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Abstract

In this thesis we discuss various aspects of topological string theories. In particular

we provide a derivation of the holomorphic anomaly equation for open strings and

study aspects of the Ooguri, Strominger, and Vafa conjecture.

Topological string theory is a computable theory. The amplitudes of the closed

topological string satisfy a holomorphic anomaly equation, which is a recursive dif-

ferential equation. Recently this equation has been extended to the open topological

string. We discuss the derivation of this open holomorphic anomaly equation. We

find that open topological string amplitudes have new anomalies that spoil the recur-

sive structure of the equation and introduce dependence on wrong moduli (such as

complex structure moduli in the A-model), unless the disk one-point functions vanish.

We also show that a general solution to the extended holomorphic anomaly equation

for the open topological string on D-branes in a Calabi-Yau manifold, is obtained

from the general solution to the holomorphic anomaly equations for the closed topo-

logical string on the same manifold, by shifting the closed string moduli by amounts

proportional to the ’t Hooft coupling.

An important application of closed topological string theory is the Ooguri, Stro-

minger, and Vafa conjecture, which states that a certain black hole partition function

is a product of topological and anti-topological string partition functions. However

when the black hole has finite size, the relation becomes complicated. In a spe-

cific example, we find a new factorization rule in terms of a pair of functions which

we interpret as the “non-perturbative” completion of the topological string partition

functions.
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Chapter 1 Introduction

String theory is a candidate theory that unifies all four forces of nature. As a fun-

damental theory, it has great beauty. This theory has constituents that are tiny 1-

dimensional objects called strings. Their typical scale is thought to be about 10−35m

which in terms of energy is about 1019GeV, the Planck scale. It is therefore hard

to do any direct observation of strings, since the highest energy scale experimentally

accessible today is 14 TeV at the Large Hadron Collider (LHC). We can perhaps

obtain cosmological evidence, but even the Big Bang does not seem to provide high-

enough energies. Another way to test string theory is to investigate its low energy

behavior and compare with experiments. String theory requires spacetime to have a

critical dimension. Superstring theory gives a spacetime dimension of 10. This raises

questions about how to compactify this theory on a particular manifold, so that when

the size of this manifold is very small it gives us 4-dimensional physics as we observe

it. Unfortunately, compactification is not so simple and causes many problems.

In particular we care about a 4-dimensional low-energy effective theory of super-

string theory compactified on certain manifolds. The manifold we consider through-

out this thesis is a 3-complex or 6-real dimensional Calabi-Yau manifold, termed a

Calabi-Yau 3-fold, which reduces supersymmetries to a quarter in d = 4.

Computations in physical string theory are very difficult. To calculate string

amplitudes—the scattering of one string with another—we need quantum gravity on

the string worldsheet. The string states are in one-to-one correspondence with vertex

operators. Since there are many gauge symmetries on the worldsheet, we have to

perform a path integral on gauge-inequivalent slices of worldsheets, which is very

complicated. Bosonic string theory seems to be a little simpler, as the vacuum of

every string loop has a specific form associated to the topology of the worldsheet.

However bosonic string theory does not contain fermionic fields, so it is less useful

physically. A useful string theory containing both bosons and fermions is topological
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string theory. Furthermore the topological string theory in a Calabi-Yau 3-fold has

the same structure as a bosonic string theory. This theory became more important

when its physical application was discovered.

Closed topological string theory is well-understood [1, 2]. Topological string theory

with D-branes, i.e., open strings, is also interesting, because these carry gauge degrees

of freedom. In particular we hope it will help us to understand open-closed dualities

in string theory. These dualities originate in the so called holographic principle—

gauge/geometry correspondence. It was found that Chern-Simons gauge theory on

a 3-dimensional manifold M can be viewed as a topological string theory on T ∗M

[3]. The argument is that the perturbative expansion of this string theory coincides

with Chern-Simons perturbation theory. Later, it was found that the large N limit

of SU(N) Chern-Simons theory on S3 is the same as an N = 2 topological closed

string on the S2 blowup of the conifold geometry in T ∗S3. There also exists an open

topological string description of the duality where N 3-branes are wrapped on an S3

inside the conifold T ∗S3 [4]. Furthermore, [5, 6] gave a worldsheet explanation of the

duality between open and closed topological strings.

In the closed topological string theory, [1] developed a systematic method—the

so called holomorphic anomaly equation—for calculating closed topological string

amplitudes, and one could ask if there is a similar way to calculate the ones for

open strings. Recently Walcher conjectured an open holomorphic anomaly equation

[7], analagous to the closed one, under two assumptions, the absence of open string

moduli and tadpole cancellation. The first assumption makes sense when the open

string ends on a D-brane and the disk amplitude gives rise to a superpotential on the

D-brane worldvolume, for then open string moduli only correspond to flat directions

of this superpotential. Since the disk amplitude can not depend on them, other

amplitudes should not develop any dependence on them through recursion relation.

Meanwhile, we found that the second assumption is related to the absence of a new

class of anomalies [8]. When the new anomalies are present, not only is the nice

recursive structure broken, but the string amplitudes also depend on wrong moduli;

that is, the A-model topological string depends on complex structure moduli and the
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B-model depends on Kähler moduli.

We also derived a generating function for amplitudes of the open topological string

on D-branes in a Calabi-Yau manifold. Interestingly, it is related to the generating

function of the closed topological string on the same manifold [1], by shifting the

closed string moduli by amounts proportional to the ’t Hooft coupling [9].

One important application of the closed topological string theory is the Ooguri,

Strominger, and Vafa (OSV) conjecture. It says that, in the large black hole limit

where the black hole was obtained by type II superstring compactified on a Calabi-

Yau 3-fold, the black hole partition function is the absolute value of square of a topo-

logical string partition function. For small black holes, there are non-perturbative

corrections, for example in the factorization of two baby universes, there will be

contributions from 2n (n > 2) baby universes [10]. We attempted to build a new

factorization and tried to interpret it as a “non-perturbative” completion of the topo-

logical string partition function. In order to prove that, it is necessary to check if

it satisfies holomorphic anomaly equation. For topological string theory, holomor-

phicity and modularity can be shown to be traded with each other. The partition

functions of baby universes are already written in a holomorphic form but they are

not modular. We thus want to understand how we can restore the modular property

and then obtain the holomorphic anomaly equation.

In the first part of this thesis, we investigate a holomorphic anomaly equation

for the open topological string amplitudes. Chapter 2 is a brief review of closed

topological string theory. Chapter 3 contains our work on the derivation of the

holomorphic anomaly equation of open topological string theory; we also discuss in

detail the new class of anomalies for the open topological string. Chapter 4 is about

our work on the relation between closed and open holomorphic anomaly equations.

Finally, in Chapter 5 we review the OSV conjecture and discuss some of our work

on studying factorization, holomorphic and modular properties, and Gromov-Witten

invariants of closed topological string theory. Chapter 6 summarizes the thesis and

discusses open questions.
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Chapter 2 Topological String Theory

2.1 Introduction

There are various formulations of superstring theory. The worldsheet, for example,

can be described by an N = 1 supersymmetric Ramond-Neveu-Schwarz (RNS) for-

malism or a spacetime Green-Schwarz (GS) formalism. However calculating string

scattering, the most important physical process in a quantum theory of strings, is

very difficult in both formalisms. The physical string theory must have excitations

that correspond to every kind of elementary particle. Bosonic string theory does not

provide a description of fermions, but fermion fields can be added to the action by

considering superstring theory. It was found when string worldsheet supersymmetry

is extended to N = 2, some nice geometrical feature appears which makes this theory

computable. The resulting theory is shown to be a topological field theory. The most

important feature for this theory is that it is not only a toy model, but it has some

important physical implications as well.

A (2, 2) sigma model contains bosonic fields which are maps from a Riemann

surface to a Kähler manifold. Supersymmetry is manifest when the Riemann surface

is flat. If the surface becomes curved, in general we can not find a covariant constant

spinor as a supersymmetry transformation parameter, and therefore supersymmetry

is broken. However we can modify the theory so that some fermionic symmetry

remains. This procedure is called a topological twist. After the twist, we obtain a

scalar supercharge which is preserved on any Riemann surface. Therefore, we can

modify the flat sigma model to a curved one by changing the flat metric to a curved

one and the partial derivative to the covariant one. Since this scalar supercharge

is nilpotent in any Riemann surface, we can define an associated cohomology. The

physical spectrum of the topological theory is given by this cohomology. The theory

is called a topological sigma model. The word “topological” means that in this theory
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the correlation functions are independent of the metric on the Riemann surface.

A topological sigma model on a Calabi-Yau 3-fold only has a few non-trivial

correlators. We can generalize the theory by coupling it to gravity on the Riemann

surface. The theory is then called a topological string theory. The Riemann surface

is also called a worldsheet as in string theory.

2.2 N = (2, 2) supersymmetry

The dimensional reduction of the N = 1, 4-dimensional supersymmetry algebra gives

the N = (2, 2) algebra in 2 dimensions. The Lagrangian for a (2, 2) theory of a chiral

superfield on a Riemann surface is [11],

L =

∫
dθ+dθ−dθ̄−dθ̄+K(Φ, Φ̄) +

(∫
dθ+dθ−W (Φ) + c.c.

)
, (2.1)

where Φ is a chiral superfield, K is the Kähler potential, W is the superpotential,

and the θs are fermionic coordinates of superspace. In terms of component fields, the

superfield Φ is written as

Φ = φ− iθ+θ̄+∂+φ− iθ−θ̄−∂−φ− θ+θ−θ̄−θ̄+∂+∂−φ (2.2)

+θ+ψ+ − iθ+θ−θ̄−∂−ψ+ + θ−ψ− − iθ−θ+θ̄+∂+ψ− + θ+θ−F,

where φ is a scalar field, ψ is a spinor field, and F is an auxiliary field. The Kähler

potential can be written as

K = gIJ̄ΦIΦ̄J̄ + · · · , where gIJ̄ = ∂I∂J̄K. (2.3)

The superpotential has a Taylor expansion,

W = ∂IWΦI +
1

2
∂I∂JWΦIΦJ + · · · . (2.4)
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There are four supercharges: Q+, Q
+

for left-movers, Q− and Q
−

for right-movers.

The supersymmetry transformation of an operator is defined as

δsusyO = [δQ,O], (2.5)

where

δQ = iǫ+Q
− − iǫ−Q

+ − iǭ+Q
−

+ iǭ−Q
+
. (2.6)

There are R-symmetries for N = 2. We denote them U(1)V and U(1)A, where V

and A refer to the vector and axial rotation. Under these symmetries, the superfields

transform as either

(V ) Φi(x, θ±, θ̄±) 7→ Φi(x, e−iαθ±, eiαθ̄±), or

(A) Φi(x, θ±, θ̄±) 7→ Φi(x, e∓iβθ±, e±iβ θ̄±). (2.7)

Correspondingly, the component fields transform as

φ 7→ φ,

(V ) ψ± 7→ e−iαψ±,

(A) ψ± 7→ e∓iβψ±. (2.8)

The supercharges transform in the same way as the fermionic fields,

(V ) Q± 7→ e−iαQ±,

(A) Q± 7→ e∓iβQ±. (2.9)

The Nöther charges associated to the U(1)V and U(1)A are FV and FA. Supercharges,

Nöther charges, and conserved charges from the Poincaré symmetry give rise to a

closed supersymmetry algebra.
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2.3 Topological sigma model

A sigma model is a field theory in which the bosonic field φ is a map from a Riemann

surface Σ to a target space M ,

φ : Σ →M. (2.10)

The 2-dimensional Riemann surface with genus g is also refered to as the string

worldsheet with genus g, the difference being that in a sigma model we are not allowing

variation of the worldsheet metric at this stage. When there is (2, 2) supersymmetry

on the Riemann surface, it is called a (2, 2) sigma model. We can use Kähler geometry

to write down the kinematic term of the Lagrangian of an (2, 2) non-linear sigma

model,

Lkin = −gij̄∂
µφi∂µφ

j̄ + igij̄ψ̄
j̄
−(D0 +D1)ψ

i
− + igij̄ψ̄

j̄
+(D0 −D1)ψ

i
+ +Rij̄kl̄ψ

i
+ψ

k
−ψ̄

j̄
−ψ̄

l̄
+,

(2.11)

where fermions are spinors with values in the pull-back of the tangent bundle, ψ± ∈

Γ(Σ, φ∗TM (1,0) ⊗ S±), gij̄ is the metric of M , and Rij̄kl̄ is the Riemann tensor of M .

We can apply a Wick rotation to the time direction to obtain a Euclidean worldsheet

with SO(2) ∼= U(1)E “Lorentz” symmetry. Now we consider two types of twists in

which the U(1)E is replaced by U(1)E ⊗ U(1)R. After the twist, the newly defined

scalar supercharge is Q = QA or Q = QB, with

(A) QA = Q− +Q+,

(B) QB = Q− +Q+. (2.12)

The supersymmetry transformations with respect to the scalar supercharges are

(A) δQA
= iǫQA,

(B) δQB
= iǫQB. (2.13)
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The charges of the fermionic fields with respect to various U(1) symmetries are listed

in the following table: Performing the A-twist (B-twist), we find that two fermionic

A-twist B-twist
U(1)V U(1)A U(1)E U(1)′E = U(1)E ⊗ U(1)V U(1)′E = U(1)E ⊗ U(1)A

ψ− −1 1 1 0 2
ψ̄+ 1 1 −1 0 0
ψ̄− 1 −1 1 2 0
ψ+ −1 −1 −1 −2 −2

Table 2.1: U(1) charges of fermionic fields under A- and B-twist

fields ψ− and ψ̄+ (ψ̄− and ψ̄+) turn into scalar fields.

The physical observables are then restricted to be in the Q-cohomology (from now

we suppress the subscript), meaning,

[Q,O] = 0, and O ∼ O + [Q,Λ]. (2.14)

Now we will consider a Calabi-Yau 3-fold X as the target space. For the A-twist,

the scalar fermionic fields have the structure of de Rham cohomology; and for the

B-twist, Dolbeault cohomology, where zi and z̄ ī are the coordinates of the Calabi-Yau

Conformal dimensions Forms in X
A-twist B-twist A-twist B-twist

ψi
− 0 1 dzi

ψ̄ī
+ 0 0 dz̄i 1

2
(−dz̄ ī + ∗dz̄ ī∗)

ψ̄ī
− 1 0 1

2
(−dz̄ ī − ∗dz̄ ī∗)

ψi
+ 1 1

Table 2.2: Cohomological structures under A- and B-twist

3-fold and ∗ is the Hodge star with respect to the metric gij̄ .

For each twist, we can define a chiral ring of Q-closed operators. By convention,

we say that an operator O belongs to the (c, c) ring if

[Q−,O] = 0, [Q+,O] = 0, (2.15)
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and the (a, c) ring if

[Q−,O] = 0 [Q+,O] = 0. (2.16)

Operators in the (c, c) and (c, a) chiral rings can then be built up as

φ = ki1···ipj̄1···j̄q
ψi1
− · · ·ψ

ip
−ψ

j̄1
+ · · ·ψ

j̄q

+ , (2.17)

ϕ = V
j1···jq

ī1···̄ip ηī1 · · · ηīpθj1 · · · θjq , (2.18)

where ηī = ψ̄ī
+ + ψ̄ī

− and θi = gij̄(ψ̄
ī
+ − ψ̄j̄

−). Define the tangent vector as

∂

∂zi
∧ = gij̄ ∗ dz̄

j̄ ∗ . (2.19)

The chiral ring then corresponds to cohomology Hp,q(X) and Hp

∂̄
(X,∧qT (1,0)X), re-

spectively. According to the operator-state correspondence, the fields in the chiral

rings also correspond to the supersymmetric ground states.

The twisted (2, 2) sigma model is topological, because the variation of the action

with respect to the worldsheet metric is Q-exact,

δ

δgµν

S = T µν = [Q,Λµν ], (2.20)

and so it should not change the correlation functions. Unfortunately, the non-trivial

correlation functions are limited to be the 3-point functions on a sphere and the

partition function on a torus. If we want to obtain information for higher genus, we

must couple the sigma model to gravity on the worldsheet, that is, we must allow

for variation of the worldsheet metric. After doing that, the theory extends to a

topological string theory.

