
9

Chapter 2

Numerical and Analytic

Predictions for Correlations in

Gene Expression Noise

In this chapter we develop a mathematical model for stochastic gene regulation that is motivated by

previous work on noise in λ cI repressor [19]. Simulated time-series data are used to predict features of

cross correlation functions and to understand the effect of active and inactive forms of regulation. We

extend the simulation-based analysis by developing analytic solutions to arbitrary cross correlation

functions using a linearized approximation of the mathematical model. The analytic framework

lends insight into the origins of the cross correlation function shape and simplifies analysis. Two

applications are demonstrated: (1) Sensitivity analysis of cross correlation function features reveals

which system parameters are most significant. (2) The cross correlation function is calculated for a

cascade of arbitrary length to demonstrate generality to larger scale networks. Finally we discuss

some limitations of correlation-based analysis methods.

2.1 Mathematical Models with Noise

We analyzed a simple three-gene circuit, shown in Fig. 2.1. The protein A is a transcription factor

that represses production of B. Proteins A and C are constitutively expressed, meaning they

are produced at a constant level and are not under the control of other transcription factors. A

deterministic model for this system can be written using a Hill function to describe repression

[34, 35]:

Ȧ = αA − βA (2.1)

Ḃ =
αB

1 + (A/K)n
− βB (2.2)

Ċ = αC − βC. (2.3)
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Figure 2.1: Three-gene circuit used in simulation. T-shaped arrow indicates repression of B by A.

In this model each protein is produced at a rate αi and decays at a rate β; the parameters K and

n determine the properties of repression of B by A. The decay rate for all three proteins is assumed

to be the same. This is a reasonable assumption if the proteins are stable (do not break down

quickly). There are two ways that the level of protein in a cell can decrease: (1) As the cell grows

in size the protein will dilute and (2) if the cell has an active mechanism for degrading proteins,

such tagging them for recognition by proteases. Stable proteins are only governed by the first form

of decay and thus their degradation is dependent upon the rate of cell division. By approximating

dillution by a decaying exponential function, β can be calculated as

β =
log(2)

Tcc
, (2.4)

where Tcc is the length of the cell cycle.

The deterministic model has a single equilibrium point

Aeq =
αA

β
(2.5)

Beq =
αB

β(1 + (Aeq/K)n)
(2.6)

Ceq =
αC

β
(2.7)

that is stable for all realistic biological parameters (αi, β, K > 0).

A more realistic model of gene expression accounts for noise in the expression of genes. Here we

model the two classes of noise discussed in the Introduction. Extrinsic noise is assumed to affect all

genes in the same way, while intrinsic noise is distinct for each individual gene. Thus, we add an

extrinsic noise term, E, and intrinsic noise terms, Ii for i = {A, B, C}, to Eqns. (2.1)–(2.3):

Ȧ = E + IA + αA − βA (2.8)

Ḃ = E + IB +
αB

1 + (A/K)n
− βB (2.9)

Ċ = E + IC + αC − βC. (2.10)

By setting the mean of these noise processes to zero we preserve the average equilibrium point of

the system. We model noise as additive; other models, such as multiplicative noise, give similar

qualitative results (not shown). Other properties of the noise sources are modeled explicitly using
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biologically realistic parameters, described below.

Cellular noise sources have a finite correlation time that has been measured experimentally

[19, 36]. We use Ornstein-Uhlenbeck processes to model noisy gene expression [37, 38]. These

processes are described by the statistical values of mean, standard deviation, and correlation time,

generating a noisy data trace that is continuous, allowing for numerical integration. In general, an

Ornstein-Uhlenbeck process X(t) can be written as

dX(t)

dt
= −1

τ
X(t) + c1/2η(t), (2.11)

where τ is the correlation time of X(t), c is a diffusion constant, and η(t) is Gaussian white noise.

As calculated in [38], as t → ∞

mean{X(t)} = 0 (2.12)

var{X(t)} =
cτ

2
. (2.13)

Rewriting Eqn. (2.11) in terms of the standard deviation of the noise, σ, and the correlation time,

τ , we have

Ẋ = −1

τ
X +

√

2

τ
ση.

