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Abstract

In this thesis, we introduce generalized network routing metrics that represent proba-

bility density parameters of the most popular communication channel models such as

(a) the q-ary Symmetric Channel (q-SC) (b) the q-ary Erasure Channel (q-EC); (c) the

Gilbert-Elliot Channel (GEC); and (d) the constrained Additive White Gaussian Noise

(AWGN). The GEC is a very important for modelling correlated errors in channels such

as the ubiquitous TCP/IP links and the wireless fading channels. In this thesis, we prove

that channel models (a)–(d) can be used as inputs to the Generalized Dijkstra’s Algo-

rithm without resulting in any routing loop.

We also define our own generalized Dijkstra’s algorithm that can solve a modified stan-

dard shortest path problem that features: (1) a subset of network nodes that are capable

of reducing the accumulated path cost down to zero, and (2) a constraint that the cumu-

lative cost of any feasible path must never exceed a prespecified maximum value. We

call this modified problem the Gas Station Problem, and its solution the Gas Station Al-

gorithm. The algorithm can be applied in many different areas such as: vehicle routing,

project management, and most importantly, network communication.

We investigate various auxilliary synchronization algorithms used in popular routing

protocols. Synchronization is used by routers to ensure that all routers operate on an

identical routing table — not a trivial task, considering network unreliabilities and pos-

sible malicious attacks. Our analysis produces a list of assumptions that guarantees

synchronization. We also obtain the upper bounds to quantities such as transmission
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period, memory requirement, etc. In turn, these bounds can be used to rate network

performance.

Finally, in a related contribution, we analyze message synchronization where a mes-

sage is retransmitted only if the number of identical messages received exceeds a certain

threshold. We define the Chinese Generals Problem as the problem of identifying the set

of assumptions under which synchronization is guaranteed. This threshold-base mes-

sage passing algorithm has the benefits of a tunable gain and a higher noise resistance.
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1
Generalized Network Routing

Metrics and Algorithms

HE history of telecommunication traces back to the days when ancient Per-

sian, Indian, and Chinese postal systems utilized sophisticated messenger

systems; to the day when the the first adhesive stamp was first introduced; and cen-

turies later, to the present day in the Internet age where a vast amount of information

can be transported around the globe in a fraction of a second.

History has also witnessed an increasingly rapid evolution of the types of information

transmitted over telecommunication networks. Not too long ago, people communicate

remotely with one another using hand-written and typed letters. At present, digital data

packets are used to represent voice, image, music, three-dimensional drawing, etc. Sim-

ilarly, telecommunication technology has followed a very rapid rate of evolution. Not

too long ago, courier networks were replaced by telegraphs, which in turn were replaced

by radio and telephone systems. In many applications, these systems are now progres-

sively being replaced by a combination of wired and wireless packet-based networks

which are often collectively referred to as the “Internet”.

The Internet is an ensemble of networks that are linked together by specialized com-

puter equipments called “routers.” These routers are often organized hierarchically in
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the same way post offices are organized hierarchically based on their geographical loca-

tions. Computers within a group of networks managed under a common administrative

authority and control are regarded as an entity known as the Autonomous System (AS).

An interior network refers to the network contained within a particular AS. In an inte-

rior network, communication between computers goes through the so-called interior

routers. These interior routers implement the Interior Gateway Protocols (IGPs). There

are also routers that provide connection between different Autonomous Systems. These

routers are called exterior routers. They use a different class of algorithms called the

Exterior Gateway Protocol (EGP) [7].

Routers play a central role in the Internet by providing each data packet with the in-

struction on how to proceed from the source to the destination, one router at a time.

These instructions are produced by routing algorithms that consider network topology,

traffic conditions, and other constraints.

These routing algorithms work by comparing different possible paths from the source

to the destination according to their routing metrics. A path’s routing metric determines

whether it is considered by the algorithm as a better (or the best) path compared to other

network paths. Routing metrics are assigned not only to paths, but also to edges. In fact,

as expected, a path’s routing metric depends on the routing metrics of its constituent

edges. In practice, routing metrics represent performance measurement quantities such

as bandwidth, delay, power, hop count, reliability, economic cost, etc.

Chapter 2 provides an overview of Internet routing and Dijsktra’s shortest path algo-

rithm which are used by many routing protocols. This review chapter is the only chap-

ter in this thesis that does not contain our original contribution. Subsequent chapters

contain original contributions that, as the title suggests, can be divided into two major

categories: (1) generalized network routing metrics, and (2) generalized network routing

algorithms.
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1.1 GENERALIZED NETWORK ROUTING METRICS

As mentioned above, routing metrics are real-valued quantities. Hence, they can be

added and compared with the standard real number operators + and≤. However, many

modern communication networks are modeled with graphs whose edges have rout-

ing metrics that are probability density parameters of communication channel models.

These routing metrics, which we call the generalized routing metrics, need to be manip-

ulated with a generalized routing metric algebra, not real number operators. .

A

B

C

D

P1 P4

P2 P5

P3

FIGURE 1.1 A simple BEC network

For example, a TCP/IP network can be modeled with a network of Gilbert channels.

The routing metric for each edge in such a network is the transition parameters of the

Gilbert channel associated with the edge.

For the purpose of illustration, we can assume that the links in the network shown

in Figure 1.1 are Binary Erasure Channels (BECs). Let node A be the source node, and

node D be the destination node. Each edge ei has a routing metric representing the

edge’s BEC error probability pi .

A packet going through the BEC labeled by AB is lost with a probability of p1, and

through BD with a probability of p4, etc. We can combine AB and BD into a composite

link ABD where packets are lost with a probability p:

p = p1⊕p4 = 1− (1−p1)(1−p4). (1.1)

Equation (1.1) defines the rule for “adding” two BEC parameters. Two BEC parameters

can be compared with the standard≤ operator. These two rules can be used to define
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the generalized routing metric algebra for BEC networks. Using these operators, the

Generalized Dijkstra’s Algorithm (GDA) [8] can then be used to find the best path with

the least p.

Chapter 3 contains the first set of contributions from this thesis, which is a detailed

analysis of the generalized routing metric algebras for (a) the q-ary Symmetric Chan-

nel (q-SC) [1, 2]; (b) the q-ary Erasure Channel (q-EC) [3–5]; and (c) the Gilbert-Elliot

Channel (GEC) [6], and (d) the constrained Additive White Gaussian Noise (AWGN). The

GEC is a very important for modeling correlated errors in channels such as the ubiqui-

tous TCP/IP links and the wireless fading channels. In this thesis, we prove that these

channels are compatible with the generalized Dijkstra’s algorithm, i.e., the algorithm is

guaranteed to produce no routing loop.

1.2 GENERALIZED NETWORK ROUTING ALGORITHMS

Another set of contributions made by this thesis falls under the category of general-

ized network routing algorithms. In turn, contributions in this category can be further

divided into subcategories where we introduce: (1) enhancements and modifications of

the existing routing algorithms, and (2) theoretical analysis on performance bounds and

algorithmic correctness of auxilliary synchronization algorithms used in popular rout-

ing protocols.

Chapter 4 presents the second contribution of this thesis, which is another type of

Generalized Dijkstra’s Algorithm that can solve a modified shortest-path problem that

features: (1) a subset of network nodes that are capable of reducing the accumulated

path cost down to zero, and (2) a constraint that the cumulative cost of any feasible path

must never exceed a prespecified maximum value. We call this problem the Gas Sta-

tion Problem, and its solution the Gas Station Algorithm. The algorithm can be applied

in many different areas: transportation network, vehicle routing, project management,
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and most importantly, network communication.

In the same chapter, we also present a related contribution of an application of the

Gas Station Algorithm to the very important problem of (1) estimating the worst-case

performance of mission-critical communication networks and (2) finding the worst-

case optimal route that is measured in an entirely new class of routing metric called

the worst-case routing metric.

Chapter 5 contains another contribution in the category of generalizing network rout-

ing algorithms. Previously, we have mentioned that routing metrics are used by routing

algorithms to compute the best network path. Inside these routing algorithms, routing

metrics are used to build what is called the routing table (all these terms are covered

in Chapter 2). Each entry in the table consists of a destination node and the path (or

the next router) that can take a packet from the current router to that destination. The

table is built from the network’s topology database. As its name suggests, the topology

database encodes the networks’ actual topology, which in the case of the Internet, is

constantly changing.

Regardless of network changes, all network nodes have to maintain identical copies

of the routing table — not a trivial task, considering unreliabilities of network links and

nodes, and possible malicious attacks. In other words, the routing tables of all the nodes

have to be synchronized at all times. Synchronization is very important because both

Open Shortest Path First (OSPF) and Optimized Link State Routing (OLSR) protocols —

which are two of the most ubiquitous interior network routing protocols on the Internet

— adopt this stringent requirement. The only way to keep these tables synchronized

is by using message-passing algorithms that “flood” the entire network with identical

copies of table. Thus, the relevant question is: under what assumptions can one guar-

antee that such synchronization methods will work?

Our contribution is the solution to what we call the Highly Dynamic Network problem.

The solution is a set of assumptions that guarantees a proper message synchronization
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between a pair of nodes in a network where flooding is used and where connectivity

changes are asynchronous. We also obtain the upper bounds to quantities such as trans-

mission period, memory requirement, etc. These bounds can be used to rate network

performance.

Still in Chapter 5, we present a related contribution that analyzes message synchro-

nization with a more sophisticated model where a message is retransmitted only if the

number of identical messages received exceeds a certain threshold. The Chinese Gener-

als Problem is defined as the problem of identifying the set of assumptions under which

synchronization is guaranteed. We prove that the threshold function provides the addi-

tional benefits of a tunable gain and a higher noise resistance.

In this chapter, we also discuss our contribution of an application of the threshold-

based message passing algorithm into error-correction decoding. Traditionally, Low-

Density Parity Check (LDPC) codes have been encoded and decoded using linear alge-

braic operators in finite fields. In the encoding mode, each parity check node computes

the parity bit using the XOR ⊕ operator. In the decoding mode, the parity bit is then

transmitted to the neighboring variable nodes, each of which applies a selection rule

(mostly majority voting) to determine which bit to send to the parity check node, and so

on.

Our algorithm uses the same message passing infrastructure as before, but instead of

using the XOR⊕ operator, we use a threshold function that is quite similar to the one de-

fined in the Chinese Generals Problem. Of course, the exact definition of this threshold

function determines the actual error-correction code. In Chapter 5 we offer an example

threshold function that defines a binary code where each codeword corresponds to a

unique Sudoku puzzle. A successful decoding of this code is equivalent to obtaining a

valid solution to a Sudoku puzzle. This contribution opens up the possibility of applying

the threshold function to define other types of nonlinear codes.
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1.3 ADDITIONAL TOPICS

Chapter 6 concludes this thesis with two contributions that extend the ideas already

presented in the previous chapters. Chapter 5 describes the relationship between a gen-

eralized LDPC code and a discrete combinatorial structure more popularly known as the

Sudoku square. In Chapter 6, we prove that every q-ary MDS code of length n and dis-

tance 2 is equivalent to a ternary Latin hypercube of dimension n. Further, we derive a

closed-form expression of the total number such structures.

Our final contribution is a demonstration of how message-passing algorithms can be

applied in games of perfect information. For our demonstration, we choose the pop-

ular game Tic-Tac-Toe. The game has both enough complexity to show the benefits of

message-passing, and enough simplicity to keep the presentation manageable. Com-

pared to conventional algorithm implementations that use game tree search, recursive

backtracking, and other types of heuristics, our algorithm requires very few operation

types and execution steps. Local functions count the number of enemy and friendly

pieces in the neighboring cells and compute the decision value using simple if state-

ments. We believe that this hierarchical approach can be adapted into network routing

problems.
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2
Standard and Generalized Shortest Path

Algorithms in Network Routing

HE diversity of protocols, equipments, and topologies coexisting in the Inter-

net makes network routing a very complex topic. In this thesis, we limit our

discussion and analysis only to a specific class of routing algorithms. To select the par-

ticular class to focus on, we order our preference based on the algorithm’s popularity.

Let us now describe the taxonomy of Internet routing.

By its “delivery semantic” (which is a fancy word for addressing scheme), Internet

routing can be categorized into unicast, anycast, broadcast, or multicast. This thesis

focuses only on unicast routing protocols, which are by far the most dominant proto-

cols in today’s Internet.

Routing protocols can also be static or dynamic. Static routing protocols assume that

the routing table — i.e., the network “address book” and topology — never changes.

This type of protocols is common in Public Switched Telephone Networks (PSTNs). In

contrast, dynamic routing protocols assume that the network constantly evolves. The

Internet obviously belongs in this category. This factor motivates us to focus on dynamic

unicast routing protocols. In this case, routing tables have to be continuously updated

to reflect the network topology and condition.
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Next, dynamic unicast Internet routing protocols can be further categorized into in-

terior and exterior protocols. As we discussed before, the Internet can be thought of an

interconnected federation of autonomous systems. Within each autonomous system,

the so-called Interior Gateway Protocols (IGP) are used to route data packets. Between

autonomous systems, the Exterior Gateway Protocols (EGP) — such as the Border Gate-

way Protocol, or BGP — are used to glue together the networks. Predictably, the popula-

tion of IGP routers running in autonomous systems vastly outnumbers the population

of EGP routers. Therefore, we focus our analysis on IGP routers.

Finally, based on their route discovery mechanisms, we can categorize the Interior

Gateway Protocols into different classes. Two of the most important classes are the Link

State Routing (LSR) and the Distance Vector Routing (DVR) protocols. LSR protocols are

more readily scalable compared to the older DVR protocols. Correspondingly, this thesis

focuses on LSR protocols, which are also the dominant Interior Gateway Protocols. LSR

protocols include the Open Shortest Path First (OSPF) protocol that is designed for wired

networks, the Optimized Link State Routing (OLSR) protocol that is designed for wire-

less networks, and Intermediate System to Intermediate System (IS-IS) protocol that is

designed for Internet Service Providers (ISP).

Both OSPF and OLSR protocols are rich research platforms. These LSR protocols fea-

ture two components: (1) a topology database algorithm, which is responsible for propa-

gating local changes in the network topology and inferring the topology database there-

from, and (2) a route calculation algorithm, which computes the best next hop for each

known destination node. A brief overview of the OSPF protocol is given in the first sec-

tion of this chapter.

At the heart of route calculation is Dijkstra’s Algorithm (DA) [1]. Dijkstra’s algorithm

calculates the solution to a single-source shortest-path problem in a directed graph

G = (V , E ) with nonnegative edge weights, i.e., d(u, v)≥ 0 for each edge (u, v) ∈ E . The

nonnegative condition ensures that DA does not produce routing loops. In the second
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section of this chapter, we provide a brief review of DA based on a more detailed expo-

sition in [1].

Dijkstra’s algorithm adds, compares, and selects real-valued edge weights. In many

network problems, adjacent edge weights can be added and compared using real num-

ber + and≤ operators. However, in many important network classes, edge weights rep-

resent probability density parameters. Hence, adjacent edge weights cannot be added

using these standard operators.

Recent work by Sobrinho [2] shows that DA can be generalized by substituting the

standard operators with customized operators defined over these probability density

parameters. DA is guaranteed to produce no routing loop if these edge weights — also

known as routing metrics — obey a certain set of algebraic properties which in this thesis

is denoted by P. In his paper, Sobrinho shows several applications of what he calls the

Generalized Dijkstra’s Algorithm (GDA) to solve network optimization problems where

customized operators⊕ and� are used in place of the standard operators + and≤.

For example, to solve the network connectivity problem, edge weights are either 0 or

1, the ⊕ operator is the min operator, and the � operator is the standard ≥ operator.

To solve the standard shortest-path problem, the edge weights are taken from the set

{R+ ∪∞}, the ⊕ operator is the standard + operator, and the � operator is the stan-

dard ≤ operator. Although these examples are useful, the paper does not address path

optimization problems in networks where edges represent communication channels.

In this thesis, we go beyond abstract examples and propose a set of new routing met-

rics that are based on popular channel models that include the q-ary erasure channel,

the q-ary symmetric channel, the Gilbert channel, and a constrained version of the ad-

ditive white Gaussian noise channel. The result is a general, and yet practical, method

for improving network communication by extending the LSR protocol to optimize path

selection over physical layer (PHY) channel parameters. For completeness, we provide

a brief review of the GDA in the third section of this chapter.
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The topology database calculation algorithm is the second component of LSR proto-

cols. The topology database calculation algorithm disseminates local connectivity ob-

servations to the entire network through a cascade of router broadcasts. At each iter-

ation, information is amplified by a factor that depends on the average outdegree of

network vertices. Although this method is very effective, it requires proper gain control

and error control. Without gain control, the cascade can paralyze the entire network by

consuming too much bandwidth and resources. On the other hand, without error con-

trol, a single faulty observation can corrupt the entire network topology database. In

Chapter 5, we discuss our method to overcome this problem.

2.1 OPEN SHORTEST PATH FIRST (OSPF) BASICS

Today, most Internet routers run the Open Shortest Path First (OSPF) protocol. Major

communication network equipment vendors support this routing protocol because it is

based on an open standard. The only competitors to OSPF are RIPv1 and RIPv2, which

belong in the DVR protocol category. DVR protocols are found mostly in older routers

and networks, and are phased out in larger networks where scalability problems become

increasingly severe.

In the next few paragraphs, we provide a brief list of definitions that describe the

OSPF terminology. More detailed explanation can be found in basic networking liter-

ature published by communication network equipment manufacturers. The following

definitions are quoted from [3]:

Link. A link is a network or router interface assigned to any given network. When an

interface is added to the OSPF process, it becomes a link.

Neighbor. Neighbors are two or more routers with interfaces on a common network,

e.g., two routers connected on a point-to-point serial link.

Adjacency. An adjacency is a relationship between two OSPF routers that permits di-
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rect exchange of route updates. Adjacent neighbors must have compatible network type

and router configuration. OSPF directly shares routes only with neighbors that have also

established adjacencies.

Hello protocol. The OSPF Hello protocol provides dynamic neighbor discovery and

maintains neighbor relationships. Hello packets and Link State Advertisements (LSAs)

build and maintain the topological database.

Topological database. The topological database contains information from all Link

State Advertisement packets that have been received for an area. The router uses the

topology database as an input into the Dijkstra algorithm that uses it to compute the

shortest path to every network.

Link State Advertisement. A Link State Advertisement (LSA) is an OSPF data packet

containing link-state and routing information that is shared among OSPF routers. An

OSPF router will exchange LSA packets only with routers to which it has established

adjacencies.

OSPF areas. An OSPF area is a grouping of contiguous networks and routers. All

routers in the same area have the same topology database. OSPF areas allow hierar-

chical network organization and greater scalability.

For an open standard that has to be vendor-neutral, OSPF converges very quickly

compared to the proprietary, vendor-specific protocols such as EIGRP, which converges

slightly faster. The most important features of OSPF are:

• Support for hierarchy based on areas and autonomous systems

• Emphasis on minimal routing update traffic

• Greater scalability

• Unlimited hop count

• Support for multi-vendor deployment (open standard)

OSPF also owes its popularity to the fact that it was the first link-state routing proto-

col available to network engineers who were upgrading their networks from the more
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Characteristic OSPF RIPv2 / RIPv1

Type of protocol Link state Distance vector

Classless support Yes Yes / No

VLSM support Yes Yes / No

Auto-summarization No Yes

Manual summarization Yes No

Discontiguous support Yes Yes / No

Propagation trigger On change Periodic

Route propagation Multicast Multicast / broadcast

Path metric Bandwidth Hops

Hop count limit None 15

Convergence Fast Slow

Peer authentication Yes Yes / No

Hierarchical network Yes (using areas) No (flat only)

Updates Event triggered Route table updates

Route computation Dijkstra Bellman-Ford

Table 2.1: Comparison between OSPF and DVR protocols

traditional DVR protocols such as RIPv1 and RIPv2. The motivation to upgrade is very

obvious from Table 2.1.

There are still many other OSPF features other than the few listed in Table 2.1. These

features make OSPF a fast and robust protocol that can scale up to thousands of ac-

tively deployed production networks. One of the most important features of OSPF is its

support for routing hierarchy, which allows separation of a larger network into smaller

routing subnetworks called areas.

In the heart of OSPF is the Shortest Path First (SPF) algorithm, which is based on Di-

jkstra’s algorithm. This algorithm calculates an area shortest path tree and populates

the routing table with the best paths to each network in the area. This calculation is

done by every router in the area using the topology database as the primary source of

information. The result is a tree with the router at the root position, and all other net-

works occupying the branches and leaves. The routing table is then calculated from this

shortest-path tree. The tree contains only networks in the same area as the router. Sep-

arate trees are constructed for each area connected to the router.

The algorithm performs route selection primarily based on the path metric toward
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the destination network. At each link, the metric used is the cost associated with every

outgoing router interface in the tree. The sum of the costs of the outgoing interfaces

along the path makes up the cost of the entire path. Unfortunately, the Internet stan-

dards only specify interface costs as arbitrary values assigned to the router interfaces.

Different vendors implement different rules to compute these arbitrary values, and give

different configuration suggestions. For example, according to the HP-UX manual for

OSPF [4]:

[Interface c]ost values are assigned at the discretion of the network or system admin-

istrator. While the value is arbitrary, it must be a function of throughput or capacity

of the interface: the higher the value, the lower the throughput or capacity. Thus, the

interfaces with the highest throughput or capacity must be assigned lower cost values

than other interfaces.

Many OSPF routers provide a default — and hence, identical — cost for all outgo-

ing interfaces. Cisco routers use a simple formula R
B

where R is a reference bandwidth

(10Mbps for most Cisco routers), and B is the configured bandwidth of the network in-

terface in question [5, 6]. Using this equation, a 10Mbps Ethernet interface has a default

OSPF cost of 10; a 100Mbps Fast Ethernet interface has a cost of 1; and a 64Kbps inter-

face has a cost of 1,563. The problem is that B is hardly a good representation of the

actual channel quality, especially in wireless networks.

In this thesis, we propose a method of calculating the interface cost from physical

(PHY) layer parameters of the corresponding interface. These parameters are often

probability density parameters of the channel models used to model the link between

neighboring routers. If these density parameters satisfy the compatibility properties of

the generalized Dijkstra’s algorithm, they can then be used as more accurate routing

metrics.
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2.2 DIJKSTRA’S ALGORITHM

In this section, we provide a brief overview of Dijkstra’s algorithm based on the mate-

rial in [1]. In a nutshell, Dijkstra’s algorithm computes the solution to the shortest-path

problem (SPP). In this problem, we consider a directed graph G = (V , E ) with a func-

tion m that maps each edge ei ∈ E into real-valued edge weight λi . Suppose Eπ denotes

those edges in E that are part of π. The weight of a path π is the sum of the weights of its

constituent edges:

m(π) =

∑

e∈Eπ
m(e). (2.1)

Let u
π
 v denote that the nodes u and v are connected through a path π. The shortest

path weight from u to v is defined by Equation (2.2). A shortest path from u to v is

defined as any path π∗ such that m(π∗) = π∗(u, v). A shortest path always contains

optimal substructures, which means a shortest path between two nodes always contains

other shortest paths within it.

π∗(u, v) =















minπ{m(π) | u π
 v} {π | u π

 v} 6= ∅

∞ otherwise

(2.2)

We have to define a special arithmetic rule for∞. For any a ∈ R, we define a +∞ =

∞+ a =∞. Since a graph might also contain negative-weight cycles, we also define the

quantity−∞ such that a + (−∞) = (−∞) + a =−∞.

Edge weights are often interpreted as quantities that accumulate linearly along a path

such as distance, time, cost, penalty, loss, etc. In most cases, these quantities are non-

negative. Therefore, in many optimization problems, the objective is to minimize the

shortest path weight.

One might ask if the shortest path weight to a node v ∈ V can be negative. As long as

the graph contains no negative-weight cycles that can be reached from the source node
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s, then all path weights from s to v remain well defined. However, if there is a negative-

weight cycle that can be reached from s, shortest path weights are not well defined. Dijk-

stra’s algorithm simply assumes that all edge weights are nonnegative. Therefore, under

this assumption, negative-weight cycles cannot exist.

Although we have defined the shortest path weight in Equations (2.1) and (2.2), we are

more interested in obtaining the shortest path itself. To do this, we define a predecessor

π[v ] for each vertex v ∈ V that is either another vertex or NIL. If from v we trace back

along its chain of predecessors, we will obtain the shortest path from s to v .

From the predecessor values π[v ], we can build a shortest path tree rooted at s, which

is a directed subgraph G ′
= (V ′, E ′), with V ′ ⊂V and E ′⊂ E , such that: (1) V ′ is the set of

all nodes reachable from s in G , (2) G ′ represents a tree with root s, and (3) for all v ∈ V ′,

the unique simple path from s to v in G ′ is a shortest path from s to v in the original

graph G .

2.2.1 Relaxation

The main technique used by shortest path algorithms is relaxation. Using this method,

an upper bound l [v ] on the actual shortest path weight of each node v is repeatedly re-

duced until the upper bound cannot be reduced any further. At this point, the bound

is equal to the shortest path weight from s. Before relaxation can be used, the shortest

path bounds and predecessors have to be initialized to make π[v ] = NIL and l [v ] = 0 for

all v ∈V −{s}.

In short, relaxing an edge (u, v) means testing whether l [v ] can be improved by going

through u. If this is the case, then l [v ] and π[v ] are updated to point to u with the new

path weight. Otherwise, the shortest-path estimate and predecessor field values remain

the same.

1: procedure RELAX (u, v, m)

2: if l [v ] > l [u] + m (u, v) then
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3: l [v ]← l [u] + m (u, v)

4: π[v ]← u

5: end if

6: end procedure

Despite its name, the term “relaxation” actually tightens the upper bound l [v ]. The

term relaxation refers to a relaxation of the constraint l [v ] ≤ l [u] + m(u, v). If l [v ] ≤

l [u] + m(u, v), then the constraint is "relaxed."

2.2.2 Dijkstra’s Algorithm

Assume that in G , all edge weights are nonnegative, i.e., for all (u, v) ∈ E , we have

m(u, v) ≥ 0. In such a graph, Dijkstra’s algorithm provides us with the optimal path(s)

that solve(s) the single-source shortest-path problem. Internally, the algorithm assigns

into a set S all the nodes whose final shortest path weights from the source s have already

been calculated.

1: procedure DIJKSTRA (G , m, s)

2: for all v ∈V do

3: l [v ]←∞

4: π[v ]← NIL

5: end for

6: Q←V

7: l [s]← 0

8: while Q 6= ∅ do

9: u← EXTRACT-MIN(Q)

10: Q←Q\u

11: for all node v ∈ N (u) do

12: RELAX(u, v, m)

13: end for
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14: end while

15: end procedure

Mathematically, for all nodes v ∈ S, we have l [v ] = π∗(s, v). At each iteration, the node

u ∈ V −S ≡Q that has the minimum shortest-path estimate l [u] is inserted into S (and

removed from Q). At the same time, all edges leaving u are relaxed. In the following,

N (v) denotes all the neighbors of v in G .

First, the algorithm performs the initialization of l [v ] and π[v ] values. Next, the set

S is initialized to the empty set, and conversely the set Q is initialized to contain all the

nodes in G . In each iteration of the while loop, a node u ∈Q with the minimum shortest

path estimate is extracted from Q = V − S and moved into S. Finally, each edge (u, v)

leaving u is relaxed. If the shortest path to v can be improved by going through u, the

values of l [v ] and π[v ] are updated. Note that the nodes only move from Q to S, and not

in the other direction. Therefore, since Q originally contains V nodes, the while loop is

guaranteed to iterate exactly V times.

Running Dijkstra’s algorithm on a graph G = (V , E ) with nonnegative weight function

m and source s produces the shortest path weights l [u] = π∗(s, u) for all nodes u ∈ V .

The resulting predecessor subgraph G ′⊂G constructed from byπ[u] is the shortest path

tree rooted at s.

2.2.3 Complexity Analysis of Dijkstra’s Algorithm

Next, we discuss the complexity of Dijkstra’s algorithm. First, let us assume that the

priority queue Q = V −S is a linear array. Implemented this way, each call to EXTRACT-

MIN triggers a scan across the array and consumes O(V ) units of time. Since there are

|V | calls, the total amount of time consumed by EXTRACT-MIN is O(V 2). Next, from the

definition of G , the total number of edges in all the adjacency lists is |E |. Hence, there

must be a total of |E | relaxation steps. Each step consumes O(1) units of time. Therefore,

the entire algorithm runs in O(V 2
+ E ) = O(V 2) units of time.
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On the other hand, if G is a sparse graph, it is more efficient to implement Q with a

binary heap. The total running time for this implementation is generally given by O((V +

E ) logV ), or O(E logV ) if all nodes can be reached from the source s. If the Fibonacci

heap is used instead of the binary heap, a running time of O(V logV + E ) is possible.

2.3 GENERALIZED DIJKSTRA’S ALGORITHM

We will now briefly introduce the generalized Dijkstra’s algorithm (GDA) [2]. Unlike

Dijkstra’s algorithm, which is restricted to routing metrics that are real numbers, the

GDA can operate on any metric of choice without producing a routing loop as long as

the metric obeys a set of algebraic properties which we denote by P. This feature is very

important for solving optimization problems in communication networks where edge

weights represent probability density parameters of channel models that do not obey

the standard real number additions and comparisons using the + and≤ operators.

The GDA is practically identical to Dijkstra’s algorithm (DA) except for the relaxation

step, where the ⊕ and � operators act on a metric spaceM. In DA the relaxation step

uses the + and≤ operators acting on R.

1: procedure GDA (G , m, s)

2: for all v ∈V do

3: l [v ]←∞

4: π[v ]← NIL

5: end for

6: Q←V

7: l [s]← 0

8: while Q 6= ∅ do

9: u←MIN(Q)

10: Q←Q\u
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11: for all node v ∈ N (u) do

12: if l [v ]≻ l [u]⊕m (u, v) then

13: l [v ]← l [u]⊕m (u, v)

14: π[v ]← u

15: end if

16: end for

17: end while

18: end procedure

On line 11, N (u) denotes the set of all nodes adjacent to u. The argument m is the edge

weights of G , each of which is an element inM, and m (u, v) is the length of (u, v). Lines

10–12 perform the relaxation step of the GDA. This step depends on the definitions of

M, ⊕, and�. If (M,⊕) and� satisfy the properties P below, then they are compatible

with the GDA.

P1 is a commutative monoid, that is, for a, b, c ∈M :

• M is closed under⊕ : a⊕b ∈M ;

• ⊕ is associative : a⊕ (b⊕ c) = (a⊕b)⊕ c ;

• 0 is the identity : a⊕0 = 0⊕ a = a ;

• ⊕ is commutative : a⊕b = b⊕ a.

P2 There exists∞∈M | a⊕∞=∞⊕ a =∞.

P3 � is a total order onM, i.e.,� is :

• reflexive: a � a;

• anti-symmetric: if a � b and b � a then a = b ;

• transitive: if a � b and b � c then a � c ;

• total: for every a, b ∈M either a � b or b � a.

P4 There exists the least element 0 that satisfies 0� a .

P5 a⊕ c ≺ b⊕ c if a ≺ b and c ∈M−{∞}.

A complete proof of how the set of compatibility properties P guarantees the correct-
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ness of the GDA is provided in [2]. The time complexity of the GDA is of course identical

to the original Dijkstra’s algorithm, which is O(V 2).

2.4 ENGINEERING APPLICATIONS OF GENERALIZED ROUTING METRICS

Amidst the rise of mass-market digital multimedia and wireless networking technolo-

gies, the need for more effective and reliable ways of delivering large data files over the

Internet becomes urgent, largely due to the fact that a large segment of the economy is

now modeled (and financed) on the assumption that such a delivery is feasible. The un-

derlying engineering problem is twofold: (1) multimedia files are mostly large (and only

becoming larger), and (2) wireless media are inherently unreliable.

The engineering solution is the usual pair of: (1) data compression, and (2) error

correction. Shannon’s fundamental source-channel separation theorem [7] states that

source coding (data compression) and channel coding (error protection) can be per-

formed separately, sequentially, and optimally.

Indeed, in today’s Internet, multimedia distribution follows the sequential process of

producing a compressed data stream, breaking down the compressed stream into data

packets, fortifying the packets with error-protection, and finally streaming the fortified

packets to the receiving node for decoding.

FIGURE 2.1 A corrupted JPEG image
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This approach has many problems that are preventing their successful implementa-

tions in low-latency, error-resilient video-conferencing systems and future videophones.

On a theoretical level, the problem is that Shannon’s separation theorem does not ap-

ply unless the block lengths are asymptotically long. Thus, sequential processing is not

optimal. On a practical level, the big problem stems from the assumption — made by

current error protection schemes — that all packets are equally important.

This assumption does not agree with what is observed in practice. In H.323 (H.263)

video streams, packets containing macroblocks are extremely important. Losing one

such packet wreaks havoc on stream synchronization and forces the decoder to discard

several frames worth of data until it can lock into a Picture Start Code (PSC)2, resulting

in a very severe image degradation.

This severe problem persists even in the newest H.264/AVC [10, 11] and all other

prominent progressive [12] (i.e., multiscale) image and video compression formats such

as JPEG, JPEG2000, MPEG-2 (used in DVDs), and MPEG-4 AVC (used in HD-DVDs). Fig-

ure 2.1 [13, 14] shows a heavily degraded image decoded from a 1-bit-per-pixel JPEG

stream with a mere 0.0001 error rate!

The most promising method uses joint source-channel coding [13–18], in which cod-

ing algorithms adapt to the channel parameter of the actual path used for data transport.

The GDA operating on generalized routing metrics derived from physical layer param-

eters can be used with existing routing technologies to improve joint source channel

coding.

Once the optimal path is computed, the source node can obtain the physical layer

parameters from each router in the path using similar techniques used in the traceroute

program. These parameters can then be fed into the joint source-channel encoder at

the source.

