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Abstract

Finite element solvers are critical in computer graphics, engineering, medical and biological application ar-
eas. For large problems, the use of adaptive refinement methods can tame otherwise intractable computational
costs. Current formulations of adaptive finite element mesh refinement seem straightforward, but their imple-
mentations prove to be a formidable task. We offer an alternative point of departure which yields equivalent
adapted approximation spaces wherever the traditional mesh refinement is applicable, but proves to be signif-
icantly simpler to implement. At the same time it is much more powerful in that it is general (no special tricks
are required for different types of finite elements), and applicable to novel discretizations where traditional
mesh refinement concepts are not of much help, for instance on subdivision surfaces.

For classical finite-elements, adaptive refinement is typically carried out by splitting mesh elements in
isolation. While so-called mesh refinement is well-understood, it is considered cumbersome to implement
for unstructured three-dimensional meshes, among other settings, in particular because mesh compatibility
must be explicitly maintained. Furthermore, element-splitting does not apply to problems that benefit from
higher-order B-spline discretizations and their more general counterparts, so-called subdivision elements. We
introduce a simple, general method for adaptive refinement which applies uniformly in all these settings and
others. The basic principle of our approach is to refine basis functions, not elements. Our me#tocity
compatible unlike mesh refinement, basis refinement never creates incompatible meshes. Our contributions
are (a) a minimal mathematical framewaork, with (b) associated algorithms for basis refinement; furthermore,
we (c) describe the mapping of popular methods (finite-elements, wavelets, splines and subdivision) onto this
framework, and (d) demonstrate working implementations of basis refinement with applications in graphics,
engineering, and medicine.

Our approach is based on compactly supported refinable functions. We refine by augemnting the basis
with narrowly-supported functions, not by splitting mesh elements in isolation. This removes a number
of implementation headaches associated with element-splitting and is a general technique independent of
domain dimension, element type (e.g., triangle, quad, tetrahedron, hexahedron), and basis function order
(piecewise linear, quadratic, cubic, etc..). The (un-)refinement algorithms are simple and require little in
terms of data structure support. Many popular disretizations, including classical finite-elements, wavelets
and multi-wavelets, splines and subdivision schemes may be viewed as refinable function spaces, thus they

are encompassed by our approach.



vii

Our first contribution is the specification of a minimal mathematical framework, at its heart a sequence
of nested approximation spaces. By construction, the bases for these spaces consist of refinable functions.
From an approximation theory point of view this is a rather trivial statement; however it has a number of
very important and highly practical consequences. Our adaptive solver frameseuikes onlythat the
basis functions used be refinable. It makesassumptionas to (a) the dimension of the domain; (b) the
tesselation of the domain, i.e., the domain elements by they triangles, quadrilaterals, tetrahedra, hexahedra,
or more general domains; (c) the approximation smoothness or accuracy; and (d) the support diameter of
the basis functions. The specification of the nested spaces structure is sufficiently weak to accomodate many
practical settings, while strong enough to satisfy the necessary conditions of our theorems and algorithms.

Our second contribution is to show that basis refinement can be implemented by a small set of simple
algorithms. Our method requires efficient data structures and algorithms to (a) keep track of interactions
between basis functions (i.e., to find the non-zero entries in the stiffness matrix), and (b) manage a tesselation
of the domain suitable for evaluation of the associated integrals (i.e., to evaluate the entries of the stiffness
matrix). We provide a specification for these requirements, develop the relevant theorems and proofs, and
invoke these theorems to produce concrete, provably-correct pseudo-code. The resulting algorithms, while
capturing the full generality (in dimension, tesselation, smoothness, etc.) of our method, are surprisingly
simple.

Our third contribution is the mapping of finite-elements, wavelets and multi-wavelets, splines and subdi-
vision schemes onto our nested spaces framework. No single discretization fits all applications. In our survey
of classical and recently-popularized discretizations we demonstrate that our unifying algorithms for basis
refinement encompass a very broad range of problems.

Our fourth contribution is a set of concrete, compelling examples based on our implementation of ba-
sis refinement. Adaptive basis refinement may be profitably applied in solving partial differential equations
(PDEs) useful in many application domains, including simulation, animation, modeling, rendering, surgery,
biomechanics, and computer vision. Our examples span thin shells (fourth order elliptic PDE using a Loop
subdivision discretization), volume deformation and stress analysis using linear elasticity (second order PDE
using linear-tetrahedral and trilinear-hexahedral finite elements respectively) and a subproblem of electrocar-

diography (the generalized Laplace equation using linear tetrahedral finite elements).
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Notation

Indices
n,m (integer subscript) an index to a space in a sequence of spaces
p,q (integer superscript) an index to a space in a hierarchy of spaces
i,j,k  (integer subscript) an index to a function in a set of functions

N, M (integers) the cardinality of a finite set

Spaces
Sy, the trial space after refinement operations

V(@) the nested space at hierarchy leyel

Basis functions, elements, tiles

¢ abasis function

¢ adomain element

t adomain tile

B the set of active basis functions
£ the set of active elements
T

the set of active tiles

Domain and subdomains
Q the parametric domain
Q. the parametric domain occupied by

Qs the parametric domain occupied by the natural support sgt of

Maps from basis functions to basis functions
C(¢) the children ofp
C*(¢) the parents op
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Maps from elements to elements
D*(e) the ancestors of

D(e) the descendants ef

Map from basis functions to elements
S(¢) the natural support set gf

i.e., the same-level elements overlapping the suppaft of

Maps from elements to basis functions
S*(e) the set of same-level basis functions supported by
B4(e) the set of same-level active basis functions supported by

B%(e) the set of ancestral active basis functions supported by

Maps from elements to tiles
L(e) finer-link of
i.e., the set of overlapping resolving tiles at the same level as
L*(e) coarser-link of

i.e., the set of overlapping resolving tiles at the next-coarser level from

Maps from tiles to elements
L(t) finer-link of resolving-tilet
i.e., the single overlapping element tile at the next-finer level ftom
L*(t) coarser-link of resolving-tile

i.e., the single overlapping element tile at the same level as

System snapshots
S snapshots of the entire system in the pre-condition state

S snapshots of the entire system in the post-condition state

Conventions

OP* the adjoint of the operator OP

&, Bs(¢), etc. barred quantities refer to the precondition state

i.e., the state before an algorithm executes
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Preface

This work is about basis refinement. This is a simple, natural, general way to transform a continuous problem
into a discrete problem, capturing all (and only) the essential features of the continuous solution. It is an
alternative to mesh refinement, focusing on basis functions instead of mesh elements. We will explain the
advantages (and limitations!) of this method. For finite element discretizations, its adoption is optional (and
often desirable). For a broader class of discretizations, its adoption is almost unavoidable. There are already

concrete, compelling applications of this method, such as those illustrated in the figure below.

Figure 1: Example problems solved adaptively using basis refinement. A variety of physical simulations
benefit from our general adaptive solver framework: crushing cylinder, medical planning, surgery simulation,
and pillows. For details see Chapter
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In this preface we develop a motivating example. Many of the key ideas will show up. Starting with
Chapter 1 we will explain everything again, in more detail. In this preface, we assume that the reader is

familiar with the method ofinite element$FEs) [Strang and Fix 1973

Piecewise Linear Approximation in One Dimension

We consider a simple example to elucidate the difference between finite-element and basis-function refine-
ment. As a canonical example of a second order elliptic PDE consider the Laplace equation with an essential
boundary condition,

Viu(z) =0, 2€Q, ulpn=1u.

To keep things simple, consider for now a one dimensional donfaii; R, with boundary conditions
u(0) = u(l) = w. An FE method typically solves the weak form of this equation, selecting frontritde

spacethe solution/ which satisfies
a(U,v) = / VU -Vv =0,
Q

for all v in sometest space We write the solutiorl/ = g + u as a sum of the functiop that satisfies

the inhomogeneous essential boundary condition, and dfitifunction « that satisfies the homogeneous
boundary condition.(0) = u(1) = 0. In the Galerkin method, which we adopt in this preface, these test and
trial spaces coincide.

Since the bilinear formu(-, -) contains only first derivatives, we may approximate the solution using
piecewise linear, i.e(C¥ basis functions for both spaces. The domain is discretized into a disjoint union of
elements of finite extent. Each such element has an associated linear function (se@)Fighigresults in
a linear system,

Ku=>b,

where thestiffness matrixentriesk;; describe the interaction of degrees of freedom (DOFs) at vedex
under the action ai(-, -); the right hand sid® incorporates the inhomogeneous boundary conditionspand
is the unknown vector of DOFs.

We shall discuss the discretization from two perspectives, which we will refer to as the (@ieitegnt

point of view and thévasis(function) point of view respectively.

Finite Elements In the element point of view, the approximation function is described by its restriction

onto each element (see Figutdeft).

Basis Functions In the basis point of view, the approximation function is chosen from the space spanned

by the nodal basis functions (see Fig@raght).
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Figure 2: lllustration of the finitelement(left) and basisfunction (right) points of view using linear B-
splines. In the element point of view, the solution is described over each element as a linear function interpo-
lating the function values at the endpoints of the element. In the basis point of view, the solution is written as
a linear combination of the linear B-spline functions associated with the mesh nodes.

Adaptive Refinement

We consider adaptive refinement. The two perspectives lead to very different strategmsdagtive solver
guided by arerror indicator, refines the solution process lmcally adjusting the resolution of the discretiza-
tion: in the element perspective, thisrifinement of the domain partitiofn the basis perspective, this is

enrichment of the approximation space.

Element Refinement In the most simple scheme, we bisect an element to refine, and merge a pair of el-

ements to unrefine. In bisecting an element, the linear function over the element is replaced by a piecewise
linear function comprised of linear segments over the left and right subelements. The solution remains un-
changed if the introduced node is the mean of its neighbors. This style of refinement is very attractive since

it is entirely local:each element can be processed independently of its neigfgem igures, left).

Basis Refinement Alternatively, we may reduce the error by enlarging the approximation space with addi-
tional basis functions. To refine, we augment the approximation spacdimgtiimore spatially-localized)
functions; conversely to unrefine we eliminate the introduced functions. One possibility is to add a dilated
basis function in the middle of an element to effect the same space as element bisection (se8&-Figure
middlg. The solution remains unchanged if the coefficient of the introduced function is zero. We refer to
suchdetail or odd coefficients in deliberate analogy with the use of these terms in the subdivision litera-
ture [Zorin and Schdder 200Q. Bases constructed in this fashion are exactly the cladsieedrchical bases

of the FE literature Yserentant 1986 Note that in this setup there may be entries in the stiffness matrix
corresponding to basis functions with quite different refinement levels.

Alternatively we use theefinability of the linear B-spline basis functions:

Refinement relation

Thehat function can be written as treum of three dilated ha{see Figures).
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\

\

Figure 3: Comparison of element refinement (left), and basis refinemendetiiis(middle) orsubstitution

(right). Observe that for linear B-splines, each introduction of a finer odd basis function (middle) effects the
same change as element bisection (left). Element refinement does not change the current approximation if the
introduced coefficient is chosen as the mean of its neighbors; likewise for detail refinement if the coefficient
of the detail function is zero, and for substitution refinement if the even and odd coefficients are chosen as
and%ui respectively, whera; is the coefficient of the removed function.

We may substituteone of the basis functions by three dilated versidopwing the prescription of the
refinement relation.Once again with appropriately chosen coefficients the solution is unaltered. Here too we
will have entries in the stiffness matrix which correspond to basis functions from different levels. In contrast
to refinement withdetails this refinement usingubstitutionin practice leads to little disparity between

(coarse and fine) levels, since coarser functiongatiely replaced by finer functions

Higher Order Approximation in One Dimension

Because piecewidmear functions were sufficient for the discretization of the weak form of Laplace’s equa-
tions we have seen very few differences between the element and basis points of view, excepting differing
approaches to adaptive refinement. Things are dramatically different when we work with a fourth order

elliptic problem! Consider the biharmonic equation with interpolation and flux boundary conditions,
Viu(x) =0, x€[0,1], ulpo=u -Vulpg=0.

This kind of functional is often used, e.g., in geometric modeling applications. Its weak form involves second
derivatives, necessitatihdpasis functions which are 2.

As before, we begin with a one dimensional examflez R, «(0) = u(1) = @, andw’(0) = «/(1) = 0.
One of the advantages of the element point of view was that each element could be considered in isolation
from its neighbors. To maintain this property and satisfy tWecondition a natural approach is to raise

the order of the local polynomial over each element. The natural choice that maintains symmetry is the

1Even though the biharmonic equation requires derivatives of fourth order to vanish, any solution to it agprdématedby
functions which are only'!.
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Hermite cubic interpolant (see Figu#e Two degrees of freedom (DOFs), displacement and derivative, are
now associated with each vertex. The resulting piecewise cubic function is of¢lagince the appropriate
compatibility conditionsare satisfied between elements incident on a given vertex (see Biguxete that
in using Hermite interpolants the dimension of our solution space has doubled and non-displacement DOFs

were introduced—these are quite unnatural in applications which care about displacements, not derivatives.

Figure 4: Basis functions of cubic Hermites (top row) and quadratic B-splines (middle rowy giep-
proximations (bottom row). The Hermite basis functions are centered at nodes and supported over adjacent
elements hence allow either element or basis refinement, but they require non-displacement DOFs (red ar-
rows denoting tangents) as well as displacement DOFs (red circles) and do not easily generalize to higher
dimensions. The B-splines have only displacement DOFs (blue diamonds) but the curve is non-interpolating.
There are two kinds of Hermite basis functions (associated to displacement and derivative coefficients, re-
spectively); there is one kind of B-spline basis function. The B-spline basis functions have larger support
hence allow only basis refinement.

As an alternative basis we can use quadratic B-splines (see Hpuféey satisfy theC! requirement,
require only displacement DOFs, and lead to smaller linear systems. If this is not enough motivation for
B-splines, we will soon learn that in the bivariate, arbitrary topology setting, Hermite interpolation becomes

(considerably!) more cumbersome, while generalizations of B-splines such as subdivision methods continue
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to work with no difficulties.
We again compare the element and basis approaches to adaptive refinement, and learn that basis refine-

ment outruns element refinement:

Element Refinement Using Hermite cubic splines it is easy to refine a given element through bisection.
A new vertex with associated value and derivative coefficients is introduced in the middle of the element
and the single cubic over tigarentelement becomes a pair 6f cubics over the twehild elements. This
refinement can be performed without regard to neighboring elements.

For quadratic (and higher order) B-splines refinement of an eleimédlation i.e., without regard to its
neighborsjs impossible!B-spline basis functions of degree two or higher overlap more than two elements;

this is trouble for isolated element refinement.

Basis Refinement Hermite basis functions are refinable thus admit basis refinement. The picture is the
same as in the hat function case, except that two basis functions are associated with each vertex, and a
different (matrix) refinement relation holds. Quadratic (and higher order) B-splines, which do not admit
isolated element refinement, do admit basis refinement since they all observe a refinement relation. So long
as a refinement relation holds, basis refinement doesn't care what discretization we use, be it linear, Hermite,

guadratic B-Spline, etc..

Piecewise Linear Approximation in Two Dimensions

In the two dimensions, we find new differences between the element and basis perspectives that were not
apparent in one dimension. We return to Laplace’s equation with an essential boundary condition, this time
with Q C R2.

Again we may approximate the solution using a piecewise linear,(®&function this time over dri-
angulation (or some othetesselatioh of the domain. The DOFs live at the vertices and define a linear
interpolant over each triangle. As before, we view the discretization alternating between thedfantept
andbasis(function) points of view. The element point of view defingg:) by its restriction over each ele-
ment, whereas the basis function point of view defings) as a linear combination of basis functions, each
of which spanseveral elements

Comparing the two perspectives in two dimensions sheds new light on the simplicity of basis refinement:

Element Refinement One possibility is to quadriseanly those triangles that amxcessively coars@s
determined by some error indicator). A new problem appears that did not reveal itself in one dimension:
this approach produces amcompatiblemesh, i.e., incompatibly placed nodes (knownTagerticesafter

the T shape formed by incident edges), shown in FigureSuch nodes are problematic since they in-

troduce discontinuities. Introduction of conforming edges (eagl/greentriangulations) can fix these in-
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compatibilities Bey 200Q. Alternatively one may use bisection of the longest edge instead of quadrisec-
tion [Rivara and Inostroza 1997This approach is limited to simplices only and becomes very cumbersome

in higher dimensionsArnold et al. 2001

Figure 5: Refinement of an eleméntisolation produces T-vertices, or incompatibilities with adjacent ele-
ments. In the case of 2D triangulations (left) incompatibilities may be addressed by introducing conforming
edges; in other settings, e.g.. quadrilateral meshes, 3D tetrahedral meshes or hexahedral meshes (right), the
analogy to insertion of conforming edges is more involved. Basis refinement never causes such incompati-
bilities.

Basis Refinement Alternatively, we may augment the approximation space with finer, more compactly
supported functions. Consider refining the original mesh globally via triangle quadrisection, which preserves
all the existing vertices and introducedd vertices on the edge midpoints. Every node in this finer mesh
associates to a (finer) nodal basis function supported by its (finer) incident triangles. We may now augment
our original approximation space (induced by the coarser triangulation) with any of the nodal basis functions
of the finer mesh. As such, the result is simply an expanded linear combination with additional functions.
With this approach compatibility is automatic; we don’t deal with problematic T-vertices.

As before, we mayugmenthe current basis witbdd finer basis functions (i.edetailg, or instead we

may substitutea coarser function with all finer (eveand odd) functions of its refinement relation.

Higher Order Approximation in Two Dimensions

The weak form for the Laplace equation requires aiifybasis functions (integrable first derivatives). This
changes as we consider fourth order elliptic equations, which appear in thin plate and thin shell problems. For
example, thin plate energies are used extensively in geometric modeling. The weak form of the associated
membrane and bending energy integrals involves second derivatives, necessitating basis functions which are
in H2.

In this setting the element point of view has a serious handicap. Building polynomials over each element
and requiring that they match up globally with* continuity leads to high order and cumbersome Hermite
interpolation problems. On the other hand, constructing basis functions over arbitrary triangulations using,

for example, Loop’s1987 subdivision scheme is quite easy and well understood (and is one of the methods
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we pursue). Such basis functions are supported on more than a one-ring of triangles. Consequently, locally
refining the triangulation induces a new function space which does not in general span (a superset of) the

original space. In the basis point of view, the original space is augmented, thus the original span is preserved.

Summary and Preview Element refinement becomes cumbersome, intractable or even impossible as the
number of dimensions or approximation order is increased. In contrast, basis refinement applies naturally
to any refinable function space. We invite the reader to fill whichever details interest them most: Ghapter
presents a background and overview, Chaptays out the basic theory which leads naturally to the simple
algorithms presented in Chaptér these apply to a general class of discretizations (Ch&)tand have

compelling applications (ChaptBj in graphics, engineering, and medicine.



Chapter 1

Background and Motivation

Partial differential equations (PDEs) model fascinating problems; they are the foundation of critical applica-
tions in computer graphics, engineering, and medical simulakoikgson et al. 1996 Although adaptive

solvers for PDEs and integral equations promise to reduce computational cost while improving accuracy,
they are not employed broadly. Building adaptive solvers can be a daunting task, evidence the large body of
literature onmesh refinememhethods. We argue for a paradigm shift: our method refines basis funotbns

mesh elements. This removes several implementation headaches associated with other approaches and is a
general technique independent of domain dimension and tesselation as well as approximation space smooth-
ness and accuracy. Our approaxtifiesearlier ideas from the wavelets and hierarchical splines literature; it

generalizeshese approaches to novel settings via the theory and structsobaivision



1.1 Introduction

Many computer applications involve modeling of physical phenomena with high visual or numerical ac-
curacy. Examples from the graphics literature include the simulation of diithde and Breen 200wva-
ter [Foster and Fedkiw 20Q,Jhuman tissueWu et al. 200]and engineering artifact&pgan and Fischer 200
among many others. Examples from the mechanics literature include elasticity of continuous media such as
solids, thin-plates and -shellsiplvern 1969, conductive thermal transfeHughes 19871 ewis et al. 199§
and turbulent fluid flowBernard and Wallace 20D2Typically the underlying formulations require the solu-
tion of partial differential equations (PDEs). Such equations are also at the base of many geometric model-
ing [Celniker and Gossard 19pand optimization problemd._e et al. 199 Alternatively the underlying
formulation is in terms ofntegral equationse.g., Kajia’'s rendering equatioi98¢ and boundary integral
equations for heat conductioBivo and Kassab 20Q3or ordinary differential equations (ODESs) which ap-
pear, e.g., in control problemB{illerud and Paganini 2000

Most often the continuous equations are discretized with the finite difference (FD) or Galerkin, e.g., fi-
nite element (FE), method before a (non-)linear solver can be used to compute an approximate solution to
the original problem $trang and Fix 1973Eriksson et al. 1996 For example, Terzopoulos and cowork-
ers described methods to model many physical effects for purposes of realistic anim88aiy [L989.
Their discretization was mostly based on simple, uniform FD approximations. Later Metaxas and Terzopou-
los did employ finite element (FE) methods since they are more robust, accurate, and come with more
mathematical machinend993. For this reason, human tissue simulations have long employed FE meth-
ods (e.g., Gourret et al. 1989Chen and Zeltzer 199Keeve et al. 1996Koch et al. 1996Roth et al. 1998
Azar et al. 200).

To reduce computation and increase accuracy wedaptivediscretizations, allocating resources where
they can be most profitably used. Building such adaptive discretizations robustly is generally very difficult
for FD methods and very little theoretical guidance exists. For FE methods many different approaches exist.
They all rely on the basic principle that the resolution of the domain discretizatiomesh should be
adjusted based on local error estimat@aljiska et al. 198p For example, Debunne et al. superimposed
tetrahedral meshes at different resolutions and used heuristic interpolation operators to transfer quantities
between the disparate meshes as required by an error crit@d®.] Empirically this worked well for
real-time soft-body deformation, though there exists no mathematical analysis of the method. A strategy
based on precomputed progressive meshes (Pidppe 199 was used by Wu et al.2p0] for surface
based FE simulations. Since the PM is constructed in a pre-process it is unclear how well it can help adapt
to the online simulation. O'Brien and Hodgins followed a more traditional approach by splitting tetrahedra
in their simulation of brittle fracture (mostly to accommodate propagating cratR9g[ Suchrefinement
algorithms have the advantage that they come with well established tHeohef et al. 2001and result

in nested meshes and by implication nested approximation spaces. Since the latter is very useful for many
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multi-resolution techniques (e.g., for multigrid solveBahk et al. 1988Wille 1996)) we have adopted a
generalized form of refinement (and unrefinement) as our basic strategy.

