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Abstract

In this thesis, new results excluding finite time singularities with localized assump-
tions/conditions are obtained for the 3D incompressible Euler equations.

The 3D incompressible Euler equations are some of the most important nonlinear
equations in mathematics. They govern the motion of ideal fluids. After hundreds
of years of study, they are still far from being well-understood. In particular, a long-
outstanding open problem asks whether finite time singularities would develop for
smooth initial values. Much theoretical and numerical study on this problem has
been carried out, but no conclusion can be drawn so far.

In recent years, several numerical experiments have been carried out by various
authors, with results indicating possible breakdowns of smooth solutions in finite
time. In these numerical experiments, certain properties of the velocity and vorticity
field are observed in near-singular flows. These properties violate the assumptions of
existing theoretical theorems which exclude finite time singularities. Thus there is
a gap between current theoretical and numerical results. To narrow this gap is the
main purpose of the work presented in this thesis.

In this thesis, a new framework of investigating flows carried by divergence-free
velocity fields is developed. Using this new framework, new, localized sufficient con-
ditions for the flow to remain smooth are obtained rigorously. These new results can
deal with fast shrinking large vorticity regions and are applicable to recent numerical
experiments. The application of the theorems in this thesis reveals new subtleties,
and yields new understandings of the 3D incompressible Euler flow.

This new framework is then further applied to a two-dimensional model equation,

the 2D quasi-geostrophic equation, for which global existence is still unproved. Under
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certain assumptions, we obtain new non-blowup results for the 2D quasi-geostrophic
equation.
Finally, future plans of applying this new framework to some other PDEs as well
as other possibilities of attacking the 3D Euler and 2D quasi-geostrophic singularity

problems are discussed.
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Chapter 1

Introduction

1.1 The 3D Incompressible Euler Equations

1.1.1 Derivation

The equations that govern the evolution of ideal fluids are the Euler equations. In
the following, we will give a brief derivation. More detailed ones can be found in
textbooks such as Chorin-Marsden [CM93] or Majda-Bertozzi [MBO02].

Consider a domain (bounded or boundless) Q that is filled with some fluid such
as water. In classical continuum mechanics, the fluid can be seen as consisting of a
collection of infinitesimal particles. At each time ¢, each particle has a one-to-one
correspondence to the space positions x = (21, z2,z3) € Q. The fluid can be totally
described by the following quantities at each position: the density p, the velocity
u = (uq,ug, ug), and the pressure p. We denote the position of any particle at time ¢
by X (a,t), where a € €2 is the position of this particle at time ¢t = 0. The evolution

of these particles is governed by the following differential equation:

D wx (@),
X (a,0) = a. (1.1.1)

To study the dynamics of the fluid, we must establish relations between v and p. This

is achieved by considering two basic mechanical rules: the conservation of mass, and



the conservation of momentum.

The conservation of mass gives

d
— pd:c:—/ pu - n ds,
dt Jw ow

where W is an arbitrary subset of €2, and n is the unit outer normal vector. It can
be shown that, when the density p at the initial time ¢t = 0 is constant everywhere, it
will remain so for all times ¢ > 0, therefore, without loss of generality, p can be taken

to be 1 everywhere, for all times. In this case, conservation of mass becomes simply

d

0=— d:vz—/ u-n do, 1.1.2
dt Jw ow ( )

where the first equality is because W is fixed. By Gauss’s theorem we easily obtain

the following incompressibility condition:
V-u=0. (1.1.3)

The conservation of momentum implies

d

— =F(Q 1.14
qif, v =F @), (1.1.4)

where Q, = X (Q, 1) is the flow image of some arbitrary Qy C 2, i.e., {; consists of
an arbitrary collection of particles that is carried by the flow. If we restrict ourselves

to the case that the fluid is ideal, we have

F(Qt) = /aQ —pn dO',

where p is the pressure and n the unit outer normal vector. One can show that (1.1.4)
is equivalent to

/ut+u-Vuda::— Vp dz,
Q4

Q4



which gives

ur+u-Vu=—-Vp (1.1.5)

due to the arbitrariness of €2;.

Combining (1.1.3) and (1.1.5), we obtain the Euler equations

us+u-Vu = —Vp,
V-u = 0. (1.1.6)

In the following, we will focus on (1.1.6) in the whole space, i.e., Q = R®, with

fast decay boundary conditions.

Remark 1.1.1. It is also possible to derive the Euler equations in a variational setting.

See, e.g., Marchioro-Pulvirenti [MP94]| or Marsden-Ratiu [MR94].

1.1.2 The vorticity formulation

An important equivalent formulation of the 3D Euler equations (1.1.6) is the following
vorticity formulation:
By taking Vx on both sides of the momentum equation (1.1.5) and defining the

vorticity w = V X u, we obtain the following vorticity equation:

wi+u-Vw = (Vu) - w, (1.1.7)

where the vorticity w and the velocity u are related by the so-called Biot-Savart law

1 T —
u(z,t) = —/ y3 X w(y,t) dy (1.1.8)
Am Jre |z -yl

when the quantities under consideration have sufficient decay at infinity.
Combining (1.1.7), (1.1.8), and the fact that V - w = 0, which follows from the

definition of vorticity, we obtain the vorticity formulation of the 3D Euler equations



in R3:

wtu-Vw = (Vu) w

1 T —y
1) = — [ L xw(yt) d

V-w = 0. (1.1.9)

In the following, we will use the notation D% to denote differentiation in time along

the Lagrangian trajectory (also called the “material derivative”), i.e.,

D 0

— = - V. 1.1.10
Di o " (1.1.10)
Remark 1.1.2. The physical meaning of w can be seen from the following argument.

By considering the Taylor expansion of the velocity at some point x, we have
u(z+h,t)=u(z,t)+S(z,t)h+Q(z,t) h+ O (B?),

where S (z,t) = 2 (Vu + Vu™) and Q (z,t) = 2 (Vu — VuT). It is easy to check that

1 1
2 2

1
Q(z,t)h = iw(x,t) X h.

Therefore w (z,t) indicates “local rotation.” Also note that the first term wu (z,1)

represents translation, and the second represents deformation (see Majda-Bertozzi

[MBO02] for details).

1.2 The Euler Singularity Problem

1.2.1 Statement of the problem

One of the most natural and most fundamental questions to ask about any PDE is
whether it is “well-posed,” that is, do we have existence, uniqueness, and furthermore,

continuous dependence on initial and boundary values of the solution. None of these
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questions has been satisfactorily answered for the Cauchy problem of the 3D Euler
equations in R3. In particular, the following long-standing open problem is of much

interest:

The Euler Singularity Problem. Given a smooth enough initial value uy (e.g.,
ug € H™(R3) for m > 5/2), will there be a finite time 7* such that the solution

u (z, T*) will cease to be H™?

Remark 1.2.1. Unlike the Navier-Stokes equations, there is currently no “natural”
ways to define weak solutions for the Euler equations. Therefore the standard ap-
proach, that is one first obtains weak solutions in certain “natural” function spaces,
then bootstraps to get more regularity, does not work well for the Euler equations.*

In particular, it has been shown that the naive definition
u € L* (R* x R"), u satisfies (1.1.6) as distributions,

leads to non-uniqueness even for d = 2 (Scheffer [Sch93|, Shnirelman [Shn97]), in
which case classical solutions are known to exist and be unique. Therefore people have
been trying to obtain a reasonable definition by binding the above “naive” definition
with some energy decreasing condition, see, e.g., Shnirelman [Shn98, Shn00|. The
physical motivation behind this is that such weak solutions may be the correct ones

to describe turbulent flows, see, e.g., Robert [Rob03|.

1.2.2 Relation to the onset of turbulence

Among the most important problems in fluid mechanics is the onset of turbulence.
There is some hint that the above Euler singularity problem may be related to this

phenomenon, although no rigorous relations have been established so far.?2 The argu-

1On the other hand, this approach had some success in dealing with the Navier-Stokes equations,
see, e.g., Sohr [Soh01] or Ladyzhenskaya [Lad03].

2Compare with shock theory for compressible flows: finite time singularities (shocks) indicate the
onset of “new types of solutions” that are correctly described by weak solutions with certain entropy
conditions that guarantee energy dissipation.
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ment is intuitive and based on the following two (seemingly contradictory) observa-
tions.

First, from various experiments, the following empirical law of finite energy dis-
sipation is obtained for the Navier-Stokes equations after the flow turned turbulent.

We recall that the Navier-Stokes equations read

u+u-Vu = —Vp+rvAu,
V-u = 0,

which are the Euler equations with an extra dissipation term vAu. In well-developed
turbulent flows, the energy dissipation rate v <\Vu|2> is measured for various viscosi-
ties v, and the results are consistent with the following “law of finite energy dissipa-
tion” (Frisch [Fri95]):

lirl/rl_églfu <|Vu\2> =ec>0.

Here the bracket (-) stands for ensemble average, that is, the average of many experi-
ments with identical initial /boundary values. Intuitively, when v — 0, the solution u
of the Navier-Stokes equations would approach some solution of the Euler equations
in some way, while at the same time Vu should tend to infinity. This implies finite
time singularities for the solution of the Euler equations.

On the other hand, one can easily check that the kinetic energy

ul® da
R3
is conserved for the Euler equations when u is smooth enough.?
Therefore, if the Euler equations are able to describe the onset of turbulence
at all, intuitively, for some generic initial velocity fields, the corresponding classical

solutions to the Euler equations would develop finite time singularities. However, so

3The so-called Onsager’s conjecture (Onsager [Ons49]) claims that energy will be conserved if
and only if u is Holder continuous with exponent greater than 1/3. See Eyink [Eyi94] or Constantin-
E-Titi [CET94] for proof of the “if” part. For the “only if” part, there are relevant efforts of defining
suitable weak solutions, see Remark 1.2.1.
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far no rigorous relation between Euler singularities and the onset of turbulence has

been found.

1.2.3 Relation to the Navier-Stokes singularity problem

The Navier-Stokes singularity problem, namely, whether the solutions for the Navier-
Stokes equations with smooth initial values would develop finite time singularities or
not, is also a long-outstanding open problem in applied mathematics: see Fefferman
|[Fef00] or Ladyzhanskaya [Lad03| for descriptions of this problem.

It is revealed in Constantin [Con86| that the Euler singularity problem is also
related to the Navier-Stokes singularity problem. This relation is explored by the
following theorem, which claims that, when the solution to the Euler equations stays

smooth, so does the solution to the Navier-Stokes equations.

Theorem 1.2.2. (Constantin 1986). Let v(x,t) be a solution to the 3D FEuler
equations which is smooth in [0,T], then there exists vy = vy (T;v) such that when
0 < v < vy, the solution to the Nawvier-Stokes equations with the same initial value

exists and is smooth in [0,T].

1.3 Review of Euler Singularity Research

1.3.1 A brief history of theoretical research

The Euler equations were proposed as a mathematical model of fluid motion by Euler
in 1755 (|Eul55]). Later it was found that due to its neglect of the viscosity, the system
leads to unphysical solutions (e.g., the D’Alembert’s paradox). This phenomenon
inspired the modification known as the Navier-Stokes equation, which has served
predicting fluid motions ever since (see, e.g., Cannone-Friedlander [CF03| for this part
of history). However, the 3D Euler equations remain fascinating to mathematicians
due to its mathematical sophisticacy.

In the 1920s, local (“local” with respect to time) existence and uniqueness was ob-

tained by Lichtenstein and Gunther ([Licht25]|, [Gun26, Gun27, Gun28|) for classical
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solutions defined as u (x,t) € C* in space for A € (0,1) and C* in time. In the 1970s,
local existence for 3D Euler solutions in Sobolev spaces H™ was obtained by various
authors (Ebin-Fischer-Marsden |EFM70|, Swann [Swa71|, Kato [Kat72|). The main

result for the whole space case is the following:
uy € H™ (R*), m > 5/2 = u € H™ at least up to Ty = Tp (||uo|| jym) -

Unlike the 2D case, the global well-posedness for the 3D Euler equations still
remains open.® Nonetheless, quite a few interesting results have been obtained, for
example Beale-Kato-Majda [BKM84] (which we will discuss in more detail in the
next subsection), Caflisch [Caf93], Babin-Mahalov-Nicolaenko [BMNO1], and Tadmor
[Tad01].

1.3.2 The Beale-Kato-Majda criterion

In 1984, Beale, Kato, and Majda (|[BKM84]|) obtained the following necessary and

sufficient condition for the existence of H™ solutions for m > 5/2:
T*
u cease to be in H™ at T" < / lwl| ;o (t) dt = o0, (1.3.1)
0

where w = V xu is the vorticity as defined in Subsection 1.1.2. This criterion improves
previous ones by Ebin-Fischer-Marsden [EFM70] and Bardos-Frisch [BF76].

Later the BKM criterion (1.3.1) was extended and improved by others. Among
them, Ponce ([Pon85]) proved in 1985 that w can be replaced by the deformation
tensor S = (Vu+ Vu”) /2; Konzono and Taniuchi ([KT00]) in 2000 proved that
lw||;« can be replaced by ||w| 5,0, Where BMO is the bounded mean oscillation
space; The BMO norm is further weakened to Besov norm |[lwl|go . and Triebel-

Lizorkin norm |jw||z by Chae ([Cha02, Cha04a]). Another interesting result by

4Global well-posedness for classical solutions of the 2D Euler equations was obtained by Wolibner
(JWol33]) in the 1930s, whose result was later modernized and extended by Kato ([Kat67]). Yudovich
[Yud63, Yud95] obtained global well-posedness when the LP-norm of the vorticity w = V x u is
carefully controlled for all p € (1, 00).
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Chae ([Cha04b]) claims that as long as the quantity fOT* |@[| g0, remains bounded,

where @ = w'e; +w?ey are the first two components of w, the solution can be extended

beyond 7.

Remark 1.3.1. It is interesting to put the following result due to Lions and DiPerna
(Lions |Lio96] pp. 150-153, the wording here follows Bardos |[Bar01], page 8 ), proved

via construction, in juxtaposition with the BKM criterion.

Theorem 1.3.2. (Lions-DiPerna) In space dimension 3, and for any 1 < p < oo, there

exists no function

6(2.1), limo(Z,1)=0

such that the vorticity of the incompressible Euler equations satisfies the estimate:

lw @Ollze < & ([lw () 5 7) -

The above theorem greatly reduces the hope of proving global existence of the
Euler equations by a priori estimates in functional spaces alone. Furthermore, it
seems to some extent complementary to the BKM criterion in the sense that this
theorem does not include the case p = oo. In fact, the construction by Lions and
DiPerna only yields O (t) growth in ||w||;.. Finally, how the combination of both
results would help in searching for/excluding finite time Euler singularities remains

to be revealed.

1.3.3 Nonlinearity: strong or weak?

The BKM criterion (1.3.1) relates the Euler singularity problem to the evolution of
vorticity, which is governed by the vorticity equation (1.1.7):

D
F‘;Ewt—ku-Vw:Vu-w.

Naively, since Vu = V (V x (—A)_l) w is related to the vorticity by a singular
integral operator (see, e.g., Majda-Bertozzi [MB02]), Vu and w are of the same order.
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This suggests that (1.1.7) can be modelled by the following ODE:
ds 9
a7
which implies a finite time singularity.®
However, it is revealed in Constantin [Con94| that subtle cancellation may exist.