2.3.1 U(1)R anomaly

The reason that almost all correlation functions vanish in the topological sigma model

is because of a U(1)R anomaly. As we know, a physical theory should not be anoma-

lous. For comparison, consider the chiral anomaly in a gauge theory. When we
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calculate the generating function, the measure of the fermionic fields is not invariant

under chiral transformations. Therefore, the U(1) current associated to chiral symme-

try is not a conserved current anymore. The divergence of the current is proportional

to the difference between numbers of zero modes of chiral fermions. In mathematics,

this difference is calculated by an index of the Dirac operator.

Since the correlation functions in the topological sigma model are independent of

the metric of the Riemann surfaces, we can deform the metric by a scaling factor.

When this factor goes to infinity, the action should be a minimum. This process is

called localization. The path integral then picks up contributions only from the loci

where the Q-variation of fermions vanishes [11]. In A-twisted sigma models, the Q-

fixed point restricts the map from a worldsheet to target space X to be a holomorphic

map; ∂̄z̄φ = 0. The anomaly is related to the index of the Dirac operator on the

worldsheet,

k = (2 − 2g) dimCX + c1(X) · β, (2.21)

where β is the homology class of the map, β = φ∗[Σ] ∈ H2(X,Z), c1(X) is the first

Chern class of X, and g is the genus of the worldsheet. When X is a Calabi-Yau

manifold, c1(X) = 0, k is simplified to be (2 − 2g) dimCX.

In B-twisted sigma models, the Q-fixed point restricts the map to be a constant

map, ∂µφ = 0, where ∂µ is a worldsheet derivative. The index is

k = (2 − 2g) dimCX. (2.22)

2.4 Closed topological string theory

Most correlation functions vanish in a sigma model because of the U(1) R-symmetry

anomaly. One way to solve this problem is to couple the sigma model to worldsheet

gravity. We then obtain a quantum gravity theory on the worldsheet, which is similar

to a string theory. A twisted (2, 2) sigma model on a Calabi-Yau 3-fold coupled to

worldsheet gravity is called a topological string theory. Depending on A- (B-) twist,

it is also called A- (B-) model topological string theory.
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Actually it was shown that a topological string on Calabi-Yau 3-fold has the same

structure as a bosonic string theory in 26-dim. For example, for the correspondence

of A-model topological string, see Table 2.3.

Bosonic string A-model topological string
QBRST QA

b ghost G+

energy-stress tensor T = {QBRST , b}, T = {QA, G
+}

ghost number anomaly U(1)R anomaly

Table 2.3: Bosonic string vs A-model topological string

2.4.1 Bosonic string theory

The path integral for the bosonic string is over worldsheet inequivalent metrics of the

gauge group,

diff × Weyl/CKG, (2.23)

where “diff” is the diffeomorphism group, “Weyl” is the Weyl group (scaling trans-

formation of metric), and “CKG” is the conformal Killing group. We can use the

Faddeev-Popov method to fix the gauge, which gives rise to an action for the b, c

ghosts [12],

Sgh =

∫
d2zb∂̄c+ c.c. . (2.24)

Similar to the chiral anomaly in a gauge theory, there is a ghost number anomaly

from the difference between numbers of zero modes of b and c ghost. This number is

equal to the dimension of the conformal Killing group κ, minus the dimension of the

modular group µ of the worldsheet. Using the Grothendieck-Riemann-Roch formula,

κ− µ = 3χ, (2.25)

where χ = 2 − 2g is the Euler number of the worldsheet. Therefore the anomaly

is the same as that of the topological sigma model on a Calabi-Yau 3-fold (2.22).

The moduli space of Riemann surfaces for g > 1, denoted as Mg,h, has complex
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dimension 3g − 3. For g = 1 it has dimension 1, and for g = 0 it has dimension 0.

The conformal Killing group for g > 1 has dimension 0; for g = 1 it has dimension

1, and for g = 0 it has dimension 3. Therefore, for g > 1, the path integral is just

over the moduli space of the worldsheet. For g = 1 and 0, the topological string is

the same as the topological sigma model. For g = 1, there is one modulus and one

conformal Killing vector, so one operator insertion is needed in the path integral to fix

this isometry. For g = 0, the non-zero physical quantities are the 3-point functions,

with no moduli space left to integrate over. For g > 1 (g = 1), gauge fixing not only

adds a ghost action to the original one, but also inserts µ (1) operators which are

Beltrami differentials folded with 2-form supercurrents in the integrand. A Beltrami

differential parametrizes a deformation of complex structure on the worldsheet. It is

defined as

(µa)
µ

ν =
1

2
gµρ∂agνρ, (2.26)

where a = 1, · · · , 3g − 3 labels the deformations on the worldsheet and gµν is the

metric. In a complex coordinate system, it can be written as µ z
az̄ dz̄∂z, with µa ∈

H1
∂̄
(Σ, T (1,0)Σ).

2.4.2 Closed topological string amplitudes

The correspondence between bosonic string theory and topological string theory al-

lows us to write down the topological string amplitudes. Now the U(1)R anomaly

comes from the difference between numbers of zero modes of 1-form and scalar fields,

the fields which are fermionic fields on the worldsheet before the twist. Like the

bosonic string, there are 3(2g − 2) operators with U(1) charge −1 inserted in the
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integrand; therefore, we are able to define topological string amplitudes [1] as

Fg =

∫

Mg,h

[dm]

〈
3g−3∏

a=1

∫
µaG

−
∫
µ̄aG

−
〉

Σg,h

, (g > 1) (2.27)

∂iF1 =

∫

F

dτdτ̄

Imτ

〈∫
µG−

∫
µ̄G

−
O(1,1)

i

〉

T 2

, (2.28)

F1 =

∫

F

dτdτ̄

Imτ
Tr(−1)FFLFRq

HL q̄HR, (2.29)

∂i∂j∂kF0 =
〈
O(1,1)

i O(1,1)
j O(1,1)

k

〉
S2
, (2.30)

where O(1,1)
i have U(1)R charge (1, 1) ((left,right)).

2.4.3 Relation between closed topological strings and physi-

cal strings

Type II superstring theories have N = 2 supersymmetry in 10 dimensions. After

compactification on a Calabi-Yau 3-fold only a quarter of the supersymmetry is pre-

served, corresponding to N = 2 supersymmetry in 4 dimensions. The 4-dimensional

theory contains one N = 2 supergravity multiplet, h1,1 + 1 (h2,1 + 1) N = 2 vector

multiplets, and h2,1 +1 (h1,1 +1) hypermultiplets for A- (B-) type superstring theory,

where h1,1 and h2,1 are the Hodge numbers of the Calabi-Yau 3-fold. The lowest com-

ponents of the vector multiplets correspond to Kähler (complex structure) moduli of

the Calabi-Yau 3-fold. Remarkably, the F-term of the low-energy effective theory is

calculated by the closed topological string theory. This term is

∑

g

∫
d4x

∫
d4θFg(t

i)W 2g =

∫
d4xFg(t

i)R2
+F

2g−2
+ , (2.31)

where W is the N = 2 supergravity multiplet, R+ is the curvature, F+ is the field

strength of the U(1) vector field component of W , ti are Kähler (complex struc-

ture) moduli of the Calabi-Yau 3-fold, and Fg is exactly the closed topological string

amplitudes defined above.
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Chapter 3 The Open Holomorphic Anomaly

Equation

3.1 Introduction

The closed holomorphic anomaly equation gives a recursion relation for the partition

function Fg with respect to the genus g of the string worldsheet [1]. The equation has

proven to be useful in evaluating topological string amplitudes. In fact, for compact

Calabi-Yau manifolds, it is the only known method for computing these amplitudes

systematically for higher g. This method has seen remarkable progress in recent years.

The Feynman diagram method developed in [1] has been made more efficient by [13].

This, combined with the knowledge on the behavior of Fg at the boundaries of the

Calabi-Yau moduli space, has made it possible to integrate the holomorphic anomaly

equation to very high values of g [14].

Recently, Walcher generalized the holomorphic anomaly equation to the case of

topological string theory in the presence of D-branes [7]. Attempts to derive such

an equation had been made before, for example in [1]. The new ingredients in [7]

are two assumptions: that open string moduli do not contribute to factorizations in

open string channels and that disk one-point functions vanish. A Feynman diagram

method for integrating the holomorphic anomaly equation in the presence of D-branes

has subsequently been proven [9] and enhanced [15, 16], as well as considered in the

context of background independence [17]. Furthermore, initial attempts have been

made to understand the situation where open string moduli may contribute [18].

In this chapter, we will focus on the assumption of vanishing disk one-point func-

tions. We find that, for a compact Calabi-Yau manifold, disk one-point functions

generate new terms in the holomorphic anomaly equation and spoil its recursive struc-

ture. Moreover, with non-zero disk one-point functions, Fg can develop dependence
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on “wrong” moduli, that is complex structure moduli in the A-model and Kähler

moduli in the B-model.

That disk one-point functions themselves depend on wrong moduli has been known

for a long time. In [19], it was shown that D-branes in the A-model are associated

to Lagrangian 3-cycles and that their disk one-point functions depend on B-model

moduli. Conversely, D-branes in the B-model are associated to holomorphic even-

cycles and their disk one-points functions depend on A-model moduli. One might then

imagine that the disk one-point functions could introduce wrong moduli dependence

into higher genus partition functions, and indeed we will find this effect explicitly, as

a new type of anomalies in compact Calabi-Yau manifolds.

The cancellation of overall D-brane charge provides a means to remove the contri-

bution of the new anomalies. Indeed, such a cancellation appears to be required for

the successful counting of the number of BPS-states in M-theory using the topologi-

cal string partition function. In [4], it was conjectured that the partition function of

the closed topological string can be interpreted as counting BPS states in M-theory

compactified to five dimensions on a Calabi-Yau 3-fold. This conjecture was extended

to cases with D-branes in [5, 6]. Recently, Walcher [20] applied the formulae of [5]

to examples of compact Calabi-Yau manifolds and found that the integrality of BPS

state counting can be assured only when the topological charges of the D-branes were

cancelled by introducing orientifold planes [20], such that the disk one-point functions

vanish. Our result gives a microscopic explanation of this observation.

Furthermore, the absence of these new anomalies appears to be a prerequisite

for large N duality between open and closed topological string theories. Specifically,

this duality implies that topological string amplitudes in both theories should obey

the same equations, notably the holomorphic anomaly equation, and should not de-

pend on the wrong moduli. Indeed, the holomorphic anomaly equations for the open

string derived in [7] under the assumption of vanishing disk one-point functions are

compatible with large N duality [21]. Also, [9] pointed out a similarity between the

holomorphic anomaly equations of the closed [1] and open [7] strings, requiring shifts

of closed string moduli by amounts proportional to the ’t Hooft coupling. Conversely,
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the presence of the new anomalies is correlated with the breakdown of large N du-

ality. For compact Calabi-Yau manifolds, the conifold transition requires homology

relations among vanishing cycles [22, 23]. For example, if a single 3-cycle of non-trivial

homology shrinks and the singularity is blown up, the resulting manifold cannot be

Kähler. Thus, the presence of D-branes with nontrivial topological charge implies a

topological string theory without closed string dual; simultaneously the disk one-point

functions do not vanish, so the new anomalies are present.

3.2 The open topological string theory

In this section, we will discuss some properties of the open topological string. We

will write down the holomorphic anomaly equation and then prove it in Section 3.3.

3.2.1 Boundary condition

In order to preserve the scalar supercharge, there must be some boundary conditions

for the supercurrents. We denote the supercurrents G± and G
±
, where barred quanti-

ties are right-moving, with conventions such that for both models the BRST operator

is written as

QBRST =

∮
G+

z dz +

∮
G

+

z̄ dz̄. (3.1)

The appropriate worldsheet boundary conditions for the supercurrents are then

(G+
z dz +G

+

z̄ dz̄)|∂Σ = 0, and (G−
zzχ

zdz +G
−
z̄z̄χ̄

z̄dz̄)|∂Σ = 0, (3.2)

where χ is a holomorphic vector along the boundary direction.

3.2.2 Some aspects of the moduli spaces of Riemann surfaces

An open string worldsheet is a Riemann surface with genus g, boundary number h,

n marked points in the interior, and m marked points on the boundary; we denote it

as Σg,h,n,m.
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• The Euler number for this manifold is χ = −(2g − 2 + h+ n+m/2).

• Since every handle is associated with 3 complex moduli, every boundary is

associated with 3 real moduli, every marked point in the interior is associated

with 2 real moduli, and every marked point on the boundary is associated with

1 real modulus. The dimension of the moduli space, is thus,

dimMg,h,n,m = 6g − 6 + 3h+ 2n+m . (3.3)

• The boundary of the moduli space of Riemann surfaces corresponds to various

degenerations of the surface (marked points are ignored). We use a set of

cartoons in Figures 3.1–3.6.

• In the closed topological string theory, we need to insert a certain number

of supercurrents folded with Beltrami differentials into the path integral on a

worldsheet. These Beltrami differentials describe the complex deformations of

the worldsheet. For a worldsheet with genus g and h boundaries, the dimension

of the moduli space is 6g−6+3h, and this is the number of possible independent

Beltrami differentials. To study the Beltrami differentials, we will double the

Riemann surface Σg,h to be Σ̂2g+h−1,0, such that boundaries of Σg,h are fixed

points of a Z2 involution of Σ̂2g+h−1,0; in other words,

Σg,h = Σ̂2g+h−1/Z2. (3.4)

By this trick, Riemann surfaces with boundaries can generally be related to

orientable Riemann surfaces without boundaries.
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Mg−1,h

Figure 3.1: A handle pinches off,
leaving Σg−1,h plus a degenerating
thin tube.

Mg1,h1 × Mg−g1,h−h1

Figure 3.2: An equator pinches off,
splitting the Riemann surface into two
non-trivial daughter surfaces Σg1,h2 and
Σg−g1,h−h1 , joined by a degenerating thin
tube.

Mg1,h1 ×Mg−g1,h+1−h1

Figure 3.3: A path from a
boundary to the same boundary,
around an equator, degenerates
to leave two surfaces Σg1,h1 and
Σg−g1,h+1−h1, with the two daugh-
ter surfaces joined by a degenerat-
ing thin strip.

Mg−1,h+1

Figure 3.4: A path from a boundary to the
same boundary, around a handle, degener-
ates to leave Σg−1,h+1, with the two child
boundaries joined by a degenerating thin
strip.

Mg,h−1

Figure 3.5: A path between two
different boundaries degenerates,
leaving Σg,h−1, with a degenerat-
ing thin strip across the newly-
joined boundary.

Mg,h−1

Figure 3.6: A cycle around a boundary
shrinks, that is the boundary closes off.
Conformally this is a boundary on the end
of degenerating thin tube attached to the
remaining surface Σg,h−1.
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3.2.3 Open holomorphic anomaly equation

Based on the previous discussion, the topological string partition function at a given

genus g and boundary number h is written as

F (g,h) =

∫

Mg,h

〈
3g−3+h∏

a=1

∫
µaG

−
∫
µ̄aG

−
h∏

b=1

∫
λb(G

− +G
−
)

〉
, (3.5)

where µa (a = 1, · · · , 3g−3) are the Beltrami differentials associated with the moduli

of the bulk, µa (a = 3g − 3 + 1, · · · , 3g − 3 + h) are those associated with moduli

of the positions of the boundaries, and λb (b = 1, · · · , h) are those associated with

moduli of the length of the boundaries.

