, all equations are

modified for part of the integration to use 7 as the independent variable instead of ¢ .

As an example, Figures 2.5 and 2.6 represent two solution trajectories in the (¢, 1)
plane along with the corresponding pole and zero curves of the 7/ (¢;1) equation. Note that
in Figure 2.6, 7} (¢1) becomes infinite and changes sign within region III. Some numerical

results for various v and « are given in Appendix E.

Finally, note that according to Section 1.2, 7 is defined by the artificial initial conditions
and its value is different from the value of 7s. The ratio % and the constant 8T, in
Equation 2.9, cannot be evaluated using this expansion series method. The entire problem

has to be computed using a different method and the constants are determined so that
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Zero location | |
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Figure 2.5: Zero and pole locations of the right-hand side of the 7} (¢1) equation (Equa-
tion 2.51), for v = 2, v = 1.4, and n = 0.83532. The circles are the particular points that
are intersections of the zero and the pole curves. The solution is represented by the solid
curve and the crosses show the boundaries of the regions.

— Solution
Zero location
- Pole location
1.5r © Particular points |]
*  Boundary points

_0'—%.5 -0.25 0 025 05 0.75
P1

Figure 2.6: Zero and pole locations of the right-hand side of the 7} (¢1) equation (Equa-
tion 2.51), for v = 3, v = 5/3, and n = 0.68838. The circles are the particular points that
are intersections of the zero and the pole curves. The solution is represented by the solid
curve and the crosses show the boundaries of the regions.
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the shock trajectory fits the expansion. This process will be explained in more detail in

Chapter 3.

2.3 Strong Shock Series Expansion

Guderley’s solution described in Section 2.2 is only valid for very strong shocks (M? > 1 or
Ry < 7). It is therefore useful to extend the solution in the form of an expansion so that
the approximate solution remains valid over a wider range of Mach numbers. Although it
has never been done, it was suggested by Guderley in 1942 [19]. The way to do this is to

extend Equation 2.8 and to assume a shock position equation of the form

¢ n N ¢ 2 N ¢ 13
= [T 1 e e H.O.T.
Rs(t) CITS (ai?s> + a2 <ai?s> + a/3 <ai?s) + O

where i < ixy1 and where H.O.T. represents all the higher order terms. Each new term

, (2.62)

that is added introduces new equations to solve. Although it involves lengthy calculations,
the method to find the values of i is straightforward. First, the shock location is expanded
in terms of a power series in t. The shock jump conditions between I and II, and the
variables p, P, and u are expanded as well. A new system of differential equations is
written for each term. These systems of equations are singular at the exact same points as
those found in the Guderley strong shock solution. To avoid these singularities, each system
has to possess a coefficient af that can be chosen appropriately. If the exponents i are
not correct, some systems of equations will not have an available coefficient to avoid infinite
derivatives at the singular point. Performing all the calculations, it can be shown that
ir = 2(k —1) (1 —n). The actual calculations that lead to these values are not presented,
but the following paragraphs will show that these exponents are in fact correct since they
introduce in each system of equations a coeflicient a,f that can be chosen to avoid singular
behaviors.

In the next sections, Guderley’s solution will be expanded. First, the equations will be
written as series (Section 2.3.1), then two additional terms will be solved (Sections 2.3.2

and 2.3.3).
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2.3.1 Expansion of the Equations

First, consider the shock motion equation introduced in Equation 2.62. Once the appropri-

ate exponents are introduced, the shock motion is given by

B ¢ n N ¢ 2(1—n) N ¢ 4(1—n)
Rs(t) = CITs (Ogi—?s> 1 =+ CL2 (ai—?s> + CL3 ( > + HOT

—_— . 2.63
ai?s ( )
This equation can be inverted to express t in terms of Rg, which gives

R 1 + R 2(1—n)
t(Rs) = o7 < = ) 1- % <—_> +
CITs n CITs

(aéc)2 (5—3n) —2nas [ R,
2n?

4(1—n)

+HO.T.|. (2.64)

CITs

From the shock position equation, we can obtain its velocity,

9 _ " 2(1—n)
1 +a2i—n ( — > +

n

. (2.65)

where we used the following normalized coefficients:

. _azny(3—2n)
ot —

2 = (ai)Q (267)
B n2~? [Qa:jfn (5—4n) — (aét)2 (1—-n)(7— 4n)]
a5 = T (on) . (2.68)

Using this, series can also be written for each of the shock jump conditions as well as for
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the continuity conditions between regions II and III. The results obtained are in the form

of a series in terms of = and lead us to try series of the form
S

2(1—n) 4(1—n)
r n r n
p(n,7) = pip1(n) |1+ pa(n) < — ) + p3(n) < — > +HO.T.|, (269
CITs CITs
9 2(n—1)
mn T n
P(n,1) = PP (—)
(n.r) = BiPr(n) (- (Cﬁs)
2(1—n) 4(1—n)
1+ Py (n) ( _ ) + P3(n) ( a ) +H.O.T.|, (2.70)
CITg CITsg
n—1
n T n
u(n,r) = cru(n) ot (Cﬁs>
2(1—n) 4(1—n)
7" n ”" n
1+ us(n) ( — ) + ug(n) ( - > +H.O.T.| . (2.71)
CITs CITs

When all these series are introduced into Euler equations 2.4 to 2.6, the new expressions
lead to a series of equations. The way to solve this new problem is to add one term at a
time in the series. Assuming that the first k terms are solved, an additional term can be
added in all the series (introducing a new coefficient ai_l in the process). Then, the system
of equations defined by this additional term is solved and we can proceed to the next term.
Previously, only the first term had been obtained (see Section 2.2). We will show how to
get the second and third terms of this series in Sections 2.3.2 and 2.3.3, respectively. Note

that a, 41 can be different than agﬂ.

2.3.2 Second Term

The equations for the second term are very long. For that reason, only the changes of
variables that are performed to get the solution are described in this section. The final
system of equations is, however, shown in Appendix B.

Changes of variables are appropriate to try to decouple the equations and to make them
simpler to integrate. First, all the changes that were defined in Section 2.2 are introduced
and the equations are written so that the functions and the derivatives are expressed in

terms of ¢1. To remove the p1(¢1) and n(¢1) dependence in the equations, the following
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change of variables can be made:

u Tl2
da (1) = ( i;(ﬁb(lqi )QZ_H) b1, (2.72)
o nlo1 n
n2
o) = “’(; T - e, .73
o nlo1 n
Ya(d1) = p2(¢1)n2271_n) (1—¢1). (2.74)

() n(g1) "7

The resulting system is made up of three coupled linear differential equations that can be

written as
9T A(py) @+ TEb(0) (2.75)
dén 2 ’ '
where
P2(¢1)
T = 7r2(¢1) . (2.76)
Va(é1)

The matrix A(¢1) and the vector b(¢;) are known functions that are singular in region II
at ¢1 = ¢} (first order pole). Since all of the three differential equations are singular, we
can use the following new change of variables to obtain two non-singular equations and one

singular equation:

wa(d1) = [2(1 —n) +nv]e(e1), (2.77)
&a(d1) = P2(¢1) — d2(91), (2.78)
oaton) = 22 [y — w0 + a0~ da(on)]. (279

This last change of variables leads to a system of equations that is relatively easy to solve
(see Appendix B). The first of the three differential equations is independent of wo(¢71) and
of €2(¢1). Since it is not singular at ¢; = ¢7, this equation does not introduce any condition

on the value of @, . Furthermore, it is possible to integrate it analytically, which gives

_ (@) ()"

- -
7T1(¢1) ¢1a2 N (2.80)

o2(¢1)
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where C' is an integration constant that is different in each region and that can be found
very easily using the region boundary conditions. The last two equations are coupled but

only one is singular in region II.

Note that, as can be seen in Appendix B, the differential equations and the boundary
conditions are linear in 6; This means that the functions can be expressed as fa(¢1) =
f2.a(01)+ fan(o1) EQi, and the system can be split into a part independent of Eét and another

proportional to Eéc.

To solve this second-term problem, we first start with region II. Knowing the shock jump
conditions for oa(¢1), it is easy to find the constant Cy1 in Equation 2.80. Note that at this
point C7y is of the form Ciy, + Cripay , with Cry, and Chyy, being known constants. We can
then focus on the two other equations. We start by choosing w3 and &5 at the singularity.
Then, we find the value of @, that avoids a singular behavior, as well as the limit of the
equations at the singularity, using L’Hoépital’s theorem. Starting from the singularity, we
can then integrate towards the shock. Iterating on the values of w3 and &5, a shooting

method is used to satisfy the shock jump conditions.

Note that the limiting values of the derivatives at the singularity involve limiting values
of the second derivatives of first term variables. It can also be shown that the limiting values
of the derivatives of the ¢th term involve limiting values of the ith derivatives of the first
term. This also means that since, in our case, the first term is integrated with fourth-order
accuracy, the second term is accurate to third order and the third is only accurate to second

order.

