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Abstract

Gene regulatory interactions are context dependent, active in some cell types or cellular states

but not in others. In this thesis we present a method for determining when a regulatory link is

active given temporal measurements of gene expression. Correlations in time-series data are used

to determine how genes influence each other and their causal relationships. Natural stochastic noise

is shown to aid in the process of network identification by perturbing the expression of genes; the

speed and direction at which the noisy signal propagates shows how the network is connected. Cross

correlation functions are used to reveal time-delayed correlations.

We develop a stochastic model of gene expression and show that by measuring correlations in

cellular noise, it is possible to infer network activity and temporal properties of gene regulation.

Using a linearized version of the model, we introduce a method for analytically deriving cross corre-

lation functions for arbitrary networks. These results are validated experimentally using a synthetic

gene circuit in E. coli bacteria. Single-cell time-lapse microscopy is used to measure noisy expression

of multiple genes over time. Extending this work to natural systems, we study feed-forward loops

and determine that certain classes of feed-forward loops are more robust to noise and parameter

variations that others. Noise in two naturally occurring feed-forward loops involved in galactose

utilization is measured experimentally and it is shown that neither is actively regulating its target

in the conditions tested.
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Chapter 1

Introduction

Cells use biological circuits to implement diverse cellular and developmental programs. All the

information required to construct and control these circuits is encoded in the genome of an organism.

Genome complexity spans many of orders of magnitude, from the bacterium C. ruddii with 160

thousand base pairs of DNA to the ameoba A. dubia with 670 billion base pairs [1, 2]. A spectacularly

diverse range of organisms fall in between, including the human genome with 3 billion base pairs and

E. coli bacteria, used for the experiments in this thesis, with 4.6 million. Despite dramatic differences

in genome size, the fundamental way information is encoded is conserved across organisms and many

of the basic mechanisms for implementing genetic control are universal. In this thesis we will look

at examples of genetic control and determine when they are actively being used.

Genes are regions of DNA in the genome that encode for proteins. Humans have about 20,000

genes while E. coli have 4000 [1, 3]. Proteins provide a useful function to the cell or may control the

expression of other genes. An example of the former is an enzyme that breaks down sugar to fuel

the cell. Proteins in the latter category are known as transcription factors. They act by binding to

a sequence of DNA upstream of a gene, known as the promoter, and either repressing or activating

transcription (see Fig. 1.1).

Since proteins have the ability to control the expression of other genes, they can regulate them-

selves [4, 5, 6], or a host of other genes. As a result, networks of gene regulation appear when one

transcription factor regulates many genes, including other transcription factors. These gene net-

works (also called gene circuits) are often elaborate and include a wide variety of control strategies,

including feed-back and feed-forward loop architectures like those used in engineered control systems.

A major goal of systems biology is to connect the regulatory architecture of these networks to the

dynamic behavior of individual cells. Biochemistry and genetics can efficiently identify regulatory

interactions and there are databases that summarize all documented regulatory connections [7], but

it can be unclear what function these networks serve.

From an analytic point of view, it is frequently difficult to use gene network maps to understand

and predict cellular behaviors. One problem is that quantitative information about the biochemical
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Promoter
Gene

Protein

Protein X

(Repressor)

a b

Protein Y

gene Y gene Y

Figure 1.1: Control of gene expression. (a) This diagram depicts a small section of the DNA that is
part of the larger genome. A promoter region upstream of the gene is used to control expression of
the gene. When gene expression is ON, the gene is transcribed and then translated into a protein.
(b) Example of a transcription factor. The gene Y is expressed as a protein in the absence of the
transcription factor, protein X, but expression is inhibited when it is present. This is an example of
a repressor; activators act in the opposite fashion.

parameters associated with a given regulatory link is often minimal. Also, the complexity of the gene

regulatory architecture, even for simple organisms, begs the question of whether cells actually use

all of this cellular control at a given time. Many regulatory links, while important in some cellular

states, may not be active in a given cellular context. If one can identify the subset of regulatory

links that are active in a given state, it could simplify analysis of the circuit as a whole [8].

1.1 Network Motifs

Gene network structure is the focus of several notable studies that search for recurring patterns

in databases of documented regulatory connections. If a particular pattern of connections appears

more frequently than would be expected in an entirely random network then, in theory, evolution

has selected for these so-called network motifs because they are useful to the organism [9, 10]. One

of the best studied network motifs in model organisms like E. coli and the yeast S. cerevisiae is

the feed-forward loop [11, 12], where two transcription factors regulate the expression of a single

downstream gene and one of the transcription factors controls expression of the other (Fig. 1.2).

Because there are two pathways that control the final target gene they can act differentially to

achieve desirable temporal effects.

Even once network motifs are identified, there is not an immediate map to the functional role

they play in regulation. The parameters that describe chemical reaction rates play a large role in

determining function. In addition, signaling molecules can bind to network elements rendering them

inactive, or enhancing their activity. Several studies look at roles that network motifs can play [5, 12],

though this analysis always requires assumptions about network properties. Further, motif analysis

often neglects to account for the cellular environment in which the gene circuits are embedded. Work

on rewiring natural regulatory networks in E. coli suggests that regulatory modules can be strongly
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X

Z

Y

Figure 1.2: Feed-forward loop network motif. X and Y are transcription factors that control Z.
Regular arrows indicate activation; T-shaped arrows indicate repression.

affected by the surrounding network [13].

Pattern-searching approaches like those employed to identify network motifs are one way of

making analysis of large gene networks tractable. A complementary approach is to ask which

regulatory links are functional in a particular condition. Ignoring inactive links can reduce network

complexity.

1.2 Context-Sensitive Regulation

Regulatory links may be present, but inactive, for several reasons: In the simplest case, the concen-

tration of a regulatory factor may be well above or below its effective range (Fig. 1.3). For example,

it has been shown that cells may maintain transcription factor concentrations outside of their ac-

tive regulatory regime in order to suppress noise [14]. In other cases, transcription factors may be

inactive due to post-translational modification or the absence of necessary co-factors, rendering the

transcription factor ineffective on a given target [15, 16, 17]. Since the activity of a regulatory link is

highly dependent upon the conditions in which it is operating, we ask: Can the activity of regulatory

links in a given cellular state be inferred non-invasively?

Inactive InactiveActive

[Repressor]

E
x
p

re
s
s
io

n
 L

e
v
e

l

Figure 1.3: Target gene expression versus repressor concentration (schematic). Regions where
changes in repressor concentration cause changes in target gene expression are active. When repres-
sor levels saturate (right) or are insufficient to repress (left), then the link is inactive. Regulatory
links may be inactive for other reasons as well.

Recent work has shown that noise in gene expression can generate substantial cell-cell variability

[18, 19, 20]. Systematic measurements of noise across many genes have helped to broaden under-
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standing of where noise comes from and how its effects are mitigated [21, 22]. Although noise plays

a role across a broad spectrum of species, some of the best studied examples come from single-celled

organisms. For example, when E. coli bacteria divide they produce two genetically identical clones.

Despite genetic similarities, two cells can show dramatic differences in levels of gene expression.

Fig. 1.4 shows a small colony of E. coli bacteria that started as a single cell at t = 0. Cells elongate

and split into two daughters approximately once per hour. A gene encoding for a fluorescent protein

was put into the genome of the cells and its expression was monitored over time using a microscope.

When the cells divide, the fluorescence expression level drops by approximately a factor of two. By

the end of the measurements each cell in the microcolony has a unique level of fluorescent protein.
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Figure 1.4: Cell-cell variability in E. coli gene expression. (a) Snapshots of single cells. The mi-
crocolony originated from a single cell. Time and length scales are indicated on the figure. (b)
Fluorescent protein expression levels versus time. Blue lines are data for all cells. The red trace
follows a single lineage. Sharp drops in expression are cell division events. (c) Distribution of final
protein expression levels shows variability in gene expression.

There are several mechanisms that cause diversity among cells, but the underlying reason is small
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size. A single E. coli bacterium is about 1×10−15 L in volume, or 1 µm3. Consequently, the number

of important proteins, genes, and other molecules of interest in the cell may be small enough that

the timing of individual reactions and locations of individual molecules can matter.

We asked whether noise could be used to reveal active regulation. In the context of a tran-

scriptional regulatory circuit, noise in the concentration of a transcription factor can only propagate

through one or more active regulatory links. Thus noise may provide information about active

regulatory connections without explicit perturbation of cellular components.

Fig. 1.5 illustrates how noise could be used to infer the activity of a regulatory connection.

Consider two possible types of interactions between proteins A and B: an inactive regulatory link

and active repression link. If there were no noise, all cells would have exactly the same number of

proteins. (If this were true all the lines in Fig. 1.4b would fall onto one line.) Thus a plot of A vs.

B would have data from all cells collapse onto a single point (Fig. 1.5a). Realistically, individual

cells show a range of protein concentrations so A versus B will show a range of points on a plot

(Fig. 1.5b, each point represents a single cell). Active regulation between two proteins will result in

correlated patterns. Cells that have a small amount of repressor, A, will have a larger amount of its

target, B, which appears as a negative correlation between A and B.

Protein A

Inactive

Regulation

Active

Repression

No Noise

P
ro

te
in

 B
P

ro
te

in
 B

A           B

A           B

Noise

Protein A

a b

Figure 1.5: Correlations in noise distributions show active regulation. Each dot represents a single
cell. Gene regulation function is shown as a solid black line. (a) Without noise, all cells show the
same levels of expression. (b) With noise, correlations can suggest active regulation. T-shaped arrow
between A and B indicates repression. Note that this schematic assumes that noise between two
independent genes is uncorrelated (intrinsic noise only).

Noise propagation through active regulatory links is not the only factor correlating expression

between genes. The expression of many or all genes in the cell may be correlated due to global

variations in the overall rate of gene expression. In prior work, noise was broken down into two
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broad classes: extrinsic and intrinsic noise [19, 23]. Noise sources that are global to a single cell,

but vary from one cell to the next are extrinsic noise sources. For example, fluctuating cell size,

numbers of ribosomes, and polymerase components can affect the expression of all genes in a cell;

a cell that has a small number of polymerases will produce fewer proteins than a cell with many.

Intrinsic noise, in contrast, is specific to an individual gene. Expression of a protein requires many

discrete chemical reactions to happen and the timing and order of these reactions is a stochastic

process. Consequently, even two identical genes may be expressed at different levels. Thus extrinsic

noise can be thought of as global to a single cell, while intrinsic noise is local to a particular gene.

Because extrinsic noise acts globally it positively correlates the expression of all genes. Intrinsic

noise, in contrast, is uncorrelated between genes. Fig. 1.6 illustrates how these conflicting effects

prevent discrimination between noise and regulation as a source of correlation. Positive correlations

from extrinsic noise superimposed on negative correlations due to repression can look very similar

to uncorrelated genes. Thus, static correlation-based reasoning may not correctly identify active

regulatory interactions.

Intrinsic >> Extrinsic Noise Extrinsic >> Intrinsic Noise

Protein A

Inactive

Regulation

Active

Repression

P
ro

te
in

 B
P

ro
te

in
 B

A           B

A           B

Protein A

Figure 1.6: Noise can produce different types of static correlations. In each plot, dots represent
individual cells from a hypothetical population. Top plots show correlations without an active reg-
ulatory link, while the bottom show correlations with active repression. We consider noise regimes
in which either intrinsic (uncorrelated) or extrinsic (correlated) noise dominates. Active repression
causes negative correlations between the transcription factor and its target, intrinsic noise decorre-
lates the two, and extrinsic noise causes positive correlations even without active regulation. Thus,
correlations derived from static snapshots are ambiguous.

Gene regulation occurs with a delay; it takes time for protein concentrations to build up suffi-

ciently to have a regulatory effect on the downstream genes they control (Fig. 1.7) [19]. The sign

of the delay provides information about the direction of the link. Such a delay does not occur for

extrinsic noise, which affects all genes simultaneously. Thus, dynamic measurements, in which one

can follow the expression of multiple genes over time, can be used to decouple noise from regulatory



7

correlations.

τreg

Time

P
ro

te
in

 C
o

n
c
e

n
tr

a
ti
o

n A            B

0

Figure 1.7: Temporal gene expression patterns for a repressor, A, (green line) and its target, B,
(magenta line) are anti-correlated at a delay time denoted τreg (schematic).

Since time is an important factor in distinguishing between correlations due to extrinsic noise

and those due to active regulation, we use the cross correlation function, which is a measure of

how well two signals are correlated when one signal is shifted by a time τ . A positive pulse in a

signal f(t) followed by a negative pulse in a signal g(t) will appear as a dip in the cross correlation

function where the minimum occurs at a time τ < 0 when the signals are maximally anti-correlated

(Fig. 1.8). Note that whether the dip occurs at τ < 0 or τ > 0 indicates which pulse appeared first.

This information is useful for inferring the direction of gene regulation, while the sign of the peak

indicates the type of regulation (activation or repression). Similar approaches have been used to infer

connectivity of in vitro metabolic networks [24, 25]. These experiments were not conducted in living

cells so they used a prescribed time-varying input to perturb the system and it was unnecessary

to consider many of the details particular to cellular noise sources. Other work has used temporal

correlations in combination with large-scale microarray experiments [26].

0 5 10 15 20 25 30 35 40 45 50

−1

0

1

 

 

0 5 10 15 20 25 30 35 40 45 50

−1

0

1

t

 

 

−40 −30 −20 −10 0 10 20 30 40
−20

0

20

τ
 

 

f(t)

g(t)

Rf,g(τ)

Cross Correlation Function

Figure 1.8: Two signals f(t) and g(t) are compared using the cross correlation function Rf,g(τ).

Infering how gene networks are connected is a large area of research and methods for identifying
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the connectivity of regulatory networks have improved as genetic assays have advanced. Large-scale

network identification has focused on steady-state measurements and statistical inference algorithms

[27, 28, 29, 30]. Alternative approaches for smaller-scale networks have been suggested using tem-

poral data [31, 32, 33]. The work in this thesis focuses on smaller-scale network identification using

temporal data, but extends current understanding by allowing for non-invasive measurements of

network activity.

1.3 Thesis Overview

In Chapter 2 we develop a mathematical model for gene expression in a simple circuit. Numerical

simulations of noisy gene expression are used to calculate cross correlation functions under different

conditions, such as environments that are dominated by extrinsic or intrinsic noise. Using simula-

tions, we explore the effect of active and inactive regulatory links. Further, an analytic method for

calculating cross correlation functions due to noise is developed and shows excellent agreement with

the full nonlinear simulations.

Chapter 3 tests these predictions experimentally with a three-color synthetic gene circuit. Time-

lapse movies are used to measure gene expression in single cells under two noise conditions, where

one has an appreciably higher level of extrinsic noise than the other. The resulting cross correlation

functions are consistent with those predicted from simulation.

Mathematical models of feed-forward loops are explored in Chapter 4 and it is shown that certain

feed-forward loop architectures are more robust to parameter variation than others. Chapter 5 looks

at two examples of naturally occurring feed-forward loops in the galactose utilization pathway. By

measuring correlations in gene expression noise we determine these feed-forward loops are inactive

in measurement conditions, but can become active as a result of changes in the genetic background.
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Chapter 2

Numerical and Analytic

Predictions for Correlations in

Gene Expression Noise

In this chapter we develop a mathematical model for stochastic gene regulation that is motivated by

previous work on noise in λ cI repressor [19]. Simulated time-series data are used to predict features of

cross correlation functions and to understand the effect of active and inactive forms of regulation. We

extend the simulation-based analysis by developing analytic solutions to arbitrary cross correlation

functions using a linearized approximation of the mathematical model. The analytic framework

lends insight into the origins of the cross correlation function shape and simplifies analysis. Two

applications are demonstrated: (1) Sensitivity analysis of cross correlation function features reveals

which system parameters are most significant. (2) The cross correlation function is calculated for a

cascade of arbitrary length to demonstrate generality to larger scale networks. Finally we discuss

some limitations of correlation-based analysis methods.