Our analysis below completes the derivation of [7], namely that under the as-

sumption that open string moduli do not contribute to open string factorizations, for

2g − 2 + h > 0, we have a set of open holomorphic anomaly equations,

∂

∂t̄ī
F (g,h) =

1

2
C īj̄k̄e

2KGjj̄Gkk̄

(
g∑

g1=0

h∑

h1=0

DjF
(g1,h1)DkF

(g−g1,h−h1) +DjDkF
(g−1,h)

)

− eKGjj̄∆īj̄DjF
(g,h−1), (3.6)

∂

∂yp
F (g,h) =

∂

∂ȳp̄
F (g,h) = 0, (3.7)

if and only if

C p̄ = 〈ω̄p̄|B〉 = 0. (3.8)

Here B is the boundary and C p̄ is a disk one-point function, with ω̄p̄ an (a, a) chiral

primary state with charges qā+q̄ā = −3. If the disk one-point functions do not vanish,

then all three of these equations receive anomalous contributions, which cannot be

written in terms of lower-genus amplitudes. Note that in the presence of orientifolds,

C p̄ is the sum of the disk and crosscap one-point functions [20].
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3.3 New anomalies in topological string theory

In this section we will show how the new anomalies can enter (3.6) and (3.7) when

the disk one-point functions do not vanish.

3.3.1 Physical meaning of the new anomalies

In quantum field theory, the vacuum expectation value of a field φ at tree level is φcl.

The field is then expanded as,

φ = φcl + η, (3.9)

Figure 3.7: Tadpole

however the expectation value of φ may get quantum

corrections through higher loops, i.e., 〈η〉 6= 0. This is

called a tadpole contribution. In order for the effective

action method to work, the effective action Γ[φcl] should

not depend on the external current J . The effective

action is defined as,

Γ[φcl] =

∫
d4xLren[φcl] +

i

2
log det

[
−
δ2Lren

δφδφ

]
− i(connect diagrams) +

∫
d4xδL[φcl],

(3.10)

where Lren is the renormalized Lagrangian. It was shown that a counterterm coming

from the current δJ will cancel the tadpole contribution. δJ is the difference between

J , the one which satisfies the equation of motion, and Jren, the one which satisfies the

tree level equation of motion. Therefore we obtain a tadpole cancellation condition.

x

Figure 3.8: Disk one-point

function

In open topological string theory, from target space

point of view, the boundary conditions that preserve

the scalar supercharge require open strings ending on

D-branes wrapping on a Lagrangian 3-cycle or holomor-

phic even-cycle of a Calabi-Yau 3-fold. Here Lagrangian

means that the Kähler form ω restricted to the 3-cycle is

zero. [19] has proved that the disk one-point functions

depend on wrong moduli.
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3.3.2 Anomalous worldsheet degenerations

In this section we consider the dependence of the genus g and boundary number

h amplitude F (g,h) on both the anti-holomorphic moduli t̄ī and the “wrong” moduli,

labelled yp and ȳp̄. Our results are independent of choosing the A- or B-model; wrong

moduli are complex structure moduli for the A-model and Kähler structure moduli

for the B-model. To derive the extended holomorphic anomaly equation we follow the

approach of [1], with the addition of some important details. Taking the t̄ī derivative

of F (g,h) is equivalent to inserting the operator

∫

Σ

{G+, [G
+
, φ̄ī]} (3.11)

into the amplitudes with the integral going over the worldsheet Σ. φ̄ī is a state in the

(a, a) chiral ring with left- and right-moving U(1)R charge (−1,−1), which satisfies

[G−, φ̄ī] = 0 and [G
−
, φ̄ī] = 0. Here [G

+
, φ̄ī] means

∮
Cz
dw G

+
(w)φ̄ī(z), with Cz a

small contour surrounding z. In general the integrals of G+ and G
+

independently

do not annihilate the boundary, so to derive the holomorphic anomaly we rewrite the

insertion as

−
1

2

∫

Σ

{G+ +G
+
, [G+ −G

+
, φ̄ī]}, (3.12)

allowing at least one contour to be deformed freely around the worldsheet.

For the other case, namely a dependence on wrong moduli, taking the yp derivative

of F (g,h) is equivalent to inserting

∫

Σ

{G
+
, [G−, ϕp]} + 2

∫

∂Σ

ϕp, (3.13)

where ϕp is a charge (1,−1) marginal operator from the (c, a) ring, which satisfies

[G+, ϕp] = 0 and [G
−
, ϕp] = 0. The second term is a boundary term required to

resolve the so-called Warner problem [24]: we require the deformation to be Q-exact,

but the Q variation of the first term alone is a boundary term, as can be seen using

{G+, G−} = 2T and converting T to a total derivative. Since
∫
Σ
{G+, [G−, ϕp]} =
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2
∫

∂Σ
ϕp, we can rewrite (3.13) as

∫

Σ

{G+ +G
+
, [G−, ϕp]}, (3.14)

where again the first contour can be deformed past the boundaries on the worldsheet.

Thus, for both the t̄ī and yp derivatives, the combination (G+ +G
+
) can be moved

around the Riemann surface, and will produce terms corresponding to all possible

degenerations of the Riemann surface, as listed below. For each degeneration, there

also remain the insertions

φ̄
(1)

ī
≡ −

1

2

∫

Σ

[G+ −G
+
, φ̄ī], (3.15)

ϕ(1)
p ≡

∫

Σ

[G−, ϕp], (3.16)

for t̄ī and yp dependence, respectively.

Moving the contour of the supercurrent G+ + G
+

around the Riemann surface,

we pick up contributions from the commutation relations,

[G+, G−] = 2T, [G
+
, G

−
] = 2T . (3.17)

For the t̄ī derivative we then get

∂̄t̄īF
(g,h) = −

∫

Mg,h

[dm][dl]

[
3g−3+h∑

c=1

〈
φ̄

(1)

ī

(
2

∫
µcT

∫
µ̄cG

−
− 2

∫
µcG

−
∫
µ̄cT

)

×
∏

a 6=c

∫
µaG

−
∫
µ̄aG

−
h∏

b=1

∫
(λbG

− + λ̄bG
−
)

〉

+
h∑

c=1

〈
φ̄

(1)

ī

∫
2
(
λcT − λ̄cT

)

×

3g−3+h∏

a=1

∫
µaG

−
∫
µ̄aG

−∏

b6=c

∫
(λbG

− + λ̄bG
−
)

〉]
.

(3.18)
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For the yp derivative we just replace φ̄
(1)

ī
with ϕ

(1)
p . The insertions of the

∫
µaT and

∫
µ̄aT can be converted into derivatives with respect to the moduli ma and ma. By

Cauchy’s theorem, this reduces the integral over moduli space to contributions coming

from the boundary of the moduli space, where we need to consider boundaries corre-

sponding to degenerations of both the complex and real moduli, that is, both closed

and open string degenerations. Equation (3.18) will then just sum the contributions

from all the boundary components of moduli space.

To classify all boundary components of the moduli space of a Riemann surface with

boundaries, a useful technique is to consider the degeneration, in turn, of all closed

1-cycles and open 1-paths with endpoints on (possibly distinct) boundaries. The

various cases resulting from degenerations of closed 1-cycles were shown in Figures

3.1, 3.2, and 3.6, and of open 1-cycles in Figures 3.3, 3.4, and 3.5.

The first class of degenerations are closed string factorizations, corresponding to a

closed 1-cycle degenerating, and either removing a handle (Figure 3.1), or splitting the

Riemann surface in two (Figure 3.2). The remaining modulus of the long, thin tube

created is represented by an integrated (G− − G
−
) insertion, folded with Beltrami

differential. This insertion annihilates the ground states propagating on the long

tube, so for a non-zero result the remaining insertion (3.15) or (3.16) must also be

on the tube. Now the absence of boundaries on the tube makes the results of BCOV

[1] directly applicable. The long tubes project to two sets of ground states associated

to two end points
∑

jj̄ |j〉g
jj̄〈j̄| and

∑
kk̄ |k〉g

kk̄〈k̄|, where |j〉 is the topological twist

state, |j̄〉 is the anti-topological twist state, and gjj̄ = 〈j|j̄〉 is the tt∗ metric. By

R-charge argument, the non-trivial contribution is from states in the (c, c) chiral

ring with U(1)R charge (1, 1). The yp derivative contributions vanish, and for the t̄ī

derivative we get two terms. The first term corresponding to Figure 3.1 is

1

2
C īj̄k̄e

2KGjj̄Gkk̄

∫

Mg−1,h

[dm′]

〈∫

Σg−1,h

{G−, [G
−
, φj ]}

∫

Σg−1,h

{G−, [G
−
, φk]}

×

3g−6+h∏

a=1

∫
µaG

−
∫
µ̄aG

−
h∏

b=1

∫
(λbG

− + λ̄bG
−
)

〉
, (3.19)
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where the set of moduli m′ correspond to the remaining Riemann surfaces Σg−1,h.

The overall factor 1/2 results from the Z2 symmetry j ↔ k, Cijk is a three-point

function, namely the Yukawa coupling, and Gīi is the Zamolodchikov metric. This

expression can be further simplified. If we define

φ
(2)
j =

∫

Σg−1,h

{G−, [G
−
, φj ]}, (3.20)

then the insertions φ
(2)
j and φ

(2)
k can be replaced by covariant derivatives Dj and Dk

of the amplitude without insertions, namely of Fg−1,h. Therefore we get

1

2
C īj̄k̄e

2KGj̄jGk̄kDjDkF
(g−1,h). (3.21)

The second term corresponding to Figure 3.2 is

1

2
C īj̄k̄e

2KGjj̄Gkk̄

g∑

r=0

h∑

s=0

∫

Mr,s

[dm′]

〈
φ

(2)
j

3r−3+s∏

a=1

∣∣∣∣
∫
µaG

−
∣∣∣∣
2 s∏

b=1

∫
(λbG

− + λ̄bG
−
)

〉

×

∫

Mg−r,h−s

[dm′′]

〈
φ

(2)
k

3(g−r)−3+h−s∏

a=1

∣∣∣∣
∫
µaG

−
∣∣∣∣
2 h−s∏

b=1

∫
(λbG

− + λ̄bG
−
)

〉

=
1

2
C īj̄k̄e

2KGjj̄Gkk̄

g∑

r=0

h∑

s=0

DjF
(r,s)DkF

(g−r,h−s), (3.22)

where the sets of moduli m′ and m′′ correspond to the remaining moduli on each of

the daughter surfaces. The overall factor 1/2 results from the Z2 symmetry of the

sum generated by simultaneously taking r → (g − r), s → (h − s), and j ↔ k. It

is worth recalling that DjF
(g,h) = 0 for 3g + h < 2, so there is no contribution for

sufficiently trivial daughter surfaces.

Next are open string factorizations, where a boundary expands and meets itself

(Figure 3.3); a handle is removed (Figure 3.4); or two boundaries collide (Figure

3.5). The degeneration produces a thin strip, with each end encircled by a G− or G
−

folded with a Beltrami differential, associated with the position of the attachment of

the strip to the boundary. The strip can be replaced by a complete set of open string
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states. However, our assumption that open string moduli do not contribute removes

all but charge 0 and 3 states, and these are annihilated by the G− or G
−

integrated

around the attachment point, regardless of the location of the insertion (3.15) and

(3.16). Thus the open string factorizations give gives no contribution.

The last interesting case is that of a boundary shrinking, or equivalently moving

far from the rest of the Riemann surface (Figure 3.6). That such a degeneration is

part of the boundary of moduli space can be seen by doubling the Riemann surface

Σg,h to form the closed surface Σ′
2g+h−1,0, as described in Section 3.2.2. The pinching

off of a Σ′
2g+h−1,0 handle which crosses the Z2 fixed plane is equivalent to a shrinking

boundary in Σg,h.

This boundary is associated with three real moduli insertions, specifying the loca-

tion of the boundary and its length τ . The boundary degeneration is thus equivalent

to a boundary at the end of a long tube, with the Beltrami differentials associated

with the two remaining moduli localized to the attachment point of the tube to the

rest of the Riemann surface. The absence of additional moduli on the tube distin-

guishes this class from the closed string factorization class above, and furthermore

allows the remaining insertion (3.15) and (3.16) to be anywhere on the worldsheet.

Firstly, insertions (3.15) and (3.16) may be on the tube. The degeneration τ → ∞

projects the intermediate states on both sides of the insertion to ground states, since

excited states decay as e−hτ where h > 0 is the total (left+right) conformal weight.

Now, however, G± and G
±

annihilate the ground states, so this case is zero.

Secondly, the insertions may be near the shrinking boundary. The tube pinching

off in the middle gives rise to a disk Σ0,1 and the remaining Riemann surface Σg,h−1.

This will project to one set of ground states
∑

jj̄ |j〉g
jj̄〈j̄| on the pinching off point.

For the t̄ī derivative, the disk part gives us

−
1

2
eKGjj̄〈j̄|

∫

Σ0,1

[G+ −G
+
, φ̄ī]|B〉. (3.23)
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Define the anti-topological disk two-point function as

∆īj̄ =
1

2
〈j̄|

∫

Σ0,1

[G+ −G
+
, φ̄ī]|B〉. (3.24)

The remaining Riemann surface Σg,h−1 then has a φ
(2)
j insertion, which produces

DjF
(g,h−1). Multiplying the two contributions, we obtain

− eKGjj̄∆īj̄DjF
(g,h−1). (3.25)

For the yp derivative, the near-boundary region is shown in Figure 3.9. We can

replace the tube with a complete set of closed-string ground states,
∑

I,J̄ |I〉g
IJ̄〈J̄ |,

where gIJ̄ is the tt∗ metric, and I, J̄ run over all (c, c) and (a, a) chiral primary states,

respectively. Standard considerations of global consistency on the Riemann surface

force |I〉 = |i〉 to be a charge (1, 1) ( i.e., marginal) state, and 〈J̄ | = 〈j̄| to be a

charge (−1,−1) state from the (a, a) chiral ring. Near the boundary the theory is

anti-topologically twisted, making G− and G
−

of dimension 1 as supercurrents, and

so allowing contour deformation. Using the properties of the chiral rings, (3.16) can

be written as
∫
Σ
[G− + G

−
, ϕp]. The contour of (G− + G

−
) can be deformed off the

disk, annihilating both 〈j̄| and the boundary, so this case is zero.

Lastly, (3.15) and (3.16) may be inserted somewhere else on the Riemann surface,

as shown in Figures 3.10 and 3.11 for the yp and t̄ī derivatives, respectively. The

tube is again replaced with a complete set of ground states
∑

I,J̄ |I〉g
IJ̄〈J̄ |. To avoid

annihilation by G− and G
−

localized to the tube attachment point, |I〉 must be in the

(c, c) chiral ring and have qI , q̄I 6= 0. Furthermore, both of the insertions (3.15) and

(3.16) are (linear combinations of) states with (0,−1) or (−1, 0) left- and right-moving

U(1)R charge, and the tube end-point moduli contribute charge (−1,−1), so |I〉 is

required to be a (linear combination of) charge (1, 2) or (2, 1) states. We denote these

states ωp, with index p running over charge (1, 2) and (2, 1) chiral primaries. Note

that the ωp are not associated with marginal deformations of the topological string

in question, but with deformations of its mirror. In the A-model, they correspond to
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[G−, ϕp]

〈̄i|= φ̄ī

Figure 3.9: The near-boundary re-
gion of the shrinking boundary de-
generation for yp derivative, with
insertion (3.16) near the bound-
ary. This amplitude vanishes, as
described in the text.

{G−, [G
−
, ωq]}

[G−, ϕp]

ω̄q̄

gqq̄

Figure 3.10: Amplitude for the shrinking
boundary degeneration for yp derivative,
with insertion (3.16) elsewhere on the Rie-
mann surface. This is non-zero unless the
disk one-point function vanishes.

