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ABSTRACT 

Ruthenium-diimine sensitizers (Ru-wires) with the structure [Ru(L2)L']2+, where 

L' is a perfluorobiphenyl bridge connecting 4,4'-dimethylbipyridine to the substrate 

adamantane or the heme ligand imidazole, bind to cytochrome P450cam with micromolar 

dissociation constants.  Ru-wires can be used to trigger redox reactions on timescales 

faster than those achievable using conventional stopped-flow techniques: photoinduced 

heme reduction with an imidazole-terminated Ru-wire occurs in 40 ns.  The large 

variation in ET rates among the Ru-diimine:P450 conjugates strongly supports a through-

bonds model of Ru:heme electronic coupling. 

 The Ru-wires also bind the murine inducible nitric oxide synthase (NOS) oxidase 

domain, both in the active site and to the hydrophobic surface patch that interacts with the 

NOS reductase domain.  Rhenium-diimine probes with the structure [Re(4,7-dimethyl 

phenanthroline)(CO)3L]+, where L = imidazole-C12F8-imidazole  (Re-im) or imidazole-

C12F9 (Re-F9bp), bind in the NOS active site.  Re-im (Kd = 6 nM) ligates the heme iron.  

Re-F9bp (Kd = 3.4 µM) produces a partial low- to high-spin conversion of the heme.  

Compounds with properties similar to the Ru- and Re-diimine probes may provide novel 

means of NOS inhibition.   

Luminescent dansyl probes were designed to target cytochrome P450cam.  D-4-

Ad (dansyl-C4-adamantane) luminescence is quenched by Förster energy transfer upon 

binding (Kd = 0.83 µM), but is restored when the probe is displaced from the active site 

by camphor.  In contrast, D-8-Ad (Kd ~ 0.02 µM) is not displaced from the enzyme even 

in the presence of a large excess of camphor.  Probes with properties similar to those of 

D-4-Ad potentially could be useful for screening P450 inhibitors. 

 Crystal structures of P450cam bound to ruthenium diimine and danysl probes 

reveal an open enzyme conformation that allows substrate access to the active center via 

a 22-Å deep channel.  Interactions of the probes with the channel illustrate the 

importance of exploiting protein dynamics in inhibitor design.  Movements of the F, G  

and B� helices couple to conformational changes in active site residues implicated in 

proton pumping and dioxygen activation.  Common conformational states among 

P450cam and homologous enzymes indicate that the structural flexibility of the F/G helix 

region allows the 54 human P450s to oxidize diverse substrates. 
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Chapter 1 

 

Introduction  
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This thesis describes the use of photoactive molecules to study heme enzyme 

reaction mechanisms and structural dynamics.  Our approach has been to attach a 

photosensitizer to an enzyme substrate by a covalent tether (Figure 1.1).  The substrate 

provides the binding energy and specificity to bring the sensitizer to the target enzyme.  

Once the sensitizer is bound, a variety of photophysical and photochemical processes 

may be used to detect the presence of the enzyme, characterize its structure and 

dynamics, or trigger reactions within it. 

Sensitizer-linked substrates (SLS) help to span the orders of magnitude between 

our sensory experience and chemically relevant lengths (cm vs. nm), times (s vs. ps), and 

numbers (moles vs. molecules).  Förster energy transfer (FET) and photo-triggered 

electron transfer (ET) occur over nanometer distances, luminescence decay occurs on the 

pico- to microsecond timescales, and the detection of single fluorescent molecules is now 

a well-established technique.1  In addition, the association of the sensitizer with the target 

enzyme through a substrate or inhibitor has several useful aspects.  The sensitizer can act 

as a spectroscopic probe to characterize the interactions of the target enzyme with small 

molecules.  In addition, the specificity of the enzyme:SLS interaction can potentially 

provide binding selectivity in chemically complex environments.  Because preassociation 

of the enzyme and sensitizer circumvents the time restraints inherent to bimolecular 

diffusive reactions, SLS probes can be used to photochemically trigger reactions on the  
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Figure 1.1.  A schematic representation of an SLS:enzyme conjugate.  In this example, a 

ruthenium tris-bipyridyl photosensitizer reduces the heme upon excitation with 470 nm 

light.  The substrate moiety (subs) mediates the binding of the SLS to the target enzyme.  

The linker serves both to connect the sensitizer to the substrate and to mediate electron 

tunneling from the Ru-diimine to the heme. 
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submicrosecond timescale.  Unlike covalently labeled proteins, the SLS:enzyme 

conjugate can be formed immediately prior to the experiment, thus circumventing 

potential complications due to degradation of the enzyme:photosensitizer conjugate. 

 The remainder of the Introduction serves two purposes.  The Background section 

contains information taken for granted in the remainder of the thesis.  The topics covered 

are: Förster energy transfer, electron transfer theory, ruthenium tris-bipyridine 

photochemistry, enzyme-small molecule interactions, cytochrome P450, and nitric oxide 

synthase.  The section entitled Previous and Concurrent Work describes SLS research 

that preceded or occurred simultaneously with the research described in the following 

chapters. 

BACKGROUND 

Förster energy transfer.  Förster energy transfer (FET) is one form of radiationless 

transfer of energy from one molecule to another.2,3  In order for this process to occur the 

donor emission and acceptor absorption spectra must overlap.  FET is modeled as the 

interaction of the donor and acceptor dipoles, and so has an r6 distance dependence.   This 

process is characterized by the equations (Eqns. 1-3): 

kE = k0
R0
r
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Here kE is the rate of energy transfer, k0 is the intrinsic decay rate of the donor, r is the 

donor-acceptor distance, R0 is the characteristic distance of the Förster pair, κ2 is an 

orientation factor (2/3 for a freely rotating donor or acceptor), n is the index of refraction, 

φ0 is the donor luminescence quantum yield, λ is wavelength (nm), F0(λ) is the 

fluorescence emission spectrum, and EA(λ) is the acceptor absorption spectrum (M-1cm-1). 

 R0 ranges from 10 to 70 Å, a lengthscale that corresponds nicely with the 

dimensions of typical proteins.  R0 increases with φ0 and the overlap integral J.  J in turn 

increases with the overlap of the donor and acceptor emission and absorption spectra, the 

strength of the acceptor absorption, and λ4.  R0 is thus easily tailored:  Blue emission, 

weak absorption, and a small φ0 produce a short R0, while red emission, strong 

absorption, and a large φ0 produce a long R0. 

Electron Transfer.  Electron transfer (ET) through a protein can occur over distances of 

up to 20 Å.  The rate of ET can be modeled in several ways.  The most general treatment 

is (Eqn. 4):4,5 
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The key elements influencing the ET rate are the thermodynamic driving force ∆G, the 

reorganization energy λ, and the electronic coupling HAB.  The term λ is a measure of 

how much the electron donor and acceptor and their surroundings must distort in order 

for ET to occur.  Hydrophobic solvents are insensitive to changes in charge distribution, 

and so lead to small λ�s; polar solvents result in large λ�s.  Note that the rate of ET is 

maximized when ∆G = λ. 

 HAB corresponds to the degree of electronic interaction between the donor and 

acceptor.  In general, HAB decreases exponentially with donor-acceptor spacing.  Over 

larger distances the electronic coupling between the electron donor and acceptor is 

mediated by the intervening medium (Figure 1.2).  It is useful to look at HAB as resulting 

from communication across n identical bridging units (BU�s), where ∆ε is the energetic 

gap between the donor and the unoccupied orbitals of the bridge, and hDb, hb and hbA are 

couplings across the donor-bridge, bridge-bridge, and bridge-acceptor junctions (Eqn. 

5):6-8 

bA

n

bDb
AB h

hh
H

1−












∆∆
=

εε
        (5) 

Breaks in conjugation define BU boundaries.  For spatially extended alkyl9-11 and 

aromatic oligiomers12,13 each BU decreases the ET rate by roughly a factor of 5 when ∆ε 

is large compared to kBT.  However, this simple behavior begins to break down when the 
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Figure 1.2.  Schematic representation of superexchange-mediated electron tunneling.  

The vertical dimension corresponds to the energetic potential experienced by the 

tunneling electron.  In this simple model the bridging units are identical, and thus have 

identical bridge-bridge couplings and energies. 
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bridge is highly conjuated,14,15 structural dynamics control ET rates,16 or ∆ε is small 

enough for the charge to �hop� along the bridge.17 

Ruthenium tris-bipyridine.  No Gray group thesis would be complete without a 

discussion of [Ru(bpy)3]2+ (Ru(bpy)3) photophysics and chemistry (Figure 1.3).  

Excitation of Ru(bpy)3 with 470 nm light results in the promotion of an electron from the 

ruthenium atom to the bipyridyl ligands.  This excited state has a lifetime of about a 

microsecond, and decays with the emission of a red photon (~620 nm) with a quantum 

yield of 0.042.18  The Ru(bpy)3 excited state is both a good oxidant (0.82 V NHE) and 

reductant (-0.84 V NHE). This remarkable property can be rationalized by considering 

the excited state to be a combination of Ru3+ and a bipyridine radical anion.  The excited 

state can be intercepted with biomolecular quenchers to generate the longer-lived oxidant 

[Ru(bpy)3]3+ or the reductant [Ru(bpy)2bpy·-]+.  Because of these photochemical 

properties, Ru(bpy)3 derivatives have been used extensively to study ET in proteins,5 and 

also to deliver holes and electrons to the active sites of the enzymes horseradish 

peroxidase19 and cytochrome c oxidase.20,21 

Ligand-protein interactions.  The design of a molecule that will bind to a protein of 

interest may at first seem like a daunting task.  However, over the past 5 years members 

of our research group have produced probes that bind cytochrome P450, nitric oxide 

synthase, amine oxidase, cytochrome c peroxidase, and myeloperoxidase, demonstrating  
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Figure 1.3.  Ru(bpy)3 photochemistry.  Bimolecular reaction with a quencher (Q) can be 

used to generate [Ru(bpy)3]3+ (1.26 V NHE) or [Ru(bpy)2(bpy)·-]1+ (-1.28 V NHE).   
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that the production of enzyme-binding photochemical probes is feasible. The simplest 

way to design an SLS is to elaborate upon a known substrate or inhibitor.  If the crystal 

structure of the target enzyme is known, simple modeling greatly improves the chances of 

producing a probe molecule that binds to the target enzyme.  While more sophisticated 

methods may be useful, manual docking of the proposed SLS into the active site has thus 

far been sufficient to uncover obvious deficiencies in probe design.  Experience suggests 

that an iterative SLS design process is effective.  It has proven far more efficient to 

synthesize multiple rounds of simple probe molecules than to attempt the synthesis of a 

more complex �optimal� SLS.     

 Once a functioning probe molecule exists, x-ray crystallographic determination of 

the structure of the probe:enzyme conjugate has proven to be very valuable.  Structural 

characterization is helpful both in interpreting solution-phase spectroscopy and in the 

design of second and third generation probes.  As will be discussed (Chapter 3), the 

structures of the probe-bound enzymes have also proven to be intrinsically interesting. 

Cytochromes P450.  Cytochromes P450 comprise a superfamily of heme 

monooxygenases characterized by a conserved fold and a cysteine-ligated heme (Figure 

1.4).  In particular, the ability of P450s to hydroxylate aliphatic carbon by generating a 

reactive heme-oxygen species has stimulated much research (R-H + O2 + 2H+ + 2e- ! R-

OH + H2O).22  Bacteria, eukaryotes and archaebacteria all express cytochrome P450s.23  
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Figure 1.4.  Ribbon diagram of cytochrome P450cam.24  The fold is unique to 

cytochromes P450, and is highly conserved among all structurally characterized P450s 

despite low sequence similarieties. 
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Cytochrome P450 genes make up a sizable fraction of expressed genes in known 

genomes:  0.63% in Drosophila (86 known genes), about 1.0% in Arabidopsis (270 

known genes) and about 0.2% in humans (54 known genes).25,26 

Over 22,000 papers concerning P450 enzymes have been written in the past 10 

years.  This prolixity stems largely from the medical importance of these enzymes.  

Substrate-specific cytochromes P450 play major roles in steroid and eicosanoid 

biosynthesis, and thus constitute important drug design targets.27-31  Inhibitors of 

aromatase (P450 19) have passed phase III trials in the treatment of breast cancer.29  

Cytochrome P450 14-sterol demethylases (CYP51) are drug targets for both antifungal 

agents and cholesterol lowering drugs.30,31   

In contrast, hepatic P450s help metabolize a wide range of foreign compounds, 

including environmental contaminants and drugs.  P450 3A4 metabolizes about half of all 

drugs in use.32  Although the total amount of P450�s expressed varies only 3-fold in 

individuals, expression levels of individual P450 isozymes can vary by 1-3 orders of 

magnitude, leading to dramatic differences in the metabolism of xenobiotics.33,34   

Adverse drug reactions, for instance, to Prozac,35 result from individual variations in 

hepatic P450s.36  The reactions catalyzed by cytochromes P450 are not always benign: 
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P450 1A2 N-hydroxylates aromatic heterocycles found in cigarette smoke and charred 

food, converting them into potent carcinogens.37   

Cytochrome P450 reaction mechanism.  Both this thesis and the majority of 

mechanistic P450 studies employ cytochrome P450cam, a prototypical P450 from the soil 

bacterium Pseudomonas putida.  The canonical P450 mechanism is shown in Figure 1.5.  

The steps through intermediate 3 are well established:  Substrate binding displaces water 

from the heme iron, converting it from low-spin, six-coordinate to high-spin, five-

coordinate (2).38  The spin shift is accompanied by a change in the ferric heme reduction 

potential from -150 to -300 mV, which makes its reduction by putidaredoxin (Putd) 

thermodynamically feasible.39  Dioxygen binds to the reduced heme, producing a well-

characterized ferrous-dioxygen intermediate (3).40   

The addition of the second reducing equivalent by Putd is the last kinetically 

resolvable step in the catalytic cycle under biological conditions.  Low-temperature 

ENDOR measurements indicate that reduction of 3 results in a ferric-peroxy 

intermediate, which rapidly protonates (5).41  In these experiments the next observed 

species is hydroxylated camphor and the resting enzyme.  Based on the mechanisms of 

many other heme oxidases, it is assumed that the active, hydroxylating species is a ferryl 

cation radical (6) known as compound I.42  Recent results show that compound I can 
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Figure 1.5.  The canonical cytochrome P450 catalytic cycle.  ET constitutes the rate 

determining step (RDS) in catalysis under biologically relevant conditions.
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indeed be generated using organic peracids.43,44  However, debate persists as to whether 

compound I, the peroxy intermediate 5, or other species constitute the key oxidizing 

intermediate.  Some evidence suggests that the oxidizing intermediate may be substrate 

and isozyme dependent.45 

Nitric oxide synthase.  Nitric oxide (NO) is recognized as a ubiquitous biological second 

messenger, acting in a myriad of circumstances that include neuronal development, 

regulation of blood pressure, apoptosis, neurotransmission, and immunological 

response.46-52  These diverse functions depend on the production of NO by nitric oxide 

synthase (NOS), an enzyme that catalyzes the transformation L-Arg + 2O2 + 3/2(NADPH 

+ H+) → L-citrulline  + NO + 2H2O + 3/2 NADP+.53  Like cytochrome P450, the NOS 

active site contains a cysteine-ligated heme.  However, the active site also contains a 

tetrahydrobiopterin cofactor (H4B) that is essential for catalysis.  

NOS was isolated independently from neuronal (nNOS), endothelial (eNOS), and 

immune system cells (iNOS).54-58    A more distantly related NOS has also been isolated 

from the bacterium Bacillus subtilis.59  Subsequent research has shown that the 

mammalian NOS isozymes occur with a complex distribution in a wide variety of tissues.  

Abnormal nNOS activity has been implicated in a variety of diseases, including both 

Parkinson's and Alzheimer's disease.49,60  The isozyme eNOS is expressed in smooth 

muscles, including those lining blood vessels.47  Local production of NO triggers the 
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relaxation of the vascular tissue, leading to a reduction in blood pressure.  In addition to 

vasodilation, eNOS also modulates angiogenesis.61  iNOS is thought to be essential in 

fighting tuberculosis,62 but is also involved in the often destructive inflammation 

response to infection or injury.51 

NOS reaction mechanism.  The complete NOS enzyme consists of a heme-containing 

oxidase domain and an FMN- and FAD-containing reducase domain that are connected 

by a calmodulin-binding linker.54,63,64  The reductase domain binds NADPH and shuttles 

electrons into the oxidase domain.  NOS functions as a dimer, with the reductase domain 

from one half providing electrons to the oxidase domain of the second half.65,66  

The catalytic mechanism of NOS is thought to be analogous to that of cytochrome 

P450 in many respects (Figure 1.6).  Like P450, a compound I species is thought to 

catalyze the conversion of arginine to N-hydroxyarginine.67  However, current evidence 

does not rule out other potential hydroxylating intermediates, notably ferric-peroxy 

species.68  The mechanism for the oxidation of N-hydroxyarginine to citrulline and NO 

has been proposed to be catalyzed by ferric-peroxy or superoxy species.68  Intriguingly, 

the conversion of N-hydroxyarginine to NO and citrulline formally requires oxidation by 

only one electron.  This unusual stoichiometry has lead some to suggest that the nitroxyl 

anion (NO-) may be the initial product formed.64  Current evidence suggests that H4B  
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Figure 1.6.  NOS catalytic mechanism.  Arginine hydroxylation (A) is thought to follow 

a mechanism similar to that of P450.  Current evidence suggests that H4B acts as a 

temporary electron donor, and is presumably re-reduced by the reductase domain after 

catalysis is complete.  The production of NO from N-hydroxyarginine (B) is poorly 

understood.  Numerous mechanisms involving the reaction of intermediates 9, 10, 11 or 

12 with N-hydroxyarginine have been proposed.  The observation of a pterin radical 

during single turnover experiments suggests that a two-electron reduced oxygen 

intermediate such as 10, 11 or 12 plays some part in the mechanism. 
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donates an electron during both catalytic cycles.69  Despite this clear catalytic role, it is 

not clear why NOS requires H4B while cytochrome P450 does not.  

