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Abstract

Protein design is the art of choosing an amino acid sequence that will fold into a

desired structure. Computational protein design aims to quantify and automate this

process. In computational protein design, various metrics may be used to calculate an

energy score for a sequence with respect to a desired protein structure. An ongoing

challenge is to find the lowest-energy sequences from amongst the vast multitude of

sequence possibilities. A variety of exact and approximate algorithms may be used in this

search.

The work in this thesis focuses on the development and testing of four search

algorithms. The first algorithm, HERO, is an exact algorithm, meaning that it will always

find the lowest-energy sequence if the algorithm converges. We show that HERO is

faster than other exact algorithms and converges on some previously intractable designs.

The second algorithm, Vegas, is an approximate algorithm, meaning that it may not find

the lowest-energy sequence. We show that, under certain conditions, Vegas finds the

lowest-energy sequence in less time than HERO. The third algorithm, Monte Carlo, is an

approximate algorithm that had been developed previously. We tested whether Monte

Carlo was thorough enough to do a challenging computational design: the full-sequence

design of a protein. Monte Carlo didn’t find the lowest-energy sequence, although a

similar sequence from Vegas folded into the desired structure. Several biophysical

methods suggested that the Monte Carlo sequence should also fold into the desired

structure. Nevertheless, the Monte Carlo structure as determined by X-ray

crystallography was markedly different from the predicted structure. We attribute this

discrepancy to the presence of a high concentration of dioxane in the crystallization
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conditions. The fourth algorithm, FC_FASTER, is an approximate algorithm for designs

of fixed amino acid composition. Such designs may accelerate improvements to the

physical model. We show that FC_FASTER finds lower-energy sequences and is faster

than our current fixed-composition algorithm.
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Chapter I 

Introduction

From proteins to computational protein design

Proteins are diverse, ubiquitous biological macromolecules. Hair, fingernails,

skin, and even spider’s silk are made up largely of fibrous proteins such as keratin,

collagen, and silk fibroins. Many hormones, such as insulin and human growth hormone,

are proteins. Antibodies, which help your immune system fight disease, are proteins.

Hemoglobin, which transports oxygen in your blood, is a protein. Enzymes, which can

speed up chemical reactions by more than a millionfold, are proteins. An example of an

enzyme is DNA polymerase, which helps replicate your DNA.

The field of protein design seeks to tap the infinite potential of proteins. Modified

or completely novel proteins could be used to change the curliness of your hair, to help

your body fight specific diseases, or even to alter your DNA. There is also great potential

for designed proteins in environmental and industrial applications, such as cleaning up oil

spills, creating new fabrics, or manufacturing chemicals. To design proteins that will

carry out our every whim, we need “only” to understand how proteins work.

While different proteins serve many different functions, all proteins are made up

of the same components: amino acids. A protein is a polypeptide of amino acids that

folds into a well-defined structure. The composition and order of the amino acids, i.e., the

amino acid sequence, determine the structure of a protein. This structure, which includes

both the polypeptide backbone and the conformations of the side chains of the amino

acids, is the source of a protein’s functional abilities. So, to a first approximation, a



I-2

protein’s sequence determines its structure, which determines its function. The challenge

of taking a sequence and predicting its structure (and ultimately its function) is the

infamous protein-folding problem.

To design proteins, we have to solve basically the inverse of the protein-folding

problem (Fig. I-1). It is important to note that only a few structural elements may be

necessary for a protein’s function. So while one sequence may determine one structure

and one function, that same function may be encoded by multiple, slightly different

structures, and thus by multiple sequences. Protein design is the art of specifying the

desired structural elements and then choosing an amino acid sequence that will fold into a

structure consistent with those elements. Computational protein design aims to quantify

and automate this process.

For computational protein design to succeed, we must achieve mastery over two

distinct problems. The first problem is to accurately simulate the protein and its physical

environment. A physical model is used to calculate an energy score for an amino acid

sequence with respect to a desired protein structure. The second problem is to efficiently

find the lowest-energy sequences from amongst the vast multitude of sequence

possibilities. A variety of exact and approximate algorithms may be used in this search.

The validity of both the physical model and the search algorithms is largely unestablished

until computationally designed sequences have had their structures verified

experimentally. Because the structures are unlikely to be perfect, useful information can

often be gleaned from the experimental results and used to determine shortcomings in the

physical model or search algorithm. The addressing of these shortcomings marks the end

of one cycle of computational protein design. A new and improved cycle may then begin.



I-3

Search complexity

The combinatorial complexity faced by a protein design search algorithm is

immense. Consider the task of finding the lowest-energy sequence that will fold into a

backbone structure that is 50 amino acids in length. How many different sequences are

there? If each of the 20 naturally occurring amino acids can be at each of the 50 amino

acid positions, then there are 2050, or ~1065, different sequences. Even if the energies of

one trillion sequences could be calculated per second, it would take ~1045 years (i.e.,

1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 years) to calculate the

energies of all the sequences. An exhaustive search is thus prohibitive, except for the

simplest designs. For protein design to be effective, we need more efficient search

algorithms.

Algorithms, chapter by chapter

The work in this thesis focuses on the development and testing of four search

algorithms.

Chapter II describes the first algorithm, HERO. HERO is an exact algorithm,

meaning that it will always find the lowest-energy sequence if the algorithm converges.

We show that HERO is faster than other exact algorithms and converges on some

previously intractable designs. Larger designs thus become more feasible.

Chapter III describes the second algorithm, Vegas. Vegas is an approximate, or

inexact, algorithm. Inexact algorithms tend to be faster, but they may not find the lowest-
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energy sequence. We show that, under certain conditions, Vegas finds the lowest-energy

sequence in less time than HERO.

Chapter IV examines the utility of the third algorithm, Monte Carlo. Monte Carlo

is an approximate algorithm that was developed previously.1,2 We tested whether Monte

Carlo was thorough enough to do a challenging computational design: the full-sequence

design of a small protein. This design specified a backbone structure 51 amino acids in

length, and multiple amino acids were allowed at each position. Monte Carlo didn’t find

the lowest-energy sequence. However, Vegas found a similar, lower-energy sequence

that was shown by NMR to be folded to the desired structure. Furthermore, several

biophysical methods indicated that the Monte Carlo and Vegas molecules are nearly

identical, suggesting that the Monte Carlo sequence should also fold into the desired

structure.

Chapter V reveals the structure of the Monte Carlo sequence, as determined by X-

ray crystallography. The crystal structure was markedly different from the predicted

structure. We attribute this discrepancy to the high concentration of dioxane present in

the crystallization conditions, as biophysical experiments showed that dioxane increases

both the helicity and the oligomerization state of the designed protein.

Chapter VI describes the fourth algorithm, FC_FASTER. FC_FASTER is an

inexact algorithm for designs of fixed amino acid composition. Fixed-composition

designs may be useful for circumventing defects in the modeling of the denatured state of

proteins, and thus FC_FASTER could accelerate improvements to the physical model.

We show that FC_FASTER finds lower-energy sequences and is faster than our current

fixed-composition algorithm.
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Compared to its vast potential, computational protein design is still in its infancy.

Typical designs do not address complex functions, large proteins, or protein complexes.

The future of computational protein design will be in these areas, but we will need

powerful new search algorithms to get us there.

References

1. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., and Teller, A.H. 1953.

Equation of State Calculations by Fast Computing Machines. The Journal of

Chemical Physics 21: 1087-1092.

2. Voigt, C.A., Gordon, D.B., and Mayo, S.L. 2000. Trading accuracy for speed: A

quantitative comparison of search algorithms in protein sequence design. J. Mol.

Biol. 299: 789-803.
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Figure I-1. Protein design is the inverse of protein-fold prediction. Protein-fold
prediction is the art of predicting an amino acid sequence’s structure (and ultimately its
function). Protein design is the art of specifying the desired structural elements and then
choosing a sequence that will fold into a structure consistent with those elements. The
same function may be encoded by multiple sequences.



Chapter II 

Exact rotamer optimization for protein design

The text of this chapter has been adapted from a published manuscript that was

coauthored with D. Benjamin Gordon and Professors Stephen L. Mayo and Niles A.

Pierce.

D. B. Gordon, G. K. Hom, S. L. Mayo and N. A. Pierce. 2003. J. Comput. Chem., 24:

232–243.

Abstract

Computational methods play a central role in the rational design of novel proteins.

The present work describes a new hybrid exact rotamer optimization (HERO) method

that builds on previous dead-end elimination algorithms to yield dramatic performance

enhancements. Measured on experimentally validated physical models, these

improvements make it possible to perform previously intractable designs of entire protein

core, surface, or boundary regions. Computational demonstrations include a full core

design of the variable domains of the light and heavy chains of catalytic antibody 48G7

FAB with 74 residues and 10
128

 conformations, a full core/boundary design of the 1

domain of protein G with 25 residues and 10
53

 conformations, and a full surface design of

the 1 domain of protein G with 27 residues and 10
60

 conformations. In addition, a full

sequence design of the 1 domain of protein G is used to demonstrate the strong

dependence of algorithm performance on the exact form of the potential function and the
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fidelity of the rotamer library. These results emphasize that search algorithm performance

for protein design can only be meaningfully evaluated on physical models that have been

subjected to experimental scrutiny. The new algorithm greatly facilitates ongoing efforts

to engineer increasingly complex protein features.

Introduction

Advances in computational protein design have largely been paced by two

factors: the development of biologically meaningful physical models for describing the

design space, and the development of combinatorial optimization algorithms for

searching this space over all allowed sequences and conformations. High-performance

search algorithms make it possible to perform atomic-resolution side-chain placement

calculations for the selection of novel amino acid sequences. The sequences can then be

evaluated in the laboratory to validate and/or improve the physical model. Both the

discrete rotamer libraries used to represent the possible side-chain conformations and the

empirical potential function used to assess the quality of the possible design sequences

are critical to the biological validity of the approach.

Several computational models have been experimentally validated for the design

of protein cores,
1-5

 and for the design of boundary and surface residues with varying

degrees of solvent exposure.
6-8

 However, there are still few examples of experimentally

validated computational designs for complete protein domains.
9
 In the context of protein

design, physical model validation
2
 is a challenging endeavor in which experimental

assays of designed molecules are used to parameterize or enhance an existing model. A

physical model becomes useful if it is able to identify sequences that fulfill the design
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requirements from amidst the astronomically large number of possible sequences. To

improve the prospects for performing more ambitious designs including protein function,

it is necessary to increase the efficiency of the computer algorithms while maintaining or

even improving the physical models that form the basis for sequence selection.

Significant effort has been expended in developing both exact and approximate

search algorithms for protein design.
10

 Protein design has recently been shown to be NP-

hard,
11

 meaning that it joins a class of challenging combinatorial optimization problems

for which no exact polynomial-time algorithms are known. Approximate algorithms that

have been applied to protein design include Monte Carlo methods,
12,13

 genetic

algorithms,
1
 and self-consistent mean field approaches.

14,15
 These methods are

computationally inexpensive, but their accuracy in identifying the global minimum

energy conformation (GMEC) is known to degrade as problem size increases.
16

 To avoid

corrupting the potential function with experimental feedback based on incomplete

searches, it is highly desirable to rely on exact search algorithms if effective exponential-

time algorithms are available. Exact tree-based algorithms have been successfully applied

to protein design.
17,18

 For large design problems, methods based on the dead-end

elimination (DEE)
19-26

 theorem have emerged as the most successful.

It is important to note that search algorithm performance is strongly affected by

the physical model on which the optimization is based. For example, DEE has been found

to perform best when the number of rotamers per position is small, as evidenced by the

relative ease in performing side-chain placement calculations for homology modeling

studies on large proteins.
23,26

 For design calculations, the number of rotamers at each

position increases dramatically since multiple amino acid identities are represented at
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each position. This change increases both the cost of each iteration and the difficulty in

reducing the combinatorial size of the problem. These effects are only exacerbated as the

fidelity of the rotamer library is improved or as the number of design positions is

increased. The physical context of the design positions influences algorithm performance

significantly; confined core residues are generally much faster to design than less-

constrained residues on the protein surface. This is because side chains packed into

protein cores experience more physical restrictions, facilitating the identification of

rotamers that do not belong to the GMEC. We have also observed that the precise

implementation of the energy expression can have dramatic effects on the search speed.

As is demonstrated later, alterations of the potential function can make seemingly

intractable optimization problems trivial.

Because the performance of search algorithms depends strongly on factors in

addition to sheer combinatorial complexity, it is critical to evaluate new improvements

using potential functions and rotamer libraries that are meaningful in the context of

protein design. Thus, optimization benchmarks are best performed on potential functions

and rotamer libraries that have been subjected to experimental scrutiny, or, alternatively,

benchmarks should be closely followed by experimental validation. At this time, there

still remains a need to develop search algorithms that can perform large-scale

optimizations on experimentally validated physical models.