ω̄p̄

[G+ −G
+
, φ̄ī][G+−G

+
, φ̄ī]

G−, G
−

{G−, [G
−
, ωp]}

gpp̄

Figure 3.11: Amplitude for the shrinking boundary degenerating for t̄ī derivative,
with the insertion (3.15) located away from the shrinking boundary. On the right we
have replaced the tube with a sum over states ωa of charge (1, 2) and (2, 1), rendering
the near-boundary region a disk one-point function.
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target space 3-forms, and hence to complex structure variation, and in the B-model

they are (1, 1) forms, and so correspond to Kähler deformations. Near the shrinking

boundary the resulting amplitude is the disk one-point function,

C p̄ = 〈ω̄p̄|B〉. (3.26)

This amplitude is in general not zero, and indeed our boundary conditions are such

that the disk one-point function is only non-zero when the closed string state is from

the wrong model [19]. This case thus contributes the following new terms to (3.6)

and (3.7): for the derivative with respect to t̄ī,

gp̄qC p̄

∫

Mg,h−1

[dm′]

〈∫

Σg,h−1

{G−, [G
−
, ωq]}

∫

Σg,h−1

[G+ −G
+
, φ̄ī]

〉

Σg,h−1

, (3.27)

and for the derivative with respect to yp,

gp̄qC p̄

∫

Mg,h−1

[dm′]

〈∫

Σg,h−1

{G−, [G
−
, ωq]}

∫

Σg,h−1

[G−, ϕp]

〉

Σg,h−1

, (3.28)

where the m′s are the moduli of the Riemann surface Σg,h−1—the corresponding

insertions of G− and G
−

folded with Beltrami differentials have been suppressed.

Note that the G− and G
−

contours around ωq and ϕp cannot be deformed as they are

dimension 2 as supercurrents and that the (G+ − G
+
) contour around φ̄ī cannot be

deformed as it does not annihilate any additional boundaries that may be present.

3.4 Small number of moduli

We have so far discussed the holomorphic anomaly equation for 2g − 2 + h > 0. For

low-genus and low-boundary cases, that is 2g − 2 + h ≤ 0, F (1,0) does not have new

anomalies [1], while F (0,2) has new anomalies similar to those discussed above.

F (0,0) and F (0,1) are sphere and disk amplitudes, but since neither the sphere nor

the disk has a moduli space, the previous discussion does not apply to them.
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3.4.1 Cylinder Σ0,2

L

Figure 3.12: Cylinder

The open string 1-loop partition function is denoted as

F (0,2). Quantum mechanically, if an open string state

|α〉 evolves to a state |β〉 = e−iHt|α〉, the amplitude

from |α〉 to |β〉 is 〈β|α〉. After applying a wick rotation

along the time direction, we obtain a partition function

Tre−HL|α〉〈α|. In terms of a sigma-model on a Calabi-

Yau 3-fold, we can compute this partition function. Since there is only one real

modulus and one isometry associated to the circular direction, we can write down the

amplitude

F (0,2) =

∫
dL

L
Tr[(−1)FFe−LH ], (3.29)

where F is the U(1)R current, L is the modulus of the cylinder and H is the Hamil-

tonian for the string. The derivative with respect to a modulus of the Calabi-Yau

is
∂

∂tj
F (0,2) =

∫
dL

L

〈∫

Σ0,2

{G−, [G
−
, φj ]}F

〉
. (3.30)

The holomorphic anomaly equation is

∂

∂t̄ī
∂

∂tj
F (0,2) =

∫ 1

0

dL

L

〈∫

Σ0,2

{G+, [G
+
, φ̄ī]}

∫

Σ0,2

{
(G− +G

−
), φ

(1)
j

}
F

〉
, (3.31)

where φ
(1)
j is a 1-form and φ̄ī is a (1, 1) form on the cylinder. We will then use

commutation relations,

[F,G−] = G−, [F,G
−
] = G

−
, [F, φj ] = 0, (3.32)

to get that the relevant insertions on the degenerate Riemann surfaces are φ̄
[1]

ī
and

φ
(1)
j , where φ̄

[1]

ī
is a U(1)R charge −1 operator and φ

(1)
j is a charge 1 operator. Let’s

consider three types of degenerations.

i) Two inserted operators colliding (Figure 3.13). The operator product expansion

of these two operators is zero, so this degeneration has zero contribution.
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X X
��[1℄�i �(1)j

Figure 3.13: Blow up of the colliding of two operators

ii) Since a cylinder is conformally equivalent to an annulus, there is another kind of

degeneration corresponding to two boundaries of the annulus colliding (Figure 3.14)

and producing a long and narrow strip. The only non-trivial degeneration is when

φ̄
[1]

ī
and φ

(1)
j are both away from the strip, and we project the strip to open string

ground states. By the charge argument and also the assumption of a non-trivial open

string ground state, we can just insert open string ground states with charges 0 and

3. It was discovered [1] that

〈
Oα

∫

C

φ
(1)
j

∫

Σ0,1

φ̄
[1]

ī
Oβ

〉
= −Rij̄αβ. (3.33)

where O denotes a U(1) charge 0 open string ground state, and D is the degeneracy

of the states. Since φ
(1)
j is a one-form on the disk, it must be integrated along a path

C.

X

X

X

X

X

X

φ̄
[1]

ī

φ
(1)
j

Oα

Oα

Oβ

Oβ

Figure 3.14: Boundary colliding

iii) Cylinder splitting. If φ̄
[1]

ī
and φ

(1)
j are inserted at opposite ends of this degen-

erating cylinder (Figure 3.15), by the charge argument, we have to project to ground
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x

x

x

x

φ̄
[1]

ī

φ
(1)
j

φk

φ̄k̄

gkk̄

Figure 3.15: Disk two-point functions

states which stay in the (c, c) or (a, a) rings with charge (1, 1) or (−1,−1). Recall

the definition of disk two-point function (3.24), we get

〈∫

C

φ
(1)
j φk

〉
gkk̄

〈∫

Σ0,1

φ̄
[1]

ī
φ̄k̄

〉
= ∆jk∆īk̄e

KGkk̄. (3.34)

If φ̄
[1]

ī
and φ

(1)
j are inserted on the same side (Figure 3.16), then by the charge argu-

ment, we have to project to ground states ωp which stay in the (c, c) ring of charge

(1, 2) and (2, 1). The three-point function on the disk is

〈∫

C

φ
(1)
j

∫

Σ0,1

φ̄
[1]

ī
ωp

〉
. (3.35)

If the disk one-point function does not vanish, we obtain a wrong moduli dependent

term

gp̄pC p̄

〈∫

C

φ
(1)
j

∫

Σ0,1

φ̄
[1]

ī
ωp

〉
, (3.36)

where C p̄ is defined as (3.26). When the disk one-point functions vanish, we get the

holomorphic anomaly equation for a cylinder,

∂

∂t̄ī
∂

∂tj
F0,2 = eKGij̄∆īj̄∆ij +

D

2
Gīj. (3.37)

Since φ
(1)
i , ϕ

(1)
p ; φ̄

(1)

ī
, ϕ̄

(1)
p̄ have charges 1 and −1, respectively, the requirement of

charge 0 will give us 3 cases for which disk-one point functions may contribute:
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x x

x

x

φ̄
[1]

ī

φ
(1)
j

ωp

ω̄p̄

gpp̄

Figure 3.16: Disk one-point function

∂ī∂pF
(0,2), ∂i∂p̄F

(0,2), and ∂p̄∂qF
(0,2). Correspondingly, the insertions are φ̄

[1]

ī
ϕ

(1)
p ,

φ
(1)
i ϕ̄

[1]
p̄ , and ϕ̄

[1]
p̄ ϕ

(1)
q . We can repeat the same discussion and find that the only

contribution comes from the disk one-point functions, and therefore the vanishing of

the disk one-point function makes them all zero.

3.4.2 Some discussion

The derivation above may not seem to distinguish between compact and non-compact

Calabi-Yau target spaces. In fact, the anomalies can only appear in the compact case.

Beforehand, note that this agrees with our expectations: D-branes wrapped on cycles

in compact Calabi-Yau manifolds and filling spacetime (or perhaps even two directions

in spacetime [20]) give an inconsistent setup unless there are sinks for the topological

D-brane charges. Simultaneously, these sinks cancel the disk one-point functions,

and so the appearance of the new anomalies is correlated with an invalid spacetime

construction.

Furthermore, the standard results of Chern-Simons gauge theory and matrix mod-

els as open topological string theories are not affected by the new anomalies. For

example, N D-branes wrapping the S3 of the space T ∗S3, gives C p̄ 6= 0. The total

space of T ∗S3 is Calabi-Yau and non-compact, with the S3 radius as the complex

structure modulus. It is well-known that open topological string theory on this space

is the U(N) Chern-Simons theory, which is topological and should be independent of

the S3 radius. To resolve this apparent contradiction, consider embedding T ∗S3 in a

compact space containing a second 3-cycle in the same homology class as the base S3,
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wrapped by N anti-D-branes. The boundary states of the two stacks combine to give

C p̄ = 0, and the new anomalies do not appear. Now take the limit where the second

3-cycle moves infinitely far away from the base S3 to recover an anomaly-free local

Calabi-Yau construction. The point is that in non-compact Calabi-Yau manifolds,

the new anomalies can be removed by an appropriate choice of boundary conditions

at infinity.

3.5 Feynman rules to solve the holomorphic anomaly

equation

The series of open holomorphic anomaly equations without new anomalies are

∂

∂t̄ī
F (g,h) =

1

2
C īj̄k̄e

2KGjj̄Gkk̄

(
g∑

r=0

h∑

s=0

DjF
(r,s)DkF

(g−r,h−s) +DjDkF
(g−1,h)

)

− eKGjj̄∆īj̄DjF
(g,h−1), (3.38)

∂

∂ti
∂

∂t̄j̄
F (1,0) =

1

2
CikℓC j̄k̄ℓ̄e

2KGkk̄Gℓℓ̄ − (
χ

24
− 1)Gij̄, (3.39)

∂

∂t̄ī
∂

∂tj
F (0,2) = eKGij̄∆īj̄∆ij +

N

2
Gīj. (3.40)

Now we discuss the solution to these holomorphic anomaly equations. The moduli

space of a Calabi-Yau 3-fold enjoys Kähler geometry. There exists a line bundle L

over it corresponding to rescalings of the Kähler potential K. The F (g,h)’s are sections

of this line bundle L2−2g−h, so the covariant derivatives on this line bundle are defined

as

Di = ∂i − (2 − 2g − h)∂iK. (3.41)

In order to solve the above holomorphic anomaly equations, we will use Feynman
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rules. Firstly, we define the propagators [1] −S, −Sj, and −Sjk, where

S, such that C īj̄k̄ = e−2KDīDj̄ ∂̄k̄S, (3.42)

Sj = Gjj̄Sj̄, where Sj̄ = ∂̄j̄S, (3.43)

Sjk = Gjj̄Sk
j̄ , where Sk

j̄ = ∂̄j̄S
k, (3.44)

and the terminators [7]

∆, such that ∆īj̄ = e−KDī∂j̄∆, (3.45)

∆j = Gjj̄∂j̄∆. (3.46)

Feynman diagrams for those propagators and terminators are given in Figure 3.17.

XX X X X X

XX

Sij Si S

∆i ∆

Figure 3.17: The propagators for Feynman diagrams of topological string amplitudes

The low-genus and boundary cases, F (2,0), F (3,0), F (1,1), and F (0,3), were studied in

[1] and [7]. For example, for genus 2, the amplitudes is determined up to a holomorphic

ambiguity,

F (2,0) =
1

2
SijC

(1)
ij +

1

2
C

(1)
i SijC

(1)
j −

1

8
SjkSmnCjkmn −

1

2
SijCijmS

mnC(1)
n

+
1

8
SijCijpS

pqCqmnS
mn +

χ

24
SiC

(1)
i +

1

12
SijSpqSmnCipmCjqn −

χ

48
SiCijkS

jk

+
χ

24
(
χ

24
− 1)S + hol. amb., (3.47)

where

C
(g)
i1···in ≡ Di1 · · ·DinF

(g,0), (3.48)

C(1)
ϕ ≡

χ

24
− 1, (3.49)
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and the Yukawa coupling Cijk can be interpreted as the building blocks of the Feyn-

man diagrams (Figure 3.18).

X X

X

X

X

X

X

X

X

X

X X

X

X

X X

X

X

X X

X X

X
X

X

X

X X

X

X

X

X

X

X

=−1

2
− 1

2

− 1

8
− 1

2
−

− −1

8
− 1

2

− 1

2
− 1

2

− 1

2
− 1

2
+ hol. amb.

Figure 3.18: Feynman diagrams for F (2,0)

For genus 1 with 1 boundary, the amplitude is

F (1,1) =
1

2
Sjk∆jk − C

(1)
j ∆j +

1

2
CjklS

kl∆j − (
χ

24
− 1)∆ + hol. amb.. (3.50)

We can draw Feynman diagrams as Figure 3.19.

xx

x

x

x

x

x
=−1

2
− −1

2
− + hol. amb.

Figure 3.19: Feynman diagrams for F (1,1)
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Chapter 4 The Relation between the Open and

Closed Topological String

In this chapter we show that a general solution to the extended holomorphic anomaly

equations for the open topological string on D-branes in a Calabi-Yau manifold, re-

cently written down by Walcher [7], is obtained from the BCOV solution to the

holomorphic anomaly equations for the closed topological string on the same mani-

fold [1], by shifting the closed string moduli by amounts proportional to the ’t Hooft

coupling [9].

4.1 Generating function

In Chapter 3, we derived the open holomorphic anomaly equations. The extended

equation for the string amplitudes with closed-string operator insertions [7] is

∂̄īF
(g,h)
i1,··· ,in =

1

2

∑

g1+g2=g
h1+h2=h

C
jk

ī

∑

s,σ

1

s!(n− s)!
F

(g1,h1)
jiσ(1),··· ,iσ(s)

F
(g2,h2)
kiσ(s+1),··· ,iσ(n)

+
1

2
C

jk

ī F
(g−1,h)
jki1,··· ,in

−∆j
ī
F

(g,h−1)
ji1,··· ,in − (2g − 2 + h+ n− 1)

n∑

s=1

Gis īF
(g,h)
i1,··· ,is−1,is+1,··· ,in . (4.1)

The last term comes from the collision of two closed-string marginal operators [1],

since

Gij̄ = 〈φ(2)
i φ̄

(2)

j̄
〉Σ0,0, (4.2)

where

φ
(2)
j =

∫

Σg,h

{G−, [G
−
, φj ]}. (4.3)

This equation is valid for 2g − 2 + h + n > 0, except for F
(1,0)
i and F

(0,2)
i for which

there are additional terms in the equation, which we will take into account below.
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The ingredients F
(g,h)
i1,...,in

are topological string amplitudes with worldsheet genus g, h

boundaries, and n insertions of closed-string marginal operators indexed by i1, · · · , in;

also C
jk

ī = C īj̄k̄e
2KGjj̄Gkk̄, where C īj̄k̄ is the Yukawa coupling, indices are raised and

lowered using the Zamolodchikov metric Gij̄ = ∂i∂j̄K, and ∆j
ī

= eKGjk̄∆īk̄, where

∆īk̄ is the disk two-point function. Note that these are different from the ∆ (with or

without indices) that appear in BCOV, which we will denote as ∆̂ below.

Following BCOV, we define the generating function for open topological string

amplitudes,

W (x, ϕ; t, t̄) =
∑

g,h,n

1

n!
g2g−2

s λhF
(g,h)
i1,··· ,inx

i1 · · · xin

(
1

1 − ϕ

)2g−2+h+n

+

(
χ

24
− 1 −

D

2
g−2

s λ2

)
log

(
1

1 − ϕ

)
, (4.4)

where the sum is over g, h, n ≥ 0 such that (2g− 2 + h+ n) > 0, gs is the topological

string coupling constant, and λ is the ’t Hooft coupling constant, namely gs times the

topological string Chan-Paton factor. In the last term on the right, χ is the Euler

characteristic of the Calabi-Yau manifold and D is the number of open-string ground

states with zero charge. This term contributes to the holomorphic anomaly equations

for F
(1,0)
i and F

(0,2)
i , reproducing [2]

∂

∂ti
∂

∂t̄j̄
F (1,0) =

1

2
CiklC j̄k̄l̄e

2KGkk̄Gll̄ −
( χ

24
− 1
)
Gij̄ (4.5)

and [7]
∂

∂ti
∂

∂t̄j̄
F (1,0) =

1

2
∆ik∆j̄k̄e

KGkk̄ −
D

2
Gij̄. (4.6)

We will show this in the Appendix A.1. The generating function W satisfies an

extension of Equation (6.11) in BCOV by a λ-dependent term, namely

∂

∂t̄ī
eW (x,ϕ;t,t̄) =

(
g2

s

2
C

jk

ī

∂2

∂xj∂xk
−Gījx

j ∂

∂ϕ
− λ∆j

ī

∂

∂xj

)
eW (x,ϕ;t,t̄), (4.7)

which reproduces the open topological string holomorphic anomaly Equation (4.1)
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for each genus and boundary number.