2.1 Mathematical Models with Noise

We analyzed a simple three-gene circuit, shown in Fig. 2.1. The protein A is a transcription factor

that represses production of B. Proteins A and C are constitutively expressed, meaning they

are produced at a constant level and are not under the control of other transcription factors. A

deterministic model for this system can be written using a Hill function to describe repression

[34, 35]:

Ȧ = αA − βA (2.1)

Ḃ =
αB

1 + (A/K)n
− βB (2.2)

Ċ = αC − βC. (2.3)
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A

CB

Figure 2.1: Three-gene circuit used in simulation. T-shaped arrow indicates repression of B by A.

In this model each protein is produced at a rate αi and decays at a rate β; the parameters K and

n determine the properties of repression of B by A. The decay rate for all three proteins is assumed

to be the same. This is a reasonable assumption if the proteins are stable (do not break down

quickly). There are two ways that the level of protein in a cell can decrease: (1) As the cell grows

in size the protein will dilute and (2) if the cell has an active mechanism for degrading proteins,

such tagging them for recognition by proteases. Stable proteins are only governed by the first form

of decay and thus their degradation is dependent upon the rate of cell division. By approximating

dillution by a decaying exponential function, β can be calculated as

β =
log(2)

Tcc
, (2.4)

where Tcc is the length of the cell cycle.

The deterministic model has a single equilibrium point

Aeq =
αA

β
(2.5)

Beq =
αB

β(1 + (Aeq/K)n)
(2.6)

Ceq =
αC

β
(2.7)

that is stable for all realistic biological parameters (αi, β, K > 0).

A more realistic model of gene expression accounts for noise in the expression of genes. Here we

model the two classes of noise discussed in the Introduction. Extrinsic noise is assumed to affect all

genes in the same way, while intrinsic noise is distinct for each individual gene. Thus, we add an

extrinsic noise term, E, and intrinsic noise terms, Ii for i = {A, B, C}, to Eqns. (2.1)–(2.3):

Ȧ = E + IA + αA − βA (2.8)

Ḃ = E + IB +
αB

1 + (A/K)n
− βB (2.9)

Ċ = E + IC + αC − βC. (2.10)

By setting the mean of these noise processes to zero we preserve the average equilibrium point of

the system. We model noise as additive; other models, such as multiplicative noise, give similar

qualitative results (not shown). Other properties of the noise sources are modeled explicitly using
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biologically realistic parameters, described below.

Cellular noise sources have a finite correlation time that has been measured experimentally

[19, 36]. We use Ornstein-Uhlenbeck processes to model noisy gene expression [37, 38]. These

processes are described by the statistical values of mean, standard deviation, and correlation time,

generating a noisy data trace that is continuous, allowing for numerical integration. In general, an

Ornstein-Uhlenbeck process X(t) can be written as

dX(t)

dt
= −1

τ
X(t) + c1/2η(t), (2.11)

where τ is the correlation time of X(t), c is a diffusion constant, and η(t) is Gaussian white noise.

As calculated in [38], as t → ∞

mean{X(t)} = 0 (2.12)

var{X(t)} =
cτ

2
. (2.13)

Rewriting Eqn. (2.11) in terms of the standard deviation of the noise, σ, and the correlation time,

τ , we have

Ẋ = −1

τ
X +

√

2

τ
ση.

Extrinsic and intrinsic noise are modeled using Ornstein-Uhlenbeck processes by

Ė = −βE + θηE (2.14)

İi = −κIi + λiηi. (2.15)

We assume the white noise terms ηE , ηA, ηB , and ηC are independent, identically distributed pro-

cesses. The parameters β and κ define the time scale of the noise, while θ and λ set its standard

deviation. These values were measured directly in [19]. Extrinsic noise was found to have a correla-

tion time on the order of the cell cycle, while intrinsic noise had a much shorter characteristic time

scale, Tint = 5 minutes. Thus β is described by Eqn. (2.4) (identical to the decay time of proteins)

and κ = log(2)/Tint. The standard deviation of extrinsic noise was measured directly for the λ cI

system in [19] as σext = 0.35. We assume the standard deviation of the intrinsic noise is related to

the signal strength by setting σint,i =
√

αi, as in a Poisson process.
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2.2 Simulation Results

We simulated the noisy expression of proteins A, B, and C numerically using the differential equa-

tions given in Eqns. (2.8)–(2.10) and (2.14)–(2.15) with the parameters listed in Table 2.1.

Parameter Value Notes/Reference
αA 1.39 molecules/cell/min chosen so that αA/β = K
αB 4.5 molecules/cell/min arbitrary
αC 1.39 molecules/cell/min chosen to match αA

β 0.0116 1/min calculated from Eqn. (2.4) assuming 60 min cell cycle
K 120 nM [19]
n 1.7 [19]
κ 0.139 1/min [19]

θ 0.0532 (molecules/cell)1/2/min from Eqn. (2.13) and [19]
√

2
Tcc

σext

λA 0.621 (molecules/cell)1/2/min from Eqn. (2.13)
√

2αA

Tint

λB 1.12 (molecules/cell)1/2/min from Eqn. (2.13)
√

2αB

Tint

λC 0.621 (molecules/cell)1/2/min from Eqn. (2.13)
√

2αC

Tint

Tcc 60 mins measured from experiments
Tint 5 mins [19]

Table 2.1: Simulation Parameters

Sample simulation traces are shown in Fig. 2.2. The equilibrium point calculated from the

deterministic model (Eqns. (2.5)–(2.7)) is an accurate description of the average behavior. The

different time scales associated with extrinsic and intrinsic noise are apparent when considering

limiting cases where only one source of noise exists, as seen in Fig. 2.3. With only extrinsic noise

the three signals are positively correlated, though expression of B is also repressed by A. The cell

cycle length governs the time scale of fluctuations. With only intrinsic noise, repression of B by A

generates a delayed anti-correlation in the expression of these two genes. The intrinsic noise time

scale is much faster than that due to extrinsic noise.

2.3 Cross Correlation Functions

The cross correlation between two signals f(t) and g(t) is Rf,g, defined as

Sf,g(τ) =











1
N−|τ |

N−τ−1
∑

n=0
f̃(n + τ)g̃(n) τ ≥ 0

Sg,f (−τ) τ < 0

Rf,g =
Sf,g(τ)

√

Sf,f (0)Sg,g(0)
, (2.16)
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Figure 2.2: Simulated protein concentrations. Gray traces show 30 numerical examples of noisy gene
expression. Black line indicates the steady-state equilibrium point. Individual traces from a single
simulation are colored to show representative data.
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Figure 2.3: Sample simulation data under different types of noise. Protein A (green line) represses
production of protein B (magenta line). Protein C (cyan line) is expressed constitutively. Data are
normalized by mean concentration. Note that extrinsic noise positively correlates the time traces,
while fluctuations in A (green curve) produce opposite fluctuations in B (magenta) at a delay (τreg).
Simulated time traces are shown for three noise regimes, as indicated.
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where N is the number of time points, τ is the time shift, and

f̃ = f − 1

N

N−1
∑

n=0

f(n).

The mean-subtracted version of the cross correlation function, is sometimes referred to as the cross

covariance.

Temporal correlations were used to measure the propagation of noise through a network. In-

dividual cross correlation curves were generated by calculating results for two time series of noisy

gene expression; the mean values of many individual cross correlation functions describe the average

behavior (Fig. 2.4). Although the expected value of the cross correlation function due to noise is a

fairly simple curve, obtaining it requires generating statistics over many sets of time-series data.
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R(τ)

Figure 2.4: Cross correlation functions of simulated gene expression data. Gray curves show 50 cross
correlation curves from individual time-series data. Mean values are shown in blue (no regulation)
and red (repression).

Mean cross correlation functions for different noise regimes are shown in Fig. 2.5. Several features

are apparent: (1) Repression appears as a dip at a delay time denoted by τreg, the effective regulation

time. (2) The direction of regulation is given by the sign of τreg. Since A represses B, the dip occurs

at τreg < 0. (3) Extrinsic noise causes a positive peak in the cross correlation function close to τ = 0,

both with and without regulation. (4) The relative balance of intrinsic and extrinsic noise affects the

magnitude of τreg. Together, these results indicate that cross correlation analysis, in combination

with an understanding of physiological levels and types of noise, can be used to analyze the activity

and direction of regulatory links.

Simulations were used to explore the effect of network activity on the shape of the cross correlation

function. In Fig. 2.6 we varied the ratio of Aeq to K, which sets the position of the input on the

sigmoidal Hill function curve. The dip is largest when A is in the region of the Hill function with the

steepest slope (red dots). As Aeq moves to the saturating regions on the Hill function the magnitude
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Figure 2.5: Mean cross correlation functions RA,B(τ) and RA,C(τ) are shown in red and blue,
respectively. Note that active negative regulation causes a dip at τreg, while extrinsic noise results
in positive correlation near τ = 0.

of the dip in the cross correlation returns to zero (blue dots).
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Figure 2.6: Cross correlation function shape depends on the activity of the network. (a) Ratio of the
mean value of A (Aeq) to K versus the mean value of B. On average the shape of the curve is a Hill
function. Several regions of this curve are explored in simulation with colored dots corresponding
to data in (b). (b) Magnitude of the dip in the cross correlation function due to repression. As the
mean value of A moves through regions on the Hill function with non-zero slope, the cross correlation
function exhibits a characteristic dip due to repression. Inset shows schematic of dip magnitude.

The shape of the cross correlation function is highly dependent upon the activity of the regulatory

link. We explore the dependence of its features on system parameters further in Section 2.5. To

summarize: We found that τreg is most sensitive to the cell cycle time, with longer cell cycles

producing a longer τreg. The magnitude of the dip due to regulation, in contrast, is determined

primarily by the slope of the regulation function—how switch-like the regulation is.

Simulations can be used to predict the shape of cross correlation functions for other network

architectures. A transcriptional activator is shown in Fig. 2.7 under different noise environments.

Regulation appears as a peak in the cross correlation at τ < 0. With only intrinsic noise, this peak
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is a mirror image of the dip in the cross correlation function due to repression. With extrinsic noise,

this peak is combined with the positive, symmetric peak that is caused by global noise sources.
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Figure 2.7: Cross correlation functions for an activator with (a) extrinsic noise only, (b) intrinsic
noise only, and (c) both noise sources. Parameters are identical to those used in the prior repression
simulations except n = −1.7.

2.4 Analytic Solutions for Cross Correlation Functions Due

to Noise

In this section we develop an analytic method for calculating arbitrary cross correlation functions.

This work was conducted in collaboration with Joe Levine.

We consider the stochastic differential equations in Eqns. (2.8)–(2.10) and (2.14)–(2.15). Assum-

ing perturbations due to noise are small, we linearize the system about the equilibrium point given

in Eqns. (2.5)–(2.7). Defining a = A − Aeq , b = B − Beq, and c = C − Ceq we obtain the following

set of linear dynamics

ȧ = E + IA − βa (2.17)

ḃ = ga + E + IB − βb (2.18)

ċ = E + IC − βc (2.19)

where g is the local sensitivity

g = −
αB n ( αA

βK )n−1

K(1 + ( αA

βK )n)2
.

If we assume that the mean value of A is in the center of the Hill function so Aeq = K, as is the case

with our simulated system, then this simplifies to g = −αBn
4K . This analysis is still possible regardless

of the steady state value of A, but certain regimes (the middle of the Hill function, saturated edges

of the nonlinearity) are better approximated by linear models. Note that the constant g is the only

place that information about the nonlinearity enters the equations.
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The cross correlation theorem states that cross correlation in the time domain is equal to multi-

plication in the frequency domain

Rf,g(τ) = F−1[f̃∗g̃],

where ∗ denotes the complex conjugate and f(t) and g(t) are the two signals. However, we average

over many cross correlation functions (as seen in Fig. 2.4), so we need to calculate the expected

value of the cross correlation function over many realizations of the noise

E{Rf,g(τ)} = E{F−1[f̃∗g̃]}. (2.20)

Taking the Fourier transform of Eqns. (2.17)–(2.19) we find

ã =
1

β + iω
(Ẽ + ĨA) (2.21)

b̃ =
1

β + iω
(Ẽ + ĨB + gã) (2.22)

c̃ =
1

β + iω
(Ẽ + ĨC) (2.23)

Ẽ =
θ

β + iω
η̃E (2.24)

Ĩi =
λi

κ + iω
η̃i. (2.25)

Below, we calculate cross correlation expressions for two cases: two independent genes (A and

C) and a simple regulatory link with repression (A and B). The first, and simpler, case is worked

through in detail, while the results of the second case are summarized.

2.4.1 Unregulated Case

We substitute Eqns. (2.21)–(2.25) into Eqn. (2.20), dropping tildes to simplify notation

E{Ra,c(τ)} = E{F−1[
1

β − iω
(

θ

β − iω
η∗

E +
λA

κ − iω
η∗

a)
1

β + iω
(

θ

β + iω
ηE +

λC

κ + iω
ηc)]}

= E{F−1[
1

β2 + ω2
(

θ2

β2 + ω2
η∗

EηE +
θλC

(β − iω)(κ + iω)
η∗

Eηc

+
θλA

(β + iω)(κ − iω)
η∗

aηE +
λAλC

β2 + ω2
η∗

aηc)]}.

Because the Fourier transform is a linear operation we can analyze each of the four terms individually.

We use two features of white noise to simplify analysis. First, white noise has a flat power spectral
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density η∗
i (ω)ηi(ω) = Wi and second E{ηi(t)ηj(t)} = 0 for i 6= j. Thus,

E{ηi(t)ηj(t)}i6=j = E{F−1[F [ηi(t)ηj(t)]]}

= E{F−1[η∗
i (ω)ηj(ω)]}

= 0.

Therefore if we have a deterministic function G(ω)

E{F−1[G(ω)η∗
i (ω)ηj(ω)]]}i6=j = E{ 1√

2π
F−1[G(ω)] ⋆ F−1[η∗

i (ω)ηj(ω)]}

=
1√
2π

F−1[G(ω)] ⋆ E{F−1[η∗
i (ω)ηj(ω)]}

= 0,

where ⋆ represents convolution. Due to these white noise properties the last three terms in the cross

correlation expression become zero and the remaining term simplifies to

E{Ra,c(τ)} = F−1[
1

β2 + ω2

θ2

β2 + ω2
WE ].

Applying the inverse Fourier transform we find

E{Ra,c(τ)} =
1

2π

∫ ∞

−∞

1

β2 + ω2

θ2

β2 + ω2
WE e−iωτdω.

This integral can be solved using Cauchy’s Residue theorem. Specifically, we need to consider two

cases: τ < 0 and τ ≥ 0. In the first case we can apply Jordan’s lemma if we use a contour that

encircles the upper half plane (Fig. 2.8a). Using Cauchy’s Residue theorem we find

lim
R→∞

∫

CR

f(z)dz +

∫ R

−R

f(z)dz = 2πi
∑

Res.

By Jordan’s lemma the contour at infinity, CR, becomes zero and we are left with the integral we

want to evaluate. In our integral we have a second-order pole at z = iβ and a second-order pole at

z = −iβ. Since we are closing the contour in the upper half plane we need to evaluate the residue

at z = iβ:

1

2π

∫ ∞

−∞

1

β2 + ω2

θ2

β2 + ω2
WE e−iωτdω =

1

2π
2πiRes(iβ)

=
θ2WE

4β3
eβτ (1 − βτ).

