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ABSTRACT

For the additive group of the real numbers, the value, at the
origins; of the convolution of three non-negative integrable functions
is less than or equal to the corresponding value obtained from the

symmetric rearrangements of those functions. That is

£*xg*n(0)<f *g *n(0).

This problem is investigated on general groups and it is
shown that under a wide interpretation of the notion of symmetric
rearrangement the validity of the inequality implies serious restrictions
on the group.

Both new and known results in E° are developed using
metheds which in médified form yield the answer to the similar problem

on the sphere.
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;ﬂgﬁQDUCTION. let G be a locally compact topological group whose
unit element is denoted by ‘'ef. It is known that such a group has a
left invariant measure which is unique up to a multiplicative ccnstant.1
left invariance means that /LI(A) = /AJ(aA) for every element s of Ge
The uniqueness of this measure‘implies the existence of a function A(s)
such that M (4s) = a(s) /M(A). If this function is identically equal
to one, the group G is called unimodular. |
The convolution, £ * g, of two integrable functions f, g

is defined by
£f*g(t) =/ £(x) ,g(x_1 t) dx = [ £(tx) g(x'1) dx .

If one function is bounded the convolution function is defined every
where and is continuous.2

We shall be concerned with bounded, integrable, non-negative
functions. For the additive group of the real numbers, it is known that

for any three such functions
f*gx*h(e)< £ % g* * h*(e)

*
where f 1is the symmetric rearrangement of f, and similarly for g
and he 3
The main objective of this study is to investigate this problem

on general groups. It is shown that under a wide interpretation of

1) Ref. 1.
2) Ref. 2, Pe 50.

3) ef. Ref. 3.
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'The symmetric rearrangement of a function' the validity of the above
inequality implies serious restrictions on the group G. These
restrictions are discussed in the first section and a result for the
group of rotations in two dimensions isvobtained. The second section
deals with the group of translations in two dimensions., Although the
main result was known, the methods used are more constructive and more
direct. Furthermore, properly modified, they are applied in section 3
to a study of functions defined on a sphere. The Appendix contains the
proofs of some measure theoretic results which are needed in the main

part of the text.

First Section. The family of non-negative integrable functions is

designated L'T .

Def. Two functions f, g will be said to be a rearrangement of one
another if for every a, /u{xlf(x) > u} =/u{x|g(x) > u} .

This notion is obviously an equivalence relation and will be denoted by
£f~g

On the additive group of real numbers, in each equivalence
clags of functions there exists one symmetrically decreasing function.
This member of a class is called the symmetric rearrangement of any
function in the class. On a general group it is not evident whether
or not a natural notion of symmetric rearrangement exists. To investigate

this question the following two hypotheses are introduced.
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Hypothesis A. There exists three mappings from L1+ into itself taking

£ into f¥, i = 1,2,3, such that £ ~ ', f ~g dimplies £ = g

1+

and

for all £, gy hel

fxg*n(e) <t *g>*hi(e) A

Hypothesis B. Hypothesis A is satisfied by three mappings which are

identical.

The additive group of real numbers satisfies the strongér hypothesis

3

B.” The additive group of integers is an example where A but not B

is satisfiéd provided the domain of the third mapping is restricted to
those functions in L1+ which assume their maximam an odd number of
times and other values an even number of times.’

If a function is in the range of the i-th mapping it will be
called symmetric of type i, and if the function is also the

characteristic function of a set the corresponding set will also be called

symmetric of type’ i.

THEOREM 1. If G satisfies Hypothesis A then G is unimodular.

Proof: We first prove that if CD X ®B’ @ c are the characteristic
functions of sets of positive measure A, By, C and G is not unimodular

then

max ®A' *®B' %@C'(e) =/‘-‘((A)/L"(B).

A~ Bt ~B,C!'~C

L) For f, gs h non-negative and measurable, the convolution is
defined everywhere provided +w is allowed as a value. Thus
f ¥ g * h(e) exists.

5) ¢f. Ref. 4 and Ref. 5.
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Secondly we prove that this can not always be achieved by symmetric

sets.

First Part: Since ®C'(X) <1 for all x, @A' * ®B‘ *@c,(e)
M (&) fA4(B).

On the other hand the upper bound is obtained as follows. By the corollary

to Theorem B (Appendix) there exist sets A1, B1 with compact closure

such that /u (Ai) =/J(A), /u (131) ==/U(B). Define
= {zl/x(a1ﬂ 2] Bf) > o} .

Then DC B? A;‘ and the compactness of the closure of this last set
implies LA (D) < w.+ By considering a(z") = [4(2)]® where n is any

positive or negative integer, it is clear that t can be chosen so that

A(t) 1is arbitrarily close to zero., In particular there exists t such

that MM (Dt) = a(t) /U (D) < M(c) (since /(/(C) > 0). Again by
Theorem B there exists (! such that Dt ©€C' and AL(C') = A (C).

Now consider @ -1 ®B ’ Clc)c, o We have
t A 1

@t-1ﬁ1 *d)B @ 2@ @ @%’c(e)
=CDA1 *®B1 *@D(e) .

Using the definition of D this becomes

[ / C‘DA1 (x)CEB1 (x"y) @D(y-1) dx dy ﬂ Q1 (x) @51 ("ly) ax ay
[ ) M)

proving the first part of the proof.



Second Part: Let A, By, C be symmetric of type 1, 2, 3 respectively

and of positive measure., Hypothesis A implies

A = * *@ = Aﬂ ‘1‘(3
M @) ue) =P, *P, * D e) /0_1,44( 2871} ds

= /,u(Aﬂz“B“) a(z) az .
C

On the other hand if AL (C) <M {zl,u(A ﬂz"%”) > o} then the

above equality is obviously impossible. Furthermore to be non=unimodular
the group can not be discret96 so that C can be chosen (and thus a
symmetric C) so as to have a positive measure which satisfies the above

inequality. ( z| (A ﬂz—?B-I) >0t >0 by Theorem Be) QeE.De
/Ll

For the additive group of the real numbers, the symmetric sets
are sa = {xl lxi < a/2} and the symmetric rearrangement of a positive
integrable function f is defined as follows,’? Define

* ¥*
a(t) —/u{x!f(x) > t} and f (x) = sup{ tlx e Sa(t)} « That £ 1is
and t, >t

) . a(ti) 1
jimplies f (x) > t, > t. Thus S - {xif (x) > t} . On the other
1 a(t1) -

a rearraengement of f can be seen as follows. x € S

¥
hand if £ (x) > t then there exists t, sueh that t, >t and

1 1
X € Sa(t ) By the monotonicity of the family of sets Sa and the
1

monotonicity of the function a(t), this implies x ¢ Sa(t)' Thug

sa(t,i) < {xif*(x) > t} < Su(t) and a(tl) _<_/u{x|f*(x) > t} < a(t)e

6) Haar measure on a discrete group assigns unit mass to each point
and thus is right invariant also.

7) Cf. Ref. 59 Pe 276
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Since a is monotone decreasing and continuous on the right,
a(t) =7¢( xlf*(x) > % } which proves that f* is a rearrangement of f.
That Hypothesis B is satisfied for this symmetrization is a simple
consequence of the validity of the inequality for characteristic functions
of sets.8

The above discussion need not be restricted to the real line.
If there are three monotone classes of sets such that Hypothesis A is
valid when L1+ is replaced by the class of characteristic functions of

sets then it can be extended to L1+

by the above construction. Further—
more it is a consequence of the corollary to Theorem C (Appendix) that
the symmetric functions given by Hypothesis A differ on sets of measure

zero from those constructed from symmetric sets. The next theorem shows

that if Hypothesis A is valid on a group the three monotone classes exist.

THECREM 2. If Hypothesis A holds the symmetric sets of type i form a
monotone family of open sets to within measure zerc. (That is, there
exists a family { 0§|a ¢ range of /—4} such that a < /6 implies

oflCol ’ //(Oz) = a and /J([St@ 02] = 0.

Proof: The unimodularity implies that cyclic permutations of the three
functions in the double convolution leave the value at the origin
invariant so that any cyclic permutation of the three symmetrizations
also satisfies Hypothesis A and it will suffice to prove that the first

symmetrization has the stated property.

8) Cf. ibid., p. 279=280.
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rst suppose G discrete, then we can normalize the measure so that

each point has one unit weight. ILet C be symmetric of type 3 and

measure one and let B be symmetric of type 2 and measure n. Then
‘ -1 -1_=1
* = = .
Cba *@B CDC(e) o~ AUaNys™") dy = ta Me™'™"

It is obvious that if A is symmetric of type 1 and /U (A) =n then

A =c g1 in order for the maximum to be achieved. Likewise if

1

/(/{(A) < n then ACG““B-Ai and if /LI(A) >n then ADc /B~ and

the monotonicity is established.

