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ABSTRACT 

Feature selection from measured data aims to extract informative features to reveal the 

statistic or stochastic mechanism underlying the complicated or high dimensional original 

data. In this thesis, the feature selection problem is probed under two situations, one is 

pattern recognition and the other is ultra-wideband radar signal analysis. 

Classical pattern recognition methods select features by their ability to separate the multiple 

classes with certain gauge measure. The deficiency in this general strategy is its lack of 

adaptation in specific situations. This deficiency may be overcome by viewing the selected 

features as a function of not only the training samples but also the unlabeled test data. From 

this perspective, this thesis proposes an adaptive sequential feature selection algorithm 

which utilizes an information-theoretic measure to reduce the classification task complexity 

sequentially, and finally outputs the probabilistic classification result and its variation level. 

To verify the potential advantage of this algorithm, this thesis applies it to one important 

problem of neural prosthesis, which concerns decoding a finite number of classes, intended 

reach directions, from recordings of neural activities in the Parietal Reach Region of one 

rhesus monkey. Experimental results show that the classification scheme of combining the 

adaptive sequential feature selection algorithm and the information fusion method 

outperforms some classical pattern recognition rules, such as the nearest neighbor rule and 

support vector machine, in decoding performance. 

The second scenario in this thesis targets developing a human presence and motion pattern 

detector through ultra-wideband radar signal analysis. To augment the detection robustness, 
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both static and dynamic features should be utilized. The static features reflect the 

information of target geometry and its variability, while the dynamic features extract the 

temporal structure among radar scans. The problem of static feature selection is explored in 

this thesis, which utilizes the Procrustes shape analysis to generate the representative 

template for the target images, and makes statistical inference in the tangent space through 

the Hotelling one sample 2T  test. After that, the waveform shape variation structure is 

decomposed in the tangent space through the principal component analysis. The selected 

principal components not only accentuate the prominent dynamics of the target motion, but 

also generate another informative classification feature. 
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CHAPTER 1   

INTRODUCTION 

1.1 Problem Statement 

 

Feature selection from measured data is a general problem which has numerous 

applications in diverse fields of science and engineering. Nowadays, as large and complex 

data sets become typical and usual, data gathering efforts are increasingly oriented towards 

extracting informative features that reveal the statistic or stochastic mechanism which 

generates the data. In this thesis, the feature selection problem is probed under two 

scenarios, which are pattern recognition and ultra-wideband radar signal analysis, 

respectively. In the following, the backgrounds for these two scenarios are reviewed. 

 

1.1.1 Adaptive Sequential Feature Selection 

 

Classical pattern recognition methods decompose the task of classifier design into four 

stages: data gathering, feature generation, feature selection, and classification/decision rule 

learning. Generally, the feature generation step transforms the training data, and the feature 

selection step selects a subset of features from the transformed coefficients, thus reducing 

the computational complexity of classification rule learning and retaining the 

discrimination ability as much as possible. Features are often selected by their ability to 
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separate the multiple classes with a certain gauge measure [Theodoridis and Koutroumbas, 

2006]. An optimal or suboptimal subset of features with the highest separability score is 

usually preferred. The selected feature set spans a subspace onto which the training data 

and test data are projected, and inside which the classification rule is trained and a final 

categorical recognition for the test data is made. There are deficiencies to this general 

approach in specific situations. Firstly, a feature may not necessarily be a good feature even 

when its separation score is high, but it would very likely be selected after the feature 

selection stage. For example, color is an excellent feature to distinguish diverse objects, but 

this feature becomes helpless in a dark environment. Especially this leads to a problem in 

one important application, neural signal decoding, in which case a single neuron or feature 

is very weak in terms of classification power. This means their separability scores are 

similar, therefore the difference between selected features and discarded ones may not be 

statistically significant. Secondly, classical feature selection depends on the set of training 

data. As a result, the feature selection process and the following decision rule learning 

process must start from scratch, if the pool of candidate patterns or the set of training 

samples changes. This adds a significant computational burden for some applications, such 

as neural signal decoding. The data generation mechanism for the neural signal is highly 

variable. To practically deal with the non-stationarity of the neural data, some laboratory 

simulations of neural prosthesis in non-human primates use a “moving window” where 

only the most recent , e.g. N 160=N , trials are used for the classifier training [Musallam 

et al., 2004]. To overcome these deficiencies, this thesis proposes a new adaptive sequential 

feature selection algorithm which simultaneously outputs a final probabilistic classification 
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result and its variation level. The point is that the selected feature can be a function of not 

only the training samples, but also of the unlabeled test data. The fact that features are 

selected adaptively balances the computation burden between the offline learning part and 

the online part, so that this new algorithm is relatively insensitive to re-instantiation of the 

data set in the moving window style and re-configuration of the parameters. 

 

The field of brain computer interface (BCI) aims to utilize the understanding of brain 

functionality and operating mechanisms to enable people to control external devices merely 

by thought. One important application of BCI techniques is to construct neural prosthetic 

systems which tap into the thoughts of millions of paralytic patients who are deprived of 

any motor abilities, but not cognitive functions. While the concept of translating neural 

activity from the brain into external control signals has existed for decades, substantial 

progress towards realization of such systems has been made only relatively recently 

[Musallam et al., 2004; Santhanam et al., 2006; Shenoy et al., 2003; Schwartz and Moran, 

2000; Wessberg et al., 2000; Isaacs et al., 2000; Donoghue, 2002; Nicolelis, 2001, 2002]. 

The construction of such a neuro-prosthetic system is not a small feat. The design and 

building of such an automatic mechanism involve disciplines ranging from neurobiology to 

diverse engineering branches. This thesis contributes a new technique to decode a finite 

number of classes, or intended “reach directions”, from recordings obtained from an 

electrode array implanted in the subject’s brain. Conceivably, one could use any known 

classification scheme to decode the neural signal. However, BCIs have several 

characteristics that challenge the classical classification schemes. Firstly, the real 

classification process should be performed in real time, e.g. within a few hundred 
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milliseconds so that the computer interface does not introduce delays between thought and 

response. Secondly, neural signals are variable and non-stationary, hence the training set 

data will have time-dependent statistics. Thirdly, the classes have considerable overlaps 

when conditioned on any selected feature. Lastly, although recordings from multiple 

neurons are typically available when using implanted electrode arrays, not all of the 

recorded neurons are well tuned to the task, and some of them may degrade their reliability 

as exterior conditions change, such as electrode and tissue migration. So how to utilize the 

information inside all the neurons efficiently and robustly is an important issue. This thesis 

shows that the application of the proposed adaptive sequential feature selection algorithm, 

together with an information fusion method, fulfills some of the challenges forementioned, 

and outperforms some classical pattern recognition rules in decoding performance. 

 

1.1.2 Feature Selection in Ultra-wideband Radar Signal Analysis 

 

As the explosive growth in the number of vehicles worldwide (800 million vehicles in 

global use), a large number of road accidents happen every year (1.2 million death a year. 

Among the fatal accidents, 65% of deaths involve pedestrians and 35% of pedestrian deaths 

are children) [Peden et al., 2004]. The issue of how to boost the vulnerable road user 

(VRU) safety has become critical for the automobile industry. The motivation behind this 

research topic is to augment VRU safety by developing the robust human presence and 

human behavior (walking, jogging, standing, et al.) classifier through the use of car loaded 

sensors. Ultra-wideband (UWB) impulse radar, which is characterized by its high range 

resolution, the ability of remote sensing, and the advantage of penetration into/around 
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obstacles, is one of the most promising sensors to accomplish this task. Although computer 

vision techniques can assist pedestrian detection, radar based techniques have some distinct 

advantages, such as detection power beyond stadia distance in foggy conditions or 

darkness, as well as the ability to see through obstacles or see around corners in advance. 

On the one hand, the ideal characteristics for UWB systems are its abundant information 

packing, precise positioning, and extremely low interference. On the other hand, in spite of 

recent experimental work, there is no satisfactory and systematized theory of UWB radar 

signal analysis available. The reason is that the process of signal transformation under the 

context of ultra-wide bandwidth is much more complex than its narrowband counterpart. 

Hence the well-known narrowband target recognition technique through Doppler shift 

effect [Richards, 2005] doesn’t apply in UWB systems. Novel methods must be developed 

for our applications. 

 

To prominently distinguish people from other targets and classify people’s behaviors, an 

automatic pedestrian detection system should incorporate as many informative clues as 

possible. Several prominent features serve this goal, and can be categorized as static 

features and dynamic features. The static features usually reflect the information of target 

geometry and its variation structure, while the dynamic features extract the temporal 

structure among a sequence of radar scans, such as how the radar waveforms evolve over 

time. Fusion of static and dynamic body biometrics will augment the performance of 

automatic human identification. This thesis researches how to extract a compact set of 

static features of the target to unravel the dominant statistical properties of the target 

images. Moreover, the projection of sequential target images onto the subspace spanned by 



6 
 

the selected features accentuates the prominent target motion patterns, such as the gait, and 

therefore provides a sound platform to explore the target dynamics. More concretely, a 

collection of radar data can be geometrically transformed to a cluster of points in a high 

dimensional space. But due to the redundancy in the data, the dominant variation structure 

of the data cluster resides in a much lower dimensional subspace. The main task of this 

feature selection problem is to generate the representative template for target reflected 

waveforms, locate the high information packing subspace, and explore their statistical and 

algebraic properties. The selected template or subspace should depend on the data set under 

study, because the radar waveform shapes and radar signal dynamics are highly distinct for 

different target geometry, orientation, or motion patterns. 

 

1.2 Contributions of the Thesis 

 

The thesis mainly studies the feature selection problem in two scenarios: pattern 

recognition and radar signal analysis. This study has been pursued through the following 

efforts: 

 

(1) Proposing an adaptive sequential feature selection algorithm. The point is that the 

selected features can be the function of not only the training data, but also the test data, and 

an information-theoretic criterion is used to make the sequential decision. This feature 

selection algorithm also unifies the final classification decision, and estimates the variance 

level of its probabilistic classification result. 
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(2) Applying the adaptive sequential feature selection algorithm to the problem of discrete 

neural signal decoding. The combination of the proposed algorithm and one information 

fusion method presents a new feature selection and classification scheme that is particularly 

well suited to neural decoding of a finite number of stimuli or command classes, as it 

fulfills many of the challenges that are specific to BCIs. 

 

(3) Introducing the framework of Procrustes shape analysis and tangent space inference to 

ultra-wideband radar signal analysis. Procrustes shape analysis is utilized to generate the 

representative template of radar range profiles, and the statistical shape inference is made in 

the tangent space of the unit size shape sphere through the Hotelling 2T  test. This 

framework provides a promising platform for extracting the static and dynamic features of 

the target, which are informative clues for automatic target recognition. 

 

(4) Analyzing the dominant data variation structure in the tangent space of the unit size 

shape sphere through principal component analysis. Moreover, by introducing principal 

component comparison, the similarity of two data variation structures can be quantified, 

hence providing another informative feature for target recognition. Shape variability 

analysis, together with Procrustes shape analysis, constitutes a more complete scheme to 

extract static features for the target. 
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(5) Proposing a blueprint classification scheme that utilizes all the features, static and 

dynamic, to make target identification more accurate and robust than using each type of 

features alone. 

 

1.3 Structure of the Thesis 

 

Chapter 2 proposes an adaptive sequential feature selection algorithm in detail. After that, 

two optimal properties of the algorithm are proved and its other practical characteristics are 

reviewed. To illustrate the usefulness of the proposed algorithm, the thesis compares it with 

one classical pattern recognition method, the nearest neighbor rule, through a simple 

simulation. 

 

Chapter 3 firstly describes the application background of neural decoding of a finite 

number of stimuli and its experimental paradigm. After that, Chapter 3 applies the adaptive 

sequential feature selection algorithm and one information fusion method, the product rule, 

to the practice of decoding two samples of neural recordings from the Posterior Parietal 

Cortex of a rhesus monkey. One sample has 4 target directions, and the other one has 8. 

Experimental results show that for both samples, the proposed classification scheme 

outperforms some classical recognition methods, such as the nearest neighbor rule and the 

support vector machine. 
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Chapter 4 firstly motivates the research topic of target identification through UWB radar 

signal analysis, provides a brief overview of the UWB system, and proposes several useful 

preprocessing skills that make radar data more amiable to further analysis. After that, the 

Procrustes shape analysis is utilized to generate the representative template for the target, 

and the statistical inference is carried out in the tangent space by Hotelling one sample 2T  

test. Furthermore, Chapter 4 uses principal component analysis to analyze the radar 

waveform shape variability in the tangent space, and measures the similarity between two 

data variation structures by comparing their corresponding principal components. 

Empirical tests show that the representative template and the data variation structure both 

are promising static features for target identification. 

 

Chapter 5 concludes the whole thesis by briefly summarizing the main points of the thesis, 

pointing to several problems that should be explored further in order to make the adaptive 

sequential feature selection algorithm and the information fusion method extend more 

rigorously. Moreover, Chapter 5 sketches a new radar target identification scheme based on 

both the static and dynamic features, and nails down several challenges that must be 

cracked to make such a scheme more efficient and robust. 
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CHAPTER 2 

ADAPTIVE SEQUENTIAL FEATURE SELECTION 

This chapter proposes a new adaptive sequential feature selection algorithm. After that, 

two optimal properties of the proposed algorithm are proved and its other practical 

points are remarked upon. To illustrate the usefulness of the algorithm and prepare for 

its application in neural signal decoding, this chapter compares it with one classical 

pattern recognition method, the nearest neighbor rule, through a synthetic simulation. 

The next chapter explores in more detail the application of this algorithm to the 

problem of neural signal decoding. 

 

2.1 Problem Statement 

 

The general classification problem that is addressed in this chapter can be stated as 

follows. Let  be a pair of random variables taking their respective values from 

and , where 

),( YX

, −MKdℜ }1,1,0{ M  is the number of classes or patterns. The set of pairs 

 is called the training set with 

 being i.i.d. samples from a fixed but unknown distribution 

governing . Let superscripts denote sample index and subscripts denote vector 

)},),,{( )()()2( nn YXY=

), )() nY

(,K(),)1( XY

(, )(nXK

),YX

, )2()1(X

,),)1( Y

(

nD

( 1(X
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components, then . Assume that the classes T
dXXXX ],,,[ 21 K= Y  take a prior 

distribution }1,,1,0),({ −== Mjj K

}1−

dℜ∈

YP

, MK

T
dx ]

. The goal is to find a mapping 

 such that an arbitrary unlabeled test data 

 can be classified into one of the 

,1,0{: →ℜg d

xxx = ,,,[ 21 K M classes, while optimizing 

some criterion. 

 

2.2 Background 

 

ZTo start, recall that the entropy of a discrete random variable, , is defined by 

Definition 2.1 [p13, Cover and Thomas, 1991] 

∑
ℑ∈

==−=
z

ZPZH ()( z))ZPz (log()                                    (2.1) 

where  is the alphabet set of ℑ Z , which has }),({ ℑ∈= zzZP  as its probability mass 

function (p.m.f.). This definition leads to the following result. 

 

Proposition 2.1 [p27, Cover and Thomas, 1991] 

log()(0 ZH ≤≤ )M  if M=ℑ  

 represents the cardinality (size) of set ℑ . Left equality holds if and only if 

 are all zero except one, right equality holds if and only if 

where ℑ

szZP )'( = ZP( Mz /1) == , 

.  ℑ∈∀z

■ 
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∑

Proposition 2.1 implies that if a vector is ‘sparse’ or ‘nonuniform’, the entropy will be 

smaller than when it is more ‘dense’ or ‘uniform’. Thus entropy can be a natural measure 

of the sparseness of a vector. Specifically, the entropy corresponding to the prior p.m.f. is 

−

=
==−=

1

0
0 ))(log()(

M

i
iYPiYPH

x

                                      (2.2) 

and the class entropy conditioned on the sample  can be calculated by: i

∑
−

=
====−=

1

0
))(log()(

M

j
iiiii xXjYPxXjYPH .                       (2.3) 

The quantity  measures how well the feature  (which is the  component of 

the unlabeled test data 

iHH −0 ix thi

x ) reduces the complexity of the classification task. Note that 

although  looks quite like a conditional entropy defined in information theory, it is not 

exactly of the same form. The information-theoretic conditional entropy is an expectation 

of  with respect to the distribution of . Instead, by calculating the entropy 

conditioned on the specific observation , 

iH

iH iX

,1Kix di ,= , not only is the test data included 

into the feature selection process, but also the subsequent classification decision is 

unified in the same framework. The following is the scheme of this idea. 