There the equation governing the evolution of the vorticity magnitude |w| is found to

be

with the stretching factor (here we make the dependence on time implicit)

a (z) §(x) - Vu(z) - & (z)

3 dy

= —pv. [ D(,&(@+y),£(2) |w(@+y)|—3,
A7 R3 |y‘

where £ = w/ |w|, § =y/ [y, and
D (a,b,c) = (a-c)det(a,b,c)

for a,b,c € R3.

Since a determinant is involved, when & (z +y)’s are aligned with £ (z), it is
possible that « (z,¢) be much smaller than |w|. Therefore, depletion of nonlinearity
may occur, and the formal argument that claims that o and w are of the same order

may not be telling the truth.

1.3.4 Computations guided by the BKM criterion

In the above subsection, two observations with opposite implications are made. What

makes things more complicated is that they both seem to be supported by recent

5This is the simplest model equation for the 3D Euler equations, which brutally violates impor-
tant properties such as the global interaction between u and w. In Subsection 1.3.6 other more
sophisticated models will be discussed. There it can be seen that energy conservation, incompress-
ibility, nonlocal interaction in the nonlinear term, and the fact that particles are carried by the flow
are really important.
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numerical observations. In the following, we will give a brief review of numerical
efforts searching for finite time singularities, highlighting those related to the two
observations in the previous subsection.

Study of possible Euler singularity by large scale numerical computation started
roughly in the early 1980s (Brachet-Meiron-Orszag-Nickel-Morf-Frisch [BMONMFS83]),
and is followed by computations using various numerical techniques (e.g., Pumir-
Siggia [PS90], Bell-Marcus [BM92], Brachet et al [BMVPS92|, Kerr [Ker93|, etc.).
Evidences favoring both existence and singularity were obtained. See Grauer-Sideris
|GS95] or Frisch |Fri95] (Section 7.8) for brief reviews of these computations.

More recently, several numerical computations (e.g., Kerr [Ker93, Ker95, Ker96,
Ker97, Ker98, Ker04], Pelz [Pel97, Pel01|, Grauer-Marliani-Germaschewski [GMG98|)
have been performed searching for possible candidates for a finite time blowup, mon-
itoring the growth of ||w||; . under the guidance of the BKM criterion (1.3.1). Most
of them suggest a growth rate of (7 — 15)_1 for the maximum vorticity, which seems
to support the modelling of 3D Euler by ds/dt = s?>. However, at the same time,
it is also observed that large vorticity resides in small, fast-shrinking regions where

certain alignment of vorticity directions occurs.

1.3.5 Non-blowup theorem by Constantin-Fefferman-Majda

In 1996, Constantin-Fefferman-Majda [CFM96] explored rigorously the possibility
that alignment of unit vorticity vectors & would cause depletion of nonlinearity. Their

main result is the following:

Definition 1.3.3. (Smoothly directed). A set Wj is said to be smoothly directed if
there exists p > 0 and 7, 0 < r < p/2 such that the following three conditions are
satisfied.

1. For every ¢ € Wi = {q € Wy; |wo (q)| # 0} and all time ¢ € [0,7), the function

€ (-,t) has a Lipschitz extension (denoted by the same letter) to the Euclidean
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ball of radius 4p centered at X (g¢,t), denoted as By, (X (¢,t)), and

T*
M = sup /0 IVE (',t)”iOO(BM(X(q,t))) dt < oo.

qeEW;

2. The maximum vorticity in B, (W;) is always comparable of the maximum vor-

ticity in a larger neighborhood Bs, (W}).

sup |w(z,t)| <m sup |w(z,?)
B37‘ (Wt) B’I‘(Wt)

holds for all ¢ € [0, 7*) with m > 0 constant. Here Wy = X (W, t).

3. For all t € [0,T%),

sup |u(z,t)| < U
B4P(Wt)

for some constant U.

Theorem 1.3.4. (Constantin-Fefferman-Majda 1996). Assume Wy is smoothly di-

rected. Then there exists T > 0 and I such that

sup |L¢) (ﬂi,t)‘ < r sup ‘w ($7t0)|
B, (W) BP(Wlo)

holds for any 0 <tg <T* and 0 <t —ty <.

Remark 1.3.5. In other words, the above result claims that no finite time singularity

would exist if in an O(1) neighborhood of some region carried by the flow,
1. [|VE|| e € L? in time,

2. the maximum vorticity inside this neighborhood is always comparable to the

global maximum,
3. the velocity is uniformly bounded.

Theorem 1.3.4 reveals how alignment of vorticity directions may help deplete non-

linearity. However, since this O(1) neighborhood cannot shrink to a single point,
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Theorem 1.3.4 does not apply to recent numerical observations claiming finite time

singularities.

1.3.6 Model equations
1.3.6.1 Overview

Since it is hard to treat the nonlinearity in the 3D Euler equations, it is natural to

consider models that

1. have simpler dynamics, are easier to study, and at the same time

2. keep as many as possible the major characteristics of the Euler dynamics, such
that studying the model equations would enhance our understanding of the

Euler equations.

The ODE, ds/dt = s* in Subsection 1.3.3, succeeds in 1 while it fails in 2 due to
over-emphasis on 1. There are many model equations in the literature that are far
more sophisticated, see, e.g., Constantin-Lax-Majda [CLM85|, Constantin [Con86],
Liu-Tadmor [LT02], Friedlander-Pavlovi¢ [FP04]. They can be categorized into the

following three classes:

1. Modelling evolution of Vu (or its eigenvalues): Constantin [Con86|, Liu-Tadmor
[LT02], etc. Both models produce finite time singularities. However, the former
disregards the fact that quantities are convected by the flow, while in the latter,
the nonlocal operator producing the pressure hessian P is replaced by a local

one. As a result, these blowups bear little implication for the Euler system.

2. Modelling vorticity evolution: Constantin-Lax-Majda [CLM85|, Constantin-
Majda-Tabak [CMT94|, etc. Finite time singularities have been shown to exist
for the former model, which localizes interactions. The latter model is known
as the 2D quasi-geostrophic (2D QG) equation and is the most sophisticated
model so far. Its singularity problem is still open, and will be discussed in more

detail in the remainder of this subsection.



14

3. Modelling energy transfer in the Fourier space: Dinaburg-Sinai [DS04], Friedlander-

Pavlovi¢ |[FP04], Katz-Pavlovi¢ [KP04], etc.® In these models, nonlocal interac-
tions of different Fourier modes are replaced by interactions between adjacent
modes (neighboring “shells”). As a result, possible depletion of nonlinearity may
be lost. For example, in Friedlander-Pavlovi¢ [FP04], blowup is obtained with
an artificial local nonlinear term that reaches the critical scaling of the Sobolev
embedding, which is the strongest nonlinearity possible. Also, energy conser-
vation is broken in some of such models (e.g., Dinaburg-Sinai [DS04]).” A nice

overview and discussion of the above models can be found in Waleffe [Wal04].

Among them, the most sophisticated and revealing one is the 2D quasi-geostrophic
equation (henceforth referred to as the 2D QG equation) proposed as a model for the
Euler equations in Constantin-Majda-Tabak [CMT94]|. The Cauchy problem of the
2D QG equation is still open today. We will give a brief discussion in the remainder

of this subsection, and present our results for the QG equation in 1.4.2.

1.3.6.2 The 2D QG equation

The 2D QG equation (aka surface-quasi-geostrophic, SQG) describes the variation
of the density variation # at the surface of the earth. The symbol 6, which usually
represents temperature, is chosen because in the case of the ideal gas, the density
variation is proportional to the temperature.

The 2D QG equation is given by

Do
thgt""uve—o,

6These energy transfer models are inspired by the so-called shell models in turbulence theory,
which have been extensively studied by many authors. A good introduction to these models can be
found in Bohr et al [BJPV98], Chapter 3, or Biferale [Bif03].

"Blowup has been proved when infinite energy is allowed. See e.g. Stuart [Stu87], Ohkitani-
Gibbon [OGO00], Constantin [Con00, Con03], and Childress et al. [CISY89]. Note that in the last
one, singular solutions for 2D Euler flows have been constructed.
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where 6 (z,t) is a scalar, and the divergence-free velocity field u (x,t) is defined by

(-8)"Py = -6
with
(-0 = [ em=samiel b e) de
for

w=/¥W“¢@)@.

A brief derivation of the above equations can be found in Majda-Tabak [MT96].
It is found in Constantin-Majda-Tabak [CMT94| that, the evolution of the tangent
vector to the level sets V+6 bears much resemblance to the vorticity evolution for the

3D Euler equations. In particular, we have the following three major analogies:

e The vector V16 is governed by the following equation
(V40), +u-V (V) = (Vu) - (V*6), (1.3.2)

where Vu is of the same order as V6. (1.3.2) is similar to the vorticity evolution
equation (1.1.7). Furthermore, the evolution equation for the magnitude of
V40| is

V40|, +u-V |V =S (z,t) V5o

I’

where the stretching factor

S(x,t) :p‘v'/l; (gg(x))det |(§|§$+y),€(x)) ‘VLO (x—i—y)‘ dy

with § = y/|y| and & (z,t) = V+i0/ ‘VLQ‘ has striking resemblance to the

stretching factor

a(z,t) = ip.v.

- w (@ +)| dy

/ (9 - & (x))det (§,€(z +y),£(2))

[’
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in global behaviors and subtle cancellation properties.

e Similar to vortex lines in 3D Euler dynamics, the level sets of #, which are

tangent to V60 by definition, are also carried by an incompressible flow,

e The kinetic energy ||u||%, is conserved by the flow. Recall that this conservation

also holds for the 3D Euler equations.

Based on the above and other observations, Constantin-Majda-Tabak [CMT94] con-
clude that the 2D QG equation would serve as a good model of the 3D Euler equations.
In particular, the evolution of V46 in the 2D QG flow resembles that of w in the 3D

Euler flow.

1.3.6.3 1Is there a finite time QG singularity?

Since Constantin, Majda, and Tabak’s pioneering work [CMT94|, many theoretical
and numerical results have been obtained for the QG Cauchy problem, see, e.g.,
Chae [Cha03b], Constantin-Nie-Schorghofer [CNS98, CNS99|, Constantin [Con98],
Cordoba-Fefferman [CF02a], Cordoba [Cor97, Cor98], Ohkitani-Yamada [OY97], etc.
In particular, the QG blowup is also controlled by the following BKM-type criterion
(Constantin-Majda-Tabak [CMT94]):

-
Blow-up at time 7" < / HVLHHLM (t) dt = 0. (1.3.3)
0

It is further proved that when both fOT* V€|~ dt and fOT* |ull?e dt are finite, no
blowup can occur (Constantin-Majda-Tabak [CMT94]).

There are also many computations guided by (1.3.3). In Constantin-Majda-Tabak
[CMT94], it is found that when 6 admits a saddle point, |V&| may be large around
this point. Therefore the above result may not apply. In this case it is observed
that |V6]||,. grows at the rate ~ (T* —¢)~"", which indicates finite time blowup.
However, later computations (Ohkitani-Yamada [OY97], Constantin-Nie-Schorghofer
[CNS98, CNS99]|) found that the growth of ||V0)||,. can be better fitted by double

exponential growth.
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In 1998, D. Cordoba [Cor97, Cor98| proved that, even when there is a saddle
point, the growth of V+6# would be bounded by a quadruple exponential under
certain mild conditions on the flow, and hence no blowup would occur. Later, in
Cordoba-Fefferman [CF02a|, a double exponential rate was obtained for two level
sets approaching each other “semi-uniformly.”

Unlike the 3D Euler equations, currently no strong numerical results indicating
blowup exists for the 2D QG equation. However, its singularity problem still remains
open today, as we have mentioned before. There are even 1D model equations for the
2D QG equation being studied (Chae-Cordoba-Cordoba-Fontelos [CCCF04]). These
1D models develops singularities in finite time. However so far these 1D singularities

shed little light on constructing/excluding 2D QG singularities.

1.4 Summary of Main Results

In this section we summarize our main results on the non-blowup of the 3D Euler

equations and the 2D QG equation. They will be proved in chapters 2 and 3.

1.4.1 Non-blowup conditions for the 3D Euler equations

As in Deng-Hou-Yu [DHY04, DHYO05|, we assume that the initial velocity field wu is
smooth enough and vanishes rapidly at infinity, e.g., ug € H? (R3).
First we recall the definition of vortex lines (Chorin-Marsden [CM93|):

Definition 1.4.1. A vortex line is a curve L that is tangent to the vorticity vector

w at each of its points.

One important property of any vortex line is that it is carried by the flow, as

shown by the following theorem. Its proof can be found in, e.g., Chorin-Marsden

[CMO93].

Theorem 1.4.2. If a curve moves with the flow and is a vortex line at time t = 0,

then it remains so for all times.
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Now using €2 (¢) to denote the global maximum vorticity, we consider, at time £,
a single vortex line segment L, along which the maximum vorticity is comparable to
2(t). Denote by L (t) the arc length of L;, £ the tangential, and n the normal unit
vector of L;. Note that by the definition of vortex lines, { = w/ |w|. U () is defined
as the maximum of |(u- &) (z,t) — (u- &) (y,t)| for any two points z,y € Ly, U, (t)
as the maximum normal velocity, M (¢) as the maximum of |V - £|, and K (¢) as the
maximum of x the curvature, both along L;. We should point out that in general L, is
just a subset of X (Ly,t',t), that is X (Ly,t',t) DO Ly, for any ¢’ < ¢, where X (A, s, 1)
denotes the flow image at time ¢t > s of a set of particles that are at position A at
time s.

With these notations, we present our first main theorem.

Theorem 1.4.3. (Deng-Hou-Yu [DHY05]). Assume that there is a family of vortex
line segments Ly and Ty € [0,T%), such that X (Ly,,t1,t2) 2 Ly, for all Ty < t; <ty <
T*. Also assume that Q) (t) is monotonically increasing and max,cr, |w (x,t)] > o2 (%)
for some cqg > 0 when t is sufficiently close to T*. Furthermore, we assume there are

constants Cy, Cy, cr, such that
1 [Ue () + U, (t) K () L (t)] < Cy (T* =) for some constant A € (0,1),
2. M(t)L(t), K (t)L(t) < Cy,
3. L(t) > cp (T* —t)® for some constant B € (0, 1).

Then there will be no blowup in the 3D incompressible Euler flow up to time T*, as

long as B <1— A.

Note that the same result holds if we replace the first assumption in the above
theorem by Ug (t) + U, (1) < Cy (T* — t)*, since this assumption combined with
the second assumption 2 will give us the first assumption 1 in the theorem. In most
numerical observations, Q (t) ~ (T* —t)"", which bounds the maximum velocity by
(T* — t)*”® according to Lemma A.1.1 in Appendix A.1. Therefore in these cases, A

would be no more than 3/5.
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The intuition of Theorem 1.4.3 is the following. Suppose the region D (t) where
vorticity is large (e.g., comparable to Q (¢)) shrinks at the rate (T — ¢)"for some
B € (0,1). Then we take L; to be a vortex line segment in D (¢), and let L, =
X (Lty, to,t) N D (t) to be the intersection of the flow image of Ly, with D (¢). Since
the vorticity magnitude on L; is growing fast, intuitively L; should undergo strong
stretching at each point. Therefore the ends of L; are always carried out of D ()
by the flow, which implies that the length of L;, namely L (¢), would be comparable
with the diameter of D (t), which is (7* —¢)®. Now if the velocity and vorticity
vector fields satisfy assumptions 1 and 2, no blowup would occur. In particular, one

B
and

can show that if V& and U (t) = max,ecp() |u (@, t)| are bounded by (T —t)
(T* — t)_A, respectively, then no blowup would occur.

