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Abstract 

To gain an improved understanding of the physics of granular systems, investi

gations of two aspects of continuum theories of granular flows and a new paradigm 

for modelling granular systems are presented. 

The analogy between a flowing granular system and a molecular gas allows the 

adaptation of elements of the kinetic theory of gases to a continuum theory of gran

ular flow. Two significant areas of difference between gases and granular materials 

are the additional degrees of freedom due to the spin and surface roughness of the 

grains and the boundary conditions between a granular flow and a bounding sur

face. Using techniques from the field of nonequilibrium thermodynamics, equations 

of motion and constitutive relations are obtained which include the effects of the 

spin and surface roughness of the grains. Also, boundary conditions on continuum 

theories for flows of smooth grains are presented, emphasizing the need to allow for 

several "slip" degrees of freedom. 

In order to obtain a more general description of large scale effects in granular 

systems involving both flowing and static assemblies of grains, a model is developed 

( the lattice grain dynamics paradigm) for simulating systems containing large num

bers of grains. This model is based on concepts from the fields of cellular automata, 

lattice gases, and particle dynamics simulations. 
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Introduction 

In discussing the physics of granular systems, the most obvious first question 

1s: "What is a granular system?" For the purposes of this study, a granular system 

will be defined as consisting of a large number (greater than 100) of macroscopic 

grains (linear dimensions greater than 0.1 millimeters) of solid matter, with particle 

number densities ranging from compacted ( as in a pile of sand grains in a gravi

tational field) to disperse (as in particles in a planetary ring). It will be assumed 

throughout that the grains obey the laws of classical physics, and thus relativistic 

and quantum mechanical effects can be ignored. 

The above definition encompasses a wide range of common physical phenom

ena: Granular systems are observed in geophysical settings as rock slides, sand 

dunes, sand storms, sediments, and snow avalanches. In industry, they are found 

in connection with the processing of cereal grains, coal, gravel, and oil shale. And 

in astrophysics, they are seen in the form of planetary rings. 

In this thesis, we will not concern ourselves with entirely static granular sys

tems, which can be treated using the science of soil mechanics. Instead we will treat 

problems in which all or at least a significant portion of the grains are in motion 

relative to the boundaries and to each other. In order to keep our investigations 

down to a manageable size, we will only consider systems of uniformly-sized, spher

ical grains; the effects of a distribution in grain shapes and sizes are beyond the 

scope of the present study. 

A granular system may exhibit many of the same characteristics as a fluid 

( e.g., it may have a self-bounding free surface in a gravitational field and it gen

erally will conform to the shape of a bounding wall on length scales larger than a 

grain diameter) and thus may be modelled using techniques borrowed from contin

uum theories of fluid mechanics. However, these systems also differ from fluids in 

several significant ways: on a macroscopic scale, a compacted granular system can 

support a shear stress even in the absence of a shearing velocity. Thus, the free 

surface of a pile of grains need not be perpendicular to the local direction of grav

itational acceleration. On a microscopic scale, the collisions and sliding contacts 
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in a granular system will dissipate the kinetic energy of the particles, whereas the 

collisions between the molecules of a gas will be perfectly elastic. This means that 

the relative motions in a collection of grains will be damped out over time, and that 

maintaining a constant level of activity among the grains will require a constant 

input of energy from an external source. Also, the description of a granular system 

as a continuum may break down in those instances in which the motions of a few 

individual grains are of significance ( e.g., the free surface of a granular flow down 

an inclined slope may not be well defined due to the presence of saltating grains 

(grains which are bouncing along the surface)). 

One of the earliest attempts to formulate a continuum theory for fluidized 

granular systems was presented by Bagnold (1954) and was based upon a consider

ation of the microscopic interactions between grains. His theoretical arguments and 

experimental observations advanced the idea that a cohesionless granular system 

(with negligible interstitial fluid effects) subjected to a uniform shearing motion 

would exhibit a shear stress proportional to the square of the rate of shear ( similar 

to the behavior of a fluid in the turbulent regime). He was able to apply this theory 

to the flow of sand down an inclined slope, but with only moderate success. 

A theory based on continuum mechanics and thermodynamics was given by 

Goodman and Cowin (1972) and extended in Savage (1979). Here, the volume frac

tion of space filled by the granular material was treated as an explicit variable, and 

equations governing its evolution in time were postulated. The possibility of spin 

and surface roughness for the particles was not considered. The coefficients in the 

constitutive equations were not derived from any consideration of particle-particle 

interactions, but were instead given ad hoc values so as to obtain the desired func

tional form for the dissipative part of the stress tensor. In addition, the physical 

interpretations of some of the quantities introduced in the equations governing the 

volume fraction are unclear. This theory and ones similar to it were used by several 

investigators (Savage (1979), Nunziato et al. (1980), and Passman et al. (1980)) to 

solve simple problems in the flow of granular materials down chutes. The bound

ary conditions used in solving these problems included a no-slip condition on the 
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average flow velocity and an arbitrarily chosen value of the volume fraction at the 

boundaries. 

The Goodman-Cowin theory does not take into account the fact that a granular 

flow is made up of independent particles and that the velocities of these particles 

will fluctuate about the average flow velocity. These velocity fluctuations were first 

incorporated into continuum theories of granular flows by Kanatani (1979) and 

Ogawa et al. (1980). A complete, self-consistent continuum theory of granular 

flows including the concept of fluctuation velocity was derived by Haff (1983) using 

a heuristic approach to the development of the constitutive relations. This approach 

facilitated the physical interpretation of the terms in the equations of motion and 

the constitutive relations and displayed the connection between the microscopic 

parameters ( e.g., the coefficient of restitution in a collision) and the macroscopic 

effects ( e.g., plug formation in Couette flow). 

The similarity between a flowing granular system and the kinetic theory model 

of a gas has led several investigators to attempt a derivation from first principles of 

the equations of motion and the constitutive relations for granular systems, using 

techniques from the dense gas theory of Chapman and Enskog. Here, the grains are 

assumed to be sufficiently agitated that they do not have enduring contacts, but 

instead undergo only momentary, binary collisions. A Maxwellian distribution for 

grain velocities is usually assumed; and the equations of motion and constitutive 

relations are obtained by integrating the results of these binary collisions over this 

velocity distribution. Savage and Jeffery (1981), Jenkins and Savage (1983), and 

Lun et al. (1984) have used this technique for systems of identical, smooth, in

elastic spheres. Lun and Savage {1987) have extended the theory to include rough, 

spinning spheres. The difficulty with this approach is that the complexity of the 

integrations renders them impossible to evaluate for all but the simplest possible 

problems. In addition, the resulting constitutive relations contain terms whose 

physical interpretation is difficult to ascertain. 

The question of boundary conditions to be used for these continuum theories 

has received only limited attention. Most investigators have simply assumed a no

slip condition on the average flow velocity at a boundary and have made various 
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arbitrary choices for the boundary conditions on other variables ( e.g., the fluctuation 

velocity may be set to zero at a boundary). Two attempts have been made at 

deriving the boundary conditions on a granular flow. Hui et al. (1984) derived a 

set of boundary conditions using the heuristic approach of Haff (1983). Jenkins and 

Richman (1986) used the Chapman-Enskog techniques to obtain their version of the 

boundary conditions. The problems associated with both of these sets of boundary 

conditions are discussed in detail in Chapter 2. 

The advent of powerful, high speed (and economical) computers has led to 

the idea of modelling granular systems by simply calculating the motions of the 

individual grains. Efforts along these lines (detailed in Chapter 3) have been lim

ited to relatively few particles by the complexity of these calculations. The recent 

surge of interest in cellular automata has provided the impetus for inventing a new 

technique for modelling granular systems with many particles that does not involve 

continuum theories and differential equations. 

In this thesis, two aspects of the continuum theories of granular flows and a new 

approach to the modelling of granular systems in general ( using cellular automata 

instead of differential equations) will be presented. In Chapter 1, a continuum 

theory of granular flows which includes the effects of surface roughness and spin of 

the grains is derived using the heuristic approach of Haff ( 1983) and using techniques 

from continuum mechanics and nonequilibrium thermodynamics. In Chapter 2, the 

elusive problem of boundary conditions on flows of smooth, nonspinning grains is 

treated; and it is shown that the simple boundary conditions of fluid mechanics 

cannot, in general, be used for granular flows. Finally, in Chapter 3, the lattice 

grain dynamics paradigm for modelling granular systems is presented. · 
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Chapter 1. A Continuum Theory of Granular Flow Including Spin 

The theoretical study of highly agitated granular flows has been significantly 

advanced in recent years by the application of ideas from the kinetic theory of 

gases. Intuitively, the random motions and collisions of grains in an agitated flow 

are suggestive of the motions and collisions of molecules in a gas. By making the 

analogy between the fluctuation velocity of the grains and the thermal velocity of 

molecules in a gas, most of the concepts (pressure, viscosity, and thermal conductiv

ity) and equations of motion of the kinetic theory can be carried over to the theory 

of granular flow. There are, however, several significant differences between the 

collisions of grains and the collisions of molecules that must be taken into account 

when making this analogy. These include the inelasticity of the grain collisions and 

subsequent loss of kinetic energy into heat, the spin and surface roughness of the 

grains, the higher number density of particles per unit volume and the short mean 

free path relative to a grain diameter for granular systems, and the differences in 

the treatment of the boundary conditions. 

The first of these effects has been incorporated by careful treatment of the fluc

tuation of individual grain velocities about the average flow velocity. The magnitude 

of these fluctuations (the "fluctuation velocity," or, in analogy with the kinetic the

ory of gases, the "thermal velocity") is important because it largely determines the 

relative velocity of grains in a collision. Since energy and momentum in a granu

lar flow ( as in a dense gas) are transmitted predominantly by collisional transport 

(rather than kinetic transport), this thermal velocity will play a significant role in 

the constitutive relations for the pressure and shear stress. Thus, an equation ( the 

"thermal energy equation") governing the generation, diffusion, and loss of the ther

mal velocity is a necessary component of a theory of granular flow. The inelasticity 

of grain-grain collisions is incorporated into the theory as a loss term in this equa

tion. The first attempt to include the thermal velocity in a theory of granular flow 

was made by Ogawa et al. (1980). When the techniques of statistical mechanics are 

used to derive the equations of motion and the constitutive relations for a granular 
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flow (Savage and Jeffrey (1981), Jenkins and Savage (1983), Lun et al. (1984), and 

Shen and Ackermann (1984)), the thermal velocity and its governing equation are 

a result, just as in the kinetic theory of gases. A more physically intuitive approach 

to including these effects has been taken by Haff (1983). 

All of these theories have assumed that the grains are smooth, identical spheres 

and have ignored any possible effects of the spin of the grains. If we consider the 

exam pie of grains confined between parallel plates and undergoing shearing motion 

(Couette flow), we can see that the possible spin of the grains may be important in 

determining the shear stress, inasmuch as they may act as "ball bearings" and influ

ence the effective viscosity of the system. Thus, it would seem worthwhile to include 

spin in the theory of granular flow. One approach to the incorporation of spin and 

surface roughness effects was presented by Kanatani (1979), in which equations of 

motion for the average translational and spin velocities and constitutive relations 

based on the cell model were derived. However, the fluctuation in spin velocity 

of the grains ( the "spin thermal velocity") was neglected. Another approach has 

been given by Lun and Savage (1986), once again using the techniques of statisti

cal mechanics. However, the mathematical complexity of this method only allowed 

for the solution of the problem of steady state Couette flow for the special case of 

uniform translational and spin thermal velocities. The possibility of thermal energy 

diffusion was not considered in this special case. 

In this chapter, methods from the theory of nonequilibrium thermodynamics 

are utilized along with the intuitive approach of Haff (1983) to obtain the equations 

of motion and the constitutive relations, including the effects of diffusion of transla

tional and spin thermal velocities. This formalism is then used to obtain solutions 

to various problems, with the goal of gaining an insight into the physical results of 

including the effects of spin and surface roughness into the theory. 

The Equations of Motion 

In this formalism, the concept of thermal velocity as introduced by Ogawa et 

al. (1980) will be retained. Thus, to include the effects of spin into the theory of 
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granular flow, we must allow four new degrees of freedom: the three components 

of the average spin angular velocity (w), and the r.m.s. magnitude of the spin 

fluctuation angular velocity (W). This requires the addition of four new equations 

of motion for the spin variables and the modification of the existing equations to 

allow for the exchange of angular momentum and energy between translational and 

spin degrees of freedom. The energy flow relationships of this model are shown 

in figure 1.1. It should be noted that both the average spin velocity and the spin 

fluctuation velocity represent reservoirs which can absorb energy from or supply 

energy to the translational degrees of freedom. 

The continuity equation 

The conservation of mass gives the usual continuity equation: 

op a 
- =--(pu·) 
8t OXj 

3 
' 

(1.1) 

where pis the bulk density of the granular flow, and Uj is the average flow velocity. 

Since most granular systems of interest involve a high density of grains ( i.e., 

the volume fraction occupied by the grains is typically ~ .5), the theory given here 

assumes an incompressible flow: p = constant and 

The momentum equations 

The derivation of the translational and spin momentum equations presented 

here follows that given in de Groot and Mazur (1962). Since this derivation depends 

upon the second law of thermodynamics and the use of the concept of entropy, the 

question arises as to whether these principles apply to granular flows. Inasmuch as 

a granular flow is a dynamical system with some probabilistic evolution, it seems 

reasonable that the concept of entropy can be applied to this case. Because entropy 

gives a measure of the uncertainty in the state of a system, and the uncertainty 

in the state of an agitated granular flow increases with time, the second law of 

thermodynamics should apply here (Oshima (1978)). 
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From the conservation of linear and angular momentum, the evolution of linear 

and spin momentum can be expressed in terms of the pressure tensor: 

dui 8 
p dt = P9i - 8x . pii' 

J 

(1.2) 

(1.3) 

where Pij is the pressure tensor, 9i is the gravitational acceleration, 0 is the moment 

of inertia per unit mass of a grain, and Wi is the average spin angular velocity. 

Equation 1.2 is the familiar expression from fluid mechanics relating the rate of 

change in average flow velocity to the gravitational acceleration and the gradient 

of the pressure. Equation 1.3 expresses the fact that changes in the average spin 

velocity are driven by the antisymmetric portion of the pressure tensor. 

To obtain the dependence of the pressure tensor on the average flow velocity 

and average spin velocity, the usual techniques from the theory of nonequilibrium 

thermodynamics will be used. We begin with the expression for the rate of entropy 

production per unit volume (de Groot and Mazur (1962) equation XII.23): 

,,. = -J➔ • VT _ pv · il _ ns : (Vil) 8 
_ Aa. (V x il - 2w) 

v e q T2 T T I I T ~ O, 

where Jq is the flux of "thermal" energy, T is the "temperature" of the grains, 

p is one third the trace of the pressure tensor, ns is the symmetric part of the 

pressure tensor with zero trace, (Vil) 8 is the symmetric part of the gradient of the 

average flow velocity (with zero trace), ns : (Vil) 8 = nik(VilH:i, and na is the 

axial vector corresponding to the antisymmetric part of the pressure tensor. (Thus 

Pii = poii + n:i + €ijk nk . ) 
Since the flow is assumed to be incompressible, the term involving V • il is zero. 

Note that this expression consists of the sum of products of thermodynamic forces 

and fluxes. Following standard practice in nonequilibrium thermodynamics for ob

taining the first order constitutive relations, we will now assume that these fluxes 

are linearly related to the thermodynamic forces and that the fluid properties have 

isotropic symmetry, and obtain the following set of phenomenological equations: 

ns = -2TJt(Vil)8 or nr = -TJt (
8

Uj + Bui) , (1.4) 
1 8xi 8x; 
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or a ( au,n 2 ) ni = -'l]r €il,n axz - Wi ' (1.5) 

where 'f/t is the translational coefficient of viscosity, and 'f/r is the rotational coeffi

cient of viscosity. (Rotational viscosity is an effect in which a difference between the 

average rotational motion of the flow ( ½ V x u) and the average spin of the grains 

( w) will generate an asymmetry in the pressure tensor.) 

Inserting these relations into the equations of motion (equations 1.2 and 1.3) 

and substituting for the convective derivative gives 

(1.6) 

a a ( &,n) 8t (p0wi) = - axj (p0wiu1) - 21]r 2wi - Eil,n axz • (1.7) 

The energy equations 

The energy equations describe the generation, flow, transfer, and loss of trans-

lational and spin thermal energies. 

The derivation of the translational thermal energy equation begins with the 

total translational energy equation: 

where v is the translational fluctuation velocity, ½ pu2 is the kinetic energy associat~d 

with the average flow velocity, ½ pv2 is the kinetic energy associated with the thermal 

velocity, Q(t)j is the flux of translational thermal energy, and It includes the losses 

due to inelasticity and friction and the transfer of energy to or from spin thermal 

energy. 

Multiplying the linear momentum equation ( equation 1.2) by Ui and subtract

ing from equation 1.8 leaves 

a I 2 ) aui a I 2 a 
-(-pv =-Pi·- - -(-pv u ·) - -Q(t) · - It. 
8t 2 3 ax · ax · 2 3 ax · 3 

J J J 
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Substituting for the thermal flux and the pressure tensor, 

8 1 2 
Q(t) · = -Kt-(-pv ), 3 8x· 2 3 

(
8uj Bui) ( Bum) 

Pij = p8ij - 1Jt Bxi + Bxj - €ijk1Jr 2wk - Eklm Bxz , 

gives the final form of the translational thermal energy equation: 

8 (l 2 ) [ (8Uj Bui) ( 8um)] 8ui 
8t 2pv = 1Jt 8xi + 8xj + €ijk1Jr 2Wk - €klm 8xz 8Xj 

8 [1 2 ) 8 1 2] - - (-pv Uj -Kt-(-pv) -It, 
8x· 2 8x· 2 3 3 

where Kt is the translational thermal diffusion coefficient. 

The evolution of the total spin kinetic energy is given by 

(1.9) 

where W is the spin fluctuation velocity (the analog for spin of the translational 

thermal velocity), Q(r)j is the flux of spin thermal energy, and Ir includes the losses 

due to friction and the transfer of energy to or from translational thermal energy. 

Multiplying the equation for spin angular momentum ( equation 1.3) by Wi and 

subtracting from equation 1.10: 

8 ( 1 2 ) 8 l 2 8 - -p0W = -W·E--kP·k - -(-p0W u·)- -Qc)" -L 8t 2 i i3 3 8x. 2 3 ax. r 3 r· 
3 3 

Substituting for the thermal flux and the pressure tensor, 

( 
Bum) €ijkPjk = -2'fJr 2wi - film ax, , 

gives the spin thermal energy equation: 

(1.11) 
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where Kr is the rotational thermal diffusion coefficient. 

It is interesting to note that the first term on the right hand side of the spin 

thermal energy equation may be positive or negative depending upon the average 

spin and flow velocities. That this term may lead to a "cooling" of the spin thermal 

velocity under proper conditions is analogous to the cooling experienced by an 

expanding gas. 

Constitutive Relations 

In order to obtain the constitutive relations, we will assume that our granular 

system is similar to a dense gas. In a dense gas, the mean free path of a molecule 

is no longer much greater than the diameter of a molecule; consequently, collisional 

transport of linear and angular momentum dominates over transport by free particle 

diffusion. In order to evaluate collisional transport in a dense gas, we make use of 

the cell model, in which each particle is regarded as bouncing around in a cell 

defined by the nearest neighbor particles. The inclusion of spin effects requires a 

knowledge of the results of the collision of two spinning particles. To calculate these 

results, we employ a model proposed by Lun and Savage (1986). 

The particle collision model 

The grain particles are assumed to be rough, rigid spheres of mass m and 

diameter d ( figure 1.2). In this model, the components of the relative surface velocity 

(§) after the collision are related to the components before the collision by the 

normal and tangential coefficients of restitution: 

I 
9.1. = -e 9.l., 

Using the conservation laws of linear and angular momentum, it can be shown 

that the changes in translational velocities and spins are given by 

c; - C2 = n2c12 + (n1 - n2)(k · c12)k - n2d(k X n), 
, ... mdn2 ... ... ... ... ... w2 - w2 = - 21[(k x 212) - d(k · !l)k + d!l], 

(1.12) 

(1.13) 
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where c1 is the translational velocity of particle 1; c 2 is the translational velocity 

of particle 2; c 12 = c1 - c2; k is a unit vector from the center of particle 1 to 

th t f t . 1 2· - (l+e). (1+.B) K . K - 41 - 2 ~ I'd e cen er o par 1c e , n1 - 2 , n 2 = 2 (l+K), - md2 - 5 1or a so 1 , 

homogeneous sphere; I = moment of inertia of a particle about its center of mass; 

w1 is the angular velocity of particle 1; w2 is the angular velocity of particle 2; and 

11 = (w1 + w2)/2. 

If we subtract the change in translational kinetic energy (T.K.E.) of particle 

1 from the change in T.K.E. of particle 2, we obtain the transfer of T.K.E. from 

particle 1 to particle 2: 

Similarly, the transfer of spin kinetic energy (S.K.E.) from particle 1 to particle 

2 is found to be 

(1.15) 

Adding the changes in kinetic energies of particles 1 and 2 gives the total 

changes in translational and spin kinetic energies: 

2 ....... 22 ...... 2 
- (2n2 - n2)dc12 · (k x f2) + n 2d (k x 0) ], (1.16) 

~S.K.E. = (mnV K)[(k X C12)
2 + 2d!1 · (k X c12) + d2(k X 11) 2

) 

(1.17) 

Equation of state 

In the cell model, the particle is assumed to be enclosed in a spherical shell 

formed by the adjacent particles, and is moving with a velocity of order v relative to 

the shell. If we define s to be the average separation between particle surfaces, then 

the average collision rate is of order v / s. Referring to equation 1.12, if we set the 

relative velocity c12 equal to v, and assume that the effects of spin on the pressure 

average to zero over all possible collisions ( i.e., k x fi = 0, there is on average no 
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correlation between the spin of the particle and the direction of the collision), then 

the momentum transferred in a typical collision is of order mv. Since the area of 

the cell is proportional to d2 , we have 

1 V 
p~mv d2-;· 

If we collect all constant factors into a single dimensionless constant t, then 

v2 
p=tdp-. 

s 

Coefficient of viscosity (translational} 

(1.18) 

Here we consider the collision between particles from two adjacent shearing 

layers, moving with a relative velocity of ~u. In a shearing collision of this type, 

it is clear that particle spin will be a significant effect. However, in the linear 

momentum equation of motion the effect of spin has been separated out into the 

term involving 'T/r, and thus the constitutive relation for 'T/t should not deperid upon 

the surface roughness of the particles. Referring again to equation 1.12, and setting 

c12 = ~u and n2 = 0, we see that the momentum transferred in a shearing collision 

is of order m~u. Taking into account the collision rate and the area of the cell, the 

shear stress is of order: 

Since the grain layers have separations of order d, we can replace ~u/d by du/dy. 

Combining all constants into qt, we have 

2 v du 
a= qtd p--. 

s dy 

Comparing this to the term for translational shear stress in the linear momentum 

equations of motion, we find the expression for the translational coefficient of vis

cosity: 

'T/t = qtd2 p'!!_. 
s 

Coefficient of viscosity {rotational} 

(1.19) 

To evaluate this coefficient, consider the case of a granular flow in which the 
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vorticity is non-zero and is not balanced by the average spin angular velocity (2w -

V x iI =/= 0). By the momentum equation for spin (equation 1.7), this will result in 

a change in the average spin at a rate involving 'r/r• From equation 1.13, the change 

in spin of a particle in a typical collision is of order: 

A ... md2n2 (2... " x ... ) u.W ~ 
21 

W - V U • 

Factoring in the volume of a cell and the rate of collision, and gathering all constant 

factors into qr, the rate of change of spin angular momentum is 

Comparing this expression with equation 1.7, the rotational coefficient of viscosity 

is found to be 

{1.20) 

Coefficient of thermal diffusivity (translational} 

From equation 1.14 it is seen that the translational kinetic energy transfer in 

a typical collision is of order mvAv. Multiplying this by the collision rate and 

dividing by the area, we obtain an expression for the translational kinetic energy 

flux: 

or 
2 V d 1 2 

Q(t)=-rtd -;dy( 2pv ). 

Comparing this with the thermal diffusion term in equation 1.9 gives 

Coefficient of thermal diffusivity (rotational) 

(1.21) 

From equation 1.15, the transfer of spin kinetic energy in a typical collision is 

of order m( d2 / 4 )n2 WA W. Thus, the flux of spin kinetic energy is 

md2n2 1 v 
Q(r) ~ 

4 
WAW d2-;, 
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or 
2 v d2n2 d I 2 

Q(r) = -rrd -;---:w- dy( 2pOW ). 