 

Without loss of generality, it is assumed that MjYP /1)( == , . This 

assumption implies an unbiased initial prediction of the classification result, hence 

. From this assumption and (2.3), the class entropy conditioned on the 

feature  can be expressed as: 

Mj ,,1K=

)log(0 MH =

ix
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∑
∑∑

−

=
−

=

−

=
⎟⎟
⎟
⎟
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⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==

==

==

==
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1

0
1

0

1
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)(
log(

)(
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jYxXP

jYxXP
H .                  (2.4) 

Define 

ii HHxq −= 0)(                                                      (2.5) 

then the best feature in terms of reducing the class entropy can be selected as: 

)(maxarg
},,{

*
1

i
xxx

xqx
di K∈

= .                                                 (2.6) 

 

To implement the above scheme, the conditional p.d.f. )( jYxXP ii == , 

, must be estimated for each candidate feature . To compensate for the 

fact that a suitable model of the probability density function may not be available - and 

even in some applications, such as neural decoding, the statistical mechanism of data 

generation is highly nonstationary - the conditional p.d.f. is estimated by a nonparametric 

method, kernel density estimation [Silverman, 1986; Scott, 1992], whose key properties 

are briefly reviewed below. 

1,,0 −= Mj K ix

 

Definition 2.2 [Chapter 3, Silverman, 1986]: Assume that U  is a random variable with 

probability density function , and  is a set of i.i.d. samples 

from the distribution of U , then the kernel density estimation for  is, 

)(uf })n,,,{ ()2()1( UUU K

)(uf

∑∑
==

−=
−

=
n

i

i
h

n

i

i
UuK

nh
UuK

nh
uf

1

)(

1

)(
)(1)(1)(ˆ                                (2.7) 
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where , and the kernel function hhtKtKh /)/()( = )(⋅K  satisfies the following properties: 

1)( =∫ dwwK ,   0)( =∫ dwwwK ,   . 0)( 22 >=∫ KdwwKw σ

 

After some algebra and approximations, the following theorem is reached. The proof of 

this theorem can be found in [Chapter 3, Silverman, 1986; Appendix A]. 

 

Proposition 2.2 [Chapter 3, Silverman, 1986]: For a univariate kernel density estimator, 

)()(
2
1)()(ˆ)( 4''22 hufhufufEubias K Ο+=−= σ                           (2.8) 

)()()()())(ˆvar()var(
2

n
hO

n
uf

nh
KRufufu +−==                           (2.9) 

)(
4
1)( ''44 fRh

nh
KRIVISBIMSE Kσ+=+=                              (2.10) 

where , , and  are, respectively, abbreviations for integral of the mean square 

error, integral of square of the bias, and integral of the variance, and . 

Moreover, when  takes the value, 

IMSE ISB

h

IV

∫= duuffR )()( 2

5/1
5/1

''4
*

)(
)( −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= n

fR
KRh

Kσ
                                           (2.11) 

the minimum value of the integral of mean square error is 

5/45/1''5/4* )()]([
4
5 −= nfRKRIMSE Kσ .                              (2.12) 

■ 
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Please note that the ratio of  to  in the  is  - that is, the  comprises 

only 20% of the . By the kernel density estimation just explained, one can derive an 

estimator of 

IV ISB *IMSE 1:4 *ISB

*IMSE

)j( YxXP ii == , denoted as )j=(ˆ YxXP ii = . Then an estimator for  is iH

∑
∑∑

−

= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

==

==

==

==
−=

1

0 )(ˆ
)(ˆ

log
)(ˆ

)(ˆ
ˆ M

j ii

ii

ii

ii
i jYxXP

jYxXP
jYxXP

jYxXP
H                    (2.13) 

and in the following algorithm statement,  is used to substitute for  to estimate  

defined in (2.5). 

iĤ iH )( ixq

 

2.3 Adaptive Sequential Feature Selection Algorithm 

 

A new feature selection and classification scheme is proposed as follows. Suppose kΩ  is a 

non-empty subset of }1,,1,0{ −MK

,2,1( K=k

, representing the subset of patterns, or classes, that is 

considered in the  )  stage of the algorithm. Let thk )(ˆ jYxXP ii ==  denote the 

kernel density estimation of the conditional p.d.f., )( jYxXP ii == , , di ,,1K= kj Ω∈∀ , 

from the training set, . Let the -dimensional test sample be . For 

notational convenience, 

nD d T
d ]xxx ,,,[ 21 K=x

kΩ  denotes the cardinality of kΩ , and the elements of kΩ  are 

ordered in some fashion, so that )(ikΩ  represents the  element of . The basic 

structure of the adaptive sequential feature selection algorithm (ASFS) is summarized by 

the following procedure: 

thi kΩ
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Step 1: Initially, , 1=k }1,,1,0{ −=Ω Mk K  (the labels of all candidate classes). 

Step 2: The quality of feature  is estimated as ix

iki Hxq ˆ)log()(ˆ −Ω=  

where  is calculated as iĤ

∑
∑∑Ω∈ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

==

==

==

==
−=

kj ii

ii

ii

ii
i jYxXP

jYxXP
jYxXP

jYxXP
H

)(ˆ
)(ˆ

log
)(ˆ

)(ˆ
ˆ .               (2.14) 

Step 3: Choose the optimal feature of the  stage, , as thk *x

)(ˆmaxarg
},,{

*
1

i
xxx

xqx
di K∈

= . 

Step 4: Threshold the estimated posterior probability distribution, )(ˆ
** xXjYP == , 

, by the value kj Ω∈∀ T  using the following procedure: 

                                        Φ=Ω'  (Φ  being a null set) 

                                        for ki Ω= :1  

                                             if  TxXiYP k ≥=Ω= ))((ˆ
**  

                                                    )}({'' ikΩΩ=Ω U

                                              end

                                       end                          

Step 5: 

                                      if  1' >Ω  

                                            1+= kk  
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                                             'Ω=Ωk

                                            go to step2 

                                     else  

                                            is the final retrieved class label. )1('Ω

■ 

The working process of the ASFS algorithm for a simple synthetic example is illustrated in 

Figure 2.1 and stated accordingly. 
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Figure 2.1 An illustrative show of the working process of the ASFS algorithm in its 

stage 1 (a), and stage 2 (b). 

 

In this synthetic example, assume there are three classes , whose 

corresponding level sets of the conditional p.d.f.s are plotted as blue, orange, and green 

shaded ovals, respectively, in Figure 2.1(a). Also assume that a test data point belongs to 

class , and lies at the position with coordinates , which is indicated by a star 

symbol. Denote 

),,( 321 CCC

2C ),( yx

)( ii CxPa =  and )( ii CyPb = , 3,2,1=i  and illustrate  and 

 in Figure 2.1(a). Please note that 

}2a,{ 1a

},{ 1 bb , 32 b 03 =a  in this example. Without loss of 

generality, a uniform prior probability distribution is imposed on these three classes. 
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Stage 1: The class conditional entropy, , is smaller for  than for , 

so the feature 

iH },,{ 321 aaa },,{ 321 bbb

x  is the best feature for stage 1. The posterior probability distribution 

conditioning on the feature x , }3,2,1), =ix(CP i{ , is thresholded by T , which is set to be 

the median of )}(),(), 321 xCPxCPxC({P , then the class  is discarded. 3C

 

Stage 2: After stage 1,  and  remain. Figure 2.1(b) illustrates this intermediate result. 

Now  is smaller for  than for , so the feature  is the best feature for 

stage 2. The posterior probability distribution conditioning on the feature 

1C

{b

2C

}2iH ,1 b },{ 21 aa y

y , 

}2,1),({ =iyCP i , is thresholded by T , which is set to be the median of 

)}(),({ 21 yCPyCP , then  is discarded and  becomes the predicted class label. 1C 2C

 

2.4 Properties of the ASFS algorithm 

 

It can be proved that the design of adaptive sequential feature selection leads to the 

following two properties. 

 

Property 2.1: Let  be a pair of random variables taking their respective values from 

 and , and denote . Denote the one dimensional posterior 

probability distribution functions as 

),( YX

dℜ }1,0{ T
dXXXX ],,,[ 21 K=

)1()( tXYPt ii ===η , di ,,1K=                                    (2.15) 
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and assume they are known. Then the ASFS algorithm achieves an average classification 

error probability lower than or equal to the Bayes error probability of any single feature. 

Proof: 

Let  denote the expectation with respect to the distribution of the random variable 

(vector) 

)(⋅ZE

Z , and  denote a specific test sample. Then the error 

probability for classifying 

T
dxxxx ],,,[ 21 K=

x  using the feature  is ix

))(1),(min( iiii xx ηη −                                               (2.16) 

and the Bayes error probability of the feature  is iX

))}(1),({min())}(1),({min( iiii
X

iiii
X XXEXXE i ηηηη −=− .             (2.17) 

By the ASFS algorithm,  is selected from  such that *x },,,{ 21 dxxx K

)(min
},...,1{

* i
di

HH
∈

= .                                                 (2.18) 

In the case of binary classification,  is a concave function with respect to iH )( ii xη , so 

(2.18) implies that 

)))(1),((min())(1),(min( min
},...,1{

**** iiii
di

xxxx ηηηη −=−
∈

.                   (2.19) 

Then, the error probability for classifying x  by the ASFS algorithm is 

))(1),(min( **** xx ηη −                                               (2.20) 

and the average classification error probability of the ASFS algorithm is 

)))(1),((min( **** XXE X ηη −  

))))(1),((min(( min
},,1{

iiii
di

X XXE ηη −=
∈ K
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)))(1),((min( iiii
X XXE ηη −≤ ,  },,1{ di K∈∀ .                       (2.21) 

Because the right hand side of the inequality (2.21) is the Bayes error probability of the 

feauture  and this inequality holds for every iiX },,1{ dK∈ , the conclusion is reached. 

■ 

Property 2.2: Let X , Y , , )(⋅ZE x  and )(tiη  have the same notation meanings as in 

Property 2.1, and assume )(tiη , d,Ki ,1= , are known.  Also define 

)1()( xXYPx ===η                                               (2.22) 

and assume the class conditional independence condition holds, i.e., 

∏
=

======
d

i
iidd jYxXPjYxXxXP

1
11 )(),,( L .                   (2.23) 

Then the ASFS algorithm achieves the Bayes error probability of X  when  and the 

prior probability distribution is uniform, i.e., 

2=d

5)1()0( .0==== YPYP . 

Proof: 

Bayes error probability is achieved when the decision function is 

⎩
⎨
⎧

=
0
1

)(xg  
otherwise

x 2/1)( ≥η  .                                           (2.24) 

It suffices to show that the ASFS algorithm leads to the same decision function as (2.24). 

When ,  is selected by the ASFS algorithm such that 2=d *x

)(min
}2,1{

* i
i

HH
∈

= .                                                  (2.25) 

In the case of binary classification,  is a concave function with respect to iH )( ii xη , so 

(2.25) implies that 
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)))(1),((min())(1),(min( min
}2,1{

**** iiii
i

xxxx ηηηη −=−
∈

.                   (2.26) 

Because of the class conditional independence condition and uniform prior distribution, 

)0()0(
)1()1(

)0(
)1(

)0(
)1(

))(1(
)(

2211

2211

====
====

=
==
==

=
==
==

=
− YxXPYxXP

YxXPYxXP
YxXP
YxXP

xXYP
xXYP

x
x
η

η  

))(1))((1(
)()(

)0()0(
)1()1(

2211

2211

2211

2211

xx
xx

xXYPxXYP
xXYPxXYP

ηη
ηη
−−

=
====
====

= .            (2.27) 

From (2.24) and (2.27) 

1)( =xg  ⇔  1))(1/()( ≥− xx ηη   ⇔   ))(1))((1()()( 22112211 xxxx ηηηη −−≥ . (2.28) 

The last inequality in (2.28) holds if and only if 

5.0)()( 2211 ≥≥ xx ηη                                                 (2.29) 

or  5.0)()( 1122 ≥≥ xx ηη                                                 (2.30) 

or  5.0))(1()( 2211 ≥−≥ xx ηη                                          (2.31) 

or  5.0))(1()( 1122 ≥−≥ xx ηη .                                        (2.32) 

From (2.25), the optimal feature, , is  for (2.29) and (2.31) and  for (2.30) and 

(2.32), and the classification result of the ASFS algorithm is 

*x 1x 2x

1=Y  for all 4 cases. By the 

same argument, it can be shown that the ASFS algorithm retrieves  whenever 

. Therefore the ASFS algorithm has the same decision function as the Bayes rule 

(2.24), hence achieving the Bayes error probability. 

0=Y

0)( =xg

■ 

The above provides the proofs of the properties of the ASFS algorithm in the binary 

classification or low dimensional feature space, while the following gives other important 
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remarks on the implementation and output of the ASFS algorithm in the general situation, 

multiple classes and arbitrary dimensional feature space. 

 

(1) The output of the ASFS algorithm provides not only a label of the retrieved class, but 

also the estimation of the posterior probability distribution and its variance level, which is 

carried out in a sequential fashion. More concretely, suppose }1,,1,0{ −⊂Ω Mk K

)(k
j

 

represents the subset of classes that is considered in the  stage of the ASFS algorithm, 

 is the optimal feature in the  stage. Let  denote the kernel 

density estimation of 

thk

},,{ 1
)(

* d
k xxx K∈ thk *̂f

)( )(
*

)(
* jYxXP kk == , kj Ω∈∀ , and  denote the estimation of 

the posterior probability distribution conditioning on 

)(
*ˆ k

jp

kΩ , i.e., 

∑
Ω∈

=Ω===

kj

k
j

k
j

k
kkk

j f

f
xXjYPp )(

*

)(
*)(

*
)(

*
)(

* ˆ

ˆ
),(ˆˆ ,   kj Ω∈∀ .                (2.33) 

Also,  is used to represent the estimation of the posterior probability distribution after 

the first k  stages, i.e., 

)(ˆ k
jp

),,(ˆˆ 1
)(

k
k

j SSjYPp K== ,   }1,0{ −∈∀ Mj K                         (2.34) 

where  means the event of the  stage been carried out, and  is used to represent 

the estimation of the variance of , i.e., 

iS thi

)(k
j

)(ˆ k
jv

p̂

)ˆr(âvˆ )()( k
j

k
j pv = ,   }1,0{ −∈∀ Mj K .                                (2.35) 

Then the sequential update of  is, }ˆ{ )(k
jp
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Mp j /1ˆ )0( = ,   }1,0{ −∈∀ Mj K                                     (2.36) 

)1()( ˆˆ −= k
j

k
j pp ,     1≥k kj Ω∉                                         (2.37) 

∑
Ω∈

−=
kj

k
j

k
j

k
j ppp )1(

*
)(

*
)( ˆˆˆ ,     1≥k kj Ω∈ .                        (2.38) 

From (2.36) through (2.38), the sequential update of {  is, }ˆ )(k
jv

0ˆ )0( =jv ,   }1,0{ −∈∀ Mj K                                            (2.39) 

)1()( ˆˆ −= k
j

k
j vv ,     1≥k kj Ω∉                                           (2.40)  

( ) ( ) (∑∑
Ω∈

−

Ω∈

− +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈

kk j

k
j

k
j

k
j

j

k
j

k
j ppppv )1(

*
2)(

*
)(

*

2
)1(

*
)( ˆrâvˆˆrâvˆˆ ),  .   (2.41) 1≥k kj Ω∈

From (2.33), 

∑
Ω∈

=

kj

k
j

k
jk

j f

f
p )(

*

)(
*)(

* ˆ

ˆ
ˆ  

( ))(
*̂râv k

jf  is quantified through Proposition 2.2, so by applying the multivariate Taylor 

expansion [p153, Rice, 1995] to , )(
*ˆ k

jp ( ))(
*ˆrâv k

jp  can also be obtained, hence making the 

sequential update in (2.41) applicable.  