2This code is a 22-bit pattern 0000-0000-0000-0000-1-000000 [8, 9]
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3
Generalized Dijkstra’s Algorithm on

Networks of Communication Channels

HE generalized Dijkstra’s algorithm (GDA) covered in the previous chapter al-

lows the use of unconventional edge weights, and customized addition and

comparison operators that are useful in networks where edges do not necessarily repre-

sent real numbers, but rather probability density parameters of communication chan-

nel models. For example, Figure 3.1 shows a network whose edges ei represent q-ary

symmetric channels X i with error probabilities pi . This chapter describes a customized

addition operator with which the probability distribution parameters pi from adjacent

edges can be “added” together.

X3

X 4

X5

X 2

X
1

X
7

X 6

s

FIGURE 3.1 A network of communication channels
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In this chapter, we discuss three different channel models: the q-ary erasure chan-

nel, the q-ary symmetric channel, and the Gilbert channel. We organize our analysis of

these channels into separate sections. In each section, we begin with a mathematical

definition of the channel and continue with a graphical representation of this defini-

tion. The mathematical rule for combining two such channels in series and calculating

the equivalent parameter is covered next. Finally, each section is concluded with a proof

that shows that the channel is compatible to the GDA properties.

3.1 q-ARY ERASURE CHANNELS

It is beneficial to start our analysis by first considering the simplest type of communi-

cation channel, the q-ary erasure channel (q-EC). A q-EC can be used to model channels

operating on input and output symbols that are drawn from a common alphabetQwith

q +1 letters. At first, the definition and the name sound contradictory. From its name, a

q-EC suggests that the channel operates on an alphabet with only q letters. In addition

to the standard q letters 0 . . . q−1, the alphabet contains an erasure symbol ǫ that carries

a special meaning.1

The q-EC only allows one type of error, namely the one in which the input symbol

transmitted is one of the q letters 0 . . . q−1 inQ, and the output symbol received is the

erasure symbol ǫ.

There are at least two interpretations of the erasure symbol. In the first interpretation,

an erasure symbol simply indicates a symbol that is lost during transmission. This inter-

pretation mainly highlights the undeterministic nature of communication channels, i.e.,

channels unpredictably throw away symbols and replace them with erasure symbols.

1Note that our definition for the q-EC differs slightly from the standard definition in which the input

and output symbols are not drawn from a common alphabet, but rather from two different alphabets: an

input alphabet that contains the q standard letters, and an output alphabet with the same q letters plus

the additional erasure symbol ǫ.
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In another interpretation, an erasure symbol is itself a “flag” from the channel that

an error has occured during transmission. While this interpretation still assumes that

the channel is unpredictable, it also implies that the channel can intelligently detect any

unrecoverable error and report any such error by substituting the erroneous symbol with

the erasure symbol.

Let us now define the q-EC mathematically. Consider a q-EC which we shall denote

by X . The random variables corresponding to the input and output symbols of X are de-

noted by X and X ′, respectively. Suppose that i and j are two letters in a q-ary alphabet

Q, and that X = i and X ′
= j . The following is the mathematical definition of the q-EC.

P (X ′
= j | X = i ) =



























1−p , i = j 6= ǫ

p , i 6= j = ǫ

1 , i = j = ǫ

(3.1)

With probability 1−p, the output symbol j is equal to i . Otherwise, with erasure prob-

ability p ∈ Λ ≡ [0, 1], the output symbol j is the erasure symbol ǫ in Q. The equation

explicitly treats the erasure symbol itself as a valid input symbol. There is a reason for

this. In the literature, a q-EC is always analyzed in isolation from other q-ECs. In con-

trast, we are interested in the series combination of q-ECs, which requires the input and

output symbol alphabets to be identical.

For example, consider a q-EC with q = 5 and p = 0.05 represented by the following

6× 6 matrix X . The row index i ∈ {0 . . . 5} corresponds to the input symbol X ∈ Q =

{0 . . . 4,ǫ}, and the column index j ∈Q corresponds to the output symbols X ′ ∈Q. Each

entry Xi j represents the probability P (X ′
= j | X = i ). Note the difference in the last row
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for X = ǫ.

0.95 0.00 0.00 0.00 0.00 0.05

0.00 0.95 0.00 0.00 0.00 0.05

0.00 0.00 0.95 0.00 0.00 0.05

0.00 0.00 0.00 0.95 0.00 0.05

0.00 0.00 0.00 0.00 0.95 0.05

0.00 0.00 0.00 0.00 0.00 1.00

The input and output symbols of a q-EC are often shown as two columns of q +1 dots

each. From top to bottom, the dots on the left and right columns represent the input

and output letters 0 . . . q−1,ǫ of the alphabetQ.

1

4

2

3

ε

0

1

4

2

3

ε

0

FIGURE 3.2 A 5-ary erasure channel

Symbols on the left are connected to the identical symbols on the right with a set of

horizontal lines, as shown in Figure 3.2. These connections correspond to the diago-

nal entries Xi i . In addition, the symbols on the left, with the exception of ǫ, are also

connected to the symbol ǫ on the right. These connections correspond to last matrix

column Xi q .

We briefly mentioned in the beginning of this section that the reason for including

the erasure symbol ǫ in the input alphabetQ is to allow a series combination of two q-

ECs. In general, any two channels Y 1 and Y 2 — which could be of different types — can

be combined in series as long as the output alphabet of Y 1 and the input alphabet of

Y 2 are the same. What is interesting and not immediately clear with the q-ECs is that

any series combination of two q-ECs is also a q-EC. In other words, the operation of
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combining two q-ECs in series satisfies a kind of closure property.

We shall prove that X , the series combination of two q-ECs denoted by X 1 and X 2, is

itself a q-EC by showing that X can be defined by an equation similar to (3.1). This also

implies that from the erasure probabilities p1 and p2 of X 1 and X 2, we can compute the

equivalent erasure probability p for X .

Figure 3.3 shows a series combination of X 1 and X 2 with q = 5. The erasure probabili-

ties p1 and p2 of these channels could be different. In the figure, there are three columns

of dots: the leftmost column corresponding to the input symbol of X 1, the middle col-

umn corresponding to either the output symbol of X 1 or the input symbol of X 2, and

the rightmost column corresponding to the output symbol of X 2. The random variables

corresponding to these three columns are denoted by X , X ′, and X ′′.

1 
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ε

0 

1 
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ε

0 

1

4

2

3

ε

0

FIGURE 3.3 A series combination of two 5-ECs

From Figure 3.3, we can also see why X is also a q-EC. Remember that in a q-EC, each

symbol on the left column is connected to the identical symbol on the right column with

a horizontal line. In the figure above, we can also find these horizontal lines that connect

identical symbols on the leftmost column and the rightmost column. The difference is

that in X , one half of the horizontal line is in X 1, while the other half is in X 2.

In addition, in a q-EC, the dots on the left column, with the exception of ǫ, are also

connected to the dot representing ǫ on the right column. Similarly, in Figure 3.3, each

dot X = i on the leftmost column in X is also connected to the dot representing ǫ on the

rightmost column through two distinct paths: (1) the path going through X ′
= i , and (2)



31

another one going through X ′
= ǫ.

XX1 2

X

È 

FIGURE 3.4 Series q-ECs and the equivalent q-EC

Although Figures 3.2 and 3.3 offers the clearest depiction of the q-EC and the series

combination of two such channels, they are quite cumbersome to reproduce. Figure

3.4 shows a shorthand symbol for the q-EC in which the q input and output letters are

drawn as q-ary input and output terminals.

By hiding much of the channel’s internal connections, the shorthand symbol looks

like a generic system element, which is much easier to use in diagrams containing a

large number of interconnected q-ECs.

Now we are ready to prove that an equivalent erasure probability p for X can be com-

puted from the erasure probabilities p1 and p2 for X 1 and X 2, and more importantly, the

final expression for p can also be described by an equation similar to (3.1). Rather than

deriving p directly, we will first derive 1−p in terms of p1 and p2, which is much easier

to compute.
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ε

0 
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4 
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3 

ε

0 

1

4

2

3

ε

0
1 - p

1
1 - p

2

FIGURE 3.5 P(X ′′
= 0 | X = 0)

Suppose the input symbol is not the erasure symbol. By its definition, 1− p is the
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probability of the input and output symbols of X being identical. This probability is

simply the probability of both X 1 and X 2 not producing any error, which is (1−p1)(1−

p2). For X = 0, this probability corresponds to the horizontal line on the top of Figure

3.5 above. If the input symbol is the erasure symbol, then by definition 1− p = 1, as

shown by the lower horizontal line. Mathematically, the conditional probabilities of X ′′

given X is given by:

P (X ′′
= j | X = i ) =



























(1−p1)(1−p2) , i = j 6= ǫ

1− (1−p1)(1−p2) , i 6= j = ǫ

1 , i = j = ǫ .

(3.2)

Equation (3.2) has the exact same form as (3.1). By direct comparison of the two equa-

tions, we can infer that for X , the erasure probability p:

p = 1− (1−p1)(1−p2) (3.3)

= p (p1, p2) (3.4)

, p1⊕p2 . (3.5)

Equation (3.3) expresses the relationship between p, p1, and p2 as an algebraic equa-

tion that stems directly from the definition of erasure probability for a q-EC. Alterna-

tively, equation (3.4) explicitly expresses p as a function of both p1 and p2. Finally, equa-

tion (3.5) expresses p as the result of a binary algebraic operation o-plus — symbolically

denoted by⊕— on p1 and p2.

The formulation of p in terms of the binary operator ⊕ is the most relevant to our

analysis. The binary operator is a convenient algebraic shorthand for the operation of

combining two q-EC in series, hiding much of the algebraic complexity in a similar way

that the visual shorthand we introduced earlier in Figure 3.4 hides the internal com-

plexity of a q-EC. These shorthands make the task of analyzing a large communication
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system with a large number of interconnected q-ECs much easier. For example, we can

conveniently denote the series connection of n different q-ECs by:

p = p1⊕p2⊕·· ·⊕pn−1⊕pn (3.6)

Naturally, the next question that arises is: does the order of evaluation of ⊕ matter?

Can the operands be interchangeable? Is there such a thing as the identity element for

⊕? These algebraic questions are not only theoretically interesting, but also very impor-

tant to prove that the q-EC satisfies all the compatibility property P of the Generalized

Dijkstra’s Algorithm (GDA). We will provide a detailed proof of compatibility in the next

subsection.

Besides the ability to combine two q-ECs in series, the GDA also includes as its inte-

gral feature the ability to compare two q-ECs. For this reason, we also need to define a

relational binary operator, which we shall denote by �. In general, the semantics of �

depends on its context, but we define the statement A � B to always read: “A is no less

preferred than B”. The following equations show� in two different contexts:

X 1 � X 2 (3.7)

p1 � p2 . (3.8)

Defined within the context of q-ECs, equation (3.7) states that the q-EC X 1 is no less

preferred than X 2. On the other hand, equation (3.15) states that the erasure probability

p1 of X 1 is no worse than p2 of X 2. Fortunately for us, in both examples, the semantics of

the� operator can be made consistent. For the erasure probabilities p1, p2 ∈R, the only

logical interpretation for p1 � p2 is that p1 ≤ p2, where ≤ is the standard less-than-or-

equal-to operator for real numbers. We can then define the� operator unambiguously

as follows:

X 1 � X 2 ⇔ p1 ≤ p2 . (3.8’)



34

Of course, there are other ways to define the � operator. For example, in theory, we

could use the q-EC Shannon capacity, which also happens to be given by 1− p, to rank

our preference for different q-ECs.

Algebraic Properties of⊕ and�

Previously, we claimed without proof that the operator⊕ satisfies the closure property

on Λ, the space of all erasure probabilities. Here, we shall prove not only the closure

property, but also all the algebraic properties of ⊕, �, and Λ in P that are required to

ensure their compatibility with the GDA.

We begin by proving the properties of ⊕. In the following proofs, let Λ be the set of all

possible erasure probabilities, which is the range of real numbers [0, 1], and let a, b and

c be three elements of Λ.

① Closure. Λ satisfies closure if a, b ∈Λ implies p = a⊕b ∈Λ. Proof:

a, b ∈ [0, 1]

⇔ (1− a), (1−b) ∈ [0, 1]

⇔ (1− a)(1−b)∈ [0, 1]

⇔ 1− (1− a)(1−b)∈ [0, 1] (Q.E.D.)

② Associativity. The order in which⊕ is evaluated does not matter. Proof:

(a⊕b)⊕ c = (1− (1− a)(1−b))⊕ c

= 1− (1− (1− (1− a)(1−b))) (1− c)

= 1− (1− a)(1−b)(1− c)

= 1− (1− a) (1− (1− (1−b)(1− c)))

= 1− (1− a) (1− (b⊕ c))

= a⊕ (b⊕ c) (Q.E.D.)
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③ Commutativity. The operand position does not matter. Proof:

a⊕b = 1− (1− a)(1−b)

= 1− (1−b)(1− a)

= b⊕ a (Q.E.D.)

④ The identity element 0 satisfies a⊕0 = a, ∀a ∈Λ. Proof:

a⊕0 = 1− (1− a)(1−0)

= 1− (1− a)

= a (Q.E.D.)

⑤ The absorptive element∞≡ 1 satisfies a⊕∞=∞, ∀a ∈Λ. Proof:

a⊕∞= 1− (1− a)(1−∞)

= 1− (1−b)(1−1)

= 1 =∞ (Q.E.D.)

⑥ The operator� establishes a total order on Λ, i.e., for every pair of elements a, b ∈

Λ, either a � b or a � b (or both, in which case a = b). In other words, total

order allows any elements to be compared without contraditions. Since for q-ECs

the space Λ is just [0, 1] ∈ R, and � is the standard operator ≤, this property is

automatically satisfied.

Total order property of � is a result of the operator being reflexive (i.e., a � a),

anti-symmetric (i.e., a � b and b � a implies a = b), and transitive (i.e., a � b and

b � c implies a � c). These properties are automatically satisfied by the standard

≤ operator. (Q.E.D.)
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⑦ The least element 0 satisfies 0� a ∀a ∈Λ. The fact that the notation for the least

element is the same as the notation for the identity element is not a coincidence.

Since the identity element 0 does not change the “magnitude” of any operand it is

added to, intuitively, we can think of the identity element as also the smallest ele-

ment. The proof simply uses the fact that when� is simply the standard operator

≤, the real number 0 is the least element in Λ. (Q.E.D.)

⑧ Strict isotonicity.

a < b

(1− a) > (1−b)

(1− a)(1− c) > (1−b)(1− c)

1− (1− a)(1− c) < 1− (1−b)(1− c)

a⊕ c < b⊕ c (Q.E.D.)

3.2 q-ARY SYMMETRIC CHANNELS

Next, we discuss the q-ary symmetric channel (q-SC). Unlike the q-EC, the q-SC does

not have the ability to produce the erasure symbol. In other words, the channel’s alpha-

bet, which we shall denote by Q, does not include the erasure symbol. As previously

mentioned, the erasure symbol is essentially an explicit hint from the channel that an

error has occured. Without an erasure symbol, the q-SC cannot provide the additional

information of whether or not an error actually occurs. As a result, without knowing the

actual input symbol transmitted, each output symbol looks perfectly fine.

This fact alone makes the q-SC a more challenging channel to protect

against errors. In the case of the q-EC, the receiver can be sure that if the channel does

not replace an input symbol with the erasure symbol, then the output symbol is guaran-
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teed to be correct. In the case of the q-SC, however, there is always some probability that

a seemingly legitimate output symbol produced by the channel is actually a symbol pro-

duced in error. In the following paragraphs, we describe how channel error is defined in

a q-SC.

First, let us consider a q-SC denoted by X . Denote the random variables correspond-

ing to the input and output symbols of X by X and X ′, respectively. Suppose X = i and

X ′
= j , where i and j are letters taken from the q-ary alphabetQ. With probability 1−p,

the output symbol j is equal to i . Otherwise, with error probability p ∈Λ≡ [0,
q−1

q
], the

output symbol j is one of the q−1 letters inQ that are different from i . It is reasonable

to assign an equal probability to each of these q−1 letters, or mathematically:

P (X ′
= j | X = i ) =











1−p , i = j

p/(q−1) , i 6= j .

The channel is “symmetric” because the above expression applies equally to all input

symbols i inQ. In addition, for each i , the probabilities of i = j are equal for all j ∈Q.

The symmetry also becomes apparent when the probability values are presented in a

matrix format.

0.95 0.01 0.01 0.01 0.01 0.01

0.01 0.95 0.01 0.01 0.01 0.01

0.01 0.01 0.95 0.01 0.01 0.01

0.01 0.01 0.01 0.95 0.01 0.01

0.01 0.01 0.01 0.01 0.95 0.01

0.01 0.01 0.01 0.01 0.01 0.95

For example, consider a particular q-SC with q = 6 and p = 0.05 represented by the

above 6×6 matrix X . Compare this q-SC matrix with the q-EC we discussed before. The

row index i ∈ {0 . . . 5} corresponds to the input symbol X ∈ Q = {0 . . . 5}, and the col-

umn index j ∈Q corresponds to the output symbols X ′ ∈Q. Each entry Xi j represents
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the probability P (X ′
= j | X = i ).

Visually, it is customary to depict the q-SC with two columns of dots drawn in such

a way that each dot on the left column is connected to every dot on the right column

(and vice versa), as shown in Figure 3.6. From top to bottom, each dot on the left and

right columns of dots represent the input and output letters 0 . . . q−1 from the alphabet

Q. The horizontal lines connecting identical input and output letters correspond to the

diagonal entries Xi i .
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FIGURE 3.6 A 6-ary symmetric channel

We note that any two q-SCs can also be combined in series into a single q-SC. Let

us denote two such q-SCs by X 1 and X 2, and their error probabilities by p1 and p2,

respectively. To avoid unnecessary clutter in visualizing this arrangement, we introduce

a shorthand symbol for the q-SC that combines the q input and output dots into q-ary

input and output terminals shown in Figure 3.7 below and hides the connecting lines

inside the boxes.

XX1 2

X

È 

FIGURE 3.7 Series q-SCs and the equivalent q-SC

In Figure 3.7, the first terminal represents the input letters fromQ of X 1. The second
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terminal represents both the output letters of X 1 and the input letters of X 2. Finally, the

third terminal represents the output letters of X 2.

Just like in the case for q-ECs, the series combination of X 1 and X 2 forms a channel

that we shall denote by X . This channel is itself a q-SC, an assertion that can be proven

by showing that an equivalent error probability p for X can be computed from the error

probabilities p1 and p2 for X 1 and X 2.

Figure 3.8 shows the idea behind the derivation of p for two 6-SCs in series. To derive

p, one must consider all combinations of X , X ′, and X ′′, such that X 6= X ′′. In general,

the number of such combinations is large.

In contrast, as shown in Figure 3.8, deriving 1− p involves a much smaller number

of combinations, and thus can be considered as a much simpler approach that can be

applied for a general value of q .
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FIGURE 3.8 P(X ′′
= 0 | X = 0)

By its definition, 1−p is the probability that the output letter X ′′ of X 2 is the same as

the input letter X of X 1. Visually, the definition for 1−p corresponds to the probability

associated with all the paths connecting identical letters on X and X ′′. For example, in

Figure 3.8, the bold lines show all the paths from X = 0 to X ′′
= 0 going through various

possible values of X ′.

Mathematically, the probability 1− p is defined by the expression P (X ′′
= i | X = i ).

As illustrated in Figure 3.8, this expression is the probability of observing X ′′
= i given
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that X = i . The expression can be expanded:

1−p , P (X ′′
= i | X = i )

=
∑

j∈Q P (X ′
= j | X = i ) P (X ′′

= i | X ′
= j ) . (3.9)

This expansion shows the relationship between Figure 3.8 and the mathematical expres-

sion for 1−p defined in (3.9). If we assume i = 0, then the factor P (X ′
= j | X = 0) in the

summation is visualized in Figure 3.8 by the connections from the dot i = 0 in the first

column to all the dots in the second column. Likewise, the factor P (X ′′
= 0 | X ′

= j ) is

visualized by the connections from the second column to the third column. Continuing

(3.9),

1−p = (1−p1)(1−p2) + (q−1)
p1

q−1

p2

q−1

= (1−p1)(1−p2) +
p1p2

q−1
. (3.10)

The first term in (3.10) corresponds to an error-free transmission through X 1 and X 2.

The second term in (3.10) sums up the q−1 probability values of producing a random

error in X 1 immediately followed by an equally random correction in X 2. Due to sym-

metry, we know that all of these q−1 paths must have an identical probability of
p1

q−1

p2

q−1
.

As we previously mentioned, equation (3.10), which is not overly complicated, is the

entry point to our definition of the error probability p of the combined channel X . The

simplest definition is an algebraic relation that states p in terms of p1 and p2, as shown

in (3.11). The same algebraic relation can be also cast as a function p with arguments p1

and p2, as shown in (3.12). As in the case of the q-EC, the most useful definition of p is

cast in terms of the binary operator o-plus, which is denoted by⊕, shown in (3.13) that
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conceptually “adds” p1 and p2 into a single value.

p = 1− (1−p1)(1−p2)− (p1p2)/(q−1) (3.11)

= p (p1, p2) (3.12)

, p1⊕p2 (3.13)

With the ⊕ operator, we can combine two adjacent q-SCs. To compare two differ-

ent (not necessarily connected) q-SCs, we need to define a relational binary operator

denoted by �. Although the semantics of � is context-sensitive, the statement A � B

reads: A is no less preferred than B . Two examples of different contexts for� are shown

in (3.14) and (3.15) below.

X 1 � X 2 (3.14)

p1 � p2 (3.15)

Equation (3.14) states that the q-SC X 1 is no less preferred than X 2, while equation

(3.15) states that the channel parameter p1 of X 1 is no worse than p2 of X 2. At the first

glance, the first statement seems to allow a great deal of latitude for the exact interpre-

tation of “preferred”. However, the second statement leaves no such ambiguity. For the

error probabilities p1, p2 ∈R, the only logical interpretation is that p1 � p2 if and only if

p1 ≤ p2, where≤ is the standard less-than-or-equal-to operator for real numbers. This

then implies the following non-ambiguous definition:

X 1 � X 2 ⇔ p1 ≤ p2 . (3.15’)

In the next subsection, we will explore in great detail the algebraic properties of ⊕

and� in our attempt to prove that just as their q-EC counterparts, the two q-SC oper-

ators also satisfy the properties in P and are thus compatible with generalized Dijkstra’s
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algorithm (GDA).

Algebraic Properties of⊕ and�

Using Figure 3.8, we discussed how a series combination of any two q-SCs produces

another q-SCs, and showed that the error probability p for this combination has the

same mathematical expression for a q-SC. There are other algebraic properties in P that

need to be satisfied by⊕,�, and Λ to ensure their compatibility with the GDA. Here, we

shall prove all of them.

Let us begin by proving the properties of⊕. The setΛ contains all possible value for error

probability, which lies in the range of real numbers [0,
q−1

q
]. Throughout the proofs, a, b,

and c denote any three elements of Λ.

① Closure. Λ satisfies closure if a, b ∈ Λ implies p = a⊕b ∈ Λ = [0,
q−1

q
]. Although

one might be inclined to use the same algebraic approach used in proving closure

for q-ECs, the much simpler route is to utilize calculus. Recall that as shown in

equation (3.12), the operator⊕ can also be thought of as a function p(a, b). If we

can show that for (a, b) ∈Λ
2 the minimum and maximum values of p(a, b) are also

contained in Λ, we prove closure. First, we compute the partial derivatives of p:

p ′(b) =
∂p

∂a
= 1−b

q

q−1

p ′(a) =
∂p

∂b
= 1− a

q

q−1
. (3.16)

The partial derivatives are linear functions of single variables. At (a, b) = (0, 0), the

slope (p ′(a), p ′(b)) is (1, 1). The minimum and maximum of p(a, b) are located at

either (a, b) where p ′(a) = p ′(b) = 0, which is (
q−1

q
,

q−1
q

) or at the corner points.

Figure 3.9 shows a plot of p(a, b) for q = 6. The plot for other values of q look very

similar, except for the upper bounds of
q−1

q
for a, b, and p(a, b).
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FIGURE 3.9 p(a, b) for q = 6

From Equation (3.11), we can compute the value of p(0, 0) = 0. Equation (3.16)

tells us that because the partial derivatives are always positive for all values of a

and b, from (0, 0), the value of p(a, b) can only increase. In agreement with Equa-

tion (3.16), the maximum value is reached at ((q−1)/q, (q−1)/q). However, Equa-

tion (3.11) tells us that the maximum is also reached on the lines a = (q−1)/q or

b = (q−1)/q . Closure is thus satisfied. (Q.E.D.)

② Associativity. The order in which ⊕ is evaluated does not matter. For the sake of

brevity, we do not expand the algebraic expressions in (3.17) and (3.18) to prove

their equivalence. Proof:

(a⊕b)⊕ c =

[

1− (1− a)(1−b)− ab

q−1

]

⊕ c

= 1−
[

(1− a)(1−b) +
ab

q−1

]

(1− c)

−
[

1− (1− a)(1−b)− ab

q−1

]

(
c

q−1
) (3.17)

= 1−
[

(1− a)((1−b)(1− c) +
bc

q−1
)

]

−
[

1− (1−b)(1− c)− bc

q−1

]

(
a

q−1
) (3.18)

= a⊕
[

1− (1−b)(1− c)− bc

q−1

]

= a⊕ (b⊕ c) (Q.E.D.)
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③ Commutativity. The operand position does not matter. Proof:

a⊕b = 1− (1− a)(1−b)− (ab)/(q −1)

= 1− (1−b)(1− a)− (ba)/(q −1)

= b⊕ a (Q.E.D.)

④ The identity element 0 satisfies a⊕0 = a, ∀a ∈Λ. Proof:

a⊕0 = 1− (1− a)(1−0)− (a ·0)/(q−1)

= 1− (1− a)−0

= a (Q.E.D.)

⑤ The absorptive element∞≡ (q−1)/q satisfies a⊕∞=∞, ∀a ∈Λ. Proof:

a⊕∞= 1− (1− a)(1−∞)− (a ·∞)/(q−1)

= 1− (1− a)/q− a/q

= (q−1)/q =∞ (Q.E.D.)

⑥ The operator � introduces a total order on Λ that categorizes every pair of ele-

ments a, b ∈ Λ into a � b or a � b (or both, in which case a = b). As with the

q-ECs, the space Λ for the q-SCs is just [0,
q−1

q
] ∈ R, with � defined as the stan-

dard operator ≤, which satisfies total order. In addition, the � is also reflexive

(i.e., a � a), anti-symmetric (i.e., a � b and b � a implies a = b), and transitive

(i.e., a � b and b � c implies a � c). The standard≤ operator also automatically

satisfies these properties. (Q.E.D.)

⑦ The least element 0 satisfies 0 � a ∀a ∈ Λ. For q-SCs, the real number 0 is the

least element in the space Λ = [0,
q−1

q
]∈R. (Q.E.D.)
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⑧ Strict isotonicity.

a⊕ c < b⊕ c

1− (1− a)(1− c)− (ac)/(q −1) < 1− (1−b)(1− c)− (bc)/(q −1)

(1− a)(1− c) + (ac)/(q −1) > (1−b)(1− c) + (bc)/(q−1)

(1− a)(1− c)− (1−b)(1− c) > (bc− ac)/(q−1)

(1− c)(b− a) > c(b− a)/(q −1)

(1− c) > c/(q−1)

(q−1)(1− c)− c > 0

(q−1)− qc > 0

c < (q−1)/q (Q.E.D.)

3.3 GILBERT CHANNELS

So far, in Sections 3.1 and 3.2, we have only discussed memoriless channels. To the

first approximation, many different types of modern wired and wireless communica-

tion links can be considered memoriless, and depending on the types of signal used,

these links can be mathematically modeled as binary erasure channels, binary symmet-

ric channels, or AWGN channels, etc. However, in many cases, accurate behavior and

performance analysis has to take into account the fact that in reality, channel error ex-

hibits memory.

The Gilbert channel model [1] is one of the simplest models for channels with mem-

ory. Mathematically, it is nothing more than a Markov chain with two states: G and B ,

with their outgoing transition probability values denoted by g and b, respectively. In this

subsection, we assign B (for “Bad”) to be the state where undesirable events occur, e.g.,

packet loss, packet error, fading higher than a predetermined threshold, etc. Likewise,
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we assign G (for “Good”) to be the state where information is transmitted without error.

B Gb

g
g1b1

FIGURE 3.10 A Gilbert channel

Despite (also because of) its apparent simplicity, the Gilbert Channel Model (GCM)

has been widely used in analyzing a wide variety of networks [2]. For example, GCM is

used to analyze the performance of slotted ALOHA over fading communications chan-

nels [3], or correlated loss over TCP/IP networks [4]. Other relevant examples include

performance analysis of real-time wireless communications [5]. For many wireless fad-

ing channels, GCM is a very attractive alternative to sophisticated models such as Hid-

den Markov Models (HMMs) [6]. For one, GCMs are analytically tractable. In addition,

using GCMs, packet-level network QoS can be easily computed.

GCM becomes even more important with the advent of Universal Mobile Telecom-

munications Systems (UMTS) networks where multimedia (especially speech) and data

packets will have to coexist in the underlying common Wideband Code-Division Multi-

ple Access (WCDMA) networks.

The recent UMTS recommendations for QoS measures is based on a set of user sat-

isfaction assessments of individual speech and data sessions [7]. For speech services,

user satisfaction drops significantly in the presence of long spans (in terms of packets)

of service outage. For data services, disruption and termination comes from successive

retransmissions.

These new QoS measures require the next level of approximation of behavioral anal-

ysis that is not available from system outage probability analysis (which inherently as-

sumes zero correlation between the outages) commonly found in CDMA literature [8, 9].

Recently, detailed analysis (in the contexts of QoS and capacity) of WCMDA [10, 11] that



47

incorporates correlated outage behavior through the use of GCM have been proposed.

Let us now define the discrete-time q-ary Gilbert Channel (q-GC) more precisely.

First, let us consider a q-GC denoted by X . As previously said, X is a Markov chain

with two states, G (for “Good”) and B (for “Bad”), with outgoing transition probabilities

g and b, where 0≤ g , b ≤ 1. All possible pairs of (g , b) form the space of all GCs denoted

by Λ= [0, 1]× [0, 1].

With this definition, every possible instantiation of X corresponds to an element in Λ

that encodes the appropriate probabilistic parameters g and b. Exceptions to this gen-

eralization are the elements with either g = 0 or b = 0. From Figure 3.10, we can prove

that for these elements, the corresponding GCs quickly converge to their deterministic

steady-state behaviors.

Just like a q-EC or a q-SC, a q-GC also takes input symbols and converts them into

output symbols. To be consistent, let us denote the random variables corresponding to

the input and output symbols of X by X and X ′, respectively. Unlike with a q-EC or a

q-SC, however, at any time t , a GC also maintains an internal state which is a Markovian

random variable denoted by xt . As previously mentioned, the value of xt can be either G

or B . In this notation, the probability of observing the current internal state xt is given

by:

P (xt = B | xt−1 = G ) = g

P (xt = G | xt−1 = B ) = b

P (xt = G | xt−1 = G ) = 1− g

P (xt = B | xt−1 = B ) = 1−b . (3.19)

The input and output symbols are drawn from a common alphabet Q that contains

q + 1 letters 0, . . . , q−1,ǫ, where the letter ǫ again represents the erasure symbol. When

the GC is in the B state, i.e., when xt = B , the output symbol is always the erasure symbol



48

regardless of the input symbol. In contrast, when the GC is in the G state, i.e., when

xt = G , the input symbol is identical to the output symbol. Of course, the input symbol

can also be ǫ. In this case, the “Good” channel will simply retransmit the erasure symbol.

P ( X ′
= X | xt = G ) = 1

P ( X ′
= ǫ | xt = B ) = 1 (3.20)

The last equation shows that unlike the q-EC or the q-SC, for a GC, the conditional

probability equation relating the input and output symbols depends on xt . Therefore,

the entries of the corresponding matrix X depend on xt . In the G and B states the real-

izations of X are denoted by XG and XB .

For example, consider a particular GC with q = 5 and p = 0.05. For this parameter,

the XG and XB matrices are shown in the left and right matrices below. The row index i ∈

{0 . . . 5} corresponds to the input symbol X ∈Q= {0 . . . 4,ǫ}, and the column index j ∈

Q corresponds to the output symbols X ′ ∈Q. Each entry Xhi j represents the probability

P ( X ′
= j | X = i , xt = h ). If xt = G , then the left matrix XG is used. Otherwise, if xt = B ,

then XB is used.

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00

The visual representation of XG and XB is undoubtedly more complex than what we

have shown for q-ECs and q-SCs. Figure 3.11 shows the two realizations of X , along with

their transition probabilities. The figure also shows that for a q-GC, the parametrization
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is on its transition probabilities (the values of b and g ), and not on its channel parame-

ters.
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FIGURE 3.11 A visual representation of the 5-ary Gilbert channel

Figure 3.11 shows why a q-GC exhibits memory. If at time t the q-GC experiences a

failure (i.e., it is in state B), then the probability of experiencing another failure at time

t + 1 is 1−b. If the magnitude of 1−b is large (or small) enough, we will observe many

long (or short) failure runs.

So far, we have not discussed the state at which a q-GC starts at t = 0. For conven-

tion, let us decide that x0 = G . With this convention, we can compute the probability

of observing any particular failure pattern. While informative, the probabilities of indi-

vidual failure patterns are not very useful because after a length of time t , there will be

a very large number (2t−1) of different patterns, all with very small probabilities. A far

more useful quantity to compute is the “stationary” (which usually means long-term)

probability of failure in a typical (very long) input pattern.