Comparing this with the thermal diffusion term in equation 1.11 gives 

d4n2 v 
Kr= rr---:w--;· 

Coefficient of translational thennal energy loss and transfer 

(1.22) 

The term It in the translational thermal energy equation includes the loss of 

energy due to inelasticity and surface friction effects and the transfer of energy to or 

from spin thermal energy. Its dependence upon the translational thermal velocity 

v and the spin thermal velocity W may be found by considering the expression for 

the total change in T.K.E. given by equation 1.16. If we assume that the relative 

velocity c12 is of order v and that the total spin n is of order W, then It will consist 

of three terms depending upon v2 and W 2 • The first term on the right hand side 

of equation 1.16 represents the loss of energy due to inelasticity of the collision 

and is proportional to v2 • The second term represents the transfer of energy from 

translational thermal velocity to spin thermal velocity due to surface friction, and is 

also proportional to v2 . Under most circumstances this transfer will not be perfectly 

efficient, and this energy loss will be greater than the corresponding energy gain in 

the expression for Ir. The third term will average to zero over all collisions due to 

the assumption that the orientation of fi is uncorrelated to its amplitude or to the 

orientation of k or c12 • Finally, the fourth term represents the transfer of energy 

from spin thermal velocity to translational thermal velocity due to surface friction 

and is proportional to W 2 • Once again, inefficiencies in this process mean that this 

term will be less than the corresponding term in Ir. 

Factoring in the rate of collisions and the volume of the cell, and gathering the 

constant factors into one constant for each term, we have 

(1.23) 

Coefficient of rotational thermal energy loss and transfer 

The determination of the form of Ir closely follows that of It, using equation 
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1.17. The only significant difference is that spin thermal energy is not lost due to 

the inelasticity of collisions. By the same arguments as above, the form of Ir is 

(1.24) 

Solutions to the Equations of Motion 

Uniformly excited system 

In order to demonstrate the time evolution of the thermal velocities, we will first 

consider the problem of a spatially uniform system with arbitrary initial thermal 

velocities. To simplify the problem, the average flow velocity and average spin 

velocity are set to zero, as are all spatial derivatives. The energy equations now 

reduce to a pair of coupled, nonlinear, first order differential equations: 

It is expected that the translational and spin thermal velocities will exchange energy 

until some type of "equipartition" is reached. Also, both thermal velocities should 

decay with time due to inelasticity and surface friction losses. 

An analytical solution to these equations is possible in the special case that 

the ratio of spin thermal velocity to translational thermal velocity is a constant 

determined by the particle properties: 

Vo 
v( t) = -( b-vo-t +-1-) and W(t) - Wo 

- (bvot + 1)' 

d2w2 d2 d2 2 d2 2 
I II I II I II 11- 2 { i} 

4v2 = "It + "It - 48 'Yr + [ ( "It + "It - 48 'Yr) + O"ir "It] /21, = a , 

(1.25) 

where vo is the initial translational thermal velocity, and W0 = 2av0 /d. However, 

a general analytical solution for arbitrary initial conditions is not known. 
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The solutions for different initial conditions were obtained by numerical meth

ods and are shown in figures 1.3a, 1.3b, and 1.3c. In the first case, the initial 

translational and spin thermal velocities were set to the ratio "a" given above. It 

can be seen that this ratio is maintained as the thermal velocities decay. For the 

second case, the initial spin thermal velocity was set to zero. For the third case, 

the initial translational thermal velocity was set to a small value. (If it were set to 

zero, nothing would happen since no particle collisions would occur.) 

In all cases, it can be seen that the translational and spin thermal velocities 

tend to exchange energy until their ratio reaches the value given in equation 1.25. 

Steady state system with no flow 

This problem is intended to illustrate the spatial variation m translational 

and spin thermal velocities as energy is supplied from a wall under steady state 

conditions. The grains are confined between two infinite parallel plates, with no 

average spin or flow velocities and no gravitational forces (figure 1.4). The plates 

are vibrating so as to supply thermal energy to the grains; however, the motion of 

the plates is assumed not to produce spatially correlated spin or linear motion in 

the grains. Inasmuch as a theory for the boundary conditions for granular flows has 

not been developed to include spin, the values of the translational and spin thermal 

velocities will be arbitrarily set at the walls. 

From the linear momentum equation, the pressure is found to be uniform 

throughout the region between the plates. Setting all time derivatives to zero, the 

energy equations reduce to a pair of coupled, nonlinear, second order differential 

equations: 

a [ 2 V a ( 1 2 )] v
3 

1 v
3 

11 d
2 
W

2 
V 0 = - rtd -- -pv -,tP- -, p-+, p---, ax s ax 2 s t s t 4 s 

a [ d4 
n2 V O l 2 ] 1 v

3 
11 d2 W 2 

V 
0 = ox Tr47i; 8x(2p(}W) +rrP-; - ,rP 4 ;· 

Substituting Po = tdpv2 / s for the uniform pressure gives 
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d
4
n2 {) ( W aw) 1 11 d

2
Ww. 0 = Tr ____ po--- +1 pov-1 po-- · 

4 8x v 8x r r 4v 

Once again, an analytical solution to these equations is possible if the ratio of 

spin thermal velocity to translational thermal velocity is assumed to be a definite 

constant: 

v(x) = vo[exp(x/,\) + exp(-x/,\)]/2, 

W(x) = Wo[exp(x/ ,\) + exp(-x/ ,\)]/2, 

d2W 2 
_ Trn2(1t + 1D - Tt')'~ + [(rrn2bt + 1D - rn~) 2 + 4rn~1~'rrn2] ½ = a2 

4v2 21~' r r n2 - ' 
(1.26) 

,\2 = Ttd
2 

' 

bt + 1~ - 1? a2
) 

where vo = translational thermal velocity at the center, and Wo = 2avo / d. An 

analytical solution for arbitrary boundary conditions is not known. 

Numerical solutions for various boundary conditions are shown in figures 1.5a, 

1.5b, and 1.5c. In figure 1.5a, the thermal velocity amplitudes are plotted for the 

case in which the ratio of spin to translational thermal velocity at the wall was 

set to the value "a" given in (1.26). In figure 1.5b, the spin thermal velocity at 

the wall was set to zero. In figure 1.5c, the translational thermal velocity at the 

wall was set to a small value. The ratio of spin to translational thermal velocity is 

seen to tend towards a fixed ratio as distance from the wall increases. This ratio, 

as given in equation 1.26, is a function of particle and collision parameters only, 

and is independent of the thermal velocities. Physically, the initial increase in spin 

( or translational) thermal velocity near the walls in figure 1.5b ( or figure 1.5c) is 

due to the large difference in energy between these two modes created by the wall 

boundary conditions. As we move away from the wall, energy is exchanged during 

collisions until the equilibrium ratio of thermal velocities is achieved. The ensuing 

uniform decay of these velocities towards the center is due to the combined effects 

of diffusion and loss of thermal energy. 

Steady state Couette flow 

Here we consider an extension of the previous problem in which translational 

and spin thermal energy can be generated within the flow by shearing motion. The 
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grains are again confined between two parallel plates with no gravitational forces 

acting. Figure 6 illustrates the coordinate system and the motion of the two plates; 

the system is of infinite extent in the x and z directions. In order to take advantage 

of the symmetry of the system, the plates are moving with equal but opposite 

velocities; thus the average flow velocity is set to zero at y = 0. The average flow 

velocity is assumed to be parallel to the x-direction and all flow variables are taken 

to depend only on y. 

Consideration of the spin angular momentum equation ( equation 1. 7) reveals 

that the x- and y-components of the average spin angular velocity will be zero, 

while the z-component will be given by 

(1.27) 

The y-component of the linear momentum equation gives dp/dy = 0 so that the 

pressure in the channel is constant: 

v2 
p =po= tdp-. 

s 
(1.28) 

The x-component of the linear momentum equation shows that the shear stress is 

also a constant: 
Bux 

a = ao = 1/t By . 

Substitution of equation 1.27 into the thermal energy equations gives 

B [ B l 2 ] Bux 0 = -- -Kt-(-pv ) - It+ 1/t-, 
By By 2 By 

8 [ Bl 2 ] 0 = - By -Kr By(2p8W) -Ir. 

(1.29) 

Using the expressions for 1/t, Kt, Kr, It, and Ir (equations 1.19, and 1.21 to 1.24), 

and making use of the constant pressure ( equation 1.28) and shear stress ( equation 

1.29), we obtain two coupled, non-linear, second order differential equations for v 

and W: 

(1.30) 
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& [dW & (dW)] [ 'Y~ 'Y:! (d2W2 
)] v 

O = &y 2v &y 2 + r rd2 - r rd2 4v2 n2 · 
(1.31) 

Since a theory of the boundary conditions at a wall including spin is not available, 

we will arbitrarily set the values of the translational and spin thermal velocities 

at the wall and consider two different examples, which will be solved by numerical 

methods. 

In the first case, the wall properties have been chosen so that the spin thermal 

velocity at the wall is zero. The wall velocity is adjusted so as to obtain a desired 

value of the translational thermal velocity at the wall. The particle properties have 

been chosen so as to obtain a shear stress to pressure ratio of 

ao > ..fiii, ('Yt +-y' _ 'Y:''Y~). 
Po t t 'Y~ 

With this ratio of shear stress to pressure, the rate of energy generation in the chan

nel due to shearing exceeds the rate of energy loss due to friction and inelasticity; 

the excess energy diffuses to the walls where it is absorbed. As in the examples 

given in the last section, the spin thermal velocity gains energy from the trans

lational thermal velocity as we move away from the wall, until a definite ratio is 

achieved {figure 1. 7a). This ratio can be found by analytically solving equations 

1.30 and 1.31 with the condition that W/v is a constant: 

d2w2 

4v2 

{ ~} 22 II 22 112 111 2 

( ') t aO Tt')'r [(( ') t aO Tt')'r) 4Tt')'r'Yt ] / 2 II 'Yt +'Yt - --2 - --+ 'Yt +'Yt - --2 - -- +--- 'Yt · 
QtPo rrn2 QtPo Trn2 Trn2 

{1.32) 

The average flow velocity is shown in figure 1. 7b and the average spin velocity is 

shown in figure 1. 7 c. 

In the second case, the translational thermal velocity has been set to a very 

small value at the wall. As shown in figure 1.8a, the dip in spin thermal velocity as 

distance from the wall increases is due to transfer of energy to translational thermal 

velocity, until the ratio given in equation 1.32 is reached. The average flow velocity 

and average spin velocity are given in figures I.Sb and 1.8c. 
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It is interesting to note that the average spin velocity is in fact proportional to 

the translational thermal velocity. This can be shown by combining equations 1.19, 

1.27, 1.28, and 1.29 to obtain 
t ao v 

Wz=---. 
2qt Pod 

Couette flow with and without particle spin 

It would be of interest to compare the theory presented here with a similar 

theory of granular fl.ow which does not include particle spin (Haff (1983)). For this 

purpose, the problem of steady state Couette flow with no gravity will be considered, 

with attention given to a comparison of pressure, shear stress, and fl.ow velocity with 

and without the effects of particle spin. 

In general, the pressure and shear stress will be determined to a significant 

degree by the boundary conditions on the translational and spin thermal velocities. 

Lacking a theory for these boundary conditions, the following two assumptions will 

be made: (1) the special case of a constant ratio between the translational and 

spin thermal velocities will be used and (2) the characteristic length over which 

the translational thermal velocity changes (.\) will be held constant. If the rate of 

shearing is high enough such that the rate of thermal energy generation is greater 

than the rate of dissipation, then the thermal velocities will be given by 

v(y) = vo cos(y/ .\), W(y) = Wo cos(y/ .\), 

and the ratio of spin to translational thermal velocity can be found from equation 

1.31: 

(1.33) 

To find the pressure p0 , information concerning the total amount of free volume 

in the fl.ow is needed. For this purpose, the free space parameter t::i.h is introduced, 

and is defined as the difference between the total thickness of the grains ( when 

close packed) and the width of the channel (figure 1.9). The pressure can then be 

determined by integrating the average particle to particle spacing "s" across the 

channel and relating this to t::i.h (Haff (1983)): 

_ 2 [.\. (h) (h) h] Po - 3tpvo t::i.h sm 2-\ cos 2-\ + 2!::i.h . 
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From this expression, it can be seen that if the value of ..X is held constant, the 

pressure in the flow does not depend upon the effects of particle spin. 

The ratio of shear stress to pressure can be found from equation 1.30: 

(1.34) 

Since energy will normally be lost in the transfers between translational and spin 

thermal energy, the following inequalities will hold: 

Using the last of these inequalities in equation 1.34, it can be seen that the effect 

of adding spin and surface roughness to the theory is to increase the ratio of shear 

stress to pressure. Since the pressure is unchanged, the shear stress will increase. 

Finally, the flow velocity at the wall may be found by integrating equation 1.29: 

Holding the translational thermal velocity at the wall constant, the flow velocity 

will increase in proportion to the ratio of shear stress to pressure. 

Thus it can be seen that in order to allow for the increased loss of energy due to 

surface friction, while keeping the thermal velocity profile constant, it is necessary 

to increase the rate of energy input to the flow by increasing both the shear stress 

and the shear velocity when spin is included in the theory. 
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Figure Captions 

Figure 1.1: Energy flow relationships for the present model of granular flow includ

ing spin. 

Figure 1.2: Diagram of the model of a binary collision, showing the particle diam

eter (d), particle spins (w1 and w2 ), the relative velocity (c12), and the 

unit vector ( k) between the particle centers at collision. 

Figure 1.3: Evolution of translational and spin thermal velocities with time in a 

spatially uniform system: (a) W(0) = 2av(0)/d, (b) W(0) = 0, (c) v(0) 

is small. (Velocities in arbitrary units.) 

Figure 1.4: Illustration of grains confined between parallel vibrating plates. 

Figure 1.5: Variation of translational and spin thermal velocities of grains confined 

between parallel vibrating plates: (a) W(walls) = 2av(wall)/d, (b) 

W(walls) = 0, (c) v(wall) is very small. (Velocities in arbitrary units.) 

Figure 1.6: Illustration of Couette flow geometry. 

Figure 1.7: Variation in granular flow properties in Couette flow with the spin ther

mal velocity at the wall set to zero: (a) the thermal velocities, (b) the 

average flow velocity, ( c) the average spin velocity. (Thermal velocities 

are in arbitrary units.) 

Figure 1.8: Variation in granular flow properties in Couette flow with the transla

tional thermal velocity at the wall set to a very small value: ( a) the 

thermal velocities, (b) the average flow velocity, ( c) the average spin 

velocity. (Thermal velocities are in arbitrary units.) 

Figure 1.9: Illustration of the definition of the free space parameter fl.h. 
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Chapter 2: Boundary Conditions on Continuum Theories 

of Granular Flow 

In order to solve practical problems using continuum theories of granular fl.ow, 

boundary conditions are required which relate the parameters of the granular system 

adjacent to a wall to the forces and velocities associated with that wall. Therefore, in 

this chapter we will consider the development of such boundary conditions. As will 

be seen below, these boundary conditions will be significantly more complex than 

the boundary conditions of fluid mechanics; consequently, we will not include the 

additional complications associated with rough, spinning grains. Instead, we will 

work with the simpler continuum theories which have been presented for systems of 

smooth, non-spinning, inelastic spheres (Ogawa et al. (1980), Haff (1983), Jenkins 

and Savage (1983), Lun et al. (1984)). 

In the continuum equations of fluid mechanics for normal density gases, the 

boundary conditions are usually given as: 

1. The fl.ow velocity at the wall is set equal to the wall velocity ( the no-slip 

condition). 

2. The temperature of the system at the wall is set equal to the wall temperature. 

3. The density of the system at the wall is assumed to be unaffected by the 

presence of the wall. 

However, in the case of granular systems, these simple conditions can no longer 

be used: 

1. Experimental evidence indicates that slip between the fl.ow velocity and the 

wall velocity is a common feature of granular fl.ow problems (Hanes (1987)). 

2. In the kinetic theory of gases, the wall is often treated as a single, infinitely 

large, infinitely massive particle (Henderson et al. (1976), Waisman et al. 

(1976)). If we apply this model to the case of granular fl.ow, then the second 

moment of the wall's velocity may be regarded as the wall's "temperature." 

This temperature will be determined by the balance between three effects: the 

generation of thermal energy by the shear stress and slip velocity, the con

duction of thermal energy between the wall and the particles, and the loss 
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of thermal energy due to the inelasticity of grain-wall collisions. Since these 

mechanisms differ in details from the corresponding mechanisms in the bulk of 

the flow, the temperature of the wall may be significantly different from the 

temperature of the particles at the wall. 

3. These differences between grain-wall and grain-grain collisions may also cause 

the bulk density of grains at the wall to differ from the bulk density away 

from the wall. If, for example, the rebound velocity of a particle in a grain

wall collision were lower on average than the corresponding rebound velocity 

in a grain-grain collision, then each grain at the wall would occupy a smaller 

volume of space than a grain in the bulk would occupy. Thus the bulk density 

( or equivalently the number density) of grains at the wall would be higher than 

the density away from the wall. 

The first two of these effects have been incorporated in previous formulations 

of the boundary conditions. 

Hui et al. (1984) presented a set of boundary conditions for the phenomenolog

ical theory of Haff (1983) based upon the rates of energy and momentum transfer 

at a wall. Although the slip velocity of the grains at the wall was included in the 

calculation of the momentum transfer, the thermal energy which would be gener

ated by this slip was not included in the derivation of the energy transfer. Thus, 

the case in which a significant portion of the internal thermal energy of a granular 

flow is supplied by slip at the wall cannot be treated within this framework. 

Another set of boundary condition equations has been given by Jenkins and 

llichman ( 1986), both for a two-dimensional system of smooth circular disks as well 

as a three-dimensional system of spheres. Employing methods of averaging from 

the kinetic theory of dense gases, they derive expressions for the rate at which lin

ear momentum and energy are transferred between the granular flow and the wall. 

Equating these expressions to the corresponding rates in the flow gives the bound

ary conditions. These authors were the first to emphasize the role of the normal 

stress boundary condition. However, in the applications they discuss, a "slip" in 

number density at the wall was not allowed for, leading to an over-constrained set 
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of equations i.e., an additional boundary condition had been introduced, on the 

pressure, but no additional variables. Thus, the solution of a steady state Couette 

flow problem required a unique number of flow disks across the gap. The physical 

difficulty with this result can be seen in the limit of zero wall velocity, where the 

Couette flow problem reduces to the probl~m of particles in a box with no flow. In 

the absence of allowing for a density "slip" at the wall, there is in general no way 

to arrive at a steady-state population of particles in the box. 

The theory of boundary conditions for three-dimensional systems presented 

here is derived in a manner similar to that used by Haff (1983) in obtaining the 

equations of motion for the bulk flow of smooth particles and to that used in Chap

ter 1 in obtaining the equations of motion for the bulk flow of rough, spinning 

particles. In this model each microscopic process of interest such as momentum 

transfer in grain-grain collisions, momentum transfer in grain-wall collisions, en

ergy absorption in grain-grain collisions, and so forth, is considered explicitly, and 

the corresponding local expressions for energy and momentum transfer within the 

bulk and between the bulk and the walls are derived. These expressions are suit

ably averaged and combined in order to arrive at the desired equations of motion, 

constitutive relations, and boundary conditions. This approach does not start with 

a particle distribution function, contrary to the tack taken in some applications of 

kinetic theory, and hence it cannot calculate the precise magnitude of the dimen

sionless coefficients (q, r, t, etc.; see below) which characterize each physical process 

when those processes are combined together in a balance law. On the other hand, 

in the present model these factors are not arbitrary but are known to be of order 

unity. Jackson (1986) has discussed how rigorous kinetic theory gives results which 

differ only slightly from ours. The advantage of the heuristic approach used here 

is that specific physical processes are identified clearly from the start at the micro

scopic level, and that their role in the equations of motion, constitutive relations 

and boundary conditions remains clear by virtue of the unique tag they carry in 

the form of a specific dimensionless constant. These constants are not intended to 

be used as "fitting parameters," but rather as indicators of the importance and role 
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of specific microprocesses. We also note that, over a very wide range in velocities 

and densities, there may in fact be slight variations in the values of the "constants" 

of the model ( as is also true in kinetic theory). For our purpose here, which is to 

outline some new and interesting boundary effects in granular systems, we neglect 

any such variation, which is expected to be small. 

Working within this framework, our approach will be to introduce "slips" in 

the bulk density and thermal velocity, the necessity for which is argued below, 

as well as the more conventional slip in average velocity, and then to solve the 

problem of Couette flow, in which the properties of the grains and wall along with 

the wall velocity and Couette-cell width are given, and the pressure, shear stress, 

and velocity profiles in the bulk are calculated. 

It should be noted that in the kinetic theory of granular flow presented by Haff 

(1983), the bulk density pis assumed to be essentially constant throughout the flow. 
( 

This assumption is adopted here, so that the results apply mainly to dense systems. 

Where small variations in the bulk density would have a significant effect ( as in the 

collision rate), the variations are allowed by the use of the grain-to-grain spacing 

variable s. We will continue to use this formalism in describing the variation in 

density at a wall. 

The Grain-Wall Collision Model 

The grains are assumed to be identical, inelastic, smooth spheres of diameter 

d and mass m. (In order to simplify our treatment of the boundary conditions, 

the spin of the grains will be ignored.) The packing fraction is taken to be high 

(i.e., s < d) and the system is taken to be sufficiently agitated that the particles 

undergo only binary collisions so that the theory of Haff (1983) can be applied. In 

a collision, the particle is assumed to contact a section of the wall which has a local 

unit normal vector k (figure 2.1) and a coefficient of restitution ew. 

In calculating the results of a grain-wall collision, the mass of the wall will be 

taken as infinitely greater than the mass of a grain. 

The following assumptions are made about wall roughness: 
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1. At the microscopic level (smaller than a grain diameter), the wall is smooth 

and frictionless. 

2. On a scale slightly larger than a grain diameter, the surface of the wall has a 

shape consisting of smooth undulations of amplitude less than a grain diame

ter. The assumption of a small amplitude is based on the idea that any feature 

of greater amplitude will tend to trap one or more particles, thus "healing" 

itself and forming a new boundary with small amplitude undulations. (Surface 

"healing" is commonly seen in computer simulations of flow, Haff (1987); see 

also discussion of self-bounding fluids in Hui et al. {1984).) The surface rough

ness is characterized by a distribution function for k, f(k), which is assumed 

to be isotropic. 

3. On average over distances much larger than a grain diameter, the wall is flat. 

In the present treatment of the boundary conditions, the position of the wall 

as a function of time will be allowed to have a random component. This random 

component will have an amplitude less than a grain diameter and can vary on a time 

scale similar to the time between collisions of the grains in the flow. (Motion with 

larger amplitudes or on longer time scales should be included in the macroscopic 

description of the boundary's position.) This effective random motion can arise from 

two uncorrelated sources: the vibrational motion of the wall and the slip velocity. 

The vibrational motion of the wall will be described by the second moment 

of its velocity, designated Vw. Even though this motion will be correlated over the 

entire length of the wall, it will be treated as contributing an uncorrelated random 

motion to the grains in view of the fact that the positions of the grains are not 

correlated over distances greater than a few grain diameters. Further discussion of 

the analogy between a small-amplitude high-frequency wall vibration and a thermal 

source is given by Haff (1983). 

The random motion due to the slip velocity can be quantified by considering 

the frame of reference in which the average velocity of the granular flow near the 

wall is zero. In this frame, the slip velocity coupled with the wall's roughness results 

in a fluctuation in the normal component of velocity in a grain-wall collision. This 
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component of the surface velocity in the k direction (figure 2.1) is Us· k, where Us 

is the slip velocity ( Us is taken to point along the wall, the r direction in figure 

2.1). Averaging this dot product over all possible values of k, and adding it in 

quadrature to any average externally driven vibrational velocity, gives the wall's 

effective vibrational velocity: 

In this equation, we have explicitly quantified the roughness of the wall in the term 

< k;. >. A perfectly fl.at wall will have < k;. >= O; and an increasingly rougher wall 

will have increasing values of< k; >. 

Finally, the average rate at which grain-wall collisions take place is given by the 

relative velocity of the grain and the wall divided by the average grain-wall spacing: 

(v2 + v2 + u2 < k2 >)½ 
W S T (2.2) 

where v is the average thermal velocity of the grains. 

Since these sources of vibrational motion are regarded as random and uncor

related, they are added in quadrature and the time average of any cross terms is 

assumed to vanish. 