For τ ≥ 0 we can use Jordan’s lemma if we choose a contour that encircles the lower half plane
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Figure 2.8: Contours used for evaluating Cauchy’s Residue theorem. Pole locations shown are for
the unregulated cross correlation expression.

(Fig. 2.8b). Since the direction of encirclement is now clockwise, the residue theorem has an addi-

tional negative sign:

1

2π

∫ ∞

−∞

1

β2 + ω2

θ2

β2 + ω2
WE e−iωτdω =

1

2π
(−2πiRes(−iβ))

=
θ2WE

4β3
e−βτ (1 + βτ).

Combining these two results we find

E{Ra,c(τ)} =
θ2WE

4β3
e−β|τ |(1 + β|τ |).

Note that this expression for the cross correlation used a and c, the mean subtracted versions of A

and C. These expressions are consistent with those calculated directly from the nonlinear simulations

because we used the mean subtracted version of the cross correlation function (Eqn. (2.16)).

2.4.2 Regulated Case

Analysis of the cross correlation function due to repression is similar. After simplification using the

white noise properties discussed in the previous section we find

E{Ra,b(τ)} = F−1[
θ2 WE

(β + iω)2(β − iω)2
]

+ F−1[
g θ2 WE

(β + iω)3(β − iω)2
]

+ F−1[
g λ2

A WA

(β + iω)2(β − iω)(κ + iω)(κ − iω)
].
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These three terms have a convenient interpretation. The first term is the artificial correlation due

to extrinsic noise, the second term is extrinsic noise that has propagated through the link, the third

term is intrinsic noise that has propagated through the link. Cauchy’s Residue theorem and Jordan’s

lemma are applied to find

Ra,b(τ) =



































































θ2WE

4β3 eβτ (1 − βτ)

+ gθ2WE

16β4 eβτ (3 − 4βτ + 2β2τ2)

+λ2
AgWA(eβτ κ2(1−2βτ)−β2(5−2βτ)

4β2(β2−κ2)2 + eκτ 1
2κ(β−κ)2(β+κ)) τ < 0

θ2WE

4β3 e−βτ(1 + βτ)

+ gθ2WE

16β4 e−βτ(3 + 2βτ)

+λ2
AgWA( e−βτ

4β2(κ2−β2) + e−κτ

2κ(β+κ)2(β−κ)) τ ≥ 0.

2.4.3 Summary

The cross correlation relations are summarized as

E{RA,C(τ)} = NA,C
θ2WE

4β3
e−β|τ |(1 + β|τ |)

E{RA,B(τ)} =











































NA,B( θ2 WE

16β4 eβτ (2gβ2τ2 − 4β(g + β)τ + 3g + 4β)

+λ2
AgWA(eβτ κ2(1−2βτ)−β2(5−2βτ)

4β2(κ2−β2)2 + eκτ 1
2κ(β−κ)2(β+κ))) τ < 0

NA,B( θ2 WE

16β4 e−βτ (2β(g + 2β)τ + 3g + 4β)

+λ2
AgWA(e−βτ 1

4β2(κ2−β2) + e−κτ 1
2κ(β+κ)2(β−κ))) τ ≥ 0

where the normalization factors are

NA,B =
1

√

RA,A(0)RB,B(0)

NA,C =
1

√

RA,A(0)RC,C(0)

RA,A(0) =
θ2WE

4β3
+

λ2
AWA

2βκ(κ + β)

RB,B(0) =
θ2(3g2 + 6gβ + 4β2) WE

16β5
+

λ2
Ag2(κ + 2β) WA

4κβ3(κ + β)2
+

λ2
B WB

2κβ(κ + β)

RC,C(0) =
θ2WE

4β3
+

λ2
CWC

2βκ(κ + β)
.

To compare these results to the nonlinear simulation we use the constants specified in Table 2.1,

where g = −αBn
4K . WE , Wi for i = {A, B, C} are treated as binary variables and set to 0 or 1 to turn

off and on extrinsic and intrinsic noise for comparison to Fig. 2.5. We assume WA = WB = WC
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for simplicity. Fig. 2.9 shows that the analytic solutions for cross correlations match the simulated

nonlinear system extremely well.
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Figure 2.9: Comparison of analytically calculated cross correlation expressions and simulated data.
Dots represent simulated data, while solid lines plot analytic solutions for the linearized model.

We have calculated the cross correlation functions for two types of regulation. This method can

be applied more generally to larger networks, provided perturbations due to noise are small enough

that linearization is a valid approximation.

2.5 Sensitivity Analysis

Two prominent features of the cross correlation curve for repression are the location of the dip, τreg,

and the magnitude of the dip, M (shown schematically in Fig. 2.10). We calculate how sensitive

these features are to variations in the system parameters. These results indicate which parameters

play a primary role in setting the features of the cross correlation function.

ττ
M

τreg

a b

Figure 2.10: Schematic of cross correlation function features (a) τreg and (b) M .

To find τreg for repression we take

dRa,b(τ)

dτ

∣

∣

∣

τ=τreg

= 0.
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In general it is not possible to find a closed form solution for τreg, however numerical root finding

methods can be applied. The nominal parameter values for sensitivity analysis are the same as those

used in the simulation. For a feature of the cross correlation function, y, we find the normalized

sensitivity

Si =
y(pi + ∆pi) − y(pi − ∆pi)

2 ∆pi y(pi)
.

For ∆pi = 0.05pi the parameteric sensitivities are shown in Table 2.2. Large values indicate that

the feature y is very sensitive to that parameter. The sign of the sensitivity indicates whether y will

get larger (Si > 0) or smaller (Si < 0) as the parameter is increased.

Parameter τreg M
β -108.5 2.39
g 18.9 -85.7
θ 11.3 5.5
κ 4.0 -12.4
λA -0.9 2.5
λB 0.0 0.0
λC 0.0 0.0

Table 2.2: Normalized Sensitivities

τreg is most sensitive to the parameter β, which sets the time scale of both protein decay and

extrinsic noise. As the cell cycle (log(2)/β) gets longer, the location of the dip moves further away

from zero. M is most sensitive to the local sensitivity g, which is negative for repression. As g

becomes less negative, the repressor has less of an effect on its target and the dip gets smaller. In

the extreme case when g = 0, which indicates an inactive or non-existent regulatory connection, the

dip disappears.

2.6 Transcriptional Cascades

It is interesting to ask what the limits are to using these cross correlation functions. For two

genetic components that are very far away, will the correlation eventually average to zero or will

measurement be the limiting factor (it may be prohibitive to measure noisy signals in single cells for

long periods of time)? To explore this question we derived an expression for the cross correlation

function of a cascade of arbitrary length. The signals between the first and last element in the

cascade are compared. This type of question was asked in [39] where they built a synthetic cascade

to measure noise, and in [33] with a numerical study.
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x1 x4x3x2 xn
...

Figure 2.11: Cascade of length n. Interactions alternate between repressors (T-arrows) and activators
(normal arrows) to preserve the net repression effect.

The cascade shown in Fig. 2.11 is described by a system of linear equations:

ẋ1 = E + I1 − βx1

ẋ2 = E + I2 + g1x1 − βx2

ẋ3 = E + I3 + g2x2 − βx3

...

ẋn = E + In + gn−1xn−1 − βxn.

The Fourier transforms used in the cross correlation calculation are

x̃1 =
1

β + iω

(

Ẽ + Ĩ1

)

x̃n =

n
∑

k=1

1

(β + iω)n−k+1





n
∏

j=k

gj





(

Ẽ + Ĩk

)

where gn = 1. The full cross correlation expressions were calculated using an automated Mathemat-

ica script, given in Appendix A. In general, the Residue command in Mathematica is an efficient

way to calculate cross correlation functions.

Cross correlations from cascades with between two and eight elements are compared in Fig. 2.12.

Even for long chains of transcription factors we still see non-negligible correlation values. Thus, it

is likely that experimental limitations—such as the length of a movie—will restrict ability to see

distant temporal events. In addition, real genetic networks will have other inputs to intermediate

elements that may confound analysis.

2.7 mRNA dynamics

To this point we have only considered protein dynamics and have not considered regulation at the

mRNA level. Using analytic methods we can show that mRNA dynamics, and other fast time-scale

processes, can be neglected to a first approximation.

The systems we have considered so far are of the form

ṗB = −βpB + gppA + n,
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Figure 2.12: Cross correlation functions for different length cascades. Cross correlations are between
the signals x1 and xn for n = 2, 3, ... 8. g = 0.02 where gn = 1 and gi = −g for odd i and gi = g
for even i.

where pA and pB are the input and output protein concentrations, respectively, gp is the local

sensitivity, and n is a grouped noise term. The Fourier transform of pB is

p̃B =
1

β + iω
(gpp̃A + ñ).

Extending this model to include mRNA dynamics (as in [23], using a linearized form of the equa-

tions), we have

ṁB = −βmmB + gmpA + nm

ṗB = −β(pB − mB) + np,

where mB is the mRNA concentration and nm and np are noise in the mRNA and protein production

processes. Taking the Fourier transforms we find

p̃B =
1

β + iω

(

βgm

βm + iω
p̃A + ñ

)

,

where we have grouped all the noise terms into n.

Comparing these two equations, as long as

gp ≈ βgm

βm + iω

we can ignore the mRNA dynamics. If both models have the same steady-state behavior (iω = 0)

then gp = βgm/βm. The protein lifetime is β = 0.0116 1/min, based on a 60 minute cell cycle

time. mRNA lifetimes, in contrast, are on the order of 2 minutes, or βm = 0.3466 1/min [40]. Thus,

the protein dynamics are 30 times slower than the mRNA dynamics and are thus expected to be
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dominant in determining the system dynamics. As long as the mRNA dynamics are significantly

faster than the protein dynamics it is reasonable to approximate the system using only the protein

model.

2.8 Degenerate Cross Correlation Functions

There is not a unique relationship between the shape of a cross correlation function and the network

architecture that generated it. Here, we explore two classes of networks that result in degenerate

cross correlation functions. In these situations, two cross correlations look similar or identical even

though they are the result of different network architectures.

2.8.1 Redundant Network Elements

Consider the network diagram shown in Fig. 2.13, assuming that network connection and expression

properties are identical for the links A-B and A-C. Proteins B and C are redundant network

elements because they are controlled by the same input, A, and extrinsic noise affects them in the

same way. Thus, in the extreme case where only extrinsic noise is present, B(t) and C(t) will be

identical. Consequently, the cross correlation function RB,D(τ) = RC,D(τ).

A

D

CB

Figure 2.13: Network with redundant components

Intrinsic noise helps to discriminate between RB,D(τ) and RC,D(τ) because intrinsic noise in

C propagates to D causing additional time-lagged correlation. Intrinsic noise in B, because it is

uncorrelated with noise in D, will not have the same effect.

Analytic solutions for both cross correlation functions are summarized by

RB,D(τ) = E{F−1[f∗
BefDe + f∗

BAfDA]}

RC,D(τ) = E{F−1[f∗
CefDe + f∗

CAfDA + f∗
CCfDC ]},

where fi,j is the Fourier transform of the differential equations describing the dynamics of protein j

in response to noise from i, and e is extrinsic noise. Assuming the network connections are identical
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for A-B and A-C we find the difference between the two cross correlation functions

RC,D(τ) − RB,D(τ) = E{F−1[f∗
CCfDC ]}.

This term represents how noise in C propagates to D, but is only non-zero if there is intrinsic noise

(or other inputs) affecting C.

Thus, mathematically RC,D(τ) 6= RB,D(τ) unless there is no intrinsic noise in C. In practice

it may be difficult to distinguish between the two cross correlation functions even if they are not

identical.

This simple example illustrates how redundant network elements can confound analysis. More

complicated networks will have similar problems any time there are two or more network elements

that are controlled by the same inputs. Intrinsic noise or other signals that affect individual genes

can help to distinguish correlations due to regulation from correlations due to redundant network

elements.

2.8.2 Parametric Degeneracies

A second class of degeneracies comes from uncertainty in parameters. For example, Fig. 2.14 shows

two cascades. If we measure RA,C(τ) is it possible to determine that there is a middle element in

the network or will the cross correlation function look like RX,Y (τ)? In this example extrinsic noise

A

C

B

X

Y

Figure 2.14: Example of a network showing parametric degeneracy

is helpful in discriminating between the two cascades. In the two-step cascade, extrinsic noise affects

A, B, and C, and thus enters into the cross correlation function in three ways, while in the one-step

cascade it only enters twice.

If we consider the limiting case where only intrinsic noise is present there are still ways adjust

parameters to make the two cross correlation functions look nearly identical. For example, if B

degrades quickly, but the net strength of the network is the same as in X-Y it is possible to choose

parameters that result in very similar cross correlation functions (Fig. 2.15).
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Figure 2.15: Cross correlation functions for two cascades with degenerate parameters. Simulation
parameters are βx = βy = βa = βc = 1/60 mins−1, βb = 1/5 mins−1, gxy = gabgbc = −0.01, Wi = 1.

In this example the intrinsic noise-only dynamics are described by

ȧ = −βaa + ηa

ḃ = −βbb + ηb + gaba

ċ = −βcc + ηc + gbcb

ẋ = −βxx + ηx

ẏ = −βyy + ηy + gxyx

where intrinsic noise has been approximated by white noise and parameters are given in the figure

caption.

Since biochemical parameters are often unknown or uncertain there are many possible situations

where the shape of two cross correlation functions may look very similar.

2.8.3 Implications for Network Identification

Even though the cross correlation function does not uniquely determine the network architecture

and parameters that generate it, it is still a useful tool. In particular, the cross correlation function

can be used as a sensitive measure of network activity or it can suggest possible links in networks

that are only partially mapped. Indeed, much of our knowledge about biochemical regulation comes

from correlation-based reasoning and including temporal measurements extends these tools.
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Chapter 3

Correlated Noise in a Synthetic

Gene Circuit Reveals Regulation

Simulations and analysis in the previous chapter are based on parameters for the λ cI system. Here,

we test those predictions experimentally by building a synthetic circuit using the λ cI repressor and

other characterized circuit elements in E. coli bacteria. The synthetic circuit uses three fluorescent

proteins so that noisy gene expression can be monitored with time-lapse microscopy. To apply the

analysis methods in the previous chapter, the cross correlation calculation is extended to allow for

branched data where all progeny originate from a single ancestor. Experimental cross correlation

curves show features that were predicted in simulation and results are tested further by comparing

two different noise backgrounds to study the relative effect of extrinsic and intrinsic noise.

3.1 Synthetic Construct

We built a synthetic gene circuit with one transcription factor and three fluorescent proteins (Fig. 3.1).

A protein fusion of the transcription factor λ cI and yellow fluorescent protein (YFP) represses

production of red fluorescent protein (RFP), which is under the control of a variant of the λ PR

promoter, OR2∗ [41]. Cyan fluorescent protein (CFP) is controlled by a strong independent consti-

tutive promoter, based on the σ70 consensus sequence. The construct was transformed into E. coli

strain MG1655Z1, a derivative of MG1655 that overexpresses LacI [42]. The promoter for cI-YFP

is controlled by LacI, which can be inactivated by the inducer IPTG. Thus, inducer concentration

can be adjusted to place the mean cI-YFP concentration in an active regulatory range.

Two versions of this construct were built: (1) A chromosomally integrated version (single copy)

and (2) a low-copy plasmid version (∼10 copies). Fig. 3.1 shows the plasmid map; integration details

are discussed in Section 3.6.2.

The design of this circuit is based upon work by R. Sidney Cox on a similar circuit, which is

studied in Section 3.5. The fluorescent proteins are oriented to minimize read-through from one gene
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to the next. In addition, multiple terminators are placed in between genes to stop transcriptional

read-through. Each promoter in the circuit is bracketed by unique restriction sites to allow for

easy interchange of promoters. A kanamycin antibiotic resistance marker is included to select for

bacteria that contain the synthetic construct. In the chromosomally integrated version, the region

from the kanamycin resistance marker through the end of cI-YFP was integrated into the galK site

of MG1655Z1. The plasmid version uses a low-copy origin of replication, SC101 [42].