PREVIOUS AND CONCURRENT WORK 

Ru-wires for P450cam.  The original impetus for the creation of sensitizer-linked 

substrates was the desire to observe the fleeting intermediates in P450 catalysis (Figure 

1.5).  In order to observe intermediates 5 and 6, Ivan Dmochowski et al. sought to use 

Ru(bpy)3-functionalized P450cam substrates (Ru-wires) to rapidly reduce the ferrous 

dioxygen intermediate 3, thus replacing the sluggish reduction by Putd with a rapid 

photochemical trigger.  The initial Ru-wires investigated consist of a Ru(bpy)3 moiety 

connected to adamantane, imidazole, or ethylbenzene by an alkyl linker of varying length  

(Figure 1.7).70  The Ru-wires bind P450cam with micromolar Kd�s, as evidenced by 

changes to the heme absorption spectrum and FET from the Ru-diimine excited state to 

the heme Q-bands (Table 1.1).71  Interestingly, neither the adamantyl nor imidazole 

groups are necessary for binding: Ru-wires terminating in an alkyl chain bind to the 

enzyme, suggesting that interactions of the enzyme with the Ru-diimine and linker 

moieties provide the bulk of the binding energy. 

The crystal structure of Ru-C9-Ad bound to P450cam was determined to 1.55 Å 

resolution by Ivan Dmochowski and Brian Crane.71  Preliminary analysis showed that a  
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Figure 1.7.  First generation Ru-wires.  The Ru(bpy)3 photosensitizer is connected to 

adamantane, ethylbenzene, or the heme ligand imidazole through an alkyl chain of 

varying length. 
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Table 1.1.  Ru-wire dissociation constants and Ru-Fe distances derived from FET 

measurements. 

Compound Kd, µM Ru-Fe, Å 

Ru-C13-EB 

Ru-C12-EB 

Ru-C11-EB 

Ru-C10-EB 

Ru-C9-EB 

Ru-C7-EB 

Ru-C9-Ad 

Ru-C11-Ad 

Ru-C13-Im 

Ru-C11-Im 

1.7 ± 0.4 

1.5 ± 0.3 

0.9 ± 0.4 

0.9 ± 0.4 

0.7 ± 0.1 

6.5 ± 1.3 

0.8 ± 0.3 

0.7 ± 0.2 

4.1 ± 1.1 

> 50 

20.6 ± 0.2 

20.5 ± 0.2 

20.1 ± 0.3 

19.9 ± 0.1 

19.4 ± 0.1 

19.5 ± 0.1 

21.0 ± 0.3 

21.4 ± 0.2 

21.2 ± 0.1 

NA 
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conformational change opens a 21-Å deep channel in order to allow Ru-C9-Ad access to 

the active site.  The Ru-Fe distance seen in the crystal structure agrees well with that 

calculated from the rate of energy transfer observed in solution, demonstrating the utility 

of FET calculations for characterizing SLS:enzyme interactions. 

 The FET-derived Ru-heme distances for a series of ethylbenzene Ru-wires 

remains roughly constant for varying alkyl chain lengths (Table 1.1), indicating that an 

optimal Ru-heme distance exists in the Ru-wire:P450 conjugate.71  In contrast, Ru-C13-Im 

binds P450cam (Kd = 4.1 µM), while Ru-C11-Im does not.  Evidently, the imidazole tip 

must ligate the heme iron in order for binding to occur, suggesting a substantial energetic 

penalty for its sequestration in the hydrophobic P450 active site.  This result demonstrates 

that sensitive binding discrimination is possible with properly designed probe molecules. 

 As synthesized, the Ru-wires consist of a racemic mixture of ∆ and Λ 

stereoisomers.  However, the ∆ and Λ forms of Ru-C9-Ad were successfully separated 

using chiral chromatography.  The isomers bind P450cam with similar dissociation 

constants (Kd(∆) = 190 nM; Kd(Λ) = 90 nM), corresponding to a difference in binding 

energies of 0.46 kcal mol-1.72  Detailed analysis shows that the apparent Kd for the 

racemate is not the average of the stereoisomer Kd�s.73   

 P450cam hydroxylates Ru-C9-Ad when supplied with electrons via the natural 

NADH/putidaredoxin reductase/Putd reduction relay.74  Ru-C9-Ad hydroxylation occurs 



 29

at only 1.6% the rate of camphor hydroxylation, and only 10% of the electrons supplied 

by NADH go to product formation.  Presumably the rest are diverted to the formation of 

reduced oxygen species such as superoxide or hydrogen peroxide.75  The ability of 

P450cam to hydroxylate a molecule so structurally different from camphor is remarkable.  

As discussed in Chapter 3, Ru-wire turnover supports the hypothesis that the structural 

flexibility inherent in the P450 fold allows cytochromes P450 to hydroxylate structurally 

diverse substrates. 

 Photochemically reduced or oxidized Ru-wires transfer electrons or holes to the 

P450cam ferric heme with time constants of around 50 µs (Figures 1.8, 1.9),70 rates that 

are typical for ET through saturated bonds over comparable distances.  These results 

demonstrate that it is in principle possible to trigger reactions in the buried active sites of 

proteins on the sub-millisecond timescale.   

Dual SLS and enzyme engineering: cytochrome c peroxidase.  The removal of the 

residues thought to mediate ET to the heme of cytochrome c peroxidase (CCP) results in 

a ligand-binding channel (Figure 1.10).76  Hays et al. describe a dansyl-functionalized 

peptide that binds within this channel (Figure 1.11).77  Partial unfolding and renaturation 

of the CCP mutant in the presence of 13 or 14 results in the kinetic trapping of the 

peptide within the channel.  In contrast to cytochrome P450, peptide binding depends 

crucially on the replication of hydrogen bonding and salt bridging interactions present in  
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Figure 1.8.  The flash-quench sequence for delivering electrons or holes into the active 

site of P450cam.  The Ru-wire is excited with 470 nm light (Ru*), and intercepted with 

either Co(NH3)6
3+ or para-methoxy-N,N-dimethylaniline (PMDA) to generate the 

oxidized (Ru3+) or reduced (Ru1+) Ru-wire.  The photochemically generated hole or 

electron tunnels to the heme on the millisecond timescale, forming a heme cation radical 

or ferrous heme. 
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Figure 1.9.  Transient absorption difference kinetics showing the reduction of P450cam 

by photochemically generated [RuI-C13-Im]+ (10 µM Ru-C13-Im, 20 µM P450cam, 20 

mM PMDA).  Figure from ref. 73 (used with permission).  
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Figure 1.10.  Crystal structure of the channel-containing CCP mutant (blue) overlaid 

with wild-type CCP (white).  The mesh shows the surface of the protein, including the 

channel that reaches deep into the enzyme.  The deleted residues are shown in cyan.  

Figure provided by Anna-Maria A. Hays. 
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Figure 1.11.  Amide oligomers designed to bind in the artificial CCP channel.  Only 13 

and 14, which mimic the hydrogen-bonding pattern of the native peptide, bind to the 

enzyme.  Figure provided by Anna-Maria A. Hays. 
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the native enzyme.  These observations demonstrate that not all enzymes possess the 

structural flexibility of cytochrome P450 (Chapter 3). 

Electrochemistry at a deeply buried active site: amine oxidase.  The enzyme amine 

oxidase (AO) catalyzes the conversion of amines to aldehydes and ammonia using an 

active site that contains both copper and a topoquinone cofactor.  The catalytic role of 

copper (if any) in catalysis remains a matter of persistent debate.  The potentials of the 

deeply buried topoquinone and copper cannot be accurately measured using conventional 

electrochemical techniques.  Instead, Hess et al. measured the topoquinone potential 

using gold electrodes functionalized with a phenyl-alkynyl bridge designed to bind in the 

AO active site, thus providing an ET conduit from the electrode to the topoquinone 

(Figure 1.12).78  The topoquinone potential was found to be -360 mV, and no copper 

electrochemistry was observed.  However, it is not clear whether the copper potential is 

anomalously low or if it could not be measured due to weak electronic coupling with the 

phenyl-alkynyl bridge. 
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Figure 1.12.  The highly conjugated molecular �wire� used to electronically couple the 

active site of amine oxidase to a gold electrode.  N,N-diethylaniline is a known inhibitor 

of amine oxidase.   
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Chapter 2 

Nanosecond Photoreduction of Cytochrome P450cam by Channel-Specific Ru-

diimine Electron Tunneling Wires 
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ABSTRACT  The synthesis and characterization of Ru-diimine complexes designed to 

bind to cytochrome P450cam (CYP101) is described.  The sensitizer core has the 

structure [Ru(L2)L']2+, where L' is a perfluorinated biphenyl bridge (F8bp) connecting 

4,4'-dimethylbipyridine to an enzyme substrate (adamantane, F8bp-Ad), a heme ligand 

(imidazole, F8bp-Im), or F (F9bp).  The electron-transfer (ET) driving force (-∆G°) is 

varied by replacing the ancillary 2,2'-bipyridine ligands with 4,4',5,5'-

tetramethylbipyridine (tmRu).  The four complexes all bind P450cam tightly: Ru-F8bp-

Ad (1, Kd = 0.077 µM); Ru-F8bp-Im (2, Kd = 3.7 µM); tmRu-F9bp (3, Kd = 2.1 µM); and 

tmRu-F8bp-Im (4, Kd = 0.48 µM).  Binding is predominantly driven by hydrophobic 

interactions between the Ru-diimine wires and the substrate access channel.  With Ru-

F8bp wires, redox reactions can be triggered on the nanosecond timescale.  Ru-wire 2, 

which ligates the heme iron, shows a small amount of transient heme photoreduction (ca. 

10%), whereas the transient photoreduction yield for 4 is 76%.  Forward ET with 4 

occurs in roughly 40 ns (kf = 2.8⋅107 s-1); and back ET (FeII→RuIII, kb ~ 1.7⋅108 s-1) is 

near the coupling-limited rate (kmax).  Direct photoreduction was not observed for 1 or 3.  

The large variation in ET rates among the Ru-diimine:P450 conjugates strongly supports 

a through-bond model of Ru:heme electronic coupling. 
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INTRODUCTION 

Electron transfer (ET) is often the rate-determining step in biological catalysis. The 

reactions of the cytochromes P450 are an excellent case in point.1  In the archetypal P450 

from Pseudomonas putida (P450cam), the natural redox partner, putidaredoxin (Putd), 

reduces the enzyme far too slowly (kred ~ 50 s-1) to allow catalytic intermediates to 

accumulate under biological conditions (Scheme 2.1).2  

We are studying a variety of Ru-diimine sensitizers designed to replace the slow 

biological reduction with a rapid optical redox trigger.3,4  Each of the most promising 

sensitizers employs a perfluorobiphenyl group (F8bp) that couples the Ru-diimine to a 

terminal functionality (Chart 2.1).   

In these Ru-diimine:P450 conjugates, the Ru donor and the ferriheme acceptor are 

held in position mainly by noncovalent interactions.  Thus, the synthetic flexibility of the 

sensitizer together with the structural framework provided by the enzyme make this an 

ideal system for exploring basic ET parameters in a biologically relevant milieu.  
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Scheme 2.1. The cytochrome P450cam catalytic cycle.  Upon binding, the substrate 

displaces water, converting the heme from 6-coordinate, low spin (1) to 5-coordinate, 

high spin (2).  Subsequent reduction by Putd produces the ferrous heme, which binds 

dioxygen (3).  Reduction of 3 produces the ferrous, peroxide bound heme (4), which 

rapidly protonates (5).5  In the prevalent model, the peroxide then undergoes heterolysis 

to produce water and a ferryl [FeIV=O]•+ species (compound I, 6), which oxidizes the 

substrate.6 
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Chart 2.1. Ru-diimine wires: 1 Ru-F8bp-Ad; 2 Ru-F8bp-Im; 3 tmRu-F9bp; 4 tmRu-F8bp-

Im. 
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MATERIALS AND METHODS 

General.  P450cam and the mutant Y29F were expressed in E. coli and purified using 

standard procedures.3,7  Site-directed mutagenesis was performed using Stratagene 

QuikChange mutagenesis kits.  P450cam was stored in small aliquots and thawed 

immediately before use.  Samples were prepared in 50 mM potassium phospate buffer 

(pH 7.4) containing 100 mM KCl.  P450 concentration was quantified using the heme 

Soret absorption at 416 nm (ε416=115 mM-1cm-1).  All experiments were performed on 

samples with a ratio Abs418/Abs280 ≥ 1.55 when camphor-free. Spectroscopic experiments 

used custom quartz cuvettes fitted with Kontes Teflon stopcocks.  Oxygen was removed 

from the sample by completing at least 30 cycles of partial vacuum followed by an influx 

of argon. 

Absorption spectra were taken on a HP-8452A spectrophotometer.  Steady-state 

luminescence spectra were taken on an ISS K2 fluorometer.  Emission quantum yields 

were calculated relative to a Ru(bpy)3
2+

 standard, whose luminescence quantum yield was 

taken to be 0.042 in water.8,9,10   

Reduction of P450cam.  P450cam (5.1 µM) was reduced with sodium dithionite under 

an atmosphere of carbon monoxide in the presence of 1.2 equivalents of tmRu-F8bp-Im, 

producing the characteristic Soret peak at 446 nm.  Carbon monoxide was then removed 

by gently bubbling argon through the sample for five minutes, resulting in both a change 
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in shape and a decrease in intensity of the Soret peak (446 nm).  This species was 

assigned as the imidazole-ligated ferrous heme, in agreement with the previously 

determined spectrum of N-phenylimidazole-ligated ferrous P450cam.11  Subsequent 

addition of carbon monoxide to the cuvette resulted in the restoration of the Soret band of 

CO-ligated P450cam. 

As a control, the same procedure was performed with 50 µM camphor replacing 

tmRu-F8bp-im.  Five minutes of argon purging were sufficient to shift the Soret peak 

from 446 to 408 nm, indicative of the complete conversion of CO-bound to five-

coordinate ferrous heme. 

Transient Spectroscopy.  Microsecond transient absorption and emission data were 

collected using instruments described previously.12,13  The instrument possesses a 

response time of 20 ns (FWHM) and the data is digitized at 200 megasamples s-1. For 

nanosecond luminescence decay measurements, the sample was excited at 10 Hz with 70 

ps, 355 nm pulses from a regeneratively amplified mode-locked Nd-YAG laser.  

Luminescence from the cuvette was filtered with a 650 nm long-pass filter, collected 

directly by a fiber optic (Fiberguide Industries), and detected with a Hamamatsu C5680 

streak camera.  The data were recorded using Hamamatsu High Performance Digital 

Temporal Analyzer 3.1.0 software and fit using Microcal Origin 5.0. 
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Binding constants. Luminescence decay profiles were fit to a biexponential function 

(Eq. 1):  

I(t) = c1e−k1t + c2e−k2t
         (1) 

using nonlinear least squares with iterative reconvolution to account for finite instrument 

response.  The ratio of enzyme-bound to free ruthenium complex is c1/c2, where k1 and k2 

are the luminescence decay rate constants for the enzyme-bound and free ruthenium 

complexes. 

This procedure has several advantages over steady-state UV-Vis titrations.  The 

absorption due to the ruthenium complexes complicates the determination of a 

dissociation constant from the direct titration of P450cam with a Ru-wire.  Previous 

results demonstrate that camphor and luminescent probe molecules may bind 

simultaneously to the enzyme, again complicating the derivation of dissociation constants 

from competition binding assays.14 

Fitting errors for c1, c2, k1, and k2 were determined by fixing one parameter while 

leaving the other three free to adopt whatever value minimized the sum of absolute 

values of the residual between the model and the data.  Limits on a particular parameter 

were defined as the values that resulted in clear residuals.  In practice, the fitting error on 

c1 and c2 was found to be about 10% of the total amplitude: err(c1) = 0.1(c1 + c2).  

Propagation of this error through the determination of Kd, assuming the worst-case 
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perfect correlation of c1 and c2, shows that the fitting error is 20% when c1 = c2, but 

becomes substantial when one phase predominates.  For instance, when c1 and c2 account 

for 20 and 80% of the amplitude the resulting Kd becomes uncertain to within a factor of 

2.3.  