Notice that the proof in t.he discrete case made use of sets

of the form { xl@B *@G(x) > t} to separate A's with different

measure.9 This same method will be used in the non=-discrete case. Iet

1 [ . . 1 1 . .
Aps Az be symmetric of type 1 with &/ (A1) < /-{(Az). Since G is not

R . 1 1 1 1, 10
discrete there exists AB such that /(J (A‘i) < /U(AB) < /b((ﬂz) .
Furthermore by Theorem B (Appendix) there exists A2, AB such that

1 _ - 1 - 1
Ay = 4 CAB CAZ,/{,((AZ) = fhay) and LA (8g) = fd(hg). Now let g

be an approximate identity for @ -1* that is, g > O, g =1 and
A
3

Hg%q';‘%_1 -CIDA;IH < e

Finally let F(x) = g2 *@ 3_1 (x) and t"l’ t.2, t3 be the numbers
A
3

whose existence is asserted by Theorem C (Appendix). Then, to within

measure zero A‘DF ,A1 F ,A1DF sand t, >t, >t M
, 1 t 2 t'2 3 tB - - 2

1 3

1

9) To separate in the sense that if A < B< C the B separates A and C.

10) Non-discreteness implies there are sets of arbitrarily small positive
measure (see Ref. 6, pp. 123-124) and the assertion then follows
from Theorem B.

11) See Theorem G for definition of Fyo
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Also by Theorem C if t2 < t1 then F QA} to within measure zero

t
2
and A; ? A} which proves monotonicity to within measure zero.

That €& can be chosen so as to make t2 < t1 can be seen as

follows. By unimodularity,

|®Ai * g *CD 1 (e) _®Ai *@A'; )l = | f@A? - @1;1) *@Ai(e)l .

A3
Since (g *®A_1 -®A-1) * ®A (x) is continuous [see footnote 2]
3 3 i

supremun of absolute value and || ||, are the same so that

Il

it

(1) ICDAi*g*CIDA;(e)-@Ai*CIDA?(eH_<. H(g*CID%1 .-%;1)* A

.<..5 'I@A‘”mz €«

The last inequality is the theorem in Ref. 6, page 121. Now

@Ai * @A_1 (e) =,¢([AinA3] = min[IU(Ai),/J(AB)] so that (1) implies
3

min[ (A4 )5 (A (85)) = € _<_®Ai *g *@A_1(e).
3

Symmetrization does not decrease the double convolution so that
; . N 2 . ' ;
() min[ (805 L4 (A3)] = € ﬁC:[DA_1 * g *@2_1 (e) < min[ La(a;)su(a3)],
‘ i 3

The last inequality is obtained from the facts that /g2 = 1, and

@ A? ® - = 1. Now by Theorem C (Appendix)s
3 v
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(3) CI) 1 * gz *@3_1 (e) = f F(x) dax =/ F(x) dx + [/,{(A1 )-,L((Ft_)]ti .
Ai A3 'A1 Ft i

i i

=14, =1t, then by (2) and (3) applied to i =1 and 3,

If t1 =1, 3

[tta) -pata ey =@ e *@3 (e)—@1*g *@-1

> M (hy) - M) - e

while (2) and (3) applied to i = 2 and 3 yields

[ptay) gl = CPA1 0D ) - D, e @Aq () <&,

2 Ay Aq 3

If e = (1/2) min[/a(AB) -/L((A.l), /(,((Az) - /J(AB)] then the inequalities

can not be simultaneously satisfied, so that it must be that t2 < ti'

F(x) is continuous [see footnote 2] so that F
2

we have shown that if (A (A} )< /J(A1 ) then there exists an open set, 0;
1

is open. Thus

which separates A} and A" to within measure zero. Choosing a

sequence A; such that /(,( (Ajt )* //(31) shows that L:LJ OiC A1 to

. | ‘ 1 .
within measure zero and /L/(Lf 0;) 2 /u(On)f/M(A )+ Thus Lf 0, is
an open set which differs from A1 by a set of measure zero,

QeEeDe

1 into itself

Theorem 2 says that any three mappings of L
for which Hypothesis A is valid is not essentially different from

symmetrizations based on three monotone classes of open sets. The

proof can be made to yield more in the discrete case, namely, Hypothesis A

implies Hypothesis B. For the proof shows that Aa =¢ 18-1 where
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whers -{c } = 01. Applying this result to the cyclic permutations

of the three classes gives Ba = a-1021, C, = b61A;1 from which it can

be shown that Au za.-1 =aBc = c-jca. Furthermore unimodularity gives

®Aa-1 ) ®ch ’ ®c—1c(e) =®A - ®B *®C(e) .

t

So that the symmetrization based on the class Ama,-'1 showsg Hypothesis
to be gatisfied. It is conjectured that in general Hypothesis A is
valid if and only if Hypothesis B is valid.

A further restriction on any G for which Hypothesis A is

valid is the following.

THEOREM 3. If there exists M and N, subgroups of positive measure,
such that AL (M) </L4(N) and /J(N)éﬁj(ﬁ) is not an integer then

Hypothesis A is not valid.

Proof: We assume Hypothesis A and begin by showing that M1 and N1

are “almost" subgroups.
Now @ ®M @4(9) = / / @M(xyq) dx dy = [/A(M)]z and,
* M ﬁf1
3 ;

since this is also an upper bound over all rearrangements,

"12 X2 —11 x = * * e) = 2
/MW[m(»P) lax=D * @y * D) = [on”

Since /u[le’\x(rP)"}w] < 4 (M) then M C CM= {x‘/,l[Mznx(MB)—H —,U(“{)}
except for a set of mesasure zero. Otherwise the upper bound could not

be attained. On the other hand
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M p @ = [ peN =08y ax < [ 0N 2027 ax = (o)
- ‘

so that /(,( (M) = /U‘(M) and M1 = M except for a set of measure zero.
Next it is elaimed that if m ¢ M then I';"ﬁnm1 is a group, which will

be shown ag follows. Now the measure of the symmetric difference,

WO (), 1s U {M‘?@xm%“’} = {(MB')“} " /u{(mz)} - 2/4512/1;;(1»43)‘&
But unimodularity implies [/ {(M3 )"1 } = { (M3)} =/u { (Mz)} = /agm)} .

Thus x € ¥ if and only if /U W B x(MB)-1} = 0, It follows from
the triangular inequality for the measure of the symmetric difference
of sets that

x & T ! if and only if A {Mz@ xM2}= 0.
Finally, if x, y € "m‘—"f then
M (feaxy"1 M) 5/4(MZ@ xf) +,¢4(xl\‘12@x1>'_1 i)

=/U(Mz@xMz) + ,U(yM2@M2) = 0,
so that :xy.'1 £ 171111—1. Which proves that qu is a group., Similar
arguments hold for N. Since M' CN' and M, § differ from M', N'
by sets of measure zero, we have AL(M/N) = /M) > 0 and so MNT

L and B-fmm1 are subgroups of G

is non-empty. Let m ¢ M ﬁ, then Mm
as also is (M/\N) al, Further, A4 {(ﬁnﬁ) m—1} = f(M). Now i~
consists of a union of cosets of (MNK) n~! g0 that ME) = /J(ﬁm—i)
= ,U (M) times the number of cosets of (M/N) o} in I-\fm.1. But
this contradicts the condition of the theorem that /U (n )/}U (M) be

finite but not an integer.
QOEQD.
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Theorem 3 eliminates from consideration any finite groups
other than those whose order is a power of a prime. The latter case is

still open.

Examples. The group of translations in Euclidean n=space is an example
of a group in which Hypothesis B holds. The case of the real line has
already been cited. The higher dimenionsal cases can be obtained from an
extension of the work of Grossj2 (or from later parts of this paper).
Gross coﬁstructed a suitable Steiner sequence13 in 3=-space such that
beginning with a given integrable’set the successive sets converge to

the interior of a sphere. By convefgence we mean //( (Ai ®s)~>0 as

i~ «, where ® indicates the symmetric difference of two sets. This
together with Theorem 5 shows that Hypothesis B holds where symmetric
sets are the interiofs of concentric spheres.

It is conjectured that Hypothesis B holds on the circle.

However the following theorem is the best result available.

THEOREM 4. Let f, gy h be integrable functions on the group of plane
rotations (represented as -{¢I~n < @< n} )e Purthermore let
0, = ‘{ﬂl |g] < a/2} for 0 < a<2r and £

of f based on the class {’Oa } and similarly for g1, hi.14 Then

be the symmetrization

£*g*n'(0) < *g *n'(0)

12) Ref. 7.
13) See Definition preceding Theorem 5.
14) F1 is also called the symmetrically decreasing rearrangement

in analogy with the corresponding rearrangement on the real line.
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Proof: By the remarks preceding Theorem 2, the general result follows
from thg validity of the inequality in the case where f, gz, h are the
characteristic functions of sets. Iet A, By C be integrable sets, with

measure R2a, 2b, 2¢, respectively (for convenience /A (G) = 2n) and define

F(#) =@B * CI)C(-m
Then ®A * @ * ¢C(O) = / F(g) af .
, A

B

Theorem C (Appendix) asserts the existence of t such that

/,((Ft) 22U {¢IF(¢) > ’G}

where

7, = {olr@) > t} .