Once region II is completely obtained, regions IIT and IV are solved together. The value
of 6; is such that the velocity remains 0 in region IV for » = 0. Looking at the form of
the variable expansions as well as the changes of variables, a sufficient condition for that is
that the functions o9 1v, w2 1v, and &2 1v remain finite everywhere. This leads to a condition
linking wy 1v and & 1v at r = 0 as seen in Appendix C. To solve the equations, we choose
the values of oo 1v at the shock and of £ 1v at r = 0. The equations are then integrated
towards the shock, the inverse shock jump conditions are used to obtain boundary values

in region III and finally, the variables are integrated up to n = 0. A shooting method is
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once again performed and we iterate to find wy v and & 1v at 7 = 0, as well as E;, so that

p2,11, P2 11, and ug g1 are continuous at 1 = 0.

Note that once again, equations have to be adapted to take care of the limiting behaviors

of the variables, as explained in Appendix C.

2.3.3 Third Term

The third term is obtained in the same manner as the second term. The equations in this
case are much longer and fill pages. The changes of variables as well as the procedure to
obtain the solution are described, but the details are not given. Again, all previous changes
of variables are performed and the functions are expressed in terms of ¢;. Then, a first

change of variables is made to avoid dependence on 71(¢;1) and p1(¢1):

U n4 2

¢3(¢1) - ( i;‘fizi )Zl—") ¢17 (281)
« 1 n
n4 2

i) = j’quz; 1o, (282)
a el n

dn(er) = — 238V ”i’{f_n) (1—¢1). (2.83)

() n(g) "7

This leads to a system of the form

dx

dor A($1) T +azb(r) + c(d1), (2.84)
where
P2(¢1)
z= | (o) |- (2.85)
Va(é1)

This system is composed of three equations that are singular in region II at ¢1 11 = ¢7. To

decouple one of these equations and to have only one of them singular, the following change
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of variables can be used:

w3(¢1) = [4 (1 —n) + nvls(dr), (2.86)
§3(d1) = Y3(é1) — ¢3(e1) (2.87)
oaon) = G fra(0) — (o] + a0 — dn(on)]. (289

The resulting system includes one non-coupled first-order differential equation for o3(¢1).
Although this equation seems too complicated to integrate analytically, a numerical inte-
gration can be performed directly. The two other equations are coupled but only one of
them is singular at ¢1 11 = ¢]. The way to solve the problem is exactly the same as for the

second term.

2.4 Weak Shock Series Expansion

Guderley’s problem does not have any length scale. The shock is supposed to come from
infinity, to travel up to r = 0, and then to bounce back to infinity. It is therefore also
interesting to look for an expansion solution when the shock is still weak and far away from
the origin. This can only be done in the incoming shock case (¢ < —7). In fact, in the
reflected shock case, the full history of the flow is required and no analytic limiting behavior
can be obtained easily. In this section, we will construct an expansion in a similar way to
what was done in Sections 2.2 and 2.3, but instead of expanding the solution around (r, t)
close to (0, 0), we will do it around (r, t) tending to (oo, —o0).

To solve this problem, we write the expansion in the following form:

Rs(t) = CIT

- gk (£) k] , (2.89)

where the coefficients a; have to be found and where i is such that each system of equations
in the series introduces a new coefficient aj, which is in turn chosen such that the corre-
sponding system becomes non-singular. This expression is such that, for large ¢, the shock

velocity becomes ¢p, which corresponds to the propagation speed of an infinitely weak wave.
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Note that additional terms,
—t
S log(3)

k :
= (D"

have to be added if % is a positive integer. This is because, in that case, one of the terms in

9

Equation 2.89 becomes just a constant and vanishes as soon as we calculate Us(t) = d]?jt(t).

To avoid any singularity in the solution, a complete series expansion of Us(t) is required

and these additional terms are needed.

The calculations involved in the determination of ¢ are not complicated and although
these are simpler than in the strong shock case, they are too long to present here. In the
cylindrical case, we can find that ¢ = % and in the spherical case, we get ¢ = 1. The first
terms of these two cases will be examined in Sections 2.4.1 and 2.4.2. Note finally that 7 is

the characteristic time, which has the same value as the one defined in Equation 1.18.

2.4.1 Cylindrical Case

In this case, the shock position expansion can be formed using i = % and we get the following

shock motion expansion:

R(t) = a7 . (2.90)

—t —t —t
— + a1/ — —|—bolog(—) + a9+ H.O.T.
T T T

If we pose that 7y, = a7, we can rewrite this expansion as

—t [—t - —t
Rs(t) = C[Tw |:_— +4/—+bo log<_—> + as + HOT:| , (2.91)
Tw Tw Tw

where

_ bo
by = — 2.92
0 CL%’ ( )

_ as + bo log(a?
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This expression can be inverted to give

R Ry Ry 1
t(Rg) = -7 | — — — by log< ) + <— — Eg) + H.O.T. (2.94)
CITw CITw CITw 2
From the shock position we can get the shock velocity
dRs(t) 1 [Tw + Tw
Us(t) = 14+ =4y/— +by— + H.O.T. 2.95
() = — T\ o+ (2.95)
which can also be expressed as a function of Ry,
Us(Re) = —e1 |1+ =4/9 (24 5) 97 Lo (2.96)
s\ fig C1 B Rs 4 0 Rs [ O 0 B I .

Replacing Us(Rs) in equations 1.30 to 1.32, we can obtain an expansion of the shock jump

conditions:
2 ClTw 7—’)/4-850 (1—|—’)/) CITw :|
1) = 1+ + + H.O.T.|, 2.97
pu(l) = pl[ 1V R 201 ) . (2.97)
2y CITw 3 —1— 8b0 ’)/ CITw
Pr(1) = + H.O.T. 2.98
(1) TV R Rs (2.98)

CTw 1 + 8by CITW
1 +H.O.T.|. 2.99
un(1) = [ 2 [ Lt } (2.99)

Since these conditions are applied at n = 1, we can replace Rg by r in the previous equations,

which leads us to try the following variable forms:

CIT CIT
pu(n,r) = pr |1+ p1u(n) 4/ % + p2.11(n) % +H.O.T.|, (2.100)
Pu(n,r) =P |1+ Pru(n) 4/ CI:W + Py11(n) CI% +H.O.T.|, (2.101)
| cIT CIT
uH(n,r) = CI Ul,H(n) ITW + UQJI(T]) ITW + HOT (2.102)

Replacing these variables in Equations 2.4 to 2.6, we can get a series of systems of equations.
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The first two are

uypi(n) — 2 [nuy u(n) + pru(n)] =0, (2.103)
Pyii(n) + 2 [nP] 11(n) +yuh n(n)] = 0, (2.104)
Pl 1(n) =Py u(n) =0, (2.105)

and
Py (n) / / / /
2\/ﬁ + pou(n) +n [%,H(U) + p1a(n) vy (n) + uu(n) P1,H(77)] =0, (2.106)
Po1(n) + 0Py g1 (n) + 7 [us () + pa(n) wy gy (n) + muau(n) vy (n)] +
3 [t + ] =0, 2107

Pyy(n) — v [(v = 1) prax(m) piu(n) + pypr(m)] = 0. (2.108)

Consider the first system of equations, along with the appropriate shock jump conditions.

The solution to this problem is the following:

pru(n) = = (74+ 1)K(1 3 77) : (2.109)
Pii(n) = w(%d) [2E(1_T") - K(l_T”)] , (2.110)
() = W(j’i 1)K<1;’7> : (2.111)

where the functions K and F are the complete elliptic integrals of the first and the second

kind, respectively. These are defined as

K(z) = /0% \/ 1 — sin(6)%do, (2.112)
B(z) = /0 : \/ﬁd& (2.113)

The system of equations for the second term is much more complicated and has the following
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first integral:

v—1
2

Poni(n) —~ pri(m)? + pan(n)| = 0. (2.114)

The analytical solution will not be searched for, since the expressions are complicated, but
it is relatively easy to find the value of by by expanding these equations. First, we can write

a differential equation for P y1(n):

/ / ( ) -~ /
T uL(n) 41 l:PQ,H(n) +m (ﬁ,u(ﬁ)) ] -7 |:p1;1/17_]77 -3 (P%,II(U)) }
1—n? ‘

PQI,H(n) =

(2.115)

Replacing the first term functions by their solutions and taking the dominant term of the

right-hand side of the resulting equation for 7 close to 1 leads to

I [v(13=3y)  Pu(l)

P, =
2,11(77) T-n 8¢+ 1)2 2

+0(1). (2.116)

Since the variables need to be bounded everywhere, this leading term has to be suppressed.