Typical mesh refinement algorithms approach the problem of refinement as one of splittingglmesh
ementsin isolation. Unfortunately this leads to a lack odmpatibility (also known asrackscaused by
T-vertice3; to deal with this issue one may: (a) constrain T-vertices to the neighboring edge; (b) use La-
grange multipliers or penalty methods to numerically enforce compatibility; or (c) split additional elements
through insertion of conforming edges as@u/green triangulationsr bisection algorithms (the technique
used by O'Brien and Hodginsl 999, for example). Each one of these approaches works, but none is
ideal [Carey 1997. For example, penalty methods lead to stiff equations with their associated numerical
problems, while red/green triangulations are very cumbersome to implement in 3D because of the many
cases involvedBey 1995 Bey 200Q. As a result various different, specialized algorithms exist for different
element types such as trianglé&ijara and Iribarren 199@ank and Xu 1996Rivara and Inostroza 1997
tetrahedra\Ville 1992, Liu and Joe 1995Liu and Joe 1996PIlaza and Carey 200@rnold et al. 200] and
hexahedrallangtangen 1999

This lack of a general approach coupled with at times daunting implementation complexity (especially
in 3D) has no doubt contributed to the fact that sophisticated adaptive solvers are not broadly used in com-
puter graphics applications or general engineering design. The situation is further complicated by the need
of many computer graphics applications for higher order (“smooth”) elements. For example, Celniker and
co-workers 1991, 1997 used higher order finite elements for surface modeling with physical forces and geo-
metric constraints (see alsddlstead et al. 1992&nd [Mandal et al. 199[Awho used Catmull-Clark subdivi-
sion surfaces andgrzopoulos and Qin 199#who used NURBS). None of these employed adaptivity in their
solvers: for B-spline or subdivision bases, elemeatsnotbe refined individually without losing nestedness
of the approximation spaces. Welch and Witkin, who used tensor product cubic B-splines as their constrained
geometric modeling primitive, encountered this difficultydlch and Witkin 1992 To enlarge their FE solu-
tion space they added finer-level basis functions, reminiscent of hierarchical splimssyf and Bartels 1988
instead of refining individual elements. Later, Gortler and Cohen used cubic B-spline wavelets to selectively

increase the solution space for their constrained variational sculpting enviror@eetief and Cohen 1995

Contributions The use of hierarchical splines and wavelets in an adaptive solver are specialized instances
of basis refinemenin which basis functiongsot elements are refined. From an approximation theory point

of view this is a rather trivial statement; however it has a number of very important and highly practical con-
sequences. Our adaptive solver framewmduires onlythat the basis functions used be refinable. It makes

no assumptionas to (a) the dimension of the domain; (b) the tesselation of the domain, i.e., meshes made
of triangles, quadrilaterals, tetrahedra, hexahedra or more general meshes; (c) the approximation smoothness
or accuracy; and (d) the support diameter of the basis functions. The appradalays globally compat-

ible without requiring any particular enforcement of this fact. Consequently, all the usual implementation
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headaches associated with maintaining compatibility are entirely eliminated. What does need to be managed
are tesselations of the overlap between basis functions, possibly living at very different levels of the refine-
ment hierarchy. However, we will show that very short and simple algorithms, based on simple invariants,
keep track of these interactions. Our method applies whenever a finite-basis discretization is suitable (e.g.,
this is the case for Ritz, Galerkin, or collocation methods), and accommodates both ODE, PDE and integral
formulations. We demonstrate its versatility by applying it to several different PDEs, involving both surface

and volume settings (see Figutend Chapteb).

1.2 Background and Overview

PDEs appear frequently in graphics problems including simulation, modeling, visualization, and animation.
Integral equations are less common but very important in problems including global illuminatiawlj as-
ity [Greenberg et al. 1986In Chapter5 we survey these applications as well as others, spanning graphics,
mechanics, medicine, vision and control of dynamical systems.

The continuous problem must be madiscretebefore it is numerically solved by the computer. Our
work builds on the idea of &nite-basis discretizatignin which the unknown continuous solutierz) is
projected onto thérial spaceof linear combinations of a fixefinite set ofbasisfunctions, i.e.,Pyu(z) =
{3y uivi(x)}, wherePy is the projection oriscretizationoperator (see SectioR.1). Chapter3 de-
scribes different finite-basis discretizations including wavelets, multiwavelets, finite elements, and subdivi-
sion schemes. Discretizations which do not explicitly use basis functionsfieitg-differencesare beyond
the scope of this work and their description we leave to the literagtrafg and Fix 1973Vickens 2000,

In mesh-basedpproaches, the basis functions are defined piecewise over some tesselation of the domain.
There is a large body of literaturdsipld 1995 Carey 1997Thompson et al. 1999on the theory and practice
of mesh generation; it remains a costly component of mesh-based approaches, because (a) the domain of
the underlying problem may have complex geometry, (b) the domain may change over time, e.g., when
Lagrangian coordinates are used, and (c) adaptive computations repeatedly modify the mesh. The cost of
managing meshes motivates recent developmemeesh-lessnethods. Here the basis functions are defined
without reference to a tesselation. Baka et al. 2002 recently presented a unified mathematical theory and
review of meshless methods and the closely relgtatkralized finite elements

Having chosen a particular mesh-based or mesh-less method, the discrete problem must be posed, typi-
cally as acollocated weak(e.g., Galerkin, Petrov-Galerkin), @ariational formulation (see Sectio.1.2),
and the appropriate numerical solver invoked. In general the discrete formulation nfiagdrein which
case a numerical linear-system solver is udaid$s et al. 1993or non-linear, in which case a specialized
solver or numerical optimizer is requireBiriksson et al. 1996

In all cases, functions in the approximation space are interrogated —mostraéigrated— via exact or

approximatenumerical quadraturgsee Sectior2.3and [Richter-Dyn 1971Atkinson 1989). This involves
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evaluating the approximate solution over an appropriate tesselation of the domain, which in the mesh-based
case may (or may not!) be the same as the function-defining mesh.

An adaptivesolver modifies the discretization over the course of the computatdinjng to increase
precision, andinrefiningto economize computation. Tleeror indicator guides these decision to (un)refine
[Eriksson et al. 1996 Although error criteria continue to be an active and interesting area for improvement,
they are not our focus here: we use standard and widely-accepted error indicators in all our examples, as our
approach is compatible with existing error indicators.

The solver may refine the discretization irsgiucturedor unstructuredmanner. In structured refine-
ment the discretization, at any instant of the computation, may be reconstructed in a systematic way from
some fixed underlyingnulti-resolution structurgsee ChapteR). For example, wavelet bases are always
a subset of the complete multi-resolution set of wavelets (see S&fand [Strang 198). A key con-
sequence is that the solver may arrive at a particular adapted discretization through various permutations
of a sequence of local refinements. In contrasktructured approaches are free of an underlying multi-
resolution structure; this gives freedom of refinement, at some costs. For example, an unstructured dis-
cretization might carry no record, bistory, of the sequence of refinements that it experienced. A straight-
forward example of unstructured approaches with no historyeareeshingnethods, which adapt the dis-
cretization by reconstructing from scratch the entire tesselafibnrhpson et al. 1999 Structured meth-
ods inherit much of the approximation and multi-resolution theory that has been developed over the past
decadesNlehaue et al. 1997 DeVore 1998 Cohen 2003f that is our primary motivation for adopting a
structured approach.

For mesh-based discretizations, most approaches to adaptivity focus eitimesbor basisrefinement,
the former increasing the resolution of the tesselation and consequently the basis, the latter increasing the
resolution of the basis directly. In either case, once the resolution of the basis is increased, the resolution
with which numerical quadrature is performed must be appropriately adjusted. This is automatic for mesh
refinement in the typical case that the function-defining mesh is also the quadrature mesh; that is so, e.g., for
finite elements.

Among the most popular mesh-based discretizationsirite elementswhich produce piecewise poly-
nomial trial spaces; they are featured in many graphics applications, most recently in real-time anima-
tion [Halstead et al. 1993 iller et al. 2002Kry et al. 2002 Capell et al. 200Jasimulation of ductile frac-
ture [O'Brien et al. 2002 human tissue $nedeker et al. 2002and the sound of vibrating flexible bod-
ies [O'Brien et al. 200); also in global illumination Troutman and Max 1993zirmay-Kalos et al. 2001
computer-aided design (CAD) applicatiof@fn and Dutta 20Q3as well as computer-aided modeling (CAM)
applications such as procedural modeliGgfler et al. 200R interactive surface desighiplstead et al. 1993
Terzopoulos and Qin 199¥andal et al. 2000Mandal et al. 199]f and so forth Celniker and Gossard 1991
Celniker and Welch 1992 erzopoulos et al. 1987herzopoulos and Fleischer 1988
[Metaxas and Terzopoulos 199%elch and Witkin 1992Gortler and Cohen 1995
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State of the aradaptivefinite-elements use element-centric discretizations: the basis functions are defined
piecewise over each element, with soomenpatibility conditionfor the interfaces between element subdo-
mains, e.g., the function must be continuous on the edge between two elements, alternatively its mean value
must be the same on both sides of the edge, and so forth; for examples of compatibility conditions please see
Section3.4and [Crouzeix and Raviart 197®Rannacher and Turek 199Raviart and Thomas 1977
[Brezzi and Fortin 1991

For finite-element approaches, refinemengé&metric division of mesh elementdnfortunately, lo-
cal element splitting does not in general ensure global compatibility of the modified mesh. As mentioned
earlier, several number of approaches (constraints, Lagrange multipliers, etc.) are used to resolve this is-
sue [Carey 199]. Local element splitting appears simple at first. But it does not generalize easily, evi-
dence an abundance of algorithms specialized to particular tesselationd)Mélg.1992 Liu and Joe 1995
Liu and Joe 1996Plaza and Carey 2008rnold et al. 2001Langtangen 199%Rivara and Iribarren 1996
[Bank and Xu 1996Rivara and Inostroza 1997A critical review of the existing mesh-based adaptive algo-
rithms suggests they tend to be complex (adding constraints or splitting neighboring elements), or lead to
undesirable algorithmic features (Lagrange multipliers or penalty methods). A general, flexible, and robust
mesh refinement algorithm should at the same timsitogleto implement.

Meshiessdiscretizations discard the function-defining mesh thus avoiding these difficulties. Here the trial
spaces are again linear combinations of basis functions with either global or local support, but the basis func-
tions no longer have simple forms over domain elements, e.g., in contrast to the piecewise polynomial basis
functions of the finite elements. In mesh-less methods, numerical integration is not straightforward: the func-
tion supports are not aligned to (geometrically simple) mesh elements, hence numerical quadrature might re-
quire a more involved tesselation builbt from simple shapes such as triangles, simplices, etc.. Furthermore,
these methods require special care in the presenesseitiaboundary conditionsStrang and Fix 1973
Finally, the resulting linear systems may be singular, preventing the use of (among others) multigrid solvers.
These difficulties can (and have been) overcoBebfska et al. 200 but at the loss of some of the simplic-
ity of the mesh-less idea.

Since for these methods the mesh is absent, the natural approach to adapagisiefinement. Typ-
ically, this meansaugmenting the basis with more basis functiossch a procesby constructiorstrictly
enlarges the approximation space; consequently a sequence of refinements pnedtexspproximation
spaces. Recall that for numerical quadrature, mesh-less approaches still require tesselation.irBttet is
backgroundlt is modified as a&onsequencef changes to the basis.

Our work is inspired by this idea: the basis leads, the structures for numerical quadrature follow. Our
method isnot mesh-less. That is its simplicity. Meshes lead to simple basis functions thus simple algorithms
and quadrature schemes. Our basis functions are made of simple forms over simple mesh elements. But we
learn from the mesh-less paradigfocusing on the mesh elements is harmful; focusing of the basis functions

is conceptually desirableNe demonstrate that it is alségorithmicallydesirable.



7

Chapter4 presents simple algorithms for implementing basis refinement on mesh-based discretizations.
We implemented these algorithms and applied them to several pragmatic prdbleWs begin, in the
following chapter, by laying down the basic structure that unifies mesh-based multi-resolution finite-basis

discretizations.



Chapter 2

Natural Refinement

Finite-basis discretization are a basis for many popular approximation strategies. When it is used to approxi-
mately solve a variational or boundary-value problem, two distinct concepts must collalaqareximation

space and numericaitegration If we begin with a hierarchy afiested approximation spagdben adaptive
refinement follows naturally. The remaining goal is to make numeintegrationeasy for this class of ap-
proximations. We present a lightweight framework to make this possible, first (in this chapter) in the abstract,

then (in the following chapter) using concrete examples.
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2.1 The Finite-Basis Discretization

Consider some variational problem in a Hilbert spd€eover a parametric domaift-—we wish to find
a functionu(z) € H(£2) minimizing some expression of potential energy. Alternatively, consider some
boundary value problem—we wish to findudx) satisfying some partial differential equation (PDE) and
boundary conditions. In either case, computing the exact solution is often impossible or intractable, and we
settle for an approximate solution.

The finite-basis discretization is to choose a finite linearly-indepehstemof basis functions By =
{¢1(x),...,pn(x)}, and to approximate(z) € H(Q2) as a linear combination of these basis functions.

The weighted residual method is to choose among the basis functiondiwdtspaceS, = {3\ uipi(x)}
the minimizing function; in the variational case minimizing refers to potential energy, in the PDE case mini-
mizing refers to some measure of the residual. This minimizing function is the best approximat{a tor
the given finite-basis discretization—that is the principle of the weighted residual MetBpdcializations
of this approach include the Ritz, Galerkin, Petrov-Galerkin and collocation metBtds§ and Fix 1973

In general, the weighted residual method fornsegquencef trial spacesSy, Si, Sa,... , whichin the

limit is dense in the solution space, i.e.,
lin Hu— FnuHH :07
n—-4o0o

where P, is the orthogonal projector ont8,. The above property aliminishing errorsis the necessary
and sufficient condition for convergence of the weighted residual method: for every admissiblé, the
distance to the trial spacés, should approach zero as— oo. 3

The weighted residual method turns a search for a continuous functioto a search for a finite set
of coefficients{u;|1 < ¢ < N} which correspond to a given finite-basis discretization. In many cases the
search may be formulated as a system\ofliscrete algebraic equations—a tractable and well-understood

computational problem.

2.2 Refinement

The choice of trial space determines the approximation error as well as the computational cost of finding the
approximate solution. The former and latter can be traded-off by employirgginement.

In the broadest sense, refinement is an alteration of a given approximation space to reduce the approxi-

1in many applications we relax this requirement and use a set of linearly-dependent “basis” functions (in an abuse of terminology,
here we write “basis” but mean “spanning set”). For the remainder of this discussion we will use this relaxed definition, explicitly
treating linear-independence only in Sectiba.

%In general, the test functions of the weighted residual method may also be constructed by a finite-basis discretiza-
tion [Strang and Fix 1973 We elaborate on this in Secticdh1.2 For simplicity, we discuss only the trial spaces in this chapter,
however basis refinement applies also to the test spaces.

3A sufficient, but not necessary, condition for diminishing errors is the constructioestédspacesSy C S1 C So C ... , which
assures that approximation error is never increasing; this is stronger than required for the weighted residual method.
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mation error—at the expense of increased computational cost. Convenselfnement is an alteration to
reduce computational cost—at the expense of increased approximation error.

More preciselyrefinement of5,, creates a larger trial space,, .1 O S,. Conversely, unrefinement
creates a smaller trial spadg, .1 C S,. The difficulty lays in imposing sufficient structure, simplifying
implementation on a computer, while keeping the idea and its implementation broadly applicable in many

settings.

2.2.1 Nested Spaces

We build our structure over a given sequence of nested function $pBisisssequence, when combined with

associated Riesz bases, make up our refinesw@me

Nested Spaces We are given an infinite sequence of nested spacés,c V() c V) c ...  whichin

the limit is dense in the solution space.

Detail Spaces We define an associated sequerieé), D), D) . where thedetail spaceD(?) is the
complement o/ ?*1) ontoV (), i.e., thefiner space/ *+1) may be expressed as the direct suf) @ D®)

of theimmediately coarsespace and its details.

Riesz Bases A Riesz basisf a Hilbert spacdd is defined as any s€ty;|i € Z} such that
1. {¢:]i € Z} spansH, i.e., finite linear combinations_ u;¢; are dense i, and

2. there exist) < C; < C5 such that for all finitely supported sequereg|i € Z},
Cr Y il <1 widillt < Ca Y Juil”

We associate with every spat&?) a Riesz basis{@(p )} consisting ofscaling functionslikewise with
every detail spac®? a Riesz basis{wi(”} consisting ofdetail function8. For some applications, it is
convenient to have every Ieveldetail,wl(q), orthogonal to every levej-scaling functiongs;q), however in
generabrthogonality is not essentfl

In the next chapter we will examine various practical discretization schemes (among them subdivision
schemes, wavelets, and multiscaling functions) which naturally give us a hierarchy of nestedispaces

Any of these discretization schemes are fertile ground for applying our approach.

4This approach can be generalized to the brdiadrete frameworkntroduced by Harten in 1993. This framework is summarized in
Section2.5

5In some special setting@,bgp)} C {¢§.p+1)}, i.e., the levelp details are levep + 1 scaling-functions. Here one might be eager
to blur the lines between scaling-functions and details; do not succumb to this temptation.

6A stable basis can be orthogonalized in a shift-invariant v@saing and Fix 1973However, the orthogonalized basis may be less
convenient; hence our adoption of the weaker Riesz requirement.
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2.2.2 Natural Refinement

Suppose that initially the basis functions are toarsest-levescaling functiond3, := {QSEO)}, i.e., Sy =
Span(By) = V(.

To refineS,, we might choose as the new set of basis functions the level-1 scaling fun{;tiﬁﬁ;; this
satisfies our definition of refinement, i.6;, := V) > V(0 = g,

However, we wish to make the refinement process as gradual as possible—each refinement step should
enlarge the approximation space but only a little bit.

This is critical. Gradual control of refinement, adaptiverefinement, leads to improved convergence
under fixed computational budget.

There are two natural ways to make a gradual transition to the finer §ffdteaugmentings, with a

detail function, orsubstitutingn 3, several level-kcalingfunctions in place of one level-0 scaling function.

Augmentation with Details We can refineSy by introducing to its spanning set a single detail function,
e, B = {¢”,.... 0¥, ¢!} for some chosen indek

In general, we may refine sontg, with the detaile(.p) ¢ S,, forming the space, ; spanned by
Bus1 =By U{}.

Substitution With Scaling Functions Another approach refings, using only scaling functions: start with
By, remove a particular level-0 scaling functiatjgo) € By, and replace it with just enough level-1 scaling
functions such that the new space contaigsWhich functions of’ () are necessary to ensure that> Sy?
The key is thenestingof the space¥ (") sinceV(®) ¢ V®»+1) any leveln scaling function can be uniquely

expressed in the levék + 1) basis:
o =3 aD ety (2.1)

This is therefinement relatiotetween zparentcﬁg.p) and its children?(¢;p)) = {¢P |k e Z/\ay,';) #0}.
Note that in general every function has multiple children—it alsorhattiple parents given by the adjoint
relationC*(-).

Responding to our question above: if we remdxi@, then we add2(¢§€1)), so that the refined space is
spanned by3; := Bo\qs;‘” U C(¢§O)).

In general, we refine som, by substituting some scaling functiahgp) € B, by its children, forming
the spaces,, ;1 spanned3,, | := Bn\¢§p) U C(qbg.”)).

Both the augmentation and substitution operations are atomic, i.e., they cannot be split into smaller, more

gradual refinement operations.
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2.2.3 Bookkeeping

With repeated application of these atomic operations we can gradually effect a change of trial space. As a
concrete example consider the transition fregn= V(? to S, = V(1 via application of\ augmentation
operations. Each refinement introduces a detail chosenfrdy and aftetV/ = Dim(D(®)) = Dim(V (1)) —
DIm(V () steps we haves); = V(@ @ D = V() Consider instead the same transition effected via
repeated substitution operations. Each step replaces a scaling functiéh bfy its children inv’(1); in this
case at most Diifi’(?)) steps are required.

At any stagen of the weighted residual method the approximation spgcés spanned by thactive
functions

B, C Uv(p) uD® ,
p

ie., S, = {Zwegn uzgoz} We will refer to a scaling or detail function astivewhenever it is in3. With

that we can succinctly summarize the two kinds of refinement:
detail-refinement activates a single detail function;
substitution-refinement deactivates a scaling function and activates its children.

Note that in generab,, is spanned by active functions from multiple (possibly not consecutive!) levels
of the nesting hierarchy. Further refinementsSpf may introduce details any level of the hierarchy.
Substitution refinements always replace an active function by functions from the next-finer level, however

one may apply substitution recursively, replacing a function by its grandchildren.

2.2.4 Compact Support Gives Multiresolution

The theory and algorithms presented herein do not make assumptions about the parametric support of the
scaling- and detail-functions. Despite this, our discussions will focus on refinement schemes that give rise to

basis functions obeying two properties:

Compact Support every scaling- or detail-functiofi has an associated radie(s'), such that its parametric

support is contained in soméf)-ball Q. C 2 of the domain, i.e.Supp(f) C Q., and

Diminishing Support there is a single constai < 1 such that for each scaling- or detail-functigrihe
support of every childy € C(f) is geometrically smaller, i.eSupp(g) < KSupp(f). Thus for every

levelp scaling functiong?, the support of all level descendants is bounded B§f?~?) Supp(¢?).

Combined, these two properties imply that (i) a refinement operation does not affect the approximation space

except in some (parametrically-)localized region of the domain, and (ii) inside that regioasibiation

“For some refinement schemes, the parent-children structure is such that replacing some but not all level-0 functions results in the
introduction of all level-1 functions. In this case less than Diff) steps are required.
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of the approximation space is enhanced. Property (i) follows from the compact support, and (ii) follows
from the diminishing support. Together these properties recast adaptive refinement as a means to selectively
and locally enhance the resolution of the approximation space. Concretely, the refinement directly from
Vo to V4 is refinement over the entire domain, whereas the gradual refinement using details or substitution
(parametrically-)locally-delimited steps.

Scaling- and detail-functions with compact and diminishing support fomultiresolution analysisthe
solutionu may be decomposed into parametrically- and spectrally-localized components. Put in the context
of a physical simulation, these two kinds of locality give each scaling function a physically-intuitive role
(e.g., representing oscillations at some frequency band in a specific piece of the material) and give rise to
techniques for choosing specific refinements over others. For more on multiresolution analyses the interested
reader may refer to the text by Albert Coh@9033.

For the remainder of this thesis, we will make referencésdal refinement, i.e., refinement in the context
of a multiresolution analysis. Although the theory and algorithms do not require compact or diminishing
support®, discussions in the context of a multiresolution analysis are more intuitive and lead to pragmatic

observations. All of the applications that we implemented (see Chaptese a multiresolution analysis.

2.3 Integration

The weighted residual approximation of our variational formulation requires our finding in the trialSpace
the minimizing functionP,u(z). For this reason among others, we must have the facility to integrate over
the domain integrands involving functions from the trial space. In our discussion we will focus on integrands
involving only functions from the trial spacg,. Some useful formulations require integrands involving both
functions from a trial spacg,, and from atestspaceT,,; the framework presented here is easily extended to

such settings.

2.3.1 Domain Elements

The trial space is in general spanned by functions from several levels of the nesting hiérétthyrhe
compact support of these functions permits an economical means to integration using the following construc-
tion: to every level of the nesting hierarchy we associate a partition of the domain, i.e., a set of subdomains

(=elementswhich together comprise the entire domain; progressively finer levels have finer (and more nu-

8The exception is our algorithm for building a basis given a sequence of nested subdomains (see2Sk8kiethe problem
addressed by that algorithm inherently tied to locality in the parametric domain.