For each a designate by t(a) the infimum of all such t. Notice

that F(4) = t(|g]) and

/F(;é) ag < /

A F

= |
F(#) af + t(a)[2a = UF ()] =/ F (g) af.
t(a) B

a
The proof of the theorem reduces to showing
/a F (f) af ﬁfa@; «D(-4) op
-a -a
at this point we introduce Lemma 2 wﬁich will be proved later.

LEMMA 2. It(a1) - t(a2)| < Ia1 - azl
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Let us now examine

7 = DL« Qli-p) ag

A

~min[2b,2¢] for |@] < |o - ¢

(1) F (4) = { max[0, 2b + 2¢ = 20] for |@|

iv

min[b+e, 2u=-b=c]

- linear and continuous for all @

* .
In order for F to be linear and continuous the derivative must be

-sgn § for lb-cl < |¢| < min[b+e, 2u=b=c], With the use of the definition

of F and F! it can be shown that

() min{2b,2¢] > F (#) > max[0, 2b+2c~2n]

and

(3) / " F (g) af = /n F () af = 4be.

If a< |b=c| or a > min[b+c, 2n~b=c] then the inequality

/a F (#) dxds_/&F*(zi) ap

readily follows from (1), (2) and (3). Now suppose

Fl(a) < F (a)
and |

[b=c| < a < min[b+e, 2u-b=c] .

Then by Lemma 2
Pl(lx) -7 @) < la- x|

so that for |b-c| < [x| < a
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F(lx]) =F(a) + F(lx]) - F(a) s F(a) +a=-|x| = F(x) .

Also

F1(x) < min[2b,2c] = F (x) for |x| < |b=c]

a * 1
/ [Fx)-F(Ex)Jax>0.
-g,

On the other hand suppose

so that

%
F1(a) >F (a)
Then again using Lemma 2 for a < le < min[bte, 2u=b-c] gives

F (x)

F1(a) + F1 (x) - F1 (a) > F*(a) - (|x] -a)= F*(x)

Also

bxf
s
5
N
A\

> max[0, 2b+Re-2u) = F*(x) for min[b+e, 2mu=bec] <

/a [F+(x) = F ()] ax = -/ [F(x) - P (x)] ax >
-a - Jlxla

X

A
Ll

v
o

QeEeDo

In what follows <j>B’ CI)C’ F, F1 will be assumed to be
periodic functions on the real line with pericd 2w, To prove Lemma 2

we shall need

LEMMA 1. iF(x,I) - F(x2)| < lx1 - le .
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Proof: We can obviously assume Xy 2 Xye Then
fu 1 v L]
|F(x,)- Fx,)| = [_ﬁ@B(y)qDC(-x1 -y)dy -./-ﬂCDB(y)q)Z:('Xz - y) dy
-x1+c -x2+c
= D.o) a - D) oy
.-‘X:.l-'c ; —XZ-C
2
= / (D5 -e) - By + ) ay‘
-X
1

.
D, - o) -Dy + o)l o

x4

IA

IA

x1 - X2 .
LEMMA 2. [t(a;) = tla)l < lay - ay] .

Proof: We may suppose t(a1) < t(az) and thus ay > a5 The proof

consists of constructing two intervals in | Ft (a1)r\ Ft (a2 )? where A

denotes the complement of A, and using ILemma | to estimate their length.

Suppose O < a, and a, < @. Then by Theorem G (Appendix)

/u{xlF(x) > t(a1)} 22 >0 i=1,2

and
. /U{xlF(x) < 'b(ai)} = ;2:: -/I‘I(Ft(ai)) > 20 - 2ai > 0.

Since these sets have positive measure they are non-empty. Furthermore
Lemma 1 shows F(x) to be continuous. Thus there exists Xs9 i=1,2
such that

F(x;) = t(ay) .
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The cases a, = 0 or aq =@ can be handled by taking limits and
pointing out that the eirele is compact. Since translations of F do not

affect the statement of the lemma we can assume x.l = = and =1 < x2 < Tie

Let
¢1 = sup {xl-n <x<x, and F(x) = ‘l',(a.1 )}
¢2 = inf {xlxz <x <47 and F(x)= 1;(&1 )} ]

Both of the sets exhibited are non-empty since F(-w) = F(n) = t(a1)
so that 5251, 252 are finite and F(¢1) = F(¢2) = t(a1) by continuity

of F. Next let

jZS% inf {x]¢1 <x<x, and F(x) = t(az)}

]

ﬁ% = sup {xlx2 < x < ¢2 and F(x) =t(a2)}‘ ,

A similar argument shows that ﬂ'i, Qfé are finite and F(ﬁ{) = F(?fé)
= t(az).

Now x e (8, #}) U(dys £,) implies t(a) < F(x) < t(ay)
which tells us that {xtF(x) > t(az)} s (Bys B1)s (815, ;) are disjoint
and their union is contained in Ft (a,)° Then it follows from the

1

definition of t(az) and 1;(:3.,i ) that

(1) 2a, + 55{ - ¢1 + ;62 - ¢:'2 5/’((Ft(a1)) < 2a,

By lemma 1
t‘(a-l) - t’(az) s ﬁ-{ - ¢1’ ¢2 - ﬁé
so that (1) becomes

) .
QeEeDs

2[1;(&1) - t(az)] < 2(ay - a,
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Second Section. Steiner Symmetrization.

By the direct product of two groups, G = G1 x G2, we mean the
set of all ordered pairs <g1, g2> with gy £ Gi and multiplication
defined by <g1, g2> <h1, h2> = <g1h1, g2h2> + The groups G1, G2 are
iscmorphic to subgroups of G, namely G1 ~ G1 X e 62 ~e X 82‘ Here=~
after G1, Gy will be identified with these subgroups and two decompos=—
itions will be considered distinct if at least one pair of corresponding
subgroups are. If G1, 62 have left invariant measures, /0(1 and /le,
then it is obviocus that the product measure is a left invariant measure
on G.15

Now let G=HxR where R 1is a subgroup identified with
the real numbers, and let /X1,/L(2 be the left invaraint measure on H

and Iebesque measure respectively. /CI : denotes Lebesque outer measure.

DEF. If A is a measurable subset of G then generalized Steiner

symmetrization of A with respect to the subgroup H is

. , ¥
Ay = {<h,r>lh eHy,reR and |r| < %/12 {r|<h,r> € A}}

*
It /U 5 {rf<h,r> € A} = 0 +then the condition

lr] < Jéﬁz{r|<h,r> £ A}

is replaced by the condition r is an element of the empty set or

r = 0 accordingly as {r|<h,r> £ E‘x} is empty or non=empty.

In more descriptive terms, generslized Steiner symmetrization
replaces the intersection of A with the line h x R by an interval

with the same linear measure and centered at <h,0> . By Fubinits

15) For definition of product measure see Ref. 6y ppe 4b=i5.
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theoreHL/C((AH) =/AJ(A) so that A, is a rearrangement of A.

H
The group of translations in Euclidean n=-space is the n-dimen=-
sional vector space over the real numbers and admits of infinitely many
representations of the form Ei X Ri where Ri is a linear 1-dimensional
vector space (and thus isomorphic to the real numbers) and Hi is an
n=]1-dimensional subgroup. If we introduce a scalar product then we have

available the concept of perpendicularity so that the following

definition makes sense.

DEF,. it Vn is the group of translations in BEuclidean n=-space, H is
an (n-l)-dimensional subgroup and R is a l-dimensional subgroup
perpendicular to H, then the generalized Stelner symmetrization is

called the Steiner symmetrization;16

Since generalized Steiner symmetrization takes monotone classes
of sets into monotone classes of sets, the Steiner symmetrization of non=-
negative functions can be defined by means of the construction of
symuetric functions in terms of symmetric sets which follows Thecrem 1.

DEF. If '{Hig be a sequence of (n-l)-dimensional subgroups and A

an integrable set in v, and if 4° = Ay At = (Ai-1)IJ s then i:Alz
i

is a Steiner sequence.
THEOREM 5. Generalized Steiner symmetrization never increases
f % g * h(e)

provided f, g, h are non-negative integrable funcitions.

‘36) Cfo Refo 8’ ppl 75—91-
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Proof:s Tet G = G1 ¥ Re 5 and t will be elements of G1 and X

and v will be real numbers.