The development of increasingly powerful dead-end elimination algorithms is

specifically targeted at addressing this challenge. The basic idea of DEE is to eliminate

rotamers from consideration that can be proven to be incompatible with the GMEC. In

the context of side-chain placement for homology modeling, the original algorithm
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introduced criteria for eliminating individual rotamers and “flagging” dead-ending pairs

of rotamers to facilitate the elimination of single rotamers during subsequent

iterations.
19,20

 The “unification” of rotamers at two or more positions into super-rotamers

was subsequently introduced as an effective method for starting new cascades of

eliminations.
21,22

 Using Goldstein’s more powerful elimination criteria,
22

 DEE methods

were extended to protein design applications.
2
 Metrics were subsequently developed to

mitigate the added expense of these criteria, particularly for the flagging of dead-ending

rotamer pairs.
24

 Recently, more sophisticated elimination criteria were introduced based

on the concept of conformational splitting.
25

 An adaptive implementation of split DEE

has since been described that reduces the cost of each iteration in the case of multiple

splitting positions.
26

 A further approach termed “generalized” DEE has been

introduced,
26

 although in our hands it does not yield a performance enhancement over

existing methods.

The present work reports new ideas that extend the application of DEE algorithms

to larger design regimes for all structural contexts: core, boundary, and surface. We have

previously obtained large speed enhancements from optimizing dead-ending pairs

calculations.
24

 These improvements are effective because the majority of the overall

calculation time is spent attempting to flag dead-ending pairs. To further reduce this time,

we have focussed on exploring additional flagging methods. Two complementary

approaches have resulted, each providing new and inexpensive ways to find dead-ending

pairs. Taken together, and often independently of each other, these methods make

previously intractable optimization problems solvable.
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The first approach employs bounding criteria that were originally developed for

use in tree-based optimization methods.
17,27

 These bounding criteria are fundamentally

different in nature from the dominance criteria that typify dead-end elimination. A

bounding criterion eliminates a rotamer by comparing the lower-energy bound of

possible sequences containing that rotamer to the total energy of a known reference

sequence. On the other hand, DEE criteria are examples of dominance relations
28

 that

attempt to show that one rotamer is preferred over another in all circumstances. As with

the DEE dominance criteria, bounding criteria may be used both to eliminate individual

rotamers and to flag pairs of rotamers. Moreover, because “bound flags” are obtained by

measures other than dominance, they have the potential to augment the DEE reductions

and to enhance the performance of the algorithm. Bounding criteria require the energy of

a reference sequence to which bounding energies may be compared. We therefore

employ a stochastic Monte Carlo search to rapidly determine a valid reference energy.

Interestingly, the algorithm remains exact, but it is no longer deterministic.

The second approach makes it possible to flag many dead-ending pairs at

essentially no additional cost. These “split flags” are generated as a by-product of

applying the conformational splitting criteria to eliminate single rotamers. By promoting

further reduction in the combinatorial size of the problem prior to the application of

expensive doubles criteria, these dead-ending pairs provide substantial computational

savings.

The algorithm described in the present work combines three completely different

search paradigms (dominance, bounding, and stochastic) into a single compatible

approach. For ease of description, we term the new method hybrid exact rotamer
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optimization (HERO). Taken together, the two new strategies for flagging dead-ending

pairs have dramatically increased the size of the design problems that can be attempted

on a daily basis in the laboratory of one of the authors (S. L. Mayo). Results in the

present work will demonstrate that exact search algorithms based on experimentally

validated physical models are now able to tackle design problems that could previously

be attempted only with approximate methods. In particular, it is frequently possible to

perform full protein core, boundary, or surface designs with surprising efficiency.

Theory

Energy expression

Using a potential function described in terms of pairwise interactions, the total

energy of the protein can be expressed as

Etotal = E template + E(ir ) + E(ir
j , j<iii

, ju) ,              (1)

where Etemplate represents the self-energy of the backbone, E(ir) represents the energy of

rotamer r at position i interacting with the backbone, and E(ir, ju) represents the

interaction energy between rotamers r and u at positions i and j, respectively. The

objective of dead-end elimination criteria is to eliminate single rotamers that are

dominated by other competing rotamers, and to flag dead-ending pairs of rotamers that

are dominated by other competing rotamer pairs. Either of the rotamers in a dead-ending

pair could still belong to the GMEC conformation, but they cannot appear together; this

strengthens the possibility of eliminating rotamers during subsequent iterations. For

notational convenience, a flagged dead-ending pair is said to belong to the set F.
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Goldstein DEE

The Goldstein DEE criterion for single rotamers states that a rotamer ir can be

eliminated if there exists a competing rotamer it that satisfies

E(ir ) E(it) + min
u

(ir , ju ) F

E(ir , ju ) E(it , ju )[ ]
j ,j i

> 0. (2)

In other words, ir can be eliminated if the contribution to the total energy is always

reduced by using an alternative rotamer it. Note that the minimum specifically excludes

contributions from flagged (ir, ju) pairs, as these rotamers cannot coexist in the GMEC. If

there are p residue positions and an average of n rotamers per position, the computational

complexity of attempting to eliminate each rotamer during a round of Goldstein DEE is

O(n
3
p

2
), corresponding to loops of cost n over r, t, and u as well as loops of cost p over i

and j.

The doubles version of this criterion
22

 flags a rotamer pair (ir, ks) if there exists a

competing pair (iv, kw) that satisfies

[E(ir ) + E(ks ) + E(ir ,ks )] [E(iv) + E(kw ) + E(iv ,kw )]

+ min
u

( ir , ju ) F
(ks , ju ) F

E(ir , ju ) + E(ks , ju )[ ] E(iv, ju ) + E(kw , ju )[ ]{ }
j, j i k

> 0 . (3)

For each of the rotamer pairs between two given positions, O(n
2
) comparisons are made

with the other rotamer pairs at these positions. This criterion therefore makes O(n
2
)

dominance checks in attempting to flag each rotamer pair. The computational complexity

of Goldstein doubles is O(n
5
p

3
), representing the most expensive component in most

DEE implementations.

To obtain a subset of these flags at a lower cost, a “magic bullet” version of

Goldstein doubles
24

 was introduced that uses only one competing (iv, kw) pair to attempt
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to flag all other pairs of rotamers between positions i and k. The computational

complexity is thus reduced to O(n
3
p

3
), and only a single dominance check is made in

attempting to flag each rotamer pair.

Split DEE

If no it rotamer dominates ir for all possible conformations, then the Goldstein

criterion will fail to make an elimination. Conceptually, however, ir may still be

eliminated if at least one (possibly varying) it rotamer dominates ir for each conformation.

Split DEE
25

 embodies this idea by splitting the conformational space into partitions and

checking to see if ir is dominated by some it rotamer within each partition. In the simplest

case (called "s = 1"), O(n) partitions are created using the rotamers at a single splitting

position. The rotamer ir can then be eliminated if, for each splitting rotamer v at some

splitting position k, there exists an it rotamer that dominates ir within that partition:

E(ir ) E(it) + min
u

( ir , ju ) F

E(ir , ju ) E(it , ju )[ ]
 

 
 

  

 

 
 

  j , j k i

+ E(ir ,kv ) E(it ,kv )[ ] > 0 . (4)

Domination in partition kv is automatic if (ir, kv) is a flagged pair. The split DEE (s = 1)

criterion is illustrated in Figure II-1(a). The computational complexity of this approach

remains O(n
3
p

2
) despite the increase in elimination power.

25

Increasing the number of splitting positions increases both the elimination power

and the computational complexity. For two splitting positions (s = 2), there are O(n
2
)

partitions and ir may be eliminated if, for each pair of splitting rotamers kv and hw at

splitting positions k  h  i, there exists an it rotamer that dominates ir in that partition:
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E(ir ) E(it ) + min
u

(ir , ju ) F

E(ir, ju) E(it , ju)[ ]
 

 
 

  

 

 
 

  j, j i h k

+ E(ir,kv ) E(it ,kv )[ ] + E(ir,hw ) E(it ,hw )[ ] > 0.

(5)

Here, domination follows automatically if either (ir, kv) or (ir, hw) is a flagged pair. The

application of this criterion is illustrated in Figure II-1(b), where the rotamers at the

second splitting position (hw) effectively create sub-partitions of those created by the first

splitting position (kv). The computational complexity for (s = 2) split DEE is O(n
4
p

3
).

25

Looger and Hellinga
26

 present the same approach and provide the same complexity

estimates in a later publication. With regard to implementation, Looger and Hellinga

make the useful observation that conformational splitting may be coded adaptively so that

sub-partitions at a new splitting level are explored only within those existing partitions

that have failed to achieve dominance of ir at the current level. This decreases the

computational cost of an iteration relative to the worst-case complexity estimates.

Expressions for split DEE criteria and cost bounds for arbitrary numbers of

splitting positions have been reported previously.
25

 In practice, we rarely find it beneficial

to use splitting criteria beyond s = 2. Split DEE criteria may be extended to flag pairs of

rotamers exactly as for the Goldstein doubles criterion (3), with a corresponding increase

in computational overhead relative to the singles implementation. However, we now

pursue the following more interesting observation that flags can be generated during split

singles calculations with no increase in computational complexity.

Split flags

Consider the scenario where ir cannot be eliminated by split DEE (s = 1) because

there are some partitions in which no it rotamer dominates ir. It may still be possible to
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identify dead-ending pairs during the process of discovering this negative result. In those

partitions kv where ir is dominated by some it, then the rotamer pairs (ir, kv) may be

flagged as dead-ending. This concept is illustrated in Figure II-1(c). The comparisons

that are made in an effort to identify flags remain a subset of those made for a full

Goldstein doubles calculation. O(n) dominance comparisons are made in attempting to

flag each rotamer pair. The complexity of split DEE is unaffected by this modification,

remaining O(n
3
p

2
) for (s = 1), so this approach compares very favorably with both full

Goldstein doubles and magic bullet Goldstein doubles, as summarized in Table II-1.

Split flags may be generated with arbitrary numbers of splitting positions. The

concept is illustrated for split DEE (s = 2) in Figure II-1(d). In this case, the number of

flagging comparisons remains O(n) per rotamer pair but the iteration complexity

increases to O(n
4
p

3
). For a given maximum number of splitting positions, the attempt to

eliminate a rotamer ir has failed as soon as a sub-partition at the lowest level is

encountered in which ir is not dominated by some competitor. It is possible to continue

checking dominance for other partitions to attempt to identify more flags, but for (s  2),

the mounting cost motivates our decision to branch out of an elimination attempt as soon

as failure is assured. It appears that Looger and Hellinga
26

 allude to a special case of this

approach corresponding to (s = 1) split flags.

Bounding expressions

Bounding expressions provide an alternative means of determining whether a

particular arrangement of rotamers at a subset of the residue positions can exist as part of

the GMEC. Rather than eliminating rotamers by comparing them to other competing
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rotamers at the same positions, bounding expressions seek to produce a sharp lower

bound on the total conformational energy given a certain subset of specified rotamers. If

this bound is higher than the energy of some known complete reference sequence,

Ebound (subset) > Etotal(reference) , (6)

then the specified rotamers cannot coexist in the GMEC. The reference energy should be

as low as possible, and may be obtained by a computationally inexpensive approximate

search of the same rotamer conformation space.

There are many possible ways of constructing an expression to compute the lower

energy bound for an arrangement of rotamers. The expression that yields the best

performance in the branch-and-terminate algorithm
17

 folds the one-body terms into the

two-body terms:

 E (ir, ju )
E(ir ) + E( ju )

2( p 1)
+

E(ir , ju )

2
(7)

and computes the lower bound on the total energy as

Ebound =  E (ir , ju) + min
r
2  E (ir , ju ) + min

u
 E (ir , ju )[ ]

j Vj C

 
 
 

  

 
 
 

  i Vj C
j i

i C

. (8)

The set of residue positions C is the subset of “constrained” positions that are occupied

by the rotamers under scrutiny, and the set V encompasses all the remaining “variable”

residue positions. The more positions that are constrained, the sharper the bound

becomes.

To use the bounding expression efficiently in the context of dead-end elimination,

the set C may be considered to consist of a single rotamer, so that the lower bound on the

energy of all conformations containing rotamer ir is
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Ebound (ir ) = min
t

( ir ,mt ) F

2  E (ir ,mt) + min
u

( ju,mt ) F

 E ( ju,mt )[ ]
j, j m i

 

 
 

  

 

 
 

  m ,m i

. (9)

Using the implementation described previously,
17

 where the innermost summation is

precomputed, the complexity of computing the energy bound for each single rotamer is

O(n
2
p

3
). The more positions that are constrained, the sharper the bound becomes. Note

that flagged dead-ending pairs can be excluded during the “min” operations.

Bounding flags

Increasing the constrained set C to encompass a pair of rotamers produces the bounding

expression

Ebound (ir,ks) = 2  E (ir,ks)

+ min
t

( ir ,mt ) F
(ks ,mt ) F

2  E (ir,mt ) + 2  E (ks,mt ) + min
u

( ju ,mt ) F

 E ( ju,mt )[ ]
j , j m i k

 

 
 

  

 

 
 

  
.

m,m i k

(10)

The pair (ir, ks) can be flagged if Ebound(ir, ks) > E total(reference) even if the pair is not

dead-ending according to any known DEE criterion. The innermost summation is

invariant with the rotamer indices r and s for a choice of positions i and k. By pre-

computing this term independent of r and s, the computational complexity of bounding

the total energy for each rotamer pair is O(n
2
p

4
 + n

3
p

3
). Again, it is possible to take

advantage of previously flagged pairs in computing the energy bounds.

The potential benefit of using this bounding expression is illustrated in Figure

II–2, where Ebound is compared to  E for all the remaining unflagged rotamer pairs at one

point during the convergence process for the core design of plastocyanin (described as
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Case 1 in Methods). The performance of the bounds improves as residues are unified

together to create super-rotamers representing larger fractions of conformational space.