Extrinsic and intrinsic noise are modeled using Ornstein-Uhlenbeck processes by

Ė = −βE + θηE (2.14)

İi = −κIi + λiηi. (2.15)

We assume the white noise terms ηE , ηA, ηB , and ηC are independent, identically distributed pro-

cesses. The parameters β and κ define the time scale of the noise, while θ and λ set its standard

deviation. These values were measured directly in [19]. Extrinsic noise was found to have a correla-

tion time on the order of the cell cycle, while intrinsic noise had a much shorter characteristic time

scale, Tint = 5 minutes. Thus β is described by Eqn. (2.4) (identical to the decay time of proteins)

and κ = log(2)/Tint. The standard deviation of extrinsic noise was measured directly for the λ cI

system in [19] as σext = 0.35. We assume the standard deviation of the intrinsic noise is related to

the signal strength by setting σint,i =
√

αi, as in a Poisson process.



12

2.2 Simulation Results

We simulated the noisy expression of proteins A, B, and C numerically using the differential equa-

tions given in Eqns. (2.8)–(2.10) and (2.14)–(2.15) with the parameters listed in Table 2.1.

Parameter Value Notes/Reference
αA 1.39 molecules/cell/min chosen so that αA/β = K
αB 4.5 molecules/cell/min arbitrary
αC 1.39 molecules/cell/min chosen to match αA

β 0.0116 1/min calculated from Eqn. (2.4) assuming 60 min cell cycle
K 120 nM [19]
n 1.7 [19]
κ 0.139 1/min [19]

θ 0.0532 (molecules/cell)1/2/min from Eqn. (2.13) and [19]
√

2
Tcc

σext

λA 0.621 (molecules/cell)1/2/min from Eqn. (2.13)
√

2αA

Tint

λB 1.12 (molecules/cell)1/2/min from Eqn. (2.13)
√

2αB

Tint

λC 0.621 (molecules/cell)1/2/min from Eqn. (2.13)
√

2αC

Tint

Tcc 60 mins measured from experiments
Tint 5 mins [19]

Table 2.1: Simulation Parameters

Sample simulation traces are shown in Fig. 2.2. The equilibrium point calculated from the

deterministic model (Eqns. (2.5)–(2.7)) is an accurate description of the average behavior. The

different time scales associated with extrinsic and intrinsic noise are apparent when considering

limiting cases where only one source of noise exists, as seen in Fig. 2.3. With only extrinsic noise

the three signals are positively correlated, though expression of B is also repressed by A. The cell

cycle length governs the time scale of fluctuations. With only intrinsic noise, repression of B by A

generates a delayed anti-correlation in the expression of these two genes. The intrinsic noise time

scale is much faster than that due to extrinsic noise.

2.3 Cross Correlation Functions

The cross correlation between two signals f(t) and g(t) is Rf,g, defined as

Sf,g(τ) =











1
N−|τ |

N−τ−1
∑

n=0
f̃(n + τ)g̃(n) τ ≥ 0

Sg,f (−τ) τ < 0

Rf,g =
Sf,g(τ)

√

Sf,f (0)Sg,g(0)
, (2.16)
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Figure 2.2: Simulated protein concentrations. Gray traces show 30 numerical examples of noisy gene
expression. Black line indicates the steady-state equilibrium point. Individual traces from a single
simulation are colored to show representative data.
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Figure 2.3: Sample simulation data under different types of noise. Protein A (green line) represses
production of protein B (magenta line). Protein C (cyan line) is expressed constitutively. Data are
normalized by mean concentration. Note that extrinsic noise positively correlates the time traces,
while fluctuations in A (green curve) produce opposite fluctuations in B (magenta) at a delay (τreg).
Simulated time traces are shown for three noise regimes, as indicated.
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where N is the number of time points, τ is the time shift, and

f̃ = f − 1

N

N−1
∑

n=0

f(n).

The mean-subtracted version of the cross correlation function, is sometimes referred to as the cross

covariance.

Temporal correlations were used to measure the propagation of noise through a network. In-

dividual cross correlation curves were generated by calculating results for two time series of noisy

gene expression; the mean values of many individual cross correlation functions describe the average

behavior (Fig. 2.4). Although the expected value of the cross correlation function due to noise is a

fairly simple curve, obtaining it requires generating statistics over many sets of time-series data.
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Figure 2.4: Cross correlation functions of simulated gene expression data. Gray curves show 50 cross
correlation curves from individual time-series data. Mean values are shown in blue (no regulation)
and red (repression).

