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Abstract

We study the ordinal ranking problem in machine learning. The problem can be

viewed as a classification problem with additional ordinal information or as a re-

gression problem without actual numerical information. From the classification per-

spective, we formalize the concept of ordinal information by a cost-sensitive setup,

and propose some novel cost-sensitive classification algorithms. The algorithms are

derived from a systematic cost-transformation technique, which carries a strong the-

oretical guarantee. Experimental results show that the novel algorithms perform well

both in a general cost-sensitive setup and in the specific ordinal ranking setup.

From the regression perspective, we propose the threshold ensemble model for

ordinal ranking, which allows the machines to estimate a real-valued score (like re-

gression) before quantizing it to an ordinal rank. We study the generalization ability

of threshold ensembles and derive novel large-margin bounds on its expected test

performance. In addition, we improve an existing algorithm and propose a novel al-

gorithm for constructing large-margin threshold ensembles. Our proposed algorithms

are efficient in training and achieve decent out-of-sample performance when compared

with the state-of-the-art algorithm on benchmark data sets.

We then study how ordinal ranking can be reduced to weighted binary classi-

fication. The reduction framework is simpler than the cost-sensitive classification

approach and includes the threshold ensemble model as a special case. The frame-

work allows us to derive strong theoretical results that tightly connect ordinal ranking

with binary classification. We demonstrate the algorithmic and theoretical use of the

reduction framework by extending SVM and AdaBoost, two of the most popular bi-

nary classification algorithms, to the area of ordinal ranking. Coupling SVM with the
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reduction framework results in a novel and faster algorithm for ordinal ranking with

superior performance on real-world data sets, as well as a new bound on the expected

test performance for generalized linear ordinal rankers. Coupling AdaBoost with the

reduction framework leads to a novel algorithm that boosts the training accuracy of

any cost-sensitive ordinal ranking algorithms theoretically, and in turn improves their

test performance empirically.

From the studies above, the key to improve ordinal ranking is to improve binary

classification. In the final part of the thesis, we include two projects that aim at

understanding binary classification better in the context of ensemble learning. First,

we discuss how AdaBoost is restricted to combining only a finite number of hypotheses

and remove the restriction by formulating a framework of infinite ensemble learning

based on SVM. The framework can output an infinite ensemble through embedding

infinitely many hypotheses into an SVM kernel. Using the framework, we show that

binary classification (and hence ordinal ranking) can be improved by going from

a finite ensemble to an infinite one. Second, we discuss how AdaBoost carries the

property of being resistant to overfitting. Then, we propose the SeedBoost algorithm,

which uses the property as a machinery to prevent other learning algorithms from

overfitting. Empirical results demonstrate that SeedBoost can indeed improve an

overfitting algorithm on some data sets.
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Chapter 1

Introduction

Machine learning, the study that allows computational systems to adaptively improve

their performance with experience accumulated from the data observed, is becoming a

major tool in many fields. Furthermore, the growing application needs in the Internet

age keep supplementing machine learning research with new types of problems. This

thesis is about one of them—the ordinal ranking problem. It belongs to a family of

learning problems, called supervised learning, which will be introduced below.

1.1 Supervised Learning

In the supervised learning problems, the machine is given a training set Z = {zn}N
n=1,

which contains training examples zn = (xn, yn). We assume that each feature vec-

tor xn ∈ X ⊆ R
D, each label yn ∈ Y , and each training example zn is drawn

independently from an unknown probability measure dF(x, y) on X × Y . We focus

on the case where dF(y |x), the random process that generates y from x, is governed

by

y = g∗(x) + ǫx .

Here g∗ : X → Y is a deterministic but unknown component called the target function,

which denotes the best function that can predict y from x. The exact notion of “best”

varies by application needs and will be formally defined later in this section. The other
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part of y, which cannot be perfectly explained by g∗(x), is represented by a random

component ǫx.

With the given training set, the machine should return a decision function ĝ as

the inference of the target function. The decision function is chosen from a learning

model G = {g}, which is a collection of candidate functions g : X → Y . Briefly

speaking, the task of supervised learning is to use the information in the training

set Z to find some decision function ĝ ∈ G that is almost as good as g∗ under dF(x, y).

For instance, we may want to build a recognition system that transforms an image

of a written digit to its intended meaning. We can first ask someone to write down N

digits and represent their images by the feature vectors xn. We then label the images

by yn ∈ {0, 1, . . . , 9} according to their meanings. The target function g∗ here encodes

the process of our human-based recognition system and ǫx represents the mistakes we

may make in our brain. The task of this learning problem is to set up an automatic

recognition system (decision function) ĝ that is almost as good as our own recognition

system, even on the yet unseen images of written digits in the future.

The machine conquers the task with a learning algorithm A. Generally speaking,

the algorithm takes the learning model G and the training set Z as inputs. It then

returns a decision function ĝ ∈ G by minimizing a predefined objective function

E(g, Z) over g ∈ G. The full scenario of learning is illustrated in Figure 1.1.

Let us take one step back and look at what we mean by g∗ being the “best”

function to predict y from x. To evaluate the predicting ability of any g : X → Y , we

define its out-of-sample cost

π(g, F ) =

∫

x,y

C
(
y, g(x)

)
dF(x, y) .

Here C(y, k) is called the cost function, which quantifies the price to be paid when

an example of label y is predicted as k. The value of π(g, F ) reflects the expected

test cost on the (mostly) unseen examples drawn from dF(x, y). Then, the “best”
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Figure 1.1: Illustration of the learning scenario

.

function g∗ should satisfy

π(g∗, F ) ≤ π(g, F ) ∀g : X → Y .

One of such a g∗ can be defined by

g∗(x) ≡ argmin
k∈Y

(∫

y

C
(
y, k
)

dF(y |x)

)

. (1.1)

In this thesis, we assume that such a g∗ exists with ties in argmin arbitrarily broken,

and denote π(g, F ) by π(g) when F is clear from the context.

Recall that the task of supervised learning is to find some ĝ ∈ G that is almost

as good as g∗ under dF(x, y). Since π(g∗) is the lower bound, we desire π(ĝ) to be as

small as possible. Note that A minimizes E(g, Z) to get ĝ, and hence ideally we want

to set E(g, Z) = π(g). Nevertheless, because dF(x, y) is unknown, it is not possible

to compute such an E(g, Z) nor to minimize it directly. A substitute quantity that
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depends only on Z is called the in-sample cost

ν(g) =

N∑

i=1

C
(
yn, g(xn)

)
· 1

N
.

Note that ν(g) can also be defined by π(g, Zu) where Zu denotes a uniform distribution

over the training set Z. Because ν(g) is an unbiased estimate of π(g) for any given

single g, many learning algorithms take ν(g) as a major component of E(g, Z).

A small ν(g), however, does not always imply a small π(g) (Abu-Mostafa 1989;

Vapnik 1995). When the decision function ĝ comes with a small ν(ĝ) and a large π(ĝ),

we say that ĝ (or the learning algorithm A) overfits the training set Z. For instance,

consider a training set Z with xn 6= xm for all n 6= m, and C (y, k) = |y − k|. Assume

that a

ĝ(x) =







yn, for x ∈ {xn}N
n=1 ;

some constant ∆, otherwise.

Then, we see that ν(ĝ) = 0 (the smallest possible value) and π(ĝ) can be as large

as we want by varying the constant. That is, there exists a decision function like ĝ

that leads to serious overfitting. Preventing overfitting is one of the most important

objective when designing learning models and algorithms. Generally speaking, the

objective can be achieved when the complexity of G (and hence the chosen ĝ) is

reasonably controlled (Abu-Mostafa 1989; Abu-Mostafa et al. 2004; Vapnik 1995).

One important type of supervised learning problem is (univariate) regression,

which deals with the case when Y is a metric space isometric to R. For simplic-

ity, we shall restrict ourselves to the case where Y = R. Although not strictly re-

quired, common regression algorithms usually not only work on some G that contains

continuous functions, but also desires ĝ to be reasonably smooth as a control of its

complexity (Hastie, Tibshirani and Friedman 2001). The metric information is thus

important in determining the smoothness of the function.

For instance, a widely used cost function for regression is Cs(y, k) = (y − k)2, the



5

squared cost. With the cost in mind, the ridge regression algorithm (Hastie, Tibshirani

and Friedman 2001) works on a linear regression model

G = {gv,b : gv,b(x) = 〈v,x〉 + b} ,

with ĝ being the optimal solution of

min
g∈G

E(g, Z) ,

where E(gv,b, Z) =
λ

2
〈v,v〉 +

1

N

N∑

n=1

Cs

(

yn, gv,b(xn)
)

.

The first part of E(g, Z) controls the smoothness of the decision function chosen, and

the second part is ν(gv,b).

Another important type of supervised learning problem is called classification, in

which Y is a finite set Yc = {1, 2, . . . , K}. Each label in Yc represents a different cate-

gory. For instance, the digit recognition system described earlier can be formulated as

a classification problem. A function of the form X → Yc is called a classifier. In the

special case where |Yc| = 2, the classification problem is called binary classification,

in which the classifier g is called a binary classifier.

To evaluate whether a classifier predicts the desired category correctly, a com-

monly used cost function is the classification cost Cc(y, k) = Jy 6= kK.1 In some

classification problems, however, it may be desired to treat different kinds of clas-

sification mistakes differently (Margineantu 2001). For instance, when designing a

system to classify cells as {cancerous, noncancerous}, in terms of the possible loss on

human life, the cost of classifying some cancerous cell as a noncancerous one should be

significantly higher than the other way around. These classification problems would

thus include cost functions other than Cc. We call them cost-sensitive classification

problems to distinguish them from the regular classification problems, which uses

only Cc.

1J·K = 1 when the inner condition is true, and 0 otherwise.
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Note that in classification problems, for any given (x, y), the cost function C

would be evaluated only on parameters (y, k) where k ∈ Yc. We can then represent

the needed part of C by a cost vector c with respect to y, where c[k] = C(y, k). In

this thesis, we take a more general setup of cost-sensitive classification and allow dif-

ferent cost functions to be used on different examples (Abe, Zadrozny and Langford

2004). In the setup, we assume that the vector c is drawn from some probability mea-

sure dF(c |x, y) on a collection C of possible cost functions. We call the tuple (x, y, c)

the cost-sensitive example to distinguish it from a regular example (x, y). The learn-

ing algorithm now receives a cost-sensitive training set {(xn, yn, cn)}N
n=1 to work with.2

Using the cost-sensitive examples (x, y, c), the out-of-sample cost becomes

π(g) =

∫

x,y

(∫

c

c[g(x)] dF(c |x, y)

)

dF(x, y) ,

and the in-sample cost becomes

ν(g) =

N∑

i=1

cn[g(xn)] ·
1

N
.

As can be seen from the updated definitions of π(g) and ν(g), our setup do not

explicitly need the label y. We shall, however, keep the notation for clarity and

assume that y = argmin
k∈Y

c[k].

A special instance of cost-sensitive classification takes the cost vector c to be of the

form c[k] = w ·Cc(y, k) for every cost-sensitive example (x, y, c) with some w ≥ 0. We

call the instance weighted classification, in which a cost-sensitive example (x, y, c) can

be simplified to a weighted example (x, y, w). It is known that weighted classification

problems can be readily solved by regular classification algorithms with rejection-

based sampling (Zadrozny, Langford and Abe 2003).

2In many applications, the exact form of dF(c |x, y) is known by application needs. In all of our
theoretical results, however, dF(c |x, y) can be either known or unknown, as long as the learning
algorithm receives a cost-sensitive training set where cn is drawn independently from dF(c |xn, yn).
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1.2 Ordinal Ranking

Ordinal ranking is another type of supervised learning problem. It is similar to

classification in the sense that Y is a finite set Yr = {1, 2, . . . , K} = Yc. Therefore,

ordinal ranking is also called ordinal classification (Cardoso and da Costa 2007; Frank

and Hall 2001). Nevertheless, in addition to representing the nominal categories (as

the usual classification labels), now those y ∈ Yr also carry the ordinal information.

That is, two different labels in Yr can be compared by the usual “<” operation. We

call those y the ranks to distinguish them from the usual classification labels. We use

a ranker r(x) to denote a function from X → Yr. In an ordinal ranking problem, the

decision function is denoted by r̂(x), and the target function is denoted by r∗(x).

Because ranks can be naturally used to represent human preferences, ordinal rank-

ing lends itself to many applications in social science, psychology, and information

retrieval. For instance, we may want to build a recommendation system that predicts

how much a user likes a movie. We can first choose N movies and represent each

movie by a feature vector xn. We then ask the user to (see and) rate each movie by

{one star, two star, . . ., five star}, depending on how much she or he likes the movie.

The set Yr = {1, 2, . . . , 5} includes different levels of preference (numbers of stars),

which are ordered by “<” to represent “worse than.” The task of this learning prob-

lem is to set up an automatic recommendation system (decision function) r̂ : X → Yr

that is almost as good as the user, even on the yet unseen movies in the future.

Ordinal ranking is also similar to regression, in the sense that ordinal information

is similarly encoded in y ∈ R. Therefore, ordinal ranking is also popularly called

ordinal regression (Chu and Ghahramani 2005; Chu and Keerthi 2007; Herbrich,

Graepel and Obermayer 2000; Li and Lin 2007b; Lin and Li 2006; Shashua and Levin

2003; Xia, Tao, et al. 2007; Xia, Zhou, et al. 2007). Nevertheless, unlike the real-

valued regression labels, the discrete ranks y ∈ Yr do not carry metric information.

For instance, we cannot say that a five-star movie is 2.5 times better than a two-

star one. In other words, the rank serves as a qualitative indication rather than

a quantitative outcome. The lack of metric information violates the assumption of
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many regression algorithms, and hence they may not perform well on ordinal ranking

problems.

The ordinal information carried by the ranks introduce the following two proper-

ties, which are important for modeling ordinal ranking problems.

• Closeness in the rank space Yr: The ordinal information suggests that the

mislabeling cost depend on the “closeness” of the prediction. For example,

predicting a two-star movie as a three-star one is less costly than predicting it

as a five-star one. Hence, the cost vector c should be V-shaped with respect

to y (Li and Lin 2007b), that is,







c[k−1] ≥ c[k] , for 2 ≤ k ≤ y ;

c[k+1] ≥ c[k] , for y ≤ k ≤ K−1.

(1.2)

Briefly speaking, a V-shaped cost vector says that a ranker needs to pay more if

its prediction on x is further away from y. We shall assume that every cost vec-

tor c generated from dF(c |x, y) is V-shaped with respect to y = argmin
1≤k≤K

c[k].

With this assumption, ordinal ranking can be casted as a cost-sensitive classi-

fication problem with V-shaped cost vectors.

In some of our results, we need a stronger condition: The cost vectors should

be convex (Li and Lin 2007b), that is,

c[k+1] − c[k] ≥ c[k] − c[k−1] , for 2 ≤ k ≤ K−1 . (1.3)

When using convex cost vectors, a ranker needs to pay increasingly more if its

prediction on x is further away from y. It is not hard to see that any convex

cost vector c is V-shaped with respect to y = argmin
1≤k≤K

c[k].

• Structure in the feature space X : Note that the classification cost vec-

tors
{

c
(ℓ)
c : c

(ℓ)
c [k] = Jℓ 6= kK

}K

ℓ=1
, which are associated with the classification cost

function Cc, are also V-shaped. If those cost vectors (and hence Cc) are used,
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what distinguishes ordinal ranking and regular classification?

Note that the total order within Yr and the target function r∗ introduces a total

preorder in X (Herbrich, Graepel and Obermayer 2000). That is,

x <∼ x′ ⇐⇒ r∗(x) ≤ r∗(x
′).

The total preorder allows us to naturally group and compare vectors in the

feature space X . For instance, a two-star movie is “worse than” a three-star

one, which is in term “worse than” a four-star one; movies of less than three

stars are “worse than” movies of at least three stars.

It is the meaningfulness of the grouping and the comparison that distinguishes

ordinal ranking from regular classification, even when the classification cost

vectors
{

c
(ℓ)
c

}K

ℓ=1
are used. For instance, if apple = 1, banana = 2, grape = 3,

orange = 4, strawberry = 5, we can intuitively see that comparing fruits {1, 2}
with fruits {3, 4, 5} is not as meaningful as comparing “movies of less than three

stars” with “movies of at least three stars.”

Ordinal ranking has been studied from the statistics perspective in detail by Mc-

Cullagh (1980), who viewed ranks as contiguous intervals on an unobservable real-

valued random variable. From the machine learning perspective, many ordinal rank-

ing algorithms have been proposed in recent years. For instance, Herbrich, Graepel

and Obermayer (2000) followed the view of McCullagh (1980) and designed an algo-

rithm with support vector machines (Vapnik 1995). One key idea of Herbrich, Graepel

and Obermayer (2000) is to compare training examples by their ranks in a pairwise

manner. Har-Peled, Roth and Zimak (2003) proposed a constraint classification algo-

rithm that also compares training examples in a pairwise manner. Another instance

of the pairwise comparison approach is the RankBoost algorithm (Freund et al. 2003;

Lin and Li 2006), which will be further described in Chapter 3. Nevertheless, because

there are O(N2) pairwise comparisons out of N training examples, it is harder to

apply those algorithms on large-scale ordinal ranking problems.
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There are some other algorithms that do not lead to such a quadratic expansion,

such as perceptron ranking (Crammer and Singer 2005, PRank), ordinal regression

boosting (Lin and Li 2006, ORBoost, which will be further introduced in Chapter 3),

support vector ordinal regression (Chu and Keerthi 2007, SVOR), and the data repli-

cation method (Cardoso and da Costa 2007). As we shall see later in Chapter 4, these

algorithms can be unified under a simple reduction framework (Li and Lin 2007b).

Still some other algorithms fall into neither of the approaches above, such as

C4.5-ORD (Frank and Hall 2001), Gaussian process ordinal regression (Chu and

Ghahramani 2005, GPOR), recursive feature extraction (Xia, Tao, et al. 2007), and

Weighted-LogitBoost (Xia, Zhou, et al. 2007).

1.3 Overview

In Chapter 2, we study the ordinal ranking problem from a classification perspec-

tive. That is, we cast ordinal ranking as a cost-sensitive classification problem with

V-shaped costs. We propose the cost-transformation technique to systematically ex-

tend regular classification algorithms to their cost-sensitive versions. The technique

carries strong theoretical guarantees. Based on the technique, we derive two novel

cost-sensitive classification algorithms based on their popular versions in regular clas-

sification and test their performance on both cost-sensitive classification and ordinal

ranking problems.

In Chapter 3, we study the ordinal ranking problem from a regression perspective.

That is, we solve ordinal ranking by thresholding an estimation of a latent contin-

uous variable. Learning models associated with this approach are called threshold

models. We propose an novel instance of the threshold model called the threshold

ensemble model and prove its theoretical properties. We not only extend RankBoost

for constructing threshold ensemble rankers, but also propose a more efficient al-

gorithm called ORBoost. The proposed algorithm roots from the famous adaptive

boosting (AdaBoost) approach and carries promising properties from its ancestor.

In Chapter 4, we show that ordinal ranking can be reduced to binary classification
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theoretically and algorithmically, which includes the threshold model as a special

case. We derive theoretical foundations of the reduction framework and demonstrate

a surprising equivalence: Ordinal ranking is as hard (easy) as binary classification.

In addition to extending support vector machines (SVM) to ordinal ranking with the

reduction framework, we also propose a novel algorithm called AdaBoost.OR, which

efficiently constructs an ensemble of ordinal rankers as its decision function.

In Chapter 5, we include two concrete research projects that aim at understanding

and improving binary classification. The results can in turn be coupled with the re-

duction framework to improve ordinal ranking. First, we propose a novel framework

of infinite ensemble learning based on SVM. The framework is not limited by the

finiteness restriction of existing ensemble learning algorithms. Using the framework,

we show that binary classification (and hence ordinal ranking) can be improved by

going from a finite ensemble to an infinite one. Second, we discuss how AdaBoost

carries the property of being resistant to overfitting. We then propose the Seed-

Boost algorithm, which uses the property as a machinery to prevent other learning

algorithms from overfitting.

Some of the results in Chapters 3, 4, and 5 were jointly developed by Dr. Ling Li

and the author (Li and Lin 2007b; Lin and Li 2006, 2008). The results that should be

credited to Dr. Ling Li will be properly acknowledged in the coming chapters. The

results without such acknowledgment are the original contributions of the author.
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Chapter 2

Ordinal Ranking by Cost-Sensitive
Classification

As discussed in Section 1.2, ordinal ranking can be casted as a cost-sensitive classifica-

tion problem with V-shaped cost vectors. In this chapter, we study the cost-sensitive

classification problem in general and propose a systematic technique to transform it

to a regular classification problem. We first derive the theoretical foundations of the

technique. Then, we use the technique to extend two popular algorithms for reg-

ular classification, namely one-versus-one and one-versus-all, to their cost-sensitive

versions. We empirically demonstrate the usefulness of the new cost-sensitive algo-

rithms on general cost-sensitive classification problems as well as on ordinal ranking

problems.

2.1 Cost-Sensitive Classification

Cost-sensitive classification fits the needs of many practical applications of machine

learning and data mining, such as targeted marketing, fraud detection, and medical

decision systems (Abe, Zadrozny and Langford 2004). Margineantu (2001) discussed

three kinds of approaches for solving the problem: manipulating the training exam-

ples, modifying the learning algorithm, or manipulating the decision function. There

is also the fourth kind: designing a new learning algorithm to solve the problem

directly.
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For manipulating the training examples, Domingos (1999) proposed the MetaCost

algorithm, which takes any classification algorithm to estimate dF(y |x), uses the

estimate to relabel the training examples, and then retrains a classifier with the

relabeled examples. The algorithm, however, depends strongly on how well dF(y |x)

is estimated, which is hard to be theoretically guaranteed. In addition, the algorithm

needs to know the cost collection C in advance and only accepts some restricted forms

of dF(c |x, y). These shortcomings make it difficult to use the algorithm on our more

general cost-sensitive setup. Approaches that manipulate the decision function suffer

from similar shortcomings (Abe, Zadrozny and Langford 2004; Margineantu 2001).

There are many cost-sensitive classification approaches that come from modifying

some regular classification algorithm (see, for instance, Margineantu 2001, Subsec-

tion 2.3.2). These approaches are usually constructed by identifying where the clas-

sification cost vectors are used in E(g, Z) (or some intermediate quantity within A),

and then replacing them with cost-sensitive ones. Nevertheless, the modifications are

usually ad hoc and heuristic based. In other words, those approaches usually do not

come with a strong theoretical guarantee, either.

Recently, some authors proposed new algorithms for solving cost-sensitive classifi-

cation problems directly (Beygelzimer et al. 2005; Beygelzimer, Langford and Raviku-

mar 2007; Langford and Beygelzimer 2005). These algorithms come with stronger

theoretical guarantee, but because of their novelty, they have not been as widely

tested nor as successful as some popular algorithms for regular classification.

Our work takes the route of modifying existing algorithms, along with the ob-

jective of being systematic as well as providing a strong theoretical guarantee. In

addition, our proposed modifications are based on the cost-transformation technique,

which is related to manipulating training examples in a principled manner. Then, we

can easily extend successful algorithms for regular classification to their cost-sensitive

versions. Next, we illustrate the cost-transformation technique.
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2.2 Cost-Transformation Technique

The key of the cost-transformation technique is to decompose a cost vector c to a

conic combination of the classification cost vectors
{

c
(ℓ)
c

}K

ℓ=1
, where

c(ℓ)
c [k] = Cc(ℓ, k) = Jℓ 6= kK .

For instance, consider a cost vector c̃ = (4, 3, 2, 3), we see that

c̃ = 0 · (0, 1, 1, 1)
︸ ︷︷ ︸

c
(1)
c

+1 · (1, 0, 1, 1)
︸ ︷︷ ︸

c
(2)
c

+2 · (1, 1, 0, 1)
︸ ︷︷ ︸

c
(3)
c

+1 · (1, 1, 1, 0)
︸ ︷︷ ︸

c
(4)
c

.