Monte Carlo search

The efficacy of using bounding expressions to eliminate candidate rotamers and

to flag rotamer pairs depends critically on the availability of a reference energy of a

rotameric arrangement close in energy to the GMEC. This reference energy is obtained

during the calculation using parallel Monte Carlo
29

 searches from the current state of the

conformational ensemble. The overall approach is therefore stochastic but exact, in the

standard sense that if it converges, it converges to the GMEC.

Because Monte Carlo is repeated periodically as rotamers are eliminated, the

searches are performed on a shrinking conformational space and the reference energy

typically decreases as the calculation proceeds. By monitoring the top-ranked Monte

Carlo sequences, it is possible to gain some insight into the convergence of the algorithm

in sequence space prior to reaching full convergence. This can be particularly valuable

for very large calculations that converge slowly or do not converge at all.

Unification

Dominance and bounding criteria can often benefit from residue unification, in

which a "super-residue" is constructed from the rotamer pairs at two residue positions.

The super-residue is treated as a single residue for the remainder of the calculation, and

may be unified with other residues at a later iteration. Because flagged pairs that are

unified can be eliminated, unification is performed on the pair of residues that have the
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largest fraction of dead-ending rotamer pairs, provided that the resulting super-residue

has fewer than some maximum number of super-rotamers [typically (np)max = 10
4
].

Algorithm schedule

The criteria described above may be coupled in many different ways. Our

preferred strategy is to develop a standard schedule that performs well for a variety of

design problems to minimize the need for user intervention. The entire iterative process is

guaranteed to converge given sufficient time and computer memory. In practice,

convergence is only possible if the elimination and flagging criteria prune the size of the

combinatorial problem sufficiently rapidly to remain within the bounds of a human

attention span and available computer memory.

Our preferred HERO implementation is described in Figure II-3. The Goldstein

singles criterion is applied iteratively until no further rotamers are eliminated. The split

(s = 1) criterion is then applied iteratively until no further eliminations are found. Split

flags are generated during this process with no increase in the computational complexity

of the original split implementation. Split criteria are then applied with multiple splitting

positions [to the desired partition depth (s  2)] once for each rotamer. A magic bullet

metric may be employed to select the splitting partitions that are deemed most likely to

produce flags or an elimination.
25

 Magic bullet Goldstein doubles is then applied once to

each rotamer pair to generate flags. The singles-elimination and split-flagging process is

then repeated taking advantage of these new flags. On the second time through the cycle,

a Monte Carlo search is performed to attempt to reduce the reference energy used to

inform the bounding criteria. (Initially, the reference energy is set to be an arbitrarily
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large number.) The doubles bounding criterion is then applied once to each rotamer pair

to identify more flags. After another round of singles eliminations and split flagging, a

full round of Goldstein doubles flagging is performed using "qrs" and "quv" metrics
24

 to

enhance performance. Following a fourth and final singles-elimination and split-flagging

phase, unification is performed in lieu of a doubles calculation and the entire process is

repeated.

For purposes of this study, we perform split DEE only up to two splitting

positions (s = 2). For historical purposes, we include results using a previously

published
25

 magic bullet ranking metric (DEE s2mb) that selects the two splitting

positions that appear most likely to facilitate the elimination of rotamer ir. The current

baseline scheme for demonstrating the advancements of the present work is (DEE s2)

without split flagging or bound flagging. To demonstrate the role that bound flagging and

split flagging play for protein design calculations, these components are introduced

separately to produce the schemes (DEE s2 bound flags) and (DEE s2 split flags). The

complete hybrid exact rotamer optimization method described above is then termed

HERO, which in longhand would be the less wieldy (DEE s2 bound & split flags).

Results and discussion

Benchmark design calculations

The protein design benchmarks described in this work are performed using a

potential function and rotamer libraries that have been subjected to extensive laboratory

testing.
2,5-7,9,30-37

 This is an important consideration when assessing the significance of

computational demonstrations. In particular, it is trivial to dramatically improve apparent

search algorithm performance either by reducing the size of the rotamer library or by
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modifying the potential function. Such modifications would require laboratory validation

before the resulting increase in algorithm efficiency could be considered to have

significance to the field of protein design.

The performance enhancements provided by bound flags and split flags in the

context of an experimentally validated physical model are demonstrated by the five

problems described in Table II-2. These design cases arose during computational and

experimental studies in the lab of one of the authors (S. L. Mayo). The conformational

sizes in Table II-2 are based on the rotamers that remain after high-energy threshold

reduction (HETR)
23

 is used to eliminate rotamers that clash with the backbone [for these

tests, we removed rotamers with E(ir) > 20 kcal/mol]. This practice reduces the risk of

inflating the apparent conformational size of the problem using a large number of

rotamers that are incompatible with the protein fold.

Case 1 represents a full core design of plastocyanin.
38

 Case 2 is an unusual design

problem involving all core positions on a novel repeating backbone based on the leucine-

rich-repeat motif;
39

 the residues in each of two repeats are restricted to have linked (but

unspecified) amino acid identities. Case 3 represents the full core design of the variable

domains of the light and heavy chains of catalytic antibody 48G7 FAB.
40

 Case 4 is a full

core and boundary design of the 1 domain of protein G,
41

 and Case 5 is a full surface

design of the same domain.

Timing results for the five benchmark design cases are described in Table II-3

and displayed graphically in Figure II-4. Failure to converge implies that the unification

process cannot continue without exceeding the specified maximum number of rotamers

[we use (np)max = 104  for Cases 1, 2, 4, and 5; we use (np)max = 2 104  for the larger
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conformational space of Case 3]. For the plastocyanin core design of Case 1, the

previously published method (DEE s2mb) fails to converge, leaving over 10
14

conformations after 334 min. The current baseline scheme (DEE s2) also fails to

converge, requiring 150 min to narrow the search space to 10
11

 conformations. This

improvement is due both to the additional eliminations produced by full (s = 2) split DEE

(as compared to the magic bullet version), and to the time savings yielded by the adaptive

implementation of this approach.
26

 Introducing bound flags gives full convergence to the

GMEC in 22 min, while split flags give full convergence in 46 min. The combined

approach (HERO) reaches convergence in 13 min.

Case 2 is unusual because the number of rotamers is not large and yet the case is

challenging. This is evidently a product of the linking of amino acid identities across the

repeating sub-units of the design. The algorithm converges only when using bound flags,

requiring 23 min for (DEE s2 bound flags) and 7 min for HERO.

Case 3 is a large core design that converges with all schemes except the

previously published method (DEE s2mb), requiring 299 min for (DEE s2 split flags) and

359 min for HERO. Evidently, the bound flags do not play a substantial role for this

problem and their calculation is effectively a computational overhead that accounts for

the increase in time.

Case 4 is a full core/boundary design that fails to converge with any algorithm

except HERO, which converges in 476 min. Case 5 is a full surface design of the same

protein; it converges with all but (DEE s2mb), with both bound flags and split flags

yielding improvements, and HERO converging fastest in 35 min.
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Performance of “Generalized” DEE

“Generalized DEE” was introduced
26

 as another method for eliminating rotamers

that cannot be eliminated by Goldstein DEE. The idea is to reoptimize a portion of the

conformational background, taking advantage of flags between the reoptimized positions

to increase the disparity in the net energy contributions of the ir and it rotamers with these

positions. The method is dominated by conformational splitting in the sense that for the

same number of generalized positions g or splitting positions s, the eliminations obtained

by generalized DEE are a subset of those obtained by split DEE. However, generalized

DEE is more amenable to less costly implementations than split DEE, so it is possible

that performance enhancements might still be achieved. Unfortunately, in our hands, this

has not been observed, as illustrated in Figure II-5 for a subset of 14 surface positions

from benchmark Case 5. This smaller case was chosen to allow all of the generalized

variants to run to completion. Generalized DEE was performed starting from the baseline

scheme (DEE s2) with the maximum number of reoptimized positions corresponding to

(g = 2, 3, 4, 5). For this example, the algorithm performance decreases monotonically

with increasing g.

Physical model dependence

As is apparent from eqs. (1) and (2), the performance of any DEE algorithm will

depend heavily on the nature of the physical model used to compute the one- and two-

body terms [E(ir) and E(ir, ju), respectively in eq. (1)]. Potential functions that emphasize

energy terms that contribute to E(ir) relative to E(ir, ju) will result in less coupling and

easier optimization. In the limit of E(ir ) >> E(ir , ju) , the optimization reduces to the
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selection of the rotamer with the best one-body energy at each residue position. This

observation emphasizes the importance of developing (and comparing) optimization

schemes that are based on validated physical models—construction of inappropriate

physical models can easily lead to impressive optimization performance.

A demonstration of the dependence of optimization performance on the

underlying physical model is shown in Figure II-6. This case is a full sequence design of

the 56 positions in the 1 domain of protein G. Three of these positions are preset to

glycine (position 38 has a positive phi angle and functions as a C-cap for the alpha helix;

positions 9 and 41 are sterically constrained core positions). The remaining positions are

divided into core, boundary, and surface regions with the allowed amino acid identities at

each of the 53 positions constrained to preserve the binary pattern of the wild-type

sequence.
35

 The resulting combinatorial complexity is 10
112

 conformations with 7775

initial rotamers after applying HETR
23

 to eliminate rotamers that clash with the

backbone. A HERO run with our "standard" potential function and rotamer library fails to

converge after more than 1000 min. Optimization with a potential function modified to

emphasize one-body terms reaches the GMEC in 20 min. The potential function

modifications include (in order of decreasing importance): use of a one-body atomic

solvation potential;
42

 use of a Coulombic potential with a non-distance-dependent

dielectric constant for rotamer/backbone interactions and a distance-dependent dielectric

constant for rotamer/rotamer interactions;
43

 use of rotamer internal strain energy; use of

secondary structure propensities for helical and -strand positions;
6
 and, use of

normalized van der Waals energies to remove the bias for selection of large amino acids.

The validity of these modifications remains to be determined.
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In addition to the potential function component of the physical model, great care

must be taken with respect to the rotamer library. Previous computational work using

surprisingly small rotamer libraries (approximately 67 rotamers per residue position)

showed large, full-sequence design problems to be tractable.
26

 For the full-sequence

design of protein G described above, the average number of rotamers per residue position

is 147. Using an unexpanded rotamer library and aggressive HETR, the average number

of rotamers per position can be reduced to 70 (10
80

 conformations for 3705 rotamers).

Obtaining the GMEC for the resulting problem using the standard potential function

requires 28 min.

These results strikingly illustrate the dependence of algorithm performance on

both the potential function and the rotamer library. Clearly, search algorithm performance

cannot be meaningfully ascertained on models of uncertain biological validity. On the

other hand, the development of biologically valid, one-body-weighted physical models

provides an opportunity to tame the combinatorial beast that is at the root of

computational protein design.
11

Approximate alternatives

It is apparent from Figure II-2 that bounding energies are a better indicator than

self-energies of the likelihood that certain rotamers are not members of the GMEC. Based

on this observation, we have observed that it is sometimes possible to find the GMEC in

a few minutes using an approximate version of HERO in which bounding energies are

used as a substitute for self-energies when applying HETR
23

 to eliminate rotamers (data

not shown).
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Conclusion

Existing DEE algorithms spend most of their time attempting to flag dead-ending

pairs of rotamers to facilitate future eliminations of dead-ending single rotamers. Two

new methods have been formulated for efficiently identifying pairs of rotamers that are

incompatible with the GMEC. One approach builds on split DEE methods to flag dead-

ending pairs during the singles elimination process at essentially no additional expense.

The other approach uses bounding criteria to flag pairs of rotamers for which a lower

bound on the total conformational energy exceeds the energy of a reference conformation

that has been identified by a computationally inexpensive Monte Carlo search. These

bound flags would not necessarily be identified as dead-ending by any known DEE

criterion. The new hybrid algorithm thus combines dominance criteria, bounding criteria

and a stochastic search into a single compatible framework that is exact but no longer

deterministic.

The present benchmark calculations and our ongoing experience with these

algorithms suggest that the most reliable performance is achieved using the HERO

algorithm that combines previous work on dead-end elimination with both new strategies

for flagging pairs. This unified approach facilitates the daily optimization of protein

design cases that were previously intractable using available computational resources.

As illustrated by our full-sequence design example, care must be taken to ensure

that algorithmic performance benchmarks are biologically meaningful. An unbiased

evaluation process that mimics the invaluable role that CASP
44

 has played for the protein

structure–prediction community could similarly aid the development and evaluation of
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computational protein design algorithms. Comparisons should evaluate two features of

protein design methods: search efficiency on test cases based on a validated physical

model, and design quality based on new physical models submitted by the contributors.

Methods

Physical model

The potential function has been previously described,
2,9,45-47

 and incorporates

terms for van der Waals interactions, hydrogen bonds, electrostatic interactions, and

solvation. The van der Waals term is based on a Lennard-Jones 12-6 form with scaled

atomic radii to promote overpacking in the protein core;
30

 the hydrogen bond potential is

a distance-dependent term based on a similar 12-10 form but attenuated by an angle-

dependent term to enforce reasonable geometry;
6
 electrostatic interactions are modeled

using Coulomb’s law with a distance-dependent dielectric;
46

 solvation effects are

modeled using approximate pairwise surface area decompositions to reward and penalize

buried and exposed nonpolar surface areas, respectively
45

 (this term is not computed for

surface positions due to a lack of appropriate experimental data with which to

parameterize the scaling factor); an additional solvation term penalizes polar hydrogen

burial.
6

The backbone-dependent rotamer libraries are based on the mean values from the

Dunbrack and Karplus library
48

 with expansion of the 1 and 2 angles for the aromatic

residues, the 1 angle for hydrophobic residues, and no expansion for polar residues.