£ % g * h(e) =// // f(sx) g(s-1t,y—x) h(t_1,-y) dx dy ds dt ,
G1 G1 RYR

The order of integration has been rearranged using Fubini's theorenm.
Now for almost all s and %, f(s, ), g(s-1t, ) and h(t-i, )} are
meagurable functions on R so that the validity of Hypothesis B on

the additive group of real numbers implies for almost all s and t

// £(ssx) g(s--‘tsY"X) h(t""Y) dx dy £
R R
< / / £ (ss%) &' (s toy=x) B! (t7 =) ax ay.
RYR

f1(s, ) is the symmetrically decreasing rearrangement of f(s, ) and
similarly for g(s-1t, ) and h(t-1, )¢ Integrating both sides of the-
above inequality over G1 x G1 gnd observing that f1(s,x) is in fact
the generalized Steiner symmetrization with respect to G1 gives the

theoren. Qo HeDo

Steiner symmetrization was originally defined for convex sets
in the plane in connection with the isoperimetric problem. It was shown
in the reference in footnote 16 that Steiner symmetrization does not
increase the perimeter of convex polygons. More generally it can be
shown for any polygonal Jordan curve, I'y with a finite number of sides
that the symmetrization of the curve and its interior results in a point
set whose boundary is a rectifiable curve whose length is not greater

than the length of TI'» (It will not necessarily be a Jordan curve.)
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By suitable polygonal approximations the results extend to more general
rectifiable closed curves. However, the following theorem has a direct

proof,

THEOREM 6. Iet I’ be a rectifiable closed curve in the plane such that
the winding number of every point not on the curve is 0 or 1.17 Let
A be the set of all points which lie on T’ or whose winding number is 1.
Iif AL is the Steiner symmetrization with respect to the line L, then
the boundary of AL is contained in a curve whose length is less than
or equal to the length of T and which has the same winding number
propefty as T

The proof is very similar to the proof of Theorem 11 and
so will be omitted.

The rest of this section will be restricted to Steiner
symmetrization in the plane although some extension to higher dimensions
is possible.

Let {L1§A be an arbitrary sequence of one dimensional sub=
groups of V2 and {Ri} the perpendicular subgroups. Further let A
be a set with a rectifiable,’connected curve for its boundary and {Ai}
be the Steiner sequence generated by A 'and {Li} o« If we rotate the
sets Ai such that their axes of symmetry are all Iﬂ’ then each Ai
can be repregented in the form

At = {;x,y>l<X,O> € L1 <0,y> € R1 and |yl b Fi(X)} .

17) The winding number is also called the topological index or merely
index. For the definition see Ref. 9, pe. 149,
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For the perimeter to be finite and connected, A must be bounded, i.e.,

there exists M such that <x,y> ¢ 4 dimplies x2 +-y2 < M?. Therefore

L

Fi(_-ti‘fi) = Q. The perimeter of a' is a bound for the variation of Fy
and this is bounded by the perimeter of A by theorem 6., Thus the

functions E&
By Helly's selection principle there exists a subsequence which converges

have a uniform bound on their variation and Fi(iM) = 0.

almost everywhere to a function F and the corresponding subsequence of
sets converges in measure to the corresponding set. It is not difficult
to show that even without rotating the Ai to a common line of symmetry
there exists a subsequence which converges in measure. The following

theorem shows that the restriction that A have a finite perimeter can

be weakened.

THEOREM 7. Let L1{‘R1, Lz, Rz, F1, F2 be as before and also L1 # Lz.
If A is a bounded integrable set bounded by M then Fé is of bounded
‘ 2

variatioh and the perimeter of A~ is finite.

Proof: We choose two coordinate systems and an orientation in the plane

so that
L, = {(X',y')ly' = 0} ; L, = {(x,y)ly = 0%

and the angley, ay from L2 to L1 is positive bult less than or equal
to /2.

First suppose a = n/2, then the second symmetrization is seen
to be the same as replacing 31 by the area bounded by the symmetric
decreasing rearfangement of F1(x'). The symmetric decreasing rearrange=

ment is monotone increasing in the second guadrant, monotone decreasing
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in the first quadrant, 7 (-M) = F (M) =0 and F (0) < M. Thus

var F < 2M. We can define the perimeter as

2 sup E Vi 5" 1)2 + (F*(Xi) - F*(Xi-1))2 .

The supremum is taken over all partitions of the form -M = xo<x1 °°'<xn=M.
A bound for the perimeter is 2 var F o+ LM < 8M.
Next suppose O < a < n/2. Let //{1 be Lebesque measure on the
line and define
Fm(x) =/(1 {yl(x,y) ehy and y>xtan a}
F22(x) =M { v|(x,y) € A, and y <xten u,} .

The above exhibited sets can be shown measureable for all x and it is
obvious that

Fz(x) = Foy (x) + F22(X) )
The function F21 (x) + x/sin a cos o will now be shown to be monotone
increasing. Suppose Xy > Xy then

*17%5

F21 (X1) - F21 (XZ) t sin a cos a

P
= x.ltana@ 1(X y) dy - /tmaq) (xz’y)dy+sinac2:osa
©
=[c1tan . [@ (X 2y ) “@ (xzs y +tan a)] dy
x,tan o +(x /s1n a cos a)
- @ ('XZ:Y) dy + — 22
0 xjtan & A sin a cos a

"X

2 / [Q1 (X1 !y) '-©1(x2!y + tan Py )] dy
1 A

x,tan o
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X.I‘X
. , . o
Now if { R (x2 s ¥ + tan a) then the point (x2, Vo ) is
in Al and its primed coordinates must satisfy
(2) lytl < 7 (=)
where
X=X
x! = x, cos o + sin a(y-k_l_“,’u,1 a)-‘-xi cos a +y sin a
X%, X=X,
y' = =x, sin a + cos ct(y+taln a)=-x1 sin a + y cog o+ ==

Expressing (2) in the unprimed system gives
x '-xz

m_F(x cos o +y sin a) .

(3) ~x; sin a +y cos a +

The last term on the left hand side of the inequality is positive and,
in the range of integration of (1), ~Xy sin a + y cos a is non-negative

so that in the range of integration (3) implies

I-x.l sin a + y cos al <F(x' cos a +y sin a) .

But this says that @ (x1 ,y) = 1., We have just shown that in the range
of integration @ (xz, y +x —xz/tan a) =1 dimplies @ (x1 sy) = 1.
Therefore the 1ntegral in (1) is non-negative and the mono‘conlclty of

Foy (x) + x/sin a cos a ié éstablished. Furthermore F, ( -M) = F, (M) =0
so that F,, (x) + x/sin a cos ¢ is of bounded variation in [-M,M]. A

| =F

similar argument is valid for F so that F 21 + F22 is of bounded

22 2

variation. Defining the perimeter as in the case a = n/2 completes

the theorem.
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The existence of subsequences which converge naturally raises
the question, "Under what conditions does a Steiner sequence converge?®
That not every Steiner sequence of a bounded integrable set converges can
be seen by the following example. Let the angle a s between Ln and
L 1 be 1/n and let A be a circle whose center is on L1 but not

n+

<0,0> . Then if T, is the distance of the center of A from <0,0>
n~1

n ., . =
then A~ 1s a circle whose center is at a distance r, =T, g;g cos a,
from <0,0> . The infinite product converges absolutely to a non=zero
[*2]
limit and the lines Ih intersect the circle j/szyz =T, cos @
i=}

in an everywhere dense set. Therefore the sequence of centers have all

points of the circle as limit points and At does not converge,.
Tt is conjectured that if J° |a | < @ or Y. o° = w and if 1 is
=1 B =1 2

bounded then the Steiner sequence converges in measure. The following
theorem will enable us to show convergence of Steiner sequences provided

the sequence {Li}‘ is periodic.

THEOREM 8. Let A be a bounded integrable set in V,, {Li} a
sequence of one dimensional subspaces and Ri the perpendicular subspaces.
Then the Steiner sequence obtained from A and '{Li} has the property

that
 Mar @)Y o

n=1i

The proof will not be presented here since it is analogous to and some=

what simpler than the proof to Theorem 12,

COROLLARY. A4 (a7 @2y L0 as n > w.

The proof is obvious.
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THEOREM 9  If the sequence {an} is periodic and A is bounded the
Steiner sequence converges in measure 1o a set having all the Ln as
lires of SBteiner symmetry.

Proof: Let -{Li} have period p. Acecarding to Thzorem 7 and the
discussion preceding it there exists a subsequence AAk converging to

a set A*. At least one of the subgroups L1, eeo 3 Ib’ say Ls’ must
occur infinitely often among -{Lnk} and it can be seen that A* must
be Steiner symmetric with respect to Ls to wiﬁhin measure zero, Now
consider the sequences Lnk+N
mist occur infinitely often in this sequence, But since /.'((AH@A

for N =15 ees ,‘p-1. The line Ls+N
n+N) -0
as n - w4, this sequence also converges to A*. Thus A* is Steiner -
symmetric to within measure zero with respect to all the lines {Iﬁ} .
It can be shown that

B @B) 2 (Ma, @B ),
that is, Steiner symmeirization does not increase symmetric differences.
This fact coupled with the fact that A% is invariant under symmetriza-
tion with respect to all {Ii} proves that the sequence Ai converges.

ReEeDe

Polya and Szego point out in Ref. 11 that a Steiner sequence
in 3-space based upon two planeswhose included angle is an irrational
multiple of w must converge to a solid of revolution about the line

of intersection of the two planes if the sequence converges at all.18

18) They also point out that the ®if"™ has been removed in the case of
convex solids. Cfe. Ref. 10, pp. 86=~90. :
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By observing what happens in each plane perpendicular to that line of
intersection and using the preceding results, we can remove the "if"

for all bounded integrable sets in 3-space.