Replacing P, 11(1) by its value in the shock jump conditions, we have a condition for by:

- 1
by = — 03 (2.117)
16 (v +1)
The resulting shock motion is given by
—t —t 19 + 3y —t
Ry(t) = 17w | — — — ——— log| — as +H.O.T.|. 2.118
s() CITw |:FW+ FW 16(’Y+1) og(_w>—|—a2+ :| ( )

It is impossible to fix the value of @ using expansion equations. In theory, @, is fixed so
that when the shock reaches r = 0, we also have t = 0. In addition, FT‘" has a specific value

so that the shock trajectory fits the expansions. If we want these two values, the whole

problem has to be solved using another numerical method. That will be done in Chapter 3.
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2.4.2 Spherical Case

In the spherical case, i = 1 and Equation 2.89 gives the following shock motion:

—t —t log (= 1
Ry(t) = crr — + bo log(7> + a1+ by g;T ) +ay— + H.O.T.|. (2.119)
T T
This expression can be simplified if we set Ty = byT:
—¢ _ _ 10g<;—vf) 1
Rs(t) =cTw |— +logl — | +a1+ b1 7 +ay— + H.O.T.|, (2.120)
Tw Tw Tw Tw
where
= % +log(bo) , (2.121)
0
b1 log(b
@ = 22701 0el%) z;’g( o), (2.122)
0
b
by = ok (2.123)
0
This expansion can be inverted to
log ( L=
R _ log() |
tHRs) = —Tw | — —lo ( 5 > —a1+ (1-b) % + (@ — a2) — + H.O.T.
T\ = e
(2.124)

The velocity of the shock can be calculated and expressed as a function of the shock radius

R
- Og(q?sw) _ _ _
1+ = +(1_b1) R +(al—a2+bl) - 5 + H.O.T.
an Cﬁsw
(2.125)
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Once again, using this result, the shock jump conditions at 7 = 1 can be expanded to give

4 1 4(1-1b) log(cﬁﬂ

pu(l) = pr ’y—i—lCP:s v+1 e \2
1Tw CI?W
- L HOT.|, (2126)
1) ()
— Ry 1 _ _ _
+1 L T \2 Rt O.T.|,
R (&) (v+1) ()
(2.127)
R R
v 1 }Eb Y + 1 R 2 1 R. 2 .
“ CITw (’Y"’_ ) CITw
(2.128)
This leads to variables of the following form:
1 1Og(CI;W

1
pri(n,r) = p1 |1+ pru(n) — + p211(n) 5 T p311(n) —Q= t H.O.T.| ,

aTw ( r ) (4)
CITw CITw

(2.129)
1 log (c}w) 1
Pu(n,r) =P |1+ Piu(n) —— + Pou(n) ——— + Psu(n) ———= + HO.T. |,
A ( CI;w ) (CI;w )
(2.130)
1 10g<q%v 1
’U,H(’I],T) = (I uLH(n) - —+ U2 H(’n) 5 =+ ’U,37H(77) 3 +HO.T.|. (2.131)

,
CITw ClTw

Substituting these expressions into Equations 2.4 to 2.6, it is relatively easy to extract the

systems of equations relative to the first three terms. First, extracting the equations relative
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to the first term (the term in 1), we get

ur(n) —nuy(n) = piu(n) =0, (2.132)
Pyi(n) + 0P () +~uiu(n) =0, (2.133)
Pl 11(n) =0\ n(n) = 0. (2.134)

Given the boundary conditions, it is easy to find the solution of this system:

4
—_— 2.135
p1,11(1) IR ( )
4y
P, = — 2.136
111(7) S+l ( )
—4n
= —. 2.137
uy 11(n) 1 ( )
The second system corresponds to the terms in lof(—f):
nuy 11 (n) + Py (n) =0, (2.138)
2Py u(n) + 0Py (n) + yugu(n) =0, (2.139)
Py 11(n) —vp1(n) = 0. (2.140)
Solving this system for P 11(n), we find that
C
P = 2.141
211(n) = 7= el ( )

which is singular at n = 1 and cannot satisfy the boundary conditions unless C = 0. The

only way that is possible is to impose the condition that b; = 1. The solution then becomes

p211(n) =0, (2.142)
Py(n) =0, (2.143)

uz11(n) = 0. (2.144)
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Finally, the system corresponding to r%, can be written as

16n
/ /!
p3u(n) +nuzn(n) — ——— =0, 2.145)
3.11(7) 3,11 117 (
4y (14~ +4n —8n3
2P 1(n) +nP31(n) + yus n(n) — ( 3 ) =0, (2.146)
n(y+1)
Pé,H(U) - ’YP&,H(??) =0. (2.147)

This system can be solved for P 11(n), which gives

3y
P u(n) = 47?21(2]:7)2 Zl _1?3;)_ < (2.148)

Once again, this solution is singular at = 1 unless C' = 4+ (v — 1). To satisfy the shock
jump conditions under that condition, we need to have as = a; + 1—:[‘;’ The solution then

becomes

4 1 2 (v +1?)
_ _ , 2.149
p3.11(n) ~+1|T+q 1 ( )
amy [ 1 201492
Pyn(n) = — 20w (2.150)
y+1|14+n v+1

4 [ 1 4(1-2p 2
U = — + log| —— . 2.151
3,11(1) ol s P g(1+?7 ( )

All these last calculations lead to a shock motion of the following form:

—t

Tw

log(=L) @ + 22
7ZW + ;t’y-i-l

Tw Tw

—t
Ri(t) =Ty | — + log( ) +a; + +H.O.T.|. (2.152)
Tw

The values of @; and of ?TW cannot be determined using expansion equations, and their
values can only be found by integrating the complete equations until the shock reaches the
origin. Like in the cylindrical case, @; is such that Rs(0) = 0, and 2 is such that the shock

trajectory matches the expansion.
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2.5 Summary

In this section, we will summarize the results that have been found in this chapter. The

R(t)

problem was redefined in terms of r and n = . The limiting behaviors were examined

and the following shock expansions were obtained:

B " n N " 2(1—n) N " 4(1—n)
RS(t)St. = C[Ts <ai? ) 1+ Gy (Ogi—?s) + a3 (Ogi—?s) + H.O.T.

S

(2.153)
_ [t —t 19 + 3y
s(t = w | = — — —1 _— H.O.T. 2.154
—t —t 10%(? )
Rs()w. sph. = 1w — + log(?—) +a; + _t _t L O ,  (2.155)

for the strong shock expansion and the weak shock expansions in the cylindrical and spher-
ical cases, respectively. The constants n, o', a;, a;, as , and a:}f in the strong shock

equations are found using the method described in Section 2.3. The constants 75 and T

Tw

) T)alu andﬁg

are proportional to 7, which is defined by Equation 1.18. The values of %
cannot be found by just considering the expansions. To find them, a computation needs to
be done using another technique. This will be done in Chapter 3.

The limiting characteristic, that is, the boundary of the flow influencing the incoming
shock (region II), is of particular importance since it leads to singularities in the (r, 7)
plane. This limiting characteristic lies at a finite n (n = n*) for the strong shock case and
at n = 1 in the weak shock expansion case.

The values of all constants (n, o™, a5, a;, as a:}f, n*, %, a1, as, and F7‘") are given in
Appendix E. The functions F', G, and K that were defined in Section 1.2 do not involve

the constant 7 and are invariant for given v and . The expansions of these functions are

given in Appendix D.1.
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Chapter 3

Incoming Shock Complete Solution

In the previous chapter, we investigated the limiting behaviors of the problem and we
Ts

obtained solutions that included unknown constants. These particular constants are ==

in the strong shock expansion, ?TW and @, in the weak shock expansion in the cylindrical

case, and ?TW and a@; in the weak shock expansion in the spherical case. These can only be
determined with a complete calculation of the incoming shock problem. For that purpose,
as well as to obtain the complete incoming solution, a program based on the characteristics
method was written.

The equations used in the computation are shown in Section 3.1 and details about the

program will be explained in Section 3.2. Results will be presented in Chapter 4.

3.1 Characteristic Equations

Since the program has to be able to compute the flow starting at Rs > ¢;7 and ending at
R < 17, computing the solution in real space (r, t) would be very inconvenient. To avoid

that, the following change of variables is performed:

Under this change of variables, the infinite domain becomes a square-bounded domain with

6 and 7n ranging from —1 to 0 and from 0 to 1, respectively (see Figure 3.1). The reason
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— Shock position

—— First characteristic family (particle trajectory): % =u
------- Second characteristic family: % =u-+c

——- Third characteristic family: % =u—c

---- Last characteristic reaching the incoming shock

Figure 3.1: Sketch of the n—6 diagram for the problem in region II. The shock position is

represented by the thick line. The three different kinds of characteristics are shown as well:

&t — u (solid curves), % = u + ¢ (dotted curves), and % = u — ¢ (dashed curves), where u

and c are the local velocity and speed of sound of the flow, respectively. n* is the particular
value of 17 at which we have a singularity in the strong shock series expansion.

for introducing 6 follows logically from Equation 1.6. In fact, solving the problem, we will

naturally find the unknown function § = K (1/, v, ch—f)

In Section 2.2.1, we saw that, close to the reflection point, the shock jump conditions
give a finite density behind the shock, but that the pressure, the velocity and the shock

speed tend to infinity. For a shock very close to the reflection point, we have that

2(n—1)

| —

Pi(1,0) < Rg ™ X ek (3.3)
n-1 1

urr(1,0) o< Rg" < 7 (3.4)
) 1

Us(#) < Rg™ o 7 (3.5)
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To avoid any singular values in the computational domain, the following new variables are

used:

P ,9)_92]3115;71’9), (3.6)

a(n,0) = 9“”(071’9), (3.7)

_ o ﬁ 'YPH(nv 0)

c(n,0) = o\ on(n.0) (3.8)
Us(6) eUSc(IG) (3.9)

Using these last changes of variable, the derivatives in (r, t) can be written in terms of

derivatives in (7, 0):

9 _mo 9090

ot~ oton ot o0
1 OR(1) O 1 L OR(D)] 0

rot op [R ( }

_Us(t) 0 cr
T o RO {1‘ Rs(t)]

e {1&0) C‘U;”’} 0

atd) gp ' atd) atd) | 90
no 0 0
I CAG R N )
W6) on " H0) [1-T0)] 55 (3.10)
9 _mo 0o
or  Oron  Orob
_ R() o
- r2 on
- cItG(G) E
(th))Qan
on
.
~at(d)on’ 34y

The new problem can now be formulated. After a few manipulations, the Euler equations

become

d 0
%v—FAa—nv =b, (3.12)
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where v is the vector of unknown variables,

P(n,0)
v=|ano) |
c(n,9)
and where
Us(0) — ma(n,0)  —ynP(n,0)
n 2 ~

A= —""= —mdnf) Us(0) — nu(n, 0
0[0.(0) - 1] 7R9) i )

P(1,0) |y (v = 1) (0, 6) + 2 |0.(6) ~ 1]

b= m a(n, 0) [ﬁs(e) - 1]

an,0)[(v—1)n(v—1)n,0)+2[U40)—1]]
2

Let the superscript T refer to the transpose of a matrix or a vector.

0 — L= Umnd) g7 () — u(n, 6)

(3.13)

(3.14)

(3.15)

According to

the characteristics method, the eigenvalues (A;) and the associated eigenvectors (e;) of

the matrix AT are of particular importance to find the differential equations along the

characteristics. In fact if we pre-multiply the system of differential equations 3.12 by e},

the following equation can be written:

e?%'v + eiTA%v =elb.

Since

e;FA = (ATGZ')T = ()\iei)T = )\ie;f,

we get

(0 0
_- i — el
e; ( 9+)\Z )v e; b,

which is equivalent to saying that

(3.16)

(3.17)

(3.18)

(3.19)
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on

dn _

— A 2
75 =N (3.20)

The first eigenvalue and its associated eigenvector are

n [04(0) = (. 0)]

A = — — , (3.21)
0 [Us(e) - 1]
_ (=ban,9)
2vP(n,0)
e = 0 . (3.22)
1

Using the results from Equations 3.19 and 3.20, we can get after a few manipulations that

P(n,6)"

= Const, 3.23
6%¢(n, 0)>! (329

h ay 1 |0s(0) ~ (. )
g [00) - 1]

(3.24)

This is equivalent to saying that the entropy has to remain constant on a particle trajectory.
The characteristics corresponding to these equations are represented by solid curves in all
the figures.

The two other eigenvalues and eigenvectors are given by

n [04(0) = n[a(n,0) + ee(n,0)]]
Ap = —

= ; (3.25)
0 [Us(e) - 1}
¢ _dn.9)
YH(n,0)
€ = 1 s (326)
0

with £ = 2 and € = 1 for the second family characteristics, and k¥ = 3 and ¢ = —1 for the

third family characteristics. These two characteristics are represented by the dotted and

the dashed curves in the figures. They correspond to the characteristics ‘fl—f = u + €c in the
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xz—y plane. Note that the third characteristic family (e = —1, dashed lines in the figures) is
the only one that can reach the incoming shock from region II. The last two characteristic

differential equations are

4= L mb) d5 _1z - 2 nv—1)un0)
(n,0) + P .6) Lm0 =7 [ (n,0) + €c(n,0) [,YJr 06) 1 ” (3.27)

h dg _ " (0.(0) = n[(,0) + e, 0)]]
a6~ 0 [06) 1]

(3.28)

To be able to start the computation, the weak shock expansion solution is used for # < 1
(see Section 2.4) and the characteristics coming from the shock can be obtained using the

shock jump conditions:

2AU,(6)° — (y— 1) 6

P(1,0) = . , (3.29)

_ 2 U0

W(1,6) = O (3.30)
\/[27175(9)2 —(v—-1) «92] [(7 — 1) Us(6)* + 262

(1,0) = _ . (3.31)

The implementation of these equations will be explained in more detail in the next

section.

3.2 Implementation of the Method of Characteristics

As discussed in Section 3.1, the program was designed to have several key features. First,
since the velocity and pressure become singular at the point of reflection, the equations
need to be rewritten to avoid these singularities. Furthermore, since we need to compute
the solution starting at a very large shock radius (and so a very large negative time) and
since we need to pursue the calculation until the shock is very close to the reflection point,
new independent variables needed to be introduced.

In addition, as seen in Figure 3.1, all the third family characteristics start at (6, n) =
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O Node calculated by the characteristics method
X Interpolated node

Figure 3.2: Addition of a characteristic. Since the distance between two successive charac-
teristics of the same family becomes too big, a new node is interpolated on a characteristic
of the other family. The regular nodes are marked with circles, and the interpolated node
is shown with a cross. Since the characteristic computations are only first order accurate,
the interpolation was chosen to be second order. In this case, to find the interpolated node,
the nodes P,, P, and P, are used.

(=1, 1). This means that the whole problem is defined in that singular point. Since it is
impossible to start there, the program needs to start at 8 + 1 < 1 so that the weak shock
series expansion can be used as a first guess. Note also that although at finite but small
0 4 1 the third family characteristics that influence the shock are not merged into a point
anymore; they remain within a very narrow range of . Since all the characteristics going
to the shock start from that narrow range, we can choose between two different methods to
find the solution.

In the first method, the distance between the characteristics at the initial 6 is very
small and the characteristics are spreading apart when 6 increases. For example, a calcu-
lation (v = 2, 7 = 1.4) was made using this method. The characteristics were initiated at
6 = —0.995 and spaced by An = 4 x 107, Although this initial spacing was small, the
characteristics reaching the shock around 8 = —0.05 were spaced by Af = 0.005 at the
shock. This means that to have good accuracy close to the reflection point, the character-
istics have to be spaced by just more than the precision of the numbers. This method leads

to calculations that are much longer than necessary.
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L

E@ P,

First characteristic family (particle trajectory): % =u

""""" Second characteristic family: % =u+tc

- Third characteristic family: ‘fi—’; =u-—c

O Known nodes
&  Unknown node
X

Temporary node

Figure 3.3: Calculation of a node inside the domain using characteristics. P, and P» are
two known nodes, P; is a temporary node used during the calculations, and Pj is the new
node.

The second solution is more complicated but decreases the amount of computational
work by increasing the initial spacing of the characteristics. If during the calculation,
the spacing of two successive characteristics of the same family becomes excessive, a new
characteristic is initiated between them by creating a node that is interpolated along a char-
acteristic of the other family. This method was implemented in this work and is explained
graphically in Figure 3.2. To avoid losing accuracy during the process, the interpolation
has to be of an order that is at least as high as the order of the characteristic computations.

In the domain, nodes are evaluated using a first-order method. Figure 3.3 shows a sketch
of the process. First starting from P; and P», the position of Pj is evaluated using the
slopes of the third characteristic at P; and of the second characteristic at P, (Equation 3.28).
Then using the differential equations on these characteristics, we obtain P and @ at the new
node (Equation 3.27). Since it does not involve the unknown value ¢, the trajectory slope
at the new node can be evaluated (Equation 3.24). The position of a temporary node is
then found. This node is the intersection to first-order of the trajectory passing through

the new node P; and the segment joining the two initial nodes P; and P,. By using a



109

/
/
/
/
/
/
/ n

— Shock position

--- Third characteristic family: % =u—c
O  Known node
®  Unknown node

Figure 3.4: Calculation of a node on the shock using characteristics. Pj is a known node
and Pj is the new node.

simple first-order interpolation, the value of the entropy can be estimated at the temporary
node. Since this value remains constant on a particle trajectory (Equation 3.23), we obtain
the value of €. Finally a corrector step is performed on the whole process. Although we
are using this last corrector step, the algorithm remains of first-order accuracy since the
interpolation between P; and P is still linear.

When a third family characteristic reaches the shock, a different process is used (see
Figure 3.4). First, the slope of the third family characteristic at the node P is evaluated
using Equation 3.28. The intersection with the shock, Pj5, can then easily be calculated.
The values of ﬁs, P, 1, and € are found by satisfying the differential equation along the
characteristic (Equation 3.27) as well as the three shock jump conditions (Equations 3.29
to 3.31). Once again, a corrector step is performed on the whole process.

Note that Uy(6) is evaluated at the shock. Since the equations in the (7, 6) plane also
involve ﬁs(ﬁ), these values are interpolated using third-order splines on the shock values.
In addition, to avoid extrapolations of [75(0) far from the range of calculated shock nodes,
the computation progresses one characteristic of the third family at a time (see Figure 3.5).