Unlike previous theorems, Theorem 1.4.3 allows the regions where vorticity con-
centrates to shrink and the maximum velocity to blowup. However, in some numerical
computations, the scaling B =1— A = 1/2 is observed, which lies just beyond Theo-
rem 1.4.3 (e.g., Kerr [Ker93, Ker95, Ker96, Ker97, Ker98, Ker04|). In Deng-Hou-Yu
[IDHY04|, we improved Theorem 1.4.3 to cover this critical case, and revealed new

subtleties in the 3D incompressible Euler flow. Namely, no blowup wold occur if the

various constants in (1)—(3) satisfy certain conditions.

Theorem 1.4.4. (Deng-Hou-Yu [DHY04]). Under the same assumptions as in The-
orem 1.4.3, there will be no blowup in the 3D incompressible Fuler flow up to time

T* in the case B=1— A, as long as the following condition is satisfied:

RK <y, (RA—l (1-A)""/@2- A)H) , (1.4.1)
where R = e /cy, K = cf&’f‘j‘l), and y; (m) denotes the smallest positive y such that
v

(y+1)""

In the following, we briefly discuss how Theorem 1.4.4 may be applied to the
recent numerical observations by Kerr (|[Ker93, Ker95, Ker96, Ker97, Ker98, Ker04]).
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In these computations, one may take A = B = 1/2 and Cj some small constant (see
2.6 for detailed discussion). If we can take L; such that it goes through the peak

vorticity point, i.e., ¢g = 1, condition (1.4.1) is equivalent to

20y

CL

< Kmaz (CO)

for some function K,,,,. The value of K,,,;, for small constant Cy’s are of order 1, for

example, when Cy = 0.1, K, > 0.86. That is, no blowup would occur if

@ < 0.43.
CL

In numerical computations (e.g., Kerr [Ker04]), maximum velocity is measured to
behave like (T* — t) ™/ with O (1) constant coefficient. Therefore it would be inter-
esting to perform careful numerical experiments to check if this condition is satisfied

in near-singular flows.

1.4.2 Non-blowup results for the 2D QG equation

Due to the resemblance between the 3D Euler equations and the 2D QG equation,
we can naturally apply the methods developed in Chapter 2 to the 2D QG equation.
The results are the following.

We denote by € (t) the global maximum of the quantity |V*6|. L, L (t), M (t),
and K (t) are defined in a similar way as in 1.4.1, with w replaced by V+6 and “vortex
line” replaced by level sets. With these notations, we have the following theorems.

First, a direct adaptation of the proof of Theorem 1.4.3 gives us

Theorem 1.4.5. Under the same assumptions as in Theorem 1.4.3, there will be no
blowup if we replace the first assumption by Q (t) < (T* — )" for some B € (0, ),
and the third assumption by

L(t)>c, (T —t)*
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for some constant A < 1.

Remark 1.4.6. Note that in Theorem 1.4.5 we replace the assumption on the growth
rate of the maximum velocity by a rather weak assumption on 2 (¢). This is possible

< log 2 when §2 > e obtained by Cordoba (|Cor98|, the

~Y

due to the estimate ||u|| o
proof can be found in A.3.). With the help of this estimate, we further obtain the
following theorem which yields a triple exponential growth rate estimate on (2 (%)

without any assumption on its growth rate.

Theorem 1.4.7. Assume that there is a family of level set segments Ly and Ty €
[0,T%) such that X (Lyy, to,t) 2 Ly for all Ty < to <t < T*. Also assume that S (t) is
monotonically increasing and QU (t) > ¢o§2 (t) for some 0 < ¢y < 1 for allt € [Ty, T*).

Furthermore, assume that there exist constants cp,Cy > 0, such that

1 (H1) L(t)>

= loglog Q(t)’

2. (H2) M (1) L(t),K (t) L(t) < Cy.

Then there will be no blowup in the 2D QG equation up to T* < oo. Furthermore,

fort € [0,T*), we have the following triple exponential estimate.
logloglog Q (t) < Cit + Cy (1.4.2)

for some constants Cy,Cy > 0 independent of t.

Remark 1.4.8. Tt is worth mentioning that although assumption (H1) looks quite
restrictive if (7" — t)_1 is considered to be generic for possible blowups in Q (%),
theoretically it is really a weaker assumption since this lower bound for L (¢) involves
2 (¢) and is therefore nonlinear. This in fact makes the proof of Theorem 1.4.7 harder
than that of Theorem 1.4.5.

So far, in numerical computations, the growth rate of Q(¢) = ||V0|| -~ never
exceeds a double exponential. We can obtain a double exponential upper bound if

the regularity of £ is better. More precisely, we have the following corollary:
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Corollary 1.4.9. Assume that all the conditions in Theorem 1.4.7 are satisfied, ex-
cept that (H1) is replaced by
(H1’): L(t) > cg.

Then the estimate (1.4.2) can be improved to

loglogQ (t) < Cit + C} (1.4.3)

for some constants C1, CY independent of time.

Remark 1.4.10. In Section 3.3, we show that for a simple hyperbolic saddle scenario
that is similar to the one in Cordoba [Cor97, Cor98|, conditions (H1’) and (H2) are

in fact satisfied.



23

Chapter 2

Non-blowup of the 3D Euler
Equations

In this chapter, we will discuss in detail the relation between local properties of the
vorticity /velocity fields and the growth of maximum vorticity, and prove theorems
1.4.3 and 1.4.4, which exclude finite time singularity for the 3D Euler equations by
localized non-blowup conditions.

The work presented in this chapter consists of materials from the following two

papers:

1. [DHYO05]: J. Deng, T. Y. Hou, X. Yu. Geometric properties and non-blowup of
3D incompressible Euler flow. Comm. PDE, 30: 225-243, 2005.

2. |IDHY04|: J. Deng, T. Y. Hou, X. Yu. Improved geometric conditions for non-
blowup of the 3D incompressible Euler equation. Submitted to Comm. PDE,
2004.

Before presenting the results, we first fix some notation conventions.
e C or c¢: generic constants, whose value may change from line to line.

&: the unit vorticity direction, i.e., & (z,t) = w(z,t)/|w (x,t)| whenever the

right-hand side ratio is well-defined.

T*: the alleged time when the first finite time singularity occurs.

x, o Cartesian coordinate variables. Thus z and « are both vectors in R3.
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e s, 3. arc length variables along one vortex line.
e X (a,7,t): the particle trajectory passing « at time 7. That is, X (a, 7,t) solves
0X (a,,1)

ot
X (a,7,7) = «a.

= u(X (a,7,1))

For any set A C R3, we denote

X (A, 71,t) = UgeaX (a,7,t).

When 7 = 0, X («,0,t) reduces to the conventional Lagrangian representation
of the flow (Chorin and Marsden [CM93|), and we will use the conventional

notation X (o, t) = X («, 0, t).

e ~: We write a (t) ~ b(t) if there are absolute constants ¢, C' > 0 such that

cla(@® <o) < Cla(®)].

e >(<): We write a(t) 2 b(t) if there is an absolute constant ¢ > 0 such that

la ()] = clb(D)]-

a(t) < b(t) is defined similarly.

2.1 Two Observations

It has long been observed that at later times, large vorticity regions in incompressible
flows of high Reynolds numbers do not have full dimensions, that is, they may be very

thin in one or two directions. In particular, many of these regions have the shapes of

1

“one-dimensional” vortex tubes that are long and thin." This phenomenon has also

'Whether these vortex tubes determine the behavior of the flow is subject to different opinions
among researchers. A discussion of this matter can be found in Frisch [Fri95].
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been observed in recent numerical computations (e.g., Kerr [Ker93, Ker95, Ker96,
Ker97, Ker98, Ker04|, Pelz |Pel97, Pel01|). Recall that a vortex tube is a collection
of vortex lines. Since these tubes are very small, it is natural to study the static and
dynamic properties of vorticity along one vortex line, which would be “representative”
in some sense (This is the philosophy behind the “vortex filament” theory, see, e.g.,
Chorin [Cho94| Chapter 7, Majda-Bertozzi [MB02| Chapter 7).

In this section, we study both the static and dynamic properties of vorticity along
one vortex line. We start with two observations, which relate static and dynamic

change of vorticity magnitude with geometric properties of the vorticity direction

field.

2.1.1 Direction and magnitude of vorticity

First, we have the following lemma, which relates, through the incompressibility con-

dition, the vortex line geometry to the magnitude of vorticity.

Lemma 2.1.1. Let & (z,t) = |ZE;2\ be the direction of the vorticity vector. Assume

that at a fized time t > 0 the vorticity w (x,t) is C' in x. Then at this time t, for any
x such that w (x,t) # 0, there holds

0 ||

2w t) = = (V&) w]) (2,1, (211)

where s is the arc length variable along the vorter line passing x. We denote this
vortex line by L.
Furthermore, for any y € | such that w does not vanish at any point in the vortex

line segment between x and y, (2.1.1) then gives
jw (y, 8)] = |w ()| e VO &, (2.1.2)

where the integration is along the vortex line.

Proof. Notice that w (z,t) = |w(x,t)| € (z,t). Since w(z,t) # 0, & (z,t) = ‘58& is

well-defined in a neighborhood of x. The incompressibility condition V - w = 0 then
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gives

0=V w = V(¢
= (VIl) €+ (V Ol
= (€ V)l + (V- Ol

Further note that the directional derivative £ - V is actually the arc length derivative

along the vortex line, i.e., £ - V = 0/0s, as can be seen from the following argument.

We have
_ dx(s)

&V ds

-V

by the the fact that the unit tangential direction vector £ can be obtained by differ-

entiating the parametrized formulation x = x (s) of the vortex line. Now by the chain

rule,
dz 0
—-V=—.
ds 0s
Therefore we obtain
0 |wl
—— =—(V-§lul,

0Os
which is just (2.1.1).
Now solving the ODE (2.1.1) along ! by multiplying e/(V¥) on both sides, and
then integrating from x to y, we easily obtain (2.1.2). O

Using Lemma 2.1.1 we can obtain the following theorem.

Theorem 2.1.2. Consider any 3D incompressible flow (Euler or Navier-Stokes). Let
x(t) be a family of points such that |w (z(t),t)| 2 Q(t) (recall that Q(t) is the mazimum
vorticity magnitude ||w (-, t)|| oo sy at time t). Assume that for all t € [0,T) there is
another point y (t) on the same vortex line as x (t) such that the direction of vorticity
€ along this vortex line between x (t) and y (t) is well-defined. If we further assume
that

/ "6 ) ds| < (2.1.3)

(t)
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for some absolute constant C' and

/0 w(y(®),8)] di < oo,

then there will be no blowup up to time T. Moreover, we have

Proof. Using (2.1.2) and (2.1.3) we easily obtain

/0 w (z (t),1)] dtfec/o lw (y (t),t)| dt < .

Then by our assumption on w (z (¢),t), we have

/OTQ(t) dt§/0T|w(ac(t),t)| dt < oo,

and our theorem follows directly from the BKM criterion. O

Theorem 2.1.2 gives a practical criterion for judging possible blowups in numerical
computations. It also suggests that when searching for a finite time blowup numer-
ically, one has to pay attention to the geometric property of vortex filaments. It is
not enough to just track the maximum vorticity magnitude and the point at which
this maximum is attained. The vorticity magnitudes at other points are also crucial.
In particular, the above theorem implies that if there is a non-vanishing vortex line
segment containing the maximum vorticity up to time 7™ such that the “weakly reg-
ularly orientedness” condition (2.1.3) is satisfied, then no point singularity is possible
up to this time T™. To illustrate, we discuss the relation between Theorem 2.1.2 and

the numerical observations by Pelz [Pel97, Pel01].

Example 2.1.3. In [Pel97, Pel01], Pelz studied a class of incompressible flows with
strong symmetry and conjectured that such flows can lead to a finite time blowup.
In these computations, vorticity is concentrated in small vortex tubes of length scale

(T — t)l/g. After a re-scaling z — (T — t)_l/2 x, these tubes seem to have a regular
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shape. This suggests that the length of this inner region scale like (7% — t)l/ % and the

~1/2 Let us take the

scaling of V - ¢ within this inner region is of the order (T — t)
point z (t) to be the point inside one tube where the maximum vorticity is attained,
and y (t) to be a point on the same vortex line, but outside the tube. Within this
inner region, condition (2.1.3) is likely to be satisfied. Thus by Theorem 2.1.2 we see
that if the maximum vorticity outside these small tubes is integrable in time, then
there is no blowup inside the tubes. It is likely that the maximum vorticity outside
these small tubes has a growth rate smaller than that inside these small regions. This
casts doubt on the validity of Pelz’s claim on the finite time formation of a point
singularity. To validate Pelz’s claim, one needs to perform more careful numerical
study to check whether there exists a non-vanishing vortex line segment within which

condition (2.1.3) is satisfied or whether the vorticity within the inner tube-shaped

region blows up at the same rate.

Before ending this subsection, we present an interesting application of the philos-
ophy of writing V-w =¢§-V|w|+ (V- §) |w|.

First we note that for any vector field @ (x,t), which is in the same direction of
w (z,t), we can write

w(z,t) =& (z,t) Q(z, 1)

for some scalar function (z,t) > 0. Applying the same argument as in the proof of

Lemma 2.1.1, we obtain an equivalent form of V - w:
Viw=@-V)Q+(V-0)Q. (2.1.4)

(2.1.4) becomes handy when checking the divergence-free property in certain cases
that arise in preparation of initial values for numerical computations.

In numerical computations of incompressible fluids, people often prefer to con-
struct compactly supported initial vorticity by first constructing a family of vortex
lines, and then assigning vorticity magnitude to them (see, e.g., Kerr [Ker93|, Hussein-

Melander [HM92]). The reason is the following. It is physically highly meaningful to



29
study those initial flows that the initial vorticity concentrates in vortex tubes with
certain prescribed geometry, e.g., two anti-parallel tubes. And the aforementioned
way of constructing the inital vorticity field just fits this requirement by first fixing
the geometry of the vortex tubes with prescribed vortex lines. These vortex lines are
usually given in parametrized form (z (7),y (7), z (7)), which would make it inconve-
nient to first compute the vorticity as a function of (z,v, z), and then check V-w = 0.
However, noticing that during the construction of the initial vorticity, one naturally
obtains & (may not be of unit length) by differentiating (z (7),y (), z (7)) and Q
by prescription, we readily see that (2.1.4) yields a simple way to check whether the

initial value is divergence free. To illustrate this point, we study the following claim:

Claim 2.1.4. The vorticity field w (z,y, z) constructed in the following way is always

divergence free.
1. Take a “center curve” (zo + z (y),y, 20 + 2 (y))-
2. Take a “bump function” f (r), e.g., f(r) = e T2/2.