ET rate constants.  The raw transient absorption kinetics contain contributions from 

both heme/Ru redox processes and the bleach associated with the Ru-diimine excited 

state (*Ru2+).  The observed kinetics at 420 and 445 nm were corrected for the 

contribution of *Ru2+ prior to fitting.  The *Ru2+ decay was recorded at 427 nm (the 

ferrous/ferric heme isosbestic).  This trace was then scaled to account for the differences 

in *Ru2+/Ru2+ extinction coefficients at 420, 427 and 445 nm (*Ru2+/Ru2+ ∆ε445/∆ε427 = 

1.06, ∆ε420/∆ε427 = 0.83), and subtracted from the kinetics at 420 and 445 nm. 

Transient absorption kinetics were interpreted according to the model shown in 

Scheme 2.2.  The change in optical density (∆OD) at time t is given by Eq. 2: 

∆OD(t) =
k f ⋅ [*Ru]0 ⋅∆ε
kb + ksep − kL

1 −
ksep

kL

 

 
  

 

 
  e

−kLt − 1 −
ksep

kb + ksep
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− kb +ksep( )t +
ksep

kL
−

ksep

kb + ksep

 

 
 
 

 

 
 
  (2) 

where [*Ru2+]0 (M-1) is the concentration of excited ruthenium complex at time zero and 

∆ε is the change in molar extinction coefficients (Eq. 3): 

∆ε (λ) = εFeII − εFeIII + εRuIII − εRuII        (3) 
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Scheme 2.2.  *Ru2+ reduces the heme (kf) or decays to the ground state through a 

combination of intrinsic decay (k0) and energy transfer to the heme (kE), which decays 

non-radiatively to the ground state.  The charge-separated state (Ru3+· · ·Fe2+) undergoes 

back electron transfer (kb) or decays to form a long-lived ferrous heme (ksep).21 
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Sufficient laser power was used to assure that all photosensitizer molecules were 

excited; [*Ru2+]0 = [Ru]tot.  The values ∆ε445 = 90 mM-1cm-1 and ∆ε420 = -72 mM-1cm-1 

were derived from the steady-state spectra of reduced and oxidized P450cam bound to 

tmRu-F8bp-Im plus the known RuII/RuIII ∆ε values.15,16  The rate constant kL (s-1) is the 

observed decay rate of *Ru2+ in the presence of P450 (Eq. 4): 

kL = k0 + k f + kE          (4) 

where the other rate constants are for the intrinsic decay (k0), forward electron transfer 

(kf), and Förster energy transfer to the heme (kE).   

Because the rates of forward and back ET are comparable to the response time of 

our instrument, the instrumental response function was deconvolved from the observed 

kinetics.17  The recorded ∆OD was converted into an intensity (Eq. 5): 

I = I0 ⋅10−∆OD           (5) 

The response function was then deconvolved from the observed intensity I by iterative 

reconvolution using Eq. 5.  The algorithm used was written in MatLab 5.3, and relies on 

the built-in simplex minimization algorithm. 

Fitting errors for kf, kb and ksep were determined by systematically adjusting one 

parameter while leaving the other two free to adopt whatever values minimized the sum 

of the absolute values of the residual between the model and the data.  Limits on a 

particular parameter were defined as the values that resulted in clear residuals.  Error in 
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the rates is best expressed as a multiplicative factor.  The errors are estimated to be: 

kf(445 nm) 2.1; kf(420 nm) 1.8; kb(445 nm) 2.3; kb(420 nm) 2.0; ksep(445 nm) 1.1; 

ksep(420 nm) 1.5.  These errors are in accord with those expected for a multiexpontial fit 

to moderate quality data.17 

Förster energy transfer.  The rate constant kE was calculated from standard theoretical 

expressions (Eqs. 6-8):18  

kE = k0
R0
r
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where J is the overlap between the luminescence spectrum of the donor and absorption 

spectrum of the acceptor (weighted by λ4), φ0 is the luminescence quantum yield in the 

absence of energy transfer, n is the index of refraction, and κ is an orientation factor 

dependent on the alignment of the donor and acceptor dipoles (κ2 = 2/3 for random 

alignment). 

Calculation of buried surface area.  The solvent-exposed surface areas of Ru-F8bp-Ad, 

P450cam, and the P450cam:Ru-F8bp-Ad conjugate (pdb code 1k2o) were calculated with 

the Solvation module of InsightII using a 1.4 Å probe.  Buried surface area was computed 
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by subtracting the surface area of the conjugate from that of Ru-F8bp-Ad and P450cam 

alone.  The difference in buried surface areas for the ∆ and Λ stereoisomers of Ru-F8bp-

Ad is negligible. 

RESULTS 

Synthesis.  Sequential nucleophilic substitution of decafluorobiphenyl proved to be an 

especially efficient route to the desired conjugated compounds (Scheme 2.3).  Absorption 

and emission maxima at 456 and 620 nm (1 and 2) and 444 and 654 nm (3 and 4) are 

consistent with the previously reported spectra of [Ru(bpy)2(Me2bpy)]2+ and 

[Ru(tmbpy)2(bpy)]2+.19  

Binding.  All of the Ru-diimine wires (1-4) bind to P450.  Binding of Ru-F8bp-Ad 

induces a shift in the Soret absorption maximum from 416 to 414 nm, consistent with 

partial displacement of water from the heme iron.  Similarly, coordination of both Ru-

F8bp-Im and tmRu-F8bp-Im shifts the Soret peak to 420 nm (Figure 2.1), consistent with 

the value of 421 nm reported for the ferric P450cam:N-phenylimidazole complex.20  The 

measured extinction coefficient at 446 nm in the spectrum of the tmRu-F8bp-Im:FeII-

P450cam conjugate is 117 mM-1cm-1, in agreement with the value of 116 mM-1cm-1 

reported for the N-phenylimidazole complex.11  All of the absorption spectra are 

consistent with predominantly low-spin hemes in the Ru-wire:P450cam conjugates. 
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Scheme 2.3. Synthesis of Ru-diimine wires: deprotonation of 4,4'-dimethyl-2,2'-

bipyridine with lithium diisopropyl amine (LDA) followed by nucleophilic attack on 

decafluorobiphenyl results in the ET bridge 7. 



 

 

66

N

N
F

F
F

F

F
FF

F
F

F

THF

N

N FF

F F

F

F

F

F

F

N

N FF

F F

F

F

F
H
N

F

H2N

N

H
N

K2CO3

NN

N

N
Ru

Cl

Cl

N

N
Ru

Cl

Cl

+
LDA

5

or

5

6

7

+

+

2

+  6, 7

2

EtOH,
20% H2O

EtOH,
20% H2O

1, 2

3, 4+  5, 7



 

 

67

Figure 2.1.  UV-vis absorption spectra of ferric P450cam (black, open circles), 5.2 µM 

tmRu-F8bp-im (red, open squares), and ferrous P450cam ligated by tmRu-F8bp-im 

(green).  



 

 

68

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

350 400 450 500 550 600

A
bs

or
ba

nc
e

Wavelength (nm)



 

 

69

All of the Ru-wires show biphasic luminescence decays in the presence of 

P450cam.  The fast phase results from partial quenching due to energy transfer to the 

heme, and in the case of Ru-F8bp-Im and tmRu-F8bp-Im, electron transfer (Scheme 2.2, 

following sections).  Typical biphasic luminescence decays for a Ru-wire in the presence 

of P450 are shown in Figure 2.2.  The ratio of the amplitudes of the fast (bound) and slow 

(free Ru-wire) phases was used to calculate binding constants (Table 2.1). 

Electron Transfer.  Upon 470 nm excitation, both tmRu-F8bp-im and Ru-F8bp-im 

reduce P450cam.  The bleach at 420 nm and increase in optical density at 445 nm 

confirm the conversion of (ImN)(CysS){PorN4FeIII} to (ImN)(CysS){PorN4FeII} (Figure 2.3).  

Neither *Ru-F8bp-Ad (*1) nor *tmRu-F9bp (*3) reduces P450cam, as judged by the lack 

of a transient absorption signal. 

Photoexcitation of equimolar tmRu-F8bp-im and P450cam shows complex early 

kinetics (Figure 2.4, Scheme 2.2).  The sharp rise and fall at the beginning of the trace 

recorded at 445 nm are attributed to fast forward (kf) and back (kb) ET.  The rates of 

accumulation and decay of FeII are comparable to the rise time of the instrument.  

Deconvolution was necessary to eliminate the instrument response contribution from the 

observed kinetics.  Optimization of the parameters kf, kb, and ksep at 420 and 445 nm 

yielded the following rate constants: kf = 2.8⋅107; kb = 1.7⋅108; ksep = 9.0⋅106 s-1. 21 
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Figure 2.2.  Luminescence decay. (A) 10 µM 1:1 tmRu-F8bp-im:P450cam luminescence 

decay (tmRu-F8bp-im, black; tmRu-F8bp-im + 1 eq. P450cam, red, open circles).  (B) 

Nanosecond timescale luminescence decay of 1:1 tmRu-F8bp-im:P450cam (4.5 µM) 

(instrument response ca. 70 ps, see Experimental).  The initial rapid (k > 1⋅109 s-1) decay 

is intrinsic to P450cam and likely represents a trace impurity.  The slower decay on this 

timescale corresponds to the rapid decay in Figure 2.2a (kL = 3.7⋅108 s-1).  Green, 

P450cam; black, P450cam + tmRu-F8bp-im; red, monoexponential fit. 
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Table 2.1.  Dissociation Constants.   

Ru-wire µMa 

Ru-F8bp-Ad 0.077 ± 0.011 

Ru-F8bp-Im 3.7 ± 0.5 

tmRu-F8bp-Im 0.48 ± 0.18 

tmRu-F9bp 2.1 ± 1.3 

 

a Uncertainties are standard deviations derived from independent analysis of at least 3 

measurements.
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 Figure 2.3.  Transient absorption spectrum measured 20 µs after 470 nm excitation of 

equimolar tmRu-F8bp-im and P450cam (9.6 µM).  Observed changes in optical density 

are chiefly due to the conversion of ferric to ferrous heme, with comparatively minor 

contributions from RuII to RuIII oxidation. 



 

 

74

-0.002

-0.001

0

0.001

0.002

0.003

390 405 420 435 450

∆
 O

D

Wavelength (nm)



 

 

75

Figure 2.4. Transient absorption at 445 (top) and 420 nm (bottom) for 10 µM 1:1 tmRu-

F8bp-im:P450cam (black, data; blue, fit; red, convolved fit).  The kinetics were corrected 

for both free and bound *Ru2+ by measuring the transient absorption of *Ru2+ at a 

P450cam FeII/FeIII, RuII/RuIII isosbestic (427 nm).  This spectrum was then scaled and 

subtracted from the kinetics recorded at 420 and 445 nm (Experimental).  The data were 

fit to the kinetics model in Scheme 2.2 using iterative reconvolution to account for 

instrument response.  The fit yielded the following rate constants: kf = 2.9⋅107, kb = 

1.6⋅108, ksep = 8.6⋅106 s-1 (445 nm); and kf = 2.6⋅107, kb = 1.9⋅108, ksep = 9.3⋅106 s-1 (420 

nm).  The same procedure could not be applied to the transient absorption spectra of Ru-

F8bp-Im because the signal due to *Ru2+ is much larger than the signal due to the heme. 
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In the absence of competing electron transfer (Ru-F8bp-Ad and tmRu-F9bp), the 

Ru-Fe distance can be calculated using Förster theory from kE, the ruthenium emission 

spectrum, and the heme absorption spectrum (Table 2.2).  The Ru-Fe distance (22.1 Å) 

calculated for Ru-F8bp-Ad is in excellent agreement with the value from the crystal 

structure.  The distance of 17 Å calculated for tmRu-F9bp agrees well with structural 

modeling of the tmRu-F9bp:P450cam conjugate, and corresponds to a ~2 Å gap between 

the end of the perfluorinated biphenyl bridge and the heme. 

Using Eq. 4, we calculate that kE for tmRu-F8bp-Im is 4.4·106 s-1 (Table 2.2).  This 

rate of energy transfer corresponds to a Ru-Fe distance of 18.1 Å, a reasonable distance 

given the geometric constraints of the fluorobiphenyl bridge.  A Ru-Fe distance of 18.1 Å 

can in turn be used to calculate a kE of 6.6·106 s-1 for Ru-F8bp-Im, corresponding to kf = 

4.4·106 s-1, which is 6 times slower than photoinduced reduction of ferric P450cam by 

tmRu-F8bp-Im.  With φ  = (kf/kL), we find total ferrous heme yields of 76% for tmRu-

F8bp-im and roughly 30% for Ru-F8bp-im. 

DISCUSSION 

The observed binding constants suggest that the interaction between the ruthenium 

complex and the enzyme is primarily hydrophobic in nature.  Ru-F8bp-Ad, which has the 

largest hydrophobic surface area, binds best, and tmRu-F8bp-im binds better than its 

nonmethylated analog Ru-F8bp-im.  Previous work suggests that the binding energy 
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Table 2.2.  Derivation of kf and Ru-Fe distances from luminescence decay 

measurements.  Variation in R0 stems from variation in the heme Q bands and the 

emission spectrum of the complex. 

 

Compound kL·10-6 (s-1) k0·10-6 (s-1) kE·10-6 (s-1) kf ·10-6 (s-1) Ru-Fe (Å) R0 (Å)a 

tmRu-F8bp-im 37 4.6 4.4b 28c 18.1a 18.0 

Ru-F8bp-im 13 2.0 6.6a 4.4 18.1d 22.1 

Ru-F8bp-Ad 5.5 2.0 3.5b - 22.1a  

c.f. 21.8e 

24.3 

tmRu-F9bp 13 4.6 8.4b - 17.0a  18.8 

 

a Calculated from Förster theory (Eqs. 6-8). 

b kE = kL - k0 � kf. 

c From transient absorption kinetics. 

d In accord with the calculated Ru-Fe distance for tmRu-F8bp-Im. 

e From the crystal structure of Ru-F8bp-Ad:P450cam (ref. 23). 
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derived from burying hydrophobic surfaces is around 15 cal Å-2 for protein-protein 

interactions.22  The crystal structure of Ru-F8bp-Ad bound to P450cam shows extensive 

contacts between the Ru-wire and the hydrophobic substrate access channel,23 resulting 

in 1.2·103 Å2 of buried surface area (Figure 2.5), corresponding to 8.2 cal Å-2.  A similar 

calculation based on the crystal structure of Ru-C9-Ad bound to P450cam (Figure 2.6) 

yields similar binding energies (∆ isomer: 9.13 kcal mol-1, 8.4 cal Å-2; Λ isomer: 9.69 

kcal mol-1, 9.3 cal Å-2).12  The gain in binding for hydrophobic burial is lower for our 

complexes than is observed at protein interfaces.  In part this result must reflect the 

energetic cost of "opening" the enzyme.23  

The imidazole-functionalized complexes weakly ligate the ferric heme, as tmRu-

F8bp-im binds with only 0.87 kcal mol-1 greater affinity than tmRu-F9bp.  The small 

energetic contribution of coordination may result from steric effects or poorer σ-donating 

ability stemming from the electron-withdrawing perfluorobiphenyl unit.  

These results, and previous work,14 suggest that designing a small molecule to bind 

in a given enzyme active site can be relatively straightforward.  Hydrophobic interactions 

are non-directional, predictable, and hence easily engineered: 1000 Å2 of buried surface 

area should result in a low-micromolar dissociation constant.  Of course, this simple 

strategy does not include considerations such as target specificity or water solubility, two 

important qualities in drug design. 
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Figure 2.5.  The Ru-F8bp-Ad wire is partially buried upon binding to P450cam.  The 

buried surface (gray, 56% of the total surface area) was computed with the program 

GRASP using a 1.4 Å radius probe. 
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ET kinetics. According to semiclassical theory, coupling-limited electron tunneling 

(kmax) will occur when the driving force (-∆G°) equals the reorganization energy (λ).24,25  

Back electron transfer in the P450cam:tmRu-F8bp-Im conjugate (-∆G° ~ 1.5 eV) should 

be in the inverted region for λ in the range 0.7�0.9 eV; the reaction should be 10 (λ = 0.9 

eV) to 5,000 (λ = 0.7 eV) times slower than forward electron transfer.26  The inverted 

effect has been observed in several biological27 and synthetic ET systems.28  We find, 

however, that back ET is 10 times faster than the forward reaction.  One possible 

explanation is that electron transfer initially produces an electronically excited 

product;29,30 another is phonon-modified inelastic tunneling, which can be activationless 

in the conventional inverted region.31  

The transient absorption data show that tmRu-F8bp-Im injects electrons into the 

ferriheme of P450cam more efficiently than Ru-F8bp-Im.  The methyl groups in tmRu-

F8bp-Im increase the driving force for forward electron transfer by 0.13 eV (Table 2.3).  

Semiclassical theory predicts a 4-fold increase in the rate of forward electron transfer, in 

qualitative agreement with the ET rates calculated from transient absorbance and 

luminescence decay rates (Table 2.2). 