 

(2) Due to the combinatorial aspect of the problem, there is no efficient criterion for 

setting the threshold value, T , in order to achieve a global optimality, such as the output 

posterior probability distribution having the smallest entropy. The synthetic simulation 

and the neural signal decoding practice in this thesis suggest that T  can be set by the 
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greedy rule or the median rule. More concretely, assume kΩ  represents the set of classes 

that is considered in the  stage of the ASFS algorithm,  is the optimal feature in the 

 stage, and  represents the set of classes that remains after thresholding 

thk

kΩ

*x

thk k ⊂Ω +1

}k),* jx Ω∈(ˆ{ YP *Xj ==  by T . The greedy rule is to set T  to be the smallest value 

thresholded by which  is not the minimum one of , which are 

calculated over . The median rule is to set 

*Ĥ },,1, di K=Ĥi{

1+Ωk T  to be the median value of 

}k

)8

),* jx Ω∈

( ≤M

(ˆ{ YP *Xj == , hence only a half number of patterns remain for the 

successive stage. There is only tiny performance difference for these two setting rules in 

the application of neural signal decoding. One reason is that the pool of candidate classes 

is relatively small , and another reason is that the early termination of the ASFS 

algorithm, explained in below, often occurs. 

 

(3) In some applications, such as the neural signal decoding researched in Chapter 3, the 

training sets of individual patterns are highly overlapped in the feature space. So for some 

choices of the test data, x , no feature can decrease the entropy prominently. In detail, 

assume  is the optimal feature in the  stage of the ASFS algorithm, then it may 

happen (often in the neural signal decoding) that 

*x thk

*Ĥ−)klog(  is close to zero. This 

case implies that the estimated conditional probability density values over 

Ω

kΩ , 

}k), jj Ω∈(ˆ{P *x=* YX = , are nearly uniformly distributed. Because the estimated 

values, }ˆ{P ), jj( *X ∈* Yx == kΩ , have their associated variance (2.9), the null 
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hypothesis, 

)})((ˆ{)})1((ˆ{: ****0 kkk YxXPEYxXPEH ΩΩ====Ω== L           (2.42) 

where , }{⋅E Y , and kΩ  denote the expectation operator, the class label, and the 

cardinality of , respectively, cannot be rejected. Therefore, filtering the posterior 

probability distribution, 

kΩ

}),(ˆ{ ** kjxXjYP Ω∈== , by some threshold, T , lacks the 

statistical significance, To deal with this situation, in the implementation of the ASFS 

algorithm to the neural signal decoding, a threshold, t , is set so that if 

tHk <−Ω *
ˆ)log(                                                  (2.43) 

the algorithm will terminate and output the sequentially updated estimation of the 

posterior probability distribution and its variance level up to th)1  stage. This 

early termination criterion lets a classifier make the decision for each test data, 

the k( −

x , 

according to its confidence level. 

 

(4) Although ASFS selects only a single feature at each stage, it can be easily generalized 

to multiple feature selection. For example, when a large size training sample set or a good 

parametric model for the generating mechanism of the training data is available, 

estimating two or even higher dimensional p.d.f.s becomes reasonable and reliable. 

 

(5) Better effectiveness of the ASFS algorithm results when the feature set is 

approximately class conditionally independent (2.23), so the preprocessing steps, such as 

principal component analysis, independent component analysis, et al., will help improve 
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the algorithm’s performance. 

 

2.5 Simulation 

 

To illustrate the effectiveness of the ASFS algorithm, it is compared with the classical 1-

nearest neighbor (1-NN) rule, for which there exits theoretical results on its asymptotic 

classification performance. The general -nearest neighbor rule ( -NN) for a binary 

classification problem, i.e., 

k k

2=M , is 

dx ℜ∈∀                        (2.44) 
⎩
⎨
⎧

=
0
1

)(xgn
otherwise

IwIw n
i Yni

n
i Yni ii ∑∑ = == = > 1 }0{1 }1{

where AI  is an indicator function of the event A , kwni /1=  if  is among the  nearest 

neighbors of 

iX k

x , and 0 otherwise.  is said to be the  nearest neighbor of iX thk x  if the 

distance measure iXx −  is the k  smallest among th .,,K

:ℜd

1X− nXxx −  For a training 

set, , the best one can expect from a decision function, , is to achieve 

the Bayes error probability, 

nD }1,0{→g

*L , through the Bayes rule, .  }1,0{ℜ:*g →d *L  and  are 

given as: 

*g

⎩
⎨
⎧

=
0
1

)(* xg   
otherwise

x 2/1)( >η                                             (2.45) 

))}(1),({min(* XXEL ηη −=                                        (2.46) 

where )1()( xXYPx ===η . 
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}
nDg

Generally, it is not possible to obtain a function that exactly achieves the Bayes error, but it 

is possible to construct a sequence of classification rules { , such that the error 

probability 

})({ nDn DYXgPL
n

≠=                                           (2.47) 

gets close to . The following theorems summarize some classical results for the -NN 

rule. 

*L k

 

Proposition 2.3 [Chapter 3 and 5, Devroye et al., 1996]: Let 

}{lim n
n

NN LEL
∞→

=                                                 (2.48) 

be the asymptotic classification error of the 1-NN rule, then for any distribution of the 

random variables ,  satisfies: ),( YX NNL

))}(1))((2{ XXELNN ηη −=                                         (2.49) 

**** 2)1(2 LLLLL NN ≤−≤≤ .                                      (2.50) 

■ 

Proposition 2.4 [Chapter 5, Devroye et al., 1996]: For any distribution of the random 

variables, , and  being odd, the asymptotic classification error probability of 

-NN rule satisfies: 

),( YX 3≥k

k

ke
LLkNN

1* +≤                                                  (2.51) 

k
LLL NN

kNN
2* +≤                                                (2.52) 
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( )⎟
⎠

⎞
⎜
⎝

⎛ ++≤ − )(11 6/1* kO
k

LLkNN
γ , 34.0≈γ .                            (2.53) 

■ 

It is also shown [Chapter 5, Devroye et al., 1996] that when *L  is small,  and 

 for  odd. But attention must also be paid to another situation where 

*2LLNN ≈

*LLkNN ≈ 3≥k *L  

becomes large. In many practical applications, such as neural signal decoding, the problem 

of pattern recognition is much more challenging than just separating two nearly well 

separated classes.  Additionally, if *L  is very small, many classification techniques will 

perform very well. The only difference will be their convergence rates. The next chapter 

will show that the difference between two classification methods (ASFS versus -NN), in 

the case of large 

k

*L , can be quite noticeable. 

 

To appreciate the benefits of the proposed approach, firstly consider the following simple 

synthetic example. Assume in a binary classification task, Y  equals 0 or 1 with a uniform 

prior p.m.f., i.e., 5.0)1()0( ==== YPYP . Conditioning on 0=Y  or 1,  or ),0(~ dINX

),1( d
d I
d

rN , respectively. ),( ∑μN  represents a multivariate normal distribution with the 

mean, μ , and the covariance matrix, ∑ .  is a dI dd ×  identity matrix,  is a d1 1×d  vector 

with all entries being 1, and r  is a positive scalar. In other words, this task is to distinguish 

between two classes whose members are distributed as multivariate Gaussians with the 

same parameters except the means. Let  be the number of i.i.d. training samples for each 

class and  be the number of test samples. Figure 2.2 illustrates the empirical correct 

n

m
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classification rates from the ASFS algorithm and the 1-NN rule under different choices of 

r . In this simulation, , and the parameter pair, , takes different values for 

each subplot. 

2000=m ),( dn

 

 

Figure 2.2 An empirical comparison of the ASFS algorithm and the 1-NN rule in a binary 

synthetic classification task. 

 

Several observations are contained in Figure 2.2: 
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(1) The ASFS algorithm outperforms the 1-NN rule in all the 6 subplots when *L  is large. 

This observation is most relevant to Chapter 3 of this thesis, as empirical evidence shows 

that the neural signal classes are typically not well separated. In general, a fast convergence 

rate for small  does not guarantee the best performance for large . *L *L

 

(2) When the classes are well separated (i.e., *L  is small or r  is large), the 1-NN rule 

shows stable convergence rate, while the ASFS algorithm yields a lower convergence rate 

as  becomes larger. The stable convergence of 1-NN arises from the fact that when d *L  is 

small, . Note that the ASFS method only selects one best feature of the test data 

to carry out the binary classification. When 

*2LLNN ≈

*L  is small, all the features are deemed to be 

good. So whichever feature is selected, the discrimination power of that feature will be 

weaker than that of the whole set of features, which is implicitly used in the distance 

measure of the 1-NN rule. When  is large, there is a higher probability that more 

features are corrupted by noise, thus utilizing all the features in the 1-NN rule will 

introduce more noise than discrimination information. 

*L
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CHAPTER 3   

NEURAL SIGNAL DECODING 

3.1 Background 

 

Neural prosthetic systems aim to translate neural activities from the brains of patients 

who are deprived of motor abilities but not cognitive functions, into external control 

signals. Substantial progress towards realization of such systems has been made only 

recently [Musallam et al., 2004; Santhanam et al., 2006; Shenoy et al., 2003; Schwartz 

and Moran, 2000; Wessberg et al., 2000; Isaacs et al., 2000; Donoghue, 2002; Nicolelis, 

2001, 2002]. The design and construction of such devices involve challenges in diverse 

disciplines. This chapter concerns how to decode a finite number of classes, the intended 

“reach directions”, from recordings of an electrode array implanted in a subject’s brain. 

Especially, this chapter applies the ASFS algorithm, the -NN rule, and the support 

vector machine technique, together with an information fusion rule, to decode neural data 

recorded from the Posterial Parietal Cortex (PPC) of a rhesus monkey, and compares 

their performance on the experimental data. While motor areas have mainly been used as 

a source of command signals for neural prosthetics [Schwartz and Moran, 2000; 

Nicolelis, 2002], a pre-motor area of PPC called the Parietal Reach Region (PRR) has 

also been shown to provide useful control signals [Musallam et al., 2004]. It is believed 

that reaching plans are formed in the PRR preceding an actual reach [Meeker et al., 

k
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2001]. The advantage of using higher-level cognitive brain areas is that they are more 

anatomically removed from regions that are typically damaged in paralyzed patients. 

Furthermore, the plasticity of PRR enables the prosthetic user to more readily adapt to the 

brain-machine interface. 

 

Extracellular signals were recorded from a 96 wire micro-electrode array (MicroWire, 

Baltimore, Maryland) chronically implanted in the PRR area of a single rhesus monkey. 

The training and test data sets were obtained as follows.  The monkey was trained to 

perform a center-out reaching task (see Figure 3.1). Each daily experimental session 

consisted of hundreds of trials, which are categorized into either the reach segment or the 

brain control segment. Each session started with a manual reach segment, during which 

the monkey performed about 30  memory guided reaches per reach direction. While 

fixating on a central lit green target, this task required the subject to reach to a flashed 

visual cue (consisting of a small lit circle in the subject’s field of view) after a random 

delay of 1.2 to 1.8 seconds (the memory period). After a “go” signal (consisting of a 

change in the intensity of the central green target) the monkey physically reached for the 

location of the memorized target. Correct reaches to the flashed target location were 

rewarded with juice. The brain control segment began similarly to the reach trials, but the 

monkey wasn’t allowed to move its limbs, only the monkey’s movement intention was 

decoded from signals derived from the memory period neural data. A cursor was placed 

at the decoded reach location and the monkey was rewarded when the decoded and 

previously flashed target locations coincided. Electrode signals were recorded under two 
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conditions: one having 4 equally spaced reach directions (rightward, downward, leftward, 

upward), and the other having 8 (previous four plus northeastward, southeastward, 

southwestward, northwestward). Let  denote the experimental data set recorded under 

the first condition, and  the second. Both data sets include not only reach trials but also 

brain control trials. 

4P

8P

 

 

Figure 3.1 One experimental procedure of the center-out reach task for a rhesus monkey. 

 

3.2 Neural Signal Decoding 

 

To ensure that only the monkey’s intentions were analyzed and decoded and not signals 

related to motor or visual events, only the memory period activities were used in this 

analysis. More precisely, assume the beginning of memory period in each trial marks an 

alignment origin, i.e., , then the recorded neural data in one trial takes a form of 

binary sequence T : 

0=t

, 2K T− ),,,,,( 2101 KTTTT−=

⎩
⎨
⎧

=
0
1

kT   
otherwise

tktkinspike ])1(,( Δ+Δ∃   , =Δt 1 ms.                        (3.1) 

A spiking data sub-sequence was extracted from the time interval  ms after 1200~200
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the cue for , and similarly from the interval  ms for . For the analysis 

given below, the spiking data was then binned into 4 subsegments of 250 ms duration 

each. The number of spikes within each subsegment was recorded as one entry of the 

vector, . Furthermore, the binned data vector S  was preprocessed by 

a multi-scale Haar wavelet transformation [Mallat, 1999], because the optimal bin width 

is still unknown and by the wavelet transformation, both short-term features and long-

term features are generated. Moreover, the simple structure of the Haar functions give the 

wavelet coefficients intuitive biological interpretations [Cao, 2003], such as firing rates, 

bursting, and firing rate gradients. In detail, let W  be the Haar wavelet transformation 

matrix and  be the vector of wavelet coefficients for , then 
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XThe vector, , for each neuron serves as the input to the different algorithms that are 

implemented and compared in this chapter. Figure 3.2 shows the estimated p.d.f.s of 4 

wavelet coefficients with the four different target directions ( - rightward, - 

downward, - leftward, - upward) associated with . Each subplot shows the 

p.d.f.s of one wavelet coefficient conditioned on four target directions. Note that the 

conditional p.d.f.s from different classes have very significant overlaps. 

118D 120D

122D 124D 4P
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Figure 3.2 Estimated wavelet coefficients p.d.f.s conditioned on different directions from 

one typical neuron in . 4P

 

Although each neuron is a very weak classifier, one example being shown in Figure 3.2, a 

much better overall performance can be achieved by assembling the information of all 

neurons. There are two choices. One choice is input fusion, which is to concatenate the 

data from each neuron into an augmented vector. On the one hand, the Bayes error is a 

decreasing function with dimension of feature space [p29, Devroye et al., 1996]. On the 

other hand, as analyzed in [p315, Fukunaga, 1990], the bias between asymptotic and 

finite sample 1-NN classification error correlates with sample size and dimensionality of 

the feature space. Generally speaking, the bias increases as the dimensionality goes 

higher, and the bias drops off slowly as the sample size increases, particularly when the 
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dimensionality of the data is high. So when only a reasonably finite data set, say, 100 

training samples per class, is available, it is possible that the bias increment will 

overwhelm the benefit of the decrement of  (2.48) in a relatively high dimensional 

feature space. This phenomenon matches the results observed while applying the -NN 

method to neural signal decoding. 

NNL

k

 

Another more useful choice is output fusion, which is to let the decision results of 

individual classifiers vote. Unlike input fusion, output fusion is a very economical way to 

exploit the capabilities of multiple classifiers. For a good survey reference, please check 

into [Miller and Yan, 1999]. The specific output fusion methods implemented in neural 

signal decoding of this chapter are the product rule and the summation rule, whose 

justifications [Theodoridis and Koutroumbas, 2006] are described in the following 

paragraphs. 