3. Construct initial vorticity along each vortex line (%o + x (y),y, 20 + 2 (y)) by

assigning the following (relative) vorticity strength:
~ \2 ~\2\1/2 ! !
f (((mo—xo) +(ZO_ZO) ) ) (3: (y),l,Z (y))

Proof. Take & = (' (y),1,2' (y)) and Q = f (((xo —%0)° + (20 — 20)2) 1/2). Since
is constant along each vortex line, & - V€ = 0 automatically. Further, since & only

depends on y, V-0 = 3%1 = 0. Now applying (2.1.4), we obtain V - w = 0. O
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2.1.2 An alternative formulation of vorticity growth

It is well-known that the evolution of the magnitude of vorticity along any particle
path is governed by the following equation (Constantin [Con94]):

Dlw (z,1)|

Dt = {(z,1) - (Vu(z,t)-&(2,1)) |w (2, )|

a(z,t)|w(z,1)],

where D/Dt = 0,4 u -V is the material derivative. After some simple calculation we

have another form of the stretching factor a:

a = &-Vu-&
= - V)@w-§-u-(£-V)E
= (u-§),—w(u-mn),

where we have used the fact that £ - V = 9/0s and the well-known basic relation in

differential geometry
o5 _
s

K1l

with kK = | - V€| the curvature and n the unit normal vector of the vortex line.

Remark 2.1.5. This formulation of the stretching factor a = (u - §), — & (u - n) reveals
that, instead of the whole gradient of all three components of the velocity vector
Vu, only a partial derivative 0/0s of one particular component u - £ and the normal
velocity u - n itself (not any of its derivatives!) are involved. This subtle difference
with the form & - Vu - £ will prove to be vital to our analysis, as will become clear in

sections 2.3, 2.4, and 2.5.

2.2 Geometric Description of Vorticity Stretching

Having written the stretching factor into a form that involves the geometric properties

of the vorticity and velocity fields for any fixed time, we need to find a way to describe
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the dynamic growth of the vorticity by quantities “more geometric.” It turns out that
we can achieve this by studying the stretching of one vortex line segment.
In the following, we will study how the relative rate of arc length stretching along
a vortex filament is related to the relative rate of the maximum vorticity growth in

time.

2.2.1 Estimation at one point

For any starting time %y, consider the evolution of a vortex line for ¢ > ¢;3. Let s and
£ be the arc length parameters of this vortex line at time ¢ and ¢, respectively. We
can write, for this very vortex line, s = s(f,t). Note that s(8,%) = 8. Then we

have the following lemma.

Lemma 2.2.1. For any point a at time ty such that w («a,ty) # 0, let X (o, to,t) be

the position of the same particle at time t > to. Then we have

@ a — ‘w (X (a,to,t) 7t)|
aﬁ (X( ’tht)’t) ‘L(J(Oé,to)|

(2.2.1)

Proof. Without loss of generality, we prove the lemma for ¢, = 0. Denote wq (o) =
w (e, 0). Now according to our notation convention, we will simply use X («,t) for
X («,0,1).

It is well-known that for 3D Euler flows we have (Chorin-Marsden [CM93))

w(X (a,t),t) = Vo X (1) - wo (@) -
Then

wX (1), 1) = £(X(1),1) - w (X (e1),1)

= £(X (a,1),1) - VaX (a,1) - £ (a, 1) wo ()]

Note that & (X (a,t),t) = 0X (a,t) /0s for any ¢, where s is the arc length variable

of the vortex line that passes X (a,t) at time . In particular, we have £ (o, tp) = g—g.
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Now we can further simplify the above equation as

o @00 = Z20 00X 0 P e )

00X (a,t) O0X ()

- 2ol 2 i ()
0X (a,t) 0X (ayt) Os

:< ds  0s )aﬁ‘“"’()'

— (60X (a,1) B 55 oo (@)
0s

— 5l @),

Thus ends the proof. O

2.2.2 Estimation by a vortex line segment

In Subsection 2.2.1, we have related the vorticity growth at one Lagrangian point
with the relative stretching of the vortex line at that point. To take advantage of the
two observations in 2.1, we need to further relate the growth of vorticity magnitude
with the length change of one vortex line segment, instead of the local stretching rate

as in (2.2.1). This is done by the following lemma.

Lemma 2.2.2. For any ty, let l; be a vortex line segment that is carried by the flow,

i.e., ly = X (lyy, to,t) fort > to. Denote its length by I(t). Define

m(t) = maX|V € (z,1)],

TE€l;

recalling that £ = w/ |w| is the unit vorticity direction. If we further denote {(t) =

maxge, |w (x,t)|, then the following inequality holds.

e—m(t)l(t) Ql (t) S l(t) S em(to)l(to) Ql (t) .
Q0 (to) = T(to)  (to)

(2.2.2)

Proof. Let B denote the arc length parameter at time t,, and s denote the arc length
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parameter at time ¢. Denote the two end points of /;, by 51 and 2. Then we have

B2
() = / 55 df
— //32 |w (X (aatO’t)’t)l

1 |w (a’t0)|

B2 Ql (t)
< /ﬂ om0y, (1) dp

Q (t)
m(to)l(to)lil t
e )
Q (o) (to)

dp

where the second equality is due to (2.2.1), the inequality comes from
jw (X (e, t0,2) ,2)| < €0 (2)
due to the definition of Q; (¢), and
w (o, tg)| < e"™W)Q, (1)

due to (2.1.2).

Similarly, we have

B2
l(t) = / Sg dﬁ
/[32 |w (X (aatht) ’t)|

) |w (e, o))
S /,32 e—m(t)l(t)Ql (t) g
)  (to)

~ O (t)
OLORLAN
€ .
Q (to) (to)

dp

Thus ends the proof.
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2.3 Key Estimate for Vorticity Growth

Now we can combine the understandings developed in subsections 2.2.1 and 2.2.2 and
obtain our key estimate of vorticity growth.
By (2.2.1) and recalling that

Dw| _
o = alel=1u-8), —r(u-n)]wl,

we see that the same equation holds for the growth of sg:

D85

=L = (), — w ()]s

= (u-&s—£(u-n)sg, (2.3.1)

where the last equality is by the chain rule.

Now integrating equation (2.3.1) along one Lagrangian vortex line /; (by La-
grangian we mean [; = X (I, s,t) for any ¢y < s < t at some fixed time ty), whose
ends are denoted by 3; and S5 at time ¢y, we have

D s (B2,t) — s(B1,1)]
Dt

= (U ) 5) (X (ﬁQatht) at) - (U ) 6) (X (ﬂlat()at) ,t)
B2
—/ k (u-mn)sg dp. (2.3.2)

Further, we integrate (2.3.2) from ¢, to some later time t. We get

5 (B2,t) = s(B1,t) = s5(B2,t0) — 5 (B1,t0)
" / (- €) (X (Bortoy7) o 7) — (u-€) (X (Busto, 7) 7)) dr

to
t B2
- / k (u-n)sg dfdr.
to 451
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Noticing that s (82, t) — s (51,1) is just [(t), the length of I;, we have

t

L#) < 1) + [ max|(u-&)(z,7) = (u-&)(y,7)| dr

tO $,y€l7-

+ / b (r) maxu -0l 1 (7) d, (2.3.3)

to
where £ (7) = max,¢;, k (x,7) is the maximum curvature along [, at time 7.

Now recall that in Lemma 2.2.2 we have proved that

e~ mOI) 2 (t) < L(t) < mito)i(to) 2 ()
(o) = 1(t0) % (fo)

for a Lagrangian vortex line segment [; at times ¢ and ¢;. Combining this estimate

and (2.3.3), we obtain
Q () < em™DHOQ (1) [1 + ﬁ/t Ue (1) + k(1) Uy, (7)1 (7)] dr|, (2.3.4)

where we have defined Ug (1) = maxg yer, |(u- &) (z,7) — (v - &) (y,7)|, Up (T) = max;, |u - nl,

and used the fact that m (t) = max,¢;, |V - £|. We call (2.3.4) our key estimate.

2.4 Proof of Theorem 1.4.3

2.4.1 Main idea

The proof relies heavily on our key estimate (2.3.4), which bounds the ratio of the
maximum vorticity at two different times by local properties of the vorticity and
velocity fields. The main idea is the following.

If the maximum vorticity blew up at a finite time 7™, then for any constant
r > 1, we could divide the time interval [0, 77) into an infinite number of subintervals,

[tk,tk+1), in which the maximum vorticity increases geometrically, i.e., Q (tx11) =
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r{) (tx). By using our assumptions, we have

T 0 00
/ Q1) dt <D Q(tgar) (brar — 1) < Qto) D (T" — 1) (2.4.1)
k=0

to k=0

Now the key of our proof is to show the existence of one particular » > 1 such

RN T by yy)

that the corresponding ?; converges to 1™ so fast that limsup,_, R

lim supy,_, o % < 1. This makes the summation finite, and thus we get a
contradiction.
This main idea lies behind the proof of both of our main theorems, as will be

presented in more detail in the following.

2.4.2 The proof

We prove Theorem 1.4.3 by contradiction. First, by translating the initial time we

can assume that the assumptions in Theorem 2 hold in [0,7*). Define
+1, (2.4.2)

where R = e“with C; being the constant in the conditions of Theorem 1.4.3 such
that M(t)L(t) < Cy for allt € [0,T), and ¢ is the constant such that Qp, (¢) > ¢, ().
Throughout the proof we denote Qy, (t) = maxger, |w (z,t)|. The reason for choosing
the parameter r this way will become clear later in the proof. If there were a finite

time blowup at time 7', we would have

ATQ@)ﬁz

or equivalently, for any ¢y € [0,7T),

/WMﬂﬁ:m.

to
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Then necessarily we have Q (t) " oo ast ' T*. Now we can take a time sequence
t1,to,...,t,,... such that
Q (the1) = 7 (8)

where 7 is defined in (2.4.2). Since € (¢) is monotone and 7™ is the smallest time such
that fOT* Q(t) dt = oo, it is obvious that ¢, * T*as n — co.

Now we choose [;, = L;,. By our assumptions on L;, there exists l;, C L;, such
that X (ls,,t1,t2) = l;,. This is a crucial step to our theorem and we illustrate it in

the following graphic:

Figure 2.4.1: Hlustration of X (Iy,, t1,t2)
A7

In the above graphic, segment AB and C'D’ are L;, and L;,. By our assumptions,
L; may shrink with time. If this is the case, the flow image of AB, denoted by A’'B’
would be much longer than C'D’. Note that the segments A’C" and D'B’ do not have
to have a good bound for V - £ or k. Now our choice of /;, and [;, is the following.
We take [, to be C'D’. Then [;, has to be the pre-image of /;, and is denoted by
CD. 1t is crucial to notice that the length of l;,, i.e., [ (¢1), is bounded from above
by L (o) instead of L (¢;). The important task now is to obtain an estimate on the

lower bound of / (¢;), which turns out to be of the same order as L (¢3). If we further
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denote

Ql (tz) Em?x‘w ($,t)| 1= 172:
T€E t;

then by taking ¢ = 5 in (2.2.2) we would have

[(t1) > l(h)%gigl;,

where the last inequality is due to the assumption M (t) L (t) < Cy and R = e“°. Note
that by assumption we have 0y, (t) > ¢€2 (¢). Thus [ (¢;) can be further bounded from

below by

0 Q2 (t
RQ(t,)

Co Co B
—I(ta) = =L (to) 2 (T —t2)" .
D1y = L) 2 (T 1)

~—

Q

L(t1)) > [(t2)

On the other hand, we have from (2.3.4)

O (ta) < MG, (1))

C t2
-[1+m/tl (Ue (1) + M (1) Uy, (1)L (7)) dT].

By the assumptions of Theorem 1.4.3, we have
M (t2) L(t2) < M (t2) L (t2) < Co
and
U (1) + U (1) M (1) 1(7) < Ue () + Un (1) M (r) L (7) S (T* = 7).
Then it follows that
Q (t2) < R (t) + CR% / "’ (T* —7) % dr.

Note that the constant C here depends on R, r, and cg.
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Since €, (t) > €2 (t) by assumption, we have

1 1
Q(tr) < aQL (tee1) = an (tr+1)

R CR Q(t te+1 _
— (t) + ¢ (t) = / (T* —T) A dr
Co Co (T* —ty1)” Ju

te1
o (te) + CR__ Q) - / (T* = 7)™ dr
Co C (T* —te1)” Ju

CR Q (t)
(1—=A)co (T — tk+1)B

N

IA

IN

IN

(r—1)Q(t) +

[(T* - tk)liA - (T" - t/c+1)17A ;

where 7 = (R/cy) + 1 is defined as in (2.4.2). We still denote CR/ (cy (1 — A)) by
C, note that the generic constant C' now depends on R, 7, ¢y and is proportional to

(1 — A)*. Since (T* — tx41)"* > 0, we can discard it and obtain

(T* — tk)lfA

Q (tk—}—l) S (7‘ - 1) Q (tk) + cQ (ik) (T* _ tk+1)B.

(2.4.3)

Recall that Q (tx11) = 7€ (tx) by our construction, so we can cancel Q (¢x) from both

sides of (2.4.3) and obtain

T —t,)
r<(r—1)+ C%, (2.4.4)
(T* — tg41)
which gives
(T* -ty )? <O (T — 1) 4, (2.4.5)

or equivalently

(T* — tyyr) < C (T" — )%,

611_A1>0
2\ B '

Now it is quite clear why we take Q (tx11) /2 (tx) = 7 > R/co and choose r = R/cy+1,

where

since otherwise we would not be able to obtain (2.4.3), and consequently we would

not be able to get crucial estimates (2.4.4) and (2.4.5).
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Now note that C' and ¢ are independent of k. Therefore when k is large enough,

(T* — t;,) becomes so small that (T* — t,)° C < 1. Thus we have
(T* = thyr) < (T* = 1) (T" = 1),

or equivalently,

for k£ large enough.

Finally, since r is also independent of &k, when £ is large enough we would have
r(T"—t)’ <a<1

for some a uniformly in large k. This implies r* (T* — t;) < a* (T — t;) and conse-

quently the convergence of the right-hand side of (2.4.1), which in turn gives
T*
/ Q) dt < oo
to

The proof ends after invoking the BKM criterion (1.3.1).

2.5 Proof of Theorem 1.4.4

The first half of the proof of Theorem 1.4.4 follows the same line as the proof of The-
orem 1.4.3. However, it keeps track of various constants more carefully. Recall that
in the proof of Theorem 1.4.3, we divide the time interval [Ty, 7*) into subintervals
[tk, tk+1) such that

Q (tgr1) =2 ()

for some constant r to be fixed. Then since

/T* Qt) dt < Q1) S (T~ 1),

to k=0
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it is enough to show that
lim sup (L~ k1)
k—o00 (T* - tk)

to get a contradiction. In the proof of Theorem 1.4.3, we show that 7™ —t;, is decreas-

<1

ing faster than geometrically and therefore the upper limit is less than 1. Here we
will see that T* —t;, decreases just geometrically with the ratio (T* — tx.1) / (T* — tg)
bounded by some certain constant depending on the various constants in the growth
rate assumptions of the theorem. Therefore our task is to find conditions for the
various constants Cy, cr,, etc., such that there exists r > e /¢q that would guarantee
the upper limit to be strictly less than 1. We carry out our investigation now.