In any case, it is likely that back electron transfer occurs at close to the coupling 

limited rate (kmax).  With this assumption, we can estimate the reorganization energy (λtot)
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Figure 2.6. (A) Cutaway view of the 1.55 Å resolution crystal structure of [Ru-C9-Ad]2+ 

bound to P450cam.20  Photochemically generated [Ru-C9-Ad]+ reduces ferric P450cam 

with a time constant of about 50 µs (-∆G° ~ 1.0 eV).4 (B) tmRu-F8bp-Im modeled into 

the active site of P450cam.  The perfluorobiphenyl bridge improves the electronic 

coupling between *Ru2+(L2)L' and the heme, resulting in direct photoreduction with a 

time constant of 36 ns even at lower driving force (-∆G° ~ 0.45 eV).  
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for the reaction:32  

  

kET = kmax exp −(∆Go + λ tot )2

4λtotkBT

 

 
  

 

 
   

Using kmax=1.7⋅108 s-1 and ∆Gûf = -0.45 eV (Table 2.3), we find that λtot ~ 0.85 

eV,33 a value comparable to the λ's observed in Ru(bpy)3
2+-modified cytochrome c (0.74 

eV)30a and cytochrome b5 (0.94 eV).27a  Given a Ru(bpy)3
2+ reorganization energy of 0.6 

eV,34 we estimate that λP450 ~ 1.1 eV, a value that is larger than the reorganization energy 

of cytochrome c (λ = 0.7 eV),25,26,35 but below the estimated reorganization energy of a 

water-exposed heme (λ ≈ 1.2 eV). 26  Our estimate of λP450 is in accord with the proposal 

that a reorganization barrier prevents P450cam reduction in the absence of substrate.36  

Structural variations in the Ru-wires allowed us to test the role of the intervening 

medium on the rate of electron transfer.  Taking into account the differences in Ru-heme 

distances and driving forces, a coupling model with a uniform distance decay37 of 1.1 Å-1 

and λ = 0.8 eV27a, 30 predicts only 12-fold faster ET for tmRu-F8bp-Im compared to Ru-

C9-Ad, instead of the 1400-fold rate difference that is observed (Figure 2.6).  Similarly, 

tmRu-F8bp-Im efficiently reduces P450cam while tmRu-F9bp does not, despite the 

similarity in donor-acceptor distances and driving forces.  The saturated bonds in Ru-C9-

Ad and the through-space jump in tmRu-F9bp likely weaken electronic couplings 

compared to those associated with the imidazole-terminated Ru-wires, and hence greatly 
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Table 2.3.  Reduction potentials. 

Compound Potential (V, NHE) 

P450cam (Fe3+/2+) ~ -0.3a  

[Ru(bpy)3]3+/2+* -0.62b 

[Ru(tmbpy)3]3+/2+* -0.75c 

[Ru(bpy)3]3+/2+ 1.26b 

[Ru(tmbpy)2(dmbpy)]3+/2+ 1.07d 

 

a low spin (ref. 38). 

b Ref. 8. 

c Ref. 39. 

d In MeCN vs. SSCE (ref. 19). 
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slow ET.40  Our results thus strongly support a through-bond model for coupling the Ru 

and heme centers.41 

The biological reduction of P450cam by Putd (50 s-1) is slow for two reasons: the 

driving force is low and the coupling to the deeply buried heme is weak.  The coupling to 

the ferriheme was enhanced in enzyme conjugates containing the first generation of 

ruthenium sensitizer-linked substrates, which featured a direct ET pathway through a 

saturated alkyl chain.  As a result, ET occurs on a submillisecond timescale (2⋅104 s-1).4  

Both theory and experiment indicate that incorporating aromatic groups into the linker 

will further enhance the electronic coupling.42  By employing a more direct, largely 

conjugated path, tmRu-F8bp-Im is able to photoreduce P450cam in nanoseconds (2.8⋅107 

s-1), 103 times faster than the Ru-wire with alkyl chain linker, and 5⋅105 times faster than 

putidaredoxin.   

CONCLUDING REMARKS 

Photoreduction of the enzyme by the channel-specific Ru-imidazole wires occurs 

on the nanosecond timescale, fully 5 orders of magnitude faster than reduction by the 

natural redox partner putidaredoxin.  Fast electron injection was only observed in the 

imidazole-terminated Ru-wires.  However, calculations based on simple electronic 
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coupling models suggest that improved conjugation will overcome the loss of a direct 

bond to the heme.40  

Hydroxylation catalyzed by P450cam is only one example of numerous biological 

processes, including photosynthesis and respiration, that involve oxidation and reduction 

steps.  Current methods for studying enzyme reactions, for instance, stopped-flow mixing 

and photocaged substrates, have time resolutions limited by diffusion.  ET is 

intramolecular in Ru-substrate:enzyme conjugates, dramatically improving the accessible 

time resolution.   

One goal of our research is to generate and study cytochrome P450 reactive 

intermediates.  However, the pursuit of this goal has led to an improved understanding of 

how to mesh natural and synthetic photochemical systems.  The desire to combine 

biological and man-made photochemistry stems from the need to understand two seminal 

chemical problems: how to catalyze endergonic reactions, and how to control multiple 

proton and electron transfers.  Nature has found solutions to both of these problems, the 

most obvious example being photosynthesis.  In order to understand biological systems, 

it is necessary first to dissect them.  The lessons illustrated in this study�the usefulness 

of the hydrophobic effect in designing molecular interactions, the importance of a well-

coupled ET pathway, and the suppression of the inverted effect�should be generally 

applicable to chemical systems at the interface of biological and inorganic chemistry. 
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Chapter 3 

Probing the open state of cytochrome P450cam with ruthenium-linker substrates� 

 

 

�Adapted from: Dunn, A. R.; Dmochowski, I. J.; Bilwes, A. M.; Gray, H. B.; Crane, B. R. 

Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 12420-12425. 
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ABSTRACT 

 Cytochromes P450 play key roles in drug metabolism and disease by oxidizing a 

wide variety of natural and xenobiotic compounds.  High resolution crystal structures of 

P450cam bound to ruthenium sensitizer-linked substrates reveal an open conformation of 

the enzyme that allows substrates to access the active center via a 22 Å deep channel.  

Interactions of alkyl and fluorinated biphenyl linkers with the channel demonstrate the 

importance of exploiting protein dynamics for specific inhibitor design.  Large changes in 

peripheral enzyme structure (F and G helices) couple to conformational changes in active 

center residues (I helix) implicated in proton pumping and dioxygen activation.  Common 

conformational states among P450cam and homologous enzymes indicate that static and 

dynamic variability in the F/G helix region allows the 54 human P450s to oxidize 

thousands of substrates. 
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INTRODUCTION 

Cytochromes P450 catalyze the transformations of many diverse substrates.1  

Most notably, P450s to hydroxylate aliphatic carbon by generating a reactive heme-

oxygen species: R-H + O2 + 2H+ + 2e- ! R-OH + H2O.  Found in all phyla, P450s have 

the same protein fold and cysteine-ligated heme, despite low sequence similarity between 

some members (structurally similar P450cam and P450BM-3 have only 17% sequence 

identity).2  Humans have at least 54 different P450 isozymes.3  They play key roles in 

steroid biosynthesis and arachidonic acid metabolism, as well as in the transformations of 

xenobiotics in detoxification and carcinogenesis.4  Particularly striking is the finding that 

P450 3A4 metabolizes up to half of all drugs in use.5  Despite broad substrate diversity, 

all P450s have significant structural constraints on their activity: P450s must control 

water access to the active center to avoid the conversion of activated dioxygen to 

superoxide or peroxide.  Thus, the binding sites of P450 isozymes must be structurally 

diverse, yet conserve a mechanism of catalysis and solvent exclusion.  An unanswered 

question is how thousands of substrates are metabolized by one enzyme family whose 

chemistry requires significant structural constraint.   

As part of our investigation of cytochrome P450cam using sensitizer linked 

substrates (SLS),6 we sought to determine the structures of P450cam bound to several 

different Ru-diimine photosensitizers.  This chapter describes the structures of two such 
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Ru-substrate:P450cam conjugates. As predicted, the substrate moieties bind at the active 

center, and the Ru-sensitizers bind near the protein surface.  Importantly, the enzyme 

changes conformation to accommodate the linkers. The open conformation we observe 

mimics structures of other P450 enzymes and reveals a likely path for substrates to access 

the active center. Notably, this rearrangement is coupled to conformational changes of 

catalytically important residues. 

MATERIALS AND METHODS 

Crystallization and data collection: Purification and crystallization of P450cam:Ru-C9-

Ad have been described previously.6a  P450cam:Ru-F8bp-Ad seed crystals in the space 

group P1 (cell dimensions 63.8 × 67.1 × 72.5 Å3, two molecules per asymmetric unit; 

Matthews coefficient (VM) = 2.56; solvent content = 51.9%) nucleated from C334A 

P450cam separated from camphor and complexed with stoichiometric Ru-F8bp-Ad.  

Hanging drops contained an equal volume mixture of reservoir and 396 µM P450:Ru-

F8bp-Ad in 20 mM Hepes, 100 mM KCl, 1mM DTT pH 7.5.  The reservoir (pH 6.5) 

contained 0.1 M sodium cacodylate, 200 mM KCl 8-15% (wt/vol) molecular weight 

8,000 polyethylene glycol (PEG).  Crystal nucleation was induced by setting the 

crystallization trays on ice for 30 min.  The resulting temperature gradient causes partial 

dehydration of the hanging drops.  The trays were then removed from the ice and stored 

at 4 °C; seed crystal growth occurred overnight.  Diffraction quality crystals were grown 
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over 24 hours by moving seed crystals into sitting drops with reservoir PEG 

concentrations of 8-11%. 

 Two data sets were collected at the Stanford Synchrotron Research Laboratory 

(SSRL).  Data set 1 (1.80 Å resolution) was collected at 100 K on beamline 9-2 (λ=1.03 

Å) at SSRL and processed with DENZO and SCALEPACK.7  Data set 2 (1.65 Å 

resolution) was collected at 100 K on beamline 9-1 (λ= 0.72 Å) and similarly processed.   

Structure determination of P450:Ru-F8bp-Ad: An initial molecular replacement 

solution (correlation coefficient = 46.1 and Rcryst = Σ||Fobs| - |Fcalc||/Σ|Fobs| = 44.7%) for 

diffraction data set 1 (20.0 to 3.5 Å resolution) was found with AMORE8 by using two 

probe molecules, each derived from the structure of camphor bound P450cam (PDB 

code: 2cpp).  The initial model derived from molecular replacement on data set 1 was 

replaced with the protein coordinates from Ru-C9-Ad bound P450cam (PDB code: 1qmq) 

by least squares fitting and was further improved by simulated annealing.  Ru-F8bp-Ad 

was positioned into the remaining difference density.  Refinement was completed by 

iterative rounds of torsion-angle molecular dynamics and positional refinement with 

CNS9 and XFIT10 amidst model rebuilding, water molecule placement, and resolution 

extension to 1.65 Å.  Overall anisotropic thermal factor correction, bulk solvent 

correction, individual thermal factor refinement,  and grouped occupancy refinement of 

Ru-F8bp-Ad produced the final model (7688 scatterers in the asymmetric unit, 2 
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P450:Ru-F8bp-Ad molecules, each containing a superposition of Ru-F8bp-Ad ∆ and Λ 

stereoisomers; 18 residues in multiple conformations; 5 cacodylate molecules bound to 

cysteines 58A, 85A, 58B, 85B and 136B; 693 water molecules).  Noncrystallographic 

symmetry restraints were not applied between the two molecules per asymmetric unit.  

The final model has excellent stereochemistry  (Table 3.1) with 90.5% of all residues in 

the most favored regions of ϕ/ψ space as defined by PROCHECK.11  The residue Glu94 

falls outside the accepted regions of ϕ/ψ space due to steric interactions with the 

cacodylate bound to Cys85.  Figures were generated with Bobscript,12 MOLSCRIPT,13 

Raster3D14  and InsightII.  Molecular surfaces were calculated with MSMS15 and 

rendered with AVS (Advanced Visualization Systems, Inc.). 

RESULTS AND DISCUSSION 

Ru-substrate binding reveals a substrate access channel in P450cam 

 The P450cam complexes with  Ru-C9-Ad and Ru-F8bp-Ad have strikingly similar 

protein conformations (Cα r.m.s.d. = 0.7 Å) and SLS binding modes, despite having 

crystallized in different space groups.  Ru-C9-Ad and Ru-F8bp-Ad share the same 

[RuII(bpy)3]2+ and adamantyl functionalities, but  are linked with a nine carbon alkyl 

chain in Ru-C9-Ad and a 4,4'-substituted octafluorobiphenyl in Ru-F8bp-Ad. 
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Table 3.1: X-ray data collection and refinement 

 

 data set 1 

 

data set 2 

Unit cell 64.0 67.3 72.5 Å 

71.3 65.8 62.4û 

63.8 67.1 72.5 Å 

71.2 65.2 62.3û 

Space group P1 P1 

Resolution (Å) 1.80 (1.86-1.80) * 1.65 (1.71-1.65)* 

Rsym
� 3.7 (25.6)* 3.8 (29.2)* 

Completeness 96.8 (95.4)* 97.8 (97.0)* 

Wilson B (Å2)  19.0 

I/s(I)� 21.9 (3.80)* 16.43 (1.99)* 

# molecules/unit cell  2 

Rfac
§  21.0 (29.2)* 

Rfree
¶  22.6 (28.7)* 

r.m.s.d. bonds, angles||  0.007 Å, 1.2û 

Protein atoms, <B>  6569, 23.16 Å2 

Waters, <B>  693, 34.3 Å2 

Ru-F8bp-Ad atoms, <B>  280, 25.7 Å2 

Residues not modeled  A1-A9, B1-B9 

Additional ligands  5 cacodylate 

 

* Highest resolution range for compiling statistics. 

� Rsym = ∑∑j|Ij - <I>| / ∑∑j|Ij|, Ij = intensity of observation j. 

� Intensity signal to noise. 

§ R = ∑||Fobs| - |Fcalc|| / ∑|Fobs| for all reflections (no σ cutoff). 

¶ Free R calculated against 7.4% of reflections removed at random. 

|| Root-mean-square deviations (r.m.s.d.) from ideal bond and angle restraints. 



 

 

104

 The ruthenium complexes bind P450cam in a channel that likely gives natural 

substrates access to the buried active center (Figure 3.1).  Movement of the F (residues 

173-185) and G (192-214) helices against the perpendicular I helix (234-267) retracts the 

F/G loop (185-192) from the β-sheet domain and thereby opens an access channel to the 

heme that is 22 Å deep and 11 Å across (Figure 3.2).  In effect, the F and G helices 

translate relative to the protein core in a �shear� mechanism,16 whereas the core itself 

undergoes smaller motions to maintain hydrophobic interactions. 

On opening of the access channel, the interactions of the F and G helices with the 

protein core manifest in two ways: 1) the making and breaking of salt-bridges to stabilize 

helix juxtaposition; and 2) slight distortion of the core backbone to conserve hydrophobic 

packing.  Rearrangements of inter-residue salt bridges and hydrogen bonding interactions 

among the F helix, F/G loop, and the I helix facilitate sliding of the F helix relative to the 

I helix. These rearrangements (Figure 3.3) either exploit the conformational flexibility of 

long side chains to maintain hydrogen bonding interactions (e.g., Glu171 to Arg161, 

Arg186 to Asp251) or involve the breaking and making of hydrogen bonds (e.g., Lys178 

to Asp251 and Leu250 exchanged for Lys178 to Glu156).  

The tendency to maintain hydrophobic packing interactions between the G helix 

and both the I helix and the B' loop (residues 89-101) causes main-chain conformational 

distortions within the protein core in response to the new F/G helix positions.   
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Figure 3.1. Comparison of P450cam bound to Ru-C9-Ad (A) and adamantane (B).17  On 

binding the Ru-substrate (Λ-stereoisomer in blue, ∆-stereoisomer in green) the F and G 

helices (red ribbons) retract from the P450cam β-sheet domain (gray ribbons).  The 

adamantyl moiety binds in the same position above the heme (yellow) as free 

adamantane.  (C) Movement of the F, G, H, and I helices (rotated ca. 180û from A and B).  

For comparison, P450cam bound to camphor is shown in gray.  Residues on the F/G loop 

move as much as 7.5 Å as the F and G helices slide approximately one helical turn (4.5 

Å) across the I helix.  The H helix (218-225) and the N-terminus of the I helix (234-267) 

shift with the G helix to conserve interhelical contacts. 
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Figure 3.2. Shape complementarity and hydrophobic interactions between Ru-F8bp-Ad 

and P450cam.  The water molecules (red) hydrate newly exposed surface area in the 

P450cam:Ru-F8bp-Ad structure. 
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Figure 3.3. Side chain interactions in closed (A) and open (B) P450cam.  The charged 

residues Lys178 (F helix), Asp182 (F helix) Thr185 (F/G loop), and Arg186 (F/G loop) 

alter their interactions with Asp251, a key residue on the I helix implicated in delivering 

protons to activate heme-bound dioxygen.  Alternate conformations of Arg186 and 

Asp251 are present in the Ru-C9-Ad complex, indicating conformational mobility.  The 

N-terminal I helix segment translates and rotates to maintain a hydrophobic core of 

interdigitated branched hydrophobic residues (Leu246, Leu250, and Val247) with the F 

(Leu177, Thr181, and Met184) and G (Leu200, Tyr201, Leu204, and Ile208) helices. 
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For example, the B' loop moves to maintain packing of F87, Y96, and F98 with F193 and 

Y201 on the G helix.  Similarly, the numerous contacts among the hydrophobic side 

chains of the F, G, and I helices cause the N-terminal half of the I helix to rotate in 

response to the translation of the F and G helices in the open structure.  As discussed 

below, this change in I-helix main-chain conformation and hydrogen bonding in turn 

affects the conformation of the active site. 