The Boundary Condition Equations 

The pressure 

The pressure on the wall can be found by means of the cell model (Hirschfelder, 

Curtiss, and Bird (1964)). The normal component (along ii in figure 2.1) of the 

momentum transferred to the wall in a single grain-wall collision is of order 

Since the particle occupies a cell whose dimensions are of order d, the area across 

which this momentum transfer takes place is approximately d2• Combining these 
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values with the rate at which grain-wall collisions take place ( equation 2.2) gives 

the pressure on the wall: 

(v2 + v2 + u2 < k2 >) 
p = twdP w s T ' 

Sw 
(2.3) 

where all of the proportionality constants have been incorporated into tw, a dimen

sionless constant of order 1. 

The pressure in the granular fl.ow (as given by Haff) is p = tdpv2 /s, where tis 

a dimensionless constant of order 1. Setting these two expressions equal gives the 

value of the grain-wall spacing: 

S __ W S T S tw ( v2 + v2 + u2 < k2 > ) 
w - t v2 . (2.4) 

This boundary condition is the result of the fact that a particle in the layer 

adjacent to the wall "sees" a different environment on one side of its cell from the 

others. In order to transmit a constant pressure in the direction perpendicular to 

the wall, the grain-wall spacing must adjust accordingly. This is equivalent to a 

"slip" or jump in the bulk density of the system at the wall. (Although density 

and mean free path do not stand in a strictly one-to-one relation at high density, 

because of geometrical packing effects, we equate for the purposes of this paper, 

"density slip" and "mean free path slip," see Haff (1983).) 

This "slip" in the bulk density is actually a first order approximation to the 

more complex oscillations in bulk density seen in calculations and simulations of 

hard-sphere fluids bounded by a flat wall (Henderson et al. (1976), Snook and Hen

derson (1978), Waisman et al. (1976)). These variations in bulk density can arise 

even though the particle-particle and particle-wall collisions are perfectly elastic, 

simply due to the layering effect of the particles near a flat wall (Snook and Hen

derson (1978) ). Since the wall we use here is not perfectly flat, it would not be 

appropriate to go beyond this first-order approximation. 

The shear stress 

On the average, a collision between a grain and a rough wall will have a compo

nent of momentum transfer along the direction of the slip velocity. This momentum 
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transfer results in the transmission of shear stress between the wall and the granular 

flow. 

To calculate this shear stress, note that the normal velocity in a grain-wall 

collision due to the slip velocity is ( ils • k)k; and its component parallel to the wall 

is (ils • k)(k · f') = Usk;.. Multiplying this by the particle mass and averaging over 

all possible values of k gives the average component of momentum transfer parallel 

to the wall: 

Taking into account the area and rate of collisions, the flux of lateral momentum 

will be 
( 2 + 2 + 2 k2 )½ 

d k
2 V Vw Us < T > 

a = qw PUs < r > ----------, 
Sw 

where qw is a dimensionless constant of order 1. 

(2.5) 

Equation (2.5) seems to make a puzzling prediction, namely, that the shear 

stress vanishes if the slip velocity Us is zero. Yet we know that, for fluids in general, 

a no-slip boundary condition does not imply a vanishing stress. In the microscopic 

granular flow model of Haff {1983) used here, Us is a dependent variable, a quan

tity whose value must be computed. It is not something we can adjust by hand. 

Therefore, the no-slip condition is not to be specified a priori by setting Us = 0, 

but is a condition which might or might not turn out to have validity in the course 

of the calculation. And, in particular, the no-slip condition does not mean Us = 0. 

It only means that Us is small compared with the total shear U (we set Vw = 0 for 

simplicity). In fact, Us cannot vanish under any flow conditions save the no-flow 

case as can be seen by noting that all velocities are scaled by U. 

The shear stress in the granular flow {Haff {1983)) is 

au 2 vau 
a= TJ- = qd p--, 

ay say 

where q is a dimensionless constant of order 1. 

Equating these two fluxes of lateral momentum gives the boundary condition 

relating the slip velocity and the normal derivative of the flow velocity: 

au = qw Us < k2 > ( v2 + v! + u! < k; >) ½ ..!!__ 
ay q d T V Sw 
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Substituting from equation 2.4 for the ratio of spacings gives 

(2.6) 

This nonlinear relation between the slip velocity and the shear rate reduces to that 

obtained by Hui (1984) in the limit where the particle fluctuation velocity is much 

greater than the wall's effective fluctuation velocity. Again, for the same reasons as 

in equation (2.5), the flow velocity gradient remains non-zero even when the no-slip 

approximation is a good one. 

The condition of isotropy in the distribution function f(k) allows us to assume 

collinearity of the shear stress and slip velocity at the wall. If f ( k) were anisotropic 

( e.g., a "washboard" wall surface oriented obliquely to the flow), the shear stress 

would be related to the slip velocity through a second rank tensor. 

The thermal energy flux 

The thermal energy of particles colliding with a wall is affected by two com

peting processes. The inelasticity of grain-wall collisions results in a loss of thermal 

energy, while the effective fluctuation velocity of the wall will supply thermal energy 

to the grains. 

The loss of thermal energy in a collision due to the particle's thermal velocity 

and inelasticity will be of order 

The gain of thermal energy in a collision due to the wall's effective temperature 

will be of order 

Combining these two effects, substituting for the wall's effective temperature ( equa

tion 2.1) and factoring in the area and rate of collisions, we get an expression for 

the flux of thermal energy at the wall: 

Q = -r dp v2 + u2 < k2 > - - w v2 [ 
(1 e ) l (v2 + vw2 + u2s < kr2 >)½ 

w w ., r (l + ew) Sw 
(2.7) 
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The flux normal to the wall of thermal energy in the granular flow (Haff (1983)) is 

8 ( pv
2 

) 2 V 8 1 2 
Q = -K By 2 = -rd -;Pay(2v ), 

where r and r w are dimensionless constants of order 1. 

Setting these expressions equal and substituting equation 2.4 gives the final 

boundary condition 

!_(! 2) _ Tw _!__! [ 2 2 k2 _ (1 - ew) 2] V 
a 2 V - d vw + u., < T > (1 ) V .1 • 

Y r tw + ew ( v2 + v~ + u; < k;. >) 2 

(2.8) 

Steady State Couette Flow 

In gravity-free, steady state Couette flow, the walls are driven at a given velocity 

parallel to their surfaces. Figure 2.2 illustrates the geometry of the system; the 

plates are of infinite extent in the x and z directions with the origin of the y-axis 

midway between them. The number of grains in the channel will be specified by the 

parameter tlh, the free space remaining when all of the grains are packed towards 

one wall (figure 2.3). Due to symmetry the flow variables will be functions of y 

only. Combining this with the condition V • i1 = 0 leads to the conclusion that the 

only non-zero component of the flow velocity i1 is Ux• 

The equation governing the evolution of momentum in a steady granular flow 

is (Haff ( 1983)) 

Evaluating the x and y components of this equation gives the respective results 

that the shear stress ( a0 = 1J 8a; ) and the pressure (po) are constant throughout 

the flow. 

The equation for the total kinetic and thermal energy of the system is 

a (1 2 1 2) - -pu +-pv 
at 2 2 
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Setting to zero the derivatives with respect tot, x, and z, and setting Uy= Uz = 0 

leaves 

-8 [ 8ux 8 ( 1 2 ) l 0 = By Uz'f/ By - K By 2pv - I. 

The coefficient of thermal diffusivity ( K) and the thermal energy sink ( J) are given 

by 
v3 

I= -yp-, 
s 

where 'Y is a dimensionless constant related to the coefficient of restitution of a 

particle-particle collision e ('Y is proportional to ( 1 - e2 )). 

Substituting for these and for the constant shear stress and pressure gives the 

equation for the thermal velocity within the granular flow 

(2.9) 

where w2 = d\ (t2a25 - 'Y) . 
r qpo 

(2.10) 

The general solution for the thermal velocity is 

v(y) = 2vo cos(wy). (2.11) 

Both vo and w (i.e., ao /Po) are determined by the boundary conditions. (Note that 

this assumes w2 > O; for the case of w2 < 0, the trigonometric functions in this and 

succeeding equations are replaced by the corresponding hyperbolic functions.) 

Combining equation 2.3 ( with pressure equal to Po) and equation 2.5 ( with 

shear stress equal to ao), we can solve for the slip velocity in terms of the thermal 

velocity of the grains at the wall 

(2.12) 

Substituting this into equation 2.8 gives 

[ (wh)] [ ( Fa2 
/p,

2 
)] ( Fa2

) ½ wdD tan 2 = E - l _ ;a~/p5 1 - pt , (2.13) 
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2 

where D = rt"t', E = 1
1+-ew , and F = 2 ~k2 >. This is a transcendental equation for r.,, e.,, q.,, -r 

a5/p5 in terms of the particle properties (d, q, r, t, and 1 ), the wall properties 

( ew, qw, rw, tw, and < k; >) and the inter-wall spacing h. The equation can be 

solved numerically to obtain the shear stress to pressure ratio as a function of wall 

roughness < k;. >. An example is given in figure 2.4. This ratio represents the 

tangent of the effective dynamical internal friction angle of the grain-mass-plus

wall system, which is essentially zero for nearly smooth walls, since the walls offer 

almost no resistance to shear. As the walls are roughened, the coupling between 

the walls and the grain mass increases ( as evidenced by the rapidly decreasing slip 

velocity (figure 2.5) ), finally reaching a point of saturation beyond which increasing 

wall roughness has little effect. This presumably reflects the fact that the main 

grain mass has become much weaker to shear than the wall-grain layer. This is 

a significant result because it means that if the walls of a shear cell apparatus 

designed to measure internal stresses are insufficiently rough, the measurements 

relate principally not to the effective internal friction in the bulk, but to the effective 

friction offered by the wall. 

The average flow velocity is obtained from integrating du/dy = cro/TJ: 

where now u = Ux. 

2t ao vo . 
u(y) = ---d sm(wy), 

q Pow 
(2.14) 

The wall velocity ( with respect to the center of the channel where the flow 

velocity vanishes) is the sum of the slip-velocity and the flow velocity at the wall: 

(2.15) 

The ratio of slip velocity to wall velocity is independent of v0 , and is shown in figure 

2.5. The slip velocity decreases with increasing surface roughness as expected. 

The ratio of absorbed thermal energy flux to generated thermal energy flux at 

the wall is also independent of vo, and is given by 
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This ratio is plotted versus wall roughness in figure 2.6. 

The value of v0 is determined by the number of grains in the channel as ex

pressed by the parameter Ah. Beginning with the expression for Ah in terms of 

s(y): 
31-h/2 

Ah= d s(y)dy, 
-h/2 

substituting s(y) = tdpv2 (y)/p0 , and integrating gives 

2 wAhpo 
Vo = 6tp[sin(wh) + whr 

(2.16) 

Combining equations 2.11 and 2.15 gives the ratio of particle thermal velocity at the 

wall to wall velocity, which is shown in figure 2. 7. At zero wall roughness no coupling 

of the wall to the fluid is possible, and the thermal velocity then vanishes. With 

increasing wall roughness more and more energy is transmitted to the grain mass 

and the thermal velocity near the wall increases. However, the slip velocity, which 

is the source of thermal energy, steadily decreases with increasing < k; > ( figure 

2.5), and the plot of thermal velocity versus wall roughness shows a maximum, with 

the thermal velocity slowly decreasing at high values of the roughness. (Whether a 

maximum always exists is not clear, since, while u 8 decreases, a is increasing with 

< k;. > (figure 2.8), and it is their product which determines the energy generation 

rate.) 

Using equations 2.15 and 2.16 we obtain the normalized shear stress: 

ao 
J.t!!.a.L [sin(wh) + h.] 
8 Po dah wd d 

- [ (wh) ( F0UP~ ) ½ t !!D. 1 • (wh)] 2' 
cos 2 <k~>(l-Fo,Up~) + q Po wd sm 2 

where Pp is the particle material density. Setting h equal to 10 particle diameters 

and Ah equal to 3.25 diameters (corresponding to a volume fraction of 0.5) we 

obtain plots of the normalized shear stress and normalized pressure as functions 

of wall roughness (figures 2.8 and 2.9). Both shear stress and pressure vanish for 

perfectly smooth walls and increase with < k; > as expected. 
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The variations in flow properties across the channel are shown in figure 2.10, 

the character of the flow changing as the wall roughness varies. For small values 

of < k;. > ( nearly smooth walls) the shear stress to pressure ratio is small ( figure 

2.4) and w2 < 0. In this case, the walls act as a net source of thermal energy flux 

(QalQ9 < 1), and the thermal velocity drops as we move from the wall to the center 

of the flow (figure 2.10a, curve 1). The flow velocity has a (slight) inflection point 

( figure 2.10b, curve 1) and the density is greatest in the center of the channel ( figure 

2.10c, curve 1). As the wall roughness is increased, we may reach the special solution 

called simple shear flow. Here the thermal velocity (figure 2.10a, curve 2) and the 

particle-particle separation (figure 2.10c, curve 2) are constant throughout the flow; 

the flow velocity increases linearly with distance (figure 2.10b, curve 2); and the 

walls act as neither a source nor a sink of thermal energy flux ( Q al Q 9 = l). For 

granular systems, simple shear flow is not a common condition; it is only achieved 

by careful "tuning" of the wall parameters. Finally, for sufficiently rough walls, the 

shear stress to pressure ratio may be large enough that the rate of thermal energy 

generation in the flow exceeds the rate of thermal energy loss. This leads to a 

thermal velocity profile which has a maximum in the center of the flow (i.e., w2 > O, 

figure 2.10a, curve 3), with the walls acting as a net energy sink ( Q al Q 9 > l). In 

this case the flow velocity again shows a mid-channel inflection ( figure 2.10b, curve 

3) while the density is a minimum in the center of the channel (figure 2.10c, curve 

3). In general, the shape of the solution to the energy equation as a function of 

the strength of microscopic processes (r, q, t, etc.) can be determined directly from 

equations (2.10) and (2.13). 

Some effects on the thermal velocity of changes in the constants q ( the dimen

sionless constant in the coefficient of viscosity), tw (the dimensionless constant in 

the equation of state for particle-wall collisions), and ew (the coefficient of resti

tution for particle-wall collisions) are shown in figures 2.lla, b, and c respectively. 

The particle constants and wall roughnesses are the same as in figure 2.10, except 

as noted. The curves in figure 2.11 should be compared with those in figure 2.10a. 

In figure 2.lla, q has been increased by a factor of two. An increase in q means 
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that a lower shear rate can sustain a higher shear stress, leading to more slip at the 

wall. This increased slip results in a greater input of thermal energy from the wall 

to the flow, giving higher thermal velocities at the wall. In figure 2.11 b, tw has been 

increased by a factor of two. An increase in tw means the pressure on the wall can 

be sustained with a larger particle-particle spacing at the wall, again leading to a 

higher slip velocity. The increase in the flow of thermal energy away from the wall 

can be seen. In figure 2.llc, ew has been increased from 0.84 to 0.96. An increase 

in ew means that less energy is dissipated in particle-wall collisions. This will also 

result in a higher flux of thermal energy from the walls to the grains, as shown in 

the figure. In sum, modest changes of the system constants within this range of 

expected values lead to modest changes in the associated flow fields. 

Finally, we note that throughout most of the range of < k; >, the thermal 

velocity of the particles at the wall is a nearly constant fraction of the wall velocity. 

This constant fraction decreases as the walls are made more lossy ( i.e., as ew is 

reduced). The slip velocity as a fraction of wall velocity is seen to decrease with 

increasing wall roughness, as is expected. However, the lossiness of the walls has 

little effect on the slip velocity. Thus it appears possible to set the thermal velocity 

at the wall and the slip velocity there independently by adjusting the lossiness and 

roughness of the wall. 
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Figure Captions 

Figure 2.1: illustration of a particle colliding with a rough wall, showing the unit 

normal collision vector k, and the unit vectors normal to the wall ( ii) 

and parallel to the wall ( -r). 

Figure 2.2: illustration of the Couette flow geometry. 

Figure 2.3: illustration defining the free-space parameter 6-h. 

Figure 2.4: Ratio of shear stress to pressure, ao/ p0 , versus wall roughness, < k; >, 

at fixed wall velocity. The values of the constants used in this numerical 

simulation are: , = 0.16, q = 0.25, r = 1.0, t = 1.0, ew = 0.96 (curve 

a), ew = 0.92 (curve b), ew = 0.84 (curve c), Qw = 1.0, rw = 1.0, and 

tw = 0.5. No stress is transmitted for perfectly smooth walls. As wall 

roughness increases, system becomes more resistant to shearing until 

shear resistance of granular fluid itself becomes determining factor. 

Figure 2.5: Ratio of slip velocity to wall velocity, u 8 /uw, versus wall roughness, 

< k; >, at fixed wall velocity. The slip velocity decreases with increas

ing roughness. 

Figure 2.6: Ratio of absorbed thermal energy flux at wall to generated energy flux 

there, Q0 /Q 9 , versus wall roughness, < k; >, at fixed wall velocity. 

Figure 2.7: Ratio of particle thermal velocity at the wall to wall velocity, v(h/2)/uw, 

versus wall roughness, < k;. >, at fixed wall velocity. The thermal ve

locity is zero for perfectly smooth walls since in that case no energy 

can be transmitted from the wall to the fluid. After increasing with 

increasing roughness, v/uw falls slightly (in this particular example) 

because the increase in stress does not quite compensate the decrease 

in slip velocity, and it is the product of stress and slip velocity which is 

ultimately responsible for generating heat at the wall. 

Figure 2.8: Normalized shear stress, (a0 /(ppd2 (2uw/h) 2 )), versus wall roughness, 

< k; >, at fixed wall velocity with h = 10 grain diameters and 6-h = 
3.25 grain diameters. There can be no transmitted stress for perfectly 

smooth walls. Stress then increases as < k;. > increases. 
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Figure 2.9: Normalized pressure, (p0 /(ppd2(2uw/h) 2 )), as a function of wall rough

ness, < k;. >, at fixed wall velocity. Like shear stress, the pressure must 

vanish for perfectly smooth walls and increase with increasing < k;. >. 

Figure 2.10: Variations in flow properties across the channel for several wall rough

ness values. The values of the constants are the same as in figure 

2.4, curve c. The wall roughness values are< k; > = .0625 (curve 1), 

< k;. > = .125 (curve 2), and < k; > = .25 (curve 3). Figure 2.10a 

shows the particle thermal velocity to wall velocity ratio v/uw. Figure 

2.10b shows the flow velocity to wall velocity ratio u/uw. Figure 2.10c 

shows the particle-particle separation to particle diameter ratio s / d. 

See text for discussion. 

Figure 2.11: Variations in particle thermal velocity with changes in particle or wall 

properties. The values of the constants and wall roughness are the 

same as in figure 2.10, except: q = 0.5 in figure 2.lla, tw = 1.0 in 

figure 2.llb, and ew = 0.96 in figure 2.llc. See text for discussion. 
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Figure 2.1 
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Chapter 3. The Lattice Grain Dynamics Paradigm 

In the previous two chapters, the theoretical treatment presented used a tradi

tional approach: the granular system was viewed as a continuum and was modelled 

using differential equations. However, as was noted earlier, the theories given thus 

far only apply to highly agitated systems in which the particles interact through 

binary collisions. Other continuum theories, which are part of the science of soil 

mechanics, cover the case of static groupings of granular materials. Although a 

preliminary attempt has been made to obtain a differential equation formalism de

scribing granular systems which covers the complete range of effects from static piles 

of grains to highly dynamic flows (Johnson and Jackson (1987)), it only patches to

gether in an ad hoc manner the existing theories related to the static and the highly 

dynamic cases. A fully developed differential equation formalism, grounded in the 

known micromechanics of grain-grain interactions, remains to be formulated. In 

addition, differential equations assume that the granular system can be treated as a 

continuum; many problems of interest involve effects which depend upon the macro

scopic size of the individual grains (e.g., in the avalanche of a granular material down 

an inclined slope, the upper surface may consist of a layer of saltating grains, and 

the shearing layer between the bed and the bulk of the flow may only be a few grain 

diameters thick) and thus bring this assumption into question. Therefore, in this 

chapter, I will propose a new formalism for the theoretical description of granular 

systems based on the techniques of particle dynamics and cellular automata and 

called lattice grain dynamics. 

The purpose of lattice grain dynamics is to predict the behavior of large num

bers of grains (10,000 to 1,000,000) on scales much larger than a grain diameter. 

In this respect it goes beyond particle dynamics calculations which are limited to 

no more than ~ 10,000 grains by currently available computing resources (Walton 

(1984), Werner (1987)). Unlike particle dynamics, the positions and velocities of 

individual grains are not calculated precisely but only approximately, based on the 

premise that large scale effects are relatively insensitive to the exact trajectories of 
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individual grains. Recent work in applying cellular automata to the modelling of 

fluid mechanics problems {Frisch et al. {1986); Margolis et al. {1986)) {"lattice gas 

dynamics") supports this premise and was the starting point for the development 

of lattice grain dynamics. 

The Particle Dynamics Method 

The particle dynamics method {Cundall and Strack {1979)) is an adaptation 

of the molecular dynamics method (Alder and Wainwright {1959)) and is designed 

to study the time evolution of a group of particles by following the motion of each 

individual particle. The exact formulation of the method depends upon the model 

adopted for particle-particle interactions. In one formulation, the interparticle con

tact times are assumed to be of finite duration, and each particle may be in simul

taneous contact with several others. In this case, a table is maintained of all of the 

particle masses, positions, and velocities, and is evolved forward in time in accor

dance with the interparticle and gravitational forces using an appropriate numerical 

integration scheme (Werner {1987)). This technique is most useful in studying prob

lems which may depend upon enduring particle-particle contacts ( e.g., sorting of 

granular materials by size, shape, or surface roughness, or when detailed informa

tion on particle packing, distribution of stresses, etc. is desired). It is, however, 

a computationally intensive algorithm, which limits the number of particles in a 

simulation to about 1000. 

In another, simpler formulation, the interparticle contact times are assumed to 

be of infinitesimal duration, and particles undergo only binary collisions ( Campbell 

{1982) ). Here, from the table of particle masses, positions, and velocities, a list 

is derived which contains the time to collision for each possible pair of particles, 

ordered from shortest to longest. The positions of all of the particles are updated 

using a time step equal to the time to the next collision ( from the top of the list). 

A model for the interaction of two colliding particles is chosen ( e.g., the hard disk 

model of Appendix 2) and is used to calculate the results of the next collision. 

Then the entries on the list relating to the two particles which just collided are 
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discarded and new entries are generated according to the new velocities of those 

particles. Finally, the list is again ordered from shortest to longest time to collision, 

and the process is repeated. This method can only be used in systems where the 

contacts between particles are of short duration compared to the time between 

collisions (e.g., flow of grains down a vertical chute) (see Walton (1984)); however, 

due to its simpler computational requirements, this method can handle simulations 

of up to 10,000 particles. The desirability of using this simpler interaction model, 

while still being able to handle (in some fashion) enduring contacts, was one of the 

considerations in the creation of lattice grain dynamics. 

In both of these formulations, the time required to find all possible interparticle 

contacts would normally be proportional to N 2 , the square of the number of parti

cles, since the position of each particle would have to be compared to the position 

of every other particle. This can be reduced to a time approximately proportional 

to N by dividing up the physical space of the problem into many small cells, each 

containing only a few particles, and looking at potential contacts between particles 

within the same cell and within adjacent cells. Carrying this idea to the limit of 

one particle per cell leads to the concept of cellular automata. 

Cellular Automata and The Standard Lattice Gas Model 

The concept of cellular automata as a means of modelling physical systems was 

first proposed by von Neumann in 1948 (Vichniac (1984)). In this theory, the space 

of a physical problem would be divided up into many small, identical cells each of 

which would be in one of a finite number of states. The state of a cell would evolve 

according to a rule which is both local (involves only the cell itself and nearby cells) 

and universal (all cells are updated simultaneously using the same rule). Originally, 

cellular automata were applied to the evolution of biological systems; only recently 

have they been proposed as a formalism for physical theories. 

The standard lattice gas model involves the use of large numbers of particles 

which are constrained to lie on the vertices of a two-dimensional triangular lattice 

( three-dimensional problems are discussed below). In order to embody both the 
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kinematic and dynamic aspects of fluid mechanics, the particles are given properties 

similar to those of a molecule in an ideal gas: each particle is propagated through 

the lattice according to its velocity and may interact with other particles through 

elastic collisions. The rules governing the system may be summarized as follows: 

1. Each particle has a unit velocity vector which points in one of six directions 

corresponding to the lattice directions (figure 3.1). 