Let us denote the stationary failure and success probabilities by the symbols β and

γ, respectively. The two stationary probabilities must add up to one: β+ γ = 1. In-

terestingly, β and γ are also just the ratios between the amount time spent by a q-GC

dwelling in the B and G states and the total amount of time t . From the standard theory

of Markov chain, we can compute β and γ as functions of b and g using the following
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simple formulas:

β = β( b, g ) = P (xt = B ) =
g

b + g

γ= γ( b, g ) = P (xt = G ) =
b

b + g
. (3.21)

This also means that to a really long sequence of letters of length t , a q-GC parametrized

by (b, g ) will look for a β fraction of the time like XB (or the left channel diagram in Figure

3.11). For the remaining fraction of the time (which is γ), it will look like XG (or the right

channel diagram in Figure 3.11). This should remind us of the description for a q-EC

with p = β. Although the two channels are obviously not equivalent, after a long period

of time t , both converge to the same failure probability of β. Based on this observation,

we develop a more concise diagram for X that is shown in Figure 3.12 below. To distin-

guish this diagram from that of a standard q-EC, we use a dashed horizontal line for the

first connection.
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FIGURE 3.12 A more concise diagram for the 5-ary Gilbert channel

Figure 3.12 evokes our previous discussion about combining two q-ECs into a single

q-EC. Naturally, this brings up several interesting questions about the q-GCs. First, can

we combine two q-GCs in series into a single q-GC? Second, is it possible to compare

two q-GCs? In the remainder of this section, we shall show that both intuitively and

mathematically, the answer to both questions is indeed positive. To answer these ques-

tions using the same arguments we used in our discussions on the q-ECs, we have to

make some adjustments due to the fact that Figure 3.12 uses the long-term probabilities
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of failure and success of symbol transmission. We want to show that the equivalent tran-

sition probabilities (b, g ) of the series combination denoted by X can be computed from

the transition probabilities (b1, g1) and (b2, g2) of the two component q-GCs denoted by

X 1 and X 2.

Figure 3.3 shows a series combination of X 1 and X 2 with q = 5. The transition prob-

abilities (b1, g1) and (b2, g2) of these channels could be different. In the figure, there are

three columns of dots: the leftmost column corresponding to the input symbol of X 1,

the middle column corresponding to either the output symbol of X 1 or the input sym-

bol of X 2, and the rightmost column corresponding to the output symbol of X 2. The

random variables corresponding to these three columns are denoted by X , X ′, and X ′′.
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FIGURE 3.13 A series combination of two 5-GCs

Figure 3.13, provides a hint as to why X is also a q-GC. In a q-GC, just as in a q-EC, each

symbol on the left column is connected to the identical symbol on the right column with

a horizontal line. In Figure 3.13, we can also find horizontal lines connecting identical

symbols on the left- and rightmost columns. The horizontal lines in X are of course

composite lines. Each one of these lines are composed by one line in X 1 and the other

line in X 2.

Another feature that is shared by both the q-EC and the q-GC is the connection be-

tween the dots on the left column, with the exception of ǫ, to the dot representing ǫ on

the right column. Similarly, Figure 3.13 shows that this feature is present in a series com-

bination of two q-GCs: each dot X = i on the leftmost column in X are also connected
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to the dot representing ǫ on the rightmost column through two distinct paths: (1) the

path going through X ′
= i , and (2) another one going through X ′

= ǫ.
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g
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FIGURE 3.14 Two independent Gilbert channels

The major difference is, of course, that in a q-GC, the probabilities represented by

these connections are not parameters of random variables associated with observation

of individual symbol transmissions. Rather, they are the stationary probabilities γ1, γ1,

β2, and β2 of observing the q-GCs in their various states over a large number of trans-

missions.

Recall that for a q-GC, transmission failure is a direct function of the channel’s state :

if the state is B , transmission fails, and vice versa if the state is G , transmission succeeds.

For two q-GCs in series, the transmission succeeds if both channels are in the G state,

whereas the transmission fails if either one of the channels is in the states B .
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FIGURE 3.15 P(xt = G ) and P(xt = B )

The above statement notwithstanding, at any given time t , the observed states x1t and

x2t of the two q-GCs are independent of each other. Given this, the probability of finding

both X 1 and X 2 in a particular state configuration must then be equal to the product of

the probability of finding the q-GCs in the individual states. Furthermore, the same
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statement can be made for the stationary probabilities as well:

P (xt = G ) = P (x1t = x2t = G )

= P (x1t = G ) ·P (x2t = G )

∴ γ= γ1 ·γ2 . (3.22)

Of course, the preceding discussion has not touched upon how the combined param-

eter (g , b) of X can be calculated from the component parameters (g1, b1) and (g2, b2) of

X 1 and X 2. On the surface, the discussion seems to merely provide us with a logical way

for interpreting Figure 3.13. However, Equation 3.22 is a good starting place for deriving

(g , b).

γ= γ1 ·γ2 =
b1

g1 + b1

b2

g2 + b2

=
b1 b2

(g1 + b1)(g2 + b2)
=

b

b + g
(3.23)

Equation (3.23) gives one equation for solving the two unknowns g and b. The other

equation can be obtained from the definition of g or b, which is best explained by Figure

3.16, which shows two independent q-GCs running simultaneously, together with the

transitions and their probabilities.

In Figure 3.16, the symbols g ′ and b′ denote 1−g and 1−b, respectively. The diagram

provides us with several different ways to obtain the second equation. The simplest

second equation turns out to be the definition of g ′ in terms of g ′
1 and g ′

2. First, let us

describe what g ′ really means.
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FIGURE 3.16 The derivation of g in terms of g1 and g2

The two q-GCs can be thought of as a single, composite q-GC. The binary states G and

B of the individual channels are combined into the four states GG , GB , BG , and BB of

the composite channel. Since the two channels are connected in series, the three com-

posite states containing at least one B correspond to at least one transmission failure

in the chain. The dashed line groups these states together into a composite “Bad” state

which we shall denote by B . Naturally, we can denote the other remaining “Good” state

by G . From the diagram, g ′ denotes the probability:

g ′
= 1− g = P (xt = G | xt−1 = G )

= P (x1,t = G | x1,t−1 = G ) ·P (x2,t = G | x2,t−1 = G )

= (1− g1)(1− g2) = g ′
1g ′

2

∴ g = 1− (1− g1)(1− g2) . (3.24)

Equation (3.24) provides us with the second to solve the two unknowns g and b. With
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some manipulation of Equation (3.23), we can state the following:

g = 1− (1− g1)(1− g2)

b = g · γ

1−γ
= g · b1b2

(g1 + b1)(g2 + b2)−b1b2
. (3.25)

With Equation (3.25), we can solve for b by substituting the first equation into the sec-

ond one. These equations also serve as the algebraic definition of (g , b) in terms of the

component parameters (g1, b1) and (g2, b2).

Alternatively, this algebraic definitions of g and b can also be recast as functions of the

component parameters, as shown in Equation (3.27). The most useful of all, however,

is the definition of (g , b) in terms of the binary operator o-plus, which is denoted by⊕,

as shown in (3.28). This operator conceptually “adds” (g1, b1) and (g2, b2) into a single

value (g , b) using Equation (3.25).

(g , b) =

(

1− (1− g1)(1− g2) ,
b1b2[1− (1− g1)(1− g2)]

(g1 + b1)(g2 + b2)−b1b2

)

(3.26)

=
(

g (g1, b1, g2, b2) , b(g1, b1, g2, b2)
)

(3.27)

, (g1, b1)⊕ (g2, b2) (3.28)

Visually, we can also define shorthand notations for Figures 3.10 and 3.13 in the same

way we defined the⊕ operator. Although the original figures offer the clearest picture of

the q-GC and the series combination of two such channels, they are quite cumbersome

to use. With the shorthand symbol, we can make a q-GC look like a typical system ele-

ment. By hiding much of the channel’s internal connections, the symbol is easy to use

in diagrams containing a large number of interconnected q-GCs.
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FIGURE 3.17 Series q-GCs and the equivalent q-GC

In the shorthand notation shown in Figure 3.17, the q input and output symbols of a q-

GC are shown as terminals. In Figure 3.17, the first terminal represents the input letters

of X 1. The second terminal represents both the output letters of X 1 and the input letters

of X 2, and the third terminal represents the output letters of X 2. The letters are all drawn

from a common alphabetQ.

The ⊕ operator merely allows us to combine two adjacent q-GCs. To compare two

different (not necessarily adjacent) q-GCs, we need to define a relational binary operator

denoted by�. The statement A � B reads: A is not less preferred than B , as illustrated

in the following two equations:

X 1 � X 2 (3.29)

(g1, b1)� (g2, b2) (3.30)

The meaning of � depends on the context. Equation (3.29) states that the q-GC X 1 is

not less preferred than X 2, while equation (3.30) states that the transition probabilities

(g1, b1) of X 1 are not less preferred than (g2, b2) of X 2. The immediate question to ask is,

what does “preferred” mean?

Although the first statement might suggest different ways to interpret the meaning

of “preferred”, only one of them is compatible with the second statement, leaving us

with no ambiguity. For the transition probabilities (g1, b1), (g2, b2) ∈ Λ, the only logical

interpretation is that (g1, b1) � (g2, b2) if and only if β1 ≤ β2, where ≤ is the standard



57

less-than-or-equal-to operator for real numbers. From this, we can state the following:

X 1 � X 2 ⇔ β1 ≤ β2 . (3.30’)

In the next subsection, we will discuss the algebraic properties of⊕ and� and prove

that just as their q-EC counterparts, the two q-GC operators also satisfy the properties

in P and are thus compatible with the GDA.

Algebraic Properties of⊕ and�

Using Figure 3.15, we proved how a series combination of any two q-GCs is also an-

other q-GC with combined transition probabilities (g , b). In order to ensure the compat-

ibility of⊕, �, and Λ with the generalized Dijkstra’s algorithm (GDA), we need to prove

the other algebraic properties in P.

Let us begin by proving the properties of⊕. The set Λ contains all possible transition

probability pairs lying in the range of real number pairs [0, 1]× [0, 1]. Throughout the

proofs, let a, b, and c be the shorthand notations for (g1, b1), (g2, b2), (g3, b3) ∈ Λ of the

q-GCs denoted by X 1, X 2, and X 3.

① Closure. The set Λ satisfies closure if a, b ∈Λ implies a⊕b ∈Λ= [0, 1]× [0, 1]. We

will prove that closure property is satisfied for each of the component. First, let us

prove 0≤ b (g1, b1, g2, b2)≤ 1. From (3.25).

b = g · γ

1−γ
≤ 1 (3.31)

Since 0≤ γ≤ 1, thenγ/(1−γ) > 0. If we assume that closure on b is satisfied, then
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0≤ b ≤ 1, and the following must be true:

b ≤ 1

⇔ g ≤ (1−γ) /γ

⇔ g1 + g2− g1g2 ≤[(g1 + b1)(g2 + b2)−b1b2]/(b1b2)

⇔ g1b1b2 + g2b1b2− g1g2b1b2 ≤ g1g2 + g1b2 + g2b1

⇔ g1b1b2 + g2b1b2 ≤ g1g2b1b2 + g1g2 + g1b2 + g2b1

⇔ g1b1b2 + g2b1b2 ≤ g1b2 + g2b1

⇔ b1(g1b2) + b2(g2b1)≤ g1b2 + g2b1

In the above, we first derived the second inequality using (3.31). Next, both

sides of the inequality are expanded using (3.25). We then multiply both sides with

b1b2 ≥ 0 and add g1g2b1b2 to both sides. At this point, we observe the inequality

involves only positive terms.

Removing two positive terms on the right-hand side does not change the inequal-

ity. Finally, by appropriately factoring the terms on the left-hand side, and using

the fact that b1, b2 ≤ 1, we reach the final inequality that is always true. Next, we

claim that 0≤ g (g1, b1, g2, b2)≤ 1. Proof:

g1, g2 ∈ [0, 1]

⇔ (1− g1), (1− g2)∈ [0, 1]

⇔ (1− g1)(1− g2)∈ [0, 1]

⇔ 1− (1− g1)(1− g2)∈ [0, 1] (Q.E.D.)

② Associativity. The order in which ⊕ is evaluated does not matter. Instead of pre-

senting the full algebraic proof, which is too long and tedious, we outline the

method of proving the associativity property. With a symbolic algebraic manip-
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ulator, one can verify that the following is true (for example, by subtracting the

l.h.s. from the r.h.s.):

g (g (g1, b1, g2, b2), b (g1, b1, g2, b2), g3, b3) =

g (g1, b1, g (g2, b2, g3, b3), b (g2, b2, g3, b3))

b (g (g1, b1, g2, b2), b (g1, b1, g2, b2), g3, b3) =

b (g1, b1, g (g2, b2, g3, b3), b (g2, b2, g3, b3)) . (3.32)

③ Commutativity. The operand position does not matter:

g (g1, b1, g2, b2) = g (g2, b2, g1, b1) and

b (g1, b1, g2, b2) = b (g2, b2, g1, b1) . (3.33)

④ The identity element 0 satisfies a⊕0 = a, ∀a ∈Λ. We shall prove that ∀b ∈ [0, 1],

the element (0, b) satisfies the property of the 0 element. Proof:

(g , b) = (g1, b1)⊕ (g2, b2)

= (g1, b1)⊕0

= (g1, b1)⊕ (0, b2)

=

(

1− (1− g1)(1− g2) ,
b1b2[1− (1− g1)(1− g2)]

(g1 + b1)(g2 + b2)−b1b2

)

=

(

1− (1− g1)(1−0) ,
b1b2[1− (1− g1)(1−0)]

(g1 + b1)(0 + b2)−b1b2

)

=

(

1− (1− g1) ,
b1b2[1− (1− g1)]

(g1 + b1)b2−b1b2

)

=

(

g1 ,
b1b2g1

g1b2

)

= ( g1, b1 ) (Q.E.D)
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⑤ The absorptive element∞≡ (1, 0) satisfies a⊕∞=∞ for all a ∈Λ. Proof:

(g , b) = (g1, b1)⊕ (g2, b2)

= (g1, b1)⊕∞

= (g1, b1)⊕ (1, 0)

=

(

1− (1− g1)(1−1) ,
(b1×0)[1− (1− g1)(1−1)]

(g1 + b1)(1 + 0)−b1×0

)

= ( 1, 0 )

= ∞ (Q.E.D)

⑥ Total order. The operator � introduces a total order on Λ that categorizes every

pair of elements a, b ∈ Λ into a � b or a � b (or both, in which case a = b).

Equation (3.25) defines b as a linear function of g with a slope of γ/(1− γ). We

can invert this function and obtain, for each γ, the corresponding line b (g ) that

intersects the origin (0, 0).
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FIGURE 3.18 The contour lines b (g ,γ)

These lines are contour lines for the different values of γ ∈ [0, 1]. The expression

(g1, b1)� (g2, b2) then simply compares the slopes of the two lines (the steeper the

slope, the more preferred). Since γ ∈R and we can use the standard less-than-or-

equal-to≤ operator on R, total order is automatically satisfied. (Q.E.D.)
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⑦ The least element 0 satisfies 0 � a for all a ∈ Λ. For any b ∈ [0, 1], the element

(0, b) ∈ Λ satisfies the criteria for the 0 element. Let β be associated with (0, b),

and β′ with any element (g ′, b′)∈Λ. Proof:

β =
g

b + g
=

0

b + 0
= 0≤ β′

⇔ (0, b) ≡ 0≤ (g ′, b′) (Q.E.D.)

⑧ Strict isotonicity. Denote by γ(a) and β(a) the value of γ and β for a ∈ Λ. We use

the fact that β = 1−γ and recall that γ,β ∈R to prove the isotonicity property as

follows:

a ≺ b

β(a)≤ β(b)

γ(a)≥ γ(b)

γ(a)γ(c)≥ γ(b)γ(c)

γ(a⊕ c)≥ γ(b⊕ c)

1−γ(a⊕ c)≤ 1−γ(b⊕ c)

β(a⊕ c)≤ β(b⊕ c)

a⊕ c ≺ b⊕ c (Q.E.D.)
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4
The Gas Station Problem

HE generalized Dijkstra’s algorithm discussed in the previous chapters focuses

on allowing a much more general class of edge weights and the correspond-

ing algebraic operations of adding and comparing them. In this chapter, we introduce

another type of Generalized Dijkstra’s Algorithm that allows a subset of network nodes

to reduce the accumulated path cost down to zero.

x 3

u4x 2

x1

s

4

6

3

2

5 7

FIGURE 4.1 A network containing cost-resetting nodes

Figure 4.1 shows a network that contains such nodes. The two paths from s to d are

s−x1−x3−d and s−x2−u4−d , and the cost-resetting node is u4. Path cost is referenced

to the starting node s, which means that the cost at s is zero, and accumulates at nodes

further away from s. Along the first path, the accumulated cost is 4 at x1, and 4 + 3 = 7

at x3, and 4+3+2 = 9 at d . Along the second path, however, the accumulated cost at x2
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is 5, but the cost at u4 is zero. Therefore, the second path ends up costing only 7, thanks

to u4.

Called the “Gas Station Problem”, our generalized shortest-path problem goes one

step further. In this problem, a feasible path must never accumulate cost beyond a pre-

specified maximum value. Although in the next section, we describe the problem in

terms of vehicles and gas stations, the problem has general applications beyond trans-

portation network optimization.

4.1 THE GAS STATION PROBLEM

4.1.1 Introduction

In this section, we introduce a generalized shortest-path problem (SPP) that addresses

the problem of finding the shortest travel path for a vehicle traveling from an origin node

to a destination node in a transportation network, considering fuel consumption, lim-

ited onboard vehicle fuel capacity, and the presence of refueling facilities – “gas stations”

– at some network nodes. We call this problem the “Gas Station Problem” (GSP).

In the GSP, the vehicle begins its journey at the source node with an initial amount of

fuel in its tank. If this amount is large enough to allow the vehicle to reach any network

node (including the destination) without refueling, then the problem is reduced to the

standard shortest-path problem.

The GSP is more general than the SPP because in the GSP, the initial fuel amount might

be such that the destination cannot be reached without visiting at least one gas station.

The GSP attempts to answer two questions: (a) given an initial fuel amount, is travel

from the origin to the destination possible? (b) if so, which path minimizes the travel

distance?

The work presented in this section is primarily motivated by the problem facing drivers
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of conventional vehicles operating in remote areas where refueling facilities are sparsely

located. A similar problem is also faced by owners of alternative fuel vehicles who have

to consider the sparseness of refueling facilities in planning their travel. The problem

also occurs in project management where project milestones are connected by paths

with associated time and cost element. Refueling stations can then be thought of as

project milestones at which project funding is restored to its maximum capacity. Most

importantly, however, as we will discuss in the next section, this problem has important

applications in communication networks, where the “vehicle” becomes a representation

of data packets and codewords.

The GSP also has an alternative formulation, which is relevant to the main topic of this

section. Instead of focusing on fuel consumption and requiring that fuel level stay above

zero at all time, this formulation focuses on accumulation of some quantity (waste, heat,

etc.) that cannot exceed some maximum onboard capacity. Instead of gas stations, the

network has disposal stations that reset the vehicle waste level back to zero.

The GSP belongs to a general class of SPP with side constraints [1], also referred to as

the resource-constrained shortest-path problems (RCSPP) [3, 7, 9, 11]. There are many

transportation problems that involve solving the SPP with constraints as a subproblem.

One example of these problems is the aircraft rotation problem, where the constraining

resource is the flying time between required maintenance [2]. Other similar problems

include the airline crew pairing problem [12], and the flight crew scheduling problem

[8].

One example that is especially relevant to the GSP is the vehicle routing problem with

time window (VRPTW) [5, 6, 10, 13]. In the VRPTW, the goal is to minimize the vehicle

travel and idle time of a route where route nodes have specific delivery time interval

requirements. Early arrival at a node incurs idle time and late arrival makes a route

infeasible. As in all the previous examples, the resource is not replenishable. If there is

no gas station, the GSP is a VRPTW with node intervals specified in fuel units [0,Cmax].
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Once gas stations are introduced, the GSP does not fit the VRPTW model and forms a

new class of constrained shortest-path problems with renewable resource.

In this section, we generalize the SPP by allowing the nodes to add either 0 or Cmax−C

fuel units to a visiting vehicle. We propose a method that consists of three stages, each

utilizing standard graph algorithms. These algorithms have many well-studied modifi-

cations that can be used to customize the method to accomodate additional constraints.

With the flexibility derived from its components, the proposed method can be eas-

ily combined with other optimization methods to solve various Vehicle Routing and

Scheduling Problems (VRSP) that require similar fuel and refueling constraints. With-

out assuming planarity or Euclidean geometry, in the worst case, the method proposed

in this section can provide a deterministic answer in a time complexity of at most O(V 3).

4.1.2 Formulation

Let V be the set of nodes in a transportation network, and E be the set of edges linking

pairs of nodes therein. For each e ∈ E , the length of e is denoted by d(e). Assuming

the edges allow traffic to move in both directions, we can encode this information as a

labeled undirected graph G = (V , E , d).

Traveling along an edge e = (u, v) that connects nodes u and v incurs a fuel consump-

tion that is linearly proportional to the length d(e) > 0 of the edge, k d(e). Without loss of

generality, let us assume k = 1 and express the d(e) in the equivalent fuel units required

to drive from u to v .

Let C (u) denote the amount of fuel carried by the vehicle at node u. A vehicle can

only travel from u to v along e if it carries with it an amount of fuel C (u)≥ d(e) at u. We

call this condition the feasibility condition at u (or along e). At v , the vehicle will have

C (u)−d(e) fuel units left in the tank.

Suppose a vehicle with a tank capacity of Cmax fuel units wishes to travel from node

s ∈ V to another node t ∈ V , as “efficiently” as possible, where efficiency is measured

in terms of distance. To achieve this goal, we have to find the shortest-path (SP) f ∗(s, t )
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from s to t that obeys the feasibility condition.

A path f connecting v1 to vn through v2, . . . , vn−1 is a feasible path if the feasibility

condition is satisfied along all its n−1 edges ei = (vi , vi+1), i = 1 . . . n−1 — i.e., C (vi )≥

d(ei ). The set of all paths in G will be denoted by P , and the set of all feasible paths by

F . We denote the sum of edge weights of p(u, v) ∈ P by d(u, v). If p = e = (u, v), then

d(p) = d(u, v) = d(e).

Of course, F = F (G) depends on the particular network G under consideration. How-

ever, G only provides us with information on fuel consumption. To determine F (G), we

need to specify the resources available to the vehicle.

At s, the vehicle starts with C (s)≤ Cmax units of fuel. A subset of nodes, i.e., the “gas

stations”, U ⊆ V allows a visiting vehicle to replenish its onboard fuel to the maximum

capacity Cmax. For example, suppose a vehicle arrives at u with C (u) fuel units, traveling

along e = (u, v) toward a gas station v ∈U . Departing from v , the vehicle will have Cmax

units of fuel, not C (u)−d(e).

A GSP is fully specified by its U , Cmax, C (s), and G = (V , E , d). We can then pose two

questions. First, is it possible to travel from s to t? In other words, is F an empty set?

Second, if F is not an empty set, then which path f ∗ ∈ F minimizes the travel distance

from s to t , and what is its length d( f ∗)?

Theorem 1. A path f ∗ solves the GSP specified by U , Cmax, C (s), and the graph G =

(V , E , d) if and only if it solves the SPP specified by

G ′
= (V ′, E ′, d ′) , where (4.1)

V ′
= {s, t}∪U

E ′
= { argminf ′ d(u, v) | f ′ ∈ F ′ } where u 6= v and u, v ∈ V ′,

F ′
= { f (u, v) | f ∈ F, i.e. d(u, v)≤Cmax, and d(s, v)≤C (s) }

d ′
= { d(e ′) | e ′ ∈ E ′ }.
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In above set of equations, we assume that u 6= v and that u, v ∈ V ′. The set V ′ contains

the source node s, the destination node t , and the gas station nodes. These nodes are all

linked by “virtual” edges e ′ ∈ E ′. In turn, each of these virtual edges is the shortest-path

among all feasible paths f ′ ∈ F ′ ⊆ F connecting the end nodes u and v in V ′ ⊆V .

Proof. First, let us note that the optimal path f ∗ consists of n + 1 edges that connect all

the path nodes: f ∗ = s u1 · · · un  t . This optimal path is the solution to the

GSP and is a concatenation of n + 1 segments f ∗
i

. The nodes ui are all gas stations, i.e.,

ui ∈U , i = 1 . . . n, and 0≤ n ≤ |U |. If n = 0, then f ∗ is a direct path s t that does not

contain any gas station.

Because f ∗ solves the GSP, the segments f ∗
i

must also be the shortest-paths between

the nodes in V ′ that they are connecting. Similarly, the elements in the set {ui} also

minimize the sum d(s, u1)+
∑

d(ui , ui+1)+d(u1, t ). Changing the segments f ∗
i

or mod-

ifying the membership of {ui} results in a longer path g with d(g ) ≥ d( f ∗). Since the

nodes s, t , ui , the segments f ∗
i

, and the weights d( f ∗
i

) are all parts of the specification of

a SPP (V ′, E ′, d ′)⊆ (V , E , d), then f ∗ is a solution of the SPP specified by G ′.

For the reverse proof, suppose that g ∗ solves the SPP, and that g ∗ is different from f ∗

that solves the GSP. We proved that f ∗ solves the SPP, and thus d( f ∗)≤ d(g ∗). If d( f ∗) <

d(g ∗), then g ∗ does not solve the SPP, which is a contradiction. Therefore, d( f ∗) = d(g ∗),

which means f ∗ solves the GSP.

4.1.3 Algorithm

This section presents an algorithm that implements the method suggested in Theo-

rem (10). It derives G ′ from G , and obtain the path f ∗ that solves the SPP specified by G ′.

By Theorem (10), f ∗ then solves the GSP specified by G .

GAS-STATION( G ,U ,C (s) ,Cmax )

1: Remove all edges { e ∈ E | d(e) > Cmax } from E

2: Remove all nodes { v ∈ V | deg(v) = 0 } from V
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3: for v1 ∈V ′ do

4: Obtain the SP tree from v1 using DIJKSTRA( G , v1 )

5: for v2 ∈ V ′ 6= v1 do

6: Add an edge e ′ = (v1, v2) into E and d(e ′) = d(v1, v2) into d ′

7: end for

8: end for

9: Remove all edges { e ′ = (v1, v2)∈ E ′ | d(e) > C (v1) } from E ′

10: Remove all nodes { v ′ ∈ V ′ | deg(v ′) = 0 } from V ′

11: Obtain the SP from s to t using DIJKSTRA( G ′ , s )

Lines 1 to 8 form the first stage of the proposed method. First, on line 1 and 2 it prunes

all infeasible edges e ∈ E where d(e) > Cmax. Then, on line 4, it runs the Dijkstra algo-

rithm (DA) [4] on all v1 ∈ V ′, every time producing an shortest-path tree rooted at v1.

From the tree, edges e ′ connecting v1 and v2 ∈ V ′ with weights d(v1, v2) are added into

E ′ on line 6. It is possible to add only feasible edges where d(v1, v2) ≤ C (v1), but for

clarity, we separate this step into a separate stage. This first stage basically calculates

all-pairs shortest-path of the nodes v ∈ V ′ ⊆ V . At the end of the first stage, the set V ′

and tentatively, E ′ and d ′ for the virtual graph G ′ are obtained.

In the pruning stage on lines 9 and 10, the edges e ′ ∈ E ′ where d(e ′) > Cmax are re-

moved from E ′, and the nodes v ′ ∈ V ′ with degree 0 are removed from V ′. Finally in the

third stage on line 11, we obtain the solution f ∗(s, t ) to the GSP using DA with s ∈ V ′ as

the source node.

For brevity, let us denote |V ′| by n. In this notation, the time complexity of the first

stage is O(nV 2). The factor n takes into account the fact that the DA is performed n

times, each time rooted on v ∈ V ′. The result is a complete graph with n nodes and

n(n−1) directed edges. The pruning stage searches linearly over these edges and nodes

at a time complexity cost of O(n2). The final DA has a time complexity cost of O(n2).

Therefore, overall time complexity is bounded by O(nV 2
+n2), or conservatively, O(V 3).
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If the DA subroutine is implemented using Fibonacci heap, then its complexity could

be as low as O(V logV + E ). Depending on G , the shortest-path d(v1, v2) can also be

obtained using other shortest-path algorithms or all-pairs shortest-path algorithms [4].

4.1.4 Numerical Example

In this section, we provide a numerical example of the GSP and its solution using the

GAS-STATION algorithm. Consider a transportation network G ′ in Figure 4.2(a). The

nodes s, t , and the gas stations a, b, c ∈V ′ are in italics.
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FIGURE 4.2 An example of the Gas Station Problem

First, lines 1 and 2 eliminate the infeasible edges (c, 7) and (7, b) and empty node 7

from G , as shown in Figure 4.2(b). Next, lines 3 to 8 calculate the shortest-paths between

the nodes in V ′
= {s, t , a, b, c}. For example, from DIJKSTRA(G , s) the SP from s to t is

f ∗(s, t ) = s→ 6→ 4→ 5→ t , with d( f ∗) = 5 +1 +5 +6 = 17. In Figure 4.2(b), f ∗(s, t ) is

the path along the marked edges from s to t .

The shortest-paths between pairs of nodes in V ′ form the edges connecting v ∈ V ′

of G ′, as shown in Figure 4.2(c). For example, f ∗(s, t ) in G is now the edge (s, t ) in G ′.

Obviously, any edge e ∈ E ′ with d(e) > Cmax = 12 is infeasible. Figure 4.2(d) shows the

result of lines 9 and 10 to Figure 4.2(c), assuming C (s) = Cmax = 12 fuel units.



72

From DIJKSTRA(G ′ , s) on line 11, the SP from s to t on G ′ is f ∗(s, t ) = s→ a→ t , with

d( f ∗) = 11 + 8 = 19. If we assume C (s) = 10, then edge (s, a) in G ′ is infeasible and thus

f ∗ = s→ c→ a→ t , with d( f ∗) = 9+11+8 = 28. In both cases, f ∗ is a longer path than

the solution of a standard SPP on G .

4.1.5 Conclusion

We have presented a worst-case O(V 3) algorithm that solves the problem of finding

the shortest travel path for a vehicle with a limited fuel capacity operating in a network

with refueling nodes. Future research topics include the stochastic case where edge

weights are random variables, and the dynamic case, where the edge weights change

during travel.

4.2 APPLICATIONS OF THE GAS STATION PROBLEM

The Gas Station Problem is very closely related to the problems commonly encoun-

tered in designing and operating communication networks. For example, one of the

biggest problems in successfully integrating sensor networks into mission-critical ap-

plications is to ensure that these networks can reliably and reasonably perform under

the worst-case scenarios that often produce extreme and unusual events which these

networks are designed to detect. One of the key performance measures is the sensor

network’s ability to route, i.e., choose the appropriate route for transporting, measure-

ment data from the source node to the intended destination. In this section, we show

how this problem can be reformulated as the Gas Station Problem.

The strong emphasis on sensor network reliability is understandable. Originally de-

signed for military applications, sensor networks perform functions that have very low

error tolerance. Recently, however, sensor networks have steadily entered many areas of

non-critical civilian applications where remote environmental monitoring capability is
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needed. Examples of such systems include traffic sensors, fire alarms, and motion de-

tectors that are now connected to form large networks in many buildings, factories, and

facilities to maintain security, environmental control, and track valuable assets.

State of the art sensor networks are just beginning to be integrated into many mission-

critical civilian data monitoring systems. For example, the Advanced National Seismic

System (ANSS) [30] and the Pacific Tsunami Warning System operated by the National

Weather Service [31] are two large networks of sensors designed to reliably detect, mea-

sure, report, and track large scale, catastrophic geological events moving at the speed of

several kilometers per second. While these systems are currently implemented as wired

sensor networks, many future mission-critical systems would exist in the form of wire-

less sensor networks designed to detect the presence of dangerous levels of biohazards,

radiation, lethal mineshaft gases, etc.

Obviously, these types of applications have very high requirements for performance

and reliability. Losing even one symbol, packet, or file can have very disastrous conse-

quences. Mission-critical communication networks are designed to prevent such situ-

ations and maximize the probability of successfully transmitting the information to the

destination node.

Solving the problem of improving the Quality of Service (QoS) for such networks in-

volves the task of evaluating and comparing network paths (and edges) based on a cri-

teria of optimality that minimizes the worst possible number of packet loss (Worst-Case

Erasure or Error, or WCE) received at the target node. This is not a trivial task, especially

in wireless sensor networks where the Bit Erasure (or Error) Ratio (BER) could be very

high. To make it more challenging, retransmission might be impossible, as the source

nodes could have been destroyed or incapacitated.

Fault tolerance can be incorporated into these types of sensor networks by using spe-

cialized algorithms, such as the ones reviewed in [32–39]. However, the degree of worst-

case fault tolerance ultimately depends on how well the networks are designed. Another
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relevant problem to solve for a network designer is: given two or more competing sen-

sor network designs, which one would best meet the worst-case routing performance

requirements?

Motivated by these problems, we introduce a new QoS metric called the WCE met-

ric. This metric can be used to measure, compare, and select the network path whose

“length” (the WCE length) is minimum. In any metric, a path’s length depends on its

edges’ lengths, and the WCE metric is no exception. To use our metric, we use a network

model where each edge represents a set of parameters of a particular channel model.

The edge’s parameters (such as the BER) in turn determines its WCE length. The pa-

rameters themselves can be used to measure edge and path lengths, and thus qualify as

a metric. The WCE length is a non-decreasing function of the length measured in the

parameter metric, and thus, the path with the best parameter in a network is also the

path with the minimum WCE.

We show that if some network nodes are capable of correcting edge errors and era-

sures, then it is possible to find a path (or paths) of zero WCE length. We do not assume

that all nodes can correct errors and erasures. In wireless and ad-hoc networks where

compute power and energy are constrained, available resource for complex mathemat-

ical operations used by high-performance FEC (such as finite fields arithmetic and it-

erative algorithms) is limited. It is therefore desirable to have only as many such “over-

head” nodes as needed for reliability. In addition, compared to repeater nodes, error-

correcting nodes incur delay and consume bandwidth resources. Here we present a

O(V 3) algorithm that can compute the best path to transport information with zero WCE

through the appropriate error-correcting nodes.