Canonical values of the 3 and 4
 angles are used for amino acids E, Q, K, and R.

Residues are classified into core, boundary, or surface positions by an automated
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algorithm.
47

 Core residue identities are selected from among the amino acids A, V, L, I,

F, Y, and W, while surface residue identities are selected from among A, S, T, D, N, H,

E, Q, K, and R. Boundary residue identities are chosen from the union of these sets.

Benchmark design cases

Case 1 represents the design of all 25 nonglycine residues (5, 14, 21, 27, 29, 31,

35, 37, 38, 39, 41, 46, 50, 55, 56, 63, 70, 72, 74, 80, 82, 84, 92, 96, 98) in the core of

plastocyanin (PDB code 2pcy).
38

 Case 2 involves all 34 core positions on a novel

repeating backbone based on the leucine-rich-repeat motif;
39

 the 17 residues in each of

two repeats have linked (but unspecified) amino acid identities. Case 3 represents the full

core design of the variable domains of the light and heavy chains of catalytic antibody

48G7 FAB (PDB code 1gaf).
40

 This corresponds to residues (2, 4, 6, 19, 21, 25, 29, 33,

36-38, 44, 46-48, 55, 58, 62, 71, 73, 75, 78, 82, 84-87, 89, 90, 95-98, 102, 104) of chain

L and residues (4, 6, 18, 20, 24, 32, 34-39, 45, 47, 48, 50, 51, 53, 61, 64, 68, 70, 72, 77,

79, 81, 83, 86, 90, 92-95, 97, 98, 103, 104, 108, 110) of chain H. Case 4 involves the

design of all 10 nonglycine core residues (3, 5, 7, 20, 26, 30, 34, 39, 52, 54) and all 15

boundary residues (1, 11, 12, 16, 18, 23, 25, 27, 29, 33, 37, 43, 45, 50, 56) of the 1

domain of protein G (PDB code 1pga).
41

 Case 5 represents the design of all 27

nonglycine surface residues (2, 4, 6, 8, 10, 13, 15, 17, 19, 21, 22, 24, 28, 31, 32, 35, 36,

40, 42, 44, 46, 47, 48, 49, 51, 53, 55) of the 1 domain of protein G. The benchmark

calculations were performed on 16 Power3 processors of an IBM SP3 running at 375

MHz.
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Table II-1. Cost comparison of different flagging approaches.

Method

Iteration

complexity

Flag attempts

per rotamer pair

Full Goldstein doubles O(n
5
p

3
) O(n

2
)

Magic bullet Goldstein doubles O(n
3
p

3
) 1

Split flags (s = 1) O(n
3
p

2
) O(n)

Split flags (s = 2) O(n
4
p

3
) O(n)

Table II-2. Benchmark design cases.

Case Description Type Residues Rotamers Conformations

1 Plastocyanin Core 25 1716 1.7 x 10
38

2 Novel backbone Linked core 34   674 8.4 x 10
39

3 Catalytic antibody Core 75 4919 4.7 x 10
128

4 1 of Protein G Core/boundary 25 4295 4.0 x 10
53

5 1 of Protein G Surface 27 4842 4.9 x 10
60
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Table II-3. CPU times for benchmark design cases

running on 16 processors of an IBM SP3.

Case Method Time (min)

Remaining

conformations

DEE s2mb 334 7 x 10
14

DEE s2 150 2 x 10
11

DEE s2 bound flags 22 1

DEE s2 split flags 46 1

1

HERO 13 1

DEE s2mb 250 1 x 10
18

DEE s2 210 1 x 10
18

DEE s2 bound flags 23 1

DEE s2 split flags 167 3 x 10
16

2

HERO 7 1

DEE s2mb 984 3 x 10
8

DEE s2 687 1

DEE s2 bound flags 663 1

DEE s2 split flags 299 1

3

HERO 359 1

DEE s2mb 1449 2 x 10
35

DEE s2 1333 1 x 10
35

DEE s2 bound flags 1688 1 x 10
35

DEE s2 split flags 875 9 x 10
19

4

HERO 476 1

DEE s2mb 292 3 x 10
16

DEE s2 129 1

DEE s2 bound flags 72 1

DEE s2 split flags 46 1

5

HERO 35 1
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Figure II-1. Application of split DEE to sample energy profiles. The abscissa represents

all possible conformations of the protein and the ordinate represents the net energy

contributions produced by interactions with specific rotamers at position i. (a) Split

elimination (s = 1): ir is dominated by it1 and it2 in the partitions corresponding to splitting

rotamers kv1 and kv2, respectively. Hence, ir may be eliminated even though it is not

dominated by any single rotamer for all of conformational space. (b) Split elimination

(s = 2): because neither it1 nor it2 dominates ir in partition kv2, a second splitting position is

used to create subpartitions hw1 and hw2, where ir is dominated by it1 and it2, respectively.

Hence, ir may be eliminated using two splitting positions. (c) Split flagging (s = 1): ir is

not dominated in partition kv2 so elimination is not possible with only one splitting

position. However, ir is dominated by it1 in partition kv1, so that pair (ir, kv1) may be

flagged. (d) Split flagging (s = 2): ir is no longer dominated for all of conformational

space so it cannot be eliminated with only two splitting positions. However, ir is

dominated for partition kv2 by it1 and it2 in subpartitions hw1 and hw2, respectively. Hence,

the pair (ir, kv2) may be flagged. Likewise, the pair (ir, hw2) may be flagged, as becomes

more readily apparent if the hierarchy of the splitting positions k and h is reversed.
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Figure II-2. Comparison of bounding and pairs energies during a bound flags iteration of

the plastocyanin core calculation of Case 1. The reference energy obtained by a Monte

Carlo calculation is shown as a horizontal line. All pairs with a bounding energy above

the line may be flagged. In this instance, 400,822 out of 966,656, or 41%, of the

remaining unflagged pairs can now be flagged as dead-ending.

1. Goldstein singles DEE until no further eliminations

2. Split singles DEE with split flags (s = 1) until no further eliminations

3. Split singles DEE with split flags (s  2) once for each rotamer (with or

without magic bullet metric)

4. Singles bounding criterion once for each rotamer

5. Alternate sequentially between the following, applying one during each cycle:

• Magic bullet Goldstein doubles once for each rotamer pair

• Monte Carlo search to find Ereference from a valid conformation followed by

doubles bounding criterion once for each rotamer pair

• Full Goldstein doubles once for each rotamer pair using qrs and quv metrics

• Unification of residues with the highest fraction of dead-ending pairs

6. Return to 1

Figure II-3. The schedule of dominance and bounding criteria used for hybrid exact

rotamer optimization (HERO).
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Figure II-4. DEE convergence results. (a) Case 1: full core design of plastocyanin, (b)

Case 2: full core design of a novel repeating backbone, (c) Case 3: full core design of the

variable domains of the light and heavy chains of a catalytic antibody, (d) Case 4: full

core and boundary design of the 1 domain of protein G, (e) Case 5: full surface design

of the 1 domain of protein G.



II-36

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

Minutes

lo
g 10

(C
on

fo
rm

at
io

ns
)

Algorithm Convergence

DEE s2
DEE s2g2
DEE s2g3
DEE s2g4
DEE s2g5

Figure II-5. Performance assessment of “generalized DEE” for a partial surface design

of the 1 domain of protein G. Comparisons are made relative to the baseline scheme

(DEE s2) using reoptimizations at a maximum of (g = 2, 3, 4, 5) positions.
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Figure II-6. Convergence comparison for HERO on a full sequence design of the 1

domain of protein G using the experimentally validated “standard” potential function and

rotamer library, a modified potential function with the standard rotamer library, and the

standard potential function with a reduced rotamer library.



Chapter III 

Preprocessing of rotamers for protein design calculations

The text of this chapter has been adapted from a published manuscript that was

coauthored with Premal S. Shah and Professor Stephen L. Mayo.

P. S. Shah, G. K. Hom, and S. L. Mayo. 2004. J. Comput. Chem., 25: 1797–1800.

Abstract

We have developed a process that significantly reduces the number of rotamers in

computational protein design calculations. This process, which we call Vegas, results in

dramatic computational performance increases when used with algorithms based on the

dead-end elimination (DEE) theorem. Vegas estimates the energy of each rotamer at each

position by fixing each rotamer in turn and utilizing various search algorithms to

optimize the remaining positions. Algorithms used for this context-specific optimization

can include Monte Carlo, self-consistent mean field, and the evaluation of an expression

that generates a lower bound energy for the fixed rotamer. Rotamers with energies above

a user-defined cutoff value are eliminated. We found that using Vegas to preprocess

rotamers significantly reduced the calculation time of subsequent DEE-based algorithms

while retaining the global minimum energy conformation. For a full boundary design of a

51 amino acid fragment of engrailed homeodomain, the total calculation time was

reduced by 12-fold.
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Introduction

An important goal of computational protein design is to identify the amino acid

sequence and side-chain orientations that correspond to the global minimum energy

conformation (GMEC). However, searching for the GMEC is challenging due to the

enormity of sequence space; even a small protein of 100 amino acids has 20100 (~10130)

possible sequences. Accounting for side-chain flexibility by including different

side-chain conformations called rotamers1-3 further increases the combinatorial

complexity. Consequently, exhaustive searches for the GMEC are almost always

intractable.

Algorithms based on the dead-end elimination (DEE) theorem4 have been

developed to address combinatorial optimization problems in side-chain placement and

protein design. If DEE-based algorithms converge, the solution is guaranteed to be the

GMEC. As a result, not only are these algorithms useful when performing force field

improvements or parameter optimization,5,6 their use has proven to be successful for

many challenging design problems.7-11 Although recent enhancements to DEE have

allowed difficult designs to be performed,12-15 more ambitious design problems can cause

even the most effective DEE-based algorithms to stall. In addition, some calculations take

an impractical amount of time to converge to the GMEC. In such cases, other algorithms

may be employed. These include Monte Carlo (MC) methods,16,17 genetic algorithms,18,19

self-consistent mean field (SCMF) techniques,20,21 and branch-and-bound methods.22

Although these approaches can provide solutions when DEE-based algorithms stall, they

typically have the drawback of not being able to guarantee that their solutions are the

GMEC even when starting from a DEE-reduced rotamer space. As a result, there is still
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ample motivation to develop techniques to improve or assist current DEE-based

algorithms.

One approach is to reduce the number of rotamers in a calculation by eliminating

a subset of rotamers prior to use of DEE-based algorithms. An example of this strategy

can be found in the high-energy threshold reduction method.23 In most cases, by

eliminating rotamers possessing energies above a user-defined threshold, De Maeyer et

al. were able to eliminate over one-third of rotamers without sacrificing the GMEC in

side-chain placement calculations. Remaining rotamers were then evaluated with DEE.

Here, we present a similar approach for protein design calculations; we prune rotamer

space by judiciously eliminating rotamers, thus allowing DEE-based algorithms to

proceed more efficiently. Our method, which we call Vegas, scores each rotamer at each

position by fixing it in turn and using MC or SCMF to optimize the rest of the positions.

The rotamer’s score is the energy of the resulting solution. In addition, a rotamer’s score

can be calculated by evaluating an expression that generates a lower bound energy.22

Rotamers remaining after the elimination step are passed on to a DEE-based algorithm.

We can safely eliminate a large subset of rotamers without compromising the GMEC,

and we observe a significant reduction in total computation time.

Vegas

Vegas reduces the number of rotamers in protein design calculations by applying

a rejection criterion after obtaining a score for each rotamer at each position. This is done

by fixing the rotamer to be scored and using various optimization algorithms to generate

a rotamer sequence for the rest of the molecule. The rotamer’s score is the energy of the
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resulting solution. In this report, two optimization algorithms were used: one based on

Monte Carlo (MC) methods,24 and another based on self-consistent mean field theory

(SCMF).24 In addition, a rotamer’s score was also obtained by evaluating an expression

that provided a lower bound energy (Bound)15,22 for the fixed rotamer [eq. (9) in ref. 15].

Rotamers with scores above the best score for that position plus a user-defined threshold

value are eliminated. Remaining rotamers are then optimized with HERO,15 an extension

of DEE.

Results

We used two test cases to assess the effectiveness of Vegas. We started with the

designs of different regions of a very small protein and increased the computational

complexity with the second test case. Vegas’s effectiveness was evaluated by its ability to

retain the GMEC and increase computational efficiency. To check Vegas’s performance

in not eliminating GMEC rotamers, the GMEC was first obtained without Vegas in a

reference calculation using HERO alone. The different versions of Vegas are referred to

with an underscore between Vegas and the method used to obtain the rotamer score. For

example, use of MC with Vegas is referred to as Vegas_MC.

