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In previous theoretical treatments of the stability of the compressible
laminar boundary layer the effect of the temperature fluctuations on the
‘vigcous' (rapidlyevarying) disturbances is either ignored (Lees=-Lin), or
is accounted for incompletely {Dunn-Lin). A thorough reexamination of
this problem shows that temperature fluctuations have a profound influence
on both the "invigeid' (slowlye-varying) and viscous disturbances above a
Mach number of about 2. 0. The present analysis includes the effect of
temperature fluctuations on the viscosity and thermal conductivity, and
also introduces the viscous dissipation term that was dropped in the earlier
the@retical treatments.

Some imporiant resulis of the present study are: (1), the rate of
conversion of energy {rom the mean flow to the disturbance flow through
the action of viscosity in the vicinity of the wall increases with Mach number;
{2), instead of being nearly constant across the boundary layer, the
amplitude of inviscid pressure fluctuations for Mach numbers greater than
3 decreases markedly with distance outward from the plate surface. This
behavior means that the jump in magnitude of the Reynolds stress in the

neighborhood of the critical layer is greatly reduced; (3), at Mach numbers
less than about 2 dissipation effects are minor, but they become extremely
important at higher Mach numbers since for neutral disturbances they
mugt compensate for the generally destabilizing effecis of items (1) and (2).

Numerical exanples illustrating the efﬁem‘;s of comipressibility
{including neutral stability characteristics) are obtained and are compared
with the experimental resgults of Laufer and Vrebalovich at M = 2.2, and

of Demeiriades at M = 5. &.
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The sym
commonly used in the literaturc on boundary layer stability. In some
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o
[ &)
b
[

minimize the confusion, the different definitions he same symbol

will have listed the section of the report in which they appear.
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Subscripts

cory

W

guantity evaluaied at critical point

invigscid fuaciion correcied for viscous effects about
critical layer {Section III. 4.)

local condition outside mean boundary layer (external)
imaginary part of quantity
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outer condition
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guantity for neutral inviscid disturbance {Sections IIL 1. and IV)
viscous

guantity evaluated at the wall

(0), (1), (2),... =zero, first, second order quantities, etc. (Appendix G)

A bar over a quantity indicates mean value,

Primes generally denote differentiation with respect to y. The few
instances where primes denoie a {lyctuaiing gquantity should not cause
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I. INTRODUCTION

The stability of a compressible laminar boundary layer to
P . e . .. L, 2
infinitesimal disturbances was first analyzed by Lees and Lin ° 7%,
Their study was in the form of an extension to compressible flow of
the principles and techniques already formulated for the study of the
stability of incompressible laminar boundary layers. Lees and Lin
uncovered some of the important changes both physical and mathematical
which are incurred by considering compressibility in the stability

analysis. More recently there have been additional amlyses3‘5 and

also two experimems@’ 7 which have tried to clarify the nature of
compreseible boundary layer stability. These investigations have
clarified the stability picture for subsonic and slightly supersonic
boundary layers but have hardly been successful in the case of super-
sonic and hypersonic laminar boundary layers. The purpose of the
present study is to probe into the effects of compressibility on the
various physical processes associated with the stability phenomenon,

Two basic problems arise in formulating the stability analysis
for supersonic and hypersonic boundary layers. These are: (1) the
identification of the important physical phenomena of Qo@presaible
flow stability (or instability); and (2) obtaining equations and sclutions
té these equations which can adeguately describe these phenomena.

The present study considers only '""subsonic’’ disturbances,
that is, disturbances whose propagation velacii’,y is subsonic with

7

respect to the free stream velocity [{ l- q%» y<e< E} . Such
VL
e

# Superscripts denote references at the ead of the text.
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disturbances have amplitudes which decay exponentially in the {ree
stream. A disturbance which propagates supersoanically with respect

to the free stream would be expected to have a non-vanishing amplitude
far from the wall. It may be noted that in the recent experiment at
Mach number 2.2 by Laufer and Vrebalovichés super sonic disturbances
were not detected and reasonable agreement was obtained with the theory
of infinitesimal subsonic disturbances.

For subsonic and slightly supersonic {lows, Lees and Lin
concluded that the stability characteristics of a given boundary layer
profile are unaffected by the boundary conditions on temperature
fluctuations. More specifically, the characteristics are determnined by
satisfying only the velocity fluctuation boundary conditions. Dunn and
Lins found that this conclusion is not valid for moderately high supere
gonic Mach numbers and they gave some discussion of the thermal
boundary condition. However, they did not present any calculations
which include consideration of the energy equation and thermal bouadary
conditions.

The analyses of Lees and Lin and Dunn and Lin are first order
asymptotic approximations valid when a parameter (o Re), the product
of wave number and Reynolds number, is very large. Among the terms
which do not enter into this first asymptotic approximation are terms
involving dissipation and terms involving fluctuating viscosity and
fluctuating thermal canductivity; Cheng3 points out that terms
involving vertical velocity eater into the second approximation. It will
be pointed out later that a dissipation term and some terms involving
imm@&ing transport properties also enter in the second approximation.

Since some of these terms increase in magnitude with increase in Mach



nurnber, it is necessary to include them: at high Mach number.

In the past, approximate methods have been used to solve the
asymptotic equations. These methods were valid only for small values
of the wave number and for propagation velocities which are not very
close to the {ree stream: velocity. For supersounic and hypersonic Mach
awmbers, larger values of wave aumber and propagation velocities
approaching free strearn velocily are encountered and more exact
numerical methods will be consgidered.

The present study then cousiders the stability of two-dimensional
compressible laminar boundary layers to éwendimensieml subsonic
disturbances. Because the preseat study is of a probing nature only
the simplest model of 2 compressible gas is considered =- namely, one
with constant specific heats, constant Prandt]l numaber and viscosity a
function of temperature alone. The analysis counsiders both insulated
and non-insulated suriaces; however, the numerical examples will be
for insulated surfaces ounly and comparigon will be made with the experi-
mental findings of Laufer and Vzebaloviché and of E}ematri&des?.

Lastly, in the section entitled "Qualitative Description of
Compressible Boundary Layer Stability' the effects of compressibility
on the physical concepis of the boundary layer stability phenomenon are
discussed with the aid of some approximate calculations. Those readers
having some familiarity with the stability problem at low speeds may

want to read this section fivst.



II. FORMULATION OF PROBLEM

II. 1. Differential Equations {or Infinitesimal Disturbances

Quantities of the total flow such as velocity and temperature
are considered to be composed of a miean or steady component which
depends only on the space coordinates, and a space-aad-time-dependent

fluctuating component of infinitesimal magnitude (Eq. 1). The total flow
Qx, y, t) = Qx, y) + Qx, vy, t) (1)

satisfies the time-dependent conservation laws of mass, momentun and
energy, while the mean flow satisfies some set of steady flow equations,
for example, the boundary layer equations. Subtraction of the mean

flow equations from the total flow equations yields the set of conservation
law equations satisfied by the disturbances.

Since it is stipulated that the fluctuation amplitudes are very
sinall compared to the mean flow guantities, products and squares of
fluctuation quantities are neglected. The resulting equations are then
linear partial differential equations in the variables (x, v, t).

So long as § is independent of time, the coefficients of these
linear partial differential equations are also independent of time; in fact,
tirme appears only as the linear operator 8/8t. ¥ The assumption of

digturbances of the form

~ iact -
o' = = y) e (22)

will then eliminate the time variable from the equations and reduce the

% This remark applies also for unsteady mean flows where the
percentage changes of the mean profiles in one oscillation period are
very small.
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independent variables to just the space vaviables. The additional
assumption that the longitudinal (2} variation of g is composed of a
rapidly varying part depending on the {requency of the disturbance, and
a slowly varying part depending on the decay or growth of the oscillation

s

amplitude, yields the traveling plane wave disturbance form

Q' = glx, y) el*cH (2b)

Substitution of (2b) into the above-mentioned disturbance equations leads
to the equations presented by ﬁh@ng?’, Cheng's eguations, however,
comprise a more general set than is usually considered.

If the mean flow § is a iime=-independent parallel flow (no mean
normal velocities) and remains unchanged to infinity in both éire@iions
{such as for a fully developed flow) then the coefficients of the linear
partial differential disturbance equations are i'ndelaencient of both x and ¢

50 that a disturbance of the form

Q' = qiwe ofzect] (3)

will reduce the disturbance eguaticns to ordinary differential equations
in y alone. The disturbance amplitude g{y) and the propagation velocity
in Eq. {.;a} are taken to be complex. Disturbances are amplified, neutral
aor damped according to whether <, >0, c, = 9, or < < 0, respectively.

The real part c_ is the dimensionless velocity of wave propagation. ®

W e:; (3) is not the only disturbance form possible for parallel
flows. It is of some interest in fact to investigate amplified and
damped disturbances of the form

e i&.’:’g"gt
Q! = qly) &7 telEmet] =
. 1 Vet
where a, 3, and ¢ are all real. Here § = mﬁw is the
oL s
(}/

srmplification cocfiicient. For ncutral disturbances i = 0 and the
&walymg ig the same as that for ¢, = 0 in Eq. (3).
&



Lees and Li.ni propose ithe use of the parallel flow disturbance
equations for '"mnearly-parallel’ boundary layer flows. Therefore, they
omit terms of the following types {rom the complete disturbance
eguations:

(1) terms involving mean normal veloecity V¥, The ratio

VE/u® ig of order

z > 4
v ~ Me. ~ Me, ~ Me s
a!
R"'x' Ree Re 5

and is asswmed to be small for bigh Reynolds numbers;
{2) longitudinal derivatives of mean flow gquantities as

compared to their normal derivatives, that is

o] o8

This ordering is in accordance with the mean flow boundary layer
asswmnptions,

(3) longitudinal derivatives of disturbance amplitudes, so that
%, y) =—=gqly). If the longitudinal scale of the disturbance flow is taken

to be the wave length )\ , then this deletion corresponds to saying that

8d(x, ) 9a(x, v) 5
s L~ sh <<l

A remark concerning the relation between the '"nearly parallel”
flow assumptions and the actual physical situation in flow over a
cylinder of arbitrary cross-sgection is in order. By means of the
nearly parallel flow assumptions one calculates the stability of a local

mean boundary layer profile ag if only that profile existed from - to +co.

Thus the history of any small disturbance moving downstream: is found



by piecewise integration of local amplification or decay rates. This
procedure is directly analogous to the calculation of mean boundary
layer flows by the plecewise integration of locally similar solutions.

By means of an order of magnitude analysis of the type used to
obtain the steady boundary laver equations Dunn and ;mg reduce the
disturbance equations still further by deleting all terims of order
1/ @R@H)% or smaller, compared to those retained. Among the
additional terms deleted are the f{ollowing:

(4) dissipation terms in the disturbance energy equation, ¥

{5) terms involviang fluctuations of viscosity and therial
conductivity; in other words, only the leading fluctuating shear stress
gradient and heat flux gradient terms are retained,

The eguations considered by Dunn and Lin are valid for moderate
supersonic Mach numbers. Later (Section IIL 3.) it will be shown that
for high supergonic Mach numbers, the dissipation terms and terms
involving fluctuating viscosity and thermal conductivity must be
recongidered, since they are comparable to the terms previously retained.
At this point therefore, we will consider the disturbance equations to be
those of Lees and Lin. For a disturbance of the form (3) the dimension~
less equations for infinitesimal disturbances in a nearly parallel mean

1
flow are as follows ™ :

Continuity

s s T . e
Bleife oo Prifwec)(mem) = 0 {4)
& ES

# The absence of dissipation terms makes possible a
mathematical transformation of the equations for three dimensional
disturbances to those for two dimensional disturbances”.
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e

ety - :;{; P A ag s of ep] 4 Bl [
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The densgity fluciuations have been eliminated in the above

equations through the equation of state;

0

St

nergy equation, Eg. (7), differs slightly {rom that of i.ees and Lin

e
Bt
l_.‘i‘
(¢}
@

in that it is derived {rom the enthalpy equation rather than the internal
energy equation. The fluctuating viscosity can be related to the

temperature fluctuation through

' [, -
m o= B l{z:i/ug /{{Qi] {9)
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o= (e tam| (10)

Il. 2. Boundary Conditions

For flows over non-porous surfaces, the longitudinal and

normal velocity components of the total non-steady flow must vanish
at the surface. Since the mean flow already satisfies these conditions,

the disturbance velocity amplitudes must also vanish at the surface. Thus

0 (11)

f

: W
@w

For compressible flows, the surface boundary conditions on temperature

(12}

i

fluctuations must also be specified. For the total non-steady flow, the
suxf&ée boundary condition is that the instantaneous temperature and

heat transfer must be countinuous across the solid-gas interface., However,
most surface materials are highly conductive compared to gases and so
would immediately damp any temperature {luctuations. A reasonable,

almost universal boundar -y condition is that the temperature {luctuation

maplitude vanish a¢ the suriace; that is

o, = 0 {13)

A somewhat more general boundary condition is that some linear come

-

bination of temperature fluctuaiion amplitude and its normal derivative

=]
5
]
L5
ﬁw.
[0}
[#]
s
iy
pudo
8]

must vanish at the surface {Appendix A of Heference 5)

combination is a function of the surface mats
cooling, and the disturbance freguency under consideration.
Boundary condition {13) is the one primarily considered herein although

there will be some treaiment of the general boundary condition (Appendizx



Since only subsonic disturbances are here considered
{see Introduciion) all disturbance amplitudes vanish far from the
wall, i.e.,

aly) == 0  as ¥ =3 5o

{1

&4

)
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I, SOLUTION OF DIFFERENTIAL EQUATIONS

ﬁ'a)

As discussed in Reference ] the disturbance equations [ NalR
{4) = @8}] are regular everywhere except in the limit y — «; and the
solutions of these equations are analytic functions of e, ¢ and Re for all
finite values of these parameters. In principle, solutions could be con-
structed as convergent series exyazmidns around one or more regular
points, and these series could be properly joined to exponentially
decaying functions as y == 0. Fowever, the quantity €ai€;e)“1 appears
in the disturbance equations as a parameter multiplying the highest
order derivatives, and it is attractive to consider asymptiotic expansions
valid for {aRe) > > 1.

In particular, we inguire as to the significance of the solutions
obtained in the limit of (cRe) —=>= . In general, these "inviscid"
solutions are certainly incapable of satisfying the boundary conditions
fw = 0 and 8, = 0atthe surface. Thus for any finite value of {aRe)

vigcous solutions that take on the values - {ﬁf ). and (-8 }mv at the

wlinv

surface must alwaye be added (see gketch below) and the situation

lecally has some of the characteristics of the oscillating plate problem.

w"i' £, 3 ag
Since the parameter (cRe) 2 measures the relative diffusion distance for
2
orticity during one period { or {cRer) ¢ measures the corresponding
diffusion distance for heat energy), this vinner boundary layer' is thin

whken {aRe) > > 1. Thus we are led to adopt Prandil's” . division of the
disturbances into slowly-varying solutions that are largely inviscid
across the entire flow, and "‘viscoug'' rapidly varying functions near
the surface. Because of the siteep slope of the viscous solutions (see

sketch) it is clear that the eifect of viscous dis im on at high Mach
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B

Loy
|
( Complete Solution
f=£f + ¢,
v inv
Viscous Solution \ -
f *
v / Inviscid Solution
° f-_
— inv
(fv):“(finv)w 0 (finv)w

SCHEMATIC REPRESENTATION OF
VISCOUS AND INVISCID SOLUTIONS FOR £ NEAR EURFACE
(A similar sketch could be drawn for @.)

numoers cannot be neglecied a priori

Because the viscous longitudinal velocity fluctuation and density
fluetuation amplitudes vary sinuscidally in the z- direction, an
incremental normal velocity {luctuation aruplitude A,Z is induced across
the boundary layer, according to the equation of countinuity [I:q é%%] .
If we require that all normal velocity fluctuations die cut as y — o then
’i‘;év'i@} = = AP . The value of %iﬁv at the surface can no longer be zero as

it was for aRe —=» 0. The inviscid sclution must adjust slightly giving

a value @szvwb such that the wall boundary condition [ {0} + ‘zmv {0) = 0




2

g satisfied. ® Thus {or each value of ¢ the viscous and inviscid
solutions and the corresponding values of a and Re are determined
1 H 343 7. = e ) 3) = -
uniquely by the conditions ¢V€f33 = Qﬁinviu} » £,(0) A () I

invém ’

There is another region in which the inviscid solutions caanot

%ng =z =0
be valid in general, and that is the so-called ‘'critical layer" -- the
layer of fluid moving at the disturbance propagation velocity. To an
observer riding with the disturbance the rates of transport of vorticity
and heat in the main flow direction vanish at this layer, but the rates

of transport of these quantities in the normal direction do not. Thus
viscous diffusion and heat conduction must restore the balance. So

long as@%‘i& (1= é’;ﬁ > > 1 the effects of viscosity and heat conductivity
die out repidly with distance on either side of the critical layer, the
amplitude distributions are quickly ''smoothed over'! there, and the
phase shifts in £ and @ across thig thin layer are given very nearly by
the inviscid solutions. Ou the other hand if (c&e) is of order unity the
influence of this inner viscous region spreadé inward toward the plate
surface, while the viscous layer near the suriace spreads out to meet it.
In thai event the distinction between viscous and inviscid solutions may
become meaningless. Difficuliies also arise if the quamﬁty[whe (1 - c)]
ig of order o {or smaller), because the "inviscid'' and "viscous'
solutions would die out at comparable rates ag vy —3 o, % and the
distinction between them would be meaningless in this case also.

Of course the value of cRe is not arbitrary; for a neutral

¥ A detailed discussion of this behavior for aRe large but
finite ig given in Section V.

% This difficulty arises when ¢ —p o
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way of determining in advance whether the quantity {cRe) is always
Therefore, we shall proceed provisionally with Prandil's suggestion,
Just as previous investigators have done for low speed flow or moderate
supersonic Mach numbers. However, this splitting of the soluticons
must be reexamined a posteriori to determine the conditions under

which it is in fact justified; and, conversely, the conditions under which

we must return to the complete disturbance squations [“fa_;_ 8. {4) - {83

1. 1. Inviscid Soclution

Following Rayleigh, Heisenberg and Lin, a solution is sought

to the disturbance equations of the form

aly) = a v + [1/ (aRe)] qyiy) + ... (15)

S

®

The resulting equations for the zeroth approximation (q ) representing
m_ . for a fixed y are called the inviscid equations since
oRe == w aly) Y : Wie 4 ons

they are identical with the equations obtained by ignoring viscosity and

conductivity altogether. The inviscid equationsg are:¥

Continuity

Bif = (T b+ itw = e} |- (8 ;}] = 0 (16)

¥ The subscript zevo is omitted since the , functions are the
only ones which will be obtained,



faes
M

Mornenium
zpéw~c)x#@vf’¢§‘za«~&g (17)
e
, & !
o plwac)p = = —= e (18)
Vi,
(19)

) w

T B = tiw- o L

ipfwec)o+
es { and @ can be eliminated from Eqs. {

ot

The qguantities
o that Egs. (16) - {19} can be written

{19) s
i . T M “ {w - CBZ
Fpg W ¢ \ L e .
W= we B W e © w
YR4 _’ > .
- {20)
2 A e ‘
% = eia” ){Mez Q_T_fii &
/
der lineary differential

Eqgs. (29) can be writien as a second o3
eguation in either of the dependent variables ¢ or w. It has been
customary in the past to counsider the solution of the second orderx
equation in th iable ¥, which is proportional to the normal velocity

In the present analysis, {ollowing a

fluctuation amplitude.
Li guhzﬂ, and some work on panel {luite
terms of the pressure fluciuation ampl

s

eguation will be writien in
the i

undary condition which
¢ normal

The bound aviscid soluiion must always satisfy
ig that the normal velocity fluctuation vanish in the cuter inviscid flow,
¢ inviscid s

nored (oRe —> w) the in

tivicy ar
ish at the wall;

therefore,

@

I viscogiity and conduci
finite

velocity fluciuation amplitude must also vani
ut

o

= 0 by Bq. {i8). However, for cfe large

for cRe =, w'(0)
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A0V

@imw; = - ¢Vq@; # 0 and thus ¢',__{0) £ 0.