Why is such a decomposition useful? If there is a cost-sensitive example (x, y, c),

where c =
∑K

ℓ=1 q̃[ℓ] · c(ℓ)
c , then for any classifier g,

c[g(x)] =

K∑

ℓ=1

q̃[ℓ] · c(ℓ)
c [g(x)] =

K∑

ℓ=1

q̃[ℓ] · Jℓ 6= g(x)K .

That is, if we sample ℓ proportional to q̃[ℓ] and replace the cost-sensitive exam-

ple (x, y, c) by a regular one (x, ℓ), then the cost that g needs to pay for its prediction

on x is proportional to the expected classification cost. Thus, if a classifier g performs

well on the “relabeled” problem using the expected classification cost, it would also

perform well on the original cost-sensitive problem. The nonnegativity of q̃[ℓ] ensures

that q̃ can be scaled to form a probability distribution dF(ℓ | q̃).1

Nevertheless, can every cost vector c be decomposed to a conic combination

of
{

c
(ℓ)
c

}K

ℓ=1
? The short answer is no. For instance, the cost vector c = (2, 1, 0, 1)

cannot be decomposed to any conic combination of
{

c
(ℓ)
c

}4

ℓ=1
, because c comes with

a unique linear decomposition:

(2, 1, 0, 1) = −2

3
· (0, 1, 1, 1) +

1

3
· (1, 0, 1, 1) +

4

3
· (1, 1, 0, 1) +

1

3
· (1, 1, 1, 0) .

1We take a minor assumption that not all q̃[ℓ] are zero. Otherwise c = 0 and the example (x, y, c)
can be simply dropped.
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Thus, c cannot be represented by any conic combination of
{

c
(ℓ)
c

}4

ℓ=1
. The unique

existence of a linear combination is formalized in the following lemma.

Lemma 2.1. Any c ∈ R
K can be uniquely decomposed to c =

∑K
ℓ=1 q[ℓ] · c

(ℓ)
c ,

where q[ℓ] ∈ R for ℓ = 1, 2, . . . , K.

Proof. Note that q[ℓ] needs to satisfy the following matrix equation:











c[1]

c[2]

. . .

c[K]











︸ ︷︷ ︸

cT

=











0 1 1 . . . 1

1 0 1 . . . 1

. . . . . . . . . . . . . . .

1 1 1 . . . 0











︸ ︷︷ ︸

M











q[1]

q[2]

. . .

q[K]











︸ ︷︷ ︸

qT

.

Because M is invertible with

M−1 =
1

K−1











−(K−2) 1 1 . . . 1

1 −(K−2) 1 . . . 1

. . . . . . . . . . . . . . .

1 1 1 . . . −(K−2)











,

the vector q can be uniquely computed by
(
M−1cT

)T
. That is,

q[ℓ] =

(

1

K−1

K∑

k=1

c[k]

)

− c[ℓ] .

Although c̃ = (4, 3, 2, 3) yields a conic decomposition but c = (2, 1, 0, 1) does

not, the two cost vectors are not very different when being used to evaluate the

performance of a classifier g. Note that for every x, c̃[g(x)] = c[g(x)] + 2. The

constant shifting from c to c̃ does not affect the relative cost difference between the

prediction g(x) and the best prediction y. That is, using c̃ is equivalent to using c

plus a constant cost of 2 on every example. We call a cost vector c̃ similar to c by ∆
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when

c̃[·] = c[·] + ∆ ,

with some constant ∆. If we only use c additively, as what we did in the definition

of π(g) and ν(g), using c̃ instead of c would introduce only a constant shift.

Although we cannot decompose any c to a conic combination of
{

c
(ℓ)
c

}K

ℓ=1
, there

exists infinitely many cost vectors c̃ that allow a conic combination while being similar

to c. To see this, note that

(K−1) · (∆, ∆, . . . , ∆) = ∆

K∑

ℓ=1

c(ℓ)
c .

Then, consider c =
∑K

ℓ=1 q[ℓ] · c(ℓ)
c ,

c̃ = c + (K−1) · (∆, ∆, . . . , ∆) =

K∑

ℓ=1

(q[ℓ] + ∆) · c(ℓ)
c .

We can easily make q̃[ℓ] = q[ℓ] + ∆ ≥ 0 by choosing ∆ ≥ max
1≤ℓ≤K

(−q[ℓ]).

Lemma 2.2. Consider some c =
∑K

ℓ=1 q[ℓ] · c(ℓ)
c . If c̃ is similar to c by (K−1) · ∆,

then c̃ yields a conic combination of
{

c
(ℓ)
c

}K

ℓ=1
if and only if ∆ ≥ max

1≤ℓ≤K
(−q[ℓ]).

Proof. By Lemma 2.1, the decomposition of c̃ by

K∑

ℓ=1

(q[ℓ] + ∆) · c(ℓ)
c

is unique. Then, it is not hard to see that q̃[ℓ] = q[ℓ]+∆ ≥ 0 for every ℓ = 1, 2, . . . , K

if and only if ∆ ≥ max
1≤ℓ≤K

(−q[ℓ]).

Thus, we can first transform each cost vector c to a similar one c̃ that yields

a conic combination, get the vector q̃, and randomly relabel (x, y, c) to (x, ℓ) with

probability dF(ℓ | c) proportional to q̃[ℓ]. The procedure above transforms the original

cost-sensitive classification problem to an equivalent regular classification one. From
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Lemma 2.2, there are infinitely many c̃ that we can use. The next question is, which

is more preferable? Since the proposed procedure relabels with probability

dF(ℓ | c) = p̃[ℓ] =
q̃[ℓ]

∑K
k=1 q̃[k]

,

we would naturally desire the discrete probability distribution p̃[·] to be of the least

entropy. That is, we want the distribution to come from the optimal solution of

min
p̃,∆

K∑

ℓ=1

p̃[ℓ] log
1

p̃[ℓ]
, (2.1)

subject to ∆ ≥ max
1≤ℓ≤K

(−q[ℓ]) ,

p̃[ℓ] =
q̃[ℓ]

∑K
k=1 q̃[k]

, ℓ = 1, 2, . . . , K,

q̃[ℓ] = q[ℓ] + ∆ , ℓ = 1, 2, . . . , K,

q[ℓ] =

(

1

K−1

K∑

k=1

c[k]

)

− c[ℓ] , ℓ = 1, 2, . . . , K.

Theorem 2.3. If not all c[ℓ] are equal, the unique optimal solution to (2.1) is

p̃[ℓ] =
cmax − c[ℓ]

∑K
k=1 (cmax − c[k])

and ∆ = max
1≤ℓ≤K

(−q[ℓ]) , where cmax = max
1≤ℓ≤K

c[ℓ] .

Proof. If not all c[ℓ] are equal, not all q[ℓ] are equal. Now we substitute those p̃ in

the objective function by the right-hand sides of the equality constraints. Then, the

objective function becomes

f(∆) = −
K∑

ℓ=1

q[ℓ] + ∆
∑K

k=1 q[k] + K∆
log

q[ℓ] + ∆
∑K

k=1 q[k] + K∆
.

The constraint on ∆ ensures that all the p log p operations above are well defined.2

2We take the convention that 0 log 0 ≡ limǫ→0 ǫ log ǫ = 0.



18

Now, let q̄ ≡ 1
K

∑K
k=1 q[k]. We get

df

d∆
= − 1

K (q̄ + ∆)2

K∑

ℓ=1

(−q[ℓ] + q̄) ·
(

log

(
q[ℓ] + ∆

q̄ + ∆

)

− log K + 1

)

= − 1

K (q̄ + ∆)2

K∑

ℓ=1



− (q[ℓ] + ∆)
︸ ︷︷ ︸

aℓ

+ (q̄ + ∆)
︸ ︷︷ ︸

bℓ



 · log
q[ℓ] + ∆

q̄ + ∆

=
1

K (q̄ + ∆)2

K∑

ℓ=1

(
aℓ − bℓ

)
·
(
log aℓ − log bℓ

)
.

When not all q[ℓ] are equal, there exists at least one aℓ that is not equal to bℓ.

Therefore, df
d∆

is strictly positive, and hence the unique minimum of f(∆) happens

when ∆ is of the smallest possible value. That is, for the unique optimal solution,







∆ = max
1≤ℓ≤K

(−q[ℓ]) = cmax −
(

1
K−1

∑K
k=1 c[k]

)

;

q̃[ℓ] = cmax − c[ℓ] , p̃[ℓ] = cmax−c[ℓ]
PK

k=1(cmax−c[k])
.

(2.2)

Using Theorem 2.3, we can define the following probability measure dFc(x, ℓ)

from dF(x, y, c):

dFc(x, ℓ) ∝
∫

y,c

q̃[ℓ] dF(x, y, c) ,

where q̃[ℓ] is computed from c using (2.2).3 More precisely, let

Λ1 =

∫

x,y,c

K∑

ℓ=1

q̃[ℓ] dF(x, y, c) . (2.3)

Note that from (2.2),
∑K

ℓ=1 q̃[ℓ] > 0 if not all c[ℓ] are equal. Thus, we can generally

3Even when all c[ℓ] are equal, (2.2) can still be used to get q̃[ℓ] = 0 for all ℓ, which means the
example (x, y, c) can be dropped instead of relabeled.
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assume that the integral results in a nonzero value. That is, Λ1 > 0, and

dFc(x, ℓ) = Λ−1
1 ·

∫

y,c

q̃[ℓ] dF(x, y, c) .

Then, we can derive the following cost-transformation theorem:

Theorem 2.4. For any classifier g,

π(g, F ) = Λ1 · π(g, Fc) − Λ2 ,

where Λ2 = (K−1) ·
∫

x,y,c
∆ ·dF(x, y, c) and each ∆ in the integral is computed from c

with (2.2).

Proof.

π(g, F ) =

∫

x

(∫

y,c

c[g(x)] dF(y, c |x)

)

dF(x)

=

∫

x

(
∫

y,c

K∑

ℓ=1

q[ℓ] · c(ℓ)
c [g(x)] dF(y, c |x)

)

dF(x)

=

∫

x

(
∫

y,c

K∑

ℓ=1

(q̃[ℓ] − ∆) · c(ℓ)
c [g(x)] dF(y, c |x)

)

dF(x)

= −Λ2 +

∫

x

(
∫

y,c

K∑

ℓ=1

q̃[ℓ] · c(ℓ)
c [g(x)] dF(y, c |x)

)

dF(x)

= −Λ2 +

∫

x

K∑

ℓ=1

c(ℓ)
c [g(x)] ·

(∫

y,c

q̃[ℓ] dF(y, c |x)

)

dF(x)

= −Λ2 + Λ1 ·
∫

x,ℓ

c(ℓ)
c [g(x)] · dFc(x, ℓ)

= −Λ2 + Λ1 · π(g, Fc).

An immediate corollary of Theorem 2.4 is:

Corollary 2.5. If g∗ is the target function under dF (x, y, c), and g̃∗ is the target

function under dFc(x, ℓ), then π(g∗, F ) = π(g̃∗, F ) and π(g∗, Fc) = π(g̃∗, Fc).

That is, if a regular classification algorithm Ac is able to return a decision func-
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tion ĝ = g̃∗, the decision function is as good as the target function g∗ under the

original dF(x, y, c). Furthermore, as formalized in the following regret transforma-

tion theorem, if any classifier g is close to g̃∗ under dFc(x, ℓ), it is also close to g∗

under dF (x, y, c).

Theorem 2.6. Consider dFc(x, ℓ) defined from dF (x, y, c) above, for any classifier g,

π(g, F ) − π(g∗, F ) = Λ1 ·
(

π(g, Fc) − π(g̃∗, Fc)
)

.

Thus, to deal with a cost-sensitive classification problem generated from dF (x, y, c),

it seems that the learning algorithm A can take the following steps:

Algorithm 2.1 (Cost transformation with relabeling, preliminary).

1. Compute dFc(x, ℓ) and obtain N independent training examples Zc = {(xn, ℓn)}N
n=1

from dFc(x, ℓ).

2. Use a regular classification algorithm Ac on Zc to obtain a decision function ĝc

that ideally yields a small π(ĝc, Fc).

3. Return ĝ ≡ ĝc.

There is, however, a caveat in the algorithm above. Recall that dF (x, y, c) is

unknown, and dFc(x, ℓ) depends on dF (x, y, c). Thus, dFc(x, ℓ) cannot be actually

computed. Nevertheless, we know that the training set Z = {(xn, yn, cn)}N
n=1 contains

examples that are generated independently from dF (x, y, c). Then, the first step can

be implemented (almost equivalently) as follows.

Algorithm 2.2 (Cost transformation with relabeling).

1. Obtain N ′ independent training examples Zc = {(xn, ℓn)}N ′

n=1 from dFc(x, ℓ):

(a) Transform each (xn, yn, cn) to (xn, q̃n) by (2.2).

(b) Apply the rejection-based sampling technique (Zadrozny, Langford and Abe

2003) and accept (xn, q̃n) with probability proportional to
∑K

ℓ=1 q̃n[ℓ].
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(c) For those (xn, q̃n) that survive from rejection-based sampling, randomly

assign its label ℓn with probability p̃n[ℓ] ∝ q̃n[ℓ].

2. Use a regular classification algorithm Ac on Zc to obtain a decision function ĝc

that ideally yields a small π(ĝc, Fc).

3. Return ĝ ≡ ĝc.

It is easy to check that the new training set Zc contains N ′ (usually less than N)

independent examples from dFc(x, ℓ).

While the steps above are supported with theoretical guarantees from Theo-

rems 2.4 and 2.6, they may not work well in practice. For instance, if we look

at an example (xn, yn, cn) with yn = 1 and cn = (0, 1, 1, 334), the resulting q̃n =

(334, 333, 333, 0). Because of the large value in cn[4], the example looks almost like a

uniform mixture of labels {1, 2, 3}, with only 0.334 of probability to keep its original

label. In other words, for the purpose of encoding some large components in a cost

vector, the relabeling process could pay a huge variance and relabel (or mislabel) the

example more often than not. Then, the regular classification algorithm Ac would re-

ceive some Zc that contains lots of misleading labels, making it hard for the algorithm

to return a decent ĝc.

One remedy to the difficulty above is to use the following algorithm, called training

set expansion and weighting (TSEW), instead of relabeling:

Algorithm 2.3 (TSEW: training set expansion and weighting).

1. Obtain NK weighted training examples Zw = {(xnℓ, ynℓ, wnℓ)}:

(a) Transform each (xn, yn, cn) to (xn, q̃n) by (2.2).

(b) For every 1 ≤ ℓ ≤ K, let (xnℓ, ynℓ, wnℓ) = (xn, ℓ, q̃n[ℓ])and add (xnℓ, ynℓ, wnℓ)

to Zw.

2. Use a weighted classification algorithm Aw on Zw to obtain a decision func-

tion ĝw.

3. Return ĝ ≡ ĝw.
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It is not hard to show that dFc(x, ℓ) ∝ w · dFw(x, ℓ, w), and Zw contains (depen-

dent) examples generated from dFw(x, ℓ, w). We can think of Zw, which trades

independence for smaller variance, as a more stable version of Zc. The expanded

training set Zw contains all possible ℓ, and hence always includes the correct la-

bel yn (along with the largest weight on q̃n[yn]). The Aw in TSEW can also be

performed by a regular classification algorithm Ac using the rejection-based sam-

pling technique (Zadrozny, Langford and Abe 2003). Then, Algorithm 2.2 is simply

a special (and less-stable) case of TSEW.

The TSEW algorithm is a basic instance of our proposed cost-transformation tech-

nique. It is the same as the data space expansion (DSE) algorithm (Abe, Zadrozny

and Langford 2004). Nevertheless, our derivation from the minimum entropy per-

spective is novel, and our theoretical results on the out-of-sample cost π(g) are more

general than the in-sample cost analysis by Abe, Zadrozny and Langford (2004). Re-

cently, Xia, Zhou, et al. (2007) also proposed an algorithm similar to TSEW using

LogitBoost as Aw based on a restricted version of Theorem 2.4. It should be noted

that the results discussed in this section are partially influenced by the work of Abe,

Zadrozny and Langford (2004) but are independent from the work of Xia, Zhou, et al.

(2007).

From the experimental results, TSEW (DSE) does not perform well in prac-

tice (Abe, Zadrozny and Langford 2004). A possible reason is that common Aw

still find Zw too difficult (Xia, Zhou, et al. 2007), because a training feature vector xn

could be multilabeled in Zw, which may confuse Aw. One could improve the basic

TSEW algorithm by using (or designing) an Aw that is more robust with multilabeled

training feature vectors, as discussed in the next section.

2.3 Algorithms

In this section, we propose two novel cost-sensitive classification algorithms by cou-

pling the cost-transformation technique with popular algorithms for regular (weighted)

classification.
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2.3.1 Cost-Sensitive One-Versus-All

The one-versus-all (OVA) algorithm is a popular algorithm for weighted classification.

It solves the weighted classification problem by decomposing it to several weighted

binary classification problems, as shown below.

Algorithm 2.4 (One-versus-all, see, for instance, Hsu and Lin 2002).

1. For each 1 ≤ ℓ ≤ K,

(a) Take the original training set Z = {(xn, yn, wn)}N
n=1 and construct a binary

classification training set Z
(ℓ)
b =

{

(xn, y
(ℓ)
n , wn) : y

(ℓ)
n = Jyn = ℓK

}N

n=1
.

(b) Use a weighted binary classification algorithm Ab on Z
(ℓ)
b to get a decision

function ĝ
(ℓ)
b .

2. Return ĝ(x) = argmax
1≤ℓ≤K

ĝ
(ℓ)
b (x).

Each ĝ
(ℓ)
b (x) intends to predict whether x belongs to category ℓ. Thus, if a feature

vector x should be of category 1, and all ĝ
(ℓ)
b are mistake free, then ideally ĝ

(1)
b (x) = 1

and ĝ
(ℓ)
b (x) = 0 for ℓ 6= 1, and hence ĝ(x) could make a correct prediction. Never-

theless, if some of the binary decision functions ĝ
(ℓ)
b make mistakes, the performance

of OVA can be affected by the ties in the argmax operation. In practice, the OVA

algorithm usually allows the decision functions ĝ
(ℓ)
b to output a soft prediction (say,

in [0, 1]) rather than a hard one of {0, 1}. The soft prediction represents the sup-

port (confidence) on whether x belongs to category ℓ, and ĝ(x) returns the prediction

associated with the highest support.

What would happen if we directly use OVA as Aw in TSEW? Recall that a cost-

sensitive training example
(
x1, 1, (0, 1, 1, 334)

)
in Z would introduce the following

multilabeled examples in Zw:

(x1, 1, 334), (x1, 2, 333), (x1, 3, 333).
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If we feed Zw directly to OVA, the underlying binary classification algorithm Ab would

use the following examples to get ĝ
(1)
b :

(x1, 1, 334), (x1, 0, 666).

That is, even though x1 is of category 1, paradoxically we prefer Ab to return some ĝ
(1)
b

that predicts x1 as 0 rather than 1. The paradox is similar to what we encountered

when sampling Zc from Z in Algorithm 2.1: The relabeling process results in a

misleading label more often than not. Thus, directly plugging OVA into the TSEW

algorithm does not work.

Nevertheless, we can modify OVA and make it more robust when given multi-

labeled training examples. In fact, a variant of the OVA algorithm can readily be

used for multilabeled classification in literature (see, for instance, Joachims 2005,

Section 2). For a training feature vector xn that can be labeled either as 1 or 2, the

OVA algorithm for a multilabeled training set Z would pair xn with y
(1)
n = 1 when

constructing Z
(1)
b , and with y

(2)
n = 1 when constructing Z

(2)
b as well. That is, when Z

contains both (and only) (xn, 1) and (xn, 2), the feature vector xn “supports” both

category 1 and 2, while it does not support categories 3, 4, . . ., K.

The support perspective can also be understood with the cost vectors and the

cost-transformation technique. Note that the expanded training set Zw contains

both (xn, 1) and (xn, 2) (with weights 1) if and only if the original cost-sensitive train-

ing example (xn, yn, cn) comes with a cost vector cn that is similar to (0, 0, 1, 1, . . . , 1).

Thus, xn supports both categories 1 and 2 because no cost needs to be paid when the

prediction falls in them. Note that q̃n = (1, 1, 0, 0, . . . , 0) in this case. Equivalently

speaking, we can say that xn supports those categories ℓ with q̃n[ℓ] = 1 and does not

support those ℓ with q̃n[ℓ] = 0.
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From the observation above, we can define s[ℓ] = q̃[ℓ]
q̃max

as the support for category ℓ,

where q̃max = max1≤ℓ≤K q̃[ℓ]. Thus, s[ℓ] ∈ [0, 1], and from (2.2),







s[ℓ] = 0 when c[ℓ] = cmax,

s[ℓ] = 1 when c[ℓ] = cmin = min1≤k≤K c[k] .

With the definition above, we propose the generalized OVA algorithm, which takes

the original OVA algorithm as a special case.

Algorithm 2.5 (Generalized one-versus-all).

1. For each 1 ≤ ℓ ≤ K, use Ab to learn a binary classifier ĝ
(ℓ)
b (x) with the hope

that

∫

x,y,c

q̃max ·
(

s[ℓ] − ĝ
(ℓ)
b (x)

)2

dF(x, y, c) (2.4)

is small.

2. Return ĝ(x) = argmax
1≤ℓ≤K

ĝ
(ℓ)
b (x).

How can Ab learn a binary classifier? Equation (2.4) is deliberately formu-

lated as a learning problem. Then, for each training example (xn, yn, cn) obtained

from dF(x, y, c), we can compute a new training example (xn, yn, sn[ℓ] , (q̃max)n) to

provide information for solving such a learning problem. Assume that we keep the

convention x
(ℓ)
n = xn and y

(ℓ)
n = Jyn = ℓK in Algorithm 2.4 and try to approximately

deal with (2.4) by casting it as a weighted binary classification problem. One simple

method to obtain the weight w
(ℓ)
n from

(
xn, yn, sn[ℓ] , (q̃max)n

)
is4

w(ℓ)
n =







(q̃max)n · sn[ℓ] when yn = ℓ ;

(q̃max)n · (1 − sn[ℓ]) when yn 6= ℓ .

(2.5)

4There are more than one methods to do the transformation, and it is not theoretically clear
which of them should be preferred. We choose the simple approach in (2.5) because of its promising
performance in practice.
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By replacing step 1 of generalized OVA with the weighted binary classification prob-

lem, we get the cost-sensitive one-versus-all (CSOVA) algorithm, as formalized below.

Algorithm 2.6 (CSOVA: Cost-sensitive one-versus-all).

1. For each 1 ≤ ℓ ≤ K,

(a) Take the original training set Z = {(xn, yn, cn)}N
n=1 and construct a binary

classification training set Z
(ℓ)
b =

{

(xn, y
(ℓ)
n , w

(ℓ)
n )
}

from (2.5).

(b) Use a weighted binary classification algorithm Ab on Z
(ℓ)
b to get a decision

function ĝ
(ℓ)
b .

2. Return ĝ(x) = argmax
1≤ℓ≤K

ĝ
(ℓ)
b (x).

We can easily see Algorithm 2.4 is a special case of Algorithm 2.6 when all cn are

classification cost vectors.

2.3.2 Cost-Sensitive One-Versus-One

The one-versus-one (OVO) algorithm is another popular algorithm for weighted clas-

sification. It is suitable for practical use when K is not too large (Hsu and Lin 2002).

Similar to the OVA algorithm, it also solves the weighted classification problem by

decomposing it to several weighted binary classification problems. Unlike OVA, how-

ever, each binary classification problem consists of comparing examples from two

categories only.

Algorithm 2.7 (One-versus-one, see, for instance, Hsu and Lin 2002).

1. For each i, j that 1 ≤ i < j ≤ K,

(a) Take the original training set Z = {(xn, yn, wn)}N
n=1 and construct a binary

classification training set Z
(i,j)
b = {(xn, yn, wn) : yn = i or yn = j}.

(b) Use a weighted binary classification algorithm Ab on Z
(i,j)
b to get a decision

function ĝ
(i,j)
b .



27

2. Return ĝ(x) = argmax
1≤ℓ≤K

∑

i<j

r
ĝ

(i,j)
b (x) = ℓ

z
.