Test case 1

We performed designs of the core, boundary, and surface regions of the β1

domain of protein G (Gβ1).25 These small, relatively simple designs were done to

demonstrate the ability of Vegas to safely apply a rejection criterion to eliminate rotamers

without sacrificing the GMEC. Table III-1 lists the number of rotamers eliminated as the
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threshold value is increased. All versions of Vegas performed equally well for core and

boundary designs; the most aggressive threshold value (5 kcal/mol) allowed about 90%

of rotamers to be eliminated without losing the GMEC. Elimination was more difficult

with surface residues. Compared to Vegas_MC, Vegas_SCMF, and Vegas_Bound

allowed for more aggressive threshold values to be applied without losing the GMEC.

Test case 2

A boundary design of a 51 amino acid fragment of the engrailed homeodomain

(ENH)26 was performed to determine Vegas’s ability to increase computational efficiency

without compromising accuracy (Figs. III-1 and III-2). Vegas_MC and Vegas_SCMF

retained the GMEC when threshold values of 10 kcal/mol and larger were used. At 10

kcal/mol, 72% and 64% of the 3571 total rotamers in the calculation were eliminated

with Vegas_MC and Vegas_SCMF, respectively. Interestingly, a threshold of 5 kcal/mol

for Vegas_MC produced the same amino acid sequence as the one in the GMEC;

however, the conformations of some of the amino acids were different. We could not be

as aggressive with Vegas_Bound; a minimum of 20 kcal/mol was required to obtain the

GMEC. At this threshold, 41% of the rotamers were eliminated.

Although Vegas_MC and Vegas_SCMF allowed the use of more aggressive

threshold values while retaining the GMEC, comparison of total calculation times shows

Vegas_Bound to be more efficient (Fig. III-2). At a relatively conservative threshold

value of 40 kcal/mol, Vegas_Bound obtained the GMEC almost four times faster than the

reference calculation. At 20 kcal/mol, it produced the GMEC in only 8 processor

hours—a 12-fold improvement over the reference calculation. In comparison, Vegas_MC
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was only able to achieve a twofold overall speed enhancement. Vegas_SCMF, on the

other hand, actually caused the calculation to run two times slower than the reference

calculation.

Discussion

Vegas is an efficient protein design tool that can reduce computational complexity

without sacrificing the ability to obtain ground-state solutions. Its computational

efficiency becomes more pronounced with increasing problem size. Vegas produced a

12-fold reduction in the time required to solve the boundary design of ENH, decreasing

the total processing time from 92 to 8 hours. This increase in computational speed

resulted from elimination of about 41% of the rotamers, without losing rotamers in the

GMEC. The high efficiency of Vegas_Bound for this design compared to Vegas_MC and

Vegas_SCMF (Fig. III-2) can be attributed to a dramatic difference in time for scoring

the rotamers. The rotamer scoring times for Vegas_MC and Vegas_SCMF were 45 and

198 processor hours, respectively, while Vegas_Bound scored rotamers in less than 1 min

on a single processor.

The accuracy and increased efficiency provided by Vegas can extend the

capabilities of protein design. For example, Vegas allows the use of larger rotamer

libraries, which may provide lower energy solutions to design problems. Larger rotamer

libraries have been shown to improve accuracy in side-chain placement calculations.23

The use of Vegas can also allow more difficult designs to be performed and can facilitate

the design of many features including functionally important properties.
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A recent side-chain placement algorithm called FASTER27 has shown promise

when adapted to protein design (data not shown). Elements of FASTER could be

implemented as an additional rotamer-scoring method within Vegas. Vegas_FASTER, as

well as Vegas with other optimization algorithms, is a viable option in the future. We

used Vegas here as a preprocessor to HERO; however, Vegas is a general preprocessing

method and can be combined with any relevant optimization algorithm.

Methods

Computational methods

A description of force field potential functions and their parameters can be found

in previous work.5,7,28-30 We used an expanded version of the backbone dependent

rotamer library described by Dunbrack and Karplus.3 An automated algorithm was

employed that classified residue positions as core, boundary, or surface.5 For core

positions, we allowed the selection of the amino acids A, V, L, I, F, Y, and W. For

surface positions, we allowed A, S, T, D, N, H, E, Q, K, and R, and for boundary

positions, we allowed all amino acids except G, P, C, and M. HERO and the bounding

expression were implemented as described by Gordon et al.,15 and MC and SCMF were

implemented as described previously.24 For MC, we used 5 annealing cycles of 106 steps

per cycle. Low and high annealing temperatures were 150 K and 4000 K, respectively.

For SCMF, we used initial and final temperatures of 20,000 K and 300 K, respectively,

with the temperature lowered in 100 K increments. A convergence criterion of 0.001 and

a pair-energy threshold of 100 kcal/mol were used.
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Test case designs

In test case 1, we designed the core, boundary, and surface regions of Gβ1 (PDB

code 1pga).25 Core positions were 3, 5, 7, 9, 20, 26, 30, 34, 39, 41, 52, and 54. Boundary

positions were 1, 12, 16, 18, 23, 25, 27, 29, 31, 33, 37, 43, 45, 50, and 56. Surface

positions were 2, 4, 6, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 24, 28, 32, 35, 36, 38, 40, 42,

44, 46, 47, 48, 49, 51, 53, and 55. Design of a region involved allowing all allowable

amino acids for that region, while keeping the other two regions fixed in both identity and

conformation. Test case 2 was the boundary design of ENH (PDB code 1enh;26 positions

1, 3, 10, 14, 19, 21, 25, 30, 47, and 51). Core and surface positions were kept fixed in

identity but their conformations were allowed to change. All calculations were performed

on an IBM SP3 running 375-MHz Power3 processors.
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Figure III-1. Number of rotamers eliminated with varying threshold values for the
boundary design of engrailed homeodomain. The reference calculation (i.e., with HERO
alone) contained 3571 rotamers. Threshold values that failed to produce the GMEC are
shown with open symbols.
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Figure III-2. Total calculation times for the boundary design of engrailed homeodomain.
The reference calculation (i.e., with HERO alone) took 92 processor hours. Threshold
values that failed to produce the GMEC are shown with open symbols.



Chapter IV 

Thermodynamic and structural characterization of full-sequence

designs

The text of this chapter has been adapted from a manuscript that was coauthored with

Premal S. Shah, Scott A. Ross, and Professor Stephen L. Mayo.

P. S. Shah,* G. K. Hom,* S. A. Ross, and S. L. Mayo. 2005. To be submitted.

(*P. S. Shah and G. K. Hom contributed equally to this work.)

Abstract

Sequence optimization algorithms based on the dead-end elimination (DEE)

theorem are preferred in computational protein design because, if they converge, their

solutions are guaranteed to be the ground-state solutions. However, the increasing size

and complexities of designs can cause DEE-based algorithms to stall, failing to deliver a

solution. We have used three alternate sequence optimization algorithms in concert with

the ORBIT protein design software to simultaneously optimize every position of a 51-

amino acid fragment of the Drosophila engrailed homeodomain. Two of the sequences

obtained from the calculations were studied in detail. The optimized sequences share no

statistical similarity to any known sequence and differ from the wild-type sequence by

approximately 80%. Based on physical studies of the optimized variants, we conclude

that the proteins are nearly identical to each other, displaying hallmarks of well-folded,
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all α -helical proteins. The thermodynamic stabilities of the designed variants were

enhanced by approximately 2 kcal/mol over the wild-type protein at 25°C. In addition,

the designed variants have melting temperatures in excess of 100°C compared to 43°C

for the wild-type protein. We solved the solution structure of one of the designed variants

and found that the protein folds accurately into the desired target fold. Knowledge that

non-DEE-based sequence optimization algorithms can be used for large, challenging

problems leading to variants with markedly improved stability and high specificity for the

target fold allows for more ambitious protein design problems to be undertaken.

Introduction

Computational protein design seeks to find amino acid sequences compatible with

a target fold. In general, the global minimum energy conformation (GMEC) is desired,

since this sequence and conformation confers optimal stability for the fold, provided the

physical forces governing protein structure and stability are accurately modeled.

Obtaining the GMEC while simultaneously optimizing every position in a protein is a

challenging combinatorial problem; for a relatively small 50-residue protein, the GMEC

must be identified from 1065 possible amino acid sequences. When different conformers

of amino acids (rotamers) are included, the complexity grows substantially, requiring the

consideration of over 10100 rotamer sequences.

Many difficult designs1-5 have been performed using algorithms based on the

dead-end elimination6 (DEE) theorem. DEE-based algorithms are ideal because if they

converge, their solutions are guaranteed to be the GMEC. However, increasingly

challenging design problems can prevent even the most effective DEE-based algorithms7-
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10 from converging in any practical amount of time. Furthermore, in some cases, these

algorithms stall and fail to converge entirely. As an alternative, non-DEE-based

algorithms may be employed to obtain sequences compatible with a target fold. However,

these algorithms also have their limitations: they do not necessarily provide the GMEC,

and their performance has been shown to decay as the size of the design increases.11

Our goal was to determine whether the use of non-DEE-based algorithms on

large, complex designs can provide solutions that are stable and assume the target fold.

We undertook the full sequence design of a 51-amino acid fragment of the Drosophila

engrailed homeodomain (ENH). Non-DEE-based algorithms were required because

DEE-based algorithms failed to converge. We used three algorithms: Monte Carlo12,13

(MC), Vegas,14 and FASTER.15 MC is a commonly used stochastic search algorithm,

Vegas is a rotamer pruning algorithm recently developed in our laboratory that is

efficient for large designs, and FASTER is a fast and accurate side-chain placement

method, which we adapted for protein design applications. The protein variants predicted

with these algorithms were expressed, purified, and characterized thermodynamically.

Furthermore, the solution structure of one of the variants was solved in order to assess

whether the designed proteins adopt the desired target fold. This work adds to the small

number of full-sequence designs performed to date for which thermodynamic and

structural studies have been perfomed.16,17
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Results

Computational sequence optimization

We divided ENH18 into core, boundary, and surface regions with an automated

residue classification algorithm19 and modeled the physical forces within each region

with a potential energy function that includes van der Waals, electrostatic, solvation, and

hydrogen bonding terms.19-22 Only nonpolar amino acids were allowed in the core, while

on the surface, only polar amino acids were considered. A fixed binary pattern was used

that assigned boundary positions to either the core or the surface based on exposed

surface area;3 this fixed binary pattern has been shown to confer added stability to the

ENH fold.3 The amino acid identities of positions involved in helix capping and helix

dipoles were further restricted as described previously.4 To account for the torsional

flexibility of amino acids, a backbone-dependent rotamer library,23 based on that of

Dunbrack and Karplus,24 was employed. The total initial search space for this calculation

was 10111 rotamer sequences.

Our laboratory has successfully used DEE-based sequence optimization

algorithms7-10,16 to generate sequences for many design problems.1,2,16 In this study, we

initially attempted optimization with HERO,10 an extension of DEE that performs more

efficiently on large calculations. However, HERO stalled and failed to provide an answer.

As a result, three non-DEE-based sequence optimization algorithms, MC, Vegas, and

FASTER, were used to predict sequences compatible with the target ENH fold. The best

rotamer sequences generated by Vegas and FASTER are identical and have simulation

energies of -225.0 kcal/mol. This sequence (FSM1_VF) is a 39-fold mutant of the

wild-type sequence (Fig. IV-1). The best MC solution (FSM1_MC) has a slightly higher
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simulation energy (-223.4 kcal/mol) and is a 40-fold mutant of wild-type ENH and an 11-

fold mutant of FSM1_VF. A BLAST25 search indicated that the two optimized variants

have no statistically significant similarity to any known sequence.

Physical characterization of ENH variants

Far-ultraviolet (UV) circular dichroism (CD) spectroscopy of FSM1_VF and

FSM1_MC revealed spectra characteristic of α-helical proteins (Fig. IV-2). The spectra

for the two variants are almost superimposable and are characteristic of α-helical proteins

with minima at 208 and 222 nm. The spectra are also very similar to those for wild-type

ENH as well as other well-folded ENH variants produced in our laboratory.3,4,26 1D 1H

nuclear magnetic resonance (NMR) spectroscopy performed on both proteins produced

spectra displaying the sharp, moderately dispersed lines expected of a well-folded protein

(Fig. IV-3).

Thermal denaturations monitored by CD at 222 nm revealed that both proteins do

not complete their unfolding transitions by 99°C, indicating that they are still folded at

this temperature (data not shown). In comparison, the wild type has a Tm of 43°C (Table

IV-1).26 Chemical denaturations using guanidinium hydrochloride were performed to

determine unfolding free energies (ΔGunfold). The variants were over 2 kcal/mol more

stable than the wild-type protein under similar conditions (Table IV-1).27 This is a

remarkable result considering that approximately 80% of the wild-type sequence was

mutated to obtain our designed sequences.

ANS (1-anilino-napthalene-8-sulfonate) binding was used to further validate the

structural integrity of the ENH variants. ANS selectively binds molten globule states of
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proteins.28 Molten globules exhibit pronounced secondary structure and compactness but

lack packed tertiary structure. Hen egg-white lysozyme (HEWL) in 25% HFA

(hexafluoroacetone hydrate) was used as a positive control; under this condition, HEWL

binds ANS and exhibits molten globule characteristics.29 Although the ENH variants

showed some evidence of ANS binding, it was almost 8-fold lower than HEWL (data not

shown). This slight ANS binding is most likely due to exposed hydrophobic patches

rather than the result of binding to a molten globule state (see below).28 Overall, the

spectral and thermodynamic data indicate that the designed variants are very stable and

are physically and structurally similar.