9 From a theoretical point of view, many of the theorems of multiresolution can be proved (albeit not as easily) without reference
to compact supportso long as a notion dbcality still holds [Cohen 2003aCohen 2003} i.e., the basis functionp; (), is localized
aboutz; € Q2 whenever we have an estimate of the type

|<p1(z)| §C77L(1+|-T—Ii|)_m, Vm>0.

However, from a computational perspectigempact suppotteads (for our algorithms) to significantly better performance than a weaker
notion of locality.
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merous) elements. Given a set of active functions spanning the trial space, we assemble an integration scheme

gathering appropriate elements from the various levels (see Rgl)re

three active functions

parametric domain

level O active functior

"y,

T ") level O elements

N o e e e

level 1 active functior

SN I B N I I EE SR EE EE S S S S -
\ ; level 1 elements

o O E E EE EE EE EE EE EE O

Figure 2.1: Given a set of active functions (top row, hat functions), for numerical quadrature the domain
(top row, horizontal line) must be partitioned into elements. We partition the domain into progressively finer
elementsassociated to the nested spaces (middle and bottom rows, horizontal line segments). Given a set of
active functions spanning the trial space, we assemble an integration scheme gathering appropriate elements
from the various levels. The dashed lines encircle the elements gathered to intergrate bilinear forms given
these three active functions.

A (disjoint-)partition of a domain is a set of (subdomain) elements whose disjoint union is the domain. To
every nested spadé®) we associate a partition of the domain into (the lewedlements£(?) = {551’ ) |0 <
1< N}

Our partitions are chosen by construction to have the following critical property: every functiofin
has asimple formover every element. A simple form is one that is easy to (approximately or exactly) integrate
over the element, e.g., the functions are piece-wise cubic polynomials over the elements—the restriction of a
function over any element is a piece of a cubic polynomial. It is sufficient that every scaling fun;izéﬁb.n,
has a simple form over every same-level elemeﬁf,. Then every function iV ®) will have a simple form
over the same-level elements. Furthermore, since the tedetails, D(*) ¢ V®+1) are spanned by the

level-(p+ 1) scaling functions, every detaibép“), has a simple form over every immediately-finer element,
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Eg_pﬂ).

Thenatural support setS(gbgp) ), of a scaling function is the minimal set of leyeklements which contain
the parametric support of the functidn Similarly, the natural support sei‘,(wf” )), of a detail function is
the minimal set of leve(p + 1), i.e.,immediately-finelements which contain the parametric support of the
detail. In integrating a basis function, its natural support set is the coarsest valid partition at our disposal: (a)
by construction of the levelr domain eIementsﬁE”) is simple over every member ch(ng,Ep)), and (b) its
support is fully contained iS((bEp)). The adjoint operatioS*(agp)) returns the set of basis functions whose
natural support contains the elemeﬁﬂ).

(p)

7

The descendants of an eleme®t(<;"’), are all elements at levels finer thanwhich in the parametric
domain have non-zero intersection with the given element. arwestorrelation is defined through the
adjoint, D* ().

To numerically resolve the active functions we gather the appropriate elements. We define the set of

active elemenis’ = |J ;.5 S(f), as the union of the natural support sets of the active functions.

2.3.2 Domain Tiles

In general the integration must be carried out over a partition of the domain. Since trial space has functions
from different levels, we need a partition that will resolve these different resolutions (see Biguré\Ve
construct a minimal set dactive tilessuch that (i) the tiles partition the domain, and (ii) the partition has
sufficient resolution: every active element is a disjoint union of tiles. Consequently every basis function has a
simple form over every tile. To carry out the integration, we consider every basis function only on the active
tiles which partition its natural support set, i.e., over every tile we consider only those basis functions whose
parametric support overlaps the tile.

We have two kinds of tiles. Thelement tilesassociated to every levg| are the levep elements. The
resolving tilesassociated to every levg| form the minimal set of tiles which (i) partitions the domain, (ii)
contains a unique partition for every leyelelement, and (iii) contains a unique partition for every level-

(p + 1) element (see Figur2.3). Observe that the intersection between any levélle and any levep + 1
element can be expressedgolved as a disjoint union of level-resolving tiled'. With this construction in

place, a simple and general algorithm can translate a set of active elements into an optimal domain tiling.

Links  We need words to refer to the relationship between a lgpwdément tile and its overlapping level-
(p — 1) and levelp resolving tiles, i.e., a child-parent relationship. We already have a vdgsténdantto
describe finer-level elements which overlap a given element. To avoid abiguity, when we describe relation-

ships between tiles we will use the terfireer link andcoarser link Tiles of one typedlemenbr resolving

19For some schemes, but not all, a function’s support is the disjoint union of its natural support set. In other exotic but practical
settings this is not the case.

n the special case where the element partitions of levgls. . . are nested (i.e., whenever the leygl-+- 1) elements contain a
unique partition for every level-element), the levebresolving tiles are by construction the leV@l-+ 1) elements. The resolving tiles
figure in more exotic settings such as t8-Subdivision Scheme.
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three active functions

parametric domain,
partitioned into tiles

level O active functions

___________________________________________

: v level O elements

----------------------------- ) level O resolving tiles

level 1 active functions

F—- ----------------------------- 3
(‘\ ________________________________ J! level 1 elements

Figure 2.2: The domain is partitioned into a minimal sehofive tiles chosen from a set aflement tiles

(solid) andresolving tiles(dashed). Apartition made oftiles (unlike aset of elemenjsmust be disjoint,

i.e., the tiles must not overlap. The partition, comprised of element and resolving tiles, must be sufficiently
and necessarily fine to resolve every active function. For the three active functions, we have indicated the
appropriate partition by encircling elements and resolving tiles with a black curve; the resulting partition is
reproduced on the top row.

are only linked to tiles of thether type(see Figure.d):

e The finer-link,L(t), of resolving-tile t, is the single overlapping element-tile at the next-finer level.

e The adjoint relationship gives the coarser-liiK;(¢), i.e., the single overlapping element tile at the

same level as.

e L(¢) is the finer-link ofz, i.e., the set opotentially multipleoverlapping resolving tiles at the same

level ase.

e L*(e)isthe coarser-link of, i.e., the set of overlapping resolving tiles at the next-coarser leveldrom
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level O elements

level O resolving tiles

level 1 elements

Figure 2.3: There are two kinds of tileElement tilegtop and bottom rows) are simply elements. Their new
name serves as a reminder that those chosen to be active should not oRexsafving tilegmiddle row)

for levely live “in between” levelp and level{p + 1): they exist to resolve gaps between regions partitioned
with levelp tiles and others partitioned with levgh-+ 1) tiles. Note that in general, the level-1 elements are
not nested in the level-0 elements: this is depicted here, using the triangle mesf&subdivision.

Links are parent/child relations between element tiles and resolving tiles. Everypleletent tile (one
triangle in solid blue) is the disjoint union of some leyetesolving tiles (thdiner link of the blue triangle
are the two triangles in solid red). Furthermore, every levedsolving tile overlaps exactly one levgh
element tile (thecoarser linkof a solid red triangle is the solid blue triangle).

2.3.3 Multiple Approximation Spaces

In some formulations (such as the Galerkin method) the integrand involves functions from two or more
approximation spaces. We do not address these formulations in detail. However we claim that the structures

constructed herein accommodate such settings. Briefly:

Multiple approximation spaces, single nested-space sequenc# several approximation spaces, con-
structed from the same nested-spaces structure, appear simultaneously in the integrand, our theory and al-

gorithms apply without modification.

Multiple approximation spaces, multiple nested-space sequencedf the approximation spaces appearing
in the integrand are constructed from various nested-space structures, there are two options. First, one can

choose the domain elements such that they give simple forms for all the spaces; from there the theory and
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algorithms apply without modification.

Alternatively, one can use different sets of domain elements for each of the nested-spaces structures,
and introduce new kinds of resolving tiles to resolve intersections between tiles and elements of the different
spaces, following closely the approach taken above for resolving intersections betweertilesednd level-

(p+ 1) elements.

2.3.4 Bilinear Forms

In the special case where the integrand is a bilinear fofm) with arguments(z), w(z) chosen from the

same trial space (e.qg., this is the case for linear Galerkin formulations), we can forgo tiling the domain and
integrate directly over the active elements. In this case it does not matter that the integration is not carried
out strictly over a partition of the domain—although they always cover the domain, in gesoenal active
elements overlagSincev(z) = 3, v fi(z) andw(z) = >_; w; f;(z) the integrand is bilinear, we rewrite our
integral as a double summation of integrals of pairs of particular basis func@@ij viw; [a(fi, fj)-

Each of these integrals considers interactions between a pair of basis functions and it is carmetheut
coarsest level that captures the interactiohcoarser functionf; overlaps finer functiorf,, we evaluate the
bilinear form over cells in the natural support setfefwhich also supporf;: {¢|e € S(f2) A D*(e) N

S(f1) # 0}. With this approach every interaction is considered exactly once, at a necessarily and sufficiently
fine resolution. Please note: here the integratiamiscarried out over a partition of the domain! Although
they always cover the domain, and although the active elements are chosen from pat#ititonsf the
domain, in generathe active elements overlaith elements from different levels covering overlapping

subdomains.

2.4 Basis

In some settings, it is important that the active functions are linearly independent, i.e., they from a basis for
the trial spacé?Here we lay out additional structure that, as we see in the next Chapter, paves the way to
efficient algorithms for ensuring that the active functions are linearly independent.

Our discussion of linear-dependence differs from the preceding sections of this chapterharthaie
assume compact and diminishing suppamt rely heavily on this assumption in developing efficient basis-
maintenance algorithms. It is possible to lift this assumption by reducing the linear-independence problem
to a linear-algebra matrix problem. However, if this assumption is not replaced by another, then resulting

linear-algebra problem is computationally expensive.

12This is the case, for example, in classical FE applications, as a linear dependency in the basis leads to a singular stiffness matrix.
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2.4.1 Refinement With Details

When we restrict ourselves to only refine by adding details, the active set of basis functions is always, by
construction, a basis for the trial space. To prove this, consider the following. Since the spaces,

v pO pM  DM) the union of their bases, the so-callmdltiresolution analysisis the basis of

HM .= v g DO g DD g...¢ DM The active set consists of the coarsest-level scaling functions and
details from the firsi\/ levels (for somé\l), i.e., the active set is a subset of the basi&ldf, consequently

itis also linearly independent.

2.4.2 Refinement by Substitution

Instead of working with detail functions, we might work with bases built of scaling functions, i.e.choosing for
the active set functions from each of the base¥ @, V(1) ... . V(M) We are motivated to use such bases
because they often lead to increased system sparsity thus better performance. This is because subdivision
refinement producdscally single-resolutiorbases. Consider, for instance, starting with the trial space

V() and refining by substitution everywhere over the domain. The resulting trial sface, V()| is
single-resolution, i.e., choose any point on the domain; only level-1 functions overlap this point. In contrast,
if So = V(© is refined by adding the level-1 details, every point on the domain is overlapped by level-0
as possibly level-1 functions. Typically, we will not refine the domain everywhere to the same depth (that
defeats adaptivity!), however, to the extent that the error indicator is in some neighborhood smooth, then
over that neighborhood substitution-refinement produces a single resolution of basis functions. The locally
single-resolution property of substitution-refinement is often advantageous for computational performance.

In the case of detail functions, we argued that the basis functions are linearly independent because the
spaces (of the multiresolution analysis) are disjoint. Here the speéesc V(»*), are nestedot disjoint;
linear independence is not guaranteed.

Suppose that we wish to refine by substituting scaling functions with their children. In general this will
not produce a linearly independent active set. Here we describe additional structure, introduced previously
by Kraft in the context of multilevel B-splines, that allows us to easily build a linearly independent active set
given a sequence of substitution refinemeKtaft 1997. This approach may be generalized to refinements
with a mix of substitution and details.

We can summarize Kraft's construction very simply in our framework, and consequently implement it
easily and efficiently: after every substitution refinemerg,automatically refine by substitution every func-
tion with natural support set covered by the active elements from finer Iegs-igure2.4). It is possible
to show that this iterative process eventually halts.

Kraft's construction is as follows. We are given a list of indices of scaling functions to be refined by
substitution, grouped per leveR(©), R ... R(M) Such a sequence makes sense only if every finer-level

function that we are asked to refine was introduced at some earlier point when one of its parents was refined,



20

- O o o— - o O o o o—
- © o o— - | ——
-9 @ o o ® ® o— -9 o o o & ® o—
——0—0—0—0—0—0—0—0—0—0—0—0— ——0—0—0—0—0—0—0—0—0—0—0—0—
(a) (b)
=0 O O O © o— —_—0—0—0—0—O0———
- —— - —
- o o o ¢ ° o— — e O —o—o—
() (d)

Figure 2.4: Kraft developed a construction for linearly-independent B-splines. We interpret his construction
within our framework as follows: every substitution refinement consists of two steps: first, we activate the
children of the basis function {ab); second, we automatically refine by substitution every function with
natural support set covered by the active elements from finer levels)(bThese two steps, combined-a,
likewise c—d), form a substitution refinement operation that preserves the linear independence of the basis.
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ie.,ic RO+ = 3j e R® A QPTY ¢ C(qﬁ;”))
From this list of substitution refinements we construct a sequence of nested subdd@inain§)(®) C
Q) c ... ¢ QM+ where every subdomain contains exactly the supports of the immediately-coarser

refined functions,

Qr D = ] Supp(e), p>0.
JER®P)

We interpret the leveb-subdomain as follows: inside(”) we wish to approximate with at least the resolution
of spaceV/ (?), and outside with only coarser resolutions.
More precisely, we will choose those leyebcaling functions which are supported completely dvey

and at least partially ove(®\Q(r+1):
I®) = {k € Z|Supp( ép)) c QP A Supp(¢?) & QY

In other words, we throw away every leveFfunction that is not completely in the designated zone for level
p, Q) and we throw away every levelfunction that can be fully represented by leyel- 1 functions, i.e.,
it is completely inside the designated zone for lgwel 1, Q(+1),

The resulting multilevel, hierarchical spase:= Span{¢\”|p > 0 A k € I®}. Itis multilevel in that
is can appear locally-flat, in regions where the refinement has been applied uniformly, while at the same time
functions from different levels participate. It is hierarchical, over regions where the refinement depth is not
uniform, in that functions from different levels overlap at a point.

One can give a “physical” interpretation to Kraft’s original description of this construction (let us reinter-
pret Figure2.4). Kraft begins with a sequence of nested subdomains; Q) Cc Q) C ... C QWM+D),
corresponding to regions of desired minimum detail at each level of the nesting hierarchy. Stack all the do-
mains, with the coarsest at the top (Fig@réd). Every domain creates a hole in those above it. Thus every
domain appears as a region—with holes induced by the domains below. Start with all scaling functions at the
coarsest level (Figur2.4a), and let them fall “downward under gravity” (Figu2ed, a—c, c—d). A function
stops falling if it can’t fit completely though a hole. Every time a function falls to the level below, it splits

into its children (Figure.4b), and they continue the fall.

2.5 Harten’s Discrete Framework

Many popular discretizations, among them point samples, finite-volume/average-samples, and finite-elements,
after being extended to an adaptive, multi-scale setting, may be viewed as specific instandéecEta

framework introduced by Hartenl993 1996, which generalizes our nested spaces structure.

Definition A a generalized discrete multiresolution approximatist?

13we take the liberty to adapt Harten’s notation to more clearly delineate the parallels between our frameworks.
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1. a sequence of index sdf$”, p > 0,

2. equipped with aestriction operatorP(p)

(i1 acting fromi> (D +1)) to 1> (D)),

3. and aprolongation operatqu((If)“), acting from/>(I'(")) to [>°(T'(P+1)),

4. such that the restriction operator is a left inverse to the prolongation operath(([i)’j_el.)oP((;’)“) =1.

Intuitively, the sequence of (discrete) index sdt§), is similar to our concept of a sequence of scaling-
function bases; the prolongation operator is similar to a refinement relation mapping ong $&ading
function to its level¢p+1) children, and condition (4) corresponds to a nesting of the spuiégsC v (»+1)

It is straightforward to derive for this framework the details between consecutive I&@lsand con-
sequently a multiscale decomposition of a function into a coarse representation and multiple levels of de-
tails. Similarly to our observation in Sectid?2.4that efficient implementations make use of assumptions
of locality, Cohen notes that for efficiency Harten’s framework must be specialized with notions of local-
ity [Cohen 2003k

It would be worthwhile to fully explore the connections between Harten’s discrete framework and our

framework.

2.6 Summary and Preview

What are needed in the basis refinement strategy are efficient data structures and algorithms to (1) keep track
of non-zero entries in the stiffness matrices and (2) manage a tesselation of the domain suitable for evaluation
of the associated integrals.

In traditional, piecewise-linear elements, non-zero entries in the stiffness matrix are trivially identified
with the edges of the FE mesh. When using higher order B-splines or subdivision basis functions their
enlarged support implies that there are further interactions, which must be identified and managed. Addition-
ally, interactions induced between active members of the refinement hierarchy lead to inter-level interactions.
Similarly, for numerical integration, the cells of the FE mesh are a suitable tesselation when using piecewise
linear elements, while for the basis refinement methods suitable tesselations must be explicitly constructed.

Some of these issues were confronted by earlier researchers who wished to enrich cubic B-spline tensor
product surfaces with finer functions in selected regions. This was done by enfoufiegregionf control
points which were not allowed to moviedrsey and Bartels 1988/elch and Witkin 199Por through explicit
wavelets which were resolved into B-splines based on the refinement relatiotter and Cohen 1995

In Chapter4 we will explore these issues. First, however, we illustrate the ideas of nested spaces and

basis refinement using popular as well as recently-introduced approaches to discretizing PDEs.
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Chapter 3

Discretization Zoo:
Constructions for Nested Spaces

We build a trial space by activating scaling and detail function from the nested spaces; we evaluate integrals
using elements and tiles. As a whole these structures—scaling functions, details, elements, and tiles—form
amultiresolution discretizationUntil now we have presented these idegageneral Now we are concrete.

We describe well-established as well as more recent discretizations (finite- or spectral-elements, wavelets,
etc.), and discuss the properties which characterize them (symmetry, locality, etc.). We examine several

discretizations in more depth, mapping them onto the multiresolution structures of Chapter



24
3.1 Overview

We discuss only discretizations constructed explicitly from basis functions, i.e., the unknown fur{atjos
approximated by a finite linear combination, u;¢;(x), where the basis functions (x) are a subset of some
larger (infinite) set of scaling and detail functions which are determinpdori. Particular discretizations

use particular families of functions, e.g.,

spectral discretizations polynomials or sinusoids
finite element discretizations piecewise polynomials
spline discretizations spline basis functions
subdivision discretizations subdivision basis functions

wavelet discretizations scaling functions and wavelets

There are many possible discretizations. Each has strengths and weaknesses; each is appropriate for some
problems and not others. How to choose one? Consider the ideal charactdéostigsrticular application

of the discretization. No discretization is ideal: trading one desirable property for another is part of the game.

3.1.1 Characterizing Discretizations

A discretization is characterized by many properties. These are the most important:

Single- vs. Multi-resolution A discretization may display the data $ingle-or multi-resolution, e.g., so-

callednodalfinite-element bases display data at a single resolution, whereas wavelets display data at multi-
resolution. Some single-resolution discretizations can be easily generalized to multi-resolution, perhaps in
more than one way, e.g., nodal finite-elements generalize to hierarchical finite-elements or to multiscaling
bases. Single-resolution methods may suffice for applications which don't require (the implementation and

computational overhead of) adaptivity.

Coefficients Characterize the coefficients of a discretization with a qualitative description, e.g., the coef-
ficients,u;, control: the spectral componentguw;), as in Fourier's method; or, the function valuesz;),
at specific pointsg;, as in interpolating discretizations; or, the derivativBs;(x;), at specified points, as
in Hermite splinesfoley et al. 1995 or, the mean value of the functiofi{2;|| ! fQ u(zx)dz, over specific
subdomains(;, as in Finite Volumes\ersteeg and Malalasekera 1998ome schemes have more than one
kind of coefficient: Hermite splines have coefficients, ...,uy andwvy,..., vy, Which control function
values and derivatives respectively.

In the context of a particular physical PDE the coefficients carry physical meanings. Function values are
displacements in elasticity, and temperatures in thermal conduction. Derivatives are strains and forces, and

thermal gradients. Engineers choose discretizations which carry meaningful and control-able coefficients.
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Elasticity practitioners prefer discretizations with displacements. The most easily understood (but not always

most desirable!) set of coefficients belongs to interpolating discretizations.

Interpolation In aninterpolating discretizatiorthe coefficientsu, ..., uy, associate to domain points,
z; € Q, and thereat fix the function value, i.e.(z;) := u;. Some interpolating discretizations also carry
other coefficientsyy, .. ., vy, which may for instance specify the derivatives at the points|nterpolation
comes when the basis functions satisfy iftenecker Delta propertyi.e., ¢;(z;) := d;;.

In contrast, armpproximating discretizatiodoes not have the Kronecker Delta property and does not (in
general) interpolate its coefficients. Generally, interpolating methods introduce undesirable oscillations into

the approximate solutior;yu(x), whereas approximating approaches tend to avoid this.

Locality A method hagparametric locality(or spatial locality) if it associates the finite-basis coefficients,

u;, to localized regions of the domaify,. For example, point-sampling methods associateuth® points

xz; € Q; finite-element methods associate thego mesh nodes; € Q2 and to their incident mesh elements;
meshless methods associate th¢o (e.g., radial basis-)functions centered:at Q. In all these examples,

the u; inherit the locality of their associated basis functions (here we view point-sampling as a finite-basis
discretization using as basis functions the Dirac distributions centereg.afA basis functiony;(z), is

localized about:; € ©2 whenever we have an estimate of the type

lpi(x)| < Cr(I+ |z —2))™™, Vm>0.

Similarly a method haspectral localityif it associates the; to localized bands of the spectral domain,

e.g., Fourier methods associate everyto a single frequency. The Heisenberg principle states that we
must trade spatial- for spectral-locality. Wavelets carry coefficients with (a compromise between) spatial and
spectral locality.

Locality gives efficient algorithms. When it comes in the form of multiresolution, it also gives sparse,
spatially- or spectrallyadaptive representations of multiscale data, with double benefit: first, multiresolution
representations of data often provoke novel insight into the modeled phenomena; second, they are compu-
tationally economic. The second point cannot be stressed enough: it is the secret to the efficiency of the

algorithms in Chaptet.

Sampling Uniformity A method with parametric locality hggrametrically-uniform samplingshenever
the coefficientsy;, are localized at equal intervals over the parameter domain, e.qg.,qf #ie equidistant
from their mesh neighbors. Similarly spectrally-localized coefficients, uniformly distributed over the spectral
domain, givespectrally-uniform sampling
Consider, for example, wavelet and subdivision methods (see Seé&tidasd 3.5 respectively). Both

give multiresolution discretizations, with consequent spatial- and spectral-locality at each level of resolution.
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Wavelets are typically pursued in the regular setting, i.e., over regular meshes with uniform samples. In
contrast subdivision discretizations are usually semiregular and non-uniform.
In some settings uniform sampling introduces additional symmetries with consequent nurserical

perconvergence.