The position of the F and G helices in other P450s closely matches the 

conformations found in our open structures of P450cam.  Substrate-free P450BM-3 

crystallizes in an open form and P450NOR has a large, permanent access channel 

analogous to that observed in the Ru-substrate:P450cam structures (Figure 3.4).18  The 

structural similarity of the open P450cam structure with P450BM-3 and P450NOR 

suggests that the open conformation is important for substrate binding. The Ru-substrates 

stabilize a conformation that may exist only transiently for P450cam, but which is clearly 

stable for other cytochromes P450.  Thus, the P450 fold apparently allows an opening 

motion of the F and G helices with the relative stability of open and closed forms 

weighted differently among P450s. 

The conformation of the F/G loop is similar in the open and closed structures of 

P450cam.  However, mobility of the F/G loop is suggested by disorder in the crystal 

structures of P450terp and P450 2C5.19  Furthermore, the F/G loop of CYP 119  
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Figure 3.4. The F, G, and I helices of P450cam in its closed (gray) and open (blue) states 

compared to those of P450NOR (light blue). 
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undergoes rearrangement on binding bulky substrates.20  Thus, F/G loop flexibility may 

also play an important role in P450 substrate binding. 

Solution studies support a transient open state of P450cam. Photoacoustic 

calorimetry indicates that a short-lived (~130 ns) intermediate of larger volume forms 

during the photolysis of heme-bound carbon monoxide and expulsion of camphor.21  Our 

structures confirm an earlier prediction based on photoacoustic spectroscopy that the 

residues Arg186, Asp251, Lys178, and Asp182 undergo rearrangement during substrate 

binding.22  Furthermore, tryptophan fluorescence quenching measurements show that 

substrate-free P450cam is conformationally more labile than the camphor-bound 

enzyme.23   

Indirect evidence also suggests an open/closed equilibrium in other P450s.  

Cooperative substrate hydroxylation, consistent with a flexible binding site, has been 

observed in P450 3A4, the most abundant hepatic P450.24  Eukaryotic P450s, for instance 

P450scc, are known to exist in multiple conformational states.25  Drug resistance 

mutations in the fungal P450 CYP51 occur in the G and H helices, far from the active 

site.26  Finally, computer simulations support F/G helix fluctuations in both P450cam and 

P450BM-3.27 

Interactions of Ru-substrates with P450cam  
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Two current problems in drug design are as follows: 1) how to avoid the 

deactivation of drugs by hepatic P450s; and 2) how to selectively inhibit specific 

pathogenic  P450s.28  Our Ru-substrate complexes bind with submicromolar dissociation 

constants, but are structurally very different from camphor.  Thus, the interactions of the 

Ru-substrates with P450cam provide insight into why some P450s are promiscuous 

binders and suggest how to design specific P450 isozyme inhibitors.   

Our structures provide examples of rarely characterized interactions among 

proteins, metal complexes, and fluorinated aromatics.  Both Ru-substrates bind P450cam 

in a similar fashion.  Notably, the ruthenium atom and adamantyl centroids are only 1.64 

and 1.07 Å apart in the superimposed structures.  In part this is due to design: Ru-F8bp-

Ad was synthesized after the crystal structure of Ru-C9-Ad was known.  However, 

preferred interactions between the protein and Ru:substrates lead to similar structures. 

Ru-F8bp-Ad interactions:  Although direct contacts between [RuII(bpy)3]2+ and the 

protein are limited, both the ∆ and Λ isomers of the complex could be discerned due to 

the rigidity of Ru-F8bp-Ad (Figure 3.35).  There are very few crystal structures of 

fluorinated aromatics bound to proteins.  Phenyl and perfluorophenyl functionalized 

molecules are known to stack in the solid state due to favorable π-π interactions between 

the electron-rich phenyl groups and electron-poor perfluorophenyl groups.29  These  
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Figure 3.5. Simulated-annealing omit map (Fobs-Fcalc) calculated with Ru-F8bp-Ad 

removed from Fcalc.  Electron density is shown at 1.65 Å resolution and contoured at 2.5 

σ.  For clarity only one isomer is shown.  The bipyridyl ring contacts Tyr29.  Phe193 

contacts one fluorinated ring with 3.4 Å between rings, consistent with the 3.4 Å face-to-

face distance observed in the benzene-hexafluorobenzene crystal structure.30  Phe87 

contacts the perfluorobiphenyl unit in an edge-on fashion, with the ε carbon 3.5 Å from 

the face of the biphenyl unit.  Tyr96 packs against the biphenyl unit in an edge-on 

fashion, with fluorine-carbon contacts ranging from 3.2 to 3.9 Å. 
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attractive interactions, which have been estimated to be worth about 15 kJ/mol in 

vacuum, make the hydrophobic perfluorophenyl group a potentially useful functionality 

for drug design.31   

 The P450cam:Ru-F8bp-Ad complex shows both parallel and perpendicular 

stacking between the octafluorobiphenyl unit and aromatic residues (Figure 3.2, 3.5).  

The crystal structure of a matrix metalloproteinase inhibitor also shows a parallel 

stacking interaction (3.7 Å separation) between a pentafluorophenyl group and a tyrosine, 

which contributes to the binding affinity of the inhibitor relative to the phenyl analog.31d  

In contrast, the crystal structure of a carbonic anhydrase inhibitor shows perpendicular 

stacking between a phenylalanine and a pentafluorophenyl group.32  Our results further 

demonstrate that the interaction between an aromatic electron donor and a fluorinated 

ring can be parallel or perpendicular and is influenced both by the intrinsic attraction and 

the structural constraints imposed by the tertiary structure.   

Ru-C9-Ad interactions:  Due to the flexibility of the alkyl chain, the bipyridyl ligands of 

Ru-C9-Ad were difficult to discern in the electron density.  Anomalous scattering 

measurements revealed two distinct positions for the ruthenium atom separated by ~1 Å 

in the access channel.  The best fit to the electron density included both and ∆ and Λ 

isomers and interactions with Tyr29 and Pro187, as in the Ru-F8bp-Ad structure (Figure 

3.1, 3.2). In addition, a bipyridine contacts Ala92, and an acetate molecule (present in the 
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crystallization solution) sandwiches between the [RuII(bpy)3]2+ unit and Phe193.  The 

hydrocarbon tether linking the ruthenium complex to the adamantyl unit winds across the 

side chains of Ile395, Phe193, Phe87 and Tyr96�the same residues that contact the 

fluorinated biphenyl unit in Ru-F8bp-Ad. 

 Tyr96 is hydrogen bonded to the carbonyl of the Ru-C9-Ad amide bond as it is to 

the camphor ketone group in the substrate complex.33  The adamantyl unit binds in the 

same pocket as in the Ru-F8bp-Ad structure but enjoys more extensive hydrophobic 

interactions with Leu244, Thr101, Ile395, Val295, Thr252 and the Gly248 Cα.  The 

strain induced by the short separation (3.00 Å) of the adamantyl unit and heme-bound 

water perhaps explains the partial low- to high-spin heme shift that occurs upon binding 

(data not shown). 

 The [RuII(bpy)3]2+ moiety does not force the substrate access channel open as it is 

pulled in by the adamantyl group.  If the interaction with the ruthenium complex was 

unfavorable the enzyme could push the complex into solution and close around the alkyl 

chain.  Instead, Förster energy transfer experiments indicate that the ruthenium resides 

the same distance from the heme even when the linker is much longer than the access 

channel.6a  Even in the Ru-C9-Ad structure the alkyl chain is not fully extended.  Thus, 

favorable binding interactions between Ru-substrate and the enzyme likely stabilize an 

open conformation that already exists transiently under normal conditions.  Our structures 
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suggest that improved P450 inhibitors might be produced by taking advantage of the 

enzyme's intrinsic flexibility. 

F/G loop movement affects the P450cam active site 

The F/G loop movement in P450cam is coupled to changes in functionally 

important residues in the active center.  I helix residues 248-252 participate in dioxygen 

activation.1  In particular, Thr252, Asp251, and the Gly248 peptide carbonyl play crucial 

roles in the conversion of heme-bound dioxygen to high-valent iron-oxo or peroxo 

species.  The open structure reveals that I helix residues also couple the coordination 

environment of the heme iron to enzyme tertiary structure peripheral to the active center. 

In closed P450cam, the I helix segment adjacent to the heme iron bulges so that 

the peptide carbonyl groups of residues 248-251 do not form hydrogen bonds to C-

terminal peptide nitrogens within the helix. A hydrogen bond between the Thr252 

hydroxyl and Gly248 carbonyl stabilizes this bulge.  In open P450cam, the bulge shifts 

toward the N-terminal end of the I helix.  To effect this change the peptide bonds 

between residues 250-251 and 251-252 rotate 90û relative to the closed structure and 

anneal back into the helix (Figure 3.6), while the carbonyls of Leu245 and Leu246 are no 

longer hydrogen bonded within the helix but instead are bonded to a buried water 

molecule (Figure 3.6, 3.7).  This shift in the I helix bulge arises from a 1.5 Å translation 

of the N-terminal half of this helix that preserves hydrophobic contacts with the retracted 
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Figure 3.6. The active sites of P450BM-3 and P450cam (closed, dioxygen bound, and 

open conformations).  Regularization of the I helix between Leu250 and Asn255 

compensates for the loss of main chain hydrogen bonds between Leu245 and Leu250 in 

the open P450cam structure.  Interactions with the F and G helices break the hydrogen 

bond between the Asn255 side-chain amide and the Asp251 carbonyl, allowing the 251-

252 peptide to flip down and hydrogen bond to the Asn255 peptide amide.  As in 

dioxygen-bound ferrous P450cam, this peptide flip is accompanied by the introduction of 

a helix-bridging water molecule.34  Movement of the F and G helices also breaks the 

hydrogen bond between Lys178 and the peptide carbonyl of Leu250, allowing the 250-

251 peptide bond to flip 90 degrees and anneal into the helix. 
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conformation of the F and G helices (Figure 3.3, 3.7). 

The altered interactions of the F and G helices with the I helix in open P450cam 

regularizes the I helix to conformations similar to those found in other P450 structures.  

In P450BM-3 and P450NOR, the I helix residues equivalent to P450cam 249-251 all 

have standard helical conformations.  This is one more helical residue (249) than open 

P450cam, two more residues than O2-bound ferric P450cam (249 and 250), and three 

more residues than closed P450cam, where residues 249, 250, and 251 all form hydrogen 

bonds outside the I helix.  Taken together, these structures show that the I helix backbone 

adopts different conformations depending on the ligand bound.  Importantly, the I helix 

backbone conformation controls the water structure surrounding the heme iron (Figure 

3.6). 

The I helix communicates changes in the F and G helices to the coordination 

environment above the heme.  As a result of the I helix conformational changes in the 

open structure, the Gly248 carbonyl is even closer to the heme iron (4.8 Å) than in either 

the O2 complex (5.5 Å) or the low-spin closed conformation (6.4 Å).  The resulting short 

hydrogen bond (2.6 Å) from the Gly248 carbonyl to the iron-ligating water molecule 

stabilizes water-bound, low-spin, low-potential heme in the open form of the enzyme.  

Tilting the equilibrium towards water-ligated, ferric heme may help prevent heme 

reduction and the subsequent production of superoxide, peroxide, and other toxic forms 
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Figure 3.7.  Buried water molecules facilitate the I helix rearrangement between open 

(green ribbon and red waters) and closed states (gray ribbon and blue waters).  Note the 

shift of the I helix bulge and concurrent rearrangement of the buried waters.  Glu366, a 

highly conserved residue among P450s, anchors the water molecules. 
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of reduced dioxygen. 

Solvation changes important for substrate binding and catalysis 

Twenty-four additional ordered water molecules hydrate newly exposed surfaces 

in the Ru-bound structures of P450cam (Figure 3.2).  This number agrees well with 

earlier results that suggested the involvement of 28 water molecules in the catalytic cycle 

of the enzyme.35  Due to the motion of the F and G helices, 9 new ordered water 

molecules form hydrogen bonds to Asp251, Arg186, Asp182, and Lys178 between the F 

and I helices.  In addition, the F helix residues Thr185 and Thr181 rotate in the open 

structure so that their hydroxyls can form hydrogen bonds to water.  Although Asp251 

has been implicated in proton delivery to the active center, this residue is sequestered in 

the closed structure.  Hydration of Asp251 in the open structure suggests that the altered 

hydrogen bond patterns of this conformation are not only important for substrate binding 

but also in facilitating proton and/or water molecule exchange during catalysis. 

Buried water molecules mediate conformational flexibility in proteins through 

their mobility and ability to switch hydrogen-bonding partners.36  Three conserved water 

molecules that have analogs in P450terp, P450eryF, and P450NOR stabilize the disrupted 

I helix i to i+4 hydrogen bonds in both the open and closed conformations  (Figure 

3.7).19a,37  The role of water molecules in facilitating the open/closed transition of 
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P450cam is similar to that found in the facilitation of large scale conformational 

fluctuations of acetylcholinesterase.38 

Structural flexibility makes cytochrome P450 a versatile catalyst 

 The motions of the F and G helices we observe in the comparison of the open and 

closed P450cam structures, along with similar differences in structure between substrate-

bound and free P450BM-3,39 suggest an explanation for the extraordinary substrate 

diversity associated with human P450s.  If P450cam, an enzyme specialized for a single, 

small substrate, undergoes such large motions upon substrate binding, many of the human 

liver isozymes may as well.  In effect, the F and G helices act as a clamp, both to fix the 

substrate over the heme and to exclude excess water from the active site.  Remarkably, 

P450cam hydroxylates Ru-substrates when suitable electron donors are provided.40  This 

observation further underlines the extraordinary ability of P450s to handle widely varying 

substrates. 

Cytochromes P450 provide yet another demonstration of the importance of 

energetically low-lying conformational states in protein function.  As in P450cam, these 

alternate conformations may be difficult to detect if they form and decay on a 

submicrosecond time scale.  Our structures show that regions distant from the active 

center are critical for substrate binding and catalysis in cytochromes P450.  Thus, 
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although local structure tunes the reactivity of a metallo-cofactor, the entire polypeptide 

generates the dynamic properties necessary for enzymatic activity.   
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Fluorescent probes for cytochrome P450 structural characterization and inhibitor 

screening� 
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ABSTRACT 

We have synthesized two dansyl-based luminescent probes (D-4-Ad and D-8-Ad) that 

target cytochrome P450cam. D-4-Ad luminescence is quenched by Förster energy 

transfer upon binding (Kd = 0.83 µM), but is restored when the probe is displaced from 

the active site by camphor.  In contrast, D-8-Ad (Kd ~ 0.02 µM) is not displaced from the 

enzyme even in the presence of a large excess of camphor.  The 2.2 Å resolution crystal 

structure of the D-8-Ad:P450cam complex reveals extensive hydrophobic contacts 

between the probe and the enzyme, which result from the conformational flexibility of 

the B', F and G helices.   Probes with properties similar to those of D-4-Ad potentially 

could be useful for screening P450 inhibitors. 
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INTRODUCTION 

Substrate-specific cytochromes P450 play major roles in steroid and eicosanoid 

biosynthesis, and thus constitute important drug design targets.1  In contrast, P450 

isozymes expressed in the liver take part in the metabolism of nearly all drugs.2  Adverse 

drug reactions, for instance to Prozac,3 result from individual variations in hepatic 

P450s.4  It is thus important to predict which P450s interact with a potential drug 

candidate, and to understand the nature of these interactions.   

We have developed fluorescent probe molecules for P450cam that consist of an 

α,ω-diaminoalkane chain connecting a dansyl fluorophore to the P450cam substrate 

adamantane (Scheme 4.1).  The synthesis of the dansyl-substrates was designed to be 

short, robust, and modular for maximum ease and flexibility.  A shift in Soret absorption 

(Figure 4.1) as well as greatly diminished dansyl luminescence attributable to Förster 

energy transfer to the heme5 (Figure 4.2) accompany probe binding. When D-4-Ad is 

displaced from the active site by camphor, fluorescence is restored (Figure 4.2a).6  

Because a bright signal stands out against a dark background, substrate or inhibitor 

binding is readily detected.  This assay, which is both simple and sensitive, can be 

employed to screen combinatorial chemical libraries.7 
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Scheme 4.1.  (A)  Dansyl-based fluorescent probe molecules used in this study.  (B) 

Synthesis of D-4-Ad. 
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Figure 4.1. (A) Absorption spectra showing the binding of camphor to P450cam (4.9 

µM) in the presence of 1 equivalent of D-4-Ad.  The initial addition of D-4-Ad to 

P450cam results in a shift in the Soret from 416 to 414 nm.  A fit of the data to a 

competitive binding model gives a dissociation constant of 0.83 µM. (B) The camphor-

induced shift from low- to high-spin P450cam (5.7 µM) in the presence of 1 equivalent of 

D-8-Ad.  Black, P450cam; purple, P450cam + 1 equivalent dansyl probe; blue to red, 0.5, 

1, 2, 4, 8, 16, 32, and 64 equivalents camphor. 
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Figure 4.2.  Fluorescence spectra of D-4-Ad (A) and D-8-Ad (B).  Black, 2 µM D-8-Ad 

or D-4-Ad; purple, 2 µM dansyl probe + 1 equivalent P450cam; blue to red: 2 µM 

P450cam and dansyl probe + 0.5, 1, 2, 4, 8, 16, 32, and 64 equivalents of camphor 

(Kd=1.6 µM).8  
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MATERIALS AND METHODS 

P450cam was expressed and purified as previously described.9  Steady-state UV-

visible absorption spectra were measured on a Hewlett Packard 8452A diode array 

spectrophotometer.  Steady-state fluorescence spectra were measured using an ISS K2 

fluorometer (λex = 340 nm).  Absorption and emission spectra were collected in quartz 

cuvettes using 50 mM potassium phosphate buffer (pH 7.4) containing 100 mM KCl.  