Our key result is that Equation (4.7) can be rewritten in the same form as the

closed topological string analogue by simply shifting

xi → xi + λ∆i, ϕ→ ϕ+ λ∆, (4.8)

where ∆i and ∆ are defined implicitly, modulo holomorphic ambiguities, by ∆īj̄ =

e−KGj̄k∂ī∆
k = e−KDīDj̄∆. After this shift Equation (4.7) becomes,

∂

∂t̄ī
eW (x+λ∆,ϕ+λ∆;t,t̄) =

(
g2

s

2
C

jk

ī

∂2

∂xj∂xk
−Gījx

j ∂

∂ϕ

)
eW (x+λ∆,ϕ+λ∆;t,t̄). (4.9)

This is exactly the same as the original BCOV equation for the closed topological

string generating function, with the µ-dependent term absorbed by means of the shift

(4.8).

Our result follows from a straightforward application of the chain rule: noting

that ∂̄ī∆
j = ∆j

ī
, the variable shift produces two new terms on the left,

(
λ∆j

ī

∂

∂xj
+ λ∆ī

∂

∂ϕ

)
eW . (4.10)

The first is the additional µ-dependent term on the right of (4.7). Using Gīj∆
j =

∆ī, the second term combines with the second term on the right of (4.9) to give

−Gīj(x
j + λ∆j) ∂

∂ϕ
eW , which is required for matching powers of x + λ∆ in the ex-

pansion of the generating function. Thus we have reproduced the open topological

string holomorphic anomaly equations from the closed topological string holomorphic

anomaly equations, simply by a shift of variables.

An immediate consequence of this is a general proof of the Feynman rule method

of solving the open topological string anomaly equations appearing in Section 2.10 of

Walcher. Since our shifted W satisfies the closed-string differential Equation (4.9),

the proof of the closed-string Feynman rules presented in Section 6.2 of BCOV applies

immediately. The shift has, in fact, an elegant interpretation in terms of the Feynman
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rules. Equation (6.12) in BCOV defines the function

Y (x, ϕ; t, t̄) = −
1

2g2
s

(∆̂ijx
ixj + 2∆̂iϕx

iϕ+ ∆̂ϕϕϕ
2) +

1

2
log

(
det ∆̂

g2
s

)
, (4.11)

where the ∆̂ij are the inverses of the corresponding propagators Sij. Expanding

Z =
∫
dxdϕ exp(Y + W ) in powers of gs then produces the full Feynman diagram

expansion of the closed topological string amplitudes. The shift (4.8) produces the

additional terms appearing in the open string Feynman diagrams, shown in Section

2.10 of Walcher. Therefore the Feynman rules method in Section 3.5 is generalized

to solve the open holomorphic anomaly equations. In field theory language, the shift

effectively generates the vacuum expectation values 〈xi〉 = ∆i and 〈ϕ〉 = ∆, and so

terms containing ∆i and ∆ correspond to diagrams with tadpoles.

4.2 The closed string moduli and coupling

The shift we use above is, strictly speaking, a shift of the variables x and ϕ, rather

than the closed-string moduli t and gs. However, the two sets of variables are simply

related. The generating function for the closed string is

Ŵ (gs, x; t, t̄) =
∑

g,n

1

n!
g2g−2

s C
(g)
i1···inx

i1 · · · xin +
( χ

24
− 1
)

log gs, (4.12)

where the correlation functions are defined as,

DiC
(g)
i1···in = C

(g)
ii1···in , (g ≥ 1), (4.13)

Ci1···in = Di1 · · ·Din−3Cin−2in−1in , (g = 0; n ≥ 3) . (4.14)

ϕ dependence was introduced into the closed string generating function Ŵ as

W̃ (gs, x, ϕ; t, t̄) = Ŵ

(
gs

1 − ϕ
,

x

1 − ϕ
; t, t̄

)
−
( χ

24
− 1
)

log gs. (4.15)
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Thus a shift of ϕ is identified with a re-scaling of gs and x. The generating function

Ŵ satisfies the equation

[
∂

∂ti
+ Γk

ijx
j ∂

∂xk
+
∂K

∂ti

(
χ

24
− 1 − gs

∂

∂gs

)]
e

cW =

(
∂

∂xi
−
∂F1

∂ti
−

1

2g2
s

Cijkx
jxk

)
e

cW .

(4.16)

To prove this, we can extract the coefficients of different powers of gs on both sides and

apply (4.13) and (4.14) to find equivalence for high genus and high n, i.e., 2g−2+n >

1. For low genus and low n (2g − 2 + n = 1), there is a cancellation,

∂

∂xi

(
1

3!
g−2

s Ci1jkx
i1xjxk

)
−

1

2g2
s

Cijkx
jxk = 0, (4.17)

and another one,
∂

∂xi
(C

(1)
i1
xi1) + ∂iF1 = 0. (4.18)

We can now adopt Kähler normal coordinates. As explained in Section 2.6 of

BCOV, we can choose coordinates of the closed string moduli space and a section of

the vacuum line bundle so that, at a given point (t0, t̄0),

∂i1 · · · ∂inΓk
ij = 0, ∂i1 · · · ∂inK = 0. (4.19)

This removes all but the first term on the left of Equation (4.16). On the right of

Equation (4.16) the second and third terms contribute at low genus only, and can be

absorbed by redefining the sum in Equation (4.4) to have only the restrictions g ≥ 1

and n ≥ 0, that is,

Ŵ ′ = Ŵ + F1 − g−2
s

∑

n=3

1

n!
Ci1···inx

i1 · · · xin . (4.20)

With these choices,
∂

∂ti
Ŵ ′ =

∂

∂xi
Ŵ ′, (4.21)

that is, Ŵ = Ŵ (t+ x; t̄).

The simple reformulation of the open string anomaly in terms of the closed string



41

anomaly should make it possible to apply Yamaguchi and Yau’s [13] reformulation of

the closed string amplitude diagram expansion to the open string case, which would

give a computationally more tractable formulation than the Feynman diagram rules

used here. Related work was published in [17] soon after this material was published.

It considered a different shift, which is convenient to show background independence,

however the Feynman diagram description is obscure.

This open-closed relationship is reminiscent of large N duality, where the back-

ground is shifted by an amount proportional to the ’t Hooft coupling. It would be

interesting to explore the implications of this for the Gromov-Witten and Gopakumar-

Vafa invariants.



42

Chapter 5 Applying the Ooguri, Strominger, and

Vafa Conjecture

5.1 Introduction

Topological string theory has a very rich mathematical content, but it also has phys-

ical applications. Our focus will be the application to counting 4-dimensional black

hole entropy which was discovered by Ooguri, Strominger, and Vafa [25].

A black hole is a solution to Einstein’s equations. Classically it does not have

many physical quantities for us to study; however quantum-mechanically, it is a

thermal dynamical system. An analogy between the laws of black hole dynamics and

the laws of thermodynamics was discovered more than 30 years ago. In particular,

Bekenstein and Hawking showed that a black hole’s entropy is one-quarter the area

of its event horizon in gravitational units. In 1995 Strominger and Vafa gave a

microscopic description of black hole entropy [26] in terms of D-brane bound states,

where D-branes are the sources of the black hole. Later on, it was found that the

partition function of a 4-dimensional black hole is related to the partition function of

a closed topological string. In the limit of a large black hole, that is, small curvature

of the event horizon, this beautiful relation is known as the Ooguri, Strominger, and

Vafa (OSV) conjecture [25]. On one side, the black hole is a solution to Einstein’s

equations in 4 dimensions which is obtained by type II string compactification on

Calabi-Yau 3-folds; on the other side, the closed topological string is evaluated at the

attractor point of moduli space of the same Calabi-Yau 3-fold associated to the black

hole charge.

Type IIA or IIB string theory compactified on a Calabi-Yau 3-fold gives rise to

N = 2 supersymmetry in 4-dimensional Minkowski spacetime. The lowest com-

ponents of the vector multiplets and hypermultiplets are the Kähler and complex
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structure moduli of the Calabi-Yau manifold. D-branes which wrap 3-cycles or even

cycles in the Calabi-Yau produce black hole solutions to Einstein’s equations in 4

dimensions. Simultaneously, the integration of D-brane form fluxes on corresponding

non-trivial cycles of the Calabi-Yau gives rise to the moduli of the Calabi-Yau. Since

the black hole entropy is proportional to the area of the horizon, which is a function

of electric and magnetic charges, the moduli must be fixed by those charges on the

horizon. Since the vector multiplets are driven to the attractor values on the black

hole horizon, while the hypermultiplets depend on values at infinity and are not fixed

on the horizon, the black hole entropy depends on either Kähler or complex struc-

ture moduli. This is analogous to the closed topological string amplitudes having

dependence on either Kähler or complex structure moduli.

In the large black hole case, the black hole partition function was shown to be

a product of the topological and anti-topological string partition functions. There

has also been progress for small black holes, where there are some corrections to the

square law, which appear as an expansion in terms of baby universes. We will review

the OSV conjecture in Section 5.2. In Section 5.3, we review the result of [10] for

small black hole partition function. In Section 5.4, we will discuss our attempts at

factorization of the black hole partition function. We also study some properties of

Gromov-Witten invariants and modular vs holomorphic properties in Section 5.5 and

5.6.

5.2 OSV conjecture

Bekenstein-Hawking entropy for a black hole is related to the area of its horizon as

SBH =
A

4
. (5.1)
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At the attractor point, the real part of the moduli of the Calabi-Yau are fixed by the

black hole magnetic and electric charges,

pΛ = Re CXΛ, qΛ = Re CFΛ, (5.2)

where XΛ (Λ = 0, 1, · · · , nV ) are the lowest components of N = 2 vector multiplets

in 4 dimensions, C is the scale factor of the vector multiplets, CXΛ are the moduli

of the Calabi-Yau. FΛ are not independent moduli of the Calabi-Yau, actually they

are related to XΛ in the way that

FΛ =
∂F

∂XΛ
, (5.3)

where F is the prepotential F-term of the N = 2 theory.

In the leading order of the action (Einstein-Hilbert action), the BPS black hole

entropy is

SBH =
π

4
CCe−K , (5.4)

where K is the Kähler potential,

K = − ln i(X̄ΛFΛ −XΛF̄Λ). (5.5)

The higher-order corrections to the action come from the higher derivative (Wald)

terms beyond the Einstein-Hilbert action. Then the entropy function is modified to

be

S =
πi

2
(qΛC̄X̄

Λ − pΛC̄F̄Λ) +
π

2
Im[C3∂CF ]. (5.6)

The prepotential F-term can be calculated by the topological string loop computation,

F (XΛ,W 2) =
∑

g=0

Fg(X
Λ)W 2g, (5.7)

where Fg is the genus g topological string amplitude [27, 1]. Since the black hole
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entropy is a Legendre transformation of the free energy F(φ, p), it satisfies

SBH(q, p) = F(φ, p) − φΛ ∂

∂φΛ
F(φ, p), (5.8)

where φΛ is the chemical potential of the electric charge qΛ,

qΛ = −
∂

∂φΛ
F(φ, p). (5.9)

Thus the free energy is related to the F-term by

F(φΛ, pΛ) = −πIm[C2F (XΛ,
256

C2
)] = −πIm[F (CXΛ, 256)]

= −πIm[F (pΛ +
i

π
φΛ, 256)] (5.10)

in the gauge C2W 2 = 256.

From (5.8), the partition function (more precisely, elliptic genus) of the black hole

mixed ensemble (it is a canonical ensemble of magnetic charges and grand canonical

ensemble of electric charges) is

ZBH(φΛ, pΛ) =
∑

Ω(qΛ, p
Λ)e−φΛqΛ . (5.11)

From (5.10) we get

lnZBH = F = −πImF (pΛ +
i

π
φ, 256). (5.12)

The F-term in the large volume limit (supergravity) [28] has the form

F (CXΛ, 256) = C2DABC
XAXBXC

X0
−

1

6
c2A

XA

X0
+ · · · , (5.13)

where A = 1, · · · , nV , DABC is an intersection number, and c2A is the second Chern

class of the Calabi-Yau 3-fold.

Until now we just discussed some properties from the black hole side. The partition
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function and the free energy of a topological string are also related by

Ztop(t
A, gtop) = eFtop(tA,gtop), (5.14)

and the topological string amplitude in the same limit [2, 1] is

Ftop = −
(2π)3i

g2
top

DABCt
AtBtC −

πi

12
c2At

A + · · · . (5.15)

We can show that, under the identification

gtop =
4πi

X0
, tA = 2πi

XA

X0
, (5.16)

and with the attractor equations

CX0 = p0 + i
φ0

π
, CXA = pA + i

φA

π
, (5.17)

there is a correspondence,

F (CXΛ, 256) = −
2i

π
Ftop(t

A, gtop). (5.18)

Therefore, from Equations (5.12) and (5.18), we get,

lnZBH(p, φ) = Ftop(t
A, gtop) + F top(t̄

A, gtop). (5.19)

It results in a square rule,

ZBH = |Ztop|
2. (5.20)

5.3 Small black hole

In [10], the type IIA superstring is compactified on a non-compact Calabi-Yau 3-

fold which is a sum of two line bundles on a torus, O(m) ⊕O(−m) → T 2. D-branes

wrapping on even cycles give rise to a 4-dimensional BPS black hole solution of N = 2
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supergravity. We will take m = 1 for simplicity. The D-branes are the sources of 4-

dimensional black hole electric and magnetic charges. From the attractor equations,

we have

CX1 = N + i
θ

gs
, (5.21)

CX0 =
1

gs

. (5.22)

The Kähler modulus of the Calabi-Yau manifold is

t =
X1

X0
= gsN + iθ. (5.23)

The D-brane configuration can also be identified with a Yang-Mills theory with

gauge group U(N) on T 2, the coupling of Yang-Mills theory being related to the

coupling of string theory by g2
Y M = gs. The number of D4-branes corresponds to

the rank N of the gauge group and the chemical potentials of D2- and D0-branes

are identified with some combination of the theta angle and the gauge coupling of

the Yang-Mills theory. In a pure gauge theory on an arbitrary orientable Riemann

surface ΣG of genus G and unit area, the partition function is,

ZM =

∫
[DAµ]e

− 1

g2
Y M

R
ΣG

d2x
√

gTrF µνFµν

. (5.24)

For SU(N), the partition function is [29],

ZM =
∑

R

(dimR)2−2Ge−
g2
Y M
2

C2(R), (5.25)

where R is the representation of SU(N) and C2(R) is the second Casimir of R. For

a pure gauge theory with gauge group U(N) on the torus, there is a simplification to

(5.25). The black hole partition function can be expressed as a sum over all irreducible
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representations R of U(N),

ZU(N) =
∑

R

exp

{
−

1

2
g2

Y MC2(R) + iθC1(R)

}
, (5.26)

where C1(R) is the first Casimir of R, e.g., it corresponds to the number of boxes in

the Young diagram of U(N).