Dimension A discretization may belimension-specifje.g., bivariate quartic box splines are appropriate
for two-dimensionatlomains. Alternatively, it iglimension-independent.g., tensor product quadratic B-

splines of dimensio are appropriate foD-dimensionablomains.

Tessellation A meshlessnethod does not tesselate the domaimesh-basednethod partitions (an ap-
proximation of) the domain into simple pieces, e.g., intervals of the real line in one dimension; rectangles,
triangles, etc.. in two dimensions; tetrahedra, hexahedra, etc.. in three dimensions; etc.. By design, mesh-
based methods have spatial locality: they associate the finite-basis coeffigigrits mesh entities, e.g.,
coefficients may “live” at mesh faces, edges, or vertices(=nodes). In contrast, there are meshless meth-
ods with and without spatial locality, e.g., Radial Basis Funct®ahmann 200Band Fourier discretiza-
tions [Strang and Fix 1973espectively.

Some meshes arefinable tilings they can be repeatedly refined into finer, nested, self-similar refinable

tilings. Lave proved thaR? has only eleven refinable tilings; each is isohedral and at each vertex equiangled.

Connectivity Mesh-based methods may be characterized by the incidence relations between mesh ele-
ments. In two dimensions, a meshregular if all like vertices are equivalenced, e.g., a triangle mesh is
regular if all interior vertices have valence six and all boundary vertices have valencadoireqularor
quasiregulat if the mesh is regular away from some (small) set of isolated vertices; otherwise the mesh is
irregular. Regular connectivity invites economy of computation and storage at the expense of flexibility of-
fered by irregular connectivity, e.g., regular connectivity meshes cannot tesselate domains of arbitrary genus;

semi-regular connectivity strikes a compromise.

Parametric Support A discretization is characterized by the parametric supaitp(p;(x)) C Q, of its

basis functions. Is it compact? Is the bound@Smpp(p;(x)), open or closed? Is the support fractal, i.e.,

of finite measure but with boundary of unbounded length? What is the diameter of the parametric support?

Sometimes the diameter for coefficiantis expressed as anring? around the mesh entity associated:jo
Consider, for example, Loop’s triangle subdivision and KobbefBdriangle subdivisionobbelt 2000a

Loop 1987. In both schemes, each coefficien, associates to a vertex;, and the corresponding paramet-

ric support ofy;(x) is compact, centered aroung, and has an open boundary. In Loop’s scheme the basis

1 While less popular, some prefeuasiin direct analogy to crystalline structures.

2Theone-ringof faces around a mesh vertex are the mesh faces incident to the vertex. In generainthef faces around a vertex
are the faces in or incident to the— 1-ring. One may also refer to thane-ringof vertices around a vertex; usually the context makes
the writer’s intention clear.
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functions,p; (), are supported on the two-ring of the associated vertex. In Kobbelt's scheme their parametric
support is a fractal subset of the two-ring.

For discretizations that define a hierarchy of mesh levels, we may ask whether the support is diminishing
(recall Section2.2.4. Compact diminishing support leads ¢ontrolled overlapping a pointz € Q is
contained in at mosd/ € Z supports of basis functions from leveg] with M independent of: andp.

Controlled overlapping gives a bound on per-coefficient computation and storage.

Smoothness A discretization is characterized by tlsenoothnes®f its basis functions, equivalently by

the smoothness of the generated trial spadgs, There are different measures of smoothness, including
C* (parametric continuity)(z® (geometric continuity), and tangent-plane continuity. The commonest is
parametric smoothness: a function is piecew@Seover a partition of the domain whenever its restriction
onto each partition-subdomain hasontinuous derivativesStrang and Fix 1973 e.g., aC’-everywhere
function is continuous over its domain; Loop’s basis functiong&reexcept at irregular vertices A particular
PDE, coupled with particular numerical method, will rule out discretizations that do not have some sufficient

smoothness.

Approximation Power A discretization is characterized by igecuracy i.e., fixing the number}V, of
coefficients,uy, ..., un, what is the approximation errofju(z) — Pyu(z)||, for this compared to other
discretizations? Typically, accuracy is measuregalynomial exactnessa discretization whicHocally
reproduces polynomials of ordgris said to haveapproximation powep. Write the Taylor series ofi(x)
about a pointg;: the polynomial with exponent is the first to give an error. Expressions of this form are

common in specifying the accuracy of a discretization:

OPu(x)

lu(z) = Pyu(z)|l < C(Ax)" || =21l

whereC is a constant and\z describes the parametric distance between coefficients, e.g., in one dimension,
Az = maxi<,«n(xi+1 — x;). When the details are orthogonal to the scaling functions, the Strang-Fix

condition is thathe details have vanishing momentd\Ve will say more in Sectio8.2

Local Boundedness A mesh-based discretization satisfies toavex hull propertywhenever the function

value over a subdomaif);, is bounded by neighboring coefficient values, . . ., ux, €.9., the value over a
Linear Finite Element is bounded by the coefficients incident to the element. An interpolating discretization
that has the convex hull property must have< p < 1, i.e., it cannot have high-order smoothness nor
accuracy. This can be a severe limitation for interpolating methods! In contrast, approximating approaches

may be smooth, high-order accurate, and have the convex hull property.
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Symmetry A discretization may be characterized by the symmetries of its basis functions. For example,
the Fourier method’s basis functions,(z) := sin(iz), are invariant under the translations 27k. In mesh-
based methods, symmetries are often tesselation-dependent, e.g., a regular grid with uniform sampling will
have translational symmetries which are lost with non-uniform sampling.

Multi-resolution discretizations may have symmetries in scale, e.g., the set of Haar scaling functions
(Section3.2.3, U, V), is closed under dyadic scaling, i.g.(z) € U,V ®) = ¢;(2z) € U,V ®).

The projection operatoi’y, is invariant under the action of the symmetry group of the discretization,
i.e., symmetries in(x) which exist also in the trial space goeeservedduring discretization. For example,
the symmetries of a cylindrical surface are preserved by some two-dimensional quadrilateral-tesselations but

not triangular-tesselations.

Orthogonality A discretization may have orthogonal basis functions, £eg;, ¢; > = 0 whenevert # j.
This gives an obvious space of dual basis functions, which are required for projeamiagzing into the
trial space, i.eq(z) — Pyu(z). Having a simple dual space is important fmrefinement, which useBy .
Practitioners often use an approximate dual space when the true dual is impractical, as is sometimes (but not

always!) the case when orthogonality is lost.

3.1.2 Formulations

Having established a discretization, there are several methods to find the best approximatjgn(z), to

the unknown solutiony(z), of the posed PDE. The most popular formulations are:

Collocation [Prenter 197pApply the PDE atN points on the domain to formulate a system\béquations
with N unknownsuy, ..., uy, €.9.,Vu(z) = b(x), x € Q C R? (with appropriate boundary conditions

matching the basis functions), becomes
ZuiV(é(-’Ifj):b(l‘j), .I‘jEQCRQ 1<j7<N.

Weak Formulation [Strang and Fix 1973Friksson et al. 1996We choose dest spacealefined by aest
basis w1 (x), ..., wy(z), and formulate ailV x N system ofweighted residual equatiortsy taking inner
products of the left and right hand sides of the PDE, &/a.(z) = b(z), = € Q C R? (with appropriate

boundary conditions matching the test and basis functions), becomes
Zui/V@(x)wj(x)dx = /b(x)wj(ac)dx, 1<j<N.

Usually the integrals are approximated via numerical quadrature. Note that the weak form simplifies to

collocation when the test functions are the Dirac delta distributionsyi;éx) = 6(z — x;).
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For clarity, our presentation of basis refinement in Chaptéscused on the trial space, however for
methods which use separate trial and test spaces the refinement framework may be applied independently to

both the trial and the test space.

Variational Formulation  [Strang and Fix 1973Frenter 197pWe express the solution,(x), as a critical
point of a (nonlinear) functionall?[u(x)], and minimize|| DE [3, u;¢;(x)] || numerically over the coeffi-

cients,u;, aided by theV partial derivatives,

OE [ uipi(z)]

. 1<j<N.
Ou; =J=

If E[-]is (approximated by a) quadratic in thethen the partial derivatives are linear and the search for the
(unique) critical point is expressed as@&nx N linear system (again!). Note that the variational formulation
is often used for highly non-linear problems; however it is not uncommon to temporarily approxiihpate
by a quadratic form inside the loop of a non-linear solver.

Having formulated a discrete problem, we invoke the appropriate numerical solver. In the case of
the linear problem of the collocated, weak, or (linearized) variational formulations, we use a numerical
linear-system solverHress et al. 1993otherwise we use the appropriate numerical optimizer or non-linear
solver [Press et al. 199Friksson et al. 1996 Because we haveestedapproximation spaces, a large body
of multi-resolution techniques is at our disposal, for instance multigrid solBens{ et al. 1988Wille 1996].

There are other popular methods which do not explicitly approximatg with basis functions. Finite-
difference Btrang and Fix 1973and discrete-operatoMeyer et al. 200Bmethods deal directly with point
samplesu,;. They do not make explicit the value of the function in between the point samples, although
downstream applications often associate (interpolating) basis functions to the coefficieats,, to portray
an approximate (piecewise) smooth solution to the user. Here we are concerned only with methods which use
finite-basis discretizations; our techniques are not immediately applicable to finite-difference and discrete-

operator formulations.

3.1.3 Summary and Preview

No single discretization fits all applications. Some problems inherently involve non-uniform samples, e.g.,
when the boundary conditions are given non-uniformly. Other problems crucial symmetries which must
not be lost, e.g., compressing an elastic cube from two ends gives compressive- but not shear-deformation.
Choose the discretization and formulation which best fit the application.

We turn now to various popular discretizations. We examine wavelets, multiwavelets, finite elements,

splines and subdivision schemes, and frame each within our framework.
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3.2 Wavelets

Wavelets (Frondelettegslittle waves) emerged in the 1980'’s as a formalization of multiscale methods devel-
oped earlier in the centunsfrang and Nguyen 19968ohen 2003ja Traditionally, the theory of wavelets
(e.g., Strang and Nguyed9964) is pursued in theegular Euclidean setting, i.e., with scaling- and detail-

functions mapping2? C R? to R, coupled with aegular, e.g., integer lattice, tessellation.

3.2.1 Introduction

Consider the nested space$”) c V() spanned by translates and dilates, over a regular tessellation of
the domain, of a singlscaling functiony(x). Furthermore, considerwaavelet subspac®(®) with special
properties: (1) it completes the coarser spac€?) + D) = V(1) (2) it is spanned by the translates and
dilates of a single, localized, zero-mean function calledtio¢her wavelet

More generally, we can have a (possibly infinite) sequence of nested gp&ées V() c V) ¢ ..,
and associated wavelet subspafe® c V' +1) such that’ ®¥) + D) = y(++1) Consequently, we can

express a spadé(®) in multiresolution:
VO£ pO 4 4 plh —yk)

that is as the sum of a coarse representation and progressively finer details. Because th& $paces
are nested, their basis functions must obey refinement rela2idh (In the wavelets literature this rela-
tion is known as thalilation equationand it is written out in a form that explicitly shows the dilation
and translation; for example Daubechies scaling function satisfies the dilation equzaisoechies 1992

Strang and Nguyen 199pb
d(x) =V2> ard(2z — k).
k

3.2.2 Theory

We interpret wavelet theory as a specialization of our (Chapterested-spaces structure. Traditionally,
wavelet theory deals with nested function spaces constructed over regular tessellations and sfaject to

additional requirementsrirst, the nesting of the spaces is characterizesidaye-invariance

Requirement 1: Scale Invariance The spaces are rescaled copies of the coarsest spéte!) consists
of all dilated functions iri/ (),

u(z) € VP o u(2z) e VP

Since the basis fo **+1) has roughly twice as many functions as thafigf), then every space and its

associated detail space have roughly the same dimensions, i.€}/ Bim~ Dim(D®)).
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Consider, for example, the sequence of nested spaces formed by progressively adding a single term to the
Fourier series. The spaces are nestednbtsgcale invariantThe frequencies must doublEhe Littlewood-
Paley decomposition, which splits the Fourier series into frequency octaves, gives nested scale-invariant
spaces.

Second, every space is characterizedlhift-invariance
Requirement 2: Shift Invariance A function is accompanied by its integer translates,
uwz) e VP sz —k) e VP | keZ.

This means that we must work with the whole lirexo < x < oo, or with a periodic interval; alternatively,

we may adjust this requirement at the boundaries to allow for finite, non-periodic, intervals.
Combined, scale- and shift-invariance mean that any funciign, € V(%) is accompanied by its dilates,

u(2Px) € VP, and their integer translate§y(2Pz — k)|k € Z} C V). In particular, we require that a

singlefunction, accompanied by its translates and dilates, form a stable basis for the nested spaces:

Requirement 3: Canonical Scaling Function There exists a scaling function(z), with {¢(z—k)|k € Z}

a Riesz basis for the coarsest space).

Consequently scale- and shift-invariance give a Riesz basjﬁ) = 2P/2¢(2Px — k)|k € Z}, for every

spaceV/ (?), The canonical scaling function obeyslitation equation
$(x) = V2 arp(2x — k) (3.1)
k
which is just another way of writing our refinement relation,
¢(p)(x) — Z ak¢;(€p+l)($)
k

in this context also called th®vo-scale equatiom explicit reference to the scale invariance of the spaces. If
(and only if) the scaling function is compactly supported, the set of non-zero coefficignis finite. In that
case, each scaling function has support of dianm@{er’) and satisfies a property obntrolled overlapping

a pointz € Q is contained in at most/ € Z supports of basis functions from levelwith M independent

of x andp. If (and only if) the scaling function is symmetric abaut= 0, the coefficients are likewise
symmetric, i.e.ax = a_g, k € Z.

Similarly, the detail spaces are spanned by translates and dilatesrbther wavelet
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Requirement 4: Mother Wavelet With Vanishing Moments The detail functions, owvaveletsare defined

as translated dilates),,(f) (x) = ¢¥(2Px — k), of themother wavelet

N
Y(@) = V2 drp(2z— k),  d= (1) o) - (3.2)
0

This is thewavelet equationThe levelp details are expressed by combining linearly the Iéyel-1) scaling
functions with weightsl,, obtained by amlternating flipof the refinement relation coefficients,. Wavelets

always have integral zero. In general, they h&ve 0 vanishing moments:
/miw(x)dx:m 0<i<P.

Wavelets withP vanishing moments come from scaling functions with approximation ofjere., the
spaced’ (@) reproduce perfectly piecewise polynomials up to degred. See also the Strang-Fix condition,
Section3.4.

These four requirements characterize the subclass of nested-spaces structures wiacklatesystems

Our theory (Chapte®) and algorithms (Chaptel) do not rely on these four characteristics.
There are other (very useful) properties that are interesting but not required. Typically, (anti)symmetries

in the shape of a wavelet mean better performance near the boundaries of the domain. Sometimes the spaces
D) are orthogonal to the spaces$?). These arerthogonal waveletsHere the direct suni/ ®) ¢ D®) =
Vv (+1) is an orthogonal sum, and the algorithms for analysis and synthesis paire simplified. Orthog-
onality is not a requirement. Other settings inclid@rthogonal waveletgStrang and Nguyen 199pdere
orthogonality of D(®) to V() is lost, but the two spaces intersect only at zero, hence it remains true that a
function inV(**1 is uniquely decomposable into component#/itt) and D(®). The structure of the direct
sum is preserved. Sometimes, we sacrifice orthogonality in exchange for other desirable properties, e.g.,

compact support, symmetry, smoothness, and approximation power.

3.2.3 Example: The Haar System

The Haar system defines a piecewise constant approximatioefrfoat scale2~? by measuring its mean
value over each intenl”) := [k277, (k +1)277],

u®) (z) = 27 /( Jul@)dz, Vo€ I kez.
JIP

3Closed on the left, open on the right.
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This is theL?-orthogonal projection ofi(x) onto the space
V®) = {u(z) € L? | u(z) is constant ovef ", Vk € Z} ,

spanned by the orthogonal basis induced by the canonical Haar scaling fupctior= x[o,1], Wherex(; 4
is the box function defined as unity ovigr ¢] and zero elsewhere.

The Haar scaling function satisfies the dilation equati8ri)( with two non-zero coefficientsy = a1 =
1/+/2. Equivalently, it satisfies the refinement relation with two non-zero coefficiééﬂs: 1/V2, j €

{21, 2i + 1}. Following 3.2), we flip signs of odd-indexed coefficients, arriving at the wavelet equation

() = $(22) — 622 — 1) = X(0,1) — X(3.1]
or equivalently, a definition of the details in terms of finer scaling functions:

(P _ (p+1) (p+1)
¢ip - ¢2€ ¢212)+1 .
The Haar scaling functions are constructed over a tesselation: the construction of the elements follows

naturally. To every nested spaté?) we associate a partition of the domain into elements,
E® . = {e! (®) . I(p) lieZ}.

The restriction of any scaling functiapf”’ € V() onto any element of(®) is constant, i.e., &erysimple
form! The natural support set of a Haar scaling function is a single elerﬁ(mj’f’)) = {sl(.p)}. Similarly, the
restriction of any deta'dbgp) e D) onto any element of the finer partitioB**1) is constant. The natural
support set of a Haar wavelet has two eleme8itg:\”) = {521, L1},

Finally, we define the tiles. Only the resolving tiles require clarification (the element tiles are always the
element$ )). In this case, the elements satisfy a nesting relataéﬁ% = 521“) U séf“) Our job is easy.
The levelp resolving tiles are the levép + 1) elements.

With these definitions in place, we have everything we need to apply the algorithms of Chaptae

Haar system.

3.3 Multiwavelets

Haar’s wavelets are orthogonal, antisymmetric, compactly supported, and piecewise constant. Often we want
similar smoothermwavelets. Daubechies proved that we won't find them. Higher-order wavelets cannot be
simultaneously orthogonal, (anti)symmetric, and compactly supported. This is too much to asksfngiea
mother wavelet. These properties can peacefully coexist if we turn to the themmytisfcaling functions and

multiwavelets.
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3.3.1 Theory

We start withmultiple canonical scaling functiongy (z), . . . ¢ (z). With careful designall these functions
have both symmetry, orthogonality, vanishing moments (smoothness), and compactSipgaret al. 1999
Furthermore, the support diameter of single wavelets grows with the number of vanishing moments and the
smoothness; multiwavelets typically have shorter supports than single-wavelets thus offering another design
parameter to control support diameter.

Each canonical function is accompanied by its translated and dilated cIcm(%él <i:< L, je

7, p > 0. Every spacé’ (?) has as its basis the levglelones of thel. different canonical scaling functions:
L
CER S WL AR I
i=1 j

We have amatrix dilation equation,
B(z)=V2> Ap®(2z—k),
k

where® = [¢; ¢ ---¢1]T, and the scalar coefficients;,, of (3.1) have been replaced by matrice;.

Equivalently, the refinement relation is

¥ (z) = 3" A2V (2) .
k

In general, for a particular < ¢ < L, the children of¢§f;?(z) are a mix ofall L kinds of clones of; ... ¢,
notjust clones of; (z).

Now there arel kinds of wavelets,

where® = [¢; 95 ---17]T and the scalar coefficientdy, of (3.2) have been replaced by “high-pass”

matricesDy. Every mother wavelet is expressed as a linear combination bfeghonical scaling functions.

3.3.2 Example: Haar’s Hats

Building on the exercises in Strang and Nguyen, we present a simple example of multiwavelets based on
Haar’s scaling functions.

We extend Haar’s space of discontinuous piecewise constants to the space of discontinuous piecewise
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Ve = {u(x) linear overI” | i Z}

oo+ Yot | o
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]

spanned by translates and dilates of two canonical scaling functions (see &Eure

Mean: ¢1(z) = xj0,1] =

Slope:

$2(z) =

1 0<z2<1

(the usual Haar box)

0 otherwise

2r—1 0<z<1

(antisymmetric line with 1 vanishing moment)

0 otherwise

0.

5

1.

5 2 -1

Figure 3.1: The “Haar’s Hats” system hia#o cannonical scaling functions, corresponding to (left) mean and

(right) slope.

There are two mother wavelets, orthogonal to each other as well as to the canonical scaling functions, and

piecewise linear ovelél) andIl(l) (see Figures.2):

Symmetric: 1 (x) =
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The two canonical scaling functions satisfy the matrix dilation equation
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-1 -0.5 0.5 1.5 2 -1 -0.5 ofs 1 1.5 2
-0. -0.5
-1 -1

Figure 3.2: The “Haar's Hats” system hia#o mother wavelets, (left) symmetric and (right) antisymmetric.
and the two mother wavelets satisfy the matrix wavelet equation,

Y1 () 0 1 ¢1(22) . 0 -1 ¢1(2z — 1)
¢2(T) 0 1 ¢2(2$) 0 1 ¢2(2x—1)

Following the pattern for the original Haar system: the two scaling functions are constructed over a

tesselation, leading naturally to a partition of the domain into elements,
EW = {W .= iz},

associated to every spabe?). Note that these are the elements of the original Haar system. The restriction
of any scaling functior@ﬁ’f} e V@ or (;s;{’g e V®) onto any element oE(®) is linear hence simple (buiot
constant like the original Haar function). Similarly, the restriction of any datfgi)l e D) onto any element
of the finer partition E®+1) | is linear.

The natural supports of the scaling and detail functions are the same as in the original Haar system. The
natural support set of either kind of scaling function has one elem‘emff’)) = {ag”)}. The natural support
set of either kind of detail has two eIemenfs{:z/)Z(p)) = {5(21;“), sgﬁ?ﬁ)}. Since the elements are the same as
for the original Haar system, then so are the tiles. The Igvekolving tiles are the level + 1) elements.

With these definitions in place, we have everything we need to apply the algorithms of Chapthe

multi wavelet “Haar’s Hats” system.

3.4 Finite Elements

Consider a tesselation of the domain, e.g., a two-dimensional triangle mesh. The finite element space consists
of all functions which are piecewise polynomials of some ongere., the restriction oPyu(x) onto any
element is a polynomial of degree- 1.

The mesh elements diiaite: the restriction ofPyw(z) onto an element is determinedly by coefficients

contained in the elemente., {u;|z; € Qelem, 1 < ¢ < N}. The approximation is locally determined. Its
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value depends only on coefficients on the interior of the element (hence unique to that element) and the
boundary of the element (thus shared with incident elements).

Equivalently, the basis functions are chosen such that they have a small support, covering at most all the
elements incident on a mesh vertex. Each basis function is defined by its restrictishdffeefunctiopover
each element in its domain of support, with sooeenpatibility conditiorfor the interfaces between element
subdomains, e.g., continuity along a face between two volume element& {feonforming elements in
R3), equality of the mean value of the shape function on both sides of a @oeifeix and Raviart 1973
Rannacher and Turek 199& its normal componenfaviart and Thomas 197Brezzi and Fortin 1991

In general there are two kinds of coefficients, corresponding to (a) function values (interpolated points),
with associated basis functions satisfying the Kronecker Delta property, and (b) function derivatives (inter-
polated tangent points, curvature points, etc..), with partial derivatives of the basis function satisfying the
Kronecker Delta property. The finite element space consists of continuous functions if (and only if) every
mesh node(=vertex) carries an interpolated coefficient. This is the typical compatibility condition for the
most common flavor of finite elements. Similarly, the space consist8 déinctions if the nodes carry also
the appropriate tangent coefficients. Thus, by choosing to place coefficients on nodes, boundaries between
elements, or the interior of an element, one may introduce some independence between the element-local
accuracy versus the global smoothness.