2. A single vertex may have at most only one particle for each velocity direction; 

thus the state of a vertex ( or automata) may be stored using only 6 bits. 

3. Each equal time step consists of two stages: an updating of the positions of the 

particles and an evaluation of their collisions. 

4. Each particle advances exactly one lattice spacing in each time step in a direc

tion determined by its velocity vector. 

5. Two or more particles on the same vertex may collide according to a simple 

set of rules; a typical set is given in figure 3.2. Since the state of a vertex is 

described by 6 bits, the number of possible states is only 26 or 64; and the 

number of possible pairs of initial and final states is 212 or 4096. If we assign a 

probability to each pair of initial and final states ( i.e., collisions), it is feasible 

to simply store these probabilities in a lookup table, rather than performing a 

calculation for each collision, thus achieving a computationally more efficient 

model. In addition, the model now requires no arithmetic calculations at all, 

allowing the construction of very simple, specialized computers for the solution 

of lattice gas problems (Margolis et al. {1986) ). 



77 

stress in a given direction, a particle must have both a component of velocity 

in that direction and a component of velocity perpendicular to that direction. 

Thus, a shear stress cannot be transmitted parallel to the rows or columns of 

a square lattice, but can be transmitted, for example, at a 45 degree angle 

to the lattice. This would have the unphysical effect of introducing preferred 

directions into the problem, based on the underlying lattice. It can be seen 

that in a triangular lattice, a shear stress can be transmitted in any direction. 

2. The single value of velocity magnitude and the limited number of velocity 

directions are designed to keep the position updating and collision rules as 

simple as possible (so as to speed simulation of the system) as well as to keep 

the memory requirements per vertex as small as possible ( only six bits). Also, 

the single velocity magnitude means that the kinetic energy of the particles 

is tied to the number of particles, and thus energy conservation is ensured by 

simple particle number conservation. However, one shortcoming of the single 

velocity magnitude is that the system has one constant temperature throughout 

time and space. Thus, this formulation of fluid mechanics can only be used on 

incompressible systems at low ( <.5) Mach numbers and with no temperature 

gradients. ( "Temperature" in a granular system ( as defined in Chapters 1 and 

2 and in Haff (1983)) and its gradients are an important aspect of the modelling 

of those systems.) 

3. The choice of rules for the evaluation of collisions is guided by the need to 

conserve the two components of momentum. If only two-particle interactions 

are included in the set of collision rules, then we would have conservation 

of momentum along all three lattice directions. The three-particle collision 

rule (figure 3.2b) is designed to remove this overconstraint while retaining the 

conservation of orthogonal components of momentum. 

4. In a gas at standard temperature and pressure, the mean free path of a molecule 

is much greater than the effective diameter of a molecule in a collision ( e.g., for 

air at standard temperature and pressure the effective diameter is ~ 2 • 10-8 

cm and the mean free path is~ 2 -10-5 cm). This means that the direction of 



78 

the impact parameter ( the unit vector pointing from the center of particle 1 to 

the center of particle 2 at the moment of contact) (figure 3.3) will be essentially 

independent of the starting positions of the molecular trajectories. Thus, the 

choice of collision rules may be made without regard to the impact parameter, 

as long as they do not require an unreasonable distribution of impact param

eter angles ( e.g., in the collision rules represented by figure 3.2a, the impact 

parameter angles were fixed at +60 degrees to the relative velocity vector for 

half the collisions, and at -60 degrees for the other half of the collisions) ( see 

Goldstein et al. ( 1989)). 

The memory requirements for a typical two-dimensional lattice gas simula

tion involving a few million lattice points will be a few megabytes ( one byte per 

lattice point); this amount of memory has now become economically available on 

workstation-type computers. Due to the simplicity and efficiency of these rules, 

the updating of a lattice point requires only a few tens of machine cycles; thus a 

typical workstation (operating at a few million instructions per second) can update 

approximately 100,000 lattice points per second. Combining these two facts, we see 

that problems involving large numbers of lattice points (1,000,000) may be evolved 

for significant lengths of time ( thousands of time steps) on relatively modest size 

computers. 

The formulation of a lattice gas paradigm for three-dimensional problems is 

not trivial. In order to avoid the problem of inadequate symmetries of the pres

sure tensor referred to above, a simple cubic lattice cannot be used. Also, there 

are no three-dimensional lattices which have properties similar to the triangular 

lattice in two dimensions (i.e., all vertices are equidistant from each other and all 

square symmetries are broken). Two possible solutions which have been proposed 

by d'Humieres et al. (1986) involve the use of a four-dimensional lattice projected 

onto three dimensions or the use of a three-dimensional face-centered cubic lattice 

with multiple particle velocities. The number of bits needed to describe the state 

of a vertex (automata) are 24 and 19 respectively; the large number of collision 
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possibilities obviates the use of a lookup table for obtaining the results of a colli

sion. Thus, very little progress has been made towards extending lattice gases to 

three-dimensional problems. 

Derivation of the Rules for Lattice Grain Dynamics 

Inasmuch as the use of cellular automata for the formulation of physical theories 

is a recent development, the methods by which the rules governing the automata 

are obtained are not well established. Although some goals ( e.g., conservation 

of momentum) may be obvious, other rule-determining factors will only become 

apparent after trial and error work with the automata. Thus, the motivations 

behind the rules as well as the rules themselves will be treated in some detail in 

this section. 

The formulation of lattice grain dynamics is based upon considerations similar 

to those for lattice gases, modified by two unique characteristics of granular systems: 

the inelasticity of grain-grain collisions and the usually short length of the mean 

free path relative to a particle diameter. The short length of the mean free path 

means that the transmission of forces and momenta through the system will be 

dominated by collisions and enduring contacts, as opposed to a standard density 

gas in which kinetic transport dominates. In order to keep the particle-particle 

interaction rules as simple as possible, all interparticle contacts, whether enduring 

contacts or true collisions, will be modelled as collisions. Those collisions which 

model enduring contacts in each time step will transmit an impulse equal to the 

force of the enduring contact times the time step. The large size of a particle 

means that the impact parameter in a collision will be determined by the relative 

locations of the particles involved and can no longer be set arbitrarily. This, as well 

as the inelasticity of collisions, forces us to allow for a range of velocity magnitudes. 

In addition, it is no longer possible to permit more than one particle on a lattice 

point; instead we must allow for collisions between particles on adjacent lattice 

points. Although these considerations will mean that the lattice grain dynamics 

paradigm will be slower to compute than the standard lattice gas paradigm, it will 

nonetheless be more efficient than particle dynamics calculations. 
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The time step 

The determination of the size of the time step must be made more carefully 

than in the standard lattice gas theory due to the many possible particle velocities. 

If the time step is long enough that some particles travel several lattice spacings 

in one time step, there arises the problem of finding the intersections of particle 

trajectories. This time-consuming procedure would eliminate much of the efficiency 

of the lattice approach. On the other hand, a very short time step would imply that 

most particles would not move even a single lattice spacing in that time step. The 

solution adopted here is two-fold in nature. The time step is chosen such that the 

fastest particle will move one lattice spacing in that time step. In order to insure 

that a slower velocity particle will eventually move a lattice spacing, its "position 

offsets" are accumulated until they equal one lattice spacing, at which point the 

particle is promoted to the next site. Thus, for the case with no gravity, the time 

step is given by the lattice spacing divided by the speed of the fastest particle. For 

the case with gravity, the acceleration of the fastest particle during the time step 

must be taken into account. This leads to a fourth order polynomial for the value 

of the time step (see Appendix 1), the solutions to which are shown graphically 

in figure 3.4. The solution of interest (the smallest of the positive solutions) IS 

obtained by successive numerical approximations. 

Position offsets and particle motion 

The two components of the position offset of each particle are updated at 

the beginning of the time step according to the components of its velocity and 

gravitational acceleration: 

where: 

i = 1, 2, 

t!i.qi = ith component of increment in position offset, 

Vi= ith component of particle velocity, 

gi = ith component of gravitational acceleration, 

t!i.t = current time step. 
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If the magnitude of the position offset exceeds a given value, the particle is eligible 

to be moved to the lattice point nearest to the offset (figure 3.5); and if the desti

nation lattice point is empty, the particle is moved and its offset is appropriately 

decremented. 

The question arises as to what should be done with the position offset of a 

particle which undergoes a collision. If the offset is left unchanged after a collision, 

the situation may occur in which the particle's velocity has been changed, but the 

particle continues to move in its original direction due to its accumulated position 

offset. If both components of the offset ~re set to zero in a collision, a particle which 

has a small component of velocity perpendicular to the direction of the collision will 

never be able to move in that perpendicular direction. This situation can occur in 

association with a gravitational field, where the collision is supporting the particle 

against the field, with the unphysical result that tall stacks of particles will be 

stable (figure 3.6). Experience has shown that the best solution is to reset the 

component of position offset along the direction of a collision to zero, while leaving 

the orthogonal component unchanged. 

It is important to consider the order in which the lattice is scanned for this 

position updating process. A simple scan ( e.g., following successive points in a 

row, figure 3.7) will result in an undesirable coupling between the scan pattern and 

the particle motions. To see this, consider the one-dimensional example shown in 

figure 3.8. In 3.8a, the direction of scan coincides with the direction of motion of 

the line of particles, with only the particle at the right end being moved. In 3.8b, 

the direction of scan is opposite to the direction of motion of the particles, with 

the result that the entire line moves one space. In order for the particle motion 

to be independent of the scanning process, a more complex scan pattern needs to 

be adopted. One possibility would be to scan every odd particle first and then go 

back and do the even particles. This scheme, however, still runs into a problem in 

the case of two particles contending for the same empty lattice point (figure 3.8c). 

Which particle will be able to move is again determined by the direction of scan. 

Thus, the scheme adopted for the lattice grain dynamics paradigm is to do every 
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third lattice point in every third row, duplicating this pattern nine times in order 

to cover all lattice sites (see figure 3.9). In addition, the entire position update 

process may be repeated several times per time step {the number of updates per 

time step is an input parameter in the specification of a simulation, and is typically 

set to three). This approach allows the position updating of different parts of the 

lattice to be done in parallel, an important consideration when implementing this 

procedure on an array of parallel computers. 

Particle collisions 

Collisions between particles are calculated assuming that they are smooth, hard 

disks and that their coefficient of restitution is velocity dependent. Since a particle 

may be surrounded by as many as six other particles, and may in principle collide 

with all six in one time step, some rule is needed for determining the results of 

such multiple particle collisions. In order to keep the rules simple, it was decided 

that a multiple particle collision would be resolved as a series of binary collisions 

done in a specified order. This order must be chosen carefully so as not to create 

any bias in any direction associated with the lattice. If, for example, the order of 

binary collisions with adjacent particles were the same for each lattice point, then 

the collision between two lines of particles {figure 3.10) would not produce a random 

scattering of particles as expected, but would instead send each line in a preferred 

direction. Also, a bias will be introduced if the order of collisions at a given lattice 

point is the same for several successive time steps. 

The order in which the lattice points are scanned ( for evaluating all the colli

sions in one time step) must be chosen carefully as well. As was the case for the 

particle movements, a simple scan of successive points along a row will give results 

which depend on whether the momentum transfer is parallel to or antiparallel to 

the direction of scan. Here, the problem may be solved by scanning every other 

lattice point on every other row, and repeating this pattern four times. If three non

parallel collisions are evaluated at each lattice point with this scanning pattern, then 

all possible collisions will be evaluated once (figure 3.11). Thus, the following order 

has been adopted for evaluating possible collisions on odd time steps: 3b, 3c, 3f, 2f, 
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2c, 2b, 4b, 4c, 4f, If, le, lb; and for even time steps: lb, le, If, 4f, 4c, 4b, 2b, 2c, 

2f, 3f, 3c, 3b. Note that both the order of the scanning templates and the order of 

collisions at a given lattice point are reversed for successive time steps. The results 

of this scanning order are given in the following table for collision order at each 

lattice point as a function of time step and position in the lattice. 

time step lattice position order of collisions 

odd 1 e d a f C b 
2 a f C b e d 
3 b C f a d e 
4 d e b C f a 

even 1 b C f a d e 
2 d e b C f a 
3 e d a f C b 
4 a f C b e d 

The derivation of the velocities of two particles after a collision as a function 

of their initial velocities and the impact parameter is given in Appendix 2. The 

velocity dependent coefficient of restitution is defined such that the slope of the 

relative rebound velocity versus relative incident velocity curve has one given value 

( e1) up to a specified relative incident velocity ( cb), and has a separately defined 

value (e2) above that point. The relative rebound velocity as a function of relative 

incident velocity is plotted in figure 3.12 and is given by: 

where: 

if Ci > Cb; 

otherwise. 

Cb = velocity below which coefficient of restitution is e1, 

Ci = magnitude of relative incident velocity, 

Cr = magnitude of relative rebound velocity, 

e1 = initial coefficient of restitution, 

e2 = incremental coefficient of restitution. 
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The transmission of "static" contact forces within a mass of grains ( as in grains 

at rest in a gravitational field) is handled naturally within the above framework. 

At the beginning of each time step, each particle's velocity is incremented due to 

the acceleration of gravity: 

Thus, in the lattice grain picture, even though a particle in a static mass of grains 

may nominally be at rest, its velocity will be nonzero; and it will transmit the 

appropriate force (in the form of an impulse) to the particles under it by means of 

collisions. When these impulses are averaged over several time steps, the proper 

weight of the particle will emerge. 

Wall particles 

Many problems of interest in granular physics involve some type of container, 

barrier, or wall which restricts the movement of the grains, as in flow down an 

incline or flow around an obstacle. In order to incorporate a wall within these rules, 

a second type of particle is introduced: the wall particle. This particle is similar 

to the movable particles, and interacts with them through binary collisions, with a 

separately defined inela.sticity, but is regarded as having infinite mass. This infinite 

mass of a wall particle allows for problems involving walls or obstacles which are not 

moved by the flowing particles and which can absorb whatever momentum the flow 

may transfer to them. Because a wall consists of many particles of the same size as 

a movable particle, even a nominally flat wall (i.e., a straight line of wall particles) 

(figure 3.13a) exhibits frictional effects when in contact with a shearing type of flow. 

A wall may be further roughened by arranging the wall particles in some pattern 

other than a straight line (figure 3.13b). To allow for the introduction of shearing 

motion from a wall (as in a Couette flow problem), the wall particles are given 

a common constant velocity, which is used in the usual fashion for calculating the 

results of collisions. However, the position of the wall particles in the lattice remains 

fixed-throughout the simulation. The sum of all the collision impulses received by a 

wall particle during a time step can be resolved into an effective pressure and shear 

stress exerted on that wall particle. 
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Physical interpretation of the particles 

A final question concerns the interpretation of what a cellular automata par

ticle represents in this model. In the standard lattice gas paradigm, the individual 

particles do not represent any real world object. Although they possess some qual

ities similar to those of the molecules of a gas ( e.g., mean free path much greater 

than a particle diameter and perfectly elastic collisions), they are physically quite 

distinct from molecules ( e.g., they have one fixed velocity magnitude and a mean 

free path and mass much greater than that of a molecule). On the other hand, a 

lattice particle does not represent a small, fixed volume of the gas, since it can pass 

freely by particles on adjacent lattice points without interacting with them. The 

particles of the standard lattice gas are thus fictitious. The motion of individual 

particles is not physically replicated in the real world; they are useful, however, 

because the average behavior of a small group of lattice particles models the av

erage behavior of a large number of molecules (or a small volume of gas). In the 

case of lattice grain dynamics, the proposed interpretation of a particle is simpler 

and more physical. Even though a single particle does not accurately predict the 

trajectory of a single grain, we nonetheless regard each particle as representing one 

grain when we are extracting information from the simulation regarding the behav

ior of groups of grains. Thus, the size of one particle, as well as the spacing between 

lattice points, is taken to be one grain diameter. This means that the exclusion 

principle given above (no more than one particle per lattice point) corresponds to 

the exclusion of all other grains from the volume of space occupied by a real grain, 

and that the properties of two particles in collision correspond to the properties of 

two real grains in collision. This interpretation also embodies the fact that a static 

group of grains can only be compressed so far; once the grains develop a network 

of enduring contacts, it becomes very difficult to compress them further. 

Implementation of the Algorithm on a Single Processor Computer 

Roundoff error and integer arithmetic 

One of the questions which arises in the implementation of a classical physics 

algorithm on a digital computer is the issue of roundoff error. In classical physics 
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treatments of particle motion ( as in particle dynamics), the particle positions, ve

locities, and accelerations, as well as time, are regarded as analog quantities which 

are infinitely divisible. The digital computer, on the other hand, can only work 

with quantities which have a finite number of values ( i.e., the computer's numeri

cal representation of these quantities in its memory can have only a finite number 

of significant digits). This requires the computer to round off the values of these 

quantities to the nearest least-significant digit, thus creating a roundoff error in 

the model computations. If this rounding-off process is not done carefully, it may 

introduce a biased error into one or more of these quantities, leading, for example, 

to a gradual gain or loss of energy in a system in which energy should be exactly 

conserved. One of the advantages of the standard lattice gas is the fact that all of 

the quantities used in the model are restricted to one or a few discrete values and 

thus may be represented exactly in the computer's memory. Consequently, momen

tum and energy conservation in numerical evaluations of the standard lattice gas 

model are always exact. 

In the lattice grain dynamics paradigm, the particle positions and velocities are 

calculated only approximately; thus it is unnecessary to represent these quantities 

with floating-point numbers, which are capable of storing fractional values. Instead, 

it is feasible to rescale all quantities of interest (position offsets, velocities, and 

time) so as to be able to represent them with integer numbers. This gains two 

advantages in the numerical evaluation of this model: in the transfer of momentum 

between two particles in a collision, the initial velocities as well as the changes in 

velocities are all integers, thus maintaining an exact conservation of momentum; 

and the processing of integer arithmetic in a computer is generally faster than the 

processing of floating-point arithmetic ( e.g., integer addition on a Tektronix 6130 

workstation is over twice as fast as floating point addition and over three and a 

half times as fast as double precision addition). Therefore, the two components of 

position offset and velocity of a particle on a lattice point are stored as four integers. 

Although the energy of the system can still vary due to roundoff error, this is not 

a significant problem, since energy is not conserved in grain-grain collisions. The 
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presence of even a biased roundoff error in the calculations means only that the 

rate of energy loss will be slightly higher or lower than was expected based on the 

coefficient of restitution and the rate of collisions. 

Finally, it should be noted that, in a collision, the vector change in velocity will 

lie along the line connecting the two particle centers at the moment of contact. The 

resolution of this vector into x- and y-components will involve the values of cos 60° 

and sin 60° if this collision is along the a, b, e, or f directions. Rather than have 

the computer repeatedly do the time-consuming evaluation of these trigonometric 

functions, the values of cos 60° and sin 60° are built into separate portions of code for 

each of the possible collision directions. In order to remain in integer arithmetic, 

these fractional values are obtained by multiplying by the ratios 780/1560 and 

1351/1560, respectively. 

Memory requirements 

When implementing this algorithm on a computer, what is stored in the com

puter's memory is information concerning each point in the lattice, regardless of 

whether or not there is a particle at that lattice point. This allows for very effi

cient checking of the space around each particle for the presence of other particles 

(i.e., information concerning the six adjacent points in a triangular lattice will be 

found at certain known locations in memory). This is in contrast to the particle 

dynamics method in which a list of particles is maintained, and the position of a 

particle must be compared with the positions of all the other particles in the list in 

order to find its neighbors (Werner (1987)). Thus, the storage requirements and, 

to some degree, the computational load are proportional to the number of lattice 

points under consideration, rather than the number of particles. The need to keep 

information on empty lattice points in memory does not entail as great a penalty 

as might be thought; many lattice grain dynamics problems involve a high density 

of particles, typically one for every one to four lattice points, and the memory cost 

per lattice point is not large. The storage cost per lattice point amounts to five 

integer variables: two components of position offset, two components of velocity, 

and one status variable, which notes whether the lattice point is empty or contains 
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a movable particle or a wall particle (it also allows for the designation of a small 

number of movable particles as marked particles whose motion can be stored and 

later plotted). If each integer is stored using four bytes of memory, then each lattice 

point requires 20 bytes of memory. So, for example, the storage of a four million 

lattice point simulation would require 80 megabytes of memory, an amount which is 

now available on single processor workstations and concurrent processor computers. 

Problem specification 

The standard configuration for a simulation consists of a lattice, with a specified 

number of rows and columns ( from four to several thousand rows and from six to 

several thousand columns), bounded at the top and bottom by two rows of wall 

particles (thus forming the top and bottom walls of the problem space), and with 

left and right edges connected together to form periodic boundary conditions ( i.e., 

a particle passing out through one edge will reappear at the other edge at the same 

height). The periodic boundary conditions are achieved by simply regarding the 

rightmost column of the lattice as being adjacent to the leftmost column. Thus the 

boundaries of the lattice are handled naturally within the normal position updating 

and collision rules, with very little additional programming. The only restriction 

is that the number of columns must be a multiple of six in order to accommodate 

the periodicity of the position scanning pattern (two) and the periodicity of the 

collision scanning pattern (three) within the periodic boundary conditions in the 

x-direction. (Note: since the gravitational acceleration can point in an arbitrary 

direction, the top and bottom walls can become side walls for chute flow. Also, 

the periodic boundary conditions can be broken by the placement of an additional 

wall, if so desired. Simulations involving free surfaces can be run by leaving a 

large number of empty rows above the free surface in the specification of the initial 

conditions, so that particles will not hit the upper wall.) 

Two input files are required: one setting physical properties data and the 

other giving the initial particle positions and velocities. The first file specifies the 

properties of the movable and wall particles (inelasticities, etc.), the components of 

the gravitational acceleration, the shearing velocities of the top and bottom walls (if 
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any), the number of time steps, the number of position update scans per time step, 

and the number of rows and columns in the lattice. A second input file contains 

the initial positions and velocities of all the movable particles, any marked movable 

particles, and any additional wall particles which may be desired. Rectangular 

areas of particles with one of two densities ( one particle in every lattice point or one 

particle in every three lattice points) may be specified by giving the coordinates of 

the lower left corner and the upper right corner. A straight line of particles may be 

specified by giving the coordinates of the two endpoints of the line. (As was noted 

before, a straight line of wall particles will act as a rough wall, not as a smooth wall.) 

The units used in the program are not related to any physical units. Instead, the 

velocities, positions, and time step increments are scaled so as to fall in the range 

of 1 to 32,767 in order to allow the use of integer arithmetic and storage. This 

method of specifying the problem has proven to be fast and efficient, and allows 

for a wide range of problems to be solved ( as will be demonstrated in the section 

on simulations). An initial condition file typically consists of 10 to 100 lines and 

generally can be set up in less than an hour. Examples of initial particle positions 

are shown in figures 3.16, 3.18, 3.20, 3.24a, 3.28, and 3.33. 

Implementation of the Algorithm on a Concurrent Processor Computer 

Inasmuch as a particle may move no more than one lattice space in a time 

step and may collide with only the particles on its six adjacent lattice points, the 

updating of the lattice need not be done in a serial fashion; instead, different portions 

of the lattice may be processed in parallel. The lattice may be divided up into 

roughly equai area sections, with the calculations in each section handled by its 

own processor. The only interaction between sections will be along their common 

boundaries, thus each processor will only need to exchange information with its 

eight immediate neighbors (figure 3.14). The instructions being executed in each 

processor will be very similar; however, the processors at the top and bottom edges 

of the lattice will have to handle their boundaries somewhat differently than the rest. 

This collection of processors is called a multiple instruction, multiple data (MIMD) 
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concurrent processor computer (CPC), since each processor has its own program 

and its own separate data memory. The processors and their interconnections are 

arranged in the form of a hypercube, with the processors forming the nodes and the 

interconnections forming the edges. With this hypercube topology, the number of 

communications channels per processor is only a logarithmic function of the number 

of processors, and it is feasible to connect together as many as 1024 processors 

in a IO-dimensional hypercube configuration. One additional computer, the host 

computer, is required for handling communications between the hypercube array 

and the magnetic data storage disks and terminals, for the purpose of loading the 

programs and input data into the nodes of the array and storing and displaying the 

results. The simulations reported in the next section were done on a CPC built 

by NCUBE Corporation which contained 512 processors. In this machine, each 

processor node consists of one very large scale integrated circuit, containing all of 

the required logic for computation and communications, and six memory chips, 

giving 512 kilobytes of memory. 