In short, each ĝ
(i,j)
b (x) intends to predict whether x “prefers” i or category j, and ĝ

predicts with the preference votes gathered from those ĝ
(i,j)
b . The goal of Ab is to

locate decision functions ĝ
(i,j)
b with a small π

(

ĝ
(i,j)
b , F (i,j)

)

, where dF (i,j)(x, y) =

dF(x, y | y = i or j), because it can be proved that (Beygelzimer et al. 2005)

π(ĝ) ≤ 2
∑

i<j

Prob [y = i or j] · π
(

ĝ
(i,j)
b , F (i,j)

)

.

Let us see if we can use OVO as Aw in TSEW for cost-sensitive classification

problems. Again, consider a cost-sensitive training example
(
x1, 1, (0, 1, 1, 334)

)
in Z.

Recall that it would introduce the following multilabeled examples in Zw:

(x1, 1, 334), (x1, 2, 333), (x1, 3, 333).

If we directly use OVO as Aw in TSEW, the underlying binary classification algo-

rithm Ab would use the following two examples in Z
(1,2)
b to get ĝ

(1,2)
b :

(x1, 1, 334), (x1, 2, 333).

Note that these weighted examples can be equivalently generated by labeling x1 as 1

with probability 334
667

and as 2 with probability 333
667

. Because the probabilities are both

close to 1
2
, the labels are almost as if decided by throwing a fair coin. Therefore, the

binary classification algorithm Ab may be confused by the two examples.

For any classifier g
(i,j)
b : X → {i, j}, and a given example (x1, y1, c1) above, we see

that the classifier needs to pay a constant cost of 333 first, regardless of its prediction.

Now, we can again use the technique of shifting costs by a constant as we did in

constructing similar cost vectors. Then, the two examples (x1, 1, 334), (x1, 2, 333) is

the same as one single example of (x1, 1, 1). The shifting not only simplifies Z
(i,j)
b

by eliminating one unnecessary example, but also removes the random relabeling

ambiguity that caused the confusion discussed above.
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Recall that Zw consists of examples (xnℓ, ynℓ, wnℓ) = (xn, ℓ, q̃n[ℓ]). Thus, (xn, i)

would be of weight q̃n[i] and (xn, j) would be of weight q̃n[j]. By the discussion

above, the simplified Z
(i,j)
b consists of

Z
(i,j)
b =

{(

xn, argmax
ℓ=i or j

q̃n[ℓ] ,
∣
∣
∣q̃n[i] − q̃n[j]

∣
∣
∣

)}

=

{(

xn, argmin
ℓ=i or j

cn[ℓ] ,
∣
∣
∣cn[i] − cn[j]

∣
∣
∣

)}

. (2.6)

Then, we get our proposed cost-sensitive one-versus-one (CSOVO) algorithm.

Algorithm 2.8 (CSOVO: Cost-sensitive one-versus-one).

1. For each i, j that 1 ≤ i < j ≤ K,

(a) Take the original training set Z = {(xn, yn, cn)}N
n=1 and construct a binary

classification training set by (2.6).

(b) Use a weighted binary classification algorithm Ab on Z
(i,j)
b to get a decision

function ĝ
(i,j)
b .

2. Return ĝ(x) = argmax
1≤ℓ≤K

∑

i<j

r
ĝ

(i,j)
b (x) = ℓ

z
.

We can easily see that CSOVO takes OVO as a special case when the using

only the classification cost vectors. In addition, we can think of each created exam-

ple

(

xn, argmin
ℓ=i or j

cn[ℓ] ,
∣
∣
∣cn[i] − cn[j]

∣
∣
∣

)

as if coming from a (possibly unnormalized)

measure

dF
(i,j)
b (x, k, w) =

∫

y,c

s
k = argmin

ℓ=i or j
cn[ℓ]

{ r
w =

∣
∣
∣c[i] − c[j]

∣
∣
∣

z
dF(x, y, c) .

Define

π
(i,j)
b (g(i,j)) =

∫

x,k,w

w
q
k 6= g(i,j)(x)

y
dF

(i,j)
b (x, k, w) .

We then get the following theorem:
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Theorem 2.7. For any family of classifiers
{

g
(i,j)
b : 1 ≤ i < j ≤ K

}

, where the bi-

nary classifiers g
(i,j)
b : X → {i, j}. Let

g(x) = argmax
1≤ℓ≤K

∑

i<j

r
g

(i,j)
b (x) = ℓ

z
.

Then,

π(g) −
∫

x,y,c

cmin dF(x, y, c) ≤ 2
∑

i<j

π
(i,j)
b

(

g
(i,j)
b

)

.

Proof. For each (x, y, c) generated from dF(x, y, c), if c[g(x)] = c[y] = cmin, its

contribution on the left-hand side is 0, which is trivially less than its contribution on

the right-hand side.

Without loss of generality (by sorting the elements of the cost vector c and shuf-

fling the labels y ∈ Y), consider an example (x, y, c) such that

cmin = c[1] ≤ c[2] ≤ . . . ≤ c[K] = cmax.

From the results of Beygelzimer et al. (2005, Lemma 1), suppose g(x) = k, then

for each 1 ≤ ℓ ≤ k−1, there are at least ⌈k/2⌉ pairs (i, j), where i ≤ k < j, and

argmin
ℓ=i or j

cn[ℓ] 6= g
(i,j)
b (x). Therefore, the contribution of (x, y, c) on the right-hand side

is no less than

k−1∑

ℓ=1

(c[ℓ + 1] − c[ℓ])

⌈
ℓ

2

⌉

≥ 1

2

k−1∑

ℓ=1

ℓ (c[ℓ + 1] − c[ℓ])

=
1

2

k∑

ℓ=2

(ℓ − 1)c[ℓ] − 1

2

k−1∑

ℓ=1

ℓc[ℓ]

=
1

2
(k − 1)c[k] − 1

2

k−1∑

ℓ=1

c[ℓ]

=
1

2

k−1∑

ℓ=1

(c[k] − c[ℓ])

≥ 1

2
(c[k] − cmin) ,
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and the left-hand-side contribution is (c[k] − cmin). The desired result can be proved

by integrating over all dF(x, y, c).

Theorem 2.7 provides a theoretical guarantee for CSOVO: If each ĝ
(i,j)
b yields a

small π
(i,j)
b , the resulting ĝ would yield a small π. Beygelzimer et al. (2005) proposed

another algorithm, called weighted all-pairs (WAP), that shared a similar theoretical

guarantee and some algorithmic structures, as listed below.

Algorithm 2.9 (A special case of WAP, Beygelzimer et al. 2005).

1. For each i, j that 1 ≤ i < j ≤ K,

(a) Take the original training set Z = {(xn, yn, cn)}N
n=1 and construct a binary

classification training set by

Z
(i,j)
b =

{(

xn, argmin
ℓ=i or j

cn[ℓ] ,

∣
∣
∣
∣
∣

∫ cn[i]

cn[j]

1

|{k : cn[k] ≤ t}|dt

∣
∣
∣
∣
∣

)}

(2.7)

(b) Use a weighted binary classification algorithm Ab on Z
(i,j)
b to get a decision

function ĝ
(i,j)
b .

2. Return ĝ(x) = argmax
1≤ℓ≤K

∑

i<j

r
ĝ

(i,j)
b (x) = ℓ

z
.

We see that WAP is similar to CSOVO (Algorithm 2.8), except for how the weights

of the binary examples are computed. CSOVO uses
∣
∣
∣cn[i]−cn[j]

∣
∣
∣, which is equivalent

to

∣
∣
∣
∣
∣

∫ cn[i]

cn[j]

(1) dt

∣
∣
∣
∣
∣

.

We can think of both CSOVO and WAP as special instances of the cost-transformation

technique that interprets q̃ (or the original c) differently. While the two algorithms are

very similar in terms of theoretical guarantees and algorithmic structures, it should

be noted that CSOVO enjoys the advantage of efficiency because (2.6) is simpler

than (2.7).
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Table 2.1: Classification data sets

data set # examples # categories (K) # features (D)
vehicle 846 4 18
vowel 990 11 10

segment 2310 7 19
dna 3186 3 180

satimage 6435 6 36
usps 9298 10 256

2.4 Experiments

In this section, we compare the proposed CSOVA and CSOVO algorithms derived

from the cost-transformation technique with their original versions. We also compare

CSOVO with its closely related sibling, the WAP algorithm. All these algorithms

obtains a decision function ĝ by calling a binary classification algorithm Ab several

times. We take the support vector machine (SVM) with the perceptron kernel (Lin

and Li 2008, which will be further introduced in Chapter 5) as Ab in all the experi-

ments and use LIBSVM (Chang and Lin 2001) as our SVM solver.

2.4.1 Comparison on Classification Data Sets

We first compare the algorithms with six benchmark classification data sets: vehicle,

vowel, segment, dna, satimage, usps (Table 2.1).5 The first five comes from the UCI

machine learning repository (Hettich, Blake and Merz 1998) and the last one comes

from Hull (1994).

The six data sets in Table 2.1 were originally gathered as regular classification

problems. We adopt two kinds of setup to compare cost-sensitive algorithms. In the

first one, called the randomized proportional (RP) cost setup, we follow the procedure

used by Abe, Zadrozny and Langford (2004). In particular, we generate the cost

vectors from a cost function C(y, k) that does not depends on x. C(y, y) is set as 0

and C(y, k) is a random variable sampled uniformly from
[

0, 2000 |{n : yn=k}|
|{n : yn=y}|

]

.

Another setup is the absolute cost setup, which considers the absolute cost vec-

5They are downloaded from http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
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tors
{

c
(ℓ)
a

}K

ℓ=1
with

c(ℓ)
a [k] = Ca(ℓ, k) = |ℓ − k| .

Note that the absolute cost vectors are not only V-shaped but also convex, and they

are widely used in evaluating ordinal ranking algorithms (Chu and Keerthi 2007; Li

and Lin 2007b).

We randomly choose 75% of the examples in each data set for training and leave

the other 25% of the examples as the test set. Then, each feature in the training set

is linearly scaled to [−1, 1], and the feature in the test set is scaled accordingly. The

results reported are all averaged over 20 trials of different training/test splits, along

with the standard error.

SVM with the perceptron kernel takes a regularization parameter (Lin and Li

2008), which is chosen within {2−17, 2−15, . . . , 23} with a 5-fold cross-validation (CV)

procedure on the training set (Hsu, Chang and Lin 2003). For the original OVA

and OVO, the CV procedure selects the parameter that results in the smallest cross-

validation regular classification cost. For the other algorithms, the CV procedure

selects the parameter that results in the smallest cross-validation cost-sensitive clas-

sification cost based on the given setup. We then rerun each algorithm on the whole

training set with the chosen parameter to get the decision function ĝ. Finally, we

evaluate the average performance of ĝ on the test set.

In Tables 2.2 and 2.3, we first compare CSOVO with WAP using the RP cost setup

and the absolute cost setup, respectively. We see that the two algorithms perform

similarly on almost all data sets. Because CSOVO is indistinguishable with WAP

in terms of performance while enjoying an advantage of a simpler and more efficient

implementation (see Subsection 2.3.2), it should be preferred in practice.

Next, we compare CSOVA and CSOVO with their original versions in Tables 2.4

and 2.5. The results in Table 2.4 come from the RP cost setup. We see that CSOVA

and CSOVO are often significantly better than their original version respectively,

which justifies the validity of the cost-transformation technique and our proposed
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Table 2.2: Test RP cost of CSOVO and WAP

data set CSOVO WAP
vehicle 145.745±18.404 153.494±20.148
vowel 19.277±1.899 19.279±2.242

segment 25.618±2.664 24.437±2.251
dna 51.961±4.543 49.546±4.388

satimage 65.812±4.463 71.782±5.020
usps 22.103±0.721 21.612±0.583

(those within one standard error of the lowest one are marked in bold)

Table 2.3: Test absolute cost of CSOVO and WAP

data set CSOVO WAP
vehicle 0.225±0.007 0.225±0.007
vowel 0.030±0.005 0.031±0.004

segment 0.045±0.003 0.046±0.003
dna 0.067±0.002 0.066±0.002

satimage 0.127±0.003 0.128±0.003
usps 0.089±0.002 0.090±0.003

(those within one standard error of the lowest one are marked in bold)

algorithms.

In Table 2.5, however, we see that CSOVA and CSOVO are very similar to, and

sometimes slightly worse than, their original versions using the absolute cost setup.

The results in Tables 2.4 and 2.5 reflect a trade-off in using the cost-transformation

technique. The cost-transformation technique makes it possible to plug cost vectors

into an algorithm in a principled manner and hence improves the performance of

the algorithm. On the other hand, the technique may introduce more complicated

problems (see the discussions in Section 2.2) and thus deteriorates the performance of

the algorithm. In Table 2.4, the cost-sensitive versions take a great advantage from

the former perspective and thus outperform their original versions. In Table 2.5,

however, given that the cost vectors are simpler for these data sets, the original

versions already perform decently under this setup. Thus, the cost-sensitive versions

cannot take much advantage from the former perspective and lose some performance

because of the latter perspective.
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Table 2.4: Test RP cost of cost-sensitive classification algorithms

data one-versus-all one-versus-one
set OVA CSOVA OVO CSOVO

vehicle 189.064±17.866 158.215±19.833 185.378±17.235 145.745±18.404
vowel 14.654±1.766 14.386±1.717 11.896±1.955 19.277±1.899

segment 25.263±2.015 25.434±2.208 25.153±2.109 25.618±2.664
dna 44.480±2.771 39.424±2.521 48.152±3.333 51.961±4.543

satimage 93.381±5.712 77.101±4.762 94.075±5.488 65.812±4.463
usps 23.087±0.709 22.793±0.710 23.622±0.660 22.103±0.721

(those within one standard error of the lowest one are marked in bold)

Table 2.5: Test absolute cost of cost-sensitive classification algorithms

data one-versus-all one-versus-one
set OVA CSOVA OVO CSOVO

vehicle 0.222±0.007 0.226±0.007 0.221±0.007 0.225±0.007
vowel 0.029±0.005 0.030±0.005 0.023±0.004 0.030±0.005

segment 0.042±0.003 0.043±0.003 0.041±0.003 0.045±0.003
dna 0.053±0.002 0.054±0.002 0.056±0.002 0.067±0.002

satimage 0.124±0.003 0.123±0.003 0.125±0.003 0.127±0.003
usps 0.077±0.002 0.077±0.002 0.080±0.002 0.089±0.002

(those within one standard error of the lowest one are marked in bold)

2.4.2 Comparison on Ordinal Ranking Data Sets

Next, we compare the algorithms with eight benchmark ordinal ranking data sets:

pyrimdines, machineCPU, boston, abalone, bank, computer, california, census (Table 2.6),

which were used by Chu and Keerthi (2007). Similar to the original setup of Chu and

Keerthi (2007), we kept the same training/test split ratios, used the absolute cost

vectors for evaluating the performance and averaged the results over 20 trials.

We compare OVA, CSOVA, OVO, and CSOVO on the eight data sets and list the

results in Table 2.7. First, we see that CSOVA and CSOVO are significantly better

than their regular classification versions. The results demonstrate that because of the

ordinal information carried by the ranks, taking a V-shaped cost into consideration

can lead to significant improvement. In addition, we see that CSOVO is better

than CSOVA on these ordinal ranking data sets. Recall that the underlying binary

classification algorithm in CSOVO tries to distinguish between two ranks i and j,
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Table 2.6: Ordinal ranking data sets

data set # training/# test # levels (K) # features (D)
pyrimdines 50/24 10 27

machineCPU 150/59 10 6
boston 300/206 10 13
abalone 1000/3177 10 10
bank 3000/5192 10 32

computer 4000/4192 10 21
california 5000/15640 10 8
census 6000/16784 10 16

Table 2.7: Test absolute cost of cost-sensitive classification algorithms on ordinal
ranking data sets

data one-versus-all one-versus-one
set OVA CSOVA OVO CSOVO

pyrimdines 1.765±0.103 1.627±0.055 1.746±0.076 1.337±0.054
machineCPU 0.983±0.027 0.975±0.024 1.009±0.024 0.842±0.023

boston 0.987±0.019 0.946±0.017 0.882±0.017 0.789±0.015
abalone 1.719±0.007 1.674±0.007 1.632±0.013 1.422±0.006
bank 1.863±0.007 1.801±0.004 1.632±0.004 1.414±0.003

computer 0.685±0.003 0.644±0.003 0.620±0.002 0.575±0.002
california 1.164±0.004 1.121±0.002 1.055±0.003 0.951±0.002
census 1.381±0.004 1.329±0.003 1.272±0.002 1.135±0.001

(those within one standard error of the lowest one are marked in bold)

which uses the ordinal information “<” implicitly. On the other hand, the underlying

binary classification algorithm in CSOVA needs to distinguish between rank ℓ with

ranks {1, . . . , ℓ − 1, ℓ + 1, . . . , K}, which is not naturally coherent with the ordinal

information. The significant performance difference between CSOVA and CSOVO

demonstrate the importance of using ordinal information in comparing examples from

different ranks.
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Chapter 3

Ordinal Ranking by Threshold
Regression

As discussed in Section 1.2, ordinal ranking is similar to regression because the labels

in either Yr and R represent ordinal information. Nevertheless, unlike the real-valued

regression labels in R, the discrete ranks in Yr do not carry metric information.

That is, ordinal ranking deals with qualitative, fuzzy ranks while regression focuses

on quantitative, real-valued outcomes. To model ordinal ranking problems from a

regression perspective, it is often assumed that some underlying real-valued outcomes

exist, but are unobservable (McCullagh 1980). The hidden local scales “around”

different ranks can be quite different, but the actual scale (metric) information is not

encoded in the ranks.

Under the assumption above, each rank represents a contiguous interval on the real

line. Then, ordinal ranking can be approached by the following abstract algorithm

called threshold regression.

Algorithm 3.1 (Threshold regression).

1. Estimate a potential function H(x) that predicts (a monotonic transform of) the

real-valued outcomes. Ideally, feature vectors of larger ranks should be associated

with larger potential values.

2. Determine a threshold vector θ ∈ R
K−1 to represent the intervals in the range

of H(x), where θ1 ≤ θ2 ≤ . . . ≤ θK−1.
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Figure 3.1: Prediction procedure of a threshold ranker

In the threshold regression algorithm, the potential function intends to uncover

the nature of the assumed underlying outcome, and the threshold vector estimates

the possibly different scales around different ranks. The two abstract steps of the

algorithm are indeed taken by many existing ordinal ranking algorithms. For instance,

in the GPOR algorithm of Chu and Ghahramani (2005), the potential function H(x)

is assumed to follow a Gaussian process, and the threshold vector θ is determined by

Bayesian inference with respect to some noise distribution. In the PRank algorithm

of Crammer and Singer (2005), the potential function Hv is taken to be a linear

function of the form Hv(x) = 〈v,x〉, and the pair (v, θ) are updated simultaneously.

Some other algorithms are based on SVM, and they work on potential functions of

the form Hv(x) = 〈v, φ(x)〉, where φ(x) maps x ∈ R
D to some Hilbert space (Chu

and Keerthi 2007; Herbrich, Graepel and Obermayer 2000; Shashua and Levin 2003).

The learning model associated with the threshold regression algorithm is called the

threshold model. Formally speaking, the threshold model RP = {rH,θ}, where H ∈ P
and −∞ = θ0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θK−1 ≤ θK = ∞. As illustrated in Figure 3.1, each

member rH,θ of the threshold model is a threshold ranker, which makes its prediction

by

rH,θ(x) = min {k : H(x) ≤ θk} = max {k : H(x) > θk−1} = 1 +

K−1∑

k=1

JH(x) > θkK .(3.1)

We denote rH,θ as rθ when H is clear from the context.

In this chapter, we propose the threshold ensemble model, which is a novel instance

of the threshold model. We discuss its theoretical properties and design suitable

algorithms based on them. Our study on the threshold ensemble model improves

our general understanding of the threshold model, which will be further discussed in
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Section 3.1 and Chapter 4. Each ranker in the threshold ensemble model is called a

threshold ensemble, which uses an ensemble HT of confidence functions as the potential

function H . The ensemble is of the form

HT (x) =

T∑

t=1

αtht(x), αt ∈ R. (3.2)

We assume that each confidence function ht : X → [−1, +1] comes from a hypothesis

set H. That is, HT ∈ span(H) = P. The confidence function reflects a possibly

imperfect ordering preference. Note that a special instance of the confidence function

is a binary classifier X → {−1, +1}, which matches the fact that binary classification

is a special case of ordinal ranking with K = 2 (Rudin et al. 2005). The ensemble

linearly combines the ordering preferences with α. Note that we allow αt to be any

real value, which means that it is possible to reverse the ordering preference of ht in

the ensemble when necessary.

Ensemble models in general have been successfully used for classification and re-

gression (Meir and Rätsch 2003). They not only introduce more stable predictions

through the linear combination, but also provide sufficient power for approximating

complicated target functions. The threshold ensemble model extends existing ensem-

ble models to ordinal ranking and inherits many useful theoretical properties from

them. Next, we discuss one such property: the large-margin bounds.

3.1 Large-Margin Bounds of Threshold Ensembles

The margin concept in binary classification says large margins produced by a binary

classifier g should indicate a small π(g). The concept is widely used to evaluate binary

classifiers (Li et al. 2005; Vapnik 1995) and can be justified with many large-margin

cost bounds of the form

π(g) ≤ ν(g, ∆) + complexity term,
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Figure 3.2: Margins of a correctly predicted example

where ν(g, ∆) = π(g, Zu, ∆) is an extended form of training cost with respect to a

margin parameter ∆, and the complexity term decreases as N or ∆ increases.

For ordinal ranking using threshold models, Herbrich, Graepel and Obermayer

(2000) derived a large-margin bound for any threshold ranker rθ with a potential

function Hv = 〈v, φ(x)〉. Unfortunately the bound is quite restricted since it is

only applicable when ν(rθ, ∆) = 0 with respect to the classification cost function Cc.

In addition, the bound uses a margin definition that contains O(N2) terms, which

makes it more complicated to design algorithms that relate to the bound. Another

bound was derived by Shashua and Levin (2003). The bound is based on a margin

definition of only O(KN) terms and is applicable to the threshold ensemble model.

Nevertheless, the bound is loose when T , the size of the ensemble, is large, because

its complexity term grows with T .

Next, we derive novel large-margin bounds of the threshold ensemble model with

two widely used cost functions: the classification cost function Cc and the abso-

lute cost function Ca. Similar bounds for more general cost-sensitive setup will be

discussed in Chapter 4. The bounds are extended from the results of Schapire et al.

(1998) and are based on a margin definition of O(KN) terms. In addition, our bounds

do not require ν(rθ, ∆) = 0 with respect to Cc, and their complexity terms do not

grow with T .

We start by defining the margins of a threshold ensemble, which are illustrated

in Figure 3.2. Intuitively, we expect the potential value H(x) to be in the desired

interval (θy−1, θy], and we want H(x) to be far from the boundaries (thresholds):
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Definition 3.1. Consider a given threshold ensemble rH,θ, where H = HT .

1. The margin of an example (x, y) with respect to θk is defined as

ρk(x, y) =







HT (x) − θk, if y > k;

θk − HT (x), if y ≤ k.

2. The normalized margin ρ̃k(x, y) is defined as

ρ̃k(x, y) = ρk(x, y)

/(
T∑

t=1

|αt| +
K−1∑

k=1

|θk|
)

.

Definition 3.1 is similar to the definition of the SVM margin by Shashua and

Levin (2003) and is analogous to the definition of margins in binary classification. A

negative ρk(x, y) would indicate an incorrect prediction.

For each example (x, y), we can obtain (K−1) margins from Definition 3.1. Two

of them are of the most importance. The first one is ρy−1(x, y), which is the margin

to the left (lower) boundary of the desired interval. The other is ρy(x, y), which is

the margin to the right (upper) boundary. We will give them special names: the left-

margin ρL(x, y) and the right-margin ρR(x, y). Note that by definition, ρL(x, 1) =

ρR(x, K) = ∞.

Next, we take a closer look at the out-of-sample cost π(r) and see how it connects

to the margin definition above.