It was found that 2-dimensional U(N) Yang-Mills theory on T 2 has a reformulation

in terms of a system of N non-relativistic free fermions moving on a circle [30]. The

anti-periodic boundary condition for fermion wave functions makes fermion momenta

half integers. A fermion configuration with momenta pi = ni −
1
2
, where n1 > n2 >

· · · > nN ≥ 0 (i = 1, · · · , N), can be represented by a representation R of U(N). The

excitation number for each fermion can be expressed as the length of each row in the

Young diagram, n′
1 = n1−(N−1), n′

2 = n2−(N−2), · · · , n′
k = nk−(N−k), · · · , n′

N =

nN ≥ 0. For example, the ground state is the state with all n′ zero, and n′
1 = 1

corresponds to a state with the highest fermion excited by one unit. Figure 5.1 is a

cartoon of the correspondence. The energy for the fermion system in the center of

2

2

1

6

5

4

3

2

1

0

Figure 5.1: Fermion system vs Young diagram

momentum frame is the second Casimir of the representation R of SU(N),

C2(R) =
1

2

∑

i

[
(n′

i +N − i+
1

2
)2 − (N − i+

1

2
)2

]
−

1

2N



(
∑

i

n′
i +

N2

2

)2

−

(
N2

2

)2



=
1

2

[
∑

i

n′
i(n

′
i + 1 − 2i) +N

∑

i

n′
i −

(
∑

i n
′
i)

2

N

]
. (5.27)

In this frame, there are fermions which have positive momentum as well as negative

momentum. Fermion excitations can occur at both sides. In gauge theory Figure 5.2
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denotes the two types of fermion excitation. In the large N limit, there is a chiral

factorization of the partition function of 2-dimensional U(N) Yang-Mills,

ZU(N) =
+∞∑

ℓ=−∞
ZY M

+ (t+ ℓg2
Y M)ZY M

− (t̄− ℓg2
Y M), (5.28)

where ZY M
± are the chiral blocks of the U(N) theory. The chiral block Z+ is similar

ℓ

N

R+

R−

R+

R−
Figure 5.2: Chiral factorization of the partition function of large N U(N) Yang-Mills
theory

to the expressions of topological strings on this Calabi-Yau 3-fold [31],

ZY M
+ = ψtop. (5.29)

The OSV conjecture for large N then gives rise to

ZY M = ψtopψtop. (5.30)

Now we will show this in terms of the free fermion system. We first write down

the partition function in terms of N free fermions explicitly. According to the Fermi-

Dirac distribution, the free fermion partition function for the N -fermion canonical

ensemble is

ZY M
N =

∮
dx

x
xN

+∞∑

p=−∞
(1 + x−1eipθqp2/2), (5.31)

where q = e−gs , x = eµN , and µ is the chemical potential for the number of fermions

N . The partition function of the topological string, however, corresponds to a fermi

sea with arbitrary number of excitations above the fermi surface and the same number
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of holes in the sea. Therefore the partition function for the string in the Calabi-Yau

manifold O(1) ⊕O(−1) → T 2 with the Kähler modulus t = gsN + iθ is

ψ
N

= e−
N2

2
tegs( N3

3
+ N

24
)

∮
dx

x

∏

p>0

(1 + xe−tpqp2/2)
∏

p′>0

(1 + x−1e−tp′q−(p′)2/2). (5.32)

In terms of free fermions, this proves that for large N ,

ZY M
N =

∑

N++N−=N

ψtop(N+)ψ̄top(N−). (5.33)

In Figure 5.3, we use the fermi sea of free fermions to show the factorization. For

N → ∞, the excitations only happen on the fermi sea surfaces, since the excitations

inside of the sea are suppressed by e−N .

p

ZN

ψN+

ψ̄N−

Figure 5.3: Free fermion realized large N factorization

When we consider finite N , the previous factorization is not correct since there

are over countings—the double counting of an excitation of fermions to the upper and

lower surfaces of the fermi sea. The modification of the factorization can be expressed

by a recursive equation [10]

ZN(gs) =
N∑

k=0

ψk(gs)ψ̄N−k(gs) −
∑

n>0

ZN+n(gs)Zn(−gs). (5.34)
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5.4 Second approach to handling non-perturbative

corrections

From the previous section, we have the partition function for Yang-Mill theory (5.31),

and the partition function for the topological string theory (5.32). We developed a

resummation distinct from (5.34). In our resummation, the partition function of the

Yang-Mills theory is factorized as

ZN =
∑

N++N−=N

ΨN+(t)Ψ̄N−
(t̄), (5.35)

where

t = gsN+ + iθ, t̄ = gsN− − iθ. (5.36)

The modified topological string partition function is

ΨN = e−tN2+ gs
2

N3

∮
dx

x
xN

∏

p>−N

(1 + xe−tpe−gsp2/2) . (5.37)

This result is exact; the non-perturbative corrections are captured in Ψ. Figure 5.4

describes how the new factorization works. In Appendix A.2, we prove that the

N+

N−

ZN ΨN+ Ψ̄N−

Figure 5.4: New resummation laws

newly-defined function have a recursive relation. Simply speaking,

ψN =
∑

k=0

ΨN+kΨ−k, (5.38)
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we can show that Ψ0 = 1 and that for large N , ΨN = ψN . Thus the newly-defined

function satisfies

ΨN = ψN −
∞∑

k=1

ΨN+kΨ−k. (5.39)

Overcounting

N

ΨN

N

ψN

N
N+k

ΨN+k Ψ−k

k

Figure 5.5: New partition function

5.5 Gromov-Witten invariants

We will discuss Gromov-Witten invariants in topological string theory and give an

example for topological strings on the Calabi-Yau 3-fold O(1) ⊕O(−1) → T 2.

We denote the moduli space of holomorphic maps φ : Σ → X of degree β as,

MΣ(X, β) = {φ | φ∗[Σ] = β}, (5.40)

where Σ is a Riemann surface and X is a Calabi-Yau manifold. The Gromov-Witten

invariants nβ,D1,··· ,Dk
are defined to be the intersection numbers of k divisors of X,

where those divisors are evolution maps from Σ to X; that is,

nβ,D1,··· ,Dk
= #{φ ∈ MΣ(X, β)|φ(pi) ∈ Di, i = 1, · · · , k}, (5.41)
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where Di are the divisors of X and pi are points in X.

Now we want to extract the Gromov-Witten invariants of the modified topological

string partition function Ψ. It has the nice property that the topological string free

energy at each genus is convergent. From Section 5.3,

ΨN = e−
t
2
N2+gs(

N3

3
+ N

24
)
∑

n

Hn(gs)e
−tn, (5.42)

where n =
∑

i
pi∈Z++ 1

2

p′i∈[ 1
2
,N− 1

2
]

(pi + p′i), (5.43)

Hn(gs) = exp
{
−
gs

2

∑

i
pi∈Z++ 1

2

p′i∈[ 1
2
,N− 1

2
]

[
p 2

i − (p′i)
2
] }
. (5.44)

There is a relation among N , t and gs,

N =
t− iθ

gs

, (5.45)

where θ is the imaginary part of t. Rewriting (5.42), we get

ΨN = exp

(
−
t3

6g2
s

−
t

2g2
s

θ2 +
t

24
+ i

θ3

3g2
s

− i
θ

24

)∑

n

Hn(gs)e
−tn. (5.46)

For simplicity we let θ = 0, and take the logarithm of ΨN ,

ln ΨN = −
t3

6g2
s

+
t

24
+ ln

∑

n=0

Hn(gs)e
−tn. (5.47)
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We can extract Hn from the definition (5.44) as

H0 = 1

H1 = 1

H2 = e−gs + egs

H3 = 1 + e−3gs + e3gs

H4 = 1 + e−2gs + e2gs + e−6gs + e6gs

· · ·

Note that Hn(gs = 0) = P [n], where P [n] is the number of partitions of n. For

n > N = t
gs

fixed, the symmetry of those terms with positive and negative power in

Hn is broken, and some terms are truncated. In the following, we will consider N

large enough to neglect the symmetry breaking. According to the identity

ln(1 +
∞∑

n=1

Hne
−tn) =

∑

m

(−1)m 1

m
(

∞∑

n=1

Hne
−tn)m, (5.48)

the coefficients of e−nt are

e0 : 0

e−t : H1

e−2t : H2 −
1

2
H2

1

e−3t : H3 −
1

2
(2H1H2) +

1

3
H3

1

e−4t : H4 −
1

2
(2H1H3 +H2

2 ) +
1

3
(3H2

1H2) −
1

4
H4

1

· · · · · ·

e−nt : Hn + · · · + (−1)k−1C{mℓ}

k

k∏

j=1

Hij + · · · + (−1)n−1 1

n
Hn

1 .
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i1
i2

ik−1
ik

j1

j2

jℓ−1
jℓ

Figure 5.6: Partition

A partition of n into k integers is

n =
k∑

j=1

ij =
ℓ∑

i=1

miji,
∑

i

mi = k, (5.49)

where mi counts the multiplication of integer ji. We can draw a diagram of the

partition as in Figure 5.6. C{mℓ} is the weight for a partition of n into k integers,

C{mℓ} =
k!

m1! · · ·mℓ!
. (5.50)

In the weak coupling limit gs → 0, the coefficient for e−nt is

∑

{mℓ}
(−1)k−1C{mℓ}

k

∏
Pℓ

i miji=n

(P [ji])
mi , where k =

ℓ∑

i

mi. (5.51)

Substituting the expression from (5.50), the coefficient for e−nt is

∑

{mℓ}
(−1)(

P
i mi−1)(

ℓ∑

i

mi − 1)!
∏

Pℓ
i miji=n

(P [ji])
mi

mi!
. (5.52)

We want to get the Gromov-Witten invariants for

Ψ = exp

{
∑

g=0

g2g−2
s Fg(t)

}
= exp

{
∑

g=0

g2g−2
s

(
Ng,de

−dt + Poly(t)
)
}
. (5.53)
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The polynomials for leading and subleading terms F0 and F1 are

F
(0)
0 (t) = −

t3

6
, F

(0)
1 (t) =

t

24
. (5.54)

For d ≥ 1, non-zero coefficients are

e−t :
∑

g=0

g2g−2
s Ng,1 = H1; N1,1 = 1

e−2t :
∑

g=0

g2g−2
s Ng,2 = H2 −

1

2
H2

1 ; Ng,2 =

∮
dgs(H2 −

1

2
H2

1 )g1−2g
s

e−3t : Ng,3 =

∮
dgs(H3 −H1H2 +

1

3
H3

1 )g1−2g
s

· · · · · ·

e−nt : Ng,n =

∮
dgs


∑

{mℓ}
(−1)(

P
i mi−1)(

ℓ∑

i=1

mi − 1)!
∏

P
i miji=n

Hmi
ji

mi!


 g1−2g

s .

The non-zero Gromov-Witten invariants are therefore

N1,1 = 1

Ng,2 =

∮
dgs(e

−gs + egs −
1

2
)g1−2g

s

N1,2 =
3

2
, N2,2 =

2

2!
, N3,2 =

2

4!
, Np,2 =

2

(2p− 2)!
(p > 1)

Ng,3 =

∮
dgs

[
1 + e−3gs + e3gs − (e−gs + egs) +

1

3

]
g1−2g

s

N1,3 =
4

3
, N2,3 = 2

32

2!
− 2

12

2!
, N3,3 = 2

34

4!
− 2

14

4!
, Np,3 =

2(32p−2 − 1)

(2p− 2)!
(p > 1)

Ng,4 =

∮
dgs

[
H4 −

1

2
(2H1H3 +H2

2 ) +H2
1H2 −

1

4
H4

1

]
g1−2g

s

· · · · · ·

There is not an explicit form for the Gromov-Witten invariants; however, Paul Cook

wrote a mathematica code [32] to calculate these numbers. Only for N1,d is there an
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explicit form,

N1,d =
∑

{mℓ}
(−1)(

P
i mi−1)(

ℓ∑

i

mi − 1)!
∏

Pℓ
i miji=d

(P [ji])
mi

mi!

=
∑

P
mii=d

(−1)(
P

i mi−1)(

∞∑

i

mi − 1)!

∞∏

i=1

(P [i])mi

mi!
.

We can also define the generating function

W (q) =
∑

q

qdN1,d =
∑

P
mii=d

(−1)(
P

i mi−1)(
∞∑

i

mi − 1)!
∞∏

i=1

(P [i]qi)mi

mi!
. (5.55)

We can use an identity
∞∏

n=1

1

(1 − qn)
=

∞∑

i=0

P [i]qi (5.56)

to simplify the generating function,

W (q) = −

∫ ∞

0

dz

z

[
exp

{
−z
∏

n

1

1 − qn

}
− 1

]
. (5.57)

Note that

∫ ∞

0

dz

z
exp

{
−z
∏

n=1

1

1 − qn

}
∼ − ln

∏

n=1

1

1 − qn
=
∑

n=1

ln(1 − qn). (5.58)

Rudd’s paper [33] has calculated Fg up to g = 8 using another method. We can extract

the Gromov-Witten invariants from that paper and find that they successfully match

up with our results.

5.6 Modularity and holomorphicity

On a target space M which has a modular group, topological string amplitudes are

(almost) modular forms. For example, let us consider the B-model topological string

theory on a Calabi-Yau 3-fold X where the periods have a modular group Γ. The
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partition function of this theory is a wave function of a certain quantum mechanical

system where H3(X) acts as the phase space. There are two useful choices of basis of

H3(X) which are called polarizations. For the real polarization, the string amplitudes

Fg will be holomorphic but quasi-modular; for the holomorphic one, Fg is modular but

not quite holomorphic. The transition between these two polarizations was studied

in [34]. Because of mirror symmetry, the A-model must have similar choices also.

In general, when the modular group is SL(2,Z), the modular form for Fg can be

rewritten as

F̂g =

3g−3∑

k=0

∑

2ℓ+3m=3g−3−k

ckℓÊ
k
2E

ℓ
4E

m
6 , (5.59)

where Ê2, E4 and E6 are modular forms of weight 2, 4, and 6, respectively. They

are called Eisenstein series and are defined in the Appendix A.3. In order to satisfy

the holomorphic anomaly equation, we have to use a modular form for each genus

topological string amplitude. Recall that the holomorphic anomaly equation is

∂t̄īF̂g =
1

2
C īj̄k̄e

2KGjj̄Gkk̄

[
DjDkF̂g−1 +

g−1∑

r=1

DjF̂rDkF̂g−r

]
. (5.60)

In the case of a single modulus τ , we define a new variable t = −2πiτ . The modular

transformation is then

τ → −
1

τ
, i.e., t→

4π2

t
. (5.61)

For genus 1, we have

F̂1 = − ln

{[
(t+ t̄)

−2πi

]1/2

η(t)η(t̄)

}
, (5.62)

and

∂tF̂1(t) =
1

24
Ê2(t), (5.63)

where F̂1 is a modular form of weight 0.
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The prepotential in this case is given by

F0 = −
1

6
t3. (5.64)

Further, the Yukawa coupling, Kähler potential, and Zamolodchikov metric can be

calculated as

Cτττ = ∂τ∂τ∂τF0 = −(2π)3i, e−K =
(t+ t̄)3

3
, Gtt̄ =

12π2

(t+ t̄)2
. (5.65)

The covariant derivative is

Dτ = ∂τ −
n

2πi(τ − τ̄)
, i.e., Dt = ∂t +

n

t+ t̄
, (5.66)

where n depends on the weight of a modular form. It can be shown that the covariant

derivative increases the modular weight by 2.