A finite element mesh, on its own, is single-resolution. Of the various strategies for introducing multi-
resolution,element splitting—-mesh division—is the commonest. Consider an element on its own, i.e., let
Qelem be temporarily the entire domain. Divide dyadically the element into progressively finer regular uni-
form tesselations: each sub-element carries dilations of the original polynomial basis. The coarsest element’s
basis functions are the multiscaling functions of a multiwavelet system! This multiwavelets are local to (and
different for) every element. In summary, for every elemarisolationwe have a complete construction of
multiresolution finite elements.

Considering elements in isolation leads to problematic (lack of) smoothness and accuracy at the element
boundaries duringdaptiverefinement. The theory of subdivision extends multi-scaling functions to irregular

domains; with this theory in place we will return to this topic, considesdtighe elementsotin isolation.

3.5 Subdivision

Until now we have pursued the theory of refinable functions irrégelar Euclidean setting, i.e., as functions

from R? to R, coupled with a regular tesselation. In this case functions are linear combinations of their
own dilates. In contrast, we pursue here a more general formulation: consider arbitrary topology surfaces
and subsets dR?; in both settings the domain will in general not admaitjular tesselations. We need a
broader context: the theory and algorithmsobdivisionprovide such a framework punsbery et al. 1997

Zorin 200Q Zorin and Schider 2000Dyn and Levin 2002 In this case the finer level functions are not all
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strict dilates of a coarser level function, but the subdivisitencilsstill supply the basic ingredients for the

refinement relation.

3.5.1 Theory

The basic ingredients atepological-andcoefficient-refinement operatoiscting on théopological entities

andcoefficientsrespectively, of anesh

Mesh A meshconsists of sets of topological entities together with the usual incidence relatierises

V = {v;}; edgesE = {e;}; faces F' = {fi}; and (in 3D)cells C = {¢;}. We assume that the incidence
relations define a manifold (with boundary). Typical examples include triangle, quad, tetrahedra, and hexa-
hedra meshes. The term (megtementrefers to a highest-dimensional topological entity, i.e., face in the

bivariate and cell in the trivariate setting.

Coefficients The mesh carriesoefficientsassociated with basis functions. These coefficients may describe
the geometric shape, e.dz,y) € R? or (x,y,2) € R? or functions defined over the shape such as dis-
placement, density, force, etc. Coefficients may “live” at any of the topological entities (and more than one
coefficient may live on a given entity). Most of the time coefficients will be associated with vertices; some
schemes have coefficients associated with elements. Similarly, polynomials over individual elements will

often result in coefficients associated with elements.

Topological Refinement A topological refinemerperator describes how topological entities are split and
a finer mesh constructed with them. In developing our theory, we corglioleal refinement (all entities are
split); in practice we implement adaptive refinementaay evaluatiorof a conceptually global and infinite
refinement hierarchy. Most topological refinement operéspii elements or vertices (Fig.3). Less typical
(but accommodated here) are 4\&ho and Zorin 200[land /3 [Kobbelt 20004schemes.

By OB

Figure 3.3: Examples of topological refinement operators: quadrisection for quadrilaterals and triangles.

Coefficient Refinement A coefficient refinemerdperator associated with a given topological refinement

operator describes how the coefficients from the coarser mesh are used to compute coefficients of the finer

4 Note: Yannis Ivrissimitzis at MP| Saaricken (http://www.mpi-sh.mpg.deivrissim/) is doing work on decomposing the topo-
logical operators into atomic operations. Topological refinements and associated refinement relations may consequently be constructed
as repeated simple atomic operators.
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mesh. We assume that these operators are linear, finitely supported, of local definition, and depend only on

connectivity. Typically these are specifiedsagdivision stencilésee Figure.4).

Subdivision Scheme A subdivision schemis a pairing of topological- and coefficient-refinement opera-
tors. Examples of common subdivision schemes include linear splines over triangles or tetrahedra; bilinear or
trilinear tensor product splines over quadrilaterals and hexahedra; Doo-38B&, [Catmull-Clark 1973

and their higher ordeiZorin and Schisdder 2001 Stam 2001 and 3D [Bajaj et al. 2002bBajaj et al. 2002k
generalizations; LooflP87, Butterfly [Dyn et al. 1990Zorin et al. 199§ and+/3 [Kobbelt 2000hschemes

for triangles. In the case @frimal subdivision schemes, i.e., those with coefficients at vertices and splitting

of faces/cells as their topological refinement operator, we distinguish betveeandodd coefficients. The

former correspond to vertices that the finer mesh inherits from the coarser mesh, while the latter correspond

to newly created vertices.

Figure 3.4: Examples of stencils for coefficient refinement. Here the case of quartic box splines with the odd
stencil on the left and the even stencil on the right, indicating how the highlighted points in the center are
computed as weighted averages (nhot normalized here) of neighboring points.

Basis Function A basis functioris the limit of repeated subdivision beginning with a single coefficient set
to unity and all others set to zero. In this way a basis function is associated in a natural way with each entity
carrying a coefficient, such as vertices in the case of linear splines (both triangles and tetrahedra) or Loop’s

scheme, and faces in schemes such as Doo-Sabipert’s multi-scaling functions1993.

Refinement Relation A refinement relatioris observed by all functions defined through subdivision. It
states that a basis function from a coarser level can be written as a linear combination of basis functions from

the next finer level

o (2) = ag Ve (@) (3.3)

k
wherej indicates the level of refinemeni & 0 corresponding to the original, coarsest mesh),anespec-
tively k& index the basis functions at a given level. The coefficietfiwﬁ” can be found by starting with a

single 1 at positioni on levelj, applying a single subdivision step and reading off all non-zero coefficients.

5This is not the usual way Doo-Sabin (or other dual schemes) are described, but our description can be mapped to the standard view
by dualizing the meshZorin and Schidder 2001 From a FE point of view this turns out to be more natural as it ensures that elements
from finer levels are strict subsets of elements from coarser levels.
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Note that theaz(fl) generally depend ofy but for stationary schemes they do not depend.oBince we
assume that the subdivision scheme is finitely supported only a finite numbl%rﬂﬁ‘ will be non-zero. In
the case of multi-scaling functions we will have matrix valuéﬁi*”. Thechildren of a basis functioare
given by

o) = o Val T # 0,

while theparentsfollow from the adjoint relation
cr (o) = (o Vo e clof "))

Natural Support Set Recall that thenatural support setS(qﬁEj)), of a basis function is the minimal set of
elements at level, which contain the parametric support of the basis function. For example, linear splines,
¢>§j ) are supported on the triangles (tetrahedra) incident & mesh refinement levgl a Loop basis function

has the 2-ring of triangles surrounding the given vertex as its natural support s&.8rignd a Doo-Sabin

basis function, which is centered at an element in our dualized view, has a natural support set containing
the element and all elements that share an edge or vertex with it. The adilb(ei,), returns the set of

basis functions whose natural support contains the elenjefihedescendants of an eleme(c?), are all
elements at levels- j which have non-zero intersection (in the parametric domain) with the given element.

Theancestorrelation is defined through the adjoi®®; (¢

B

Figure 3.5: Examples of natural support sets. Left to right: linear splines, Loop basis, bilinear spline, and
Catmull-Clark basis.

3.5.2 Example: The Loop Scheme

In 1987, Loop proposed a primal subdivision scheme for manifold triangle meshes, generalizing the quartic
Box-Splines [Loop 1987 de Boor et al. 1993 We summarize the salient features of Loop’s subdivision

scheme and describe the constructions necessary to use this scheme as part of our adaptive solver framework.

Description Loop uses simplicial complexes, or “triangle meshes,” with vertitess {v;}, edgesE =
{e;}, and triangular faced” = {f;}. The incidence relations define a 2-manifold (with boundary). The
initial (coarsest-level) mesh is denoted h§(?).

The topological refinement operator bisects edges and quadrisects faces, as shown i8.&iglines

operator maps the levelmesh to the leve(p + 1) mesh, thus constructing an infinite sequence of meshes
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Figure 3.6: Loop’s subdivision scheme is based on triangle meshes. Topological refinement, using edge
bisection and face quadrisection, produces a sequence of progressively finer mgShes/(), M2 ..

MO M@ MR The associated topological entities corresponding to every h&ghare denoted
V@) E®) F®) etc.. Thisis grimal scheme, i.e.y?tD) ¢ V() The introduced vertice® ®+1\ V)
are theoddvertices at levelp + 1); the other vertices areven

=3/8k
1 g —O0—
1-kB
3 3 B 6
B 1 . 1
1 - [ e

boundary

Figure 3.7: Coefficient refinement given by stencil. Note this is linear, finitely supported, of local definition,
and depend only on connectivity.

Loop’s meshes carry coefficients assigned to the vertiééd, Consequently, every basis function is
associated to (and centered about) a vertex, as shown in Hdir€he coefficient refinement operator is a
linear map from the coefficients &f®) to those ofV/(?*1). Its action is easily summarized by stencils for
even and odd vertices, shown in Fig&.&.

For numerical quadrature we require a means to evaluate exactly the limiting value of subdivision at
specific points on the domain, i.e., at some given point on or inside a mesh entity. Z0&# pas re-

cently demonstrated a particularly flexible approach to exact evaluation; building on the pioneering work of
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Figure 3.8: The control mesh for Loop’s subdivision scheme carries coefficients assigned to vertices. Shown
is the basis function associated to the indicated vertex.

Stam Btam 1998 Zorin shows how to define evaluation operators for parametric families of rules without
considering an excessive humber of special cases.
This completes our description of Loop’s subdivision scheme. We turn to the additional structure required

to implement algorithms for natural refinement.

Additional Structure The levelp scaling functions are the basis functions associated to the gevel-
tices, V(). The levelp details are the levelp + 1) odd basis functions. It is straightforward to show that
consequently’ ® @ D) = y(#»+1): hered denotes a direatot orthogonal sum. The natural support set of
a scaling or detail function associated to venlzé?? is thetwo-ring aroundvz(p), i.e., theone-ringaroundy(®)

are the levep faces incident t@§p>, and the two-ring adds also the faces incident to the one-ring.

The integration elements associatediit?) are the levep faces,F(?). The restriction of any scaling
function onto anyregular element is a quartic box spine with well-established rules for numerical quadra-
ture [de Boor et al. 199 i.e., the scaling functions take on a simple form over every (regular) element. An
element is regular if its three incident vertices have valence six. In practice, our experimentation has shown
that, for purposes of numerical integratiafi, elements may be treated as regular without destroying conver-
gence or accuracy.

Finally, we define the tiles. Only the resolving tiles require clarification (the element tiles are always
the elementsgp)). Since our elements are constructed by quadrisection, there is a natural nesting relation
between every level-element and its four subelements on legeh- 1). Whenever such a nesting relation
holds, we define the resolving tiles trivially. The leyetesolving tiles are the levél + 1) elements.

With these constructions we are equipped to apply the algorithms of Chaptelcoop’s subdivision

scheme.
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3.5.3 Example: The Doo-Sabin Scheme

In 1978 Doo and Sabin presented a subdivision scheme generalizing bi-quartic B-Spline refinement to the

setting of irregular meshe®po and Sabin 1978

Duals In contrast to our previous examples of primal schemes, the Doo-Sabin is usually preserdadlas a
scheme The namedual comes from the observation that subdivision is performed on the faces dtigie
mesh
The dual of anV-dimensional mesh is constructed by associating agimensional entity of the origi-
nal primal meshto an(N — d)-dimensional entity of theual meshkeeping all the incidence relations, i.e.,
two vertices incident (connected by an edge) in the primal mesh have two corresponding dual faces incident

(along an edge) in the dual mesh, and vice versa.

Description The Doo-Sabin scheme starts with a polygonal mesh with vertiées, {v;}, edges,E =
{e;}, and polygonal faces’ = {fi}. The incidence relations define a 2-manifold (with boundary). The
initial (coarsest-level) mesh is denoted b#®. The dual mesh hacesV = {i;} corresponding to the
primal verticesV; edgesF = {é;} corresponding bunot identical to the primal edge¥’; and vertices
F={fi}

Doo-Sabin’s topological refinement operator acts on the dual fécesplitting every dual face; into
K dual faces, wherds is the valence of;, i.e., the number of sides to the faggidentically the number
of edges incident t@;. Other descriptions of Doo-Sabin (equivalently) represent topological refinement as
splitting everyprimal vertex into K primal vertices. In describing the constructions needed for our natural
refinement algorithms we will find the dual face-split view more useful than the primal vertex-split view.

Repeated application of the refinement operator produces a sequence of primali&8has() /()
with corresponding duals.

Like the two previous primal exampRdoo-Sabin’s meshes carry coefficients assigned to the vertices,
V. Equivalently, the coefficients are assigned to the dual facesEvery basis function is associated to a
dual face (equivalently a primal vertex).

The coefficient refinement operator is a linear map from the coefficierits®fto those ofi 1) Its
action is easily summarized by a single stenbib¢ and Sabin 1978

With this basic description of Doo-Sabin’s scheme, we turn to the additional structure needed for our

refinement algorithms.

Additional Structure  As usual, the levep scaling functions are the basis functions associated the jevel-
dual facesp). Unlike the earlier primal schemes, which gave us “odd” and “even” and a natural choice for

details, the dual schemes do not inherit vertices from the coarser mesh. We lack an obvious way to define

6This is a coincidence: in general both primal and dual schemes may carry coefficients assoaiayedgological entity.
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the details. Since the spac&s?) are nested, and we have proper (scaling function) bases, we can surely
find bases for the detail spacds(?) := VP+D\V ), Since we do not see an obvious choice, We shall
not explicitly declare a detail basis. This does not prevent us from continuing and applying our algorithms,
although refinement by adding details will remain undefined until we choose some basigfakleanwhile,

we may refine by substitution.

In contrast to the previous primal examples, here we choose as thelelarhents thelual faces,V.
Consider a basis function associated to a regular vertex (i.e., a vertex with valence four): its restriction onto
any element is a quadratic polynomial. For primal schemes, basis functions have simple forms over primal
faces. For dual schemes, basis functions have simple forms over dual faces.

The natural support set of a scaling function associated™ois the one-ring ofi®), i.e., ) and all
dual faces incident t6(”) along a dual edge; equivalently, the dual of the one-ring ®f

As in our previous examples, the levgl-+ 1) elements are nested in the leyeklements, i.e., the
parametric support of a leveldual face may be expressed as the disjoint union of the parametric supports of
some leveltp + 1) dual faces. As before, the levglresolving tiles are the level + 1) elementsy (#+1),

This structure allows us to apply our natural refinement approach to Doo-Sabin’s dual scheme.

3.5.4 Finite Elements, Revisited

Recall that considering finite elements in isolation leads to problems at the element boundaries during adap-
tive refinement.

Consider the basis functions associated to finite element coefficients. Those coefficients internal to an
element associate to basis functions which vanish outside the node, i.e., their parametric support is contained
in the element. Those coefficients on the boundary of the element associate to basis functions which are
supported overnultiple) incident elements. To these basis functions dividing an element in isolation is
anathema!

Follow the framework of subdivision: divide dyadically each @weéryelement. The multiscaling func-
tions will obey a matrix refinement relation. It will not be the dilation and translation of the traditional regular
setting, rather the more general relation of subdivision theory. Locally at every element, the subdivision is
dyadic as before; globally the concept is meaningless—we are not in the regular setting anymore, Toto! Ob-
serve that the generated children functions are always the locally-supported locally-defined basis functions
of afinite-element mesh.

Having produced a multiresolution basis by considering subdivision of the aeahwhole never turn
back. Adaptive refinement will come from choosing basis functiooisisolating and splitting individual

elements.
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Conclusion We reviewed the theories of wavelets, multiscaling functions, finite elements, and subdivision.
These far-reaching techniques all serve as constructions for multiresolution discretizations. With so many

variations in properties such as locality, smoothness, accuracy, and symmetry, the application must guide the

choice.
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Chapter 4

Data Structures and Algorithms

What are needed in the basis refinement strategy are efficient data structures and algorithms to (a) keep
track of non-zero entries in the stiffness matrices and (b) manage a tesselation of the domain suitable for
evaluation of the associated integrals. We provide a semi-formal specification for these requirements, develop

the relevant theorems and proofs, and invoke these theorems to produce concrete, provably-correct pseudo-
code.
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4.1 Preview

In traditional, piecewise-linear elements, non-zero entries in the stiffness matrix are trivially identified with
the edges of the FE mesh. When using higher order B-splines or subdivision basis functions their enlarged
support implies that there are further interactions, which must be identified and managed. Additionally,
interactions induced between active members of the refinement hierarchy lead to inter-level interactions.
Similarly, for numerical integration, the cells of the FE mesh are a suitable tesselation when using piecewise
linear elements, while for the basis refinement methods suitable tesselations must be explicitly constructed.
Some of these issues were confronted by earlier researchers who wished to enrich cubic B-spline tensor
product surfaces with finer functions in selected regions. This was done by enforcing “buffer regions” of con-
trol points which were not allowed to movEdrsey and Bartels 198®%/elch and Witkin 199Por through ex-
plicit wavelets which were resolved into B-splines based on the refinement relatotdr and Cohen 1995
These earlier approaches are specialized instances of our algorithms and we now present our general

treatment which relies solely on refinability.

4.2 Specification

To ground our preliminary discussion, we put down a framework that might be used in an animation applica-

tion to adaptively solve a nonlinear initial value problem using basis refinement.

4.2.1 Context

IntegratePDE

1 While t < t.nqg

2 predict: measure error and construct sBts and 3~

3 adapt:

4 B:=BUBT\B~

5 maintain basis: remove redundant functions frBm
6 solve:R;(u;) =0

7 t:=t+ At

Each simulation step has three stages: predict, adapt and solve. First, an oracle predicts which regions of
the domain require more (resp. less) resolution, and constructs a set of basis functions to be introduced to
(resp. removed from) the approximation space (line 2). Next, the approximation space is adapted: the set of
active basis functions is updated (line 4), functions redundant to the basis are removed (line 5). The removal
of redundant functions ensures that the8é$ linearly independent; in certain settings this is important for
numerical stability, in others this step may be skipped. The solution atttiséound by solving a system

of linear or nonlinear equations (line 6). For a nonlinear sysRaf) we linearize and solve with Newton’s
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method; therefore, the Jacobian matkx and the “load” termb; need to be assembled. Note that the
structure ofK; depends on which basis functions are active.

The framework above is one of many that could be adopted; all will have an adaptation stage, and our
discussion focuses on laying out definitions and then algorithms for managing the data structures which
represent the approximation spag@nd quantities depending @) e.g., K.

Now we develop a specification for our system. First the interface. How does the system interact with
its environment? What questions can the system and environment ask each other? What commands can
each place on the other? Then we specify each interaction. The goal is to make sure that the system (or
environment) does what is expected of it; always; not more, not less. Later we will explain the algorithms

and data-structures that make up our system, and show that they satisfy the specification.

Correctness = Safety + Progress A correct system has provabdafety—it does not do unexpected things

or reach invalid states— amulogress—it eventually achieves what is expected. For each interaction, we will
include safety and progress specifications. We will also have a global safety specification that applies at all
times to entire system. We examine the safety and progress specifications for our system in 8&ctlons

and4.2.5 respectively. First, however, we lay out the key data structures.

4.2.2 Data Structures

Every datum is eithesystem-globa(instantiated once)glement-localinstantiated with every active ele-
ment), orfunction-local(instantiated with every active basis function).
In practice the local data for an element or function exists only when it is active. Here we don’t make this

distinction so carefully; instead, when deactivating an element or function, we clear its associated data.

Globals At the global scope we instantiate a set of basis functions, a set of elements, and a set of tiles:

B is the set of active basis functions. Recall from secfdh3that the active functiong € B span the

current trial space.

£ is the set of active domain elements. Recall from seclidhl that the active elements ¢ £ are the

domain elements which support active functions.

7T is the set of active domain tiles. Recall from sectbB.2that the active tile$ € 7 form the minimal
partition of the domain that resolves the active elements.

Element Locals With every active elememfc"') we instantiateativeandancestral integration tables€ach

table lists the active functions which should be considered when integrating over the element:

Bs(ag)) is the native table oégf). The table lists alkame-levehctive functionsﬁE” € B with parametric

support overlapping the elemegtwgr)) A 6](:) 20,
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B“(e,(:)) is the ancestral table ef”. The table lists altoarser-levehctive functionsﬁgp ) € B, p < rwith

parametric support overlapping the eIem&S’(t;ﬁEp)) N s,g") # 0.

Function Locals With every active basis functiomg”) we instantiate the coefficiemz(.p) of the finite-
basis approximation) ugp)¢)§p) (z) (recall sectior?.1). To approximate another functiar{x) we store its

associated coefficientép ),

System Snapshots Thesnapshobf the systems$, is the entirety of (global and local) state at some instant.
Snapshots give us the semantics to describe the effect of an algorithm: we can compare the sifpshots,
immediately before andy, immediately after an algorithm executes. In comparing snapshots, we can refer
to particular global or local data structures by prepending the snapshot label.8.ds, the set of active

functions at snapshdt. When there is no ambiguity we may drop the prefix and wiite

Figure 4.1: lllustrative example of a snapshot. Shown in bold are a pair of active basis functions on mesh
levels 0 and 1. The associated data structuresiare: {¢, "}, £ = {9, £, &b}, S(6(”) = {e9,£%},
S(95”) = {e3. €5}, B(e6) = {5}, B(h) = 0, B(eh) = {85}, B(eh) = {5}, B(e}) = {95},
B(e}) = {65}

(€3) 0 J-

4.2.3 System Invariants

Our data structures must embody a consistent, usable description of the trial space and its associated nu-
merical integration scheme. In particular, having chosen some trial space, the element- and tile-related data
structures should describe an integration scheme that is appropriate for integrating the approximate solution
over the domain, and the element-local integration tables should be up to date. We develop the notion of

consistency by assuming a given set of active functiéhsand ensuring that all other data structures are

consistent with the assumed set.

Consistency A snapshot izonsistentff the following invariants hold:

Invariant I1 (active elements) Every active function is fully supported by active elements, and every active

element is in the natural support of an active function.

£=J s

peB
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Invariant I2 (native integration-table) Every element’s native table lists all and only same-level active

functions with parametric support overlapping the element.

B%(e) =BNS*(e)

Invariant I3 (ancestral integration-table) Every element’s ancestral table lists all and only coarser-level

active functions with parametric support overlapping the element.

B(c) Uerep-(o) B3(€") B*(e) # 0 active hence valid
I =
BS

0

() =0 inactive hence uninitialized

The third invariant explicitly clears the ancestral table for inactive elements. In contrast, in the second invari-
ant, there is no need to explicitly clear the native integration table, it is already empty whenever the element

is inactive.