Mean cross correlation functions for different noise regimes are shown in Fig. 2.5. Several features

are apparent: (1) Repression appears as a dip at a delay time denoted by τreg, the effective regulation

time. (2) The direction of regulation is given by the sign of τreg. Since A represses B, the dip occurs

at τreg < 0. (3) Extrinsic noise causes a positive peak in the cross correlation function close to τ = 0,

both with and without regulation. (4) The relative balance of intrinsic and extrinsic noise affects the

magnitude of τreg. Together, these results indicate that cross correlation analysis, in combination

with an understanding of physiological levels and types of noise, can be used to analyze the activity

and direction of regulatory links.

Simulations were used to explore the effect of network activity on the shape of the cross correlation

function. In Fig. 2.6 we varied the ratio of Aeq to K, which sets the position of the input on the

sigmoidal Hill function curve. The dip is largest when A is in the region of the Hill function with the

steepest slope (red dots). As Aeq moves to the saturating regions on the Hill function the magnitude
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Figure 2.5: Mean cross correlation functions RA,B(τ) and RA,C(τ) are shown in red and blue,
respectively. Note that active negative regulation causes a dip at τreg, while extrinsic noise results
in positive correlation near τ = 0.

of the dip in the cross correlation returns to zero (blue dots).
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Figure 2.6: Cross correlation function shape depends on the activity of the network. (a) Ratio of the
mean value of A (Aeq) to K versus the mean value of B. On average the shape of the curve is a Hill
function. Several regions of this curve are explored in simulation with colored dots corresponding
to data in (b). (b) Magnitude of the dip in the cross correlation function due to repression. As the
mean value of A moves through regions on the Hill function with non-zero slope, the cross correlation
function exhibits a characteristic dip due to repression. Inset shows schematic of dip magnitude.

The shape of the cross correlation function is highly dependent upon the activity of the regulatory

link. We explore the dependence of its features on system parameters further in Section 2.5. To

summarize: We found that τreg is most sensitive to the cell cycle time, with longer cell cycles

producing a longer τreg. The magnitude of the dip due to regulation, in contrast, is determined

primarily by the slope of the regulation function—how switch-like the regulation is.

Simulations can be used to predict the shape of cross correlation functions for other network

architectures. A transcriptional activator is shown in Fig. 2.7 under different noise environments.

Regulation appears as a peak in the cross correlation at τ < 0. With only intrinsic noise, this peak
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is a mirror image of the dip in the cross correlation function due to repression. With extrinsic noise,

this peak is combined with the positive, symmetric peak that is caused by global noise sources.
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Figure 2.7: Cross correlation functions for an activator with (a) extrinsic noise only, (b) intrinsic
noise only, and (c) both noise sources. Parameters are identical to those used in the prior repression
simulations except n = −1.7.

2.4 Analytic Solutions for Cross Correlation Functions Due

to Noise

In this section we develop an analytic method for calculating arbitrary cross correlation functions.

This work was conducted in collaboration with Joe Levine.

We consider the stochastic differential equations in Eqns. (2.8)–(2.10) and (2.14)–(2.15). Assum-

ing perturbations due to noise are small, we linearize the system about the equilibrium point given

in Eqns. (2.5)–(2.7). Defining a = A − Aeq , b = B − Beq, and c = C − Ceq we obtain the following

set of linear dynamics

ȧ = E + IA − βa (2.17)

ḃ = ga + E + IB − βb (2.18)

ċ = E + IC − βc (2.19)

where g is the local sensitivity

g = −
αB n ( αA

βK )n−1

K(1 + ( αA

βK )n)2
.

If we assume that the mean value of A is in the center of the Hill function so Aeq = K, as is the case

with our simulated system, then this simplifies to g = −αBn
4K . This analysis is still possible regardless

of the steady state value of A, but certain regimes (the middle of the Hill function, saturated edges

of the nonlinearity) are better approximated by linear models. Note that the constant g is the only

place that information about the nonlinearity enters the equations.
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The cross correlation theorem states that cross correlation in the time domain is equal to multi-

plication in the frequency domain

Rf,g(τ) = F−1[f̃∗g̃],

where ∗ denotes the complex conjugate and f(t) and g(t) are the two signals. However, we average

over many cross correlation functions (as seen in Fig. 2.4), so we need to calculate the expected

value of the cross correlation function over many realizations of the noise

E{Rf,g(τ)} = E{F−1[f̃∗g̃]}. (2.20)

Taking the Fourier transform of Eqns. (2.17)–(2.19) we find

ã =
1

β + iω
(Ẽ + ĨA) (2.21)

b̃ =
1

β + iω
(Ẽ + ĨB + gã) (2.22)

c̃ =
1

β + iω
(Ẽ + ĨC) (2.23)

Ẽ =
θ

β + iω
η̃E (2.24)

Ĩi =
λi

κ + iω
η̃i. (2.25)

Below, we calculate cross correlation expressions for two cases: two independent genes (A and

C) and a simple regulatory link with repression (A and B). The first, and simpler, case is worked

through in detail, while the results of the second case are summarized.