The inclusion of error-correcting nodes is quite realistic. Forward Error Correction

(FEC) is gaining acceptance in modern networks. Historically, wired networks have pre-

dominantly used the Automatic Repeat reQuest (ARQ) methods over the FEC methods.

However, in wireless multimedia applications, FEC outshines ARQ in its ability to signif-
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icantly improve network QoS [15–18] without a heavy premium on performance. Unlike

TCP and ARQ, FEC does not use return requests and thus consumes less bandwidth [19],

especially in large (multicast) wireless networks [20, 21].

Even in peer-to-peer networks, FEC deployed at strategically positioned error-correcting

nodes is superior compared to replication [22]. Multicast algorithms such as Digital

Fountain [23] and Bullet [24] employ FEC-based codes. Adaptive [17, 18] and hybrid

(ARQ-FEC) QoS-driven algorithms that dynamically adjust FEC level to network condi-

tions have been proposed [25–28] to reduce the bandwidth and computation overhead

of FEC methods.

When not limited to the WCE metric and the objective of finding the zero WCE path,

the minimum WCE routing algorithm presented in this section can be applied to many

other network QoS optimization problems that attempt to minimize the worst-case oc-

curence probability of non-typical, but highly catastrophic events. Once the path with

minimum WCE metric is computed, the path length can be used to evaluate the worst-

case routing performance of that particular sensor networks.

4.2.1 Formulation and Notation

We model the network as a digraph G = (V , E ), where V , E , and Π are the node, edge

and path sets of G . The nodes s, d ∈ V are the source and destination nodes, and Π⊂Π

is the set of all paths from s to d .

A path π ∈Π whose nodes Vπ ⊂V are connected by Eπ⊂ E is denoted by 〈v0, . . . , v J 〉,

〈e1, . . . , e J 〉, or 〈v0, e1, . . . , e J , v J 〉. The number of nodes (or edges) in π is denoted by |π|v
(or |π|e). The symbol 〈vi , vi+1〉 denotes the edge connecting the two adjacent nodes vi

and vi+1. If vi and vi+1 are not adjacent to one another, then 〈vi , vi+1〉 denotes the

path connecting the two nodes. We also define a partial path π j of π to be the path

〈v0, . . . , v j 〉, with 0 < j ≤ J , and a truncated path π̄ j to be 〈v0, e1, . . . , v j−1, e j 〉 without

the final node.

Denote the message produced at the source by B ∈ B, where B is the space of all
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allowable messages in the network. In particular, we focus on messages that are con-

structed from a finite q-ary alphabet Q that contains the letters {0, . . . , q − 1}. We can

use the same notation B ∈Qn for these messages, with Bl ∈Q denoting the symbols in

the message block, and with l = 1 . . . n.

Alternatively, we can also define the message B as a block that contains n packets of

m symbols each. In this definition, instead of an alphabet, Q is then the set of possible

packet states that encodes different QoS metrics such as delay, loss, jitter, etc., which

then allows our symbol- and alphabet-based results to be applied to other packet- and

state-based network QoS problems.

Let Bi and bi = Bl i denote the actual content of B and its components Bl as they

depart from vi . In a similar manner, let B̄i and b̄i = B̄l i denote the values of B and Bl as

they leave ei . Both vi and ei are parts of the path 〈v0, e1, . . . , e J , v J 〉. Along this path, the

message B evolves as follows:

B0
e1−→ B̄1

v1−→ B1
e2−→ B̄2

v2−→ ·· · e J−→ B̄ J
v J−→ B J .

We can think of the nodes and edges vi and ei as operators vi , ei ∈ E : B → B that

are transforming the content of B . More precisely, these operators can be defined by the

following equations:

Bi = vi (B̄i ) and B̄i+1 = ei (Bi ).

For π, the path evolution operator π is defined as a concatenation of the above oper-

ators: π = v J ◦ e J ◦ · · · ◦ e1 ◦ v0. For π j , it is π j = v j ◦ e j ◦ · · · ◦ e1 ◦ v0, and for π̄ j , it is

π̄ j = e j ◦ v j−1 · · · ◦ e1 ◦ v0. Thus, π j (B0) = B j and π̄ j (B0) = B̄ j .

Define X : B×B →M as a function measuring the Hamming distance x ∈M be-

tween a message B0 at v0 which evolves into B J at v J ; where v0 and v J are connected

by 〈v0, v J 〉, and M is the metric space. The distance x from Bi to Bi ′ is denoted by

x = Xi , i ′ = X (Bi , Bi ′). Let Xi ,ī ′ denote X (Bi , B̄i ′). If e = 〈vi , vi ′〉 then we define the short-
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hand X (e) = X (Bi , B̄i ′).

Except for B0, the messages Bi at vi are random variables. Therefore, X0,i must also

be random variables. Define P (X = x,λ) as the probability density of x parameterized

by a vector λ ∈ Λ — for example, if P is Gaussian and x ∈ R, then λ is the vector of P ’s

mean and variance (µ,σ2) — where x = Xi ,i ′ is the random variable that measures the

Hamming distance between the message at vi and its image at vi ′ . Each edge ei in the

network is characterized by the parameter λi of the associated error probability density.

In all cases, λ=∞ denotes the lack of connection between two nodes.

We now provide two possible definitions of the worst case function x̄(λi ,ǫ). The func-

tion is really a functional that accepts the λ-parametrized probability density P (x,λ) as

its argument. In the first definition, the function computes, given P (x,λi ), the worst

case “possible” value of x, where “possible” values y are defined as those y values with

probability P (y,λi ) > ǫ. We also observe from (4.7) that x̄(1,ǫ) = x̄(∞,ǫ) = n and x̄(0,ǫ) =

0. Note that from (4.7), x̄(1,ǫ) = x̄(∞,ǫ) = n, x̄(0,ǫ) = 0, and x̄(p,ǫ) is not continuous.

x̄(λi ,ǫ) = maxx{x | P (x,λi )≥ ǫ , x ∈M} (4.2)

x̄(λi ,ǫ) = maxx{x | P (X > x,λi )≥ ǫ , x ∈M} (4.3)

For convenience, let us define the function β : Π→ Λ that maps a path π (or an edge

ei ) into a density parameter λπ (or λi ) and the function ω : Π→M that maps a path

or an edge (given ǫ) into its worst-case value x ∈M. For ei , the β and ω are related to

x̄(λi ,ǫ) through: ω(ei ) = x̄(β(ei ),ǫ).

Consider a path π= 〈e1, . . . , e J 〉 ∈Π and its partial pathπ j = 〈e1, . . . , e j 〉with 1≤ j ≤ J .

For the path π, assuming λπ is defined, the worst case function is ω(π) = x̄(β(π),ǫ). In

this section we will show that λπ can be defined in terms of λi ’s, and hence, x̄(λπ,ǫ) can

be defined in terms of x̄i = x̄(λi ,ǫ).

The quantities x, λ, or x̄ all have the potential to be used as the routing metric. How-
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ever, in general, xπ 6=
∑

xi , λπ 6=
∑

λi , and x̄π 6=
∑

x̄i , where
∑

is the standard scalar or

vector summation. Let us assume that the addition operation is defined inΛ andM and

is denoted by⊕. If x1 = X (e1), x2 = X (e2), λ1 = β(e1), λ2 = β(e2), x̄1 = ω(e1), x̄2 =ω(e2),

and π= 〈e1, e2〉, then we say xπ = x1⊕ x2, λπ =λ1⊕λ2, or x̄π = x̄1⊕ x̄2.

To avoid producing a routing loop when used with the generalized Dijkstra’s algo-

rithm, ⊕, Λ andM have to obey the algebraic properties we discussed in the previous

chapter. With ⊕, we can now define the path quantities xπ, λπ, and x̄π in terms of the

edge quantities xi , λi , and x̄i using a generalized summation: xπ =
⊕

xi , λπ =
⊕

λi ,

and x̄π =
⊕

x̄i .

The pairings of Λ and M with ⊕ form algebraic structures which we call the X, B,

and W algebras, from the X , β, and ω functions, respectively. Between two nodes, the

optimal path π∗ is the path with the “shortest” path length from s to d when measured

in the X, B or W algebra (or metric). However, having ⊕, X , β, and ω is not enough to

calculate π∗. We need to compare path lengths. Therefore we need a total order� on Λ

andM to evaluate expressions like xπ � xπ′ , λπ�λπ′ , or x̄π� x̄π′ .

Once� is defined, then we can define these optimal values for G :

x∗
= minπ{xπ | π∈Π}

λ
∗
= minπ{λπ | π∈Π}

x̄∗
= minπ{ x̄π = x̄(λπ,ǫ) | π∈Π} . (4.4)

Intuitively, we would like to see that the minima λ
∗ and x̄∗ related by the expression:

x̄∗
= x̄(λ∗,ǫ). Indeed, this is true for the q-ary symmetric channel and q-ary erasure

channel networks presented in the previous chapter. In this section, we also introduce

a new type of network that consists of constrained AWGN channels and prove that the

above also holds.

Next, consider a subset of nodes {ui ∈U ⊆ V } that implements (possibly different)
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q-ary, erasure- or error-correcting codes of block length n that can correct up to xmax

erasures in Bi relative to B0. By default, we assume that d ∈U . For packet-based sys-

tems, U are nodes that can restore up to xmax lost packets, or packets in any unfavorable

states back to the original, favorable states. For a partial path π j , we can state the fol-

lowing:

X0, j = 0 , v j ∈U and X0, j̄ ≤ xmax

≥ X0, j̄ , v j ∈U and X0, j̄ > xmax

= X0, j̄ , v j ∈V \U . (4.5)

If v j ∈U and B̄ j does not have more than xmax errors, then v j restores B̄ j back to B0.

Otherwise, if xmax is exceeded, v j may or may not increase the number of errors in B . If

v j 6∈U , it simply repeats the content of B̄ j into B j .

If Vπ∩U = ∅, then the lengths xπ j
, λπ j

and x̄π j
are non-decreasing functions of j —

a claim which we will prove later in this section. This means that on any path, the met-

ric X0, j increases as j increases. In this case, reliable communication (when measured

in the worst-case metric) becomes very difficult to achieve except when the values λi

(which could represent a very small delay or error probability) are simultaneously favor-

able.

Without the existence of U , this stringent level of QoS is often prohibitively difficult

to achieve, forcing the engineers to settle for an unacceptably high catastrophic event

probability. However, with U , we later show that with our algorithm, even a zero ǫ-worst-

case path is achievable.

So far, we have not specified the types of channels we are considering. In this section,

we will analyze the two types of channels we have discussed extensively in the previous

chapters: the q-ary symmetric channels (q-SC) and the q-ary erasure channels (q-EC).

We provide the definitions of the q-SC and the q-EC in the following examples for review.
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In addition, we also introduce and define a new type of channel: the AWGN channels

with nonnegative mean. This channel is relevant to many network problems where the

edge quantities are positive real numbers (the most important of which is delay). We

prove that the algebras for these channels satisfy the same set of properties that guaran-

tees the compatibility with the GDA, and the absence of any undesirable routing loop.

Example 1 (q-ary Symmetric Channels). Let Q be the q-ary alphabet {0, . . . , q−1}. Sup-

pose that the source s produces n-symbol messages B ∈Qn , with Bl ∈Q, and l = 1 . . . n.

Each network link is modeled as a q-ary symmetric channel (q-SC) with symbol error

rate p. Let Bi (and bi = Bl i ) denote B (and Bl ) as it departs from vi ; and let B̄i (and

b̄i = B̄l i ) denote B (and Bl ) as it leaves ei . The transition probability defining a q-SC is:

P ( bi+1 |bi ) =















1−p , bi = bi+1

p /(q−1) , bi 6= bi+1 .

(4.6)

The operators vi , ei ∈ E : Q n → Q n are given by Bi = vi (B̄i ) and B̄i+1 = ei (Bi ). The

function X measures the number of errors (Hamming distance) in Bi compared to Bi ′ ,

denoted by x = Xi , i ′ = X (Bi , Bi ′) = |{l |bi 6= bi ′}|. In a q-SC, the scalar parameter that

plays the role of λ is p, the link symbol error probability. The probability density func-

tion P (x,λ) = P (x, p) is:

P (x, p) =



































(n
x

)

p x (1−p)n−x , p ∈ (0, 1)

δ(x) , p = 0

δ(x−n) , p = 1,∞ .

(4.7)

The B and W algebras are such that two adjacent edges e1 and e2 with parameters λ1

and λ2 can be viewed as a single edge with parameter λ= λ1⊕λ2 = p1⊕p2 defined by
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the following equations:

p1⊕p2 = 1− (1−p1)(1−p2)− (p1p2) / (q−1)

x̄1⊕ x̄2 = max{x | P (x, p1⊕p2)≥ ǫ} . (4.8)

If the message B is defined in event- and packet-based scenarios, the letters in the al-

phabets then correspond to event or packet states. Consequently, the probability densi-

ties and the transition probabilities are also defined in terms of these states (instead of

symbols).

Example 2 (q-ary Erasure Channels). The symbol q − 1 in Q is designated as a special

erasure symbol. Each network link is modeled as a q-ary erasure channel (q-EC) with

symbol erasure rate p. The transition probability is given by Equation (4.9) below. Recall

that B can be also defined as a data block with n packets of m symbols each, and erasures

represent lost packets.

P ( bi+1 |bi ) =















1−p , bi = bi+1

p , bi 6= bi+1 = q−1.

(4.9)

The function X measures the number of erasures in Bi relative to Bi ′ , denoted by x =

Xi , i ′ = X (Bi , Bi ′) = |{l |bi 6= bi ′ = q − 1}|. The density function P (x,λ) is the same

as in Example 1, except p is the link symbol erasure probability and the B algebra is

λ=λ1⊕λ2 = p1⊕p2 where:

p1⊕p2 = 1− (1−p1)(1−p2) (4.10)

x̄1⊕ x̄2 = max{x | P (x, p1⊕p2)≥ ǫ} . (4.11)

Again, as in the q-SC, if the message B is defined as event- and packet-based messages,

then the alphabet letters represent specific event or packet states. Accordingly, the prob-
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ability densities and the transition probabilities are also defined not in terms of symbols,

but rather in terms of these states.

Example 3 (Nonnegative-mean AWGN). In this example, the message is a scalar B ∈R
+.

On each link, a nonnegative-mean AWGN is added into the message. This noise could

represent the amount of nonnegative degradation a packet has experienced so far, such

as delay or signal loss. For convention, we assume the source node always transmits the

B0 = 0 message.

At each node vi ∈ Vπ, two decisions are made. If xi = Bi −B0 exceeds xmax, then the

message (or the packet corresponding to the message) is discarded, otherwise it is re-

transmitted with the same level of degradation. In other words, nodes do not introduce

additional degradation: only edges do. Furthermore, we also assume the existence of

the error- (or erasure-) correcting nodes ui ∈U ⊆V can reset B (and x) back to 0.

Each AWGN channel is characterized by a two-dimensional parameterλ= (µ≥ 0,σ2).

The component µ is the mean, and σ2 the variance of the Gaussian density of the chan-

nel. The transition probability and x̄ are given by:

P ( Bi+1 |Bi ) = P (x;µ,σ2)[
√

2πσ2]−1 exp

(−(x−µ)2

2σ2

)

(4.12)

x̄ = P−1(ǫ;µ,σ2) = µ+

√

−σ2 ln(2πǫ2σ2) (4.13)

where x = Bi+1−Bi . The definition of the B algebra follows from the algebraic property

of independent AWGN random variables. Two independent, adjacent edges e1 and e2

with AWGN parameters λ1 and λ2 can be combined into a single edge with parameter

λ = λ1⊕λ2 = λ1 +λ2. The + operator in the last equation is just the standard vector

summation operator.
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FIGURE 4.3 The metric space Λ (shaded).

Theorem 2. The algebras B = (Λ,⊕) defined in examples 1–3 and their total orders �

satisfy the set of compatibility properties P of the GDA.

PROOF: We have proved this theorem for the q-SC and the q-EC. Therefore, we will

not repeat the proof here and only discuss the constrained AWGN channel. Before we

begin, let us define and use the relational operator � that we can use to compare any

λ,λ′ ∈Λ. First, note that Λ⊂R
2+. Since the set of two-dimensional real numbers R

2+

is not a totally ordered set, we must define� in terms of the worst case function x̄(λ,ǫ)

as follows:

λ≺λ
′⇔ x̄(λ,ǫ) < x̄(λ′,ǫ) or

λ= λ
′⇔ x̄(λ,ǫ) = x̄(λ′,ǫ) . (4.14)

Referring to Figure 4.3, we can see that the space Λ is ordered by the isocontour lines

defined by the values of x̄. Two points that lie on the same contour line are considered

equal to each other. Further, later we show that to guarantee closure, the scope of Λ also
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has to be restricted to the following region:

Λ=

(

R
+× [0,σ2

max ]∩
{

λ :
µ

σ2
≥ ∂µ

∂σ2

∣

∣

∣

σ2
max

})

∪{∞} .

In Figure 4.3, the set Λ is depicted by the shaded region. Notice that for a fixed value

of σ2, the slope µ′
= ∂µ/∂σ2 is equal for all µ along any x̄ contour. Further, this slope is

maximized at the upper bound of σ2 defined byσ2
max . If the lines connectingλ andλ

′ to

the origin have slopes that are larger than the maximum µ′, then the sum is guaranteed

to lie in a higher contour.

In the following, we will prove that the constrained AWGN satisfies all the compatibility

properties for the GDA. We also prove that addition of a vector λ′′ to any pair of λ and

λ
′ will not change the ordering between them.

P1 Except for closure, the other monoid properties are obvious because⊕ is the stan-

dard vector addition. The main reason for Λ not occupying the full non-negative

octant, but rather being bounded by σ2 ≤ σ2
max = ǫ−2

max /(2π), is to satisfy the clo-

sure property. Inside the shaded area, every vector has a slope of at least µ′. The

sum of two such vectors must also have a slope of at least µ′. The value σ2
max is

given by:

σ2
max = max

π∈Π

{

∑

i :vi∈Vπ
σ2

i

}

(4.15)

This value of σ2
max can be obtained by running a regular DA once on G , with a

time complexity cost of O(V 2). If one (or both) of the vectors is∞, then by the

definition of∞, the⊕ sum must be∞.

P2 The proof is derived from closure on∞.

P3 The proof follows from the definition of Λ and�.

P4 Both terms in equation (4.13) are minimized when they are zero, i.e., µ = 0 and
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either σ2
= 0 or σ2

= ǫ−2/(2π). However, since λ = (0, 0)∈Λ, then (0, 0) is indeed

the 0 element in Λ.

P5 From Figure 4.3 and the definition of Λ, the addition of (µ, 0) followed by (0,σ2) to

any two points in Λ preserves their ordering. �

The following proposition proves that the presence of error- and erasure-correcting nodes

in the network can have practical benefit for routing information, allowing a very high

level of reliability to be achieved by relatively unreliable edges. Mathematically, we say

that if the path includes u ∈U , then for some j ∈ [0, J ], we can have β(π j ) = 0 even with

p j 6= 0 for all j .

Proposition 3. If VπJ
∩U = ∅, then β(π j ) is an non-decreasing function of j . The mini-

mum β(π j ) = 0 is only possible if p j = 0 for all j = 0 . . . J .

PROOF: If we apply the isotonicity property P5 with 0 = a ≺ b = p j , and c = pπ j−1
, then

we will have β(π j−1) = pπ j−1
≺ pπ j−1

⊕ p j = β(π j ). This proves that that β(π j ) is a non-

decreasing function of j . The second part of the proof can be derived directly from P1.

�

Having proven the GDA compatibility, we will now prove that the x̄ values in examples

1–3 can be defined as non-decreasing functions of λs. If this is true, then the path with

minimum λ is also the path with minimum x̄.

For AWGN, this monotonicity property automatically follows from its definition of

λ � λ
′. In contrast, the proof of monotonicity for q-SC and q-EC is quite involved.

Luckily, the proof for both channels is identical. First, we claim — and prove — that

within an admissible range of ǫ ∈ [0, ǭ], the WCE function x̄(p,ǫ) is a non-decreasing

(albeit discontinuous) function of p.

Lemma 4. For a given n and a fixed x, the probability function P (x, p) is maximized

at p =
x
n

. Furthermore, P∗ = P (⌊n
2 ⌋, 1

2 ) minimizes P (x, x
n

) over all possible values of x ∈

[0, n].
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PROOF: Let us start from the definition of P (x, p) in equation (4.7). For a given n, the

lemma is true at x = 0 and x = n because the value of P (x, p) reaches the maximum of

δ(0) = 1. To prove the lemma for other values of p, we first compute the derivative of

P (x, p) with respect to p to find the extrema:

∂P(x,p)

∂p
= P (x, p) ( x

p
− n−x

1−p
) = 0 . (4.16)

On the right-hand side of Equation (4.16), the definition of P (x, p) shows that it does not

have any root with respect to p. Therefore the root, if there is any, must be contained in

the factor ( x
p
−n−x

1−p
) = 0. Indeed, solving the factor for p gives us p =

x
n

, which maximizes

the function P (x, p) for any given x ∈ (0, 1).

Having identified the value of p that minimizes P (x, p), the next question is, for 0 <

x < n, which x minimizes P (x, x
n

)? Unlike with p, we cannot differentiate P (x, p) with

respect to x because it is a discrete variable. We choose not to take the easiest shortcut

of approximating P (x, p) with a Gaussian distribution and taking the derivative of this

approximation because this approach is only valid for certain values of n and p. Instead,

we find the location of the minimum by using the upper and lower bounds of
(n

x

)

given

in [29] :

λnx <

(n
x

)

< µnx (4.17)

λnx = λ(n, x) = ξ
(

1
12n
− 1

12x
− 1

12(n−x)

)

µnx = µ(n, x) = ξ
(

1
12n
− 1

12x+1
− 1

12(n−x)+1

)

ξ(A) =
e A nn+

1
2

(2π)
1
2 (n−x)n−x+

1
2 x x+

1
2

.

From Equation (4.17), we can then conclude that P (x, p) is bounded from below and

above by two continuous and differentiable functions of x.

λnx p x (1−p)n−x
< P (x, p ) < µnx p x (1−p)n−x
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Since p =
x
n

, we substitute x = np into the equation above and solve the p roots of the

p derivatives of both the lower and upper bounds of P (x, p ) to find the minima with

respect to p. The lower and upper bounds are minimized at p =
1
2

. Since p =
x
n

, then

x =
n
2

, and the inequality becomes:

√

2
nπ e−

18n−1
12n(6n+1) < P (⌊n

2
⌋, 1

2
) <

√

2
nπ e−

1
4n . (4.18)

For large values of n the lower and upper bounds converge. In fact, in (4.17), λnx con-

verge to µnx for all x, including at the discrete points 0 < x < n ∈ N. Thus the minima

for λnx and µnx over the continuous x must also be the minimum for P (x, x/n) over the

discrete x, denoted by P∗ = P (⌊n
2 ⌋, 1

2 ). �

Lemma 5. P (x, p) is unimodal over x and p. A function f (x) is unimodal over x ∈ [a, b]

if there exists a single value x0 such that f (x) is monotonically increasing for x < x0 and

monotonically decreasing for x > x0.

PROOF: To prove unimodality over x, solve the inequality P (x, p) < P (x + 1, p) for x,

which gives us x < np− (1− p). Since 0≤ (1− p) ≤ 1, then x < ⌊np⌋. In other words,

x0 = ⌊np⌋. From P (x, p) > P (x + 1, p) we also conclude x > x0. To prove unimodality

over p:

P ′(x, p) =
∂
∂p

P (x, p) = P (x, p)( x
p
− n−x

1−p
) .

We have calculated that P ′(x, p0) = 0 at p0 =
x
n

. Therefore, p0 is an extremum and a

candidate for a global maximum. Indeed, for p < p0, we can easily show that P ′(x, p) > 0

and vice versa for p > p0, we have P ′(x, p) < 0. �

Corrolary 6. The set ǫ of admissible ǫ is defined by the interval [0, ǭ = P∗].

PROOF: First, recall the definition x̄(p,ǫ) = max{x | P (x, p) ≥ ǫ}. To ensure that x̄(p,ǫ)

is properly defined for all p ∈ P , for each value of p we must have P (x, p) ≥ ǫ for some

x. This condition is trivially met if ǫ ≤ 0 because P (x, p) ≥ 0. However, we are only
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interested in ǫ ≥ 0. If ǫ > P∗ , then P (x, p) lies completely beneath ǫ and the set {x |

P (x, 1
2 )≥ ǫ} = ∅. Consequently, x̄(p, 1

2 ) is invalid. Thus, the set of admissible ǫ is given

by [0, P∗]. �

Consider the equation P (x, p) = ǫ for some n and ǫ. Define the set of all the roots of

this equation by P = {p ∈ P | P (x, p) = ǫ}. The i-th root of this equation is denoted by

pi (x,ǫ) = pi (x) = Pi . From Lemma 5, if we can guarantee ǫ∈ ǫ, then there is at least one

root, i.e., P 6= ∅.

In three special cases, P only contains one root. At x = 0, it is denoted by p0(0) = 0,

and at x = n, by p1(n) = 1. Finally, when ǫ = P∗, at the midpoint xm =⌊n
2 ⌋ the root is

p0(xm) = p1(xm) =
1
2

. In general, however, there are two distinct roots p0(x), p1(x) ∈

[0, 1], with p0(x) <
x
n

< p1(x). If ǫ goes toward 0, then p0(x)→ 0 and p1(x)→ 1, except

p1(0) = 0 and p0(1) = 1. If ǫ goes toward P∗, then p0(x) increases, while p1(x) decreases.

Define the sets P0 and P1, each having the n + 1 values of the first and second roots

p0(x) and p1(x) of P . Each of them corresponds to the n+1 different values of 0≤ x ≤ n.

Using the equation P (x, p) = ǫ, these roots correspond to the sets x0(p) and x1(p), for

0≤ p =
x
n
≤ n.

Lemma 7. The roots p0(x) and p1(x) are non-decreasing functions of x with p0(x) =

p1(x) only at x = 0 and x = n (or x = xm for the case where ǫ= P∗).

PROOF: First, observe that P (x, p) = P (x + 1, p) only has one root at p = p×
=

x+1
n+1

between the maxima of P (x, p) and P (x + 1, p), i.e., x
n

< p×
<

x+1
n

. From lemma 5, this

implies that if p < p× then P (x, p) > P (x + 1, p), and if p > p×, P (x, p) < P (x + 1, p).

Hence, p0(x) ≤ p0(x + 1) and p1(x) ≤ p1(x + 1). Therefore, both p0(x) and p1(x) are

non-decreasing functions of x. �

Theorem 8. For q-SCs and q-ECs, the worst case function values

x̄(p,ǫ) = max x=np {x0(p), x1(p)} are non-decreasing functions of p.

PROOF: First, the maxx function is used because it is possible to have identical values of
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p that solves P (x, p) = ǫ, that correspond to different values of x. In other words, it is

possible to have p0(x) = p0(x′)∈ P0 for x 6= x′, where P (x, p0(x)) = P (x′, p0(x′)) = 0. For

example, if ǫ = 0, p0(0) = · · · = p0(n− 1) = 0. The exact same argument applies to the

roots in the set P1.

It is interesting to note that in our definition of x̄(p,ǫ), we also have used maxx . The

function maxx in x̄(p,ǫ) isolates the largest x satisfying P (x, p)≥ ǫ, while maxx x0(p), x1(p)

isolates the largest x that satisfies P (x, p) = ǫ. Finally, we claim that P (x, p) = ǫ implic-

itly defines a function p(x) that links each value of p to a value of x. The proof for this

theorem then follows directly from the monotonicity of p(x) already proven in Lemma

7. �

Theorem 8, proves that the worst case functions x̄(p,ǫ) of the q-SC and q-EC are non-

decreasing functions of p. Therefore, as we stated before, a network path that minimizes

pπ also minimizes x̄. The constrained AWGN channel also satisfies this due to its defini-

tion of� that directly utilizes x̄.
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FIGURE 4.4 Isocontour profile of x̄ on σ2 versus µ

The previous results are based on the definition of x̄(λi ,ǫ) provided in Equation (4.2).

In Equation (4.3), we provide an alternative definition of x̄(λi ,ǫ) = maxx{x | P (X >
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x,λi ) ≥ ǫ , x ∈M}. In the remainder of this subsection, we shall prove that even with

this alternative definition, the worse case function x̄ is also a non-decreasing function

of its probability density parameters.

Theorem 9. In examples 1–3, the x̄ values defined according to Equation (4.3) are non-

decreasing functions of their respective λs, which means that the path with minimum

λ obtained from the GDA is the path with minimum x̄.

PROOF: Before we prove the theorem, let us find the definition for the W algebra based

on the alternative definition of x̄, which states x̄(λi ,ǫ) = maxx{x | P (X > x,λi )≥ ǫ , x ∈

M}. Let us define a function F as follows:

F (x̄;µ,σ2) = P (X > x;µ,σ2) =
1

2
erfc

(

x̄−µ√
2σ2

)

= ǫ . (4.19)

Since in the above equation F is continuous in x, we can invert the function, solve for x,

and obtain the following expression for x̄ in terms of F :

x̄ = F−1(ǫ;µ,σ2
> 0). (4.20)

From this result, the W algebra is defined as follows:

x̄1⊕ x̄2 = F−1(ǫ;µ1 +µ2,σ2
1 +σ2

2). (4.21)

Once the⊕ operator is defined for the W algebra, we can interpret Figure 4.4. The con-

tour lines are defined by Equation (4.20), and just as before :

λ�λ
′ iff x̄(λ,ǫ)� x̄(λ′,ǫ). (4.22)

This definition of�means that for the constrained AWGN, the theorem is automatically

proven. For q-SC (and q-EC, which is identical) we prove the theorem for by analyzing x̄
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corresponding to the binomial distribution parametrized with λ = (n, p). From [40] we

have:

P (X > x, p) =

n
∑

X=x+1

(

n

X

)

p X (1−p)n−X

= Ip (x + 1, n− x) (4.23)

where Ip (x+1, n−x) is the regularized incomplete Beta function, taking two non-negative

integer arguments. This curious function in turn is defined as the ratio of an incomplete

Beta function Bp (x + 1, n − x) and a regular Beta function B(x + 1, n − x), from which

equation the term “regularized” sounds quite similar to “normalized”:

Ip (x + 1, n− x) =
Bp (x + 1, n− x)

B(x + 1, n− x)

= Bp (x + 1, n− x)× n!

x!(n− x−1)!

= (n− x)

(

n

x

)

∫p

0
t x (1− t )n−x−1 d t . (4.24)

Since n is constant over the network, for each 0≤ x ≤ n, the function Ip (x + 1, n− x)

is really just a function of p. Intuitively, it is obvious that Ip is a non-decreasing function

of p. We can prove this by taking the first derivative with respect to p for fixed n and x:

∂Ip

∂p
= (n− x)

(

n

x

)

∂

∂p

∫p

0
t x (1− t )n−x−1 d t

= (n− x)

(

n

x

)

px (1−p)n−x−1 ≥ 0. (4.25)

The last inequality has to be true because x ≤ n and 0 ≤ p ≤ 1. This means for a given

n and x, as we increase p, the value of P (X > x, p) = Ip (x + 1, n− x) is non-decreasing.

It is important to note that for 0≤ x < n, if p = 0, then the function P (X > x, p) = 0. At

the same time, if p = 1, then P (X > x, p) = 1. For intermediate values of 0 < p < 1, the
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set of values P = {P0, P1, . . . , Pn} of P (X > x, p) at x = 0, 1, . . . , n are non-increasing as x

increases.

Recall the equation that defines x̄ as a function of ǫ and p:

x̄(p,ǫ) = maxx{x | P (X ≥ x, p)≥ ǫ , 0≤ x ≤ n}

This equation partitions the set P into P+
= {Pi | Pi ≥ ǫ, Pi ∈ P}, i.e., the values Pi

greater than ǫ, and its complement P−
= {Pi | Pi < ǫ, Pi ∈ P}. We define the index

setsM+
= {i | Pi ∈ P+, i ∈M} andM−

= {i | Pi ∈ P−, i ∈M}. Then x̄(p,ǫ) is the

maximum value of i ∈M+ borderingM−.

x̄(p,ǫ) = max{i | i ∈M+}

However, from equation (4.25), the values Pi are non-decreasing functions of p (while

simultaneously non-increasing with respect to i for each value of p).

Consequently, as p increases, the cardinality |P+| of P increases. Since |M+|= |P+|,

so does the cardinality ofM+. However, since bothM+ andM− are two contiguous

partitions ofM, this implies x̄ (the maximum element ofM+) must increase as a func-

tion of p. �

By proving Theorems 8 and 9, i.e., by proving that the values of x̄ are non-decreasing

functions of their λs, we can compute the path with minimum worst case error without

using the function ω(·) and the⊕ operator from the W algebra directly. Instead, we can

perform the operations in the B algebra.

4.2.2 Algorithm

In this subsection, we will show how to compute the optimal network path in the pres-

ence of erasure- and error-correcting nodes U by using the GAS-STATION algorithm and

the⊕ and� operators of the B algebra.
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Theorem 10. A path π∗ is the minimum WCE path iff it solves the shortest-path prob-

lem (SPP) given by G ′
= (V ′, E ′), where V ′

= {s} ∪U . An edge connecting two nodes

v1, v2 ∈ V ′ represents the shortest-path in Φ(v1, v2), i.e., E ′
= {argminφ {ω(φ) | φ ∈

Φ(v1, v2)}|v1, v2 ∈V ′ }.

PROOF: Supposeπ∗ contains n+1 segmentsφi connecting the nodes in V ′′
= {s,Uπ∗, d},

where Uπ∗ = U ∩Vπ∗ . In segment notation, π∗ is denoted by s  u1  · · · u j  d ,

with {ui}= Uπ∗ , and 0≤ j ≤ |U |. Then φi must be the shortest feasible paths between

adjacent nodes in V ′′, and Uπ∗ must be the set that minimizes
∑

β(φi ). Otherwise, a

better path ξ∗ can be obtained by modifying φi or Uπ∗ , contradicting the claim that π∗

is optimal.