For the purpose of dividing up the problem among the many processors of 

the CPC, the hypercube architecture is unfolded into a two-dimensional array, and 

each processor is given a fixed region of the lattice (figure 3.15). In addition, each 

processor stores information relating to one extra row at the top and bottom edges 

and one extra column at the left and right edges of the portion of the lattice for 

which it is responsible. This information is updated several times during each time 

step of the simulation by means of communications between adjacent processors 

(figure 3.14). These communications consist of a copy of all the lattice point data 

for one edge row or one edge column of one processor to be stored in the extra row 

or column of the adjacent processor. The only communications required among all 

the processors (global communications) occur in the determination of the size of the 

global time step and the accumulation of some global statistics ( average velocities, 

total energy, and total wall pressures). 

The program itself was written in the C programming language under the 

Cubix/CrOS III operating system. With Cubix, only a program for the nodes of 
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the hypercube CPC needs to be written; no separate program for the host computer 

is required. The activities normally required of the host computer ( communications 

to and from disks and terminals) are built into the input/output routines called by 

the node programs. This resulted in a significant reduction in the amount of time 

needed to write and debug the program for the CPC. The use of the C programming 

language in combination with the communication routines provided in CrOS III 

allowed for the creation of particularly simple and elegant code for communications 

between the nodes of the CPC. With C, the data associated with the lattice was 

stored as an array of data structures, where each structure consisted of the five 

integer variables associated with one point on the lattice. Thus, the information 

concerning a lattice point could be sent as a single group, rather than as five separate 

integers. Only a single subroutine call was needed to send the information regarding 

an edge row or an edge column between adjacent nodes. To send the data for the 

edge row of one node to another, a call was made to the cshift function in each 

node, specifying the starting address of the data, the number of bytes to be sent, 

and the number of the destination node (in the source node) or the number of the 

source node (in the destination node). The transmission of data concerning edge 

columns used the vshift function in a similar manner. 

Simulations 

Testing the program 

A series of ten simple problems involving from one to twenty particles were used 

to test the program to ensure that the calculations were being performed correctly 

and that no particles or momenta were gained or lost when transferred from one 

CPC node to another. In addition, the results of these simulations were compared 

with the results obtained from a version of the program written in Fortran and 

running on a single processor workstation. The only differences seen were due to 

known minor differences in the programs; no real problems were found. 

Testing the lattice grain dynamics paradigm 

The next test of the lattice grain dynamics paradigm was a simulation of a 

two-dimensional gas of elastic particles in a box. This test was chosen because an 
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analytic expression for the equilibrium velocity distribution of a two-dimensional 

gas is known; thus this problem tests both the ability of the lattice grain dynamics 

paradigm to accurately model the physics of a real-world problem as well as the 

correctness of the computer code. A total of 4096 particles were placed in a box 

of 33,024 open lattice points, arranged in 128 rows of 258 lattice points per row, 

with two rows (at the top and bottom) of wall particles {figure 3.16a). Their initial 

velocities were all of the same magnitude, with half the particles moving in the 

positive x-direction and half moving in the negative x-direction {figure 3.16b). The 

simulation was run until equilibrium was established and a plot of the result is 

shown in figure 3.17a. It is expected that the particle velocities in equilibrium will 

have a Maxwellian distribution appropriate to two dimensions. Each of the two 

components of velocity will have a distribution of: 

n (-v2
) f x = f Y = ~exp 2 • 

V 71"V2 V 

While the peculiar speed distribution will be: 

where: 

2nv (-v2
) Is = -=-exp -=- . 

v2 v2 

v = velocity magnitude, 

v2 = mean of the square of the velocity, 

fx(v)dv = number of particles with Vx within dv around v, 

/y(v)dv = number of particles with Vy within dv around v, 

/ 8 (v)dv = number of particles with speed within dv around v, 

n = number of particles. 

The measured and theoretical distributions for the two components of velocity as 

well as the magnitude of velocity are shown in figure 3.17b and are in good agree

ment. 
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An explosion 

This simulation was suggested by a test of a simple lattice gas algorithm by 

Margolis et al. (1986). In their two-dimensional lattice gas model, all particles travel 

with constant speed in one of only four allowed directions; particles which collide 

head on scatter at right angles. Their test consisted of a 256 by 256 lattice filled to 

a density of one-half, except for a central 32 by 32 region filled to a density of one, 

with no gravity. As the system evolved forward in time, this square block of high 

density became a circular ring of high density which expanded outward uniformly 

in all directions, despite the square symmetry of the underlying lattice and rules. 

In the simulation run here, a 288 by 288 lattice was filled with elastic, initially 

motionless particles to a density of one-third (figure 3.18a); the gravitational accel

eration was set to zero. A 33 by 35 rectangular set of particles was placed in the 

center, and the particles were given initial velocities along the x- or y-directions 

(an "explosion") (figure 3.18b). The simulation was run for 128 time steps to pro

duce the result shown in figure 3.19a; the front of the shock has become a circle 

expanding uniformly in all directions. The lattice was divided up into small 8 by 8 

regions, with the particle velocities in each region averaged together and displayed 

as a single arrow (figure 3.19b). The velocities near the edge of the shock are seen 

to be oriented radially outward. Thus, the underlying triangular lattice and the 

limited number of orientations for a collision have not introduced any asymmetries 

into the simulation. 

Couette flow 

The first test simulation of a moving granular system was performed using a 

two-dimensional Couette flow geometry. The standard Couette flow configuration 

consists of a fluid confined between two, flat, parallel plates of infinite extent, with

out any gravitational accelerations. The plates move in opposite directions with 

velocities that are equal and that are parallel to their surfaces, which results in 

the establishment of a velocity gradient and a shear stress in the fluid. For fluids 

which obey the Navier-Stokes equation, an analytical solution is possible in which 

the velocity gradient and shear stress are constant across the channel. If, however, 
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we replace the fluid by a system of inelastic grains, the velocity gradient will no 

longer necessarily be constant across the channel (see Haff (1983)). Instead, what 

often occurs is the creation of a plug flow region in the center of the channel with 

two highly shearing regions near the plates. 

The simulation was carried out with 5760 grains, located in a channel 60 lattice 

points wide by 192 long (figure 3.20). Due to the periodic boundary conditions at the 

left and right ends, the problem is effectively infinite in length. The top and bottom 

wall particles were given equal but opposite velocities along the direction of the 

wall; thus, by symmetry, the average velocity of the center of the flow will be zero. 

The first simulation is intended to reproduce the standard Couette flow for a fluid; 

consequently the particle-particle collisions were given a coefficient of restitution of 

1.0 (i.e., perfectly elastic collisions) and the particle-wall collisions were given a .75 

coefficient of restitution. The inelasticity of the particle-wall collisions is needed to 

simulate the conduction of heat (which is being generated within the fluid) from the 

fluid to the walls. The simulation was run until an equilibrium was established in 

the channel, figure 3.21a. In figure 3.21b are shown plots of the average (along the 

channel) x- and y-components of velocity, as well as the second moment of velocity 

( the square of which is proportional to the temperature), as a function of distance 

across the channel. The x-component of velocity is a linear function of distance 

across the channel. The second moment of velocity is seen to peak in the center 

of the channel and to fall off towards the walls, corresponding to the generation of 

heat within the fluid which is conducted away to the walls (which act as heat sinks). 

The question arises as to whether this simulation represents laminar or turbu

lent fluid fl.ow. To answer this question, we will make use of the fact that in laminar 

fl.ow the shear stress will be proportional to the shear rate, while in turbulent flow 

the shear stress will be proportional to the square of the shear rate. The simulation 

was run again with the wall velocities multiplied by a factor of four and with all 

other parameters unchanged. Figures 3.22a and 3.22b show the pressure and shear 

stress on the top and bottom walls for the original problem and for the speeded up 

problem, respectively. The pressure and shear stress are seen to increase by a factor 



95 

of 16 from the first run to the second run; consequently the simulation represents 

a turbulent fluid fl.ow. This result comes about from the fact that the "thermal" 

velocities of the particles are determined solely by (and therefore scale with) the 

driving velocity in the problem (in this case, the wall velocity). In real world lami

nar fl.ow, the thermal velocities of the molecules of the fluid are largely determined 

by the temperature of the walls, which supply or absorb heat energy as needed to 

maintain a fixed temperature in the fluid. In order to implement this type of be

havior in the lattice grain dynamics paradigm, it would be necessary to modify the 

particle-wall collisions so as to give the rebounding particles a velocity distribution 

appropriate to a given wall temperature. Since the goal of the paradigm was to 

simulate granular systems rather than fluids, this additional complication was not 

incorporated. 

In order to simulate a granular Couette fl.ow, the second simulation used a 

constant coefficient of restitution of . 75 for both the particle-particle and particle

wall collisions. The equilibrium result is shown in figure 3.23a. The average x

and y-components of velocity and the second moment of velocity, as functions of 

distance across the channel, are plotted in figure 3.23b. As can be seen from the 

plots, the flow consists of a central region of particles compacted into a plug, with 

each particle having almost no velocity. Near each of the moving walls, a region 

of much lower density has formed in which most of the shearing motion occurs. 

Note the increase in value of the second moment of velocity ( the granular "thermal 

velocity") near the walls, indicating that grains in this area are being "heated" by 

the high rate of shear. 

The hourglass 

A second problem studied the flow of grains through a hopper or an hourglass, 

with an opening. only a few grain diameters wide; the driving force was gravity. 

This is an example of a granular system which contains a wide range of densities, 

from groups of grains in static contact with one another to groups of highly agitated 

grains undergoing true binary collisions. Observations of fl.ow in hoppers (Tuzun 

and Nedderman (1982)) reveal that the granular material may undergo funnel or 
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core flow, in which the bulk of the grains remain at rest in the hopper while a narrow 

core of highly shearing flow forms in the center accompanied by a depression in the 

top surface. The grains flowing down the core come from both the adjacent static 

regions at the sides of the core region and from grains cascading into the depression 

at the top. Once the grains leave the hopper, they fall essentially freely and undergo 

only a few binary collisions before reaching the floor. 

Here, the number of particles used was 8310, with e1 = . 75, e2 = .9375, and 

Cb = y'2gd, (where g = the magnitude of the gravitational acceleration and d = 
one lattice spacing); and the lattice was 240 points long by 122 wide (figure 3.24a). 

Additional walls were added to form the sloped sides of the bin and to close off 

the bottom of the lattice so as to prevent the periodic boundary conditions from 

reintroducing the falling particles back into the bin. The sides of the bin were sloped 

at an angle of 41 degrees to the vertical and the opening was set at 12 lattice points. 

As can be seen in figure 3.24b, the simulation does exhibit the rapidly shearing 

core region, the static side regions, and the depression at the top characteristic of 

experimentally observed flows (Tuzun and Nedderman (1982)). However, the slope 

of the free surface of the grains (i.e., the angle of repose) is greater than what is 

observed experimentally. This is believed to be due to the two-dimensional nature 

of the simulation. For a particle in a two-dimensional stack of particles to "escape" 

from the surface of a steep slope, it must first overcome a substantial gravitational 

potential barrier in order to get past the particle beneath it (figure 3.25). A particle 

in a three-dimensional stack can use the third dimension to go around the particle 

beneath it rather than over that particle. This will lead to a larger angle of repose 

for two-dimensional systems of grains. 

One significant difference between the flow of granular materials from a hopper 

and the flow of a fluid from the same geometry lies in the rate of flow as a function of 

time. The flow rate of a fluid will decrease with increasing time (due to the reduction 

in pressure as the hopper is emptied out); the flow rate of a granular material is 

relatively independent of the amount of material remaining in the hopper and will 

be fairly constant with time ( this is what made the hourglass a useful timekeeping 
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instrument). This is shown in figure 3.26 where the total number of grains which 

have passed out of the hopper is plotted as a function of time. After a gradual 

startup period, the flow rate (i.e., the slope of the curve) is seen to be nearly 

constant with time until most of the grains have run out. 

Flows around obstacles 

Another class of problems studied involve the flow of grains around obstacles of 

different shapes. These flows were observed experimentally by Nedderman, Davies, 

and Horton (Nedderman et al. (1980)) using mustard seeds of .228 cm diameter con

fined between two glass plates spaced 2.3 cm apart, giving a nearly two-dimensional 

system. The rate of flow of particles through the apparatus was controlled by plac

ing a flow restrictor at the bottom (figure 3.27); however, the width of this opening 

was not given. Obstacles of four different shapes were placed in the path of the 

grains flowing downward under the force of gravity: a circle, a square, a triangle 

oriented point up, and a triangle oriented point down. The sides of the square and 

the triangles and the diameter of the circle were all 10 cm; these were centered 

between sidewalls which were 20 cm apart. Black kale seeds were used as marker 

particles so as to allow the tracing of flow lines. 

The simulation contained 16,384 particles in a lattice of 288 points by 130 

points. Inasmuch as the collisional characteristics of the experimental particles 

were not given, the values of e1 and e2 were determined by varying them so as to 

obtain the best match between the simulations and the experiments, and were set 

to e1 = . 75 and e2 = .9375, and Cb = J2gd, as in the hourglass problem. The 

flow restrictor at the bottom consisted of a wall across the channel with a 18 lattice 

point wide opening in the center. Below the flow restrictor a box was placed to 

catch the used particles. An example of the initial placement of the grains is shown 

in figure 3.28. 

The first of these four simulations involved a circular obstacle, whose diameter 

was one-half the width of the channel, and which consisted of wall particles placed 

on lattice points in as close an approximation to a circle as possible. The final 

results of this simulation are shown in figures 3.29a and 3.29b. A void has formed 
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under the circular obstacle, as was seen in the experiment (figure 3.29c); and a 

stagnant region has formed above the obstacle, as can be seen from the motion (or 

lack thereof) of the marker particles. The void below the circular obstacle is due to 

the fact that a granular system will not flow horizontally unless its surface is at an 

angle with the horizontal which is greater than the angle of repose. Thus, the flow 

follows the underside of the circle until it reaches the angle of repose; after that, it 

forms its own free surface. Similarly, the top sides of the stagnant region above the 

circular obstacle are at the angle of repose with respect to the horizontal. 

The second obstacle was a square whose side was one-half the width of the chan

nel. The final results of this simulation are shown in figures 3.30a and 3.30b. Once 

again, the formation of void and stagnant regions corresponds to the experimental 

observations (figure 3.30c). 

The third obstacle was an equilateral triangle whose sides were one-half the 

width of the channel and which was oriented point up. The final results of this 

simulation are shown in figures 3.31a and 3.31b. In this case, no stagnation region 

was seen above the point of the triangle in either the experiment (figure 3.31c) or 

the simulation (figure 3.31b). This is due to the fact that the sides of the triangle 

are at an angle of 60 degrees to the horizontal, which is greater than the angle of 

repose. Thus, the grains are unable to accumulate in the region above the triangle. 

The fourth obstacle was an equilateral triangle whose sides were one-half the 

width of the channel and which was oriented point down. The final results of this 

simulation are shown in figures 3.32a and 3.32b. Here, the void region below the 

triangle is larger than was seen in the experiment ( figure 3.32c ); this is due to the 

greater angle of repose problem discussed in the hourglass simulation. 

Flow down an inclined slope 

The next problem simulates the flow of grains down an inclined slope and 

running out onto a flat surface. The initial placement of the grains is shown in 

figure 3.33, where the gravitational acceleration is perpendicular to the diagonal 

line of wall particles. Thus the bottom line of wall particles is the sloped region ( at 

an angle of 23.4 degrees to the horizontal) and the diagonal line of wall particles 
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is the horizontal runout surface. Note that advantage has been taken of the area 

under the runout surface and the periodic boundary conditions in the x-direction to 

extend the uphill portion of the problem without increasing the number of lattice 

points. Thus, a problem which would have required a 720 by 218 lattice is fit into a 

432 by 218 lattice. The 15,552 grains are arranged in a rectangular block of 144 by 

108 and are given the same coefficient of restitution parameters as in the hourglass 

problem. 

The results are shown in figures 3.34a and 3.34b. The momentum gained 

by the grains in flowing down the incline has carried them across the horizontal 

ground to the upper diagonal wall. Here they have formed a static pile, since they 

are resting on a horizontal surface and the angle of the surface of the pile is less 

than the angle of repose. Note also the trajectory (in red) of one of the marker 

particles which started out at the upper right corner of the initial block of grains. 

This particle bounces along the surface of the flow, following parabolic trajectories 

between successive contacts with the other grains (an effect known as saltation). 

This simulation demonstrates the ability of the lattice grain dynamics paradigm 

to handle a granular flow in which one of the flow boundaries is a free surface 

constrained by gravity and consisting of saltating grains. 

Poiseuille flow 

The final problem simulates Poiseuille flow driven by gravity using 508,032 

grains in a 8064 by 128 lattice (a density of one grain for every two lattice points); 

the coefficient of restitution was independent of velocity and was set to .9375 for 

grain-grain collisions and was set to . 75 for grain-wall collisions. This simulation 

ran for 27 consecutive hours on 512 nodes of the NCUBE CPC, and is intended 

as an example of the largest size problems which can be done with lattice grain 

dynamics on the NCUBE. The grains were initially at rest, and were accelerated 

to the right with a constant gravitational acceleration. The plot of the state of 

the simulation after 18,432 time steps is shown in figure . 3.35a. A plug of grains 

moving with nearly uniform velocity can be seen in the center of the simulation. A 

narrow band ( approximately 30 grain diameters wide) of highly agitated grains has 
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formed along ea.ch side wall, as can be seen from the color coded display of thermal 

velocity. The plots of average flow velocity components and thermal velocity are 

given in figure 3.35b, and again show the expected plug formation in the center with 

two narrow bands of high shear rate material near ea.ch wall. The thermal velocity 

is seen to reach a maximum in the high shear rate regions near ea.ch wall where it is 

being generated. It then decreases as it diffuses towards the walls (where it is being 

absorbed by the inelasticity of grain-wall collisions) and as it diffuses towards the 

center ( where it is absorbed by the slight inelasticity of grain-grain collisions in the 

plug flow region). The reason for the slight asymmetry in the curve of the average 

x-component of velocity is unknown; it may be due to the fact that the simulation 

has not reached a steady state condition. 

Plots of the shear stress and pressure on the top and bottom side walls are 

given in figure 3.36. Inasmuch as the grains started with no thermal velocity, the 

initial shear stress and pressure were zero. As the grains accelerated down the pipe, 

they gained thermal velocity; the shear stress and pressure increased accordingly, 

while maintaining a constant ratio of ~ 0.25. The expected shear stress for the 

steady state condition can be determined from the magnitude of the gravitational 

acceleration and the density of particles. In each time step, the mass of particles is 

accelerated by gravitational forces and decelerated by the shear stress forces exerted 

by the wall; in a steady state condition, these forces must be equal. Since the shear 

stress on the wall shown in figure 3.36 is expressed in terms of change in velocity 

per unit time per wall particle, the expected shear stress is: 

h 
g x number of movable particles 

s ear stress = . 
number of wall particles 

For a gravitational acceleration of 8, the steady state shear stress is expected to 

be 252. The final shear stress was approximately 150, and thus the simulation did 

not reach a steady state. From figure 3.36, it can be seen that the shear stress 

and pressure were continuing to rise at the end of the simulation; consequently it is 

reasonable to expect that a steady state would have been reached if the simulation 

were run for a sufficient period of time. 
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Figure Captions 

Figure 3.1: illustration of the six possible velocity directions for a particle in the 

standard lattice gas model. 

Figure 3.2: illustrations of the collision rules for the standard lattice gas model. 

a) The results of a head on collision between two particles. The two pos

sible final states are given equal probabilities. 

b) The results of a symmetric collision between three particles. 

All other combinations of initial particle states remain unchanged. 

Figure 3.3: illustration of the collision of two disks in two dimensions. c1 = initial 

velocity of disk 1. c2 = initial velocity of disk 2. k = unit vector 

pointing from the center of disk 1 to the center of disk 2 at the moment 

of contact {the "impact parameter"). Note that because the particles 

are constrained to lie on the nodes of the lattice, k can have only one 

of six directions. 

Figure 3.4: Example of the trajectory of a particle in a gravitational field. The times 

at which the particle has moved one lattice space from its initial position 

(t1, t2, t3, and t4) are shown by the intersections of its trajectory with 

a unit circle. The desired time step is the minimum positive time to 

move one lattice space ( t2 in this example). 

Figure 3.5: Diagram defining the motion of a particle based upon its position offset. 

If the particle's position offset places it inside the circle, it remains 

on the current lattice point. If the particle's position offset places it 

outside the circle and within the borders shown, it will be moved to the 

corresponding lattice point. If the particle is moving exactly vertically 

{i.e., the x-component of position offset is zero), then the particle is 

moved to the left lattice point if it is on an even row and is moved to 

the right lattice point if it is on an odd row. 

Figure 3.6: illustration showing what can happen if both components of the position 

offset are set to zero in a collision. Here, a stack of particles in a vertical 

gravitational field will be unphysically stable, since each collision (which 
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supports the weight of each particle) will set the horizontal component 

of position offset equal to zero, thus preventing the particle from ever 

moving horizontally and leaving the stack. 

Figure 3.7: Diagram of a simple scanning pattern for the position updating process. 

Use of such a pattern will lead to an undesirable coupling between the 

scan pattern and the particle motions ( see text). · 

Figure 3.8: One dimensional example of the scanning problem. 

a) The direction of scan coincides with the direction of motion of the line 

of particles, with only the particle at the right end being moved. 

b) The direction of scan is opposite to the direction of motion of the par

ticles, with the result that the entire line moves one space. 

c) If two particles are contending for one lattice space, which particle is 

moved is determined by the direction of scan. 

Figure 3.9: Actual scanning pattern used for updating particle positions in the lat

tice grain dynamics paradigm. 

Figure 3.10: illustration of the results of a collision between two rows of particles, 

where the top row was initially moving vertically downward and the 

bottom row was initially moving vertically upward, and where the order 

of binary collisions with adjacent particles is the same for each lattice 

point. 

Figure 3.11: Actual scanning pattern used for evaluating particle collisions in the 

lattice grain dynamics paradigm on odd time steps. The pattern for 

even time steps is the reverse of this. 

Figure 3.12: Plot of relative rebound velocity as a function of relative incident ve

locity. 

Figure 3.13: Examples of walls made up of wall particles: 

a) a nominally flat wall ( i.e., a straight line of wall particles); 

b) an extra rough wall. 

Figure 3.14: Diagram of information exchange between a processor and its eight 

immediate neighbors in a concurrent processor computer. Information 
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to the four corner processors is not sent directly, but is sent through 

the left and right side processors. Similarly, information from the four 

corner processors travels through the top and bottom processors. 

Figure 3.15: Diagram of a four-dimensional hypercube array of processors unfolded 

into a two-dimensional array and showing the interconnections between 

processors. 

Figure 3.16: Plots of the initial positions and velocities of the particles for the elastic 

grain-gas problem. 

a) The initial particle positions. 

b) The initial particle velocities. 

Figure 3.17: Plots of the positions and velocities of the particles for the elastic 

grain-gas problem after 1024 time steps. 

a) The particle positions. 

b) The particle velocity distributions: 

1) red curve = measured distribution of the magnitude of the x-compo

nent of velocity, 

2) green curve = measured distribution of the magnitude of the y-com

ponent of velocity, 

3) blue curve= measured distribution of the magnitude of the velocity, 

4) black curves = theoretical distributions for a two-dimensional gas. 

Figure 3.18: Plot of the initial particle positions and velocities for the explosion 

simulation. 

a) The initial particle positions. The gas consists of one particle for every 

three lattice points. 

b) A four times blow up of the central region showing the initial velocities 

of the 33 by 35 rectangle of particles which represent the explosion. 

Figure 3.19: Plots of the particle positions and average velocities after 128 time 

steps for the explosion simulation. 

a) The particle positions. 

b) The particle velocities averaged over 8 by 8 lattice point cells. 
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Figure 3.20: Plot of the initial particle positions for the Couette flow problem. 

Figure 3.21: Plots of the positions and velocities for the elastic Couette flow problem 

after 1024 time steps. 

a) The particle positions. 

b) The average x- and y-components of velocity and the thermal velocity 

versus distance across the flow, averaged along each row. 

1) red curve= average x-component of velocity, 

2) green curve= average y-component of velocity, 

3) blue curve = thermal velocity. 

Figure 3.22: Plots of the average shear stress and pressure per wall particle versus 

time for the Couette flow: 

1) average shear stress per wall particle on the bottom wall, 

2) average pressure per wall particle on the bottom wall, 

3) average shear stress per wall particle on the top wall, 

4) average pressure per wall particle on the top wall. 

a) The top and bottom walls are moving with a speed of 4096. 

b) The top and bottom walls are moving with a speed of 16,384. 

Figure 3.23: Plots of the positions and velocities for the inelastic Couette flow prob

lem after 1024 time steps. 

a) The particle positions. 

b) The average x- and y-components of velocity and the thermal velocity 

v~rsus distance across the flow, averaged along each row. 