The inviscid equation and boundary conditions are

2! - 2 M . {w = @32
ﬁ"a@wic «%M’-m 1o — - - (21)
#'(0) = 0 ({for aRe —> w0 only) (22a)
w{oo) =0 . (e2b)

By means of the standard transformation

- (23)

Eqg. {21) can be converied into the following firsi order non-linear equation

of the Riccati type

Mahv c»a
- Py ! el
Gl s |1 2 + 2 . )6-efc? L 29

The outer boundary condition on G is obtained by considering Eg. {(21) for
large y:

at - o [aamj uecﬂ m=0 (25)

whose solutions are

, 2
£y - M 4=y

gince w{w) =—> 0, the negative exponent is chosen in Zg. {26), and the
boundary conditions on G are
G(0) = 0 (for aRe = « only) {e7a)

Glw) = = = . (270)
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It is instructive at this point to transform the inviscid sguation by

introducin yn=Howarth independent variable. In this form,

@'Q
E“i
@
ol
Pt
o
w

the boundary layer thickness is rormalized.

For § = f ay/T (28)
and
~ 3 -
G = — &, (29)
a T w d?

the inviscid equation Eg. {£4) becomes:

46 || M), [T TG _(,(T,Jljé . (30)
4% T w-c T VAT

where Treﬁ is some representative boundary layer temperature of order 1
o & °
for low speed flows but of order ;«M@ for high speed flows.
Following Heisenberg, it has been customary in the past to solve
s U Co s 2
the inviscid equation in the form of a convergent series in powers of o™ .

Eg. {30) suggests that the propexr expams*’@zz parameter for the compressible

& & 2 e .
)7 o {a M } rather than ¢ . At high Mach

scid solutions is (e T_ _,
Tex

-;;x.zrzme:ré, even for small o, the quantity (o T T, } may not be small, so

that the complete Eg. {30) nust be considered. ®

2,

o . - é
# Of course if the non-linear term in Zq. (24), G, is
suppressed, we obiain u:qmewmﬁ:ﬂﬁy the s@lmm cox ?"esp@%umc to the

°

zeroth order invisecid solution of Lees and Lin®e %} namely

Ge(y) = (w 9 ( T- Mg (w9

(W-o* 1
v
T w-¢) o
G()' A_{ L__ for y <y,
79w ‘
Q for v > v
LOT % JC

where
w T
T

a2
i\

[ -\ o

~



=
(e}

Eq. {24) ie & complex equation. For the purposes of solution it
ig divided into real aad lmaginary paris. For neutral disturbances

(@i =z 0) these cquations are:

* * ! T 2 z z
oo [ ] g - e

- T w-c T (31a)
] 2w T 2
6 = 2= =6 — (26,6.) (31b)
where
(-39
™, ™ W
G, - Lt (32a)
= Ty <l s ’.‘L\>
™
1 J
(% %)
G = [ 1™ i {32b)

Since in the outer inviscid flow ﬂi*/vzi = ?;r“/w“ [fr@m Eqgs. (25) and gzé;]
o &

the outer boundary conditions for Egs. (31) are

Ly, &
'{i - M, {l=c)

ful

8
=
8
o
1
ki

r

N

. (33)

(]

g
0
©

B

There is a regular singularity of Egs. {31) at the point where
w= ¢. This point is often called the 'critical point'’. The solution in
the neighborhood of this singular point is obtained by series expansion
{maethod of Frobenius), the details of which are given in Appendix A. The

resulting behavior of G about the critical point is



i L

N

(44 AU DLy + (90" — Ay o (4

Gy =
+ {A (const) — (28 -2A" + ’L_:f’clz+ «7')] (q-ja)g *o {34)
e
For{y -y )>0
G = 0 , {35a)

For {y =y ) <0

D
Gi = Aw (ywyc} l-&A:{ywyCQ%“. ) (3508
where
o 0
Afﬁ(fﬁ_}_) = Je | d (¥ 136)
c

wu w M '
Bl M T _, % (37)

4" 3w zT, T

It is instructive at this point to examine the nature of the inviscid
equation graphically. As an example, the case of the neutral inviscid
oscillation (aRe —= w) is chosen. For such an oscillation the boundary
condition at the wall is that {I‘srw) = @iw) =z 0. From Eq. (31b) it is seen
immediately that if @i ie zero at the wall, then G, must be zero everywhere.
Thus from Eq. (35b), a necegsary condition for a neutral inviscid

pacillation is that

w ! Za

—_ < <
A S [ e o o= ) = 0 .

WC .Lc

Lees and Lin~ by a mathematical proof show that this condition is both

necesgsary and sufficisnt. The value of the propagation velocity for which

the condition A = 0 is satisfied, is denoted Cge We are thus concerned

# The w appeaving without subscript in Eq. {35b) i8 3. 1415%... .



with constructing the solution to Eq. {24) for G = G_ with the boundary

conditions
G{0) = 0
Y1 m % (1-c)
Gleo) = = ~ .

The curves in the sketches which follow are drawn for insulated {lat

plate boundary layers with Y= 1.4,

Consider first the region about the critical point where the
leading terms of the solution |Eq. gg«-ﬁa] are

G = ={y- y@} + {constant) {y - y.) + ... .
The slope of G at the critical point is always -1. However, the curvatur
at this point is an undetermiued constant. For a givean o only one value of

this constant will yield an integral curve that satisfies the outer boundary

the consgtant is

[52Y

condition (see following sketich). Once this value o

Z M Zc ¢
Y GYO) = 1 € S el ==1
/ (0)=1 - N ~ (YC)““"
7 W
7 M
7 e
7
7 O
Z
Z
A .
ol 2.2 =
G=5%0 >
om g /7 W
Z S~
/ 3 / NN
Z | X
7 / Nl
y 5 /
év N Different o~ YA yJ
é Values of )/1°Me (l“cs)
g \ . {(const) ia Giw) = = p
e . / Eq. {34) B
N Integral Curve

/ atisfying OQuter

~_ Boundary Condition




2 2

determined for a given o the integration can proceed inward from the
critical layer toward the wall, Tor ¢ = ¢_, there is only cne value of o

for which the wall boundary condition G{0) = 0 is satisfied. This value

X

will be denoted o . The integral curve for ¢ _ approaches the wall
=

w

boundary condition {rom above or below according to whether

GHO) = 1. m%am

is positive or negative, respectively. Some represeniative slopes near

V3

the wall are shown in the skeich on page 20. For My = 0, the slope at the

e

wall is + 1; for infinite Mach number, the slope would be =4 for Prandil

number 1. The slope G'(0) is zero for a Mach numnber slightly above 2. 2.

b ;
. & .
Since w/‘ﬁw = exp g a G dy | , positive areas under the G curve
; o |

represgent inCreases in pressure ifluctuation amplitude relative to the wall
value, while negative areas represent decreases.

The nonelinear term in Eq. (24) is important only when G is very

large (see following skeich). However, it is always immportant near the

i i,
W

Unimportant

AR

a uz Term Very Important
(Always Cgﬂmtes Negatively to Slope)
NONON N N N N N N N NN
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v

outer boundary, since the outer boundary condition is determined by a

g t‘” -
AVE (&*f‘”c) g 2'
kalance of the |1 = = and -a G terms of Eq. (24).
For a neutral disturbance with (aFe) finite, the quantity A

on an imaginary part. Also the constant in Eg. (34) is no longer the
curvature but only a parameter since the curvature at the critical point
is logarithmically singular for A # 0. The character of the integral

curves is shown in the following sketch. The curve for G is not very

|A#£0
G_(y)

G, ()

Y

y‘

G_(c0)

different from thas for A = 0, except that G_(0) # 0. The imaginary part
@Zyi is always of the same sign as A and also has a non-zerc wall value.

A0, (£,_) #0, and(o_) #0,

These non-zero values lead to @Qﬁ w

ianW
and the action of viscosity is required to cancel these inviscid coniributions
and satisfy the wall boundary conditions.

°

The calculation procedure used to obitain the inviscid solution
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for a given profile w{y), T{y) and valuc of ¢ is as follows;

Integration from Critical Point to Quter Edge

(1) Evaluace A and B [Eqs. (36) and w?)] . Choose a value of c.
Evaluate the outer boundary condition from Eg. {33).

(2) Assume some value for the (const) in Eg. (34). ZEvaluate
Gr for a small positive value of {y - Vel

{3) Continue calculation of Gr by integration of Eg. {31a) ig the
outer edge of the mean flow. Compare the result with the value from
step (1).

é%) Repeat steps (2) and (3) adjusting the {const) until the

outer boundary condition ig satisfied.

Knteératian from Critical Point to wall

(5) Using the value of (const) {rom step {4), evaluate Gz‘ and C’i
for some small negative value of {y - ycg.

{6) Continue calculation of G, and G; by simultaneous integration
of BEgs. (31}).

The values of Gr and Gi at the wall (y = 0) should be retained
since they will be used in satisiying the boundary conditions for {aRe)
finite.

The equations presented in this section are for neutral
disturbances {ci = 0). The equations for amplified and darmped disturbances
{ci # 0) are very similar and are given in Appendix B.

If desired, the disiribution of the inviscid disturbance

amplitudes can be obtained as follows: Since the function G(y) is



s

o
Cetin

,

L, &
Las C%‘:if} = ‘g“/f” 5

A

by direct integration:

jﬂi é@dy

T B e

Y 2o g

a G dy
7 y y (38)
Ve 3 .
(o L . 3 5 » e 3
= e Coa a G, dy + 1 sin o G, dy |.
i i
Ye Ve

This integration is carried out starting from the critical layer since the

imaginary parts of w and ai@.r have zero value outward from the critical
layer (Appendix A). The real and imaginary pa

K{F’Gr A} %
T, e "4 cos (D(Z_Ga Aa{
T i

4

4
sin go& Géég {40)
Ye

ris of 7w are

]

=3
i
e

[V
[J

pressure fluctuation amplitudes are ref

rred Lo
their value at the critical layer, that is T EW, 1 is the reference
‘e
pressure fluctuation amplity

From the inviscid equations [E,;qs., 16) to {.E.%} the other
fluctuation amplitudes can be related to the pressure fluctuation araplitude.
n and

Lin”, the inviscid functions are denocted

I

2
[¢)
o

€

|

O
~
Py
259
fpom
L

___?_‘___-n-+“‘“' ______J;E___ l+u¢6 (42)
YM, (w-¢) ,g’-(u)—o} ‘(Me (w-<) (W-¢)




%l T'r! -1  T'a
@ J ¥ My o(w-c) ™ Y b’Mé‘(w—c)" {«3)

For further discussion of amplitude distributions, the reader

is referred to Section III. 4.

i 2. Viscous Soclutions

No previous investigator has attempted to obtain analytical
solutions of the full viscous egquations, even at low Mach numbers. The
present analysis is no exception. In order to betier understand the
present analysis, the assumptions and consequences of the Lees=Lin
and D&mn-ul.,.in%‘ > analyses will be reviewed.

The neual procedure in obtaining viscous solutions has been to
solve a set of reduced equations that retain terms up to & certain order,
either near the critical point or else near the surface. These sets of
reduced equations are the same only if the surface is very close to the

ritical point. In fact this limitation applies to the Lees-«-Lml theory in
which a solution is obtained by convergent series expansion about the
critical point, and is then utilized to satisfy the surface boundary con-
ditions. ©On the other hand the Dunn-Lin analysis assumes & priori that
the wall is far irom the critical layer andbabtains a set of reduced

eguations valid near the wall but not at the critical layer,

are obtained by order of magnitude analyses. For the Lees-Lin case
the ordering of terms ig as follows:

wms

a, o'~

[

/dy ~ e, (wec)~e, f~1, Foef, @~f, mwo€f (44)

é
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This crder of magnitude analysis is carried out in Appendix €. It must

be remembered that the ordering relation d/dy ~ 1/ is valid only in a
restricted region.

The leading terms of the disturbance egquations under assumptions

[E@, ({é&é‘xb] form the following differential equations. These equations will

be referred to as the Lees-Lin equations.

LI icRe {wec) £ = 0 {45)
vV
i+ i = 0 (46)
P aTe e ) a kB -
gt . & G,‘L\L(;/U' t{w &,B o = .ﬂfﬁ a T ‘gfﬁ {£7)
and

1 PPN

€ ~ {2}

Egs. (45) to (47) avea sixtheorder system of ordinary differential
equations depem?.e%zi: only on the parameter {cRe). It is to be noted
however that the continuity and momentum equations [Iqs (46) and {»@53]
are & closed fourth order set independent of the energy equation; in fact
it is the same set that is obtained for incompressible flow. As will be
shown in the following section on "Eigenvalue Problem', this independence
malkes possible the determination of the stability characteristics from
the velocity fluctuation boundary conditions alone; the temperature
fluctuations are irrelevant in this case.

nd Lin, Eq. {43) is

(=Y
Eﬂl
@
(9]
@
o

he convergent serieg method o

By

o

reduced to the form

3
g s @ {49)

at’ .

where



aRe w_' .
< /3
c = WWM) / gy w ETC’B éﬁ@»

The three solutions are

%o !
o = [ zesn)
1 3
o (e o
3
{E s 1

The four solutions of Eg. (46) are

'/
¢ = (a«;:cw‘c \f gAC ¢ HC/; VEUQBA]K \
- 2 ‘/3 ‘/2 @ =t 3/2
2, (Za?—c) Eac My e (52)
%5 = ¥ ¥e
&3542 = 1

Of the above solutions only @3:& and {; are used. The solutions
@E; and fé are rejected since they grow exponentially for large arguments
and could not satisfy the outer boundary conditions. The solutions ¢39
) 40 and 53 form the rudiments of the inviscid solution {see E‘@Mmieni ‘2%
and are replaced by the inviscid solution already obtained. Solutions to
the energy equation are not pur sued in detail by Lee;:s.and Lin since they
arve not relevant to their eigenvalue problem.

Dunn and Lﬁrﬁ” > recognized that, for supersounic flows, the

propagation velocity ¢ may be some substantial portion of the free stream



velocity and the critical point may be relatively far from the wall.
Accordingly they ordered the various quantities occcurring in the

stability equations in the following manner:

3, @ ~l, a/dy~if, (wec)~l, E~l, @oef

) 2 {
8~f, mw~ref
The details of thig order of magnitude analysis are repeated in
Appendix C. The leading terms of the disturbance equations under
ordering [E‘q éa?n@]form the Dunn-Lin viscous eguations:
f iole (w=c) o= 0

g +ic = 10928 o (55)

ES

TN i aRe o {w=c) 0 = 0 (56)

£

v

and
~ i
(oRe) /@

These eqguations also depend only on the one parameter (oFe).
The momentumn and energy eguations [Eqsa {54) and afi“as%}] are mutually
independent while the normal velocity {fluctuations are related to both
CE’E\- longitudinal velocity fluciuations and temperature fluctuations
through the continuity equation [L{g {553] .

4
The method of solution of 8. {54) to {56) is viven by Dunn .
Eg g ¥

He transforms Egs. {54) and {50) by introducing new variables of the forxn

- .11 . . .
suggested by Tollmien™ ~, such that the equations reduce to the form

&

{' . 449}] solved by Lees and Lin. The details of the transformati

(%3}

o

3)

#



and the solutions of Dunn and Lin are reviewed in Appendix D, #

o

EN

As the Mach number of the flow increases certain terms of the
disturbance equations which are Mach number dependent grow larger
than indicated by an ordering procedure based solely on free stream
Feynolds number., The normal gradient of mean temperature ig of

2

order M@ {Appendix C) and the inviscid amplitude relations [E@ﬁ, {42)

and 5%33] show that the "inviscid” temperature fluctuations normalized

g

with the {ree stream temperature are also of order ki, ., compared to
the normalized longitudinal velocity fluctuations. The “'viscous'
temperature fluctuations must therefore also be of order 2&415 At the
same time the whole mean temperature level in the boundary laver grows
like M eag and the free stream static temperature level ig no longer
relevant. Temperature fluctuations and mean quantities that are tems
perature dependent should be normalized E‘ay some representative tems

£ .. , : s
T . As shown by D umz , vhe new normalizations

perature T . ~M
pex Tres~ Mg ‘e

nd new definitions of Mach number and Msy g number are
0 = e T & e
= 5 ’ = P
ref ref
(58)
J«:Eﬁ e
—_— L
Moot = Reper = 5
YL ‘ 3 : Vet
ref
It is shown in Appendix € that even with the new temnperature
normalizarion, normal gradients of mean temnperature dependent quantities

# For {sRe c) > > 1, it is useful to obtain asymptotic solutions
to the viscous disturbance eqk,@;gi@nso These solutions have in fact
already been cbhtained by Duna™. Howev ex, in most cases {cPe ¢) is

not sufficiently large to warrant the use of the asympt otic a@kmmn
so that they are omitted {rom the present discussion.



are of magnitude Mreia timmes the normal mean velocity gradient., In
general Mx‘ef = 6{1) s0 that the retention of M. of in the ordering
relations which follow is mainly for the purpose of identifying the terms
depending on mean temperature gradient and the dissipation terms. The

ordering relations used in the present analysis are

g, O'~1 except T', /L’NMI,%;

a/dy ~1/Z, £~1, 8~i, @G~ weTE

(59)

As shown in Appendix C the terms in the disturbance equations

may be grouped as follows:

- - w3 .
la (3 € ; €, €
2 - . & =l 2 =3 2 <4
Moer € Moo € Mygs € . Mogr €
{aRe,_ ef} dependence only : < a and {aReref) dependence
where VA
z Y
= | _ (%ef) o (V, > :.e
—_— = —_— (2
€ («Re‘,eg_y" (HKRe)” f

Terms in the disturbance equations ai'ising from the fluctuating
viscous stresses, heat flux gradients and viscous digsipation that are
regarded of order € im the Lees-lLin and Dunn-Lin analyses are actually
of order €. For a linear viscosity-temperature relation, ¢ ~Meze »
and at high supersonic and hypersonic Mach numbers the above-
mentioned terms are likely to be comparable in magnitude to the terms

of unit order.

Referring to the grouping of ordered terms, no major difficulties



* hiad Z n 2 4—2
arise when term:s of order 1, e, M e and Mref e are considered,

since these depend only on the single parameter (c.iaeref). But if terms

of order Mrefz Z'& are to be included in the viscous equations then to be
consistent one should also include the pressure fluctuation terms (of

order "é'a } in the continuity and energy equatiéns [Eqs. {E-21) and (E«-ZB] ’
and also the termes of order '?2' with coefficient ag a.rising'fram the
streamwise gradients of fluctuating quantities. In the present analysis
only terms of order i, €, and Mreﬁaé are reiained in order to

investigate the fir @éaorder effecis of viscous dissipation and large mean
normal temperature gradients, Z:&i&erto néglecteé.