4.2.4 Safety of Algorithms

The effect of every algorithm can be expressed as predicates on the snapshots before and after the algorithm,

so-calledpre- andpost-conditionsEvery condition is classified as checking eitbafetyor progress

Safety Predicates may check that the algorithm maps the space of consistent snapshots onto itself. These
aresafety conditionslf it starts in a safe state, a safe algorithm terminates in a safe state. In our setting, pre-

and post-conditions for any safe algorithm are always

< S'is consistent-  pre-condition

S « Algorithm (S) algorithm execution

< Sis consistent- post-condition

4.2.5 Progress of Refinement Algorithms

The empty algorithm is a trivially safe algorithm. But it is boring. The progress condition checks that the

algorithm is useful.

Progress Predicates that check for useful work gmegress conditionsBelow are the progress specifica-
tions for each algorithm.
In the formal description, we explicitly denote each algorithm as taking an entire system snapsisot,
input and producing a modified snapsh®t— Algorithm(S,a,b, ...). In the accompanying narrative we
informally omit the references to the snapshots, writkigorithm(a, b).
Observe that the progress conditions specify precisely what happens to the active set. The remaining data

structures are consequently (uniquely) determined by the safety condition.
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Activation of Basis Function The algorithmActivate(¢) adds some inactive basis functignto the

active set; that is the only modification made to the active set.

<& SB> ¢ is inactive
S — Activate(S,$)  activation
<SB=SBU{¢}> ¢isactive

Deactivation of Basis Function The algorithmDeactivate(¢) removes some specified active basis func-

tion ¢ from the active set; that is the only modification made to the active set.

<$peSB> ¢ is active
S «— DeactivateS, ) deactivation

<SB=SB\{¢} > ¢isinactive
Refinement by Substitution The aIgorithmReﬁne(é) removes some specified active basis function

from the active set, and adds the inactive childrer &6 the active set; the is the only modification made to

the active set.

<$peSB> ¢ is active
S « Refing(S, g%) substitute refinement relation
< SB=2SB\{¢}UC(¢) > ¢isinactive and its children are active

4.2.6 Progress of Integration Algorithms

The integration algorithms do not alter the state of the data structures. They are trivially safe, and their
progress is not evident in comparing the snapshots. Here progress is specified in terregsafiation list

produced by the algorithm.

Integration Over Bilinear Forms (mixed-levels) In the solution of linear (or linearized) problems, a key
component of the solver is the evaluation of integrals of some bilinear fgfm), which takes as arguments

two functions,u(z) andw(z), both discretized with the same finite basis. Algebra gives more insight here:

/Q a(Pyu(z), Pyw(zx)) dz (4.1)

_ /Q ol 3 uPe 3 Wl0p | g

ngp)GB ¢§Q)€B

-y 3 ugp)u§Q)/a(¢§p>,¢§.q)) do |

Q
¢>§mEB d);rz) eB
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We need to consider the action @f, -) on every pair of active basis functions. For efficiency, we should
avoid considering pairs which do dot have overlapping parametric support, as their term in the summation is
zero. For every pair of active functio ;p) andgﬁé”, we carry out the integration over elements of the finer
level, ¢ (without loss of generality assunge< p). We now show that very level-element that is required to
carry out this integral is active, and has integration tables which Iistbﬁfmndqbg.q). Sinceqﬁgp) andqb§.q>
are active, by the the consistency requirements {pihle elements in their natural support sét&;&l(p)) and
S(¢§q)), are active. Furthermore, the local integration tables of every eIe@‘@n@E S((;S;q)) contain both
¢§P> and<z>§.q), if and only if the parametric supports ¢fp) and<{>§q> overlap overe,(f) (by 12 and B). Thus
every levelg element that should be involved in the evaluation of the integ’gp&, <¢>§p), ¢§q)> dz, is active
and properly initialized. To evaluatd.(), we iterate over every active element, and consider all interactions
between functions overlapping that element, as recorded by the element’s integration tables.

The algorithmIntegrateBilinearForm evaluates the bilinear forna(-,-), many times. To analyze
the behavior of this algorithm, let us pretend that the algorithm keeps a list of all the evaluations. We la-
bel each evaluation as the 3—tuQ[Q§”), ¢§q>,s§j>) indicating the integration o&(¢§p), ¢§q)) overs,(f). In
generala(-, -) is not invariant to permutations of its two arguments, therefore every 3-tuple is unique, i.e.,
(@, 6\ ) # (610, 9P 7).

With this notation, we requiréntegrateBilinearForm to return the evaluation list

U U U (@), 6\, el . (4.2)

EE:I)GE ¢§Q)EBS(€§C(1)) (bgp)EBS(E;{Z))UBa(s;CQ))

Integration Over Finest Cells The algorithmIntegrate evaluates the (potentially non-linear) integral
using a partition of the domain into tiles. The integrand is evaluated once per tile, thus specifying the set of
active tiles fixes the specification of the algorithm.

Recall that the trial space is spanned by functions from different nesting levels, consequently we need a
partition that will resolve these different resolutiodaitegrate evaluates over the minimal set of element-
and resolving-tiles such that (a) the tiles partition the domain, and (b) the partition has sufficient resolution:
every leaf element is a tile, wheleaf means an active element with all descendants inactive.

Observe that while the set of active elemealisayscovers the domain, the set of leaves in general does
not cover the entire domain (see Figdr@). With this, we will designate every leaf as an active tile, and in
the remaining gaps we will introduce resolving tiles.

Consider the followingile coloring problem(TCP). We color every tile in the infinite hierarchy black,
red, or white:blackif the tile istoo coarsdo resolve some finer active descendarttiteif the tile istoo fine
or red if the tile fits. The coarser black and finer white tiles will form a “sandwich” around a thin sheet of red

tiles—these red tiles form our partition.

Tile coloring problem  The tile coloring problem is defined as follows. The color of an element tile is
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three active functions

parametric domain

level O active functions

level O active elements
descendant
relation

level 1 active functions

%\ %\ %\ level 1 active elements
%\ leaf element

Figure 4.2: Three active functions (top row, hat functions) induce five active elements (thick horizontal
bars). Both of the level 0 active elements have active descendants (as shown by the arrows), hence they are
not leaves. The level 1 active elements are leaves, and by construction they occupy disjoint pieces of the
domain. Furthermore, in general they do not cover the entire domain: for the illustrated case, only 3/4 of the
domain are covered by the leaves.

(TCP1) black if any of its descendants are active,
(TCP2) elseed ifitis active,
(TCP3) elsawnhite.
The color of a resolving tile is
(TCP4) red if its coarser-link is black and its finer-link is white,
(TCP5) elseblack if its coarser-link is black,

(TCP®6) elsewhite.

Recall from Sectior2.3.2that the finer-link L (¢), of resolving-tile ¢, is the single overlapping element-tile at

the next-finer level; the adjoint relationship gives the coarser-litik¢), i.e., the single overlapping element
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tile at the same level &s The link mapping may also be applied to element-tilég&:) is the finer-link ofe,
i.e., the set opotentially multipleoverlapping resolving tiles at the same levekag* (¢) is the coarser-link
of ¢, i.e., the set of overlapping resolving tiles at the next-coarser levelérom

The evaluation-list oIntegrate consists of all red tiles, each one accompanied by a table of overlapping
active functions.

We shall see that the nature of TCP is that an incremental change in the actiMea#$ to an incremental
change in the tile coloring: this invites an incremental approach to coloring with consequent economy in

refinement and integration.

4.2.7 Maintaining Linear Independence (The Basis Property)

In certain settings, it is important that the active functions are linearly independent. This is the case, for
example, in classical FE applications, as a linear dependency in the basis leads to a singular stiffness matrix. If
only detail refinement is applied then the active set is always a proper basis. If other refinement strategies are
used (e.g., substitution, and selective (de)activation of individual functions) then maintaining a proper basis
requires special care. Our pap#irysl et al. 2003 treats the specific case of classical FEs, i.e., a setting in
which basis functions are supported on a 1-ring. There we present efficient algorithms for maintaining linear
independence of the active detduring (un)refinement. In more general settings, approaches such as those
used by Kraft may be adopte#{faft 1997. Finally, in some settings, such as our explicit time-integration

of non-linear thin-shells (see Chapt), we observe that the solution process remains well-behaved even

without linear independence of the active set.

4.3 Theorems

Guided by the above specification, we present and prove theorems that translate fluently into implementable
algorithms.
The proofs for activation and deactivation are constructive. While these proofs may be more verbose than

those based on contradiction, constructive proofs act as prescriptions for programs.

4.3.1 Activation of Basis Function

Suppose we are in consistent stateand we activate some functign What does the new statelook like?
This theorem answers that question. The theorem is easily transcribed into implementable instructions; the

associated proof provides insight into the algorithm.
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Theorem 1 (activation) Suppose: (1F is consistent, (2) ¢ B,and (3)B = B + $. S is consistent

iff three conditions hold:

1. E=EUS(9)

In activatingqg, we might activate elements.

2. Bo (&) Bs(s)+¢ ¢e€8(¢p) update required
. g) =
Bs(e) e ¢ S($) not affected

In activatingq@, we might update some native integration-tables.

Ucrepe (o) B°(e") Bi(e) =0Ae € S(9) initialize
3. Bi(e) ={ Bi(e) + ¢ B*(e) #0AB(e) #0Ae €Uuesy D) update
Be(e) B(e) =0V ( (@) #0Ne € Uesg) D(a’)) not affected

In activating$, we might update ancestral integration-tables.

Proof Please refer to this chapter's Appendix for the formal proof.

4.3.2 Deactivation of Basis Function

Suppose we are in consistent st&teand we deactivate some functien What does the new stafélook
like?
Theorem 2 (deactivation) Suppose: (1§ is consistent, (2) € B, and (3)8 = B — ¢. S is consistent
iff three conditions hold:
1. 5:2—{863( ) | BS(e) _@:5}
In deactivatingé, we might deactivate elements.
B*(e) —¢ e€S(¢) update required
2. B(e) = (e)—0¢ € (s?) p q
Bs(e) e € S(¢) not affected

In deactivatingq@, we might update some native integration-tables.

0 Bs(e) =0 AeecS) clear
3. Bo(e) = @ —¢ B(e) #0Ne €U esy PlE)  update
Be(e) Bi(e)£DNed U.res@) PEDV
( Se)=0Ne¢ S(QZ;)) not affected

In deactivatingg, we might update ancestral integration-tables.

Proof Please refer to this chapter's Appendix for the formal proof.
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4.3.3 Refinement by Substitution

With theorems for activation and deactivation in place, we can easily prove theorems for compound opera-

tions, such as substitution refinement.

Theorem 3 (substitution) An application oDeactivatecomposed with multiple applications A€tivate as

shown below, is safe and effects a refinemedtkmj substitution:

< SisconsistentA ¢ € B> ¢ active, state is consistent
<{¢1,...,on} =C(¢)\B > give names to the inactive childrenof

S; « Activate(S, ¢1) activate first inactive child

Sy « Activate(Sy_1,pn) activateN* inactive child
S — Deactivate(Sy, ¢) deactivate)
< S is consistent> state is consistent

<p&SB A C(P) CSB> ¢wasreplaced by its children

Proof sketch Compose the deactivation theorem withapplications of the activation theorem.

4.3.4 Integration of Bilinear Forms

The specification of the evaluation listt.p), maps directly into an efficient algorithm, presented in Section
4.45

4.3.5 Integration over Tiles

Lemma 1 (black tiles) Every ancestor element of a black element-tile is black.

Proof We prove that every elemety, ancestor of black element-tite is black. Since is black, then it
has an active descendant (by TCP1thnAny descendant of is a descendant af, thust, has an active
descendant, and is black (by TCP1 orts).

Lemma 2 (red tiles) Every descendant tile of a red tile is white.

Proof sketch Case 1: Red element tite Consider any particular element descendantt is inactive (by
TCP1 ont) thus itis not red (by TCP2 on). None of its descendants are active, sife; ) C D(t), thus it
is not black (by TCP1 o). Therefore it is white. Consider any particular resolving-tile descendaiis
parent is not black (proof: choosgeto be the parent). Therefote is white (by TCP6 ort,).

Case 2: Red resolving tile Its child, the elements, is white (by TCP4 ort). Every descendant of is

white (by the same argument as Case 1).
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Lemma 3 (white tiles) The coarser-link of a white tile is not black.

Proof sketch Case 1: White element tile Assume its resolving-tile parent is black. Then the parent of
ty is black (by TCP5 ony). But thent; is red (by TCP4 on,) which is a contradiction. Therefore the parent
of ¢ is not black.

Case 2: White resolving tile Assume its element-tile parefitis black. Thert is either red (by TCP4
ont) or black (by TCP5 o), which is a contradiction. Therefore the parent & not black.

Theorem 4 (tile coloring produces minimal valid partition) The red tiles, specified by the tile coloring

problem, form a minimal partition of the domain that resolves every active element.

Proof sketch In Part |, we prove that the red tiles form a valid tiling. In part 1l, we show that the tiles are

not excessively fine.

Part| The red tiles form a valid tiling, i.e., (1) the red tiles do not overlap, (2) every leaf element is a red
tile, and (3) the red tiles cover the domain. Together (1) and (3) guarantee that the red tiles are a partition of
the domain, and (2) guarantees that they resolve the finest active elements.

Assume two red tiles overlap, then one must be a descendant of the other. But by the Rehema
descendants of a red tile are white. Therefore, (1) red tiles do not overlap.

By definition, a leaf element does not satisfy TCP1, therefore, by TCP2, (2) every leaf element is a red
tile.

Pick any pointP on the domain. We show how to find the red tile that cont&#n&£hoose the coarsest-
level element tile containing?. By construction that element tile is red or black, since the active elements
cover the domain. If it is red, QED; assume it is black. Traverse down the hierarchy of tiles as follows:
arriving at an element tile, proceed to the resolving tile contaid@rriving at resolving tile, proceed to
its child tile. At every step of the traversal, examine the color of the tile. It must be black or red: it cannot
be white by Lemma. If it is red, QED. If it is black, continue the traversal. Assume that the finest element
is at levelq. Then there are no black tiles at levetsq. Consequently the traversal must reach a red tile.

Therefore, (3) the red tiles cover the domain.

Part Il The red tiles are not excessively-fine in the following sense: choose any element which has no
active descendants. That element tile has no red descendants.

By construction the element is not black. If it is red then, by Len®2n@ED. If it is white, then all of its
descendants (element- and resolving-tiles) are white. To see this: observe that each of its element-descendants
also has no active descendants hence is also white; consequently all its resolving-tile descendants are also

white.
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4.4 Algorithms

4.4.1 Initialization

Initially, B := {¢§0>} is the set of leveb scaling functionsE := E(©) is the set of leveb elements, and the
integration tables of every active elementz: £ = E©), are initialized (by the consistency requirement) to
B%(e) = ) andB?%(g) = S§*(e).

4.4.2 Activation of Basis Function

During the course of the solution process, basis functions are (de)activated (linedrtegeodte PDE) and
the data structures described above must be updated. When a basis fgnstimtivateds and€ as well as

B?® and B® must be updated, following the prescription of Theork(activation):

Activate(¢)

1 Bu= {¢}
2 ForEache € S(¢) do

3 B(e) U= {4}

4 /I upon activation initialize ancestral list
5 If ¢ ¢ £then B*(e) U= AncestralList(¢); £ U= {e} fl
6 /I add to ancestral lists of active descendants

7 ForEach~ € (D(¢) N &) do B(v) U= {¢}

AncestralList(e)

1 op:i=0

2 ForEachy e D*(¢)N € do
3 p U= B*(y)UB*(v)

4 return p

Activate first augments the set of active functions (line 1), and then iterates over each cell in the natural
support set oy (lines 2-7). Sincep is active, it belongs in the table of same-level active functions of every
supporting cell (code line 3, theorem condition 2). Furthermore sirisactive its supporting cells are active
(code line 5 and theorem condition 1): they are activated (if inactive) by adding them to the set of active cells
and initializing their table of ancestral active-functions (theorem conditignitiaglize). Note here the call

to Ancestor(e), which returns all active coarser-level basis-functions whose natural support set ogerlaps
Finally, all active descendants of the supporting cell also suppdrence we update their tables of ancestral

active-functions (code line 7 and theorem conditiong@laté.
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4.4.3 Deactivation of Basis Function

When a basis functiow is deactivated3 and £ as well asB* and B* must be updated, following the

prescription of Theorer (deactivation):

Deactivatg¢)

1 B\= {¢}

2 ForEache € S(¢) do

s Be) \= {¢}

4 /I deactivate element?

5 If B5(¢) =0then& \= {e}, B%(e) :=0fl
6 /I update ancestor lists of active descendants

7 ForEachy € D(e)N € do B(y) \= {¢}

We first update the set of active functions (line 1) and then iterate over the supporting cells (lines 2-7). Since
¢ has become inactive, it is removed from the table of same-level active-functions of every supporting cell
¢ (code line 3 and theorem condition 2) and from the table of ancestral active-functions of every active
descendant of (code line 7 and theorem conditionupdatg. Furthermore if the supporting cell is left with

an empty active-function table then it is deactivated and its ancestral table is cleared (code line 5 and theorem

conditions 1 and lear).

4.4.4 Refinement by Substitution

Assuming that an appropriate error estimator is at hand we can consider a wide variety of adaptive solver
strategies built on top dictivate. Two example strategies are detail- and substitution-refinement. The former

is simply activating a detail function. The latter is implemented via compound applicatioAstivhte

and Deactivate The following algorithm refines an active basis functign, € B, using the method of

substitution:

Refing(p;)

1 ForEach ¢; € C(yp;) do

2 If v; ¢ Bthen Activate(y;) ; u; :=0fl
3 Uj+= QU

4  Deactivatdy;) ; u; :=0

Here eachy; is the coefficient associated withy, anda;; is the weight ofp; in the refinement relation of
v; (Eqn.3.3). Note that the algorithm is semantically a reproduction of Theddsubstitution), garnished
with updates to the DOF coefficienis.
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4.4.5 Integration of Bilinear Forms

To evaluate the stiffness matrix, we need to be able to compute the action of the operator on pairs of basis
functions. Traditionally this is done by iterating over all active elements, computing local interactions and
accumulating these into the global stiffness makixWith the data structures described above, we have all
necessary tools at hand to effect this computation. We intep@t(6ee Sectiodt.2.6 as a literal description

of the following algorithm:

ComputeStiffnesgE)

1 ForEache € £ do

2 ForEach ¢ € B*(¢) do

3 kse+ = Integrate(4,¢,e)

4 ForEach ¢ € B*(¢) \ {¢} do
5 ksp+= Integrate(¢,,e)

6 kye+= Integrate(y,¢,c)

7 ForEach ¢y € B*(¢) do

8 kgyp+ = Integrate(o,e€)

9 kye+= Integrate(y,¢,c)

Here we usedr = (and later U= and \ =) in C-language fashion to indicate a binary operation with

the result assigned to the left hand sideomputeStiffnessconsiders interactions between every pair of
overlapping basis functioret the coarsest level that captures the interactidrroarser functionp. overlaps

finer function¢;, we evaluate the bilinear form over cells in the natural support s¢f @fhich also support

dc: {e|e € S(of) N D*(e) NS(¢c) # 0}. With this approach every interaction is considered exactly once,

at a sufficiently fine resolution. To implement this approach, we iterate over each active cell (line 1), and
consider only interactions between every same-level active function (line 2) and every active function either
on the same level (lines 3-6) or ancestral level (lines 7-9). For symni€tappropriate calls tbntegrate

can be omitted. In practice, we do not c@bmputeStiffnessevery time the basi8 is adapted, rather we

make incremental modifications K.

4.4.6 Integration over Tiles

While the simple specification of TCP can be translated directly into pseudo-code, for better performance it is
desirable to use ancrementaklgorithm, locally updating to the tile coloring whenever an element becomes
(in)active. Here we present one approach to incremental coloring. The fulipidete TilesOnElementAc-

tivation should be called immediately after an element is activated.



61

UpdateTilesOnElementActivation(c)
1 /lif element tile was black, we’re done

2 If GetColor () # black

3 /lelement tile changes from white to red

4 SetColor(e, red)

5 /fall ancestors are black

6 ForEach v € D*(¢) do SetColor(y, black)

We derived this algorithm from the rules TCP1-TCP3 by tracing the consequence of a single element
becoming active. The consequent effect on any elementstile as follows. Ife, is black, it remains black
(by TCP1 one,, noting that no descendant has béeactivated). Otherwise, i, is an ancestor of, then it
becomes black (by TCP1 an). Finally, if e; = ¢, then it becomes red (it was not previously black, hence
by TCP1 it has no active descendants; it is active, thus by TCP2 it is red).

Note above that the color of every element stays the sam®ues upward in the ladder of cologs/en
by TCP1-TCP3, i.e., from top to bottom: black, red, white. In contrast, when we update colors after an
element is deactivated, colors which change do so “downward.”

Recall from TCP4-TCP6 that the color of a resolving tile depends on the color of its linked element-tiles.

For this reason, when an element-tile changes color, we update its linked resolving tiles:

SetColor(e, ¢)
1 /lproceed only if new color differs from current

If GetColor (¢) # ¢

3 e.color:=c¢

N

4 /lupdate the linked resolving-tiles

5 ForEach vy € L(e) U L*(¢) do UpdateResolvingTilé~y)

To compute the color of a resolving-tile, we apply rules TCP4-TCP6 directly:

UpdateResolvingTildt)
1 If GetColor (£*(t)) = black
2 t.color := (GetColor(L(t)) = white) ? red : black

3 elset.color := white; fl

Following the same pattern as above, when an element is deactivated, WipdateTilesOnElemen-

tActivation :
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UpdateTilesOnElementDeactivatiorc)

1 /lif element tile was black, we're done

2 If GetColor (¢) # black

3 /lelement tile changes from red to white

4 SetColor(e, white)

5 /lupdate ancestors

6 ForEachy € D*(¢) do

7 /lupdate only black ancestors with no active descendants
8 If GetColor (v) = black A D(y) N € = () then
9 /lancestor becomes red if active, white otherwise

10 SetColor(~, (y € £) ? red : white); fl

If ¢ was black, it remains black (code line 2, by TCP1:0since no descendant efhas been deactivated),
and none of its ancestors are affected (by Lemiin®therwise: was red (by TCP2 op, since it was active),
and changes to white (code line 4, by TCP3sprsince it is now inactive). The consequent effect on any
element-tile ancestar, of ¢ is as follows. Ife, is red, it is unchanged (by TCP2 en, since no descendant
of e5 has been activated, amd continues to be active). H, was black, then it is effectively re-evaluated
from scratch (code lines 6-10, following rules TCP1-TCP3).

The above algorithms maintain incrementally the coloring of the tiles under arbitrary (de)activations of the
elements. In many applications, we have more information about when elements may become (in)active, and
we can put that information to effect by simplifying the above algorithms. In particular, applications which
enforce aone level differenceor restriction criterion can simplify line 6 ofUpdateTilesOnElementActiva-
tion and lines 6 and 8 df)pdateTilesOnElementDeativationby replacing the ancestor (resp. descendant)
expression with a parent (resp. child) expression. If this convenient simplification cannot be made, then
implementation of line 8 oblpdateTilesOnElementDeativationrequires special care: each element should
maintain a local counter of its active descendants, thus permitting rapid evaluafidry pfi £ = (.

The above code is just one approach to incrementally solving the tile coloring problem. Other incremental
approaches may be used instead.