∆-classification cost: For the classification cost function Cc, if we make a minor

assumption that the degenerate cases ρ̃R(x, y) = 0 are of an infinitesimal probability,

πc(rθ, F ) =

∫

x,y

Jy 6= rθ(x)K dF(x, y)

=

∫

x,y

Jρ̃L(x, y) ≤ 0 or ρ̃R(x, y) ≤ 0K dF(x, y) .

The definition could be generalized by expecting both margins to be larger than ∆.
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That is, we can define the ∆-classification cost as

πc(rθ, F, ∆) ≡
∫

x,y

Jρ̃L(x, y) ≤ ∆ or ρ̃R(x, y) ≤ ∆K dF(x, y) .

Then, πc(rθ, F ) is just a special case with ∆ = 0. We can also define the in-sample

∆-classification cost νc(rθ, ∆) ≡ πc(rθ, Zu, ∆).

∆-boundary cost: The “or” operation of πc(rθ, F, ∆) is not easy to handle in the

proof of the coming bounds. An alternative choice is the ∆-boundary cost :

πb(rθ, F, ∆) ≡
∫

x,y

dF(x, y) ·







Jρ̃R(x, y) ≤ ∆K , if y = 1;

Jρ̃L(x, y) ≤ ∆K , if y = K;

1
2
·
(
Jρ̃L(x, y) ≤ ∆K + Jρ̃R(x, y) ≤ ∆K

)
, otherwise.

Similarly, the in-sample ∆-boundary cost νb is defined by νb(rθ, ∆) ≡ πb(rθ, Zu, ∆).

Note that the ∆-boundary cost and the ∆-classification cost are equivalent up to a

constant. That is, for any (rθ, F, ∆),

1
2
πc(rθ, F, ∆) ≤ πb(rθ, F, ∆) ≤ πc(rθ, F, ∆). (3.3)

∆-absolute cost: Next, we look at the out-of-sample cost based on the abso-

lute cost function Ca. Again, if we make a minor assumption that the degenerate

cases ρ̃k(x, y) = 0 are of an infinitesimal probability,

πa(rθ, F ) =

∫

x,y

∣
∣
∣y 6= rθ(x)

∣
∣
∣ dF(x, y) =

∫

x,y

K−1∑

k=1

Jρ̃k(x, y) ≤ 0K dF(x, y) .

Then, the ∆-absolute cost can be defined as

πa(rθ, F, ∆) ≡
∫

x,y

K−1∑

k=1

Jρ̃k(x, y) ≤ ∆K dF(x, y) ,

which takes πa(rθ, F ) as a special case with ∆ = 0. The in-sample ∆-absolute cost νa
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is similarly defined by νa(rθ, ∆) ≡ πa(rθ, Zu, ∆).

An important observation for deriving our bounds is that πa(g, F, ∆) can be writ-

ten with respect to an additional sampling procedure on k. That is,

πa(rθ, F, ∆) =

∫

x,y

K−1∑

k=1

Jρ̃k(x, y) ≤ ∆K dF(x, y)

= (K−1)

∫

x,y,k

Jρ̃k(x, y) ≤ ∆K
(

1
K−1

· dF(x, y)
)
.

Equivalently, we can define a probability measure dFE(x, y, k) from dF (x, y) and

an uniform distribution over {1, . . . , K−1} to generate the tuple (x, y, k). Then

1
K−1

πa(rθ, F, ∆) is the portion of nonpositive ρ̃k(x, y) under dFE(x, y, k). Consider an

extended training set ZE = {(xn, yn, k)} with N(K−1) elements. Each element is a

possible outcome from dFE(x, y, k). Note, however, that these elements are not all

independent. For example, (xn, yn, 1) and (xn, yn, 2) are dependent. Thus, we cannot

directly use the whole ZE as a set of independent outcomes from dFE(x, y, k).

Some subsets of ZE contain independent outcomes from dFE(x, y, k). One way

to extract such a subset is to choose one kn uniformly and independently from

{1, . . . , K−1} for each example (xn, yn). The resulting subset would be named

ZS = {(xn, yn, kn)}N
n=1. Then, we can obtain a large-margin bound of πa(r, F ):

Theorem 3.2. Consider a negation complete1 set H, which contains only binary

classifiers h : X → {−1, 1} and is of VC-dimension d. Assume that δ > 0, and

N > d + K − 1 = dE. Then with probability at least 1 − δ over the random choice of

the training set Z, every threshold ensemble defined from (3.1) and (3.2) satisfies the

following bound for all ∆ > 0:

πa(rθ, F ) ≤ νa(rθ, ∆) + O

(

K√
N

(
dE log2(N/dE)

∆2
+ log

1

δ

)1/2
)

.

1H is negation complete if and only if h ∈ H ⇐⇒ (−h) ∈ H, where (−h)(x) = −
(
h(x)

)
for all x.
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Proof. The key is to use the examples (xn, yn, kn) ∈ ZS. Let

(X(kn)
n , Y (kn)

n ) =







(
(xn, 1kn

) , +1
)
, if yn > kn;

(
(xn, 1kn

) ,−1
)
, if yn ≤ kn,

(3.4)

where 1k is a vector of length (K−1) with a single 1 at the k-th dimension and 0

elsewhere. The test examples are constructed similarly with

(

X(k), Y (k)
)

≡
(

(x, 1k), 2 Jy > kK − 1
)

,

where (x, y, k) is generated from dFE(x, y, k). Then, large-margin bounds for the

ordinal ranking problem can be inferred from those for the binary classification prob-

lem. We first consider an ensemble function g(X(k)) defined by a linear combination

of the functions in

G =
{

h̃ : h̃(X(k)) = h(x), h ∈ H
}

∪ {sℓ}K−1
ℓ=1 . (3.5)

Here sℓ(X
(k)) is a decision stump on dimension D + ℓ (see Subsection 5.1.2). If the

output space of sℓ is {−1, 1}, it is not hard to show that the VC-dimension of G is

no more than dE = d + K − 1. Since the proof of Schapire et al. (1998, Theorem 2),

which will be applied on G later, only requires a combinatorial counting bound on

the possible outputs of sℓ, we let

sℓ(X
(k)) = −

sign
(

X(k)[D + ℓ] − 0.5
)

+ 1

2
= − Jk = ℓK ∈ {−1, 0}

to get a cosmetically cleaner proof. Some different versions of the bound can be

obtained by considering sℓ(X
(k)) ∈ {−1, 1} or by bounding the number of possible

outputs of sℓ directly by a tighter term.

Without loss of generality, we normalize rθ such that
∑T

t=1 |αt| +
∑K−1

ℓ=1 |θℓ| is 1.
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Then, consider an ensemble function

g(X(k)) = g(x, 1k) = HT (x) − θk =

T∑

t=1

αth̃t(X
(k)) +

K−1∑

k=1

θℓsℓ(X
(k)).

An important property for the transform is that for every (X(k), Y (k)) derived from

the tuple (x, y, k), the term
(

Y (k) · g
(
X(k)

))

= ρ̃k(x, y).

Because ZS contains N independent outcomes from dFE(x, y, k) = dFE

(
X(k), Y (k)

)
,

the large-margin theorem (Schapire et al. 1998, Theorem 2) states that with proba-

bility at least 1 − δ
2

over the choice of ZS,

∫

x,y,k

q
Y (k)g

(
X(k)

)
≤ 0

y
dFE

(
X(k), Y (k)

)

≤ 1

N

N∑

n=1

q
Y (k)

n g
(
X(k)

n

)
≤ ∆

y
+ O

(

1√
N

(
dE log2(N/dE)

∆2
+ log

1

δ

)1/2
)

. (3.6)

Since
(

Y (k) · g
(
X(k)

))

= ρ̃k(x, y), the left-hand side is 1
K−1

πa(rθ, F ).

Let bn =
r
Y

(k)
n g

(

X
(k)
n

)

≤ ∆
z

= Jρ̃kn
(xn, yn) ≤ ∆K, which is a Boolean random

variable with mean 1
K−1

∑K−1
k=1 Jρ̃k(xn, yn) ≤ ∆K. Using Hoeffding’s inequality (Hoeffd-

ing 1963), when each bn is chosen independently, with probability at least 1− δ
2

over

the choice of bn,

1

N

N∑

n=1

bn ≤ 1

N

N∑

n=1

1

K−1

K−1∑

k=1

Jρ̃k(xn, yn) ≤ ∆K + O

(

1√
N

(

log
1

δ

)1/2
)

=
1

K−1
νa(rθ, ∆) + O

(

1√
N

(

log
1

δ

)1/2
)

. (3.7)

The desired result can be proved by combining (3.6) and (3.7) with a union bound.

Similarly, if we look at the boundary cost,

πb(rθ, F, ∆) =

∫

x,y

∫

k

Jρ̃k(x, y) ≤ ∆K dFE(k |x, y) dF(x, y) ,

for some probability measure dFE(k |x, y) on {L, R}. Then, a similar proof leads to
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the following theorem.

Theorem 3.3. For the same conditions as stated in Theorem 3.2,

πb(rθ, F ) ≤ νb(rθ, ∆) + O

(

1√
N

(
dE log2(N/dE)

∆2
+ log

1

δ

)1/2
)

.

Then, a large-margin bound of the classification cost can be immediately derived by

applying (3.3).

Corollary 3.4. For the same conditions as stated in Theorem 3.2,

πc(rθ, F ) ≤ 2νc(rθ, ∆) + O

(

1√
N

(
dE log2(N/dE)

∆2
+ log

1

δ

)1/2
)

.

Note that because of (3.3) and

1
K−1

πa(rθ, F, ∆) ≤ πc(rθ, F, ∆) ≤ πa(rθ, F, ∆),

we can use either the classification, the boundary, or the absolute cost in the right-

hand side and left-hand side of the bounds with some changes within O(K).

The bounds above can be generalized when H contains confidence functions rather

than binary classifiers. Even more generally, similar bounds can be derived for any

threshold model, as shown below. The bounds provide motivations for building algo-

rithms with margin-related formulations.

Theorem 3.5. Let GE =
{
g : g(X(k)) = H(x) − θk

}

H∈P
. Consider some ǫ > 0,

and ∆ > 0. When each (xn, yn) is generated independently from dF (x, y),

Prob
[
∃rθ ∈ RP such that πa(rθ, F ) > νa(rθ, ∆) + Kǫ

]

≤ 2N
(
GE , ∆

2
, ǫ

8
, 2N

)
exp

(

−ǫ2N

32

)

+ exp
(
−2ǫ2N

)
.
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Furthermore,

Prob
[
∃rθ ∈ RP such that πb(rθ, F ) > νb(rθ, ∆) + 2ǫ

]

≤ 2N
(
GE , ∆

2
, ǫ

8
, 2N

)
exp

(

−ǫ2N

32

)

+ exp
(
−2ǫ2N

)
,

and

Prob
[
∃rθ ∈ RP such that πc(rθ, F ) > 2νc(rθ, ∆) + 4ǫ

]

≤ 2N
(
GE , ∆

2
, ǫ

8
, 2N

)
exp

(

−ǫ2N

32

)

+ exp
(
−2ǫ2N

)
,

where N (G, ∆, ǫ, N) is maximum size of the smallest ǫ-sloppy ∆-cover of G over all

possible set of N examples as defined by Schapire et al. (1998).

Proof. The proof extends the results of Schapire et al. (1998, Theorem 4) with essen-

tially the same technique discussed in Theorem 3.2.

Theorem 3.5 implies that if the term N (GE, ∆, ǫ, N) is polynomial in N , the proba-

bility that the out-of-sample cost deviates much from the in-sample ∆-cost is small.

Similar to the work of Bartlett (1998), the theorem can be used to provide cost bounds

for threshold rankers based on the neural network, which can be thought as a special

form of threshold ensemble ranker.

3.2 Boosting Algorithms for Threshold Ensembles

The bounds in the previous section are applicable to threshold ensembles generated

from any learning algorithm. One possible algorithm, for example, is an SVM-based

approach (Chu and Keerthi 2007) with special kernels (Lin and Li 2008, which will

be further discussed in Chapter 5). In this section, we focus on another branch of

approaches: boosting. Boosting approaches can iteratively grow the ensemble HT (x)

and have been successful in classification and regression (Meir and Rätsch 2003). Our
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study includes an extension to the RankBoost algorithm (Freund et al. 2003) and two

novel formulations that we propose.

3.2.1 RankBoost for Ordinal Ranking

RankBoost (Freund et al. 2003) constructs a weighted ensemble of confidence func-

tions based on the following large-margin concept: For each index pair (m, n) such

that ym > yn, the difference between their potential values, Ht(xm)−Ht(xn), is desired

to be positive and large. Thus, in the t-th iteration, the algorithm chooses (ht, αt) to

approximately minimize

∑

ym>yn

exp
(

−
(
Ht−1(xm) + αtht(xm)

)
+
(
Ht−1(xn) + αtht(xn)

))

. (3.8)

Algorithm 3.2 (RankBoost, Freund et al. 2003).

1. For t = 1, 2, . . . , T

(a) Determine the optimal ht ∈ H by minimizing

∑

ym>yn

exp
(

−Ht−1(xm) + Ht−1(xn)
)

·
(
ht(xm) − ht(xn)

)
. (3.9)

(b) Determine the optimal αt ∈ R by minimizing (3.8) with respect to αt.

2. Return the ensemble HT , where HT (x) =
∑T

t=1 αtht(x).

Next, we plug RankBoost into the threshold regression algorithm (Algorithm 3.1) to

get a concrete instance called RankBoost for ordinal ranking (RankBoost-OR).

Algorithm 3.3 (RankBoost-OR: RankBoost for ordinal ranking).

1. Run an efficient implementation of RankBoost and obtain H = HT .

2. Estimate the threshold θ by

θ = argmin
ϑ

ν(rH,ϑ). (3.10)
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3. Return rH,θ.

Some details of the algorithm are discussed below.

Choosing ht: Since there are O(N2) terms in (3.9), a naive implementation even

for evaluating the equation takes at least O(N2) operations. Freund et al. (2003)

showed that when |Y| = 2, an efficient implementation of O(N) operations exists.

Here we extend the result to the case of ordinal ranking problems, in which |Y| = K.

Note that

∑

ym>yn

exp
(

−Ht−1(xm) + Ht−1(xn)
)

·
(
ht(xm) − ht(xn)

)

= −
N∑

n=1

∑

ym>yn

exp
(

−Ht−1(xm) + Ht−1(xn)
)

· ht(xn)

+

N∑

n=1

∑

ym<yn

exp
(

Ht−1(xm) − Ht−1(xn)
)

· ht(xn)

= −
N∑

n=1

exp
(

Ht−1(xn)
)

︸ ︷︷ ︸

ϕn

K∑

k=yn+1

N∑

m=1

Jym = kK exp
(

−Ht−1(xm)
)

︸ ︷︷ ︸

ϕ
(k)
−

·ht(xn)

+
N∑

n=1

exp
(

−Ht−1(xn)
) yn−1
∑

k=1

N∑

m=1

Jym = kK exp
(

Ht−1(xm)
)

︸ ︷︷ ︸

ϕ
(k)
+

·ht(xn)

=
N∑

n=1

(

−ϕn ·
K∑

k=yn+1

ϕ
(k)
− + ϕ−1

n ·
yn−1
∑

k=1

ϕ
(k)
+

)

︸ ︷︷ ︸

un

·ht(xn)

=

N∑

n=1

|un| · Jsign(un) 6= ht(xn)K + some constant that does not depend on ht.

We see that ϕn can be tracked within O(N) in each iteration, ϕ
(k)
+ and ϕ

(k)
− can be

computed in O(N), and thus all un can be computed within O(N+K). Note, however,

that such an implementation is complicated.

As shown in the last line of the equations above, after computing un, a binary

classification algorithm Ab (such as the ones in Subsections 2.3.1 and 2.3.2) can be
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used to choose an optimal ht ∈ H. The algorithm is called a base algorithm in

boosting literature.

Computing αt: Two approaches can be used to determine αt in RankBoost (Freund

et al. 2003):

1. Obtain the optimal αt by numerical search (confidence functions) or from an

analytical solution (binary classifiers).

2. Minimize an upper bound of (3.8). For instance, let

λt =

∑

ym>yn
exp
(

−Ht−1(xm) + Ht−1(xn)
)

·
(
ht(xm) − ht(xn)

)

2
∑

ym>yn
exp
(

−Ht−1(xm) + Ht−1(xn)
) . (3.11)

An upper bound of (3.8) can be minimized by taking αt = 1
4
ln(1+λt

1−λt
). Similar

to the case of computing ht, an efficient implementation of O(N + K2) exists

for computing λt (and hence αt).

If ht(xn) is monotonic with respect to yn, the optimal αt obtained from approach 1

is ∞, and one single ht would dominate the ensemble. This situation not only makes

the ensemble less stable, but also limits its power. For instance, if we have four pairs

of (yn, ht(xn)): {(1,−1), (2, 0), (3, 1), (4, 1)}, then ranks 3 and 4 on the last two ex-

amples cannot be distinguished by ht. We approach 1 is taken, we have frequently

observed such a degenerate situation, called partial matching, in real-world experi-

ments, even when ht is as simple as a decision stump. Thus, we use approach 2 for

our experiments.2

Obtaining θ: We use dynamic programming to solve (3.10). First, we sort

the examples by their potential values. Then, without loss of generality, assume

that H(x1) ≤ · · · ≤ H(xN−1) ≤ H(xN). Consider the last example (xN , yN). If θ

is chosen such that xN is predicted as rank k, then a loss of 1
N
cn[k] is introduced to

2In our earlier work (Lin and Li 2006), we used approach 2, but with an upper bound that is
equivalent to an analytical solution when ht are binary classifiers. Then (see Subsection 3.3.1) Rank-
Boost may still encounter numerical difficulties. The upper bound listed in this section is “looser”
and provides regularization even when ht are binary classifiers.
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ν. In addition, xN−1 can only be predicted as rank k or less. Furthermore, for θ to

be optimal for all N examples, (θ1, . . . , θk) must be optimal for the (N −1) exam-

ples. Define E(n, k) as the optimal total cost on examples of indices 1 to n and with

possible ranks from {1, 2, . . . , k}. By the discussion above,

E(n, k) = min
1≤ℓ≤k

(E(n − 1, ℓ) + cn[k]) , and E(0, k) = 0 for k = 1, 2, . . . , K.

Then, dynamic programming can efficiently find E(N, K) and determine an opti-

mal vector θ for (3.10). Note that there are many equivalent choices of θk be-

tween some H(xn−1) and H(xn) in terms of (3.10). For stability and simplicity,

we assign
(
H(xn−1) + H(xn)

)/
2 to θk, which achieves the largest minimum mar-

gin for a given H(x) if νc(rθ, 0) = 0. The time complexity for obtaining thresholds

is O(N log N + KN), which is the bottleneck of RankBoost-OR.

3.2.2 ORBoost with Left-Right Margins

Although RankBoost-OR could yield the largest minimum margin under some condi-

tions, it does not directly correspond to the definition of the margins in Section 3.1.

Next, we propose two novel algorithms that connect to the margin bounds that we

have derived. As indicated by the bounds, we want the margins to be as large as

possible. To achieve this goal, our proposed algorithms work on minimizing the so-

called exponential margin loss E(rθ, Z) =
∑

exp (−unnormalized margin). The loss

partially explained the success of AdaBoost algorithm for binary classification (Ma-

son et al. 2000; Schapire et al. 1998), and we adopt the same idea to design novel

algorithms for ordinal ranking.

First, we introduce a simple formulation called ORBoost with left-right mar-

gins (ORBoost-LR), which intends to minimize

N∑

n=1

(

exp
(
−ρL(xn, yn)

)
+ exp

(
−ρR(xn, yn)

))

. (3.12)
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The formulation can be thought as maximizing the soft-min of the left- and right-

margins. Similar to RankBoost-OR, the minimization is performed in an iterative

manner. In each iteration, a confidence function ht is chosen, its weight αt is com-

puted, and the vector θ is updated. If we plug in the margin definition to (3.12), we

can see that in the t-th iteration, the algorithm should approximately minimize

N∑

n=1

(

ϕn exp
(
αtht(xn) − θyn

)
+ ϕ−1

n exp
(
θyn−1 − αtht(xn)

))

, (3.13)

where ϕn = exp
(
Ht−1(xn)

)
. The steps we designed are explained below.

Choosing ht: Mason et al. (2000) explained AdaBoost as a gradient descent tech-

nique in function space. We derive ORBoost-LR using the same technique. We first

choose a confidence function ht that is close to the negative gradient:

ht = argmin
h∈H

N∑

n=1

h(xn)
(

ϕn exp
(
−θyn

)
− ϕ−1

n exp
(
θyn−1

))

︸ ︷︷ ︸

un

. (3.14)

Here un can be easily computed within O(N). Similar to RankBoost-OR (Algo-

rithm 3.3), this step can also be performed with the help of a base algorithm.

Computing αt: Again, we minimize an upper bound of (3.13), which is based on

a piecewise linear approximation of exp(x) for x ∈ [−1, 0] and x ∈ [0, 1]. The bound

can be written as ϕ+ exp (α) + ϕ− exp (−α), with

ϕ+ =
∑

ht(xn)>0

ht(xn)ϕn exp (−θyn
) −

∑

ht(xn)<0

ht(xn)ϕ−1
n exp (θyn−1) ,

ϕ− =
∑

ht(xn)>0

ht(xn)ϕ−1
n exp (θyn−1) −

∑

ht(xn)<0

ht(xn)ϕn exp (−θyn
) .

Then, the optimal αt for the bound can be computed within O(N) by

1

2
log

ϕ−

ϕ+
. (3.15)
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Note that the upper bound is equivalent to minimizing (3.13) if ht(xn) ∈ {−1, 0, 1}.
Thus, when ht is a binary classifier, the optimal αt can be exactly determined. An-

other remark here is that αt is finite under some mild conditions. Thus, unlike

RankBoost-OR when encountering the partial matching problem, ORBoost-LR rarely

sets αt to ∞.

Updating θ: Note that when the pair (ht, αt) is fixed, (3.13) can be reorganized

as
∑K−1

k=1 ϕ
(k)
+ exp (θk) + ϕ

(k)
− exp (−θk) for some ϕ

(k)
+ and ϕ

(k)
− that can be computed

within O(N). Then, each θk can be computed analytically, uniquely, and indepen-

dently. Nevertheless, when each θk is updated independently, the thresholds may not

be ordered. Hence, we propose to add an additional ordering constraint to (3.13).

That is, we choose θ by solving

min
ϑ

K−1∑

k=1

ϕ
(k)
+ exp (ϑk) + ϕ

(k)
− exp (−ϑk) , (3.16)

such that ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑK−1.

An efficient algorithm for solving (3.16) can be obtained from by a simple modification

of the pool adjacent violators (PAV) algorithm for isotonic regression (Robertson,

Wright and Dykstra 1988), which is at most O(K2) of time complexity.

Combination of the steps: ORBoost-LR works by combining the steps above

sequentially in each iteration. Note that after ht is determined, αt and θt can be either

jointly optimized, or cyclically updated. Nevertheless, we found that joint or cyclic

optimization does not always introduce better performance and could sometimes cause

ORBoost-LR to overfit. Thus, we only execute each step once in each iteration.

From the discussions above, the exact steps of ORBoost-LR are as follows.

Algorithm 3.4 (ORBoost-LR: ORBoost with left-right margins).

1. For t = 1, 2, . . . , T

(a) Determine the optimal ht ∈ H in (3.14) with a base algorithm Ab.
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(b) Determine the optimal αt ∈ R by (3.15).

(c) Update θ by solving (3.16).

2. Return the threshold ensemble rH,θ, where H(x) = HT (x) =
∑T

t=1 αtht(x).

3.2.3 ORBoost with All Margins

Another formulation, called ORBoost with all margins (ORBoost-All), operates on

N∑

n=1

K−1∑

k=1

exp
(
−ρk(xn, yn)

)
(3.17)

instead of (3.13). The derivations for the three steps are almost the same as ORBoost-

LR. We shall just make some remarks here.

Updating θ: When using (3.17) to update the thresholds, it can be proved that

each θk can be updated uniquely and independently, while still being ordered (Li and

Lin 2007b). Thus, we do not need to implement the PAV algorithm for ORBoost-All.