The viscous disturbance equations here considered are as follows

{{rom Appendix C):

Momenturmn

w4 1, U 13 Al (R w_c)—TI‘ "‘_’l
< Fﬁ‘ré +/&'ﬁ“e + “:( lﬁ:{_{_-’-e]:o (60)

Continuiﬁz
i .
Energz

Y " z 0 - ReT'
0 +/—?;—€‘fiT: ) +z(1-/)fMe”4 - 55—@%@6=°3—;?¢ (62)

By comparing these equations with the Dunn~Lin equations
EEqs, {E=9) to (C-H)] , one pees that all terms formerly assigned to

orders 1 and € are included in the present equations. In contrast to the




o et

s-Lin and Dunn-Lin viscous equations, ike curreni scl [Eqs. {60) to
{62)] have no independence properties and the three equations must be

solved simultaneously. The linearly independent solutions to Egs. (60)
to {62) are distinguished by their behavior ia the cuter flow where mnean

flow guantitice have reached their external values. In the ocuter flow,

Egs. {60) to (62) becoms

' e jaRe (lec)f' = O (6
P+ if s i{lec)@ ' (64)
8" «iaReq{l-c)® = O {65)

Cne set of solutions to Eqs. {63) to {65) is of the form

b4 Yiokhe(lec)y
(66)

flav e , 8=20

while another set is of the form

3-;'3’ 1aRec(lec) v

0 ~e , £ =0 (67)

A third set corresponding to ' = 0 is replaced by the inviscid solution and
is therefore not considered here. In Eqgs. (66) and {67) the solutions with
the positive exponents are rejected immmediately since they grow
exponentially and cannot possibly satisfy the outer boundary conditions
Eﬂq (14)] . The remaining two sets of solutions corresponding to the
negative exponents must now be found. Since Egs. (60) to (62) are
rather tightly coupled, it is likely that their simultaneous solution will
bhave to be obtained numerically. The method is somewhat similar to
that used to obtain the inviscid solution.

Consider the solution correspoanding to the negative exponent in
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.....

H= 6/, J=¢g/e, K=£/6 . (68)

In terms of H, J, and K, Eqs. (60) to (62) become

24 z ! * o(Re o-(w—c) coRe T' _y?
H = —;-Aﬁ_;:TlH - 2(3'"‘)0""% w' (K*'HK> + & ] + ] J H (69)
: ]
T os —iK+ LD T T T (70)
T T
ot o _ 2 du ot [ ' k] = L i ' '+ HE
B = ;:f#"’_[" +H(2K+HK)+HK]' S LW (HH)
— LotRe (w-c) [I-,]{ - /{’-I-HK) —w
12 T ( T (71)
' ol "
—H (3K +3K'H +3H'K +H¥K) - 3KH —HK
with "outer' conditions
\
H, = - Yioke o (l=c)
. if{l=c)
ARG i .
K, = 0
/
The equations for the set correspondiag to the negatlive
exponent in Eq. (66) are cobiained in a gsimilar manner. With
LE g/, M E £'/5, NE o/f {73)

Egs. {60) to (62) become

. )
L= =i g 4(‘:)/\/ +—7T_—L — LM (74)



M = -Z JAT (M’ +M> /T/L%‘“ [A/" +(,2N’+A/M)M +A/M]
—_ L'o(EeV(k)-C) [ "M"-%/:,A/] —M[BM)*'MZ] (75)
N 72;‘1{; [A/ A/M] - z(a’-/)a'Me w'M +ao(PeF(N—CJ N
o=k — (aN'+uM) M —NM' el

and the outer conditions are

i

[+] ahehﬁcs
M, = - ) TaRe(I=c) P {77)

N, o= 0

E-fl
it

/
The HJK and LMN systems of equations are integrated from the
outer edge of the bomﬂary layer to the wall for two main reasons: (1) the
outer conditions are known; 7(2} the outer region behaves as a saddle pcaim.
in the sense that integral curves other than those satisfying the outer
condition diverge from the outer condition. This behavior is shown in
Appendix E. |
For the purposes of numerical mtegration, the complex HJK
and LMN equations are separated into their component real and

inaginary equations. For a neutral oscillation {c = 0), the HJK and

LMN systems are:

r

H'e _}ZZ#F T'H, -—Z(r—/)aM;w’(K,'+HrKr—HL-/<L-) +Sf;i¢ T -(w=4?)  (78a)
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' = -2 Ty -—z(r—l)@M;'w'@hH(HﬁHLM.,)+°;§/‘.RSL@’¢)+T'~TL] —2H.H;  (78b)

e K v DT AT KT (792)
J'om -, +T T +(“’°) H.T - H, T, (79b)

K ' —;ZI(%&%)T.LK*“ tHe (2K F B HK) —H (2K + M Kt G Rk, -H; KL]

el [ eneont] ¢ =B T~ (K ek k)]
—H, &3 Ke +3K W =3K H; 30K, - zniK; +(Hrl‘f*5) K = 2RcH; "i} (80a)

+ H; izz{' ¥3¢) H ¥ 3 H, ¢ 3H G +3HKe + 2H W Ky +@}-Hz) 141]

—BKeHy +3RH; —H K, +HK;

K‘i’”z ;z_k%) [—I( *“r ZKL+HKr+H K)+H (ZKr*('H'(K HLK>+-H-(( +H; K]

/{ W' [Hi 28K,

Re (w-<) W
_1’___[( - (Kp+ ke HK) T]
—Hr[3‘<i"+ 3Ry Mo+ 3K He + 3HC Ky + 30Ky + 20 H; K, +(H2H;) KJ (30b)
—H [3|<, + 3K H, - 3K Hy +36, Ky —3H Ky +(He- ~HE YK - 20, K K]

- 3K, K - 3R He - He K - N Ke

with outer conditions




H, o= --l/d“e— (-9 I e—. ] G )
o z o 2 oRe & K"o= ©
(s1)

H., = - -\/’(RC“'Q"“) I . U-¢)
i, . 2 ¢, = ErYa K;_°= o J
and
R - |
L' = —C”T°>N; rTL LM, LM, (82a)
- - |
L' = (SN T LM, -l M, (s2b)
2 (4 ) 2 2
- Rl LRV
- /"; (%}w' ,[N,“ £ M, (204N M= N M) =M (BN M +N M) FN My - N;Mi']
’ (83a)
- \ (3
— el9 9 [ML- +“’7u;] _aMlM, +3MIM. —M> MM,
A - [M} +2m, ;]
—l-@t>u‘ [N-"+M (2N} +N; M. +N M-> M: (28, + =N;M;) +N M, !
)A. aT L 4 L LM\’ r™h + L(z v Nfo v L)+ I’Mi_ *’N."Mr]
e (w- | ) (83b)
- °-‘—‘—,(,——\—[IT— ~M(-‘1TM,] —3MM, -3M/M; -3MPM; +M;
N ' o= —ﬁ“)i)T‘[n‘m -NM; Mo WM, — SeRe ‘
T /4. T r (M' L L] —2(‘('(.)6- e O] P 7 [@’C)M‘—T Lf—)
(64a)
— 2N, M, + 2N Mg =N M7 0 MG - N (M7 -MT) + 28 e,
Ni” = 'ﬁ€-§%>T‘{_N;:+N,M;+Ui M,]—Z(U-\)G‘M;N'Mi +€i§[(w-c) N\,*T'L;_]
(34b)
2NCM —2NE NG SN M M = N (MM) - MM,




with outer conditions

I ) - o

Lz'g - 2oRe (1-0) M(° ) —-{ 2z Nro
! . = _/=<Re (-9 = O

Li@ i} b 2 oRe (19 M, —,/ z Ne,

The viscous equations for amplified and damped oscillations

(85)

{c. # 0) are given in Appendix B.
i g

1II. 3. Eigenvalue Problem

Having indicated the methods of obtaining the various solutions
of the disturbance equations, the solutions must be cmmbi;zed to satiafy
the boundary conditions. Note that the outer boundary conditions for
subsonic disturbances [Eq. {M}( are inherently satisfied by choosing the
‘negative exponents in Eqs. (20), (66), and (67).* The three boundary

conditions at the wall remain to be satisfied. They are

£, = 0 (11)
By = O (12)
6, = 0 (13)

The restricted thermal boundary condition {Eq. (135] is the one primarily
considered. The more general boundary condition aﬁw“ + b8 =0is
discussed in Appendix ¥,

Following the pattern of Dunn and Liné, the inviscid funciions
in this section will be capitalized, while the functions corresponding to

the LMN solution will be given the subscript 3 and those corresponding

® The process of paiching two independent inviscid solutions at

; P ! . .
the outer boundary by the condition @+ o Y1 - Meg2(l-c)? ¢ = 0, which is
required in the Lees-Lin and Dunn-Lin procedurés, is here unnecessary.
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to the HIK system the subscript 5.
The satisfaction of boundary conditions [E;qs, {11) to (13)]

leads to the following determinantal relation

|3, @

3w
e . £ < 5]
fw “3w Fow = 0 (86)
® 0, o,
W S DWW

which when expanded yields the secular equation:

Bl b Ol Autn], 0,5, b, d (87)
F;J %Ew Fw efw -i'}w egw FW -S'Bu B’\d &—3\0 e‘u

Note that in the Lees-Lin, Dunn-Lin and present formulations the
inviscid solutions depend only on the parameter o while the viscous
solutions depend only on {eRe). With the aid of the following identity

derived from the inviscid equations [Eqs. {17) and 619)] :

@_"’ = (7-) M: C + i(vDMeec Wi _ i 2 {88)
Fw (5 @'—‘)Méc." FW
Eg. (87) can be written:
5 ¢3.., + @_, [(*(—l)Mzc—ei’l—-(b’ ) Mg € @ i
v . bs,y Y T3 &5 (29)
Fo — -
- |—iamie B e B Y, L(‘(—))M:cé__v_li'i‘l'_-_rﬂ_.i -G
B;w ¢ M &, &3-: e @NIMg 55

The Lees-Lin and Dunn-Lin secular equations are also guite

simply obtained. For the Lees~Lin viscous solutions «;235 = 55 = 0. S8ince
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g, is generally not zero, Eq. {89) becomes

{@V/Fw = ¢3‘;&/'@3‘,@} ’ (90)

This resuli confirms the irrelevance of the thermal boundary condition

5
W

in the l.ees~Lin case.
For the DunneLin soluticn, 03 z f5 = 0 {see Appendix D} so that

the secular equation is

%
& ftiw. + @)Mee =
e > (91)

For some unstated reason, Dunn and Liaﬁ apparently omitted the second
term on the right hand side of Eq. (38) so that the denominator of Eq. (91)
in their formulation is simply unity. This omission is corrected herein
{Appendix D).

In the terminology of the present method {Section IIL 2) Eq. (83)
may be written

eqgw/‘??'w = K {92}
where '
GQ =

Ly + 1, [E0Mee - Nw] @M, c LK,
|- i(x—n)Mezc:‘;,gL“_il:’_ T 15 F Ky, [i(b’-:)M;ch i‘*_‘c'g_ T 13“””}

() Mge™ (FME

(93)

Again from the inviscid equations Xqgs. (16) to {19)
i
o= (94)
ipw/ W ww _ _l_
c G,

so that relation Eg. (89) may f{iaally be written

Gy, = (/w1 {1 -Y) . (95)



where

.
/ [+ iR (%)

In Eq. (95) GW depends on o alone while the right-hand side
depends on (aRe) alone. The values of ¢ and alle for which Eq. (95) is
satisfied are the desired characteristic values. Some detailed examples
of this procedure are given in Section IV.

The secular equation for the general temperature fluctuation

boundary coundition, a Qw' + b8 =0, is given in Appendix F.

I 4. Amplitude Distributions

Once the characteristic values of o and Re are determined, the
digtributions of the amplitudes of the disturbance guantities across the
boundary layer are calculated by obtaining the amplitude distributions
for the inviscid solutions, the LMN solutions {solutions 3) and the HIK
solutions {solutions 5) and combining them in the manner satisfying the
boundary conditions. The discussion in this section concerns the
functions w, @, £, and 8. The normal velocity fluctuations are given by
a@ while the density fluctuation amplitude can be obtained by using the
equation of state [Eq {8)] .

Before proceeding, it must be recalled that in the process of
spliiting the solutions into inviscid and viscous types a singularity was
artificially introduced into the inviscid equations at the critical point by
the complete elimination of viscous and heat conduction effects from
thege eguations (Section IIl l). Accordingly, before the inviscid solutions

can be used in composing the amplitude distributions, they must be



corrected for the effecte of viscosgity and thermal conductivity in the
neighborhood of the critical layer. For incompressible flow, such

. . e . 11 P VOIS 3
corrections were first obtained by Tollmien = and Schlichting ~.

Here we seek the leading viscous corrections to the inviscid

%

functione in the region about the critical point. To be more specific the

corrected function is given by

singular viscous
q = q, = term + | replacement
corr Ynv term

where the viscous replacement function is obtained by solving the dis-
turbance equation containing only the leading viscous terms in the
neighborhood of the critical point. This replacement {unction must
satisfy the condition that "iar’' away from the critical layer it approaches
agymptotically the singular portion of the original uncorrected inviscid
funciion {Appendix G).

The behavior of the uncorrected inviscid functions in the
neighborhood of the critical layer can be ascertained by obtaining a series
expangion of the inviscid solution arcund the critical point. The series
expansion for the pressure fluctuation amplitude has already been obtained
(Aypendix A). The other inviscid amplitudes are related to w and «'

through Eqgs. (41) to {43) (Section Il ). The results for @, F, and @ are

resgpectively as follows:

§ = - Bl A b + () -l e on



hj
(]
=

{y = vd <0

@ = ?’M w AF(# gc +.
,,,k [1 b (44 byt + I; ‘z‘—’;) —Cw"s@}(%"é%*--o]

quantity A is the derivative of the density-vorticity g product at the

{(98)

l’X‘l

ix)

g

critical point as defined by Eq. (36). The behavior of @ near the critical

point is sketched below

T == (34) 40
\\
\

When A = 0 there are no discontinuities in @ . For A# 0, the values of

@ ~and (ﬁi are coatinuous, but a@r is discontinuous in slope at the critical

point, while @i has a discontinuity in curvature,

¥

For {y = yg) >0

F o= _ (consﬂﬁ ] {99)

ﬁ;%[ALQ@ {

For {y - yc) <0



F o= ;\L%—[Ah\! ‘(cl + {_{— - (cons‘(’)} + . ] (100)

¢t T

_-U_M} *u—lz Aw +

Fop —— —A=o Foy
A<o

I,

N

(44 (40

There are no discontinuities in ¥ for A = 0.

f” has a logarithmic infinity while there is a jump discontinuity in E,

®

ety

For(y=y.)>0

However, for A ¥ 0,

_rc—,;I ' IME !

@ = -Vl?,—; w"‘ [‘(S\Tc) ‘l" AL(Q’%&) +{1§T+<3'):‘ewc _A—-(&onsi‘)} +--.] {1@13

For {y =y ) <0
= aM‘ — (‘3 ) + A in‘}"%ﬁ‘ +§,1§— p ‘3Me” -A- Gom}{%
e « T
{162)
-VM‘ w"‘ AT
e (3
| A®, _____Azo @A
// A<o
) e (34
/
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To be noted immediately is the discontinuity in ®r even for A = 0.
This irregularity in the distribution of temperature fluctuation amplitude
is caused simply by the assumed absence of thermal conduction. For
A # 0, there is an additional logarithmic discontinuity in @ and @ jump
digcontinuity in ®i' It may be noted that the inviscid disturbance
wrticity given by (F' + i aa @} has a discontinuity similar to that of the
temperature fluctuations.

The corrections for viscosity and conductivity are introduced
logically using the method of convergent series expansion about the
critical point as developed by Lees and .Lin1 and Cheng?’. In the present
case (Appendix G) this expansion is carried out in the Tollmien variable.
Furthermore the development in Appendix G reduces the correction
equations to the forms solved by ﬁchiichtingwg so that the universal
functions calculated by $ch1ichtingm could be used here. Consider for

example the corrections to @;-:‘ The function (@ ) may be expressed

r'corr
_ [singular| | replacement 3
€®r)carr = ®r ﬁerms } N [terms J . (103)
The singular terms from Eg. {(102) are
y |
s S| an ALl
o < 104
M, l: (4-4) el (104)

The replacement terms from Appendix G are

NS (BT Yot Ale) — balSel
™ W’ [Qm EG (€. +A{G (t) ly-se\ 1ol

where

&)

T = re)/® v (106)

‘The Tollmien variable for the energy equation is defined by
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o Y,
iEtj%-¢$ﬂd{] (107)
Ye

and the functions é“( CQ) and é’( fg) are the functions calculated and
presented by Schlicming“ and reproduced here (Table I). Combining

Egs. (103), (104), and {105)

T¢1:.l ] Al |
©),.. = &~z w,z[(;_w{,- 2,6 <n°>§+qm<,\—ca.>§}, 108)

Schlichting chooses the thickness of the viscous conductive region as

C = : 4., Accordingly the bracketed term in Eq. (108) vanishes for
o 4

[ﬁg\ > 4 so that outside the region i@r}corr = @r .
Following the same principle, the corrected forms fox ®i’ E‘r,
and Fg are {replacement terms from Appendix G):
For {y - yc) <0
| A TT i |
(Odeor, = O 55 L [T (%.) (109a)
For (y « yc) >0
: ]
AT
(Beorr = == —x H(C) (1090)
: 4 W,
- A T -t .
(F ooy F - ;MC—J{L« 18] - G (i)} (110)

For {y = yc)<0

(Fogss = B+ AT [-« . ﬁ'(c)} (111a)



For {y - y.) >0

(F)ogrr = —U—AM—;.% H' (%) (111b)
where
L= (wre)l/? v (112)
and
4 %
; =U%(¥Jx] (113)
Ye

The above corrections are the important ones. The largest
correction is to the function ®r and must be made whether or not A
vanishes. All the other corrections are directly proportional to the
value of A, which is usually small. Even smaller are ihé corrections to
@¥, which is continuous in value but has an infinite slepe at the critical
point, and the corrections to ¥, where the irregularity does not appear
until the third derivative. The corrections to éﬁ and w are not obtained
herein. For incompressible flow, temperature {luctuations are irrelevant
and all the corrections are likely to be small.

As shown by Eqs. (106) and (i12), the thickness of the region
about the critical layer where vigcosity and conductivity are important is
af-order (eRe)” }’/3, For sufficiently large values of (aRe) this thickness
is small compared to the distance between the wall and the critical layer.
On the oither hand, there is some value of (aRe) for which the viscous
conductive layer about the critical point extends to the wall, and would in
fact "correct'’ the values of the inviscid functions at the wall. When this
occurs, one has reached the point beyond which it is improper in
principle to use the wall values of the inviscid solutions in the eigenvalue

problem, and the splitting of the solutions into inviscid and viscous types
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becomes invalid in principle.® The developmenis of the present seciion

assume that the region about the critical layer where viscosity and con-

ductivity are important does not extend to the wall, so that the eigen-

values a and {cRe) as determined by the procedure of Section IIL 3. remain

unaifected.

The amplitudes of the viscous solutions are obtained as follows:

9
gMJ\a
fS = e ;
SM‘,J"& 4 (4
= () Co M'J +‘ Sh M‘J ]
A e (Midy +isn iy
or Y%
M 4
£, s e So s cos | Midy
3. o
(e 4
o T8 .
f3i =z e s %OM;)\&
Then
@3 = L
93 = NIi,
Similarly 4
| Ry
95 = &
94

eSOHrA‘Q [:c,os CHLJ‘ +USin X:H;Jua]

4
g = &,H"H

52- e cos K?H;_J%

(114)

(115)

(116)

(117)

(118)

% There are no doubt many cases where the viscous corrections
to the inviscid functions at the wall would be guite small and hardly affect

the eigenvalues. Therefore, the above restriciions are stated ''in
principle'’ rather than categorically.
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§, e dy 4
95‘ = e Swm g H; cl\& (121)
. 1 °e
and
@5 = J 95 (122)
f5 = K 95 (123}

Since all the solutions satisfy the outer boundary conditions, the
proper linear combination is determined by considering the values of the

amplitude functions at the wall. These values are

Function Inviscid 3 5
& b, L, 3,
f }F‘W 1 E*{w
[+ ®W N, 1

If the complex coupling constants {or solutions 3 and 5 are

respectively b3 and b5, then the following relations must be satisfied.