1) red curve= average x-component of velocity, 

2) green curve= average y-component of velocity, 

3) blue curve= thermal velocity. 

Figure 3.24: Plots of the initial particle positions (a) and the particle positions after 

2048 time steps (b) for the hourglass problem. 

Figure 3.25: Diagram of a particle on the surface of the slope of a two-dimensional 

stack of particles showing the potential barrier which must be overcome 

for it to "escape." 
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Figure 3.26: Plot of the number of particles which have flowed through the hourglass 

as a function of time. 

Figure 3.27: Diagram of the experimental apparatus from Nedderman, Davies, and 

Horton (1980). 

Figure 3.28: Plot of the initial particle positions for the flow around a circular ob

stacle problem. The initial plots for the other obstacles are similar. 

Figure 3.29: Plots of the particle positions after 512 time steps (a), the paths of 

the marker particles after 1536 time steps (b), and the experimentally 

observed streamline patterns (c) for the flow around a circular obstacle. 

Figure 3.30: Plots of the particle positions after 512 time steps (a), the paths of 

the marker particles after 1536 time steps (b ), and the experimentally 

observed streamline patterns ( c) for the flow around a square obstacle. 

Figure 3.31: Plots of the particle positions after 512 time steps (a), the paths of the 

marker particles after 1536 time steps (b), and the experimentally ob

served streamline patterns ( c) for the flow around a triangular obstacle 

oriented point up. 

Figure 3.32: Plots of the particle positions after 512 time steps (a), the paths of the 

marker particles after 1536 time steps (b ), and the experimentally ob

served streamline patterns ( c) for the flow around a triangular obstacle 

oriented point down. 

Figure 3.33: Plot of the initial particle positions for the flow down an inclined slope. 

Gravitational acceleration is oriented so that the diagonal line is hori

zontal and the wall across the bottom of the problem is at an angle of 

23.4 degrees to the horizontal. 

Figure 3.34: Plots of the particle positions (a) and the paths of the marker particles 

(b) for the flow down an inclined slope after 6144 time steps. 

Figure 3.35: Plots of the results of the Poiseuille flow problem after 18,432 time 

steps. 

a) A plot of the average particle velocities (averaged over rectangular 

224 by 3 areas of the lattice) with the background color of an area 

determined by the thermal velocity in that area. 
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b) Plots of the average x- and y-components of velocity and the thermal 

velocity versus distance across the flow, averaged along each row. 

1) average x-component of velocity, 

2) average y-component of velocity, 

3) thermal velocity. 

Figure 3.36: Plots of the average shear stress and pressure per wall particle versus 

time for the Poiseuille flow: 

1) average shear stress per wall particle on the bottom wall, 

2) average pressure per wall particle on the bottom wall, 

3) average shear stress per wall particle on the top wall, 

4) average pressure per wall particle on the top wall. 
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Figure 3.2a 
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Figure 3.2b 
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Figure 3.3 

Figure 3.4 
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Figure 3.16a: The initial particle positions for 
the grain-gas problem 

Figure 3.16b: The initial particle velocities for 
the grain-gas problem 
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Figure 3.17a: The particle positions after 1024 time steps for 
the grain-gas problem 
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Figure 3.17b: The particle velocity distributions for 
the grain-gas problem 
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Figure 3.18a: The initial particle positions for 
the explosion simulation. 
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Figure 3.18b: A four times blow up of the central region 
showing the initial velocities. 
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Figure 3.19a: The particle positions after 128 time steps for 
the explosion simulation. 

Figure 3.19b: The particle velocities after 128 time steps for 
the explosion simulation. 
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Figure 3.21a: The particle positions after 1024 time steps for 
the elastic Couette flow problem. 
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Figure 3.21b: The particle velocities after 1024 time steps for 
the elastic Couette flow problem. 
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Figure 3.22a: Plots of the average shear stress and pressure 
per wall particle versus time for 
the elastic Couette flow problem. 
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Figure 3.22b: Plots of the average shear stress and pressure 
per wall particle versus time for 
the elastic Couette flow problem. 
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Figure 3.23a: The particle positions after 1024 time steps for 
the inelastic Couette flow problem. 
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Figure 3.23b: The particle velocities after 1024 time steps for 
the inelastic Couette flow problem. 
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Figure 3.24a: The initial particle positions for 
the hourglass problem. 

Figure 3.24b: The particle positions after 2048 time steps for 
the hourglass problem. 
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Figure 3.25 
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Figure 3.26: The number of particles which have flowed through 
the hourglass as a function of time. 
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Figure 3.27 

Figure 3.28: The initial particle positions for the flow around 
a circular obstacle. 
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Figure 3.29a: The particle positions after 512 time steps for 
the flow around a circular obstacle. 
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Figure 3.29b: The paths of the marker particles after 1536 time steps 
for the flow around a circular obstacle. 

Figure 3.29c: The experimentally observed streamline patterns for 
the flow around a circular obstacle. 
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Figure 3.30a: The particle positions after 512 time steps for 
the flow around a square obstacle. 
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Figure 3.30b: The paths of the marker particles after 1536 time steps 
for the flow around a square obstacle. 
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Figure 3.30c: The experimentally observed streamline patterns for 
the flow around a square obstacle. 
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Figure 3.31a: The particle positions after 512 time steps for 
the flow around a triangular obstacle. 
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Figure 3.31b: The paths of the marker particles after 1536 time steps 
for the flow around a triangular obstacle. 
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Figure 3.31c: The experimentally observed streamline patterns for 
the flow around a triangular obstacle. 



131 

Figure 3.32a: The particle positions after 512 time steps for 
the flow around a triangular obstacle. 
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Figure 3.32b: The paths of the marker particles after 1536 time steps 
for the flow around a triangular obstacle. 
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Figure 3.32c: The experimentally observed streamline patterns for 
the flow around a triangular obstacle. 
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Figure 3.33: The initial particle positions for the flow down an inclined slope. 

I-' 
w 
N 



133 

Figure 3.34a: The particle positions after 6144 time steps for 
the flow down an inclined slope. 

Figure 3.34b: The paths of the marker particles after 6144 time steps 
for the flow down an inclined slope. 



134 

. 
e a, 

.-l 
,.Cl 
0 
H 
0.. 

~ 
0 

.-l 
l.i-1 

a, 
.-l 
.-l 
•r-1 
::, 
a, 
CJ) 

"M 
0 

p... 

a, 
,.c::: 
,1....1 

H 
0 

l.i-1 

CJ) 
a, 

"M 
,1....1 
or, 
(J 

0 
.-l 
a, 
:> 

.-i 
t1l 
e 
H 
a, 

,.c::: 
,1....1 

'O 
i::: 
t1l 

CJ) 
a, 

•rl 
,1....1 

"M 
(J 

0 
.-l 
a, 
:> 
a, 

.-l 
(J 

or, 
,1....1 

H 
t1l 
0.. 

a, 
bO 
t1l 
H 
a, 

~ 
a, 

,.c::: 
E-t .. 
t1l 

Ll"I 
M . 
M 

a, 
H 
::, 
bO 

"M 
rx.i 



"\_ 

y 

/✓ 

2 

-24000 -18000 -12000 - 6000 0 6000 12000 18000 24000 
1._.1e loci ty 

Figure 3.35b: The average velocity components and thermal velocity for the Poiseuille flow. 
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Figure 3.36: The average shear stress and pressure per wall particle versus time for the Poiseuille flow. 
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Conclusions 

There seems to be an unstated assumption in the education of a physicist that 

the field of classical physics is a closed book; all that needs to be known about classi

cal physics has been discovered. In recent years, it has gradually become clear that 

this assumption is unjustified, partly due to the discoveries in the fields of classical 

chaos and complex systems. One such complex classical system which has received 

only intermittent attention is the granular system. Despite the fact that granular 

systems are a fairly ubiquitous phenomena in our world, there exists relatively little 

understanding of them, due in large part to the difficulty of experimentally ob

serving their internal workings and the difficulty of finding an adequate theoretical 

framework for describing them. In this study, we have examined three aspects of 

the theoretical description of granular systems in an attempt to better understand 

their inner workings, and to better predict their external forms. 

In Chapter 1, we have taken an existing continuum theory for the flow of 

smooth, non-spinning grains and extended it to cover the case of rough, spinning 

grains. It was shown that a self-consistent continuum theory for spinning grains 

could be derived by using techniques from the field of nonequilibrium thermody

namics. This theory was based on the idea of describing the flow using the average 

translational flow velocity, the thermal translational velocity, the average spin veloc

ity, and the thermal spin velocity of the grains. These quantities were then related 

to each other and to the properties of the individual grains through the momentum 

equations, the energy equations, and the constitutive relations. Several illustrative 

examples were presented that showed that energy and momentum could be trans

ferred between the spin and translational modes. Also, it was demonstrated that 

the addition of spin and surface roughness to the theory resulted in higher values 

of the shear stress to pressure ratio and the average translational flow velocity to 

thermal translational velocity ratio at the wall. Future work in this area should 

extend this theory to include non-spherical particles, where the transfer of energy 

and momentum in a collision between particles depends more on geometric effects 

than on surface roughness. 
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In Chapter 2, we have taken a careful look at the question of boundary con

ditions at a wall on a simple continuum theory of granular flow. The traditional, 

simple boundary conditions of fluid mechanics were seen to be inappropriate for 

use in granular systems. Instead, a theory based on the idea of three separate 

slips at the wall ( average flow velocity slip, thermal velocity slip, and density slip) 

was derived; and equations relating these slips to the particle properties, the wall 

properties, and the bulk flow variables were obtained. The example of Couette 

flow was presented, and parametric studies of the variation in flow characteristics 

as a function of particle and wall parameters were done. Now that the principles 

of various slips at a boundary have been established, the next extension of these 

boundary conditions would be to include the effects of surface roughness and spin 

of the particles. 

It was argued in Chapter 3 that perhaps a differential equation formulation of 

granular material dynamics was not the best approach. As an alternative, a theory 

based on the use of cellular automata was presented ( the lattice grain dynamics 

paradigm). This theory used a highly simplified model of grain-grain interactions 

with grain positions confined to an underlying lattice in order to allow the simulation 

of many thousands of grains. Since the calculations involved in these simulations 

were of a distributed nature, it was possible to program these simulations on a con

current processor computer. Examples were shown of large scale granular flows in

cluding flows around obstacles, flows down inclined slopes, and flows through pipes. 

Although the lattice grain dynamics paradigm is reasonably successful, several im

provements and extensions are desirable. The first of these involves the treatment 

of static stresses and pressures in piles of grains in a gravitational field. In its cur

rent form, the paradigm handles these by allowing the particles to "vibrate" while 

remaining at a fixed position in the pile, thus transmitting the appropriate stresses 

and pressures through collisions. Although this results in the correct stresses and 

pressures, the individual particle velocities are no longer necessarily an accurate 

representation of the particles' true velocities. It may be worthwhile to simply pay 

the price of additional storage and computation time needed to store and update 
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the static contact forces between adjacent particles in a compact mass. Other more 

sophisticated improvements include the incorporation of particle spin effects and 

the extension to three dimensions. Hopefully, it will someday be possible to use a 

technique like this to conduct "experiments" on granular systems entirely within a 

computer and to display the results on a real time basis. 
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Appendix 1. The Size of the Time Step 

The time step in the lattice grain dynamics paradigm is set to the time required 

for the fastest particle to travel one lattice spacing. For the case of zero gravitational 

acceleration, this is simply given by the lattice spacing divided by the speed of 

the fastest particle. For the case of non-zero gravitational acceleration, the fastest 

particle's trajectory may cross the one lattice spacing boundary several times ( figure 

3.4); here, the desired time step size is the minimum positive time needed to travel 

one lattice space. The times at which the fastest particle's trajectory crosses the 

one lattice spacing boundary are given by the solutions to: 

where: 

d = distance between lattice points, 

g = gravitational acceleration magnitude, 

g = gravitational acceleration vector, 

t = time, 

v = velocity magnitude of the fastest particle, 

v = velocity vector of the fastest particle. 

Since an analytical solution to this fourth order polynomial equation is not available, 

a numerical solution is required. 

The numerical solution technique is based upon two considerations: a) we 

are only interested in the smallest positive solution; and b) this smallest positive 

solution will generally be only slightly greater than the time required to travel one 

lattice space when the gravitational acceleration lies along the velocity vector of the 

particle (i.e., g · v = gv). This minimum positive time is given by: 

2d 
tmin = v+ Jv2 +2gd 
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The numerical solution starts with this minimum time ( rounded down to the nearest 

integer), and increments it in unit steps, comparing the total distance travelled after 

each step to one lattice spacing. The integer time at which the particle is closest to 

travelling one lattice space is then taken to be the desired time step. 
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Appendix 2. The Smooth Disk Collision Model 

The particles in the lattice grain dynamics paradigm are assumed to be smooth, 

circular disks which are constrained to lie on the vertices of a two-dimensional, 

triangular lattice. Their collisions are assumed to be instantaneous, and the results 

of a collision may be derived from conservation of momentum, from a model of 

rebound velocity as a function of incident velocity, and from the lack of surface 

friction. 

The model of rebound velocity in a collision allows for the loss of kinetic energy 

due to inelasticity by using a velocity dependent coefficient of restitution. The slope 

of the relative rebound velocity versus relative incident velocity curve has one value 

(e1) up to a given incident velocity (cb), and has a separately defined value (e2) 

above that velocity (figure 3.12). 

Thus, the equations of constraint for the collision of two disks are: 

1. Conservation of momentum: 

2. Relative rebound velocity: 

if C12 > Cbj 

otherwise. 

3. Conservation of angular momentum with no surface friction: 

where: 

-+ I -+ 

k X C12 = k X C12. 

c1 = velocity of particle 1, 

c2 = velocity of particle 2, 

c12 = c1 - c2 (relative velocity), 

k = unit vector defined in figure 3.3, 
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m1 = mass of particle 1, 

m2 = mass of particle 2, 

primed values = values after the collision, 

unprimed values = values before the collision. 

From these equations we obtain the velocity of particle 1 after the collision: 

Note that for the case of two moving particles of equal mass, the term in the 

denominator (1 + mifm2) is equal to 2; while for the case of a moving particle 

(particle 1) hitting a wall particle (particle 2) this denominator will equal 1, since 

a wall particle is regarded as having infinite mass. This and the fact that e1 and e2 

are separately defined for particle-particle and particle-wall collisions are the only 

differences between the two types of collisions. 
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Appendix 3. Lattice Grain Dynamics Program Listing 

I* 27 sep 88 

This program simulates granular systems using lattice grain dynamics 

techniques, vith periodic boundary conditions in the x-direction, 

on the NCUBE hypercube concurrent computer under cubix/crosIII. 

It includes the position offsets of the particles and 

a velocity dependent coefficient of restitution, and 

caLculates the movements and collisions in a complex pattern. 

#include "cros.h" 

#include <stdio .h> 

extern double sqrt(); 

int id, icb, idl, idx, idy, iep1, iep2, iev1, iew2; 

int igx, igy, jx1, jx2, kq, kx, ky, ke; 

int mvx, mvy, nt, nto, nxt, nyt, ntu; 

int icp, icw, id2, ke1, ke2, kxp, kxw, kqp, kqw, mo, mi, m2; 

int n3, n4, nb[2], ndy1, np, npx, nx, nyO, ny1, ny2; 

struct Lattis { long ipx, ipy, ivx, ivy; short mlp, nlp;}; 

I* ipx = x component of position offset 

ipy = y component of position offset 

ivx = X component of particle velocity 

ivy = y component of particle velocity 

mlp = mode of lattice point 

= -1 for a wall particle 

= 0 for an empty lattice point 

= 1 for a movable particle vhich may be moved 

I* parameter file *I 
I* parameter file *I 
I* parameter file *I 

= 2 for a movable particle which does not need to be moved 

nlp = number of marked particle 

= 0 for unmarked particle 

struct lattis la[4489]; 

struct lsindx { long ni, no, pi, po;}; 

struct lsindx lx, ly; 

struct pkvlct { long ipv2, ipvx, ipvy;}; 

unsigned int mskn [2] , mskp [2] ; 
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main() 

{ 

char nam1[8], nam2[8], nam3[8], nam4[8], nam5[8]; 

double av[4], dl, dl3, dp, dy1, dy3, gm, gm2, gv, gt[2]; 

double pv1, pv2, mg, rt, vtt[3]; 

FILE *fi, *fm, *fp, *fq; 

int md, ipx1, ipx2, ipy1, ipy2, ivxi, ivyi; I* initial value file *I 
int iox, ipv, ist, it, itm, itt, iv2p, ix, iy, 11; 

int ndx1, ndy2, nl, nn, nnp, npl, npx2, nx2, nx3, nxt2, nxt5, ny; 

int coor[2], ia[4], igt[2], nd0[2], nd1[2], nd2[2], nde[2], ndo[2], nnd[2]; 

int dadd(), iadd(), imax(); 

float aivt[64][48]; 

long aivx[64][48], aivy[64][48], amlp[64][48]; 

long idp[2], ip1, ip2, ip3, is1, is2, is3, ng, nm, nq, nv; 

struct pkvlct pv; 

struct cubenv env; 

cparam(tenv); 

read in the input parameters 

if ((fi =fopen ("in", "r")) == 0) exit(!); 

I* fi = 0, the file cannot be opened *I 
fscanf (fi, "1.d\n¼s\n¼s\n¼s\n", tist, nam1, nam3, nam4); 

I* ist = 0 for numerical output of data for each particle at the end 

= 1 for output of average velocity vectors of groups of particles 

= 2 for numerical output of data for each particle at the end 

and numerical output of data for marked particles for each time step 

= 3 for output of average velocity vectors of groups of particles 

and numerical output of data for marked particles for each time step 

= 4 for numerical output of data for marked particles for each time step 

if ((fp = fopen (nam1, "r")) == 0) exit(2); 

I* fp = 0, the file cannot be opened *I 
fscanf (fp, "nam2 =1.6s'l.*sX*s'l.6d'l.*s'l.*s'l.6d'l.*s'l.*s'l.6d'l.*s'l.*s'l.6d\n", 

nam2, tid, ticb, tiep1, tiev1); 

fscanf (fp, "'l.*s'l.*s'l.6d'l.*s'l.*s'l.6d'l.*s'l.*s'l.6d'l.*sX*s'l.6d'l.*s'l.*s'l.6d\n", 
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tidl, tidx, tidy, tiep2, tiev2); 

fscanf (fp, "¼•sY.•sY.6d¼•sY.•s¼6dY.•sY.•sY.6dY.*s¼*sY.6d\n", 

tigx, tigy, tjx1, tjx2); 

fscanf (fp, "¼•sY.•sY.6d¼•sY.•s¼6d¼•sY.•s¼6d¼*sY.•sY.6d\n", 

tkq, tkx, tky, tke); 

fscanf (fp, "Y.•sY.•sY.•sY.•sY.•s¼•sY.•sY.•sY.•sY.•sY.•sY.•sY.•s¼•sY.6dY.•sY.•sY.6d\n", 

&:mvx, &:mvy); 

fscanf (fp, "Y.•sY.•sY.6dY.•sY.•sY.6d¼•sY.•sY.6d¼•sY.•s¼6dY.•sY.•sY.6d\n", 

mt, tnxt, tnyt, mtu, mto); 

/• nam.2 = name of file containing initial data 

id = minimum calculated displacement••2 for a particle to move 

icb = relative collision velocity belov vhich iep1 or iev1 apply 

idl = lattice spacing (cm* 4096) 

idx = change in x component of offset per vertical lattice point (cm•4096) 

idy = change in y component of offset per vertical lattice point (cm•4096) 

iep1 = ke * ep1, ep1 = coeff. of restitution (particle-particle) belov icb 

iep2 = ke * ep2, ep2 = coeff. of restitution (particle-particle) above icb 

iev1 = ke * ev1, ev1 = coeff. of restitution (particle-wall) below icb 

iev2 = ke * ev2, ew2 = coeff. of restitution (particle-val!) above icb 

igx = x component of gravitational acceleration (cm/sec••2) 

igy = y component of gravitational acceleration (cm/sec••2) 

jx1 = x component of velocity of lover vall 

jx2 = x component of velocity of upper vall 

kq = denominator of components of unit vector k 

kx = numerator of x component of unit vector k (kq * 1/2) 

ky = numerator of y component of unit vector k (kq * sqrt(3)/2) 

ke = constant in expressions for iep1, iep2, iev1, and iev2 

mvx = number of points in the x direction for each average velocity vector 

mvy = number of points in they direction for each average velocity vector 

nt = number of times to iterate time step loop 

nto = number of time steps between output dumps 

ntu = number of times particle positions are updated per time step 

nxt = number of points in the x direction 

nyt = number of points in they direction 

fclose (fp); 
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if (nto <= 0) nto = nt; 

I* nto <= 0, then output particle data only at end of simulation *I 

if (nxt ¼ mvx != 0) 

{ 

} 

nxt is not an integral multiple of mvx *I 
printf("mvx does not divide evenly into nxt\n"); 

exit(3); 

if (nxt / mvx > 64) 

{ 

} 

there are too many average velocity cells in the x direction *I 

printf ( "nxt / mvx > 64 \n") ; 

exit(4); 

if ((nyt - 2) ¼ mvy != 0) 

{ 

} 

nyt - 2 is not an integral multiple of mvy *I 
printf("mvy does not divide evenly into nyt - 2\n"); 

exit(5); 

if ( (nyt - 2) / mvy > 48) 

I* there are too many average velocity cells in they direction *I 

I• 

{ printf("(nyt - 2) / mvy > 48\n"); 

exit(6); 

} 

if (nxt ¼ 6 != 0) 

{ 

} 

nxt is not an integral multiple of 6 *I 
printf("nxt must be an integral multiple of 6\n"); 

exit(7); 

initialize various things 

gm= sqrt((double)(igx * igx + igy • igy)); 

gm2 = 

icp = 

icw = 

id2 = 

id2 

gm* gm; 

icb * (iep1 

icb * (iew1 

idx * 2; 

= change in 

iep2); 

iew2); 

x component of offset per horizontal lattice point *I 



iep1 += ke; 

iev1 += ke; 

if (gm > 0.) 
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I* calculate the maximum time step for problems vith gravity *I 
itm = (int)(1024. * sqrt(2. * (double)idl /gm)+ 0.5); 

I* itm = time for a grain vith 0 initial velocity to fall 1 lattice space *I 
itt = 0· 

' 
itt = total elapsed time *I 
ke1 = ke + ke; 

ke2 = ke I 2; 

kxp = ke * kx * 2· 
' 

kxv = ke * kx; 

kqp = ke * kq * 2; 

kqv = ke * kq; 

nnd[0] = 1 << ((env.doc + 1) I 2); 

nnd[0] = number of nodes in the x direction *I 
if (nnd[0] > nxt) 

I* there are more nodes than points in the x direction *I 
{ printf("There are more nodes than points in the x direction\n"); 

exit(8); 

} 

nnd[1] = 1 << (env.doc / 2); 

I* nnd[1] = number of nodes in they direction *I 
if (nnd[1] > nyt) 

I* there are more nodes than points in they direction *I 
{ printf("There are more nodes than points in they direction\n"); 

exit(9); 

} 

gridinit (2, nnd); 

gridcoord(env.procnum, coor); 

I* coor[0] = x coordinate of this node *I 
I* coor[1] = y coordinate of this node *I 

mskn[0] = gridmask (env.procnum, 0, -1); 

I* mskn[0] = mask of the channel in the negative x direction *I 
mskp[0] = gridmask (env.procnum, 0, 1); 

I* mskp[0] = mask of the channel in the positive x direction *I 
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mskn[1J = coor[1J -- 0? 0 : gridmask (env.procnum, 1, -1); 

I* mskn[1J = mask of the channel in the negative y direction *I 

msk:p[1J = coor[1J == nnd[1J - 1? 0 : gridmask (env.procnum, 1, 1); 

I* msk:p[1J = mask of the channel in the positive y direction *I 
nx = nxt / nnd[OJ; 

if ( coor [OJ < nxt - nx * nnd [OJ) 

nxt is not a multiple of nnd[OJ, so add an extra column to this node *I 

{ nx++; 

ndx1 = nx * coor[OJ + 1; 

} 

else 

ndx1 = nxt - nx * (nnd[OJ - coor[OJ) + 1; 

I* ndx1 = x coordinate of leftmost lattice points in this node *I 
nx += 2; 

I* nx = number of lattice points in the x direction in one node *I 
ny = nyt / nnd[1J; 

if (coor[1J < nyt - ny * nnd[1J) 