By our key estimate, we have

% L(t(l;:)l) . C°lezl(t(];:)l)5(ti+l) /t+ (Ue (1) + K (1) U (7) L (7)) dT}

< e%[1+exmﬁg$ZT>La;H)L;“xug@>+zrwauﬁ@»Lcﬂ>dﬂ,

eto [1 +e

where we have used € (t;) > e~ “°Qy (#4), a consequence of Lemma 2.1.1. Now since

Qp () > 2 (t) by assumption, we have

I Q (trs1) <lQL (tk+1)

Qte) ~ co Qu(tr)

et [ 20 2 (te11) 1 /tk+1 ]
< — |14 Us (1) + K (1)U, (1)L (1)) dt
< & 0 e ) GO+ K@U L)

2 Co bt A
< R|:1+RT‘ l—A/ CU(T*—T) dT:|
e (T* = tgya) te

= R+ R}Kr

( T* _ tk )I—A X
T — gt ’

where we have used the assumptions on the growth rates and have defined

600 CUC()
Co an Cr, (1 - A)
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Now the above can be rewritten as

T =t \'"* _ (REr+1)r—R
T* — tk+1 B R3Kr ’

which gives

T* — ity _ R*Kr Va4
T* — t (RPKr+1)r—R '

Recall that it is enough to find one r > R = €%/, such that

. T (T* — tk+1)

limsup ————= < 1.
koo  L1*—1

Therefore it is sufficient to find r > R such that

r>ARK
(RRK+1)r—R

<1. (2.5.1)

In the following we will show that the existence of such r is equivalent to the

condition on R and K in the theorem, i.e.,
RK <y (R (1-4) 7"/ (2- 4°7),

where y; (m) denotes the smallest positive solution of

y
(y+1

)2—A =m.

We summarize this as the following lemma, whose proof is postponed to A.2.

Lemma 2.5.1. There exists r > R such that (2.5.1) is satisfied if and only if
RK <y (R (1- 4"/ 2 477),

where y; (m)is as defined above.

Clearly, the proof of Theorem 1.4.4 also ends with the application of the lemma.
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2.6 Applications of Theorems 1.4.3 and 1.4.4

In most numerical studies of 3D Euler singularities, it has been observed that the
maximum vorticity, if it blows up at all, grows as (T* — t)_l. On the other hand,
Kelvin’s circulation theorem suggests that the maximum velocity be bounded from
above by the square root of maximum vorticity. Thus A = 1/2 is in some sense
the worst blowup scenario for the velocity field if we consider the (7% —¢)~ blowup
for the vorticity field as generic. If we follow the vortex filament along which the
maximum vorticity is attained, then we have ¢y = 1. Thus it is of practical interest to
study Condition (1.4.1) for the case A = 1/2 and ¢y = 1 and investigate the parameter
range for Cy, Cy, ¢, in which no finite time blowup would occur.
In the case A =1/2 and ¢y = 1, Theorem 1.4.4 implies that if

~ 2
eCK <y (6 CO/ZW) ;

then there will be no finite time singularity up to time 7*. We can rewrite the

condition as

K < Kpas (Co) = 3%y, (26_00/2/33/2) ,

where y; is the smallest positive number such that

Yy _ 2 ¢—Co/2
(y + 1)3/2 33/2 '
One can obtain K,,,, easily by solving either numerically or analytically the cubic
equation

2
G ) =y =0

for each C > 0. See Figure 2.6.1 and Table 2.1 for a plot of K., as well as a table

of K., for some representative values of Cj.

Next we apply Theorem 1.4.4 to Kerr’s computations. In a sequence of papers

(Kerr [Ker93, Ker95, Ker96, Ker97, Ker98, Ker04]), computations for the perturbed
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Table 2.1: K4, (Co) for small Cy’s
Co 0.05 0.1 0.15 0.2 0.25 0.3
Koz (Co) | 1.1770 | 0.8682 | 0.6644 | 0.5180 | 0.4088 | 0.3253

Figure 2.6.1: K44 (Co)

anti-parallel vortex tube setting (Figure 2.6.2) are performed.? Kerr observed that
when ¢ is close enough to the alleged blowup time 7™, the region bounded by the
contour of 0.6 ||w||;~, aka the active region ([Ker97]), looks like two vortex sheets
with thickness ~ (T* — t) meeting at an angle ([Ker96|, see Figure 2.6.3, and Figure
2.6.4 for a diagram). This active region has length scale (T* — t)"/? in the vorticity

direction. The maximum vorticity resides in the small tube-like region with scaling

2Using a pair of perturbed anti-parallel vortex tubes as the initial value when searching for
possible Euler singularities has been the strategy of many numerical computations. One of the
reasons is that this initial setting leads to vortex reconnection, which changes the topology of the
vorticity vector field, in Navier-Stokes simulations (e.g., Hussein-Melander [HM92], Shelley-Meiron-
Orszag [SMO93]). The idea is to trigger the Crow instability and thus obtain fast growth of vorticity.
Both blowup and non-blowup (more specifically, exponential growth of vorticity) behaviors have
been observed by different authors, and also are the same authors when using different resolutions.
Recently, H. K. Moffatt proposed two orthogonally aligned vortex dipoles as another candidate for
point collapsing blowup, see [Mof00].
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(T* — t)"/? x (T* — t) x (T* — t), which is the intersection of the two sheets. Inside
the active region, vortex lines are “relatively straight” ([Ker97]). Thus, assumption
3 in the theorem is verified, and therefore we have L (t) > ¢z, (T* — t)"/? for some
cr, > 0. Since this observation is made according to the re-scaled picture of vortex
lines, it is likely that both the curvature x and V - £ in this region are bounded by the
order (T* — t)_l/ ?. In this case, assumption 2 is verified. It is also observed that the
maximum velocity of the flow is located on the boundary of the active region, that is
(T* — #)/? away from the maximum vorticity, and grows like (T* — t)™"/? ([Ker04]).

If we take the worst scenario that Ug () also blows up like (7™ — t)_l/ >

, then we will
have A = 1/2 in our theorem and assumptions 1-3 in the theorem are all verified.
Furthermore, since the vortex lines are “relatively straight,” we can expect Cy to be
quite small. If we take Cy < 0.1 as a reasonable guess, then there will be no finite

time singularity if Cy and ¢y, satisfy the following constraint:

@ < 0.4341.
CL

Currently there are no numerical measurements of Cy and c;, available. Whether
the scaling constants cr,, Cy, etc., satisfy Condition (1.4.1) in Theorem 1.4.4 is still
unknown. We are currently carrying out careful numerical studies to obtain accurate

measurements for these scaling constants.

2.7 Conclusion

In this chapter, we derived an estimate for the local vortex line stretching from two
simple observations. With this estimate, we are able to prove non-blowup under very
localized assumptions on the vorticity and velocity fields. Unlike existing theoretical
results, our new theorems are applicable to the observations of recent computations
searching for finite time singularities. Application of these theorems showed that,

although the flows in recent numerical computations show strong indication of finite
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Figure 2.6.2: Anti-parallel vortex tubes (Kerr [Ker03])

time singularities, there is still a large possibility that no blowup would occur in them.
More specifically, even if the scalings of various quantities are consistent with each
other and suggest blowup, they could still be artificial if the constant coefficients of
these scalings do not satisfy certain relations. Thus in this sense, new results derived

in this chapter revealed new subtleties in the 3D Euler flow.
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Figure 2.6.3: Active region (Kerr [Ker96])

Figure 2.6.4: Diagram of the active region (Kerr [Ker03])

-

¢

Figure & Disgram
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Chapter 3

Non-blowup of the 2D
Quasi-geostrophic Equation

3.1 Introduction

The 2D-QG equation has its origin in modelling the transportation of the potential
temperature # by an incompressible flow (Pedlosky [Ped87]) on a 2D surface. The

equation reads

D6 06
=% v = 1.1
D= 5 +u-VO=0 (3.1.1)
with initial value
0 |t:0: 00.

The relation between the active scalar 6 (z,t) and the velocity u (z,t) is given by

u = V%
Y o= (=0)P (=),

where
oY oY
J— P —_— -
vio= (- g )
and
_ -1/2 . _ omiz-k 1 N
(o) = [ s () d
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with
b (z) = / TR (k) dk.

A simple derivation of the above system can be found in Majda-Tabak [MT96|.

The finite time singularity problem for the 2D QG equation is important both
physically and mathematically. The physical importance comes from the fact that
the formation of a “sharp front” would imply the “crash” of warm and cold air, which
is of interest to meteorologists. The mathematical reason for 2D QG’s importance is
its close relation to the 3D Euler equations, as we have discussed briefly in Subsection

1.3.6 and will discuss in more detail below.

3.1.1 Analogies between the 2D QG equation and the 3D Eu-

ler equations

In their 1994 paper [CMT94|, Constantin, Majda, and Tabak pointed out that the 2D
QG equation has a striking mathematical and physical analogy to the 3D incompress-
ible Euler equations, and they both exhibit similar geometric/analytic structures. For

example, if we take V< in both sides of (3.1.1), we obtain
(V40), + (u-V) (V1) = (Vu) - V0,

where

Vu = VVt (=A)"2 (=)

is of the same order as V0. Recall that the vorticity equation for the 3D Euler flow
reads

we+ (u-V)w=(Vu) - w,

where Vu is also of the same order as w. Therefore we may learn more of the evolution
of w by studying the evolution of V4.

In [CMT94], the analytic resemblance is carried further when the following equa-
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tion governing the evolution of the magnitude of V-6 is derived:

D |V+o| s

1
SS9,

where the stretching factor

S(x’t):/R2 (g-f(w,t))det(f(x—i—y,t),g(:v,t)) ‘VLH(.I—{—y,t)‘ dy

ly[®

with & (z,t) = V*+0/|V+6| and § = y/ |y|. This very much resembles the stretching

factor

lyl’
for the 3D Euler equations.

Based on these analytic analogies, Constantin-Majda-Tabak [CMT94| proved the
following local existence and BKM criterion for QG. These results were later gener-
alized to Besov/Triebel-Lizorkin spaces (Chae [Cha03b]). A similar result to the one
obtained by Constantin, Fefferman, and Majda [CFM96] is also obtained in [CMT94].

We list these results below.

Theorem 3.1.1. (Constantin-Majda-Tabak [CMT94]). If the initial value 0y () be-
longs to the Sobolev space H* (R?) for some integer k > 3, then there is a smooth
solution 0 (z,t) € H* (R?) for the 2D QG equation for each time t in a sufficiently
small time interval [0,T*). Furthermore, if T* the mazimal interval of smooth ezis-

tence is finite, i.e., T* < oo, then T* is characterized by

16¢, D)l o0 ast /T

and can be estimated from below by

1

T >
18]l

Theorem 3.1.2. (Constantin-Majda-Tabak [CMT94]). Consider the unique smooth
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solution of the 2D QG active scalar with initial data, 6y (x) € H* (R?) with k > 3.

The following are equivalent

1. The time interval [0, T*) is a mazimal interval of H® existence for the 2D QG

active scalar.

2. The quantity HVLOHLOO (t) accumulates so rapidly that
T*
/ HVLQHLW (s) ds — 0.
0
3. Let S* (z,t) = maxgege S (x,1), then
T*
/ S* (1) dt = co.
0

Theorem 3.1.3. (Constantin-Majda-Tabak [CMT94]) A set Qgis smoothly directed
if there exists p > 0 such that

T
sup/ (X (q,0),6) di < oo
0

g€Qo

and

T
Sup /0 ||V£ ("t)“Lc’o(Bp(X(q,t),t)) dt < o,

q€Q

where B, (x) is the ball of radius p centered at x and

Qp ={q€ Q| wo(g) #0}.

If we denote
Qt - X (Qo, t)

and

Or () = {(z,0) |z €, 0<t<T},
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then under the assumption that €y is smoothly directed, we have

sup V@ (z,1)| < oo,
Or(Q0)

i.e., there can be no blowup in Or ().

Remark 3.1.4. It is worth mentioning that Theorem 3.1.3’s assumptions are weaker
than the one for the 3D Euler equations in Constantin-Fefferman-Majda [CEM96]

(Theorem 1.3.4), since the velocity is no longer required to be uniformly bounded.

Besides these analytic analogies, it is also observed in [CMT94] that geometrically,
if we view V10 as corresponding to w in the 3D Euler equations, the level sets of
are a QG analogy to the vortex lines in the 3D Euler equations in the sense that these

level sets are tangent to V-6 and are carried by the flow.

3.1.2 The QG singularity problem

Due to the above analogies between the 2D QG equation and 3D Euler equations, the
2D QG singularity problem received much interest in the recent 10 years, with the
hope that careful study of this problem would shed some light on the Euler singularity
problem.

However, it turned out that the 2D QG singularity problem is also beyond reach of
current mathematical techniques. Nonetheless, although unable to thoroughly solve
the problem, a symbiosis of theory and numerics proved to be much more successful
in attacking this problem than the 3D Euler singularity problem.

By Theorem 3.1.3, as long as the direction field of the level sets remains smooth
enough around the maximum stretching point, it is not likely to have any finite
time blowup in the 2D QG equation. This claim is supported by the numerical
results in the pioneering paper [CMT94| with various initial values. On the other
hand, the authors did find a possible candidate for finite time singularities, that is
the “hyperbolic saddle” case, where 6 (z,t) admits a saddle point, around which the

smoothness of the level sets deteriorates rapidly. In this case, the growth of max |V
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is fitted by 1/ (8.25 — ¢)"", which implies blowup according to Theorem 3.1.2.

In 1997, Ohkitani and Yamada re-did the simulations and pushed further to higher
resolutions (8192 x 8192). They found that the same result can be fitted equally well
by double exponential growth (|[OY97]), indicating that no finite time blowup, at least
up to the time of their computations, would occur.

Following that, Constantin-Nie-Schorghofer [CNS98, CNS99| found that the dou-
ble exponential rate is in several aspects a better fit, thus implying that there would
be no finite time singularity for the 2D QG equation.

Around the same time, D. Cordoba [Cor97, Cor98| proved that under some mild
assumptions, the hyperbolic saddles would not cause a finite time singularity, in-
stead the growth of ‘VL0| is bounded by quadruple exponential. Later in Cordoba-
Fefferman [CF02a], the so-called “semi-uniform collapse” scenario, which covers most
of the scenarios considered by Constantin-Majda-Tabak [CMT94] and Cordoba [Cor97,
Cor98|, is considered. Double exponential rate is obtained for the approaching of the

two collapsing level sets.

Before presenting our main results and the proofs, we first fix the notations.

e C or c¢: generic constants, whose value may change from line to line.

&: the direction of the V410 = (—=0,0,0,0). In other words, £ is the tangent

direction of the level sets.

T*: the alleged time when the first finite time singularity occurs.

x, a: Cartesian coordinate variables. Thus  and o are both vectors in R2.

s, B: arc length variables along one level set.

X (a,t1,19): the particle trajectory passing « at time 7. That is, X (o, 7,1)
solves
0X (a,,1)

ot
X (a,7,7) = «.
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For any set A C R?, we denote
X (A, 7,t) = UgeaX (a,7,t) .

When 7 =0, we use X (o, 1) = X (v, 0, 1).

e We also use “~” “<” and “2” as defined in the beginning of Chapter 2.

3.2 Proof of Main Results

For the 2D QG equation, thanks to the better velocity bound in Cordoba [Cor98§]
(presented in Appendix A.3), we are able to apply the method in the previous chapter
and obtain theorems 1.4.7 and 1.4.5.

3.2.1 Preparation of the proof

The preparation follows the same lines as in Chapter 2. First, since V46 is diver-
gence free, we have the following similar result for the relation between |V6| and the

direction field £ = V46/|V*4|.

Lemma 3.2.1. Let & (z,t) = gigg& be the direction of the vorticity vector. Assume

at a fized time t > 0 the vorticity V+0 (x,t) is C* in z. Then at this time t, for any
x such that VO (z,t) # 0, there holds

01|Ve|
0s

(z,t) = = ((V-£)|V0O]) (1), (3.2.1)

where s is the arc length variable along the vorter line passing x. We denote this
vortex line by [.
Furthermore, for any y € | such that w does not vanish at any point in the vortex

line segment between x and y, (3.2.1) then gives

VO (y,1)| = |V (z,1)| ez VO ds. (3.2.2)
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where the integration is along the vortex line.