2.4.1 Unregulated Case

We substitute Eqns. (2.21)–(2.25) into Eqn. (2.20), dropping tildes to simplify notation

E{Ra,c(τ)} = E{F−1[
1

β − iω
(

θ

β − iω
η∗

E +
λA

κ − iω
η∗

a)
1

β + iω
(

θ

β + iω
ηE +

λC

κ + iω
ηc)]}

= E{F−1[
1

β2 + ω2
(

θ2

β2 + ω2
η∗

EηE +
θλC

(β − iω)(κ + iω)
η∗

Eηc

+
θλA

(β + iω)(κ − iω)
η∗

aηE +
λAλC

β2 + ω2
η∗

aηc)]}.

Because the Fourier transform is a linear operation we can analyze each of the four terms individually.

We use two features of white noise to simplify analysis. First, white noise has a flat power spectral
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density η∗
i (ω)ηi(ω) = Wi and second E{ηi(t)ηj(t)} = 0 for i 6= j. Thus,

E{ηi(t)ηj(t)}i6=j = E{F−1[F [ηi(t)ηj(t)]]}

= E{F−1[η∗
i (ω)ηj(ω)]}

= 0.

Therefore if we have a deterministic function G(ω)

E{F−1[G(ω)η∗
i (ω)ηj(ω)]]}i6=j = E{ 1√

2π
F−1[G(ω)] ⋆ F−1[η∗

i (ω)ηj(ω)]}

=
1√
2π

F−1[G(ω)] ⋆ E{F−1[η∗
i (ω)ηj(ω)]}

= 0,

where ⋆ represents convolution. Due to these white noise properties the last three terms in the cross

correlation expression become zero and the remaining term simplifies to

E{Ra,c(τ)} = F−1[
1

β2 + ω2

θ2

β2 + ω2
WE ].

Applying the inverse Fourier transform we find

E{Ra,c(τ)} =
1

2π

∫ ∞

−∞

1

β2 + ω2

θ2

β2 + ω2
WE e−iωτdω.

This integral can be solved using Cauchy’s Residue theorem. Specifically, we need to consider two

cases: τ < 0 and τ ≥ 0. In the first case we can apply Jordan’s lemma if we use a contour that

encircles the upper half plane (Fig. 2.8a). Using Cauchy’s Residue theorem we find

lim
R→∞

∫

CR

f(z)dz +

∫ R

−R

f(z)dz = 2πi
∑

Res.

By Jordan’s lemma the contour at infinity, CR, becomes zero and we are left with the integral we

want to evaluate. In our integral we have a second-order pole at z = iβ and a second-order pole at

z = −iβ. Since we are closing the contour in the upper half plane we need to evaluate the residue

at z = iβ:

1

2π

∫ ∞

−∞

1

β2 + ω2

θ2

β2 + ω2
WE e−iωτdω =

1

2π
2πiRes(iβ)

=
θ2WE

4β3
eβτ (1 − βτ).

For τ ≥ 0 we can use Jordan’s lemma if we choose a contour that encircles the lower half plane
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Figure 2.8: Contours used for evaluating Cauchy’s Residue theorem. Pole locations shown are for
the unregulated cross correlation expression.

(Fig. 2.8b). Since the direction of encirclement is now clockwise, the residue theorem has an addi-

tional negative sign:

1

2π

∫ ∞

−∞

1

β2 + ω2

θ2

β2 + ω2
WE e−iωτdω =

1

2π
(−2πiRes(−iβ))

=
θ2WE

4β3
e−βτ (1 + βτ).

Combining these two results we find

E{Ra,c(τ)} =
θ2WE

4β3
e−β|τ |(1 + β|τ |).

Note that this expression for the cross correlation used a and c, the mean subtracted versions of A

and C. These expressions are consistent with those calculated directly from the nonlinear simulations

because we used the mean subtracted version of the cross correlation function (Eqn. (2.16)).