The evaluation-list oIntegrate consists of all red tiles, each one accompanied by a table of overlapping
active functions. This table in constructed as follows. For an element tile, concatenate its two integration
tables. For a resolving tile, concatenate its coarser-link’s integration tables. The set of red tiles, together with

their associated integration tables, provides sufficient information to carry out the integration.
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4A: Appendix to Chapter 4

45 Overview

In this appendix to Chaptdrwe prove the correctness of the (de)activation algorithms. We have chosen to use
the hierarchical proof style advocated by Lampa#rport 1993and by Gries Gries and Schneider 19p3
Although some proofs are more verbose in this style, it is much harder to prove something which is false—
this observation is at the heart of Lamport’s argument for using this proof style to prove the correctness of
algorithms. In a hierarchical proof, each proof step is itself proved by a nested sub-proof. The best way to
read such a proof is breadth-first, from coarsest- to finest-level proofs.

We now recall and prove the (de)activation theorems and lemmas.

4.6 Correctness of Activation
Theorem 1 (activation) Suppose: (1¥ is consistent, (2){3 ¢ B,and (3)B = B + ¢. S is consistent
iff three conditions hold:
1. £=EUS(9)
In activating$, we might activate elements.
2. Bo(e) = B(e)+¢ ec S(¢;) update required
Bs(e) e ¢ S(¢) notaffected

In activating$, we might update some native integration-tables.

Usrep-o) B5(€") B(e) =0 Ae € S(9) initialize
3. B%e) =< Bi(e)+ ¢ Bi(e) #0NB(e) #0Ne € Uuesg D) update
Be(e) Bi(e)=0V (BS(e) #O0Ne & Usesp D(s’)) not affected

In activating$, we might update ancestral integration-tables.

PROOF SKETCH We write out invariants1, 12, and B, then substitutéd = B + ¢, and finally collect and
isolate the quantities of the consistehby using its invariant$l, 12, andl3.

The proof of condition 3 is more elaborate (see step 3) and we sketch it here. We examine three separate
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cases: (step 3.2) newly-activated elements (their ancestral integration-table must be initialized), (step 3.3)
already-active elements (they require an update if their ancestor supjpaatd (step 3.4) inactive elements
(they remain untouched). First, (step 3.1) we establish two ways of referring to newly-activated elements—
one way is better suited for implementation and the other for proofs.
AssUME 1. Sis consistent,

2' ¢E g E!

3. B=B+¢.
1. 11 E=EUS(9)

To preservel, we might activate elements.
PROOR 11 & = UuepS(9) [invariant 11]
Use@ra) S(@) [by assumption0).3]

Uses S(#) US(¢) [simple algebra]
EUS() [by invariantl1 and assumptiorn).1] [J

B*(s)+¢ e S(¢) update required

Bs(e) e € S(¢) notaffected
e might update native integration-tables.

(1)2. 12 & B(e) =

s ——

To preservel,

PROOF 12< B%(e) = BNS*(e) [invariant 2]
= (B+¢)NS*(e) [by assumption(0).3]
= BNS*(e) + {¢} NS*(e) [by assumptior(0).2]
= B(e)+ {p} NS*(e) [by invarianti2]
_ { B(e)+¢ ce S(q%) update required Iby def. of adjoint[]
Bs(e) e & S(¢) not affected
Uecrepe (o) BX(E") B*(e) =0 ne € S(9) initialize
(1)3. 13 B(e) ={ B(e) + ¢ Bi(e) #0AB(e) # 0 Ne € Uuesig) DIE) update
Ba(e) Bi(e) =0V (W #0Ned U.ics D(s’)) not affected

To preserved, we might update ancestral integration-tables.
(201. B5(e) =0 Ae e S(p) = B (e) #DAB(e) =0
All previously-inactive elements in the natural supporafill be activated and initialized.
(3)1. ASSUME B*(g) = D A e € S(§)
PROVE: B(e) ZDABs(e) =10

(1. B(e) # 0

PROOF ¢ € S(¢) by assumption3)
= B(e) = B(e)+¢ [bystep(1)2]
£ 0 [sinced & O A ¢ € B ()] U
(4)2. Q.E.D.

PROOF. by assumptior{3) and step4)1. []
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(3)2. ASSUME Bs(s) DA B3(e) =0
; .

PROVE: Bs(e) =

(1. £ € 8(9)

PROOFE B(e) DA B3(e) =0 [by assumption(3)]
= B°(e) # B%(¢) [by algebra]
= ce8(¢) [by step(1)2]
(4)2. Q.E.D.

PROOF by assumptior{3) and step4)1. []
(2)2. CASE: B5(s) =D AeecS(9)
PROVE: I3 B%(e) = U.iep+ () B(€')
To preserve3, we might initialize some ancestral-integration-tables.
(3)1. B*(e) # () [by assumption(2) and step(2)1]
(3)2. Q.E.D.
PROOF by (3)1 and invariant 3. []

(2)3. CASE: B*(e) #0D A Bs(s) # 10

Be b eel), . D
PROVE: 13 < B%(¢e) = ORI U668(¢) (')

B'() e Uoesi D)
To preserve3d, we might update some integration tables.
PROOR 134 B%(e) = U.ep-) B°(€) [def'n of I3, assumptior{2)]
= U.ep-o (BE +18nS*E)) by step(1)2]
= Be) +Uoep- (o {0t NS*(e) [by invariant! 3]

= B + {8} NUocps (o) S*(E)
_ B(e)+¢ e €Uess) DE)
B(e) &€ Uues D)

[by algebra]
[by definition of adjoint] ]

(2)4. CASE: B*(e) =10
PROVE: 13 & B%(e) = Be(e)
To preserve3d, some integration tables must remain unchanged.
(3)1. Bs(e) =0

PROOR Bs(e) C B(e) [by(1)2]
0 [by assumption(2)]

(3)2. Q.E.D.
PROOF 13< B*(e) = 0 [by assumptior{2) and invariant 3]
= Be(e) [bystep(3)1 and invariani3] []
(2)5. Q.E.D.

(3)1. Steps(2)2, (2)3, (2)4 cover all possible cases.
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PROOR [case(2)2 or (2)3 or (2)4]
(BTE) —OAce S(gz;)) v (BS(E) £ 0 AB(e) # @) VB() =0
= (53(5) £OAB(E) = @) v (53(5) £ OAB(E) £ @) VB(e) =0 [bystep(2)1]
= Bi(e) A0V Bi()=10

= truel]
(3)2. Q.E.D.
PROOF by steps(2)2, (23, (2)4, and(3)1.[]
(1)4. Q.E.D.

PROOF by steps(1)1, (1)2, and(1)3.[]

4.7 Correctness of Deactivation

Lemma 4 (active elements)Given any systerfi, if invariant 12 holds, then
11 = B(e)#0ecef.

Invariant I1: an element is activéf its native integration-table is populated.

PROOFE ec€& <« Bi(e) #0
= BNS*(e)#0 [by assumed Invariang]
= (V¢:BNS*(e)|eeS(¢p)) [axiom of choice]

Lemma 5 Given setS and predicates?, R,
{e:~S|R}U({e:S|R}—{e:S|R}) = {e|R}—{e:S|R}

Partition (of {¢ | R}) then excisior{of {¢ : S | R}) is the same as unpartitioned excision.

PROOF, {e:~S|R}U({e:S|R} —{e:S|R})
= {e:~S|R}U({e:S|R}n~{e:S|R}) [def'n of minus]
= {e:~S|R}U({e:S|R}n(~SU{e:S|-R})) [defnof~]
— (e ~SIR UL S| BY)

N({e:~S|R}U~SU{e:S|-R}) [distrib. U overn]
= {e|R}N(~SU{e:S|-R}) [def'n of U]
= {e|R}n~{e:S|R} [def'n of ~]

= {e|R} —{e:S|R} [def'n of minus]LJ
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Theorem 2 (deactivation) Suppose: (1§ is consistent, (2) € B, and (3)B = B — ¢. S is consistent

iff three conditions hold:

1. 6’:?—{568(@) |BS(€)=®:5}
In deactivatingqg, we might deactivate elements.
2. Bo(e) = Bs(s)—¢ ee€S(¢) update required
. Bs(e) £ ¢ S(¢) notaffected
In deactivating;z@, we might update some native integration-tables.
0 Bi(e)=0AneecS) clear
Bi(e)— ¢ B(e) #DNe € U5 P(E)  update
Bi(e)  Be) #£0Ne U, ess DEWV
(Bs(a) =PAe¢ S(q@)) not affected

3. B%¢) =

In deactivatinggfs, we might update ancestral integration-tables.

(1. 12 B(e) = { Brle) =¢ =< 5(0) update required
Be(e) e ¢ 8(¢) not affected

In deactivatingé, we might update some native integration-tables.

PROOF 12 B%(e) = BnNS*(e) [def'n of invariant 2]

- (E - qﬁ) NS*(e) [by assumptior{0).3]

= (E N~ {q@}) NS*(e) [by def'n of minus op.]

= Bn (5*(5) N~ {({5}) [by assoc., commut. of]

= ] BOSTENAAGE 0ESTE 1 ) = 8%(0) o (9)]
BNS*(e) o & S*(e)

— Brle)—¢ ¢ €5™) [by invarianti2, def'n of minus op.]
Bs(e) ¢ & S*(e)

- Ble)—¢ ee S(({)) [by def'n of adjoint op.]|
B3 (g) e &€ S(9)

(1)2. ASSUME invariant R holds
PROVE: I1&&=E— {5 €S(P) | B () =0: s}

In deactivatinggfs, we might deactivate elements.

(2)1. {g L S() | Bs(e) £ 0 : 5} - {g . S(3) | Bo(e) # 0 : 5} - {5 L S() | B () = 0 : g}
(2)2. Q.E.D.
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PrOOE 11= £

{e|B(e) #0:¢} [by Lemmad]
{e:~v80)1B(e) #0: 2}

3
: e} [by union of complements]

v
= {e:~S(0) B @) #£0:2}  [bystep(1)1]
U ({e:80)IBE £0:e}  Istep)]
— oS 1B (e) =0:¢})
= £- {e :S8(0) | B5(e) =0 : s} [by Lemmab5] []

(1)3. ASSUME invariant R holds

PROVE:
9 B(e) =0 Ae € S(9) clear
13 & Ba( ) _ Ba(e) 7925 BS(E) #+ Onee UE’ES(&) D(el) update
Bi(e)  B(e) £0Ae ¢ U.csg DEN

(Bs(s) =Pred S(qB)) not affected
In deactivatingp, we might update ancestral integration-tables.
(2)1. CASE: B3(e) =0
0 e S(¢) clear
B(c) ¢ 8(¢) notaffected
(3)1. ¢ ¢ 5(9) = B(e) =0
PROOF ¢ ¢ S(¢) = B°(e) = Bs(e) [byassumptior(1) and step(1)1]
= 0 [by assumption(2)]
0

[by assumptior{0).1 (I3) and casé2)] []

PROVE: 13 & B%(e) =

(3)2. Q.E.D.
PROOF I3« B%(e) =

0 [by def'n of 13 with assumption2)]
- { 0 ceS@)

[by step(3)1] U

Bi(e) ¢S(¢)

(2)2. CASE: Bé(e) # 0

Bi(s)—¢ eel), o D(E) update
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Be(e) € Uoes(p) D(¢’) not affected
PROOR 134 B%(e) = U.ep- B(€) [13&as.(2)]
Bi(e) —¢ & €8¢
= Usepo () =¢ & eS50) [(1)1 & as.(1)]
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- { (Uerepr o BE)) =6 & € Unresyy DI
- (UE’GD*(E) W) €¢ Ugfes(J)) D(e')
“(e)—¢ ce Usresg) P(E)

— [(2) & as.(0).1][]
Ba(e) e¢d UE’ES((Z)) D(e)

[def’n: adjoint]

(o]

(2)3. Q.E.D.
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PROOF by proofs of case€2)1 and(2)2.[]
(1)4. Q.E.D.
(2)1. AsSSUME invariants L, 12, and B hold.
PrRovE: conditions 1, 2, and 3 hold.
PROOF by steps(1)2, (1)1, and(1)3.[]
(2)2. AssuME conditions 1, 2, and 3 hold.
PrRoOVE: invariants L, 12, and B hold.
(3)1. 12 holds.
PROOF by step(1)1.[J
(3)2. 11and B hold.
PROOF by steps(3)1, (1)2, and(1)3.[]
(3)3. Q.E.D.
PROOF by steps(3)1 and(3)2. []
(2)3. Q.E.D.
PROOF by steps(2)1 and(2)2.[]
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Chapter 5

Applications

Adaptive basis refinement may be profitably applied to many application domains, including simulation, an-
imation, modeling, rendering, surgery, biomechanics, and computer vision. We present concrete, compelling
examples based on our implementation of basis refinement. Our examples span thin shells (fourth order
elliptic PDE using a Loop subdivision discretization), volume-deformation and stress-analysis using linear
elasticity (second order PDE using linear-tetrahedral and trilinear-hexahedral finite elements) and a subprob-

lem of electrocardiography (the generalized Laplace equation using linear tetrahedral finite elements).
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Figure 5.1: A sequence of frames from our adaptive simulation: time evolution of a rapidly inflating a metal-
foil balloon. The initial model contains 50 basis functions. Over the coarse of the simulation, substitution
refinement is used in regions of high bending energy. By the end of the simulation, 1000 basis functions are
active across six levels of the hierarchy.

5.1 Overview

Adaptive basis refinement may be profitably applied to many application domains. Here are just a few:

Simulation Many mechanical simulation problems are posed as PDEs or integral equations and then ap-
proximated using a particular weighted residual method. The problem domains include thermodynamics
(e.g., convective heat transfeHlighes 198/ ewis et al. 199§ electromagnetismHumphries 199]f quan-
tum mechanicsRam-Mohan 200R and mechanics of continuous mediddlvern 1969Kagan and Fischer 20P0
including fluid flow as well as elasticity of solids, thin plates and thin shells (see Figlire

In computer graphics, research on elasticity traces back to the early work of Terzopoulo4 @82, [
who introduced tensorial PDE treatments of elasticity to the graphics community. Later researchers devel-
oped treatments of thin plates such as cloth textilésuse and Breen 200 Recently, novel numerical
treatments of thin shells, significantly more robust than earlier approaches, have been introduced in graph-
ics [Green et al. 2002Grinspun et al. 2002Grinspun et al. 2003and mechanics@irak et al. 2000k The
computer graphics community has developed rapid techniques for fluid simulation based on the Navier-Stokes
PDE for incompressible flongtam 1999 likewise the shallow water equatiorisgyton and van de Panne 2402
as well as level-set methodBdster and Fedkiw 20Q1Attention has been given to thesualizationof fluid
flows and vector fields in generddjewald et al. 200D These approaches to elasticity, fluid flow, and visual-
ization are all based on PDE formulations; many of these approaches use finite-basis discretizations and thus

easily accommodate basis refinement.
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Animation We distinguish betweesimulation which aims topredict physical behavior, anenimation

which aims atartistic control of physical motion, often (but just as often not) with a secondary goal of
physical plausibility. Animation problems are commonly formulated as PDEs. In his pioneering work on
spacetime constraint#/itkin [ Witkin and Kass 198Bpresented a variational formulation for constrained an-
imation. These kinds of variational formulations benefit greatly (in performance and quality) by discretizing
the spacetime ODE in multi-resolution and optimizing adaptively, as was demonstrateit ley 4l. 1994

We return to this in our discussion of future research directions; see in particular the discussiatti-of
resolution model reductiom Section6.2 Recently, Capell et al2D02a 2002H presented an interactive
skeleton-based animation tool based on PDEs for linearized elasticity; they discuss their implementation of

basis refinement, referring to our earlier work in this a@erjspun et al. 2002

Modeling Animportant class of shapes used in modeling are so-cadigdtionally optimal i.e., they mini-

mize some energy functional corresponding to a variational formulation of some PDE. Welch and Ya& [
introduced variational formulations to the graphics modeling community; later Gortler and Ctb@h [
showed that such formulations can be solved efficiently using spline wavelet bases. In retrospect, we view
Gortler and Cohen’s work as a particular instance of basis refinement; our framework extends the imple-
mentation of these ideas, beyond the range of traditional wavelets, to arbitrary-topology surfaces based
on multi-resolution subdivision discretizations. Geometric modeling continues to be an active research
area [ferzopoulos et al. 1987herzopoulos and Fleischer 198Belniker and Gossard 19p1

[Metaxas and Terzopoulos 19%2Iniker and Welch 1992Velch and Witkin 1992Gortler and Cohen 1995
Kobbelt 2000hFriedel et al. 2008

Rendering In 1986 Kajia presented thiRendering Equatiominifying the different models of rendering,

e.g., ray-tracingfoley et al. 199 radiosity [Greenberg et al. 1986etc. [Kajiya 1984. Kajia showed that
different discretizations of this integral equation lead to specific instances of earlier formulations, such as the
radiosityequation which models radiative transport phenomena, leading under a finite-element discretization
to a linear system. Gortler et all993 demonstrated that wavelet discretizations of the radiosity equation
enable adaptive solution radiosity. This earlier work fits neatly within our framework; with the tools presented
herein we can generalize these ideas and their implementation from the setting of linear finite-elements and
wavelets to the setting of high-genus surfaces with accompanying subdivision discretizations. Smoother
discretizations offer potentially more compact representation of lighting; however, a critical issue to address
would be sharp discontinuities in the radiance function. To that end, a complete treatment of adaptive radiosity
computations based on subdivision discretizations should include a treatmeeigeatigand their associated
non-smooth basis functionBiermann et al. 200@eRose et al. 199& orin and Schidder 200(; for further

discussion of edge tags please see Se@ian
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Surgery Problems in computational medicine are rapidly finding their way to the operating room. PDE for-
mulations are everywhere. Consider, for example, PDE models of biological tissues such as the liver, blood,
bones, tendons and grey matt&ofh et al. 1998 Cotin et al. 1996 Warfield et al. 2000Wu et al. 200];

PDE models of electromagnetism in the context of MRI (magnetic resonance im&ganiigld et al. 200]),

CT (computerized tomography¢pristensen et al. 199@nd ECG (electrocardiogrardghnson 200 scans.

These models serve medical examination, training as well as surgery. Some examination applications analyze
electromagnetic data obtained from ECG scans: this analysis may involve solving an inverse problem (see
Section5.5). Training and surgery applications are typically focused on modeling the deformation of body

tissues due to external forces (see Sechi@h

Biomechanics Similarly, engineers can consider interactions between their mechanical design and the
body’s tissues in a quantitative manner by measuring the stress and strain on the skeleton and muscles. This
requires solving PDEs based on constitutive models of bones, muscles, ligaments and tendons. Applications

include ergonomic design, construction of orthotics, design of sporting equipment, sports injury research.

Vision The field of computer vision is very broad; PDEs appear in problems from template matching to
shape reconstruction. Most recently, Favaro presented a variational apprshepédrom defocisolving a
PDE to globally reconstruct three-dimensional shape and radiance of a surface in space from images obtained

with different focal settingsJin and Favaro 2002

We now turn to concrete examples, covering assorted application domains and discretizations, with: two-
and three-dimensional domains; triangular, tetrahedral, and hexahedral tessellations; linear and trilinear
finite-element as well as Loop subdivision bases; refinement by details as well as by substitution.

Together with Dr. Petr Krysl, we implemented these applications and demonstrated the efficacy of basis
refinement. The author implemented and documented mainly the subdivision examples; Dr. Krysl imple-
mented and documented mainly the finite-element examples; together both contributed to the software design
and initial publications.

Although we have implemented these examples, our aim here is to provide a survey of the applications;
to that end we have omitted those details which are best left to the original literature. The two-dimensional
examples employ subdivision basis functions to simulate thin flexible structures including a balloon, a metal-
lic cylinder, and a pillow. The three-dimensional examples employ linear tetrahedra and trilinear hexahedra
to address bio-medical problems: (1) brain volume deformation during surgery; (2) stress distribution in a

human mandible; and (3) potential fields in the human thorax for electrocardiography (ECG) modeling.
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Figure 5.2: Thin shell simulation of inflating metal-foil balloon (left); red spheres represent active scaling
functions (right). Note the concentration of finer functions near wrinkles and folds.

5.2 Non-Linear Mechanics of Thin Shells

The thin shell equations describe the behavior of thin flexible structures. Examples include aluminum cans,
cloth, Mylar, and paper among others. The underlying PDEs, based on the classic Kirchhoff Love the-
ory [Timoshenko and Woinowsky-Krieger 1958escribe the mechanical response of the surface to external
forces in terms of the first and second fundamental forms of the original and deformed surfaceshéllgin

are closely related to thiplates which are useful for variational geometric modeling and intuitive direct
manipulation of surfaces. Thin plate equations assume that the undeformed geometry is flat: the resulting
equations are easier to solve but cannot capture subtleties of the nonlinear dynamic behavior of more complex
shapes (Figsl and below). Thirshell equations accommodate arbitrary initial configurations and capture
nonlinearities important for accurate modeling of stability phenomena, e.g., complex wrinkling patterns,
buckling and crushing (Fig$.1, 5.2and5.4).

Subdivision bases are ideal for discretizing thin shell PDEs. For example, Loop basis functions (a) nat-
urally satisfy theH? smoothness requirement of these fourth order PDESs; (b) are controlled by displace-
ments (not derivative quantities); and (c) easily model arbitrary topology. Cirak introduced the discretiza-
tion of thin shells using a single-resolution Loop basis, the so-c&ldmivision Element Metha@EM),
and presented (non-adaptive) simulations supporting the claimed benefits of smooth subdivision discretiza-
tions [2000h 2001].

Adaptivity is essential for efficiently modeling complex material phenomena such as wrinkling and buck-
ling; such simulations were the original motivation behind the development of our framework. Here we
present one static and two dynamic simulations that demonstrate the application of basis refinement to thin
shells using Loop basis functions (please refer to our original publica@oimgpun et al. 2002for videos
of these simulations). Following our original publication of these results, G&@9#demonstrated yet an-
other benefit to using multi-resolution Loop discretizations of thin shell PPExonditioningarge systems,

making tractable the simulation of highly complex models.

Inflating Balloon We simulated the dynamic behavior of a rapidly inflating metal-foil balloon (5ig.

The initial flat configuration has 50 nodes, and the fully-inflated configuration has 1000 active nodes. We
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applied internal pressure to the balloon and used substitution refinement over the course of the 5ms simulated
inflation.

Figure5.3 shows the distribution of active nodes and elements near the end of the simulation; note the
sparsity at the finest levels. Non-adaptive approaches require a very fine grid throughout this simulation, in

contrast our adaptive approach begins with a coarse mesh and adds only necessary detail.

Poking Balloon We poked the inflated balloon with a “finger” and used substitution as well as detail re-

finement to adapt the basis near the contact region.

- A

Figure 5.3: Visualization of the active nodes and elements at the end of inflation. The second through fourth
levels of the six-level hierarchy are shown (left to right); the fourth and finer levels are sparsely populated.

Pillow Using the balloon-inflation technique we modeled a pillow (Rig. Starting with two rectangular
pieces of fabric, we applied internal pressure and solved for the equilibrium state. The adapted solution
captures the fine wrinkles of the fabric. The pillow uses a thicker material (cloth) than the balloon (metal-

foil), thus it forms characteristically different wrinkling patterns.