Relationship between algorithm and theory: Note that for any ∆ > 0,

exp (−A∆) · Jρ̃k(xn, yn) ≤ ∆K ≤ exp (−Aρ̃k(xn, yn)) .

Therefore, if we take A to be the normalization term of ρ̃k, we can see that

• ORBoost-All works on minimizing an upper bound of νa(rθ, ∆).

• ORBoost-LR works to minimizing an upper bound of νb(rθ, ∆), or 1
2
νc(rθ, ∆).

ORBoost-All not only minimizes an upper bound, but provably also minimizes

the term νa(rθ, ∆) exponentially fast with a sufficiently strong choice of ht. The fact

can be proved by applying the training cost theorem of AdaBoost (Schapire et al.

1998, Theorem 5) on ZE . Similar proof can be also used for ORBoost-LR.

Connection to other algorithms: ORBoost approaches are direct generalizations

of AdaBoost using the gradient descent optimization point-of-view. In the special
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case of K = 2, both ORBoost approaches are almost the same as AdaBoost with

an additional term θ1, which can be thought as the coefficient of a constant classi-

fier. Interestingly, Rudin et al. (2005) proved the connection between RankBoost and

AdaBoost when including a constant classifier in the ensemble. Thus, when K = 2,

RankBoost-OR, ORBoost-LR, and ORBoost-All, all share some similarity with Ada-

Boost.

ORBoost formulations also have connections with SVM-based algorithms, such as

SVOR by Chu and Keerthi (2007). In particular, ORBoost-LR has a counterpart of

SVOR with explicit constraints (SVOR-EXC), and ORBoost-All is related to SVOR

with implicit constraints (SVOR-IMC). These connections follow closely with the

links between AdaBoost and SVM (Lin and Li 2008; Rätsch et al. 2002).

3.3 Experiments

In this section, we compare the three boosting formulations above for constructing

the threshold ensembles. We also compare these formulations with SVM-based algo-

rithms.

Two sets of confidence functions are used in the experiments. The first one is

the set of perceptrons
{
sign(〈v,x〉 + b) : v ∈ R

D, b ∈ R
}
. The RCD-bias algorithm

is known to work well with AdaBoost (Li and Lin 2007a) and is adopted as our base

algorithm. In all our experiments, RCD-bias is configured with zero seeding and 200

iterations.

The second set is {tanh(〈v, x〉 + b) : 〈v,v〉 + b2 = γ2}, which contains normalized

sigmoid functions. Note that sigmoid functions smoothen the output of perceptrons,

and the smoothness is controlled by the parameter γ. We use a naive base algorithm

for normalized sigmoid functions as follows: RCD-bias is first performed to get a

perceptron. Then, the weights and bias of the perceptron are normalized, and the

outputs are smoothened. Throughout the experiments we use γ = 4, which was

picked with a few experimental runs on some data sets.
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Figure 3.3: Decision boundaries produced by ORBoost-All on an artificial data set

3.3.1 Artificial Data Set

We first verify that the idea of the threshold ensemble model works with an artifi-

cial 2D data set (Figure 3.3(a)). Figure 3.3(b) depicts the separating boundaries of

the threshold ensemble of 200 perceptrons constructed by ORBoost-All. By combin-

ing perceptrons, ORBoost-All works reasonably well in approximating the nonlinear

boundaries. A similar plot can be obtained with ORBoost-LR. Due to partial match-

ing, if RankBoost-OR uses an analytic solution when choosing αt, it would encounter

numerical difficulties (see Subsection 3.2.1) within 5 iterations. On the other hand,

when using the upper bound listed under (3.11) for choosing αt, RankBoost-OR per-

forms similarly to ORBoost algorithms.

If we use a threshold ensemble of 200 normalized sigmoid functions, it is observed

that ORBoost-All, ORBoost-LR, and RankBoost-OR perform similarly. The result of

ORBoost-All (Figure 3.3(c)) shows that the separating boundaries are much smoother

because each sigmoid function is smooth. As we shall discuss later, the smoothness

can be important for some ordinal ranking problems.

3.3.2 Benchmark Data Sets

Next, we perform experiments with eight benchmark data sets and the same setup as

we did in Subsection 2.4.2. Here we compare two different cost functions: Cc and Ca.

Since we use the same setup as Chu and Keerthi (2007), we can compare our proposed
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Table 3.1: Test absolute cost of algorithms for threshold ensembles

data RankBoost-OR ORBoost-All SVOR-IMC
set perceptron sigmoid perceptron sigmoid

pyrimdines 1.352±0.049 1.408±0.050 1.360±0.046 1.398±0.052 1.294±0.046
machine 0.896±0.022 0.905±0.025 0.889±0.019 0.969±0.025 0.990±0.026
boston 0.779±0.014 0.746±0.014 0.791±0.013 0.777±0.015 0.747±0.011
abalone 1.424±0.003 1.385±0.004 1.432±0.003 1.403±0.004 1.361±0.003
bank 1.457±0.002 1.456±0.002 1.490±0.002 1.539±0.002 1.393±0.002

computer 0.600±0.002 0.606±0.002 0.626±0.002 0.634±0.002 0.596±0.002
california 0.919±0.002 0.949±0.002 0.977±0.002 0.942±0.002 1.008±0.001
census 1.212±0.002 1.186±0.002 1.265±0.002 1.198±0.002 1.205±0.002

(those within one standard error of the lowest one are marked in bold)

Table 3.2: Test classification cost of algorithms for threshold ensembles

data RankBoost-OR ORBoost-LR SVOR-EXC
set perceptron sigmoid perceptron sigmoid

pyrimdines 0.742±0.021 0.733±0.018 0.731±0.019 0.731±0.018 0.752±0.014
machine 0.614±0.009 0.625±0.011 0.610±0.009 0.633±0.011 0.661±0.012
boston 0.570±0.005 0.552±0.007 0.580±0.006 0.549±0.007 0.569±0.006
abalone 0.738±0.002 0.719±0.002 0.740±0.002 0.716±0.002 0.736±0.002
bank 0.763±0.001 0.755±0.001 0.767±0.001 0.777±0.002 0.744±0.001

computer 0.485±0.002 0.491±0.001 0.498±0.001 0.491±0.001 0.462±0.001
california 0.607±0.001 0.620±0.001 0.628±0.001 0.605±0.001 0.640±0.001
census 0.706±0.001 0.700±0.001 0.718±0.001 0.694±0.001 0.699±0.000

(those within one standard error of the lowest one are marked in bold)

algorithms fairly with their SVM-based results.

We list the mean and standard errors of all test results with T = 2000 in Tables 3.1

and 3.2. Table 3.1 compares algorithms with Ca, and Table 3.2 compares algorithms

with Cc. We make several remarks here.

RankBoost versus ORBoost: RankBoost-OR can achieve decent performance

after we use a loose upper bound to decide αt (see Subsection 3.2.1 and some of

our earlier results of RankBoost-OR (Lin and Li 2006)). Its performance with the

absolute cost is better than ORBoost-All, and its performance with the classification

cost is slightly worse than ORBoost-LR. Overall we can see that all three algorithms

work well on the data sets, while ORBoost ones enjoy an advantage of simplicity in

implementation and efficiency.
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Perceptron versus sigmoid: The best test performance are mostly achieved

with sigmoid functions. One possible reason is that the data sets are quantized from

regression ones (Chu and Keerthi 2007). Therefore, they hold some properties such

as smoothness of the boundaries. If we only use binary classifiers like perceptrons, as

depicted in Figure 3.3(b), the boundaries would not be as smooth. Thus, for ordinal

ranking data sets that are quantized from regression data sets (or that follow the

assumption of the threshold regression algorithm), smooth confidence functions may

be more useful than discrete binary classifiers.

Boosting versus SVM: When comparing the boosting algorithms with SVOR-

IMC on the classification cost and SVOR-EXC on absolute cost (Chu and Keerthi

2007), we see that boosting formulations could achieve similar test costs as the SVM-

based algorithms. Note, however, that boosting formulations (especially ORBoost)

with perceptrons or sigmoid functions are much faster. On the census data set, which

contains 6000 training examples, it takes about an hour for ORBoost-LR to finish

one trial. But SVM-based approaches, which include a time-consuming automatic

parameter selection step, need more than four days. With the comparable perfor-

mance and significantly less computational cost, ORBoost could be a useful tool for

large data sets.
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Chapter 4

Ordinal Ranking by Extended
Binary Classification

In Chapter 2, we studied ordinal ranking problems from the classification perspective

and proposed the novel CSOVA and CSOVO algorithms to tackle ordinal ranking

problems via cost-sensitive classification. Both CSOVA and CSOVO decompose the

cost-sensitive classification problem to several binary classification problems and call

an underlying binary classification algorithm to solve them. In Chapter 3, we studied

ordinal ranking problems from the regression perspective and proposed the threshold

ensemble model for ordinal ranking. Each threshold ensemble in the model aggregates

binary classifiers (confidence functions) to form its final prediction. We also designed

RankBoost-OR and ORBoost algorithms, which return a threshold ensemble by call-

ing a base binary classification algorithm several times. RankBoost-OR and ORBoost

are derived from AdaBoost, a popular binary classification algorithm.

In other words, binary classification showed up frequently in our proposed ap-

proaches to deal with ordinal ranking. Since binary classification is arguably the

most widely studied machine learning problem, it is not coincidental that we tackle

more complicated machine learning problems, such as ordinal ranking, by reducing

them to what we know in binary classification (Beygelzimer et al. 2005; Langford

and Zadrozny 2005). A systematic reduction framework from ordinal ranking to bi-

nary classification can introduce two immediate benefits. First, well-tuned binary

classification approaches can be readily transformed into good ordinal ranking ones,
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which saves immense efforts in design and implementation. Second, new theoretical

guarantees for ordinal ranking can be easily extended from known ones for binary

classification, which saves tremendous efforts in derivation and analysis.

We introduced one such reduction framework in Subsection 2.3.2. The framework

not only forms a cost-sensitive classification algorithm (CSOVO) by calling an under-

lying binary classification algorithm, but also guarantees that a good cost-sensitive

classifier can be obtained by combining a set of decent binary classifiers. Since the

framework is designed for general cost-sensitive classification rather than for ordinal

ranking, arguably it does not use all the properties of ordinal ranking. For instance, it

is not clear whether the framework explicitly makes ordinal comparisons between the

ranks (see Section 1.2). In this chapter, we study another reduction framework that

fully takes the properties of ordinal ranking into account. The framework includes

both the classification and the regression perspective of ordinal ranking. Under this

framework, we will eventually show an interesting fact: Ordinal ranking (with its full

properties) is equivalent to binary classification.

4.1 Reduction Framework

The reduction framework was first proposed in our earlier work, which considered a

more restricted cost-sensitive setup (Li and Lin 2007b).1 The core of the framework

is the following reduction method, which is composed of three stages: preprocessing,

training, and prediction. Next, we introduce the stages of the reduction method and

its consequent theoretical guarantees.

Algorithm 4.1 (Reduction to extended binary classification).

1. Preprocessing: For each training example (xn, yn, cn) ∈ Z and for each k =

1, 2, . . . , K−1, include an extended training example
(

X
(k)
n , Y

(k)
n , W

(k)
n

)

in ZE,

1All the results in this chapter are significantly original contributions of the author except Al-
gorithm 4.1, Theorem 4.1 and Table 4.1, which arose from joint discussions between Dr. Ling Li
and the author (Li and Lin 2007b). Dr. Ling Li substantially contributed to raising the idea of
using extended binary examples, to designing Algorithm 4.1, to proving Theorem 4.1 for the case of
convex cost vectors, and to unifying existing ordinal ranking algorithms in Table 4.1.
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where

X(k)
n = (xn, k), Y (k)

n = 2 Jyn > kK − 1, W (k)
n = (K−1) ·

∣
∣
∣cn[k + 1] − cn[k]

∣
∣
∣.

2. Training: Use some binary classification algorithm Ab on ZE and get a binary

classifier g where g
(
X(k)

)
= g(x, k).

3. Prediction: For any x ∈ X , estimate its rank with

r̂(x) = rg(x) ≡ 1 +
K−1∑

k=1

Jg(x, k) > 0K . (4.1)

We have encountered the extended examples
(
X(k), Y (k)

)
when proving Theo-

rem 3.2. Here the extended examples are weighted and are of a more generic form. In

particular, X(k) now takes an abstract encoding of (x, k) rather than a concrete en-

coding (x, 1k). The actual encoding of k can then depend on the binary classification

algorithm Ab. We can think of the extended training vector X(k) as a representation

of the question “is the rank of x greater than k?”, the binary label Y (k) as a represen-

tation of the desired answer to the question, and the classifier g
(
X(k)

)
as a function

that predicts the answer to the question.

A threshold ensemble rHT ,θ, for instance, is the same as rg using

g
(
X(k)

)
= HT (x) − θk = HT (x) −

K−1∑

ℓ=1

θℓ · sℓ(x, 1k).

Then, ORBoost-LR (Algorithm 3.4) is simply a special case of the reduction method

above using the classification cost vectors
{

c
(ℓ)
c

}K

ℓ=1
in Z, the vector (x, 1k) as the

actual encoding of X(k), and a variant of AdaBoost as Ab that works on the learning

model G in (3.5).

While the reduction method is simple, it comes with a strong theoretical guar-

antee: the cost bound theorem, which depends on the following probability mea-
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sure dFb

(
X(k), Y (k), W (k)

)
that generates weighted binary examples.

1. Draw a tuple (x, y, c) independently from dF(x, y, c) and draw k uniformly from

the set {1, 2, . . . , K−1}.

2. Generate
(
X(k), Y (k), W (k)

)
by







X(k) = (x, k) ,

Y (k) = 2 Jy > kK − 1 ,

W (k) = (K−1) ·
∣
∣
∣c[k+1] − c[k]

∣
∣
∣.

(4.2)

As shown in the proof of Theorem 3.2, the extended training set ZE contains depen-

dent training examples from dFb

(
X(k), Y (k), W (k)

)
. For any given binary classifier g,

we can then define its out-of-sample cost

πb(g) ≡ π(g, Fb) =

∫

X(k),Y (k),W (k)

W (k) ·
q
Y (k) 6= g

(
X(k)

)y
dFb

(
X(k), Y (k), W (k)

)
.

Next, we introduce the cost bound theorem (Li and Lin 2007b).

Theorem 4.1 (Cost bound of the reduction framework). Consider a ranker rg

constructed from a binary classifier g using (4.1). Assume that c is V-shaped and

c[y] = 0 for every example (x, y, c). If g(x, k) is rank-monotonic2 or if every cost

vector c is convex (see Section 1.2), then π(rg) ≤ πb(g).

Proof. When g(x, k) is rank-monotonic, by (4.1), Jg(x, k) ≤ 0K = Jrg(x) ≤ kK. Thus,

c[rg(x)] = c[K] +
K−1∑

k=rg(x)

(

c[k] − c[k + 1]
)

= c[K] +
K−1∑

k=1

(

c[k] − c[k + 1]
)

Jg(x, k) ≤ 0K (4.3)

= c[y] +
1

K−1

K−1∑

k=1

W (k)
q
g
(
X(k)

)
6= Y (k)

y
.

2A rank-monotonic g(x, k) means g(x, k−1) ≥ g(x, k), for k = 2, 3, . . . , K−1.
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Then, we get

π(rg) =

∫

x,y,c

c[rg(x)] dF (x, y, c)

=

∫

x,y,c

1

K−1

K−1∑

k=1

W (k)
q
g
(
X(k)

)
6= Y (k)

y
dF (x, y, c)

=

∫

X(k),Y (k),W (k)

W (k)
q
g
(
X(k)

)
6= Y (k)

y
dFb

(
X(k), Y (k), W (k)

)

= πb(g).

Now consider the case where every cost vector c is convex. Note that there are

exactly rg(x) − 1 and K − rg(x) ones in those Jg(x, k) ≤ 0K. In addition, there are

also exactly rg(x) − 1 zeros and K − rg(x) ones in those Jrg(x) ≤ kK. Because the

vector
(

Jrg(x) ≤ kK
)K

k=1
is monotonically increasing, and by the convexity condi-

tion
(

c[k] − c[k + 1]
)K

k=1
is also monotonically increasing,

c[K] +

K−1∑

k=rg(x)

(

c[k] − c[k + 1]
)

= c[K] +
K−1∑

k=1

(

c[k] − c[k + 1]
)

Jrg(x) ≤ kK

≤ c[K] +

K−1∑

k=1

(

c[k] − c[k + 1]
)

Jg(x, k) ≤ 0K . (4.4)

The desired proof follows by replacing (4.3) with (4.4).

Theorem 4.1 indicates that if there exists a descent binary classifier g, we can

obtain a good ranker rg. Nevertheless, it does not guarantee how good rg is in

comparison with other rankers. In particular, if we consider the target function g∗

under dFb

(
X(k), Y (k), W (k)

)
, and the target function r∗ under dF(x, y, c), does a small

regret
(
πb(g)−πb(g∗)

)
in binary classification translate to a small regret

(
π(rg)−π(r∗)

)

in ordinal ranking? Furthermore, is π(rg∗) close to π(r∗)? Next, we introduce the

reverse-reduction technique, which helps to answer the questions above.
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Reverse reduction goes through the preprocessing and the prediction stages of

the reduction method in a different direction. In the preprocessing stage, instead

of starting with ordinal examples (xn, yn, cn), reverse reduction deals with weighted

binary examples
(

X
(k)
n , Y

(k)
n , W

(k)
n

)

. It first combines each set of binary examples

sharing the same xn to an ordinal example by







yn = 1 +
K−1∑

k=1

r
Y

(k)
n > 0

z
;

cn[k] =

K−1∑

ℓ=1

wnℓ

K−1
· Jyn ≤ ℓ < k or k < ℓ ≤ ynK .

(4.5)

It is easy to verify that (4.5) is the exact inverse transform of (4.2) on the training

examples. These ordinal examples are then given to an ordinal ranking algorithm to

obtain a ranker r. In the prediction stage, reverse reduction works by decomposing

the prediction r(x) to K −1 binary predictions, each as if coming from a binary

classifier

gr

(
X(k)

)
= 2 Jr(x) > kK − 1. (4.6)

Then, a lemma on the out-of-sample cost of gr immediately follows.

Lemma 4.2. With the definitions of F(x, y, c) and Fb

(
X(k), Y (k), W (k)

)
in Theo-

rem 4.1, for every ordinal ranker r, π(r) = πb(gr).

Proof. Because gr is rank-monotonic, the same proof of Theorem 4.1 leads to the

desired result.

The stages of reduction and reverse reduction are illustrated in Figure 4.1. Next,

we show how the reverse-reduction technique complements the reduction method and

allows us to draw a strong theoretical connection between ordinal ranking and binary

classification. In addition, reverse reduction is useful in designing boosting algorithms

for ordinal ranking, which will be demonstrated in Subsection 4.2.2.
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Figure 4.1: Reduction (top) and reverse reduction (bottom)

Recall that by the definition of r∗ and g∗, for any ranker r and any binary classi-

fier g,

π(r) ≥ π(r∗), πb(g) ≥ πb(g∗) . (4.7)

With the definitions of r∗ and g∗, the reverse-reduction technique allows a simple

proof of the following regret bound.

Theorem 4.3 (Regret bound of the reduction framework). If g(x, k) is rank-

monotonic, or if every cost vector c is convex, then

π(rg) − π(r∗) ≤ πb(g) − πb(g∗).

Proof.

π(rg) − π(r∗) ≤ πb(g) − π(r∗) (from Theorem 4.1)

= πb(g) − πb(gr∗) (from Lemma 4.2)

≤ πb(g) − πb(g∗)
(
from (4.7)

)
.
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The cost bound (Theorem 4.1) and the regret bound (Theorem 4.3) provide dif-

ferent guarantees for the reduction method. The former describes how the ordinal

ranking cost is upper bounded by the binary classification cost in an absolute sense,

and the latter describes the upper bound in a relative sense. An immediate implica-

tion of the regret bound is as follows. If there exists an optimal binary classifier g+

that is also rank-monotonic, both the right-hand side and the left-hand side of the

equation are 0. That is, every optimal binary classifier under dFb

(
X(k), Y (k), W (k)

)

corresponds to an optimal ranker under dF(x, y, c). In other words, there is no gap

between ordinal ranking and binary classification in terms of optimality. In the fol-

lowing theorem, we show a general sufficient condition for the correspondence.

Theorem 4.4. Assume that the effective cost

cx[k] =

∫

c,y

c[k] dF(c, y |x) − min
1≤ℓ≤K

∫

c,y

c[ℓ] dF(c, y |x)

is V-shaped with respect to yx = argmin
1≤ℓ≤K

cx[ℓ] on every feature vector x ∈ X . Let

g+(x, k) ≡ 2 Jyx > kK − 1.

Then g+ is rank-monotonic and is optimal under dFb

(
X(k), Y (k), W (k)

)
.

Proof. By construction g+ is rank-monotonic. Because the effective cost cx is V-

shaped, for all cx[k + 1] − cx[k] 6= 0,

g+(x, k) = sign(cx[k + 1] − cx[k]) .

That is,

g+(x, k) ·
(

cx[k + 1] − cx[k]
)

=
∣
∣
∣cx[k + 1] − cx[k]

∣
∣
∣.
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Then, for any binary classifier g,

πb(g) =

∫

X(k),Y (k),W (k)

W (k)
q
Y (k) 6= g

(
X(k)

)y
dFb

(
X(k), Y (k), W (k)

)

=

∫

X(k),Y (k),W (k)

W (k)
(
Y (k) − g

(
X(k)

))2
dFb

(
X(k), Y (k), W (k)

)

= ∆ − 2

∫

X(k),Y (k),W (k)

W (k) · Y (k) · g
(
X(k)

)
dFb

(
X(k), Y (k), W (k)

)

= ∆ − 2

K−1

K−1∑

k=1

∫

x

g(x, k)

∫

y,c

(c[k + 1] − c[k]) dF(y, c |x) dF(x)

= ∆ − 2

K−1

K−1∑

k=1

∫

x

g(x, k) ·
(

cx[k + 1] − cx[k]
)

dF(x)

≥ ∆ − 2

K−1

K−1∑

k=1

∫

x

∣
∣
∣cx[k + 1] − cx[k]

∣
∣
∣ dF(x)

= ∆ − 2

K−1

K−1∑

k=1

∫

x

g+(x, k) ·
(

cx[k + 1] − cx[k]
)

dF(x)

= πb(g+),

where ∆ is a constant that does not depend on g. Thus, the classifier g+ is optimal

under dFb

(
X(k), Y (k), W (k)

)
.

Note that if every cost vector c is convex, the effective cost cx would also be convex

and hence V-shaped. Thus, the convexity of c is also a (weaker) sufficient condition

for the correspondence between optimal binary classifiers and optimal rankers.

As we can see from the definition of r∗ in (1.1), the effective cost cx conveys

sufficient information for determining the optimal prediction at x. Because ordi-

nal ranking predictions should take “closeness” into account (see Section 1.2), it is

reasonable to assume that cx is V-shaped. Hence, in general (with such a minor

assumption), optimal binary classifiers correspond to optimal rankers.

The results above demonstrate that ordinal ranking can be reduced to binary

classification without any loss of optimality. That is, ordinal ranking is “no harder

than” binary classification. Intuitively, binary classification is also “no harder than”

ordinal ranking, because the former is a special case of the latter with K = 2. Next,



67

we formalize the notion of hardness with the probably approximately correct (PAC)

setup in computational learning theory (Kearns and Vazirani 1994) and prove that

ordinal ranking and binary classification are indeed equivalent in hardness. We use

the following definition of PAC in our coming theorems (Kearns and Vazirani 1994;

Valiant 1984).

Definition 4.5. In cost-sensitive classification, a learning model G is efficiently PAC-

learnable (using the same representation class) if there exists a learning algorithm A
satisfying the following property: for every distribution dF(x, y, c) being considered,

where

c[g∗(x)] = c[y] = cmin = 0,

with some g∗ ∈ G; for all 0 < ǫ and 0 < δ < 1
2
, if A is given access to an oracle

generating examples (x, y, c) from dF(x, y, c), as well as inputs ǫ and δ, then A out-

puts ĝ ∈ G such that π(ĝ, F ) ≤ ǫ with probability at least 1 − δ as well as with time

polynomial in 1
ǫ

and 1
δ
.