Proof. The proof is similar to that of Lemma 2.1.1 and is thus omitted.

In the QG case, we don’t have at hand the formula
w (X (aat) :t) = VX (aat) - Wo (O‘) )

which gives us
s ‘UJ (X (aatO:t)at)|
— (X (o, tp, 1) ,t) =
65( ( 0 ) ) ‘W(Oj,to)|

However, the QG version is easily derived by the following calculation:

VJ_G ‘t:O Vieo (oz)

= V(X (a,1),1)
= (Vb (X (a,1),1))"

= (VX - V0)"
NIETENIEY
o\ X Xap | | B0

] X —xan | [ 010
o\ X X | [
I TR o Y
X Xu || a0

= (VoX)7' V(X (1), 1),

where X; ; = gi(?.
J

Now by the same argument as in Subsection 2.2.1, we have

N VO(X (o to, 1), 1)
ap X (@t t) ) = ——ggr s

Further, by arguing in a similar way as in 2.2.2, we have the following lemma.

(3.2.3)
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Lemma 3.2.2. For any ty, let l; be a level set segment that is carried by the flow,

i.e., ly = X (lyy, to, t) fort > to. Denote its length by I(t) and define

m(t) Eglgiilv'f(%t)h

where £ = V+0/ ‘VLQ‘ is the unit tangent direction. If we further denote )(t) =

maXgey, ‘VLO (z, t)‘, then the following inequality holds:

_ Q (t) 1 (t) (1)
m(t)i(t) 24 < < m(to)i(to) 2L A\Y 3.24
e e . . .
Q (to) — L(to)  (to) ( )

In Constantin-Majda-Tabak |[CMT94|, it is derived that

DIV| _
S = (€ Vu-g) Vo).

Now, similar to the argument in Subsection 2.1.2, we can easily obtain the evolution

equation of sz as
dS/j _

o (u-&)y =k (u-n)sg.

Integrating along /; and then from %, to ¢, we obtain the following estimate

O (t) < em™DUIQ, (1) |:1 + ﬁ /tt 1+ K (r)l(r)U (r) dr|, (3.2.5)

where U (1) = ||u||,- Note that here the key estimate makes things less sharp by
replacing both Ug and U, by an overestimate U. The reason is that we have the

following estimate obtained by Cordoba (|Cor98|):

Lemma 3.2.3. There exists a generic constant C' > 0 such that for t > 0,
lul|, < Clogf2(t) +C. (3.2.6)

For completeness, we sketch its proof in Appendix A.3.
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Now combining (3.2.5) and (3.2.6), we have the following key estimate

Q (1) < emOHOQ, (1) [1 + /t 1+ K (1)l(r)) (log2(r) +1) dr|, (3.2.7)

l (to) to

where C' is an absolute constant independent of any parameters.

3.2.2 Proof of Theorem 1.4.7

The proof relies heavily on (3.2.7), which gives a Gronwall-type estimate for the
growth of magnitude of V@ at two different times.
By the assumptions of Theorem 1.4.7, we have the following estimate for the

growth of the maximum V#:

QO () < R () Q (t) {1 + / t 1+ K (1)1 (7)) (log Q (r) + 1) dT} . (3298)

l (tO) to

where R (t) = e™') /¢;. Let R = €0 /¢y with Cy and ¢y defined in Theorem 1.4.7.
Then we have R > R (t) for all ¢t € [0,T). Now (3.2.8) gives

Q(t) < R (to) [1 + /t (1+Ch) (logQ2 (1) +1) dT:| : (3.2.9)

L(to) Je

Heuristically, after taking one derivative in time and setting ¢, = ¢, we would get
Q' (t) < CQ(t)loglogQ (t) logQ (1) .

This would yield a triple exponential upper bound for 2 (¢). However, this procedure
is not mathematically correct. An estimate on the lower bound of [ (¢o) is needed. In
the following, we will obtain this lower bound and establish this triple exponential

upper bound rigorously.

3.2.2.1 Outline

We will prove Theorem 1.4.7 in four steps.
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1. Divide [T, T) into intervals [tg, tx1) such that

Q (k1)

Q) = (3.2.10)

for some constant » > R. One of the reasons for this partition is to obtain an
sharp lower bound estimate for [ (t;) within each time interval [tg,{x41) using
our relationship between the relative growth of maximum Vé and the relative

growth of arc length stretching between two different times.

2. Use (3.2.4) to estimate a lower bound on [ (f), which in turn gives an upper
bound for € (tg41):

1 tet+1

Mloglogﬁ(tk)/ (logQ(7) +1) dr|.

Q (te+1) < RQ () [1+C
CL tk
(3.2.11)

3. Use (3.2.11) to obtain a local estimate on the triple exponential growth estimate

of Q (tk+1) in [tk, tk+1)2

RQT (1 + C())

logloglogQ (t;41) < logloglog (tx) + C -
L

N log R
log Q () loglog  (tx)

(tkt1 — tr)

(3.2.12)

4. Sum up the estimates for each [ty,tx.1) to obtain

RZT (1 + C())

logloglogQ (t,) < logloglog® (¢y) + C
CL

(tn - 7tO)

n nz_i log R
“~ log () (t;) loglog 2 (t;)

(3.2.13)

It can be shown that the sum in the RHS of (3.2.13) can be bounded as follows:

nz_l Log i < B 1oglogQ () + C (3.2.14)
i=0 log (2 (t;) loglog Q2 (¢;) — logr §1067083¢ Uin "4

for some constant C. Now substituting (3.2.14) into (3.2.13) would give the
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desired triple exponential estimate for Q (,):

1 2r (1
logloglog 2 (t,) < ogT CR r(1+C)

t, — 1t . 3.2.15
~ logr —log R cL ( o) + ( )

3.2.2.2 Proof of the theorem

We now carry out in detail the above four steps.

1. Partition of the time interval.

Let r be any constant such that » > R and ¢y € [Ty, T) close enough to 7" so
that Q (¢9) > 2e and loglog (r€2 (to)) < 2loglog € (tp). Define ty < t; < --- <
t < --- < T by (3.2.10), which is copied here.

Q (trs1)
Q (tr)

=r. (3.2.16)

If there exists n € N such that we cannot find ¢, 1 using (3.2.16), or equivalently,
such that for any t € (t,,T*),

then € (¢) remains bounded in [0,7*], and thus no blowup can occur. Now
we assume that for all £ € N we can find ¢, iteratively such that (3.2.16)
is satisfied. Since limg_,o €2 (tx) = oo and T* is the smallest time such that

fOT* Q(7) dr = oo, we must have t; N T*.

2. Estimate of the lower bound for [(¢;)

We apply (3.2.9) to the time interval [ty,t541]. For ¢ € [ty,?411], choose [, C

Ly, , so that € (tg1) = Qp (teg1) and [ (tx41) 7> and let /; be such

— cL
~ loglog Q(tg+1
that l;, ., = X (I, t,tk41), i.e., [ is the pullback of I, to time ¢ € [ty, tx41]. By

the assumptions of Theorem 1.4.7 we have l; C L, for t € [tg, t;41]. Therefore,

Q () < RO (t) [1+0%/;(10g9(7)+1) ir| .
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Next we obtain a lower bound for / (¢;). Using (3.2.2), we have

I (tes1) Q (tg41)
) = o)

= Rr,

which gives

1 < Rr Rrloglog € (t41) < 2Rrloglog Q2 (tx)
l(tk) - l(tk+1) Cr, B Cr,

since €2 (tx) > Q (to) is large enough by our choice of ¢;. Thus, we obtain the
upper bound (3.2.11) for € (¢):

mmg]ogﬂ(tk)/ (logQ () +1) dr

123
(3.2.17)

Q(t) <RQ(t) [1+C
CL
for all t € [t1, 5], where C' is some absolute constant independent of any param-

eters.

. Local triple exponential growth estimate

Define Q (t), t € [tg, tpi1] as

() = R () |1+ L) B 1000 (1) /t (logQ(T) + 1) dT} .

cr ”

(3.2.18)

First we prove that Q(t) < Q(t), for t € [ty,txr1]. When t = t, we have

Q(t) = RQ (tx) > Q(tx). Now suppose there exists § € (0,%x1 — tx] so that

Q(t) > Q(t) when t € [ty, t, 4+ 6), and Q (tx +6) = Q (tx + ). Using (3.2.17)
and substituting Q (t; 4+ 6) = Q (t + 6) into (3.2.18), we obtain

ks ti+o
/ logQ (1) dr < / logQ (1) dr,

tr 123

which contradicts the assumption that Q (t) > Q (£) when ¢ € [ty, t)+0)! There-

fore, such § cannot exist, which is equivalent to Q (£) < Q (¢) for all t € [ty, t41]-
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Next we differentiate (3.2.18) with respect to ¢ and get

& (1) = T C0) 6 4y oglog 2 (1) (1og§2 (t) + 1) .

Cr

By using Q (£) > Q (t), we easily obtain

B , 2,. ; Q (tx) loglog Q (t) (log Q (t) + 1
(logloglogQ(t)> = C’R (1+Co) 5 ( )

cL (t) loglog Q (¢) log Q (¢)
cFri+G) (3.2.19)

CL

Now integrating (3.2.19) over ¢, we obtain the triple exponential growth esti-

mate.

Finally, noticing that Q (t,) = RQ (t;) and loglogx is a concave function for

1

T >e -, we get

logloglogQ (t;) = loglog (log R +log Q2 (t;))

< logloglogQ (tx) + (loglog)’ (log 2 (t;)) log R
n log R
log Q () loglog Q (tx)

= logloglog € (t) (3.2.20)

Combining (3.2.20) with the triple exponential estimate (3.2.19) for Q (¢) and
using Q (t) < Q (t) for t € [ty, ty41], we obtain (3.2.12) by taking t = t;4;.

. Global estimate

In the last step we obtain
R?r (1 + C,
logloglogQ (tx+1) < logloglogQ (tx) + CM

N log R
log Q (tx) loglog Q (tx)

(tk1 — tk)
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Summing over £ = 0 to n — 1, we obtain

R2T (1 + C())

CL

log R
. 2.21
ZlogQ (tr)loglog 2 (tx) 3 )

logloglogQ (t,) < logloglog® (ty) + C (tn — to)

Next we will estimate the sum on the RHS of (3.2.21) and prove that

n—1

log R < log R

logloglog 2 (t, 2.22
log 2 (tx) loglog Q2 (tx) — logr ogloglog Q2 (tn) + C (3 )

k=0
for some constant C' > 0, n > 2.

Since 2 (t,) = 7™ (t9), we have

il log R . Z log R
prd logQ () loglog Q (tx) — log (r*€2y) log log (r*€)

n—1
Z log R
p (klogr + log Q) log (klogr + log Qo)

log R < logr

logr kz_% (klogr + log Q) log (klogr + log Q)

Note that the sum

7
L

logr
(klogr + log Q) log (klog r + log )

B
Il

0

is in the form of a Riemann sum of the function (zlogz)™". Since (zlogz) " is

decreasing for x > e~ !, this sum can be bounded by

n log r+log Qo 1
/ dx = logloglog (r"$)) — logloglog Qg
log Q20 zlogz

= logloglog® (t,) — logloglog

since 2 (t,,) = r"€y. This proves (3.2.22).
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Now using the fact that r > R, we get

1 2r (1
logloglog Q2 (t,) < 08T C’R rd+G)

tn —to) +C'| .
~ logr —logR cr ( o) +

Therefore, the growth of €2 (¢) is bounded by the triple exponential for t < T
implying that no blowup can occur at time 7. This completes the proof of

Theorem 1.4.7.

3.2.3 Proof of Corollary 1.4.9

The proof is similar to that of Theorem 1.4.7. The only difference is that the estimate
in Step 2 is replaced by

(1) < RO (1) |1+ oL OB / " log 2 (r) +1) dr] .

CL tk

Thus the logloglog Q2 (¢) in Step 3 is replaced by loglog 2 (¢). Since for z > e~ !, logz
is also concave, all the steps can be carried out in the same way. We finally obtain a

double exponential growth estimate

1 2r (1
loglog Q) (t,) < 8T C’R r {1+ Co)

tn —to) +C'| .
~ logr —log R cL ( o)+

This completes the proof of Corollary 1.4.9.

3.2.4 Proof of Theorem 1.4.5

The proof of Theorem 1.4.5 follows exactly the same line as the proof of Theorem
1.4.3 in Chapter 2. To see this, one only need to notice that by assumption  (¢) <

(T* — )", we can easily obtain
U (t) S [log (" = 1) S (T" = 1)"

for any B’ > 0. In particular, we can choose B’ such that B’ + A < 1.



64
3.3 Application to a Hyperbolic Saddle Scenario

In this section we discuss the regularity assumptions (H1), (H1’), and (H2) in Theorem
1.4.7 and Corollary 1.4.9 in the context of the simple hyperbolic saddle scenario similar
to that given in Cordoba [Cor97, Cor98]. By assuming that the level sets of # take
the form of a simple hyperbolic saddle, Cordoba showed in [Cor98| that the angle of
the saddle cannot close faster than double exponentially, and then proved that the
growth rate of |V| is bounded by a quadruple exponential. Therefore, the possibility
of a finite time singularity in the simple hyperbolic saddle case is excluded. In the
following, we will study the implications of the simple hyperbolic saddle assumption,
and show that in this case, Corollary 1.4.9 applies and can bound the growth of |V4|
by a double exponential, which is consistent with numerical observations (|OY97],
[CNS98, CNS99)).

First we give our definition of a simple hyperbolic saddle, which is slightly different
from the one given in Cordoba [Cor97|. The assumptions are based on inspection of
the computational result in Constantin-Majda-Tabak [CMT94]. Figure 3.3.1 is the

plot of their level sets at various times.

From Figure 3.3.1 one can easily see that a “hyperbolic saddle” seems to be collaps-
ing in the middle of the domain. Similar to Cordoba [Cor97|, we make the following

definition.
Definition 3.3.1. By a simple hyperbolic saddle ansatz up to time 7™, we mean
there exists an O (1) region U of the origin so that
0(x,t) =0 (p(z,1),¢) in U
with
p(a,1) =6 ()" y7 - va,

where

yz:F;(xvt)v 22172
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Figure 3.3.1: Evolution of # (Constantin-Majda-Tabak [CMT94])

We further assume that 6 (t) € C'[0,T*), F; € C? (U x [0,T*]) for i = 1,2, and

)
det (&) >co >0
8a:j

for all z € U and t € [0,7*]. This definition is illustrated in Figure 3.3.2.

Remark 3.3.2. The definition here is slightly different from that in Cordoba [Cor97] or
[Cor98], where p (z,t) = y1y2 —cot a (t) -y3 and p (z,t) = (o () y1 — y2) (B () y1 + y2)
respectively. If we further assume that the small parameters a, 8 are in C? [0, T*],
then by adding a rotation to the mapping (x1,z2) — (y1,%2), we see that all three
definitions are actually equivalent. Since it is not likely that the angle of the hyper-
bolic saddle would close in a wiggly manner, in the following, we will refer to our

hyperbolic saddle ansatz as simply “the hyperbolic saddle case.”

We denote the maximum |V6)| location by P(t) and make one further assumption.
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Figure 3.3.2: Simple hyperbolic saddle

A F,

e (Ha). There is dy > 0 such that
dist (P (t),0U) > dy

for all t € [0,T7].