¢, + byL, + b, I =0 (124)
F_ + by + byK_ = 0 (125)
®, + by N_ + by = 0 {126)

The coupling constants are thus [ﬁrcm Egs. (125) and (lzé)]

o= 7
by = e &_},@‘i’ zf“’ (127)
W i&W




b, = Oy - Ny By (128)
5 N K =1

Relation Eq. (124) is automatically satisfied since the component functions
are eigenfunctions. Except for an arbitrary scaling factor the amplitude

distributions can now be written:

=9+ b8, + by Py (129)
£ = (Fogpp + b3y + by i) (130)
8 = q@eorr + by 9, + by 9;) (131)
LI L (132)
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Iv. EXAMPLES

To illustraie the present methods and to try to obtain an
estimate of the validity of these methods and of the reasoning behind
them, several numerical examples were obtained. The results for
neutral stability are presented in the form of a plot of wave number as
a function of Reynolds number, where both gquantities are made
dimensionless with the boundary layer momentum thickness. ' The
terminology to be used will be described with the aid of the {ollowing
diagram, which is representative of the stability behavior of subsonic

and slightly supersonic insulated boundary layers.

O‘QReG —>

jc --[l - (I/Me\)
e
-

chReg = finite

(Reg)minq crit. Re@

This diagram is often called a stability loop. The upper boundary
of the loop is called the ""upper braanch'’ and the lower boundary the

"lower branch'. The locus of constant frequency is a curve through




the origin. There is a frequency above which all disturbances are
always damped and there is 2 Reynolds number called the minimum
critical Reynolds number below which there ig no amplification of
infinitesimal disturbances. The limiting wave number of the upper branch
asg is that of a neutral inviscid disturbance (afle —» x) propagating at a
velocity ¢_. Along the lower branch ag—=0andc -—-—)-{i - (l/Me)]as
Reg —»  in such a manner that (ag Ree\ is ﬁ,nite.. Forcs= < there is
also a neutral point on the lower branch. Generally for ¢ > Cs there are
two neutral points while for € >c >[l - Ql/Me)]there is ohily a lower
branch neutral point.

The calculated values of wave,numbex; may be counverted to values
of dimensgionless freguency ﬁg?;ye/ueay {where i is 2% times the frequency)

by the relation

i3 e aGC
2 = Ee °
u 8
e

The particular mean {low boundary layer profiles involved in the
following examples are those for insulated flat plates recently computed
by Ma.ckgé using real gas fluid properties. Mack's tables are particularly
suited for stability calculations in that most of the derivatives of the
profile functions required for the stability analysis are presented. The
variable 7 used in this section is that defined by Mack, namely,

w
e

73 y& GZW. ?

and is directly proportional to the physical disiance normal to the wall.
he values of ¢ and Ee guoted in this section are made dimensionless

with the height 7]: 1. The values of ag and Reg are made dimensionless



with ?ZQ , where 7@ is & constant whose value varies only slightly with
Mach number. For 0 <M, <5, 0.641< 7, <0.664 '*
The integrations of the inviscid and viscous equations required

for the examples were performed numerically on the Detatron 205 of the

Caltech Computing Center using & Runge-Kutta integration method.

IV. 1. Neutral Inviscid Oscillations at aRe ~—»

The necessary and sufficient condition for the sxistence of a

neutral purely inviscid oscillation (aRe —» ) is that {(Reference 1)

W it T ¢
A :-—E(..f..,.. - 'T”C = 0 for ¢ >[1 - (1/Me) . ' (133)
Ye c [ ] '

The value of the propagation velocity ¢ for which condition {(133) is
satisfied is denoted €y and this value depends on the particular profile
being studied. In addition to the expected sensitivity to Mach number and
surface temperature level, it is also quite sensitive to the Prandtl number
and viscosity-temperature relationship, as indicated by the calculations
of Van Eriestm. Figure 1 shows the variation of ¢ g With Mach number
at different surface temperature levels. Alsc shown on Figure 1 is the
curve ¢ = [1 - {3/&{63. The disturbance propagation velocity for super=
sonic and hypersonic boundary layers is a very substantial poriion of the
free stream velocity and the critical layer (where w = ¢) cannot be
- thought of ag being close to the wall.

For the mean boundary layer profiles of Macklé, the wave
numbers corresgponding to A =0, ¢ = ¢, were obtained for Mach numbers

>

between 1.3 and 5. 6. These values are shown in Figure 2. The value

of ag increases above Mach £, reaches a peak at about Mach number 5,
@ .
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and then decreases with further rise in Mach aumber. The approximate
behavior of asg for very large Mach number was obtained for pp= constant,
Prandtl number 1 by integrating Eq. (30) under the assumption that
M&g > > 1. The result shows that for very large Mach number aé”g varies
as the inverse square of the Mach number -+ & trend that seems to be
consistent with the calculated points in Figure 2.

The variation of the function G(y) = ﬁ"/@,zﬁ’) is shown in Figure 3.
In each case, the largest value of 72 for which G = 0 is the critical point.
Thege curves have the general behavior described in Section III. 1. The
integral under the curves is proportional to the logarithm of the pressure
fluctuation amplitude. Thus, if the net area under the G curve is positive,
the pressure fluctuation amplitude is higher than the wall value; if the net
area is negative, the pressure fluctuation level ig below its wall value.

For each of the curves in Figure 3, the pressure fluctuation
&mplimde at the critical point is calculated by the formula

(=
a%a Gdy
w c/ww =z e .

The resulis are shown in Figure 4. Tor Mach numbexrs up to about 3,
the pressure fluctuation level at the critical point is about the same as
that at the wall, and is in fact quite constant in the region between the
wall and the critical painio Above Mach 3, however, ithe pressure
fluctuation level at the critical point drops quite sharply, and at Mach
number 5.6 it is of thé order of & per cent of the wall pregsure
fiuctuation level. This sharp dzfap is atiributed to the rapid increase
with Mach number in the amplitude of normal velocity fluctuations

between the wall and the critical point. ¥rom normal momentum cone
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siderations, this large velocity fluctuation must be counterbalanced by a
large gradient in pre ssuré fluctuation amplitude. If the phase of the
normal velocity fluctuations leads that of the presgsure fluctuations by
90% there is an outward decrease of pregsure fluctuation amplitude.
If the normal velocity {luctuations lag by 90° there is an outwazd
increase in pressure fluctuation amplitude,

It might be expected that the wave numbers cbtained for neutral
inviscid disturbances (cRe — ) at different Mach numbers would be
somewhat indicative of the variation of the level of wave number with

Mach number for {inite Reynolds numbers.

IV. 4. Neutral Stability Characteristics of Insulated Supersonic Boundary

Lay_er 8

The variation of wave numnber with Reynolds number for neuiral
oscillations was calculated at Mach numbers of 2.8, 3.2, and 5. 6 for the
insulated boundary layer profiles of Mackm. The Mach number 2. 2
profile was chosen in order to compare the calculated results with the
“experimental findings of Laufer and Vrebalovic%hé, and the Mach number
5.6 profile toc compare with the Mach number 5. & experiment of
- Demetriades. 4 The calculated results at these two Mach numbers were
quite different in characier, so that calculations at an intermediate Mach
number of 3.2 were performed in order to clarify the nature of the change
between Mach numbers 2.2 and 5. 6. In this éectian a comparison will

also be made with calculations using the Leesg~Lin method and the

"gorrected'’ Dunn-Lin method (Appendix D).
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IV.2.1. Mach Number 2.2

The neutral stability characteristics at Mach number 2.2 were
calculated by the methods of Section III. Before considering the entire
neutral stability diagram, the calculation of the two neutral points at
726 =3.2, ¢= .,61611 will be examined in some detail.

The inviscid solutions for various a were obtained for MW = 2,2,
P 5 3.2, €= 61611 by the method of Section IIl. 1, and the results are
pletted' in Figure 5. To be noted is that the imaginary part of
{- v:-é‘f-’» G,, ) bas an almost constant value of 0. 116 independent of a.
This value very closely matches the value vam = . 12639 suggested for
this guantity in the theory of Lees and Linl.

The various viscous solutions obtained for ¢ = . 61611 are also
shown in Figure 5. The numbers above the points are the values of aRe
for the peoints. The points for Lees-Lin and Dunne«Lin theories were
calculated in two ways: (1) by using the Tietjens and auxiliary functions
as described in Appendix D; (2) by making the Lees-Lin and Dunn-Lin
approximations in the HJK and LMN systems of Section IIl. 2. and obtaining
the solutions numerically. The resulis of these calculations differ when
oFe becomes small because some terms of order 1/{aRe) are omitted in
formulating the Tieijens function solutions. For large cRe there is no
difference. This agreement at large cRe is a check of the correctness
of the present calculation procedure for obtaining the viscous solutions.

The intersections of inviscid and viscous curves of Figure 5 are
solutions of the secular equation and give the values of o and aRe for

neutral stability. These solutions are listed in the following table:



UPPEER BRANCH POINT

Viscous Theory Symbol o aRe ag Reg

E‘igure 5

Lees~Lin o . 0665 48 . 0426 464
Lees~Lin (Tietjens functions) L0663 48.2 .0429 464
Dunn~Lin A . 0656 54,5 ,0420 534
Dunn-Lin (Tietjens functions) Ja ¢ . 0656 54,8  ,0420 534

Present & . 0660 55 .0424 535

LOWER BRANCH POINT

‘Viscous Theory ,gsymbol o cRe  ag Reg
‘ Figure 5 .

LesseLin o . 050 5.7 . 032 73
leees=Lin {Tietjens functions) o . 048 6.17 .031 32
Dunne Lin | A L047  4.72 .030 65
‘DuaneLin (Tietjens functions) & .040 5.0 .026 80
Present % . 04? .5 . G30 89

For the point on the upper branch, the two Leesg=Lin type
calculations agree with each other at a value of nRe of about 48, The
two Dunn-Lin calculaiions are identical to the accuracy of the calculations
aud give a value of cRe of 55, which is very close to that of the present

calculation. The difference between 48 and 55 is the effect of including
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termperature fluctuations in the determimﬁ:wn of the neutral stability
-characteristics. The close agrecment between the Dunne~Lin and present
calculations showe that the additional shear, conduction, and dissipation
teviug included in the present method have a negligible effect on the
vegults at this Mach number and value of aRe. The value of € with
(aRe) = 55 is 0. 187.

For ihe point on the lower branch the values of (aRe) run between
4.7 and 6. 5. Neither the two Lees-Lin solutions nor the two Dunn-Lin
solutions agree among themselves. Furthermore, the present calculation
with the above-mentioned additional terme gives the highest value of aRe.
fithout these additional termng, the present method reduces to the Dunn=
Lin { 4 } method which happens to give the lowest value of (aRe) in this
case. Thus for this particular calculation the inclusion of the € and

M € terms, together with the order one terms (Section IIL 2. ))gives«:

vei
a large perceniage increase in oRe. The value of € based on {aRe) = 6.5 |
Cis 0.543. The fact that the next highest value of aRe for the lower branch
' ;ipmnm oceurs for the Lees~Lin { ) solution is felt to be fortuitous
“because this solution omite congideration of the temperature fluctuations
eltogether.

At Mach number 2. & the inviscid solutions for different values of
¢ have imaginary parts which are indspendent of ¢ and whose level
increases monotonically with ¢. The neutral stability diagram is

consgtructed as follows:®

¥ This consgtruction procedure, which is familiar to those
readers who have had occasion to make boundary layer stability
calculations, is here pregented ag background material for deseribing
the related procedures at higher Mach numbers.



i
<«

Viscous Solutions

C+cg oRe oo

—— T Q--—'f;) oke {finite
Rey, ¢

Neutral Stability Diagram

Al c= € there are two selutions. The solution for which

Z‘Sﬂ ‘lﬁ - 1} = lmf lﬁ-a- i) = O represents the neutral iﬂviscid osgcillation,
while that for 2J (P- 1) # 0 ie a point on the lower branch. For

¢ > €, {e.g., €y €5, ete, ) there are two solutions -- one upper

branch and one lower braach =- until for ¢ = Ty, the two sclutions merge

]
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into one. For ¢ » €3 (e. g., c%} there are no sclutions, so that g is the
maximum value of ¢ that ie obtained. The rermainder of the lower
branch is composed of the single solutions for(l - (3/1!!&2@}1‘:: c<c
The locus of all of these solutions is the familiar neutral stability
diagram. |

The presently calculated neutral stability diagram foxr Mach
number 2. 2 is shown in Figure 6 together with the experimental points
of Laufer and Vrebaloviﬁ:héa There is good agreement between theory
and experiment on the upper branch. On the lower branch however, the
‘vssxperimental values of(mg Rea are almost twice the theoretical values,
The major reason for this difference is probably that € is too large
-and that the higher order terms omitied in formulating the viscous
equations become imporiant. Alse shown in Figure 6 as a dotted line
is the neutral stability loop calculated using the Lees~-1ldin viscous
solutions. The upper branch of this loop is only slightly below that of the
‘present theory, while the results of the two theories on the lower branch
are almost coincident. Although not shown on the figure the upper branch
results of the present theory agree with those using the Dunne~Lin viscous
}énlmtion. On the lower branch, however, the Dunn~Lin results give the

lowest values of aRe.

Lees~lin theory may be explained

1]

These results relative o th
qualitatively as follows. The improvement introduced in the DunneLin
theory is to take proper account of the effect of compressibility on the
energy fed into the disturbance flow by the action of viscosity at the wall.
As will be ghown in the nex{ section the magnitude of ihis cormpressibility
effect is related to a parameter ‘{Me Zcz)/’.?.‘w . Thig eifect is always

destabilizing, so that the Dunn<Lin neuiral curve will always
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Present Theory
Dunn-Lin Theory

Lees-Lin Theory

Present Theory
o~ Lees-Lin Theory
Dunn=-Lin Theory

tend to be outside the LeeseLin loop. In the presgent theory, however, the
effects of including the additional dissipation, shear and conduction terms
become noticeable on the lower branch (where aRe is small) and tend to
push the lower branch curve back toward the Lees~Lin curve, or even
beyond it. At Mach number 2.2 the calculated additional energy
production and additional dissipation are probably about equal and opposite,
thus explaining the apparent agreement of the present theory with Leess
Lin theory on the lower branch in Figure 6.

A set. of disturbance amplitude distributions acrosgs the boundary
layer was obtained for the upper branch neutral point at Reg = 535. These
theoretical curves will be compared with a sei of experimental distributions

obtained by Laufer and erksamvich& for the upper neutral point at
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Rea = 400,

The inviscid amplitude distributions calculated by the methods
described in Section IIL 4. are shown in Figure 7. The boundary layer
thickness 6 is taken as the height where w = 0.999. The critical point
for this case ig at about y = 0. 4. The amplitude is chosen go as to
match the mass flow fluctuation amplitude at § with the experimental
value of Reference 6. The bicken line in each case is the uncorrected
invigcid function and is shown only where there ig a difference between
correcied and uncorrected functions. The region of influence of viscosity
about the critical layer is 0.1 < y/8 < 0.7. In this case the region does
not extend to the wall; therefore, the values of o and ocRe obiained

using wall values of the uncorrected inviscid functions stand as calculated,

The largest correction is to ® . The other corrections depend on the

W

T ; !
. [ d, w . . s
value of A = [Hi”g “T“) , and are 2ll small gince in this case
. c c

A is small.
The ovez-é,li amplitude distributions (cmfracted'mviscid plus viscous

_solutions) are shown in Figure 8 together with the points deduced by

laufer and Vrebalovich {rom their experimental observations. The
agresment outside the critical layer is quite good ~- ‘'better than one

has a right to expect''™™ <. while in the neighborhood of the critical

layer the agreement is perhaps not quite as good. Muﬁ’erlé indicates

that in locally subsonic and transonic flows there is some doubt involved

in deducing pressure, velocity, and temperature fluctuation amplitudes

# Cuoting J. Laufer and H. W. Liepmaan,
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from the mean square hot wire cutput. At local Mach numbers above 1.2
the calibration of hotewires is well atandarizec‘é.l ?, but such is not ti;e
case at transonic speeds. In addition, Laufer and Vrebalovich had to
assume the values of pressure {luctuation amplitude in order to deduce
velocity and temperature fluctuation amplitudes. It is felt both from
some inviscid calculations of Mack {quoted in Reference 6) and {rom the
present results that a value for » of . 0007 should have been chosen rather
than . 0005 for use in reducing the experimental data.

The question of assumed pressure fluctuation level is removed
when the masgs flow and tofal temperature fluciuations from theory and
experiment are compared. This comparison is shown in Figure 9, and

agreement here is quite good.

Iv. 2. 2. Mach Number 5. 6

The calculation of the neutral stability characteristics at Mach
nwmber &. 2 by the present methods gives results which are of the same
character as those obtained using the Lees»Lin and DunneLin methods.
However, some imporiant differences are noted in the results at Mach
nuwmber 5.6. In Figure 10 are shown the inviscid and viscous solutions
for three values of c. The imaginary parts of the inviscid solutions are

very small and certainly very much less than the guantity v

egc}, [Note

the difference in ordinate scales between Figures 5 and 3,9.] As will be
w_*
= Gi } ig related to the
w

decrease in pressure fluctuation amplitude at the critical point relative

shown in Section V., thic decrease in ( -

to that at the wall.
The following special features of Figure 10 are to be noted:

{i) the imaginary part of the inviscid solutions is no longer monotonic in
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Te» The level of the quantity ( « G; ) increases with 77¢ ’
reaches & maximum at 77c = 16. ia?d then“éec?eases toward zerg as
€ == l, (2) The values of { - :' Gi ) obtained are so small that
the viscous solutions to the scale of Fig:fre 10 are just vertical lines.

The viscous sclutions for large oRe are represented by & line almost
coincident with the vertical axis. (3) For each value of ¢ > e there ,
are two intersections. The values of aRe for the intersections near the

W'
LAY

< i
W

and were in fact calculated using the asymptotic relations (D-41) to (D«43)

vertical axis are directly dependent on the values of { -

valid for very large ocRe. The values of aRe for the imersect%ons to the
w
“right of Figure 10 are insensitive to the small value of { - --%— Gi )
obtained from the inviseid caleulation; in fact they ar:.a almosgt ieﬁeﬁ‘gcal
to the value of aRe that would be obtained for ( - %vi G:Z . )= 0.
w

The construction of the neutral stability diagram will now be
W 1
~described. At Mach number 5.0, the quantity { - Vz G; ) is slightly
W

dependent on a but in the sketches on the following page, it will be

considered as dependent only on ¢ and independent of a. Forc= ¢

8

{see sketch on following page), there are two solutions, one of which is
that of the neutral inviscid oscillation. As ¢ increases toward unity,
two selutions are continually obtained., There is no longer the phenomenon

-of & maximum value of ¢ above which no neutral oacillations ¢can occur,

w !
1.8 , . w
This behavior occurs because the maximurn value of { = G, )
' w

frora the inviscid soluticns {occurring for ¢ = <, in the above sketches)

“is zanuch less than the maximum value of Im ( W = 1) at the pertinent value
~of ¢. For [l - {3/M )] < ¢ < ¢ there is only one intergection. The
L) »
golutions for neutral oscillations form two loops as shown in the skeiches,

The two loops obtained at Mach number 5.6 are shown in
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Imaginary Part of Inviscid Viscous
Solutions Solutions
A e > o
s ke > w

> oke {.‘.;fe

< |-L =Re rmite
> Mg f

Re,
Neutral Stability Diagram

Figure 1l. The upper right hand loop has a minimum Reynolds number
based on momentum thickness of slightly over 105. This value of Reg
corresponds to a length Reynolds number greater than 1010, and it is
not likely that this loop has much practical significance. The data
obtained by Demetriades? at Mach number 5.8 are identified with the

curve in the lower left hand corner of Figure 1l. The portions of this
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curve drawn in a full unbroken line have about the same shape as
Demetriades® data, but are about an order of magnitude lower in
Refnmids number than the experimental data. Nevertheless, as shown
in Figure 13, a selected point on the curve is about an order of
magnpitude higher in Reynolds number than obtained using the Lees-Lin
and DunneLin theories. This behavior shows the importance of the new
'dissipation and shear terms presenily included. The value of € for this
.presently calculated test point is 2. 0, showing that there is no reason
to expect good quantitative agreement between theory and experiment.