CFP

RFP

cI YFP fusion

kanR

SC101

Pσ70

POR2*

PLlacO1

pNS2-σVL

7.5 kb

Figure 3.1: Plasmid version of the synthetic gene circuit. Colored arrows are genes, small black
arrows are promoters. Black boxes indicate several terminators placed next to each other. The
plasmid is a 7,500 base pair loop of DNA that replicates independently inside the cell.

A schematic representation of how noise affects the circuit is shown in Fig. 3.2. Each individual

gene had intrinsic noise associated with it, while extrinsic noise affects all genes.

Pσ70PR (OR
2*)

cI-yfpPLlac0-1

Extrinsic

Noise

Intrinsic

Noise

Intrinsic

Noise
rfp cfp

Intrinsic

Noise

Figure 3.2: Noise sources affecting the three-color circuit.
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3.2 Static Data

To quantify the behavior of the gene circuit in response to the inducer IPTG we took snapshots of

individual cells and measured expression of the three fluorescent proteins (Fig. 3.3). As expected,

CFP is relatively independent of IPTG, YFP increases as LacI is inhibited, and RFP decreases as

cI-YFP increases. In the movies discussed below we used between 10–15 µM IPTG concentrations

to ensure that cI-YFP was actively regulating RFP.
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Figure 3.3: Dose response curves for three-color circuit with IPTG. Data comes from single cells
(100–200 per data point), measured at 0, 10, 30, 100 µM IPTG. Error bars are the standard deviation
of the data. Background has been subtracted from all fluorescence data.

We plotted snapshot data to show raw correlations between genes before considering temporal

effects. Fig. 3.4 shows data from the plasmid and the chormosomally integrated versions of the

construct; each dot is data from a single cell. Comparing the unregulated genes (CFP and YFP)

with the regulated genes (RFP and YFP), a negative correlation can be seen due to repression of

RFP by cI-YFP. The pair of unregulated genes are positively correlated, even in the absence of any

regulatory elements linking them together. This correlation is the product of extrinsic noise in the

system. Moving to the plasmid case, correlation between all pairs of genes increases. Furthermore,

RFP and YFP on the plasmid show similar levels of correlation to CFP and YFP on the chromosome.

It is clear that from these data alone it is not possible to infer the presence of regulation or details

about its strength and the time scale on which it occurs.
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Figure 3.4: Expression of RFP, YFP, and CFP in individual cells plotted against each other. Title
bars contain the correlation coefficient for these data. Plots are shown in log scale. Fluorescence
data are background subtracted, units are arbitrary.

3.3 Temporal Data

Cells were grown and imaged in three colors using automated time-lapse fluorescence microscopy.

A filmstrip from one movie of the chromosomally integrated circuit is shown in Fig. 3.5a. Although

cells are imaged in all three colors at once, the two filmstrips show YFP & RFP and YFP & CFP

separately for clarity. Note that pixels that contain equal levels of red and green appear as yellow,

while equal levels of blue and green appear cyan. Individual colors are shown in grayscale in the

right panel of Fig. 3.5a for a single time point. These images show strong anti-correlation between

RFP (red) and YFP (green), while CFP (blue) is expressed at a more homogeneous level across

all cells (see right panel of Fig. 3.5a). The expression of CFP does not appear to be linked to the

expression of YFP or CFP, consistent with the design of circuit. The appearance of spatially grouped

sub-populations of cells that display similar fluorescence states occurs because τreg exceeds the cell

cycle time, consistent with simulation predictions (Fig. 2.5) and observations in [36].

A filmstrip of the alternate plasmid-based construct is shown in Fig. 3.5b. We expect an increase

in extrinsic noise due to plasmid copy number fluctuations. Thus, the correlations between all three

colors should be higher than in the chromosomal case. Although anti-correlation between RFP (red)

and YFP (green) is visible, there is a marked increase in the number of yellow pixels, indicating
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Time (mins)
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YFP       RFP

YFP       CFP

Time = 330 mins
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Chromosome
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YFP       CFP
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YFP RFP
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Figure 3.5: Time-lapse movies of gene expression fluctuations in a synthetic genetic circuit. (a) Left
panels show filmstrip of cells with chromosomally integrated circuit. Note strong anti-correlation
between RFP (red) and YFP (green), and the lower correlation between CFP (blue) and YFP. Scale
bar, 5 µm. Right panel shows individual colors and phase images for t = 330 mins. Note anti-
correlation between RFP and YFP and the uniform expression of CFP. (b) Filmstrip of the same
circuit on a low copy plasmid shows increased variability in all colors. In particular, in the right
panel note increased variability of CFP relative to the chromosomal case. Colors and scale bar are
the same as in (a). Extended movies are shown in Appendix B.
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increased correlation between these two genes. Comparing the black and white panels for CFP

in Fig. 3.5a and b, the plasmid shows increased variability in this constitutive promoter over the

chromosomal case. The right panel also shows the effects of extrinsic noise, where cells that are

bright in one color tend to be bright in all three colors.

0 50 100 150 200 250 300 350
1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350
0

50

100

150

M
e

a
n

 R
F

P
 F

lu
o

re
s
c
e

n
c
e

 (
A

rb
it
ra

ry
 U

n
it
s
)

C
e

ll 
L

e
n

g
th

 (
P

ix
e

ls
)

Time (mins)

Figure 3.6: Mean (averaged over the cell) expression of RFP for all cells in a growing microcolony.
A single representative trace is highlighted in red. Data on cell length for this representative cell
lineage are shown in the bottom panel. Decreases in the cell length are cell division events. Note
that these decreases are not visible in the RFP data because it has been averaged by cell volume.

To analyze these data quantitatively, we used semi-automated image analysis software to extract

fluorescence intensities for individual cells across the lineage tree of a growing microcolony (Fig. 3.6).

These data show a wide diversity of expression levels at the end of the movie. A single trace is

highlighted in red and the corresponding cell length is shown in the bottom panel—variations in

gene expression are not strongly linked to the cell cycle. Typical time traces from a single cell lineage

for all three fluorescent genes are shown in Fig. 3.7. More variability is seen in the expression of

plasmid-based genes than in their chromosome-based counterparts, consistent with the enhanced

level of extrinsic noise. The same data shifted in time reveal temporal anti-correlation between

cI-YFP and RFP signals (Fig. 3.8).
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Figure 3.7: Typical lineage traces show noise in gene expression. Data are normalized by mean
intensity.
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Figure 3.8: Data are the same as in Fig. 3.7, however RFP data are shifted to reveal the delayed
anti-correlation. (chromosome: τreg = 100 mins, plasmid: τreg = 120 mins)
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3.4 Experimental Cross Correlations

3.4.1 Extension of the Cross Correlation Function to Branched Data

The cross correlation function was calculated using these temporal data. However, it was necessary to

introduce a modified formula for the cross correlation function to properly account for the branching

nature of the data. Fig. 3.9 illustrates the need for an extension to the traditional cross correlation

formula. In this example we start with one cell, which divides into two cells, and finally four cells.

Although we have four time-series measurements, some of the data between them are shared. Thus,

data from the trunk of the tree are counted four times, while data at the leaves are only counted

once. This is potentially problematic if the characteristics of the correlation at early times are

different from those at the end; the correlation expression will be heavily biased towards the early

data. To correct for the problem of over-counting data we introduced a modified expression for the

f

f0

f3

f2

f1

time

Counted

4x

Counted

2x

Counted

1x

Figure 3.9: Cross correlations on data with a tree structure need to avoid over-counting.

cross correlation function, Rf,g(τ), given by

Sf,g(τ) =



























1
N−|τ |

1
Ncells

[

Ncells−1
∑

i=0

(

N−τ−1
∑

n=0
f̃i(n + τ)g̃i(n)

)

−
Ncells−2

∑

i=0

(

ki−τ−1
∑

n=0
f̃i(n + τ)g̃i(n)

)] τ ≥ 0

Sg,f (−τ) τ < 0

Rf,g =
Sf,g(τ)

√

Sf,f (0)Sg,g(0)
. (3.1)

This expression has two terms: The first term is the standard expression for the cross correlation

function, averaged over the number of data traces (Ncells). The second term accounts for any

over-counting of data by subtracting data that have been counted more than once.

Ncells is the total number of cells at the final time point (four in Fig. 3.9) and ki is the branching
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point between traces fi and fi+1, described in further detail below. Other terms are the same as

defined in the original cross correlation expression given in Eqn. (2.16) except the mean subtraction

is extended to the branched situation using

f̃i = fi −
Ncells−1

∑

i=0

fi.

Fig. 3.10 further illustrates the data analysis process. The formula in Eqn. (3.1) assumes that the

numbering of the data traces is ordered in a manner so that, for all data, each pair of adjacent data

traces fi and fi+1 share as much data as possible. Fig. 3.10a illustrates numbering before correction.

A preprocessing step must be applied to renumber these data traces, as in Fig. 3.10b. The branching

points between data are listed on the x-axis.

f
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time

f2

f
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f4

Correct Lineage

Numbering

k0k1k2 k3 N
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Figure 3.10: Tree data must be preprocessed for optimal numbering. Here Ncells = 5, N = 9, k0 = 7,
k1 = 5, k2 = 2, k3 = 4.

3.4.2 Experimental Noise Correlations

Fig. 3.11 shows the resulting cross correlations for cases of active repression (cI-YFP and RFP) and

no regulation (cI-YFP and CFP). These functions displayed all features predicted by the model,

including a strong dip at a negative lag time due to repression, and positive correlation at zero lag

due to global noise in the unregulated case.

Comparing the chromosomal and plasmid-based constructs shows how the relative amplitude of

intrinsic and extrinsic noise affects cross correlation functions. Recall that copy number fluctuations

in the plasmid increase the effective extrinsic noise level for the genes in the circuit, and reduce

the relative importance of intrinsic noise, whose uncorrelated fluctuations average out. Comparing

Figs. 3.11a and b shows that the amplitude at τ = 0 is increased on the plasmid relative to the chro-

mosomal construct in both the regulated and unregulated case, reflecting simultaneous correlations.

These results confirm model predictions, and demonstrate that regulation can be discriminated even
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Figure 3.11: Experimental cross correlation functions for chromosomal and plasmid-based circuits.
Chromosomal data are averaged over n = 5 independent movies (with 100–200 cells per microcolony
upon movie completion), n = 6 movies for plasmid data. Error bars show standard error of the
mean. (a) Cross correlation functions RY FP,CFP (τ) (blue circles) and RY FP,RFP (τ) (red circles)
and model fits (dashed black line) for the chromosomally integrated construct. For the model fit
to the chromosomal construct, g = −0.01, WE/WI = 4.5, and αB = 1.7. (b) Cross correlation
functions for the plasmid-based construct. For the model fits, g = −0.01, WE/WI = 1.7, αB = 0.5.
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when extrinsic noise amplitudes are large.

The model fits shown in Fig. 3.11 were generated using MATLAB optimization software to mini-

mize the difference between experimental and analytical cross correlation expression from Eqns. (2.26)–

(2.26), taking into account standard errors for experimental data points. Three parameters were fit:

g, the derivative of the gene regulation function evaluated at the steady-state repressor concentra-

tion (see Chapter 2); WE/WI , the ratio of extrinsic to intrinsic noise; and αB, the rate of protein

production at steady-state. All other parameters are listed in Table 2.1.

The autocorrelation curves, Rx,x(τ), can also be calculated using these experimental measure-

ments. By using the analytic methods described in Chapter 2 we can calculate expressions for the

autocorrelation for the two extreme cases where only extrinsic or intrinsic noise is present. Since our

system is influenced by both noise sources, we expect the actual data to fall within these theoretical

bounds. With only extrinsic noise acting on a signal x(t) we model gene expression by

ẋ = −βx + E

Ė = −βE + ηe.

Using the analytic methods described in Chapter 2 we find the normalized autocorrelation expression

Rext
x,x(τ) = exp−β|τ | (1 + β|τ |) .

With only intrinsic noise the model is

ẋ = −βx + Ix

İx = −κIx + ηx,

finding the normalized autocorrelation to be

Rint
x,x(τ) =

κ exp−β|τ |−β exp−κ|τ |

κ − β
.

Note that if κ ≫ β this expression simplifies to exp−β|τ |, as in [36].

The autocorrelation curves for the plasmid data (Fig. 3.12) are bounded by the theoretical limits

for autocorrelations due to solely extrinsic or intrinsic noise.

3.5 Alternative Construct

These cross correlation calculations were applied to data from a similar three-color circuit that

was built by R. Sidney Cox. The goal of building this circuit, shown in Fig. 3.13, was to create
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Figure 3.12: Autocorrelation curves for the plasmid data and theoretical noise limits. The parameters
β = log(2)/Tcc and κ = log(2)/Tint are listed in Table 2.1. Error bars are standard error.

a construct for easy measurement of gene expression from three promoters, P1, P2, and P3. To

test properties of the circuit, several well-characterized promoters, TetR, LacI, and a combinatorial

promoter with LacI and AraC, were placed in the construct. Cox was able to measure cross-talk

between the promoters, read-through between genes, and measure noise under different levels of

induction for each promoter (R. S. Cox, personal communication).

Although certain features are discernible from standard correlations between genes, temporal

correlations contain more information. Fig. 3.14 shows (1) higher correlation between YFP and

RFP than the other pairs of genes due to the co-regulation by LacI, (2) correlations between YFP

and CFP and CFP and RFP are similar in magnitude and are the result of extrinsic noise in the

system, (3) dynamics governing CFP expression and regulation are slower, causing extended periods

of positive correlation, (4) all three curves are centered at zero, indicating that no uncharacterized

regulation is present.

3.6 Methods and Characterization

3.6.1 Bleaching Times

We measured bleaching times for each of the three proteins in the new synthetic construct. Fig. 3.15

shows the response of fluorescent proteins to prolonged exposure to measurement conditions. These

data were gathered by preparing agarose pads with dense cells on them and exposing them to

fluorescent light for 10 minutes. After each minute, a snapshot was taken of the cells in all three

colors. Exposure times of these measurement snapshots were short—typically less than a second—

and are not expected to significantly affect the measurements.

Cells in each column of Fig. 3.15 were bleached in a single color. Rows are measurements of the



40

T  T

P1

cfp

P2

T  T T

yfp rfp

P3 P4

kan

T

LacI AraCTetR

SC101 plasmid

Escherichia coli MG1655Z1

a

b

Figure 3.13: Alternate three-color circuit. (a) Construct for measuring expression from three pro-
moters. Terminators are labeled “T,” purple dots are ribosome binding sites, blue lines indicate
unique restriction sites for cloning. (b) Promoters used in data analysis. The promoter on RFP is
a combinatorial promoter that is repressed by LacI and activated by AraC. Figure courtesy of R.
Sidney Cox.
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Figure 3.14: Cross correlations between all pairs of genes in the synthetic circuit shown in Fig. 3.13.
Error bars are standard error.
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three fluorescent protein levels in response to the bleaching. The plots along the diagonal show how

the measured signal degrades with time. YFP is the biggest concern for bleaching, with the signal

halving every 40 seconds. CFP is remarkably resistant to bleaching. Off-diagonal plots indicate how

fluorescence in one channel degrades due to exposure in a different channel. Again, YFP is sensitive

to bleaching even for exposure in other channels. For each set of data, a decaying exponential was

fit to the curve and the half-life of the protein is listed in the title of each subplot.

Exposure times in movie conditions are typically on the order of 1 second or less per color, taken

once every 10 minutes. At these levels bleaching is not expected to be a significant concern.