 

In a classification task of M  classes, assume one is given R  classifiers. For a test data 

sample, , each classifier produces its own estimate of the a posteriori 

probabilities, i.e., 

dx ℜ∈

)(ˆ xXjYPr == , 1,0 , −M=j K , R,Kr ,1= . The goal is to devise a 

method to yield an improved estimate of a final a posteriori probability )(ˆ xXjYP ==  

based on all the individual classifier estimates. Based on the Kullback-Leibler (KL for 

abbreviation) probability distance measure, one can choose )(YP̂ xXj ==  in order to 

minimize the average KL distance, i.e., 
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where rD  is a discrete KL distance measure 

∑
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By utilizing Lagrange multipliers, the optimal probability distribution to solve (3.3) is 

obtained as, 

RR

r
r xXjYP

C
xXjYP /1

1
))(ˆ(1)(ˆ ∏

=
=====                            (3.5) 

where  is a class independent constant quantity. So the rule becomes equivalent to 

assigning the unknown feature vector 

C

x  to the class maximizing the product, the so 

called the product rule, i.e., 

∏
=−∈

===
R

r
r

Mj
xXjYPxg

1}1,...,0{
)(ˆmaxarg)( .                                 (3.6) 

 

The KL measure is not symmetric. If an alternative KL distance measure 

∑
−
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===′

1

0 )(ˆ
)(ˆ

log)(ˆM

j

r
rr xXjYP

xXjYP
xXjYPD                           (3.7) 

is taken, then, minimizing ∑
=

′=′
R

r
rav D

R
D

1

1  subject to the same constraints in (3.3) leads to 

assigning the unlabeled test data, x , to the class that maximizes the summation, the so 

called the summation rule, i.e., 
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Note that the product rule and summation rule require that the estimates of the a 

posteriori probabilities from each classifier be independent, otherwise voting becomes 

biased. Fortunately, in the neural decoding application, the independence assumption is 

well approximated due to the significant distance (500 mμ ) between adjacent recording 

electrodes relative to the minute neuronal size. Moreover, because each neuron calculates 

its output based on its own input, the product rule and the summation rule take another 

equivalent form. More concretely, assume  represents the input feature vector of the 

 neuron, , and  is the concatenation vector of all , i.e., 

, then 
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The product rule becomes 
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The summation rule becomes 
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}1,...,0{
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The probability, 1,,0),(ˆ
)()( −=== MjxXjYP rrr K , can be viewed as an adaptive 

critic for neuron r  under the test data x . This critic evaluates how confidently a given 
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neuron can classify a specific input signal. In effect, the product rule (3.10) or the 

summation rule (3.11) allows neurons that generate more non-uniform posterior 

probability estimates to dominate the final probabilistic classification result. 

 

3.3 Application Results 

 

Below, Figures 3.3 and 3.4 show performance comparisons between the -NN rules (for 

) and the ASFS classification method when applied to the  (584 trials) and  

(1034 trials) data sets. The percentage of classification error is used as a metric for 

comparison of these neural decoding methods. In this comparison, the percent 

classification error, , was estimated from the data set, , by its leave-one-out 

estimator, . Because  [p407, Devroye et al., 1996],  is a good 

estimator of  for large . Each curve in Figures 3.3 and 3.4 represents this estimated 

decoding rate as a function of the number of utilized neurons, which are randomly chosen 

from the full set of available neurons. For each marked point on the curves of Figures 3.3 

and 3.4, the estimated correct decoding rate comes from the average of 15 random 

samplings. 
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For the -NN rules, both input fusion and output fusion have been used. Specifically, 

because the product rule cannot be applied to the output of the -NN methods, the output 

fusion method implemented with the -NN classifiers is the summation rule, i.e., the 

pattern receiving the maximum number of votes is chosen as the final decision. Figures 

k

k

k
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3.3 and 3.4 show that the combination of the ASFS algorithm and the output fusion 

method (the product rule specifically, the summation rule yields only slightly worse 

results) outperforms the combination of the -NN rules and the input/output fusion 

methods in these data sets. Although the performance of the k -NN classifier also 

increases with , it saturates quickly for large k . Please notice that the -NN 

classification rule demonstrates a slow rate of performance increase with respect to the 

number of neurons utilized in the case of input fusion. This is indeed the phenomenon 

explained in [p315, Fukunaga, 1990]: with fixed number of training samples, the 

increment of bias gradually dominates the decrement of  (2.48) as the 

dimensionality of the feature vector goes higher. 

k

k k

kNNL
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Figure 3.3 Experimental comparison of percent correct decoding rates of ASFS and -

NN ( ), together with input/output fusion methods, for . 

k

9,5,1=k 4P

 

 

Figure 3.4 Experimental comparison of percent correct decoding rates of ASFS and -

NN ( ), together with input/output fusion methods, for . 

k

9,5,1=k 8P

 

Next, another comparison of the ASFS algorithm with a popular classification method, 

support vector machine (SVM), is carried out. To implement the SVM classifier on the 

neural data sets, one SVM toolbox, LIBSVM, developed by Lin et al. [Chang and Lin, 

2001] was used. LIBSVM is an integrated software for classification, regression, and 

distribution estimation. The classification methods supported by LIBSVM include C-
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SVC and nu-SVC, and the former one was selected for these studies. More concretely, 

[Hsu et al., 2007] is a practical guidance provided by Lin’s group to explain how to 

implement C-SVC to yield good performance, including data scaling, the use of an RBF 

kernel, parameter selection by cross-validation accuracy and grid search, etc. The 

implementation of LIBSVM (C-SVC especially) in these studies follows this practical 

guidance. Figures 3.5 and 3.6 show the comparison results between the ASFS algorithm 

and the output of the C-SVC classifier in LIBSVM. Each curve in Figures 3.5 and 3.6 

represents the estimated percent correct decoding rate by 6-fold cross validation as a 

function of the number of utilized neurons, which are randomly chosen from the full set 

of available neurons. The leave-one-out estimation method was not used for this study 

because its use with the SVM classifier is computationally expensive. Each marked point 

on the curves of Figures 3.5 and 3.6 represents the mean correct decoding rate of 15 

random samplings. A special characteristic of the C-SVC classifier in LIBSVM is that it 

can not only predict the class label of each test data, but also estimate the posterior 

probability of that test data belonging to each class. The estimate of the posterior 

probability distribution provides higher resolution information than a prediction of the 

class label only, therefore the output fusion based on the posterior probability estimate is 

superior to the output fusion based on the predicted label. Also, as mentioned in [Miller 

and Yan, 1999], and as is consistent with the experimental findings in these studies, the 

product rule usually yields a little better performance than the summation rule. So again 

the combination of the ASFS algorithm and the product rule is compared with the 

combination of the C-SVC classifier and the product rule. Figures 3.5 and 3.6 show that 

although the C-SVC classifier yields slightly better average performance when only a few 
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neurons are available, the combination of the ASFS algorithm and the product rule 

quickly and significantly exceeds the combination of the C-SVC classifier and the 

product rule when an increasing number of neurons are utilized. 

 

 

 

Figure 3.5 Experimental comparison of correct decoding rates of ASFS and C-SVC, 

together with the product rule, for . 4P
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Figure 3.6 Experimental comparison of correct decoding rates of ASFS and C-SVC, 

together with the product rule, for . 8P
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CHAPTER 4   

FEATURE SELECTION IN ULTRA-WIDEBAND RADAR 

SIGNAL ANALYSIS 

4.1 Research Motivation 

 

As the explosive growth in the number of vehicles worldwide (800 million vehicles in 

global use), a large number of road accidents happen every year (1.2 million death a year. 

Among the fatal accidents, 65% of deaths involve pedestrians and 35% of pedestrian 

deaths are children) [Peden et al., 2004]. The issue of how to boost the vulnerable road 

users (VRU) safety has become critical for the automobile industry. The motivation 

behind this research topic is to augment VRU safety by developing a robust human 

presence detector and a human behavior (walking, jogging, standing, etc.) classifier 

through the use of car loaded sensors. Ultra-wideband (UWB) impulse radar, which is 

characterized by its high range resolution, the ability of remote sensing, and the 

advantage of penetration into/around obstacles, emerges as one of the most promising 

sensors to accomplish this task. Although computer vision techniques can assist 

pedestrian detection, radar based techniques have some distinct advantages, such as 

detection power beyond stadia distance in foggy conditions or darkness, as well as the 

ability to see through obstacles or see around corners in advance. To provide the 
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background information for the research topic in this chapter, UWB systems are briefly 

reviewed below. 

 

4.2 Ultra-wideband Radar System Overview 

 

The majority of traditional radio systems use a narrowband of signal frequencies 

modulating a sinusoidal carrier signal. The resonant properties of this system allow an 

easy frequency selection of necessary signals. Narrowband signals limit the information 

capability of radio systems, because the amount of the information transmitted in a unit 

of time is governed by Shannon’s equation (Ghavami, Michael, and Kohno, 2004), 

)1log(
N
SBC +=                                                  (4.1) 

where C  is the maximum channel capacity in bits/sec, B  is the bandwidth in Hz, and S , 

 are power in watts of signal and noise, respectively. The equation (4.1) also illustrates 

that the most efficient way to increase information capability of a radio system is through 

the use of ultra-wideband radiation. Ultra-wideband radiation transmits signals with -10 

dB bandwidths that are at least 20% of its central frequency [Federal Communications 

Commission, 2002]. Indeed, with the advancement of UWB radar system development 

and the release of UWB application regulations by the Federal Communications 

Commission (FCC) in 2002, UWB technology has been a focus in many applications in 

consumer electronics and communications [Shen et al., 2006]. On the one hand, the ideal 

characteristics for UWB systems are abundant information packing, precise positioning, 

and extremely low interference. On the other hand, in spite of recent experimental work, 

N
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there is no satisfactory and systematized theory of UWB signal analysis available. The 

reason is that the process of signal transformation under the context of ultra-wide 

bandwidth is much more complex than its narrowband counterpart. Hence the well-

known narrowband target recognition technique by the Doppler shift effect [Richards, 

2005] doesn’t apply to UWB systems. Novel methods must be developed for the 

concerned applications. 

 

UWB radar signals are spread across a very wide range of frequencies. The typical 

continuous sinusoidal radio wave is replaced by a train of short pulses at millions of 

pulses per second. For the UWB impulse radar used in this research, Time Domain 

PulsON 210, Figure 4.1 shows the transmitted monocycle pulse waveform measured in 

the anechoic chamber of the USC UltRa laboratory together with its Fourier spectrum, 

and Figure 4.2 is a photograph of the device. When the transmit antenna propagates the 

generated pulse train, the receiver antenna measures power reflected off targets by scan 

sampling the return reflections over multiple pulses. Each pulse is sampled once at a 

particular delay time. Thousands of pulses are needed to construct a graph of reflected 

waveform with respect to sampling delay time. This graph can also be understood as 

reflected waveform with respect to range, because sampling delay time is strictly 

proportional to distance between target scattering points and the radar. Figure 4.3 is one 

graph of reflected waveform versus range. This graph contains all the target information 

gathered by the radar for a short time interval. In the remainder of this thesis, this kind of 

graph is also termed “one radar scan”, “one radar waveform”, “one target image”, or “one 

target range profile”. 
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Figure 4.1 Transmitted monocycle pulse waveform of Time Domain PulsON 210 UWB 

radar and its Fourier spectrum. 

 

 

Figure 4.2 Time Domain PulsON 210 UWB radar. 
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Figure 4.3 One radar scan waveform from Time Domain PulsON 210. 

 

One of the most complicated matters that make UWB signal analysis challenging is the 

highly varied reflected waveform shapes obtained when the target is not stationary. 

Consider a simplified radar signal reflection from a local scattering element, the reflected 

pulse waveform can be determined as the convolution of the waveform of the impulse 

response characteristic of this local element, , with the function, , describing the 

incident signal. One geometrically complex target, say the human body, consists of 

multiple simple local scattering elements. When the target is not stationary, for example 

when the target person is walking, on the one hand, ’s change due to changes of 

aspects of scattering elements; on the other hand, because of changes of aspects, the 

)(xh )(xf

)(xh
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reflected waveform will represent the superposition of multiple reflected pulses with 

different time delay orders. These two factors, together with others including but not 

limited to multiple reflections between scattering elements, make the radar waveform shape 

highly sensitive to the target configuration. In reality, it is observed that the UWB radar 

yields highly different range profiles even when the target person takes small motions like 

twisting or tilting the body a little. 

 

4.3 Problem Statements and Characteristics 

 

To prominently distinguish people from other targets and classify people’s behaviors, an 

automatic pedestrian detection system should incorporate as many informative clues as 

possible. Several prominent features serve this goal, and can be categorized as static 

features and dynamic features. The static features usually reflect the information of target 

geometry and its variation structure, while the dynamic features extract the temporal 

structure among a sequence of radar scans, such as how the target range profiles evolve 

over time. Fusion of static and dynamic body biometrics will augment the performance of 

automatic human identification. This chapter researches how to extract a compact set of 

static features of the target to unravel the dominant statistical properties of the target 

images. Moreover, the projection of sequential target images onto the subspace spanned by 

the selected features accentuates the prominent target motion patterns, such as the gait, and 

therefore provides a sound platform to explore the target dynamics. Although a feature 

selection problem is explored here, it accounts for a different situation from that in 
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Chapters 2 and 3. Those chapters designed an adaptive feature selection algorithm based on 

a class separability criterion, while feature selection in the current problem mainly comes 

along with cluster representation, which is to approximate the prominent information inside 

a set of data by as few as possible feature components. More concretely, each target image 

can be geometrically transformed into one point in the high dimensional Euclidean space, 

then for a collection of target images, they correspond to a cluster of points that assume a 

complex high dimensional structure. But due to the redundancy in the random vector, the 

main variation structures of the data cluster will reside in a much lower dimensional 

subspace. Then the main task of this feature selection problem is to generate the 

representative template for a set of target images, locate the high information packing 

subspace, and explore their statistical and algebraic properties. The selected template or 

subspace should be adaptive to the gathered data, because the radar range profiles and radar 

signal dynamics are highly distinct for different target geometry, orientation, or motion 

patterns. There are several critical issues concerning this feature selection problem, which 

are addressed in the following structure. Section 4.4 provides preprocessing steps for the 

raw radar data, which augment the resulting algorithmic performance greatly; Section 4.5 

generates a representative template for the target through Procrustes shape analysis, and 

discusses the statistical classification issue based on the derived template; finally, Section 

4.6 implements a classic projection pursuit method to derive the principal components of 

the data variation structure in the tangent space, and shows that the principal components 

are also promising clues for target identification. 
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4.4 UWB Radar Signal Preprocessing 

 

Without preprocessing, one scan of radar data from Time Domain PulsON 210 UWB radar 

is shown in Figure 4.3. The typical radar scan waveform has an amplitude modulated fast 

oscillation pattern, which motivates the approximation 

)sin()()( θω +≈ xxaxr .                                               (4.2) 

In (4.2),  is the radar scan waveform function with respect to the range, )(xr )sin( θω +x  

provides the high oscillation kernel with the phase of θ , and  modulates the amplitude 

of the oscillation kernel. When the target is not stationary, both the changes in  and 

)(xa

)(xa θ  

affect the waveform shape of . In practice, phase change is not only hard to detect, but 

also has limited identifiability, because 

)(xr

L,2, πθθ +  are not differentiable based on the 

observed function value. So the detectable and differentiable information of  is the 

amplitude part, . Moreover, the fact that the shape of  directly relates to the target 

reflection geometry makes it an ideal source to generate prominent features for 

classification. The goal of this first preprocessing step is to separate the range profile, , 

from . The experimental results show that this preprocessing step augments the 

resulting algorithmic performance noticeably. 

)(xr

)(xa

)(xa )(xa

)x(r

 

The range profile of  is a smooth function and concentrates the energy on lower 

frequency components than the high frequency oscillation kernel, so the method of low-

pass filtering can be implemented to extract the range profile from . Two specific low-

)(xr

)(xr
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pass filters, the Gaussian filter and the Butterworth filter, are implemented. Both of them 

yield similar resulting performance. Figure 4.4 plots the convolution result between the 

absolute value of the raw radar data and a Gaussian filter (a), and the convolution result 

between the absolute value of the raw radar data and a Butterworth filter (b). For more 

complete treatments of digital filter design techniques, please refer to [Oppenheim et al., 

1999]. 

 

 

 

(a) 
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(b) 

Figure 4.4 The convolution result between the absolute value of one raw scan data and a 

Gaussian filter (a), a Butterworth filter (b). 

 

A second preprocessing step is variable transformation [p76, Fukunaga, 1990], which is 

applicable for the positive random variable, X , whose distribution can be approximated by 

a gamma density. In this case, it is advantageous to convert the distribution to a normal-like 

one by applying the power transformation, i.e., 

vXY = ,  )10( << v .                                                 (4.3) 

Define 
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where Z  denotes a random variable, and }{⋅E  the expectation operator. It can be obtained 

that if Z  is a Gaussian random variable, then 3=γ . So the normal-like of Y  is 

approximately achieved by selecting a value of v , such that 
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X  is a gamma random variable, so 
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where  is the gamma function, defined as )(xΓ

∫
∞ −−=Γ 0

1)( dueux ux ,   .                                          (4.7) 0>x

From (4.6), it can be derived that the value of  in (4.5) is independent of the choice of 'γ α , 

therefore the value of  is a function of 'γ β  and  only. In practice, the selection, v 4.0=v , 

is often suggested because  is close to 3 for a wide range of 'γ β  when . This 

power transformation, 

4.0=v

4.0XY = , is applied to the extracted radar range profiles, and makes 

the data distribution much closer to that of a multivariate normal density.  