The dotted portion of the lower loop is that portion where the
propagation velocity ¢ very closely approaches unity. It is suspected
‘ that the calculation procedure is inadequate for this portion of the
‘gurve, since the splitting of the solutions into inviscid and viscous
types is of questionable validity for ¢ —= 1. It will be shown later in
discussing the complete solution to the Orr-Sommerfeld equation
{Appendix H) that a necessary condition for splitting the solutions into
inviscid and viscous types is that LaRe (l~c3] >> az.

The value of o approaches zero as Re — v along the end of the
"lower' loop for which ¢ —-—9@ - (I/Me)]at a finite value of aRel. It is
suspected that o also approaches zero as Re —>w for c—> 1 but at a

different finite value of aRe.

IV. 2.3. Mach Number 3.2

Calculations of neutral stability at Mach number 3. 2 were
undertaken in order to provide some understanding of the transition

from the one loop stability diagram obtained for Mach number 5. 6.
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The resulis of the calculations are however difficult to understand and

provide but little insight into the abovesmentioned transitional bebavior.
Consider the inviecid and viscous solutions for three values of ¢

shown in Figure 12. At the lowest value of ¢ shown { Te = 6.2,

€ = . 79866) the behavior is much like that at Mach number 2. 2; that is,

the imaginary part of the invisgcid solution at the wall is almost

independent of the wave number o. Its level is at about 2/3 v Q(c), where

w
Lin and Dunne-Lin solutions. This decrease in { - — Gi )is againa
w

voic) ([-ve(c) ],7 c"’é“ 3 T l%?@) is the value that is ?sefi in the Lees=

manifestation of the decrease in pressure fluctuation amplitude at the
critical point relative to that at the wall. (See Section V.) The two
,inteéseations of the inviscid and viscous curves for N ® 6.2 represent
two points of neutral stability.

For 77@ = 6.6, c = .84087, the inviscid solutions can no longer
be represented as an almost horizontal curve whose imaginary part
is independent of c. On the contrary, with increasing o the curve forms
a loop, and so three interseciions are shown in Figure 12 rather than the
two shown for 77C=' 6.2. There is a possible fourth intersection near
the oz:igin, Such a fourth intersection was sought, but in performing
the numerical calculations large unstable oscillations in the valuesg of
Czr and Gi were noted. If is clear from this difficulty that 2 more careful
study should be made of the general integration technique for the inviscid
solutions. No statement can be made at this time regarding the
exigtence of such a fourth intersection.

The curve of inviscid solutions for ”c = 6. 4 (not shown) is

similar to that for 7 = 6. 6 except that the loop is larger and completely
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outside that for 7_ = 6. 6.

For "7c = 6. 8 (not shown) the loop becomes much smaller and
stays completely inside the curve of viscous solutions. An intersection
is found at the right of Figure 12, but upon attempting to approach the
origin, the inviscid solution again became unstable.

For e = 7.0 and above, the loop seems to have beeg "pulled
tight'!. Shown for example in Figure 12 is the curve for 7 =T7.2,
€= .89637. Here, the inviscid solutions are represented again by an
almost horizontal line whose level decreases sharply for high a (near
the origin). This behavior is very much like that obtained for Mach
number 5.6. There are two intersections for this curve, one at each
end, angd therefore there are two neutral points. The a#erage level of
{ - ‘jv-g;- G; ), which is about 0.07, is considerably below the value
vo(c) = 5. 63284, thus indicating the strong effect of the decrease of
preséure fluctuation amplitude across the boundary layer.

The neutral stability diagram for Mach number 3.2 is shown in
Figure 13. Referring to the small diagram in the upper right hand
corner, there are three curves.

The highest curve is made up of the high a intersections near the
origin of Figure 12. The solid line represents actual calculated points
for ’7c = 7.0, 7.2, and 7. 4. For some value of "]c above 7.4 it ig
" expected that the curve would turn back in a manner similar to that
obtained for the uppér loop at Mach number 5. 6. (This expectation is
indicated by a2 broken line in Figure 13.)

The other two curves in the upper right diagram of Figure 13 are
drawn to a larger scale in the main body of the figure. The next curve

proceeding downward is the remnant of the conventional "upper branch''.
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It is terminated at the poini where the inviscid solutions started
"blowing up''.

The lowest curve is apparently a narrow closed loop and
corresponds to the intersections obtained on the lower right hand side of
Figure 12. This loop is very much like the lower loop obtained for Mach
number 5. 6. The wave number o approaches zero as Re —> « along the
two ends of this loop, but at two different finite values of aRe.

The neutral st&‘biiityv behavior at Mach number 3. 2 is evidently
not well understood. The rather well defined loop behavior obtained at
Mach numbers 2. 2 and 5.6 is not as well defined at Mach number 3. 2.
Numerical difficulties at large o are encountered at Mach number 3.2
but not at the other Mach numbers. Perhaps the only definite statement
that can be made is that those pértions of Figure 13 shown in solid lines

represent calculated neutral oscillations.

IV.2.4. Discussion

From the results obtained so far it is of some interest to consider
comparatively the neutral gtability behavior of insulated boundary layers
over a wide range of Mach numbers. Because these comparisons are
based on only a few calculated stability diagrams, some of which are
not well understood, parts of the discussion which follows must be
congidered speculative.

The three types of neutral stability diagrams obtained herein
are sketched on the top of the following page.

For Mach numbers of 2. ¢ and below, only a single stability loop -

is obtained both theoretically and experimen&auyé’ 16. Somewhere
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Almost Incompressible Hypersonic

v

‘above Mach number 2. Z (represented in the present calculations by

Mach number 3. 2) two new loops appear while the original one is

perhaps starting to disappear. At Mach number 5.6 only the two new

loops remain. We may perhaps describe the stability behavior from

Mach number zero to about Mach number 2.5 as "almost incompressible''#;
that above about Mach number 5 as '"hypersonic'’; which leaves a very
interesting transition region from one type of stability behavior to the

other between Mach numbers of about 2. 5 and 5.

1 . .

% Dr. John Laufer 6 of the Jet Propulsion Laboratory has in fact
recenily correlated the experimental results of Schubauer and Skrarnstad!®
for incompressible flow and those of Laufer and Vrebalovich® at M= 1.6
and MQO = 4. Z. By plotiing {ﬁzé/ue 2) against I:;e6 ,» where & is the full

boundary layer thickness, he obtains a single diagram for all three Mach
numbers. The amplification factors ploited as {ac;8)/u, vs. Reg also

~correlate for these experirments. These observations support the
ideatification of the neutral stability characterigtics at Mach numbers
up to about 2.5 as almost incompressible.
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The variation of minimum critical Reynolds number with Mach
- '3 n B o s Ls) 3 2
number is alzo quite interesting. The calculated value of (Eeg)min, crit.
decreases from a value of about 150 at Mach aumber zero (Reference 2)
through 2 value of about 45 at Mach number 2. 2 {Figure 6), tc some
value below 10 at Mach number 3.2 {Figure 11). All these values are

obtained from the coaventional "almmost incompressible' loop. At Mach
aumber 5.6, the calculated value of (Reg) . eris, ie 2bout 45 (Figure 13)
and comes from the new lower loop. (It may also be noted that the
minimumn Reynolds number of the lowest loop at ] fach number 3.2 is
about 16.) Thesbe results indicate that the minimumn critical Reynolds
number decreases from its Mach number zero value, reaches a minimum
samewhere arcund Mach number 3 aad then iﬁcre&ses again,

One may speculate about the variation of minimum critical
Reynolds number at hypersonic ‘speeds. Note first ffmm Figures 11 and
13 that for the lowest loop, the values of (ag .iﬁeg) are about the same for
both Mach numbers, but the peak value of ag is guite a bit lower at Mach
aumber 5.6 than at Mach nwunber 3. 2. Following the asymptotic irend

2

of wave number shown in Figure &, namely that o, ~ 1/M if (o, Fe
o 8 e ? ] ]

~fe§‘fxains fairly constant hypersonically then (RQQ)min, crit. would increase
as M eZ {and Qﬁex’min. crit, 28 M 24 ). We can infer that instability of
the laminar boundary layer would move downstream very rapidly with
“increase in local Mach nuznber, There is some experimental evidence
supporting this latter gpeculation, narcely that Bogdonofi 19 reports

that he has never obscrved transition to cccur at 2 local Mach number

of 11 even at length Reynolds numbers as highes 107,
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V. QUALITATIVE DESCRIPTION
OF COMPRESSIBLE BOUNDARY LAYER STABILITY

The examples of the previous section (Section IV.) show that the
theoretical and experimental neutral stability characteristics and
amplitude distributicms are in at least qualitative agreement. For a
‘better understanding of the stability phenomenon it is useful to discuss
the balance of disturbance energy for a neutral oscillation and the
disiribution of Reynolds stress through the boundary iayer.

The gross character of the stability of a shear flow can be

described by the following energy relationship

Net Energy Net "Production’ of Dissipation
Change = Disturbance Energy - Per Cycle {134)
Per Cycle Per Cycle

) For a neutral disturbance the net energy change per cycle is zero. By
“"fproduci:ian“ in Eg. {134) ia‘ meaﬁt the transferral of energy from the
..mean flow to the disturbance flow. The net production term is expressed
in terms of the Reynolds stress

A @

Net Production of '
Disturbance Energy| = T (8u/dy) dy dx (135)
Per Cycle o o _
‘where
Tz« puaVv (136)%

# Of course the ”mea% flow'' is also altered slightly by the action
of the Reynolds stress (Stuart Q), but this effect is of order a%Re, where
a is here the disturbance amplitude, and makes a2 second order correction
to the disturbance flow. '
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The production and dissipation phenomena both depend on viscosity. For
the dissipation this fact is obvious. In the production term it is the
action of viscosity which shifts the phase of the disturbance velocities so
' that the correlation BV ¥ 0. It will be shown below thai the production
term is of order 1/ JoRe while the dissipation term is approximately
linear in the viscosity and is therefore of order 1/{cRe). Thus for a
neutral oscillation there is some value of {aRe) for which the production
and dissipation terms balance. The key guantity in the energy balance
is the Reynolds stresa. S@mﬁ knowledge of its behavior will prove
degirable in understanding the effects of compressibility.

An expression for Reynolds stress is derived from the expressions
for longitudinal and normal velocity fluctuations. All quantities below
are dimensionless as described in the list of symbola., The longitudinal

and normal velocity {luctuations are

w! = RQ[_FeI'—“("‘Cé)] - _{é_ [¥e£a6x—ct3 +§*£—i°((¥—c_t>]

. (137)
v fox (k- ct bt (Xt - i (x-c€)
v! =2«xR{ [¢ e & )—} = % [¢ € ‘ * ¢le ( J

By utilizing these expressions for u' and v' the Reynolds stress is given by

2i < (x-ct) X ,e—zio(@?—cﬁ - (fd‘ + {*gﬁ)]

:-Cu.'v' = "(’%[-Fyﬁe + £

But f and @ are fuactions of y only, and over one cycle e

T T g ¥ . P .
e 2lZT 410 both zero. Also, (fg# + £%) = 2 R 2{{@*) so that

T = = (p/2) o RL (8% (138)
In studying the effects of compressibility on Reynolds stress it is

useful to consider Prandtl's model of the disturbance flow «= namely ==



73

that the disturbance flow is esseéﬁauy inviscid {slowly varying) excepi
for two narrow regions where viscesity is important; (1) at the wall
where the viscosity causes a shift in phase of the disturbance velocities,
a.nci-(a) at the critical layer (w = ¢}, where there is no longitudinal
trangport relative to the wave and the vertical transport of vorticity
and heat energy can be balanced only by viscous diffusion and heat
conduction. Prandtl's model assumes that (cRe) is very large as is
obtained for example along the extremity of the upper branch. In spite
of this restriction, Prandil's médei is useful for developing concepts.

Consider first the arguments that were presented together with
the skeich on pagelZ . For a fictitious gas having zero viscaéity and
zero thermal conductivity {aRe - o), only the inviscid solutions apply.
The normal velocity fluctuation vanishes at the wall and at infinity. The
temperature and longitudinal velocity fluctuations also decay to zero far
from the wall, but in the absence of viscosity and conductivity, generally
take on finite values at the wall.

For a real gas, the longitudinal velocity and temperature
fluctuations must vanrish at the wall no matter how small the viscosity
and thermal conductivity. Thus we must add viscous solutions that take
on the wall values %fizw;w and -(Qinva to the inviscid functions already‘
determined. (See sketch on page I12.) An approximate form of these
vigscous solutions is obtained by considering the asymptotic form of the

viscous equations [Eqs, {54) to 156)] . Ina thin layer near the wall

(v=0), Egs. (54) to (56) become

#

et
fv + J/W v

ia R

2

9)



I (140)

.&w A’
icReqgg¢
QV” 4 “-'437—-'-—- QV = 0 {l‘%l)

W

The desired solutions to Eqs. (139) and (141) are those which decay to

zero far from the wall; ithey are, respectively,

ofl=i $/

e s, o0 (142)
| <(1~i) 3%

6, = =1(9,_) ol1-H) = (143)

~where §= ) ¥ fakec is representative of the thickness of the layer
near the wall in which the viscosity effects are impcrtané.

According to the continuity equation (E,q, (14%0)] ;» & viscous normal
velocity fluctvation is induced by £ and @ . Since P () = 0, then by

utilizing Eqgs. {142) and (143) in Eq. (140} one obtains

]

g ' ay = (B, - Bie) = (B,

® (144)
i{1+1)8,, T ’
e, ) 1+ KT

where
(Y- 1M 2 e
K = = (145)

W

But @ = (¢ ), * (@mv = 0, so that (@mv —(¢v)  20d the inviscid
solutions must now be altered slightly to satisfy the boundary condition
at the wall.

In the case of the fictiticus inviscid gas the Reynolds stress for

2 neutral disturbance must vanish everywhere. But for the real gas
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tginv)w # 0 and the Reynolds stress associated with the inviscid solutions

is as follows: [Eqs. (138), (144), and {1453] :

Py, ¢ By Ve

s
Tinv(*-“* - {1+Kd 2 {146)%

(finva W

[ Note that Tim(&w)m and is of order 1/ ¥YEe ] . Now the Reynolds stress
for the iaviscid solution is constant in any region where the Wronskian
of the two solutions w, and LA {or ¢z_ and ijféi) is continuous {Reference 1),
80 this Reynolds stress must be constant in the region between the wall

and the critical layer, as depicted in the following sketch. But T 0

Tiny

far from the wall, so the valus of T given by Eq. {146) must be cancelled
by an equal and opposite increment in Reynolds stress at the critical
layer. This incremental Jump in Reynolds stress in the neighborhood of

the critical layer is 2 viscous phenomenon. However, its value can be

¥ The detailed distribution of the Reynolds stress for the complete
solution ie discussed on page 78.



76

calculated {rom the inviscid solutions, and viscosity has the effect of
smoothing the transition from one value to the other. This behavior
ie analogous to the one dimensional normal shock wave, which isa
viscous conductive phenomenon whose gross characteristics can be
determined without considering viscosity and conductivity, but whose
detailed structure can only be determined through consideration of the
effects of viscosity and thermal conductivity.

The magnitude of the jump in Reynolds siress can be obtained

directly from the inviscid solutions in the following manner:

o Yeto
S
Yo 5 {147)
- g‘-;— [G[n ">r (¢‘.m’>r + (‘F“nv)‘- <¢cn\>‘-] fo-o

Taking the leading terms of finv and ¢inv about the critical layer from

Egs. {97) to (100) yields

[*] . ox ke A
Ye-o 2 M) Wt
, , (148)
< < T,
- . £, V(c)l._‘-
2 -,wa (LHV)W ° ".w
where
Ve = Avm cTe WL_‘FWL c"Cz d w')
Sy = - T = = TN e e | = =
e T, T o |57 (149)

This function arises continually in hydrodynamic stability problems™ and

4
is in fact included in the compressible boundary layer tabulations of Mackl "
Along the upper branch c > Coo A <O, vg(c) > 0 so that the jump in

Reynolds stress is negative as required. Setting the sum of Eqs. (146)
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and (148) equal to zero and remembering that §= ) 2V _Jake ¢ yields

)2 -4

wo(ke - ){V “,3~ (/ + Kd- )z ° (150;
2¢ V() I‘-I
Tw,

The significance of this expression is as follows: As the Mach number
increases, K increases {_fra:m Eq. (i%)} while l(ﬂe/ww\\?‘ decreases
(Esseé Figure 4). Both of these effects tend to exiend the upper neutral
boundary to larger values of cRe, and are to be interpreted as destabilizing
since they enlarge the region of amplified disturbances. It may be noted
that expression (150) is exactly the leading term of the secular equation
{(D~41), which was obtained by formal asymptotic methods.

For neutral disturbances at very large values of aRe, the Reynolds

stress has the following distribution through the boundary layer .

) e § = 17, - |
W (xRec ¢ (xRe)s 1
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A detailed distribution of Reynolds stress for the complete
solution near the wall can be obizined using the approximalie asymptotic
expressions for the disturbance amplitudes given by Egs. (142) and {143).

Thus

{- o {-V Lm/ C-&'h/ [l" Q-U L)Twi}

cGafeoro- @l ] 0
6= 8 *(8), = (B), [/— e -9 i?—;] o
- 0 [ et
Note in Eq. (88) that for (oRe) >> 1, @, /f -~ (ﬁ’(gw\)) so that
(0, ), /60, = (F-1mlc [ 14 @’(sz (153)

In the expressions which follow, all terms of order § or smaller will be
neglected compared to the unit order terms. Substituting expressions

(151) to {153) into the continuity equation [Eq. (4}} yields for @

C«‘w) WK__} - c(' ) (q+|<¢*/>)(i} L <,+,<q~>(2‘e’:)3+,,._ } (154)

From Eqs. (138), {151), and (154} the distribution of Reynolds stress

near the wall is

L h\l

T =

z W l:(s\j (%)5@1]*{’: "‘5']@;5* (155)

For incompresgsible flow expression (155) becomes

2 4
(iéﬁ e (156)
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indicating that the Reynolds stress near the wall is positive and grows
as the fourth power of y, as already shown by Limzj‘, For compressible
flogw, the leading term is a {y/&)a term; furthermere, all coefficients
increasge with Mach number. Thus for compressible {low, the Reynolds
stress grows more rapidly near the wall than for incompressible flow.
The szmoothing out about the critical point of the jump discontinutiy
in Reynolds stress is evidence of the action of viscosity in a layer about
the gritical point whose thickness is of order 1/{::&.%@}1/3 « From Egs.
(7)., (98}, {110), and (111}, chis variation for {cRe) large is given
approximately by
Vet0 A | :
7€)~ TiT=4) = +[T] ( %.&l; (157)
Vo0 | | :
where

T= (QRG)E/B ¥
3 (158)

w-e

y
= {are)l/3 § 3/2| %5~ ay

Yo

and E%‘('C} is the pertinent function of Schlichtingm {Table Ij.

The net production of energy may also be sketched.