2.4.2 Regulated Case

Analysis of the cross correlation function due to repression is similar. After simplification using the

white noise properties discussed in the previous section we find

E{Ra,b(τ)} = F−1[
θ2 WE

(β + iω)2(β − iω)2
]

+ F−1[
g θ2 WE

(β + iω)3(β − iω)2
]

+ F−1[
g λ2

A WA

(β + iω)2(β − iω)(κ + iω)(κ − iω)
].
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These three terms have a convenient interpretation. The first term is the artificial correlation due

to extrinsic noise, the second term is extrinsic noise that has propagated through the link, the third

term is intrinsic noise that has propagated through the link. Cauchy’s Residue theorem and Jordan’s

lemma are applied to find

Ra,b(τ) =



































































θ2WE

4β3 eβτ (1 − βτ)

+ gθ2WE

16β4 eβτ (3 − 4βτ + 2β2τ2)

+λ2
AgWA(eβτ κ2(1−2βτ)−β2(5−2βτ)

4β2(β2−κ2)2 + eκτ 1
2κ(β−κ)2(β+κ)) τ < 0

θ2WE

4β3 e−βτ(1 + βτ)

+ gθ2WE

16β4 e−βτ(3 + 2βτ)

+λ2
AgWA( e−βτ

4β2(κ2−β2) + e−κτ

2κ(β+κ)2(β−κ)) τ ≥ 0.

2.4.3 Summary

The cross correlation relations are summarized as

E{RA,C(τ)} = NA,C
θ2WE

4β3
e−β|τ |(1 + β|τ |)

E{RA,B(τ)} =











































NA,B( θ2 WE

16β4 eβτ (2gβ2τ2 − 4β(g + β)τ + 3g + 4β)

+λ2
AgWA(eβτ κ2(1−2βτ)−β2(5−2βτ)

4β2(κ2−β2)2 + eκτ 1
2κ(β−κ)2(β+κ))) τ < 0

NA,B( θ2 WE

16β4 e−βτ (2β(g + 2β)τ + 3g + 4β)

+λ2
AgWA(e−βτ 1

4β2(κ2−β2) + e−κτ 1
2κ(β+κ)2(β−κ))) τ ≥ 0

where the normalization factors are

NA,B =
1

√

RA,A(0)RB,B(0)

NA,C =
1

√

RA,A(0)RC,C(0)

RA,A(0) =
θ2WE

4β3
+

λ2
AWA

2βκ(κ + β)

RB,B(0) =
θ2(3g2 + 6gβ + 4β2) WE

16β5
+

λ2
Ag2(κ + 2β) WA

4κβ3(κ + β)2
+

λ2
B WB

2κβ(κ + β)

RC,C(0) =
θ2WE

4β3
+

λ2
CWC

2βκ(κ + β)
.

To compare these results to the nonlinear simulation we use the constants specified in Table 2.1,

where g = −αBn
4K . WE , Wi for i = {A, B, C} are treated as binary variables and set to 0 or 1 to turn

off and on extrinsic and intrinsic noise for comparison to Fig. 2.5. We assume WA = WB = WC
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for simplicity. Fig. 2.9 shows that the analytic solutions for cross correlations match the simulated

nonlinear system extremely well.
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Figure 2.9: Comparison of analytically calculated cross correlation expressions and simulated data.
Dots represent simulated data, while solid lines plot analytic solutions for the linearized model.

We have calculated the cross correlation functions for two types of regulation. This method can

be applied more generally to larger networks, provided perturbations due to noise are small enough

that linearization is a valid approximation.

2.5 Sensitivity Analysis

Two prominent features of the cross correlation curve for repression are the location of the dip, τreg,

and the magnitude of the dip, M (shown schematically in Fig. 2.10). We calculate how sensitive

these features are to variations in the system parameters. These results indicate which parameters

play a primary role in setting the features of the cross correlation function.

ττ
M

τreg

a b

Figure 2.10: Schematic of cross correlation function features (a) τreg and (b) M .

To find τreg for repression we take

dRa,b(τ)

dτ

∣

∣

∣

τ=τreg

= 0.
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In general it is not possible to find a closed form solution for τreg, however numerical root finding

methods can be applied. The nominal parameter values for sensitivity analysis are the same as those

used in the simulation. For a feature of the cross correlation function, y, we find the normalized

sensitivity

Si =
y(pi + ∆pi) − y(pi − ∆pi)

2 ∆pi y(pi)
.