3.6.2 Methods

The plasmid pNS2-σVL (Fig. 3.1) was constructed by synthesizing a region starting with the

kanamycin promoter and ending just before cI-YFP (synthesis by Blue Heron). The sequences

for CFP and the red fluorescent protein mCherry were modified as in GFPuv116 of [43] in regions

immediately downstream of the start codon, and were codon-optimized for expression in E. coli. The

synthesized construct was cloned into the plasmid pZS21-cIYFP [19], replacing the Tet promoter

with the synthesized fragment.

The strong promoter on CFP was based on the σ70 consensus sequence:

5′ − aataattcTTGACAtttatgcttccggctcgTATAATacgtgcaatt− 3′,

where the capital letters highlight the location of the −35 and −10 boxes.

To integrate the construct into the chromosome, the region from the kanamycin resistance marker

through the end of cI-YFP was amplified using PCR with 50 base pair homology regions for galK

H1: 5′ − TTCATATTGTTCAGCGACAGCTTGCTGTACGGCAGGCACCAGCTCTTCCG− 3′

H2: 5′ − GTTTGCGCGCAGTCAGCGATATCCATTTTCGCGAATCCGGAGTGTAAGAA− 3′

included on the end of each primer. The construct was integrated into the galK region of MG1655Z1,

using the recombineering methods described in [44]. Insertion was verified with colony PCR.

Single colonies were inoculated in selective LB media and grown overnight. This culture was

diluted back 1:100 in 1/4 strength LB with 30 µg/ml kanamycin and between 10–15 µM IPTG

(varies for different movies). The cells were then grown to OD 0.1–0.2 and diluted back 1:100 in

M9 minimal media containing 0.2% glycerol, 0.01% Casamino Acids, 0.15 µg/ml biotin, and 1.5 µM

thiamine (we denote this media MGC). Cells were placed on 1.5% MGC low melting temperature

agarose pads containing 10–15 µM IPTG and grown at 37◦C for 3 hours to equilibrate to the inducer

conditions on the pad. The pad was then placed in 200 µl of MGC + IPTG and shaken to release the
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cells. These equilibrated cells were placed on a fresh pad for time-lapse imaging. The temperature

of the microscope chamber was kept at 32◦C for the duration of the movie. Images were taken every

10 minutes in phase and each of the three fluorescent color channels. Fluorescence analysis of cell

lineages with done with custom MATLAB software.



44

Chapter 4

Robustness in Feed-Forward

Loops: Clustering of Responses

Even for models of very simple networks, like those in Chapters 2 and 3, describing the system

requires many parameters. These parameters are often unknown or uncertain. Consequently, pre-

dicting the response of a gene circuit may require infering gene circuit function from data on circuit

structure alone. By using the feed-forward loop as a model system, this chapter introduces a tech-

nique for classifying gene circuit function given a set structure. Temporal responses of a comprehen-

sive set of feed-forward loop models are calculated for a range of parameter values. The responses

are clustered, and the relation between clusters and circuit types is analyzed. Some designs are

robust, producing one unique type of response regardless of parameter selection. Other designs may

exhibit a variety of responses, depending upon parameter values.

4.1 Background

As discussed in the Introduction, certain patterns of genetic regulatory interactions occur more

frequently than would be expected in randomized networks with similar connection statistics [11].

The feed-forward loop is one such design; an example is regulation of araBAD by both the local

transcription factor AraC and the global transcription factor CRP in E. coli (see review [45] and

references therein). Two other naturally occurring feed-forward loops are introduced in Chapter 5.

Given that there are recurring structural designs found in genetic regulatory networks, it is logical

to ask: (1) What is the function of a design and (2) why might one design be preferred over others?

First, even once a particular circuit configuration is selected, the function of the circuit is not

necessarily transparent. For the feed-forward loop, Mangan and Alon [12] explored several possible

circuit functions by using a mathematical model of the feed-forward loop where a signal Sx interacts

with X , and a different signal Sy interacts with Y . For a constant level of Sy, they noticed pulsing,

ON/OFF, and OFF/ON behaviors in gene expression levels in response to a step input in Sx.
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Their efforts produced a preliminary classification of responses for feed-forward loops, but in order

to thoroughly characterize feed-forward loop function, it is desirable to explore a larger range of

parameters, and to consider circuit types in which the same signal can interact with both X and Y .

Answering the second question—why some designs are preferred—requires an understanding of

performance criteria relevant to natural selection in gene circuits [46]. Broad classification of possible

circuit functions can eventually help clarify why certain circuit designs are better than others.

X

Y

Z

S

S

S +

0

-

Figure 4.1: Feed-forward loop network motif. X and Y represent transcription factors. Z is the
target gene. Activator connections are drawn as normal arrows and repressor connections are drawn
as arrows with T-shaped ends. Signal effects are shown with characters {+, -, 0}.

The feed-forward loop network motif, shown in Fig. 4.1, has two transcription factors, X and

Y , which control expression levels of a target gene Z. X additionally regulates transcription of Y .

Here, the response of the feed-forward loop refers to the expression level of Z as a function of time.

Signaling molecules also play a significant role in gene expression. Signals may be small-molecule

metabolites or other molecules that bind to the transcription factor, enabling or blocking its activity.

As in [12], we consider feed-forward loop models in which each of three genetic regulatory inter-

actions can take on one of two possible values (activator, repressor). Unlike their study, which only

considers changes in a signal that enables the global activity of X , we consider models in which a

signal may have one of three effects (+, -, 0, described below) on each genetic regulatory interaction.

Instead of considering just 8 (= 23), we consider 216 (= 2333) different ways of wiring a feed-forward

loop. Fig. 4.1 is just one example.

4.2 Mathematical Models

The general feed-forward loop is modeled using a pair of nonlinear differential equations:

Ẏ = αy
1

1 + (
SyxX
Kyx

)nyx

− βyY (4.1)

Ż = αz
1

1 + (
SzyY
Kzy

)nzy

1

1 + (SzxX
Kzx

)nzx

− βzZ. (4.2)

X is treated as a constitutively expressed protein, modeled here as a constant. αi is the regulatable

transcription rate and βi is the decay rate through degradation and dilution. Sij , discussed in further
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detail below, is a binary value that describes the signal effect. Kij is a threshold value, and the Hill

coefficient, nij , is negative if the connection is an activator and positive if it is a repressor.

Signal interactions are modeled by inserting a binary term, Sij ∈ {0, 1}, in the Hill function

argument. Sij takes on different values depending upon the level of signal in the environment and

the type of signal interaction. Table 4.1 is used to determine Sij .

Signal < Threshold Signal > Threshold
+ 0 1
- 1 0
0 1 1

Table 4.1: Sij Values

The nonlinear dynamics described in Eqns. (4.1)-(4.2) have a single equilibrium point

Yeq =
αy

βy

1

(1 + (
SyxX
Kyx

)nyx)

Zeq =
αz

βz

1

(1 + (
SzyYeq

Kzy
)nzy)

1

1 + (SzxX
Kzx

)nzx

.

Linearizing the system and moving the equilibrium point to the origin we find





ẏ

ż



 =





−βy 0

dŻ
dY |eq −βz









y

z



 ,

where y = Y − Yeq, z = Z − Zeq. Since the Jacobian matrix is lower triangular, the eigenvalues are

the diagonal matrix elements (−βy and −βz). For realistic biological systems βy, βz > 0, thus the

system has a stable equilibrium point with two real eigenvalues.

4.3 Simulations

The initial conditions for all simulations are the steady state values of Y and Z when the signal is

below the threshold level. We are interested in the dynamical behavior that results from changing

signal levels.

Fig. 4.2 shows the response of one representative feed-forward loop to changing signal levels. The

level of transcription factor Y increases to its steady-state value following a decaying exponential

curve. Nonlinear effects cause overshoot in Z before it reaches steady state.

There are seven parameters in Eqns. (4.1)–(4.2) that can be varied. The values of αi and βi

are selected randomly from a specified range ([0.1, 10] for data shown in the following section). To
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Figure 4.2: Sample response. Simulation results for levels of X , Y , and Z expression as a function of
time. The input signal and threshold are shown in the top plot. The configuration of the simulated
system is (X-Y, Y-Z, X-Z) = (activator, repressor, activator) and (Signal X-Y, Signal Y-Z, Signal
X-Z) = (+, +, +). Parameter values shown here are: αi = βi = Kij = 1, X = 10, |nij | = 2.

ensure log-uniform parameter selection, for each parameter, a random number, r, is mapped using

10(2r−1)log10Mαβ ,

where Mαβ is the maximum value αi or βi can take on (10 for this example). This mapping ensures

that we are equally likely to assign values less and greater than 1 to the parameters.

Additionally, the threshold parameters, Kij , are varied. The ratio of transcription factor con-

centration to the threshold value is the relevant quantity (e.g., X
Kyx

). These three ratios are allowed

to take on values less than 1, equal to 1, and greater than 1. All 27 possible combinations are

considered.

Recognizing symmetry in signaling effects reduces the size of this problem and decreases compu-

tation time. A circuit with signaling interaction type + will respond to an ON pulse in the signal

in the same way type − will respond to an OFF pulse.

4.4 Clustering Feed-Forward Loop Responses

Large numbers of feed-forward loops can be modeled with these techniques. For each of the 216

wiring patterns there are multiple threshold and rate parameters that are either unknown or un-

certain in biological systems. Broad range limits on parameter values can be assumed to make the

problem tractable, but the number of systems remains large.

Although a great number of feed-forward loops can be modeled, many of the feed-forward loop
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responses appear to be similar. We use an automated clustering algorithm to classify responses into

different categories based upon their similarity.

4.4.1 Clustering Algorithm

A greedy approximation algorithm was used to cluster responses [47]. The algorithm uses a metric

d(x, y) that characterizes the distance between x and y. Given an input of a set X of n points

x1, ... xn and a metric d on X , we want to find a set C of K points c1, ... cK ∈ X that minimizes

max
1≤i≤n

d(xi, C). In other words, we want to cluster the points into K different groups where the size

of the largest cluster is as small as possible.

This K-center clustering problem is NP-hard in general, but the approximation algorithm can

quickly compute clusters where the maximum error is within a factor of two of the actual solution

[47]. Thus, the maximum radius of all clusters is, at worst, two times larger than it needs to be.

The clustering algorithm is performed as follows: First, K points must be selected as cluster

centers. The first center, c1, is chosen at random. After that (i = 2, ... K) let ci be the point x of

X that maximizes d(x, {c1, ... ci−1}). This is equivalent to assigning all the remaining non-center

points to clusters, determining which is furthest from its center point, assigning that point as a new

center, and throwing the rest of the points back into the pool of non-centers. After all K centers

have been assigned, the remaining points xK+1, ... xn are assigned to clusters.

This algorithm is used to cluster feed-forward loop responses. Defining a distance measure, d, is

the primary complication in extending the clustering algorithm to the present task. Each response

is a vector z ∈ R
N where the vector contains the values of Z running from t = 0 to t = N − 1.

A correlation coefficient is used to measure the distance between two response vectors, z1 and

z2:

d(z1, z2) =
1

2
− 〈z1 − z̄1, z2 − z̄2〉

2 ‖z1 − z̄1‖2 ‖z2 − z̄2‖2
, (4.3)

where z̄ is the mean of z, brackets denote the dot product, and ||.||2 is the 2-norm. This distance

function is designed so that d(z1, z2) = 0 if z1 = z2 and d(z1, z2) = 1 if the two signals are very

different. Note that the distance function evaluates to zero for responses that differ only by a

multiplicative scaling factor and an offset.

4.4.2 Maximum Error versus Number of Clusters

The maximum error is defined as the largest cluster “radius,” max
1≤i≤n

d(xi, C). As the number of

clusters is increased, the maximum error goes down (Fig. 4.3). This value can be plotted as a

function of K, the number of clusters. At K = 1, we will have a large maximum error value unless
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the feed-forward loop responses are all nearly identical. For K = total # of responses, we will have

no error since every response is associated with its own individual cluster. If the intermediate curve

drops quickly then a small number of clusters can describe almost all of the data.

K = 4

Max Error

K = 5

a b

Max Error

Figure 4.3: Schematic diagram of maximum error for (a) K = 4 and (b) K = 5. As the number of
clusters increases, the maximum cluster error decreases.
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Figure 4.4: Maximum error versus the number of clusters. The results of clustering on two distinct
data sets are shown.

Fig. 4.4 shows that, even for large numbers of feed-forward loop responses, the maximum error

drops off rapidly with increasing cluster numbers.

4.4.3 Singular Value Decomposition

Since each cluster may contain a large number of responses – thousands in some cases – it would be

convenient to have a simple way to represent data. Singular value decomposition is used to generate

a representative trace that describes the most significant principal component of all of the responses

in a cluster.

Singular value decomposition has been used in other biological applications to compress data

into a simplified, more understandable form [48]. In this work the singular value decomposition of
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a matrix A ∈ R
M×N is taken:

A = USV T .

M is the number of feed-forward loop responses we are comparing and N is the number points in

time. S, U, and V come from the standard definition of singular value decomposition.

The first right singular vector (the first column of V ) is the singular vector associated with the

largest singular value. This vector describes the principal component of all of the response data

listed in the A matrix and provides a single representative response to associate with a cluster.

a

b

Time

Figure 4.5: Singular value decomposition example. a) Three representative Z(t) responses from one
cluster. b) The first right singular vector of a matrix containing all responses from that cluster.

An example of how singular value decomposition can be used to represent many responses is

shown in Fig. 4.5. Fig. 4.5a shows 3 responses plotted on top of each other. In reality, this is a small

subset of all responses that fall into this cluster type. The primary singular vector associated with

the complete set of responses is shown in Fig. 4.5b.

4.5 Results

The clustering approach associates the responses of the 216 feed-forward loop models with a small

number of distinct patterns. These patterns can be used to classify the behavior of an individual

circuit over a range of parameter values. The number of clusters it takes to describe a particular

circuit configuration can be used as a measure of how robust a circuit is to parameter variation.

4.5.1 Representative Cluster Traces

A relatively simple example is presented to illustrate the utility of clustering. The data shown in

Fig. 4.7 are the result of clustering on a set of 3,456 responses. All 216 possible circuit configurations
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are represented. Within each configuration only parameters αi and βi from Eqns. (4.1)–(4.2) are

varied.

K = 11 clusters is chosen as a cutoff point because the maximum error is acceptably small (see

Fig. 4.4). Beyond this point additional cluster types represent similar responses but with differing

temporal characteristics. For example, the rise times, settling times, and overshoot behavior may

be different for the additional cluster types. The utility of clustering lies in its ability to segregate

responses into broad class types, allowing for a qualitative understanding of possible circuit function-

ality. In particular, this method will be useful for considering circuits that have more complicated

responses (e.g., responses to input signals that are more complicated than a step function).

Fig. 4.7 shows representative singular vectors from each of the 11 clusters. These are the re-

sponses, Z(t), to the input signal shown in Fig. 4.6.

 

Threshold

Figure 4.6: Signal level as a function of time.

Figure 4.7: Representative responses (Z versus time) from each of 11 clusters. Letter labels are used
for reference in Table 4.2.

When the threshold values, Kij , are varied in addition to αi and βi the result is a large set

of functional responses that do not segregate as logically into individual clusters. Even when this

is the case, the clustering technique can still be applied to yield a qualitative picture of possible

responses. The case with 16,848 responses shown in Fig. 4.4 corresponds to a widely explored range
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of parameters, but the maximum error still drops off rapidly. If an acceptable error value is chosen,

clustering can be performed to within this margin of error.

In an exploration of the more complete parameter space, the cluster types seen in Fig. 4.7 are

preserved, but several additional clusters are added. For example, selecting K = 15 clusters produces

the four additional cluster types shown in Fig. 4.8.