— (%)
N

U

Net Production ' \\
S -
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The shaded area, being the m‘,c{;al under tha T{du/8y) curve,
represents the net energy production per cyéle. It is this guantity
which must be exactly balanced by dissipation for a neutral oscillation.
For {cRe) only moderately large, the two regions in the boundary
layer where viscosity is important tend to grow and may even overlap
so that a region of constant Reynolds stress may not be observed
between the wall and the critical layer. As an example of the Reynolds
strees distribution for moderately large {aRe) that calculated from the
amplitude distributions of Figures 7 and 8 is shown in Figure 14, The
broken line in Figure 14 is the level of the invi.séid Reynolds stress
between the wall and the critical layer. When ¢ < Cg . the overlap?ibng
- of the two viscous regions must always occur because the jump in
Reynolds stress predicted by the inviscid solutions acroas the critical
layer [Eq. (M:B):\ ig pogitive and can never counterbalance the Reynolds
sirese produced near the wall,
Even when aRe is not large the following gualitative effects
remain: The production of disturbance energy at the wall increasges
with M&Qi& nurmber. The stabilizing or destabilizing effect at the
critical layer diminishes in the ratio l(-r; c/ 'srw)z 2 , and at high Mach
‘pumber may be of negligible importance. Both of these tendencies
indicate that as the Mach number increa.seé, the net production of
disturbance energy also increases so that the dissipation eifects must
become more important. As indicated by the calculations at Mach number
5.6, this behavior significantly lowers the range of (cRe) for neutral
disturbances to a level such that Prandtl's splitting of the disturbance flow
“into inviscid and viscous parts is no longer appropriate for a proper
quantitative estimation of the stability characteristics of a given boundary

layer profile.
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VI, SUGGESTIONS FOR FURTHER STUDY

The present investigation has probably raised more questions
than it has answered, particularly in the sense of pointing out problem
areas where it had been thought that no problems existed. These new
problems lend themselves both to theoretical and experimental

investigation.

Vi. 1. Sug_geste& Theoretical Inv:astigations

1. In considering the stability of supersonic and hypersonic
boundary layers, asymptotic methods as used in almost every stability
investigation through the present do not yield adequate quantitative
results. For many of the examples presented, the eplitting of solutions
into inviscid and viscous types is i%’nproper, Also upon a posteriori
examination the terms of the disturbance equations omitied on the basis
of asymptotic considerations in some cases seem to be ag irmportant as
those retained.

Accordingly it is suggested that an attempt be made to solve the
complete disturbance equations. First, the "complete’ equations must
be identified. In general they are linear partial differential equations;
however, in some cases, for example for fully developed or ‘'parallel’
flows, they are ordinary differential equations and are perhaps amenable
to solution. The simplest example of a '"complete’ disturbance equation
is the Orr-Sommerfeld equation for incompressible '"parallel’ flow, and
a2 formulation for its complete solution is given in Appendix H. The
method used is similar to that of Section IIl. 2. for solviag the viscous

equations.



2. The stability of a boundary layer with respect to three=
dirmensional disturbances of the obligue plane wave variety was considered
by Dunn and Lin5 within the limitation that dissipation was unimportant.
This limitation permitied a mathematical transformation of the eguations
for three~dimensional disturbances into those for zwoodimensiomvl
disturbances. Since dissipation is expected to be important at high Mach
number it is suggested that the problem be reconsidered at least to the
extent considered herein for two-dimensional disturbances. The dis-
turbance equations will not transform to the iwo-dimensional form but
will yet be solvable. This problem is directly analogous to that of
steady compressible three-dimensional boundary layers with pressure
gradient, where the independence principle does not hold.

3. Because of the numerical difficulties encountered in solving
the inviscid equation at Mach number 3.2 for large o, it is suggested
that some additional analytical study be made of the inviscid equation.

It would be of particular interest to determine if there exists more than
one wave numnber characteristic of a neutral inviscid disturbance. The
answer (o this question might help clarify the multiloop behavior indicated
at Mach number 3. 2.

4. The examples congidered herein are all for insulated boundary
layers. The method presented is applicable as well to non-insulated
boundary layers. A reexamination of the effect of surface cooling on
stability characteristics in the light of the present theory mightvbe of
some interest. |

5. Calculations of amplified and damped disturbances using the

presenied methods would also be of some interest.
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VI 2. Suggested Experimental Investigations

1. The establishment of the multi-loop nature of neutral
stability characteristics at a Mach number in the range between 3 and 4.
The measurements should iﬂclu&e a determination of the disturbance
wavelengths so that the propagation velocities of the disturbances can be
ascertained.

2. Further measurements of stability characteristics at hypersonic
Mach numbers where theoretical results are particularly deficient.
Measurements should include neutral stability boundaries, amplification

rates, wavelength determinations, and if possible, amplitude distributions.
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VII. CONCLUDING REMARKS

As a2 result of the present study of the stability of the compressible
lamninar boundary layer, it is councluded that the basic stability mech-
anisms are the same as for incompressible flow; namely that neutral
stability is achieved when the netl energy transferved from the mean flow
to the disturbance flow by the action of Reynolds stress is exactly
dissipated. However, the relative importance of the various mechanisms
changes with Mach number, so that the neutral stability diagram for a
hypersonic flow might not be recognized in terms of its incompressible
counterpart. Among the changes are the following:

1. The rate of conversion of energy from the mean flow to the
disturbance flow through the action of the viscosity in the vicinity of the
wall increases with Mach number.

2. Instead of being nearly constant across the boundary layer, the
amplitude of inviscid pressure fluctuations for Mach numbetrs greater than
3 decreases markedly with distance outward from the plate surface. This
behavior means that the jump in magnitude of the Reynolds stress in the
neighborhood of the critical layer is greatly reduced.

3. At Mach numbers less than about 2, dissipation effectis are
minor, but they become extremely important at higher Mach numbers,
since for neutral disturbances,they must compensate for the generally
destabilizing effectis of items 1 and 2 above.

From the nuwmerical computations some further results are obtained;

4. The wave number of a neutral inviscid disturbance increases
with Mach nwmber, reaching 8 maximum at about Mach number 5 It

then decreases and approaches a 1/ M@Z variation at very high Mach



numbers.

5. Calculations of neutral stability characteristics and
disturbance amplitude distributions at Mach number 2.2 are in sub-
stantial agreement with the experimental findings of Laufer and
Vrebalovich. The largest differences obtained are on the lower branch,
where the asymptotic methods used herein become inadegquate.

6. At Mach number 5.6, two loops are obtained, the lower one
being identified with the experimental results of Demetriades. Although
the present results are an improvement over those obtained using the
theories of Lees and Lin and Dunn and Lin, they still underestimate by
an order of magnitude the range of Reynolds numbers for which neutral
stability is obtained. This deficiency is also attributed to the inadequacy
of the asymptotic methods used.

7. The minimum critical Reynolds ﬁumber for insulated flat
plate boundary layers'dee:rea,see in the range 0 < M < 3, and then
rises very sharply for hypersonic Mach numbers.

Because of the indicated tendency of the asymptotic methods to
become inadequate as the Mach number increases {items 5 and 6 above)
it is suggested that an attempt be made to solve the complete disturbance

equations, perhaps by an extension of the methods used herein.
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APPENDIX A

SERIES SOLUTION OF INVISCID EQUATION ABOQUT CRITICAL

In treating the inviscid equation alone, & regular singularity

appears at the critical point, (where w = ¢).

The solution of the inviscid

equation in the neighborhood of the critical point is obtained by a series

expansion that is sometimes called the Method of Frobenius. Although

the inviscid eguation is treated in the text primarily as a {irst order non=

linear equation, the series expansion will be performed in the manner of

Miles”  on the seconde-order linear equation which is

/
!

T

- T [(_‘iﬁz]w —a("[l—

" G

Mez (w—c)L

T

-

Let 7=y - vy, and agsume a solution of the form

5 2
"= 7 @a@»&aﬂ “%'3.27/ e

Also, in the neighborhood of the critical point

@9 T
| — %1(“'¢)L = |- Mezwc’z«72__
T T
where
" (
LMz
A
- and
w® 1 I
B = _Lj{f._w- + _Mjf. —_ 7;
= 4[{)&‘;_ ZW}" Z'];‘

Relations {A-1) to (A-3) are substituted into Eg. (21) and the

2 2
M,

T

7‘_1
AT

B[] - fone i)y

A’ =

2 2
¥y} v

T

T

874+....,

(1)

(A-1)

(A=2}

(A=3)

(a-4)

(£-5)
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coefficients of each power of 7 are made to vanish. The leading power

of ’7 is 75”2. Its coefficient vanishes when

a, \:a(s«l)oas] = 0

Since a_ £0, s=0, 3. The coefficient a can be set equal to 1 with
perfect generality. The values of B1p 835 oo for the solution correspond=-
ing to 8 = 3 (designated 3:1) are found from the condition that the coefficients

=1 8 . " X co s
of the 773 . 7 s oo terms vanish. The resulting solution is

#

: 3 3A 4 . [A7+CB),s
I Ao AR G )7 B (A~6)

Since the characteristic exponents differ by an integer, the second

linearly independent solution of Eq. (21) has the form

>0

2 3 4
w, = Cw1/n7+1+bl7+ba’7 +by 74 by D4 L,

(A=-7)

2< 0
= : : e ol 3 4
wy = Cwp (dag =iml+ 14 by + b, 7 4 by 9 4 by 7
{The w appearing without subscript in (A-7) is 3. 14159.)
Substitution of (A=7) intoc Eq. (21) yields for P

7 >0 2 /&'7 e
L T o= = <A A : + }-———-7 - —-(26+M<"'°+°‘ zZ‘A)"I+b31r+ {A=8)

7<o D |7) i
The coeifficient b3 is not determined in the procedure and so remains
arbitrary. Thus Eq. (A-8) represents the general solution to Eq. (21).
For use in the calculation of the inviscid solutions, Eq. (A=8)

. . 2
is expressed in texms of G = ﬁa’/a T, e



90

The real and imaginary parts of G are as follows:

For 7> 0
3 A * 3
Gy = =y -hpdy « (o) A dy
LI
(Al -Gt B
Gi = 0
For 7«0

G, = ~7-Ayhi + (B89 Kyl

+ [A (3:—:; —2—3 - (28-22 + _NET"’_‘:Z*-#)]?:’ + o

<

Gi = A‘IT72('+ A°) +... >

(A=9a)

(A=9b)

(A-10a)

(A-10b)
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APFPENDIX B

SOLUTION OF EQUATIONS
FOR AMPLIFIED AND DAMPED DISTURBANCES

Just as for neutral disturbances, the inviscid and viscous solutions

are obtained separately.

Inviscid Solution

For ¢, # 0, Eq. {24) can be split into the following real and

imaginary equations:

2 2 ' ' Aw'e; v -2 T

M Sw-e Y-t w'lw-e,) T~ LG -G~ Gy
G’ = [" iT ‘ }"”L‘a‘:” | g &~ ) (B-1a)
v aMg weede + 2uw'(w-cr) —I-’ G; + 2uc G ’“1(26r65> B-1lb
G = T Teeve T werre T (5=

These equations have a singularity at w = c.+ i Ce For amplified
disturbances the singularity is in the upper half-plane while for damped
disturbances it lies in the lower half plane. It was pointed out by Linal
that the proper path of integration is under the singular point. Thus for
amplified disturbances it is proper to integrate Eqs. (B-1) from the outer
edge to the wall along the real y axis. For damped disturbances the path
of integration may proceed along the real y axis except in the neighborhood
of the singular peint where it must detour under the singular point in such
a manner that - (7u/6) <arg (¥ - Vo) < =(5/6), (Reference 1),

Since in all cases |c;| < <1, it is probably not wise to integrate

Egs. (B-l) without a detour even for amplified disturbances, since the



coefficients of Egs. {B=1) will be very large in the neighborhood of w = €,
Therefore the inviscid equations should be integrated in much the same way
as done for neutral disturbances. The expansion about the singular point
in the complex plane will be carried out to terms linear in c;e

Let ¥ be the complex independent variable and ¥ the complex mean
velocity whose components along the real axis are simply vy and w,
respectively. The velocity profile is written as an analytic function of ¥

in the following manner
‘s}‘cz {%'cr‘ici} g wg’(?‘Yc)*°" (E"Z)

To this approximation all derivatives of the velocity at the critical point
are taken as purely real. From Eg. {B-2) it can be shown that the com=

plex coordinate of the critical point, to terms linear inc,, is

= i ' ' -
Vo = v t ie/w, {B-3)
and that the distance of a point on the real axis from Er'a is

(y =¥ = {y=vy)= ic/w' (B=4)

"

Upon defining ;7' {v = EFJ and 7 ={y = yC), Eq. (B=4) may be written

~

7

Since the developinents of Appendix A are not restricted to real variables,

7'~ i::i/wc* {B=5)

the desired result in the present case may be obtained by following exactly
the same procedure, but using the present i in place of the 7 of Appendix
A. The resulting real and imaginary parts of G for a point on the real y

axig are as follows:
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For />0
G, = -7-Aqthr +(ons)) = A7 An7 +°<‘)} e (B-6a)
G, = |- 2An B + §2(comst) ALY + AR LaT
T W nw +
T2 s o
+ §3A [mah o g] + 3L A-CB -3.__._"‘3‘_:‘° %’72 ] (B-6D)
For <0
We 3
G;f ® -7 A.,,?-’Q‘h)-l-@md);}z A,,%&th] +[A(mt) (28-2R = l)j{"[ +
<o 2 {B~-Ta)
+ _J‘.[ zA'r) T 3A) +]
Gy = duyt [y <. ]
+%.[\—2Aqﬁul’l] +{2(eomst)+AY + 3A7" Auf) . (B=75)
+ %3;\[@”;&)»,51- %lA"— 6B - BME 7) :I
Retaining only terms linear in Cso Egs. (B«1) can be simplified
as follows:
M3 (w-¢,) w T G - AWe 2/, % .
G,' = [‘T — | T e T Z;:,} G - «*(67-67) (B-8a)
G = M(9a, [E_ ”_]G ik S HEX (B8b)
) T W-¢ (N cr)"
The outer boundary conditions for Egs. (Be8) are
2 2
c, = - '\//'Me (-<,) (B-9a)
o o
3
Me (1-¢.) ¢
G, = e (e @ {B-9b)

i F 7
o < \/ 1-M; (-¢,)*
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The method of obtaining the inviscid solutions is the same as
described in Section I1I. 1. The calculation for a given profile and values
of <, and < )anc?i an assumed value of o is begun by integrating cutward
from the critical point using Eqs. (B-6), and continuing with Eq. (B<8)
along the real y axis. The(const) in Eqs. {B-6) is adjusted until the
outer conditions (B=9) are satisfied for the assumed ¢. Then the inward

integration is performed from the critical point to the wall using

Egs. (B-7) and (B-8).

Visceous Sclutions

The equations for HIK (Eqs. (68) to (72)) and LMN (Eqa. (73) to
i’?’?)) systems ave perfectly proper for amplified and damped disturbances.
The equations are completely regular in the finite domain and may be
inéegrat@é from the outer edge of the boundary layer to the wall along the
real y axis. Withc=c + i € the real and imaginary equations of the

HIK and LMN systems are

- HJIK:
; - ~Re o ¢
H'= RHS [E%-@M)c . — (B-10a)
=Cr
H' = RAs[egp(my)] (B~10b)
==r
C; X
3= Rus[e%. OM]uc, == (Bella)
' = Rws[e%.(m)]c . (Be11b)
. 4 1 ' .
K" = RHS [E%.(zo«x)] L "‘sz‘ [1'1: Kr-(&*”r'@‘”i"i)*”?] (B-12a)
[
K= Rus [6y G0 — ;ﬁ[l;.' K,;-(K;I+H‘-Kr+”r’4£)] (B-12b)
C=Cy
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_ with ocuter conditions

2 T
oRea [ [T = . - _ ~Jc,;+u-ca +¢;
Hra = -V 2 [UCL+Q & +C"l Iro q 2eRe

Q .

2xRe &

LMN

L' = RHS [EB (87,.»}]“C + %Nr

L' = RHS[E%‘(M)L-.C, 2N

M, = RHS[E%. (8?»)]6- - "i";i[Tf‘_Mr-e_rlNr]

=Cy¢

e s (g ew] v Eesfu ey ]
| e ac;
Nrug RHS [EB (84-0-)]C__Cr + 7 Ne
e Keae; .
Ni” = RHS [-63.(84\,)]0(., + 7 N;

with outer conditions

_ {c:‘-t (-c)* - ¢;
L:f = \l
[+]

2 =Re [Q -yt + ]

M, = ‘V%W*‘ﬁ

b T - -

2oRe [-en*+ ¢}

Eigenvalue Problem

(B=14a)

(B=14h)

{B-15a)

(B+15b)

{B-l6a)

(B-16b)

(B=17)

The eigenvalue problem is handled exactly as in Section Il 3.



APPROXIMATE ORDER OF MAGNITUDE ESTIMATES
OF THE TERMS OF THE DISTURBANCE EQUATIONS

In making these order of magnitude estimates, the continuity
and encrgy equations [Eqs. {¢) and (7)] are unchanged, but the two
momentun equations [Eggs.s {5) and (6)] are combined in such a manner
. that the pressure fluctuation term is eliminated between them. Thisg
combined momentum equation is

¢'{0 [(w—:)(d’% +£{I) +iw'f +w'd + w'p”] + i(9‘ [i (u—c){ + w'gf]

5 M Y e " N 26‘ ! {
= ﬁ(%é[zxgzﬁ + (X f—o(4.¢.+“‘r‘ ‘“1(9‘*1‘?)] ¥ _,(A&'[{Ldz-{l
(C-1)
; 1 “ I i l \ "
g [Rot e oh sl a6

+ ee%r\“w‘ -t-)o." ({'4— Lo("¢) ]

A significant feature of this combined momentum equation is that

terms containing the second viscosity coefficient vanish identically.

“Lees-Lin Ordering

A set of ordering relations consistent with the convergent series
&

expansion of Lees and Linj‘ are

8, O'~1, {weec)~e, f~1, F~ef, @~F

(C-2)
afdy ~1/e, m~E

The leading terms of the left and right sides of Eq. (C-1) undexr ordering

Eq. (C=2) are respectively



N
=3

e plw=c)f, (ipfcRe)i™
For thege terms to be of the same order
€ ~ 1/(are)/> (C-3)
The first and second order terms of Egs. (C-l), (4}, and  (7) under

ordering (C-2) and (C=3) are

Momentum

| J | € € 3

—¢ (w-)g' + Lew'(é'n{l} + ie' [L’(H—c); +w‘¢] +ip w"g

(C-4)
! € €
- _/,’L "e 2¢ ' W (:k)' J '
ome(‘{ >+ =t :‘(aﬁr\e
Continuity
| [ € €
' Ce5
$rif = Toaiwal (c=3)
Energy
é € € €7' 2 é‘-
p [ (w-2)a ¥T'd] = ;‘-’E[,ue" + ze"T'C{;ﬂ + (%%f 2pu's' {C=6)

The leading terms of Egs. (C-4) to (C=6) will be called the Lees-Lin

eguations and can be written

pro - ik ld o (45)
¢'+ if = 0 {46)
8! 5"0&;(“"“) 6 = "',_\;ge T'E (47)

The method of solution of these equations is outlined in the text of

this report. Lees and Lin suggest that further terms of the solution be
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obtained by quadrature if desired. (See Reference 1.)