For the forward proof, note that V ′′
= {s, d ,Uπ∗} ⊆ V ′. Further, since each φi is a

shortest-path between nodes in V ′, then it has a representation in E ′, i.e., φi ∈ E ′. There-

fore π∗ is the solution to the SPP given by G ′
= (V ′, E ′).

For the reverse proof, suppose ξ∗ is the SPP solution but is not the minimum x̄ path

π∗. From the forward proof, if π∗ minimizes x̄, then it also solves the SPP, thus ω(π∗)≤

ω(ξ∗). However, if ω(π∗) < ω(ξ∗), then ξ∗ is not the SPP solution. This is obviously a

contradiction to our original assumptions. Hence, ω(π∗) = ω(ξ∗), and if path lengths are

unique, π∗
= ξ∗. Thus, the SPP solution π∗ is also the minimum x̄ path. �

Theorem 10 essentially proves the correctness of the optimal worst-case routing algo-

rithm listed below. This algorithm is exactly the GAS STATION algorithm we discussed

before. Although in this section x̄ is linked to the worst-case value of x for the con-

strained AWGN channel, other worst-case metrics can be used.

1: procedure GAS STATION (G , m , s)

2: E \= { e ∈ E |ω(e) > xmax }

3: V \= { v ∈V | deg(v) = 0 }

4: for v1 ∈ V ′ do
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5: SP1 = GDA ( G , m , v1 )

6: for v2 ∈V ′ 6= v1 do

7: E ′
= E ′∪〈v1, v2〉

8: end for

9: end for

10: E ′ \= { e ′ = (v1, v2)∈ E ′ | e ′ 6∈Φ(v1, v2) }

11: V ′ \= { v ′ ∈V ′ | deg(v ′) = 0 }

12: SP2 = GDA ( G ′ , m , s )

13: end procedure

Hence, to find the minimum WCE path we first compute the minimum WCE path for

each pair of nodes in V ′. These minimum paths are then converted into edges in E ′,

connecting the nodes in V ′. The overall minimum WCE path is then computed from

these edges using the GDA.

On lines 2 and 3, the algorithm prunes all infeasible edges. Then, on line 5, it runs the

GDA on all v1 ∈ V ′, every time producing a shortest-path tree SP1 rooted at v1. On line

7, the edges connecting v1 and v2 ∈V ′ are added into E ′ based on SP1. This finishes the

first stage and starts the second stage. On lines 8 and 9, the infeasible edges in E ′ are

pruned, and any isolated nodes in V ′ are removed. On line 10, π∗ is finally calculated

using GDA. �

Let us denote |V ′| by α. The first stage produces a complete graph with α nodes and

α(α− 1) directed edges by executing the GDA α times on line 5, and thus has a time

complexity of O(αV 2) (if the GDA is implemented using Fibonacci heap, then its com-

plexity could reach O(V logV + E ) [4]). Lines 8 and 9 search linearly over them with

O(α2) time complexity. The GDA on line 10 has a time complexity O(α2). Hence, overall

time complexity can be bounded by O(αV 2
+α2), or conservatively, O(V 3).
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4.2.3 Conclusion

In this section, we consider the problem of finding the path with minimum (or zero)

worst possible number of erasures in mission-critical communication networks. We

make the assumptions that some network nodes are capable of correcting up to a maxi-

mum number of xmax erasures in a block of n symbols, and that the nodes are connected

by edges that represent probability density parameters from important channel models.

We introduce the Worst-Case Erasure (WCE) metric and an accompanying algebra

that allows us to compute the path WCE length from its edge lengths. The metric-algebra

pair is then used to optimize the network QoS in the WCE metric using a Generalized

Dijkstra’s algorithm in the worst-case time complexity of O(V 3), where V is the number

of nodes in the network.

We provide three examples where the links are modeled as q-ary symmetric channels,

q-ary erasure channels, and nonnegative mean AWGN channels, each with its own edge

metric that is nothing more than the parameters of its transmission failure probability

density.

By letting the metric be density parameters, we compute any path length by an ap-

propriate combination of its edge lengths according to the laws of probability, thus fully

preserving the stochastic nature of the routing problem (instead of simply reducing the

stochastic edge weights to proxy deterministic values). For a given level of “possibility

threshold” ǫ, each edge density corresponds to a unique worst case value x̄. We showed

that edge worst case value can be combined into path worst case values, and that the

minimum x̄∗ of such values over a network can be computed using the GDA.

The pair x̄∗ and ǫ allow us to compare the worst-case network routing performance.

Given a constant benchmark worst-case value x̄ for all the networks {Gi} under evalua-

tion, we can solve for the ǫi value for each network Gi . The network G∗ with the lowest

value of ǫ∗ is the network with the best worst-case routing performance.

Alternatively, the ǫ value can be fixed for all the networks {Gi} under evaluation. The
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worst-case values x̄i can then be compared among these networks to select the network

G∗ with the best worst-case performance, i.e., the smallest failure rate x̄i among all the

networks Gi .

Future research can explore the issues of (1) whether the approach outlined in this

paper can be generalized to other types of distributions and scenarios, (2) the incorpo-

ration of the algorithm presented here into existing networking protocols, as well as (3)

simulation and experimental verification of the algorithm on standard network models.

Another interesting application would be to use the worst-case performance evaluation

method on actual or planned mission-critical sensor network projects.
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5
Message-Passing Algorithms in Network Routing

HE most ubiquitous interior network routing protocols on the Internet are

the Open Shortest Path First (OSPF) and the Optimized Link State Routing

(OLSR). Both use Dijkstra’s shortest-path algorithm (DA) to compute the best path for

unicast communication between a pair of source and destination nodes within an au-

tonomous system (AS), which is defined as a federation of computers (routers) managed

under a common administrative authority.

Both protocols assume that all routers have identical copies of the complete routing

table that describes the network topology and network link cost. Since the Internet is

a dynamic network with links that change over time, the routers keep their routing ta-

bles synchronized by using message-passing algorithms that “flood” the network with

identical copies of the routing table.

In the first section, we discuss the tasks of identifying the set of assumptions that guar-

antees message synchronization between a pair of nodes in a network where flooding is

used and where connectivity changes are asynchronous. We call this problem the Highly

Dynamic Network problem.

Next, we generalize the flooding algorithm by using a different model of uncertainty.

Network nodes propagate information by sending “messengers” to their neighbors. Each
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messenger randomly chooses which neighbor to visit, and in turn each node counts the

number of visiting messengers. If the number is greater than a threshold, more messen-

gers are sent, and so on. The problem is to identify the set of conditions under which

an accurate message synchronization is met. We call this problem the Chinese Generals

Problem.

In the final section, we discuss how threshold-based message passing algorithms can

be used for decoding generalized LDPC codes that does not utilize linear finite field alge-

braic operators, but instead integer threshold functions for error detection and correc-

tion. As an example, we cast the Sudoku puzzle as a generalized LDPC code and present

a recursive algorithm to decode it. The threshold function can be applied to other types

of codes.
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5.1 HIGHLY DYNAMIC NETWORKS

Message-passing algorithms are among the most important network communication

algorithms. Over the years, a wide variety of message-passing algorithms have been in-

vented for different types of communication networks [1–10]. Here, we focus on message-

passing algorithms for “mobile” networks.

First, let us define what we mean by “mobile”. Each node and link in a communication

network is associated with (or assigned to) a specific combination of operating parame-

ters that may include physical location, frequency, antenna direction, transceiver power,

etc. Each unique combination in turn corresponds to a specific coordinate in a multidi-

mensional parameter space.

V (t)

d

v0

V (t ’)

d

v0

È È

FIGURE 5.1 Change in network topology and parameter space coordinates

During its operation, the parameters of a particular node (or link) do not stay constant.

For example, battery power fluctuates or decreases over time; different frequency bands

are used to reduce interference; noise increases, etc. These changes move the node (or

link) to a new coordinate in the parameter space. A “mobile” network is defined as a

network containing nodes and links whose coordinates in the parameter space vary as
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functions of time.

Conceptually, mobile networks are very closely related to dynamic networks. A dy-

namic network is defined as a network that has a time-varying topology. Changes in

node and link operating parameters can lead to changes in the network topology, and

any change in network topology must be due to a change in the operating parameter(s)

of the related node(s) or link(s). For example, Figure 5.1 shows a change in the network

topology and the corresponding change of the node coordinates in the two dimensional

parameter space. In this sense, the network as a whole has also “moved”.

In practice, mobile networks are also most commonly implemented as wireless net-

works. Therefore, in this section we use the terms mobile network, dynamic network,

and wireless network interchangeably. In addition, since communication networks are

abstractly represented by graphs, the terms edge and link are also used interchangeably.

Dynamic networks include a vast and diverse spectrum of networks with different

node and edge mobility models. On one extreme of the spectrum, we have the static

network mobility model. In this mobility model, communication nodes and links move

so slowly in the parameter space that they are often considered to be constant. On the

other extreme of the spectrum, we have various stochastic network mobility models. In

these models, communication nodes and links move almost unpredictably. The only

reasonable way to describe a network’s motion is in terms of its stochastic parameters.

We define the highly dynamic network (HDN) as a mobility model that lies somewhere

between these extremes, and patterned after the model presented in [1]. Just like other

mobility models, the HDN is also defined by a set of assumptions, which we shall de-

scribe in detail later in this section. Of interest to us is what we call the highly dynamic

network problem: Is there a reliable message-passing algorithm for a HDN with node

and edge mobility?

The terms node mobility and edge mobility are defined as the range of ability over

which nodes and links can enter and leave the network and modify the topology. We
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call a node (or an edge) a mobile or a dynamic node if it has node mobility, otherwise,

it is fixed. A reliable algorithm guarantees that a message from the source reaches the

destination nodes in a polynomially bounded time period, i.e., it satisfies the correctness

and termination criteria.

Previous mobility models defined in [2, 3, 5, 6, 8, 9] use different sets of assumptions

that are more restricted than the set of assumptions we use here to define the HDN. In

general, message-passing algorithms defined in those papers work only if the accompa-

nying assumptions are also met. Many of these assumptions are too restrictive for us,

but the COUNTERFLOODING ALGORITHM (CFA) found in [1] has many useful features for

our HDN problem.

The CFA requires the network to have full connectivity at all time, and limits the rate

of change in coordinate of any of its nodes and edges from exceeding a prespecified

maximum speed of message transmission. In addition, it is guaranteed to work only in

networks with dynamic edges and fixed nodes. In contrast, the HDN features dynamic

nodes and dynamic edges. The good news is that we found a way to extend the CFA to

solve the HDN Problem.

The approach to our solution is as follows. First, we provide an alternative proof to the

CFA. In our proof, we relax the various assumptions used in the CFA. Most importantly

we remove the stringent requirement that forces the network to stay connected at all

times. Second, we prove the correctness and termination of our extended algorithm for

the HDN.

The theoretical results from this section prove that the explicit set of assumptions

used in defining the HDN is also required to guarantee correctness and termination

of the modified flooding algorithm based on the CFA. This complements the results

from [7, 10], which report empirical success of the flooding algorithms called probabilis-

tic routing and epidemic routing in the intermittently connected network models similar

to the model used in [1].
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5.1.1 Formulation

Consider a set V that contains all the network nodes. In practice, the number of nodes

|V | might only be known up to an upper bound V̄ . For wireless networks, each node

could represent a wireless device that is characterized by a generalized coordinate spec-

ifying the device’s identity, physical location, antenna directivity, transceiver power, pro-

tocol, etc. These dynamic nodes are allowed to “move” in their generalized coordinate

space. As a result of this movement, the network itself is changing.

V (t)
d

v0

V

E(t)

FIGURE 5.2 The sets V , V (t ), and E (t )

Denote by v0 the “source” node from which information (or message) is assumed to

be generated, and by Vd the set of all destination nodes d . Denote by V (t ) or Vt the

subset of V containing all non-isolated nodes in V — those nodes with degree greater

than zero — at a given time t . The nodes v1 and v2 ∈ V (t ) are connected at time t if a

hypothetical message with infinite speed launched from either node at time t can reach

the other. Lack of connection between two nodes may be due to incompatible protocol,

path obstruction, insufficient power, internal filtering, or signal masking.

The connectivity between two nodes v1 and v2 at time t is represented by an edge

e(1, 2, t ), also denoted by e12(t ), e(t ), or simply e . Denote by E , Et , or E (t ) the set of all

edges e at time t , and by N (v, t ) the set of all neighboring nodes to v at time t . At any

given time t , the network is represented by a graph G that consists of nodes V (t ) and

edges E (t ). We can also denote G by G(t ), and G(Vt , Et ). Figure 5.2 shows the sets V ,
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V (t ), and E (t ) for G(t ).

We can also think of the network represented by a graph G(t ) as a dynamic system —

not to be confused with dynamical system — with the nodes and edges playing the role

of its “moving parts.” From the two types of moving parts, G(t ) produces two types of

discrete events:

(a) The connectivity-driven events c = c(v, t ) are generated (and received) by the node

set v whenever they gain or lose edges. For now, let us assume that connectivity

change related to v can be detected instantaneously. The realistic case with delay

is discussed later. Denote by Cv = { t | N (v, t−ǫ) 6= N (v, t +ǫ) } the set of all events

c(v, t ) at a given v . Thus, Cv contains all local vertex events occuring at v . The set

C =
⋃

v Cv then denotes the global set of network events. The “creation” event of

G(t ) is formally denoted by the set c(v, 0).

(b) The message-driven events m(v, t ) are triggered at v when a new message m from

v ′ 6= v is received, where it is understood that v ′ ∈ N (v, t ′ < t ), which implies a

finite message propagation time. In (a), nodes are described as network moving

parts by virtue of their ability to move in and out of the network. Messages are also

network moving parts in a sense that they have the ability to move between the

nodes in G . Denote by Mv the set of all events m(v, t ) at v , and by M =
⋃

v Mv the

global set of message-driven events.

The preceding discussion establishes that G(t ) consists of two major groups of dy-

namic components: V (t ) and E (t ). In turn, the set V (t ) itself consists of two comple-

mentary sets. The first set contains all nodes that are already visited by (and thus have

stored) the message from the source node. Let us denote this set by V•(t ). The second

set contains all nodes that have not yet been visited by, and thus are still waiting for the

message from the source node. This set is denoted by V◦(t ). The two sets are shown in

Figure 5.3. Obviously, at t = 0, V•(0) = {v0}, and V◦(0) = V \{v0}.
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V

V (t)

V (t)

FIGURE 5.3 The sets V•(t ) and V◦(t )

Depending on whether a node v is in V•(t ) or V◦(t ), it processes the incoming events

using either one of the following schemes. If the event is a connectivity-driven, i.e., the

event is in c(v, t ), then the node v ∈ V•(t ) will retransmit the message m that is already

in its memory to its neighbors N (v, t ). On the other hand, if the event is message-driven,

i.e., the event is in m(v, t ), then v will retransmit m to N (v, t ), and stores m in its own

memory. When v ∈ V•(t ) leaves the network at some time t > t ′, that is, v 6∈ V (t ′ > t ),

the message m stays in v ’s memory: v ∈ V•(t ′).

With this scheme, a message m from the source node v0 would “flood” the network

and reach other nodes, including the destination nodes d ∈ Vd . The eventual arrival of

m at Vd depends on: (a) the separation between d ∈ Vd and v0 in terms of time, (b) the

rate at which both E (t ) and V (t ) are changing, and (c) the speed at which m travels from

v ′ ∈ V (t ) to N (v ′, t ).

To ensure arrival of m at Vd within a finite amount of time, we need to impose certain

restrictions on G(t ). These restrictions will also play the role as the correctness and ter-

mination criteria for a reliable message-passing algorithm on a dynamic network. Let

us begin with the assumptions required by the CFA before discussing the assumptions

used by the HDN:

1. Edge mobility is supported, but not node mobility, i.e., V (t ) = V ,

2. E (t ) is such that G(t ) stays fully connected at all times,



109

3. Any change ∆E (t ) in E (t ) will instantaneously trigger connectivity-driven events

at all the nodes affected,

4. Adjacent nodes can pass messages to each other in less than τ,

5. Two consecutive events in Cv are separated in time by at least τ,

6. Nodes always store the messages they receive, and

7. Nodes know the value of V̄ .

For the HDN, assumptions 4, 5, and 7 remain the same, but the other assumptions are

relaxed, and assumption 6 is made explicit:

1. Both node and edge mobility are supported

2. E (t ) is such that each node d in Vd stays connected to at least one node in V•(t ) at

all times,

3. Events in Cv may be delayed from their corresponding ∆E (t ),

4. Adjacent nodes can pass messages t each other in less than τ,

5. Two consecutive events in Cv are separated by at least max(τ,τc),

6. Nodes always store the messages they receive for at least τm , and

7. Nodes know the value of V̄

The HDN assumption 3 generalizes that of the CFAs by introducing a delay between the

actual connectivity change ∆E (t ) and its corresponding event c(v, t ). Without this delay,

a node needs to continuously broadcast its presence, resulting in poor energy efficiency.

We assume that the nodes beacon their presence periodically every τc . This signal can

be used to detect disconnections. In subsection 5.1.2, we will also derive the minimum

message retention time τm required for reliable message-passing.

To prevent uncontrolled and unterminated message replication, the receiving node

masks the incoming beacon signal if it comes from a neighboring node that already sent

the same message, which implies an additional memory requirement in the order of V̄ .

Also note that, HDN assumption 5 is different from that of the CFAs due to the detection

delay.
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5.1.2 The COUNTER FLOODING Algorithm

We will first describe, and then prove that the CFA is a reliable algorithm that can also

solve our HDN problem. On page 108, we have begun the discussion — in a narrative

form — of the flooding behavior of the CFA that depends on the trigger event. We have

not discussed the counter variable k that is used to control the extent of message prop-

agation. This is included in the full listing of the CFA provided below:

1: if message m(v, t ) is received for the first time then

2: Broadcast message m

3: k← 0

4: end if

5: if event c(v, t ) is received then

6: if k < 2V̄ then

7: Broadcast message m

8: k← k + 1

9: end if

10: end if

We then have proven that when the CFA is run under the HDN assumptions, the num-

ber of nodes visited by the message at time t +2τ is always strictly larger (by at least one

node) than the number of nodes with message at t , as long as there is at least one desti-

nation node without the message.

Lemma 11. |V•(t + 2τ)|> |V•(t )|when Vd ∩V◦(t ) 6= ∅.

PROOF: Consider one of the destination nodes d ∈ Vd . Denote by V•(d , t ) all nodes in

V•(t ) connected (not necessarily directly) to d . By assumption 2, there must be at least

one such node: V•(d , t ) 6= ∅ at all time t . Refer to Figure 5.4. Assumption 2 also implies

that as long as d ∈ V◦(t ), there must be at least one node u ∈ V•(d , t ) that is adjacent

to some nodes v ∈ V◦(t ) (to see why this is true, just set v = d ). Denote by V◦(d , t ) all
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such adjacent nodes in V◦(t ). Members of V•(d , t ) and V◦(d , t ) are marked by ↑ and ↓,

respectively.

Denote by E (d , t ) the set of all edges connecting the nodes u ∈ V•(d , t ) to the nodes

v ∈ V◦(d , t ). In the Figure, these edges cross the dot-dashed line. Consider e ∈ E (d , t )

connecting u and v . Two types of events trigger a message transmission from u to v :

(a) when u detects the presence of v at time tc , the event c(u, tc ) ∈Cu is generated, and

(b) when a new message m reaches u at time tm and converts u into the set V•(d , tm ),

the event m(u, tm) is generated. If a message has been previously received, no event is

generated.

↑

↓

V

V (t)

V (t)

V (t)
d

v0

d

Vd

↓

↓

↑

FIGURE 5.4 V•(d , t )(↑), V◦(d , t )(↓), E (d , t ), and Vd

Now, we will attempt to analyze the relationship between t , tm , and tc . We know that

the two nodes u and v are already connected at time t , so tc < t . Further, since u ∈

V•(d , t ) at time t , the message must have already arrived at u before t , which means

tm < t . However, clearly we can only have either tm < tc or tc < tm , as shown in Figure

5.5.
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tmtc t

ttm tc

↑

↓

V (t)
d

v0

d

Vd

↓

↓

↑

FIGURE 5.5 Two possible orders between t , tc , and tm

In the first case of tm < tc , the connection is established after u already receives and

stores the message, while in the second case of tc < tm , the message arrives after con-

nection between u and v is established. In both cases, the message m is transmitted

from u to v at time max(tm , tc ). Let us consider these two mutually exclusive cases:

(a) If the message is transmitted at tc , then by assumption 4 of HDN, the message must

reach v before tc + τ. Next, by assumption 5, we can guarantee that up to time tc + τ:

(i) the connection e established at time tc cannot be broken, and (ii) the node v cannot

leave the network. Otherwise, either one of these will produce an event in Cu less than

τ apart from the previous event. Therefore, at tc +τ, the node v can be guaranteed to be

in V•.

Let us set τm in assumption 6 to a very large number for now, in effect retaining the

message m indefinitely at the nodes that have received it. Consequently, at t + 2τ, the

node v is still in V•. If the case we just described — that the message is transmitted at tc

— is true for at least one edge e (and a terminal node v), then at t + 2τ, the set V• grows

by one node, and V◦ shrinks by one node compared to their sizes at t .
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(b) If the message is transmitted at tm, then the situation is more complicated to prove.

During the maximum transit time τ required by m to reach v from u, the edge e might

disconnect itself; or, the target node v itself might leave the network before it receives

the message. In fact, these events might take place sometime at td even before tm , which

means tc < td < tm < t !

We invoke assumption 2 to prove that such a failure cannot happen on all the edges

in E (d , t ). If failure does not occur on the edge e , then again by assuming a large τm , a

successful message transmission on e must increase the size of V• by one, and decrease

the size of V◦ by one at tm + 2τ.

To prove this claim, consider the separate timelines shown in Figure 5.6, one for each

edge in E (d , t ), all aligned with marks placed at time t . A message traveling along an

edge e is represented by an interval [tm , tm +τ] that is placed on the timeline such that

tm ≤ t ≤ tm+τ. Since several edges may originate from the same node and thus have the

same tm , some intervals may occupy identical horizontal locations on their timelines.

t

tm

t + τ

FIGURE 5.6 The timelines for E (t ) showing transit and dead regions

For a particular edge e ∈ E (d , t ), let td denote the time when either e disconnects,

or v leaves the network. Since e exists at t , then td > t . If t ≤ td < tm + τ, then the

message fails to reach v . For ∀e ∈ E (d , t ), call the region [td , td + τ] the dead region

d(e, td ). Again, since several edges may head toward the same node and as a resullt have
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the same disconnection time td , some of these dead regions may occupy identical time

regions.

Select two of the timelines with the maximum and minimum values of tm , denoted by

tm by tm
∗ and tm∗, along with the associated intervals. The two intervals must overlap

because they both contain t , otherwise it will contradict the original assumption that

all intervals are aligned at time t . Next, if these two extreme intervals overlap, then the

other non-extreme intervals with tm obeying tm∗ < tm < tm
∗ must also overlap with at

least one of them.

Suppose dead regions exist in all the intervals. Using the above argument, then the

dead regions of the maximum and minimum intervals must also overlap because both

of them must contain the time marker t+τ. Just as before, we claim that the dead regions

of all intervals must also then overlap at t+τ. But this means that the nodes in V•(d , t+τ)

are completely disconnected from those nodes in V◦(d , t + τ). Since at least one of the

destination nodes must be in V◦(d , t +τ), this contradicts assumption 2.

Therefore, to preserve connectivity, there must be at least one interval without a dead

region. A message m successfully transmitted along the edge associated with this inter-

val will convert one node v from V◦ into V• sometime between the edge’s tm and tm +τ.

Assuming a large τm as before, at t + 2τ, v remains in V•. This implies that the set V•

grows by one node, and the set V◦ shrinks by one node from their original sizes at time

t .

So far, we have been assuming that d ∈ Vd is part of V◦(t ). These destination nodes

are separated from the nodes u ∈ V•(d , t ) by zero or more nodes v ∈ V◦(d , t ). For now,

assume that d 6∈ V◦(d , t ). At least one of the nodes in V◦(d , t ) must remain connected

to V•(d , t ) to satisfy assumption 2. Consequently, one of the nodes in V◦(d , t ) then joins

V•(d , t +2τ) at a later time. This proves that |V•(d , t +2τ)|> |V•(d , t )|when d ∈ V◦(d , t ).

This process is repeated until d ∈V◦(d , t ) (or equivalently, until N (d , t )∩V•(d , t ) 6= ∅).

When d ∈ V◦(d , t ), then it will have received a message from a node in V•(d , t ) at t + 2τ.
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Once d ∈ V•(t ), then one of its neighbors n ∈ N (d , t ) are also in V•(t ) and assumption 2

is automatically met. Consequently, the remaining nodes in V◦(t ) may or may not be in

contact with the other nodes in V•(t ). This proves that |V•(d , t + 2τ)| ≥ |V•(d , t )| when

d ∈ V•(t ).

Imagine the same process happening in parallel to all the destination nodes in Vd as

shown in Figure 5.7. Nodes in V•(t ) may leave V (t ) and become isolated, but when they

re-enter the network at t ′ > t , they will be in V•(t ′). The nodes in V◦(t ) is converted to

V•(t + 2τ) one by one.

V

V (t)

V (t)

V (t)
dv0 d

Vd

FIGURE 5.7 The arrows indicate allowable transitions of the network nodes in the sets V◦(t ),

V•(t ), V (t ), and V \V (t ) for HDN.

The arrows in Figure 5.7 indicate these transitions. Since |V | is finite, the entire Vd is

guaranteed to ultimately join V• at some time t∗, at which point V•(t > t∗) may or may

not grow further. We have proved Lemma 11. �

Having proven the preceding Lemma 11, we now prove that the CFA is a solution to the

HDN problem. The algorithm requires one input V̄ and intercepts two types of events:

the connectivity-driven events c(v, t ) and the message-driven events m(v, t ). When the

message is first received at v , the counter k is reset to 0, and the message is retrans-
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mitted to N (v, t ). If v is notified of a neighborhood change with the arrival of c(v, t ), it

increments the counter k by one until it reaches the maximum 2V̄ .

Theorem 12. The CFA solves the HDN problem in less than 2τ V̄ time unit.

To prove that the CFA is a solution to the HDN problem, we have to prove two things.

First, we have to prove that a message sent from the source using the CFA under the HDN

assumption is guaranteed to reach the destination nodes. However, this was already

proved in Lemma 11. The counter k is used to ensure that the CFA does not broadcast

after termination.

Second, we have to prove that the CFA ends in finite time. Consider one destination

node d . In the worst case scenario, |V•(t )| is equal to 1 at t = 0 (where V•(0) contains only

the source v0 ), is equal to 2 at t = 1, is equal to 3 at t = 2, and so on, up to t = 2τ (V̄ −1)

where |V•(t )|= |V | ≤ V̄ . Therefore, we can say that by t = 2τ V̄ , the message has reached

the destination nodes. In other words, the CFA terminates in less than 2τ V̄ time unit. �

The CFA can also be extended to support multiple messages simultaneously. From

the listing, we can see that if the simple counter k is converted into an array km indexed

by the message, then it terminates after all km = V̄ .

So far, we assume a large value of message retention time τm to ensure that when a

node in V•(t ) leaves V (t ), it returns into V•(t ′) some time t ′ > t later. However, while

these nodes need to pass many messages over its lifetime, realistically, most HDN nodes

only have a limited amount of storage which also stores N (v, t ) used to detect c(v, t ).

Therefore, the nodes cannot keep their messages indefinitely — a large value of τm .

From Theorem 12, if the nodes have access to a synchronized network clock, then they

need to keep only messages 2τ V̄ and younger (relative to the origination timestamps).

Otherwise, messages 4τ V̄ and younger (relative to the local receipt time) are needed.

There are other flooding and routing algorithms in [1] that use slightly modified as-

sumptions. For example, the LIST FLOODING algorithm (LFA) does not assume that V̄ is

available. Instead, it assumes that the nodes have unique identifiers used to estimate V̄ .
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Since these algorithms also use the CFA as their main ingredient, they too can be eas-

ily extended using Lemma 11 to solve the modified HDN problems. Thus, we omit this

derivation.

Finally, we observe that the connectivity assumption of a HDN can be relaxed even

further without affecting the reliability of the CFA! Assumption 2 can be restated as: E (t )

is such that at any time t , there is at least one connection between one node in V◦(t ) and

another node in V•(t ).

The proof of this assertion is quite simple and sketched as follows. By requiring that at

least one node in V◦(t ) is connected to a node in V•(t ) at all times, we can use the same

argument as in Lemma 11 and state that |V•(d , t + 2τ)| ≥ |V•(d , t )|. Since the number

of nodes in V is finite, eventually d will be connected to a node in V•. In the worst case

scenario, the nodes in Vd are the last nodes to receive the message, implying an identical

upper bound.

5.2 THE CHINESE GENERALS PROBLEM

A sensor network is built from a large number of sensor nodes distributed over an area

where measurement of a specific phenomena or detection of a particular event is de-

sired [12, 13]. Such a network is radically different from traditional networks in that its

performance is largely determined by the density of its sensor nodes rather than their

precise locations and interconnection topology. For this reason, sensor networks are

often deployed in environmentally hostile areas where precise placement and configu-

ration is prohibitively difficult. Operating in such areas, a sensor network is expected to

experience a higher rate of node and link failures.

To successfully integrate any sensor network into a mission-critical detection and de-

cision system, a designer needs to devise a mechanism that effectively addresses and

mitigates these failures. For simplicity, in this section we restrict our discussion to bi-
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nary detection and decision systems.

In a binary detection system, all sensor nodes collectively attempt to ascertain the ex-

istence or absence of a particular event of common interest. In a binary decision system,

measurement results from all sensor nodes are used to decide between two possible

course of actions. Naturally, since the sensors may have different positions, operating

environment, and operating parameters, they may end up with different conclusions

on whether or not an event is detected, and if it is, on the most appropriate decision to

make.

In one extreme scenario, the entire network delegates the decision-making task to a

single control node, which may or may not be a sensor node. Although appealing in its

simplicity, this delegation effectively negates any desirable fault-tolerant properties that

are inherent to sensor networks. Using this approach, the control node now becomes

essentially a single point of failure of the entire network in several different ways.

First, either the node has to gather measurement results from all the sensor nodes, or

all the sensor nodes have to reach the control node to transfer the measurement results.

Second, even if we assume that all measurement results successfully reach the control

node, they may not be all in agreement with one another. To reconcile the disagreement,

the control node has to administer a (majority) voting procedure, which itself is also

subject to failure, before finally committing to a decision.

Following the arguments in [14], we can say that if the control node is intended to

be the one and only consumer of information produced by the sensor nodes, i.e., no

other process or system relies on the control node’s output, then from its point of view,

the only relevant vulnerabilities are those related to routing and communication from

the sensor nodes. However, if the control node affects other upstream processes, or if

the network employs many control nodes for robustness, then processes at each control

node become single-point network points of failure and sources for discrepancies.

The solution is to implement a distributed voting mechanism where every sensor node
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in the system aggregates information from its neighboring nodes, administers a local

voting procedure, and waits for the next round of information gathering. First intro-

duced by Lamport in 1982, the Byzantine Generals Problem [11] (BGP) addresses this

need of redistributing the voting process. A Byzantine agreement is reached when all

operational sensor nodes agree on a common detection or an identical decision. At this

stage, all operational sensor nodes carry the same information, and any upstream pro-

cess can gather this information by sampling from any one of them.

Distributed voting cannot be used in systems that measure and choose their values

from the set of real numbers. Sensor networks in such systems use a distributed av-

eraging mechanism to combine local information in the presence of noise, delay, and

unstable topology [15–19].

As an alternative to voting and averaging, we propose a new aggregation mechanism

based on thresholding. Although in this section we only analyze binary threshold func-

tions, the concepts and techniques introduced herein can be extended to threshold

functions operating on real numbers.

This section is organized as follows. In this subsection the Byzantine Generals Prob-

lem (BGP) and one of its relevant variants are reviewed and compared to the proposed

Chinese General Problem (CGP). In our attempt to clarify the notations and concepts of

the CGP, we provide a detailed example in subsection 5.2.1. This example is then used

as the foundation on which we present our main results in subsection 5.2.2.

In their seminal 1982 paper, Lamport et al. [11] introduced and analyzed the prob-

lem of reliable message synchronization in an otherwise unreliable distributed system,

presented abstractly in terms of a group of Albanian Generals attempting to coordinate

a synchronized action using messengers, and in the presence of treacherous generals

amongst them.

To obtain the impossibility theorem and other results in their paper, the problem is re-

duced into the one involving three Byzantine Generals, each of which represents an en-
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semble of Albanian generals and possibly some traitors. This reduced problem is called

the Byzantine Generals Problem.

Since its introduction, the problem has been studied by many researchers in the area

of fault-tolerant distributed computation [20–28]. However, this class of problem is also

relevant for communication systems with messages from multiple sources that need to

be synchronized over a dynamic network.

From a large number of BGP variants that have been developed since, two variants are

relevant to our paper. Wang et al. [20] and Babaoglu et al. [21, 22] generalized the BGP

by not requiring a full network connectivity and by modifying the definition of a faulty

component, respectively. In this paper, we further extend the BGP in the same directions

as the previous two generalizations by relaxing even more assumptions.

Before discussing our generalization to the BGP, perhaps it is beneficial to first discuss

what the BGP really is. Using the summary from [20], we can state that the BGP assumes

the following: (1) there are S generals of which at most F generals may either maliciously

or inadvertently change the received message before passing the message to the other

generals; (2) all generals have direct access to each other through the use of messengers,

i.e., the communication network is fully connected; (3) the sender can be identified from

either the message or the messenger; (4) there is one commanding general who broad-

casts an initial message v0 in the beginning of the campaign and finally, (5) messages

are modified only by the generals, but not by their messengers. The BGP is solved by

developing optimal algorithms that can achieve the so-called Byzantine agreement (BA):

(BA1) All loyal generals agree on a common message v , and (BA2) if the commanding

general is loyal, then v should be identical to the initial message v0. In its original form,

the BGP considers asynchronous communication between the generals.