To start the computation, the weak shock solution is used at a value of 6 that is close

to —1. Written in the (7, ) coordinates, only one unknown constant appears in the initial
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Figure 3.5: Progression of the characteristic calculations. The calculation is progressing
one third family characteristic at a time. Here, two of the three characteristics are known
and the last one is not. Due to the shape of the second family characteristics, only two
unknown nodes are at a further 6 than what has already been computed on the shock, and
so only one Us() value needs to be extrapolated. The other node is on the shock and its
Us(0) value is not extrapolated but calculated using the characteristics method.
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—1 0 , 6 _a
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—— Correct initial condition
Initial condition with a constant value that is too low

fffff Initial condition with a constant value that is too large

Figure 3.6: Bisection method to determine the initial condition constant. If the constant
value is correct, we obtain a curve that tends to (0, 0), this is shown by the full curve.
If the constant value is too low, the curve tends to infinity since Rg tends to 0 before the
time does (dotted curve). If the constant value is too high, it is the opposite and the curve
reaches § = 0, while Uy remains finite (dashed curve).
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conditions (the time shift @, in the cylindrical case and @; in the spherical case), since the
ratio ?TW does not appear anymore. If the constant had the correct value, the problem could
theoretically be integrated up to the reflection point and 6 would tend to 0 at the same time
as E—Is If the guessed value is too low, the integration leads to a shock radius that tends to
0 before time reaches 0. This means that 6 will tend to infinity. On the other hand, if the
value is too big, the time tends to 0 before the shock radius and we get a 6 that tends to 0

for a finite value of (C]—IS A bisection method was used to obtain the correct constant value.

To find the ratios FT‘" and %, the following equation is integrated starting at a Mach

number close to 1,

dRs
=0 3.32
dt 5 (3.32)
or

~ 77 [ cit
1dR,  Uy(0) U(F)
— = = . (3.33)
c dt 0 %

The initial conditions (Rs, t) can be random and the value of Ty is arbitrarily chosen,
since the unknown ratios should be independent of the initial conditions. Once integrated,

Ri(t)
=

the equation gives From there, it is easy to find the functions F' and G used in

*

Equations 1.19 and 1.26, respectively. Then 7 can be obtained by using 7 = ———.
cIF(V,'y,US)

Fitting the strong shock expansion result to the curve, we finally get 75. Once all this is

performed, the ratios FT‘" and % can be evaluated.

Results of the unknown constants (@ in the cylindrical case, @; in the spherical case,
FTW, and %) are shown in Appendix E. It is important to know that the accuracy of these
results is not very high since the integration is only first order and that, for example, the
constant in the initial conditions (@; or @3), does not appear in any dominant terms. But
even though the accuracy is not high, the bisection method has to find the appropriate value
with a high number of significant digits so that the characteristics can be computed up to
a value of # that is close to 0. In other words, this means that although we need to find a
value that is accurate to about 107'° to have a solution up to very strong shocks without
having any singular behavior, this value will highly depend on the integration scheme that

is used in the computation, and therefore, will have a relatively low accuracy if we compare
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it with its exact theoretical value.

3.3 Summary

The program that was described in this chapter allows for the computation of the complete
incoming shock problem using a first-order characteristics method. The initial conditions
are taken from the weak shock expansion. In the coordinates that are used in the program,
these conditions involve only one unknown constant (as in the cylindrical case and @; in
the spherical case). This constant represents a time shift that has to be found by iterations
such that Rs(0) = 0.

Once the characteristics problem is solved, the two unknown constant ratios (% and

?TW) are found by first integrating the equation

rr [ ct
1dR, U(ﬁ)
CI dt - %t ’

S

(3.34)

where (75 (%:) was found during the characteristics computations. Since the constant ratios
are independent of the initial condition, the initial conditions for this integration can be
arbitrarily chosen. Once integrated, the expansion solutions can be matched to the solution
and the desired ratios can be obtained.

All the constant values are presented in Appendix E and some further results will be

presented in Chapter 4.
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Chapter 4

Results

In this chapter, the series expansion calculations will be compared to the characteristic
results. In addition, some comparisons will include computational fluid dynamic calcula-
tions of the Euler equations. These were done by Christopher A. Mouton in the AMRITA
environment [26].

The strong shock series expansion coefficients were calculated using 2,000 points in
region II, 2,000 points in region I1I, and 1,000 points in region IV. The weak shock expansions
where obtained analytically using the results shown in Appendix D.

We will compare some aspects of the results obtained by each method in the following
sections. First, actual characteristics will be shown in the (7, #) plane (Section 4.1). Then,
the Euler solver will be briefly described (Section 4.2). The density, the pressure, and the
velocity distributions will be compared between Euler calculations and the series expansions
(Section 4.3). Finally, the non-dimensional functions F', G, and K that were defined in

Section 1.2 will be compared between the different methods (Section 4.4).

4.1 Characteristic Results

Numerical calculations were performed using the characteristics method described in Chap-
ter 3. The calculations were started at § = —0.995 and went to at least —0.1. In this section,
two characteristic results will be presented to show the basic shapes of the second and third
characteristic family. Both of these calculations were made with a specific heat ratio, ~,

of 1.4. The first calculation has a cylindrical symmetry (Figure 4.1), and the second has
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Figure 4.1: Second and third characteristic families in the cylindrical shock case for v = 1.4.
Dotted and dashed curves represent characteristics of the second and the third families,
respectively. The cross represents the limit of the last characteristic reaching the incoming
shock. This limit corresponds to the value of 1 at the singular point in region II in the
strong shock series expansion.

a spherical symmetry (Figure 4.2). On each of the figures, some characteristics are shown.
Characteristics of the second family are shown with dotted curves and characteristics of the
third family are represented with dashed curves. The particular characteristic that sepa-
rates the portion of the flow in region II that influences the shock from the rest is clearly
distinguishable. The limit of this particular characteristic for 6 tending to 0 is given in the
strong shock expansion calculation since it corresponds to the value of 1 at the singularity
(n*). This limit is represented by a cross on the figures. Due to the singular behavior of
the characteristics close to n = 0 and to 8 = 0, the characteristics could not be computed

in the whole domain and were cropped, as seen in the figures.

The figures presented here were done without adding new characteristics inside the
domain and this is why the computation had to be stopped at a 0 of approximately —0.1.
For the results presented in Section 4.4, the characteristic addition feature described in

Section 3.2 was used and the computations could go much further. The initial § was fixed
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Figure 4.2: Second and third characteristic families in the spherical shock case for v = 1.4.
Dotted and dashed curves represent characteristics of the second and the third families,
respectively. The cross represents the limit of the last characteristic reaching the incoming
shock. This limit corresponds to the value of 1 at the singular point in region II in the
strong shock series expansion.
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Shock Contact surface Expansion fan

X

Figure 4.3: x—t diagram of a standard shock tube. The initial conditions of the Euler
calculations are equivalent to that of a shock tube that does not produce a contact surface
(meaning that the flow properties in 2 are the same as the flow properties in 3).

at —0.995 for all the cases. In the cylindrical case, the characteristics program reached a
0 of —0.0338 and of —0.0354 in the v = 1.4 and v = % cases, respectively. These values
represent shock radius ratios between the final and the initial points of about 2 x 10712
and 1.5 x 107, or shock Mach numbers ranging from 1.00257 to 24.6 and from 1.00257
to 22.9. In the spherical case, the computation went up to 8 = —0.0426 and 8 = —0.0126
in the y = 1.4 and v = % cases, respectively, which corresponds to shock radius ratios of
8.6 x 1077 and 1.3 x 10~7, and to shock Mach numbers ranging from 1.000772 to 17.54 and
from 1.000763 to 57.64.

4.2 Euler Computations

Some computational results were produced using an Euler solver. The problem was started

in the same way as a shock tube, the diaphragm being cylindrical or spherical. The initial

pressure and density jumps were chosen such that the shock starts at a particular desired

Mach number and that the gas properties are continuous across the contact surface during

the startup process. In the standard z—t diagram of a shock tube shown in Figure 4.3, this

means that po = p3. This condition and the initial Mach number of the shock give two
Py

equations that can be solved for B and %. Although the problem should be started with a

non-uniform flow behind the shock, like what was done to start the characteristic program
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in Chapter 3, these simplified initial conditions lead to very good results. In fact, a well-
known feature of the imploding shock problem is that the details of the initial conditions
have little influence on the results. This feature was discovered very early by Payne, in
1957 [27]. He obtained numerical results that agreed very well with Guderley, even though
his initial conditions were completely different from what they should be if the shock was
supposed to have come from infinity.

The problem was computed as a one-dimensional problem using a Roe solver. The
10,000 cells were uniformly distributed. Adaptive mesh refinement with four levels was
used, each of these splitting a cell into five smaller ones. To obtain a lot of discretized data

close to the origin, the CFL number ( was decreased continuously from 0.7 to 0.1

while the shock approached the origin and was increased continuously to its original value
when the reflected shock moved away from the origin. The shock is initiated at the 5,000th
coarse grid cell.