Third Section. Steiner Symmetrization on a Sphere.

Although the sphere is not a group manifold there is a
symmetrization analogous to Steiner symmetrization in the plane and
several of the theorems carry over to the sphere. In particular, the
isoperimetric property (Theorem &), the convergence to zero of symmetric
differences in a Steiner sequence (Theorem 8) and the convergence of a
Steiner sequence based on a periodic segquence of coordinate systems
(Theorem 9) all hold on the sphere. On the other hand, Theorem 5
(the decrease in the value of the convolution of three bositive functions)
mist be modified before it is valid on the sphere.

let C bea spherical coordinate system. Thai isy C consists
of a mapping P(€,8), which maps [~- % s %] X [-w, W) onto the unit
sphere such that the element of area, dP, is cos 8 de dg. (& is the
complement of the polar angle and # is the azimuthal angle.) We will

designate Lebesgue measure on [-w, ) by //J 1 and Lebesgue outer

*
measure by /(11 .

DEFs ILet A be an integrable set on the sphere. Define
- 1 y* y
hoe =181 181 s 37 {dlrens) ¢ A}}

ir M {ﬁlp(e,d) € A} # 0. Otherwise define Aq g to be empty or

{jO} accordingly as {ﬁlP(G,ﬁ)s A } is empty or not.
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DEF. A = {P(e,fd)lﬁ E,AC,G} .

In attempting to construct a theorem analogous to Theorem 5, two
difficulties occur. The sphere is not a group manifold and the necessary
property of the real line is feplaced by Theorem 4 which applies to the
circle. Theorem 4 is adequate fqr the following theorem and the first

difficulty is avoided.

THEOREM 10. Iet f) (PsQ) be the spherical distance from P to Q,
and let H(é)) be a monotone decreasing function of € . Further let
Fy, G be non=-negative integrable functions on the sphere. Then the

Steiner symmetrization of F, G does not decrease

I= //F(P) a(Q) H(P (P,Q)) aP aq.

Proof: As before the general case follows from the particular case where
F and G are the characteristic functions of measurable sets on the
sphere, and H 1is the characteristic function of an interval O 5}9 < h.
Writing the integral in the coordinate system C and interchanging the

order of integration

‘7/2 W/.?. w T
/ f / F(8,4) G(e',8"') H(P(B,ﬁ,e' 1)) ag aghl
-u/2 n/2 N -

scos 6 cos 8% 46 det,

Consider H({(0,£,8',8')). For fixed 6, § this is the
characteristic function of the spherical disc consisting of all points

(8',8') whose distance from (8,F) is less than or equal to h.



The circle ©!' = constant either does not intersect this region or

intersects in a connected arc of the form [@ - a, # + a] where a is

a function of 6, 6's Define Hy 9.(¢) to be the characteristic function
2

of the set, {'ﬁl |g] < a}v. Then

1= v / V[ s et 5 g 39) a8 2
-1/2 J -u/2 - J =u ’ ’ ©,8!

+cos 8 cos B! de defv,

24 = - T, =t 2 p
Since Hs’e.(x) HB,B‘( x) and G(6%', ~g') is a rearrangement of

G(8',8'), Theorem 4 applies to the bracketed expression and yields

/2 u/2 W L 1
/ / / F'(9,8) G (8',8") H(P (P,Q))
-wf2 J=u/f2 ) ~a [ -u

«cos 8 cos ' df 4g' de de' ,

where 1 ir 4] < %/41 ‘{MF(G’M = 1}
7 (6,8) =

0 otherwise

and a similar expression for G1. Obviously F1 is the Steiner
symmetrization of F with respect to C +to within measure zero, and the

theorem is proved.

The statement of the analog to Theorem 6 is somewhat complicated by
ths properties of the sphere. Let the sphere be represented in
Buclidean 3-space by 2z = sin 8, 2 = cos © cos ff, y = cos 6 sin § and

consider the stereographic projection of the sﬁhere from (=1,0 0) onto
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the yz plane. The winding number of a point of the sphere relative to
a curve bounded away from (-1,0,0) will be defined as the winding

number of the stereographic image relative to the image of the curve.

THEOREM 11. ILet C Dbe as before and let I be a rectifiable curve,
bounded away from the point whose coordinates are (0y=u), such that the
winding number of every point not in T is either O or 1. Define A
to be the union of I' with the set of all points whose winding numbers

are 1, Then the boundary of A, 1is contained in a curve TI'' whose

C
length is not greater than the length of T and which has the same

winding number vroperty.

Proof: I' is a closed set and the 1limit points of a set of points with

19 Thus

winding number 1 either have winding number 1 or lie on I
A is closed and {ZﬂP(e,Qf) € A} is a closed set on the unit circle

and so is measureable. Thus F(S)DEF %/11 {ﬂlp(e,zf) € A} exists

for all ©.
Define 6, = inf {el A4 such that P(6,4) £T }
62 = gup of the same set.

Now if the cap, {r(e.8)le < 8, } , possessed both points in A and

not in A, there would be points of I’ with &-coordinates less than 81.

Thus the caps, { P(6,7) |0 < 8 } and {:P(G,ﬁ)le > 62-} consist entirely
of interior points or exterior points of A. By the definition of

Steiner symmetrization on the sphere this implies each cap is either
interior or exterior to AC so that AC has no boundary points with

19) Cfe Ref. 9.
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A simple argument shows that the boundary points of AC are

gontained in B vwhere

B = {P(e,gd)le1 < 826, min[F(8), im F(x)] < |4
‘ x-8

IA

nax[F(6), 1im F(x)l} .
x-8

In fact the only additional points this set has are of the form (8,m)

and are thrown in to make the boundary connscted.

— n
. 2 2 - 2
Define L(e) = k]).‘il.lﬁo 1Z=:1 'V(xi-xi_1) + cos” € i[F(xi)f-ﬁ (xi_1 )]

where 1im is taken over all partitions, ¢ = {xo < E,‘ < Xy = 61 <

<k 2 < X, see < X, =8 and kSl = mgx (xi - xi_1). In the event

61 = =i/2 the first term is omitted. It is obvious that we are trying
to "measure® the perimeter and the first term nicely takes care of
boundary points of the cap, 8 < 91 whether it consists of interior

points or exterior points. The cap 8 > 92 is taken care of by using

L(62+) =1lim L(x). The + sign is omitted if 8, = u/2. First we show
x-8+

that 2L(82+) is less than or equal to the length of T, Lastly we will
exhibit the curve I which‘has length 2L(92+), maps onte B, and has

the right winding number property.
Proof that 2L(62%) is less than or equal to the length of T\,

The following lemma is used and its proof will be found in

the Appendix.
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MMA TO THEOREM 11. Iet Ty F(8)s O be as before and let I' have

length S and arc length s as parameter. Let

Ii(G) = {slvxi'__1 < 8(s) < x, or 8(s) = X g and %g >0

= ag
or 6(s) = Xy and 35 < 0

Then ©(s), #(s) are absolutely continuous functions of s and

2|Flx;) = Flx; )l 2 _/I © l%é! ds.
1

The lemma is used as follows

1) 4 cos® £ [F(x ) - F(x 1)]2 < cos® £ [/ I ds]

< [/ cos ©(s) légl ds]2
I, (d)

+ 2(x,=x. 1)[f cos 8(s) [ I ds]

i 7i-
ag
[fzi(m asl <1 -

From (1) it follows that

() 2V[x;~=x _1]2+[F(xi)-F(x -1 1% cos® £ <

~ 2 d 2
< Valzg=; 154 [ . (O_)cos 8(s) |£I ds]  +

i
(xi-xi_1) [j; (‘o‘)cos o(s) l | ds][f lds]

Vil x4 cos 6(s) |Z] as]2
1, (9)
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The last term is less than IGI ((5)|.é'ds . If a>0 and we
I

restrict the partitions to these for which -ﬂ/2 +a < x0 and x < ﬂ/2-a,

then summing (2) over 1 <1 <n gives

(3) Z\, 2_\/[x ~X; 1]2 + [F(x )-F(x ]2

cos a

< E V4[Xi'x1-112+[f cos G(S)i lds}z s Aol g,

If 8, > -i/2 and 6 < u/2 then (3) implies

a 2
(4) 2u(e) < léliiﬂ’o 1}:_31 Vilxg=x; 4] +[f cos 8(a)|Z5] as]® .

The cases 61 = -a/2 or © = u/2 can be handled by taking limits.

Now if 91 <x <x < 6, then the fact that T is a simple connected

i=1 2

closed curve and the definition of 61 and 62

two disjoint subsets of [0,S), say I;(G), Ii(d)a such that X 4S X <X

implies x = 8(s) has a solution in each set. Since ©(s) is of

imply that thereexists

| < Vvar o(s) =
1,.
‘ 1 (o)
:\//P |%§i ds with a similar expression for Ii(d?- Also 11(07
Q) |

bounded variation and uniformly continuous, Ixi - xi_1

and Ii(O' ) are contained in I,(0) so that

de
2|x,==x, .| < I | a
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Finally (4) becomes

(5) 2L(8,+ )

n
<28+ T1m VI 28| 45124 8(s)|28|as]?
229 "ol & xi(cr)ldrsl i fxi(o)cos Paslasl” .