The algorithm proven in [20] does not assume a fully connected network. This is a

significant result, as otherwise the network has to suffer a quadratic growth in the num-

ber of communication resources (I/O equipments, frequency, etc.) to guarantee that it
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can achieve a BA. Babaoglu extended the BGP by providing specific failure modes that

include crash and omission.

Crash is just another word for a permanent failure: once a general enters the crash

mode, it can no longer send out its messengers to the other generals. In contrast, omis-

sion is just a temporary failure. A general ignores all the message it receives during the

omission period, but continues to behave normally after the omission period is over.

Having described the BGP, we are ready to discuss our extensions. Using the next let-

ter in the alphabet (after Albanian and Byzantine), we choose to call our extended prob-

lem the Chinese Generals Problem (CGP). First, some comments are due with regard to

the similarities between the CGP and its superclass, the BGP. Both problems can be ab-

stractly described as the problem faced by a team of generals who plan to commit a syn-

chronized action by communicating via messengers. As such, solving the BGP and the

CGP both involve developing an algorithm satisfying (BA1) and (BA2). Now we discuss

the main differences between the two.

Here, we introduce a preliminary version of the CGP that requires a synchronous com-

munication (messenger) service among generals whose output is determined only by

the current input. Consequently, in terms of synchronicity, the CGP is more stringent

than the BGP because each message has to leave the sender and arrive at the destina-

tion within one clock cycle. The nodes can be “synchronized” by flooding an initializa-

tion message. If one clock cycle is much longer than the propagation time, the generals

can achieve synchronous operation by delaying the message by one cycle.

Apart from this real difference, an apparent difference comes from our conscious ef-

fort to restrict our analysis of the CGP to systems that exclusively use binary messages.

While at first this might hint at a severe limitation of the CGP, Turpin and Coan [29]

showed that BA can be reached in systems operating on multivalue messages that can

be represented by k bits by running the appropriate binary BA algorithm k times.



122

The Chinese General Problem

Consider a group of Chinese Generals Gi ∈ G, i = 0 . . . S. At any given time t , the

two possible actions they can take are labeled A0 and A1. Denote by G1(t ) the group of

generals who choose A1 at time t ∈ N, and by K (t ) the number of such generals. The

generals reach a consensus on A1 if and only if there exists a certain time τ after which

the number of generals in G1(t ) is very large, or K (t )≈ S. Likewise, consensus on A0 is

reached if and only if after τ the number of generals in G1(t ) is negligible, or K (t )≈ 0.

The CGP asks whether consensus among the generals is possible with the given algo-

rithm described below, and if so, under what condition.

At t = 0, each general Gi produces a binary message bit vi (t ) to indicate whether they

choose A0 or A1. If vi (t ) = 1, then Gi dispatches M indistinguishable messengers to

γ other generals G j ∈ Γ(Gi ). The function Γ allows us to construct an γ-regular graph

G where G is the vertex set of G , and {Ei j} the set of edges of G connecting Gi to G j

whenever G j ∈ Γ(Gi ). Let Li (t ) be the number of messengers arriving at Gi at t . The

update rule for vi (t ) is:

vi (t + 1) = V (Li (t )) = 1 iff Li (t )≥ T. (5.1)

Let us call T and V the threshold value and the threshold function, respectively. In this

problem, the messenger is also allowed to not reach any of the γ generals and instead

return to the originating general. Each messenger chooses the γ+ 1 destinations with

equal probability. Returning messengers are also counted as arrivals by the function

Li (t ). �

Compared to the majority voting function used in the BGP, V is more flexible because

it allows a particular general Gi to still choose a decision A1 even if the value of Li (t )

indicates that it is not the majority opinion among the generals from whom information

flows to Gi via the messengers.
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In addition, the CGP does not assume that failures are contributed solely by the nodes

(the generals) as assumed in [20]. In the CGP, communication links (the messengers) be-

have probabilistically, reflecting the relatively lower reliability that is often experienced

in wireless and sensor networks. We will also show that the effect of node unreliability

can be included in this model. An unreliable node decides on A0 when deterministically,

under the normal behavior, the node should have decided on A1 instead, based on the

value of Li (t ). Interestingly, threshold functions are also found in many different types

of natural systems, the most famous being the ones found in neurons.

5.2.1 A Simple Example

Before proceeding to the next subsection for a full analysis of the CGP, recall that the

definition includes the number of generals S, their valency γ, the initial condition K (0)

of the number of generals deciding on A1, and the two tunable parameters M and T

denoting the number of messengers dispatched and the corresponding threshold value,

respectively.

A B

C

FIGURE 5.8 Three generals

In this section, we analyze a simple example of a CGP where we use fixed values of

S = 3, γ = 1, M = 2, and T = 2. The problem involves three generals labeled A, B , and

C , linked in a simple triangular network shown in Figure 5.8 above. First, at t = 0 each

general can be either in G1(0) or not, depending on the value of its message vi (0). There-

fore, we have a total of eight possible message configurations as shown in Figure 5.9.

For each of these configurations, the general with vi (0) = 1 can dispatch two messen-

gers each. With equal probability each messenger can then either go to the neighboring

general in the clockwise direction, or stay with Gi .
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FIGURE 5.9 Eight possible message configurations

For v(0) = {v A(0) vB (0) vC (0)}, we have eight equally likely message configurations

that can be written as binary strings: {000}, {001}, {010}, {100}, {011}, {101}, {110}, and

{111}. Notice that we sort the eight configurations according to the number of 1s in their

strings. The reason is quite simple. The triangle in Figure 5.8 is symmetrical, which

means configurations having the same number of 1s in their strings should be mathe-

matically identical.

Let us consider the highlighted configuration where two generals A and B , initially

decide on A1 and dispatch two messengers each. Although the messengers are identical,

for illustration purpose, we label the messengers at A’s and B ’s positions with a1, a2, b1,

and b2. Let us devise a notation with two dots in which the messengers currently at A’s,

B ’s, and C ’s positions are written before the first dot, between the dots, and after the

second dot, respectively. An o at any position indicates that there is no messenger. For

the highlighted configuration, the messenger positions at t = 0 are denoted by:

a1a2.b1b2.o

For the highlighted message configuration shown on Figure 5.9, there are 16 possi-

ble ways with which the messengers can arrive at their destinations as shown in Figure
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5.10 below. We call each one of them a messenger configuration. Each dot represents a

messenger at that particular position.

FIGURE 5.10 Sixteen possible messenger configurations

With the exception of their labels, these messenger configurations are practically iden-

tical to the ones produced in the cases where the message configurations have generals

B and C in G1(0), or generals C and A in G1(0). Using the same notation, all sixteen

messenger configurations are listed below.

a1a2.b1b2.o a1a2.b1.b2 a1a2.b2.b1 a1a2.o.b1b2

a1.a2b1b2.o a1.a2b1.b2 a1.a2b2.b1 a1.a2.b1b2

a2.a1b1b2.o a2.a1b1.b2 a2.a1b2.b1 a2.a1.b1b2

o.a1a2b1b2.o o.a1a2b1.b2 o.a1a2b2.b1 o.a1a2.b1b2

From the above information, we can compute the message configuration at time t =

1. To determine v(t ) at t = 1 if v(0) = {110}), first we have to compute the arrival func-

tions L(0) = {L A(0), LB (0), LC (0)} that compute the number of messengers at each gen-

eral at time t = 0. Then we apply the threshold function V on these messenger arrival

values to obtain the value of v(1).

First, we will remove the distinction between all messengers arriving at the same gen-

eral. This is compatible with Figure 5.10, where the messengers are unlabeled by their
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source general. To do this, we denote the messengers currently at A’s, B ’s, and C ’s by a,

b, and c. As a shorthand, we denote aa by a2 (and likewise with b). In this notation, the

dots and o’s are no longer needed and we have a more concise notation:

a2b2 a2bc a2bc a2c2

ab3 ab2c ab2c abc2

ab3 ab2c ab2c abc2

b4 b3c b3c b2c2

or, algebraically, as a multivariate polynomial where each term and its coefficient corre-

sponds to a messenger configuration and its multiplicities,

F2a = b4
+ a2b2

+ b2c2
+ a2c2

+ 2a2bc + 4ab2c + 2abc2
+ 2b3c + 2ab3 . (5.2)

At t = 0, the configuration is always a2b2 because G1(0) = {A, B}. Suppose after the

first round, the configuration becomes ab2c. F2a contains abundant information: there

are four ways to achieve this configuration, and the value of L(0) is {deg a deg b deg c},

which is {121}.

FIGURE 5.11 Obtaining the new message configurations from the previous messenger
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configurations by applying the threshold

With a little more work, we can get even more information. By applying the threshold

function V with T = 2 on L(0), we obtain v(1) = {010}. An element of this string is a

zero if the degree of the corresponding variable is less than T , and a one otherwise. In

Figure 5.11 above, the generals Gi that satisfy the condition vi (1) = 1 are marked by the

grey circles.

Finally, we can also compute K (0) and K (1) by counting the numbers of ones in v(0)

and v(1), which are 2 and 1, respectively. Calculating K (t ) is of interest to us because it

shows the evolution of G1(t ). Of course, in reality we can only compute an average value

of K (1) because the four messengers could just as well choose configurations other than

ab2c. The average is:

K (1) =

∑

i Ki (1)

κ
(5.3)

where the index i runs over all sixteen possible configurations at t = 1. In the numerator

summand, the function Ki (t ) counts the number of ones in vi (t ) from a configuration i

at time t . The denumerator κ is simply the total number of configurations, which in our

present case is sixteen.

Having discussed G1(0) = {A, B}, we can now consider the other possible member-

ships of G1(0): {∅}, {A}, {B}, {C}, {A, B}, {A,C}, {B ,C}, {A, B ,C}. To do this, we need

a polynomial that is more general than F2a .

Consider the following polynomial F (a, b, c; z) (or F (z), for short). The coefficient Fk of

zk captures all the possible configurations given that |G1(0)|= k, i.e., k generals initially

deciding on A1. Obviously, F (z) is more general than F2a as all the configurations in F2a
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can also be found in F2.

F (z) = (1 + (a + b)2z) (1 + (b + c)2z) (1 + (c + a)2z)

= 1 + F1z + F2z2
+ F3z3

Fk = [zk ]F (z) =
1
k!

∂k

∂zk F (z)|z=0

F1 = 2ab + 2bc + 2ca + 2a2
+ 2b2

+ 2c2

F2 = a4
+ b4

+ c4

+ 2ab3
+ 2bc3

+ 2ca3
+ 2a3b + 2b3c + 2c3a

+ 3a2b2
+ 3b2c2

+ 3c2a2
+ 8a2bc + 8ab2c + 8abc2

F3 = 10a2b2c2
+ 2a3b3

+ 2b3c3
+ 2a3c3

+ 6a3b2c + 6a3bc2
+ 6a2b3c + 6a2bc3

+ 6ab3c2
+ 6ab2c3

+ 2a4bc + 2ab4c + 2abc4

+ a4b2
+ a2b4

+ b4c2
+ b2c4

+ c4a2
+ c2a4 (X1)

Let us first define Fkl as the number of l-th power of a, b, and c found in the mono-

mials (i.e., terms, or configurations) of Fk . The index k restricts our count only to Fk ,

which is described above, while l restricts the count to only those generals having ex-

actly l messengers: Li (0) = l . For example, in F2, the forms a2, b2, or c2 can be found in

these terms:

3a2b2
+ 3b2c2

+ 3c2a2
+ 8a2bc + 8ab2c + 8abc2 .

We can expand the above expression to count the number of monomials of degree 2,

which is given by 3×3×2 + 3×8×1 = 42. Therefore, F22 = 42.
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Having defined Fkl , we can now compute Kk(1), which is the average value of |G1(1)|

over all configurations in Fk .

K1(1) = F12/κ1 = 6/(3 ·22)

= 6/12 = 0.5000

K2(1) = (F22 + F23 + F24)/κ2

= (42 + 12 + 3)/(3 ·24)

= 57/48 = 1.1875

K3(1) = (F32 + F33 + F34)/κ3

= (72 + 48 + 12)/(1 ·26)

= 132/64 = 2.0625,

or more generally, we can use (x′ ∈ G\x):

Kk(1) =
1

κk

∑Mk

l≥T
Fkl (5.4)

Fkl =
∑

x∈G
1
k!

∂l

∂xl F (a, b, c; z)|x=0,x′=1

κk =
(S

k

)

(γ+ 1)Mk

Consider the case where all three generals are in G1(0). Not knowing each other’s deci-

sions, they send their messengers out to notify their neighbors. From Kk(1), we predict

that |G1(1)| = 2.0625 ≈ 2. Likewise, in the next time step |G1(2)| = 1.1875 ≈ 1, and fi-

nally, at t = 3, the generals no longer agree on A1 as |G1(3)|= 0.50 < 1. Therefore, with

the given M , T , γ, and S, a proper consensus reflecting the generals’ initial observations

cannot be reached.

In Section 5.2.2, we present the general results for γ-regular network for all possible

parameter values and show that with an appropriate choice of parameters, a proper con-
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sensus can be reached. In preparation for these general results, let us first generalize our

triangular network into a ring network G with S generals (shown below with eight gen-

erals).

G

A

D

F

E

C

B

H

FIGURE 5.12 The network G with eight generals

In our analysis of G , the values of M , S, and T are no longer fixed. As a result, we can

no longer count the results manually and have to resort to the mathematical formalism

of multivariate generating function (mgf).

Let us denote the mgf for G by F (x ; z), with x = {xi} = {x0, x1, . . . , xS−1} and i ∈ N

mod S (i.e., i + S ≡ i mod S) indexing the S generals in G. Denote by [zk ] the operator

that extracts the coefficient of zk and by [xl
i
] the operator that extracts the coefficient of

xl
i
. As before, let i ′ denote any member of the index set that is different from i which is

{0, . . . , S−1}\i .

F (x ; z) =
∏S

i=1

(

1 + (xi + xi+1)M z
)

Fk (x) = [zk ]F (x ; z) =
1
k!

∂k

∂zk F (z)|z=0

Fkl =
∑S

i=1[xl
i
]Fk (x) (5.5)

= S 1
k!

∂k

∂zk
1
l !

∂l

∂xl
i

F (x ; z)|xi =0,xi ′=1

The formulas for Kk(t ) and κk are the same as the ones found in (5.4). The summands

in (5.5) are identical due to the symmetry of F (x ; z) with respect to x . To derive the

explicit formula for Fkl , suppose l ≥ 1. Although counterintuitive, it is easier to start
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with [xl
i
] instead of the standard operator [zk ].

Fl (z) =S [xl
i ]F (x ; z)

=S 1
l !

∂l

∂xl
i

F (x ; z)|xi =0,xi ′=1

=S
∏

i ′∈{2,S}

(

1 + (xi ′ + xi ′+1)M z
)

|xi ′=1×
1
l !

∂l

∂xl
1

(

1 + (xS + x1)M z
) (

1 + (x1 + x2)M z
)

|x1=0

Note that in the last equation above, we have chosen to extract the l-th coefficient of x1,

effectively choosing i = 1. Due to symmetry, the expressions for other i ’s are the same,

which allows us to use the multiplicative factor of S.

= (1 + 2M z)S−2 1
l !

∂l

∂xl
1

(

1 + (1 + x1)M z
)2 |x1=0

= (1 + 2M z)S−2 [xl
1](1 + 2(1 + x1)M z + (1 + x1)2M z2)

= (1 + 2M z)S−2
[

(2
1

)(M
l

)

(1)M−l z +
(2

2

)(2M
l

)

(1)2M−l z2
]

=
∑S−2

i=0

(S−2
i

)

2Mi zi
[

2
(M

l

)

z +
(2M

l

)

z2
]

The value of xi ′ = 1 is then substituted, before a tedious algebraic coefficient extraction

procedure is run on the remaining polynomial that contains x1.

Fkl = [zk ]Fl (z) =
1
k!

∂k

∂zk Fl (z)|z=0 (5.6)

=2S
(M

l

)(S−2
k−1

)

2M(k−1)
+ S

(2M
l

)(S−2
k−2

)

2M(k−2)

At this point, recall that we haven’t considered the case where l = 0, which requires

a slightly different derivation because the term corresponding to l = 0 is the constant

term in the polynomial.

The derivation for Fk0, is provided below. Again, we use the symmetry property of

F (x ; z). Note that at the first glance, the result for Fk0 below seems to be missing the
(i M

l

)
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factor when compared to Equation (5.6). However, recall that
(i M

0

)

≡ 1 for all i M .

Fl=0(z) =
∑S

i=1 F (x ; z)|xi =0,xi ′=1

=S F (x ; z)|xi =0,xi ′=1

=S
∏

i∈{1,S}

(

1 + (xi + xi+1)M z
)

|xi =0,xi ′=1

=S (1 + 2M z)S−2(1 + z)2

Fk0 =S [zk ](1 + 2M z)S−2(1 + z)2 (5.7)

=S 1
k!

∂k

∂zk

∑S−2
i=0

(S−2
i

)

2Mi zi (1 + 2z + z2)|z=0

=S
∑2

i=0

(2
i

)(S−2
k−i

)

2M(k−i )

This last observation suggests a formula for Fkl that is valid for γ = 1 and all values of

k and l , that can be used in Equation (5.4):

Fkl =

2
∑

i=0

S

(

i M

l

)(

2

i

)(

S−2

k− i

)

2M(k−i )

To conclude our analysis on this example, we consider the other extreme value for λ.

Now, instead of settingλ = 1 and working with a ring network, we set λ = S−1 and work

with a complete graph, which is somewhat simpler to analyze. The steps of deriving Fkl

are identical:
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F (x ; z) =
∏S

i=1(1 + (
∑S

j=1 x j )M z)

=(1 + (
∑S

j=1 x j )M z)S

Fl (z) =S [xl ](1 + (S−1 + x)M z)S

=S [xl ]
∑S

i=0

(S
i

)

(S−1 + x)Mi zi

=S [xl ]
∑S

i=0

(S
i

)
∑Mi

j=0

(Mi
j

)

(S−1)Mi− j x j zi

=S
∑S

i=0

(S
i

)(Mi
l

)

(S−1)Mi−l zi

Fkl =S [zk ]
∑S

i=0

(S
i

)(Mi
l

)

(S−1)Mi−l zi (5.8)

=S
(S

k

)(Mk
l

)

(S−1)Mk−l .

As we mentioned previously, calculating Kk(t ) is important because the function al-

lows us to learn about the evolution of G1(t ) and whether consensus is possible under

the threshold function V . In our analysis of the triangular network, we manually calcu-

lated Kk (t ) for different values of k and learned that a proper consensus is not possible.

Obviously, for the ring and complete network with variable parameters, a manual and

exhaustive analysis of Kk(t ) is not an option. One feasible way would be a numerical

evaluation of the values of Kk(t ) as a function of its parameters.

However, all is not lost. Let Mk be the number of messengers dispatched by k generals

in G1, and λ =
Mk

S
. If we fix λ and Mk ≫ 1, (5.8) becomes simple, and the qualitative

behaviors of Kk (t ) and the consensus become clear.

Pkl =
Fkl

S κk

=
S
(S

k

)(Mk
l

)

(S−1)Mk−l

S
(S

k

)

SMk
→ λl

l !
eλ

Kk (1) =S
∑Mk

l≥T Pkl → S
∑Mk

l≥T
λl

l !
eλ

= S(1− Γ(T,λ)
(T−1)!

)

Perhaps not surprisingly, for Mk ≫ 1 and γ = S− 1, each term in the summation in

Equation (5.4) is the mathematical expression for a Poisson density Pkl with parameter

λ =
Mk

S
and argument l , and therefore Kk(1) can be expressed in terms of the incomplete
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gamma function Γ.

Figure 5.13 is a plot of Kk (t+1) against Kk(t ), which is actually the plot of Kk(1) against

k = |G1(0)| for M = 2 (the lower curve) and M = 4 (the upper curve) compared to the

diagonal line Kk (t + 1) = Kk (t ). For both curves, we have set the parameters γ = S−1,

T = 2, and S = 100. These curves can be used to describe the time evolution of Kk(t ),

and the existence of a consensus.
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FIGURE 5.13 The plot of Kk (t + 1) versus Kk (t )

For example, suppose Kk(0) = 72. For the M = 2 curve, Kk(1) ≈ 42, and Kk(2) ≈ 20,

before eventually reaching Kk (t ) = 0 (the dashed path with an arrowhead). In other

words, all generals would eventually settle on A0 no matter how many of them initially

agreed on A1. In contrast, the M = 4 curve intersects the diagonal line at k ≈ 22 and

k ≈ 85. These points define two possible steady-state behaviors of Kk(t ). If Kk (0) < 22,

then as t →∞ Kk(t ) settles at the stable fixed point at k = 0. Otherwise, it settles at

k ≈ 85.

Denote by F (k) the function that maps Kk(t ) to Kk (t + 1). The properties of Γ require

that F (k)→ 0 as k → 0 and F (k)→ S as t →∞, and in addition, the slopes ∂F (k)
∂k
→ 1

S

and ∂F (k)
∂k
→ 1

S
as t → 0 and t →∞, respectively. Due to space limitation, we do not

analyze the effects of changing M and T on F (k), or proofs to the above claims. We

do, however, provide in the next section a sketch of the analysis of errors caused by the

generals themselves.
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5.2.2 General Result

Finally, we present the most general version of the CGP with no limits on any of the

parameters. Shown in Figure 5.14(a) is one such network with S = 9 generals arranged

in a 3× 3 grid with γ = 4 such that each general Gi can send his messengers to the

neighbors Ni to the east, west, north, and south (in addition to himself). The network

wraps around on itself, so some neighbors are on the opposite side of the grid.

(a) (c)(b)

FIGURE 5.14 A general γ-regular network

Figure 5.14(b) shows the k = 3 generals from G1(0), each equipped with M = 4 mes-

sengers. Figure 5.14(c) shows one possible messenger configuration after redistribution.

The two shaded cells mark the generals Gi such that l = Li (1) = 2. As before, Fkl then

computes the number of such cells in all possible configurations. We generalize our

previous results and prove that the following is true (L = γ+ 1):

Fkl =

L
∑

i=0

S
(Mi

l

)(L
i

)(S−L
k−i

)

(L−1)Mi−l LM(k−i ) . (5.9)
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To prove the above equation, we use the same technique we used in the previous sec-

tion. First, start with the mgf:

F (x ; z) =
∏S

i=1(1 + (
∑

j∈Ni
x j )M z)

Fl (z) =S [xl
n]

∏S
i=1(1 + (

∑

j∈Ni
x j )M z)

=S [xl
n] (1 + LM z)S−L(1 + (L−1 + xn)M z)L

=S 1
l !

∂l

∂xl
n

(1 + LM z)S−L f (xn ; z)|xn=0

f (xn ; z) = (1 + (L−1 + xn)M z)L

=
∑L

i=0

(L
i

)

zi ∑Mi
h=0

(Mi
h

)

(L−1)Mi−h xh
n .

Now we substitute the above expressions into Fkl :

Fkl =S [zk ] (1 + LM z)S−L 1
l !

∂l

∂xl
n

f (xn ; z)|xn=0

=S [zk ] (1 + LM z)S−L ∑L
i=0

(L
i

)

zi
(Mi

l

)

(L−1)Mi−l

=S
∑L

i=0

(L
i

)(Mi
l

)

(L−1)Mi−l [zk ](1 + LM z)S−L zi .

Solving the last line gives us an expression identical to (5.9):

Fkl =

L
∑

i=0

S
(L

i

)(Mi
l

)(S−L
k−i

)

(L−1)Mi−l LM(k−i ) . (5.10)

The expression for Fkl from (5.10) can then be substituted into (5.4) to obtain a plot

similar to Figure 5.13. We also note that all γ-regular graphs have the same mgf, and

hence the same Fkl , whether or not they are isomorphic to each other. Figure 5.15 shows

two non-isomorphic 4-regular octagons with identical Fkl . Aside from node labels, their

mgf’s are exactly the same.
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(a) (b)

FIGURE 5.15 Two non-isomorphic 4-regular octagonal networks [30, 31]

Finally, we propose one way of modeling the case where the generals themselves com-

mit decision errors. Suppose we have k = |G1(t )|. With probability p, each of the k

generals may decide not to dispatch their messengers, and likewise, with probability

p, each of the remaining S − k generals may spontaneously decide to dispatch their

messengers. Mathematically, this is equivalent to transforming the function F (k) into

F ′(k) = F (k) + p(S−k)−pk.
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FIGURE 5.16 The plot of K ′

k
(t + 1) versus Kk (t )

An easy way to visualize this transformation is to imagine rotating F (k) around a pivot

located at ( S
2

, F (k)), as shown in Figure 5.16. Obviously, as a result, F ′(k) may or may

not have any stable fixed point. However, the good news is that with a proper choice

of parameters, F ′(k) can have two different fixed points with high and low values of k

to represent two possible consensuses on A0 and A1, respectively. As a general rule, it

is desirable to maximize the separation and the domain of attractions of the two fixed

points to improve the network resistance against spurious noise.
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5.3 THRESHOLD-BASED MESSAGE-PASSING ALGORITHMS FOR DECODING

In the previous section, we have seen how threshold-based message passing algo-

rithms can be used to reliably achieve system-wide message synchronization by using

consensus. The model we developed can take into account both node and edge un-

reliabilities. In this section, we shall show that if the node and edge unreliabilities are

eliminated, we can use the same algorithm for the purpose of decoding fairly complex

codes that are derived from the Latin and Sudoku squares. Instead of using the XOR op-

erator, these codes use a version of the thresholding operator we used in the previous

section.

A Latin square is a q×q array of numbers that meets two conditions: the numbers 1 to

q appear only (1) once on each row and (2) once on each column. A Latin square is called

a Sudoku square if q = r 2 for some integer r and it meets an additional condition: (3)

if the square is divided into r 2 square blocks of r × r numbers, each block also contains

the numbers 1 to q [32]. Figure 5.17a shows an example of the 4×4 Sudoku square.

1 2 3 4

3 4 1 2

2 1 4 3

4 3 2 1

1

2

4

3

FIGURE 5.17 A 4×4 Sudoku square (a) with and (b) without erasures.

One of the interesting properties of a Latin square (and by extension, a Sudoku square)

is that the two (or three, for Sudoku) conditions in its definition introduce a large num-

ber of interlocking constraints that eliminate many degrees of freedom in assigning the

q2 numbers into the array.

In fact, these constraints are so restrictive that even when some numbers are removed

from an otherwise valid Latin or Sudoku (LS, for short) square, often these numbers

can be recovered. For example, in Figure 5.17b, the twelve numbers that are removed
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from Figure 5.17a can be recovered uniquely by process of inference using the original

interlocking constraints.

This property is the basis for the Sudoku puzzles. A Sudoku (Latin) puzzle is cre-

ated from a valid Sudoku (Latin) square by removing numbers from the square such

that these numbers can be uniquely restored (without this restriction, an empty square

would qualify as a “puzzle” with many answers).

Each LS puzzle can also be viewed as a q-ary codeword of length q2 with erasures.

To decode such codewords, in this section we present a new algorithm similar to the

iterative algorithm used to decode the Low Density Parity Check (LDPC) codes [33]. The

algorithm first converts the q-ary symbols into binary symbols and the missing numbers

into erasures. The erasures are then decoded and corrected using a generalized LDPC

algorithm.

We prove that our algorithm returns the same answer(s) consistently, even under a

randomized mode of operation, invariant to the decoding path used. The algorithm is a

list decoder: depending on a “decoding radius”, it can recursively return from one up to

all codewords within the radius.

5.3.1 Codes, Combinatorial Designs, and Graphs

The q×q entries of a q-ary Latin square l can be mapped into the symbols of a q-ary

codeword c of length q2. Denote this mapping by C, which maps the set L of all q× q

Latin squares is mapped into a “q-L” code, and the set S of all q × q Sudoku squares

(where q = r 2) into a “q-S” code. For brevity, we refer to both codes as the q-LS code, or

simply the LS code. Under this mapping, missing numbers in the puzzle map to code-

word erasures. Solving a puzzle then amounts to correcting these erasures.

The entries of l can also be mapped into the labels of the q2 vertices (nodes) of a graph

g , whose adjacent vertices have different labels. Denote this mapping byG. Two vertices

in g are adjacent iff their corresponding entries in l share a row or column. Since bothC and G are 1-to-1 mappings, their inverse mappings exist. In fact, GC−1 maps a q-LS
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code into its graph code.

Graph codes are among the hottest current research topics in coding theory [33]. Some

of them – including many linear ones, and the LDPC codes – perform very close to the

Shannon Capacity, an impressive feat considering their conceptual simplicity. The spar-

sity of the LDPC matrices makes graphs the natural choice of representation for analysis

and data structure implementation. Formulated as a graph code, the LS codes can be

decoded with a variant of the iterative decoding algorithms used by (LDPC) graph codes.

⊞ ⊞ ⊞

© ©© © © © ©0 0 1 1 0 1 1

FIGURE 5.18 The Tanner graph for the (7,4) Hamming code.

We now give an example for the standard iterative erasure-correction algorithm using

the simple (7,4) Hamming code – formulated as an LDPC graph code – whose graph

is shown in Figure 5.18. The graph uses Tanner’s [34] convention. The seven circular

nodes are variable nodes, each containing one of the seven codeword symbols. The

three square nodes are check nodes, one for each parity check equations. Each equation

operates on the four outgoing edges, one for each symbol.

The iterative erasure correction algorithm is simple: (1) each check node can correct a

single erasure, (2) each correction is propagated to other check nodes, which in turn cor-

rect their own single erasures, (3) the process continues until all erasures are corrected

(unfortunately, the algorithm may reach a “stopping set” when there are no more single

erasures for the check nodes).

Suppose symbols 4, 5, and 6 in Figure 5.18 are erased. The algorithm recovers these
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symbols as follows. First, check node 1 determines that symbol 4 must be a one and

makes a correction, which is propagated to check node 3, which then determines that

symbol 6 must be a one, which is propagated to check node 2, which determines that

symbol 5 must be a zero. The readers can verify that if symbols 2, 4, and 6 are erased,

our algorithm encounters a stopping set. This algorithm can correct any double erasures

and many triple erasures (exceeding simple decoders that only correct double erasures).

To use this algorithm for decoding LS codes, we have to make several changes. Why?

First, LDPC codes are binary, whereas LS codes are q-ary. Second, the check nodes in

LDPC codes require the variable nodes to contain an even (or odd) number of ones. In

LS codes, only one variable node can contain a value of one. The next section provides

an simple illustrative example.

5.3.2 Decoding Example

For brevity, the example is drawn from the smallest non-trivial 4× 4 Sudoku code.

Figure 5.19a shows the Sudoku square S with q = 4 (and r = 2) that we showed earlier

in Figure 5.17. The entries Si j of S contain the values from 1 to q that satisfy the Sudoku

constraints. For example, S14 = 4 and S44 = 1. To the right of S is an r×r binary subarray

S′
14 corresponding to S14. Each Si j has a corresponding subarray S′

i j
that contains q cells

S′
i j k

, with k = 1 . . . q .

1 0

0 0

0 0

0 1

0 1

0 0

0 0

1 0

1 0

0 0

1 0

0 0

1 0

0 0

0 1

0 0

0 1

0 0

0 1

0 0

0 0

1 0

0 0

1 0

0 0

0 1

0 0

0 1

0 0

0 1

0 0

1 0

1 2 3 4

3 4 1 2

2 1 4 3

4 3 2 1

0 0

0 1

FIGURE 5.19 The (a) q-ary and (b) binary 4×4 Sudoku square
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Cell k = 1 is on the upper-left corner of the subarray and cell k = q is on the lower-

right corner. The cells S′
i j k

contain all zeros except where k = Si j . Replacing the values

Si j in S with their r × r binary subarrays S′
i j

produces a new qr × qr square S′ with

(qr )2− q2 zeros and q2 ones. Performing this operation on the S shown in Figure 5.19a

produces S′, shown in Figure 5.19b.

Figure 5.20a is derived from Figure 5.19a, showing only S11 and the other entries of S

related through the Sudoku constraints. Each Si j obeys the three constraints that pre-

vent duplicates (1) across any row (2) down any column (3) in the same r×r block (Latin

squares use the first two constraints). Since S11 in S is related to S′
11 in S′, instead of the

q-ary values, Figure 5.20b shows S′
111 and the other related binary values S′

i j k
.

0

1 0

0 0

0

0

0

0

001 2 3 4

3 4

2

4

FIGURE 5.20 The entries related to S ′

111 through the constraints

Figure 5.20b gives away the algorithm: the entry S′
111 is controlled by four constraints:

hh, hv , hb , and hc . The subscripts {h,v,b,c} indicate that the constraint is operating hori-

zontally, vertically, in a block, and in a cell. Each constraint h{h,v,b,c} operates on a set of

cells V (h{h,v,b,c}). For example, in Figure 5.20 we have:

V (hh) = {S′
111, S′

121, S′
131, S′

141},

V (hv ) = {S′
111, S′

211, S′
311, S′

411},

V (hb) = {S′
111, S′

121, S′
211, S′

221},

V (hc) = {S′
111, S′

112, S′
113, S′

114}.
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Each of the other S′
i j k

’s also has its own constraints hh, hv , hb , and hc (possibly different

from S′
111’s). Denote by Hh(v), Hv (v), Hb(v), and Hc (v) the horizontal, vertical, block,

and cell constraints controlling v , and H(v) = Hh(v)∪Hv (v)∪Hb(v)∪Hc (v). How many

such constraints are there? Let us count the horizontal constraints first. For a fixed i and

k, Hh(S′
i j k

) = Hh(S′
i j ′k

), therefore for all i and k, we have q2 horizontal constraints. The

same is true for the vertical constraints. There are q blocks, each with q constraints for

k = 1 . . . q , for a total of q2 constraints. Finally, each of the q2 cells has its own constraint.

Thus, 4q2 constraints control the q3 entries of S′.