Briefly speaking, the definition assumes that the target function g∗ is within the

learning model G and is of cost 0 (the minimum cost). In other words, it is the

noiseless setup of learning. In the noisy case, we can use the following notion of

agnostic PAC learning.

Definition 4.6. In cost-sensitive classification, a learning model G is efficiently ag-

nostic PAC-learnable (using the same representation class) if there exists a learning

algorithm A satisfying the following property: for every distribution dF(x, y, c) being

considered, where c[y] = cmin; for all 0 < ǫ and 0 < δ < 1
2
, if A is given access to

an oracle generating examples (x, y, c) from dF(x, y, c), as well as inputs ǫ and δ,

then A outputs ĝ ∈ G satisfying π(ĝ, F ) − π(g∗, F ) ≤ ǫ with probability at least 1 − δ

as well as with time polynomial in 1
ǫ

and 1
δ
.

With Definitions 4.5 and 4.6, we now introduce the equivalence theorem.
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Theorem 4.7 (Equivalence theorem of the reduction framework). Consider

a learning model R for ordinal ranking, its associated learning model G = {gr : r ∈ R}
for binary classification, and distributions dF(x, y, c) such that all cost vectors c and

effective cost vectors cx are V-shaped.

1. R is efficiently PAC-learnable if and only if G is efficiently PAC-learnable.

2. R is efficiently agnostic PAC-learnable if and only if G is efficiently agnostic

PAC-learnable.

Proof. If G is efficiently PAC-learnable using algorithm AG, we can convert AG to an

efficient algorithm AR for ordinal ranking.

1. Transform the oracle generating (x, y, c) from dF(x, y, c) to an oracle generat-

ing
(
X(k), Y (k), W (k)

)
by (4.2).

2. Run AG with the transformed oracle until it outputs some g
(
X(k)

)
.

3. Return rg.

It is not hard to see that AR is as efficient as AG, and the cost guarantee comes from

Theorems 4.1 and 4.3.

Now we consider the other direction. If R is efficiently PAC-learnable using algo-

rithm AR, we can convert AR to an efficient algorithm AG for binary classification.

1. Transform the oracle generating
(
X(k), Y (k), W (k)

)
from dFb

(
X(k), Y (k), W (k)

)

to an oracle generating (x, y, c) by

x =
(

X(k) [1] ,X(k) [2] , . . . ,X(k) [D]
)

;

c =







W (k)

K−1
·
(
0, . . . , 0
︸ ︷︷ ︸

k

, 1, . . . , 1
)

for Y (k) = −1 ,

W (k)

K−1
·
(
1, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0
)

for Y (k) = +1 ;

y = argmin
1≤ℓ≤K

c[ℓ] .
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2. Run AR with the transformed oracle until it outputs some r(x).

3. Return gr.

We can easily see that AG is as efficient as AR. Denote dFR(x, y, c) as the probability

measure described in step one. It is simple to prove that FR with (4.2) would also

introduce Fb. Then, by Lemma 4.2,

π(gr, Fb) = π(r, FR) for all r ∈ R.

Therefore, π(gr, Fb) < ǫ after running AG.

The proof above deals with the noiseless PAC-learnability result. Similar steps

can be used to show the agnostic PAC-learnability result.

Theorem 4.7 demonstrates that ordinal ranking is as easy (hard) as the associated

binary classification problem. If we look at g(x, k) for one particular k, we see that

the binary classification problem can be simplified to classifying all (x, y) with y > k

as Y (k) = +1, and all (x, y) with y ≤ k as Y (k) = −1. Recall that in Section 1.2, we

discussed that ordinal ranking allows natural “ordinal comparison between different

ranks.” When the comparison between “all x with rank less than k” and “all x with

rank at least k” is natural, it is simple for Ab to locate a decent g(x, k). In other

words, the underlying binary classification problem is easy. On the other hand, if the

comparison is not natural, such as the fruit categorization example in Section 1.2,

both the “ordinal ranking” problem and the underlying binary classification are hard.

4.2 Usefulness of Reduction Framework

Li and Lin (2007b) unified existing algorithms under the reduction framework. We list

them (and some new ones) as instances of the framework in Table 4.1. In this section,

we discuss the last two rows of Table 4.1 further to demonstrate the algorithmic and

theoretical usefulness of the reduction framework.
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Table 4.1: Instances of the reduction framework

ordinal ranking cost binary classification algorithm

PRank absolute modified perceptron rule
(Crammer and Singer 2005)

kernel ranking classification modified hard-margin SVM
(Rajaram et al. 2003)

SVOR-EXP classification
modified soft-margin SVM

SVOR-IMC absolute
(Chu and Keerthi 2007)

ORBoost-LR classification
modified AdaBoost

ORBoost-All absolute
(Section 3.2)

oSVM absolute standard soft-margin SVM
oNN absolute standard neural network

(Cardoso and da Costa 2007)
RED-C4.5 any convex standard C4.5
RED-SVM any convex standard soft-margin SVM

(Li and Lin 2007b)
AdaBoost-OR any V-shaped standard AdaBoost

with reverse reduction

4.2.1 SVM for Ordinal Ranking

SVM is a popular binary classification algorithm (Schölkopf and Smola 2002; Vapnik

1995), which will be further introduced in Subsection 5.1.1. It maps the feature

vector x to φ(x) in a possibly higher-dimensional space and implicitly computes the

inner products with a kernel function

K(x,x′) = 〈φ(x), φ(x′)〉 .

If we encode (x, k) by (x,−γ1k), we can then compute the inner products of the

extended examples by

KE

(
(x, k), (x′, k′)

)
= 〈(φ(x), k) , (φ(x′), k′)〉 = K(x,x′) + γ2 Jk = k′K .

With the reduction framework, we can plug in KE and O
(
NK

)
extended training
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examples into the standard SVM to obtain an ranker

r(x) = 1 +

K−1∑

k=1

J〈v, φ(x)〉 + b − θk > 0K ,

based on an optimal solution to

min
v,b,θk,ξ

(k)
n

1

2
〈v,v〉 +

1

2γ2
〈θ, θ〉 + κ

N∑

n=1

K−1∑

k=1

W (k)
n ξ(k)

n , (4.8)

subject to Y (k)
n (〈v, φ(x)〉 + b − θk) ≥ 1 − ξ(k)

n ,

ξ(k)
n ≥ 0, for n = 1, . . . , N, and k = 1, . . . , K−1.

If θ1 ≤ θ2 ≤ . . . ≤ θK−1, or if the cost vectors considered are convex, Theorems 4.1

and 4.3 can guarantee the expected out-of-sample cost of r(x) based on the expected

out-of-sample cost of the binary classifier

g(x, k) = sign
(

〈v, φ(x)〉 + b − θk

)

.

The oSVM approach of Cardoso and da Costa (2007) is an instance of (4.8) with the

absolute cost, in which all W
(k)
n are equal. The SVOR-IMC approach of Chu and

Keerthi (2007) can also be thought as a modified instance of the formulation with the

absolute cost, except that the 1
2γ2 〈θ, θ〉 term is dropped. Their SVOR-EXC approach

is another modified instance using the classification cost plus an additional constraint

to guarantee that θ1 ≤ θ2 ≤ . . . ≤ θK−1.

RED-SVM unifies these algorithms under a generic formulation (4.8) with the

reduction framework and allows us to deal with any convex cost vectors by chang-

ing W
(k)
n , or with any cost vectors by changing W

(k)
n as well as respecting the constraint

θ1 ≤ θ2 ≤ . . . ≤ θK−1.
3

Chu and Keerthi (2007) found that SVOR-EXP performed better in terms of the

3The additional constraint can be respected by a coordinate-descent procedure that switches
between optimizing (v, b) (using the standard SVM solver) and optimizing θ under the constraints
(a small quadratic programming problem with an analytic solution).
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classification cost, and SVOR-IMC preceded in terms of the absolute cost. Their

findings can be well explained through the reduction framework with the formula-

tion above. Note that Chu and Keerthi (2007) paid much efforts in designing and

implementing suitable optimizers for the modified formulation that does not contain

the 1
2γ2 〈θ, θ〉 term. If we use the standard soft-margin SVM instead, we can directly

and efficiently use the state-of-the-art SVM software to deal with the ordinal ranking

problem. The formulation of Chu and Keerthi (2007) can be approximated by using

a large γ. As we shall see in Subsection 4.3.1, even a simple assignment of γ = 1

performs similarly to the approaches of Chu and Keerthi (2007) in practice.

In addition to the algorithmic benefits described above, the reduction framework

can also be used theoretically. For instance, we demonstrated how we can derive novel

bounds of some common cost functions in Section 3.1. Next, we extend the bounds

to SVM-based formulations and to a wider class of cost functions. While Shashua

and Levin (2003) derived one such bound with a specific cost function, their bound is

not data dependent and hence does not fully explain the out-of-sample performance

of SVM-based rankers in reality (for more discussions on data-dependent bounds, see

the work of, for example, Bartlett and Shawe-Taylor (1998)). Our bound, on the

other hand, is not only more general, but also data dependent.

Theorem 4.8 (Large-margin bounds for SVM-based rankers). Consider a col-

lection

F =
{

fv,b,θ

(
X(k)

)
= 〈v, φ(x)〉 + b − θk, where ‖v‖2 + ‖b − θ‖2 ≤ 1, ‖φ(x)‖2 + 1 ≤ R2

}

.

Let Bmax = maxc∈C (c[1] + c[K]), Bmin = minc∈C (c[1] + c[K]), and β = Bmax/Bmin.

If θ1 ≤ θ2 ≤ . . . ≤ θK−1, or if every c is convex, for any ∆ > 0, with probability at

least 1 − δ, and for every f in F , the associated ranker

r(x) = 1 +

K−1∑

k=1

q
f
(
X(k)

)
> 0

y
,
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satisfies

π(r) ≤ β

N · (K−1)

N∑

n=1

K−1∑

k=1

W (k)
n

q
Y (k)

n f
(
X(k)

n

)
≤ ∆

y
+ O

(

log N√
N

,
R

∆
,

√

log
1

δ

)

.

Proof. For every example (x, y, c), by the same derivation as Theorem 4.1,

(K−1) · c[r(x)]

≤
K−1∑

k=1

W (k)
q
Y (k)f

(
X(k)

)
≤ 0

y

≤ (K−1) · (c[1] + c[K]) ·
K−1∑

k=1

W (k)

(K−1) · (c[1] + c[K])

q
Y (k)f

(
X(k)

)
≤ 0

y
.

Note that

P (k) =
W (k)

(K−1) · (c[1] + c[K])

sums to 1. Then, for each example (x, y, c) obtained from dF(x, y, c), we can ran-

domly choose k according to P (k) and form an unweighted binary example
(
X(k), Y (k)

)
.

The procedure above defines a probability measure dFu

(
X(k), Y (k)

)
. Integrating over

all (x, y, c), we get

π(r) ≤ Bmax

∫

X(k),Y (k)

q
Y (k)f

(
X(k)

)
≤ 0

y
dFu

(
X(k), Y (k)

)
.

When each kn is chosen independently according to P
(k)
n , we can generate N

independent examples
(

X
(kn)
n , Y

(kn)
n

)

from dFu

(
X(k), Y (k)

)
from Z. Then, using a

cost bound for SVM in binary classification (Bartlett and Shawe-Taylor 1998), with

probability at least (1 − δ
2
) over the choice of

{(

X
(kn)
n , Y

(kn)
n

)}N

n=1
,

∫

X(k),Y (k)

q
Y (k)f

(
X(k)

)
≤ 0

y
dFu

(
X(k), Y (k)

)

≤ 1

N

N∑

n=1

q
Y (kn)

n f
(
X(kn)

n

)
≤ ∆

y
+ O

(

log N√
N

,
R

∆
,

√

log
1

δ

)

.
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Using the same technique as the proof of Theorem 3.2 with bn =
r
Y

(kn)
n f

(

X
(kn)
n

)

≤ ∆
z

and a union bound, with probability > 1 − δ,

π(r)

≤ Bmax

N

N∑

n=1

q
Y (kn)

n f
(
X(kn)

n

)
≤ ∆

y
+ O

(

log N√
N

,
R

∆
,

√

log
1

δ

)

≤ Bmax

N

N∑

n=1

1

(K−1) · (cn[1] + cn[K])

K−1∑

k=1

W (k)
n ·

q
Y (k)

n f
(
X(k)

n

)
≤ ∆

y

+O

(

log N√
N

,
R

∆
,

√

log
1

δ

)

+ O

(

1√
N

,

√

log
1

δ

)

≤ β

N · (K−1)

N∑

n=1

K−1∑

k=1

W (k)
n ·

q
Y (k)

n f
(
X(k)

n

)
≤ ∆

y
+ O

(

log N√
N

,
R

∆
,

√

log
1

δ

)

.

Thus, if f achieves large margins (≥∆) on most of the extended training exam-

ples
(

X
(k)
n , Y

(k)
n , W

(k)
n

)

, π(r) is guaranteed to be small. A similar proof can be used

to extend Theorem 3.2 and Corollary 3.4 to a more general class of cost functions.

4.2.2 AdaBoost for Ordinal Ranking

In Section 3.2, we introduced the ORBoost algorithm, which aggregates a set of

binary classifiers (confidence functions) to perform ordinal ranking. Given the wide

availability of ordinal ranking algorithms, can we use a boosting approach to aggregate

rankers directly? Next, we use reduction and reverse reduction to design such an

approach. We first introduce the ideas behind our approach. In the preprocessing

stage, we apply the reduction method, and in the training stage, we take AdaBoost as

the core binary classification algorithm. AdaBoost would then call a base algorithm

to get a base binary classifier gt with weighted binary examples in its t-th iteration.

We use the reverse-reduction technique to replace gt with grt
and let our approach

train a ranker rt with ordinal examples instead.

After the steps above, our approach would return an ensemble of rankers U =

{(rt, vt)}T
t=1, where vt ≥ 0 is the weight associated with the ranker rt. In the prediction
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stage, we first apply the reverse-reduction technique in (4.6) to cast each ranker rt

as a binary classifier gt = grt
. The weighted votes from all the binary classifiers in

the ensemble are gathered to form binary predictions. Then, the reduction method

comes into play and constructs an ordinal prediction from the binary ones by (4.1).

Combining the steps above, we get the following prediction rule for an ordinal ranking

ensemble U :

rU(x) ≡ 1 +
K−1∑

k=1

t
T∑

t=1

vt Jk < rt(x)K ≥ 1

2

T∑

t=1

vt

|
. (4.9)

The steps of going back and forth between reduction and reverse reduction may

seem complicated. Nevertheless, we can simplify many of them with careful deriva-

tions, which are illustrated below. We start with the prediction steps and derive a

simplified form of (4.9) as follows.

Theorem 4.9. For any ordinal ranking ensemble U = {(rt, vt)}T
t=1 such that vt ≥ 0

and
∑T

t=1 vt = 1,

rU(x) = min

{

k :

T∑

t=1

vt Jk ≥ rt(x)K >
1

2

}

. (4.10)

Proof. Let k∗ = min
{

k :
∑T

t=1 vt Jk ≥ rt(x)K > 1
2

}

. Then,
∑T

t=1 vt Jk ≥ rt(x)K > 1
2

if and only if k∗ ≤ k. That is,
∑T

t=1 vt Jk < rt(x)K ≥ 1
2

if and only if k < k∗.

Therefore, rU(x) = 1 + k∗ − 1 = k∗.

Thus, the seemly complicated prediction rule (4.9) can be equivalently performed

in (4.10) by computing a simple and intuitive statistic: the weighted median. Note

that the rule in (4.10) is not specific for our approach. It can be applied to ordi-

nal ranking ensembles produced by any ensemble learning approaches, such as bag-

ging (Breiman 1996).

We now look at the training steps. First, we list the steps of the original AdaBoost.

Algorithm 4.2 (AdaBoost, Freund and Schapire 1997).

1. For a given training set Z̃ = {(x̃m, ỹm, w̃m)}M
m=1, initialize w̃

(1)
m = w̃m for all m.
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2. For t = 1, 2, . . . , T ,

(a) Obtain g̃t from the base binary classification algorithm Ab.

(b) Compute the weighted training error ǫ̃t.

ǫ̃t =

(
M∑

m=1

w̃(t)
m · Jỹm 6= g̃t(x̃m)K

)
/
(

M∑

m=1

w̃(t)
m

)

If ǫ̃t > 1
2
, set T = t − 1 and abort loop.

(c) Let ṽt = 1
2
log ǫ̃t

1−ǫ̃t
.

(d) Let Λ̃t = exp(2ṽt) − 1, and

w̃(t+1)
m =







w̃
(t)
m , ỹm = g̃t(x̃m) ;

w̃
(t)
m + Λ̃tw̃

(t)
m , ỹm 6= g̃t(x̃m) .

After plugging AdaBoost into reduction and a base ordinal ranking algorithm

into reverse reduction, we can equivalently obtain the AdaBoost for ordinal ranking

(AdaBoost.OR) algorithm below.

Algorithm 4.3 (AdaBoost.OR: AdaBoost for ordinal ranking).

1. For a given training set Z = {(xn, yn, cn)}N
n=1, initialize c

(1)
n [k] = cn[k] for all n

and k.

2. For t = 1, 2, . . . , T ,

(a) Obtain rt from the base ordinal ranking algorithm Ar.

(b) Compute the weighted training error ǫt.

ǫt =

(
N∑

n=1

c(t)
n [rt(x)]

)
/
(

N∑

n=1

c(t)
n [1] + c(t)

n [K]

)

If ǫt > 1
2
, set T = t − 1 and abort loop.

(c) Let vt = 1
2
log ǫt

1−ǫt
.
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(d) Let Λt = exp(2vt) − 1. If rt(xn) ≥ yn, then

c(t+1)
n [k] =







c
(t)
n [k] , k ≤ yn ;

c
(t)
n [k] + Λt · c(t)

n [k] , yn < k ≤ rt(xn) ;

c
(t)
n [k] + Λt · c(t)

n [rt(xn)] , k > rt(xn) .

Otherwise switch > to < and vice versa.

The connection between Algorithms 4.2 and 4.3 is based on maintaining the fol-

lowing invariance in each iteration.

Lemma 4.10. Substitute the indices m in Algorithm 4.2 with (n, k). That is,

x̃m = X(k)
n , ỹm = ỹnk = Y (k)

n , and w̃m = w̃nk = W (k)
n .

Take g̃t(x, k) = grt
(x, k) and assume that in Algorithms 4.2 and 4.3,

c(τ)
n [k] =

K−1∑

ℓ=1

w̃
(τ)
nℓ

K−1
· Jyn ≤ ℓ < k or k < ℓ ≤ ynK (4.11)

is satisfied for τ = t with w̃
(τ)
nℓ ≥ 0. Then, equation (4.11) is satisfied for τ = t + 1

with w̃
(τ)
nℓ ≥ 0.

Proof. Because (4.11) is satisfied for τ = t and w̃
(t)
nℓ ≥ 0, the cost vector c

(t)
n is

V-shaped with respect to yn and c
(t)
n [yn] = 0. Thus,

N∑

n=1

(
c(t)

n [1] + c(t)
n [K]

)
=

N∑

n=1

K−1∑

k=1

w̃
(t)
nk.

In addition, since g̃t(x, k) = grt
(x, k), by a proof similar to Lemma 4.2,

N∑

n=1

c(t)
n [rt(x)] =

N∑

n=1

K−1∑

k=1

w̃
(t)
nk · Jynk 6= g̃t(xn, k)K .

Therefore, ǫ̃t = ǫt, ṽt = vt, and Λ̃t = Λt.



78

Because g̃t(xn, k) 6= ynk if and only if rt(xn) ≤ k < yn or yn < k ≤ rt(xn),

w̃
(t+1)
nk =







w̃
(t)
nk + Λ̃tw̃

(t+1)
nk , yn < k ≤ rt(xn) or yn < k ≤ rt(xn) ;

w̃
(t)
nk, otherwise .

(4.12)

It is easy to check that w̃
(t+1)
nk are nonnegative. Furthermore, we see that the update

rule in Algorithm 4.3 is equivalent to combining (4.12) and (4.11) with τ = t + 1.

Thus, equation (4.11) is satisfied for τ = t + 1.

Then, by mathematical induction from τ = 1 up to T with Lemma 4.10, plugging

AdaBoost into reduction and a base ordinal ranking algorithm into reverse reduction

is equivalent to running AdaBoost.OR with the base algorithm. AdaBoost.OR takes

AdaBoost as a special case of K = 2. It can use any base ordinal ranking algorithm

that produces individual rankers rt with errors ǫt ≤ 1
2
. In binary classification, the 1

2

error bound can be naturally achieved by a constant classifier or a fair coin flip. For

ordinal ranking, is 1
2

still easy to achieve? The short answer is yes. In the following

theorem, we demonstrate that there always exists a constant ranker that satisfies the

error bound.

Theorem 4.11. Define constant rankers r(k) by r(k)(x) ≡ k for all x. For any

set {cn}N
n=1, there exists a constant ranker with 1 ≤ k ≤ K such that

ǫ(k) =

(
N∑

n=1

cn

[
r(k)(x)

]

)
/
(

N∑

n=1

cn[1] + cn[K]

)

≤ 1

2
.

Proof. Either r(1) or r(K) achieves error ≤ 1
2

because by definition ǫ(1) + ǫ(K) = 1.

Therefore, even the simplest deterministic rankers can always achieve the desired

error bound.4 If the base ordinal ranking algorithm produces better rankers, the

following theorem bounds the normalized training cost of the final ensemble U .

4Similarly, the error bound can be achieved by a randomized ordinal ranker that returns either 1
or K with equal probability.



79

Theorem 4.12. Suppose the base ordinal ranking algorithm produces rankers with

errors ǫ1, . . . , ǫT , where each ǫt ≤ 1
2
. Let γt = 1

2
− ǫt, the final ensemble rU satisfies

the following error bound:

N
∑N

n=1 cn[1] + cn[K]
· ν(rU ) ≤

T∏

t=1

√

1 − 4γ2
t ≤ exp

(

−2

T∑

t=1

γ2
t

)

.

Proof. Similar to the proof for Lemma 4.10, the left-hand side of the bound equals

(
N∑

n=1

K−1∑

k=1

wnk Jynk 6= gŨ(xn, k)K
)
/
(

N∑

n=1

K−1∑

k=1

wnk

)

,

where Ũ is a binary classification ensemble {(g̃t, vt)}T
t=1 with g̃t = grt

. Then, the bound

is a simple consequence of the well-known AdaBoost bound (Freund and Schapire

1997).

Theorem 4.12 indicates that if the base algorithm always produces a ranker with

ǫt ≤ 1
2
− γ for γ > 0, the training cost of U would decrease exponentially with T .

That is, AdaBoost.OR can rapidly boost the training performance of such a base

algorithm.

Similar to Theorems 3.2 and 4.8, we can also use reduction to extend the out-

of-sample cost bounds of AdaBoost to AdaBoost.OR, including the iteration-based

bound (Freund and Schapire 1997) and the margin-based ones (Schapire et al. 1998).

4.3 Experiments

In this section, we first compare SVM-based ordinal ranking algorithms. We also

compare them with the cost-sensitive classification algorithms discussed in Chapter 2.

Then, we demonstrate the ability of AdaBoost.OR to boost the training and test

performance of base ordinal ranking algorithms.
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Table 4.2: Test absolute cost of SVM-based ordinal ranking algorithms

data RED-SVM SVOR-IMC
set perceptron Gaussian

pyrimdines 1.304±0.040 1.294±0.046
machine 0.842±0.022 0.990±0.026
boston 0.732±0.013 0.747±0.011
abalone 1.383±0.004 1.361±0.003
bank 1.404±0.002 1.393±0.002

computer 0.565±0.002 0.596±0.002
california 0.940±0.001 1.008±0.001
census 1.143±0.002 1.205±0.002

(those within one standard error of the lowest one are marked in bold)

Table 4.3: Test classification cost of SVM-based ordinal ranking algorithms

data RED-SVM SVOR-EXC
set perceptron Gaussian

pyrimdines 0.762±0.021 0.752±0.014
machine 0.572±0.013 0.661±0.012
boston 0.541±0.009 0.569±0.006
abalone 0.721±0.002 0.736±0.002
bank 0.751±0.001 0.744±0.001

computer 0.451±0.002 0.462±0.001
california 0.613±0.001 0.640±0.001
census 0.688±0.001 0.699±0.000

(those within one standard error of the lowest one are marked in bold)

4.3.1 SVM for Ordinal Ranking

We perform experiments on our proposed RED-SVM algorithms with the same eight

benchmark data sets from Chu and Keerthi (2007) and the same setup as we did

in Subsections 2.4.2 and 3.3.2. The γ parameter in (4.8) is fixed to 1. Simi-

lar to the SVM-based approaches in Subsection 2.4.2, the κ parameter is chosen

within {2−17, 2−15, . . . , 23} using a 5-fold CV procedure on the training set (Hsu,

Chang and Lin 2003).