I* nyt is not a multiple of nnd[1J, so add an extra row to this node *I 
{ ny++; 

ndy1 = ny * coor[1J + 1; 

} 

else 

ndy1 = nyt - ny * (nnd[1J - coor[1J) + 1; 

I* ndy1 = y coordinate of bottom lattice points in this node *I 
ndy2 = ndy1 + ny - 1; 

I* ndy2 = y coordinate of top lattice points in this node *I 
ny += 2; 

I* ny = number of lattice points in they direction in one node *I 
n3 = nx - 1; 

n4 = -nx + 1; 

fp = fopen ( 11 dout 11
, 

11 w11 ); 

fprintf(fp, 11 coorx coory pnum 

fprintf(fp, 11 msk:py ndx1 ndy1 

fmulti (fp); 

msknx mskny msk:px"); 

ndy2 nx ny\n"); 

fprintf(fp, 11 %6d%6dY.6d%6d%6d%6d%6dY.6dY.6dY.6d%6dY.6d\n 11
, coor[OJ, coor[1J, 

env.procnum, mskn[OJ, mslm[1J, msk:p[OJ, mskp[1J, ndx1, ndy1, ndy2, nx, ny); 
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fclose (fp); 

ndO[O] = 2 - (ndx1 + 1) % 3· , 

nd0[1] = 2 - (ndy1 + 1) % 3; 

nd1[0] = 2 - ndx1 % 3· , 

nd1 [1] = 2 - ndy1 % 3; 

nd2[0] = 2 - (ndx1 + 2) % 3· , 

nd2[1] = 2 - (ndy1 + 2) % 3· , 

nde[O] = (ndx1 + 1) % 2· , 

nde[1] = (ndy1 + 1) % 2; 

ndo[O] = ndx1 % 2; 

ndo[1] = ndy1 % 2; 

np = me* ny; 

np = number of lattice points in one node •I 

if (np > 4489) 

{ 

there are too many lattice points •I 

printf("%6d = too many lattice points\n", np); 

exit(10); 

} 

npx = np - me; 

npx2 = npx -
nx2 = me * 2; 

me3 = me - 3; 

nxt2 = nxt * 

nxt5 = nxt I 

ny1 = ny - 1; 

ny2 = ny - 2; 

me· , 

2; 

2· , 

nb[O] = 4 * sizeof(long) + 2 * sizeof(short); 

I• nb[O] = number of bytes in a data item transferred in the x direction •I 

nb[1] = nx * nb[O]; 

I• nb[1] = number of bytes in a data item transferred in they direction 

= offset in bytes between data items transferred in the x direction •I 

lx.ni = nx2 - 1; 

/• lx.ni = lattice index for input of data moving in negative x direction •I 

lx.no = nx + 1; 

/• lx.no = lattice index for output of data moving in negative x direction •I 

lx.pi = nx; 
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I* lx.pi = lattice index for input of data moving in positive x direction *I 

lx.po = nx2 - 2; 

I* lx.po = lattice index for output of data moving in positive x direction *I 
ly.ni = npx; 

I* ly.ni = lattice index for input of data moving in negative y direction *I 
ly.no = nx; 

I* ly.no = lattice index for output of data moving in negative y direction *I 
ly.pi = O; 

I* ly.pi = lattice index for input of data moving in positive y direction *I 

ly.po = npx2; 

I* ly.po = lattice index for output of data moving in positive y direction *I 

dl3 = (double)idl * 4096.; 

dy1 = (double)idy * 16.; 

dy3 = (double)idy * 4096.; 

for (mo= O; mo< np; mo++) 

{ la[mO].ipx = O; 

la[mO] .ipy = O; 

la[mO].ivx = O; 

la[mO] .ivy = O· 
' 

la[mO] .mlp = O· 
' 

la[mO] .nlp = O; 

} 

if (coor[1) == 0) 

I* this is a bottom rov node, establish the bottom rov vall *I 

{ for (mo= nx + 1; mo< nx2 - 1; mo++) 

{ la[mO].ivx = jx1; 

la[mO] .mlp = -1; 

} 

} 

if (coor[1) == nnd[1) - 1) 

{ 

} 

this is a top rov node, establish the top rov vall *I 

for (mo= npx2 + 1; mo< npx - 1; mO++) 

{ la[mO].ivx = jx2; 

la[mO].mlp = -1; 

} 
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read in the initial data 

if ((fp = fopen (nam2, "r")) == 0) 

fp = O, the file cannot be opened *I 

{ 

} 

printf("Cannot open %s\n", nam2); 

exit(O); 

fscanf (fp, "%*s%*s%6d\n", &Ill); 

run = O; 

I* run= number of marked movable particles *I 
for (nn = 0; nn < nl; nn++) 

{ fscanf (fp, "%2d%6d%6d%6d%6d%7d%7d\n", 

lend, &:ipx1, &:ipy1, &:ipx2, &:ipy2, &:ivxi, &:ivyi); 

md = mode of particle(s) 

= -6 for a rectangular area of wall particles at 

= -3 for a rectangular area of wall particles at 

= -2 for a line of wall particles 

= -1 for a single wall particle 

= 0 for an empty position 

= 1 for a single movable particle 

= 2 for a line of movable particles 

= 3 for a rectangular area of movable particles 

= 6 for a rectangular area of movable particles 

> 10 for marked movable particles 

ipx1 = initial x position of particle, line, or area 

ipy1 = initial y position of particle, line, or area 

a density of 1/3 

a density of 1.0 

at a density of 1.0 

at a density of 1/3 

ipx2 = end x position of line or area or position offset of a particle 

ipy2 = end y position of line or area or position offset of a particle 

ivxi = initial x velocity of particle(s) 

ivyi = initial y velocity of particle(s) 

if (md == 6 I I md == -6) 

I* fill the area vith particles at a density of 1/3 *I 
{ md = (md > 0) ? 1 : -1 ; 

for (iy = ipy1; iy <= ipy2; iy++) 
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{ 
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if (iy < ndy1 11 iy > ndy2) continue; 

iy is outside this node, skip it *I 

if ((iy - ipy1) % 2 == 1) 

{ 

} 

else 

this is a displaced rov *I 
if (iy % 2 == 1) 

else 

this is an odd rov *I 
iox = 2; 

this is an even rov *I 
iox = 1; 

this is not a displaced rov *I 
iox = O; 

for (ix= ipx1 + iox; ix<= ipx2; ix+= 3) 

{ mo= (ix - ndx1 - (iy - 1) / 2 + nxt2) ¼ nxt; 

if (mo> nx3) continue; 

ix is outside this node, skip it *I 
mo= mo+ 1 + (iy - ndy1 + 1) * nx; 

la[mO].ivx = ivxi; 

la[mO].ivy = ivyi; 

la[mO].mlp = md; 

} 

} 

if (md == 3 I I md == -3) 

I* fill the area vith particles at a density of 1.0 *I 

{ md = (md > 0) ? 1 : -1; 

for (iy = ipy1; iy <= ipy2; iy++) 

{ if (iy < ndy1 II iy > ndy2) continue; 

iy is outside this node, skip it *I 
for (ix= ipx1; ix<= ipx2; ix++) 

{ mo = (ix - ndx1 - (iy - 1) / 2 + nxt2) 

if (mo > nx3) continue; 

ix is outside this node, skip it *I 

mo =mo+ 1 + (iy - ndy1 + 1) * nx; 

¼ nxt; 



} 

} 

} 

la[mO].ivx = ivxi; 

la[mO].ivy = ivyi; 

la[mO].mlp = md; 
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else if (md == 2 II md == -2) 

fill the line with particles *I 

{ md = (md > 0) ? 1 : -1; 

idp[O] = ipx2 - ipx1; 

idp(1] = ipy2 - ipy1; 

} 

else 

ix= (idp(O] < 0) ? (-idp(O]) 

iy = (idp (1] < 0) ? (-idp [1]) 

idp[O]; 

idp[1]; 

npl =(ix> iy)? ix: iy; 

for (11 = O; 11 <= npl; 11++) 

{ iy = ipy1 + idp[1] * 11 / npl; 

} 

if (iy < ndy1 11 iy > ndy2) continue; 

iy is outside this node, skip it *I 

ix= ipx1 + idp[O] * 11 / npl; 

mo= (ix - ndx1 - (iy - 1) / 2 + nxt2) ¼ nxt; 

if (mO > nx3) continue; 

ix is outside this node, skip it *I 

mO = mO + 1 + (iy - ndy1 + 1) * nx; 

la[mO].ivx = ivxi; 

la[mO].ivy = ivyi; 

la[mO].mlp = md; 

I* insert or remove a single particle *I 

{ if (md > 10) nm++; 

this is a marker particle, number it accordingly *I 

if (ipy1 >= ndy1 &:le ipy1 <= ndy2) 

the particle is in the same row as this node *I 

{ mo= (ipx1 - ndx1 - (ipy1 - 1) / 2 + nxt2) ¼ nxt; 

if (mo <= nx3) 



} 

} 

} 

fclose (fp); 
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the particle is in this node •I 

{ mo= mo+ 1 + (ipyl - ndyl + 1) * nx; 

la[mO].ipx = ipx2; 

} 

la[mO].ipy = ipy2; 

la[mO].ivx = ivxi; 

la[mO].ivy = ivyi; 

if (md > 10) 

{ 

} 

else 

this is a marked, movable particle •I 

la[mO].nlp = nm; 

la[mO].mlp = 1; 

this is an unmarked particle •I 

la[mO] .mlp = md; 

count the total number of movable grains ng, 

and count the number of extra vall particles nv, 

and find the peak velocities pvl, pv2, pvx, pvy. •I 

ng = O; 

nv = O; 

pv.ipv2 = O; 

pv.ipvx = O; 

pv.ipvy = O; 

/• ng = number of movable grains 

nv = number of extra vall grains 

pv.ipv2 = peak velocity••2 

pv.ipvx = x component of peak velocity 

pv.ipvy = y component of peak velocity 

for (mO = nx; mo < npx; mo++) 

{ if (mo% nx == O I I (mo+ 1) % nx == O) continue; 
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this is the left or right column of the node, skip it*/ 

if (la[mO].mlp > 0) 

f* there is a movable particle at mo *I 

{ ng+=1; 

iv2p = la[mO].ivx * la[mO].ivx + la[mO].ivy * la[mO].ivy; 

if (iv2p > 0) 

there is a moving particle at mO *I 

{ if (iv2p > pv.ipv2) 

this is a higher velocity 

{ pv.ipvx = la[mO] .ivx; 

pv.ipvy = la[mO] .ivy; 

} 

} 

} 

pv.ipv2 = iv2p; 

else if (la[mO] .mlp < 0) 

there is a vall particle at mO *I 

nv += 1 · , 

} 

combine (tng, iadd, sizeof(long), 1); 

combine (tnv, iadd, sizeof(long), 1); 

combine (tpv, imax, 3*sizeof(long), 1); 

nv -= nxt2; 

rng = (double)ng; 

pv2 = (double)pv.ipv2; 

pv1 = sqrt(pv2); 

create output files *I 

if (ist > 1 tt nm > 0) 

*I 

{ 

create the output file for marked movable particle data *I 

fscanf (fi, "Xs", nam5); 

} 

fm = fopen (nam5, "v") ; 

fprintf(fm, " nl =%6d\n", nm* nt + nw); 

fmulti (fm); 

fclose(fi); 
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I* create the output file for the step summary data *I 
fp = fopen (nam.3, 11 w11

) ; 

I* buffer the output file for the step summary data in blocks of 4096 bytes *I 
setvbuf(fp, (char *)0, -10FBF, 4096); 

fprintf(fp, 11 nn 

fprintf(fp, 11 avx 

it itt ipv srav2 

avy isl ipl is2 

avt 11
); 

ip2 \n 11
); 

start main time step iteration loop 

for (nn = 1; nn <= nt; nn++) 

{ 

calculate the time increment it *I 
if (gm == 0.) 

calculate it based on the peak velocity pvt *I 
it= (pvt> 0.) ? (int)(d13 /pvt+ 0.5) : 1; 

else 

{ 

} 

calculate it based on the peak velocity pvt, on the dot product 

of the peak velocity and the gravitational acceleration gv, 

and on the magnitude of the gravitational acceleration gm *I 
gv = (double)(igx * pv.ipvx + igy * pv.ipvy); 

calculate the minimum value of it *I 
it= (int)(2. * dy3 / (sqrt(pv2 + 2. * dyl *gm)+ pvt)+ 0.5) - 1; 

rt= (double)(it) / 256.; 

dp =rt* sqrt((.25 * gm2 *rt+ gv) *rt+ pv2) - dyl; 

do 

{ dl = dp; 

it++; 

rt= (double)(it) / 256.; 

dp =rt* sqrt((.25 * gm2 *rt+ gv) *rt+ pv2) - dy1; 

} while (dp < 0. &:t it < itm); 

if (dp > -dl) it--; 

the overshoot exceeds the undershoot, use the smaller it *I 

itt += it; 

calculate the effects of gravity and update position offsets *I 
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gt[0] = (double)(igx *it)/ 256.; 

igt [0] = (int)(gt [0] + ((gt [0] < 0) ? -0. 5 : 0. 5)); 

idp[0] = (int)(gt[0] / 2. + ((gt[0] < 0) ? -0.5 : 0.5)); 

gt[1] = (double)(igy *it)/ 256.; 

igt [1] = (int)(gt [1] + ((gt [1] < 0) ? -0. 5 : 0 .5)); 

idp[1] = (int)(gt[1] / 2. + ((gt[1] < 0) ? -0.5 : 0.5)); 

for (mo= nx; mo< npx; mo++) 

{ if (mo Y. nx == 0 I I (mo+ 1) 1. nx == 0 I I la[m0].mlp != 1) continue; 

this is the left or right column of the node, or 

} 

this is not a movable particle, skip it•/ 

la[m0].ipx += ((la[m0].ivx + idp[0]) *it)/ 4096; 

la[m0].ipy += ((la[m0].ivy + idp[1]) *it)/ 4096; 

la[m0].ivx += igt[0]; 

la[m0].ivy += igt[1]; 

update the particle positions ntu times•/ 

for (nnp = 0; nnp < ntu; nnp++) 

I• do the position (0,0) template particles •I 

{ shft(); 

for (iy = nd0[1]; iy < ny; iy += 3) 

for (mo= iy * nx + nd0[0]; mo< iy * nx + nx; mo+= 3) 

if (la[m0].mlp == 1) uppo(); 

do the position (2,1) template particles •I 

shft(); 

for (iy = nd1[1]; iy < ny; iy += 3) 

for (mo= iy * nx + nd2[0]; mo< iy * nx + nx; mo+= 3) 

if (la[m0].mlp == 1) uppo(); 

do the position (1,2) template particles •I 

shftO; 

for (iy = nd2[1]; iy < ny; iy += 3) 

for (mo= iy * nx + nd1[0]; mo< iy * nx + nx; mo+= 3) 

if (la[m0].mlp == 1) uppo(); 

do the position (2,0) template particles •I 

shft(); 

for (iy = nd0[1]; iy < ny; iy += 3) 
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for (mo= iy * nx + nd2[0]; mo< iy * nx + nx; mo+= 3) 

if (la[mO].mlp == 1) uppo(); 

do the position (1,1) template particles *I 
shft(); 

for (iy = nd1(1]; iy < ny; iy += 3) 

for (mo= iy * nx + nd1[0]; mo< iy * nx + nx; mo+= 3) 

if (la[mO].mlp == 1) uppo(); 

do the position (0,2) template particles *I 
shft(); 

for (iy = nd2[1]; iy < ny; iy += 3) 

for (mo= iy * nx + ndO[O]; mo< iy * nx + nx; mo+= 3) 

if (la[mO].mlp == 1) uppo(); 

do the position (1,0) template particles *I 
shft(); 

for (iy = nd0[1]; iy < ny; iy += 3) 

for (mo= iy * nx + ndl[O]; mo< iy * nx + nx; mo+= 3) 

if (la[mO].mlp == 1) uppo(); 

do the position (0,1) template particles *I 
shft(); 

for (iy = nd1[1]; iy < ny; iy += 3) 

for (mo= iy * nx + ndO[O]; mo< iy * nx + nx; mo+= 3) 

if (la[mO].mlp == 1) uppo(); 

do the position (2,2) template particles *I 
shft(); 

for (iy = nd2(1]; iy < ny; iy += 3) 

for (mo= iy * nx + nd2[0]; mo< iy * nx + nx; mo+= 3) 

if (la[mO].mlp == 1) uppo(); 

calculate the effects of collisions, and update velocities *I 
if (nn X 2 == o) 

I* this is an even time step *I 

I* do the position (0,0) template particles *I 

{ shfb(); 

for (iy = nde[1]; iy < ny; iy += 2) 

for (mo= iy * nx + nde[O]; mo< iy * nx + nx; mo+= 2) 
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if (la[mO].mlp != 0) colb(); 

shfc(); 

for (iy = nde[1]; iy < ny; iy += 2) 

for (mO = iy * nx + nde[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colc(); 

shft(); 

for (iy = nde[1]; iy < ny; iy += 2) 

for (mo= iy * nx + nde[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colf(); 

do the position (1,1) template particles •I 

shft(); 

for (iy = ndo[1]; iy < ny; iy += 2) 

for (mo= iy * nx + ndo[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colf(); 

shfc(); 

for (iy = ndo[1]; iy < ny; iy += 2) 

for (mO = iy * nx + ndo[O]; mO < iy * nx + nx; mO += 2) 

if (la[mO].mlp != 0) colc(); 

shfb(); 

for (iy = ndo[1]; iy < ny; iy += 2) 

for (mO = iy * nx + ndo[O]; mO < iy * nx + nx; mO += 2) 

if (la[mO].mlp != 0) colb(); 

do the position (1,0) template particles •I 

shfb(); 

for (iy = nde[1]; iy < ny; iy += 2) 

for (mO = iy * nx + ndo[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colb(); 

shfc(); 

for (iy = nde[1]; iy < ny; iy += 2) 

for (mo= iy * nx + ndo[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colc(); 

shft(); 

for (iy = nde[1]; iy < ny; iy += 2) 

for (mO = iy * nx + ndo[O]; mo< iy * nx + nx; mO += 2) 

if (la[mO].mlp != 0) colf(); 

do the position (0,1) template particles•/ 



} 
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shftO; 

for (iy = ndo[1]; iy < ny; iy += 2) 

for (mo= iy * nx + nde[0]; mo< iy * nx + nx; m0 += 2) 

if (la[m0].mlp != 0) colf(); 

shfc(); 

for (iy = ndo[1]; iy < ny; iy += 2) 

for (mo= iy * nx + nde[0]; mo< iy * nx + nx; mo+= 2) 

if (la[m0].mlp != 0) colc(); 

shfb(); 

for (iy = ndo[1]; iy < ny; iy += 2) 

for (mo= iy * nx + nde[0]; mo< iy * nx + nx; mo+= 2) 

if (la[m0].mlp != 0) colb(); 

I* this is an odd time step •I 

I* do the position (0,1) template particles •I 

{ shfb(); 

for (iy = ndo[1]; iy < ny; iy += 2) 

for (mo= iy * nx + nde[0]; mo< iy * nx + nx; mo+= 2) 

if (la[m0] .mlp ! = 0) colb(); 

shfc(); 

for (iy = ndo[1]; iy < ny; iy += 2) 

for (m0 = iy * nx + nde[0]; mo< iy * nx + nx; m0 += 2) 

if (la[m0].mlp != 0) colc(); 

shft(); 

for (iy = ndo[1]; iy < ny; iy += 2) 

for (m0 = iy * nx + nde[0]; mo< iy * nx + nx; mo+= 2) 

if (la[m0].mlp != 0) colf(); 

do the position (1,0) template particles •I 

shft(); 

for (iy = nde[1]; iy < ny; iy += 2) 

for (mo= iy * nx + ndo[0]; mo< iy * nx + nx; mo+= 2) 

if (la[m0].mlp != 0) colf(); 

shfc (); 

for (iy = nde[1]; iy < ny; iy += 2) 

for (mo= iy * nx + ndo[0]; mo< iy * nx + nx; mo+= 2) 



} 

162 

if (la[mO].mlp != 0) colc(); 

shfb(); 

for (iy = nde[l]; iy < ny; iy += 2) 

for (mo= iy * nx + ndo[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colb(); 

do the position (1,1) template particles *I 

shfb(); 

for (iy = ndo[l]; iy < ny; iy += 2) 

for (mo= iy * nx + ndo[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colb(); 

shfc(); 

for (iy = ndo[l]; iy < ny; iy += 2) 

for (mo= iy * nx + ndo[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colc(); 

shft(); 

for (iy = ndo[l]; iy < ny; iy += 2) 

for (mo= iy * nx + ndo[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colf(); 

do the position (0,0) template particles *I 

shft(); 

for (iy = nde[l]; iy < ny; iy += 2) 

for (mo= iy * nx + nde[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colf(); 

shfc(); 

for (iy = nde[l]; iy < ny; iy += 2) 

for (mO = iy * nx + nde[O]; mO < iy * nx + nx; mO += 2) 

if (la[mO].mlp != 0) colc(); 

shfb(); 

for (iy = nde[l]; iy < ny; iy += 2) 

for (mo= iy * nx + nde[O]; mo< iy * nx + nx; mo+= 2) 

if (la[mO].mlp != 0) colb(); 

calculate vall pressure tensor *I 

isl= O; 

ipl = O; 



163 

is2 = O· 
' 

ip2 = O· 
' 

is1 = X component of velocity changes absorbed 

ip1 = y component of velocity changes absorbed 

is2 = X component of velocity changes absorbed 

ip2 = y component of velocity changes absorbed 

if (coor[1] == 0) 

this is a bottom vall node *I 

{ for (mo= nx + 1; mo< nx2 - 1; mo++) 

{ is1 += la[mO].ipx; 

} 

} 

la[mO].ipx = O; 

ip1 += la[mO] .ipy; 

la[mO].ipy = O; 

if (coor[1] == nnd[1] - 1) 

this is a top vall node *I 

{ for (mo= npx2 + 1; mo< npx - 1; mo++) 

{ is2 += la[mO].ipx; 

la[mO].ipx = O; 

ip2 += la[mO].ipy; 

la[mO].ipy = O; 

} 

} 

combine (tis1, 

combine (tip1, 

combine (tis2, 

combine (tip2, 

is1 /= nxt; 

ip1 /= nxt; 

is2 /= nxt; 

ip2 /= nxt; 

iadd, sizeof (long) , 

iadd, sizeof (long) , 

iadd, sizeof (long) , 

iadd, sizeof(long), 

calculate the average velocities: 

1); 

1); 

1); 

1); 

av[O] = average velocity in the x direction, 

by bottom vall particles 

by bottom vall particles 

by top vall particles 

by top vall particles 
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av(1] = average velocity in they direction, 

av[2] = average velocity••2, 

av(3] = average thermal velocity, 

and calculate the forces is3 and ip3 on the extra vall particles, 

and count the number of particles in the right half nq, 

and find the peak velocities pv1, pv2, pvx, pvy. •I 

is3 = O; 

ip3 = O; 

nq = O; 

I• is3 = x component of velocity changes absorbed by extra vall particles 

ip3 = y component of velocity changes absorbed by extra vall particles 

nq = number of particles in the right half 

pv.ipv2 = O· , 

pv.ipvx = O· , 

pv.ipvy = O· 
' 

vtt[O] = 0.; 

vtt [1] = o.; 

vtt[2] = 0.; 

vtt[O] = total of X components of moving particle velocities 

vtt [1] = total of y components of moving particle velocities 

vtt[2] = total of square of moving particle velocities 

shft(); 

for (mO = nx; mO < npx; mO++) 

{ if (mo Y. nx == 0 I I (mo+ 1) Y. nx == 0) continue; 

this is the left or right column of the node, skip it •I 

if ((ist > 1 tt la[mO].nlp > 0) II (nv > 0 tt la[mO].mlp > 0)) 

{ 

} 

calculate particle's coordinates •I 

iy =mo/ nx; 

ix= mo - iy * nx + ndx1 - 1; 

iy += ndy1 - 1; 

ix= (ix+ (iy - 1) / 2 + nxt - 1) Y. nxt + 1; 

if (ist > 1 tt la[mO] .nlp > 0) 

there is a marked movable particle at mO, vrite it to nam5 •I 
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fprintf(fm, "%2d 1,5d Y,5d 1,5d Y,5d Y,6d 1,6d Y,4d Y,3d\n", 

la[mO].nlp + 10, ix, iy, la[mO].ipx, la[mO].ipy, 

la[mO].ivx, la[mO].ivy, nn, env.procnum); 

if (la[mO] .mlp > 0) 

I* there is a movable particle at mo *I 
{ if (nv > 0 H ix > nxt5) nq++; 