Solution structure of FSM1_VF

The solution structure of FSM1_VF was solved by NMR. Evidently due to the

helical structure and relatively low sequence diversity of FSM1_VF (Fig. IV-1), its NMR

spectra display considerable chemical shift degeneracy. Thus, it was necessary to use

both HNCACB/CBCA(CO)NH and HNCO/HN(CA)CO experiment pairs on uniformly

15N, 13C-labeled protein to sequentially assign backbone atom chemical shifts. Other

standard double and triple resonance NMR experiments were then sufficient to achieve

nearly complete assignment of side-chain atom chemical shifts. Over 1300 loose

geometric constraints (interproton distances from NOEs, dihedral angles, and hydrogen

bonds) on the structure were derived from NMR data (Table IV-2). The program ARIA30

was used both to assign many of these constraints and to calculate an ensemble of

structures consistent with them (Fig. IV-4). The ensemble is of a precision typical for

homeodomain NMR structures,31 with 0.59 Å root mean square (r.m.s.) deviation to the



IV-7

mean for backbone heavy atoms of residues 3–45; the ensemble is also of good

stereochemical quality, with 96.6% of residues in most-favored or allowed regions of φ,ψ

space.

The calculated ensemble shows that FSM1_VF adopts the anticipated ENH fold.

Helices 1 and 2 are well-defined, as is the tight turn between helices 2 and 3 and the first

two turns of helix 3. The termini are poorly localized, as well as residues 18–20 in the

loop between helices 1 and 2. Paucity of data makes the origin of this imprecision

uncertain for the loop residues. However, intermediate 3JHNHA coupling constant values

for residues 1–5, 46, and 48–51 suggest that the termini are disordered. Disorder in the

backbone in these portions of the sequence is accompanied by side-chain disorder as

indicated by low χ1 and χ2 angular order parameters for nominal core residues W3, F43,

F44, and F47.

We compared the FSM1_VF solution structure to the ENH crystal structure. The

experimental structure closest to the mean of the ensemble in Figure 4-4 has a backbone

r.m.s. deviation of 2.5 Å from the crystal structure for Cα atoms of residues 3-45 (Figure

4-5). The largest differences from the crystal structure were found at the termini and in

the orientation of helix 3 with respect to helices 1 and 2. Indeed, solution structures of

homoedomains uncomplexed to DNA frequently show disorder in both the N terminus

and the C-terminal portion of helix 3.31 In addition, the starting structure is a truncated

version of the crystal structure due to lack of electron density at the C terminus. The

crystal structure of ENH is thus quite possibly a nonphysical template for these regions of

the molecule in solution. Furthermore, the different orientation of helix 3 could easily be

an effect propagated from the disordered C terminus, and the disordered aromatic side
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chains in the termini could account for the modest ANS binding observed. For the

remainder of the structure, FSM1_VF matches the template closely.

Discussion

Use of non-DEE-based algorithms

Non-DEE-based algorithms have been used to produce stable proteins;17,32-35

however, most of these designs were restricted to the core and were less complex than the

design performed here. A quantitative comparison showed that the performance of non-

DEE-based algorithms decreases as the complexity of the problem increases.11

Performance was defined as the fraction of rotamers predicted incorrectly compared to

the GMEC. The goal of the present study was to determine the effectiveness of non DEE-

based algorithms on complex problems such as full-sequence designs; that is, the ability

to yield stable proteins that retain high structural specificity for the target fold. Baker and

colleagues recently performed full sequence designs using MC with reasonable success;17

however, the structures of the proteins have not yet been solved. In this study, we clearly

demonstrate that three alternatives to DEE-based algorithms (MC, Vegas, and FASTER)

can be used on complex problems to predict sequences with protein stabilities much

higher than wild type. In addition, we verified that the designed variants have the same

topology as the target fold, as shown by the solution structure of FSM1_VF.

These results suggest that many highly stable proteins can be obtained for

complex design problems without identifying the GMEC. In fact, an MC search

performed around the FSM1_VF sequence showed that there are at least 900 unique

amino acid sequences with simulation energies between FSM1_VF (-225.0 kcal/mol) and
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our other stable variant, FSM1_MC (-223.4 kcal /mol). It is certainly plausible that all of

these sequences would yield proteins that are equally stable and target-fold specific.

Taken further, there are likely many sequences with simulation energies higher than that

of FSM1_MC that would also adopt the target fold and possess stabilities higher than

wild type.

The knowledge that very large, previously intractable designs can be successfully

performed with non-DEE-based algorithms allows protein designers to tackle more

ambitious problems. Catalytic activity can be designed onto larger scaffolds, improved

stabilities can be obtained for larger proteins, and complex protein-protein interactions

can be studied. Larger rotamer libraries can also be used to enhance the accuracy of the

solutions generated.

Methods

Computational modeling

Description of potential functions and parameters can be found in our previous

work.19-22,36,37 For ENH, we identified 11 core positions (7, 11, 15, 29, 33, 34, 35, 39, 40,

43, and 44), 11 boundary positions (1, 3, 10, 14, 19, 21, 25, 26, 30, 47, and 51), and 29

surface positions (2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 22, 23, 24, 27, 28, 31, 32, 36, 37,

38, 41, 42, 45, 46, 48, 49, and 50). The fixed binary pattern of the B6 design in the

Marshall and Mayo study3 was applied to boundary residues. Residues 4, 22, and 36 were

treated as helix N-capping positions; residues 5, 6, 23, 24, 37, and 38 as helix N-terminal

dipole positions, and residues 16, 17, 31, 32, 49, and 50 as helix C-terminal dipole

positions. The rules that govern these positions are described in previous work.4
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Construction of mutants, protein expression, and purification

Genes encoding the ENH variants were made using recursive PCR techniques38

and cloned into a modified pET11a (Novagen) vector. Recombinant protein was

expressed by IPTG induction in BL21(DE3) hosts (Stratagene) and isolated using a

freeze/thaw method.39 Purification was accomplished using a linear acetonitrile/water

gradient containing 0.1% TFA. Molecular weights were verified by mass spectrometry.

The resultant protein was a 52-mer, with a methionine at the N terminus.

CD analysis

CD data were collected on an Aviv 62DS spectrometer equipped with a

thermoelectric unit and an autotitrator. Wavelength scans and thermal denaturation

experiments were performed in a 1 mm path length cell with 50 µM protein in 50 mM

sodium phosphate at pH 5.5. Thermal melts were monitored at 222 nm. Data were

collected every 1°C with an equilibration time of 2 min and an averaging time of 30 sec.

Guanidinium chloride denaturations were done in a 1 cm path length cell with 5 µM

protein in 50 mM sodium phosphate at pH 5.5 and 25°C. To keep the protein

concentration constant, a saturated solution of guanidinium chloride was prepared with

buffer that also included 5 µM protein. A 10 min mixing time and 100 sec averaging time

were used. Data were fit and ΔGunfold values were obtained using the linear extrapolation

method.40
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NMR spectroscopy

NMR experiments were performed at 20°C on a Varian INOVA 600

spectrometer. Data was processed using nmrPipe41 and analyzed using NMRview.42

Backbone chemical shift assignments were obtained from 3D HNCACB, CBCA(CO)NH,

HNCO, HN(CA)CO and HNHA spectra. 2D DQF-COSY and 3D C(CO)NH-TOCSY,

15N-TOCSY-HSQC, and HCCH-TOCSY spectra were used to assign aliphatic side-chain

atom chemical shifts. Aromatic resonances were assigned from 2D DQF-COSY and

TOCSY spectra and from 2D 13C-CT-HSQC and (HB)CB(CGCD)HD and

(HB)CB(CGCDCE)HE spectra. Exchange of backbone amide hydrogen atoms was

monitored by 15N-HSQC spectra following suspension of protiated 15N-labeled protein in

deuterated buffer.

Structure determination

Distance restraints were derived from two 3D 13C-NOESY-HSQC spectra

(aliphatic and aromatic), a 3D 15N-NOESY-HSQC spectrum, and a 2D 1H NOESY

spectrum. All NOESY spectra were acquired with a 75-ms mixing time. 3JHNHA coupling

constants were extracted from the HNHA spectrum. These were used, in combination

with TALOS43 analysis of chemical shifts, in the selection of dihedral angle restraints.

Where TALOS and coupling constant analyses were consistent, both φ and ψ restraints

were included. Where TALOS failed to make a prediction, a φ restraint was included if

warranted by the coupling constant. Error bounds on dihedral restraints were set to ±30°.

A set of 586 manually assigned NOE-derived distance restraints and 57 dihedral

angle restraints were used as initial input for ARIA1.2.30 ARIA identified 659 additional
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NOESY cross peaks, for a total of 953 unambiguous and 292 ambiguous distance

restraints. At this stage, separate ARIA calculations were carried out fixing the methyl

group stereochemistry of each V or L residue in the sequence in turn to obtain

stereospecific assignments. In each case, one choice of assignments yielded an ensemble

of structures with lower energies, lower χ1 (and χ2 for L residues) circular order

parameters, and fewer NOE restraint violations than the alternate choice. Finally, the

ensemble was examined for likely hydrogen bonds. Hydrogen bonds were judged to be

present, and restraints included, if the amide proton had a hydrogen exchange protection

factor ≥1000 and if the residue was in a helix. Nineteen residues were thus restrained

(1.3 Å < dNH-O < 2.5 Å and 2.3 Å < dN-O < 3.5 Å). Of 100 structures generated in a final

ARIA calculation using all of these restraints, 43 had no NOE restraint violations >0.5 Å

and no dihedral angle restraint violations >5°. This subset was analyzed with

MOLMOL44 and PROCHECK.45
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Table IV-1. Thermodynamic data of variants and wild type.

Thermodynamic dataa

Wild type FSM1_VF FSM1_MC

ΔGunfold (kcal/mol) 1.9b 4.2 4.2

Tm (°C) 43c >99 >99

m valued (kcal/mol M) 0.8b 1.3 1.2

Cm (M)e 1.5b 3.2 3.5
a All data were collected with protein in 50 mM phosphate, pH 5.5 unless noted. ΔGunfold was calculated
from experiments performed at 25°C using guanidinium hydrochloride denaturation.
b Mayor et al.27 (done at pH 5.8 at 25°C using urea denaturation).
c Morgan26 (done in 5 mM phosphate buffer, pH 4.5).
d Slope of ΔGunfold versus denaturant concentration.
e Midpoint of unfolding transition.
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Table IV-2. NMR structure statistics.

NMR structure statisticsa

Summary of restraints

NOE distance restraints 1245

Unambiguous 953

Ambiguous 292

Hydrogen bondsb 19

Dihedral angle (φ,ψ) restraintsc 57

R.m.s. deviation from restraints

NOE restraints (Å) 0.024 ± 0.004

Dihedral restraints (°) 0.26 ± 0.12

R.m.s. deviation from idealized geometry

Bonds (Å) 0.0037 ± 0.0002

Angles (°) 0.53 ± 0.03

Improper (°) 1.57 ± 0.14

Ensemble atomic r.m.s. deviations from mean structured (Å)

Backbone 0.59

All heavy 1.29

Ensemble Ramachandran statisticse

Residues in most-favored region (%) 83.2

Additionally allowed region (%) 13.4

Generously allowed region (%) 2.3

Disallowed region (%) 1.1
a Statistics calculated for the ensemble of 43 structures (out of 100 calculated in ARIA30) which had no NOE
restraint violations >0.5 Å and no dihedral restraint violations >5°.
b Each hydrogen bond yields two experimental restraints.
c Dihedral angle restraints were derived from HNHA analysis and chemical shift analysis with TALOS43. ψ

restraints based on TALOS results were included if the HNHA and TALOS results were in agreement for the
corresponding φ and if the residue was found to be in a helical conformation in structures calculated in the
absence of angle restraints.

d Ensemble precision was calculated for residues 3–45.
e Ramachandran analysis was performed with Procheck.45
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        Simulation
                                                                   energy
             ----|----1----|----2----|----3----|----4----|----5- (kcal mol-1)
Wild type    TAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKI   -117.7
FSM1_VF      KQW|ENVEEK||EFVKRHQRI|QEELH|YAQR|||||EA|RQF|EEFEQRK   -225.0
FSM1_MC      KQW|E|VERK||EFVRRHQEI|QETLHEYAQK||||QQA|EQF|REFEQRK   -223.4

Figure IV-1. Sequence alignment and simulation energies of the wild-type ENH
sequence and the designed variants FSM1_VF and FSM1_MC. Positions that have the
same identity as the wild type are indicated with a bar. FSM1_MC has 40 mutations and
FSM1_VF has 39 mutations, differing from the wild-type sequence by 79% and 77%,
respectively. FSM1_MC and FSM1_VF have all but 11 residues in common.

Figure IV-2. Far-UV wavelength spectra of FSM1_VF and FSM1_MC. Spectra were
obtained at 25°C in 50 mM phosphate buffer at pH 5.5.
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Figure IV-3. 1D 1H NMR spectra of FSM1_VF and FSM1_MC. For clarity, only the
amide region is shown. The sharp, dispersed lines are characteristic of well-folded
proteins.
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Figure IV-4. Stereoview of the FSM1_VF structure ensemble. Best-fit superposition of
43 simulated annealing structures, showing the backbone. The N terminus is located at
the top of the image.