 

The last preprocessing implemented in this study is segmentation, which is to extract the 

part of the radar waveform that corresponds to the location of human presence. In the 

following sections in this chapter, it is assumed that the preprocessing of low-pass filtering, 

power transformation, and segmentation has been carried out for the raw radar data. 

 



57 
 

4.5 Procrustes Shape Analysis and Tangent Space Inference 

 

4.5.1 Procrustes Shape Analysis 

 

In a 2D scenario, shape is very commonly used to refer to the appearance or silhouette of 

an object. Following the definition in [Dryen and Mardia, 1998], shape is all the 

geometrical information that remains when location, scale and rotational effects are filtered 

out from an object. Important aspects of Procrustes shape analysis are to obtain a measure 

of distance between shapes, and to estimate the average shape and shape variability from a 

random sample, which should be independent with respect to translation, scaling and 

rotation of the geometric objects. Translation and rotation invariance don’t have a natural 

correspondence in 1D radar range profiles, because the range of the radar signal 

corresponding to the target presence can be segmented, and no general movements of 

targets are assumed to cause a circular shift of the radar waveform. But scaling invariance 

is left as an important factor because the same target reflection geometry on mildly 

different distances can yield the waveforms that are close in their shapes but different in 

their amplitudes. So the classic 2D Procrustes shape analysis has a reduced 1D version for 

radar signal analysis. For more complete treatments on the Procrustes shape analysis, 

please refer to [Chapters 3 and 4, Dryen and Mardia, 1998]. In the application aspect, 

[Boyd, 2001] and [Wang et al., 2004] successfully applied Procrustes shape analysis into 

computer vision based gait recognition. The following paragraphs briefly review the 
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definitions of full Procrustes fit, full Procrustes distance, and full Procrustes mean shape, 

and state their special counterparts in the context of radar range profiles. 

 

Assume two shapes or silhouettes in the 2D space are represented by two vectors of k  

complex entries, say  and . Without loss of generality, 

assume these two configurations are centered, i.e., , where  means 

transpose of complex conjugate of y  and  is a length-  vector with all components 

being 1. 
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Definition 4.1 [p40, Dryen and Mardia, 1998]: The full Procrustes fit of  onto w y  is 

weibaw i
k

P θβ++= 1)(                                             (4.8) 

where ),,,( θβba  are chosen to minimize 
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Proposition 4.1 [p40, Dryen and Mardia, 1998; Appendix B]: The full Procrustes fit has 

matching parameters 
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■ 

Note that the distance measure, , in full Procrustes fit is not symmetric in ),( wyD y  and 

 unless . Then a convenient standardization, , leads to the 

definition of full Procrustes distance. 

w wwyy HH = 1== wwyy HH

 

Definition 4.2 [p41, Dryen and Mardia, 1998]: The full Procrustes distance between w  

and y  is 
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where the second equation comes from complex linear regression used in deriving 

Proposition 4.1, and it can be checked that ,( ywd )F  is invariant with respect to translation, 

rotation and scaling of configurations of w  and y . 

 

Definition 4.3 [p44, Dryen and Mardia, 1998]: The full Procrustes mean shape ]ˆ[μ  is 

obtained by minimizing the sum of squared full Procrustes distances from each 

configuration  to an unkown unit size configuration iw μ , i.e., 

∑
=

=
n

i
iF wd

1

2 ),(infarg]ˆ[ μμ
μ

.                                          (4.13) 

Note that ]ˆ[μ  is not a single configuration, instead, it is a set, whose elements have zero 

full Procrustes distance to the optimal unit size configuration, μ . 
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Proposition 4.2 [p45, Dryen and Mardia, 1998; Appendix B]: The full Procrustes mean 

shape, ]ˆ[μ , can be found as the eigenvector, μ̂ , corresponding to the largest eigenvalue of 

the complex sum of squares and products matrix 

∑
=

=
n

i
i

H
i

H
ii wwwwS

1
)/( .                                            (4.14) 

All translation, scaling, and rotation of μ̂  are also solutions, but they all correspond to the 

same shape ]ˆ[μ , i.e., have zero full Procrustes distance to μ̂ . 

■ 

Then the full Procrustes fits of  onto nww ,,1 K μ̂  is calculated from Proposition 4.1 as, 

i
H
i

i
H
iP

i ww
www μ̂

= ,   ni ,,1K= .                                         (4.15) 

A convenient fact is that calculation of the full Procrustes mean shape can also be obtained 

by taking the arithmetic mean of the full Procrustes fits, i.e., 0)ˆ,1(
1

=∑
=

μ
n

i

P
iF w

n
d  [p89, 

Dryen and Mardia, 1998; Appendix B]. 

 

Procrustes shape analysis provides a measure, full Procrustes distance, that quantifies the 

similarity of two planar configurations, and which is invariant with respect to translation, 

scaling, and rotation. Procrustes shape analysis also provides an elegant way to define the 

average shape, the full Procrustes mean shape, which can be viewed as a representative 

template of the target or class. All the forementioned full Procrustes concepts have their 

special counterparts in radar range profile context. More concretely, assume two 
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preprocessed target images are termed  and , then from Proposition 4.1, the 

full Procrustes fit of  onto  is 

my +ℜ∈ mw +ℜ∈

w y

ww
ywww

ww
wyyww T

T

T

TT
P ==

2/1)( .                                     (4.16) 

The full Procrustes distance between  and  is w y

2/1

22
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F β
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This distance is quite useful in quantifying the similarity between target image shapes, 

especially when they come from measurements at different target distances. Consider a 

sequence of preprocessed target images  with each , and a matrix 

, then one definition of the static template for can be the full Procrustes 

mean shape, i.e., to find , such that it minimizes 

},,{ 1 naa K m
ia +ℜ∈

],,[ 1 naaA K= A

mu ℜ∈
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2 1),( .                                    (4.18) 

Proposition 4.2 shows that the optimal solution, , turns out to be the eigenvector of *u

∑
=

n

i i
T
i

T
ii

aa
aa

1
 corresponding to the maximum eigenvalue. One notable fact is that if columns of 

 are normalized, i.e., , then  is the first left singular vector of the matrix A . 

For the special treatement on singular value decomposition, please refer to [p291~p294, 

A 1=i
T
i aa *u
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Shores, 2006; p273~p276, Theodoridis and Koutroumbas, 2006; p331~p337, Strang, 2006; 

Chapter 5, Berrar, Dubitzky and Granzow, 2003]. 

 

Apply the Procrustes shape analysis to the radar samples, the discrimination ability of the 

full Procrustes mean shape can be explored. Firstly, Table 4.1 lists the experimental 

configurations for gathering four data samples that were used to test the proposed 

algorithms. Figure 4.5 (a) ~ (d) provide the image show of these four data samples, which 

will also be referred to as sample I, II, III, and IV, respectively. Each sample consists of a 

sequence of 400 preprocessed radar scans, with each scan stored as a real vector of length 

81 and shown as one column in the corresponding figure. To match with the numerical 

values of the data, the brighter one image pixel is, the higher numeric value it represents. 

 

 

Scanning rate 42 scans/sec 
Target identity Hao Jiang 
Target behavior Walking in a treadmill 
Target distance 1.5 ~ 1.8 m 
Target orientation I. Facing to radar; 

II. 45 degree to radar; 
III. Side to radar;  
IV. Back to radar; 

 

Table 4.1 Experimental configurations for gathering four sample data sets. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.5 The image show of target images gathered from walking orientation I (a), 

walking orientation II (b), walking orientation III (c), walking orientation IV (d). 
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Based on the four sample data sets illustrated above, Figure 4.6 shows the calculated full 

Procrustes mean shape for each of them. 

 

Figure 4.6 Four full Procrustes mean shapes corresponding to the four sample data I ~ IV. 

 

From the experimental data samples, it can be observed that the full Procrustes mean 

shapes are distinct. Can the Procrustes mean shape be utilized as an informative clue for 

classification? This question is addressed first by an empirical test, then is generalized to a 

statistical inference problem which is addressed by the Hotelling one sample 2T  test under 

the assumption of a multivariate normal model. 
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To explore the discrimination power of the full Procrustes mean shape, each data sample is 

divided into two non-overlapping parts, the first part containing scans No.1 through 

No.280, and the second part containing scans No.281 through No.400. Using the 

terminology from the pattern recognition community, the first part is called the training set 

and the second part the test set. The intention of this division is to calculate the full 

Procrustes mean shapes for each part separately and compare them. Figure 4.7 (a) & (b) 

plot the four Procrustes mean shapes of samples I ~ IV for the training set and the test set, 

respectively. 

 

 

 

(a) 
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(b) 

Figure 4.7 Procrustes mean shapes of samples I ~ IV for the training set (a), the test set (b). 

 

The dynamic time warping (DTW) distance measure is utilized to measure the similarity 

between different Procrustes mean shapes. The DTW measure calculates the similarity 

between two vectors based on their best nonlinear alignment version, hence being 

insensitive to the relative shift and relative stretch of one vector with respect to the other. In 

the following, the definition and calculation of the DTW distance measure is briefly 

reviewed. For a more complete cover of the DTW algorithm, please refer to [Salvador and 

Chan, 2007]. 
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Definition 4.4 [Salvador and Chan, 2007]: Given two vectors, X  and Y , of length X  and 

Y , respectively, ,  denote the  component of )(iX )(iY thi X , Y , respectively. Construct a 

warp path, Kw,Kww ,, 21W , where = K  is the length of the warp path satisfying 

YXKYX +≤≤),max( .                                         (4.19) 

The  element of the warp path, W , is thk

),( jiwk =                                                         (4.20) 

where  is an index from the vector i X  and j  is an index from the vector Y . Also let  

and  denote the first and the second component of , respectively. The warp path, 

, must satisfy 

1,kw

2,kw kw

W

 )1,1(1 =w , ),( YXwK =                                             (4.21) 

),( jiwk = ,   , .                  (4.22) ),( ''
1 jiwk =+ ⇒ 1 1' +≤≤ jjj' +≤≤ iii

The distance of a warp path W , , is defined as )(WDist

∑
=

−=
K

k
kk wYwXWDist

1
2,1, )()()( .                                      (4.23) 

The optimal warp path is the warp path with the minimum distance. 

 

Proposition 4.3 [Salvador and Chan, 2007]: A dynamic programming approach is used to 

calculate the distance of the optimal warp path. A two-dimensional YX ×  distance 

measure matrix, , is constructed where the  value, , is the distance of the 

optimal warp path that can be constructed from the two vectors,  and 

D thji ),( ),( jiD

'X )](,),1([ iXX K=
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)](,),1([' jYYY K= . The value, ),( YXD , is termed the DTW distance measure between 

the vectors, X  and Y . The dynamic programming algorithm to find ),( YXD  is 

),( jiD )}1,1(),1,(),,1(min{)()( −−−−+− jiDjiDjiDjYiX= .          (4.24) 

■ 

The DTW distance measures between different pairs of Procrustes mean shapes are 

tabulated in Table 4.2 as a matrix form, whose  element represents the DTW 

distance measure between the training set Procrustes mean shape of sample i  and the test 

set Procruestes mean shape of sample 

thji ),(

j . 

 

DTW  I  II  III  IV 
I  0.13  0.34  0.51  0.24 
II  0.36  0.14  0.86  0.34 
III  0.44  0.63  0.16  0.42 
IV  0.28  0.19  0.66  0.15 

 

Table 4.2 The DTW distance measures between the training set Procrustes mean shapes of 

samples I ~ IV, and the test set Procrustes mean shapes of samples I ~ IV. 

 

In Table 4.2, all four diagonal elements are the minimum ones among their corresponding 

columns. This shows that all four test data will be classified correctly if the DTW distance 

measure between the Procrustes mean shapes is used as the decision criterion. In another 

word, this result verifies the intuition that the full Procrustes mean shape can be an 

informative feature for target identification. Furthermore, in the following it can be shown 
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that through the use of the Hotelling one sample 2T  test, one can carry out this comparison 

process under a statistical inference framework. 

  

4.5.2 Tangent Space Inference 

 

The tangent space is tangent to the unit size shape sphere on a particular point called the 

pole of the tangent projection. The projection pole is usually adaptively chosen to be an 

average shape obtained from the data set. Then the tangent space is a linear approximation 

of the unit size shape sphere in the vicinity of the projection pole. One prominent advantage 

of tangent space is that on this linear space, the classical multivariate statistical analysis 

techniques can be directly applied. For a detailed explanation of the geometric and 

algebraic properties in the tangent space, please refer to [Chapter 4, Dryen and Mardia, 

1998]. Figure 4.8 gives a geometric view of the unit size shape sphere, a unit size 

Procrustes mean shape, γ , the tangent space on γ , )(γT , the full Procrustes fit of  onto w

γ , , the full Procrustes distance, Pw ),( wdF γ , and the tangent plane coordinate of  

onto 

Pw

)(γT , . Taking the notation of Section 4.5.1 and Proposition 4.1, it is known that v

ww
www H

H
P γ
= .                                                      (4.25) 

So the tangent plane coordinate, , turns out to be v
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Figure 4.8 A geometric view of the unit size shape sphere, the tangent space, )(γT , the 

Procrustes fit, , the Procrustes distance, Pw Fd , and the tangent plane coordinates, . v

 

In the UWB radar signal context, consider a hypothesis test on whether or not the 

Procrustes mean shape of a population has a specific shape [ ]0μ , i.e., 

][][: 00 μμ =H   versus  ][][: 01 μμ ≠H .                              (4.27) 

Let  be a random sample of preprocessed radar range profiles with each 

, and 

},,{ 1 nww K

m
+ℜ∈iw μ̂  be their full Procrustes mean shape with unit Euclidean norm. The full 

Procrustes fits of  onto nww ,,1 K μ̂  are, 

i
T
i

i
T
iP

i ww
www μ̂

= ,   ni ,,1K= .                                         (4.28) 

And the tangent plane coordinates of  onto P
iw )ˆ(μT , , have been derived as iv
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Similary, the full Procrustes fit of 0μ  onto μ̂ , , and the tangent plane coordinate of  

onto 

P
0μ

P
0μ

)ˆ(μT , , are, 0v
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To obtain the Hotelling one sample 2T  test, assume  obeys the standard multivariate 

normal model, i.e., 

iv

),(~ ∑ηNvi  and  are independent, iv ni ,,1K= . Denote ∑
=

=
n

i
iv

n
v

1

1  

for the sample mean and ∑
=

−− v=
n

i

T
ii vvv

n
S

1
))((1  for the maximum likelihood estimation 

(MLE) of the covariance matrix, ∑ , then the one sample Hotelling 2T  test statistic is 

given as 

)()}(/){( 0
1

0 vvSvvMMnF T −−−= −                                (4.31) 

where  is the dimension of the tangent space and  is the Moore-Penrose 

generalized inverse of S . From [p151, Dryen and Mardia, 1998; Proposition C.7, 

Appendix C],  under , so  is rejected  for large values of . 

1−= mM

F ~

1−S

M−nMF , 0H 0H F

 

The calculated one sample Hotelling 2T  statistic for the samples I ~ IV are summarized as 

follows. For each sample,  and  are the training set and the }280,,{ 1 ww K },,{ 400281 ww K
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test set, respectively, with each , and 81
+ℜ∈iw μ̂  is the test set Procrustes mean shape with 

unit norm. Consider a hypothesis test on whether the test population mean shape can be 

0μ , which is taken as the Procrustes mean shape calculated from the training set. In other 

words, this hypothesis test is to evaluate whether the test population mean shape can match 

the template generated from the training set. The calculated Hotelling 2T  statistics are 

organized into a matrix shown in Table 4.3, whose  element represents the  value 

when using the test set of sample i  to match the mean shape generated from the training set 

of sample 

thji ),( F

j . 