The 2 & is the contribution to ‘xi_xi—i‘ from that portion of the

partition between 62 and 62 + § + By Minkowski's inequality20

n
(6) 2L(e,+§) <28 + 1lim ./n 1/|§§[2 + cos® elgglz ds
2" EEY iZ=:1 (0 % ds

Since the Ii(CT) are disjoint
2L(8,+ §) <29 +s.

Taking the limit as ,8 = 0+ completes the first part of the proof in

the event 6, < u/2. If O, = n/2 then it can be shown that 2L(92) =

2 2
2 1im L(x) so that a slight modification of (5) and (6) corresponding
x-8,~
2

to § < 0 gives the result.
Lastly, B may be represented by the points of a curve of
length 2L(62+) as follows. L(®) is a strictly monotone increasing

function of © so that for 0 < s < L(62+) there exists a unique ©

such that L(e-) < s < L(&+).

20 Ref. 5, formula 6.13.2.
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Define ©'(s) to be that 8.

If s <L(B) where © = ©'(s) define

#1(s) = - [ Fle-) + HOI=TE (o - 1)) )

and if s > L(6) where © = 8'(s) define

g(s) == [ 7o) + HEL=F8 (o _ 1(e)) 1.

This represents a curve I'' in the negative hemisphere (f < 0)s Re=
placing ©'(s) by 9'(2L(€2+) - s) and @'(s) by -¢'(2L(92+) -s)
completes the curve, I'', in the positive hemisphere (@ > 0). Notice
that 8(L(6,+)) = 8(2L(6,+) = L(8,+)) = 6, and ¢(L(62+)) = F(6,+)

while -¢(2L(92+) - L(eyt)) = —F(92+). Now the cap © > 8, consists

2

either entirely of interior points of A, or of exterior points so that

c
F(8,+) =0 or w. In either event [6,,F(e,+)] and (8,5-F(6,t))
represent the same point. Thus the two pieces of I’ are connected so
that TI'' is a curve. A similar argument at 61 proves that I'! is
a closed curve.

We must show that TI'' has the winding number property. That

is exterior points of A, have winding number O and interior points

c
have winding number 1, If both caps, (6 < 61) and (6 > 82) consist
only of exterior points then the mapping I'' - T} gives by 8'(s)6'(s)
and @(s) » (1-a) #(s) is an admissible homotopy relative to exterior
points.21 For a =1, ! lies entirely on the arc, § =0 and the

winding number of any point not on F% is Q. If a cap is interior

then construction of the homotpy must be preceeded by a homotopy

21) See ref. 9 for definition of admissible homotopy.
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which frees the cap from the curve.
For interior points the argument is as follows. (eo,ﬁo) is

interior to A, if and only if |¢o| < min{lin F(x), F(8 )]. But if
X8

(eo,ﬁo) has this property then so do all points of the arc |¢| < lﬁol.

e = 90. Since winding number is continuous15 this implies that (GO,O)

has the same winding number as (eo,ﬁo). Now examine the stereographic

image of TI't in the yz plane. The curve goes from the image of

(6,,F(8,-)) to (ez,F(92+))' in the negative half plane (z < 0) and

back again in the positive half plaﬁe. It is easily seen that the

nét change of argly + iz = yo] for Y, between these two points and

not on the image of T'' must be 27 so that the winding number is +1.19
The analyogy between Steiner symmebrizations on the plane and

sphere breaks down at Theorem 7 where a finite perimeter was obtained.

The proof of Theorem 7 depended upon the fact that lines perpendicular

to L1 meet the lines perpendicular to L, in a positive angle. How=-

R
ever if C, C! are two coordinate systems on a sphere with common
origin (P(0,0) = P'(0,0)) +then the lines of constant © are tangent
to the lines of constant ©' if they meet along the great circle

g = i /2. It seems evident that a set could be constructed which was
Steiner symmetric in C but which had infinite perimeter in every
neighborhood of the greét circle # = + /2 and such that 4, also had
infinite périmeter. This is apparently the only point where the analogy

breaks down since we haves

THEOREM 12. ILet {'Ci} be a sequence of coordinate systems on the

sphere with common origin (Pi(0,0) = P1(G,O)) and let A be a measure~
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able set and {in} the Steiner sequence generated by A and {Ci} .

Then
& =
Z%/C{(Ai@Al+1)3 < .,
i=

i ® Ai"H )3

Proof: We shall estimate the terms /LI(A by terms of a

convergent serles.
Define D' = { Pi(e,ﬁ)lcos @cos f>r } for =-1<r<i.

Using the representation of the sphere in 3-space we can say that pal
consists of all points of the sphere whose x=-coordinate is greater than r.
Since all of the coordinate systems Ci give the same x-axis, ¥ is

independent of coordinate system. HNow

in. . ;
iy {Begg@8) N5 < wtal M { Bz, o007 F o p G -

L the right hand side of this inequality equals

M {ﬁl?m (0,8) € 4**10 Dr} ‘

Multiplying each of these functions by cos & d8 and integrating gives

By the definition of A*'

/u(AiﬂDr) _<_/4(Ai”ﬂ DY) £ M%) = (1 = x) am,
Defining

1 . 1
74 1 T
G, = A'NDT) dar < 1-r)2nde =4
4 /_1 /U( No) r__/q( r) 2n dr = 4u,

we see Gi as a monotone inecreasing sequence bounded from above so that

(=
ZE: Gy, =G, S 40 =G < w,
= it i 1
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. . ig it . :
We shall bound /(,-/(A @ A )3 by a fixed multiple of G, 4 = Gj.
For convenience in the following we use i = C. Define
of = {7, (e.8) € o}
e 1
R AN
The corresponding function for A' = A, is A which has been

C C,8
previously defined.

Then
/‘1 /n/2 ( n r. ( N r)
G, =G = A D.) = AM_(A (1D, ) cos @ 46 dr.
1 7 -1J -a/2 /M1 Cs® 70 /u1 & e

. ro_ o : vl ) =

Now if r < - cos 8, then Dy = [~a,a) so that M (AC’GK)DG) /(41 (Ac’e)
- - r ; r o,

-/b%(Ae) /L/1(Ae/) De). Also if r > cos & then Dy is empty.

Thus

cos €

w/2 cos & r | r.
(1) G, =G, =/:T/2 [. [/U(Ac’eﬂDe) - /,11 (Aeﬂ De)] dr cos & de .

Since AC is Steiner symmetric with respect to the coordinate system C,

Jq (b gNDG) = minl U, (hg,872 My @) = nin[(d; (g)s 2 are cos s 8

Also
« T o ” T o
< /
so that the integrand is always non-negative and decreasing the range of

integration to =~u/2 < & < w/2 and =-cos 6 < r < cos B cos 9LG(AG)/2)

decreases the right hand side of (1). In this restricted range
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/L/( 1(LD ) 2 /(,/1 (A ). With these considerations (1) implies

(A )
cos & cos 5
/:v/Z/ 0s @ [u, (ag) = (B MDg)] cos 6 dr a6

(2) /"{1 (Ag)
/2 cos @ cos —_—
= / /;é;br (DA.(Q,QS) dg dr cos © 48,

«r/2 ) =cos 8 P

where ®A is the characteristic function of A, Interchanging the

order of integration
Halhe)

5 cos 8 cos )
(3) ¢ 17G, 2 "/ / CD (8,8) ar df cos & de.
/2 ,u,( ) | .

os 8 cos ff

The integration in the variable r can now be performed to give

2 & |
(4) G, 2 / "/ D, (6,8) cos6[cos /u; o _ cos #] df de,
» L0

The non=-trivial range of integration of # is that portion of Ag which
is disjoint from AC,O and the measure of this range is /,{1(.&9”1\0’9)

where KCQ is the complement of ACG' An immediate consequence of
Theorem C (Appendix) is that

/2
(5) G,~G, 3/ / / cos e[cos(/u(A )/2) = cos ;é] ag de
/2 [ &) <[pl< & (a nAco) Mg
2 wo -

2
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Performing the integration in the variable @ and using a trigonometric

identity for the difference of sines gives

/2 (A NE.) (A7)
(6) Gl-‘o Z.J/::j; 0578 [/41 g o’ cos/u2 9

U AR L) (A A M)
_gsin/’”(zn ce COS(/‘—/29+/L1 e ULLE

Using the fact that for x > 0, =x ﬁ - 8in x and a trigonometric identity

for the difference of cosines we obtain from (6)

(1) G=G, 2 /o i NE) sin P

| (A.)  (ANE.)
‘ sin[/ui2 e . /y( 68 e 1 cos2 e de ,

Since

M1 BgNEg) M) o M1 8ge) H (g Nige)
4 - 4

L)
=2 = 2 2 =

The trigonometric functions may be estimated from below by linear
functions to yield

(/2 (4 (b NP
6,0 >f"/ A AIAR 2

> cos” @ de .,
°=. -n/2 64

Multiplying the integrand by cos @ and applying Holder's inequality to

the functions f£(8) = ﬂ1 {Aef\ﬂce), g(e) =% gives

ﬂz al 3
G=G, 2 g7 @A),
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Since M (é) = /4/(11.'), we have ,U(Eﬂﬁc) = /U(AHEC) = %/J(A @AC)

Thus Tr2 o 3
Gy=G, 2 5735 [/u (A AC)} .