Figure 5.21 shows the four check nodes hh, hv , hb , and hc for S′
111. The eleven variable

nodes are shown underneath the circles labeled with their i , j , and k’s. From Figure 5.20,

S′
111 = 1 and 0 for other values of i , j , and k. Each variable node S′

i j k
is entangled in the

same structure that enforces codeword integrity, i.e., erasing one symbol affects several

check nodes.

⊞ ⊞ ⊞ ⊞

© © © © ©

© © © ©

©

111 121 131 141

211311 411 221 112 113

©
114

h h h v h b h c

FIGURE 5.21 The check equations hh , hv , hb , and hc for S ′

111

We now provide a our own definition for the check nodes, different from the standard

LDPCs. Suppose that h operates on a set of q variable nodes V (h), or V for short. Denote

by V1(h) the set of variable nodes with ones, and by V0(h) those with zeros. Likewise,
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denote by Ve(h) the set of variable nodes with erasures. For any h, |Ve∪V0∪V1|= |V |= q .

Define H as a function of h that returns four possible values: error, valid, pause, or solve

(or e , v , p, and s). The functionH(h) reports the state of h. When H(h) returns an error,

we say that h is in the error state, or h is an error node. Whenever V (h) is updated, h is

updated unless it is an error node.

H(h) =



















































error if |V1|> 1 or |V0|= q

valid if |V1|= 1 and |V0|= q−1

pause if |Ve |> 1 and |V1|= 0

solve if |Ve |= 1 or |V1|= 1.

(5.11)

If S is a valid Sudoku square (and thus a valid codeword), then all its 4q2 check nodes are

valid nodes. As entries are erased, some affected check nodes become solve nodes. As

more entries are erased, the number of pause nodes increase. A decodeable codeword

(or a solvable puzzle) leaves enough unerased entries to recover the numbers uniquely.

Erasure correction starts from the solve nodes, iteratively attempting to convert all check

nodes to valid nodes.

Figures 5.22 and 5.23 show a codeword S and its binary array S′ with qr × qr variable

nodes. Surrounding S′ are four groups of 4q2 check nodes. Each block has q copies of

r × r subarrays, each indexed by k = 1 . . . q .

Directly above S′ is the Hv group. The group has four subarrays j = 1 . . . 4, from left

to right. The kth cell in subarray j contains Hv (S′
1 j k

). To the right of S′ is the Hh group

with its four subarrays i = 1 . . . 4, from top to bottom. The kth cell in subarray i contains

Hh(S′
i 1k

). To the right is the square Hb group with its subarrays arranged from top left

corner to the bottom-right corner. The kth node in subarray i controls all the kth cells in

group i of S′. Finally, we have the Hc group, whose (i , j )th cell contains Hc (S′
i j k

). Having

established these definitions, the decoding process can now start.
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1 3 4

2 4

3 1

FIGURE 5.22 One example of a Sudoku puzzle

Figure 5.23 shows the initial states of all the check nodes. In this Figure, there is no

valid node, only pause nodes and solve nodes. For example, Hh(S′
411) and Hh(S′

413) are

both solve nodes because S′
423 and S′

441 contain ones.
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FIGURE 5.23 The variable and check nodes

In the first iteration, all solve nodes attempt to correct their single erasures, update

their states to valid, and propagate the corrections to other check nodes. The result is

shown in Figure 5.24. As expected, the set of solve and valid nodes grows, while the set

of pause nodes shrinks.

This process is repeated in the next iteration. After the second iteration, the graph

contains only five erasures, as shown in Figure 5.25. Finally, after the third iteration, all

variable nodes are restored to their original values as shown in Figure 5.26. First seen

as a hindrance to correcting the erasures, the four constraints on each variable node

actually help in erasure correction.

Although this example only covers a 4×4 Sudoku square, the concepts can be applied

to larger LS squares. Latin square decoders have no block check nodes — only the other

3q2 check nodes — and cannot be visualized as easily as the Sudoku decoders because

q is not always a square power of an integer.
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FIGURE 5.24 The puzzle after the first iteration
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FIGURE 5.25 The puzzle after the second iteration
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FIGURE 5.26 The puzzle after the third and final iteration
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The iterative algorithm we just described inherits the same limitations as the one used

for decoding erased LDPC codewords: some puzzles contain stopping sets that halt the

algorithm prematurely.

For example, the erasure pattern in Figure 5.27a poses no problem, but the one in

Figure 5.27b has a stopping set. Once stopped, the algorithm can continue by selecting

from the (q-ary) S the block, row, or column with the fewest number of erasures e and

try all the e ! possible completion configurations. For each configuration, the algorithm

runs until it encounters an error.

1

2

4

3

1 3

2

3

FIGURE 5.27 Squares without and with stopping set

In the best case, one configuration leads to a solution, while all others produce er-

rors. In the worst case, more than one configuration leads to solution. In some case, it

finds another smaller stopping set, from which the process is repeated recursively until

a maximum number of solutions is found.

5.3.3 Algorithm

In this section we provide a detailed description of the two procedures that form our

iterative decoding. The procedure in Listing 1 iteratively corrects as many erasures as

possible given a starting context denoted by X = (S,V , E , P,C ), defined as a collection of

four lists S, V , E and P which contain pointers to the solve, valid, error, and pause nodes,

respectively, along with the list C that contains the values (zeros, ones, and erasures) of

the q3 variable nodes. In Listing 1, the notation V ← h indicates that a check node h is

moved from its current list into V . The notation H← S means the whole content of the

list S is moved into the list H .
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The procedure SOLVE simply calculates a modified context and a return value. It does

not handle a stopping set. A very important question is: can we prove that SOLVE returns

a “unique” answer regardless of the order in which the elements h ∈ H are processed on

line 4?

Before proving the uniqueness of the result of SOLVE, let us establish some notations

and definitions. Let V1 and V2 denote two sets of variable nodes, whose binary contents

are represented by the vectors ~V1 and ~V2, respectively. Let H1 and H2 denote two sets of

check nodes whose four possible states are stored in the vectors ~H1 and ~H2, respectively.

Definition 1. The sets V1 and V2 (H1 and H2) are equal if and only if they contain the

same variable (check) nodes. The two vectors ~V1 and ~V2 ( ~H1 and ~H2) are equal if and

only if their elements are identical. �
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Listing 1: Procedure for iteratively removing erasures

1: procedure SOLVE (S,V , E , P,C )

2: while S 6= ∅ do ⊲ Iterate over all solve nodes

3: H← S ⊲ Move solve nodes to a local list

4: for all h ∈ H do ⊲ For all solve nodes

5: CORRECT( Ve(h)⊂C ) ⊲ Unerase Ve(h)

6: V ← h ⊲ and move to the valid list

7: H ′
= {h′ | V (h′)∩Ve (h) 6= ∅}

8: for all h′ ∈ H ′ do ⊲ update their states

9: {V | S | E | P}← h′

10: end for ⊲ While solve node exists

11: end for

12: end while

13: if E 6= ∅ then r v←−1 ⊲ We have an error

14: else if P = ∅ then r v← 1 ⊲ Solution found

15: else r v← 0 ⊲ We have run into a stopping set

16: return ( S,V , E , P,C , r v )

17: end procedure

Suppose h1, h2 ∈ H are two solve nodes waiting to be processed on line 4 of Listing 1.

Denote by V1 = Ve (h1) and V2 = Ve(h2) the sets of erasures connected to (and eventu-

ally corrected by) h1 and h2. Denote by H1 = H(V1) and H2 = H(V2) the check nodes

connected to V1 and V2; by ~V10 and ~V20 the contents of ~V1 and ~V2 before h1 and h2 are

processed on line 4; by ~V112 and ~V212 the contents after h1 and h2 are processed (in that

order), and by ~V121 and ~V221 the contents after h2 and h1 are processed. Denote by ~H10,

~H20, ~H112, ~H212, ~H121 and ~H221 the counterparts for ~H1 and ~H2. Finally, define V∩ = V1∩V2

and H∩ = H1∩H2, along with ~V∩, ~H∩, ~V∩0, ~H∩0, ~V∩12, ~H∩12, ~V∩21 and ~H∩21.
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Listing 2: Recursive removal of stopping sets

1: procedure DECODE (X , level )

2: if level = 1 then

3: Store the received codeword into Y

4: else

5: x ∈ X is the row / col / block with fewest erasures

6: Store all e ! configurations of x in Y

7: end if

8: for all y ∈ Y do

9: ( X ′, r v ) = SOLVE( y )

10: if r v = 1 then SOL← SOL∪C

11: if |SOL|> maxsol then exit

12: if r v = 0 then DECODE( X ′, level + 1 )

13: end for

14: end procedure

Definition 2. The procedure SOLVE returns a unique answer with respect to h1 and h2 ∈

H on line 4 in SOLVE if and only if on line 11, these conditions are met: (a) both ~H∩12 and

~H∩21 contain at least one error node, or (b) ~H∩12 = ~H∩21 and ~V∩12 = ~V∩21. The procedure

SOLVE returns a unique answer if it returns a unique answer with respect to any pair h1

and h2 ∈ H . �

Theorem 13. SOLVE returns a unique answer.

PROOF: We can prove the theorem for any pair h1 and h2 by considering every pos-

sible cardinality and interconnectivity of V∩ and H∩ and combinations of their cor-

responding vector values. Fortunately, we only need to consider the three canonical

configurations shown in Figure 5.28. Our proof applies to other configurations that are

unions of these canonical configurations. The middle nodes are in V∩, and the bottom

nodes are in H∩.

Due to its topology, the third configuration automatically meets the conditions (a) and

(b). Table 1 summarizes how the first and second configurations meet conditions (a) and

(b). The first two columns in the table are the possible solve states for h1 and h2. The

notation s0 means that the check node infers that the erased variable node(s) should
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be zero(s), and vice versa with s1. Other states are abbreviated with their first initials in

Equation 5.11.

h1 h2 h1 h2 h1

h h h3

v1 v2 v1v

FIGURE 5.28 The three canonical configurations

In Figure 5.28a, h is connected to v1 and v2 and q−2 other variable nodes not shown

on the diagram. In Figure 5.28b, h is connected to v and q − 1 other variable nodes.

Initially, v1, v2, and v all contain erasures (otherwise h1 and h2 are not sol ve nodes).

Denote by V −
h

the q−2 (or q−1) variable nodes connected to h. The vector ~V −
h

is the

initial state of h (columns 4 and 11). Column 3 of Table 1 describes ~V −
h

in shorthand

notation. The + sign after a 0 means “one or more” and a + after an e (for erasure)

means “two or more”. For example, 0+1 means h is connected to ~V −
h

with one or more

variable nodes with zeros, one node with a one, plus v1 and v2 in Figure 5.28a (or plus v

in Figure 5.28b).

The column groups labeled 12 (or 21) show the final contents of ~H∩ and ~V∩ after h1

and h2 (or h2 and h1) are processed, in that order. For the second configuration, the

intermediate state of h2 (or h1) right after h1 (or h2) is processed is also shown because

in the second configuration, any change by h1 (or h2) on v affects h2 (or h1), raising the

possibility of an error at this step.

Using definition 2, the procedure SOLVE returns a unique answer if for each configura-

tion: (a) both the 12 and 21 groups contain at least one error state, or (b) the contents of

the 12 and 21 groups are identical. Comparing columns 5–7 to 8–10 (or 12–14 to 15–17)

in Table 1 confirms that configurations 1 and 2 meet conditions (a) and (b). Thus SOLVE

returns a unique answer. �
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Con f i gur ati on 1 Con f i gur ati on 2

0 12 21 0 12 21

h1 h2 V −
h

h v1 v2 h v1 v2 h h v h2 h v h1 h

s0 s0 0+ p 0 0 e 0 0 e s1 0 v e 0 v e

s0 s0 0+e p 0 0 s1 0 0 s1 p 0 v s1 0 v s1

s0 s0 0+e+ p 0 0 p 0 0 p p 0 v p 0 v p

s0 s0 0+1 s0 0 0 v 0 0 v s0 0 v v 0 v v

s0 s0 0+1e s0 0 0 s0 0 0 s0 s0 0 v s0 0 v s0

s0 s0 0+1e+ s0 0 0 s0 0 0 s0 s0 0 v s0 0 v s0

s0 s1 0+ p 0 1 v 0 1 v s1 0 e v 1 e v

s0 s1 0+e p 0 1 s0 0 1 s0 p 0 e s0 1 e s0

s0 s1 0+e+ p 0 1 s0 0 1 s0 p 0 e s0 1 e s0

s0 s1 0+1 s0 0 1 e 0 1 e s0 0 e e 1 e e

s0 s1 0+1e s0 0 1 e 0 1 e s0 0 e e 1 e e

s0 s1 0+1e+ s0 0 1 e 0 1 e s0 0 e e 1 e e

s1 s0 0+ p 1 0 v 1 0 v s1 1 e e 0 e e

s1 s0 0+e p 1 0 s0 1 0 s0 p 1 e s1 0 e s1

s1 s0 0+e+ p 1 0 s0 1 0 s0 p 1 e p 0 e p

s1 s0 0+1 s0 1 0 e 1 0 e s0 1 e v 0 e v

s1 s0 0+1e s0 1 0 e 1 0 e s0 1 e s0 0 e s0

s1 s0 0+1e+ s0 1 0 e 1 0 e s0 1 e s0 0 e s0

s1 s1 0+ p 1 1 e 1 1 e s1 1 v v 1 v v

s1 s1 0+e p 1 1 e 1 1 e p 1 v s0 1 v s0

s1 s1 0+e+ p 1 1 e 1 1 e p 1 v s0 1 v s0

s1 s1 0+1 s0 1 1 e 1 1 e s0 1 v e 1 v e

s1 s1 0+1e s0 1 1 e 1 1 e s0 1 v e 1 v e

s1 s1 0+1e+ s0 1 1 e 1 1 e s0 1 v e 1 v e

Table 1: The first two configurations

Having proven that SOLVE returns a unique answer regardless of the order in which the

sol ve nodes are processed, we address the issue of handling the stopping sets. SOLVE

is called (recursively) by another procedure called DECODE, shown in Listing 2. The

recursion is initiated by executing DECODE(X ,1). The parameter maxsol controls the

maximum number of results returned by DECODE, making it a variable list decoder.

Line 5 requires explanation: the row, column, block, and erasures mentioned there

refer to the q-ary S, not the binary S′. For instance, if the first row has only three erasures,

while the other rows, columns, and blocks have more erasures, then x refers to the first
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row. If q = 9 and the missing numbers in x are 3, 4, and 7, then there are 3! possible ways

to place these numbers into x, each potentially leading to a solution, which is stored in

Y . Each y ∈ Y is then passed as a context to SOLVE, which tries to find a solution within

y .

In conclusion, in this paper we have presented an iterative algorithm that can be used

to decode (and solve) the Latin and Sudoku codes (and puzzles). We proved that the

algorithm returns consistent solutions regardless of the path taken to compute them.

An interesting question for future research is whether the same decoding algorithm can

be adapted to solve Sudoku puzzles with symbol errors (instead of erasures).
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6
Additional Topics

HIS chapter contains two sections that discuss additional topics in the area of

(1) error-correcting codes and their relationships to combinatorial structures,

and (2) application of message-passing algorithms in games of perfect information.

In Chapter 5 we discussed the close relationship between binary LDPC codes and

Latin (or Sudoku) Squares. In the first section, we will discuss the close relationship

between MDC codes and ternary Latin hypersquares. We prove that every q-ary MDS

code of length n and distance 2 can be uniquely represented by a Latin square of order

q . By counting the total number of the latter, we count the total number of the former.

In our analysis, we define a Latin hypersquare as a generalization of a Latin square.

Suppose we represent each letter in the ternary alphabet by three colored cubes: white,

grey, and black. Hypercubes of dimensions 0, 1, 2, and 3 can be represented by a single

cube, an array of three cubes, a 3× 3 square of nine cubes, and a 3× 3× 3 block of 27

cubes, as shown in Figure 6.1.

(a) (b) (c) (d)

FIGURE 6.1 Hypercubes of different dimensions
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One unifying characteristic of these ternary hypercubes is that with the exception

of the 0-dimensional hypercube, every linear array of three adjacent cubes have three

unique colors. Without going into too much detail, this aspect of the hypercubes can be

very easily seen in Figure 6.2.

Figure 6.2(a) shows the same three-dimensional hypercube shown previously in 6.1.

In Figure 6.2(b), we show the three slices of this hypercube that are obtained by cutting

the hypercube along its height. In turn, each slice is a square. These squares are such

that in every row and column, the three cubes all have different colors. Again in Figure

6.2(c), the hypercube is sliced along the width direction, and finally in Figure 6.2(d), the

cut is along the depth direction.

(a) (c)

(b)

(d)

FIGURE 6.2 Three different ways to slice a hypercube

In the final section we discuss the application of message-passing algorithms in games

of perfect information. In particular, we focus on the popular game Tic-Tac-Toe, which

has enough complexity to illustrate the benefits of message-passing, and enough sim-

plicity to keep the presentation within a manageable size. Our message-passing algo-

rithm uses a hierarchical, and at the same time distributed decision-making structure
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where decisions are made locally by using simple rules before being presented to a cen-

tral arbiter. The arbiter, which itself has no access to the detailed rules, makes a global

decision by sorting the local decisions using a simple ordering rule.

Compared to conventional implementations of an optimal algorithm using game tree

search, recursive backtracking, and other types of heuristics, our approach unexpect-

edly has a much lower level of complexity in terms of the types of operations used and

the number of steps in the algorithm. To achieve the game objective, the algorithm only

uses a local function that counts the number of pieces of different types in neighboring

cells and returns the appropriate decision value using if statements.

6.1 LATIN HYPERCUBES AND MDS CODES

Maximum distance separable (MDS) codes have special properties that give them

excellent error-correcting capabilities. Counting the number of q-ary MDS codes of

length n and distance d , denoted by Dq (n, d)MDS , is a very hard problem. This sec-

tion shows that for d = 2, it amounts to counting the number of (n− 1)-dimensional

Latin hypercubes of order q . Thus Dq (3, 2)MDS is the number of Latin squares of order

q , which is known only for a few values of q . This section proves constructively that

D3(n, 2)MDS = 6 ·2 n−2.

6.1.1 Introduction

The binary parity check code is a popularly known error detection code: by adding

one redundant parity bit that increases the minimum Hamming distance d from 1 to 2,

a set of distinct 2 k binary strings of length k become binary parity check codewords of

length n = k + 1. This means that any two codewords in the set differ in at least two

positions.

The binary parity check code is a primary example of a special class of codes called
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the Maximum Distance Separable (MDS) codes, which have many special properties [3].

First, they obey the Singleton theorem [4], which requires the code’s minimum dis-

tance not to exceed the number of its redundant symbols r by more than one. For the

binary parity check code, d = r +1 = 2. Second, they map all the q k elements of of q-ary

strings of length k into codewords. The binary parity check code also has this property.

As a result, MDS codewords populate the code space very uniformly with maximum dis-

tance possible — two very desirable properties for error-correcting codes.

What is the number Dq (n, d )MDS of q-ary MDS codes of length n and minimum dis-

tance d ? For q = 2, it is well known that if d > 2, D2(n, d )MDS = 0 for n > d + 1, while

D2(n, d )MDS = 2 for n = d + 1 (the repetition code), and D2(n, 2)MDS = 2 (the even and

odd parity check codes). We prove that in general,Dq (n > d+1, d > q)MDS = 0.

The number Dq (n, d )MDS is hard to calculate. This section shows that Dq (n, 2)MDS is

the number of (n− 1)-dimensional Latin hypercubes of order q . Hence Dq (3, 2)MDS is

the number of Latin squares of order q , which is known only for a few q ’s [2]. No closed

form formula is known and in fact, for q = 6 , . . . , 11, Dq (3, 2)MDS has 9, 14, 21, 28, 37, and

48 digits ! Is there any hope at all for calculating Dq > 2(n, d )MDS?

This section shows that for ternary codes, D3(n, 2)MDS has an unexpectedly simple

closed form formula of 6 · 2 n−2. The proof outlined here is constructive, providing a

simple procedure to build ternary MDS codes of length n and Hamming distance 2.

6.1.2 Definitions

We begin by defining a hypercube. While we can extend the definition for Latin cubes

in [1], we recursively define a hypercube of dimension n in terms of hypercubes of lower

dimensions because the proofs of our main results use this recursively defined structure.

Definition 3. A dimension-n hypercube (or an n-cube) a n ∈Hn over the q-ary alphabet
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Q= {0, 1, . . . , q−1} is a multidimensional array defined recursively as follows:

a n
= [ b0

n−1 b1
n−1 . . . b q−1

n−1 ] b0
n−1, . . . , b q−1

n−1 ∈Hn−1

a 1
= [ b0 b1 . . . b q−1 ] b0 , . . . , b q−1 ∈Q (6.1)

where Hn denotes the space of all dimension-n hypercubes. The elements of Hn are

arrays containing q hypercubes of dimension n − 1. Hypercubes of dimension 0 are

simply alphabet symbols inQ. We denote b0
n−1 by a n[ 0 ], i.e., the 0-th element of a n ,

and the q n elements of a n by a n[ i1 ][ i2 ] . . . [ in ], or simply a n[ 1, 2, . . . , in ] , i j ∈Q. �

Example 4. If q = 3, then Q = {0, 1, 2} and Hn is the space of ternary hypercubes.

Examples of 1-cubes (strips) are a 1
= [ 0 1 1 ] , b 1

= [ 2 0 1 ] , and c 1
= [ 2 2 2 ] . From Defi-

nition 6.1, we can construct 2-cubes (squares) by combining the strips into an array. For

example:

d 2
= [ c 1 a 1 c 1 ] = [ [ 2 2 2 ] [ 0 1 1 ] [ 2 2 2 ] ] ,

e 2
= [ a 1 c 1 b 1 ] = [ [ 0 1 1 ] [ 2 2 2 ] [ 2 0 1 ] ] ,

f 2
= [ a 1 b 1 c 1 ] = [ [ 0 1 1 ] [ 2 0 1 ] [ 2 2 2 ] ] .

To build any square, we can always select a group of 9 symbols fromQ. For example, we

can build the square g 2
= [ [ 0 1 2 ] [ 2 0 1 ] [ 1 2 0 ] ]. �

Two hypercubes a n and b n are equal if their elements are identical in all positions,

i.e., a n[ 1, 2, . . . , in ] = b n[ 1, 2, . . . , in ]. Two hypercubes are different if they differ in one or

more positions, and orthonormal if they differ in every position. For the same reason we

defined hypercubes recursively, we define orthonormality recursively as follows:

Definition 4. Two n-cubes a n and b n are orthonormal (⊥) if the hypercubes of dimen-
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sion n−1 that form a n and b n are also pairwise orthonormal.

a n ⊥ b n ⇔ a n[ i ] ⊥ b n[ i ] i = 0 . . . q−1 and n > 1

a 1 ⊥ b 1 ⇔ a 1[ i ] 6= b 1[ i ] i = 0 . . . q−1 (6.2)

The recursive definition is terminated by defining the orthonormality between a 1 and

b 1 as simple pairwise inequalities between their elements.

Example 5. From example 4, a 1 ⊥ c 1. None of the 2-cube pairs are orthonormal to each

other. For example, d 2 6⊥ e 2 because while d 2[ 0 ] = c 1 ⊥ a 1
= e 2[ 0 ] and d 2[ 1 ] = a 1 ⊥

c 1
= e 2[ 1 ], note that d 2[ 2 ] = c 1 6⊥ b 1

= e 2[ 2 ]. �

We are now ready to define Latin hypercubes. The recursive definitions for hypercubes

and orthonormality lead to a simple definition for Latin hypercubes. To illustrate why a

recursive definition works, consider a 3×3×3 Latin cube. The three “slices” along the

height, width, and depth, are orthonormal 3× 3 squares. Along the height and width

of each square, there are three 3× 1 orthonormal strips, which themselves contain no

identical elements. Precisely, a Latin hypercube is defined as follows:

Definition 5. A dimension-n Latin hypercube (or a Latin n-cube) a n ∈Ln over the q-ary

alphabetQ is defined recursively as follows:

a n ∈Ln ⇔ a n[ i ] ⊥ a n[ j ] i 6= j , 0≤ i , j ≤ q−1 . (6.3)

HereLn is the space of all dimension-n Latin hypercubes. We call the elements ofL1,

L2, andL3 Latin strips, squares, and cubes, respectively. �

Definition 6. Two Latin n-cubes a n , b n ∈Ln are orthonormal Latin cubes if and only if

a n ⊥ b n . Note that for dimension n = 2, the definition should not be confused with the

standard definition for orthogonal Latin squares of order q . In this section, we use the

symbol n to denote the cube dimension, not the order, which we denote by q . �
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Example 6. Using the same cubes defined in Example 4, we can see that b 1 and g 2 are

Latin strips and squares, respectively, while the others are not. We display the strips a 1,

b 1, and c 1; and the squares d 2, e 2, f 2, and g 2 visually below to show why this is so.

0 1 1 2 0 1 2 2 2 2 2 2
0 1 1
2 2 2

0 1 1
2 2 2
2 0 1

0 1 1
2 0 1
2 2 2

0 1 2
2 0 1
1 2 0

FIGURE 6.3 Different strips and squares

Clearly, a 1 and c 1 are not in L1 because they have identical elements 1 and 2, respec-

tively. In contrast, the elements of b 1 are not identical, thus b 1 ∈ L1. Continuing with

d 2, we see that all its rows have identical elements. Rows 1 and 3 also have identical

values at all three positions, therefore, d 2 L2. For e 2, row 3 is not orthonormal with the

first two rows, and row 2 contains identical elements, therefore e 2 L2.

We do not expect a different result with f 2, since its rows are simply the rows of e 2

permuted. This brings us to the last square g 2, which we claim to be a Latin square. The

rows (and columns) do not contain identical elements, and the rows are orthonormal to

each other. Therefore, g 2 ∈L2. �

Thinking of a 3× 3× 3 cube as a stack of three 3× 3 squares, we can “shuffle” the

stack in three different ways along its height, width, and depth. Obviously, we want to

go beyond three different ways of shuffling. The following definition generalizes the

concept of shuffling to dimension-n hypercubes.

Definition 7. The i-th coordinate left-cyclic shift operator (denoted by ⊳
i ) of an n-cube

overQ are recursively defined as follows, with j ∈ {0 . . . q−1} :

b n
= ⊳

i a n ⇔ b n[ j ] = ⊳
i a n[ j ] 1≤ i < n

b n
= ⊳

n a n ⇔ b n[ j ] = a n[ j + 1 mod q ] (6.4)
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Similarly, the i-th coordinate right-cyclic shift operator ⊲i is defined as:

b n
= ⊲

i a n ⇔ b n[ j ] = ⊲
i a n[ j ] 1≤ i < n

b n
= ⊲

n a n ⇔ b n[ j ] = a n[ j −1 mod q ] (6.5)

Notice that operating on an n-cube, the left- and right-cyclic shift operation (or ⊳ and

⊲ for short) does not change the cube’s dimension. It merely shuffles the dimension

n−1 elements if the shift is on the nth coordinate, or recursively applies the shift if the

shift is on the lower coordinates i < n. �

Example 7. Let us show the effects of cyclic shift operations on the cubes from exam-

ple 4. For example, ⊳1a 1
= ⊳

1[ 0 1 1 ] = [ 1 1 0 ] , while ⊲
1b 1

= ⊲
1[ 2 0 1 ] = [ 1 2 0 ] , and

⊲
1
⊲

1b 1
= ⊲

1
⊲

1[ 2 0 1 ] = ⊲
1[ 1 2 0 ] = [ 0 1 2 ] = ⊳

1[ 2 0 1 ] . The last equation shows that

⊲⊲≡ ⊳ , and conversely ⊳⊳ ≡ ⊲.

2 0 1
2 2 2
0 1 1

0 1 2
2 0 1
1 2 0

1 2 0
0 1 2
2 0 1

0 1 1
2 2 2
2 0 1

1 0 1
2 2 2
1 2 0

0 1 1
2 0 1
2 2 2

1 2 1

FIGURE 6.4 Three different cyclic shift operations

Referring to the above visualization of the cubes, ⊲1e 2
= ⊲

1[ a 1 c 1 b 1 ] = [⊲1a 1
⊲

1

c 1
⊲

1b 1 ] = [⊲1[ 0 1 1 ]⊲1[ 2 2 2 ]⊲1[ 2 0 1 ] ] = [ [ 1 0 1 ] [ 2 2 2 ] [ 1 2 0 ] ] , and⊳
2 f 2

= ⊳
2[ a 1b 1c 1 ] =

[ b 1c 1a 1 ] = [ [ 2 0 1 ] [ 2 2 2 ] [ 0 1 1 ] ] . Finally,⊳1g 2
= [⊳1[ 0 1 2 ]⊳1[ 2 0 1 ]⊳1[ 1 2 0 ] ] = [ [ 1 2 0 ]

[ 0 1 2 ] [ 2 0 1 ] ] = ⊲
2g 2 . �

6.1.3 Ternary Latin Hypercubes

In this section, we focus on Latin hypercubes over an alphabet Q with q = 3. These

ternary n-cubes are of special interest to us because counting them is equivalent to

counting the number of ternary MDS codes of length n + 1 and minimum distance d

= 2. First, an observation that along the nth axis, cyclically shifting the stack twice in a

given direction is the same as shifting it once in the opposite direction.
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Lemma 14. For q = 3 and a n ∈Hn , ⊲n
⊲

n a n
= ⊳

n a n and ⊳
n
⊳

n a n
= ⊲

n a n .

Proof. From Definition 7, we have the following identities:

b n
= ⊳

n a n ⇔ b n[ j ] = a n[ j + 1 mod q ]

b n
= ⊲

n a n ⇔ b n[ j ] = a n[ j −1 mod q ]

Applying the identities involving ⊳
n to produce another n-cube c n , we get:

c n
= ⊳

nb n
= ⊳

n
⊳

n a n

⇔ c n[ j ] = b n[ j + 1 mod q ] = ⊳
n a n[ j + 1 mod q ]

= a n[ j + 2 mod q ] = a n[ j −1 mod q ]

⇔ c n
= ⊲

n a n (6.6)

and the identities involving ⊲
n , we also get:

c n
= ⊲

nb n
= ⊲

n
⊲

n a n

⇔ c n[ j ] = b n[ j −1 mod q ] = ⊲
n a n[ j −1 mod q ]

= a n[ j −2 mod q ] = a n[ j + 1 mod q ]

⇔ c n
= ⊳

n a n (6.7)

The last lines of equations 6.6 and 6.7 conclude the proof that for q = 3, the identities

⊲
n
⊲

n a n
= ⊳

n a n and ⊳
n
⊳

n a n
= ⊲

n a n hold for all a n ∈Hn .

Next, we claim that two orthonormal ternary Latin n-cubes can be created from any

ternary Latin n-cube using left- and right-cyclic shifts.

Lemma 15. If a n , b n ∈ Ln are two ternary Latin n-cubes. then a n ⊥ b n iff either b n
=

⊲
n a n or b n

= ⊳
n a n (or similarly, a n

= ⊲
nb n or a n

= ⊳
nb n).
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Proof. First, let us prove this for n = 1. There are only six distinct ternary Latin 1-cubes,

the cube a1
= [ 0 1 2 ] and its permutations b1 = [ 0 2 1 ] , c 1

= [ 1 0 2 ] , d 1
= [ 1 2 0 ] ,

e1
= [ 2 0 1 ] , f 1

= [ 2 1 0 ] . By inspection, a1 ⊥ d 1⊥ e1 and b1 ⊥ c 1 ⊥ f 1. Examining

these orthonormal Latin 1-cubes, we see that for example, d 1
= ⊳

1a1 and a1
= ⊳

1e1,

validating the lemma for those pairs. The lemma also holds for other orthonormal pairs

e 1
= ⊳

1d 1 , c 1
= ⊳

1b1 , f 1
= ⊳

1b1 , and c 1
= ⊳

1 f 1. Obviously, we can reverse the

above to obtain the following relationships: a1
= ⊲

1d 1 , e1
= ⊲

1a1 , d 1
= ⊲

1e 1 , b1
=

⊲
1c 1 , b1

= ⊲
1 f 1 , and c 1

= ⊲
1 f 1. Thus, the lemma holds for n = 1. Next, we extend

the proof to a general n by induction. First, assume:

a n ⊥ b n ⇔ b n
= ⊲

n a n or ⊳
n a n (6.8)

Now, we have to prove that the lemma is also true for any ternary Latin n + 1-cubes.

For brevity, let us denote the cube c n by c 0 , while ⊲
nc n by c 1 , and⊳

n c n by c 2 . Similarly,

we use the notations d 0, d 1, d 2, e 0, e 1, e 2, f 0, f 1, f 2, g 0, g 1, g 2, h 0, h1, h 2 to denote the

Latin n-cubes c n , d n , en , f n , g n , hn and their left- and right-cyclic shifts.