In the spherical symmetry case, the shock strengthens too quickly close to the origin,
and the very high gradients lead eventually to an early abortion of the computation. For
that reason, a small solid sphere of size 1 was placed in the center of the computational

domain. This sphere does not affect the results in general, but its influence can be high in

the reflected shock case close to the origin.

4.3 p, P, and u Distribution

Comparisons of the variable distributions were made between the strong shock expansion
and the Euler calculations. These comparisons can easily be made using the formulae from
Appendix D.2. The variables p, P, u, and ¢ are normalized by pr, p1 ‘Us(r)_f, ‘Us(r)_|,
and !ts(r)ﬂ, respectively. In these expressions, Uy(r)™ represents the speed of the incoming
shock when it crosses the radius r, and ¢5(r)” is the time at which that incoming shock
passes r.

Comparisons are made for two specific heat ratios, these are v = 1.4 and v = g In both
cylindrical cases, the shock was initiated at a Mach number of 10 and the variables were

analyzed at a radius 20 times smaller than the initial radius. This corresponds to incoming
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shock Mach numbers of 18.1 and of 19.8 in the v = 1.4 case (Figure 4.4) and in the v = %
case (Figure 4.5), respectively. In the spherical case, the initial shock Mach number was 5
in the v = 1.4 case and 10 in the v = % case, and the variables were taken at a radius 10
times smaller than the initial radius. This leads to incoming shock Mach numbers of 12.4
and of 28.7 in the v = 1.4 case (Figure 4.6) and in the v = 2 case (Figure 4.7), respectively.

Figures 4.4 to 4.7 show the variation over time of the normalized density, pressure
and velocity. Guderley’s solution is accurate for very high Mach numbers, but at the
current Mach numbers, it shows some discrepancies from the Euler results. Most of these
discrepancies appear in the density and the pressure distributions, and are highly reduced
when adding two more terms in the expansion. As explained previously, the shock series
expansions are accurate for a low shock radius (Rs < ¢;7). But this also means that the
variables at a given small radius will only be valid for small times (¢t < 7). In fact, at later
times, the shock is too far from the origin to be accurately modeled and so its influence
is badly represented. This can be seen in Figure 4.5 for the density and the pressure
distributions since the series expansions start to diverge from the exact solutions as time
progresses. Note also that it may seem that Guderley’s solution is better in some cases,
but this is purely coincidencial. The addition of the two next terms in the series always
improve on Guderley’s solution for sufficiently large Mach numbers and this is especially

true for regions II and III and right downstream of the reflected shock in region IV.

4.4 'The Non-Dimensional Functions F', G, and K

The functions F, G, and K were introduced in Section 1.2. Given the symmetry of the
problem, v, and specific heat ratio, v, these functions are fully described. They are partic-
ularly useful since they are unique for all possible shock trajectories. The weak and strong
series expansions of these functions will be compared to the characteristics results and the
Euler solutions. The results will be presented for both the axisymmetric and the spherical
shock cases and for each of these cases, two different values of v will be considered (1.4 and
%) The Euler computation were made using a grid of 10,000 cells. The shock was initially

started at the 5,000th cell. The initial shock Mach number was set to 1.2 and 1.15 in the
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Figure 4.4: Normalized density, pressure, and velocity distributions versus normalized time
for a cylindrical imploding shock (v = 1.4). The calculations were started with a shock
Mach number of 10 and the measurements were taken at a radius 20 times smaller than the
initial radius (where the incoming shock Mach number is 18.1).
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axisymmetric and spherical cases, respectively.
The function G is defined as

&_G<V7772) ) (41)
T

CIT

where 7 depends on the considered shock trajectory. This function can be used to construct
the Rs—t diagram. Figures 4.8, 4.11, 4.14, and 4.17 compare the different solutions. Note
that in the reflected shock case, we do not have a weak shock series expansion and the

characteristics program only computes the incoming shock solution.

Bs _ F(V,% %) , (4.2)
C1

C1T

The function F' is given by

This function links the shock position to its speed and is represented in Figures 4.9, 4.12,
4.15, and 4.18.

Finally, the function K is defined as

cit Us
f=— = = 4.3
R (V777 CI > ) ( )

and is the only function that does not involve the constant 7 and is presented in Fig-
ures 4.10, 4.13, 4.16, and 4.19.

In all of the figures, the weak shock series expansion shows very good agreement with the
characteristics computation for large radii (or for Mach numbers close to 1). The Guderley
solution is clearly very good for very strong shocks. The addition of a second and then a
third term to the Guderley solution clearly has a positive effect and even though it may not
look like it on every single plot, the three term series expansion is always more accurate than
the two term series expansion provided that the radius is sufficiently small (or equivalently,
that the Mach number is sufficiently large).

Several discrepancies can be identified in the Euler computations. First, due to simplified
initial conditions, the Euler curve is sometimes off from the characteristics computation
results. In the reflected case, far from the reflection, the solution is also probably off from

the exact solution because of the use of a non-infinite domain. Finally, in the spherical
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Figure 4.8: Function g—j = G(V, v, %) in the axisymmetric case for v = 1.4. Note that in the

incoming shock case, the Euler computation is also plotted but it is exactly superimposed
onto the characteristics curve.
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Figure 4.10: Function § = K (1/, v, g—;) in the axisymmetric case for v = 1.4. Note that the

Euler solver is slightly off in the region close to the origin where the gradients become very
high and where the discretization errors become important.
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symmetry case, the discrepancies occurring close to the reflection point are due to the solid
sphere in the center. That sphere was introduced to avoid the singularities in the variables

and in their derivatives.
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Conclusions and Future Work

In this work, the imploding-reflecting shock problem was investigated with cylindrical and
spherical symmetry. The shock was supposed to come from infinity, to travel through an
initially uniform perfect gas at rest, to reflect at the origin, and to travel back towards
infinity. Guderley’s strong shock solution was expanded using a three term power series to
represent the behavior of the shock close to the reflection point. Another series expansion
was constructed to represent the behavior of the incoming shock when it is still very far
from the origin. Finally, the characteristics method was used to solve the problem where
these expansion series are not correct. To be able to go from very large to very small radii,

an appropriate change of variables was performed.

Several comparisons between the series expansions, the characteristic results, and some
Euler computations were presented. The results show that the weak shock expansion series
is very accurate for large radii. In addition, each additional term of the strong shock series

expansion seems to more accurately represent the actual solution around the origin.

The next step to complete this work would be to use the characteristics method to
compute the reflected shock motion. This problem is more complicated since both regions
around the shock have to be calculated (regions III and IV). In addition, the initial con-
ditions are not based on the strong shock series expansion since this series is only valid
for small r. If the same type of change of variables as the one used in the incoming char-
acteristics program is used for the reflecting part, the following procedure could be used
to obtain an initial condition. First, the incoming shock case should be evaluated up to
a moment before the reflection time. Then, the obtained solution at that time has to be
transformed back into r—t variables and usual characteristics have to be used to find the

evolution of the flow in region II, to cross the boundary between regions II and III, and to
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continue the calculation up to a finite positive, but small time. Then, the obtained results
are transformed back into the coordinates used in the characteristics program to form the
initial conditions in region III where the radius is sufficiently large that the strong shock

series expansion is not accurate anymore.
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Appendix A

Fourth-Order Integration Scheme

Assume a differential equation of the form

— Fla,y(x)). (A1)

Starting at (zg, yo) = (x*, y*), the solution is integrated with a fourth-order accuracy
Adam-Bashforth scheme. This scheme was chosen because it doesn’t need any predictor-

corrector steps for most of the discretized points:

Az
Yk = Yk-1 + 5 [ — 9F (Tg—4, Yh—a) + 3TF(vp—3, yp—3) —

5OF (_2, Yn—2) + 55F (Tj_1, Yr_1) ] . (A2)
with

xp = 2° + kA, (A.3)

Yk = y(a* + kAz), (A4)

and where Ax is the increment step. This scheme can only be used for k > 4. To be able to

start the integration, some predictor-corrector steps have to be performed on the first few
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points to obtain fourth order accurate values. These predictor-corrector steps are

*

Yo=Y,
kllll = Yo + A:C F($07?/0)7

A
K = yo + [F(z0,y0) + F(21,k")] ,

2

ky =K + % [—F(z0,y0) + 3F (1, k") ],

ky = yo + % [5F (20, y0) + 8F (x1, k) — Fa(z1, k)],

k= ki + T [ Fan,a0) + 8F o1, ) + 502, )],

Ky = kb + % [5F(20,y0) — 16F (21, k7) + 23F (22, k3)] ,

Y1 =yo + % [9F (0, y0) + 19F (21, k) — 5F (22, K3) + F (3, k3)] ,

b= 1+ S [ F(eo,u0) + 13F (21, kL) + 13F (22, k) — F (5],
Az

ys = Yo+ — [F(x0,90) — 5F (21, ;) 4+ 19F (29, k) + 9F (23, k3)] .
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Appendix B