QeEeDe
Our next theorem is the analogue to Theorem 9.

THEOREM 13. Let A be a measurable set on the sphere and {ci}
be a periodic sequence of coordinate systems with a common origin.
Then the Steiner sequence converges in measure to a set which is Steiner

symmetric in all the coordinate systems.

Proof: If A has a finite perimeter the argument is identical with
the proof of Theorem 9. The second observation is that the class

C= -{AlAi converges in measure~} is closed under complementation.

For if & is the complement of A then I* is obtained from Ai by

reflection through the yz plane, And if Ai converges then so does

Ai. The third observation is that C is closed under monotone limits.
For letk Bn be a monotone sequence of sets §f Ce Then the Bn converge
to a set we shall denote by B e Denote by B:) the set to which the
Steiner sequence Bi converges (n fixed). Since Steiner symmetrization
takes a monotone family of sets into a family monotone to within measure

oG
zero, the sequence Bn must be monotone up to measure zero and thus

converges in measure to a set we shall denote by B:z. Then

(1)/&(31@13:) 5/0(13111@51) +/u(B;°® Bril) + M(B OB
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Since Steiner symmetrization takes monotone sets into monotone sets,

it can be shown that ye (Bi@ BL) < /u(Bn@ Bm) for all i. By choosing
‘ 1 - '

n such that /u (Bn(f) Bm) < ;€ and /(/( (B:@B:) < % ¢ (both sequences

converge) (1) becomes
MO B) < T et MEOT)

But B; >B° as i >, sothat for all i sufficiently large
M (B @ B%) < e.
[+ [s+]

Thus B_ isin C. If we could show that C was a ring we would

be done. Unfortunately there is no direct proof of this and we must
proceed differently. It is well known that the sphere is separable
under the ordinary topology. And in fact circular discs with rational
coordinates for their centers and rational radii form a basis.16 Since
finite unions of circular discs have finite perimeter and every open
set is the monotone increasing limit of such sets, every open set is

in Ce. DNext every G8' is in C.22 Lastly, since convergence is only
to within measure zero, any set which differs from a GS by a set of
measure zero is in C. But this includes all measurable sets.

Qe EeDe
The next theorem is the analogue of Theorem 4 on the sphere.

THEOREM 14. Let F, G be integrable functions on the sphere and H

' R
be monotone decreasing on [O,W]. et F, G be the rearrangements

22) See ref. 12, p. 3 for definitions.
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of F, G based on the sets D' = { P(8,8)|cos & cos @ > r} o Then

[/F(P) 6(Q) H(Q (PsQ)) dP dQ s// F(P) 6 (@) H(C(P,Q) dP dQ .

Proof: As on several preceding occasions the general case follows from
the case when F, G are the characteristic functions of measurable
setsy, A and B. Let 01, 02 be two coordinate systems such that the
angle between the arcs {P1 (8,0)|8 = O} and {Pz(e,ﬁf)lﬁ = 0}

at their point of intersection, 91(0,0) = P2(O,O), is an irrational
miltiple of w. Now Lin Ai s Lim Bi are Steiner symmeiric in both
coordinate systems and thus must be circular dises (the DI"s).23

An application of Theorem 10 completes the proof,

23) Ref. 8, p. 90.'



APPENDIX

Theorems A, By, C are simple measure theoretic results which

are used in the main part of the text.
THEOREM A. If Ay, B are integrable sets on G then

,u{zl/u(Af\zB) >0} =0 if and only if

MA)=0 or /L«((B)=O.
Proof: M (A N zB) =/®A(X) ®B(Z—1x) ax

///‘ (AN 2B) dz /‘ﬁDA‘CX)@B(Z-TX) dx dz
/CI%(X) /@B(x-iz)'i) dz dx

/@A(x)/u (871) ax = U (A)/AB"’) .

Since /(,{ (A N\ zB) is non-negative, /b( (a) /U (B—}) is zero if and only

fi

if

pizlpu@anas)>o% =o.
Lastly, AL (B—Q) = Qé(z) A(z-i) dz. Since @B(z) is non-negative
and A(z_1) is positive everywhere, /(,( (B—i) is zero if and only if

/u (B) = 0. The theorem then follows.

THEOREM B. Let A, B, C be integrable sets on G with /u(A) < /u(B)
5/(,( (C). Then there exists A1, C1 such that /(X(A1) ==/(,( (a),

/U(cl)=/u(c) and A1§B_C_.'.C1.



Proof: We will construct A1. The modification for C1 is obvious.

If A or B have zero measure we are through. Otherwise consider
/(/({Ar\ 2-1B} . There exists 2z, such that

PIGEI N R

. _ *_ N
Define A1 -—(21A)ﬂ By By = B A1, A1 =& -z A1. Then 4, C B,

and U (ag) + p(ay) = MA(A),

Inductively we choose =z, such that

i+l

-1
i supM(Aﬂz B)
/“("“‘n i+1B) 22 26

and define
Ayy =4y Uiagyy 4, NE]
* .
Biyg TB =45
* o _ k%
Ajg =4y 4 Nay i B

It is easily shown by induction that

A, CB

(1) M) = i a) + Ui NsT,, B,

() ag) + M) = s,

*

and { AJ‘.Z is a monotone increasing sequence and { B: } * {Ai

} are

monotone decreasing. Thus
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* * * *
A'=1imA,, B =1limB,, and A =1lim 4 existe
o i @

v P oo 1

Also /u (Aif\ % 1Bi) decreases monotonely to /,( (A:ﬂz ?B:). Farther-

more, since {Ai} is monotone and the /u (Ai) < M (B) < « , we have

/’((A nz3.+1 i} = fABggg) m By ) = Ry = 44) >0

Thus sup/u(A Nz g ) < sup/u(A Nz"15 )< 2/(,((A ﬂzi_L1 *) >0 so that

zel 2eG
* A - *) - . * *
M4 Nz B ) =0. By Theorem A either M (A ) or /b‘(Bm) equals zero.
* 1
Now B =B =A" and
(]

(3) ) = AUB) = puial),

Teking the limit of (2) as i » « gives

(4) MG+ ) =)

That Ai is the one with zero measure follows from (3) and (4). Then

from (4) it follows that/,( (A‘) =/u (A). Since A; €B for all i,
1

A < B Q.E.D.
COROLLARY. If A is integrable then there exists A1 such that

/i(A) =/.,((A1) and the closure of A1 is compact.

Proof: If G is compact then any closed subsets are compact and the
~ecorollary is proved. If G 1is not compact, since it is locally compact,
there exist compact sets of arbitrarily large measure and thus one whose

measure is greater than /.,( (A)e The corollary then follows from the theorem.
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THEOREM Ce Let F(x) be a positive integrable function on G and let

A be an integrable set. Then there exists a real number t such that
/U{xh?(x) > t} 2 H(8) 2 /(,({XIF(X) > t,} DEF r,

/AF(X) dx < /; F(x) ax + ¢ [((a) = u(F)],

t

and

Purthermore if equality holds then

F

s SAC {xlF(x) > t} except for a set of measure zero.

Proof: Let t =inf{tl/u(Ft)</J(A)}

(&)

The sets F

y are monotone increasing as t decreases and F,= lim Ft +5°

; b -0+
Thus U (Ft) is continuous on the right and

ME )< @),
]

[os]
Also {x[F(x) > *'03 = {\1 Fy —y/n SO that
n= (&}

p{xlrE) 2 6,3 = Lin MU(F 1) 2l
2

°

Secondly, let A4, = Af\Fto, By =AN[{x|F(x) 2ty - 4,7, and
5 = AB. Then

/f(x)dx=/ F(x)dx+/F(x)dx+ /F(x)dx.
A A A A

1 2 3

(A-AI)-A

By Theorem B there exists a subset, C, of A2U A3 whose measure is



/M (Fto) -"/U(A1). Since F(x) >t, on F, and F(x)f_to on C we have

/F(x) dx < / P(x) ax +/ F(x) dx +/ F(x) dx
A F A=A . NC A=A NC

t ' 22 373

o

with strict inequelity holding unless /(/( (C) = 0, that is, unless F,Z C A

t
to within measure zero. A similar construction replaces AB - AB ¢ by
a subset of {xlF(x) = to} - (A2 - Azﬂ C) and a corresponding strict
inequality results unless (1’-’;3 - AB MNC) = 0. Combining the two steps

yields

F)df_/F}d+t A) = (7, )
/A(x x r, (x) dx o[/M( /“(tol

o

with strict inequality holding unless

Ftc cac {xlF(x) > to}

except for sets of measure zero.