DunneLin Ordering

gince the critical layer is far from the wall ai supersonic speeds,

the quantity (w=c) is of unit order near the wall.

therefore ordered as follows:

DPunn and Lin

4,5

T, 8'~1, (wec)~1, d/dy ~1f, f~1, Gref, 9~f, maés  (C=7)

The leading terms of the left and right sides of Eq. (C~1) under ordering

Eq. {(C=7) are again

-p (w = c) £', W&Re) £yee

But gince (w » c)~1,

5]

€ ~ 1/{aRe)

The first and second order terms of Eqs. (C~1),

ordering Egs. (C-7) and (C=8) are

Mormentum
L L I
€ ] .
- e(w—c){.' + Le“" (¢'+i{-) + LQ [‘C“/"‘) Q-k
L :
(3
= & e 20 A0 cw'
Re (¢4 ) * ;%;§ A
Continuitz
{ | € |
' , } R [2)
¢+LF=— J_;—_—(ﬁ-f"("‘)‘)-_;:
Energy
{ € l €

(4), and

d "
()e

€

(C=8)

(7) under

(C=9)

(C=10)

{C=11)

ple (w00 +T$]| = _‘_{/,,9"4_26'.,.'&)} +(“i§’7“"‘"’c'

gocKe
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The leading terms of Egs. (C-9) through (C=11) form the Dunne

Lin viscous equations

£ 5_5_&_5_‘-’_—9_ .§‘= o (54)
P+ if = i(w-e) —f.— {53)
gt ;'o(&;(“”") 6 =o (56)

The major difference between the Lees-Lin and Dunn=-Lin systems
is in the continuity equation [Eq (55)] . There is now the possibility of an
effect of temperature fluctuations on normal velocity fluctuations, so that
the energy equation is quite relevant. A detailed description of the method

of solving Egs. (54) to (56) is given in Appendix D,

Pregent Method

As the Mach aumber of the compressible flow increases the free=
stream static temperature is no longer indicative of the temperature level
in the boundary layer so that the ocrdering procedure must be reviged
somewhat as discussed in Section IIL 2. of the text. Mean quantities and
disturbance quantities which are temperature dependent (temperature,
viscosity, conductivity, density) should be referred to their magnitude
at some r@presentative reference temperature T;»:e:ﬁ « Asg shown by Bunné
the effect of this change is to revise the definition of Mach number and

Reynolds number in the basgic disturbance eguations. The new definitions

4, 7
M = = My {C=12)
ref x_ % e
¥R Treg I sz

are




k3
We 4 Re
Re_ . —5 = {C=13)
ref ]:ef- ?r{e{

where M_ ¢ is nominally of unit order. This effect has already been
pointed out by I.?Lmnfg, However, the term, M s also appears in the
ordering of terms involving the gradient of mean temperature, For a
{lat plate with Prandtl number one, the temperature and velocity

profiles are related through the Crocco integral

T* - 2 2 T 2
= = v E (%) +(—1:° -')('* "—EW)("“) (C-14)
e
or
%
o L E M) e (B(L T
-_— s - ’-T,rq. —-_+-:M>l-w .
T , )TMG = Meeg) (1-) (C-15)
Thus
-
3(?—“) > T,
w [T
ey [ s (3] + 4, (39 (c-16
Y
For ordering purposes
T, at oML (C-17)
R o ref

We are now in a position to order the terms of the disturbance
differential equations taking into account some of the expected effects of
Mach number. The ordering relations are

2
G, O'~1 except /,L’, T4 p' ~ M, ¢

dfdy~1/E, £~1, @~f, P~TE, w~Ef
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The leading terms of the momenium equation are the same as for Dunn-

Lin ordering so that

Rafes

€ ~ 1/{aRe_ () (C-19)

The terms of the disturbance equations under the considerations (C-18)

and (C=19) have the following orders of magnitude:

Momentum
: * o € Meeg M:'qé
to[@-a(tp+ig) ' ($4if) + w'g] + i [t @-0)s + ']
: & & T Mg Mg T
- & 22" _ ol —ox oo™ i (C-20)
_a('?emg P ek d¢*f]+ [F &}
l é" : —_
4 " 'd " " 174 !
w?e [ ZQC.LLJ + %_&?u’ +29_£:rw fze(.ﬁ)w + 268 (-;&)\4:
! e* Meeg € Me( €
LN é ] A o(l
"'e(‘f\%“’ +e(¢)w o (f i qS)]
ﬂiaminuiﬁz
-2
| | M‘qe e 1
pleif - T —=¢ + (v «-—)(T—-—f> (C-21)
Energy
. —7
| Meg €
@Ciﬁu-c)é +T'¢:( = i(al—c)("%‘—)'ﬂ'
L& MyE Mag €° .
. [ P P L e T
13 . 3
Mg & Mg M
@"}MV@ B é:-. e 2pw "(' i ¢)1
dﬂefee

The leading terms of Ege. (C-20) to (C-22) comprise the Dunn-Lin

. . . : 4 T i - .
equations. This conclusion was reached by Dunn™, L&t us now consider
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‘the magnitude of the ""higher order' terms.
Relative to the leading term:g in each equation, the ordering of

terms in Eqs. {C=20) to {C=22) is

L z & 2@ 7
- 2 =2 2 =3 & =4

Moot €1 My € Myeg €0 My €

no o dependence a and {cRe v ef) dependence

(aReref) dependence only

In addition to the conventional ordering of terms: 1, €, Zz, cee
there are terms of order Mx-efz €, Mrefz "éa s soeo , &tCs For terms of
order, 1, ¢, M, efz €, Mr efZ 'e'z » the equations are functions only of

one parameter (aRea_ ef). The next order terms bring in longitudinal
derivatives of fluctuating quantities and therefore o dependence as well.

It is to be noted that for a linear viscosity-temperature relation

L
2

& 2,
g = M, /{aRe) .

2
Mrei /(O‘Reref)

I is therefore quite feasible that for supersonic and hypersonic boundary
layer stability analyses, terms of order € and Mr efz c may be
comparable to unit order terms, %

The equations considered in the present analysis consist of those

2“

terms in Eqs. (C-20) to {C=22) which are of order 1, ¢, M €

ref

relative to the leading terms. These equations are

% It is also important to recognize thai the leading terms containing
the mean vertical velocity enter to order Mpes® € - These terms are
omitied in the present analysis because of the parallel flow assumptions.
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Momentum
TR S T G TR

v, 2(4 LT oy Lok (-9 [I_‘ _gtew I = -
£ 4 240 T +ﬁ({;)w6 + & Li-¢'-2el = o (C=23)
Continuity

@4 if - l"_F'¢ — ((w-o) % = o ' (C=24)

En&ras: y

TINCNETAE LY - P! — Lotk o) = ooReg -25)
¢ +)‘~(—ar>Te +Z(1')¢M“§w{ —_%—" 6 74T¢ (cr29)

Once the pertinent equations have been chosen, it is allowable
‘to refer temperatures again to the external static temperature. Thus
Egs. (C-23) to (C-25) are quoted in the text with M __. replaced by Me s

and Re_ ¢ replaced by Re.
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APPENDIX D

THE CORRECTED DUNN-LIN METHCD

4
In their analysis of boundary layer stability, Dunn and Lin %3

recognized that for supersonic flows, the disturbance propagation
velocity becomes an appreciable fraction of the free=gtream velocity
(¢ >1 - 1/M ) and the critical layer where w = ¢ lies outside the linear
portion of the mean flow profiles. Accordingly they revised the method
of analysis from that of Lees and Linl’ 2 in 2 number of ways. Of
significance is their recognition of the possible importance of the
texnperature fluctuations in the boundary layer and the wall boundary
condition on temperature fluctuations. They also introduced into the
solution of the viscous equations a transformation which Toumien“
used in the case of incompressible flow, and which eliminates the
undesirable approximation of the velocity by a straight line through the
critical point.

In formulating the eigenvalue problem, however, Dunn and Lin5
apparently omitied the second term on the right hand side of Eq. (88).
This omission is here cerrecséd. Since the Dunn-Lin method hasg not
yet been presented in detail in the literature, it will be described here
in some detail including a corrected formulation of the eigenvalue problem.

The Dunn-Lin viscous equations {Eqae {54} to (56;] are of sufficient
simplicity ‘sa that the solutions can be written in terms of universal
functions.

The Duna-Lin viscous equations are {Section IIl 2.)
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UL 4'0(:(27(w—62_ .p' = 0 (54)
@+ if = g(w—c)% (55)

o - ixReledy o (56)

where primes denote differentiation with respect to y.

Of the six linearly independent sets of solutions to Eqs. (54) to
- {56), solutions l and 2 are identified with the inviecid solutions, solutions
3 and 4 are those where ' # 0 but @ = 0 and solutions 5 and 6 are those
for which f = 0 and 8# 0. The aforementioned numbers will appear as

subscripts to identify the solutions.

Consider first the momentum equation [ﬂq (54)] . Following

Tollxnien“ make the transformations

4 s |
T

ze

and

v [dY " (W-c /4 |
? = ‘f{;";— = f (7/\() ‘ (D2)
Then Eq. {54) becomes

éi'f’_z _[za&Y +(9(')]5‘ =0 - {D=3)
dy

The second term in the bracket of Eq. {D=3) is of order 1/aRe

compared to the first bracketed term and may be omitted. Thus Eq.

{D=3) becomes

2

2
‘;4 _ielY Y = o (D=4)
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Now let

Y
T = (o(R&> Y (D=5)

so that Eg. {(D-4) becomes

a“F , -
1t it F =0 (D-6)

which ig identical in form with the Lees-Lin}“ formulation. [See Eq. (49)3

Eq. {D-6) has two linearly independent solutions in terms of Hankel

functions
'/2 L\) 2 ¢ 3/1-]
%-CH, [FeD (D-7a)
and
y P
1, - ThH) [50s)]
Solution {D-7b) is rejected immediately since it grows exponentially for

large [ (large y) and cannot possible satisfy the outer boundary conditions

on f and ¢.
The energy equation [Eq. (56)] can be written in a2 form similar to

Eq. (D«3) by the transformations

4 o (w-c %
Y = “ V= Ad (D-8)
3:.

and

A
- _J);_ - «(w-o)l‘t
O-¢ dy 9[ Y, | (D-9)

After the term of order unity is dropped compared to the term of order

{cRe), one lets




io7

T, - R, (D-10)

Thus the energy eguation becomes

ig@L —ig® =0 (D-11)

(-]

which has the solutions

b Oy oY
@, = Q/H.,s Hi! (D-12a)
and
PN Y P 1
G =t M, HGA ] (D-12b)

The solution @é grows exponentially for large l‘,’m {large y) so that it
too is dropped because it cannot satisfy the outer boundary conditions.

For the Dunn and Lin assumptions, the pertinent solutions to the

disturbance equations are as follows:

A. Inviscid Solution

Dunn and Liné’ > obtained inviscid solutions by the Heisenberg
expansion in powers of mz.y However, the inviscid solution in a form
automatically satisfying the outer boundary conditions can be obtained by
the method presented in the present text in Section IIL 1. entitled

"Inviscid Solution''.

B. Solutions 3

¢ |
S/z [ ) 3
NCANIAN NG EIG I P .
fy = (2) @f> , Ut (D-13)

(-]




108

¢ (g
% " B Gey%) acd
#y = < (F) (AY) o (5 e ars (D-14)
9, = 0 (D-15)
C. Solutions 5
£, = 0 (D=16)
%

£ H,, [300¥] o, (D=17)
HEAN (D-18)

In performing the integrations to obtain f3, {2§3, and ¢5, quantities
such as (dy/dY), (dY/ df) and mean flow functions were taken outside the
integral sign since they are slowly varying compared to the balance of the
integrand. Slowly varying funciions are those for which d/dyfvof(lb.

This simplification incurs errors no larger than order (aRe)” /3.
The corrected secular equation for the Dunn-Lin assumptions is

{Section III 3.)

Biw A Pow
b g ot OV g
Ry . s B, [ T, (D-19)

Appearing in (D=19) are the ratios @, /f, and ¢5W/65w , which upon

evaluation from the viscous solutions are
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L. g\, o3
g € H, [509)" Jacde

P _ .(;-i (iv_ .
T‘—' = — ¢ dY)w Acw Ew‘é 0) _z(“ 3/1
¢, (3¢9 e

and

—

P _ i&(i&) A
= - Y '1 1) /e 3;
B T\ 4%, A§°w. % Hf/, (369)%]

e oo 3
) ANECHES

D

Let

z = =0
% =

Q © EQW

Also define the Tietjens function

“e cl Q) 3/
[ [pigpestn

Flz) = —="=
Vt ) }_‘. 3/‘ .
\?Kg H%[3(f) ] 4t

and an auxiliary function

_%o .
_ &t,"* W [26EYY) 4,
é(ze) = e ®

(2" H?/: HGAS

Eqgs. (D-20) and (D=21) can now be written

(D-20)

(D-21)

(D=22)

(D=23)

(D-24)

{D=25)

(D-26)
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and

W 3 4 4y Y
B | £ da) (4%
Sw IW 20 ( dY, w( d:o>w G(z°>

Mote here that o

N

(D-27)

0-1/355 and that

3\ [AY) . 34\ /4%
2(4Y>w(4§jw = % AY)

o] 45,
w w

In terms of F(z) and 5(20), Eq. (D~19) becomes

5 by [Fo . UE E0)

(D-28)
(T-IMT W, T du\ [4Y
| + A B %(—‘L> (——)
Tw [ 3 (a»qM‘éc_:X I. Y/, \4%T/,

Eg. {D-28) is a proper secular equation.

However to avoid gome of the
difficulties involved in the expressions for (dy/d¥Y) _ (d¥/dS) , the

equation is further reduced as follows: Let

dy! 4_‘9 _ <
2 dY),,LA = (1+1) "

(D-29)
where it can be shown that
Ye
\
- Wy (3 3 |c-w
1+A =V= g TS5 % (D-30)
[}

80 that

(D-31)
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Further, define

(z-) Mg c*

T (D=32)

K=

Since from the inviscid solutions

n ok o

Eq. (D=28) can after some manipulation be written

G(2)
&(2)-\ [\ + K
o= -5 ) FG) (D-33)
"R T ke T 1
-2 3@ @MEue
where
_ \
B() = | - F() (D-34)

ig the modified Tietjens function. Also, as can be shown by manipulating

with the Tietjens function (D-24) and its derivative with respect to z,

F ()
I-FR) - 2F'@®)

G(’?:) = (D'BS)
The functions F(z), é}z), and éﬁ(z) have been recently recomputed to z = 8

by Dr. L. Mack of the Jet Propulsion laboratory and are presented here

in Table II. For z > 8, an asymptotic form of the secular equation

[Eq. (5-33)] can be obtained. In terms of F and 5alone, Eq. (D=33) is

expressed



[
frow
o

F+|<C;

G = -%
v W, | L _F - k&T. (D-36)
A (- MY Wi C
The asymptotic variation of F(z) from Lin‘?“is
1
F@ 2 —5——— (D-37)
e 4 T
Let _,
=
¢ Vz (D-38)
so that
-3 L%'_
2 e = p+ ip
The asymptotic forms of F{z) and g(zo) in terms of p to order pz' are
F(z)=p+ ip (1 + 5/2 p) (D=39)
Glzg) = e . ® g [F +ig (H— 2a ’4@] (D=40)
1= F(2) -2, F (2) *

Upon substituting Eqs. (D-39) and (D-40) into Eq. (D-36), the secular

equation for large z {(small p) is written

G, = - Ew—,',, (|+x)(|+ Ks %) ¢ [l»« ZEH 2(‘*")(?(I+ %%LG“"") +(s§%l.v,> Fg] ‘D'él)

Note in Eq. {D-41) that to order p, the real and imaginary parts of the

right hand side are equal. The quantity z is related to p by

(N D-42
““<f€> (B-42)

Neutral stability characteristics can now be computed in the

following manner for a given boundary layer profile:



[
e e

For a chosen value of ¢:
(1) Obtain the inviscid solution and record the values of G
for various a.
| (2) Find the values of z and a for which Eq. (2-33) or Eq. (D-41)
is satisfied. |

{(3) Compute (aRe) from the relation
3

z
B

{(4) Knowing o and aRe, the Reynolds number can be computed.

aRe = (D-43)
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 APPENDIX E
OUTER BEHAVIOR OF VISCOUS SOLUTIONS

An examination of the viscous equations [Egs. (69) to (7‘7)] shows
that they are singular far away from the wall outside the mean boundary
layer. It is important to determine the nature of this singularity.

Consider first the HIK system [Eqs. (69) to (72)] . Outside the

mean boundary layer equations Egs. (69) to (71) become:
' - a
H = iaRea(l-c)~H (E-1)
J! = «iK+i(l=c)j-HJ (E-2)

K"' = iaRe(l-c) [K'+ HK] - H [3K'' + 3K'H + 3H'K + HK]
(E=3)

- 3K'H' - H''K

The outer boundary conditions on H, J, and K are given by

HQ = « YiaRe o{l=c)
Jo T ° io'lc:cca > (72)
KO = 0

Now let
H = Ho + h
J o= Jo+ (E-4)
K = k

where h, j, and k are small gquantities such that products of these are

negligible. The differential equations for h, j, and k are



e

h' = =2 H, b (E=5)

i ? = i k= i - -
J = ik HOJ Jﬁh {E-6)

. 2 2 1 3 1
tee it ¢ @ <o L = <o ‘:‘, -
k +3H6k +5Hok+z~i0 {1 ¢)kv§§° (1 q_}z{ 0 (E-T7)

The solution for h is
B = e MY (E-8)

or in terms of real and imaginary parts

h =z C

-2
. ; © HorY  cos (-ZHGi)y

(E-9)
h, = € e“aﬁﬁry sin (—ZHO)y
i

Since Ho is negativé [Eq. (8}.)] , these are sinusoidal oscillations within
an exponentially growing envelope. The only way h can appéaach zero for
y —> o0 ig for the constant <, in Eq. (E-8) to be identically zero, so that

h is identically zero.

The solution for kis

oy (R ()

k = ¢c,e +Cy + Cy {(E-10)

The constants ¢, and ¢, must be zero by the same argument used in
showing that ¢y = 0. The ¢y term in Eq. (E-10) seems to satisfy the
condition that k = 0 as y —>» o for ¢ <1 and so cannot be immediately

excluded. Now k = £/0 in the outer flow and

SNEReEEE y oY ’

g =

g0 we recognize that the term containing Cy in Eq. (E~10) corresponds to

a variation of { in the outer flow of the type
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£ Ne«)(i ake (l=c} vy

But this function is exactly the outer variation of { in the LMN solutions
[See Egq. (66):] . Since the LMN solutions are being obtained separately,
the constant €y in Eq. (E-10) can be set equal to zero with perfect
generality. This is @ manifestation of the linear independence of the
HJK and LMN systems.

With h and k identically zero the solution for j is now

-Hgy
j= e e (E-11)

and ¢ must be zera/by the above arguments.

Thus in the outer flow (where mean flow gquantities have reached
their outer values), H, J, and K must identically take on their outer
values [Eq. {72)} . Any departure will diverge from these values and
not satisfy the outer boundary conditions.

Consider now the LMN system in the ocuter flow. Outside the

mean boundary layer, Eqgs. (74) to (76) axre
L' = cit+i{lec)N=-LM (E-12)
M" = ioRe(lec) M~3 MM - M> (E-13)
NY = iaRecq{l=c) N = (2N'+ N M) M- N M {E-14)

The outer boundary conditions on L, M, and N are

: \
LQ = akke L]
M, = -)TaRe(l=e] ) (77)
No = D
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Letting
L = L,+ /)
M = MO + m (E-15)
N = n

where /, m, and n are small guantities, the differential equations for

[, m, and n are

L' = iflec)n=~ L m-fM (E-16)
m' + 3 M, m'+ 2 Mﬁz m = 0 (E-17)
a4 2M n'+ M (l-c)n = 0 (E-18)

The solution for m is

uZ,MQy -M y
m = cé e + c7 =] (E~19)
Since the real part of M, is negative, ¢, and ¢, must be zero in order
that m ——p 0 f0r y ——> . Thus m is identically zero. The solution for
nis |

-M {1+ V7 )y -M(1- VT )y
e

n = Cg e t ¢ (£-20)

The ¢, term in Eq. (E-20) vanishes by the argument used continually in

8
this Appendiz. The c9 term is identified as representing the outer @

behavior of the HIK system and so may be omitted here with perfect

generality.

With m and n now identically zero, the solution for 2 is

QM y
A= e © ‘ (E-21)
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and ¢ 1o must vanish identically.