Remark 3.3.3. In other words, we assume that the location of the maximum |V§)| is
strictly inside U, at least for ¢ sufficiently close to T, since we can always redefine the
starting time. This is reasonable since otherwise the blowup, if any, would happen at
the boundary OU and the hyperbolic saddle assumption, which specifies the behavior

of the level sets inside U, would be irrelevant.

Finally, we denote by U™ (t) the region between the closing separatrix and U~ (¢),

the region above and below them. More specifically,

Ut(t) = {2€U|p(z,t)>0} and
U (t) = {z€U|p(z,t)<0}.
Now we are ready to present our main result of this section.

Proposition 3.3.4. For any t € [0,T%], there is an O (1) segment of the level set
passing through P (t) such that V& is bounded along this level set segment.
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Remark 3.3.5. Before proving it, we note that when Proposition 3.3.4 holds, Corollary

1.4.9 would give us the desired double exponential growth bound.

Proof. First note that 6 and p share the same level sets. Thus, for any ¢, |V6| is
proportional to |Vp| along the level set p = c. Therefore, the point P (¢) must also
maximize |Vp| along the level set passing through it.

Our strategy is the following. First we compute |V p| explicitly along this level set.
Then we show that the maximum of |Vp| is of the same order as ¢ by estimating the
maximum of an auxiliary function that is smaller than |Vp| along this level set. It
follows from this and the explicit formula of |V p| that the maximum must be attained
at some point that is O (1) away from the tip of the level set. Finally, by explicitly
computing the magnitude of V&, we show that for points that are O (1) away from
the tip of the level set, |V¢| is bounded, and thus ends the proof.

First we compute |Vp|. We have

Vp| = 2|0*FVF — BVE

= 2\/0'L-F} —28M -F\F, + N - F},

where

L=|VE|?, M=VF  -VF, and N = |VF|

are functions of (z1,zs), or equivalently, (Fy, F5).

Recall that in Definition 3.3.1 we have assumed
OF;

det ( ) ‘ > co > 0,
aﬂij

|V"F - VE| > ¢ >0,

which is equivalent to

and in turn yields

|VF1| . ‘VFQ‘ Z Cy > 0.

Since by assumption Fi, € C? (U x [0,T7]), |[VF| < Cy < oo for i = 1,2
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Combining with |VF|-|VFy| > ¢y > 0, we see that L and N are bounded from below

by some positive constant. Therefore, there are constants b, B > 0, such that
b<L<B, b<N<B,and —B<M<B. (3.3.1)

Now we have

v+ Vip
Ve = V(\VLm)‘V(WLp\)

_ v ( PHVE — BVAE,
| .

3.3.2
2F\VLF, — FV1F) (3:32)

By (3.3.1), both |V*F; |and |V F;| are bounded from above and below. Thus if along
the level set passing P () of length O (1) we can show that F, > ¢* (see Lemma 3.3.6
below), then the §? terms would be negligible as § — 0. As a result, we would have
FVLF, V+E,
VE~NV | =7 )=V | ==
e~ (irwrn) =¥ (o)
which is bounded since F; € C? (U x [0,T*]) and |V1F| is bounded from below

away from zero. Furthermore, this bound does not depend on 6. Thus ends the

proof. O

It remains to prove the following technical lemma.

Lemma 3.3.6. There ezists in U a level set segment passing P (t) of length O (1),
such that Fy > 62 along this level set segment as 6 — 0.

Proof. First we prove the case that P (t) € UT (t). We present the proof in several
steps. In Step 1 we compute explicitly the magnitude of Vp along the level set passing
P (t). In Step 2 we construct a function G such that |Vp| > 25v/G, and show that
the maximum of G along this level set is bounded away from 0, which implies that
the maximum of |Vp| is of order §. Finally, in Step 3 we estimate |Vp| using the
explicit formula obtained in Step 1, and show that |Vp| can be of order ¢ if and only
if it is evaluated at points O (1) away from the tip of the hyperbolic level set. This
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gives Fy > 62 and ends the proof.
e Step 1. Evaluation of |Vp|.

We define ¢* (t) to be the upper bound of ¢ such that the level set
S

intersects U. The right-hand side cannot be larger than ¢?§? for some constant
¢ because (y1,y2) has to stay inside the bounded region U as 6 — 0. In the
y-coordinate, the point (¢“ (¢),0) lies on U, thus it is easy to see that there is
a positive constant C* such that c¢* (¢) < C* for all ¢ € [0, T*] since the region
U is O (1). Also, we choose c, () such that the level set 6%y? — y2 = ¢, (t)* 6
passes through P (¢). By our assumption (Ha) and the regularity of the mapping

(F1, Fy), there exists some positive constant ¢, such that c¢* (t) > ¢, (t) + cp.

Now we consider the level set p = ¢, (t)> 6% on which P (t) is located. For

simplicity, we will write ¢, instead of ¢, (¢) in the following argument.

Substituting p = 6%y} — y3 into p = ¢;6%, we have
§°F — F} = 6%,

which gives
F2 = ié\/FE - CIZJ.

Without loss of generality, we just consider the positive branch. Thus, we have

IVp| = 25\/52LF12 — 20MFy\/F2 — 2+ N (F2 - c2).

This ends Step 1.

e Step 2. Estimation of |[Vp| via a lower bound function G.
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Let h = (/Ff — c2, and define G (h) as follows:

G (h) = 6% (2 + h?) — 26B1/c2 + h2 - h+ bh?.

We have
\Vp| = 25\/52L (¢2 4 h?) — 26hM /2 + h? + Nh?
> 25\/5% (c2+ h?) — 26, /e + h2 - b+ bh?
= 261/G (h).
Here h = /F? — 2 is defined in [0, 2" (t)] such that the level set segment

between h = 0 and h = h* () is inside U™ (t). Note that since ¢* (t) > ¢, + ¢
for some constant c¢,, h* ~ y/(c*)” — cz is bounded from below, i.e., there is

hy > 0, independent of time, so that h* (t) > h, for t € [0,T™].

To estimate the maximum of G (h), we compute G’ (h).

h?
! 2 _ 2 2
G'(h) = 2b(8*+1)h—26B (,/cp+h + = h2>

2
> 2bh —25B (C*)* + h? + S , (3.3.3)

(C)? + h2
where C* is the upper bound of all ¢* (¢). From (3.3.3) we see that G' (h) ~ h
with 6 = 0 (1) and h > . Since G is always defined at least in an O (1) interval
[0, hp), we know that when § is small enough, G (h) increases monotonically
when h ~ O (1) and takes its maximum at the boundary. Thus, we get the

following lower bound on the maximum of |Vp|:

max |Vp| > 2§4/G (h*) > ¢d (3.3.4)

for some constant ¢, which only depends on the bounds b, B, and d,.
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e Step 3. Final estimate on the lower bound of |Vp|.

On the other hand, for h € [0, h* ()], we have

25\/52L (¢2+ h2) —26Mhy/c2 + h? + Nh?
25\/5\/(1 +02) h? + 2hy[c2 + h? + §2c2

< C&+C'832 +C"6V/1 + 62h, (3.3.5)

Vol (h)

IN

where in the last inequality we have used va? + b? + ¢? < a + b+ ¢ for positive

numbers a, b, and c.

Let hy, (t) = \/ F? (P (t)) — ¢2, i.e., the h-value corresponds to P (t). Combining
(3.3.4) and (3.3.5), we get

6V1 4 62h, > ¢ — C'6% — C"6%?,

which gives h, > c¢ for some constant ¢ > 0, provided that ¢ is small enough.

This means that at the point P (¢) we have
FP = 0°F2 — 82 = 8°12 > &,

which gives

|F2| Z 6.

Since h,, is bounded from below away from 0, for h € [h,/2, h,|, we have

Vol (h) > 201/G (h) = 264/ G (hy/2) Z 6.

Applying the estimate above once again for the points corresponding to h €
[hp/2, hy], we still have F, 2 § at those points. Thus we complete the proof for
Lemma 3.3.6 when P (t) € Ut ().
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Next we prove the case when P (t) € U~ (t). In this case, we are considering
B2F? — F2 = —5%,
which leads to

\Vp| = 25\/52LF12 — 26MFy\/F2+ 2+ N (F + ).

Now take h = F; and

and

G (h) = 0°Lh* = 26Mhy/h?> + 2+ N (h* + ) .

It is easy to see that G (h) takes its maximum at the boundary 0U, which corre-

sponds to h = O (1), and leads to G (h) 2 §°. As a consequence, we have
max |Vp| 2 0.

This implies that

R+ 21,

and therefore
|Fo| = 64/h2 + cIQ, 2 0.

Thus ends the proof for Lemma 3.3.6.

3.4 A Generalization of Theorem 1.4.7

In Theorem 1.4.7 and Corollary 1.4.9, we assume that the maximum gradient on one
level set segment is always comparable to the global maximum of |V#|, and that

the maximum gradient, €) (¢), is monotonically increasing, at least for later times. In
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practice, these two conditions may not be satisfied. In this section, we show that these
two conditions can be relaxed if the maximum gradient does not change too frequently

from one level set to another. More precisely, we have the following theorem.

Theorem 3.4.1. Assume that there are Ty < T* and ty,t,, / T* such that Ty <
b <t <o <t <t <---<T* Q) = Q(tksr), and Q(t) is monotonically
increasing in each [tg,t)]. Further assume that there is a family of level set segments
Ly such that X (Ly,t',t") D Ly if t' and t" are in the same time interval [ty,t}] for
some k. Also assume that Qp (t) > c§2(t) for some constant ¢y > 0. If there are

constants cr, Cy > 0 such that

1L L) > prckam

2. M) L(t),K(t)L(t) < Cy,

3. liminfy o M) > R = 2,

then there will be no finite time singularity in the 2D QG equation up to time T™.

Furthermore, we have the triple exponential growth estimate
logloglogQ (t) < Ct+ C'

for some positive constants C' and C'independent of time.

Before proving Theorem 3.4.1, we give some geometric interpretation of the as-
sumptions in the theorem.

First, instead of making the assumptions in Theorem 1.4.7 for all ¢ after some
Ty, we only make these assumptions for each time interval [t,t,]. Intuitively, the
ts are “hopping” times. For example, there may be one level set [; on which the
maximum gradient is comparable to € (¢) for ¢ € [t1, t}] but not after ¢|. Thus, at ¢,
the maximum gradient “hops” to another level set [}, and stays there till t,. If Q (%)
keeps increasing in [t1, t}], we have t; < t] =t < t},. On the other hand, if Q(¢) is
decreasing in [t'l,f] for some £ < t,, but increasing after #, we can take t, to be the

last time before t}, such that Q (¢) = Q (¢,). In this case, we have t; <t <t <ty < t}.



74
Secondly, since the conditions in Theorem 1.4.7 are satisfied in each interval [¢, }.],
we can apply Theorem 1.4.7 to each interval and obtain a triple exponential growth
bound. But to put these bounds together and exclude blowup, we need the technical
assumption 3. Basically, Assumption 3 guarantees that the large gradient is not
“hopping” too frequently among level sets. In other words, each level set whose
maximum gradient is comparable to Q (¢) will experience enough stretching before

the stretching along this level set slows down.

Remark 3.4.2. In practice, we may expect that L (¢) > c; holds for those L; with
co = 1, as can be seen in Section 3.3. Then, by taking a sub-segment of L; whose
length tends to 0 as ¢t /' T™, we can see that as long as

!
lim inf 2 ()

> 1,

Theorem 3.4.1 applies and no blowup could occur.

Now we present the proof of Theorem 3.4.1.
Proof. Since the X (Ly,t',t") O Ly and the monotonicity of €2 (¢) holds in each
[tk,t}], we can choose r = ry > R for each time interval and carry out the same steps

as in the proof of Theorem 1.4.7.
First, we have, from (H3),

Q !

lim inf () > R.
k—oo ) (tk)

Thus there exists Ry > R and K, € N such that

Q(t)
Q (tr)

> R

for all k¥ > K. Fix this R;. Since we can always choose #; to be this particular t,,

in the following we will assume that the above holds for all £ > 0.
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Now for any fixed k&, we choose 7 in each time interval [ty, ;] such that

me _ S2(t)
QW)

where

Q(t
mk:max{m€N|mglogRlQgtk;}.
k

It is easy to see that we have R; < 7, < R2. Denote by € the common value of
Q(t) and Q (¢,_;). Then, by the same argument as in the proof of Theorem 1.4.7

we have

logloglog €1 — logloglog €2

mg—1

< CRQT’k- (1 + C()) (tl _ tk) n Z IOgR
- cr k = log 77 log log r7€
mg—1
< Cw(tk L — ) + \ _ log R .
- cr " prs log R]Q loglog R
Now summing up with respect to k, we get
logloglog 2,1 — logloglog {2,
R} (1+Co) L log R
< o= (s =t)+ 2 5 RIQ,; loglog
=0 l08lvil;loglogiiy
ot
+m"_1 log R
s logR{Qn loglogR{Qn
Mp—1
< CM@ +1—t1)+ _ logR _
- cL " = log RI) loglog RI),’

where M, = "7 m; and the last inequality follows from

0 k

k+1 o m;j M,

Q- | |7“j > Rk
1 ey

Finally, by using the same estimate as the one used in obtaining (3.2.22) in the
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proof of Theorem 1.4.7, we can bound the sum in the above estimate by

log R

log R
Tog R, logloglog RY"Q); < og I, logloglog €2, .1.

Since R; > R, we obtain a triple exponential upper bound for Q (¢,,1). Thus ends

the proof. O

Remark 3.4.3. Similarly to Corollary 1.4.9, when (H1’), (H2), and (H3) are satisfied,
we can obtain a double exponential bound for €2 (¢). Thus, Theorem 3.4.1 can also

be applied to the hyperbolic saddle scenario.

Remark 3.4.4. The assumption (H3) is necessary to our proof. Without it, the key
estimate (3.2.7)

/t 1+ K (r)1(r) (logQ (1) +1) dr|  (3.41)

Q (1) < emBUDQ, (¢t [1+
l()— l(O) l(to) o

will be trivially satisfied in the time interval [t t}], and we will not be able to obtain
useful estimates on the lower bound for [ (t;) or the upper bound for € (¢}) from

(3.4.1).

3.5 Conclusion

In this chapter, we apply the new framework developed in Chapter 2 to the 2D
QG equation, which is the most sophisticated low-dimensional model equation. By
taking advantage of the better velocity estimate, we are able to exclude finite time QG
singularity with assumptions that are weaker than those in Chapter 2. Furthermore,
we show that these assumptions tend to hold in practical cases. And the application
of our new results to these cases, which has been proven to remain smooth, offers new
understanding of the underlying reason why finite time singularities would not form

in these cases.
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Chapter 4

Discussion and Future Work

In the final chapter, we first discuss the possibility of improving the results obtained
in chapters 2 and 3, as well as the applicability of the new framework to other PDE
systems, in Section 4.1. Then, in Section 4.2, we discuss in more detail research plans

for attacking the singularity problems for various PDEs related to incompressible

fluids.