LEMMA TO THEQREM 11.

Let T be a reectifiable closed curve on the sphere given by
{(e(s), f(s))jc<s<s } where & is the arc length from the point
(8(0), #(0)) 4long the positive orientation of the curve. For

-n/2 < a <b < u/2, define

I= (sla<8(s)<b or 8(s)==a and %g>0

| _ ag
or ©(s)=Db and ds<o o



Statement of Lemma to Theorem 11. If I" is bounded away from

P(0s=n) and the winding number of every point not on I’ is either zero

or one and

F(e) = -;-,u1 {#l2(e,8) 13 on T or has winding number 1}

then p(s) and ©(s) are absolutely continuous functions of s on I
and
2|F(b) - 7(a) | = /l | as

Proof: We fist show absolute continuity. Choose § > O such that

-n/2 + § < a and b<u/2=9. Thus

i1

Ig{sl-g—+8<e(s)<§+g}.

This last set is open and thus consists of a countable union of disjoint
open intervals. On each of these intervals we have if 8y > s, and

gach are in the interval

e———y n(G) 2 2 , 2
8 = 8, = lclr%fo I};; V(28 )" + cos[8(g, )] ()

where ¢ is a partition of [30931], So =%y S Cp CEy et <X o T8y

¢]

and Aei, Aﬂi are the differences of consecutive values of the correspond-

ing functions, |(y| = max X; = X;_qo It follows that
i

8, =8, 2 Tim Elae | > Ie(bi) - 8(s,)]
lg]-0

and

5, = 8, 2 f?ﬁoz“s[e(a 1 1a8;] 2 cos(G - 8)| Blsy) = B(sy)
N
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Now let 11, 12 be a sequence of intervals [ai,bi] contained in
{sl- /2 + § < 6(s) <u/2~ 8} such that Zbi - a, < gs8in% « Then

oc Z;' (b = a;) s
bs) - p( .) S_ 1= < £ 8Sin - .
i§i e + k! | cos(g - ) cos(-g -3) ©

Therefore @(s) is absclutely continuous. A similsr computation shows
6(s) tc be absolutely continuous and in fact by letting § -+ 0 the

absolute continuity of ©(s) on the whole interval [0,S] can be shown
dj .
Next we will prove 2|F(b) - F(a)| < ldsl ds . Let
I

®a(¢) =1 if P(a,8) is on T or has winding number 1, and Q(ﬁ) =0

otherwise., Similarly for @b (g)s Then
}i
2l3) - 2l = 1 1,00 - B,00 oo
=

s/ 10,60 - Dot e,
-7

If we can show the last integral to be leas than or equal to / l%glds
I

the proof will be complete,

To do this we need two lemmas.

LEMMA 1. Iet NI(y) be the number of solutions to the equation @(s) =y,

g € I« Then T
= ag
/-n NI(.V) dy = /I ’dsi ds .

LEMMA 2. !@](y) - Q(y)l < NI(.'Y) except for a set of y of measure

ZEr0e



T _
That [-ﬂ I@b(y) - @a(y)l dy < ‘é I%%I ds is an immediate consequence

of these two lemmas.

Proof of lemma 1. Consider the class, G, of all sets A4 for which

T
/_n N, (v) dy = /;l%gl GER

If A is an interval then / 1%%! ds = Var ﬁ.24 But a result of S.
A A

25

Banach shows that intervals are in C. Next, if A1 U A, = A, and

3
A AR \
A1m A2 is empty then NA,‘ (y) + Ngz(y) = NAB(;V/, so that

N, (y)a N, {v¥)ay = [ N, dy .

/A1(y y+fA2(y y /Vﬂj(y)y |
d d _ d

/; lagl ds+£l£{ ds—/; [agl ds .

1 2 3
The integral equalities are to be interpreted as asserting also that if any
two of the integrals exist then the third does. From this it follows that
G 1s closed under relative complements and finite unions of disjoint
members of C. If { Ai} is a monotone sequence of members of C

converging to A, then

N, (y) converges monotonely to N A (y)s
i

i T
] N, () dy converges monotonely to / N, (y) dy
- i =

and

/ }%@! ds converges monotonely to / ig@i ds .
Ay s p e

2/) Ref. 13, Theorem on page 48
25) Ref. 14, Theorem 2 page, 228.
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Thus € 1is closed under monotone limits. In particular since every open
set is the countable union of disjoint opérn intervals, every open subset
and every closed subset of {sl-n/z +93 < 8(s) <uf2 - 6} are in GC.
Finally the countable intersections of open sets (G ) 's) and countable
unions of closed set (Fg's) belong to C. Now if A is measureable there

exists FO' s Gg such that FO- AC G‘& and /u (G3-- FG) = O..26 We have

and

IQQI ds = / léglds provided G C{sl-n/z +% < 6(s) < w/2 -3}

ds ds ) .

The last statement implies f N, () dy = / N. (y) dy. Since NF < NG N
3

this implies NF and NG and thus 4l so ’\I must differ on a set of
[z

d
measure zerc. Thus / NA(y) dy exists / lds = / | lds.

Thereforeevery measureable set is in € and in particular I is in C.

QeEeDe

Proof of lemma 2. If @b(Y) and @a(y) are both 1 or both 0, it

is trivial that
10,60 - D)l <n.6)

Also if there exists s such that a < 8(s) <b and @(s) =y then

l@(y)~®(y)l <1<yl

That leaves the case where exactly one of the points P(b,y) and P(a,y)

has winding number 0 and no point of {P(G,y)]a <8< b} are on the

26) Ref. 123 Pe 66’ eXe Re



curve T« Suppose (b,y) is the point with winding number 0. Then,
by continuity, all of the points {_P(S,y)la <8< b} must have winding
"number O and (a,y) must be a point on I’ We shall now have to exclude

sets of measure gzero.

First let 9 >0, =-0/2 + 3<a<b<a/2+ 3y and
A e E 1 E-
a={sl-F+s<e(s) <3 -5}

Then NA(y) is integrable by the preceding lemma and therefore finite
almost everywhere. We exclude those y for which NA(Y)‘ is infinite,
Secondly let 31, Sps eee 3 S, be the solutions to f(s) =y, s € A.
Since f(s) and ©(s) are absolutely continuous on Ay dg/ds and
de/ds exist and are finite almost everywhere. We exclude thét get of ¥y
for which there exists s such that @(s) =y, s ¢ A and either dg/ds
or d8/ds do not exist or are not finite. Finally we look at those 8;

for which e(si ) = a. It is claimed that
- de -
/441 i~Sle(b) = a and i # 0} = Q.
The reason is as follows

48 _ . 8ls+a) -8(s) cd8

ds A da

for all |4l sufficiently small., Thus if d6/ds # O and ©(s)= a then
8(s*)= a can have no other solution in some neighborhood of s. Thus

no point of 4{358(3) = a and d8/ds # O} can be a density point of
this.seto It follows that this set is of measure zero.27 The correspond=

ing set of y must also be of measure zero and will be excluded.

27) Ref. 15, pp. 123-124, 1st edition; pp. 185~187, 2nd edition.
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Now let us examine the set of y remaining. For each y in
this set we have: There exists s with @(s) =y, 6(s) = a. There are

only a finite number of solutions to @(s) =y, -n/2 +§ < 8(s) < /2 =%

H

For each solution to @(s) =y, 8(g8) = a we have d@g/ds exists and

de/ds = O,

A
Since 1 = 1/(%%)2 + cos® © (%g) ’ %g cannot be zeroc and

in fact QQ -
ds = cos 8 °

Let 855 S5 soe 3 S be the solutions to @(s) =y, 8(s) = a. Since
there are only a finite number of solutions/to B(s) =y, =0/2 + & < 8(s) <
< a/2 = §, there is an arc { P(eyylla~ec <@ <a + e} such that the
only point in common with ' is (a,y). For each 849 i=15 ¢es 9y
such that d@/ds > O there exists an & such that @(s) <y for

s & (si =& si) and @(s)>y for s ¢ (si, sy + Ei)° Similarly for
d@/ds < Q0. Thus there is a crossing of the arc of I'e If we look at the
stereographic image of the arc and of I' on the yz plane using the point
P{0,-n} to project from, we see that if df/ds > O the contribution to
the winding number of (a = &,y) minus the winding number of (a + &,y)
is +1, while if d4@/ds < 0 the contribution is =1.

Letting W(8,0) be the winding number of the point P(8,0)

H(a =6.3) - Wa +8,5) = 2 sen S
i ir-

But W(a +§,y) =0 and W(a =§,y) is non-negative so that

Z: sgn g >0
i ds

8, — .
i



= 55 =

Since there is at least one term in the sum, there must exist one positive
term so that NI(y) >1 > | g (y) - ,@a(y)l. A similar argument is valid

if ﬂb(y) =1 and ﬁa(y) = 0 and completes the proof.
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