Crushing Cylinder We animated the dynamic behavior of an aluminum cylinder under compressioB.@¥ig.
The crushing was applied as follows: the bottom rim of the cylinder was fixed; the vertical velocity (only)
of the top rim was prescribed using a linear ramp. The final animation shows the rapid buckling patterns in

slow-motion.

5.3 Volume Deformation as Surgery Aid

Surgeons plan a brain operation based on landmarks from a time-consuming, pre-operative, high-resolution
volume scan of the patient\arfield et al. 200D After opening the skull, the surgeons may acquire additional
low-resolution volume scans, which show the deformation of the brain boundary surface, e.g., collapsing un-
der gravity. However, these rapid scans do not encode landmarks. Warfield uses physical simulation with
(single-resolution) tetrahedral finite elements to infer the volume deformation from the position of the brain
boundary P00QJ. He maps the high-resolution scan via the computed volume deformation, and shows sur-
geons the shifted landmarks. We extend this work by introducmglé-resolution tetrahedral discretization

and solvingadaptivelyto maintain high accuracy.
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Figure 5.4: Thin shell simulation of a crushing cylinder. Refinement by substitution is used to introduce finer
scaling functions: (left) regions with high bending force density are indicated in red; (middle) these regions
have a high concentration of finer scaling functions, (right) consequently the animation captures the buckling
mode and its sharp folds.

We modeled the volumetric deformation of the brain following the removaks®ction of cancerous tis-
sue in the left hemisphere. Our material model is an isotropic elastic contirdiank[ewicz and Taylor 2049

as the deformations are small we adopted linearized equations of equilibrium.

Figure 5.5: The initial (left) and refined (right) models of a brain after resection. Top row shows side view;
bottom row shows dorsal view cross-section passing through the cavity of the resection.

The initial model has 2,898 nodes (5,526 DOFs) and 9,318 tetrahedral elements. We first solve for the
coarse displacement field, and then refine by substitution to 64,905 DOFs, aiming for error equidistribution.
Our error metric is the strain energy density. Figbirgshows the initial and refined meshes side by side. For
comparison, a uniformly finer mesh with the same precision as the finest regions of the adapted grid would

involve approximately 300,000 DOFs. Solving the volume deformation problem for the refined mesh takes
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38s on a 600MHz PI Il laptop with 256MB: with a two- or four- CPU PC our simulation is fast enough for
actual surgical interventions.
Figure5.6 shows the refined FE model viewed in the caudal direction (left). The cavity after resection is

visible in this view. Note that very little refinement is introduced next to the cavity itself. The deformation

Figure 5.6: Refined FE model of the brain in a caudal view with color coded displacement amplitude (zero
purple; maximai= red). Notice the cavity resulting from the surgical resection of tissue in the left hemisphere.
On the right color coded lateral displacement amplitude displayed on a dorsal cutting plane.

of the brain due to sagging under gravity is visualized in Bigcolor coded displacement amplitude with

zero=red and maximumpurple), where the skull has been included as a visual aid.

5.4 Stress Distribution in Human Mandible

Numerical simulations are widely used in biomechanics to visualize response of skeletal structures to me-
chanical loads, as planning aid for operative treatments, design of implants, and exploration of ostheosynthe-
sis methodsKober and Muller-Hannemann 2000

Here we present an adaptive simulation of the response of the human mandible to the pressure involved in
biting on a hard object. The internal structure of the bone is very complex, but for this proof-of-concept sim-
ulation we consider the bone to be homogeneous and isotropic. The initial model is a coarse approximation
of the geometry of the human mandible. Figbr@shows the original and refined FE model.

As our topological refinement operation we use octasection of each cube[intthg? reference con-
figuration with odd vertices placed at edge, face, and cell barycenters. The initial mesh consists of 304
hexahedral, trilinear cells (1,700 DOFs; FigWg, left). After refinement, placing details where strain-
energy is high, the model captures the stress concentration immediately underneath the pressure point and in
the thinner extremities of the mandible. It has approximately 4,200 DOFsJFigight). We also ran this
simulation with substitution-refinement with practically identical results. Figu8eshows a close-up of the
(detail-)refined model. Active basis functions are shown as green dots, and are supported on the cells sharing

that vertex. The refined basis consists of functions on three levels in the mesh hierarchy.
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Figure 5.7: Adaptive refinement in response to stress. Unstressed mandible composited with skull (left);
chewing on hard candy exerts a force on the jaw (right). The model (1,700 DOFs) is refined (4,200 DOFs) in
the vicinity of the applied force as well as near the corner and attachment points.

Figure 5.8: Mandible FE model with a multi-resolution basis of coarse-level scaling functions and finer-level
details. Green dots indicate nodes associated with active basis functions. Top row: (integration) elements
from all levels with active nodes; elements supporting detail functions on level 1 are colored blue. Bottom
row: elements supporting detail functions on level 2 and 3 are respectively colored purple and tan. Note that
elements at different levels overlap in space, and the detail functions active on the finer levels vanish along
the internal boundaries of their supporting elements, thereby guaranteeing compatibility.

5.5 Potential Field in the Human Torso

Inverse problems, in which heart surface potentials are determined from measurements on the outer surfaces
of the upper torso, are of particular importance in computer-assisted electrocardiography (ECG). An adaptive

procedure for this problem has been outlined by John20@]. Here we show how basis refinement can be
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Figure 5.9: ECG field analysis example. On the left the initial grid; in the middle the refined discretization
(four levels of substitution refinement). Red balls indicate active scaling functions, elements of different
colors indicate the support of scaling functions on different levels. On the right, isocontours of the (adaptive)
solution. Initial surface grid courtesy of the Center for Scientific Computing and Imaging, University of Utah.

applied to a subproblem of inverse ECG, the adaptive solution of the generalized Laplace equation,

V.oVé=0, (5.1)

whereo is the conductivity tensor, with the boundary conditions

p=¢o on X CTr andoVe -n=0 on I'r\X,

wherel'r is the surface of the thorax, ad is given.

Figure 5.9 shows the initial grid with roughly 900 nodes and one of the refined grids with three levels
of substitution refinement and a total of 8,500 nodes. The computed field is visualized through isopotential
surfaces of a dipole located on the epicardial surface (assuming isotropic, homogeneous conductivity) in

Figurel.

Summary We demonstrated adaptive basis refinement using concrete example application drawn from
engineering, surgical, and biomedical applications. For each example, we chose the multi-resolution dis-
cretization that best fit the problem; our choices spanned: two- and three-dimensional domains; triangular,
tetrahedral, and hexahedral tesselations; linear and trilinear finite-element as well as Loop subdivision bases;

refinement by details as well as by substitution.
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Chapter 6

Conclusion

We have presented a natural method for adaptive refinement. Our mesh-based approach parallels mesh-less
methods: the focus is the basigttesselation, It unifies earlier instances of basis refinement, and generalizes
these early works to the arbitrary topology, smoothness and accuracy setting. This chapter summarizes and
further motivates our work, then describes exciting avenues for exploration, including links to asynchronous
variational integration, model reduction, control systems, subdivision schemes with tags, novel error estima-

tors, smoother unrefinement operators, traveling wavelets, hierarchical and multigrid preconditioners.
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6.1 Summary and Closing Arguments

Many systems governed by PDEs hasiegularities or nonsmooth solutions. For PDEs modeling physi-

cal phenomena this lack of smoothnesiserently unavoidablewe wishto capture phenomena such as
wrinkles, buckles, boundary layers, shock waves and cracks. Two widely applicable classes of PDEs, elliptic
equations on domains with re-entrant corners, and nonlinear hyperbolic systems of conservation laws, among
others, in general have solutions exhibiting singularities.

Lack of smoothness is a severe obstacle to the convergence of numerical approximation methods, i.e.,
achieving a prescribed accuracy typically requires a finer discretization thus more computation in comparison
with same same target accuracy solving for a smooth solution. In the context of wavelets, this observation
has been made precis€dhen 2003ja a variety of smoothness classes can be characterized by the rate of

decay of the multiscale approximation error:
dist(u(x), V) S 2757 (6.1)

if and only if u(z) hass derivatives inL?, wherep is the polynomial exactness (see Chag@eand V(")
is the levelr space of a multi-resolution wavelet discretization. We learn from this that the convergence of
approximations ta(z) at a prescribed rat°", as the discretization sampling raiaiformly increases,
requiresu(z) to everywherénave smoothness s. Convergence rate depends on smoothness; for uniform
refinements, smoothness is measured by the lower bound on smoothness everywhere over the domain. For
uniform refinement, a rough patch or singularity can lmmputational catastrophd=or wavelet systems,
DeVore has shown that for the same convergence rate, adaptive refinement (with appropriate error indicator)
has asignificantly weaker smoothness requiremgbbhen 2003g Thus we are motivated to implement
adaptivesolvers, whichJocally refine the discretization, guided by a measurement of error. According to
(6.2), error decays slowly in nonsmooth neighborhoods, consequently in striving to equidistribute error the
solver naturally introduces a finer discretization in rough regions.

Existing adaptive approaches for mesh-based discretizations typically split mesh elements in isolation,
violating compatibility conditions and then dealing with this problem using one of several techniques includ-
ing constraints, Lagrange multipliers, or temporary irregular splitting of incident elements. These techniques

must be specialized to different discretizations. This is in gemerabersomand in some casespossible

e For standard finite element basis functions, approaches to correcting incompatibility fail in higher
dimensions. Consider refinement of a single element in a hexahedral mesh: it is impossible to split

incident elements into finer hexahedra satisfying the compatibility conditions.

e Even when it is theoretically possible, element refinement can be so daunting that it is avoided albeit
direly needed: consider, for example, refinement of four (or more!) dimensional spacetime discretiza-

tions, where one cannot easily visualize the (many!) permutations of incompatibilities that must be
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corrected.

e For discretizations carrying basis functions with support diameter greater than one-ring, among them
the Subdivision Element Method, element refinem#oes not lead to nested spadésis breaking

refinement theory.

Mesh-less discretizations do not have such problems because there is no mesh thus no compatibility condi-
tions! Without a mesh, the clear method for mesh-less (nested) refinement is to augment the spanning set.
Bring this idea back to mesh-based discretizations: this is the key to avoiding the headaches associated with
incompatibility.

Refining either a mesh-based or mesh-less discretization by augmenting the basis is, from a theorist’s
standpoint, an obvious idea. Starting with a finite-basis discretization, it is arguably the most direct means
to nested spaces, and it does not require knowledge of whether the discretization is mesh-based or mesh-
less. The question is how to carry this simplicity (and this enthusiasm!) torthlementatiorof adaptive
mesh-basedolvers.

Wavelets and hierarchical splines practitioners are familiar with building adaptive solvers that introduce
basis functions. We view these earlier implementations as specific instances of basis refinement. Our contri-
bution is a minimal structure whiahnifiesspline, finite-element, (multi)wavelet, and subdivision discretiza-
tions among many others, laying og¢neral provably-correctalgorithms that apply uniformly over any
number of dimensions, fanesh-basediscretizations with arbitrary smoothness, accuracy, tesselation, sym-
metry, etc.. Our algorithms maintain the set of basis functions which span (thus define) the approximation
space, together with the associated structures required for numerical quadrature. For those applications which
require a basis, we give additional structures which ensure linear independence of the spanning set.

The generality of the algorithms means easier implementation and debugging. While we were originally
motivated by the need to find a refinement strategy for higher order basis functions, our method has significant
advantages even when only piecewise linear basis functions are used. Building on his existing finite element
solver software, Dr. Petr Krysl implemented and debugged our basic algorithms within a day. Due to the
dimension independence of the algorithmstending the implementation to 2D and 3D problems took three
hours eachAlthoughmestrefinement is popular for many kinds of finite elements, we learned that (a) finite-
elementbasisrefinement is very easy to implement, (b) existing finite element code is easily reused, and (c)
spending time to implement basis refinement for a particular class of discretizations (e.g., finite elements)
has the advantage thahce these data structures and algorithms are mastered they apply in a very broad
setting. The impact of basis refinement is conveyed in compelling applications spanning simulation of thin
shells, biomechanical systems, and human tissue undergoing a surgical procedure. This forcefully attests to

the simplicity and generality of the underlying framework.
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6.2 Future Work

The work presented herein immediately invites exploration of:

Links to Asynchronous Variational Integration  Explicit time-steppers for ODEs (with a time variable)

and elliptic PDEs (with time and space variables) must respstettality limit on the length of the time step;
typically, this is theCFL condition named after the three co-authors Gburant et al. 19238 which checks

that the temporal sampling frequency captures the highest frequencies of the discretized solution. For many
spacetime PDEs, ovégcalizedregions of the domain thepatialfrequency is proportional to the maximum

local temporalfrequency. Thus spatially adaptive discretizations do not in general have a spatially uniform
stability limit. This motivates theasynchronousdvancement of time over the domain, locally adopting
shorter time intervals where the discretization is finer and larger time intervals where it is coarser.

Novel developments aisynchronous variational integrato(gVIs) are particularly promising
[Lew et al. 2003gLew et al. 2003b This family of time-steppers improve both computatiopafformance
(via asynchrony) as well axcuracy they are based on variational principles which guarantee that conserved
guantities (e.g., energy, momentum) remain constant over the course of the simulation.

Explicit synchronousime-steppers for multi-resolution discretizations are limited by the highest spatial
frequency: as refinement proceeds during the course of the simulation, this limit cgmblady crippling.
Fortunately, the adaptive discretizations produced by basis refinement are the ideal setting for demonstrating
the power of AVIs. Preliminary investigations into, and discussions with the authorsenf,dt al. 2003k
suggest that basis refinement and AVIsagorithmically and theoretically orthogonalve believe that these

two techniques can (and should!) be used in conjunction.

Links to Model Reduction and Control Systems Control of physical systems is critical to many engineer-
ing and graphics application®{illlerud and Paganini 200®odgins et al. 1996 In designing controllers
for complex systems, the control problem is made tractablmobgelingthe target system at a sufficiently
coarsegranularity. Model reductionis the problem of capturing the salient, coarse features of a model
faithfully, discarding the remainder. This problem has been studied extensively in the settiregaoifnput-
output systems, where techniques suchalanced truncatiorfalso known agrinciple component analygis
are employedNloore 198]. Recently, Lall and co-worker22D0J extended these techniquesrtonlinear
input-output systems. Their approach uses empirical (or simulated) data to identify the dynamic behavior
most relevant to the input-output map of the system, i.e., they identify those states of the system which are
not affected by actuators (i.e., feedback) and which most affect the sensors. They then apply a Galerkin
projection to capture at a coarse grain the identified input-output map, produnongiaearreduced-order
model with inputs and outputs especially suited for control applications.

Model reduction has exciting applications in many fields. For example, Popovic has demonstrated the

use of variationallyoptimizedcontrollers in animation. We believe that these approaches could benefit from
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basis refinement. The model reduction and control optimization stages could be repeated after an adaptive
refinement of the Galerkin discretization, using the performance evaluation of the optimized controller to
design an error indicator. This could potentially create multi-resolution reduced-models with very few inputs

and outputs at the coarsest level.

Novel Error Estimators In our implementation we adopted well-establiskegosteriorierror indicators.

Since these give perlementrrors, and we need to make (de)activation decision$ytion we must con-

vert: welumpthe element error onto the basis functions, e.g., the error associatgd jas |, ¢;(x)y(x)dz,
wherevy(z) is the piecewise constaatror density computed via equidistribution of elemental error over the
elemental subdomain. This appears to be an effective technique, and it has the benefit that we may adopt any
element-based error measure. However, we would be more satisfied with a posteriori error estimators which
focus directly on the basis functions, i.e., estimate the change in error due to (de)activating a particular basis
function. Later, it would be very desirable to build a mathematical framework for transforming per-element

derivations into per-function derivations.

Links to Hierarchical and Multigrid Preconditioners  Preconditioning techniques are critical for accel-
erating the convergence of iterative solvers. Recently Green demonstrated the preconditioning of problems
which use Cirak’s subdivision elemengifak et al. 2000 Green exploits the multi-resolution of subdivi-

sion discretizations to great effect, reporting encouraging results for the preconditioning of an elliptic PDE
based on the Kirchoff-Love formulation of thin shellSreen et al. 2002 Since multi-resolution discretiza-

tions lie at the heart of our method, the necessary structure exists to accommodate mBHigkief al. 1988

Briggs et al. 200por wavelet Cohen and Masson 19pdreconditioning following the example presented by

Green.

Advances in Interpolated Unrefinement Unrefinement is inherentlipssy It requires projection onto a
smaller approximation space. In general, this leads to undesirable artifacts in simulation applications, in
particular temporal discontinuities in the configuration at the point in time that unrefinement occurs. One
way to resolve this is to permit unrefinement only when the current approximated solution is contained in
the smaller, unrefined trial space. This is lossless, but performance crippling —we might never be allowed to
unrefine!— in general we expect there todmne(small but non-zero) error during refinement.

To remedy this, our implementation usaterpolated unrefinementA basis function ismoothly deac-
tivated the deactivation o;(x) is separated into two steps: (a) the solver no longer considers as unknown
the associated coefficient;, and (b) the coefficient is set to zero, i.e;,— 0. In immediateg(lnonsmooth)
deactivation, both of these steps are performed instantaneously. In smooth deactivation, (a) the unknown,
u;, is (as always)mmediatelyremoved from the solver’s reach, i.e., it is considered a prescribed boundary
condition, and (b) the value of the coefficient is prescribed bgnaothly decayinéunction over some finite

time interval. e.g.u;(t) — 0 ast — to + Atqqg, Wheret, is the time at which deactivation commences and
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Atqq is thedeactivation delayIn our implementation we chose a simple linear decay, leading to continuity
over time of a configuration burtot its velocity. This removed the visual “blips” from the animation; how-

ever keen observers note that the discontinuity in velocity is noticeable and undesirable—human observers
are naturally trained to recognize sudden changelacity since these are associated with impulses. To

that end, it may be desirable to use decay curves which have zero initial and final time derivatives, such that
continuity of velocity is preserved during interpolated unrefinement. In contrast, we believe that continuity

of acceleration is not equally important, since many physical systems have discontinuous accelerations.

Links to Advected Bases and Traveling Wavelets Adaptive basis refinement may be of benefit in the
simulation of turbulent fluid flows. These problems are characterizeddvgctionphenomena, i.e., the
solution’s features are moving over the domain with some velocity. Consider that an advection operator, to
first order, locallytranslatespieces of the solution from one region of spatial domain to another. There is
beauty in approximating the advected solution usidgected basis functionise., let the advection operator

be a map from one approximation spaw onto itself, rather to aadvected spaceThis space is formed as
follows. Place particles at the center of the original approximation space. Advect the particles, and build a
set of advected basis functions centered at the advected particles. This approach is inspired by earlier work

ontraveling wavelet§Perrier and Basdevant 1991

Links to Tagged Subdivision: Multi-nesting Relations An attractive attribute of subdivision schemes is
their support fotagged meshesvhich associate descriptivagsto each mesh entity, e.gharp creasedge,
corner vertex, flat face (see, e.g., Biermann’s use of tags with Loop subdivisBiarfnann et al. 204).
Tags modify the subdivision stendit the vicinity of the tagged entity. For examplsharp creasdags
modify the subdivision stencil to prevent smoothing (or otherwise propagating information) across the two
surface patches incident to the tagged edge. This gives significant control over the shape of the limit function,
most often over itsmoothness Sharp creases, for example, induce discontinuous derivatives across the
associated patch boundaries. Recently DeRose introduced more geraralharp creasesvhich under
the control of a real-valuedharpness indeinduce arbitrarily large but bounded derivatives across patch
boundariesDeRose et al. 1998

The possibility of decorating a mesh with tags creates an expanded family of subdivision scaling functions
associated to every (local) permutation of tags. With the introduction of parameterized tags (e.g., sharpness
indices) aninfinite set of scaling functions (corresponding to different values of the parameter) associates to
a single mesh entity. Every spaté” is now richer; subdivision theory guarantees that the nesting relation
still holds, i.e.,V® c V®+D  Furthermore, we may be able to generalize the nesting relation, defining
a multi-dimensional nestingr(ulti-nesting relation: let the spac& (»*) be spanned by all level-scaling
functions associated to meshes with arbitrary sharpness indicedMe view this space as a point in a two

dimensional space-of-spaces, il6{?*) € V, with a discrete first dimensiop € Z*) and continuous second
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dimension § € R, s > 0). ThenV (?*) is nested in its first dimension, i.6/,7*) ¢ V(+1.5) as well as its
second, i.e.y(?®) c V() s < t. Refinement may naturally extend the current approximation space along
any of the nesting directions, e.g., addfinger functions, or addingharperfunctions.

Simulations of crushing, buckling and wrinkling benefit from adaptive approaches because they have
phenomenological singularities. When the only approach to capturing these singularities is to make the dis-
cretization locally finer (i.e., so-callefdrefinement Eriksson et al. 1999, the result is the introduction of
numerous extremely fine scaling functions. Wtaldaptivityavoidsglobally switching to a finer discretiza-
tion, there is still a computational penalty near sharp (less smooth) features of the solution. Our hope is that
the ability to introduce better-suited (e.g., sharper) scaling functions fitted to the features of the solution may

significantly reduce the need for exceedingly-fine discretizations.

Links to Tagged Subdivision: Scaling Functionals Alternatively, mesh tag parameters (such as the sharp-
ness index) may be viewed parametersf a scaling functional, i.e., the trial space consists of all functions

> éi(ui, s:)(x), where the scalingunctionals ¢;(u;, s;) € H(Q), are linear in their first argument (e.g.,
displacementbut not their second (e.gsharpnesg In general, the functional may take several sharp-
ness arguments, i.eg;(u;, ;. 1, Si2,- - ., Si,n), corresponding to thév edges within its support. In this
approach there armultiple coefficients associated to a single scaling functional. Of all formulations, it
may be that the variational form is best-suited for dealing with this setting. It remains to be seen whether
this is a useful construction; for both applications of tagged subdivision, we are inspired by the success of
p-refinement Eriksson et al. 1996ridgelets[Candes 1998 and curveletd Candes and Donoho 2000

6.3 Conclusion

Our contributions are (a) a mathematical framework with (b) associated algorithms for basis refinement; fur-
thermore, we (c) describe the mapping of popular methods —finite-elements, wavelets and multiwavelets,
splines and subdivision schemes— onto this framework, and (d) we demonstrate working implementations
of basis refinement with applications in graphics, engineering, and medicine, including in particular adap-

tive computation of thin shell problems using subdivision elements, for which classical finite element mesh

refinement does not apply.

The core idea is to refine basis functions, not elements. This idea is made concrete by starting with a
hierarchyof nested approximation spaces, equivalently a refinement relation. By construction, this idea leads
to methods which are naturalgpnforming unlike mesh refinement, basis refinement never creates incom-
patible meshes. Together, the hierarchical structure and natural compatibility give rise to aitaptee
refinementalgorithms which make no assumptions as to (a) the dimension of the domain; (b) the tessela-
tion of the domain; (c) the approximation smoothness or accuracy; and (d) the support diameter of the basis
functions. This simple idea, basis refinement, is at the heart of a unifying, general clessfafming,

hierarchical, adaptive refinement methotsiefly CHARMS.
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