Table 4.2 compares our proposed RED-SVM algorithm with the perceptron kernel

with the SVOR-IMC results listed by Chu and Keerthi (2007) using the mean absolute

cost (and the standard error), and Table 4.3 compares our algorithm with their SVOR-
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EXC results using the mean classification cost. We can see that our proposed RED-

SVM can often perform significantly better than the SVOR algorithms in both tables.

Note, however, that Chu and Keerthi (2007) uses the Gaussian kernel rather than

the perceptron kernel in their experiments. For a fair comparison, we implemented

their SVOR-IMC algorithm with the perceptron kernel by modifying LIBSVM (Chang

and Lin 2001) and conduct experiments with the same parameter selection procedure.5

With the same perceptron kernel, we compare RED-SVM with SVOR-IMC in Ta-

ble 4.4. We see that our direct reduction to the standard SVM (RED-SVM) performs

similarly to SVOR-IMC. In other words, the change from the Gaussian kernel to the

perceptron kernel explains most of the performance differences between the columns

of Tables 4.2 and 4.3. Our RED-SVM, nevertheless, is much easier to implement.

In addition, RED-SVM is significantly faster than SVOR-IMC in training, which is

illustrated in Figure 4.2 using the four largest data sets.6 The main cause to the

time difference is the speed-up heuristics. While, to the best of our knowledge, not

much has been done to improve the original SVOR-IMC algorithm, plenty of heuris-

tics, such as shrinking and advanced working selection in LIBSVM, can be seamlessly

adopted by RED-SVM because of the reduction framework. The difference demon-

strate an important advantage of the reduction framework: Any improvements to

the binary classification approaches can be immediately inherited by reduction-based

ordinal ranking algorithms.

Tables 4.5 and 4.6 compares RED-SVM to CSOVA and CSOVO using SVM with

perceptron kernel as the underlying binary classification algorithm. We conduct ex-

periments on both the eight data sets for ordinal ranking and the six data sets for

classification. We can see a clear difference between the proposed cost-sensitive classi-

fication algorithms and the proposed ordinal ranking algorithms. For ordinal ranking

data sets, RED-SVM enjoys an advantage, even in the classification cost setup. Such

a result justifies our final arguments in Section 4.1: When ordinal ranking allows

5We only focus on SVOR-IMC because it is more difficult to implement SVOR-EXC with LIBSVM
and to compare it fairly to RED-SVM.

6We gathered the CPU time on a 1.7G Dual Intel Xeon machine with 1GB RAM.
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Table 4.4: Test absolute cost of SVM-based ordinal ranking algorithms with the
perceptron kernel

data set RED-SVM SVOR-IMC
pyrimdines 1.304±0.040 1.315±0.039
machine 0.842±0.022 0.814±0.019
boston 0.732±0.013 0.729±0.013
abalone 1.383±0.004 1.386±0.005
bank 1.404±0.002 1.404±0.002

computer 0.565±0.002 0.565±0.002
california 0.940±0.001 0.939±0.001
census 1.143±0.002 1.143±0.002

(those within one standard error of the lowest one are marked in bold)
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Figure 4.2: Training time (including automatic parameter selection) of SVM-based
ordinal ranking algorithms with the perceptron kernel

natural ordinal comparison between different ranks, it can be easily solved via our

reduction framework to binary classification. On the other hand, when using the clas-

sification data sets, in which there is no natural comparison between different ranks,

the reduction framework would encounter hard binary classification problems. Then,

cost-sensitive classification algorithms like CSOVA and CSOVO can perform better

than RED-SVM.

4.3.2 AdaBoost for Ordinal Ranking

We now demonstrate the validity of AdaBoost.OR. We will first illustrate its behavior

on an artificial data set. Then, we test its training and test performance on the eight

ordinal ranking data sets.
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Table 4.5: Test absolute cost of all SVM-based algorithms

data set CSOVA CSOVO RED-SVM
pyrimdines 1.627±0.055 1.337±0.054 1.304±0.040

machineCPU 0.975±0.024 0.842±0.023 0.842±0.022
boston 0.946±0.017 0.789±0.015 0.732±0.013
abalone 1.674±0.007 1.422±0.006 1.383±0.004
bank 1.801±0.004 1.414±0.003 1.404±0.002

computer 0.644±0.003 0.575±0.002 0.565±0.002
california 1.121±0.002 0.951±0.002 0.940±0.001
census 1.329±0.003 1.135±0.001 1.143±0.002
vehicle 0.226±0.007 0.225±0.007 0.282±0.006
vowel 0.030±0.005 0.030±0.005 0.331±0.009

segment 0.043±0.003 0.045±0.003 0.082±0.003
dna 0.054±0.002 0.067±0.002 0.178±0.003

satimage 0.123±0.003 0.127±0.003 0.192±0.002
usps 0.077±0.002 0.089±0.002 0.294±0.003

(those within one standard error of the lowest one are marked in bold)

Table 4.6: Test classification cost of all SVM-based algorithms

data CSOVA CSOVO RED-SVM
set (OVA) (OVO)

pyrimdines 0.750±0.015 0.792±0.018 0.762±0.021
machine 0.608±0.012 0.612±0.012 0.572±0.013
boston 0.614±0.004 0.583±0.007 0.541±0.009
abalone 0.735±0.002 0.726±0.002 0.721±0.002
bank 0.767±0.001 0.750±0.001 0.751±0.001

computer 0.502±0.001 0.468±0.001 0.451±0.002
california 0.631±0.001 0.611±0.001 0.613±0.001
census 0.692±0.001 0.674±0.001 0.688±0.001
vehicle 0.191±0.005 0.185±0.005 0.265±0.006
vowel 0.015±0.002 0.011±0.002 0.225±0.006

segment 0.024±0.001 0.024±0.001 0.070±0.002
dna 0.040±0.002 0.043±0.002 0.168±0.002

satimage 0.071±0.002 0.072±0.002 0.161±0.001
usps 0.022±0.000 0.023±0.000 0.218±0.002

(those within one standard error of the lowest one are marked in bold)
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Figure 4.3: Decision boundaries produced by AdaBoost.OR on an artificial data set

We first generate 500 input vectors xn ∈ [0, 1] × [0, 1] uniformly and rank them

with {1, 2, 3, 4} based on three quadratic boundaries. Then, we apply AdaBoost.OR

on these examples with the absolute cost setup.

We use a simple base ordinal ranking algorithm called ORStump, which solves

the following optimization problem efficiently with essentially the same dynamic pro-

gramming technique used in RankBoost-OR (Subsection 3.2.1):

min
θk,d,q

N∑

n=1

cn[r(xn, θ, d, q)] ,

subject to θ1 ≤ θ2 ≤ . . . ≤ θK−1,

where r(x, θ, d, q) ≡ max {k : q · x[d] < θk} .

The ordinal ranking decision stump r(·, θ, d, q) is a natural extension of the binary
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decision stump (Holte 1993). Note that the set of all possible ordinal ranking decision

stumps includes constant rankers. Therefore, ORStump can always achieve ǫt ≤ 1
2
.

The decision boundaries generated by AdaBoost.OR with ORStump using T =

1, 10, 100, and 1000 are shown in Figure 4.3. The case of T = 1 is the same as

applying ORStump directly on the artificial set, and we can see that its resulting

decision boundary cannot capture the full characteristic of the data. As T gets larger,

however, AdaBoost.OR is able to boost up ORStump to form more sophisticated

boundaries that approximate the underlying quadratic curves better.

Next, we run AdaBoost.OR on the eight benchmark data sets. We couple Ada-

Boost.OR with two base ordinal ranking algorithms: ORStump and PRank (Cram-

mer and Singer 2005). For PRank, we adopt the SiPrank variant and make it cost-

sensitive by presenting random examples (xn, yn) with probability proportional to

max1≤k≤K cn[k]. In addition, we apply the pocket technique with ratchet (Gallant

1990) for 2000 epochs to get a decent training cost minimizer.

We run AdaBoost.OR for T = 1000 iterations for ORStump, and 100 for PRank.

Such a setup is intended to compensate the computational complexity of each indi-

vidual base ordinal ranking algorithm. Nevertheless, a more sophisticated choice of T

should further improve the performance of AdaBoost.OR.

For each algorithm, the mean training absolute cost as well as its standard error is

reported in Table 4.7; the mean test absolute cost and its standard error is reported

in Table 4.8. For each pair of single and AdaBoost.OR entries, we mark the one with

the lowest cost in bold.

From the tables, we see that AdaBoost.OR almost always boosts both the train-

ing and test performance of the base ordinal ranking algorithm significantly. Note,

however, that it is harder for AdaBoost.OR to improve the performance of PRank, be-

cause PRank sometimes cannot produce a good rt in terms of minimizing the training

cost.
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Table 4.7: Training absolute cost of base and AdaBoost.OR algorithms

data ORStump PRank
set single AdaBoost.OR single AdaBoost.OR

pyrimdines 1.757±0.017 0.024±0.007 0.457±0.029 0.268±0.048
machine 1.118±0.015 0.122±0.009 0.880±0.011 0.864±0.010
boston 1.049±0.010 0.000±0.000 0.845±0.009 0.831±0.008
abalone 1.528±0.008 1.048±0.008 1.439±0.010 1.437±0.010
bank 1.975±0.005 1.141±0.004 1.514±0.003 1.467±0.003

computer 1.178±0.003 0.499±0.002 0.659±0.003 0.658±0.002
california 1.615±0.004 0.883±0.004 1.205±0.004 1.205±0.004
census 1.826±0.002 1.113±0.004 1.582±0.008 1.562±0.006

(the lowest one among the two using the same base algorithm is marked in bold)

Table 4.8: Test absolute cost of base and AdaBoost.OR algorithms

data ORStump PRank
set single AdaBoost.OR single AdaBoost.OR

pyrimdines 1.913±0.087 1.244±0.051 1.569±0.070 1.417±0.066
machine 1.286±0.040 0.842±0.020 0.969±0.012 0.932±0.022
boston 1.172±0.013 0.887±0.014 0.906±0.012 0.892±0.011
abalone 1.592±0.003 1.475±0.004 1.477±0.009 1.475±0.008
bank 2.000±0.003 1.530±0.003 1.540±0.004 1.502±0.004

computer 1.200±0.003 0.627±0.002 0.661±0.003 0.660±0.003
california 1.636±0.001 0.995±0.003 1.206±0.002 1.206±0.003
census 1.851±0.001 1.253±0.002 1.598±0.005 1.578±0.003

(the lowest one among the two using the same base algorithm is marked in bold)



87

Chapter 5

Studies on Binary Classification

In Chapter 4, we proved that ordinal ranking is PAC-learnable if and only if binary

classification is PAC-learnable. In other words, under the PAC setup, if we want

to have a good learning algorithm (and learning model) for ordinal ranking, it is

necessary and sufficient to design a good learning algorithm for binary classification.

In this chapter, we discuss two projects that aim at understanding and improving

binary classification in the context of ensemble learning. The first one identifies some

restrictions of AdaBoost (Algorithm 4.2) and resolves them with the help of SVM.

The second one, on the other hand, focuses on a particular advantage of AdaBoost,

and uses the advantage to improve other learning algorithms. The findings in the

projects reveal the relative strength and weakness of AdaBoost and SVM, two of the

most important binary classification algorithms.

5.1 SVM for Infinite Ensemble Learning

Recall that we proposed the threshold ensemble model for ordinal ranking in Chap-

ter 3. The model originates from the ensemble model for binary classification (Meir

and Rätsch 2003), which is accompanied by many successful algorithms such as bag-

ging (Breiman 1996) and AdaBoost (Freund and Schapire 1997). The algorithms

construct a classifier that averages over some base hypotheses in a set H. While

the size of H can be infinite, most existing algorithms use only a finite subset of H,

and the classifier is effectively a finite ensemble of hypotheses. Some theories show
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that the finiteness places a restriction on the capacity of the ensemble (Freund and

Schapire 1997), and some theories suggest that the performance of AdaBoost can be

linked to its asymptotic behavior when the ensemble is allowed to be of an infinite

size (Rätsch, Onoda and Müller 2001). Thus, it is possible that an infinite ensem-

ble is superior for learning. Nevertheless, the possibility has not been fully explored

because constructing such an ensemble is a challenging task (Vapnik 1998).

Next, we discuss how we conquer the task of infinite ensemble learning and demon-

strate that better performance can be achieved by going from finite ensembles to

infinite ones. In particular, we formulate a framework for infinite ensemble learning

using SVM (Lin 2005; Lin and Li 2008). The key of the framework is to embed an

infinite number of hypotheses into an SVM kernel. Such a framework can be applied

both to construct new kernels for SVM and to interpret some existing ones (Lin 2005;

Lin and Li 2008). Furthermore, the framework allows us to compare SVM and Ada-

Boost in a fair manner using the same base hypothesis set. Experimental results show

that SVM with these kernels is superior to AdaBoost with the same base hypothesis

set and help understand both SVM and AdaBoost better.

5.1.1 SVM and Ensemble Learning

Before introducing our framework, we first review the connections between SVM and

ensemble learning in literature. Consider a binary classification problem where the

labels y ∈ {−1, +1}, SVM (Vapnik 1995) obtains a decision function

ĝ(x) = sign
(

〈v, φ(x)〉 + b
)

from the optimal solution to the following problem:

min
v,b,ξn

1

2
〈v,v〉 + κ

N∑

n=1

ξn , (5.1)

subject to yn

(
〈v, φ(xn)〉 + b

)
≥ 1 − ξn, for n = 1, 2, . . . , N,

ξn ≥ 0, for n = 1, 2, . . . , N.
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Here κ > 0 is the regularization parameter, and φ is a feature mapping from X to a

Hilbert space F (Schölkopf and Smola 2002). Because F can be of an infinite number

of dimensions, SVM solvers usually work on the dual problem:

min
λn

1

2

N∑

m=1

N∑

n=1

λmλnymyn · K(xm,xn) −
N∑

n=1

λn , (5.2)

subject to 0 ≤ λn ≤ κ, for n = 1, 2, . . . , N,

N∑

n=1

ynλn = 0.

Here K is the kernel function defined by K(x,x′) ≡ 〈φ(x), φ(x′)〉. Then, the optimal

classifier becomes

ĝ(x) = sign

(
N∑

n=1

ynλnK(xn,x) + b

)

, (5.3)

where b can be computed through the primal-dual relationship (Schölkopf and Smola

2002; Vapnik 1998).

It is known that SVM is connected to AdaBoost (Demiriz, Bennett and Shawe-

Taylor 2002; Freund and Schapire 1999; Rätsch et al. 2002; Rätsch, Onoda and Müller

2001). Recall that AdaBoost (Algorithm 4.2) iteratively selects T hypotheses ht ∈ H
and weights vt ≥ 0 to construct an ensemble classifier HT (x) = sign

(
∑T

t=1 vtht(x)
)

.

Under some assumptions (Rätsch, Onoda and Müller 2001), it is shown that when

T → ∞, AdaBoost asymptotically approximates an infinite ensemble classifier H∞(x)

such that {(vt, ht)}∞t=1 is an optimal solution to

min
vt,ht

∞∑

t=1

vt , (5.4)

subject to yn

(
∞∑

t=1

vtht(xn)

)

≥ 1, for n = 1, 2, . . . , N,

vt ≥ 0, for t = 1, 2, . . . ,∞.
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Comparing (5.4) with (5.1) plus the feature mapping

φ(x) =
(
h1(x), h2(x), . . .

)
, (5.5)

we see that the elements of φ(x) in SVM are similar to the hypotheses ht(x) in

AdaBoost. They both work on linear combinations of these elements, though SVM

deals with an additional intercept term b. SVM minimizes the ℓ2-norm of the weights

while AdaBoost works on the ℓ1-norm. SVM introduces slack variables ξn and use

the parameter κ for regularization, while AdaBoost relies on the choice of the pa-

rameter T (Rosset, Zhu and Hastie 2004). Note that AdaBoost requires vt ≥ 0 for

ensemble learning.

Let us take a deeper look at (5.4), which contains infinitely many variables. In

order to approximate the optimal solution well with a fixed and finite T , AdaBoost

resorts to two related properties of some of the optimal solutions for (5.4): finiteness

and sparsity.

Finiteness: When two hypotheses share the same prediction patterns on the train-

ing input vectors, they can be used interchangeably during the training time and

are thus ambiguous. Since there are at most 2N prediction patterns on N training

input vectors, we can partition H into at most 2N groups, each of which contains

mutually ambiguous hypotheses. Some optimal solutions of (5.4) only assign one or

a few nonzero weights within each group (Demiriz, Bennett and Shawe-Taylor 2002).

Thus, it is possible to work on a finite data-dependent subset of H instead of H itself

without losing optimality.

Sparsity: Minimizing the ℓ1-norm ‖v‖1 =
∑∞

t=1 |vt| often leads to sparse solutions

(Meir and Rätsch 2003; Rosset et al. 2007). That is, for hypotheses in the finite (but

possibly still large) subset of H, only a small number of weights needs to be nonzero.

AdaBoost can be viewed as a greedy search algorithm that approximates such a finite

and sparse ensemble (Rosset, Zhu and Hastie 2004).

Although there exist some good algorithms that can return an optimal solution
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of (5.4) when H is infinitely large (Rätsch, Demiriz and Bennett 2002; Rosset et al.

2007), the resulting ensemble relies on the sparsity property and is effectively of

only finite size. Thus, it is possible that the learning performance could be further

improved if either or both the finiteness and the sparsity restrictions are removed. The

possibility motivates us to study the task of infinite ensemble learning, as discussed

next.

5.1.2 Infinite Ensemble Learning

Vapnik (1998) proposed the challenging task of designing an algorithm that is not

limited by the finiteness restriction. In particular, the algorithm should be able to

generate an infinite ensemble classifier (an ensemble classifier with infinitely many

nonzero vt). Traditional algorithms like AdaBoost cannot be directly generalized to

solve the task, because they select the hypotheses in an iterative manner and only

run for a finite number of iterations.

We conquer the challenge via another route: the connection between SVM and

ensemble learning. We start by embedding the infinite number of hypotheses in H
into an SVM kernel. We have shown in (5.5) that we could construct a feature

mapping from H. The idea is extended to a more general form for deriving a kernel

in Definition 5.1.

Definition 5.1 (Lin and Li 2008). Assume that H = {hα : α ∈ W}, where W is

a measure space. The kernel that embodies H is defined as

KH,µ(x,x′) =

∫

W

φα(x)φα(x′) dα, (5.6)

where φα(x) = µ(α)hα(x), and µ : W → R
+ is chosen such that the integral exists for

all x,x′ ∈ X .

Here α is the parameter of the hypothesis hα. We shall denote KH,µ by KH when µ is

clear from the context. The kernel KH embodies the predictions of all hα ∈ H with

the integral and could handle the situation even when H is uncountable. When we
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use KH in (5.2), the classifier obtained is equivalent to

ĝ(x) = sign

(∫

W

v(α)µ(α)hα(x)dα + b

)

. (5.7)

Nevertheless, ĝ is not an ensemble classifier yet, because we do not have the con-

straints v(α) ≥ 0, and we have an additional term b. Next, we would explain that

such a classifier is equivalent to an ensemble classifier under some reasonable assump-

tions.

We start from the constraints v(α) ≥ 0, which cannot be directly considered

in (5.1). Vapnik (1998) showed that even if we add a countably infinite number of

constraints to (5.1), infinitely many variables and constraints would be introduced

to (5.2). Then, the latter problem would still be difficult to solve.

One remedy is to assume that H is negation complete, that is,1

h ∈ H ⇔ (−h) ∈ H.

Then, every linear combination over H can be easily transformed to an equivalent

linear combination with only nonnegative weights. Negation completeness is usually a

mild assumption for a reasonable H (Rätsch et al. 2002). Following this assumption,

the classifier (5.7) can be interpreted as an ensemble classifier over H with an intercept

term b. Now b can be viewed as the weight on a constant hypothesis hc, which always

predicts hc(x) = 1 for all x ∈ X . We shall further add a mild assumption that H
contains both hc and (−hc). Then, the classifier (5.7) or (5.3) is indeed equivalent

to an ensemble classifier, and we get the following framework for infinite ensemble

learning.

Algorithm 5.1 (SVM-based framework for infinite ensemble learning).

1. Consider a training set {(xn, yn)}N
n=1 and the hypothesis set H, which is assumed

to be negation complete and to contain a constant hypothesis.

1We use (−h) to denote the function (−h)(·) = −(h(·)).
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2. Construct a kernel KH according to Definition 5.1 with a proper embedding

function µ.

3. Choose proper parameters, such as the soft-margin parameter κ.

4. Solve (5.2) with KH and obtain Lagrange multipliers λn and the intercept term b.

5. Output the classifier

ĝ(x) = sign

(
N∑

n=1

ynλnKH(xn,x) + b

)

,

which is equivalent to some ensemble classifier over H.

The framework shall generally inherit the profound performance of SVM. Most of

the steps in the framework can be done by existing SVM implementations, and the

hard part is mostly in obtaining the kernel KH. We have derived several kernels for

the framework (Lin 2005; Lin and Li 2008). Next, we introduce two important ones:

the stump kernel and the perceptron kernel.

Stump kernel: The stump kernel embodies infinitely many decision stumps of the

form

sq,d,α(x) = q · sign
(
x[d] − α

)
.

The decision stump sq,d,α works on the d-th element of x and classifies x according

to q ∈ {−1, +1} and the threshold α (Holte 1993). It is widely used for ensemble

learning because of its simplicity (Freund and Schapire 1996).

To construct the stump kernel, we consider the following set of decision stumps

S =
{

sq,d,αd
: q ∈ {−1, +1} , d ∈ {1, . . . , D} , αd ∈ [Ld, Rd]

}

.

We also assume X ⊆ (L1, R1)× (L2, R2)×· · ·× (LD, RD). Thus, the set S is negation

complete and contains s+1,1,L1 as a constant hypothesis. The stump kernel KS defined
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below can then be used in Algorithm 5.1 to obtain an infinite ensemble of decision

stumps.

Definition 5.2 (Lin and Li 2008). The stump kernel is KS using Definition 5.1

and µ(q, d, αd) = µS = 1
2
. In particular,

KS(x,x′) = ∆S − ‖x − x′‖1 ,

where ∆S = 1
2

∑D
d=1(Rd − Ld) is a constant.

Definition 5.2 is a concrete instance that follows Definition 5.1. Because scaling µS is

equivalent to scaling the parameter κ in SVM (Lin and Li 2008), we use µS = 1
2

to

obtain a cosmetically cleaner kernel function.

Given the ranges (Ld, Rd), the stump kernel is very simple to compute. Further-

more, the ranges are not even necessary in general, because dropping the constant ∆S

does not affect the classifier obtained from SVM (Lin and Li 2008). That is, in (5.2),

the simplified stump kernel K̃S(x,x′) = −‖x−x′‖1 can be used instead of KS without

changing the resulting classifier ĝ. The simplified stump kernel is simple to compute,

yet useful in the sense of dichotomizing the training set—that is, fitting the training

set perfectly.

Theorem 5.3 (Lin and Li 2008). Consider training input vectors {xn}N
n=1. If there

is a dimension d such that xm[d] 6= xn[d] for all m 6= n, then there exists some κ∗ > 0

such that for all κ ≥ κ∗, SVM with KS (or K̃S) can always dichotomize the training

set {(xn, yn)}N
n=1.