Second Term System of Equations

After all the changes of variables that were made in Section 2.3.2, the equations can be

written as
d 1-— !
Ud2¢1 { . ¢1 1§ 2( - n) 7?77((¢11))] [o2(¢n) +¢1a2] —ag, (B.1)
d&2(¢1) n'(¢1) Pl ¢1)] 1 1) ~A(¢1)_s
doy [ n ¢1) p1(é1) &(¢ n (1 —¢1) n(¢1) w2(?1) Pl(¢1)a2’ (B2)
dwa (1) o ) +nv] Hl =31 — né ¢1)} 77)7((;51)) +3} —nyvmi(¢1) %f (61) +
dr ymi(d1) — 1+ ¢ 2
[% —4+v+(24+7) ¢+ [52 —vm(e)] 1;4511] ﬂ(gf)) —v-1
ymi(d1) — 1+ ¢1 w2(91) =
2y (1= n) m(¢1) A2Y
ymi(d1) — 1+ ¢1 72(¢1)+
2+ (1) 2&21) —(L+v) T&(gll)) L
2(1 —n)+nv] (6 — 11 61 a, (B.3)
with
_ Pi(¢1)
s1(f1) = pr(¢1)”’ (B4

and where p1(¢1) and s1(¢1) were introduced to simplify the equations. Note that we can

also write the following equations if needed:

V)

1) 2(1-n) &1 7

1(¢1) (¢1)
6D n 1-gi ()’ (B5)
piley) 1 NAC)
pi(¢1)  1—¢1 [1 # 77(¢1)} ' (B6)
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Written in this form, it is very easy to find a first integral for Equation B.1:

1 - ¢1M _ rat = Cpl(éf)l)%l n(¢1)*

_ Ei .
si(¢1)n(¢1) = (1) $185 (B.7)

oa(¢1) =D
where C' and D are constants. In addition to the differential equations, we can write
conditions on the boundaries of the regions. First, in region II, we get the following shock

jump conditions at ¢1 = ¢] 1 = %,

3y—1 __ v-—1 nv 2a5
s 9 _ B.8
721 ( 1 +a27+1)(+1—n> Tr1 (B.8)
2a,
S 2
__ 2% B.9
& o (B.9)
2v(2(1 —
Wy = — 72 n)+ny), (B.10)
v+1

where the superscript s means that the value is taken at the shock location. Once again,
the variables p, P, and w have to be continuous when going from region II to region III (at
n = 0), which means that pa 11, P> 11, and ug 1 are also continuous. Between regions III and

IV, we have the following shock jump conditions:

1+ 2y
o5 1v = 05 1™ 11 - . Tz e -
o (v —1) =2 (1 - ¢1,1H) L

w5 (v+1) _ v
285 m — o T2 (a; + 55,111) (2 + ln—_n)
7T?,IH (y—1)-2 (1 - ¢§,1H>

2
-1 (1 — i — 777?,111) 2aT 1— @5 — 7
(’Y ) B ( ay > ¢1,IH VYT II 7 (B.11)

y+1 1 =91 m y+1 1 =1 m

X

’Yfg,m (1 - ¢§,IH + 7T?,111) - (25; + 53,111) (1 - ¢§,IH - 7”?,111)

(v+1) (1 - qﬁ,m)
) [55,111 — o5+ (2 + %) (a3 + fg,m)} +

&rv = : (B.12)

4y (1 —mn) 7T?,HI
(v+1) (1 — P m

ws e
2,111 <’y 1 272 1,111 ) ’ (B.13)

y+1 I —¢im

S _
Warv =
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where ¢ j; and qbﬁ’w refer to the values of ¢; in regions III and IV, respectively, at the
reflected shock location. Finally, since there should be no velocity at » = 0, we impose the
condition that £ 1v and wo 1v remain non-singular. The limiting behaviors of these functions

as well as the exact formulation of this last condition will be given in Appendix C.
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Appendix C

Limiting Behaviors of Strong
Shock Expansion Variables

It is useful to examine the limiting behaviors of the functions we are integrating in the
expansion problem. In fact, if a function tends to infinity or has an infinite slope at one
of its boundaries, an adapted equation needs to be used so that the integration remains

accurate.

C.1 First Term Limits

In the case of the first term of the expansions, the important limiting behaviors are

qﬁlliTO 1,11 X gb%, (C.1)
¢111T0 log(nm) < ¢7, (C.2)
¢lli£10 T X ¢, (C.3)
d)lligo log(m) o< (—¢1)" (C.4)
lim 7y 1v o %, (C.5)
¢1*2(iT}n) P11 — Twn
_ nwy—2(1-m)
¢ﬁ1izf(1}7n) log(nrv) o [@bl _2d-n) (i;yn)} s ; (C.6)

nvy
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[ 2(1 — )| e eEB I
. —n nnvy+(v— —n
lim log(Pyv) o |¢pg — ———— , (C.7)

nyy

~ _ nvy—2(1—n)
. 2(1 — n)] T

lim  log(u1v) oc |1 — 20 ’ (C-8)
4y 20=n I nvy

nvy

- v(1=n)
2 (1 — n) nvy—2(1—n)+(1—n)

lim log(lev) XX ¢1 —
¢1_)2(17n) L

nvy

nyy

For these limits, depending on the exponent, an appropriate equation might be needed. For
example, if around ¢, = C, f(¢1) behaves like (¢ — C), a particular equation is needed if

1 < 1 to avoid derivatives that tend to infinity. In that case, we pose

f(or) = F(#1) (61 — C)°, (C.10)

and we solve an adapted differential equation to find f(¢;):

df(¢1) 1 df(g) i =
do1 o (¢ — C)z‘ dén b1 — Cf(¢1) (C.11)

C.2 Second Term Limits

As ¢4 tends to 0 (or for ¢ close to 0), the functions o2 (¢1), wa(p1) and £2(¢1) are proportional
to gb%"”. The limits in region IV for 5 tending to infinity are more complicated and have

to be investigated very carefully. First, consider the first integral

pr(g) ! "7((151)2' (C.12)

oov(91) = —d1ay + Corv .

The limiting behavior of this integral is made up of two separate parts; the first can be

expressed as a regular series, and the second by another series times a term that possesses
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an infinite slope:

o21v(91) = 031y (61) + 03 v (61)

—+ 1 —+ 1 1 % - 1\*
= |—ay ¢1 — a3 (¢1 - ¢1>} + <¢1 - ¢1> ZAk: (¢1 - ¢1> )
k=0
(C.13)
where gbll = 2%—;?), which corresponds to the limit for 5 tending to infinity, and where
a — _mtal =t _ ol C.14
o5y (1) ay o1 —ay (91— P (C.14)
b N T 1\
oarv (1) = (¢1 - ¢1> > A <¢1 - ¢1> : (C.15)
k=0

In the following paragraphs, f® and fP refer to the first and the second parts of f. Equa-
tion C.13 leads us to expect a similar form for the other two variables (§21v and warv).
To be able to integrate accurately these two variables using our integration scheme, we
absolutely need to split the equations and solve each part individually since one of them

has an infinite slope.

Consider the first part for now. This part is found using Equations B.2 and B.3, where
02(¢1) is replaced by its second part (—¢1ay ). In this case, the functions that are integrated
are only the second parts of £ 1v and wo 1v. When the resulting equations are taken at the

limit when ¢; tends to ¢}, we get

(6 (L=m)v [y [ (60) =M€ (6n)] 285 (1 —n)]

+H.O.T., (C.16)

dgr (61— )7 (v —2) (L= n) +ny]
des (o) v [ [ehn(@n) — v (60)] - 205 (1= )]
doq o 9 (¢1 _ ¢11) (v —2)(1—n)+nv] + H.O.T.. (C.17)

This gives a leading order term that tends to infinity. However, according to our boundary

conditions, the variables have to remain bounded everywhere. The only way that this is
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possible is if we have

2a; (1—n)
1 1

wh 1y <¢1) =nvéiy (¢1) + Qf (C.18)
This is a condition that always has to be satisfied, and it is imposed right away when
integrating in region IV. Now, we can investigate what happens with the second part of the

variables. This part can be written as

(A—n)yv

Fo(00) = (61— 01) 7T (o), (C.19)

and the equations for ﬁ can be written from Equations B.2 and B.3 by replacing E; by 0
since it does not influence this part, and by taking only the first part of o2 1v. Once again,

looking at what happens close to r = 0 we obtain the following equations:

dPory(¢) —(—m)v [2 (1=n)+(y— D wPov(d1) + an_bQ,Iv(¢1)]

Ao (61— o)) (v —2) (1 — n) + ] FHOL
(C.20)
A&y ry(¢1) W WW(%) 20— ) 4wl v(9) LH.OT (C.21)

dor N 2 (gbl — gbll) (v —=2) (1 —n)+ nyv|

Once again, since we do not want any singular behaviors, this leads to the following condi-

tions:

— —2(1—=n)[2(1 —n) + nv]
WbQ’IV <¢11) 9 (1-—n)(y=1)+nyw ’ (C.22)
D, <¢11) 1= ;)2((71—_?))—# e (C.23)

We now have a method to integrate the functions in region IV. First, given a value for
oa1v at the shock, find the two parts of the first integral (Equation C.13). Given the value
of &1y (qbll), use Equation C.18 to find the initial condition for wjy. Integrate the first
parts of s 1v and wa v up to the shock. Then, integrate the second parts using the initial

conditions given in Equations C.22 and C.23. Finally, reconstruct the whole solution by
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adding the two parts. Note that L’Hopital’s theorem is used to start the integration of the
differential equations for each of the parts. Due to their length, these resulting limits are

not presented.

