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Chapter 6

Conclusion

6.1 Summary of Contributions

This thesis explores the idea of using noise as a tool for understanding gene regulation. Traditionally,

cellular noise was considered detrimental because it introduces variability that may prevent a biolog-

ical circuit from operating in a predictable fashion. As a result, most work focused on understanding

how cells mitigate the effect of noise [69, 70, 71, 72]. However, recent work has shown that cells may

use noise to their advantage: B. subtilis stochastically differentiate into cellular states that allow it

to resist conditions where it would otherwise be deprived of nutrients [8]. Viruses use noise to create

a bimodal population with two phenotypically distinct sub-populations as a mechanism to evade

the host’s response [73]. Yeast stress response genes are noisier than general housekeeping genes,

allowing a subset of the population to react quickly to environmental stresses [74]. And theoretical

work has shown that under certain conditions noisy signals may actually make the response of a

gene network highly sensitive [75]. Clearly cells must have mechanisms for dealing with noise and

there are many examples where stochastic properties have been exploited.

In this thesis we use noise as a tool for system identification, learning about the time scales,

strength, and activity of gene regulation. Cellular noise has not been considered as an engineering

tool before, but given its ubiquitous nature in biological systems it would be useful to exploit noise

for the purpose of learning about gene regulation. Because the noise occurs naturally it can act

as a minimally invasive form of perturbation, and allows for accurate measurements of the cellular

conditions that the organism normally experiences.

Here we have shown that noise can be used to measure whether regulation is active, and its tem-

poral properties, using the cross correlation function. We have developed a theoretical framework

for calculating the cross correlation between two noisy signals and have used this to predict the

properties of experimental systems, both synthetic and natural. We showed that a commonly occur-

ring pattern of regulation, the feed-forward loop, can exhibit a variety of temporal responses that

are dependent upon specific model parameters and cellular conditions. In two naturally occurring
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feed-forward loops, it was shown that neither is actively regulating its target.

6.2 Future Work

6.2.1 Biological Persistence of Excitation

Engineering work in system identification has proven that to properly identify parameters, a system

must be driven by a signal that is sufficiently rich [76]. Without perturbations there are properties

of the system’s behavior that may go undiscovered; with sufficiently rich inputs the full range of the

dynamics are explored. Work on persistence of excitation has shown that for each system parameter

to be identified there must be at least one unique frequency in the driving input [77]. White

noise, because it excites at all frequencies, has been used as an input [76]. Using noise internal

to the system has not been explored in an engineering context, but would be of great utility in

understanding biological systems, where significant levels of noise are commonplace.

In this work we do not have direct control over the noisy input to the system and can only

measure filtered versions of it. In addition, the frequency of these measurements is limited by

practical experimental considerations. It would be interesting to develop a theoretical framework

for understanding which model parameters can be identified given realistic sources of biological noise.

Given the success of the linearized model, we could start with work on persistence of excitation in

linear systems and develop a theory to describe when biological model parameters can be identified.

6.2.2 Network Identifiability

Work in control theory has developed methods for determining when systems are controllable and

observable [78]. It would be useful to extend these ideas to a theory of network identifiability. Given a

set of measurements and a network structure, an identifiable network is one where the measurements

can uniquely determine network parameters. Such a theory would clarify which signals are important

to measure and how many measurements are needed.

6.2.3 Monitoring Dynamic Changes

Measurements in this thesis were conducted in conditions where cells had equilibrated to their

surrounding environment. It would be interesting to extend these methods to dynamic environments

where protein levels are either switching between states, or exhibiting more complex behavior, such

as oscillations. In principle, noise-based inference methods can still be applied to dynamically

changing systems, though certain approximations about linearized systems may no longer be valid.

Experimentally monitoring dynamic behavior may be challenging, too, since the noise-based method

relies heavily on averaging across many sets of time-series data.
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It may not be necessary to use noise as the perturbing force if the system is already changing

dynamically. For example, a system that oscillates may explore enough regions of the state space

that noise is not required as a perturbing force.

6.2.4 External Inputs for System Identification

Recent work in microfluidics has made it possible to monitor individual cells while exposing them

to time-varying chemical stimuli [79, 80]. This is a more direct way of perturbing the system and

measuring its response. Although the cells may not be exposed to purely natural signals, the response

properties can be characterized more thoroughly. In addition, applying a known, prescribed input

can be an efficient way of learning about the response of a system.

6.2.5 Context-Sensitive Maps of Gene Regulation

Databases of gene regulatory interactions are a good source of information about gene network

topology, but lack information about the context in which regulatory elements are active. It will

be interesting to explore other examples of regulation to learn when they are active. Although this

presents an additional layer of information, the ultimate goal of reducing network structures to the

parts that are actually active has the potential to significantly simplify network analysis.