 

F   I  II  III  IV 
I  2.45  51.4  55.4  54.4 
II  43.6  2.57  32.6  13.2 
III  210.9  514.1  12.8  900.9 
IV  28.4  14.0  42.1  5.07 

 

Table 4.3 The  values when using the test sets of samples I ~ IV to match the training set 

Procrustes mean shapes from samples I ~ IV. 

F

 

In Table 4.3, all four diagonal elements are the minimum ones among their corresponding 

rows. This shows that all four test data will be classified correctly if the  statistic is used 

as the decision criterion. But there is one unanticipated phenomenon: the random variable 

 with parameters 

F

Mn−MF , 80=M  and n 120=  has a very spiky p.d.f around 1, hence 

making even the best matches an extremely low p -level, e.g. 0012)45( 40,80 .0.2> =FP . 

This unusual occurrence comes from the fact that the rank of the sample covariance matrix, 
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)(Sρ , is assumed to be M when deriving the  statistic. Actually, F MS <<)(ρ , because 

there are strong temporal structures in the sequential radar data. What this rank 

insufficiency implies about the appropriate setup of parameters, , is still a mystery. )n,(M

 

4.6 Shape Variability by Principal Component Analysis 

 

The full Procrustes mean shape in Section 4.5 provides a way to define a representative 

template for a sequence of target images. But for a sequence of target images, they also 

exhibit significant variations around their mean shape. This section investigates the shape 

variation structure of radar range profiles, and verifies its use as one promising feature for 

the classification. If one views a target image as a specific realization of a random vector, 

and plots it in the high dimensional space, then because of the redundancy in the random 

vector components, the main structure of the data cluster from a sequence of target images 

will reside in a much lower dimensional subspace. This section is to reveal this main 

structure by the projection pursuit technique, which offers the selected low-dimensional 

orthogonal projection of data by optimizing an index of goodness - projection index. 

Classical projection indexes include, but are not limited to, variance [Jolliffe, 2002] and 

entropy [Hyvarinen, 1998]. This thesis, by no means, intends to cover this field even 

superficially. Academic treatements on projection pursuit methods can be found in [Jones 

and Sibson, 1987; Huber, 1985; Nason, 1992; Pajunen, 1998; Friedman and Tukey, 1974; 

Friedman, 1987]. In this section, one dominant projection pursuit method, principal 

component analysis, is adopted due to its mathematical neatness and experimental success. 
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Principal component analysis (PCA) was developed by Hotelling [Hotelling, 1933] after its 

origin by Karl Pearson [Pearson, 1901]. Generally speaking, PCA looks for the linear 

transformations, which provide “parsimonious summarization” of the data, losing in the 

process as little information as possible, and generate features that are mutually 

uncorrelated in order to avoid information redundancies. PCA is of fundamental 

significance in pattern recognition, e.g., face recognition [Turk and Pentland, 1991], and in 

a wide range of applications [p9, Jolliffe, 2002]. For self-containment and terminology 

introduction of this section, [Appendix D] briefly reviews one classic construction process 

for PCA and its two key properties. More complete coverage on PCA can be found in 

many nice references, such as [Jolliffe, 2002; p266~p272, Theodoridis and Koutroumbas, 

2006; Chapter 8, Mardia, et al., 1979; Chapter 11, Anderson, 2003]. 

 

Principal component analysis of the sample covariance matrix in the tangent space provides 

an efficient way to analyze the main modes of shape variation. As in Section 4.5, consider a 

real  matrix , with the columns, , representing the sequential 

preprocessed target images. Assume 

nm× ],,[ 1 naaA K= m
ia +ℜ∈

μ̂  is the full Procrustes mean shape of  

with unit Euclidean norm, then the full Procrustes fits of  onto 

},,{ 1 naa K

naa ,,1 K μ̂  are, 

i
T
i

i
T
iP

i aa
aaa μ̂

= ,   ni ,,1K=                                          (4.32) 

and the tangent plane coordinates of  onto P
ia )ˆ(μT , , are given as iv
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Stack iv  columnwise into a ma , Gtrix ],,[ 1 nvv K= , and call  th of tangen

plane coordinates.  realizatio  a random vector 
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e matrix t 
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igur 9 illustrat v  of for samples I ~ IV. Figure 4.10 plots the first 

ur p  of eigen p al  for each sample I ~ IV. 
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(a) 



76 
 

 

(b) 

 

(c) 

 

(d) 

Figure 4.9 Eigenvalues of , sample I (a), sample II (b), sample III (c), sample IV (d). uS
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(a) 

 

(b) 
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(c) 

 

(d) 
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Figure 4.10 Eigenvectors of  (left panel) and scores of principal components of G  

(right panel) for sample I (a), sample II (b), sample III (c), sample IV (d). 

uS

 

The sparsity pattern of eigenvalues of  in Figure 4.9 and optimal representation 

properties of PCA [Propositions D.1 and D.2] lead the analysis to focus on the first several 

eigenvectors of  and the scores of corresponding PCs of the matrix of tangent plane 

coordinates, . This is a reasonable simplification, because the top PCs have explained 

most of the variance inside the original data. For example, in the illustrated data sets, the 

top 4 out of 81 PCs account for 74.8%, 76.2%, 78%, and 75.9% of the total variance of G  

for samples I ~ IV, respectively. So the top principal components can capture the prominent 

target dynamics compactly. For example, in Figure 4.10 (a), the stepping pace of the 

experimental person in orientation I is clearly identified through the first PC. In Figure 4.10 

(b), the left leg stepping pace and right leg stepping pace in orientation II are identified 

through the first and the second PCs, respectively. This can be understood better if it is 

noticed that the waveforms of the corresponding two eigenvectors have an approximate 

relative shift, hence accentuating the motion pattern of different body parts. In Figure 4.10 

(c), the strong pace of one visible leg and relatively weak pace of another partially occluded 

leg in orientation III are both captured by the first PC. A closer look at the eigenvector 

reveals that this is achieved by putting contrast weights on the range of presence of two 

legs, respectively. In Figure 4.10 (d), the walking pace of the experimental person in 

orientation IV is clearly identified through the first PC. 

uS

uS

G
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It is promising to analyze the top principal components to extract target dynamic 

information, meanwhile, the corresponding eigenvectors of the sample covariance matrix, 

, are quite worthy of further exploration. The Procrustes mean shape defines a static 

template, and the top eigenvectors of  build an orthonormal basis for a subspace which 

captures the dominant data variation structure in the tangent space. The combination of the 

Procrustes mean shape and the dominant data variation structure provides a more complete 

version of static features, which will augment the robustness of the radar target recognition 

provided one can compare not only the mean templates, but also the data variation 

structures. The similarity between two data variation structures can be measured through 

comparing their residing subspaces. This method was proposed in [Krzanowski, 1979], and 

is briefly reviewed in the following and [Appendix E]. 

uS

uS

 

Assume two random vectors,  and , have the covariance matrices of mX ℜ∈ mY ℜ∈ X∑  

and , respectively. Suppose the coefficients for the first Y∑ p  principal components (PCs) 

of X  and Y  are },,{ 1 pαα K  and }p,,{ 1 ββ K  respectively, that is, },,{ 1 pαα K  are the 

first p  orthonormal eigenvectors of X∑ , and },, p{ 1 ββ K  are the first p  orthonormal 

eigenvectors of ∑ . In order to compare these two sets of PCs, it is necessary to compare 

the two subspaces spanned by 

Y

},,{ 1 pαα K  and },, p{ 1 ββ K , respectively. The following 

two theorems from [Krzanowski, 1979] propose one elegant way to do it. 
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Proposition 4.3 [Krzanowski, 1979; Appendix E]: },,{ 1 pαα K  and },,{ 1 pββ K

,,[ 1L

 denoting 

the same as in the above paragraph, construct two matrices, ]pαα K=  and 

],,[ 1 pM ββ K=

},,{ 1 pspan

, the minimum angle between an arbitrary vector in the subspace 

αα K  and another arbitrary vector in the subspace },,1 p{span ββ K  is given by 

)(cos 1
1 λ− , where 1λ  is the largest eigenvalue of LMMLK TT= . 

■ 

Proposition 4.4 [Krzanowski, 1979; Appendix E]: , L M  and K  are defined as in 

Proposition 4.3. Let iλ , iν be the i -th largest eigenvalue and corresponding eigenvector of 

K , respectively. Take iiw Lν=

,{ 1

, then  and  form 

orthogonal vectors in 

},,{ 1 pww K }, p
TT wMMMM K,1w{

}p,span αα K  and }, p,{ 1span ββ K , respectively. The angle 

between the i -th pair, ( , is given by ),iw iwTMM )iλ(1cos− . Proposition 4.3 shows that 

 and  give the two closest vectors when one is constrained to be in the subspace 1w

span

1wMM

},1 p

T

,{ αα K  and the other in span },,1 p{ ββ K . It follows that  and  give 

directions, orthogonal to the previous ones, between which lies the next smallest possible 

angle between the subspaces. 

2w 2wMM T

■ 

Let ijθ  be the angle between iα  and jβ , i.e., , then ,  j
T
iij βαθ =)cos( )}{cos( ij

T ML θ=

∑ ∑∑
= ==

==
p

j

p

i
ij

TT
p

i
i LMMLtrace

1 1

2

1
)(cos)( θλ .                          (4.34) 

Thus the summation of the eigenvalues of LMMLK TT=  equals the sum of squares of 



82 
 

the cosines of the angles between each basis element of },,{ 1 pspan αα K  and each basis 

element of },,{ 1 pspan ββ K

},,{ 1 pspan

. This sum is invariant with respect to whichever basis you 

select for αα K  and },,{ 1 pspan ββ K

,,{ 1 pspan

 [Appendix E], so it can be used as a 

measure of total similarity between the two subspaces. Also it can be checked that 

p
p

i
i =∑

=1
λ ,   if },,{ 1 p} span ββαα KK =                      (4.35) 

0
1

=∑
=

p

i
iλ },,{ 1 p},,{ 1 pspan span,   if ββαα KK ⊥ .                     (4.36) 

 

To explore the discrimination power of the principal components, each of samples I ~ IV is 

divided into two non-overlapping parts. The first part containing scans No.1 through 

No.280 is called the training set, and the second part containing scans No.281 through 

No.400 is called the test set. This test concerns comparing the PCs of the training set with 

the PCs of the test set from each sample. Figure 4.11 (a) ~ (d) plot the top four eigenvectors 

of  of the training set (left panel) and the test set (right panel) for samples I ~ IV, 

respectively. 

uS
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.11 The top four eigenvectors of  of the training set (left panel) and the test set 

(right panel) for sample I (a), sample II (b), sample III (c), sample IV (d). 

uS
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Denote ],,[ 1 pL αα K= , ],,[ 1 pM ββ K= , and LMMLK TT= , where },,{ 1 pαα K  and 

}, p,{ 1 ββ K  are the first p  eigenvectors of  for the training set and the test set, 

respectively, then the total similarity between two subspaces, span

uS

},,{ 1 pαα K  and 

},,1 p{span ββ K , can be measured as . The calculated values of  are 

organized as two matrices shown in Table 4.4 (a) for 

)

3

(Ktrace )(Ktrace

=p

(trace

 and (b) for . The  

element in the matrix represents the similarity measure, , when comparing the 

first 

4= i,(p th)j

)K

p  PCs of the training set of sample  with the first i p  PCs of the test set of sample j . 

 

)(Ktrace

)(Ktrace

  I  II  III  IV 
I  2.88  1.89  1.64  2.08 
II  1.82  2.89  2.19  1.92 
III  1.88  2.35  2.55  1.73 
IV  2.52  1.83  1.60  2.32 

(a) 

  I  II  III  IV 
I  3.14  2.72  2.01  2.61 
II  2.99  3.84  2.88  3.33 
III  2.93  3.42  2.94  3.02 
IV  3.21  3.34  2.61  3.35 

(b) 

Table 4.4 Comparing the first p  PCs of the training sets of samples I ~ IV with the first p  

PCs of the test sets of samples I ~ IV, 3=p  (a), 4=p  (b). 

 

In Table 4.4, all the matrix diagonal elements are the maximum ones among their 

corresponding columns, except the first data column in (b). This shows that most test data 
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will be classified correctly if the similarity measure, , is used as the decision 

criterion. The exceptional case is with orientation I and 

)(Ktrace

4=p . To understand this special 

case better, the cosines of the angles between columns of L  and M  are calculated. 

Specifically, two matrices, I
T
I ML  and , are computed. I

T
IV ML IL ,  consist of the first 

4 eigenvectors of  for the training set of sample I and IV, respectively, and 

IVL

uS IM  consists 

of the first 4 eigenvectors of  for the test set of sample I. Table 4.5 shows the elements 

of 

uS

I
T
I ML  in (a),  in (b). I

T
IV ML

 

‐0.98  ‐0.07  0.02  ‐0.02 
0.08  ‐0.96  0.15  ‐0.13 
0  0.16  0.96  ‐0.17 

‐0.1  ‐0.18  0.03  0.42 
(a) 

‐0.85  0.25  0.34  ‐0.16 
‐0.12  ‐0.86  0.01  ‐0.46 
0.36  ‐0.08  0.85  0.09 
0.12  0.22  ‐0.09  ‐0.62 

(b) 

Table 4.5 Cosines of the angles between columns of  and L M ; the result of I
T
I ML  is 

shown in (a), and  in (b). I
T
IV ML

 

Table 4.5 (a) shows that the first 4 eigenvectors of  for the training set and the test set 

of sample I match very well except for the 4th eigenvector. Because the subspace 

similarity measure, , doesn’t consider the relative dominancy of each principal 

uS

)(Ktrace



87 
 

component, two sets of principal components matching very well in all pairs except in the 

minor one may not have the best match when evaluated from the subspace similarity 

measure. This exceptional case doesn’t impair the promising usefulness of the PC 

comparison as the classification feature, instead, it triggers a strong need to develop a 

more robust way to measure the similarity of data variation structures, which should take 

more factors into account, e.g., the relative dominancy of each principal component. 
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CHAPTER 5 

SUMMARY AND FURTHER RESEARCH 

5.1 Summary 

 

Feature selection from measured data presents one significant challenge for diverse fields 

of science and engineering. Nowadays, as large and complex data sets become typical and 

usual, it is essential to extract the informative features revealing the statistic or stochastic 

mechanism which generates the data. This thesis explores the feature selection problem in 

two scenarios, pattern recognition and ultra-wideband radar signal analysis. 

 

Classical pattern recognition methods view feature selection as an independent stage, 

which aims to find an optimal or suboptimal subset of candidate features with high 

separability scores based on a given gauge measure. There are deficiencies to this general 

approach in specific situations. Firstly, a feature may not necessarily be a good feature 

even when its separation score is high. Especially, this leads to a problem in our 

concerned application, neural signal decoding, in which a single neuron and its associated 

features have only weak classification ability. In such cases, one cannot guarantee a 

statistically significant difference between selected features and discarded ones by the 

gauge measure. Secondly, classical feature selection depends on the set of training data. 

As a result, feature selection and the following decision rule learning must start from 
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scratch if the pool of candidate patterns or the set of training samples changes. This adds 

a significant computational burden for some applications, such as neural signal decoding, 

whose data generation mechanism can be quite variable. To overcome these deficiencies, 

this thesis presents a new adaptive sequential feature selection algorithm which utilizes 

an information-theoretic measure and the nonparametric kernel density estimation 

method to sequentially reduce the complexity of the classification task, and finally 

outputs the probabilistic classification result and its variance estimate. The point is that 

the selected feature can be a function of not only the training samples, but also of the 

unlabeled test data. 