C.3 Third Term Limits

4n=4 in the region close to

The functions o3(¢1), wz(¢1), and E3(¢1) are proportional to ¢;
¢1 = 0 (t = 0). The difficulties are once again in region IV, where this time the solutions

have to be divided into three parts. In fact, each function can be written as

f=r+rr+
iAk (61 -0) "+
<¢1 ¢11> S ZBk <¢1 ¢1)

(I—mn)yv

(61-a1) ™™ "“"”"ch (616" (C.24)

where f2, f°, and f¢ refer to the first, the second, and the third parts of f. The equations
are split such that the different parts are solved separately, as for the second term limit (see
Section C.2). This time, the equations are much longer, but the principle is the same. For
the first part equations, we keep all the first parts coming from the second term, as well as
the terms in @4 and the first part of the integral of o3(¢;). Writing this first system and
taking the limit for ¢1 tending to ¢!, we get a condition relating v (gbll) and w§ v (gbll)
The second part is formed by removing the E; terms, taking the second part of o3(¢1) and
the adequate corresponding functions from the second term. The limit of this new system
leads to two initial conditions. The last part is also formed by removing the a3 terms,
but taking the third part from o3(¢1) and adequate functions from the second term. Once
again, the limit gives two initial conditions for the two unknown functions. Overall, only

one value can be chosen and the other initial conditions are fixed by this choice.
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To illustrate how the second term affects the different parts, suppose that we have

df3v(o1)

TR = A faav (o) + Blon @ +
1

C(#1) (@) + D(¢1) @ farv (1) + E(r) [farv(d1)]?. (C.25)

According to the notation introduced earlier, we have

farv(e1) = forv(e1) + fglv(¢1) ) (C.26)
f31v(91) = fiv (1) + f?]ilv(¢1) + fsv(d1)- (C.27)

Once the differential equation is split into the three different parts, we get

d a
%@1) = A(¢1) fiv(e1) + B(oy) ag +
1
Cor) @) + D(6) T forv(61) + E(o1) [fov(61)]7, (C.28)
d b
IO 4(60) S () + D61 TE Sy (60) + 2660) iy (00) S (6, (€20
d C
7f32;§¢1) = A1) fsv (1) + E(¢1) [f;Iv(@bl)} g (C.30)

Note that once again, to avoid infinite slopes, the equations for the last two parts are

transformed to remove any singular derivatives (see Equation C.11).
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Appendix D

Series Expansion Expressions

To be able to compare the different results, it is useful to express each expansion expression
in terms of different variables. All the results presented here can be obtained easily by using
the equations presented in previous chapters. First, the functions F, G, and K defined in
Section 1.2 will be presented for each of the expansions (Section D.1). Then, the density,
the pressure, and the velocity of the flow in the strong shock expansion results, as well as
the time, will be normalized to obtain expressions that do not become singular for small r

(Section D.2).

D.1 Functions F, G, and K

The function F' defines the shock position in terms of the normalized velocity of the shock.

This function can be easily found by using Equations 1.19 and 1.18:

Ro— R F(v,7,Us)

—_N\ CITF(V777US) . (Dl)
F(V,'y, US>

Using this last expression, we find that F' takes the following strong and weak expansion

forms,

Ts n 1-n
Fg. = — —
0 =2 ()

n
— +HOT.|, (D2)
Us
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Tw 1 15—~ — }
F =Iv + 1+0,) +HO.T.|, D.3
T 14T [ i) ) (D5)
F w1l iy 1 04T+ 0+ T+ HOT (D.4)
W.,Sph T1+US 1+’y S S . . . 3 .

where, in the strong shock case, the following normalized coefficients are used:

. aQin’y (3—2n)
2 (ad)? 7
n2~? [2a§[n (5—4n) — (a%t)2 (1—=n)(7- 4n)]
2 (aF)! '

The function G expresses the shock radius in terms of the time (R = c;i7G(v,7, £)). In

t.

the following expansions, £ = *

s at T ’
(D.7)
[ log( —tZ
G b _ H.O.T.|, D.8
W., cyl. + = 60+ -IZ + as iz + (D.8)
L Tw
og(-T2) g log(-1Z) @+
— W 1 Tw 1
Gw. sph = 1 |1+ ——F+ ——+ ———F + ——F +HO.T (D.9)
Tw Tw (_t?L) <_t?L

Finally, the function K relates the normalized speed to the non-dimensional variable 6

0= K(V,’)/,US)):

n 2 (1—n)n . 2(1—n)n? [Qa?jfn—i- (a§)2(4—3n)}
; (a4T,)° (a*T)"

+H.O.T.|, (D.10)
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Kw,er=-1-2(1+0U;) -

_4 (1—a) — % [1+log(—2(1+ US))]} (1+0,)° +HO.T., (D.11)
wa sph. = -1+ [10g(— (1 +US)) - 51] (1 +US) +
1- % log(— (1+T)) — 61]] (1+0,)* + HO.T. (D.12)

D.2 Normalized Forms of p, P, u, and t

Only the strong shock expansion results are considered in this section. First, since the
density is not singular when r tends to 0, the density can simply be normalized by p;. The
pressure and the velocity, however, become singular for r tending to 0. For that reason,
> and

P
pi|Us(r) ™ |
Note that this means that the variables at (r, t) are normalized using the speed of

following Guderley’s normalization [19], we use the non-dimensional variables

u
CZONA
the incoming shock when it passes through the radius r, and not the speed of the shock at

the same time t. We get the following expressions:

2(1—n) 4(1—n)
p r " " !
L _ 1+ — + — +HOT.|, (D13
L — (o) |1+ ) o i) () (D13)
P P oq- 2(1—n)
) 1+<P2(77)—%>(r—> +
p1 |Us(r)~| (@®)"y ney /) \CTs
N2 _ 4(1—n)
2y 3(ay)" —2a r n
Ps(n) — =% P 2 3 H.O.T.|, (D.14
(3(77) 2 p)+ 2 )(_) + (D)
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with

Gy =ay;ny(3—2n), (D.16)

2
a; =n’y? [a§n(5—4n) - @(1—71) (7T—4n)| . (D.17)

Finally, if we want to plot the results in terms of time, the time can be normalized by
the time at which the incoming shock passes though the radius r. We obtain a normalized

time of the form

. _ 4+ 20-n) 2(1—n)
— —atye 14 2702 (T_ +
‘ts(r) | n CITs

(1=n) 4(d=n)

2a;n —3 (a;)2 (I1—n)— 2a§ta2_n2 g [(a%t)Q (5—3n) — 2a§[n] n =
2n? %

4(1—n)
(C) FHOT.|, (D.18)
CITs

with aéﬁ and aét being a; and a3 in the incoming shock case, and a; and a; in the reflected
shock case. From this expression, it is easy to find the time at which the shock crosses the

radius 7 since it corresponds to n = 1:

— + 2(d=n)
ts(r) —at |1y 2 "% ( r > S
|ts(r) ™| n CITs
-+ N -+ 4-n)
as —as 31—n , _ + ay \ ay — a5 r n
- — | = —= H.O.T. D.19
[ n (2 n (a2 +a2) + n ) n } (Cﬁs) + » )

which gives, of course, —1 for the incoming shock case. It is important to see that there is
a direct relationship between the incoming shock Mach number and the ratio CIL?S, since we

have

n—1 2(1—n) 4(1—n)

—n(—) " (L) " + 32 (=) " +HOT.|. (D20)
CITs 7”2 CITs 727714 CITs

This means that if we measure the flow property evolution at a particular radius, r, we can

Us

1
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find the appropriate value of CIL?S that has to be used in the strong shock expansions, simply

by measuring the incoming shock Mach number when it crosses r.
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Appendix E

Expansion Results

Some of the expansion results are presented here. The constants n, a™, a5, a;, as a?{, and
n* are presented with an estimated number of significant digits. The strong shock series
expansion calculations were made using 2,000, 2,000, and 1,000 points in regions II, III,
and IV, respectively. The same calculations were then made using twice as many points. The
discrepancy between the two gives an estimation of the error and the number of significant

digits in each of the values.

The characteristic program described in Section 3.2 was used to obtain the values of ?TW,
s, and @y (axisymmetric case) or @ (spherical case). As explained earlier, the accuracy
of these constants is not very high. This is the reason why only 4 significant digits are
displayed.

Note that the coefficients a; and a; become infinite in the spherical case for a -y
around 1.6. Although it was not verified, it is possible that in that particular case, the

shock displacement can be rewritten as

(L 4(1%)10 ' )inor (E.1)
a3 o, g o, 0T .

The log expression does not really change the order of the third term since, like what was

done in the weak series expansion case (Section 2.4), a log expression can be considered as

being of 0th order.
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