NMR spectra were collected on an Oxford Instruments 300 MHz NMR and analyzed 

with Varian VNMR 6.1B software.  Electrospray mass spectra were collected on a 

Finnigan LCQ ion trap mass spectrometer.  Buried solvent accessible surface area was 

calculated using the solvation module of InsightII (1.4 Å radius probe).  All reagents 

were purchased from the Aldrich chemical company and used as received.   DMF and 

N,N-diisopropylethylamine were anhydrous, and used as received. 

RESULTS AND DISCUSSION 

Both fluorescence and absorption spectra show that D-4-Ad binding to P450cam 

is competitive with camphor.  The Soret shift (416 to 414 nm) induced by D-4-Ad 

indicates that it binds in the active site. With a Kd of 0.83 µM, D-4-Ad binds twice as 

strongly as the natural substrate.  D-8-Ad also induces a shift in the Soret maximum from 

416 to 414 nm: from the integrated D-8-Ad fluorescence in the presence and absence of 

P450cam, we estimate an upper limit Kd ~ 0.02 µM for this probe. 
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Interestingly, the titration of a 1:1 mixture of D-8-Ad and P450cam with camphor 

also shows a shift in the Soret to 392 nm, and an apparent camphor Kd of ~ 1 µM (Figure 

4.1B).  However, the steady-state luminescence titrations indicate that D-8-Ad remains 

bound to P450cam even when the absorption spectrum indicates that the heme has 

converted fully to its high spin, and presumably camphor-bound, form.  The 

luminescence and absorption data are best reconciled by a model that includes 

simultaneous camphor and D-8-Ad binding.  Given the low Kd of D-8-Ad, it is perhaps 

not surprising that camphor binding fails to expel the probe into solution. 

The crystal structure of the P450cam:D-8-Ad complex shows that the probe binds 

in the same channel as RuII(bpy)3-linker-Ad (bpy = 2,2'-bipyridine) analogs (Figure 

4.3).9,10  The eight-carbon chain is nearly fully extended, allowing the dansyl moiety to 

bind at the surface of the protein.  The good fit is attributable to conformational 

flexibility, that is, the F and G helices open just enough to allow the probe to enter and 

bind.  The observed conformation is midway between the �closed� (camphor)11 and 

�open� (Ru-linker-Ad)10c structures. 

The structure reveals a hydrogen bond between the amide carbonyl of the probe 

and Tyr96 in P450cam:D-8-Ad, mimicking the hydrogen bond between camphor and 

Tyr96 in the P450cam:substrate complex.11  In addition, there are a great many 

hydrophobic interactions between the probe molecule and the enzyme; analysis of these  
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Figure 4.3. The 2.2 Å resolution structure of the D-8-Ad:P450cam cocrystal, with the 

omit electron density (|Fobs|-|Fcalc|) contoured at 4.0 σ (blue positive, red negative). 
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contacts shows that much of the solvent accessible surface area is buried.  The estimated 

Kd of 0.02 µM corresponds to a binding energy of ~11 kcal/mol, or ~11 cal/mol Å2 

(Figure 4.4).  The Ru(bpy)3
2+ analogs (Ru-9-Ad and Ru-F8bp-Ad) do not bind as tightly 

to P450cam, but the free energy changes per buried surface area are comparable.   

The structure of the D-4-Ad:P450cam complex shows the enzyme in a 

conformation similar to that observed in the P450cam:Ru-wire conjugates (Figure 4.5).  

The shorter D-4-Ad hydrocarbon tether results in dansyl moiety occupying the relatively 

narrow �neck� of the substrate access channel, thus capturing the enzyme in a relatively 

more open conformation.  This inferior steric fit as compared to the D-8-Ad:P450cam 

structure likely is responsible for the differences in binding constants observed for D-4-

Ad and D-8-Ad.    

In addition, a preliminary structure of the ternary P450cam:D-8-Ad:camphor 

complex has recently been determined.  Initial analysis based on partial refinement of this 

data indicates that D-8-Ad remains bound in the active site and substrate access channel.12  

Importantly, the F and G helices adopt a opened conformation akin to the Ru-wire bound 

structures, and markedly different than that observed in the D-8-Ad:P450cam conjugate 

structure.  In addition, the B� helix and loop form a greatly altered conformation 

somewhat analogous to that seen in the Ru-F8bp-Ad:P450cam structure.    
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Figure 4.4.  (top) Ruthenium tris-bipyridyl photosensitizers known to bind P450cam.  

The crystal structures of both compounds bound to P450cam have been determined to 

high resolution (Ru-9-Ad 1.55 Å, Ru-F8bp-Ad 1.65 Å).10c  (bottom) Dissociation 

constants, binding energies, buried solvent accessible surface areas (SASA) and the 

binding energy per square angstrom of buried surface area for the P450cam:probe 

complexes.  The Ru-9-Ad:P450cam crystal contains both ∆ and  Λ stereoisomers. 
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Compound Kd (nM)  kcal mol-1 Buried SASA (Å2) cal mol-1 Å-2 

D-8-Ad ~20 ~11 988 ~11 

Ru-9-Ad (∆) 190 9.23 1097 8.4 

Ru-9-Ad (Λ) 90 9.69 1042 9.3 

Ru-F8bp-Ad 74 9.80 1191 8.2 
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Figure 4.5.  (A)  Ribbon diagram of the D-8-Ad:P450cam crystal structure.  (B)  Ribbon 

diagram of the D-4-Ad:P450cam crystal structure; note the wider substrate access 

channel, and the deeper position of the dansyl  moiety within the channel. 
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These provisional data demonstrate unambiguously that P450cam binds camphor and D-

8-Ad simultaneously. 

CONCLUDING REMARKS 

Even though P450cam has evolved for a single, relatively small substrate, it has 

the ability to bind much larger molecules more tightly.  The key to this ability is the 

mobility of the B�, F, and G helices (Chapter 3).10c  Both solution13 and crystallographic14 

studies of other P450s suggest that this feature is common to the P450 superfamily.  The 

two probes described herein illustrate the usefulness of our methodology.  D-4-Ad can be 

employed to screen potential P450 inhibitors, as it is easily displaced by other molecules 

with comparable or lower dissociation constants.  In contrast, D-8-Ad binds extremely 

tightly: the conformational flexibility of the P450 fold allows the enzyme to close around 

the probe, thereby making a great many productive hydrophobic contacts.  The insight 

gained from the D-8-Ad:P450cam structure could potentially lead to a more rational 

design strategy for P450 inhibitors. 
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Chapter 5 

Ruthenium- and rhenium-diimine luminescent probes for nitric oxide synthase 
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  ABSTRACT 

 
Ruthenium- and rhenium-diimine based luminescent probes that bind to inducible 

nitric oxide synthase (iNOS) are described.  The ruthenium probes have the structure 

[Ru(L2)L']2+, where L' is a perfluorinated biphenyl bridge connecting 4,4'-

dimethylbipyridine to an enzyme substrate (adamantane, 1), a heme ligand (imidazole, 2), 

or F (3).  Probe 2 binds in the active site of the murine iNOS truncation mutants ∆65 and 

∆114, as demonstrated by a shift in the heme Soret from 422 to 426 nm.  1 and 3 also 

bind ∆65 and ∆114, as evidenced by biphasic luminescence decay kinetics.  However, the 

heme absorption spectrum is not altered in the presence of 1 or 3, Ru-wire binding is not 

affected by the presence of tetrahydrobiopterin or arginine, and the Ru to heme-Fe 

distances calculated from Förster energy transfer (FET) rates (~19 Å) are incompatible 

with binding in the iNOS dimer substrate access channel.  These data suggest that 1 and 3 

may instead bind to the distal side of the enzyme at the hydrophobic surface patch 

thought to interact with the NOS reductase domain.  Novel rhenium-diimine probes with 

the structure [Re(4,7-dimethyl phenanthroline)(CO)3L]+, where L = imidazole-C12F8-

imidazole (4) or imidazole-C12F9 (5) are also described.  Binding of 4 to ∆114 shifts the 

heme Soret to 426 nm, demonstrating that the terminal imidazole functionality ligates the 

heme iron.  Steady-state luminescence measurements show that 4 binds ∆114 with a 
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dissociation constant of 6 nM.  The Re-wire 5 binds ∆114 with a Kd of 3.4 µM, and 

causes a partial displacement of water from the heme iron.  Compounds with properties 

similar to the Ru-diimine probes may provide a novel means of NOS inhibition by 

preventing electron transfer between the oxidase and reductase domains.  The tight 

binding demonstrated by 4 and the surprising ability of 5 to bind in the NOS active site 

suggest novel designs for NOS inhibitors.  Our results demonstrate the utility of time-

resolved FET measurements in the characterization of small molecule-protein 

interactions that are otherwise difficult to observe. 
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INTRODUCTION 

 The enzyme nitric oxide synthase (NOS) is the major biological source of nitric 

oxide (NO), a secondary messenger acting in a myriad of circumstances that include 

neuronal development, regulation of blood pressure, apoptosis, neurotransmission, and 

immunological response.1-7  Because of the central importance of NO, NOS has been 

implicated in septic shock, inflammation, a variety of neurodegenerative disorders,  and 

heart disease.8-10 

 The NOS oxidase domain (NOSoxy) catalyzes the conversion of arginine and 

molecular oxygen to NO and citrulline.11    The electrons necessary for this reaction are 

provided by a reductase domain, which is attached to the oxidase domain by a 

calmodulin-binding linker.12,13  NOS functions as a homodimer; the reductase domain 

from one half of the dimer reduces the oxidase domain of the other.14,15  Calmodulin 

binding is known to modulate electron transfer, and hence catalysis.16-18  Numerous 

crystal structures of NOSoxy have been determined,19-21 but the structure of the full-

length enzyme remains elusive. 

 We have a long-standing interest in the high-valent intermediates thought to play 

key roles in heme-mediated oxidations.22-24  In order to observe these intermediates, we 

have designed Ru-diimine photosensitizers (Ru-wires) that bind to the mechanistically 

related enzyme cytochrome P450, and inject an electron into the active site upon 
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excitation with 470-nm light.25  Energy transfer between the excited state of the Ru-wire 

and the heme also serves as a sensitive structural probe.22,26  Given the postulated 

mechanistic similarities between NOS and cytochrome P450, we have endeavored to 

develop similar probes for NOS. 

MATERIALS AND METHODS 

 The synthesis and characterization of the Ru-wire probes is described in appendix 

A.  Both time-resolved and steady-state spectroscopic measurements were performed as 

described in chapter 1.  The Stuehr lab provided samples of murine inducible NOSoxy 

with N-terminal truncations at residues 65 (∆65) and 114 (∆114).  As provided, the 

protein samples contained millimolar concentrations of dithiothreitol, (DTT) which 

ligates the heme.  Small aliquots of the protein solutions were exchanged into phosphate 

buffer (50 mM potassium phosphate, 100 mM potassium chloride) using a desalting 

column immediately before use.  The presence of the heme Soret peak at 422 nm verified 

successful removal of the DTT. 

 High-spin, dimeric ∆65 iNOS was generated by incubating ∆65 with 1 mM 

tetrahydrobiopterin (H4B) and 1 mM arginine (Arg) for 2 hours at 4 °C before diluting 

the sample to final concentrations of 0.1 mM H4B and 1 mM Arg.  Satisfactory Arg and 

H4B binding was signaled by a shift of the Soret to 396 nm.  NOS extinction coefficients 

were determined using the hemochromogen assay:  1 mL of NOS solution was diluted 
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with 0.125 mL 0.5 M NaOH and 0.125 mL pyridine, then reduced with several grains of 

sodium dithionite.  The resulting ferrohemochromogen concentration was calculated 

using an extinction coefficient of 31 mM-1 cm-1 at 556 nm.  The assays were calibrated 

using cytochrome P450cam (ε416 = 115 mM-1 cm-1).  The NOS extinction coefficients 

calculated using this method are: ∆65 ε422 = 75 M-1 cm-1 (substrate free and bound); 

substrate-free ∆114 ε422 = 85 M-1 cm-1.   

RESULTS 

Ru-wires.  In the initial stages of our investigation we tested previously developed Ru-

wires (Figure 5.1) to see if any bound NOSoxy.  The two murine inducible NOSoxy 

truncation mutants ∆114 and ∆65 were investigated in order to probe the effect of the 

monomer-dimer NOSoxy equilibrium.  ∆114 is solely monomeric, while ∆65 exists in a 

monomer-dimer equilibrium, and forms a strong dimer in the presence of 

tetrahydrobiopterin (H4B).27 

No change in the NOSoxy heme absorption spectrum was observed upon the 

stoichiometic addition of 1 or 3 to either ∆114 or ∆65.  In contrast, the addition of excess 

2 to ∆65 and ∆114 resulted in a heme Soret shift from 420 and 422 to 426 nm, consist 

with imidazole ligation of the heme (Figures 5.2 and 5.3).  The absorption spectrum of 

Arg- and H4B-bound ∆65 is not altered in the presence of 1-3, indicating that none of the 

Ru-wires displace Arg from the NOS active site.  
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Figure 5.1.  Ru-wires.  The interaction of these compounds with cytochrome P450cam is 

described in Chapter 2. 
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Figure 5.2.  UV-visible absorption spectrum of ∆114 alone (5.7 µM; green) and bound to 

2, corrected for the absorption due to the Ru-wire (+ 20.5 µM 2; blue).  The heme Soret 

peak shifts from 422 to 426 nm in response to Ru-wire binding. 
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Figure 5.3.  UV-visible absorption spectrum of ∆65 alone (10 µM; green) and bound to 2 

(+ 52 µM 2; blue), corrected for absorption due to the Ru-wire.  The heme Soret peak 

shifts from 418 to 426 nm in response to Ru-wire binding. 
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In all cases, biexponential Ru-wire luminescence decays are observed in the 

presence of quantities of stoichiometic ∆114 and ∆65, indicating that the Ru-wires bind 

to the enzyme (Figure 5.4).  As described in Chapter 2, the weightings of the fast and 

slow phases were used to calculate dissociation constants, while the rates of energy 

transfer were used to calculate Ru-heme distances.  Ru-Fe distances previously calculated 

for Ru-wire:P450cam conjugates match those observed in the corresponding crystal 

structures to within 0.4 Å (Chapter 1, ref. 22). 

The Ru-wires bind with micromolar dissociation constants and Ru-Fe distances of 

18-21 Å (Table 1).  Interestingly, the Ru-wires bind ∆114, ∆65, and H4B- and Arg-bound 

∆65 with dissociation constants that are essentially identical.  The Ru-Fe distances 

calculated for 1 and 3 are similar for ∆114 and ∆65, and are unaffected by the presence of 

H4B and Arg (Table 1).  In contrast, the Ru-Fe distance calculated for the 2:∆144 

conjugate is 17.8 Å, and increases from 19.3 to 20.9 Å upon addition of H4B and Arg to 

the 2:∆65 conjugate, suggesting displacement from the active site. 

The shifts in the absorption spectra of ∆65 and ∆114 in the presence of 2 clearly 

indicate that the imidazole functionality of 2 ligates the heme.  In contrast, the 

spectroscopic evidence suggests that 1 and 3 do not bind in the active site:  The heme 

absorption spectrum is not altered in the presence of 1 or 3, and the Kd�s and Ru-Fe 

distances measured with these Ru-wires are not affected by the presence of H4B and Arg.  



 169

Figure 5.4.  Sample transient luminescence data for 1 (blue) and a 1:1 mixture of 1 and 

∆65 (1.8 µM; green).  The fast component of the luminescence decay corresponds to 1 

bound to ∆65. 
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Table 1.  Ru-wire dissociation constants and Ru-Fe distances calculated from FET.  

Uncertainties are the root-mean-square deviations calculated from independent 

measurements (3 with ∆114, 2 with ∆65, 3 with ∆65 + Arg, + H4B). 