Figure 4.8: Representative responses for cluster types added when additional parameters are varied.

Even when exploring the complete parameter space, some system configurations fall into the

same cluster type regardless of the parameter values selected for αi, βi, and Kij . The responses of

these genetic regulatory configurations are particularly robust to parameter changes.

4.5.2 Distributions of Responses

Table 4.2 lists cluster types for various system configurations. Each row corresponds to one particular

configuration: a set of genetic regulatory and signal interaction types. The columns labeled A–O

correspond to the cluster types labeled in Figs. 4.7 and 4.8. The numbers in the row tell which

cluster this system’s responses fall into. For some system configurations, varying parameter values

causes the response to fall into different clusters. The rows are normalized by the total number

of cases that were run. The entries shown in Table 4.2 are a subset from a larger table, given in

Appendix C.

Table 4.2’s entries do not indicate how “different” responses are within a cluster. Selecting the

number of clusters (Fig. 4.4) sets the upper bound on the error within each cluster. For the 15

cluster case, all responses within a cluster are within a distance of 0.18 of each other, as measured

by Eqn. (4.3).

The entropy of each response distribution in Table 4.2 is calculated by using the standard defi-

nition of Shannon entropy:

−
15
∑

i=1

p(i) log2 p(i),

where p(i) is the percentage of responses that fall into cluster i.

Rows which have a 1 associated with one cluster type and 0s for all the rest (entropy = 0) are
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SignalSignalSignal
X-YY-ZX-Z X-Y Y-Z X-Z A B C D E F G H I J K L M N O Entropy
act rep rep + + + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + + - 0.41 0 0.51 0.02 0 0 0 0 0.01 0 0 0 0 0.06 0 1.41
act rep rep + 0 + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + 0 - 0.38 0 0.51 0.03 0 0 0 0 0.01 0 0 0 0 0.07 0 1.49
act rep rep + - + 0.90 0 0 0 0.09 0 0 0 0 0 0 0 0.01 0 0 0.52
act rep rep + - 0 0 0.11 0 0 0.06 0 0 0 0 0 0.50 0 0.33 0 0 1.61
act rep rep + - - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + - 0.48 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0 1.00
act rep rep 0 0 + 0.99 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05

Table 4.2: Percentage of cluster types exhibited by circuit configurations. Subsection of a larger table, given in Appendix C. act = activator, rep =
repressor.
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particularly robust because parameter variations do not change the function of the system. Exact

entries in the table are dependent upon the details of parameter selection and the distance measure

used to cluster data.

Clustering provides a logical grouping of response types without prior knowledge of the behavior

that a network may exhibit. The response pattern of a cluster can then be interpreted in a biologically

meaningful way. For example, cluster A (Fig. 4.7) is associated with repressible circuits, where gene

expression decreases upon an increase in signal level. Similarly, cluster C is associated with inducible

circuits, where gene expression increases upon signal increase. For circuits associated with cluster

B, gene expression is unresponsive to changes in signal. Pulsed gene expression responses, both with

and without steady state changes, are seen in the remaining cluster types.

This chapter presents a method for identifying functional capabilities of a genetic network given

its structure. In our analysis of feed-forward loop models, responses were organized into a relatively

small number of clusters. Some feed-forward loop types show non-robust behavior, suggesting that

these circuits do not have unique information processing roles. This clustering technique allows

for such quick, qualitative intuition into the function of a system. Insight from clustering will be

particularly helpful if the state space and parameter space are even larger than those presented in

the feed-forward loop example here.

Although we consider models of feed-forward loops in isolation, in nature gene circuits are em-

bedded within the context of the entire molecular network of the cell. Nevertheless, considering

isolated gene circuit models can reveal insights into the cellular response to signals. Such models

have already proved to be useful in design of synthetic gene circuits, for example, in the design of

a toggle switch [49], an oscillator [40], and a circuit whose design may be selected to exhibit either

toggle switch or oscillatory behavior [50]. The present technique can help to narrow down which

system types and parameter ranges exhibit a desirable behavior, given a broad class of possible

designs.

In the future it will be interesting to explore the implications of robustness of responses in real

biological systems. In particular, is robustness necessarily a desirable trait for a genetic circuit? If

the circuit is locked into one role it may not be capable of evolving in alternative environments.

In addition, natural selection can act to enhance the populations of organisms that are sensitive,

rather than robust, to mutations in gene circuits. This process has been used previously to explain

patterns in the use of activator and repressor control in natural genetic regulatory interactions [51].

It would be interesting to consider tradeoffs involving robustness in the context of the evolution of

feed-forward loop configurations and other aspects of gene circuit design.
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Chapter 5

Noise in Feed-forward Loops for

Galactose Utilization

In this chapter we study two naturally occurring feed-forward loops that are involved in galactose

metabolism and transport. Despite having network structures that are capable of a producing

dynamic, temporally diverse responses we find, by measuring dynamic noise correlations, that in

their natural context these feed-forward loops are inactive. By perturbing genetic conditions the

activity can be restored.

5.1 Galactose Regulation

Although E. coli prefer glucose as a sugar source, if glucose is not present and other sugars are

available, cells will turn on the machinery to metabolize these alternate sugars. The galactose

network in E. coli contains regulatory circuitry that implements the logic if NOT glucose AND

galactose [52]. When this logic function is true there are two classes of genes that are turned

on: galactose metabolism genes and galactose transport genes, which are known collectively as

the gal regulon [53]. The metabolism and transport pathways are regulated by many of the same

molecular components and the network diagrams that describe which genes affect each other are

nearly conserved.

Genes for galactose metabolism and transport are turned on in response to two signals: cAMP

and galactose [52]. When glucose is not present, cAMP is produced in cells and binds to the global

regulator, CRP (cAMP Repressor Protein). The cAMP-CRP complex functions as an activator,

turning on genes in the galactose regulon. While cAMP acts as a positive signal, galactose acts as

a negative signal. Galactose binds to two repressor proteins, GalR (galactose repressor) and GalS

(galactose isorepressor). GalS and GalR repress transcription by modulating the α subunit of RNA

polymerase when it is bound to the promoter. The addition of galactose interrupts this process,

but the galactose-GalR/S complex does not necessarily dissociate from the promoter [54, 55]. Thus,
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the presence of both cAMP and galactose are necessary to turn on the metabolic and transport

machinery needed so that galactose can be used as a sugar source.

The three proteins CRP, GalR, and GalS control the majority of the genes responsible for the

metabolism and transport of galactose. The promoter structures of genes they regulate show many

similar features with minor variations from promoter to promoter (Fig. 5.1). GalS and GalR are

very similar proteins: 53% of their sequence is identical and 85% is similar. They belong to a larger

family of transcriptional repressors known as the GalR-LacI family. As a result of their similarity,

GalR and GalS bind to many of the same DNA binding sites and have similar features. For example,

both proteins are dimers [56], are autorepressed [52, 57], and are capable of repressing each other

[52]. In contrast to galR, galS is activated by the cAMP-CRP complex; galR has a putative CRP

binding site, but has repeatedly been shown to be unresponsive to CRP [52, 53]. Despite controlling

many of the same targets, the binding affinities of GalS and GalR for different genes in the gal

regulon are often quite specific [53, 56].

galE

mglB

P1

P2

galS

galR

GalR/GalS binding site

CRP binding site

Trascriptional start site

Figure 5.1: Promoter architecture for gal regulon genes. Binding sites for CRP (red boxes), GalR
and GalS (green boxes), promoters (black arrows), and the transcriptional start codon (yellow bar).
Many genes in the gal regulon have similar promoter and transcription factor binding sites with
minor variations. This figure is based upon a diagram from [52].

Below, we go through some of the particular players in the gal regulon and describe in detail

how they respond to CRP, GalR, GalS, and the signals cAMP and galactose.

5.1.1 Galactose Metabolism

There are six genes involved in the preliminary steps of galactose metabolism: galE, galT, galK,

galM, pgm, and galU [53]. The first four of these genes are arranged in an operon, galETKM. We

focus on control of this operon, referring to it as galE for concise notation.
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galE has two promoters, P1 and P2, that control its expression (Fig. 5.2). In vitro studies

have tested the roles of these promoters individually. In the absence of glucose, CRP activates

transcription from P1 and represses it from P2. GalR and GalS play the opposite role, repressing

transcription from P1 and activating it from P2 [52, 58]. In the presence of galactose, repression is

relieved and transcription occurs primarily from the P1 promoter. In vivo, GalR plays a primary role

in controlling expression of galE. There are two GalR binding sites OE (external) and OI (internal)

that bracket the P1 and P2 promoters, shown in Fig. 5.3. In the absence of galactose, GalR binds to

these two operators and causes the DNA to loop, obscuring the P1 and P2 promoters and inhibiting

transcription. Adding galactose interrupts looping and allows for transcription from P1 and P2 as

seen in the in vitro studies [59]. DNA looping by GalR requires formation of a structure known as

the repressosome, which consists of two GalR dimers—one bound to OE and one to OI—and HU,

a bacterial histone-like protein [60, 61]. Interestingly, operator mutation studies have shown that

OE and OI can be replaced by LacI binding sites and full repression is maintained, suggesting that

DNA looping is the major factor in repressing transcription of galE in the absence of galactose [58].

...cttgtgtaaacgattccactaatttattccatgtcacacttttcgcatctttgttatgctatggttatttcataccataagcctaatggagcgaattatgagagttctggttaccggtggtagcggttacattgg...

-10 box (P1)

-10 box (P2)

GalR/GalS

binding site

GalR/GalS

binding site

CRP

binding site

OE OI

Figure 5.2: Sequence of the promoter region for galETKM operon. -10 boxes (and extended
-10 boxes) for the two promoters are overlined (P1) and underlined (P2). Small arrows indicate
transcriptional start sites for the two promoters. Red text is GalR/GalS binding sites, green is
CRP.

galE

P1

P2

OE OI

a b

galR

HU

Figure 5.3: GalR repression by looping. (a) Unlooped orientation of the GalR binding operators,
OE and OI . (b) GalR dimers tetramerize, bringing together OE and OI and obscuring the promoter
region and transcriptional start site.

Although GalR appears to be the primary repressor of galE, GalS is also capable of regulating

its expression. When galR is deleted, galE can be further induced by the addition of galactose, a

phenomenon known as ultrainduction [62]. Deleting galS removes this effect. Several mechanisms

have been proposed to account for this redundant regulation. Weickert and Adhya [62] postulate

that GalS may serve as a backup control, alternatively, GalR and GalS may play different temporal

roles, or GalR and GalS may respond differentially to levels of galactose. Work by Mangan, et
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al. [63] suggests that GalS acts as part of a feed-forward loop to speed the response of galactose

metabolism genes after glucose depletion.

5.1.2 Galactose Transport

Four genes are primarily responsible for transporting extracellular galactose into the cell: mglB,

mglA, mglC, and galP [53]. A three-gene operon, mglBAC, makes up the high affinity galactose

transport system, which is active when extracellular galactose is low. mglB is involved in binding

galactose, while MglA and MglC are membrane-associated proteins. The high affinity system is

primarily regulated by GalS and only weakly controlled by GalR [52]. In contrast, the low affinity

galactose system is active when extracellular galactose is high and is primarily (likely soley) regulated

by GalR [56]. GalP, galactose permease, is the major player in the low affinity system and is

a membrane transport protein. Additional galactose transport systems exist, but are much less

efficient than mglBAC and galP [53]. We focus on the high affinity transport system, mglBAC,

abbreviated as mglB.

A single promoter controls expression of mglB. It contains a single GalR/GalS binding site and

a single CRP site. The structure of the promoter is very similar to the P1 promoter on galE and

has similar behavior: CRP activates expression in the absence of glucose, and GalR/GalS represses

expression in the absence of galactose. When galactose is added, repression is relieved and mglB

is expressed at higher levels. Unlike the galE promoter, because there is only a single GalR/GalS

binding site DNA looping is not used to inhibit transcription. galR deletion experiments had little

affect on mglB expression, while they had a strong affect on galE, suggesting that GalS plays a

primary regulatory role [62]. This is further supported by the co-localization of the galS and mglB

genes on the chromosome [53].

...gcgatgtaaccgctttcaatctgtgagtgatttcacagtatcttaacaatgtgatagctatgattgcaccgtttta...

-10 box

GalR/GalS

binding site

CRP

binding site

Figure 5.4: Sequence of promoter region for mglBAC operon. Labeling and symbols are consistent
with Fig. 5.2.

5.1.3 Structure of Regulatory Networks

Control of galE and mglB is implemented by regulatory circuits with very similar structures. Both

operons are the target of feed-forward loops involving CRP and GalS that respond to the signals

cAMP and galactose. Fig. 5.5 contains all of the regulatory connections for controlling galE and

mglB that have been proposed in the literature. Databases like RegulonDB [7] contain information
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in this form, which is a useful starting point for understanding regulation and cataloging all possible

interactions. However, as pointed out in [52], not all of the regulatory connections that are listed in

Fig. 5.5 are necessary to produce the cellular responses that are observed in vivo. In particular, we

show that the context in which the circuit operates is very important for determining its function.

cAMP-CRP

GalR

GalS

GalETKM MglBACgalactose

(fucose)

Figure 5.5: Regulatory network controlling expression of galE and mglB. Two feed-forward loops
are highlighted in red and green, with a common element colored in yellow. Solid lines represent
transcriptional regulation and dashed lines are non-transcriptional interactions.

5.2 Clustering of Type I Incoherent Feed-Forward Loop Re-

sponses

In Chapter 4 we saw that feed-forward loops can exhibit different types of responses depending upon

the regulatory circuitry, response to signals, and system parameters. Both the feed-forward loops

governing galactose metabolism and transport are Type I Incoherent feed-forward loops [12] that

respond to two signals. We consider these two signals independently, though the analysis can be

extended to multiple signals, as in [64]. Galactose does not affect the X-Y or X-Z connections, but

inhibits repression in Y-Z, thus, in the notation from Chapter 4, the influence of galactose is type

{0, −, 0}. cAMP has a positive effect on the X-Y connection and X-Z connection, but has no effect

on Y-Z, so the signal’s influence is {+, 0, +}.
Results from screening circuits of this type over a broad range of parameters are summarized in

Fig. 5.6. The response of the feed-forward loop to a pulse in galactose is very stereotyped: for all

combinations of parameters explored the circuit exhibits simple activation. A pulse in cAMP can

exhibit responses ranging from simple activation to accelerated response with overshoot in reaction to

an ON step in the signal. Activation without an accelerated response is the most common response,

but a significant fraction (20%) of the conditions tested showed pulsing behavior.
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A*

galactose

added

galactose

removed

100%

a b

80% 11% 9%

cAMP

added

cAMP

removed

Figure 5.6: Predicted behavior of feed-forward loop target gene (galE or mglB) expression in response
to pulses in (a) galactose and (b) cAMP. Numbers in title bars indicate what percentage of simulated
systems fell into this cluster. Letter labels correspond to Figs. 4.7 and 4.8. A∗ is the signaling inverse
of A; due to symmetry not all signaling interactions were simulated, thus a signal turning ON for
{0, −, 0} is the same as a signal turning OFF for {0, +, 0}.

These results indicate that pulses in cAMP are capable of accelerating the response of galE and

mglB, but galactose cannot elicit a similar temporal effect.

5.3 Context Sensitive Regulation

The literature reviewed in Sections 5.1.1–5.1.2 suggests some simplifications to the network diagram

shown in Fig. 5.5. The regulatory elements controlling expression of galE are shown in Fig. 5.7a,

where elements that exist, but do not play an active regulatory role are colored in gray. Fig. 5.7b

shows the active regulatory network for mglB.

a bcAMP-CRP

GalR

GalS

GalETKM MglBACgalactose

(fucose)

cAMP-CRP

GalR

GalS

GalETKM MglBACgalactose

(fucose)

Figure 5.7: Active and inactive regulatory circuitry for control of expression in (a) galE and (b)
mglB based on literature review. Inactive network components are shown in gray, all others play an
active role in regulation.