Figure IV-5. Superposition of FSM1_VF with crystal structure. Stereoview of the
backbones of FSM1_VF (green) and the crystal structure of ENH (purple). The r.m.s.
deviation of Cα atoms of residues 3–45 is 2.5 Å.



Chapter V 

Dioxane contributes to the altered conformation and

oligomerization state of a designed engrailed homeodomain variant

The text of this chapter has been adapted from a published manuscript that was

coauthored with J. Kyle Lassila, Leonard M. Thomas, and Professor Stephen L. Mayo.

G. K. Hom, J. K. Lassila, L. M. Thomas, and S. L. Mayo. 2005. Protein Sci., 14:

1115–1119.

Abstract

Our goal was to compute a stable, full-sequence design of the Drosophila

melanogaster engrailed homeodomain. Thermal and chemical denaturation data indicated

the design was significantly more stable than the wild-type protein. The data were also

nearly identical to those for a similar, later full-sequence design, which was shown by

NMR to adopt the homeodomain fold: a three-helix, globular monomer. However, a 1.65

Å crystal structure of the design described here turned out to be of a completely different

fold: a four-helix, rodlike tetramer. The crystallization conditions included ~25%

dioxane, and subsequent experiments by circular dichroism and sedimentation velocity

analytical ultracentrifugation indicated that dioxane increases the helicity and

oligomerization state of the designed protein. We attribute at least part of the discrepancy
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between the target fold and the crystal structure to the presence of a high concentration of

dioxane.

Introduction

The original purpose of this project was to computationally design an amino acid

sequence that stably adopts the homeodomain fold. The target fold was the same as for

previous homeodomain designs from our lab1,2: a 51-residue, crystallographically well-

defined fragment of the Drosophila melanogaster engrailed homeodomain [Fig. V-1(a)].3

This fragment is a globular, three-helix monomer. As in our previous homeodomain

designs, we did not consider DNA binding but rather focused on protein stability.

We designed two sequences, UMC and UVF.4 UMC was obtained via a Monte

Carlo algorithm.5 UVF has a slightly lower computed energy and could be obtained via

either the Vegas6 or the FASTER7 algorithm.

UMC and UVF have 79% sequence identity and also have nearly identical thermal

and chemical denaturation profiles. For both proteins, the melting temperature is >99°C

and ∆Gunfolding is 4.2 kcal/mol. The one-dimensional 1H NMR spectra of the proteins

display the characteristics expected of well-folded proteins, and the NMR-determined

structure of UVF matches the homeodomain fold.4

The above evidence indicated that UMC also adopts the homeodomain fold.

However, a crystal structure of UMC would give direct confirmation of the overall fold

and allow for a detailed comparison of crystallographic and computed side-chain

conformations, which would provide critical data for improving our protein design

algorithm.8
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Here we report a 1.65 Å crystal structure of UMC. The structure is a rodlike, four-

helix tetramer [Fig. V-1(b)], not the expected globular, three-helix monomer. This

discrepancy could be due to a lack of explicit negative design in our design algorithm;

however, because of the similarity of UMC to the successful UVF design, we

investigated if the crystallographic conditions could be responsible for the discrepancy. In

particular, the role of dioxane was examined.

Results

The crystal structure of UMC was determined by using single wavelength

anomalous diffraction (SAD). Crystallographic statistics are shown in Table V-1. The

asymmetric unit contains four UMC molecules forming an antiparallel helical bundle

with one UMC molecule per helix. Main-chain and side-chain density could not be

interpreted for some terminal residues (residues 1–3 of chain A; 1–4, 51–52 of chain B;

1–2, 47–52 of chain C; and 1–4, 51–52 of chain D). The asymmetric unit also contains 2

cadmium atoms, 1 acetate molecule and 10 dioxane molecules. The cadmium atoms are

each coordinated by four carboxylate anions: one cadmium is coordinated by four

glutamate side chains [Fig. V-1(c)], and the other cadmium is coordinated by three

glutamate side chains and an acetate molecule.

Several dioxane molecules mediate helix-helix packing [Fig. V-1(d)]. This

observation led us to examine the effect of dioxane on the helicity and oligomerization of

UMC in solution.

Helicity was examined by far-UV circular dichroism. Ellipticity was virtually

unchanged when UMC was exposed to CdCl2 alone (not shown) or CdCl2 with 10%
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dioxane [Fig. V-2(a)]. However, exposure of UMC to 20% dioxane lowered the minima

at 208 and 222 nm and was thus indicative of an increase in helicity. The increase, while

significant, was still less than that for 30% trifluoroethanol (TFE), a helix stabilizer.9

Higher percentages of dioxane did not further increase the helicity significantly (not

shown).

Oligomerization was examined by sedimentation velocity analytical

ultracentrifugation. Exposure to 20% dioxane significantly decreased the percentage of

monomeric UMC, from 81.4% to 62.8%, and concomitantly increased the percentage of

dimeric UMC, from 14.8% to 36.3% [Fig. V-2(b)]. The frictional ratio, which describes

the shape of the sedimenting species, also increased. A sphere has a ratio of ~1.2,

whereas rodlike shapes have higher ratios. The frictional ratio increased from 1.22 to 1.42

in the presence of dioxane.

Discussion

Our crystal structure of UMC is quite dissimilar to the target homeodomain fold.

Instead of three short helices, each monomer is a single long helix. However, the

crystallization conditions, especially the high concentration of dioxane, may induce UMC

into a conformation unrepresentative of UMC in solution.

Increased helicity and oligomerization due to dioxane

Dioxane increased the helicity of UMC. While dioxane had a significant effect, the

[θ]222 for 20% dioxane (−25,000 deg cm2 / dmol res) was less negative than for 30% TFE

(−31,000 deg cm2 / dmol res).
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The effect of dioxane on increasing helicity has been reported previously.10-12 The

increase in helicity can be explained entropically: nonpolar solvent increases the entropic

cost of forming protein hydrogen bonds to water and thus decreases the relative cost of

forming helical hydrogen bonds. The use of organic solvents may have played a role in

the crystallization of a number of short aminoisobutyric acid–containing peptides, which

also adopt extended continuous helical structures.13  

The sedimentation velocity data showed that dioxane increases the oligomerization

state and frictional ratio of UMC. While there was a significant increase in the amount of

dimer, there was no evidence of a tetramer, as might be expected from the crystal

structure. One explanation is that formation of a tetrameric species requires cadmium.

Although CdCl2 alone and CdCl2 with 10% dioxane had no effect on the helicity of

UMC, low millimolar amounts of CdCl2 (e.g., 2–5 mM) caused essentially all UMC to

precipitate out in the presence of >15% dioxane. The UMC crystals appeared a couple of

weeks after precipitate had formed in the well. Perhaps cadmium further increases the

dioxane-induced helicity and/or oligomerization of UMC but requires the very slow

mixing that occurs in the crystallization well.

Conclusion

Overall, the crystal structure has increased helicity and altered oligomerization

compared to the target fold. Both of these differences were inducible by dioxane. We thus

attribute at least part of the discrepancy between the target fold and the crystal structure

of the designed sequence to the presence of a high concentration of dioxane. Although

low concentrations (1%–2%) of dioxane have been reported to improve crystallization of
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some proteins,14,15 we suggest that high concentrations of dioxane be used with caution.

Materials and methods

Protein design and purification

The UMC design, construction, expression, and purification were similar to our

previous engrailed designs1,2 and are described in detail elsewhere.4 A brief summary is

below.

The starting model for all engrailed designs was Protein Data Bank (PDB) entry

1enh.3 Because residue 35 has a positive φ angle, it was preserved as glycine. The UMC

design protocol was identical to the B6 design protocol of Marshall and Mayo,1 except

that in the UMC design all residues were designed simultaneously, and a Monte Carlo

simulation5 was used instead of a dead-end elimination–based algorithm16 to find a low-

energy sequence. The protein was expressed in Escherichia coli and purified via freeze-

thaw17 followed by HPLC using an acetonitrile/water gradient containing 0.1% TFA.

Mass spectrometry indicated UMC has an N-terminal methionine.

Crystallization

Crystals were obtained using a modified sitting drop method that utilizes a

“reservoir mimic.” The well reservoir is minimized to contain only the volatile reagents

and NaCl. The nonvolatile reagents normally in the reservoir are kept in a separate

solution (the mimic) that is only added to the crystallization drop.

We also used Fluorinert (Hampton Research), which is expected to be denser than

the drop and allow the drop to float. Under our conditions, Fluorinert floated above the
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drop. However, this serendipitously slowed the otherwise rapid crystal degradation that

would happen upon well opening and was presumably due to the volatility of dioxane.

The initial crystallization condition was 35% dioxane (Hampton Research Crystal

Screen 2). The final crystallization conditions were as follows: the well reservoir

contained 500 µL of either 24% or 25% dioxane; the well post contained 1 µL of protein

solution (~17 mg/mL UMC, 50 µM sodium citrate at pH 5.5) followed by 1 µL of

reservoir mimic solution (0.1 M MES at pH 5.7, 30% PEG 400, 10–15 mM CdCl2); and

20 µL of Fluorinert (Hampton Research) was then added on top of each post. Trays were

incubated at 20°C; crystals appeared after about 2 wk. The largest crystals had

dimensions of ~150 × 150 × 200 µm.

Structure determination

Data were collected using a Cu source on a Rigaku RU3HR generator with an

R–AXIS IV detector at 100 K. Data were processed using the HKL program suite

v1.97.9.18 Initial electron density maps were generated by using SAD phasing as

implemented in the program suite ELVES.19 The final model was determined by

subsequent rounds of building and refinement using O20 and REFMAC21 from the CCP4

program suite22 to an R-factor of 22.2% (Rfree = 27.8%). Final refinement was done with

high resolution data collected at beamline 9.2 at the Stanford Synchrotron Radiation

Laboratory and produced a final R-factor of 18.7% (Rfree = 22.7%).

Coordinates and structure factors have been deposited in the PDB under the

accession code 1Y66.
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Circular dichroism and sedimentation velocity

Circular dichroism data were collected on an Aviv 62DS spectrometer equipped

with a thermoelectric unit. Wavelength scans were done from 190-250 nm at 20°C in a

0.1 mm path-length cell. All samples contained 532 µM UMC and 10 mM sodium citrate

(pH 5.5). Protein concentration was determined by absorbance at 280 nm in the presence

of 8 M guanidine HCl.

Sedimentation velocity data were collected on a Beckman XL-I analytical

ultracentrifuge with interference optics. Samples contained 532 µM UMC and 0.1 M

sodium citrate (pH 5.5). Samples were dialyzed for 3 h at room temperature against

~100 mL of the corresponding solution without protein. A 12 mm Epon centerpiece and

sapphire windows were used. The rotor, an An-60 Ti, was spun at 55,000 RPM at 25°C.

Scans were taken every 5 min for ~15 h. Data were analyzed with SEDFIT.23
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Table V–1. X-ray data collection and refinement statistics.

R-axis IV SSRLa

Unit cell
  a 50.767 Å 50.712 Å
  b 52.562 Å 52.646 Å
  c 82.147 Å 82.182 Å
Space group P212121 P212121

Wavelength 1.5418 Å 0.8265 Å
Resolution range 81.65–1.90 Å 44.32–1.65 Å
No. of reflections collected 208,991 204,302
No. of unique reflections 17,953 27,060
Rmerge

b 5.6% (55.1%)c 4.7% (19.6%)
I/σ(I) 10.1 (1.3) 31.8 (8.5)
Completeness 99.9% (99.5%) 99.8% (100.0%)

Final refinement
  Rcryst 18.7%
  Rfree

d 22.7%
  Figure of merit 0.863
  No. of residues 368
  No. of water molecules 168
  No. of non-protein molecules 11
  Mean B value 28.1 Å2

RMSD from standard stereochemistry
  Bond length 0.017 Å
  Bond angle 1.527°

Ramachandran plot statistics
  Most favored regions 99.4%
  Additional allowed regions 0.6%
  Generously allowed regions 0.0%
  Disallowed regions 0.0%
a Stanford Synchrotron Radiation Laboratory.
b Rmerge = Σ  I − <I> / Σ (I), where I is the observed intensity and <I> is the average
intensity.
c Numbers in parentheses represent values in the highest resolution shell (1.90–1.99 Å for
the R-axis IV data and 1.652–1.695 Å for the SSRL data).
d Rfree was calculated for 5% of randomly selected reflections excluded from refinement.
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Figure V–1. (a) Target homeodomain fold for UMC. (b) Ribbon diagram of the UMC
crystal structure. The coloring is cyan (chain A), green (chain B), brown (chain C),
salmon (chain D), and purple (cadmium). (c) Coordination of one of the two cadmium
atoms by four glutamates. The coloring is cyan (chain A), green (chain B), yellow (chain
C), purple (cadmium), and red (oxygen). The σA-weighted density map is contoured at
2σ, up to 3.5 Å from the cadmium. Chain C is from a symmetry-related molecule of that
shown in (b). (d) Dioxane molecules mediating helix-helix packing. The coloring is green
(chain B), brown (chain C), yellow (dioxane), red (oxygen), and blue (nitrogen). The σA-
weighted density map is contoured at 1σ, up to 3 Å from the dioxane. Figures were
generated in PyMOL (http://www.pymol.org).