 

 ∆114 ∆65 ∆65 + Arg, +H4B 

Compound Kd (µM) Ru-Fe (Å) Kd (µM) Ru-Fe (Å) Kd (µM) Ru-Fe (Å) 

1 0.88 ± 0.15 18.9 ± 0.1 0.54 ± 0.04 19.6 ± 0.2 1.7 ± 0.4 19.6 ± 0.4 

2 7.1 ± 0.4 17.8 ± 0.5 6.5 ± 2.4 19.3 ± 0.6 7.2 ± 3.4 20.9 ± 0.8 

3 0.71 ± 0.09 20.1 ± 0.1 0.58 ± 0.16 20.2 ± 0.4 0.89 ± 0.15 21.0 ± 0.3 
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 Structural modeling suggests that while 2 can bind to the active site of ∆114 (Figure 

5.5), the Ru-wires cannot fit down the substrate access channel of dimeric NOS due to 

the bulk of the ruthenium tris-bipyridyl moiety (Figure 5.6).  Instead, the Ru-Fe distances 

suggest that the Ru-wires may bind on the distal side of the enzyme, at the binding site of 

the reductase domain.  This binding model is consistent with the result that the 

dissociation constants and Ru-heme distances of 1 and 3 are unaffected by the addition of 

Arg and H4B.  In addition, 1.5 equivalents of 2 bind to ∆65 when the Ru-wire is present 

in 6-fold excess, suggesting that 2 may bind to both the active site and another portion of 

the protein.  

Modeling of the proposed surface binding results in Ru-heme distances consistent 

with those calculated from experimental data (Figure 5.6).  The proposed binding site is 

concave and hydrophobic.  The Ru-wires present few opportunities for specific 

interactions with the protein surface.  Instead, extensive hydrophobic contacts between 

the Ru-wire and the protein likely provide the free energy necessary for binding.  Indeed, 

1 binds most tightly, while 2 is the weakest binder.  This interpretation is consistent with 

the previously observed binding of ruthenium-diimine complexes to cytochrome c 

oxidase at the surface patch known to bind cytochrome c.28,29 

Re-wires.  The rhenium complexes [Re(CO)3(L2)(L�)]1+, where L2 is a 2,2�-bipyridyl or  
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Figure 5.5.  Model of 2 bound to exposed heme of ∆114.  The Ru-Fe distance in this 

model is 16.9 Å. 



 174



 175

Figure 5.6.  The NOS dimer, shown with Ru(bpy)3 docked at the mouth of the substrate 

access channel (left), or at the proposed reductase binding site (right).  The Ru-Fe 

distance is 24 Å when the Ru-diimine is bound in the substrate access channel, and ~18 Å 

when it is bound at the reductase domain recognition site. 
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phenanthryl derivative and L� is a nitrogen donor such as imidazole or pyridine, are in 

general luminescent compounds with microsecond excited state lifetimes and redox 

properties analogous to Ru(bpy)3 compounds.  The excited state is both a good oxidant 

(1.2 V NHE) and reductant (-0.7 V NHE).30  In addition, the photochemically generated 

species [Re(CO)3(L2)(L�)]2+ is an extremely strong oxidant (~1.8 V vs. SCE).31 

 In order to take advantage of rhenium photochemistry, compounds 4 and 5 were 

synthesized by Wendy Belliston (Figure 5.7).  The compounds are structurally similar to 

1 and 3, but the rhenium chromophore has significantly smaller bulk.  The absorption 

spectra of 4 and 5 are identical, and typical of Re-diimine complexes.  Both are 

luminescent, with emission spectra centered at 560 nm and quantum yields of 0.055. 

  Upon addition of 4 to ∆114 murine iNOSoxy, the heme Soret absorption shifts 

from 422 to 426 nm, indicative of imidazole ligation to the heme iron (Figure 5.8).  

Time-resolved luminescence measurements indicate that 4 is almost completely bound to 

NOS in 1:1 micromolar solutions.  A Kd could not be determined from the luminescence 

decay data due to the rapidity of the luminescence decay and the almost complete 

absence of a slow luminescence decay rate corresponding to 4 that is free in solution.  

Instead, a dissociation constant of 6 nM was calculated from a comparison of the steady-

state luminescence spectra of 4 alone and bound to ∆114 iNOSoxy (Figure 5.9). 
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Figure 5.7.  Re-wires.  The fluorinated biphenyl bridging moieties were synthesized by 

reacting imidazole and perfluorobiphenyl in dimethylsulfoxide.  The resulting mono- and 

disubstituted perfluorobiphenyl-imidazole ligands were separated by flash silica 

chromatography.  Re(dimethylphenanthroline)(CO)3Cl was treated with silver triflate, 

and then reacted with either the mono- or disubstituted perfluorobiphenyl-imidazole 

ligand to form 4 and 5 as triflate salts. 
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Figure 5.8.  10.2 µM ∆114 alone (green) and in the presence of 1 equivalent of 4.  The 

shift in the heme Soret is similar to that observed with 2. 
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Figure 5.9.  Steady-state luminescence spectra of 5.4 µM samples of ∆114 (black), 4 

(green), and a 1:1 mixture of ∆114 and 4 (blue).  The luminescence of 4 is almost 

completely quenched in the presence of ∆114, making it a sensitive indicator of the 

presence of the enzyme.  Modified from a figure provided by Wendy Belliston. 
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The compound 5 causes a blue-shift in the ∆114 heme Soret, indicating a partial 

conversion to high-spin, 5-coordinate heme (Figure 5.10).  The time-resolved 

luminescence decay spectra indicate that 5 binds with a dissociation constant of 3.4 µM 

and a Re-heme distance of ~18 Å.  Both the change in the Soret absorption spectrum and 

the calculated Re-Fe distance are consistent with 5 binding in the active site.  However, 

H4B binding is also known to sometimes result in a partial low- to high-spin conversion, 

so binding in the pterin pocket cannot be ruled out.  The structural dissimilarities of 5 and 

Arg make it surprising that 5 binds at all.  However, the relatively exposed active site of 

the monomeric ∆114 iNOSoxy provides good surface complementarity with the 

fluorinated biphenyl moiety. 

DISCUSSION 

Ru-wire binding to the distal side of iNOSoxy suggests a novel method for 

electron injection into the active site.  As with cytochrome c oxidase, the Ru-diimine 

complex likely binds to the surface of the enzyme, leaving the active site free to bind the 

natural substrates arginine and N-hydroxyarginine.  No photoreduction was observed in 

the present experiments, perhaps because of the weak electronic coupling provided by the 

protein matrix.  Future investigations employing the bimolecular photochemical 

generation of reduced sensitizers may circumvent this difficulty.23 



 185

Figure 5.10.  UV-Visible absorption spectra of 6.6 µM ∆114 alone (black) and with a 

stoichiometric amount of 5 (red).  The blue-shift in the absorption is indicative of a 

partial transition to high spin, five-coordinate iron. 
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 NOS inhibitors are being investigated as potential treatments for several 

diseases.32,33  All currently known inhibitors bind in the active site of the enzyme.  In 

contrast, Ru-wires or similar compounds may provide a novel means of NOS inhibition 

by preventing electron transfer (ET) between the reductase and oxidase domains.  A NOS 

ET inhibitor would be a rare example of an inhibitor that works by preventing protein-

protein interactions.  Although such inhibitors are unusual, they are the subject of great 

interest due to the biological ubiquity and importance of transient protein complexes.  

These results, and other related studies (Chapter 4),26 suggest that a conceptually simple 

and readily analyzed aspect of designing such inhibitors is the analysis of buried surface 

area in the inhibitor:protein complex. 

 The interactions of 2 and 4 with ∆114 are in many ways analogous to those 

observed with previously described inhibitors that prevent NOS holoenzyme 

dimerization.34  Because only iNOS exhibits an appreciable monomer-dimer equilibrium 

in vivo, these inhibitors are highly isoform selective.  The low dissociation constant of 4 

makes it a useful lead compound for further iNOS inhibitor development.   The three 

orders of magnitude difference in dissociation constants between 2 and 4 illustrates the 

steric influence of the Ru(bpy)3 moiety. 

The ability of 5 to bind in or near the NOSoxy active site is remarkable given its 

dissimilarity to Arg or known inhibitors.  As with the Ru-wires, it seems likely that 
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binding is driven principally by hydrophobic interactions.  Although 3 binds NOS more 

tightly than 5, it does not produce a similar shift in the absorption spectrum, again 

demonstrating the importance of steric bulk in modulating probe-NOS interactions. 

CONCLUDING REMARKS 

 Our results demonstrate the utility of FET measurements in characterizing small-

molecule:protein interactions.  Conventional UV-visible absorption measurements or 

competition binding assays would have overlooked the ability of 1 and 3 to bind 

NOSoxy.  This study also shows that FET measurements can provide valuable structural 

information about the probe:enzyme conjugate.  Similar luminescent probes may be 

useful in studying other heme enzymes, and more broadly proteins that emit or absorb 

light. 
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Synthesis and characterization of Ru-wires 
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Syntheses 

General: NMR spectra were taken on a General Electric QE300 or Varian 

Mercury 300.  Electrospray mass spectral data were collected on a Finnigan LCQ 

quadrupole ion trap mass spectrometer. 

Ru(tmbpy)2Cl2 (tmbpy = 4,4'5,5'-tetramethyl-2,2�-bipyridine) was synthesized by 

a standard procedure.1  THF was purified by refluxing over calcium hydride for at least 3 

days followed by distillation under Argon onto activated 3 Å molecular sieves.  Dimethyl 

sulfoxide (DMSO) was stored over calcium hydride and distilled under argon 

immediately before use.  All other reagents were obtained from the Aldrich Chemical Co. 

and used as received unless otherwise noted.   

4-perfluorobiphenylmethyl-4'-methyl-2,2�-bipyridine (5). 0.50 g 4,4'-dimethyl-2,2�-

bipyridine (Me2bpy) (2.7 mmol) was dissolved in 100 mL dry THF.  1.4 mL LDA (2M) 

in ether (Aldrich Chemical Co.) was added dropwise under an argon atmosphere.  In a 

separate flask, 1.36 g perfluorobiphenyl (4.07 mmol) was dissolved in 30 mL dry THF.  

The deprotonated Me2bpy solution was cannulated into the perfluorobiphenyl solution 

with fast stirring at room temperature over 20 minutes.  After the reaction mixture had 

stirred for several hours the solvent was removed under vacuum.  The residue was then 

dissolved in 150 mL 1:2 (v/v) CH2Cl2/Et2O and extracted with 150 mL brine.  The 

aqueous layer was extracted with 2x150 mL Et2O, and the combined organics were 
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concentrated to dryness under vacuum.  The crude product was then purified by flash 

chromatography using a 20 to 50% ethyl acetate/hexanes gradient.  The desired product 

was the second band that eluted from the column.  Yield: 247 mg, 18.4%.  1H NMR 

(CDCl3, 300 MHz) 8.57 (IH, d, J=5 Hz) 8.49 (1H, d, 5 Hz) 8.32 (1H, s) 8.14 (1H, s) 7.15 

(1H, d, J=4 Hz) 7.10 (1H, d, J=4 Hz) 4.17 (2H, s) 2.39 (3H, s) 19F NMR (CDCl3, 300 

MHz) -137.62 (2F, m) -138.49 (2F, dd, J=20, 11 Hz) -141.78 (2F, dd, J=22, 12 Hz) -

150.69 (1F, t, J=28 Hz) -160.95 (2F, m). 

4-(4,4'-dimethyl-2,2�-bipyridine),4'-2-aminoadamantyl-octafluorobiphenyl (6). 100 

mg 5 (0.200 mmol), 30.4 mg 2-amino-adamantane (0.200 mmol), and 32 mg K2CO3 were 

added to 0.2 mL dry DMSO.  The reaction was heated under argon at 80 °C for 16 hours, 

then at 110 °C for 6 hours.  The reaction mixture was diluted with 100 mL 1:2 v/v 

CH2Cl2/Et2O, and extracted once with saturated aqueous Na2CO3.  The organic phase 

was concentrated to dryness under reduced pressure.  The crude product was purified by 

column chromatography using 2% MeOH in CH2Cl2 as the eluent.  Yield: 99 mg (76.4 

%). 1H NMR (CDCl3, 300 MHz) 8.55 (1H, d, J=5 Hz) 8.48 (1H, d, 5 Hz), 8.29 (1H, s) 

8.14 (1H, s) 7.13 (1H, d, J=5 Hz) 7.08 (1H, d, J=4 Hz) 4.38 (1H, m) 4.19 (2H, s) 3.87 

(1H, m) 2.43 (3H, s) 1.96 (2H, m) 1.83 (3H, m) 1.77 (1H, m) 1.69 (6 H, m) 1.61 (1H, m)  

1.56 (1H, m) 19F NMR (CDCl3, 300 MHz) -138.91 (2F, dd, J=22, 11Hz) -141.59 (2F, m) 

-143.01 (2F, dd, J=21, 13 Hz) -160.77 (2F, d, J=19 Hz). 
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4-(4,4'-dimethyl-2,2�-bipyridine),4'-N-imidazole-octafluorobiphenyl (7).  40 mg 5 

(0.08 mmol), 5.7 mg imidazole (0.08 mmol), and 13 mg K2CO3 were dissolved in 0.08 

mL dry DMSO.  The reaction was stirred at room temperature for 3 days, after which the 

reaction mixture was diluted with 10 mL each CH2Cl2 and H2O.  The aqueous layer was 

washed three times with 10 mL CH2Cl2.  The combined organics were evaporated to 

dryness under reduced pressure, and the crude product was purified by column 

chromatography using 4% MeOH in CH2Cl2 as the eluent.  Yield: 26.8 mg  (61%)  1H 

NMR (CD2Cl2, 300 MHz) 8.59 (1H, d, J=5 Hz) 8.50 (1H, d, J=5 Hz) 8.39 (1H, s) 8.26 

(1H, s) 7.81 (1H, m) 7.29 (1H, m) 7.26 (1H, m) 7.22 (1H, d, J=5 Hz) 7.15 (1H, d, J=4 

Hz) 4.25 (2H, s) 2.42 (3H, s) 19F NMR (CD2Cl2, 300 MHz) -135.38 (2F, dd, J=22, 11 Hz) 

-137.27 (2F, dd, 22, 11 Hz) -140.49 (2F, J=22, 11 Hz) -146.80 (2F, J=25, 11 Hz). 

[Ru-F8bp-Ad](NO3)2 (1).  24.5 mg Ru(bpy)2Cl2 (0.048 mmol) and 30 mg 6  (0.048 

mmol) were dissolved in 3 mL 6:3:1 ethanol:chloroform:water.  Oxygen was removed by 

three cycles of freeze-pump-thawing.  The reaction mixture was heated to 80 °C for 14 h, 

after which the solvent was removed under vacuum.  The desired product was isolated 

using flash chromatography, using 12:2:3 acetonitrile:water:ethanol saturated with KNO3 

as eluent.  The fractions containing product were concentrated to dryness under reduced 

pressure, and the product was extracted from the resulting salt with CH2Cl2.  The 

resulting solution was filtered, then evaporated to dryness.  The product was redissolved 
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in CH2Cl2 and filtered over a 0.45 µM teflon filter (Amicon).  Removal of the solvent 

gave the product as a red, amorphous solid.  Yield: 40 mg (70 %). 1H NMR (CD2Cl2, 300 

MHz) 8.56 (4H, m) 8.46 (1H, s) 8.37 (1H, s) 8.03 (4H, m) 7.74 (4H, m) 7.64 (1H, d, J=6 

Hz) 7.57 (1H, d, J=6 Hz) 7.41 (4H, m) 7.28 (2H, t, J=5 Hz) 4.53 (1H, m) 4.38 (2H, s) 

3.97 (1H, m) 2.56 (3H, s) 2.01 (2H, m) 1.85 (4H, m) 1.77 (2H, m) 1.73 (4H, m) 1.68 (1H, 

s) 1.63 (1H, s) 19F NMR (CD2Cl2, 300 MHz) -137.21 (2F, dd, J=22, 11) -140.71 (2F, dd, 

J=24, 11 Hz) -141.11 (2F, dd, J=22, 13) -159.18 (2F, d, J=15 Hz) ESI-MS m/z 521.7 

(M+2). 

[Ru-F8bp-im](NO3)2 (2).  This compound was synthesized in analogy to 1 from 26.8 mg 

7 (0.049 mmol) and 25.5 mg Ru(bpy)2Cl2 (0.049 mmol).  Yield: 15.3 mg (28.8%)  1H 

NMR (CD2Cl2, 300 MHz) 8.61 (4H, m) 8.50 (1H, s) 8.50 (1H, s) 8.06 (4H, m) 7.79 (1H, 

d, J=6 Hz) 7.76 (1H, s) 7.74 (4H, m) 7.64 (1H, d, J=6 Hz) 7.54 (1H, d, J=6 Hz) 7.49 (4H, 

m) 7.29 (1H, m) 7.25 (1H, s) 4.45 (2H, s) 2.58 (3H, s) 19F NMR (CD2Cl2, 300 MHz) -

135.43 (2F, dd, J=22, 11) -136.51 (2F, d, J=22, 11 Hz) -139.74 (2F, dd, J=22, 11 Hz) -

146.55 (2F, dd, J=22, 10.0 Hz) ESI-MS m/z 480 (M+2). 