Adding an inducer can change the context in which a genetic circuit is active. We ran all tests

using mannose as a sugar source. This ensured that expression levels of galS, galE, and mglB were

high enough to be visible, due to activation by cAMP-CRP [63]. Preliminary experiments indicated

that mannose, as opposed to glucose, would allow for sufficient activation of several genes of interest
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(Fig. 5.8). As in [63], we used fucose, a non-metabolism analog to galactose, as an inducer. Like

galactose, fucose binds to GalS and GalR and inhibits ability to repress. Thus, when fucose is

present autoregulation and repression are relieved, further simplifying the circuit diagrams shown

in Fig. 5.7.
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Figure 5.8: Response of PgalS , PgalR, Pcrp, and PgalE to different sugars. Error bars show standard
deviations. Mannose and glucose are 0.8%, fucose is 20 mM, all cells were grown in M0 (see Meth-
ods). Expression levels were measured individually using plasmid-based promoter-GFP fusions from
[65]. Fluorescence data have been background subtracted. PmglB is expected to have measurable
expression levels based on measurements from [66].

To test the activity of the galE and mglB feed-forward loops we constructed a set of promoter-

fluorescent protein fusions for pairwise measurement of gene expression from galS, galE, and mglB.

Promoters for these genes are the same as in [65], placed upstream of the yfp and cfp genes used in

the synthetic circuit described in Chapter 3. The promoters and fluorescent proteins were oriented in

opposite directions (Fig. 5.9) to minimize read-through, and cloned next to a kanamycin resistance

marker for selection. The synthetic constructs were integrated into the intC region of the MG1655

chromosome and colonies were screened for correct insertion length and then verified with sequencing.
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PgalS PgalE

YFP CFPkan

PgalS PmglB

YFP CFPkan

a

b

Figure 5.9: Promoter fusions for measuring (a) PgalS and PgalE and (b) PgalS and PmglB .

5.4 Noise Correlations to Infer Activity

5.4.1 Theoretical Predictions

Promoter fusions, as compared to protein-gene fusions like that used in the synthetic circuit in

Chapter 2, reduce perturbation of endogenous circuit function, and allows for signal amplification

using strong ribosome-binding sites for reporter gene expression. Potential drawbacks are that

intrinsic noise is no longer measured directly and if the reporter dynamics differ significantly from

those of the gene of interest this will appear in the cross correlation function.

Fig. 5.10 illustrates how the expression levels of two promoters can be measured using fluorescent

reporter proteins. Protein A represses B, while F is a reporter for A, and G a reporter for B.

A

B

PA
gene A

PB
gene B

PA
gene F

PB
gene G

Figure 5.10: Schematic of promoter fusion for A repressing B. gene F and gene G are fluorescent
proteins that can be measured to report the expression levels of promoters A and B, respectively.

This system can be modeled using the linearized approximation by

ȧ = −βa + E + Ia

ḃ = −βb + gaba + E + Ib

ḟ = −βff + E + If

ġ = −βgg + gaba + E + Ig.
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Here, f and g model the reporter proteins, which are expressed in the same way as the original

proteins, a and b, but have different sources of intrinsic noise. The degradation rates βf and βg are

one example of a way that the reporter dynamics could differ from the system dynamics. Fig. 5.11

shows examples of cross correlation functions generated by reporter proteins that decay more quickly

than those in the original system. Cross correlation functions for the full system, assuming direct
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Figure 5.11: Differing reporter and system dynamics. (a) Protein F degrades more quickly than A,
B, and G. (b) Protein F degrades more quickly than A, B, and G. For all calculations gab = −0.0125,
θ = 0.064, and β = βf = βg = Log[2]/60 unless specified in the figure caption where the decay time,
Tdecay, is used to calculate βi = Log[2]/Tdecay.

measurement of proteins A and B are nearly identical to those generated when β = βf = βg.

We used the analytic methods discussed in Chapter 2 to calculate expressions for the cross

correlation function of a feed-forward loop. Fig. 5.12 shows the expected shape of the cross correlation

function with and without an inducer that inhibits repression by Y . The feed-forward loop was

modeled by using the linearized system of equations

ẋ = −βx + E + ηx (5.1)

ẏ = −βy + gxyx + E + ηy (5.2)

ż = −βz + gxzx + gyzy + E + ηz, (5.3)

with reporter proteins for Y and Z that have dynamics

ḟ = −βf + gxyx + E + ηf (5.4)

ġ = −βg + gxzx + gyzy + E + ηg. (5.5)

Parameter values are listed in the caption of Fig. 5.12. These equations represent a simplification over

those in Chapter 2 because we model intrinsic noise as white noise rather than using an Ornstein-

Uhlenbeck process with short correlation time. The equations in this form are simpler and give
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similar results, but it is straightforward to calculate the same expressions using the more accurate

intrinsic noise terms. In addition, for a complete match to the galactose feed-forward loops, the

model should include autorepression by Y . This can be modeled by adding the term gyyy to the

second equations for ẏ and ḟ . The cross correlation between Y and Z in the active feed-forward loop
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Figure 5.12: Theoretic predictions for cross correlation functions from galactose feed-forward loops
(a) without and (b) with fucose. Parameter values used in these calculations are gxy = g, gxz = g,
gyz = −g, where g = 0.0125, Wi = 1 for i = {x, y, z} and We = 0.064. For (b), gyz = 0.

is similar to the response of a simple repressor, but additional positive correlation that is symmetric

about zero lag is also present. The effect of X is extrinsic to both of the measured variables and

consequently acts very similarly to extrinsic noise.
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Figure 5.13: Theoretic predictions for cross correlations from alternate forms of regulation. All cross
correlations are between Y and Z, regulatory architectures are indicated in the figure. The third
gene circuit is an Incoherent Type 4 feed-forward loop [12]. Parameters are the same as those listed
in Fig. 5.12, except g = 0.0125 and for the third circuit gxy = −g and gyz = g.
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5.4.2 Experimental Data

We measured the cross correlation between reporters for galS (YFP) and galE (CFP) in the presence

and absence of fucose (Fig. 5.14). The cross correlation function without fucose has a peak at zero

and is symmetric. This indicates that galS and galE are affected by some of the same noise sources

and regulatory proteins, but, in these conditions, galS does not have a distinct regulatory effect on

galE. Adding fucose inhibits repression by GalS and GalR, but the cross correlation curves with and

without fucose are indistinguishable. These results suggest that, in the conditions we tested, GalS

does not play an active regulatory role in controlling expression of galE.
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RYFP,CFP(τ)

Figure 5.14: Cross correlations between PgalS -YFP and PgalE-CFP at 0 and 10 mM fucose. Error
bars are standard error averaged across multiple movies. n = 15 movies for 0 mM fucose, n = 8 for
10 mM fucose.

To test whether galE could be controlled by galS in some contexts, we created a galR deletion

strain with PgalS and PgalE reporters. The goal of this experiment was to explore the activity of the

CRP/GalS/GalE feed-forward loop in the absence of repression due to looping by GalR. Without

fucose the cross correlation between PgalS-YFP and PgalE-CFP is no longer symmetric and shows

clear signs of repression of galE by GalS (Fig. 5.15). There is still a strong peak at zero lag as a

result of extrinsic noise and noise in CRP, both of which are extrinsic to the measured signals. When

fucose is added, repression by GalS is inhibited and the cross correlation curves are symmetric, like

those seen in the presence of GalR. These data suggest that although GalS can play a regulatory

role in the control of galE by acting a repressor of its production, in natural contexts the dominant

regulatory role is played by GalR.

Note that the peak value of the cross correlation curves decrease when GalR is deleted (compare

Fig. 5.14 and Fig. 5.15). This indicates that the presence of GalR was adding to the correlation

between galS and galE.

Based on information in the literature, the CRP-GalS-MglB feed-forward loop should behave in

a simpler fashion since it lacks looping by GalR, which was a confounding factor in the GalE feed-

forward loop. Surprisingly, noise-generated cross correlations between PgalS -YFP and PmglB-CFP
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Figure 5.15: Cross correlations between PgalS-YFP and PgalE -CFP at 0 and 10 mM fucose in a galR

deletion strain of MG1655. Error bars are standard error averaged across multiple movies. n = 9
movies for 0 mM fucose, n = 9 for 10 mM fucose.

indicate that GalS and MglB are not strongly linked, even in the absence of fucose (Fig. 5.16). Thus,

it appears that in the cellular contexts that were measured for these experiments, neither galactose

feed-forward loop is actively regulating its target gene. Measurements in [66] suggest that GalS may

be active in other regulatory regimes.
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Figure 5.16: Cross correlations between PgalS-YFP and PmglB-CFP at 0 and 10 mM fucose. Error
bars are standard error averaged across multiple movies. n = 6 movies for 0 mM fucose, n = 5 for
10 mM fucose.

5.5 Methods and Characterization

5.5.1 Expression Levels from Static Data

Measurements from snapshot data are shown in Fig. 5.17. Addition of 10 mM fucose raises expression

levels of all three proteins by relieving repression by GalR and GalS. When GalR is deleted, expres-

sion of GalS and GalE increase further with fucose addition, but remain low without fucose—likely
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the result of residual repression by GalS.
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Figure 5.17: Expression levels of reporters for PgalS , PgalE , and PmglB under different induction
and genetic conditions. Data are background subtracted. Error bars show standard deviation over
all the individual cells measured in snapshots (typically 100-200 cells). + Fucose is 10 mM, all cells
are grown with mannose as a sugar source.

5.5.2 Methods

Promoter regions for galS, galE, and mglB were taken from plasmids in Alon Zaslaver’s reporter

library [65]. Promoter-fluorescent protein fusions were made with fusion PCR and verified by se-

quencing. The fusion PCR product was cloned into a vector with the kanamycin resistance marker

and a low copy (SC101) origin of replication (pZS2 [42]). The region from kanamycin through the

terminators following CFP was amplified using PCR with homology arms for intC

H1: 5′ − CCGTAGATTTACAGTTCGTCATGGTTCGCTTCAGATCGTTGACAGCCGCA− 3′

H2: 5′ − ATAGTTGTTAAGGTCGCTCACTCCACCTTCTCATCAAGCCAGTCCGCCCA− 3′,

and integrated into the MG1655 chromosome using recombineering [44].

galR was deleted from the MG1655 strain with chromosomally integrated PgalS-YFP/PgalE-CFP.

The chloramphenicol marker from pKD3 was amplified using the PCR primers described in [67] (P1:

5’ – GTGTAGGCTGGAGCTGCTTC – 3’, P2: 5’ – ATGGGAATTAGCCATGGTCC – 3’) with homology arms for

galR deletion from [68]:

H1: 5′ − TCCGTAACACTGAAAGAATGTAAGCGTTTACCCACTAAGGTATTTTCATG− 3′

H2: 5′ − TACTGGCGCTGGAATTGCTTTAACTGCGGTTAGTCGCTGGTTGCATGATG− 3′.

Cells were grown overnight in MO (M9 salts with 1 mM MgS04, 0.1 mM MgCl2, and 30 µg/ml

kanamycin) supplemented with 0.4% (w/v) glucose, 0.5% (v/v) glycerol, and 0.1% (w/v) Casamino
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acids (called MON in [63]). Cultures were diluted back 1:50 in MO + 0.8% mannose (and 10 mM

D-fucose, where applicable). After reaching OD 0.1–0.2, cells were further diluted and placed on a

pad made of the same MO + 0.8% mannose (and 10 mM D-fucose) media as the original dilution.

Cells were grown and imaged at 37◦C.

Image acquisition and analysis methods were identical to those described in Chapter 3.
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Chapter 6

Conclusion

6.1 Summary of Contributions

This thesis explores the idea of using noise as a tool for understanding gene regulation. Traditionally,

cellular noise was considered detrimental because it introduces variability that may prevent a biolog-

ical circuit from operating in a predictable fashion. As a result, most work focused on understanding

how cells mitigate the effect of noise [69, 70, 71, 72]. However, recent work has shown that cells may

use noise to their advantage: B. subtilis stochastically differentiate into cellular states that allow it

to resist conditions where it would otherwise be deprived of nutrients [8]. Viruses use noise to create

a bimodal population with two phenotypically distinct sub-populations as a mechanism to evade

the host’s response [73]. Yeast stress response genes are noisier than general housekeeping genes,

allowing a subset of the population to react quickly to environmental stresses [74]. And theoretical

work has shown that under certain conditions noisy signals may actually make the response of a

gene network highly sensitive [75]. Clearly cells must have mechanisms for dealing with noise and

there are many examples where stochastic properties have been exploited.

In this thesis we use noise as a tool for system identification, learning about the time scales,

strength, and activity of gene regulation. Cellular noise has not been considered as an engineering

tool before, but given its ubiquitous nature in biological systems it would be useful to exploit noise

for the purpose of learning about gene regulation. Because the noise occurs naturally it can act

as a minimally invasive form of perturbation, and allows for accurate measurements of the cellular

conditions that the organism normally experiences.

Here we have shown that noise can be used to measure whether regulation is active, and its tem-

poral properties, using the cross correlation function. We have developed a theoretical framework

for calculating the cross correlation between two noisy signals and have used this to predict the

properties of experimental systems, both synthetic and natural. We showed that a commonly occur-

ring pattern of regulation, the feed-forward loop, can exhibit a variety of temporal responses that

are dependent upon specific model parameters and cellular conditions. In two naturally occurring
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feed-forward loops, it was shown that neither is actively regulating its target.

6.2 Future Work

6.2.1 Biological Persistence of Excitation

Engineering work in system identification has proven that to properly identify parameters, a system

must be driven by a signal that is sufficiently rich [76]. Without perturbations there are properties

of the system’s behavior that may go undiscovered; with sufficiently rich inputs the full range of the

dynamics are explored. Work on persistence of excitation has shown that for each system parameter

to be identified there must be at least one unique frequency in the driving input [77]. White

noise, because it excites at all frequencies, has been used as an input [76]. Using noise internal

to the system has not been explored in an engineering context, but would be of great utility in

understanding biological systems, where significant levels of noise are commonplace.

In this work we do not have direct control over the noisy input to the system and can only

measure filtered versions of it. In addition, the frequency of these measurements is limited by

practical experimental considerations. It would be interesting to develop a theoretical framework

for understanding which model parameters can be identified given realistic sources of biological noise.

Given the success of the linearized model, we could start with work on persistence of excitation in

linear systems and develop a theory to describe when biological model parameters can be identified.

6.2.2 Network Identifiability

Work in control theory has developed methods for determining when systems are controllable and

observable [78]. It would be useful to extend these ideas to a theory of network identifiability. Given a

set of measurements and a network structure, an identifiable network is one where the measurements

can uniquely determine network parameters. Such a theory would clarify which signals are important

to measure and how many measurements are needed.

6.2.3 Monitoring Dynamic Changes

Measurements in this thesis were conducted in conditions where cells had equilibrated to their

surrounding environment. It would be interesting to extend these methods to dynamic environments

where protein levels are either switching between states, or exhibiting more complex behavior, such

as oscillations. In principle, noise-based inference methods can still be applied to dynamically

changing systems, though certain approximations about linearized systems may no longer be valid.

Experimentally monitoring dynamic behavior may be challenging, too, since the noise-based method

relies heavily on averaging across many sets of time-series data.
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It may not be necessary to use noise as the perturbing force if the system is already changing

dynamically. For example, a system that oscillates may explore enough regions of the state space

that noise is not required as a perturbing force.