We shall make a remark here. Although Theorem 5.3 indicates how the stump

kernel can be used with SVM to dichotomize the training set perfectly, the classifier

obtained may suffer from overfitting (Keerthi and Lin 2003). Thus, SVM is usu-

ally coupled with a reasonable parameter selection procedure to achieve good test

performance (Hsu, Chang and Lin 2003; Keerthi and Lin 2003).
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Perceptron kernel: The perceptron kernel embodies infinitely many perceptrons,

which are linear threshold classifiers of the form

pu,α(x) = sign
(

〈u,x〉 − α
)

.

It is a basic theoretical model for a neuron and is important for building neural

networks (Haykin 1999).

To construct the perceptron kernel, we consider the following set of perceptrons

P =
{
pu,α : u ∈ R

D, ‖u‖2 = 1, α ∈ [−R, R]
}

.

We assume that X is within the interior of a ball of radius R centered at the origin

in R
D. Then, the set P is negation complete and contains a constant hypothesis

(u = 11 and α = −R). Thus, the perceptron kernel KP defined below can be used in

Algorithm 5.1 to obtain an infinite ensemble of perceptrons.

Definition 5.4 (Lin and Li 2008). Let

ΘD =

∫

‖u‖2=1

du, ΞD =

∫

‖u‖2=1

∣
∣
∣cos

(
angle(u, 11)

)
∣
∣
∣ du,

where the operator angle(·, ·) is the angle between two vectors, and the integrals are

calculated with uniform measure on the surface ‖u‖2 = 1. The perceptron kernel

is KP with µ(u, α) = µP . In particular,

KP(x,x′) = ∆P − ‖x − x′‖2,

where the constants µP = (2ΞD)−
1
2 and ∆P = ΘDΞ−1

D R.

With the perceptron kernel, we can construct an infinite ensemble of perceptrons.

Such an ensemble is equivalent to a neural network with one hidden layer, infinitely

many hidden neurons, and the hard-threshold activation functions. Williams (1998)

built an infinite neural network with either the sigmoid or the Gaussian activation
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function through computing the corresponding covariance function for Gaussian pro-

cess models. Analogously, our approach returns an infinite neural network with hard-

threshold activation functions (ensemble of perceptrons) through computing the per-

ceptron kernel for SVM. Williams (1998) stated that “Paradoxically, it may be easier

to carry out Bayesian prediction with infinite networks rather than finite ones.” Sim-

ilar claims can be made with ensemble learning.

The perceptron kernel shares many similar properties to the stump kernel. First,

the constant ∆P can also be dropped. That is, we can use the simplified perceptron

kernel K̃P(x,x′) = −‖x − x′‖2 instead of KP . Second, SVM with the perceptron

kernel can also dichotomize the training set perfectly, as formalized below.

Theorem 5.5 (Lin and Li 2008). For the training set {(xn, yn)}N
n=1, if xm 6= xn

for all m 6= n, there exists some κ∗ > 0 such that for all κ ≥ κ∗, SVM with KP

(or K̃P) can always dichotomize the training set.

5.1.3 Experiments

Next, we compare our SVM-based framework for infinite ensemble learning with Ada-

Boost using the decision stumps or perceptrons as the base hypothesis set. The sim-

plified stump kernel (SVM-Stump) and the simplified perceptron kernel (SVM-Perc)

are plugged into Algorithm 5.1 respectively. For AdaBoost, the deterministic deci-

sion stump algorithm (Holte 1993) and the random coordinate descent perceptron

algorithm (Li and Lin 2007a) are taken as the base algorithm for the corresponding

base hypothesis set. For perceptrons, we use the RCD-bias variant with 200 epochs

of training. All base algorithms above have been shown to work reasonably well with

AdaBoost in literature (Freund and Schapire 1996; Li and Lin 2007a).

LIBSVM (Chang and Lin 2001) is adopted as the SVM solver, with a suggested

procedure that selects a suitable parameter with a 5-fold CV on the training set (Hsu,

Chang and Lin 2003). The parameter κ is searched within {2−17, 2−15, . . . , 23}. Af-

ter the parameter selection procedure, a new decision function is obtained from

the whole training set, and the performance is evaluated on an unseen test set.
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For AdaBoost, we conduct a similar parameter selection procedure and search T

within {10, 20, . . . , 1500}.
The three artificial data sets from Breiman (1999) (twonorm, threenorm, and ring-

norm) are generated with training set size 300 and test set size 3000. We create three

more data sets (twonorm-n, threenorm-n, ringnorm-n), which contain mislabeling noise

on 10% of the training examples, to test the performance of the algorithms on noisy

environments. We also use eight real-world data sets from the UCI repository (Het-

tich, Blake and Merz 1998): australian, breast, german, heart, ionosphere, pima, sonar,

and votes84. Their feature elements are scaled to [−1, 1]. We randomly pick 60%

of the examples for training, and the rest for testing. For the data sets above, we

compute the means and the standard errors of the results over 100 different random

runs. In addition, four larger real-world data sets are used to test the validity of

the framework for large-scale learning. They are a1a (Hettich, Blake and Merz 1998;

Platt 1998), splice (Hettich, Blake and Merz 1998), svmguide1 (Hsu, Chang and Lin

2003), and w1a (Platt 1998).2 Each of them comes with a benchmark test set, on

which we report the results. The information of the data sets used is summarized in

Table 5.1.

Tables 5.2 and 5.3 show the test performance of ensemble learning algorithms

on different base hypothesis sets. We can see that SVM-Stump and SVM-Perc are

usually better than AdaBoost with the corresponding base hypothesis set. In noisy

data sets, SVM-based framework for infinite ensemble learning always significantly

outperforms AdaBoost. These results demonstrate that it is beneficial to go from a

finite ensemble to an infinite one with suitable regularization.

Note that AdaBoost and our SVM-based framework differ in the concept of spar-

sity. As illustrated in Subsection 5.1.1, AdaBoost prefers sparse ensemble classifiers,

that is, ensembles that include a small number of hypotheses. Our framework works

with an infinite number of hypotheses, but results in a sparse classifier in the support

vector domain. Both concepts can be justified with various bounds on the expected

2These data sets are downloadable on tools page of LIBSVM (Chang and Lin 2001).
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Table 5.1: Binary classification data sets

data set # training examples # test examples # features (D)
twonorm 300 3000 20

twonorm-n 300 3000 20
threenorm 300 3000 20

threenorm-n 300 3000 20
ringnnorm 300 3000 20
ringnorm-n 300 3000 20
australian 414 276 14

breast 409 274 10
german 600 400 24
heart 162 108 13

ionosphere 210 141 34
pima 460 308 8
sonar 124 84 60

votes84 261 174 16
a1a 1605 30956 123

splice 1000 2175 60
svmguide1 3089 4000 4

w1a 2477 47272 300

test cost (Freund and Schapire 1997; Graepel, Herbrich and Shawe-Taylor 2005).

Nevertheless, our experimental results indicate that sparse ensemble classifiers are

sometimes not sophisticated enough in practice, especially when the base hypothesis

set is simple. For instance, when using the decision stumps, a general data set may re-

quire many of them to describe a suitable decision boundary. Thus, AdaBoost-Stump

could be limited by the finiteness and sparsity restrictions (Lin and Li 2008). On the

other hand, our framework (SVM-Stump), which suffers from neither restrictions, can

perform better by averaging over an infinite number of hypotheses.

In our earlier work (Lin and Li 2008), we observed another advantage of the

perceptron kernel (SVM-Perc). In particular, the perceptron kernel and the popular

Gaussian kernel share almost indistinguishable performance in the experiments, but

the former enjoys the benefit of faster parameter selection. For instance, determining

a good parameter for the Gaussian kernel involves solving 550 optimization problems,

but SVM-Perc deals with only 55. With the indistinguishable performance, SVM-Perc
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Table 5.2: Test classification cost (%) of SVM-Stump and AdaBoost-Stump

data set SVM-Stump AdaBoost-Stump
twonorm 2.858±0.038 5.022±0.062

twonorm-n 3.076±0.055 12.748±0.165
threenorm 17.745±0.100 22.096±0.117

threenorm-n 19.047±0.144 26.136±0.167
ringnorm 3.966±0.067 10.082±0.140

ringnorm-n 5.558±0.110 19.620±0.200
australian 14.446±0.205 14.232±0.179

breast 3.113±0.080 4.409±0.103
german 24.695±0.183 25.363±0.193
heart 16.352±0.274 19.222±0.349

ionosphere 8.128±0.173 11.340±0.252
pima 24.149±0.226 24.802±0.225
sonar 16.595±0.420 19.441±0.383

votes84 4.759±0.139 4.270±0.152
a1a 16.194 15.984

splice 6.207 5.747
svmguide1 2.925 3.350

w1a 2.090 2.177
(for the last 4 rows, the best results are marked in bold; for the other rows, those

within one standard error of the lowest one are marked in bold)

should be a preferable choice in practice.

Both advantages of SVM-Perc above were inherited by the REDSVM (and SVOR-

IMC) algorithm for ordinal ranking via the reduction framework (Algorithm 4.1).

First, we list the results of ORBoost-All with perceptron (Table 3.1) and REDSVM

with the perceptron kernel (Table 4.2) in Table 5.4. Both algorithms can return

a threshold ensemble of perceptrons. ORBoost-All roots from AdaBoost, while

REDSVM roots from SVM. In the table, we see that REDSVM with the percep-

tron kernel is usually better than ORBoost-All with perceptron, just as SVM-Perc is

usually better than AdaBoost-Perc.

Second, when using the perceptron kernel, SVOR-IMC (and REDSVM) also en-

joys the benefit of faster parameter selection. In addition, in Tables 4.2 and 4.4, we see

that SVOR-IMC performs decently with both the perceptron and the Gaussian ker-

nels (actually, better with the perceptron kernel). Such a result makes the perceptron
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Table 5.3: Test classification cost (%) of SVM-Perc and AdaBoost-Perc

data set SVM-Perc AdaBoost-Perc
twonorm 2.548±0.033 3.114±0.041

twonorm-n 2.755±0.052 4.529±0.101
threenorm 14.643±0.084 17.322±0.113

threenorm-n 16.299±0.103 20.018±0.182
ringnorm 2.464±0.038 36.278±0.141

ringnorm-n 3.505±0.086 37.812±0.196
australian 14.482±0.170 15.656±0.159

breast 3.230±0.080 3.493±0.101
german 24.593±0.196 25.027±0.184
heart 17.556±0.307 18.222±0.324

ionosphere 6.404±0.198 11.425±0.234
pima 23.545±0.212 24.825±0.197
sonar 15.619±0.401 19.774±0.427

votes84 4.425±0.138 4.374±0.164
a1a 15.690 19.986

splice 10.391 13.655
svmguide1 3.100 3.275

w1a 1.915 2.348
(for the last 4 rows, the best results are marked in bold; for the other rows, those

within one standard error of the lowest one are marked in bold)

Table 5.4: Test absolute cost of algorithms for threshold perceptron ensembles

data perceptron
set RED-SVM ORBoost-All

pyrimdines 1.304±0.040 1.360±0.046
machine 0.842±0.022 0.889±0.019
boston 0.732±0.013 0.791±0.013
abalone 1.383±0.004 1.432±0.003
bank 1.404±0.002 1.490±0.002

computer 0.565±0.002 0.626±0.002
california 0.940±0.001 0.977±0.002
census 1.143±0.002 1.265±0.002

(those within one standard error of the lowest one are marked in bold)
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kernel a preferable choice for ordinal ranking. These advantages clearly demonstrate

how we can improve both binary classification and ordinal ranking simultaneously

with the reduction framework.

5.2 AdaBoost with Seeding

We showed in the previous section that AdaBoost can suffer from the restrictions

of finiteness and sparsity. Nevertheless, it is repeatedly observed in literature that

AdaBoost enjoys one practical advantage: its resistance to overfitting (Breiman 1998;

Mease and Wyner 2008; Schapire et al. 1998). More specifically, during the iterations

of AdaBoost, it is often observed that even after the training cost has reached 0

(and hence cannot decrease further), the test cost keeps decreasing with T (Schapire

et al. 1998). In other words, AdaBoost often does not overfit more after adding

more hypotheses to the ensemble. The phenomenon is not coherent with some of the

theoretical foundations of AdaBoost (Freund and Schapire 1997) and hence continues

to attract much research attention (Mease and Wyner 2008; Schapire et al. 1998).

As mentioned in Section 1.1, preventing overfitting is one of the most important

objective when designing learning models and algorithms. Next, we study whether

the advantage of AdaBoost can be used to prevent other algorithms from overfitting.

In particular, we propose a new boosting approach that takes AdaBoost as a ma-

chinery to correct the overfitting effect of other learning algorithms. The key of the

approach is to decompose AdaBoost to two stages. Then, our new boosting approach,

called AdaBoost with Seeding (SeedBoost), replaces the first stage by another learning

algorithm. As we will see from the experimental results, if the learning algorithm on

hand overfits during the first stage, SeedBoost can inherit the advantage of AdaBoost

and regularizes the overfitting effect in the second stage.
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5.2.1 Algorithm

Before we introduce the SeedBoost algorithm, we take a closer look at AdaBoost

(Algorithm 4.2). Following the gradient descent view of Mason et al. (2000), in the 1-

st iteration, AdaBoost greedily chooses (h1, v1) to approximately minimize

N∑

n=1

wn exp
(
−ynv1h1(xn)

)
. (5.8)

Then, in the t-th iteration, AdaBoost chooses (ht, vt) to approximately minimize

N∑

n=1

wn exp
(

−yn

(
Ht(xn) + vt+1ht+1(xn)

))

=

N∑

n=1

w(t)
n exp

(
−ynvt+1ht+1(xn)

)
. (5.9)

Comparing (5.8) and (5.9), we see that AdaBoost at the t-th iteration using the

original training set {(xn, yn, wn)} is equivalent to AdaBoost at the 1-st iteration

using a modified training set
{

(xn, yn, w
(t)
n )
}

. Therefore, using (5.8) as a basic step,

AdaBoost with (t + T ) iterations can be recursively defined as follows.

Algorithm 5.2 (A recursive view of AdaBoost with (t + T ) iterations).

1. Run AdaBoost on {(xn, yn, wn)}N
n=1 for t steps and get an ensemble classi-

fier g(1)(x) = sign
(

H
(1)
t (x)

)

.

2. Run AdaBoost on
{

(xn, yn, w
(t)
n )
}N

n=1
for T steps and get an ensemble classi-

fier g(2)(x) = sign
(

H
(2)
T (x)

)

.

3. Return Ht+T (x) = sign
(

H
(1)
t (x) + H

(2)
T (x)

)

.

Our proposed SeedBoost algorithm simply generalizes the recursive steps above

by replacing the first step with any learning algorithm, as listed below.

Algorithm 5.3 (SeedBoost: AdaBoost with seeding).

1. Run some A on {(xn, yn, wn)}N
n=1 and get a classifier g(1)(x) = sign

(
f (1)(x)

)
.
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2. Let w′
n = wn exp

(
−ynf

(1)(xn)
)
. Run AdaBoost on {(xn, yn, w

′
n)}N

n=1 for T steps

and get an ensemble classifier g(2)(x) = sign
(

H
(2)
T (x)

)

.

3. Return the combined decision function ĝ(x) = sign
(

f (1)(x) + H
(2)
T (x)

)

.

We can see that the original AdaBoost with (t + T ) iterations is a special case

of SeedBoost by using AdaBoost itself (with t iterations) as A. Taking different

learning algorithms as A in SeedBoost allows us to understand more about the prop-

erties of AdaBoost. For instance, as mentioned in the beginning of this section,

AdaBoost has been observed to be resistant to overfitting even after the training

cost has reached 0. Can SeedBoost inherit this property from AdaBoost to correct

an overfitting algorithm A? Also, can we obtain an improved performance by using

some better algorithms (rather than the original AdaBoost) as A? The answers to

these questions help separate the effects of the two stages of AdaBoost. In the next

section, we show some empirical study on SeedBoost to answer the questions above.

5.2.2 Experiments

We couple SeedBoost with two different algorithms as A. The first one is a poten-

tially overfitting algorithm. Recall that in Theorem 5.5, we proved that under a

minor condition, when κ is large enough, SVM with the perceptron kernel can always

dichotomize the training set. We set κ = 216 for this purpose and call the resulting

algorithm the separating SVM with the perceptron kernel (SSVM-Perc). SSVM-Perc

can reach training cost 0 in all our experiments, but may not lead to a good test cost

because of overfitting. The second one is SVM-Perc (see Subsection 5.1.3), which

is usually better than SSVM-Perc in terms of test performance because of it uses a

parameter selection procedure to determine a suitable κ.

Similar to the procedures in Subsection 5.1.3, we use decision stumps and per-

ceptrons within the AdaBoost component of SeedBoost. We perform experiment on

the eight real-world data sets (see Table 5.1) from the UCI repository (Hettich, Blake

and Merz 1998). For simplicity, we fix T to 100 in all the experiments, while the rest
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of the setup is kept the same as the ones in Subsection 5.1.3.

Table 5.5 shows the results of SSVM-Perc both when used as a stand-alone learn-

ing algorithm and when coupled with SeedBoost. We see that SeedBoost can usually

improve the test performance of SSVM-Perc. Such a result suggests that the second

stage of AdaBoost exhibits some regularization properties that could correct overfit-

ting.

Table 5.6 shows the results of SVM-Perc instead of SSVM-Perc. Unlike Table 5.5,

SeedBoost usually cannot improve over stand-alone SVM-Perc significantly and often

leads to worse test performance. That is, a decent binary classification algorithm like

SVM-Perc cannot benefit by coupling with the second stage of AdaBoost.

If we compare Table 5.6 with AdaBoost-Perc in Table 5.3, we see that SeedBoost-

Perc plus SVM-Perc is mostly comparable to AdaBoost-Perc. Thus, AdaBoost does

not improve when we replace its first stage with a better learning algorithm. Such a

result suggests that the second stage of AdaBoost plays a more important role and

should be the focus of future research in explaining the success of AdaBoost.

Finally, in Table 5.7, we gather some columns from Tables 5.3 and 5.5 to show

an interesting result: After SeedBoost corrects overfitting, on some of the data sets,

SeedBoost-Stump plus SSVM-Perc can be significantly better than SVM-Perc. Note

that because decision stumps are special cases of perceptrons, SeedBoost-Stump plus

SSVM-Perc is also an algorithm that outputs an infinite ensemble of perceptrons.

Since SSVM-Perc involves solving 1 optimization problem (5.2) while SVM-Perc needs

to deal with 55, SeedBoost with SSVM-Perc is much faster than SVM-Perc in training.

With the decent performance in Table 5.7 and faster training, SeedBoost-Stump with

SSVM-Perc can be a useful alternative for infinite ensemble learning with perceptrons.
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Table 5.5: Test classification cost (%) of SeedBoost with SSVM-Perc

data SSVM-Perc
set stand-alone SeedBoost-Stump SeedBoost-Perc

australian 16.696±0.141 14.101±0.152 15.438±0.149
breast 3.299±0.087 3.858±0.103 3.434±0.086
german 25.790±0.178 24.093±0.182 25.910±0.191
heart 19.722±0.323 18.380±0.360 18.250±0.327

ionosphere 6.078±0.200 9.830±0.247 11.298±0.254
pima 25.390±0.176 24.396±0.195 24.877±0.206
sonar 15.012±0.368 18.441±0.402 19.488±0.407

votes84 4.201±0.140 3.994±0.135 4.374±0.145
(those within one standard error of the lowest one are marked in bold)

Table 5.6: Test classification cost (%) of SeedBoost with SVM-Perc

data SVM-Perc
set stand-alone SeedBoost-Stump SeedBoost-Perc

australian 14.482±0.170 14.525±0.176 15.286±0.152
breast 3.230±0.080 4.051±0.104 3.453±0.089
german 24.593±0.196 24.508±0.168 26.122±0.192
heart 17.556±0.307 19.491±0.346 18.583±0.327

ionosphere 6.404±0.198 9.901±0.240 11.262±0.261
pima 23.545±0.212 24.302±0.192 25.195±0.201
sonar 15.607±0.399 18.012±0.386 19.786±0.417

votes84 4.425±0.138 4.080±0.147 4.351±0.142
(those within one standard error of the lowest one are marked in bold)

Table 5.7: Test classification cost (%) of SeedBoost with SSVM versus stand-alone
SVM

data SSVM-Perc SVM-Perc
set SeedBoost-Stump stand-alone

australian 14.101±0.152 14.482±0.170
breast 3.858±0.103 3.230±0.080
german 24.093±0.182 24.593±0.196
heart 18.380±0.360 17.556±0.307

ionosphere 9.830±0.247 6.404±0.198
pima 24.396±0.195 23.545±0.212
sonar 18.441±0.402 15.607±0.399

votes84 3.994±0.135 4.425±0.138
(those within one standard error of the lowest one are marked in bold)
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Chapter 6

Conclusion

In Chapter 2, we proposed the cost-transformation technique from cost-sensitive

classification to regular classification and proved its theoretical guarantees. Then,

we designed two novel cost-sensitive classification algorithms, namely CSOVA and

CSOVO, by applying the cost-transformation technique on their popular versions in

regular classification. Experimental results showed that both algorithms worked well

for cost-sensitive classification problems as well as for ordinal ranking problems.

In Chapter 3, we proposed the threshold ensemble model for ordinal ranking and

defined margins for the model. Novel large-margin bounds of common cost functions

were proved and were extended to threshold rankers for general threshold models.

We studied two algorithms for obtaining threshold ensembles. The first algorithm,

RankBoost-OR, combines RankBoost and a simple threshold algorithm. In addition,

we designed a new boosting approach, ORBoost, which closely connects with the

large-margin bounds. ORBoost is a direct extension of AdaBoost and inherits its

theoretical and practical advantages. Experimental results demonstrated that both

algorithms can perform decently on real-world data sets. In particular, ORBoost

was comparable to SVM-based algorithms in terms of test cost, but enjoyed the

advantage of faster training. These properties make ORBoost favorable over SVM-

based algorithms on large data sets.

In Chapter 4, we presented the reduction framework from ordinal ranking to bi-

nary classification. The framework includes the reduction method and the reverse

reduction technique. We showed the theoretical guarantees of the framework, includ-
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ing the cost bound, the regret bound, and the equivalence between ordinal ranking

and binary classification.

We used the reduction framework to extend SVM to ordinal ranking. We not only

derived a general cost bound for SVM-based large-margin rankers, but also demon-

strated that reducing to the standard SVM can readily yield superior performance in

practice. We also used reduction to design a novel boosting approach, AdaBoost.OR,

which can improve the performance of any cost-sensitive ordinal ranking algorithm.

We showed the parallel between AdaBoost.OR and AdaBoost in algorithmic steps

and in theoretical properties. Experimental results validated that AdaBoost.OR in-

deed improved both the training and test performance of existing ordinal ranking

algorithms.

In Chapter 5, we first derived two novel kernels based on the SVM-based frame-

work for infinite ensemble learning. The stump kernel embodies infinitely many deci-

sion stumps, and the perceptron kernel embodies infinitely many perceptrons. These

kernels can be simply evaluated by the ℓ1- or ℓ2-norm distance between feature vec-

tors. SVM equipped with the kernels generates infinite and nonsparse ensembles,

which are usually more robust than finite and sparse ones. Experimental compar-

isons with AdaBoost showed that SVM with the kernels usually performed much

better than AdaBoost with the same base hypothesis set. Therefore, existing appli-

cations that use AdaBoost with decision stumps or perceptrons may be improved by

switching to SVM with the corresponding kernel. We also discussed how such an

advantage propagates from binary classification to ordinal ranking.

Then, we proposed the SeedBoost algorithm, which takes AdaBoost as a machin-

ery to regularize the overfitting effect of other learning algorithms. We conducted

experimental studies on SeedBoost. The results demonstrated that SeedBoost not

only improved some overfitting learning algorithms, but also achieved the best per-

formance on some of the data sets.
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Rätsch, G., S. Mika, B. Schölkopf, and K.-R. Müller (2002). Constructing boosting al-

gorithms from SVMs: An application to one-class classification. IEEE Transactions

on Pattern Analysis and Machine Intelligence 24 (9), 1184–1199.
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