For ∆pi = 0.05pi the parameteric sensitivities are shown in Table 2.2. Large values indicate that

the feature y is very sensitive to that parameter. The sign of the sensitivity indicates whether y will

get larger (Si > 0) or smaller (Si < 0) as the parameter is increased.

Parameter τreg M
β -108.5 2.39
g 18.9 -85.7
θ 11.3 5.5
κ 4.0 -12.4
λA -0.9 2.5
λB 0.0 0.0
λC 0.0 0.0

Table 2.2: Normalized Sensitivities

τreg is most sensitive to the parameter β, which sets the time scale of both protein decay and

extrinsic noise. As the cell cycle (log(2)/β) gets longer, the location of the dip moves further away

from zero. M is most sensitive to the local sensitivity g, which is negative for repression. As g

becomes less negative, the repressor has less of an effect on its target and the dip gets smaller. In

the extreme case when g = 0, which indicates an inactive or non-existent regulatory connection, the

dip disappears.

2.6 Transcriptional Cascades

It is interesting to ask what the limits are to using these cross correlation functions. For two

genetic components that are very far away, will the correlation eventually average to zero or will

measurement be the limiting factor (it may be prohibitive to measure noisy signals in single cells for

long periods of time)? To explore this question we derived an expression for the cross correlation

function of a cascade of arbitrary length. The signals between the first and last element in the

cascade are compared. This type of question was asked in [39] where they built a synthetic cascade

to measure noise, and in [33] with a numerical study.
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x1 x4x3x2 xn
...

Figure 2.11: Cascade of length n. Interactions alternate between repressors (T-arrows) and activators
(normal arrows) to preserve the net repression effect.

The cascade shown in Fig. 2.11 is described by a system of linear equations:

ẋ1 = E + I1 − βx1

ẋ2 = E + I2 + g1x1 − βx2

ẋ3 = E + I3 + g2x2 − βx3

...

ẋn = E + In + gn−1xn−1 − βxn.

The Fourier transforms used in the cross correlation calculation are

x̃1 =
1

β + iω

(

Ẽ + Ĩ1

)

x̃n =

n
∑

k=1

1

(β + iω)n−k+1





n
∏

j=k

gj





(

Ẽ + Ĩk

)

where gn = 1. The full cross correlation expressions were calculated using an automated Mathemat-

ica script, given in Appendix A. In general, the Residue command in Mathematica is an efficient

way to calculate cross correlation functions.

Cross correlations from cascades with between two and eight elements are compared in Fig. 2.12.

Even for long chains of transcription factors we still see non-negligible correlation values. Thus, it

is likely that experimental limitations—such as the length of a movie—will restrict ability to see

distant temporal events. In addition, real genetic networks will have other inputs to intermediate

elements that may confound analysis.

2.7 mRNA dynamics

To this point we have only considered protein dynamics and have not considered regulation at the

mRNA level. Using analytic methods we can show that mRNA dynamics, and other fast time-scale

processes, can be neglected to a first approximation.

The systems we have considered so far are of the form

ṗB = −βpB + gppA + n,
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τ (mins)

Rx1,xn
(τ)

n = 2n = 8
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Figure 2.12: Cross correlation functions for different length cascades. Cross correlations are between
the signals x1 and xn for n = 2, 3, ... 8. g = 0.02 where gn = 1 and gi = −g for odd i and gi = g
for even i.

where pA and pB are the input and output protein concentrations, respectively, gp is the local

sensitivity, and n is a grouped noise term. The Fourier transform of pB is

p̃B =
1

β + iω
(gpp̃A + ñ).

Extending this model to include mRNA dynamics (as in [23], using a linearized form of the equa-

tions), we have

ṁB = −βmmB + gmpA + nm

ṗB = −β(pB − mB) + np,

where mB is the mRNA concentration and nm and np are noise in the mRNA and protein production

processes. Taking the Fourier transforms we find

p̃B =
1

β + iω

(

βgm

βm + iω
p̃A + ñ

)

,

where we have grouped all the noise terms into n.

Comparing these two equations, as long as

gp ≈ βgm

βm + iω

we can ignore the mRNA dynamics. If both models have the same steady-state behavior (iω = 0)

then gp = βgm/βm. The protein lifetime is β = 0.0116 1/min, based on a 60 minute cell cycle

time. mRNA lifetimes, in contrast, are on the order of 2 minutes, or βm = 0.3466 1/min [40]. Thus,

the protein dynamics are 30 times slower than the mRNA dynamics and are thus expected to be
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dominant in determining the system dynamics. As long as the mRNA dynamics are significantly

faster than the protein dynamics it is reasonable to approximate the system using only the protein

model.