First, let an+1 ⊥ bn+1, and also assume an+1
= [ c n d n en ] = [ c 0 d 0 e 0 ] and b n+1

=

[ f n g n hn ] = [ f 0 g 0 h 0 ] . From the definition of a ternary Latin hypercube, we know

that c 0⊥ d 0⊥ e 0. Since c 0⊥ d 0 and c 0, d 0 ∈ Ln , from Equation 6.8 we know that either

d 0 = c 1 or d 0 = c 2. Likewise, c 0⊥ e 0 implies that e 0 = c 1 or e 0 = c 2. Therefore, an+1
=

[ c 0 {c 1, c 2} {c 1, c 2} ], with the choices for d 0 and e 0 in braces, resulting in four different

choices for an+1. Withd 0⊥ e 0, the only two possible choices for an+1 are [ c 0 c 1 c 2 ] or

[ c 0 c 2 c 1 ]. Similarly, bn+1 can only be either [ f 0 f 1 f 2 ] or [ f 0 f 2 f 1 ].

a n+1
= { [ c 0 c 1 c 2 ] , [ c 0 c 2 c 1 ]} ⊥ { [ f 0 f 1 f 2 ] , [ f 0 f 2 f 1 ]}= b n+1 (6.9)

Note that the two choices for a n+1 have the same first element c 0. Likewise with b n+1,

its two choices have the same first element f 0. So let us analyze these first elements.
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Since an+1 ⊥ bn+1, from the definition of orthonormality, c 0⊥ f 0. But by our assump-

tion in Equation 6.8, this means f 0 = {c 1 c 2}. Substituting into equation 6.9, we have 8

choices:

a0 = [ c 0 c 1 c 2 ]

a1 = [ c 0 c 2 c 1 ]











= a n+1 ⊥ b n+1
=



















































[ f 0 = c 1 f 1 f 2 ] = [ c 1 c 2 c 0 ] = b0

[ f 0 = c 1 f 2 f 1 ] = [ c 1 c 0 c 2 ] = b1

[ f 0 = c 2 f 1 f 2 ] = [ c 2 c 0 c 1 ] = b2

[ f 0 = c 2 f 2 f 1 ] = [ c 2 c 1 c 0 ] = b3

Notice a0, the first choice for a n+1 and b1, the second choice for b n+1. Obviously, they

are not orthonormal because [ c 0 c 1 c 2 ] 6⊥ [ c 1 c 0 c 2 ] because their third elements c 2

are identical. With further observation, we see that not only a0 6⊥ b3 , but also a1 6⊥ b0 ,

and a1 6⊥ b2 , thus reducing the above equation into the two choices of equations below:

[ c 0 c 1 c 2 ] = a n+1 ⊥ b n+1
= { [ c 1 c 2 c 0 ] , [ c 2 c 0 c 1 ]} or

[ c 0 c 2 c 1 ] = a n+1 ⊥ b n+1
= { [ c 1 c 0 c 2 ] , [ c 2 c 1 c 0 ]}

which can be restated as follows:

a n+1 ⊥ b n+1
= { ⊳

n+1a n+1
⊲

n+1 a n+1 } or

a n+1 ⊥ b n+1
= { ⊲

n+1a n+1
⊳

n+1 a n+1 }

The above equations are identical and equivalent to saying that if a n+1 is orthonormal

to b n+1, then b n+1 is either ⊳
n+1a n+1, or ⊲

n+1a n+1. But this means the lemma also

holds for n + 1-cubes, which completes the induction. The proof for sufficiency follows

from the definition of a Latin n-cube.

The previous lemma leads to an observation that a ternary Latin n-cube always con-
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sists of a ternary Latin n−1-cube and its left- and right- cyclic shifts along the nth axis,

as stated in the following corrolary:

Corrolary 16. Given a n , b n , c n ∈Ln and a n+1
= [ a n b n c n ]∈Ln+1, then either b n

=

⊲
n a n and c n

= ⊳
n a n ; or b n

= ⊳
n a n and c n

= ⊲
n a n . In other words, the elements of

a Latin hypercube are cyclic shifts of each other.

Proof. From definition 5, we know that the Latin n-cubes a n , b n , and c n are orthonor-

mal to each other, that is, a n ⊥ b n ⊥ c n . From Lemma 15, we know that a n ⊥ b n implies

b n
= ⊳

n a n or b n
= ⊲

n a n , and that a n ⊥ c n implies c n
= ⊳

n a n or c n
= ⊲

n a n .

Substituting the above choices for b n and c n into the expression for a n+1 gives us

four different choices for [ a n b n c n ], which are: [ a n
⊳

n a n
⊳

n a n ] , [ a n
⊳

n a n
⊲

n a n ] ,

[ a n
⊲

n a n
⊳

n a n ] , or [ a n
⊲

n a n
⊲

n a n ].

Since a n+1 is a Latin n-cube, then b n ⊥ c n , and by lemma 2 the only valid choices for

a n+1 are: [ a n
⊳

n a n
⊲

n a n ] or [ a n
⊲

n a n
⊳

n a n ] .

What about cyclic-shifts along an axis other than the nth axis? The next lemma ex-

tends the previous result not only to ⊳
n and ⊲

n but also to all ⊳i and ⊲
i for 1 ≤ i < n.

The lemma proves that surprisingly, they are equivalent to either ⊳n and ⊲
n !

Lemma 17. Consider S n , the space containing the 2n left- and right-cyclic shift oper-

ators ⊲
i and ⊳

i (1 ≤ i ≤ n) , that can operate on ternary Latin n-cubes an ∈ Ln. The

space S n can be divided into two partitionsS n
+

and S n
−, represented by ⊲ and ⊳ (short-

hands for ⊲n ∈S n
+

and ⊳
n ∈ S n

−, respectively).

Proof. We will prove this lemma by induction. First, let us prove that this lemma is true

for ternary Latin 1-cubes. The proof in this case is trivial because ⊲
1a 1

= ⊲a 1 and simi-

larly, ⊳1a 1
= ⊳a 1. Here, ⊲a 1

= ⊲
n a 1

= ⊲
1a 1 and ⊳a 1

= ⊳
n a 1

= ⊳
1a 1

Next, assume that it is true for ternary Latin n-cubes, that is, ⊲i a n
= ⊲a n or ⊳ a n ;

and ⊳
i a n

= ⊲a n or ⊳a n . Then it remains for us to prove that the lemma also holds for
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n+1-Latin cubes to prove the lemma.

⊲
i a n+1

= ⊲
i [ a0

n a1
n a2

n ] a1
n

= ⊲
n a0

n and a2
n

= ⊳
n a0

n

= [ ⊲i a0
n
⊲

i a1
n
⊲

i a2
n ]

= [ ⊲n a0
n a0

n
⊳

n a0
n ] or [ ⊳n a0

n a0
n

⊲
n a0

n ]

= ⊲
n+1[ a0

n
⊲

n a0
n

⊳
n a0

n ] or ⊳
n+1[ a0

n
⊲

n a0
n

⊳
n a0

n ]

= ⊲
n+1[ a0

n a1
n a2

n ] or ⊳
n+1[ a0

n a1
n a2

n ]

= ⊲
n+1a n+1 or ⊳

n+1a n+1

= ⊲a n+1 or ⊳a n+1

The first line is from Corollary 16, while the second line is from the definition of ⊲i

for i < n. The third line uses the assumption for ternary n-cubes where ⊲
i
= ⊲

n or ⊳n ,

giving us 8 different combinations of ⊲n and ⊳
n .

The first element of ⊲i a n+1 can be ⊲
n a0

n or ⊳
n a0

n , then the next element can be

⊲
n a1

n
= ⊲

n
⊲

n a0
n

= ⊳
n a0

n , or ⊳n a1
n

= ⊳
n
⊲

n a0
n

= a0
n , and similarly the third ele-

ment can be ⊲
n a2

n
= ⊲

n
⊳

n a0
n

= a0
n , or ⊳n a2

n
= ⊳

n
⊳

n a0
n

= ⊲
n a0

n .

Still on the third line, the corrolary stipulates that only two of the combinations are

valid: [ ⊲n a0
n a0

n
⊳

n a0
n ] , or [ ⊳n a0

n a0
n

⊲
n a0

n ] . In the remaining lines we again

use the definitions of cyclic-shift operators before proving that indeed ⊲
i is equivalent

to either ⊲n+1 or ⊳n+1. The proof for ⊳i is identical to the proof we just described for

⊲
i .

Finally, the theorem proving that there are 6 ·2 n−1 ternary Latin n-cubes.

Theorem 18. There are |Ln| = 6 · 2 n−1 ternary Latin n-cubes. Factoring out symbol

permutations, there are 6 ·2 n−1/ 3 ! = 2 n−1 Latin n-cubes.

Proof. We will prove this by induction. For n = 1, 2, and 3, the proof amounts to count-

ing the numbers of permutations, Latin squares, and Latin cubes of order 3. These num-
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bers are well known [2] to be 3 ! = 6, 12, and 24, respectively. The formula 6 · 2 n−1 obvi-

ously agrees with these well-known results.

Suppose the formula also holds for ternary Latin n-cubes, i.e., there are a total of 6 ·

2 n−1 of distinct a i
n ∈Ln , with i = 1 . . . 6 ·2 n−1. If we select one of these Latin n-cubes,

from the corrolary we know that we can generate exactly two Latin n + 1-cubes [ a n
⊳

a n
⊲a n ] and [ a n

⊲a n
⊳a n ] . Using the same procedure to all the distinct 6·2 n−1 Latin

n-cubes to generate two distinct Latin n + 1-cubes, we are creating 6 · 2 n distinct Latin

n + 1-cubes.

6.1.4 Ternary Latin Hypercubes and MDS Codes

Finally, we will establish the link between the ternary Latin hypercubes and the MDS

codes. To do this, we will use the properties of the MDS codes.

Definition 8. The q-ary (n, q k , d) Maximum Distance Separable (MDS) code is a set con-

taining q k distinct codewords (q-ary vectors) of length n, with the Hamming distance

between any two codewords of d = n−k + 1.

If I is the set of q-ary vectors of length k (the information bits) and R is the set of q-ary

vectors of length r = n− k (the redundant bits) with |I | = q k and |R| = qr , then we

can also define an (n, q k , d) MDS code as a bijection f from I to R such that for distinct

i1, i2 ∈ I , the pair ( i1 f (i1) ) and ( i2 f (i2) ) have a Hamming distance of d . �

Theorem 19. For any (n, q k , d) MDS codes, d ≤ q .

Proof. Consider I0 = {0 k−1q | q ∈ Q}, the set of q-ary vectors of length k, all of which

are prefixed with 0 ∈ Q in the first k−1 coordinates. Obviously, |I0|= q . Also consider

R0 = {qr | q ∈Q}, the set of q-ary vectors of identical symbols q ∈Q of length r .

Next, consider a bijection f from I0 to R0. The code represented by f has a Hamming

distance of r + 1. This is still true for all the (q !)r different ways we can permute the

symbols in each of the r coordinates of R0. Thus, the particular f we chose represents
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all variants of f that map q points in I0 into q points in R0 such that the minimum

pairwise distance of ( i f (i ) ) is r + 1.

From Definition 8, f does not represent an MDS code, because it only maps q vectors

of length k, out of the q k possible. To make f similar to an MDS code, we need to enlarge

I0. Consider a vector i outside I0. Next, let i be of a distance one from one member

i0 ∈ I0 and a distance two with the rest.

Since | i − i0| = 1, then if d = r + 1, we must have | f (i )− f (i0)| ≥ r , i.e., f (i ) must

not match any symbol in f (i0). However, there are only q symbols, thus r ≤ q − 1, or

n−k + 1≤ q , but, d = n−k + 1, thus d ≤ q .

Example 8. For example, {00000000, 00000001,00000002} are the members of a ternary

I0 with k = 8, and {0000, 1111,2222} is a ternary R0 with r = 4. If f is a mapping between

I0 and R0, then ( i f (i ) ) has a distance of 5. The distance is still the same even if we

permute the symbols in the four coordinates of R0. However, as we pointed out in The-

orem 19, f does not represent an MDS code. We must enlarge I0 to cover all 38 vectors

{00000000, . . . ,22222222}, while maintaining the minimum distance d .

Suppose we introduce 00000010 as i . This vector has a distance one with i0 = 00000000,

and two with the other vectors in I0. If we want to have a distance of 5 between i and i0,

we must map i to a vector of length r = 4 that is different in all four positions from f (i0)

= 0000. We cannot use the symbol 0, which leaves us only with 1 and 2. This means the

largest possible r is 2, therefore the maximum d is r + 1 = 3≤ q = 3. �

Theorem 20. An (n + 1, q k , 2) MDS code is isomorphic to a Latin n-cube of order q ,

therefore there are 6 ·2 n−1 distinct (n + 1, 3n , 2) MDS codes.

Proof. From earlier results, we know that for an (n+1, q k , 2) MDS code, k = n and r = 1.

The bijection f for this code maps vectors of length n inQn toQ. Consider an isomor-

phism g that maps the qn points in the domain of f inQn into the qn positions of a Latin

n-cube a n . In addition, g also maps the range of f inQ into the values a n[1, 2, . . . , in] of
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a n . The bijection relationship f still holds between the cube coordinate positions and

the values contained therein. With the result from Theorem 18, we prove that there are

6 ·2 n−1 distinct (n + 1, 3n, 2) MDS codes.

6.1.5 Experimental Results

To conclude, we present the experimental result that verifies the formula for the first

few values of n. We wrote a program to verify that indeed there are 6 ·2 n−1 Latin hyper-

cubes of dimension n.

The program iterates through all
(6·2 n−2

3

)

triplets [ a i
n−1 a j

n−1 ak
n−1 ] and tests

whether the elements meet the orthonormality requirement, i.e., whether a i
n−1 ⊥ a j

n−1 ⊥

ak
n−1. If this requirement is met, then the triplet is a Latin n-cube. If not, the program

moves on to the next triplet until all triplets are tested. An output file is used to store all

the Latin n-cubes found through the iteration.

n N = n−1 D3(n, 2)MDS = 6 ·2 n−2
= 3 ·2 N A3(n, 2)MDS = 3 n−1

2 1 6 3

3 2 12 9

4 3 24 27

5 4 48 81

6 5 96 243

7 6 192 729

8 7 384 2187

9 8 768 6561

10 9 1536 19683

The column headers require a little explanation. The symbol n in the first column

follows the convention for codeword string length n in coding theory. The Latin hy-
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percube dimension is denoted by N instead. The symbol D3(n, 2)MDS denotes the maxi-

mum number of distinct ternary MDS codes with length n and minimum distance d = 2,

while the symbol A3(n, 2)MDS is the maximum number of MDS codewords in a ternary

code with length n and minimum distance d = 2.

6.2 DECENTRALIZED DECISION MAKING IN THE GAME OF TIC-TAC-TOE

Traditionally, the game of Tic-Tac-Toe is a pencil and paper game played by two peo-

ple who take turn to place their pieces on a 3× 3 grid with the objective of being the

first player to fill a horizontal, vertical, or diagonal row with their pieces. What if instead

of having one person playing against another, one person plays against a team of nine

players, each of whom is responsible for one cell in the 3× 3 grid? In this new way of

playing the game, the team has to coordinate its players, who are acting independently

based on their limited information. In this section, we present a solution that can be

extended to the case where two such teams play against each other, and also to other

board games. Essentially, the solution uses a decentralized decision-making, which at

first seems to complicate the solution. However, surprisingly, we show that in this mode,

an equivalent level of decision-making ability comes from simple components that re-

duce system complexity.

6.2.1 Introduction

Perhaps it is not an exaggeration to claim that the game of Tic-Tac-Toe is among the

most popular childhood games in the world [5, 6]. The game is played by two players

who place their different colored or shaped game pieces on a 3×3 grid. Unlike checkers,

chess, weiqi (go), and many other board games, the relatively simple grid has enabled

people since antiquity to play Tic-Tac-Toe on beach sands, napkins, dusty windshields,

or wherever the grid can be drawn. The rule is very simple: players take turn, each time
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placing one of their pieces in an unoccupied position on the grid until the grid is filled,

or until someone wins. The objective is also simple: the first player to fill a horizontal,

vertical, or diagonal row with his/her pieces wins the game.

The fact that Tic-Tac-Toe is so simple and widely known makes it the ideal game of

choice for classroom introduction to programming, game theory, data structure, and

combinatorial enumeration of all possible outcomes. By one account, there are 765

essentially different configurations of the game pieces, or 26,830 possible games, tak-

ing into account different symmetries. If symmetry is not considered, there are 255,168

possible games.

While 255,168 sounds like a large number for a human player to memorize, it is cer-

tainly not a large number for most modern computers. One can imagine “training” a

computer to be a competent player in Tic-Tac-Toe by memorizing all 255,168 games and

use this knowledge to calculate the best move based on the existing board configuration.

This approach is of course a far cry from how people play. No one memorizes all

255,168 games to calculate the best move. Instead, we humans use simple rules that

provide several possible moves, from which the best move was chosen. Sooner or later,

most human players discover that Tic-Tac-Toe always ends in a draw when both players

use the optimal rule of the game.

Just as we humans develop our decision-making ability through playing games —

starting from the simple and concrete games to the more complex and abstract games

— in its evolution, computers spent some of their “childhood” years playing Tic-Tac-Toe

(ironically, after being forced into the horror of calculating ballistic trajectories, code

breaking, and simulating atomic explosions in their “infancy” years!)

One of the first computers in the 1950s to play Tic-Tac-Toe, EDSAC1 was capable of

playing a perfect game with a program less than 4,000 bytes long [7]. A human played

against a single player, the machine. This tradition continued well into the modern era

of the Internet. A casual search on the Internet would return hundreds, if not thousands,
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of interactive web pages capable of playing perfect games against human players.

Taking a peek into the source codes behind these games and stripping away the user

interface codes — leaving only the equations, logic, and database used by the programs

— one cannot avoid the impression of relative complexity for such a simple game. Can

we do better? Here we address the interesting question: is there a simpler way to pro-

gram a competent Tic-Tac-Toe player? Can complexity be further reduced by a differ-

ent, i.e., decentralized mode of decision-making? Later, we elaborate the definition of

a competent player. For now, we simply mean a player who makes no mistake and can

consistently force a draw, regardless of which player starts the game.

What if instead of trying to create one monolithic competent player, we create nine

agents and one manager, together acting as a single competent player? At first, it sounds

like we have increased the complexity of our solution. After all, the team still has to

respect the original rules of the game, meet the same priorities, and on top of that, coor-

dinate its action. However, here we show that surprisingly, the end result is a simpler set

of rules for each agent. Consequently, the team has a much lower complexity compared

to an equivalent centralized implementation, as evidenced by the types and numbers of

instructions used by the team.

Further, it is not hard to imagine that in certain computing platforms, decentralized

decision-making is the only possible avenue of computation. Next, we begin the pre-

sentation by analyzing a competent Tic-Tac-Toe player.

6.2.2 Competent Player

A competent player is defined as a player who has in its arsenal a complete collection

of strategies that are necessary to consistently force a draw when faced with another

competent player or win when the other player makes a mistake. In contrast, a less-

than-competent player only has a subset of these strategies. For convention, the grid is

numbered as in Figure 6.5 below. In this section, we assume that the opponent plays theO (for “opponent”) while the Tic-Tac-Toe team plays the X.
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1 2 3
4 5 6
7 8 9

FIGURE 6.5 Grid cell numbering convention

A. Defensive Strategic Categories

A novice defensive player can block an immediate threat, i.e., it can prevent an oppo-

nent from completing a row. Such a player detects the presence of two opponent pieces

on a row and reacts by placing its own piece in the remaining space on the targeted row.

An intermediate defensive player can detect and preempt any attempt by the oppo-

nent to introduce two possible completions. For example, in Figure 6.6, suppose the

opponent, player O, just moved. An intermediate defensive player knows how to pre-

vent the opponent from occupying cell 8, which prevents a two-completion attack on

cell 5 and 9 in the next move.

   
   
   

   
   
   

FIGURE 6.6 Intermediate defensive player

However, note that the opponent can also launch a two-completion attack on cell 3 and

4 by occupying cell 1. To force a draw, the player needs to utilize more than defensive

moves. As the famous dictum says, “The best defense is offense.” If we occupy cell 5, the

opponent is forced to follow a series of defensive moves that lead to a draw.

An advanced defensive player can react appropriately to an opening move. In Tic-Tac-

Toe, this translates to placing a piece in the center cell if the opponent starts anywhere

but the center. If the opponent starts from the center cell, such a player reacts by occupy-

ing one of the corner cells. Similarly, we can categorize players based on their offensive

capabilities.

B. Offensive Strategic Categories
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A novice offensive player can complete a row when two of its own pieces are already

placed in a row with one remaining empty position. This is, as the name suggests, the

most basic offensive capability a player must have to have a chance of effectively win-

ning against another player.

An intermediate offensive player can threaten the opponent with a one-completion

attack, thus forcing the opponent to react and defend the position, possibly disrupting

any planned move. For example, in Figure 6.7, suppose the opponent just placed an O

in cell 6. An intermediate offensive player would threaten the opponent by placing his

piece in cell 1 (or 2), forcing the opponent to occupy cell 2 (or 1).

   
   
   

   
   
   

FIGURE 6.7 Intermediate offensive player

An experienced offensive player can threaten the opponent with two possible com-

pletions on two rows, thus guaranteeing a win. In Figure 6.8, the opponent just placed

an O in cell 6. An experienced offensive player can force a win by placing an X in cell 2

— a two-completion attack in cell 1 and 5.

   
   
   

   
   
   

FIGURE 6.8 Experienced offensive player

Finally, an advanced offensive player can make the most aggressive opening move.

Playing against an opponent executing random moves, this means occupying any one

of the corner cells, giving a 7 out of 8 chance of winning. Playing against a competent

opponent, the most strategic move is to occupy the center cell, denying four possible

completions.
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6.2.3 Team Infrastructure

Having described the different player categories, of course we eventually want to cre-

ate a team of 9 agents (plus one manager) that can emulate, through their independent

actions, the level of competence shown by an advanced defensive and offensive player.

However, first let us describe the infrastructure available to the team members.

First, let us describe the role of the manager as shown in the algorithm below. It per-

forms a primitive coordinating role for the agents and nothing more. In fact, the same

manager can be used for Tic-Tac-Toe or other turn-based (could be multi-player) board

games because the manager knows almost nothing about the game its agents are play-

ing.MANAGER1: Wait until a new opponent pie
e is pla
ed.2: On
e pla
ed, ask all a
tive agents to start 
al
ulation.3: Wait for the agents to submit their responses.4: Choose one of the responses with the highest priority.5: Notify all agents whi
h agent is sele
ted.6: If all 
ells are filled, then end. Otherwise, go ba
k to 1.
Each agent responds back with a priority number — saying “let me handle this.” In

step 4, the manager selects the agent with the highest priority. If there is a tie, it selects

one response (either at random or first arrival, etc.)

These priority numbers convey the subjective and private belief of each agent of how

important it thinks the information it has, and the reaction it plans to do, to the suc-

cess of the team (in this case, in playing the Tic-Tac-Toe game, although this could be

easily extended to other applications!) The manager thus resolves any possibly conflict-

ing subjective views by impartially (or partially, in a consistent way) selecting one of the

agents. Let us now describe the role of the agents, as shown in the algorithm below:



179AGENT1: Wait for the instru
tion to start from the manager.2: If the opponent already landed in this 
ell, orrea
tion is already made, then end. Otherwise, move to 3.3: Obtain all a

essible information about the board.4: Consult the fun
tion T for a priority number.5: On
e found, submit the priority number as a response.6: Wait for the sele
tion notifi
ation from the manager.7: If sele
ted, then rea
t. Otherwise, go to 1.
Before explaining the algorithm, let us distinguish the word “response” and “reaction”.

An agent responds to the manager by providing a priority number. In contrast, an agent

reacts to the opponent by placing a friendly piece where the agent is assigned to operate.

Step 1 is trivial. It simply asks the agent to wait for the instruction from the man-

ager before it begins calculating because reliable calculation has to be done based on

the most current and relevant state of information available. The manager has a global

knowledge of when the opponent introduces a new piece into the board. Therefore, step

1 provides the synchronizing signal for information processing that precedes decision-

making.

Step 2 is also easy to understand. An agent no longer has to compute a reaction if

it has already made one, or if the opponent has eliminated any reason for the agent to

make one (by placing its piece where the agent is located.)

Step 3 is very crucial to an agent’s operation. In one extreme case, an agent calculates

the response in absence of any factual information of the board configuration, i.e., it is

simply a “fortune-teller” — providing suggestion to the manager based on internal and

unsubstantiated private beliefs. In another extreme, an agent has complete information

on the board configuration. Clearly, these extreme cases are not desirable (or practical).

What makes our model interesting is the case where the agents have incomplete in-
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formation (by design) about the board, from which they infer the best move in their own

areas of responsibility. The agents then convey this inference to a manager, who then

arbitrates conflicting priorities.

In what will become clear in the examples provided in this section, the agents do not

have to access the same rule, level, scope, and type of information. In many simple

board games, the agents can be identically programmed. However, in more complex

games, the agents can easily operate within an informational and operational (rule) hi-

erarchy.

Step 4 essentially declares the existence of a “rule book” for each agent. Of course,

in some games, the agents can also be permitted to “improvise,” i.e., suggesting certain

actions and priorities based on their own internal probabilistic process unknown to the

manager. Confronted with a board scenario (which is nothing more than the informa-

tion about the board available to the agent), the agent attempts to judge, “how important

is my reaction going to be compared to those of other agents?” The answer is scored by

its priority number and then submitted to the manager in step 5.

Finally, in steps 6 and 7, the agent simply waits for the manager’s response. If the

manager decides to activate the agent, then the agent reacts and fulfills its mission. If

not, it waits for another round of decision-making.

6.2.4 The Tic-Tac-Toe Team

The team infrastructure described in the previous subsection allows us to start our

construction of a competent Tic-Tac-Toe player by first building a novice defensive team

that perfectly emulates a novice defensive player.

Let us assume that there are three types of agents, each with their own programs and

level of information access. Therefore, there are three types of functions T used in step

4.

In case of Tic-Tac-Toe, the information access rule is such that “an agent has perfect

information on the states of all cells located in the same horizontal and vertical (and
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whenever appropriate, diagonal) row as the cell it is in.” The state could be empty, occu-

pied by an opponent piece, or by a friendly piece. Each agent knows the cell it occupies.

In Figure 6.9, the agent is marked by an X, and the cells to which it has perfect informa-

tion is marked by the bullet symbols.

   
   
   

   
   
   

   
   
   

FIGURE 6.9 Information access rule

The agent located in the center cell of the grid must have what amounts to a perfect

information on all the cells (see the left box). The agents in the corner cells must have

access to the horizontal, vertical, and diagonal rows (6 cells — see the middle box), and

the agents along the edges only have to know the horizontal and vertical rows (4 cells).

if n(oo) = 1 then return 1

return 2

FIGURE 6.10 Novice defensive strategy

We claim that for a novice defensive team, the function T can be as simple as the

one shown in Figure 6.10. The notation n(oo) means the number of horizontal, vertical,

and diagonal rows containing two opponent pieces. In this notation, a friendly piece is

denoted by an x, and a blank cell is by a b. For example, n(bx) means the number of rows

containing a blank and a friendly piece. Evaluated at the center, corner, and edge cells,

the function n(·) can return up to four, three, and two rows, respectively.

Suppose the board configuration is shown in Figure 6.11a. In this game, the opponent

pieces are marked by the O’s. Figure 6.11b shows the priority numbers calculated by all

the nine agents as they are submitted to the manager. The team will correctly block the

attack by occupying cell 1.
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1   
2 2  
 2 2

FIGURE 6.11 Novice defensive play

Of course, the opponent O could be smarter and present a two-completion attack as

shown in Figure 8 below. In this scenario, all agents in a novice defensive team report a

non-severe priority number of 2. The manager thus randomly (or systematically) selects

one of the 5 possible agents, and only with a probability of 1/5, the manager selects the

agent in cell 3, which directly neutralizes the two-completion attack.

   
   
   

  2 2
   
2 2 2

FIGURE 6.12 Failure of the novice defensive strategy

How do we prevent this uncertainty? One solution is to make team smarter — and

since the manager is dumb, this means making the agents smarter. Instead of the earlier

T, the agents can use a more robust T:

if n(oo) = 1 then return 1

if n(ob) = 2 then return 2

return 3

FIGURE 6.13 Intermediate defensive strategy

The function gains another line, but the agents can now collectively defend against

two-completion attacks from the opponent! Now, if the agents are confronted with

a scenario shown in Figure 6.14 below, they independently evaluate priority numbers

shown in the right subfigure, and the manager correctly chooses the best agent to fend

off the attack.

   
   
   

  3 2
   
3 3 3
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FIGURE 6.14 Intermediate defensive play

In Figure 6.12, the agents in cells 2 and 8 can also thwart the two-completion attack

by launching a high-priority attack on the opponent, rather than neutralizing the op-

ponent’s lower-priority two-completion attack. But this requires more than defensive

strategies, but also some offensive capabilities. By process of induction one infers that

T needs to be expanded further and this is indeed correct. To emulate a novice offensive

player, the agent now also has to have access to information on friendly pieces on the

board.

However, now the question is which one should have a higher priority: the novice

offensive strategy (which basically ends the game with a win) or the novice defensive

strategy (which averts a loss by another move)?

Obviously, any offensive move that can end the game with a win should take a higher

priority than other defensive moves. This principle is reflected in the version of T imple-

menting offensive capability shown in Figure 6.15.

if n(xx) = 1 then return 1

if n(oo) = 1 then return 2

if n(ob) = 2 then return 3

return 4

FIGURE 6.15 Novice offensive strategy

If an agent is still making this calculation, then it must be located in a blank cell and

has not made a reaction. Armed with an offensive strategy, the agent can win the game

for the team by making a reaction. For example, suppose the X team is confronted with

the board configuration shown in Figure 6.16. Using T, the agent in cell 9 reacts and

secures the win.

   
   
   

2   
4  3
  1

FIGURE 6.16 Novice offensive play
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We can extend the function T further to implement the intermediate and experienced

offensive strategies as shown in Figure 13 below. The symbol ee represents both bb and

ox.

if n(xx) = 1 then return 1

if n(oo) = 1 then return 2

if n(bx) = 2 then return 3

if n(bx) = 1 then return 4

if n(bo) = 2 then return 5

if n(ee) = 2 then return 7

if n(ee) = 1 then return 6

FIGURE 6.17 Intermediate and experienced offensive strategies

An example of the board configuration that showcases the application of these new

strategies is shown in Figure 6.18. In this configuration, the team is confronted with the

choice of blocking a two-completion attack by occupying cell 3, or completing its own

threat of two-completion attack by occupying cell 7. Using the previous function, the

team can correctly adopt into an aggressive stance and make an offensive move that

secures the win.

   
   
   

4  5
 7  
3  4

FIGURE 6.18 Intermediate and experienced offensive play

At this point, we can claim that we almost have a team of agents (plus a manager) that

emulate the ability of a competent player. The function T for each agent is very sim-

ple and intuitive. Although coordinated centrally, decision is made in a decentralized

manner with locally available information.

We have not discussed the all-important opening move. In Tic-Tac-Toe, this move

determines the course of the game. If the team starts first, how do we customize the

function T such that it starts from the center? If the opponent moves first, how do we

program T so the team responds at the center if the opponent starts from the corner and

vice versa?
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The answer of course lies in the function T. Nowhere in this section do we require the

agents to be identically programmed, i.e., they can have different function T! So suppose

we use the following functions T1, T2, and T3 for the center, corner, and edge agents,

respectively:

At this point, we have reached our original objective of constructing a competent Tic-

Tac-Toe team that is practically indistinguishable from a competent player. In the next

subsection, we discuss several theoretical issues and the issue of extending this frame-

work to other types of board games.

T1: return 1

T2: if n(xx) = 1 or center != x then return 1

    if n(oo) = 1 then return 2

    if n(bo) = 2 and n(bx) = 1 and center != x

       then return 3

    if n(bo) = 2 and n(bx) = 1 then return 5

    if n(bx) = 2 then return 3

    if n(bx) = 1 then return 4

    if n(bo) = 2 then return 5

    if n(ee) = 2 then return 7

    if n(ee) = 1 then return 6

T3: if n(xx) = 1 then return 1

    if n(oo) = 1 then return 2

    if n(bx) = 2 then return 3

    if n(bx) = 1 then return 4

    if n(bo) = 2 then return 5

    if n(ee) = 2 then return 7

    if n(ee) = 1 then return 6

FIGURE 6.19 Full implementation of the strategy

6.2.5 Discussion

Many interesting issues arise from this new framework. For example, is it even pos-

sible for the agents to initiate a two-completion attack on the opponent given that they

only have access to the information from cells on the same row? The answer is, yes, it is

possible. However, it cannot be done without using indirect inference and reducing the

aggressiveness of the agents. In Figure 6.20, we illustrate why this is so. Given the board

situation shown on the left, the agents use the T in Figure 6.19, resulting in Figure 6.20b.
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7 7 4
7  4
4 4  

4 7 4
7  4
4 4  

FIGURE 6.20 Initiating a two-completion attack

Using the program in Figure 6.19, the agents can launch their attacks immediately

after the game starts. The corner agents can be programmed to initiate two-completion

attacks if the priority number for the event n(bb)=2 is mapped to a 4, as shown in Figure

6.20c.

Now, instead of being limited to responding with immediate attacks, the agents can

launch a delayed, although more potent, coordinated attack. Thus, we can say that with

this change, the overall aggressiveness of the team is reduced (although we can argue

that the team’s finesse is increased).

Another issue is whether the team manager can ask only a subset of the active agents

that are immediately affected by the opponent’s move. For example, if the opponent

starts from a corner, the manager could ask the agents on the two edges and one diago-

nal intersecting the “invaded” corner.

The advantage of this method is a reduced level of agent activity. Because the Tic-Tac-

Toe grid is small, the saving is quite small. If we extend this method to a game with a

much larger board (for example, checkers), the saving can be substantial. Further, this

method allows for a second level of decentralization (or a hierarchy) by introducing local

managers into the game. These managers then have their own areas of responsibilities

and agents.

The disadvantage does not become obvious until this decentralized team faces either

a monolithic player with a superior computation capacity, or another superior team op-

ponent not constrained by limits on agent activity and communication. Such strong op-

ponents can devise maneuvers that provoke agents from different managerial areas of

responsibility to react in separate ways that might be locally optimal with respect to the



187

limited knowledge and coordination they have available, but nevertheless ineffective to

neutralize the lethality posed by the global threat posed by the opponent.

Finally, there are possible extensions of this approach to games other than Tic-Tac-

Toe. Games similar to Minesweeper (which has been proven to be NP-complete) can

benefit from a decentralized approach — in fact, in real life minesweeping operations,

this approach is the ONLY way!

6.2.6 Conclusion

In this section, we have presented a decentralized method of playing Tic-Tac-Toe. The

method is extensible to other turn-based board games, especially those games where the

pieces do not move once placed on the board. Future research may include extending

this method to other games with moving pieces such as checkers, fox and geese, etc.
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