4.1 Overview

4.1.1 Possible improvements

In Chapter 2 we developed new non-blowup theorems for the 3D Euler equations. In

the near future, the following theoretical and numerical work should be carried out:

e Sharper estimates of Ug. Recall that in the key estimates (2.3.4) and (3.2.7), we
(u-&) 72|

Furthermore, we have not really obtained an estimate for Ug, instead, in appli-

overestimate the difference of u, at the end points of [; by Uz = maxg, g,¢i,

cations we just bound it by 2 ||u||;«, which may be a severe overestimate.

e Estimates for V - ¢ and k. In the current results, upper bounds are assumed
for geometric quantities V - £ and k. For deeper understanding of the 3D Euler
and the 2D QG dynamics, it is important to develop dynamical estimates for

these quantities.
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e Numerical computations. It is important to carry out numerical computations
of both the 3D Euler and the 2D QG flows to monitor the quantities appeared
in theorems 1.4.3, 1.4.4, and 1.4.7, and consequently gain more understanding

of their dynamics.

e Recast the current results in an Eulerian setting. The current results are in
a pure Lagrangian setting, in the sense that all the analysis is carried out on
one vortex line/levet set transported by the flow. It could be enlightening
to try to obtain similar non-blowup results in a pure Eulerian or Eulerian-
Lagrangian setting, since such adaption may reveal what has been missing in
previous unsuccessful pure Eulerian analysis in dealing with fast-shrinking high-

vorticity regions.

4.1.2 Applications to other PDEs

In Chapter 3 we successfully applied the new framework, based on estimation of
vortex line stretching, to the 2D QG equation. Naturally, one next step would be
trying to apply this new framework to other PDEs. It is easy to realize that one can
apply this new framework as long as there is some quantity ¢ that governs the blowup
(e.g., the vorticity w for the 3D Euler equations, V48 for the 2D QG equation), and

which at the same time is convected by a divergence free vector field u:

@+ Lyg=0. (4.1.1)

Here £, is the Lie derivative and ¢ can be a function (as w in the 2D Euler flow), a
one-form (as V18 in the 2D QG flow), or a two-form (as w in the 3D Euler flow).
The reason for this applicability is that whenever (4.1.1) holds, the level sets/integral
curves of ¢ are carried by the flow. Therefore, we can study its stretching via esti-
mates similar to (2.3.4), and consequently obtain theorems similar to theorems 1.4.3
and 1.4.4.
Such flows include the 2D Boussinesq flow, the 3D Lagrangian averaged Euler



79
flow, and the 3D axisymmetric flow. We will discuss these flows in subsections 4.2.3

and 4.2.4.

4.2 Discussions on Some PDEs

4.2.1 The 3D Euler equations

4.2.1.1 Helicity conservation

The conservation of helicity

H = u-w dz

R3
is one of the most important conservation laws in the 3D Euler flow.! Therefore, it is
worth studying how this conservation would help us in the Euler singularity problem.

2 One of these results is

So far, few results have been obtained in this direction.
Chae [Cha03c|, which claims that  is conserved as long as w € C ([0,T];L%?) N

L3 ([O,T] ; Bg‘/’go) for any o > 1/3.

4.2.1.2 Spectral dynamics

Recall that the vorticity equation in the 3D Euler flow reads:
Diw=w+u-Vw=Vu-w.

If we denote by S the deformation tensor 1 (Vu + VuT), it is obvious that Vu - w =

. _ T
S-w, since Y4V

‘w= %w X w = 0 by the definition of w. Therefore, the eigenvalues
of S control the growth of w, which is vital to the development of singularities.

Recently, a new identity has been found in Chae [Cha05b]|, which leads immediately

In fact, it is shown in Serre [Ser84] that there are only three basic conservative quantities
involving v and Vu only: the momentum [, u dz, the energy [o, lu|> dz, and the helicity Jgs u-w dz.

20n the other hand, since helicity conservation is a topological invariant in the sense that no
metric is needed, results abound in the abstract setting. See e.g. Arnold-Khesin [AK98], Khesin
[Khe05] and references therein. However, it is not clear whether these results may help in the study
of the Euler singularity problem or not.



80

to the following condition for the blowup of the enstrophy:
T*
lll,» /o0 at T = / S]] dt = oo,
0

where A\J = max{)y,0} and )\, is the middle eigenvalue of S in the sense that
A1 > Ao > A3. Since Ay + A2 + A3 = 0 due to V - u = 0, one can easily show that
|A2| = min;_y 53 {|A\;|}. Combining with numerical evidence that w tends to align
with Ay instead of A; (e.g., Ashurst-Kerstein-Kerr-Gibson [AKKG87]), we see that it

is important to study the evolution of A,.

4.2.1.3 Clebsch variables

Recently, Hou and Li (|[HLO5b]) proved the global existence of a 2D QG analogy of
the 3D Lagrangian averaged Euler equations, while the global existence for the latter
is still open. The authors achieved this by exploring the fact that 6 is convected by
the 2D QG equation and therefore enjoys a maximum principle. In comparison, no
interesting quantity in general 3D Euler flows has been found to have this property.
Nevertheless, for a wide range of initial values, the vorticity w can be represented
by two convected functions. This representation is discovered by Clebsch ([Cle59])
and thus bears the name “Clebsch variables.” Namely, if w = Q(¢,v) Vo x Vi) at
t = 0, it continues to have this representation as long as ¢ and 1 are convected by the
flow. Therefore, the function pair (¢,) is a 3D analogy of # for the 2D QG flow. In
the same paper, Hou and Li explored this analogy and obtained the global existence
for the 3D Lagrangian averaged Euler flow under the condition that either ¢ or v is
BV in an arbitrary direction. How the Clebsch representation could help in the 3D
Euler singularity problem remains to be seen, and is well-worth studying.
Introductions and discussions of the Clebsch representation can be found in Lamb
[Lam32], Marsden-Weinstein [MW83], Graham-Henyey [GHO00], Constantin [Con03],

etc.
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4.2.2 The 2D QG equation

So far, in most of the study on the 2D QG equation, only the analogies between it
and the 3D Euler equations are emphasized. However, recent results indicate that
those properties that only belong to the 2D QG equation may be crucial to solve the
QG singularity problem. For example, the estimate ||u||;. < log||lwl|/;« proved in
Cordoba [Cor98|, which is crucial to the results there, is not likely to hold in the 3D
Euler flow. One more recent example is Hou-Li [HLO5b|, see 4.2.1.3.

Therefore, it is important to study those conserved quantities that have not been

found of any use so far, for example, [ (=A)"?6-6 and /. k |V0| developed

1<0<c2
in Constantin [Con94|. It would also be interesting to derive more conservation laws
via the Hamiltonian structure of the 2D QG equation (see, e.g., Holm-Zeitlin [HZ98§]

for the derivation of such structure).

4.2.3 The 3D axisymmetric flow and the 2D Boussinesq equa-

tions
4.2.3.1 The 3D axisymmetric flow

When an incompressible inviscid flow is axisymmetric, there is no dependence on
6 when writing v and p in cylindrical coordinates (r,6,z3). This symmetry would
reduce the 3D Euler equations into the following form:

(ru’)’

= _6]7 + 4 €r,y
r

o,
Dt
Vi = 0,

<

D%( ) = 0, (4.2.1)

where V = (%, 6%3) u = (u",u?), and D% =2+a- V. Efforts have been made

to obtain singularities away from the axis (i.e., r > ry > 0) either numerically (e.g.,
Pumir-Siggia [PS92a, PS92b, PS92¢|) or theoretically (Caflisch [Caf93]). Since r >

ro > 0, it is likely that V -¢& and k may not behave as badly as in the non-symmetrical
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case. Therefore application of our new framework may yield sharper conditions.
Furthermore, it is shown in Chae-Kim [CK96] and Chae-Imanuvilov [CI99], re-

spectively, that as long as

T* T* t
/ [|wall dt+/ exp [/ {llwoll (1 + 1 (lwoll o Nlwsll o)) + [[wo In™ 7|} ds| dt < oo,
0 0 0

ou” _ dud
drs Oz,

/ ‘Vu

there will be no singularity in the 3D axisymmetric Euler flow up to time 7™. It is

where wy = and ||-|| denotes ||-||;« when no subscript is specified, or

18u

dt < oo,
r 6333

L(X)

|5

LOO

also possible to get improved results in light of these sharper blowup criteria.

4.2.3.2 The 2D Boussinesq equations

When r is away from the axis, the 3D axisymmetric Euler equations are analogous

to the following 2D Boussinesq equations:

0
u+u-Vu = —Vp+ ,

pt+UVP = 07

where v : R? — R? and p : R? — R. It turns out that blowup is controlled by
foT* fot |21 ]| oo ds dt (E-Shu [ES94]). Numerical computations (e.g., E-Shu [ES94],
Ceniceros-Hou [CHO1]) have shown that fast growth of p,, saturates at later times,
and therefore no blowup is likely to occur. However, no rigorous global existence
theorem has been obtained yet. Since the level sets of p are carried by the flow, our

framework applies, and may help on the singularity issue.
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4.2.4 The Lagrangian averaged Euler equations

The Lagrangian averaged Euler equations have been proposed recently in Holm-
Marsden-Ratiu [HMR98a, HMR98b|. They generalize the one-dimensional shallow
water theory (Camassa-Holm [CH93|), and have been used as a turbulent closure
model (e.g., Chen et al. [CFHOTW99]). They also enjoy the following deep mechanical-
geometrical relation with the 3D Euler equations: the Lagrangian averaged Euler
equations solve the geodesic on the manifold of area-preserving diffeomorphisms
equipped with a weighted H' metric, whereas the 3D Euler equations solve the
geodesic on the same manifold with a weak L? metric. (We refer to Peirce |[Pei04] for a
detailed introduction to the Lagrangian averaged models and Marsden-Ratiu-Shkoller
[MRS00], Gay-Balmaz & Ratiu [GRO5] for its geometry.) Therefore, the study of this
system may shed light on the 3D Euler dynamics.

The vorticity form of the Lagrangian averaged Euler equation reads
g +u-Vg=Vu-gq,

where ¢ = (1 — a?A) (V x u). Therefore, as discussed in Subsection 4.1.2, our frame-

work should again apply.
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Appendix A

Proofs of Technical Lemmas

A.1 Lemma 4 in Deng-Hou-Yu [DHYO05]

Now we prove Lemma 4 in Deng-Hou-Yu [DHYO05|, which bounds ||ul|, by w222,

Lemma A.1.1. Let u (z,t) be the solution to 3D Euler equations, and let w (z,t) =
Vxu (z,1) be the vorticity. Denote ) (t) = ||lw (-, 1) oo (ray and U (1) = [Ju (-, )| oo roy-

Then the following inequality holds:
Ut) S

Proof. By the Biot-Savart law (1.1.8), we have

1 y
u(z,t)=— [ —5 xw(r+y,t) dy.
4 R3 |y|

Take a smooth cutoff function x : {0} URT — [0, 1] such that x (r) = 1 for » < 1 and
X (r) =0 for r > 2. Let p > 0 be a small positive parameter to be determined later.

Then we have

Y
— | = xw(z+uyt) dy
A Jgs |yl

1/ (|y|> y
— x| =) 2 xw(x+y,t) dy
AT s p |y|3

L0 G))5 \
— 1—x (= — X w(r+uy,t) dy|.
AT Jgs p)) P ( )

ju(z,t)] =

1 \

_|_
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Invoking integration by parts in the second integral using w = V X u, we have

\M%ﬂISSNﬂ/ 1oy

2
yl<2p |y|

1
+/ — |u(z+y,t)| dy
ly|>p \y\

1 1
+—/ — Ju(z +y,t)| dy.
P Jyi>p Y

Using polar coordinates in the first integral, and the Schwarz inequality in the other

two, we obtain

1 2 1 1/2
W@wnsawp+(/ —T@Q +—(/ —jd@
wi>o Y] P \Jy>p Yl

where we have used the fact that the total energy ||ul|;s(gs) is conserved (Chorin-
Marsden [CM93]), i.e., [[u (-, )| 2 sy = llu (- Ol gs)-

Finally, we use polar coordinates in the last two integrals, and get
00 1 1/2 1 00 1 1/2
) S Qt — d - — d
ol 5 0o+ ([ a) ([T a)
S Qt)p+p
. _ —2/5 .
By taking p = Q (¢)""”, we obtain

u (z, 1) < Q@)%°.

~Yy

The proof ends by noticing the arbitrariness of x. O

A.2 Lemma 2.5.1

Define
rARK
(RPK +1)r — R’

fr)=
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and
:2—A R
=T ARK +1
Since
1—AR3K
Flr)=—0" ; [(1—A) (RK +1)r - (2—- A)R]

(RRK+1)r — R)
is negative for r < r. and positive for » > r., we conclude that r. is the unique
minimizer of f (r) in (R, c0). Furthermore, since

RRK

— 1-A 1
BKiOR-R_ % "~

f(Rr)=
due to R = e“ /¢y > 1, condition (2.5.1), that is f (1) < 1, is equivalent to
re > Rand f(r.) < 1.

Next we study the above two conditions. The first condition r. > R is just

2— A R SR
1-ARK +1 ’
which reduces to
1
SK < ——. A.2.1
R°K < T ( )

As to the second condition f (r.) < 1, after some algebra we can rewrite it as

—A
(R3K +1)"* (2— A o
Now let y = R*K and consider g (y) = —%—. We study its behavior on R". It

(y+1)
is easy to see that ¢ (0) = g (+00) = 0. Furthermore, by simple calculations, we have

J0) = e (04D - 0y )]
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Thus it is clear that g (y) is increasing in (0, %;), decreasing in (125, +0c0), and
reaches its unique maximum at y = . Since
( 1 ) (1—4)
g = _
1 _A (2 _A)2 A
and R'™# > 1, there exist exactly two numbers, 3, and ¥,, satisfying y, > ﬁ >
y1 > 0, such that
1-A
a1 (1—4)
g(n) =9() =R""—F53
) =9 (m) = R

and g (y) # RA-1{= A2 + for all other y > 0.
(2—A4)

Now it is easy to see that the two conditions (A.2.1) and (A.2.2) are equivalent to

. R*K < 1, and

2. RPK <y, or R*K > y,.
Since y1 < 3 A < Y, conditions 1 and 2 above are equivalent to the following single

condition:

R3K <Y1,

— RAIUZA D This

where y; is just the smallest y > 0 such that f (y) = G )™

completes the proof.

A.3 Velocity Bound for the 2D QG Equation

In this section, we briefly go over the velocity bound established in Cordoba [Cor98].

Lemma A.3.1. Let Q(t) = ||VL9HLoo (’2) denote the mazimum gradient of the solu-
tion to the 2D QG equation, and let U (t) = ||u (-, t)||  denote the mazimum velocity.

We have the following estimate.

U(t) SlogQ(t)+1
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Proof. For the 2D QG equation, we have

1
u(x,t):/ %{j—y) dy.
Ry

Let x (r) be a smooth cutoff function such that x(r) =1 for 0 < r < 1 and
X (r) =0 for r > 2. Let p > 0 be fixed later. We have

u(z,t) = /X(@)ﬂe(ﬁy) dy

p) ly?

(- () e

I+11I.

By integration by parts, we have |I| < pQ (t) 4+ 1 since % =Vt (ﬁ) For II we

have

o< [ Dol
ly|>p ‘9‘2

0 0
/ \ (xty)l dy+/ \ (a?ty)l dy
p<ly<k |yl R<ly |yl

R -
ST L1 log;+ll9llL2R '

S logp| +1.

Where we have used the fact that ||6 (-,¢)|| ., = ||0 (-,0)||» for all p € [1, 00|, and have
taken R to be a large fixed constant.
Now we have

u (2, )] S Q(t) p+ |logp| + 1.

Taking p = Q (t)™", we have
U(t) SlogQ(t)+1

due to the arbitrariness of z. O