2.8 Degenerate Cross Correlation Functions

There is not a unique relationship between the shape of a cross correlation function and the network

architecture that generated it. Here, we explore two classes of networks that result in degenerate

cross correlation functions. In these situations, two cross correlations look similar or identical even

though they are the result of different network architectures.

2.8.1 Redundant Network Elements

Consider the network diagram shown in Fig. 2.13, assuming that network connection and expression

properties are identical for the links A-B and A-C. Proteins B and C are redundant network

elements because they are controlled by the same input, A, and extrinsic noise affects them in the

same way. Thus, in the extreme case where only extrinsic noise is present, B(t) and C(t) will be

identical. Consequently, the cross correlation function RB,D(τ) = RC,D(τ).

A

D

CB

Figure 2.13: Network with redundant components

Intrinsic noise helps to discriminate between RB,D(τ) and RC,D(τ) because intrinsic noise in

C propagates to D causing additional time-lagged correlation. Intrinsic noise in B, because it is

uncorrelated with noise in D, will not have the same effect.

Analytic solutions for both cross correlation functions are summarized by

RB,D(τ) = E{F−1[f∗
BefDe + f∗

BAfDA]}

RC,D(τ) = E{F−1[f∗
CefDe + f∗

CAfDA + f∗
CCfDC ]},

where fi,j is the Fourier transform of the differential equations describing the dynamics of protein j

in response to noise from i, and e is extrinsic noise. Assuming the network connections are identical
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for A-B and A-C we find the difference between the two cross correlation functions

RC,D(τ) − RB,D(τ) = E{F−1[f∗
CCfDC ]}.

This term represents how noise in C propagates to D, but is only non-zero if there is intrinsic noise

(or other inputs) affecting C.

Thus, mathematically RC,D(τ) 6= RB,D(τ) unless there is no intrinsic noise in C. In practice

it may be difficult to distinguish between the two cross correlation functions even if they are not

identical.

This simple example illustrates how redundant network elements can confound analysis. More

complicated networks will have similar problems any time there are two or more network elements

that are controlled by the same inputs. Intrinsic noise or other signals that affect individual genes

can help to distinguish correlations due to regulation from correlations due to redundant network

elements.

2.8.2 Parametric Degeneracies

A second class of degeneracies comes from uncertainty in parameters. For example, Fig. 2.14 shows

two cascades. If we measure RA,C(τ) is it possible to determine that there is a middle element in

the network or will the cross correlation function look like RX,Y (τ)? In this example extrinsic noise

A

C

B

X

Y

Figure 2.14: Example of a network showing parametric degeneracy

is helpful in discriminating between the two cascades. In the two-step cascade, extrinsic noise affects

A, B, and C, and thus enters into the cross correlation function in three ways, while in the one-step

cascade it only enters twice.

If we consider the limiting case where only intrinsic noise is present there are still ways adjust

parameters to make the two cross correlation functions look nearly identical. For example, if B

degrades quickly, but the net strength of the network is the same as in X-Y it is possible to choose

parameters that result in very similar cross correlation functions (Fig. 2.15).
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Figure 2.15: Cross correlation functions for two cascades with degenerate parameters. Simulation
parameters are βx = βy = βa = βc = 1/60 mins−1, βb = 1/5 mins−1, gxy = gabgbc = −0.01, Wi = 1.

In this example the intrinsic noise-only dynamics are described by

ȧ = −βaa + ηa

ḃ = −βbb + ηb + gaba

ċ = −βcc + ηc + gbcb

ẋ = −βxx + ηx

ẏ = −βyy + ηy + gxyx

where intrinsic noise has been approximated by white noise and parameters are given in the figure

caption.

Since biochemical parameters are often unknown or uncertain there are many possible situations

where the shape of two cross correlation functions may look very similar.

2.8.3 Implications for Network Identification

Even though the cross correlation function does not uniquely determine the network architecture

and parameters that generate it, it is still a useful tool. In particular, the cross correlation function

can be used as a sensitive measure of network activity or it can suggest possible links in networks

that are only partially mapped. Indeed, much of our knowledge about biochemical regulation comes

from correlation-based reasoning and including temporal measurements extends these tools.