 

Brain computer interfaces (BCIs) aim to utilize the biological understanding of brain 

functionality and operating mechanism to enable people to control external devices merely 

by thought. One important application of BCI technique is to construct neural prosthetic 

systems which tap into the thoughts of millions of paralytic patients who are deprived of 

motor abilities, but not cognitive functions. The design and construction of such an 

automatic mechanism involves challenges in diverse disciplines. What is concerned in this 

thesis is decoding a finite number of classes from neural recordings through a combined 

application of the adaptive sequential feature selection algorithm and information fusion 

methods. This combination presents a new classification scheme that is particularly well 

suited to neural signal decoding, as it fulfills many of the challenges that are specific to 

neural prosthetic systems, which include real time decoding, adaptation to non-stationary 

data generation mechanism, classification under significant overlaps of classes in the 

feature space, and robust information pooling from multiple neurons. Experimental results 



90 
 

show that the proposed neural decoding method outperforms the classical pattern 

recognition methods, the -NN rules and the C-SVC classifier, in decoding performance. k

 

The motivation behind the second research topic in this thesis is to augment pedestrian 

safety by developing a human presence detector and a human behavior classifier through 

the use of ultra-wideband (UWB) impulse radar. The UWB system is ideal for its abundant 

information content and precise positioning, however no systematic theory of UWB is 

available due to the highly complex signal transformations involved. Hence the well-

known radar target recognition technique through the Doppler shift effect doesn’t apply in 

UWB systems. Novel methods must be developed for this application. To prominently 

distinguish people from other targets and classify people’s behaviors, information from 

both static and dynamic biometric features should be pooled. The static features can reflect 

information about the target geometry and its variation structure, while the dynamic 

features extract the temporal structure among a sequence of radar scans. This thesis is 

devoted to the problem of generating the static template for a sequence of target images, 

locating the high information packing subspace, and exploring their statistical and algebraic 

properties. Firstly, the introduction of the preprocessing of range profile extraction makes 

radar data more amiable for further analysis. Next, the Procrustes shape analysis is utilized 

to generate a representative template, the Procrustes mean shape, for the radar data set, and 

the statistical inference about the Procrustes mean shape is carried out in the tangent space 

through the Hotelling one sample 2T  test. After that, the waveform shape variation 

structure in the tangent space is analyzed through principal component analysis (PCA). 
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PCA analysis not only provides a new kind of static features for classification, but also 

accentuates the prominent dynamics of the target motion. Undoubtedly, the combination of 

the Procrustes shape analysis and shape variability analysis forms a more complete 

platform to extract static features for the UWB radar signal. 

 

5.2 Further Research 

 

In this thesis, the combination of the sequential feature selection algorithm and the 

information fusion methods shows the potential advantage of robustly assembling the 

information of multiple neurons. Despite this initial success, deeper work should be done to 

improve the match between the algorithmic design and the neural operation mechanism. 

This work includes, 

 

(1) In the adaptive sequential feature selection algorithm, T  is the threshold set to make 

the decision of retaining or removing sequentially, and t  is the threshold set to 

determine whether an early termination of the sequential process is necessary. Current 

settings of T  and t  are empirical, but should be developed in a more rigorous fashion. 

(2) Minimizing the average Kullback-Leibler distance is one way to justify the information 

fusion method – the product rule. This information fusion strategy assumes no data 

variation for the estimate of the posterior probability distribution from each classifier. 

The next question is how to generalize this information fusion method to the case 

where each classifier outputs not only an estimate of the posteriori probabilities, but 
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also an estimate of their variances. 

 

In radar signal analysis, this thesis exhibits the discrimination ability of static features 

generated from Procrustes shape analysis and shape variability analysis. However the target 

dynamic information can also be explored as informative identification cues due to its 

correlation with behavioral characteristics. Fusion of static and dynamic features will 

augment the performance of automatic target identification further. Figure 5.1 gives a 

diagrammatic description of the design of an automatic target recognition system along this 

line of reasoning. 

 

 

 

 

 

 

 

 

 

Figure 5.1 Diagrammatic description of the design of an automatic UWB radar target 

identification system using both the static and dynamic features. 

 

To make this design more robust and efficient, some important open problems should be 

explored: 
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(3) As an extension of current fixed-range segmentation and range profile extraction 

through Gaussian kernel, more solid choices of preprocessing methods will augment 

the robustness of shape analysis, principal component analysis and dynamic analysis. 

(4) The one sample Hotelling 2T  test is an elegant way to make the shape inference in the 

tangent space. But when there are temporal relations among the sequential radar scans, 

it remains a mystery how to appropriately set up the parameters of ),( nM  for the F  

statistic (4.31). 

(5) Although the similarity between two data variation structures can be measured through 

comparing their residing subspaces, this comparison is deficient in robustness, because 

it fails to take into account the relative dominancy of each principal component. This 

deficiency motivates a need to develop a robust way to measure the similarity of two 

data variation structures. 

(6) This thesis doesn’t touch upon dynamic feature selection, but it is a natural extension to 

include target dynamic signatures as classification clues, because the same people may 

have different physiological coordination of body parts when in different motion 

patterns. Time series analysis [Box et al., 1994] will be an appropriate technique to 

quantify this coordination. Through postulating relationships between variables, time 

series analysis aims to estimate the coefficients in this relationship and test hypotheses 

about it. One specific branch of time series modeling techniques, structural time series 

analysis [Harvey, 1989; Durbin and Koopman, 2001], may help for the human behavior 

classification. One prominent characteristic of the human gait is its quasi-periodic 

pattern, which can be captured by the principal component analysis. Structural time 



94 
 

series models are models which are formulated directly in terms of components of 

interest, such as a cyclic component. It has an intuitive appeal for this application. 

There are many ways in which such a model may be formulated. For example, one may 

assume that,  

observed time series = trend + cycle + seasonal adjustment + noise. 

Structural time series analysis provides a systematic way to model and estimate the 

components, and test the goodness of fit, which awaits further detailed exploration. 
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APPENDIX A 

KERNEL DENSITY ESITMATION 

This appendix states and proves the kernel density estimation theorem, for more broad 

treatements on the topic of non-parametric density estimation, please see [Silverman, 

1986; Scott, 1992], which also generalize the univariate kernel methods to the 

multivariate case. 

 

Definition A.1: Assume that the random variable , and  is 

a set of i.i.d. samples from the distribution of U , then the kernel density estimation for 

 is, 
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Proposition A.1 [Chapter 3, Silverman, 1986]: For a univariate kernel density estimator, 
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where , , and  are, respectively, abbreviations for integral of the mean square 

error, integral of square of the bias, and integral of the variance, and . 

Moreover, when  takes the value,  

IMSE ISB

h

IV

∫= duuffR )()( 2

5/1
5/1

''4
*

)(
)( −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= n

fR
KRh

Kσ
 

the minimum value of the integral of mean square error is: 
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Finally,  is obtained by setting the derivative of  with respect to  to be 0. *h IMSE h
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APPENDIX B 

PROCRUSTES SHAPE ANALYSIS 

In a 2D scenario, shape is very commonly used to refer to the appearance or silhouette of 

an object. Procrustes shape analysis is to analyze the geometrical information that 

remains when location, scale and rotational effects are filtered out from an object. This 

appendix briefly reviews the definitions of full Procrustes fit, full Procrustes distance, and 

full Procrustes mean shape, whose much more complete treatments are in [Dryden and 

Mardia, 1998].  

 

Assume two shapes or silhouettes in the 2D space are represented by two vectors of k  

complex entries, say  and . Without loss of generality, 

assume these two configurations are centered, i.e., , where  means 

transpose of complex conjugate of y  and  is a length-  vector with all components 

being 1. 
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Definition B.1 [p40, Dryen and Mardia, 1998]: The full Procrustes fit of  onto w y  is 
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Proposition B.1 [p40, Dryen and Mardia, 1998]: The full Procrustes fit has matching 

parameters 
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Definition B.2 [p41, Dryen and Mardia, 1998]: The full Procrustes distance between w  

and y  is 
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where the second equation comes from the complex linear regression used in deriving 

Result 1, and it can be checked that ),( ywdF  is invariant with respect to translation, 

rotation, and scaling of configurations of  and . w y

 

Definition B.3 [p44, Dryen and Mardia, 1998]: The full Procrustes mean shape ]ˆ[μ  is 

obtained by minimizing the sum of squared full Procrustes distances from each 

configuration  to an unkown unit size configuration iw μ , i.e., 

∑
==

=
n

i
iF wd

1

2
1

),(infarg]ˆ[ μμ
μ

. 

Note that ]ˆ[μ  is not a single configuration, instead, it is a set, whose elements have 0 full 

Procrustes distance to the optimal unit size configuration μ . 

 

Proposition B.2 [p44, Dryen and Mardia, 1998]: The full Procrustes mean shape, ]ˆ[μ , can 

be found as the eigenvector, μ̂ , corresponding to the largest eigenvalue of the complex 

sum of squares and products matrix 
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All translation, scaling, and rotation of μ̂  are also solutions, but they all correspond to the 

same shape ]ˆ[μ , i.e., have 0 full Procrustes distance to μ̂ . 

Proof: 

∑∑
== ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−=

n

i
H

i
H
i

H
ii

Hn

i
iF ww

wwwd
11

2 1),(
μμ
μμμ  

Under the constraint of  , we have 1=μμH

μμμμμ Sn
ww

wwnwd Hn

i i
H
i

H
iiHn

i
iF −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑∑

== 11

2 ),(  

⇒   μμμ
μ

SH

1
supargˆ

=
= . 

The well known linear algebra fact states that μ̂  is the first eigenvector of matrix . S

■ 

Proposition B.3 [p89, Dryen and Mardia, 1998]: The arithmetic mean of the full 

Procrustes fits, ∑
=

n

i

P
iw

n 1

1 , has the same shape as the full Procrustes mean, i.e., 

0)ˆ,1(
1

=∑
=

μ
n

i

P
iF w

n
d . 

Proof: 

Because ),( μiF wd  is invariant with respect to the scaling of its arguments, so 

∑∑
===

=
n

i
iF

n

i
iF wdwd

1

2

1

2
1

),(inf),(inf μμ
μμ

. 

Without restricting the size of μ , let us denote the Procrustes fit of  onto iw μ  as , then  P
iw
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∑∑
==

−=
n

i

P
i

n

i
iF wwd

1

2

1

2 ),( μμ  

is a quadratic function with respect to μ , and is minimized by 

∑
=

=
n

i

P
iw

n 1

1μ . 

■ 
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APPENDIX C 

HOTELLING SAMPLE STATISTIC 

This appendix derives the one sample Hotelling 2T  tests, whose much more complete 

treatments are in [Mardia et al., 1979]. 

 

Suppose that  is a random sample from a population with p.d.f },,{ 1 nxxX K= );( θxf , 

where θ  is a parameter vector. The likelihood function of sample X  is 

∏
=

=
n

i
ixfXL

1
);();( θθ  

and the corresponding log likelihood function is 

∑
=

=
n

i
ixfXl

1
);(log);( θθ . 

As we know, the likelihood (log likelihood) function is central to the theory of statistical 

inference. 

 

Example C.1 [p97, Mardia et al., 1979]: Suppose },,{ 1 nxxX K=  is a random sample 

from ),( ∑μpN , where ),( ∑μpN  means p -variate normal distribution with mean, μ , 

and covariance matrix , then, ∑

∑
=

− −∑−−∑−=∑
n

i
i

T
i xxnXl

1

1 )()(
2
12log

2
),;( μμπμ . 
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Take ∑
=

=
n

i
ix

n
x

1

1 , μ−= xd , then, 

)(2)()()()( 1111 xxdddxxxxxx i
TT

i
T

ii
T

i −∑+∑+−∑−=−∑− −−−− μμ  

dndxxxxxx Tn

i
i

T
i

n

i
i

T
i

1

1

1

1

1 )()()()( −

=

−

=

− ∑+−∑−=−∑− ∑∑ μμ . 

Writing ∑
=

−−=
n

i

T
ii xxxxnS

1
))(( , we have, 

)()))((()()( 1

1

1

1

1 Sntracexxxxtracexxxx
n

i

T
ii

n

i
i

T
i

−

=

−

=

− ∑=−−∑=−∑− ∑∑ . 

So, 

( )ddStracenXl T 11 )(2log
2

),;( −− ∑+∑+∑−=∑ πμ . 

 

Proposition C.1 [p103, Mardia et al., 1979]: Suppose },,{ 1 nxxX K=  is a random sample 

from ),( ∑μpN , , maximum likelihood estimation (MLE) of 0>∑ μ  and ∑  are 

x=μ̂ ,   . S=∑̂

Proof: 

Using new parameters μ−= xd , , then the log likelihood function becomes, 1−∑=V

( )VddVStraceVpnVXl T++−−= )(log)2log(
2

),;( πμ  

0=−=
∂
∂ nVd
d
l   ⇒   0=d     ⇒ x=μ̂ . 

V  is symmetric positive definite, from matrix differentiation we have, 
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∑−∑=
∂

∂
Diag

V
V

2
log

,     DiagSS
V

VStrace
−=

∂
∂ 2)(  

)(2)( TT
TT

ddDiagdd
V
Vddtrace

V
Vdd

−=
∂

∂
=

∂
∂ . 

So, ( DiagMMn
V
l

−=
∂
∂ 2

2
) , if we denote . Then let TddSM −−∑= 0=

∂
∂
V
l , we get 

, i.e., 0=M ST =− )μ̂xxSddS T −+=+=∑ )(ˆ(ˆ μ . 

■ 

Definition C.1 [p123, Mardia et al., 1979]: Suppose that },,{ 1 nxxX K=  is a random 

sample from a distribution with parameter θ , and 00 : Ω∈θH  and 1Ω1 : ∈θH

0H

 are any 

two hypotheses, then the likelihood ratio (LR) statistic for testing  against  is 

defined as 

1H

*
1

*
0 /)( LLX =λ  

where  is the largest value which the likelihood function takes in region , *
iL iΩ }1,0{∈i . 

Equivalently, we can use the statistic, 

)(2log2 *
0

*
1 ll −=− λ ,   with , )log( **

ii Ll = }1,0{∈i . 

 

Definition C.2 [p66, Mardia et al., 1979]: If )( ppM ×  can be written as TXXM = , 

where  is a data matrix whose each column is i.i.d. , then )( npX × ),0( ∑pN M  is said to 

have a Wishart distribution with scale matrix ∑  and degrees of freedom parameter n ; 

we write . ),( np ∑~ WM
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Proposition C.2 [p69, Mardia et al., 1979]: Suppose },,{ 1 nxxX K=  is a random sample 

from ),( ∑μpN , , then the sample mean, 0>∑ ∑
=

n

i
ix

n
=

1

1x , and the sample covariance, 

∑
=

−=
n

i

T
i xx

n
S

1
(1

−i xx ))( , are independent, and 

),(~ 1∑−nNx p μ ,   )1,(~ −∑ nWnS p . 

Proof: 

Please refer to [p69, Mardia, Kent and Bibby, 1979]. 

■ 

Definition C.3 [p74, Mardia et al., 1979]: If α  can be written as  where  and dMndT 1− d

M  are independently distributed as N  and , then we say that )I,0(p ),( nIWp α  has the 

Hotelling 2T  distribution with parameters p  and n . We write . ),(~ 2 npTα

 

Proposition C.3 [p74, Mardia et al., 1979]: If x  and M  are independently distributed as 

),( ∑μpN  and , then ),( nWp ∑

),(~)()( 21 npTxMxn T μμ −− − . 

Proof: 

Let  and , then , )(2/1* μ−∑= − xd 2/12/1* −− ∑∑= MM *d *M  satisfy the requirements 

in Definition C.3. 

■ 
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Proposition C.4 [p74, Mardia et al., 1979]: If x  and  are the sample mean and sample 

covariance matrix of a sample of size  from 

S

)n ,( ∑μpN , then 

)1,(~)())(1( 21 −−−− − npTxSxn T μμ . 

Proof: 

),(~ ∑μpi Nx  ⇒  ),(~ 1 ∑−nNx p μ , )1,(~ −∑ nWnS p  

Take )(2/1 μ−= xnd , , then nSM = ),0(~ ∑Nd . From Proposition C.3, we got 

)1,(~)1()())(1( 211 −−=−−− −− npTdMdnxSxn TT μμ . 

■ 

Proposition C.5 [p74, Mardia et al., 1979]  

1,
2

1
),( +−+−
= pnpF

pn
npnpT . 

Proof:  

Please refer to [p74, Mardia et al., 1979]. 

■ 

Proposition C.6 [p75, Mardia et al., 1979]: If x  and  are the sample mean and sample 

covariance matrix of a sample of size  from 

S

)n ,( ∑μpN , then 

pnp
T FxSxppn −

− −−− ,
1 ~)()}(/){( μμ . 

Proof:  

This result directly follows from Proposition C.5. 