V-15

Figure V–2. (a) Far-UV circular dichroism analysis of UMC. The spectra are UMC
(dashes); UMC in 5 mM CdCl2 and 10% dioxane (triangles); UMC in 20% dioxane
(crosses); and UMC in 30% TFE (circles). (b) Molar mass distribution of UMC as
determined by sedimentation velocity: UMC (solid line); UMC in 20% dioxane (dotted
line).



Chapter VI 

A search algorithm for fixed-composition protein design

The text of this chapter has been adapted from a manuscript that was coauthored with

Professor Stephen L. Mayo.

G. K. Hom and S. L. Mayo. 2005. To be submitted.

Abstract

We present a computational protein design algorithm for finding low-energy

sequences of fixed amino acid composition. The search algorithms used in protein design

typically do not restrict amino acid composition. However, the random energy model of

Shakhnovich suggests that the use of fixed-composition sequences may circumvent

defects in the modeling of the denatured state. Our algorithm, FC_FASTER, links fixed-

composition versions of Monte Carlo and the FASTER algorithm. As proof of principle,

FC_FASTER was tested on an experimentally validated, full-sequence design of the β1

domain of protein G. For the wild-type composition, FC_FASTER found a lower-energy

sequence than the experimentally validated sequence. Also, for a different composition,

FC_FASTER found the hypothetical lowest-energy sequence in 14 out of 32 trials.

Introduction

In computational protein design, simulated energies are intended to correlate with

experimental free energies of unfolding. As such, a force field should model not only the
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native state but also the denatured state. The denatured state is commonly assumed to

have no residual structure.1 This is a poor model, however, as theoretical and

experimental data suggest that denatured proteins are often very compact, with persistent

hydrophobic clustering and considerable residual secondary structure.2 In addition, it is

unclear how to efficiently model the ensemble nature of the denatured state in a way that

is meaningful for protein design calculations.

Modeling of the denatured state may be circumvented if the free energies of

denatured proteins are identical. According to the random energy model (REM),3,4 the

denatured-state energies should be identical for proteins of identical amino acid

composition. While REM cannot be exact for proteins, it is a good approximation.5 Thus,

designs of fixed amino acid composition (FC) should enable development of more

accurately tuned force fields, at least for modeling the native state. FC designs may also

be useful for imposing fold specificity,5 thus providing a partial means of negative

design.

Koehl and Levitt used a simple two-position version of Monte Carlo (MC)6 for

their FC designs.5 However, MC has failed considerably for some non-FC design

classes,7 and so MC alone may be insufficient for finding the lowest-energy FC

sequences. We have had good results on non-FC designs by using a combination of MC

and the FASTER8 algorithm (B. Allen and S.L. Mayo, in prep.). Accordingly, we

modified MC and FASTER for fixed-composition and linked them into a new FC

algorithm, FC_FASTER.
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FC_FASTER

FC_FASTER has four stages:

1) Fixed-composition MC (FC_MC)

2) Two-position minimization

3) Fixed-composition, single-position perturbation/relaxation (FC_sPR)

4) Two-position minimization

The basic strategy is to find low-energy troughs with FC_MC and then to find the

minima of those troughs with FC_sPR.

FC_MC is adapted from Voigt et al.7; significant differences are noted below.

FC_MC starts with an amino acid sequence and randomizes it for both amino acid order

and side-chain conformation. (Henceforth a discrete side-chain conformation will be

called a “rotamer.”) Each change, or step, is made by randomly choosing two to four

positions, making a random permutation of the corresponding amino acids, and randomly

choosing rotamers of those amino acids.

At the end of FC_MC, the lowest-energy sequence undergoes a two-position

minimization. All FC rotamer-pair substitutions (i.e., substitutions that preserve the fixed

composition) are tried, in a random order. If a substitution results in a new lowest-energy

sequence, then the minimization is restarted on this sequence. This process continues

until no FC rotamer pair will improve the lowest-energy sequence.

The lowest-energy sequence is passed to FC_sPR, which is adapted from the sPR

stage of the side-chain placement algorithm FASTER.8 FC_sPR is driven by rotamer
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perturbations of the lowest-energy sequence. For each perturbation, the rest of the

sequence is allowed to accommodate, or relax, with the goal of finding a new lowest-

energy sequence. The relaxation in FC_sPR occurs iteratively: after each position relaxes,

the rotamer sequence is updated prior to relaxation of the next position. The core FC_sPR

process has four stages: perturbation, relaxation to restore fixed composition, iterative

side-chain placement relaxation, and adoption/rejection.

1) Perturbation

At a random position, a rotamer is substituted to form a perturbed sequence.

This rotamer’s amino acid may be different, and thus the fixed composition

may be disrupted. All sequence energies in the next stage are calculated in the

background of this perturbed sequence.

2) Relaxation to restore fixed composition

If the fixed composition was disrupted, a compatible position must be found

to restore the fixed composition. For example, if the perturbed position went

from Arg to Lys, then a Lys position must become Arg. In this case, a Lys

position’s Arg rotamers are “restoring rotamers.” By contrast, rotamers that

maintain the amino acid identity at a position, such as a Lys position’s Lys

rotamers, are “conservative rotamers.”

For each compatible position, the difference in sequence energy is

calculated between the best restoring rotamer and the best conservative

rotamer. (The “best” rotamers have the lowest sequence energies.) Thus the

relative cost of switching amino acid identity is determined. The position with
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the best (most negative) difference is chosen, and the corresponding best

restoring rotamer is substituted into the perturbed sequence.

3) Iterative side-chain placement relaxation

For each remaining position, the best conservative rotamer is chosen. This

process is done iteratively, ordered by how strongly each position interacts

with the perturbed position. Interaction strength is evaluated as follows: for all

rotamer pairs between a position and the perturbed position, the rotamer pair

with the maximum absolute-value interaction energy is determined, and that

interaction energy is compared with those of the other positions. For the

position that ranks strongest, the best rotamer is calculated in the background

of the sequence from stage 2 and then substituted into that sequence. For each

subsequent position, the best rotamer is calculated in the background of the

most up-to-date sequence and then substituted into that sequence.

4) Adoption/rejection

The most up-to-date sequence is kept if it is of lower energy than the pre-

perturbation sequence; i.e., if the most up-to-date sequence is the lowest-

energy sequence so far. Otherwise the pre-perturbation sequence is kept.

Perturbation is done on the lowest-energy sequence for all rotamers at all

positions; perturbation positions are chosen in random order. FC_sPR is repeated until no

perturbation will improve the lowest-energy sequence.

After FC_sPR, the lowest-energy sequence again undergoes a two-position

minimization. (This minimization stage, unlike the minimization after FC_MC, was
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never found to improve the lowest-energy sequence. However, the minimization is

relatively fast and so was kept as a safety net.)

Results

As proof of principle, FC_FASTER was tested on a full-sequence design of the

β1 domain of protein G (Gβ1) for two compositions. Previously, a different version of

FC_MC (FC_MC_original) was tested on this design with the wild-type composition, and

the resulting sequence was validated experimentally (see below). We thus tested

FC_FASTER with the wild-type composition. In addition, we wanted to see if the lowest-

energy sequence could be found for a given fixed composition. Accordingly, we first

found the overall lowest-energy sequence for the design using a non-FC search

algorithm, and then we tested FC_FASTER with that sequence’s composition.

For the above-mentioned test using FC_MC_original, the lowest computed energy

was –96.356 kcal/mol and occurred in 1 out of 16 trials; the average lowest energy for all

trials was –94.866 (Table VI-1). The lowest-energy sequence, which has 24 amino acid

mutations from the wild-type sequence, was synthesized. Wavelength scans and 1D-

NMR were consistent with the wild-type fold, and the molecule showed cooperative

unfolding in guanidinium (O. Alvizo, personal communication).

FC_FASTER was run on the same design, also using the wild-type composition.

We first tested just the first two stages of FC_FASTER: FC_MC plus minimization. The

lowest energy was –97.450 and occurred in 1 out of 32 trials; the average energy was

–96.400. For the full FC_FASTER algorithm, the lowest energy was also –97.450 and

occurred in 1 out of 32 trials; the average energy was –96.571. The full FC_FASTER
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algorithm (0.9 h/trial) took only slightly longer than FC_MC plus minimization (0.8

h/trial). The lowest-energy sequence has 14 amino acid differences from the synthesized

sequence above.

Ideally, FC_FASTER would find the lowest-energy sequence for a given fixed

composition, but how to evaluate this is unclear. Indirect evidence might be the

occurrence of the same lowest-energy sequence in multiple trials. A more rigorous test

could be done if the lowest-energy sequence could be found by other means. The overall

lowest-energy sequence irrespective of composition would work, because that sequence

is also the lowest-energy sequence for its composition. To find the overall lowest-energy

sequence, our lab typically uses either the HERO algorithm9 or a version of FASTER

modified for protein design (B. Allen and S. L. Mayo, in prep.). If HERO converges, it

will find the lowest-energy sequence; FASTER has found the lowest-energy sequence in

all cases we could verify.

Both HERO and FASTER were tried on the design calculation. HERO failed to

converge. FASTER’s lowest-energy sequence, Best_FASTER, had an energy of

–190.996. FC_FASTER was then run using the composition of Best_FASTER, with

FC_MC plus minimization being tested first. For FC_MC plus minimization, the lowest

energy was –190.830 and occurred in 1 out of 32 trials; the average was –188.930. For

the full FC_FASTER algorithm, the lowest energy was –190.996 (the Best_FASTER

sequence) and occurred in 14 out of 32 trials; the average energy was –189.770.
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Discussion

FC_FASTER found both a lower-energy sequence for an experimentally

validated design and also the hypothetical lowest-energy sequence for a different

composition. Using just FC_MC with two-position minimization also worked well.

However, the addition of FC_sPR in the full FC_FASTER algorithm required relatively

little time and was especially better for the Best_FASTER composition, for which

FC_FASTER found the lowest-energy sequence with significant frequency.

For the wild-type composition, the synthesized sequence had a computed energy

of –96.356, but FC_FASTER found a lower sequence of energy –97.450. While that

energy difference may seem insignificant, it belies significant differences in sequence.

The lower-energy sequence differs in 14 (out of 56) positions. Also, an FC_MC search

showed that at least 1000 amino acid sequences have energies between those of the two

sequences above (data not shown). Both directed evolution and non-computational

rational methods would be hard-pressed to derive the lower-energy sequence from the

synthesized sequence.

Each run of FC_MC_original took ~33 h, compared to only ~1 h for each run of

FC_FASTER. This speedup is misleading because just FC_MC with minimization

performed well in 1 h. The increase in performance for FC_MC with minimization was

attributed primarily to better MC parameterization, necessitating fewer MC cycles.

 Incorporation of other FASTER components did not improve FC_FASTER. The

iBR and ciBR stages of the original FASTER were modified for fixed-composition and

tested after FC_MC and minimization. In some cases, after one of these stages, the lowest

and average energies would improve. However, after subsequent FC_sPR and
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minimization, the lowest and average energies were often significantly worse than those

from regular FC_FASTER (data not shown).

Future improvements to FC_FASTER may include optimizing the high

temperature in FC_MC, optimizing the number of steps per cycle, saving more sequences

for minimization, and alternating more frequently between FC_MC, FC_sPR, and

minimization.

Methods

Physical model and test case

Many of the force-field potentials and parameters have been previously

described;1,10-13 changes are noted below. The side-chain/side-chain hydrogen bond well

depth was 4.0 kcal/mol. Side-chain/side-chain hydrogen bonds were not allowed at

surface positions, and side-chain/backbone hydrogen bonds between immediate

neighbors (+1 or –1 positions) were scaled by 0.25. The LK solvation model was used

with the published parameter set.14 In order to balance the solvation energy with other

force field terms, the polar desolvation energy was scaled by 0.6.

The starting model for Gβ1 was PDB code 1pga.15 A backbone-dependent

rotamer library16 was used with expansion of aromatic and hydrophobic residues by one

standard deviation about their χ1 and χ2 values. The library also included a rotamer for

the wild-type conformation of Leu7. To incorporate rotamer probabilities from the

library, [–0.3][log(p)] was added to the energy for each rotamer, where p is the

probability for that rotamer. Residues were classified into core, boundary, or surface

positions by an automated algorithm.10 The Met position (1) was allowed to change
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conformation but not amino acid identity, and the Gly positions (9, 14, 38 and 41) were

not changed. At all other positions, the amino acids found in the wild-type protein were

allowed: A, D, E, F, G, I, K, L, M, N, Q, T, V, W and Y.

Algorithm Parameters

The FC_MC component was run for two cycles of 107 steps/cycle, with a high

temperature of 500.0 and a low temperature of 150.0. All calculations were run on IBM

PowerPC 970 processors running at 1.6 GHz.
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Table VI-1. Algorithm results for Gβ1 designs of differing amino acid composition.

Wild-type composition
Lowest energy

(kcal/mol) Frequencya
Average energyb

(kcal/mol)
Time

(h)
FC_MC_original –96.356 1/16 –94.866 33.3
FC_MC + minimization -97.450 1/32 -96.400 0.8
FC_FASTER -97.450 1/32 -96.571 0.9

No fixed composition
FASTER –190.996

Best_FASTER compositionc

FC_MC + minimization –190.830 1/32  -188.930 0.8
FC_FASTER –190.996 14/32  -189.770 1.0
a(Number of trials with the overall lowest energy) / (Number of trials in total)
bAverage of the lowest energy from each trial
cComposition of the lowest-energy sequence from FASTER
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