We now summarize some further properties of Einsenstein series and the Fg’s:

1. Covariant derivatives are given in Table 5.1.

Partial derivative Covariant derivative

∂tÊ2 = 1
12

(E4 − E2
2) + 12

(t+t̄)2
DtÊ2 = 1

12
(E4 − Ê2

2)

∂tE4 = E ′
4 = 1

3
(E6 − E2E4) DtE4 = 1

3
(E6 − Ê2E4)

∂tE6 = E ′
6 = 1

2
(E2

4 − E2E6) DtE6 = 1
2
(E2

4 − Ê2E6)

Table 5.1: Partial derivative vs covariant derivative of modular forms

2. F̂g is a modular form of weight 6g-6, so the covariant derivative with respect to t

turns out to be

DtF̂g =

(
∂t +

6g − 6

t+ t̄

)
F̂g. (5.67)

The Equation (5.60) for genus 2 is

∂̄t̄F̂2 = −
1

2(t+ t̄)2
[Dt∂tF̂1 + (∂tF̂1)

2]. (5.68)
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We can show that F̂2 is a modular form of weight 6, so it contains generally 3 terms,

F̂2 = C
(2)
1 Ê3

2 + C
(2)
2 Ê2E4 + C

(2)
3 E6. (5.69)

Solving the holomorphic anomaly equation we find that

C
(2)
1 =

1

29 × 34
, C

(2)
2 = −

1

28 × 33
. (5.70)

3. The derivative with respect to the modulus can be changed to the one with respect

to Ê2 by the chain rule,

∂̄t̄F̂g =
12

(t+ t̄)2

∂F̂g

∂Ê2

. (5.71)

Combining these facts, we get

DtF̂g =
∂F̂g

∂Ê2

∂tÊ2 +
∂F̂g

∂E4

∂tE4 +
∂F̂g

∂E6

∂tE6 +
6g − 6

t+ t̄
F̂g. (5.72)

This can be simplified to

DtF̂g =
∂F̂g

∂Ê2

DtÊ2 +
∂F̂g

∂E4

DtE4 +
∂F̂g

∂E6

DtE6. (5.73)

Similarly,

Dt(DtF̂g) =
∂(DtF̂g)

∂Ê2

DtÊ2 +
∂(DtF̂g)

∂E4

DtE4 +
∂(DtF̂g)

∂E6

DtE6. (5.74)

The holomorphic anomaly equation is therefore turned into an equation with variable

Ê2. This method is useful when we know the form of Fg. Once we know the equation,

we can use Feynman rules as discussed in Section 3.5 to solve it.

Now let us come back to the example of the topological strings on O(1)⊕O(−1) →

T 2. A chiral fermion on a circle is identified with bosonic string theory on a torus.

Bosonic string theory on the torus has been studied by [35]. The string amplitudes

for genus up to 8 were derived in [33]. Those amplitudes are almost modular forms.

We considered the transition from a holomorphic form to a modular form and studied
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the holomorphic anomaly equation for it. By solving the closed holomorphic anomaly

equation, we find the solution is different from [33]. We have an argument for why

this is so.

The Yukawa coupling for this theory is

Cτττ = ∂∂∂F0 = ∂∂∂(−
t3

6
) = ∂∂∂(−

(−2πiτ)3

6
) = (2πi)3. (5.75)

From special Kähler geometry,

e−K =

∫

CY3

ω ∧ ω ∧ ω. (5.76)

Suppose we choose a polarization,

a =

∫

O(−1)

ω = 1, aD =

∫

C4

ω ∧ ω =
1

2
(τ − τ̄), (5.77)

where C4 = O(1) → T 2. Then (5.76) can be simplified to

e−K =

∫

T 2

dz ∧ dz̄ = i(aaD − aaD) = i(τ − τ̄). (5.78)

The Weil-Petersson metric is

Gτ τ̄ = ∂τ ∂̄τ̄K = −
1

(τ − τ̄)2
, (5.79)

and its Christoffel symbol can be computed as

Γτ
ττ = Gτ τ̄∂τGτ τ̄ = −

2

τ − τ̄
. (5.80)

We can show that it satisfies the special Kähler condition. To show this, we first

write down the curvature tensor,

R ℓ
ij̄k = Gij̄δ

ℓ
k +Gkj̄δ

ℓ
i − CikmC

ℓm

j̄ . (5.81)
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Contracting the last two indices, we get

Rij̄ = (n+ 1)Gij̄ − CikmC
km

j̄ = −∂̄jΓ
k
ik = −∂i∂̄j̄ logG, (5.82)

where

C̄km
j̄ = e2KC j̄k̄m̄G

kk̄Gmm̄. (5.83)

In the 1-modulus case,

2Gτ τ̄ − Cτττe
2KC̄τ̄ τ̄ τ̄G

τ τ̄Gτ τ̄ = −∂∂̄ logG. (5.84)

Now we want to use the formula in [1] to calculate the propagators Sττ , Sτ , and S.

For Sττ we have

SττCτττ = 2∂τK + Γτ
ττ + f τ

ττ , (5.85)

where f τ
ττ is some meromorphic object which was added to make the left hand side

covariant. We can choose

f τ
ττ = 2∂τ log f + v−1∂v + f̃ τ

ττ , (5.86)

where f is a meromorphic section of the line bundle L of the Calabi-Yau, v is the

meromorphic tangent vector, and f̃ τ
ττ is a meromorphic section of T × Sym2T ∗. In

the case of 1 modulus, it can be set to be zero. The propagator Sττ is

Sττ =
1

(−2πi)3

[
2∂ log(eK |f |2) + (Gτ τ̄v)

−1∂(Gτ τ̄v)
]
. (5.87)

Since the target space is a torus which has modular group SL(2,Z), we require Sττ

to be a modular form. We have to choose f = η−4(τ), v = 0,

Sττ = −
4

(−2πi)3
∂ log(τ − τ̄)|η2(τ)|2. (5.88)
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In terms of an Eisenstein series,

Sττ =
1

3(2πi)2
Ê2. (5.89)

Likewise, the propagator Sτ is defined as

∂̄Sτ = Gτ τ̄S
ττ =

1

Cτττ

[
2Gτ τ̄∂ log(eK |f |2) + v−1∂(Gτ τ̄v)

]

=
1

Cτττ
∂̄
[
(∂ log eK |f |2)2 + v−1∂(v∂K)

]
. (5.90)

After integration we get

Sτ =
1

Cτττ

[
(∂ log eK |f |2)2 + v−1∂(v∂ log eK)

]
+ hol. ambiguity. (5.91)

We find that Sτ is a modular form of weight 4,

Sτ = −
1

2πi

1

72
(Ê2

2 + E4). (5.92)

The last propagator S is defined as

∂̄S = Gτ τ̄S
τ , (5.93)

and is a modular form of weight 6,

S =
1

36 × 72
(Ê3

2 + 3Ê2E4). (5.94)

According to [2],

∂i∂̄j̄F1 =
1

2
CikℓC̄j̄k̄ℓ̄e

2KGkk̄Gℓℓ̄ − (
χ

24
− 1)Gij̄, (5.95)
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which here becomes

∂∂̄F1 = −
1

2
(2π)6 36

(2π)6(τ − τ̄)6

(τ − τ̄)2

3

(τ − τ̄)2

3
+ (

χ

24
− 1)

3

(τ − τ̄)2

= (
3χ

24
− 5)

1

(τ − τ̄)2
. (5.96)

The general solution for F1 is

F1 = (
χ

8
− 5) log(τ − τ̄)|η2|2, (5.97)

and the correlation functions are

C(1)
τ = ∂τF1 = (

χ

8
− 5)

2πi

12
Ê2,

C(1)
ττ = Dτ∂τF1 = (

χ

8
− 5)

(
2πi

12

)2

(Ê2
2 − E4).

Rudd’s result [33] for genus 1 and 2 are

F1 = −
1

2
log(τ − τ̄)|η2|2, (5.98)

and

F2 =
1

27 · 34
(Ê3

2 −
3

5
Ê2E4 −

2

5
E6). (5.99)

We can match our results for F1 with (5.98) when χ = 36. The correlation

functions are then

C(1)
τ = ∂τF1 = −

2πi

24
Ê2, (5.100)

C(1)
ττ = Dτ∂τF1 = −

(2πi)2

24 × 12
(Ê2

2 − E4). (5.101)
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However, when we use Feynman rule to calculate the genus 2 string amplitude

F2 =
1

2
SijC

(1)
ij +

1

2
C

(1)
i SijC

(1)
j −

1

8
SjkSmnCjkmn

−
1

2
SijCijmS

mnC(1)
n +

χ

24
SiC

(1)
i +

1

8
SijCijpS

pqCqmnS
mn

+
1

12
SijSpqSmnCipmCjqn −

χ

48
SiCijkS

jk +
χ

24
(
χ

24
− 1)S + hol. amb.(5.102)

we obtain

F2 =
1

27 · 34
(Ê3

2 − 6Ê2E4). (5.103)

we find only the first term agrees with Rudd’s result (5.99). In order to get Rudd’s

F2, one has to let χ equal some irrational number, and that cannot be true. Another

discrepancy happens when we compare our result with the result from [33] for high

genus amplitudes. The possible reason is that we have to choose the holomorphic

polarization to apply the holomorphic anomaly equation, and then change the po-

larization to a real polarization by converting E2(τ) to Ê2(τ, τ̄) to get a modular

form. Here the periods we compute are on some non-compact cycles, there is some

ambiguity for the result which means the polarization we have chosen may not be the

holomorphic one. Therefore we might solve this problem by choosing an appropriate

polarization. This remains to be clarified.
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Chapter 6 Summary and Open Questions

In this thesis we have presented various aspects and applications of open and closed

topological string theories. Let us now summarize our results and mention open

questions in relation to them.

In the first part of the thesis we gave a new derivation of the open string holo-

morphic anomaly equation. These are equations that determine the genus g string

partition functions, with h holes and possibly some marked points. One might ask

how these partition functions could be used in the low-energy effective action of su-

perstrings. Let us recall that in the closed topological string, the genus g amplitude

computes the superpotential F-term of the 4-dimensional N = 2 supergravity multi-

plet. More precisely, compactifying the type II superstrings on a Calabi-Yau 3-fold

yields in the low-energy theory an F-term

F =

∫
d2θd2θ̃

∑

g

Fg(t
i)W 2g, (6.1)

where Fg is the genus g topological string amplitude which captures the scattering

amplitude of 2g−2 graviphotons and two gravitons. One can now also consider open

strings on a Calabi-Yau. This gives rise to a 4-dimensional low-energy effective theory

of N = 1 super Yang-Mills coupled to supergravity. For genus 0, the topological

string amplitude F (0,h) describes the scattering amplitude of h − 2 gaugini and two

gravitons [1]. What is the physical meaning of higher genus amplitudes? One would

expect much more complicated scattering amplitudes of graviphotons, gaugini, and

gravitons.

The mathematical structure of the open topological string theory is also very rich.

The moduli space of Riemann surfaces with holes is much more complicated. The

stable maps of Riemann surfaces with marked points, but without holes, have been

well studied by mathematicians. The stable maps of Riemann surfaces with holes are
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less well understood. One way to approach this problem is to study the open Gromov-

Witten invariants. In this way, our open holomorphic anomaly equation may have

some interesting mathematical implications.

In Chapter 3, we derived the holomorphic anomaly equation for the open topolog-

ical string under two assumptions. We have not discussed the first assumption, that

is, when open string moduli are not present. Although there have been some attempts

[18] to generalize to a theory with open string moduli, the topological structure is not

yet known.

Another interesting direction for generalization is to include fluxes in topological

string theory. This might be also phenomenologically important. For example, in

geometric transitions for superstrings, the deformed conifold with D-branes wrapping

on S3 is dual to the resolved conifold with flux on the blown up S2. One may wonder

if there will be a geometric transition in the topological string theory as well. There

are some studies on generalizing topological sigma models in the presence of non-

trivial H-flux [36], and recently there were some studies on the integrality condition

when fluxes are included [37]. It would be very interesting to understand these issues

further.

In the second part of the thesis we discussed the connection of topological string

theories with black holes, in the context of the OSV conjecture. The microscopic

origin of black hole entropy is from BPS state degeneracy of D-branes wrapping on

cycles of a Calabi-Yau. The OSV conjecture relates the black hole entropy with the

topological string partition function. We tried to understand how the factorization

will work for a small black hole. In order to do that we defined a modified partition

function for the closed topological string, and we studied its Gromov-Witten invari-

ants. We have not been able to study its modular and holomorphic properties, due

to some technical difficulties in the topological string for particular models. It would

be nice to solve these, so we can study the properties of the modified function.

It would be an interesting project to study an open OSV conjecture. A first step

would be to determine which ensemble the open topological string corresponds to,

physically.
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In summary, we have discussed a wide variety of applications of topological string

theories, which undoubtedly have both a rich mathematical structure and also many

interesting applications in physics.
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Appendix A Explicit Extrapolation Formulae

We gather together some formulae discussed in Chapters 4 and 5 in this appendix.

We also present the definition of modular forms at the end.

A.1 Low genus/boundary topological string holo-

morphic equation

The generating function for open topological string amplitudes is

W (λ, x, ϕ; t, t̄) =
∞∑

g,h=0

∞∑

n

1

n!
λ2g−2µhF (g,h)

i1,··· ,inx
i1 · · · xin

(
1

1 − ϕ

)2g−2+n+h

+A log

(
1

1 − ϕ

)
+Bλ−2µ2 log

(
1

1 − ϕ

)
, (A.1)

where A and B are coefficients to be determined later. We can substitute it into the

master equation,

∂̄īe
W (λ,x,ϕ;t,t̄) =

(
λ2

2
C̄jk

ī

∂2

∂xj∂xk
−Gījx

j ∂

∂ϕ
− µ∆j

ī

∂

∂xj

)
eW (λ,x,ϕ;t,t̄), (A.2)

and extract the coefficients of 1
1−ϕ

. For the left hand side, it’s quite straightforward.

For the right hand side, ∂2

∂xj∂xk contains two terms, with either both derivatives acting

on the same term in W or on different terms in W . We need to consider two cases.

a) If 2g − 2 + h + n = 1, 2g + h + n = 3, the corresponding coefficients of 1
1−ϕ

in W

are

(g, h, n) terms

(0,0,3) 1
3!
λ−2F (0,0)

i1i2i3
xi1xi2xi3

(0,3,0) λ−2µ3F (0,3)

(0,1,2) 1
2!
λ−2µF (0,1)

i1i2
xi1xi2

(g, h, n) terms

(0,2,1) λ−2µ2F (0,2)
i1

xi1

(1,1,0) µF (1,1)

(1,0,1) F (1,0)
i1

xi1 .
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b) In the second case, we need to consider pairs of terms with 2g1 − 2 − h1 + n1 +

2g2 − 2 − h2 + n2 = 1. The corresponding coefficients of 1
1−ϕ

are

(g1, h1, n1) (g2, h2, n2) terms

(0,1,1) (0,2,1) λ−2µF (0,1)
i1

xi1 × λµ2F (0,2)
i2

xi2

(0,1,1) (0,1,2) λ−2µF (0,1)
i1

xi1 × 1
2!
λ−2µF (0,1)

i2i3
xi2xi3

(0,1,1) (0,0,3) λ−2µF (0,1)
i1

xi1 × 1
3!
λ−2F (0,0)

i2i3i4
xi2xi3xi4

(0,1,3) (0,0,1) 1
3!
λ−2µF (0,1)

i1i2i3
xi1xi2xi3 × λ−2F (0,0)

i4
xi4

(0,1,2) (0,0,2) 1
2!
λ−2µF (0,1)

i1i2
xi1xi2 × 1

2!
λ−2F (0,0)

i3i4
xi3xi4

(1,0,1) (0,1,1) F (1,0)
i1

xi1 × λ−2µF (0,1)
i2

xi2

(1,1,1) (0,0,1) µF (1,1)
i1

xi1 × λ−2F (0,0)
i2

xi2

(1,0,1) (0,0,2) F (1,0)
i1

xi1 × 1
2!
λ−2F (0,0)

i2i3
xi2xi3

(1,0,2) (0,0,1) 1
2!
F (1,0)

i1i2
xi1xi2 × λ−2F (0,0)

i3
xi3.