I* the particle is in the right half, count it *I 
if (la[mO].mlp == 2) la[mO].mlp--; 

the particle vas moved this time step, 

make it eligible to move in the next time step *I 

iv2p = la[mO].ivx * la[mO].ivx + la[mO].ivy * la[mO] .ivy; 

if (iv2p > 0) 

there is a moving particle at mo *I 
{ vtt[O] += (double)la[mO] .ivx; 

vtt [1] += (double)la[mO] .ivy; 

vtt [2] += (double)iv2p; 

if (iv2p > pv .ipv2) 

this is a higher velocity *I 

{ pv.ipvx = la[mO].ivx; 

pv.ipvy = la[mO].ivy; 

pv.ipv2 = iv2p; 

} 

} 

} 

else if (la [mO] .mlp < 0) 

I* there is a vall particle at mo *I 
{ is3 += la[mO].ipx; 

la[mO].ipx = O; 

ip3 += la[mO].ipy; 

la[mO].ipy = O; 

} 

} 

if (nv > 0) 

I* there are extra vall particles *I 
{ combine (tis3, iadd, sizeof(long), 1); 

combine (tip3, iadd, sizeof(long), 1); 
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combine (knq, iadd, sizeof(long), 1); 

is3 /= nw; 

ip3 /= nw; 

} 

combine (tpv, imax, 3•sizeof (long) , 

combine (vtt, dadd, sizeof(double), 

av[0] = vtt(0] / rng; 

av[1] = vtt(1] / rng; 

av[2] = vtt[2] / rng; 

1); 

3); 

av[3] = av(2] - av[0] * av[0] - av[1] * av(1]; 

av[3] = (av[3] > 0.) ? sqrt(av(3]) : 0.; 

pv2 = (double)pv.ipv2; 

pv1 = sqrt(pv2); 

output results •I 

I* write the step summary data to nam3 and to screen •I 

ia[0] = (int) (av [0] + ((av[0] < 0) ? -0.5 0.5)); 

ia[1] = (int) (av [1] + ((av(1] < 0) ? -0.5 0.5)); 

ia[2] = (int)(sqrt(av(2]) + 0.5); 

ia[3] = (int) (av[3] + 0.5); 

ipv = (int)(pv1 + 0.5); 

fprintf(fp, "%5d%5d%8d %5d 7,6d Y.6d 7,6d %6d Y.6d 7,6d 7,6d %6d\n", 

nn, it, itt, ipv, ia(2], ia[3], ia(0], ia(1], is1, ip1, is2, ip2); 

if (nw > 0) 

there are extra wall particles, output is3, ip3 and nq •/ 

fprintf(fp, 11 is3 = Y.6d ip3 = Y.6d nq = Y.7d\n", is3, ip3, nq); 

if (nn Y. nto == 0) 

/* write the particle data to nam4 •/ 

{ m1 = nx; 

m2 = npx; 

ny0 = (ndy1 - 2) / mvy; 

ny0 = y-index of lowest block of average velocities in this node •I 

if (coor[1] == 0) 

I* this node is in the bottom row of nodes •I 

{ m1 = nx2; 

nyO = O; 



167 

} 

if (coor[1] == nnd[1] - 1) m2 = npx2; 

this node is in the top rov of nodes •I 

if (ist == 1 I I ist == 3) 

average movable particle velocities over blocks•/ 

{ ng = O; 

} 

ng = count of lines in output file•/ 

for (ix= O; ix<= (nxt - 1) / mvx; ix++) 

{ for (iy = nyO; iy <= (ndy2 - 2) / mvy; iy++) 

{ aivx[ix][iy] = O; 

aivy[ix][iy] = O; 

aivt[ix][iy] = O.; 

amlp[ix][iy] = O; 

} 

} 

for (mO = ml; mO < m2; mO++) 

{ if (mOY.nx==O II (m0+1)1.nx==O I I la[mO].mlp <= 0) continue; 

this is the left or right column of the node, or 

} 

this is a vall particle, skip it•/ 

iy =mo/ nx; 

ix= mo - iy * nx + ndx1 - 1; 

iy += ndy1 - 1; 

ix= (ix+ (iy - 1) / 2 + nxt - 1) % nxt + 1; 

ix= (ix 1) / mvx; 

iy = (iy 2) / mvy; 

if (amlp[ix][iy] == 0) ng++; 

this is nova non-zero particle block, count it•/ 

aivx[ix][iy] += la[mO].ivx; 

aivy[ix][iy] += la[mO].ivy; 

aivt[ix][iy] += (float)la[mO].ivx * (float)la[mO].ivx 

+ (float)la[mO].ivy * (float)la[mO] .ivy; 

amlp[ix] [iy] ++; 

combine (&Ilg, iadd, sizeof(long), 1); 

if (ist < 4) 
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output the particle data or the average block data *I 
if (nto != nt) nam4[2] = nn / nto - 1 + 'a'; 

this is a multiple output run, rename the output file *I 
fq = fopen (nam4, "v"); 

fprintf(fq, " nl =1.6d\n", ng + nv); 

fmulti (fq); 

for (mO = ml; mO < m2; mO++) 

{ if (mOXnx == 0 I I (mO+l)Y.nx == 0 II la[mO].mlp == 0) continue; 

this is the left or right column of the node, or 

} 

this lattice point is empty, skip it *I 
if (ist != 0 tt ist != 2 tt la[mO].mlp > O) continue; 

this is not a movable particle output simulation, and 

this lattice point is occupied by a movable particle, 

skip it *I 
iy =mo/ nx; 

ix= mo - iy * nx + ndxl - 1; 

iy += ndyl - 1; 

ix= (ix+ (iy 

if (ist < 4) 

1) / 2 + nxt - 1) 1. nxt + 1; 

vrite particle data to nam4 *I 
fprintf(fq, "1.2d %5d %5d 1.5d %5d %6d %6d 1.4d %3d\n", 

la[mO].mlp, ix, iy, la[mO].ipx, la[mO] .ipy, 

la[mO].ivx, la[mO] .ivy, mo, env.procnum); 

if (ist > 1 U nm > 0 U nn == nto tt la[mO] .mlp < 0) 

vrite vall particle data to marker particle output file *I 
fprintf(fm, "%2d %5d %5d %5d %5d 7.6d 7.6d 7.4d 7.3d\n", 

la[mO].mlp, ix, iy, la[mO].ipx, la[mO].ipy, 

la[mO].ivx, la[mO].ivy, mo, env.procnum); 

if (ist == 1 II ist = 3) 

print average movable particle position offsets 

and velocities over blocks in nam.4 *I 
{ nl = O; 

for (ix= O; ix<= (nxt - 1) / avx; ix++) 

{ for (iy = nyO; iy <= (ndy2 - 2) / mvy; iy++) 
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if (amlp[ix] [iy] > 0) 

there are any movable particles in this block, 

print out the averages •I 

{ fprintf(fq, 11 -7 ¼5d ¼5d ¼Sd ¼Sd ¼11.5e ¼4d\n 11
, 

ix, iy, aivx[ix][iy], aivy[ix][iy], 

aivt[ix][iy], amlp[ix][iy]); 

nl++; 

} 

combine (tnl, iadd, sizeof(int), 1); 

fsingl (fq); 

fprintf(fq, 11 nl =¼6d\n 11
, nl); 

if (ist < 4) fclose (fq) ; 

close the output file nam.4 •I 

} 

if (ist > 1 U nm > 0 U nn ¼ 4 == 0) fflush (fm); 

there are marked particles, flush the marked particle output file *I 

} 

I* end of main time step loop •I 
ng = (int) rng; 

fprintf(fp, 11 ng = ¼7d nw = ¼7d\n11
, ng, nw); 

fclose (fp); 

if (ist > 1 U nm > 0) fclose (fm); 

I* close the marker particle file *I 
exit(0); 

This function adds two doubles for the combine function 

*I 
dadd (a, b, size) 

double *a, *b; 

int size; 

{ *a+= *b; 

return 1; 
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This function adds tvo integers for the combine function 

•I 

iadd (i, j, size) 

long •i, •j; 

int size; 

{ •i += •j; 

return 1; 

} 

I* 

This function finds the peak velocity••2 and 

its x and y components for the combine function 

imax (i, j, size) 

struct pkvlct •i; 

struct pkvlct •j; 

int size; 

{ if (i->ipv2 < j->ipv2) 

I* the peak velocity at j is higher, keep it•/ 

{ i->ipv2 = j->ipv2; 

i->ipvx = j->ipvx; 

i->ipvy = j->ipvy; 

} 

return 1; 

This function shifts data betveen the nodes in they direction 

•I 

shfb() 

{ cshift (tla[ly .ni], mskp[1], nb [1], 

tla[ly .no], mskn[1], nb[1]); 

cshift (tla [ly. pi] , mskn[1], nb[1], 

tla [ly. po] , mskp [1], nb[1]); 

} 

I* 
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This function shifts data between the nodes in the x direction 

*I 
shfc() 

{ vshift (tla[lx.ni], msk:p[0], nb[0], nb[1], ny2, 

tla[lx.no], mskn[0], nb[0], nb[1], ny2); 

vshift (tla[lx.pi], mskn[0], nb[0], nb[1], ny2, 

tla[lx.po], msk:p[0], nb[0], nb[1], ny2); 

This function shifts data between the nodes in all four directions 

*I 
shftO 

{ vshift (tla[lx.ni], msk:p[0], nb[0], nb[1], ny2, 

tla[lx.no], mskn[0], nb[0], nb[1], ny2); 

vshift (tla[lx.pi], mskn[0], nb [0], nb[1], ny2, 

tla [lx. po] , mskp[0], nb[0], nb[1], ny2); 

cshift (tla [ly .ni], msk:p[1], nb[1], 

tla[ly.no], mskn[1], nb[1]); 

cshift (tla[ly.pi], mskn[1], nb [1] , 

tla[ly.po], msk:p [1], nb [1]); 

} 

I* 
This function updates the position of the particle at mo 

*I 
uppoO 

{ int icx, icy, islope, ix, iy; 

ix= la[m0].ipx; 

iy = la[m0].ipy; 

if (ix < idl tt ix > -idl tt 

iy < idl tt iy > -idl tt 

ix * ix + iy * iy < id) 

/• particle will not jump to a new position *I 
la[m0] .mlp++; 

else 

I* particle may jump to a new position •I 

{ if (ix > 0) 
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I* particle is moving in the +x direction *I 

{ islope = 256 * iy / ix; 

if (islope <= -148) 

I* particle is moving tovards 300 degrees *I 
{ ml= n4; 

icx = -idx; 

icy= idy; 

} 

else if (islope < 148) 

particle is moving tovards 000 degrees *I 

{ ml= 

icx = -id2; 

icy= O· , 

} 

else 

I* particle is moving tovards 060 degrees *I 
{ ml= nx; 

} 

} 

icx = -idx; 

icy= -idy; 

else if (ix < 0) 

I* particle is moving in the -x direction *I 

{ islope = 256 * iy / ix; 

if (islope >= 148) 

I* particle is moving tovards 240 degrees *I 
{ ml= -nx; 

icx = idx; 

icy= idy; 

} 

else if (islope > -148) 

I* particle is moving tovards 180 degrees *I 
{ ml= -1; 

icx = id2; 

icy= o; 

} 
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else 

particle is moving towards 120 degrees *I 

{ mi= n3; 

icx = idx; 

icy= -idy; 

} 

else if (iy < 0) 

{ 

particle is moving in -y direction *I 

if ((mO / nx + ndy1) X 2 == O) 

particle is on an odd row, move to position 6 *I 

{ mi= n4; 

icx = -idx; 

} 

else 

I* particle is on an even row, move to position 5 *I 

{ mi= -nx; 

icx = idx; 

} 

icy= idy; 

} 

else 

I* particle is moving in +y direction *I 

{ if ((mo/ nx + ndy1) 1. 2 == O) 

I• particle is on an odd row, move to position 2 •/ 

{ mi= nx; 

icx = -idx; 

} 

else 

I* particle is on an even row, move to position 1 *I 

{ mi = n3; 

icx = idx; 

} 

icy= -idy; 

} 

I* eliminate particles in adjacent nodes which are not incoming *I 
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if ( mo ¼ nx == 0 tt ml != 1 tt ml != n4) return; 

this is left column of node and particle is not going to d or f *I 
if ((m0+1) 1. nx == 0 tt ml != -1 tt ml != n3) return; 

this is right column of node and particle is not going to c or a *I 
if ( mo / nx == 0 tt ml != nx tt ml != n3) return; 

this is bottom rov of node and particle is not going to b or a *I 
if ( mo / nx == ny1 tt ml != -nx tt ml != n4) return; 

this is top 

ml+= mO; 

rov of node and particle is not going toe or f *I 

if (la[m1].mlp == 0) 

space is empty, particle can move *I 
{ la[m1] .ipx = la[mO].ipx + icx; 

la[mO].ipx = O· 
' 

la[m1].ipy = la[mO].ipy + icy; 

la[mO].ipy = O; 

la[m1].ivx = la[mO].ivx; 

la[mO].ivx = O· 
' 

la[m1].ivy = la[mO] .ivy; 

la[mO].ivy = O· 
' 

la[m1].mlp = la[mO].mlp + 1; 

la[mO].mlp = O· 
' 

la[m1].nlp = la[mO].nlp; 

la[mO].nlp = O· 
' 

} 

This function calculates the effects of a collision betveen the 

particle at [mO] and any adjacent particle in the b direction 

•I 

colb() 

{ long ikc, ikcx, ikcy, ip, kc1; 

I* ikc = change of particle velocities in a collision* ke 

ikcx = x-component of ikc 

ikcy = y-component of ikc 

ip = change in position offsets in a collision 
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kc1 = relative particle velocity before collision 

m1 =mo+ nx; 

if (mi< np tt m1 1. nx != 0 tt (m1 + 1) 1. nx != 0) 

I* do the collision vith position b *I 
{ if (la[mO] .mlp < 0) 

I* the particle at [mO] is fixed *I 
{ if (la[m1] .mlp > 0) 

there is a movable particle at [m1], calculate k.c12 *I 
{ kc1 = (kx * (la[mO].ivx - la[m1].ivx) + 

ky * (la[mO].ivy - la[m1].ivy) + kx) / kq; 

if (kc1 > 0) 

there vill be a collision *I 
{ if (kc1 <= icb) ikc = iev1 * kc1; 

the collision velocity is belov icb *I 
else 

I* the collision velocity is above icb *I 

} 

else 

} 

} 

{ ikc = icv + iev2 * kc1; 

} 

if (ikc < 0) ikc = O; 

relative rebound velocity cannot be less than O *I 

ikc += ke * kc1; 

ikcx = (kx * ikc + kxv) / kqv; 

ikcy = (ky * ikc + kxv) / kqv; 

la[mO].ipx -= ikcx; 

la[m1].ivx += ikcx; 

la[mO].ipy -= ikcy; 

la[m1].ivy += ikcy; 

ip = (idy * la[m1].ipx - idx * la[m1].ipy) / id2; 

la[m1].ipx = ip * idy / id2; 

la[m1].ipy = -ip * idx / id2; 

the particle at [mO] is movable *I 
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{ if (la[ml].mlp < 0) 

I* there is a fixed particle at [ml], calculate k.c12 *I 

{ kcl = (kx * (la[m0].ivx - la[ml] .ivx) + 

ky * (la[m0].ivy - la[ml].ivy) + kx) / kq; 

if (kcl > 0) 

I* there vill be a collision *I 
{ if (kcl <= icb) ikc = ievl * kcl; 

I* the collision velocity is belov icb *I 
else 

I* the collision velocity is above icb *I 

} 

} 

{ ikc = icv + iev2 * kcl; 

if (ikc < 0) ikc = 0; 

relative rebound velocity cannot be less than 0 *I 
ikc += ke * kcl; 

} 

ikcx = (kx * ikc + kxv) 

ikcy = (ky * ikc + kxv) 

la[m0].ivx -= ikcx; 

la[ml].ipx += ikcx; 

la[m0].ivy -= ikcy; 

la[ml].ipy += ikcy; 

I kqv; 

I kqv; 

ip = (idy * la[m0] .ipx - idx * la[m0] .ipy) / id2; 

la[m0].ipx = ip * idy / id2; 

la[m0].ipy = -ip * idx / id2; 

else if (la[ml].mlp > 0) 

I* there is a movable particle at [ml], calculate k.c12 *I 
{ kcl = (kx * (la[m0].ivx - la[ml].ivx) + 

ky * (la[m0].ivy - la[ml].ivy) + kx) / kq; 

if (kcl > 0) 

I* there vill be a collision *I 
{ if (kcl <= icb) ikc = iepl * kcl; 

I* the collision velocity is belov icb *I 
else 

the collision velocity is above icb *I 
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{ ikc = icp + iep2 * kc1; 

i:f (ikc < 0) ikc = O; 

relative rebound velocity cannot be less than O •I 

ikc += ke * kc1; 

} 

ikcx = (kx * ikc + kxp) I kqp; 

ikcy = (ky * ikc + kxp) I kqp; 

la[m.O].ivx -= ikcx; 

la [m.1] . i vx += ikcx; 

la[m.O] .ivy -= ikcy; 

la[m.1] .ivy += ikcy; 

ip = (idy * la[mO].ipx - idx * la[mO] .ipy) / id2; 

la[mO].ipx = ip * idy / id2; 

la[m.0].ipy = -ip * idx / id2; 

ip = (idy * la[m1].ipx - idx * la[m1].ipy) / id2; 

la[m1].ipx = ip * idy / id2; 

la[m1] .ipy = -ip * idx / id2; 

} 

} 

} 

} 

This function calculates the effects of a collision betveen the 

particle at [mO] and any adjacent particle in the c direction 

•I 

colc() 

{ long ikc, ikcx, kc1; 

/• ikc = change of particle velocities in a collision* ke 

ikcx = x-component of ikc 

kc1 = relative particle velocity before collision 

m1 = mo - 1; 

if (mo > nx &:t mo < npx tt mo 1. nx ! = o) 

I* do the collision nth position c •I 

{ if (la[mO] .mlp < 0) 
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I* the particle at [mO] is fixed •I 

{ if (la[ml] .mlp > 0) 

there is a movable particle at [ml], calculate k.c12 •/ 

{ kcl = la[ml] .ivx - la[m0].ivx; 

if (kcl > 0) 

there will be a collision•/ 

{ if (kcl <= icb) ikc = iewl * kcl; 

the collision velocity is below icb •I 

else 

/• the collision velocity is above icb •I 

} 

} 

} 

else 

{ ikc = icw + iew2 * kcl; 

} 

if (ikc < 0) ikc = 0; 

relative rebound velocity cannot be less than 0 •/ 

ikc += ke * kcl; 

ikcx = (ikc + ke2) / ke; 

la[m0].ipx += ikcx; 

la[ml].ivx -= ikcx; 

la[ml].ipx = 0; 

/• the particle at [m0] is movable•/ 

{ if (la[ml] .mlp < 0) 

there is a fixed particle at [ml], calculate k.c12 •/ 

{ kcl = la[ml].ivx - la[m.0].ivx; 

if (kcl > 0) 

there will be a collision •I 

{ if (kcl <= icb) ikc = iewl * kcl; 

the collision velocity is below icb •I 

else 

/• the collision velocity is above icb •I 

{ ikc = icw + iew2 * kcl; 

if (ikc < 0) ikc = 0; 

relative rebound velocity cannot be less than 0 •/ 
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ikc += ke * kcl; 

} 

ikcx = (ikc + ke2) / ke; 

la[m0].ivx += ikcx; 

la[ml].ipx -= ikcx; 

la[m0].ipx = 0; 

else if (la[ml] .mlp > 0) 

there is a movable particle at [ml], calculate k.c12 •I 

{ kcl = la[ml].ivx - la[m.0].ivx; 

if (kcl > 0) 

there vill be a collision •I 

{ if (kcl <= icb) ikc = iepl * kcl; 

the collision velocity is belov icb •I 

else 

I• the collision velocity is above icb •/ 

{ ikc = icp + iep2 * kcl; 

if (ikc < 0) ikc = 0; 

I• relative rebound velocity cannot be less than O •/ 

} 

} 

} 

} 

ikc += ke * kcl; 

} 

ikcx = (ikc + ke) / kel; 

la[m0].ivx += ikcx; 

la[ml].ivx -= ikcx; 

la[m0].ipx = 0; 

la[ml].ipx = 0; 

This function calculates the effects of a collision betveen the 

particle at [m0] and any adjacent particle in the f direction 
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colf() 

{ long ikc, ikcx, ikcy, ip, kcl; 

/* ikc = change of particle velocities in a collision* ke 

ikcx = x-component of ikc 

ikcy = y-component of ikc 

ip = change in position offsets in a collision 

kcl = relative particle velocity before collision 

ml= m0 + n4; 

if (ml > 0 &:&: ml % nx ! = 0) 

{ 

do the collision vith position f •/ 

if (la[m0] .mlp < 0) 

{ 

the particle at [m0] is fixed •I 

if (la[ml] .lllp > 0) 

there is a movable particle at [ml], calculate k.c12 •I 

{ kcl = (kx * (la[m0].ivx - la[ml].ivx) + 

ky * (la[ml].ivy - la[mO].ivy) + kx) / kq; 

if (kcl > 0) 

{ 

there vill be a collision•/ 

if (kcl <= icb) ikc = ievl * kcl; 

the collision velocity is belov icb •/ 

else 

{ 

the collision velocity is above icb •/ 

ikc = icv + iev2 * kcl; 

if (ikc < 0) ikc = 0; 

relative rebound velocity cannot be less than 0 •/ 

ikc += ke * kcl; 

} 

ikcx = (kx * ikc + kxv) 

ikcy = (ky * ikc + kxv) 

la[m.0].ipx -= ikcx; 

la[llll] .ivx += ikcx; 

la[m0].ipy += ikcy; 

la[ml].ivy -= ikcy; 

I kqv; 

I kqv; 

ip = (idy * la[ml].ipx + idx * la[ml].ipy) / id2; 

la[m.1].ipx = ip * idy / id2; 
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la[a1].ipy = ip * idx / id2; 

} 

} 

} 

else 

I• the particle at [m0] is movable •I 

{ if (la[m1].mlp < 0) 

there is a fixed particle at [m1], calculate k.c12 •I 

{ kc1 = (kx * (la[m0].ivx - la[m1].ivx) + 

ky * (la[m1].ivy - la[m0] .ivy)+ kx) / kq; 

if (kc1 > 0) 

there vill be a collision•/ 

{ if (kc1 <= icb) ikc = iev1 * kc1; 

the collision velocity is belov icb •I 

else 

I• the collision velocity is above icb •I 

} 

} 

{ ikc = icv + iev2 * kc1; 

} 

if (ikc < 0) ikc = 0; 

relative rebound velocity cannot be less than 0 •/ 

ikc += ke * kc1; 

ikcx = (kx * ikc + kxv) / kqv; 

ikcy = (ky * ikc + kxv) / kqv; 

la[mO].ivx -= ikcx; 

la[m1].ipx += ikcx; 

la[m0].ivy += ikcy; 

la[m1].ipy -= ikcy; 

ip = (idy * la[m0].ipx + idx * la[m0].ipy) / id2; 

la[m0].ipx = ip * idy / id2; 

la[m0].ipy = ip * idx / id2; 

else if (la[m1].mlp > 0) 

there is a movable particle at [m1], calculate k.c12 •I 

{ kc1 = (kx * (la[m0].ivx - la[m1] .ivx) + 

ky * (la[m1].ivy - la[m0].ivy) + kx) / kq; 
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if (kc1 > 0) 

I* there will be a collision •I 
{ if (kc1 <= icb) ikc = iep1 * kc1; 

I* the collision velocity is belov icb •I 
else 

I* the collision velocity is above icb •I 
{ ikc = icp + iep2 * kc1; 

if (ikc < 0) ikc = 0; 

relative rebound velocity cannot be less than 0 */ 

ikc += ke * kc1; 

} 

ikcx = (kx * ikc + kxp) I kqp; 

ikcy = (ky * ikc + kxp) I kqp; 

la[m0].ivx -= ikcx; 

la[m1].ivx += ikcx; 

la[m0].ivy += ikcy; 

la[m1].ivy -= ikcy; 

ip = (idy * la[m0].ipx + idx * la[m0] .ipy) / id2; 

la[m0].ipx = ip * idy I id2; 

la[m0].ipy = ip * idx I id2; 

ip = (idy * la[m1].ipx + idx * la[m1]. ipy) / id2; 

la[m1].ipx = ip * idy I id2; 

la[m1].ipy = ip * idx I id2; 

} 

} 

} 

} 

} 
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