Thus f , m, and n are identically zero in the outer flow as are
h, j, and k. The outer beundé,ry conditions of the JHK and LMN systems
are known and must be satisfied where the ocuter mean flow is unifarm
to the desired accuracy. It is thus reasonable to integrate the LMN and
HIK systems from the outer edge of the boundary layer inward to the
wall. Eince the disturbance equations [Eqs., {60) to (62)1 are regular
everywhere else, no difficulty is anticipated in performing these

integrations.
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APPENDIX F
EIGENVALUE DETERMINATION FOR
GENERAL BOUNDARY CONDITION ON TEMPERATURE FLUCTUATIONS
Th'e general thermal baundarﬁf condition to be considered is

¥ 3 -
ab ' + be_ 0 (Fe1)

f

where the coefficients a and b are dependent on the surface material,

its thickness, the method of cooling and the disturbance frequency under
consideration (Appendix A of Reference 5). The ho@ndary conditions on
velocity fluctuations are as before; namely, {_ = @W =

The determinantal statement of the eigenvalue relation is

@w ®3w ¢5w :

F f300 £ =0 (F=2)
! ! [} o

a@w +b@w a®,  +b8, alg  +bog

which when expanded becomes

4, %.5
3 4e (8 @ {f‘*""——‘%
E.—. -——71-(0-?—-'-[; w &; es’u! +

) ( L +L)

From the inviscid equations

\ T )

O | B &?3‘—"4-&93"}
63w, 3 —
{": ) Aol P hl

Qxé.::ts +b> % (“%‘—“*b
%

@ 2 U' 'T.,'\, éu
‘—F:: (D/I)M c + L(T'l M C{c m,‘ ? {88)

w
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@u .Tl‘o (3 Tw . 2 2 _ T‘:..) “)l'o T"d' x -r‘u “:0 @w
= F _T; [TMCC R GoMee| FIMe () Mfe +(?:l> T e (F=4)

80 that relation {F-3) becomes:

|
¢w — é’h’. %‘u’( [a EL I eﬂ’—‘l
Piw +io.3<m: T%) + L(«—v)MeC} L‘” :m bl _ P %w. i
Fu To (a,e.m +B) G &5 +5>
?2 - 1% w
- ' " \ \ ¢50
R [-Z(f-DMezc a_iq’~z"ﬁ’L_ L S 3_>11‘3_{“1§ phm To K.?w- %%2]
(i'f-l)M;c‘ (‘_OM;LC'L ¥ T, e c ('(—1)!'%(} ﬁ_l_______&'_’__. o
‘ (aa"’
= 3
sy {F=5)
; { \,eﬂ
'Fu '?;u\

For the Lees-Lin solution where f; = ¢5 = 0 everywhere, the

thermal boundary condition-is still irrelevant and Eq. (¥F<5)remains

@W/FW’ = ¢3W gf?aw (F=6)

For the Dunn-Lin golution where 63 = fs = 0 everywhere, Eq. {F-5)

becomes

¢$w
953\,, I“i c - Ty b(v 3;:,
5 E“n(“’ >,+ (‘Mgm

v - 850
Fo

: %
: ()M S P, # Tudl, Wy w —L”
-6 M’-{Q%‘ Fymec (m)m;a*( )1' < % Bz ¢ (V-u)mecg (F-7)

)
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For the present solutions, Eq. (F-5) cannot be simplified.

In
the language of the present report
g7y = K (#-5)
where
Tam oo )b (e gt:,.uq [oioemumy +5M]
L~+2Q._T_;(?Mec ‘—)H’C‘o e [an,+s] T [a.H +bl
) . 2 e ToWe vy Ww Tw [Th’Lqu] -
/-‘(U-M{“z O (v‘wec‘ (QTL € ')”e°q lata+s)
(F-9)
[a(“!.,*—”uM,‘,) +b Nk’-l
Ku
[t +e]
since
&,  _ ¢
o= — s .
E, > - 5, (94)

the secular equation is written

Gy = (/) 0 - P)

V-

w,
L.E‘:'R

aad ﬂ is given by relation (F-9).

]

where

(

For this more general boundary

condition, the function 62 depends on both a and (cRe) even though the
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viscous solutions themaselves are dependent on {aRe) alone. This
dependence makes the actual numerical work slightly more tedious.
Taking &a to be zero in R [Eq. (E‘n?)] will generally give a good first
approximation to the eigenvalues.

The eigeavalue :celai;iana for the special thermal boundary con=
dition ﬁw‘ = 0 are obtained by setting b = 0 in Egs., (F«2), (F=-3), (F=~5),

{(F=T7), and (F=9).
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APPENDIX G

VISCOUS AND CONDUCTIVE CORRECTIONS
TO INVISCID FUNCTIONS ABOUT THE CRITICAL LAYER

A most desirable method of obtaining the variation of disturbance
ampﬁtudas about the critical layer is to work out a number of the leading
terms of a convergent series expansion of the complete eguations about
the critical point (V'inner' solutions), compare them with the leading
terﬁzs of the series solution of the inviscid equation about the critical
point {"'outer solution''), and then construct a2 uniformly valid series
solution by proper matching of the two séries in a region where both
serieg are valid.

The present method is & crude patching approximation to the
above; i. e., only the leading viscous terms are obtained and patched to
the inviscid solution, without carefully studying the ranges of validity of
the two solutions. The result should certainly be qualitatively correct
and perhaps may also be sufficient to describe the quantitative variatinn
of disturbance amplitudes about the critical layer.

The convergent solution about the critical point is obtained by
the method of Lees and Linl, as carried out to higher order terms by
Chengs. However, in the present case, this solution is obtained in
terms of the Tollmien variable {Appendix D) rather than the physical
variable.

_ An examination of the inviscid solutions about the critical point
(Egs. 97) to uaa)] shows that the leading discontinuity is in the
temperature fluctuation amplitude, that is, ® ~ i/ (y=vg) - This

discontinuity is of zero order and is smoothed out by the zero order
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correction function obtained in this Appendix. For A # 0, all the
amplitude functions (including the temperature {luctuation amplitude)
have a logarithmic discontinuity either in value or in a derivative, and
the corrections to these discontinuities are of {irst order or higher.

The correction terms are obtained as follows: Let

\ \
f = -f-‘p) + éf()+-~~

¢ = ¢(°) + € ¢(‘)1.... F {G-1)

(1)
@ = e(o) + €6 +....

- Substituting these relations into Eqs. (C=4) through (C~0) results in the

4 equations for the quantities with superscript zero, namely the Lees-Lin

eguations.
\
49(0)"' _ oke (w-) _G(")I = o
: r 4
¢(°)‘ + ¢ -g:@) =0 ’ :
P (G=2)
©" _ ¢ ocke a(w-c) A _ qokT )
& —— 8 = =5 ¢

The solution to Eq. (G=2) which corresponds to the leading term of the

inviscid solution is

f‘O’ = 0 {G=3a)
¢(9) = conmst. = — L :rs_l {G=3b)
Mg W
The value of the constant in Eq. {G-3b) is the leading term of Eq. {98).
To obtain the function 0(0) we solve the last of Egs. {G-2) using Eq. (G-3b)

for ¢‘0) , that is



9(9)" ¢ oche o (w-e) 8? - -t ke TT.
- F 4 - Y- 2 Z w!
v (G-4)

Usging the transformations (=8) and (D~9) and letting

1 v "3/2_ .
S E ‘ G'-‘::Tr_ p(& a(d_t_> ‘
oM w;ng ) 3y {C=5)

yields in place of Eq. (G4}

—¢ =

Aﬁz (-]

o

®)
4'® e p®
e ® (S, (G6)

‘The solution to Eq. (G-06) obtained by comparisen with Eqs. (21) and (24)

of Schlichting (TM 1265)'° is

@(o) Sl éucgo>
—\-{3>I/’- {G=7)

IR AR (&
™M Wt g \%k

or since (D = @Y IT I,

o_ 1 wn LE(5)
UM; wc"' (9‘{‘)

A 5
where G'Y EQ) is a funciion calculated by Scmicmingig and here

R {G=8)

reproduced in Table I. 3chlichting takes the thickness of the correction

layer to be l(@\ £ 4 and in fact forces the correction to be zero at
[f@] = 4 rather than let it become exponentially srmall wiﬁh increasing
KQ. Thus for lt@l - . 1,'@ é’r\”( §o§ = 1 and the function Eq. (G-8)

exactly matches the leading term of the inviscid solution [Ei‘q;«:. {101} and

(102)].

We now proceed to the next-order termas. The equaticns governing



the next order solutions are from Egs. {(G-1), (G=3), {C~4), {(C-5), and

{C-6)
] . 0! " (o) Ylec e"
QO o (0 o oRen” GO, el w090 L u'd” (uga)
@' a0 I_‘ ¢(o) {(w=c) @)
S A L (G=9b)
o' ‘otke o(w-c) AU ReT' O 2 [d | @) ,
90 _ ¢ ot y————- e = .ﬁ'_’."?f_._ ¢ - 7("!&1.)1- 6 (G*?ﬂ)

Egs. (G-9) are still 2 bit unwieldy. The first~order solutions to be
obtained will therefore be the particular solution correspmiding only to

the leading zero-order terms in Eqs. (G=9). From symmetry considerations
[Ow)]" = 0. 8ince qu is linear in (y - ycb, the second term on the
right-hand side of Eq. QGeéa) varies as {y - yc)z, while the {irst term

on the right hand side is a constant and therefore the leading term. The

reduced form of (G-9a) is

o)m L‘o(& [w“&) A' 0/1& 7:: (wcu)
_ e loe) 0 , G-10
£ 7 § ™ 7 4 { )»

Using transiormations {D=~1) and {(D-2) and letting

4[4y *
A 3
S, = W( ) (o) (43> (G-11)
yields in place of Eg. (G-10)
1
2 )
T ey --is, (G-12)

4¢*
whose solution by comparison with Egs. (21) and (24) of Schlichting is
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‘5[(‘) - s, G:"(C)
- —"—1(“’_5)12 £&'(c) (g>"‘
M™e | W, A (S-g& c‘z . (G=1 3&:}
)
1T - s 0
A % 1
- _L_('*_’c_)‘g £H"(0) (A_Y> (G-13b)
XN%' U" (u" (‘3_‘3:3 ;
pr
! A
o _ 4 (w)\E E6(S -
L ?;MJLV) W E(g-ge.)) (G-14a)
! " "
o4 &)1:_ £ ((6)
: m;—(wg TR (G=14b)

According to the approximations of this Appendix, (dC/dy) = (d§/dy) c
so that C is linear in (y - y_). With this consideration, Eqs. (G-14) are '
integrated with respect to y and yield the following expressions for

(1) (1),
fr and fi :

w oY Ave) - 0, (€l
b ™ <7{) ) [ c) — o [5,-5,(4] (o)
for (y - yc) <0
M . (W) " | -
5 = “‘MZ<'@:) o [T" +H (C)] (G-16a)
for {y =y ) >0
1 we l &
fi( b X‘—ME (Tc) . H'(S) {G=16b)

For {tl: 4, é"(g} = ,Qn ]t] go that (G-15) asymptotically matches the
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logarithmic behavior of the leading inviscid terms of Eqs. (99) and (100).
The coefficients however do not quite match. In plaa;.e of the coefficient A
which appears in Egs. {99) and (100} only part of A, namely wc”/wc"
appears in Eqs. (G~15) and (G-106). It is ’E)resumed that the contribution
from the other part of &, namely -'I‘c'/'i‘c, would corue from f‘z’ or

| some higher order term. Accordingly, the correction te the inviscid
longitudinal velocity fluciuation will be applied with coefficient A so that

the two solutions are patched in magnitude as well as in shape. The

adjusted forms of Eqs. (G~15) and (G=16) are

- A T [ Avey — o B
£ 5 — — —_ «17
r e W [GC‘;) ] (G=17)
for {y « yc) <0

1 AT i .

£ = ey ['IT + H (‘;)x {G=18a)
for {y « ycp >0

(- A T ) \ .

£ i~ H'(?) (G=18b)

Turning now to the continuity equation [Eq QG-%;)] we find that
the f“’ and ¢(0’ termns are constant in a small neighborhood of the
critical layer while {w ~ ¢} 9(0) varies initially as {y = yc)z., An integration
of Eq. {G-9b) would show that the first order variation to @ would
ivitially be linear in {y - yc), and asymptotically approach the form
v - v /Qn {y ~ y). Since there are no discontinuities in the value of
¢ about the critical layer, the correction to this function will be pursued
no further.
Fromn Eqs. (101) and (102) it is seen that the logarithmic

singularity in temperature fluctuation amplitude ig identical to that




considered above for the longitudinal velocity fluctuation. The correction
will be found analogously. Consider the leading terms resulting from
differentiating Eq. (G=9¢) remembering that §'~1 and that d/dy of a

fluctuating quantity is of order 1/¢ .

' . n
90)’”_ . ke a(w-¢) @(') = aoxReT ¢0)' _ 2 #) Tle@)
v 14 A a1

' (G-19)

_ GoReT' [ 4@ ; (w- @ . )].._2_ ¥
-SSR g7 s e8| -2
The leading term on the right band side of Eq. (G-19) is represented by
the ¢i0) term, because Gcm)” = 0 and (w = c) 9(93' ~{y = yc)z. The
function f(“ is a constant at the critical layer but since the final
coefficient will be adjusted anyway, the 5(1) term is not considered here.
Following the same transformations as used in proceeding from Egs.
(G-4) to (G=6), Eq. (G-19) is wriiten
) !
& @ e @ s To
-it® =-is = (G20

The solution of (G~20) adjusted to the coefficient A is obtained by steps

identical to those used in proceeding from Eqs. (G=12) to (G-18). The

adjusted solution is

(1) =7 A < c'l [ ] g - ﬁ" \:,‘ -
8. ——: ———swét G ,) Taracl el {(G=21)
for {y - yc) <0
mn A L 3 T \:\{‘ S 1 -
8, = I = ( + ( o> (G-22a)

for {y = yc) >0

Al
6, = LA H(s,) (G=22b)




APPENDIX H

A FORMULATION FOR EXACT NUMERICAL INTEGRATION
OF THE ORER-SOMMERFELD EQUATION

The Orr-Sommmerfeld equation is the exact differential equation of
infinitesimal two-dimensional disturbances for an incompressgible flow in
{vhich all streamlines are parallel and the mean flow does not change in
the longitudinal direction. An example of such a flow is plane Poiseulle
flow. The Orr-Sommerfeld equation is often applied to "almost parallel”
flows such as boundary layer flows. This application is not exact but is
quite acceptable at large FEeynolds numbers, more specifically when
{Q,Re)'l/s << l. {The vertic@i mean velocity introduces terms which
may be of order (aRe}"l/S compared to the leading termes of the Orr=
Sommerield equation).

The equations of infinitesimal disturbances for an incompressible -
"parallel flow' wherein disturbances of the form Q' x, y, t) = q{y) eiu(x-ct}

are considered, are [frsm Egs. (4), (5), and (6)]

Cont:inuitz

@' if = 0 (¥-1)

L@ngitudinal Momentwmn

ifwec) £+ w' @G = —% + :I@:(Qn- % <5 + La‘%) (H-2)

Normal Momentum

iaa (W"C) ¢ = - % + _l__ (L‘o("-i‘_ _ o<+¢' + %o(zsé“) {H-3)
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The boundary conditions at a solid surface are ¥ = £f= 0. In the

outer flow both @ and £ decay exponentially to zero.

Using Eg. {H=1), { is eliminated from Eqgs. (}-2) and (H=3)

yielding:
- - ] 3 -,,g‘ __4;7_1; —]‘ . s P L -
(wec) @'+ w' & m;*dze(“” (@) (H-4)
j” (wee) @ = A e (¢'~'— o(z¢) (H»5)
™ oke :

e
Upon eliminating {v/ b’Meaﬁ between Egs. {H-4) and (H-5), the

OrreSommerfeld equation is obtained.
4 %
@Y - 2a°@ + 0 @ = iaRe [(wee) (B = oF @) - w'' & ] (H-6)

This equation is everywhere regular except at infinity. The eigenvalues

of this equation at y —> o are

*x, £ 7@.& + iaRe {l=c) (H-7)

Of these four, only the two with negative signs are considered since only
these represent solutions which satisfy the outer boundary conditions. We
therefore seek two linearly independent solutions @i and @z carzﬂéspaﬁding
to the negative cigenvalues of Eq. {H-T7). |
The development which follows is written without subscripts but

applies separately to solutions ! and 2. Following the procedures used

in the text for both the inviscid and viscous solutions, define a Riccati

type variable. Let

@/g = P {H-8)



that is ,
@,'/¢, =P, and B)V/P, =P,
Then
@/¢ = P+ P (H-9)
i 4
@V/P = Py P [-%;f?" + 6 PP'| + 3 pé . pt (5-10)

In terms of the new variable P, the Orr-Sommerfeld equation is written

4 )
P = (B + B9) 202 4 iWRe (wee)] - [o* + ioRe (wee) o® + taRe w'']

(H-11)
¢ _ 4

<P [4P"+ 6 PP']| - 3P - P

In the outer flow P is & constant and from Eq. (H-11) satisfies the following

equation .

[pf - aZ] (Pf -§e? + toRe el-cﬂg] =o | (H-12)

Upon consideration of the discussion following Eq. (H-7), the pertinent

values of P for solutions 1 and 2 are respectively

(P), = -o (H-13a)

(H~13b)

Ly

€PZBQ - ,az + iaRe (l=c)

The detailed formulation follows the procedure employed in
obtaining the HJK and LMN systems of Section IIl. 2. First Eq. (H-11)

ig split into real and imaginary equations:

% Note that for the total solution (@'/ @w —>w . The method of
this Appendix is based on the premise that the ~ real and imaginary parts
of the individual eigeafunctions @l and ¢2 never vanish simultaneously.
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Pim = [e'_._ p("_pa"] «Re (1-¢,) + [P‘._'-f-zp‘,P,_'] [7_.;’- + oRe c,;]

where
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A AR | R 9(Eec,;] -+ 2 | oRe (e
ot e oteec] — B [4B +er R - 0B ]
+ o [an s onp'verne] - 3[R -]
SR - e nt]
— [Re (-cr) +oRew"] = P[40 "+ cRR' - 6RR']
R[4« eRR +CcRR'] -6
—4[p2n -RR7]

The outer conditions to Eqs. (H-14) are

For solution PZ

{Pl ,o = =g
r

{Pli’g = 0

¥For solution Pa

\
~ |
- 'A?.*_EL +_A /7.
QPZ 30 = -
T 2
popa—y X-"/" >
(P,), -_[A+B -
i 2

e 2
1}
©
e
Q
]
®

Y
(U

(H-14a)

(H-14b)

(H-15)

(H~16)

(H-17)



Since the Orr-Sommerfeld equation is regular everywhere except
at infinity and the outer conditions are known, Eqs. {H-14) are
simultaneously integrated starting from the outer edge and proceeding
to the wall.

The boundary caaﬁiiians at the wall namely @ = @' = 0 are

satisfied when
(Py), = (P, (H-18)

Thus for a given profile and chosen values of ¢, and <, the
valués of a and aRe are adjusted uatil condition (H=18) is satisfied.

The method of this appendix is meant to be used in cases where
the splitting of solutions into inviscid and viscous types is objectionable.
For the situation

aRe (1 = cr}

= >>1 ,

e + aRe <,
the asymptotic methods are recommended for two reasons;: (1) the
asymptotic methods are simpler to use; and (2) for (cRe) large, great
care must be exercised in performing the numerical integrations,

because rapid changes in the behavior of the functions may be expected

where the action of viscosity is important.
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TABLE I

SCHLICHTING'S CORRECTION FUNCTIONS

{from Reference 13)

A N A
T G'(T) G'(T) HYT)
-4, 0 -, 250 1.386 «3. 140
-3.5 .. 325 1. 243 =3.153
«3.0 -, 438 1. 056 «3.188
2.5 -. 589 . 798 -3, 213
«2,0 - 767 . 458 -3,175
1.5 -. 839 . 051 =3,022
=1.0 -, 746 - .354 «2.692
- .5 .. 443 - .659 «2.187
0 0 - 774 «1,570
.5 . 443 - . 659 - .953
1.0 . 746 - .354 - , 448
1.5 . 839 . 051 - .118
2.0 ; . 767 . 458 . 035
2.5 i . 589 . 798 . 073
3.0 | . 438 1. 056 . 048
3.5 z . 325 1. 243 .013
4.0 ' . 250 1.386 0
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