The coefficient of 1
1−ϕ

eW in the LHS of (A.2) is

λ−2µ3∂̄īF
(0,3) +λ−2µ2∂̄īF

(0,2)
i1

xi1 +
1

2
λ−2µ∂̄īF

(0,1)
i1i2

xi1xi2 +µ∂̄īF
(1,1) + ∂̄īF

(1,0)
i1

xi1. (A.3)

From the above, we find that the coefficient of 1
1−ϕ

eW in the RHS of (A.2) is

λ−2µ3 ×

(
1

2
C̄jk

ī
F (0,1)

j F (0,2)
k − ∆j

ī
F (0,2)

j

)

+ λ−2µ2 ×

(
1

2
C̄jk

ī
F (0,1)

j F (0,1)
ki1

xi1 − ∆j
ī
F (0,1)

ji1
xi1 −BGīi1x

i1

)

+ λ−2µ×

(
1

4
C̄jk

ī
F (0,1)

j F (0,0)
ki1i2

xi1xi2 +
1

4
C̄jk

ī
F (0,1)

ji1i2
xi1xi2F (0,0)

k +
1

2
C̄jk

ī
F (0,1)

ji1
xi1F (0,0)

ki2
xi2

+
1

2
C̄jk

ī
F (0,0)

ji1
xi1F (0,1)

ki2
xi2 −

1

2
∆j

ī
F (0,0)

ji1i2
xi1xi2

)

+ λ0µ×

(
1

2
C̄jk

ī
F (0,1)

jk +
1

2
C̄jk

ī
F (1,0)

j F (0,1)
k +

1

2
C̄jk

ī
F (1,1)

j F (0,0)
k − ∆j

ī
F (1,0)

j

)

+ λ0µ0 ×

(
1

2
C̄jk

ī
F (0,0)

jki1
xi1 − AGīix

i

)
. (A.4)
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Comparing the two sides we get

∂̄īF
(0,3) =

1

2
C̄jk

ī
F (0,1)

j F (0,2)
k − ∆j

ī
F (0,2)

j (A.5)

∂̄īF
(0,2)
i1

=
1

2
C̄jk

ī
F (0,1)

j F (0,1)
ki1

+
1

2
C̄jk

ī
F (0,1)

ji1
F (0,1)

k − ∆j
ī
F (0,1)

ji1
−BGīi1 (A.6)

∂̄īF
(0,1)
i1i2

=
1

4

∑

σ

C̄jk
ī
F (0,1)

j F (0,0)
kiσ1iσ2

+
1

4

∑

σ

C̄jk
ī
F (0,1)

jiσ1iσ2
F (0,0)

k +

(
1

4

∑

σ

C̄jk
ī
F (0,1)

jiσ1iσ2
F (0,0)

k

+
1

2

∑

σ

C̄jk
ī
F (0,1)

jiσ1
F (0,0)

kiσ2
+

1

2
C̄jk

ī
F (0,0)

jiσ1
F (0,1)

kiσ2

)
− ∆j

ī
F (0,0)

ji1i2
(A.7)

∂̄īF
(1,1) =

1

2
C̄jk

ī
F (0,1)

jk +
1

2
C̄jk

ī
F (1,0)

j F (0,1)
k +

1

2
C̄jk

ī
F (1,1)

j F (0,0)
k − ∆j

ī
F (1,0)

j , (A.8)

and for λ0µ0 term,

∂̄īF
(1,0)
ℓ =

1

2
C̄jk

ī
F (0,0)

jkℓ − AGīℓ. (A.9)

From the closed topological string holomorphic anomaly equation for genus one with

one insertion, we can determine

A =
χ

24
− 1. (A.10)

When h = 0, F (g,0)
i1,··· ,in = 0 for 2g − 2 + n ≤ 0, so we get

∂̄īF
(0,3) =

1

2
C̄jk

ī
F (0,1)

j F (0,2)
k − ∆j

ī
F (0,2)

j (A.11)

∂̄īF
(0,2)
i1

=
1

2
C̄jk

ī
F (0,1)

j F (0,1)
ki1

+
1

2
C̄jk

ī
F (0,1)

ji1
F (0,1)

k − ∆j
ī
F (0,1)

ji1
−BGīi1 (A.12)

∂̄īF
(0,1)
i1i2

=
1

2
C̄jk

ī
F (0,1)

j F (0,0)
ki1i2

+
1

2
C̄jk

ī
F (0,1)

ji1i2
F (0,0)

k − ∆j
ī
F (0,0)

ji1i2
(A.13)

∂̄īF
(1,1) =

1

2
C̄jk

ī
F (0,1)

jk +
1

2
C̄jk

ī
F (1,0)

j F (0,1)
k − ∆j

ī
F (1,0)

j . (A.14)
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These give rise to Equations (2.87), (2.106), and (2.107) of [7]:

(2.87) ∂̄īF
(1,1) =

1

2
C̄jk

ī
∆jk −F (1,0)

j ∆j
ī

(2.106) ∂̄īF
(0,2)
i1

= ∆i1k∆
k
ī +

N

2
Gīi1

(2.107) ∂̄īF
(0,3) = −(∂̄īF

(0,2)
j )∆j −F (0,2)

j ∂̄ī∆
j +

N

2
∂̄ī∆

j −
1

2
(∂̄ī∆jk)∆

j∆k

−∆jk(∂̄ī∆
j)∆k −

1

2
Cjkℓ(∂̄ī∆

j)∆k∆ℓ.

Since ∂̄ī∆jk = −Cjkℓ∆
ℓ
ī , we also have

∂̄īF
(0,3) = −F (0,2)

j ∆j
ī
. (A.15)

To match up Walcher’s equations with these three equations, we require

B = −
D

2
, where D = dimExt0(B,B), (A.16)

and

F (0,1)
jk + F (1,0)

j F (0,1)
k = ∆jk (A.17)

C̄jk
ī
F (0,1)

k F (0,1)
ji1

= −∆j
ī
F (1,0)

j F (0,1)
i1

(A.18)

C̄jk
ī
F (0,1)

j F (0,2)
k = 0. (A.19)

These equations require

F (0,1)
i = 0, F (0,1)

jk = ∆jk. (A.20)

(A.13) is Walcher’s (2.99), with the definition Cijk = F (0,0)
ijk . We then conclude

F (g,h)
i1,··· ,in = 0, for 2g − 2 + h+ n ≤ 0.
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A.2 New approach to factorize Yang-Mills parti-

tion function

A.2.1 Topological string side

The partition function for topological string theory with t = gsN+ + iθ is

ψ
N+

= F (N+)

∮
dx

x

∏

p>0

(1 + xe−tpqp2/2)
∏

p′>0

(1 + x−1e−tp′q−(p′)2/2). (A.21)

For the bottom fermi surface with t̄ = gsN− − iθ, we have similarly

ψ̄
N−

= F (N−)

∮
dx

x

∏

p>0

(1 + xe−t̄pqp2/2)
∏

p′>0

(1 + x−1e−t̄p′q−(p′)2/2). (A.22)

The prefactor is defined as

F (N) = e−
N2

2
tegs(

N3

3
+ N

24
). (A.23)

We can expand φN+ and φN−
as

ψ
N+

= e−
N2

+
2

tegs(
N3

+
3

+
N+
24

)
∑

n

fn(q)e−tn, (A.24)

n = 0,
∑

i

(pi + p′i), (pi, p
′
i =

1

2
,
3

2
, · · · ); (A.25)

ψ̄
N−

= e−
N2
−

2
t̄egs(

N3
−

3
+

N−

24
)
∑

n

fm(q)e−t̄m, (A.26)

m = 0,
∑

i

(pi + p′i), (pi, p
′
i =

1

2
,
3

2
, · · · ). (A.27)

For fixed n and m, fn and fm have finite terms of q expansion,

fn(q) = q
P

pi
p2

i /2−
P

p′
i
(p′i)

2/2
. (A.28)
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The product of the chiral and anti-chiral topological string partition function is,

∑

N++N−=N

ψ
N+
ψ̄

N−
=

∑

N++N−=N

G(N+, N−)
∑

n=0,m=0

fn(q)fm(q)e−tn−t̄m, (A.29)

where

G(N+, N−) := e−
1
2
(N2

+t+N2
−

t̄)e
gs
3

(N3
++N3

−
)+

gs(N++N−)

24 . (A.30)

A.2.2 Yang-Mills side

The partition function for 2-dimensional Yang-Mills theory is

ZN =

p=+∞∏

p=−∞
(1 + x−1e−iθpegsp2/2)

∣∣∣
xN

=
∑

N++N−=N

∏

p>0

(1 + xe−tpe−gsp2/2+gsN+p)
∣∣∣
xN+

∏

p>0

(1 + xe−t̄pe−gsp2/2+gsN−p)
∣∣∣
xN−

=
∑

N++N−=N


e−tN2

++ gs
2

N3
+

∏

p>−N+

(1 + xe−tpe−gsp2/2)
∣∣∣
xN+




×


e−t̄N2

−
+ gs

2
N3

−

∏

p>−N−

(1 + xe−t̄pe−gsp2/2)
∣∣∣
xN−


 .

We get

ZN =
∑

N++N−=N

ΨN+(t)ΨN−
(t̄), (A.31)

where we define the modified topological string partition function as

ΨN = e−tN2+ gs
2

N3
∏

p>−N

(1 + xe−tpe−gsp2/2)
∣∣∣
xN
. (A.32)

Now we want to prove the recursive relation between our newly-defined function Ψ

and the topological string partition function ψ,

ΨN = ψ
N
−
∑

k>0

ΨN+kΨ−k. (A.33)
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We write down the product explicitly,

ΨN+kΨ−k = e−t(N+k)(N+k)2+ g
2
(N+k)3

∏

p>−(N+k)

(1 + xe−t(N+k)pe−gp2/2)
∣∣∣
xN+k

×e−t(−k)k
2− g

2
k3
∏

p>−k

(1 + x−1e−t(−k)pegp2/2)
∣∣∣
x−k

. (A.34)

We can use the following formula,

∏

p>−(N+k)

(1 + xe−t(N+k)pe−gp2/2)
∣∣∣
xN+k

∏

p>−k

(1 + x−1e−t(−k)pegp2/2)
∣∣∣
x−k

=
∏

p>−(N+k)

(1 + xe−tpe−
g
2
(p+k)2+ g

2
k2

)
∣∣∣
xN+k

∏

p>−k

(1 + x−1e−tpe
g
2
[p+(N+k)]2− g

2
(N+k)2)

∣∣∣
x−k

.(A.35)

Shifting the variable in the first product by p → p − k and the one in the second

product by p→ p− (N + k), this becomes

∏

p>−N

(1 + xe−t(p−k)e−
g
2
p2+ g

2
k2

)
∣∣∣
xN+k

∏

p>N

(1 + x−1e−t[p−(N+k)]e
g
2
p2− g

2
(N+k)2)

∣∣∣
x−k

= etk(N+k)+ g
2
k2(N+k)

∏

p>−N

(1 + xe−tpe−
g
2
p2

)
∣∣∣
xN+k

×et(N+k)k− g
2
(N+k)2k

∏

p>N

(1 + x−1e−tpe
g
2
p2

)
∣∣∣
x−k

. (A.36)

Using the same method as before,

∏

p>−N

(1 + xe−tpe−
g
2
p2

)
∣∣∣
xN+k

∏

p>N

(1 + x−1e−tpe
g
2
p2

)
∣∣∣
x−k

=

−1/2∏

p=−N+1/2

e−tpe−
g
2
p2
∏

p>0

(1 + xe−tpe−
g
2
p2

)

N−1/2∏

p=1/2

(1 + x−1e−tpe
g
2
p2

)
∣∣∣
xk

×
∏

p>N

(1 + x−1e−tpe
g
2
p2

)
∣∣∣
x−k

= e
N2

2
te−

g
2
( N3

3
− N

12
)
∏

p>0

(1 + xe−tpe−
g
2
p2

)

N−1/2∏

p=1/2

(1 + x−1e−tpe
g
2
p2

)
∣∣∣
xk

×
∏

p>N

(1 + x−1e−tpe
g
2
p2

)
∣∣∣
x−k

. (A.37)
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All of the prefactors in (A.34), (A.36), and (A.37) give rise to a prefactor

e−t(N+k)(N+k)2+ g
2
(N+k)3e−t(−k)k

2− g
2
k3

etk(N+k)+ g
2
k2(N+k)et(N+k)k− g

2
(N+k)2ke

N2

2
te−

g
2
( N3

3
− N

12
)

= e−
N2

2
te

g
3
N3+ g

24
N , (A.38)

so finally we get

∑

k=0

ΨN+kΨ−k

= e−
N2

2
te

g
3
N3+ g

24
N
∑

k=0

∏

p>0

(1 + xe−tpe−
g
2
p2

)

N−1/2∏

p=1/2

(1 + x−1e−tpe
g
2
p2

)
∣∣∣
xk

×
∏

p>N

(1 + x−1e−tpe
g
2
p2

)
∣∣∣
x−k

= e−
N2

2
te

g
3
N3+ g

24
N
∑

k=0

∏

p>0

(1 + xe−tpe−
g
2
p2

)
∣∣∣
xk

∏

p>0

(1 + x−1e−tpe
g
2
p2

)
∣∣∣
x−k

= ψ
N
. (A.39)

The power expansion of the partition function is

ZN =
∑

N++N−=N

e−tN2
+−t̄N2

−
+ gs

2
N3

++ gs
2

N3
−

∞∑

n=−
N2

+
2

hn(q)e−tn

∞∑

m=−
N2
−

2

hm(q)e−t̄m. (A.40)

Shifting n and m by −
N2

+

2
, and defining

Hn(q) := h
n−

N2
+
2

(q), (A.41)

we get the partition function of Yang-Mills theory,

ZN =
∑

N++N−=N

G(N+, N−)
∑

n=0,m=0

Hn(q)Hm(q)e−tne−t̄m, (A.42)
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where

n =
∑

pi>0

pi −
∑

p′i∈[−N++1/2,−1/2]

p′i =
∑

pi>0

pi +
∑

p′i∈[1/2,N+−1/2]

p′i, (A.43)

and

Hn(q) := h
n−

N2
+
2

(q) = q
P

pi>0 p2
i /2−P

p′
i
∈[1/2,N+−1/2](p

′

i)
2/2
. (A.44)

A.3 (Almost) modular forms

Eisenstein series are particular modular forms of the modular group SL(2,Z). For

k ≥ 2, the Eisenstein series is defined as

G2k(τ) =
∑

(m,n) 6=(0,0)

1

(m+ nτ)2k
. (A.45)

Therefore it is a modular form of weight 2k. This series is absolutely convergent to a

holomorphic function of τ in the upper half-plane. Under SL(2,Z) transformation,


 a b

c d


 : τ 7→ τ, a, b, c, d ∈ Z, ad− bc = 1, (A.46)

the Eisenstein series transforms as

G2k

(
aτ + b

cτ + d

)
= (cτ + d)2kG2k(τ). (A.47)

An alternative definition of the Eisenstein series is

E2k(τ) =
G2k(τ)

2ζ(2k)
, (A.48)
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where ζ(z) is the Riemann Zeta function. The series contains 3 basic forms and their

derivatives,

E2(τ) = 1 − 24
∞∑

n=1

nqn

1 − qn
, (A.49)

E4(τ) = 1 + 240
∞∑

n=1

n3qn

1 − qn
, (A.50)

E6(τ) = 1 − 504
∞∑

n=1

n5qn

1 − qn
, (A.51)

where q = e2πiτ . The recursive equations for derivatives are

q
dE2

dq
=

E2
2 − E4

12
, (A.52)

q
dE4

dq
=

E2E4 − E6

3
, (A.53)

q
dE6

dq
=

E2E6 − E2
4

2
. (A.54)

There is a recursion structure to relate high-weight modular forms to low-weight ones,

and eventually to E4 and E6:

Ek+2 = EkE2 +
12

k
E ′

k. (A.55)

E2 is not quite a modular form, but it is a holomorphic function. We can convert it

to a modular form, however we will lose holomorphicity. We recall that the Dedekind

eta function,

η(τ) = q1/24
∞∏

n=1

(1 − qn), (A.56)

is a modular form of weight 1/2. Therefore we can define a modular form of weight

2,

Ê2(τ, τ̄) =
12

2πi
∂ log(τ − τ̄)|η2(τ)|2 =

12

2πi

[
1

(τ − τ̄)
+ 2

η′(τ)

η(τ)

]
, (A.57)
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such that Ê2(τ, τ̄) is related to E2(τ) by

Ê2(τ, τ̄) = E2(τ) +
12

2πi

1

(τ − τ̄)
. (A.58)

The holomorphicity is restored only in the limit Imτ → ∞.
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