■ 
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Proposition C.7 [p125, Mardia et al., 1979]: Suppose },,{ 1 nxxX K=  is a random sample 

from ),( ∑μpN ,  is fixed but unknown, then the LR statistic for testing 0>∑ 00 : μμ =H  

against 01 : μμ ≠H  is known as one sample Hotelling 2T  statistic. 

Proof:  

Under , 0H 0ˆ μμ =  and , with TddS +=∑̂ 0μ−= xd ; under , 1H x=μ̂  and . So, S=∑̂

( )dddSdSddStraceddSpnl TTTT 11*
0 )(])[(log)2log(

2
−− ++++++−= π . 

By 

)1log(loglogloglog 11 dSdSddSISddS TTT −− ++=++=+  

pddddSSddStracedddSdSddStrace TTTTTT =+++=+++ −−−− ])()[()(])[( 1111  

⇒   ( )pdSdSpnl T ++++−= − )1log(log)2log(
2

1*
0 π . 

Obviously, ( )pSpnl ++−= log)2log(
2

*
1 π , so 

)1log()(2log2 1*
0

*
1 dSdnll T −+=−=− λ . 

From Results 4 and 6, we got that, 

)1,(~)1( 21 −− − npTdSdn T    or   . pnp
T FdSdppn −

−− ,
1 ~}/){(

■ 
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APPENDIX D 

PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis (PCA) is a statistical technique that can be constructed by 

several ways, one commonly cited of which is stated in this appendix. By stating a few 

directly useful properties of PCA for radar signal analysis, we by no means, tend to give 

an even superficial survey of this ever-growing topic. For deeper and more complete 

coverage of PCA and its applications, please refer to [Jolliffe, 2002]. [p266~p272, 

Theodoridis and Koutroumbas, 2006; Chapter 8, Mardia et al., 1979; Chapter 11, 

Anderson, 2003] are also nice and shorter materials to explain some general properties of 

PCA. For simplifying the presentation, all the following properties of PCA are proved 

under the assumption that all eigenvalues of whichever covariance matrix concerned are 

positive and distinct. 

 

One PCA construction: Assume a random vector X , taking values in , has a mean 

and covariance matrix of 

mℜ

Xμ  and X∑ , respectively. 0>21 >>> mλλλ L  are ordered 

eigenvalues of X∑ , such that the i -th eigenvalue of X∑  means the i -th largest of them. 

Similarly, a vector iα  is the -th eigenvector of i X∑  when it corresponds to the i -th 

eigenvalue of X∑ . To derive the form of principal components (PCs), consider the 

optimization problem of maximizing 1α1α1 ]var[α X
TT X = ∑ , subject to . The 11 =α1α

T
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)1(),( 1111111 −+∑= ααφααφα T

Lagrange multiplier method is used to solve this question. 

TL  X

022 111
1

=+∑=
∂
∂ αφα
α X
L  ⇒  111 αφα −=∑X  ⇒  . 11111 ]var[ φααφα −=−= TT X

Because 1φ−  is the eigenvalue of X∑ , with 1α  being the corresponding normalized 

eigenvector,  is maximized by choosing ]var[ 1 XTα 1α  to be the first eigenvector of X∑ . 

In this case,  is named the first PC of XT
11 α=z X , 1α  is the vector of coefficients for 

, and 1z 1)1var( λ=z . 

 

To find the second PC, , we need to maximize Xz T
22 α= 222 ]var[ ααα X

TT X ∑=

0) =X ⇒ 21 ∑ αα X
T

22 αα X
T ∑

 subject 

to being uncorrelated with . Because     

, this problem is equivalently set as maximizing , subject to 

, and . We still make use of the Lagrange multiplier method. 

2z

21 α
T

21 α
T

1z

1=

,cov( 21 X TT αα 0= ⇒

0=α

0=α 22αα T

)1(),,( 22221122212 −++∑= ααφααφααφφα TT
X

TL  

022 22112
2

=++∑=
∂
∂ αφαφα
α X
L  

⇒    0)22( 221121 =++∑ αφαφαα X
T ⇒ 01 =φ  

⇒  222 αφα −=∑X  ⇒  . 222 φαα −=∑X
T

Because 2φ−  is the eigenvalue of X∑ , with 2α  being the corresponding normalized 

eigenvector,  is maximized by choosing ]var[ 2 XTα 2α  to be the second eigenvector of 
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X∑ . In this case,  is named the second PC of Xz T
22 α= X , 2α  is the vector of 

coefficients for , and 2z 22 )var( λ=z . Continuing in this way, it can be shown that the i -

th PC z  is constructed by selecting XT
ii α= iα  to be the -th eigenvector of i X∑ , and 

has variance of iλ . The key result in regards to PCA is that the principal components are 

the only set of linear functions of original data that are uncorrelated and have orthogonal 

vectors of coefficients. 

 

Proposition D.1 [Jolliffe, 2002]: For any positive integer Bmp ,[ 1 ]p,,2≤ , let β β βK=  

be an real pm  matrix with orthonormal columns, i.e., , and × ijδ=jβT
iβ XBY T= . 

Then the trace of covariance matrix of Y  is maximized by taking B ]p,,2,[ 1 ααα K= , 

where iα  is the -th eigenvector of i . ∑X

Proof: 

Because  is symmetric with all distinct eigenvalues, so {X∑ }m,,2,1 αα αK  is an 

orthonormal basis with  being the -th eigenvector of iiα X∑ , and we can represent the 

columns of B  as 

∑
=

m
jjic

1
α ,  p,,1Ki=

j
iβ = . 

So we have 

PCB =  
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where ],,[ 1 mP αα K= ,  is an }{ ijcC = pm×  matrix. Then, Λ=∑ PP X
T , with Λ  being 

a diagonal matrix whose -th diagonal element is k kλ , and the covariance matrix of Y  is, 

T
mmm

TT
X

TT
X

T
Y ccccCCPCPCBB λλ ++=Λ=∑=∑=∑ L111  

where  is the -th row of C . So, T
ic i

∑ ∑∑∑∑
= ====

====∑
m

i
i

p

j
ij

m

i
i

T
ii

m

i
i

T
ii

m

i

T
iiiY ccccctracecctracetrace

1 1

2

111
)()()()( λλλλ . 

Because , so , and the columns of 

 are orthonormal. By the Gram-Schmidt method, C  can expand to D , such that D  has 

its columns as an orthonormal basis of  and contains  as its first 

IBBBPPBCC TTTT === pcCCtrace
m

i

p

j
ij

T == ∑ ∑
= =1 1

2)(

mℜ C

C

p  columns.  is 

square shape, thus being an orthogonal matrix and having its rows as another orthonormal 

basis of . One row of C is a part of one row of D , so , 

D

,,Kmℜ 1
1

∑
=

p

j

2
ijc ≤ mi 1= . 

Considering the constraints ,  and the objective ∑ ∑ . We 

derive that  is maximized if  for 

1
1

2 ≤∑
=

p

j
ijc

)( Ytrace ∑

pc
p

j
ij =∑ ∑

= =1 1

2

1
1

2 =∑
=

p

j
ijc pi ,,1K

m

i = =

p

j

m
(

i
iλijc2 )

1 1

= , and  for 

. When 

0=
1

2
ijc∑

=

p

j

m,,K ,,,[ 21Bp 1+i = ]pααα K=

1=iic i ,1

, straightforward calculation yields that C  is an 

all-zero matrix except , p,K= . This fulfills the maximization condition. 

Actually, by taking ],,,[ 21 pB γγγ K= , where },,,{ 21 pγγγ K  is any orthonormal basis of 
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the subspace of },,,{ 21 pspan ααα K , the maximization condition is also satisfied, thus 

yielding the same trace of covariance matrix of Y . 

■ 

Proposition D.2 [Jolliffe, 2002]: Suppose that we wish to approximate the random vector 

X  by its projection onto a subspace spanned by columns of B , where 

pm×,,,[ 21B ]pβββ K=  is a real  matrix with orthonormal columns, i.e., . If 

 is the residual variance for each component of 

ijj δ=T
i ββ

2
iσ X , then ∑  is minimized if 

=

m

i
i

1

2σ

,,,[ 21B ]pααα K= , where }, p,,{ 21 αα K α  are the first p  eigenvectors of X∑ . In other 

words, the trace of convariance matrix of XBBX T−  is minimized if 

,,,[ 21B 0)( =XE]pααα K= . When , which is a commonly applied preprocessing step 

in data analysis methods,  this property is saying that 
2

XBBX T−E  is minimized if 

,,,[ 21B ]pααα K= . 

Proof: 

The projection of a random vector X  onto a subspace spanned by columns of B  is 

XBBX T=ˆ . Then the residual vector is , which has a convariance matrix XBBX T=ε −

X∑

BB

)() TT BBIBB −−(I=∑ε

()( tracetrace ∑=∑=

. 

Then, 

)
1

2 T
X

T
X

TT
XX

m

i
i BBBBBB ∑+∑−∑−∑

=
εσ . 

Also, we know 
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)()()( BBtraceBBtraceBBtrace X
T

X
TT

X ∑=∑=∑  

)()()( BBtraceBBBBtraceBBBBtrace X
TT

X
TT

X
T ∑=∑=∑ . 

The last equation comes from the fact that B  has orthonormal columns. 

So, 

)()(
1

2 BBtracetrace X
T

X
m

i
i ∑−∑=∑

=
σ . 

To minimize ∑ , it suffices to maximize 
=

m

i
i

1

2σ )( BBtrace X
T ∑ . This can be done by 

choosing ], pB ,,[ 21 ααα K= , where }, p,,{ 21 ααα K  are the first p  eigenvectors of X∑ , 

according to Proposition D.1 stated above. 

■ 
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APPENDIX E 

COMPARISON OF PRINCIPAL COMPONENTS 

Assume two random vectors,  and , have the covariance matrices of mX ℜ∈ mY ℜ∈ X∑  

and , respectively. Suppose the coefficients for the first Y∑ p  principal components (PCs) 

of X  and Y  are },,{ 1 pαα K  and }p,,{ 1 ββ K , respectively, that is, },,{ 1 pαα K  are the 

first p  orthonormal eigenvectors of X∑ , and }, p,{ 1 ββ K  are the first p  orthonormal 

eigenvectors of . In order to compare these two sets of PCs, it is necessary to compare 

the two subspaces spanned by 

Y∑

}p,,{ 1 αα K  and }, p,{ 1 ββ K , respectively. The following 

two theorems in [Krzanowski, 1979] propose one rigorous way to analyze it. 

 

Proposition E.1 [Krzanowski, 1979]: Denote ],,[ 1 pL αα K=  and ],,[ 1 pM ββ K=

},,1 p

, the 

minimum angle between an arbitrary vector in the subspace {span αα K  and another 

arbitrary vector in the subspace span }p,,{ 1 ββ K  is given by )( 1
1 λ−cos , where 1λ  is the 

largest eigenvalue of LMMLK TT= . 

Proof: 

Arbitrarily select one vector from },,{ 1 pspan αα K , and represent it as 11 νLw = , then 

the projection of  onto 1w },, p{ 1span ββ K  is given by . Due to the geometry 1wMM T
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, to find the m oproperty of proje

}{ 1 pspan

ction inimum angle between two arbitrary vect rs in 

,, αα K  and { 1span },, pββ K  is to find , such that the angle between  and 1w 1w

1wMM T , say 1θ ,

From 

 is minimal. 

11

11
1)

wMMw
wMMw

T

TT
θ , and cos( = IMMLL TT ==  ⇒  

11

1
1

2 )(cos
vv

MMLv
T

TTT
=θ 1Lv . 

So minimizing 1θ  is equivalent to maximizing 11 LvMMLv TTT , subject to . The 

wn linear algebra fact is given

st eigenvector of

 11 =vvT 1

closed rm solution from the well kno  by: 

When 1v  is th fir

fo

e  LMMLK T= T
11

2 )(cos λθ =, , which is the largest 

eigenvalue of K . 

, of KOne point to note is that all eigenvalues,  satisfy 10 ≤≤ iλ , which is verifiediλ  by: 

re

 coefficients of

xLx λ=  ⇒  xxLxMMLx λ=  ⇒  x , whe

yM T  is the projection

MML TT TTTT xyMM TT λ=yT  Lxy = . 

 y  onto },,1 p{span , with ,,{ 1 pββ K }  beiββ K ng 

m , san orthonor al set o 

y  yM T ≤ ⇒  xxLxLxyyMyMMyxx TTTTTTT ==== 2λ ≤
2

 ⇒   1≤λ

■ 

op sition E 2 [Krzanowski, 1979]: L , Pr o . M , and K  are defined as in Proposition E.1, Let 

iλ , iν be the genv rresp ing eigei -th largest ei alue a nvector of nd co ond K , respectively. 

Take ii Lw ν=

,1

, t  and hen { },,1 pwMMwMM K  form orthogonal vectors in 

}, p

},,1 pww K { TT

{span αα K  and }, p,{ 1span ββ K , respectively. The angle between the r iw ,  i -th pai
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i
T wMM  is given by )(cos 1

iλ
− . Proposition E.1 shows that w give the 

two close one is constrained  be in pace },,{ 1 pspan

1  and 

st vectors when  to  the subs

1wMM T  

αα K  and the 

other in },,{ 1 pspan ββ K . It follows that 2w  and 2wMM T  give directions, orthogonal to 

n which lies the ne mathe previous ones, betwee xt s llest angle be

}

tween the subspaces. 

Proof: 

Arbitrarily select one vector from ,,{ 1 pspan αα K , which is orthogonal to 1w , and 

 it as 22 νLw = , then the pr  of 2w nto {spanojerepresent ction  o }, p,1 ββ K  is given by 

2wMM T . The angle between 2w  and 2MM wT , say 2θ , satisfies 

22 vvT=

So we need to maximize 22 LvMMLv TTT , subject to 122 =vvT , and 012 =vvT . By the same 

Lagrange multiplier method

2LvMM T
. 

tion

envec

2 LvT

2
2 )(cos

T
θ

 we use for PCA construc  in [ s out 

wh

Appendix B], it turn

that the optimal solution

2λ , 

 is 

2
2 )(cos θ = en 2v  is the second eig tor of LK LMM TT . 

1wM T ⊥

. 

=

It is also true that 1w ⊥

Continuing in this way, the conclus

2w , because , and that , 

ion of

■

02 =vT

orem is reac

11 = vw 2wT

 this the

2wTMMM

0=because 1121212 === vvLvMMLvwMMwwMMMMw TTTTTTTTT λ 12

hed. 

 

Let ijθ  be the angle between iα  and jβ , i.e., j , thenT βiij αθ =)cos(  )}ijθ , {cos(T ML =

so we have 
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∑ ∑=
p

j

p

i
ij

T L cos)∑
= ==

= T
p

i
i MMLtrace

1 1

2

1
)(( θλ . 

Thus the summation of the eigenvalues of LMMLK TT=  

ent of span

equals the sum of squares of 

the cosines of the angles between each basis elem },,{ 1 pαα K  and each basis 

element of },,{ 1 pspan ββ K

},,{ 1 pspan

. This sum er basis you 

select for 

 is invariant with respect to whichev

αα K  and }, p,{ 1span ββ K . In more detail, let 

, and MQQM pp === ],,[]~,,~[~LPPL pp === ],,[]~,,~[~
11 αααα KK 11 ββββ KK , 

where  are P , Q pp×  orthogonal matrices, i.e., IPPPP TT == , and . 

If 

IQQQQ TT ==

ijθ~  is the ang  and jβ~le between iα
~ , then 

 

So, this sum can be used as a measure of total similarity between the two subspaces. It 

can be checked that if 

)()~~~~()~(cos
1 1

2 LPMMQQLPtraceLMMLtrace TTTTTT
p

j

p

i
ij ==∑∑

= =
θ  

)()( MLLPPMtraceLPMMLPtrace TTTTTT ==  

∑∑
= =

===
j i

ijLMMLtraceMLLMtrace
1 1

)(cos)()( θ .
p p

TTTT 2

1 },,{},,{ 1 pp spanspan ββαα KK = , , and if p
p

i
i =∑

=1
λ

}, p,{},,{ 11 p spanspan ββαα K , 0
1

=∑
=

p

i
iλ . K ⊥
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