6.2.4 External Inputs for System Identification

Recent work in microfluidics has made it possible to monitor individual cells while exposing them

to time-varying chemical stimuli [79, 80]. This is a more direct way of perturbing the system and

measuring its response. Although the cells may not be exposed to purely natural signals, the response

properties can be characterized more thoroughly. In addition, applying a known, prescribed input

can be an efficient way of learning about the response of a system.

6.2.5 Context-Sensitive Maps of Gene Regulation

Databases of gene regulatory interactions are a good source of information about gene network

topology, but lack information about the context in which regulatory elements are active. It will

be interesting to explore other examples of regulation to learn when they are active. Although this

presents an additional layer of information, the ultimate goal of reducing network structures to the

parts that are actually active has the potential to significantly simplify network analysis.
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Appendix A

Mathematica Code for Calculating

Cross Correlations of a Cascade

Clear[ps, NN]Clear[ps, NN]Clear[ps, NN]

NN = 8; //cascade length, don’t set less than 2NN = 8; //cascade length, don’t set less than 2NN = 8; //cascade length, don’t set less than 2

ps = {};ps = {};ps = {};
For[n = 2, n<=NN, n++,For[n = 2, n<=NN, n++,For[n = 2, n<=NN, n++,

Clear[fint, fext, z, w, t, p1, p2, RextL, RextG, RintL, RintG, fx1x1, fxnxn, Rx1x1, Rxnxn];Clear[fint, fext, z, w, t, p1, p2, RextL, RextG, RintL, RintG, fx1x1, fxnxn, Rx1x1, Rxnxn];Clear[fint, fext, z, w, t, p1, p2, RextL, RextG, RintL, RintG, fx1x1, fxnxn, Rx1x1, Rxnxn];

Clear[p1, p2];Clear[p1, p2];Clear[p1, p2];

gval = 0.02;gval = 0.02;gval = 0.02;

g = {−gval};g = {−gval};g = {−gval};
For[ii = 2, ii < n, ii++, gn = {gval}; g = Join[g, gn]];For[ii = 2, ii < n, ii++, gn = {gval}; g = Join[g, gn]];For[ii = 2, ii < n, ii++, gn = {gval}; g = Join[g, gn]];

g = Join[g, {1}];g = Join[g, {1}];g = Join[g, {1}];
Wi = 1; We = 0.005;Wi = 1; We = 0.005;Wi = 1; We = 0.005;

θ = 1; λ = 1;θ = 1; λ = 1;θ = 1; λ = 1;

β = Log[2]/60.0;β = Log[2]/60.0;β = Log[2]/60.0;

k = Log[2]/5.0;k = Log[2]/5.0;k = Log[2]/5.0;

fint[z ]:= 1
(β+iz)n(β−iz)

1
(k+iz)(k−iz)

(

∏n
j=1 g[[j]]

)

λ2Wie−izt;fint[z ]:= 1
(β+iz)n(β−iz)

1
(k+iz)(k−iz)

(

∏n
j=1 g[[j]]

)

λ2Wie−izt;fint[z ]:= 1
(β+iz)n(β−iz)

1
(k+iz)(k−iz)

(

∏n
j=1 g[[j]]

)

λ2Wie−izt;

fext[z ]:=
∑n

i=1
1

(β+iz)n−i+2

1
(β−iz)2

(

∏n
j=i g[[j]]

)

θ2Wee−izt;fext[z ]:=
∑n

i=1
1

(β+iz)n−i+2

1
(β−iz)2

(

∏n
j=i g[[j]]

)

θ2Wee−izt;fext[z ]:=
∑n

i=1
1

(β+iz)n−i+2

1
(β−iz)2

(

∏n
j=i g[[j]]

)

θ2Wee−izt;

RintG[t ]:= − i(Residue[fint[z], {z,−iβ}] + Residue[fint[z], {z,−ik}]);RintG[t ]:= − i(Residue[fint[z], {z,−iβ}] + Residue[fint[z], {z,−ik}]);RintG[t ]:= − i(Residue[fint[z], {z,−iβ}] + Residue[fint[z], {z,−ik}]);
RintL[t ]:=i(Residue[fint[z], {z, iβ}] + Residue[fint[z], {z, ik}]);RintL[t ]:=i(Residue[fint[z], {z, iβ}] + Residue[fint[z], {z, ik}]);RintL[t ]:=i(Residue[fint[z], {z, iβ}] + Residue[fint[z], {z, ik}]);
RextG[t ]:= − i(Residue[fext[z], {z,−iβ}] + Residue[fext[z], {z,−ik}]);RextG[t ]:= − i(Residue[fext[z], {z,−iβ}] + Residue[fext[z], {z,−ik}]);RextG[t ]:= − i(Residue[fext[z], {z,−iβ}] + Residue[fext[z], {z,−ik}]);
RextL[t ]:=i(Residue[fext[z], {z, iβ}] + Residue[fext[z], {z, ik}]);RextL[t ]:=i(Residue[fext[z], {z, iβ}] + Residue[fext[z], {z, ik}]);RextL[t ]:=i(Residue[fext[z], {z, iβ}] + Residue[fext[z], {z, ik}]);
RiG[t ]:=RintG[t]//FullSimplify;RiG[t ]:=RintG[t]//FullSimplify;RiG[t ]:=RintG[t]//FullSimplify;

RiL[t ]:=RintL[t]//FullSimplify;RiL[t ]:=RintL[t]//FullSimplify;RiL[t ]:=RintL[t]//FullSimplify;

ReG[t ]:=RextG[t]//FullSimplify;ReG[t ]:=RextG[t]//FullSimplify;ReG[t ]:=RextG[t]//FullSimplify;

ReL[t ]:=RextL[t]//FullSimplify;ReL[t ]:=RextL[t]//FullSimplify;ReL[t ]:=RextL[t]//FullSimplify;
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fx1x1[z ]:= 1
β−iz

1
β+iz

(

θ2We
(β−iz)(β+iz) + λ2Wi

(k−iz)(k+iz)

)

e−izτ ;fx1x1[z ]:= 1
β−iz

1
β+iz

(

θ2We
(β−iz)(β+iz) + λ2Wi

(k−iz)(k+iz)

)

e−izτ ;fx1x1[z ]:= 1
β−iz

1
β+iz

(

θ2We
(β−iz)(β+iz) + λ2Wi

(k−iz)(k+iz)

)

e−izτ ;

fxnxn[z ]:=
∑n

i=1

(

1
β−iz

1
β+iz

)n−i+1 (

∏n
j=i g[[j]]

)2 (

θ2We
(β−iz)(β+iz) + λ2Wi

(k−iz)(k+iz)

)

e−izτ ;fxnxn[z ]:=
∑n

i=1

(

1
β−iz

1
β+iz

)n−i+1 (

∏n
j=i g[[j]]

)2 (

θ2We
(β−iz)(β+iz) + λ2Wi

(k−iz)(k+iz)

)

e−izτ ;fxnxn[z ]:=
∑n

i=1

(

1
β−iz

1
β+iz

)n−i+1 (

∏n
j=i g[[j]]

)2 (

θ2We
(β−iz)(β+iz) + λ2Wi

(k−iz)(k+iz)

)

e−izτ ;

Rx1x1 = i(Residue[fx1x1[z], {z, iβ}] + Residue[fx1x1[z], {z, ik}]);Rx1x1 = i(Residue[fx1x1[z], {z, iβ}] + Residue[fx1x1[z], {z, ik}]);Rx1x1 = i(Residue[fx1x1[z], {z, iβ}] + Residue[fx1x1[z], {z, ik}]);
Rxnxn = i(Residue[fxnxn[z], {z, iβ}] + Residue[fxnxn[z], {z, ik}]);Rxnxn = i(Residue[fxnxn[z], {z, iβ}] + Residue[fxnxn[z], {z, ik}]);Rxnxn = i(Residue[fxnxn[z], {z, iβ}] + Residue[fxnxn[z], {z, ik}]);
τ = 0;τ = 0;τ = 0;

normval = 1;normval = 1;normval = 1;

If[Im[Sqrt[Rx1x1 ∗ Rxnxn]] < 0.0001, normval = Re[Sqrt[Rx1x1 ∗ Rxnxn]]];If[Im[Sqrt[Rx1x1 ∗ Rxnxn]] < 0.0001, normval = Re[Sqrt[Rx1x1 ∗ Rxnxn]]];If[Im[Sqrt[Rx1x1 ∗ Rxnxn]] < 0.0001, normval = Re[Sqrt[Rx1x1 ∗ Rxnxn]]];

Print[normval];Print[normval];Print[normval];

p1 = Plot[(ReG[t] + RiG[t])/normval, {t, 0, 1000}, PlotStyle → {Hue[n/NN]}];p1 = Plot[(ReG[t] + RiG[t])/normval, {t, 0, 1000}, PlotStyle → {Hue[n/NN]}];p1 = Plot[(ReG[t] + RiG[t])/normval, {t, 0, 1000}, PlotStyle → {Hue[n/NN]}];
p2 = Plot[(ReL[t] + RiL[t])/normval, {t,−1000, 0}, PlotStyle → {Hue[n/NN]}];p2 = Plot[(ReL[t] + RiL[t])/normval, {t,−1000, 0}, PlotStyle → {Hue[n/NN]}];p2 = Plot[(ReL[t] + RiL[t])/normval, {t,−1000, 0}, PlotStyle → {Hue[n/NN]}];
ps = Join[ps, {p1, p2}];ps = Join[ps, {p1, p2}];ps = Join[ps, {p1, p2}];
]]]

Show[ps, PlotRange → {{−1000, 300}, {−1, 1}}]Show[ps, PlotRange → {{−1000, 300}, {−1, 1}}]Show[ps, PlotRange → {{−1000, 300}, {−1, 1}}]
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Appendix B

Synthetic Circuit Movie Frames
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Figure B.1: Chromosome: YFP and RFP. 20 minutes between frames, starting with the first frame
at 10 minutes. All labeling and notation is the same as in Fig. 3.5.
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Figure B.2: Chromosome: YFP and CFP
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Figure B.3: Plasmid: YFP and RFP
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Figure B.4: Plasmid: YFP and CFP
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Appendix C

Full Table of Feed-Forward Loop

Cluster Percentages



8
0

SignalSignalSignal
X-YY-ZX-Z X-Y Y-Z X-Z A B C D E F G H I J K L M N O Entropy
act act act + + + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act act + + 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act act + + - 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act act act + 0 + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act act + 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act act + 0 - 0 0.11 0 0 0 0.56 0 0 0 0.06 0 0.28 0 0 0 1.57
act act act + - + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act act act + - 0 0 0.11 0 0 0 0.56 0 0 0 0.06 0 0.28 0 0 0 1.57
act act act + - - 0 0.11 0 0 0 0.56 0 0 0 0.06 0 0.28 0 0 0 1.57
act act act 0 + + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act act 0 + 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act act 0 + - 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act act act 0 0 + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act rep + + + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act rep + + 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act rep + + - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act rep + 0 + 0 0 0.89 0 0 0 0 0 0 0.09 0 0 0 0 0.02 0.59
act act rep + 0 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act rep + 0 - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act rep + - + 0 0.06 0 0 0 0.61 0 0 0 0.06 0 0.28 0 0 0 1.41
act act rep + - 0 0 0.11 0 0 0 0.56 0 0 0 0.06 0 0.28 0 0 0 1.57
act act rep + - - 0 0.11 0 0 0 0.56 0 0 0 0.06 0 0.28 0 0 0 1.57
act act rep 0 + + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act rep 0 + 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act rep 0 + - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act act rep 0 0 + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table C.1: Percentage of Cluster Types Exhibited By Circuit Configurations (Page 1 of 4)
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SignalSignalSignal
X-YY-ZX-Z X-Y Y-Z X-Z A B C D E F G H I J K L M N O Entropy
act rep act + + + 0 0 0.80 0 0 0 0 0 0.09 0 0 0 0 0.11 0 0.93
act rep act + + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep act + + - 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep act + 0 + 0 0 0.80 0 0 0 0 0 0.09 0 0 0 0 0.11 0 0.93
act rep act + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep act + 0 - 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep act + - + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep act + - 0 0 0.11 0 0 0.06 0 0 0 0 0 0.50 0 0.33 0 0 1.61
act rep act + - - 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep act 0 + + 0 0.01 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0.05
act rep act 0 + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep act 0 + - 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep act 0 0 + 0 0.01 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0.05
act rep rep + + + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + + - 0.41 0 0.51 0.02 0 0 0 0 0.01 0 0 0 0 0.06 0 1.41
act rep rep + 0 + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep + 0 - 0.38 0 0.51 0.03 0 0 0 0 0.01 0 0 0 0 0.07 0 1.49
act rep rep + - + 0.90 0 0 0 0.09 0 0 0 0 0 0 0 0.01 0 0 0.52
act rep rep + - 0 0 0.11 0 0 0.06 0 0 0 0 0 0.50 0 0.33 0 0 1.61
act rep rep + - - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
act rep rep 0 + - 0.48 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0 1.00
act rep rep 0 0 + 0.99 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05

Table C.2: Percentage of Cluster Types Exhibited By Circuit Configurations (Page 2 of 4)
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SignalSignalSignal
X-YY-ZX-Z X-Y Y-Z X-Z A B C D E F G H I J K L M N O Entropy
rep act act + + + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act + + 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act + + - 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act + 0 + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act + 0 0 0.98 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0.17
rep act act + 0 - 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act + - + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act + - 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act + - - 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act 0 + + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act 0 + 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act 0 + - 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act act 0 0 + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep + + + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep + + 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep + + - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep + 0 + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep + 0 0 0.98 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0.13
rep act rep + 0 - 0.29 0 0.50 0.02 0 0 0 0 0.05 0 0 0 0 0.14 0 1.74
rep act rep + - + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep + - 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep + - - 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep 0 + + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep 0 + 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep 0 + - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep act rep 0 0 + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table C.3: Percentage of Cluster Types Exhibited By Circuit Configurations (Page 3 of 4)
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SignalSignalSignal
X-YY-ZX-Z X-Y Y-Z X-Z A B C D E F G H I J K L M N O Entropy
rep rep act + + + 0 0.01 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0.05
rep rep act + + 0 0.96 0 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0.23
rep rep act + + - 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep act + 0 + 0 0.01 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0.05
rep rep act + 0 0 0 0.02 0.98 0 0 0 0 0 0 0 0 0 0 0 0 0.17
rep rep act + 0 - 0.94 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0.31
rep rep act + - + 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep act + - 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep act + - - 0.94 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0.31
rep rep act 0 + + 0 0.01 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0.05
rep rep act 0 + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep act 0 + - 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep act 0 0 + 0 0.01 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0.05
rep rep rep + + + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep rep + + 0 0.96 0 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0.23
rep rep rep + + - 0.47 0 0.51 0 0 0 0 0.02 0 0 0 0 0 0 0.01 1.16
rep rep rep + 0 + 0.52 0.03 0.28 0 0 0.02 0 0 0 0 0 0.01 0 0 0.14 1.74
rep rep rep + 0 0 0 0.02 0.98 0 0 0 0 0 0 0 0 0 0 0 0 0.13
rep rep rep + 0 - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep rep + - + 0.48 0 0.50 0 0 0 0 0 0 0 0 0 0 0 0.02 1.11
rep rep rep + - 0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep rep + - - 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep rep 0 + + 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep rep 0 + 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rep rep rep 0 + - 0.49 0 0.51 0 0 0 0 0 0 0 0 0 0 0 0 1.00
rep rep rep 0 0 + 0.99 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05

Table C.4: Percentage of Cluster Types Exhibited By Circuit Configurations (Page 4 of 4)
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