[tmRu-F8bp-im](Cl)2 (3). 17.6 mg Ru(tmbpy)2Cl2 (29.8 µmol) and 15.2 mg 7 (29.8 

µmol) were dissolved in a mixture of 1mL THF, 1mL EtOH, and 0.25 mL water.  The 

reaction mixture was deaerated using 3 freeze-pump-thaw cycles and heated to 60 °C 

under argon for 12 h.  The reaction mixture was concentrated under reduced pressure, 
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and purified using flash chromatography with a mixture of 18:1:1 

acetonitrile:EtOH:water saturated with KNO3 as eluent.  The fractions containing product 

were pooled and concentrated to dryness, then extracted with CH2Cl2 to yield the 

product.  Yield: 10.4 mg (30%).  The nitrate counterion was exchanged for chloride using 

a CM Sepharose cation exchange column (2x13 cm) and 1M NaCl as eluent.  The 

fractions containing product were diluted by 1/3 with brine and extracted with two 100-

mL portions of CH2Cl2.  The CH2Cl2 solutions were pooled and concentrated to dryness.  

1H NMR (acetone D6, 300 MHz) 9.58 (1H, s) 9.27 (1H, s) 9.08 (2H, s) 9.07 (1H, s) 

9.06(1H, s) 8.03 (1H, s) 7.83 (1H, d, J=6 Hz) 7.80 (1H, d, J=6 Hz) 7.66 (1H, s) 7.61 (1H, 

s) 7.59 (1H, s) 7.58 (1H, m) 7.48 (1H, s) 7.37 (1H, d, J=7 Hz) 7.35 (1H, d, J=7 Hz) 7.25 

(1H, m) 4.63 (2H, s) 2.56 (3H, s) 2.49 (6H, s) 2.48 (6H, s) 2.10 (12H, m) 19F NMR 

(acetone D6, 300 MHz) -139.85 (2F, dd, J=22, 11 Ha) -140.52 (2F, dd, J=22, 11 Hz) -

142.68 (2F, dd, J=19, 11 Hz) -149.72 (2F, dd, J=22, 11 Hz) ESI-MS m/z 536.2 (M+2). 

[tmRu-F9bp(Cl)2 (4). 20 mg Ru(tmbpy)2Cl2 (31.6 µmol) and 16.5 mg 5 (33.2 µmol) 

were dissolved in a mixture of 1mL THF, 1mL EtOH and 0.25 mL water.  Oxygen was 

removed using three freeze-pump-thaw cycles.  The reaction was then heated to 65 °C 

under argon for 16 h.  The reaction mixture was diluted with 50 mL CH2Cl2, and washed 

with 50 mL sat. NaCl solution.  The aqueous phase was washed with 3 25-mL portions of 

CH2Cl2, and the combined CH2Cl2 solutions were concentrated to dryness under vacuum.  
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The product was purified by flash chromatography using 83:10:7 

acetonitrile:ethanol:water saturated with KNO3 as eluent.  The fractions containing 

product were pooled and concentrated under reduced pressure until only water remained, 

diluted with 15 mL saturated NaCl solution, and washed with 3 25-mL portions of 

CH2Cl2.  The CH2Cl2 solutions were combined and concentrated under reduced pressure 

to give the red, luminescent product.  Yield was > 90 %. 1H NMR (acetone D6, 300 

MHz) 9.20 (1H, s) 9.11 (1H, s) 8.95 (1H, s) 7.85 (4H, s) 7.84 (1H, d, J=4 Hz) 7.81 (1H, 

d, J=6 Hz) 7.68 (1H, s) 7.61 (1H, s) 7.60 (1H, s) 7.47 (1H, s) 7.37 (1H, d, J=7 Hz) 7.35 

(1H, d, J=7 Hz) 4.60 (2H, s) 2.55 (3H, s) 2.48 (6H, s) 2.47 (6H, s) 2.09 (12H, m)  19F 

NMR (acetone D6, 300 MHz) -140.05 (2F, m) -140.63 (2F, m) -142.82 (2F, m) -143.92 

(1F, t, J = 21 Hz) -153.82 (2F, m).  ESI-MS m/z 512 (M+2). 
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Appendix B 

 

Dansyl probe syntheses and characterization and D-8-Ad:P450cam structure 

determination 

 

 

Acknowlegements.  The structure of the D-8-Ad:P450cam conjugate was determined by 

Anna-Maria A. Hays.
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Syntheses. 

Adamantane-1-carboxylic acid [4-(5-dimethylamino-naphthalene-1-sulfonylamino)-

butyl]-amide (1): (D-4-Ad) 0.100 g (0.312  mmole) 3, 74.5 mg (0.37 mmole) 1-

adamantyl carbonyl chloride, and 0.11 mL (0.62 mmole) N,N-diisopropylethylamine 

were dissolved in 5 mL dry DMF under Ar and stirred overnight at ambient temperature.  

The reaction mixture was diluted with 25 mL CH2Cl2, washed twice with water, and the 

organic phase concentrated under reduced pressure.  The crude product was purified via 

flash chromatography using 9:1 MeOH:CH2Cl2 as eluent to give the product as a pale 

yellow-green solid.  Yield 35.6 mg (24 %)  1H NMR (CDCl3) 8.53 (1H, d, J=8.4 Hz) 8.31 

(1H, d, J=8.4 Hz) 8.22 (1H, dd, J=0.9, 7.2 Hz) 7.55 (1H, dd, J= 7.5, 8.4 Hz) 7.51 (1H, dd, 

J= 7.2, 8.4 Hz) 7.18 (1H, d, J=7.5 Hz) 5.63 (1H, m) 5.30 (1H, t, J=6.0 Hz) 3.11 (2H, m) 

2.89 (2H, m) 2.88 (6H, s) 2.00 (3H, m) 1.77 (6H, m) 1.68 (6H, m) 1.42 (4H, m) 13C NMR 

(CDCl3) 178.43, 152.16, 134.95, 130.58, 130.06, 129.81, 128.57, 123.44, 119.07, 115.41, 

45.68, 43.10, 40.77, 39.45, 38.73, 36.72, 28.33, 26.99, 26.90. ESI-MS (m/z) 484.3 

(M+H+). 

Adamantane-1-carboxylic acid [4-(5-dimethylamino-naphthalene-1-sulfonylamino)-

octyl]-amide (2): Was prepared from 4 and 1-adamantyl carbonyl chloride in a manner 

identical to 1.  Yield 45%.  1H NMR (CDCl3) 8.53 (1H, d, J=8.4) 8.29 (1H, d, J=8.7) 8.24 

(1H, dd, J=7.5, 1.2 Hz) 7.56 (1H, dd, J=7.5, 8.7 Hz) 7.52 (1H, dd, J=7.2, 8.4 Hz) 7.18 
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(1H, d, J=7.2 Hz) 5.58 (1H, m) 4.77 (1H, t, J=5.7 Hz) 3.17 (2H, m) 2.88 (6H, s) 2.87 (2H, 

m) 2.02 (3H, m) 1.90 (3H, m) 1.82 (3H, m) 1.70 (6H, m) 1.38 (4H, m) 1.14 (8H, m) ) 13C 

NMR (CDCl3) 178.17, 152.20, 134.98, 130.57, 130.07, 129.86, 123.45, 118.98, 115.40, 

45.67, 43.48, 40.77, 39.50, 38.83, 36.75, 36.65, 29.73, 29.17, 28.99, 28.36, 28.06, 26.86, 

26.50.  ESI-MS (m/z) 540.3 (M+H+).   

5-Dimethylamino-Naphthalene-1-sulfonic acid (4-amino-butyl)-amide (3):  

Following the preparation by Ikunaga et al.,2 200 mg ( 0.75 mmole) dansyl chloride and 

1.49 mL 1,4-diaminobutane (14.8 mmole) were dissolved in 5 mL CH2Cl2 and stirred for 

2 hours under argon.  The reaction mixture was loaded directly onto a flash silica 

column, and eluted using 4:1:1 CH2Cl2:MeOH:Et3N to give the product as a pale yellow-

green oil.  Yield 0.104 g (44 %) 1H NMR (CDCl3) 8.49 (1H, d, J=8.4 Hz) 8.36 (1 H, d, 

J=8.7 Hz) 8.20 (1H, d, J=7.5 Hz) 7.49 (1H, dd, J= 7.5, 8.7 Hz) 7.48 (1H, dd, J = 7.2, 8.4 

Hz) 7.13 (1H, d, J=7.2 Hz) 5.3 (3H, overlapping m) 2.85 (6H, s) 2.84 (2H, m) 2.73 (2H, t, 

J=6.3 Hz) 1.52 (4H, m) 13C NMR (CDCl3) 152.00, 135.28, 130.25, 130.02, 129.81, 

129.49, 128.32, 123.39, 119.28, 115.31, 45.61, 43.01, 40.61, 28.36, 27.22. ESI-MS (m/z) 

322.2 (M+H+). 

5-Dimethylamino-naphthalene-1-sulfonic acid (4-amino-octyl)-amide (4):3 Was 

prepared from 1,8-diaminooctane and dansyl chloride in an identical fashion to 3.  Yield 

66%.  1H NMR (CDCl3) 8.49 (2H, d, J=8.4 Hz) 8.32 (2H, d, J=8.4 Hz) 8.20 (2H, dd, 
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J=0.9, 7.2) 7.52 (2H, dd, J=8.4, 7.5 Hz) 7.48 (2H, dd, J=7.2, 8.4 Hz) 7.14 (2H, d, J=7.5 

Hz) 5.5 (3H, overlapping m) 2.85 (6H, s) 2.82 (2H, m) 2.75 (2H, t, J=7.2 Hz) 1.49 (2H, 

m) 1.33 (2H, m) 1.11 (8H, m)  13C NMR (CDCl3) 152.09, 135.25, 130.42, 130.05, 

129.87, 129.60, 128.51, 123.43, 119.18, 115.36, 45.65, 43.39, 40.99, 30.44, 29.64, 28.95, 

28.82, 26.51, 26.35.  ESI-MS (m/z) 378.3 (M+H+). 
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P450cam:D-8-Ad Crystallization and Data Collection.  The C334A P450cam:D-8-Ad 

complex was formed at a molar ratio of 1:1 (400 µM) at room temperature and 

crystallized by hanging drop vapor diffusion at 4° C.  Crystals were obtained under 0.1 M 

citrate (pH 5.5), 200 mM KCl, 13% (wt/vol) polyethylene glycol (PEG; molecular weight 

= 8,000).  For diffraction experiments, crystals were soaked in a solution containing 0.75 

M citrate (pH 5.5), 150 mM KCl, 10% (wt/vol) PEG 8000, and 25% (wt/vol) PEG 400 

for 1 minute and flash frozen in liquid nitrogen.  Data were collected on an Raxis IV 

detector equipped with Osmic confocal mirrors and Xstream cryo-device (100K) using 

CuKα radiation (λ = 1.5418 Å) from a Ru200 X-ray generator operated at 50 kV, 100 

mA.  Data were processed using DENZO and SCALEPACK.4  The space group was 

P212121 with cell dimensions: a = 64.95, b =  75.31, c = 93.17 Å3 (Matthews coefficient 

(VM) = 2.50; solvent content = 49.9%).  

Structure Determination.  The structure was solved by molecular replacement using the 

program AMoRE5 with camphor-bound P450cam (PDB code 2cpp) as the initial model.   

After initial rigid body refinement in CNS,6 further refinement was carried out by 

iterative cycles of simulated annealing and B factor refinement using CNS and manual 

fitting using XFIT.7  The heme and D-8-Ad were located in Fo|-|Fc electron density 

omit maps and further refined by simulated annealing and manual fitting.  The difference 
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electron density map (|Fobs|-|Fcalc|) of the D-8-Ad is well defined and continuous, and the 

average B-factor for D-8-Ad is moderately low (38 Å2) confirming the high occupancy of 

the ligand.  The final model, which includes residues (11 � 414) of P450cam, D-8-Ad, 

heme, and 301 waters, gave Rfactor/Rfree values of 20.2 and 24.7.  
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Table B.1. Diffraction and Refinement Statistics for P450cam complexed with D-8-Ad 

 
Diffraction Data:  
PDB code  
Resolution (Å) 20 - 2.2  

Unit Cell (Å) a=64.95, b=75.31, c=93.17 
Space Group P212121 
Reflections (Total/Unique) 115720 / 21045 
Multiplicity 5.2 
Completeness (%) 93.3 (63.8) * 
Rsym

 0.102 (0.266)* 
I/σ(I) 13.9 (2.5)* 

Refinement Statistics:  
Rfactor

§ 20.2 (28.5) *  
Rfree

¶ 24.7 (33.0) * 

Average B (from Wilson plot, Å2) 26.2 
No. of protein atoms and Ave B, (Å2) 3200, 25.4 
No. of waters and Ave B, (Å2) 301, 34.0 
No. of heme atoms and Ave B, (Å2) 43, 16.5 
No. of D-8-Ad atoms and Ave B, (Å2) 38, 38.9 
Rms bonds, angles� 0.006 Å , 1.3° 
 

* Outer shell statistics (2.30 � 2.20 Å) 

§ R = ?||Fobs| - |Fcalc||/?|Fobs| for all reflections (no σ cutoff). 

¶ Free R calculated using 4.8% as test set. 

� rms deviations from ideal bond and angle restraints. 
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Appendix C 

 

Matlab deconvolution scripts
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Introduction 

 The optical absorption kinetics discussed in Chapter 2 occur on the same 

timescale as the instrument response.  Thus, it was necessary to deconvolute the 

instrument response from the observed kinetics.  This appendix presents the Matlab 

scripts used for this purpose.  While they were developed specifically for the kinetics 

observed in Chapter 2, these scripts can be easily modified to accomodate a wide variety 

of kinetics equations.   

 The process used is one of deconvolution by iterative reconvolution.  A model of 

the kinetics is convolved with the response function, and the resulting convolved model is 

compared to the data.  The model is then modified, and the process repeated until the fit 

between the data and the convolved model cannot be improved.  This method has the 

advantage of working with an arbitrary response function.  It is, however, slow compared 

to methods that assume a Gaussian response function.   

Time and space limitations make a full discussion of deconvolution algorithms 

impractical.  For an excellent discussion of deconvolution as related to time-resolved 

spectroscopy, see Excited State Lifetime Measurements by Demas.1   
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This is the main module, optical_decon4.m 

% fits OD data by first converting it into intensity and then deconvoluting the response  

% function by iterative reconvolution.  Data are loaded as .txt single columns.  The file 

% names are then converted over to the internal names resp (response) and int (intensity) 

 

global time 

global t_r 

global interp 

global interp_resp 

global t_0_data 

global t_0_resp 

global kr 

load bt_420_long.txt;          %CHANGE name of the raw OD data file 

load bt_resp.txt;        %CHANGE name of the response function  

%(intensity)  

resp = bt_resp;    % CHANGE  

int = 10.^(-(bt_420_long));        %CHANGE converts OD input into intensity 

t = 5*(1:(length(int)));       %define a time axis 'time' with 5 ns spacing 

time_resp = 5*(1:(length(resp)));     %define a time axis for response function 

%'time_resp' 

time = 1:(5*length(int));     %define time a axis t with 1 ns spacing 

t_r = 1:(5*length(resp));  %define a time axis t_r with 1 ns spacing 

interp = spline(t, int, time);    %interpolate data to 1 ns spacing using cubic spline 

interp_resp = spline(time_resp, resp, t_r);  %interpolate resp function 

m = trapz(interp_resp); 

interp_resp = interp_resp/m;  %normalizes the interpolated response function 

%____________________________________________________________ 

%input guesses at parameters 

% note: this version is for when the decay rate of the excited Ru* is known 

c = -0.014;    %CHANGE input guess for preexponential 
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kr = 0.037;         %CHANGE input measured Ru* decay exponential 

kb = 0.19;         %CHANGE input guess for 2nd exponential 

ksep = 0.0154;  %CHANGE input guess for rate of charge separation  

t_0_data = 41 ; % CHANGE input time 0 of data function 41 

t_0_resp = 7.4 ;  % CHANGE input time 0 of response function 6 

%_____________________________________________________________ 

parameters = [c, kb, ksep]; 

[x,fval]= fminsearch('rutmim2',parameters)  % rutmim2 is a function that contains the  

% kinetics equation specific to this system 

% fminsearch minimizes rutmim2 with  

% respect to the parameters in �parameters�  

out = rutmim_out2(x);   % out is the non-convolved kinetics model 

con_out = convolver2(interp_resp, out, 5*t_0_resp);  %con_out is the convolved  

%kinetics model 

resid = interp'-con_out;           % calculates residual 
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This function, rutmim.m, contains the specific model to be fit. 

 

function f = rutmim(p) 

% this function returns the kinetics of an A->B->C process, 

% given the parameters c, ka, kb, and the time vector t 

% note in this version it is assumed that the decay rate of Ru* (kr) is known 

global time 

global t_0_data 

global interp 

global t_0_resp 

global interp_resp 

global kr 

w = length(time); 

temp = zeros(w,1); 

for i = 0 : (w-(5*t_0_data)) 

   temp(i+(5*t_0_data)) = (p(1)/(p(2)+p(3)-kr))*((1-(p(3)/kr))*exp(-kr*i) - (1 - 

(p(3)/(p(2)+p(3))))*exp(-(p(2)+p(3))*i) + (p(3)/kr) - (p(3)/(p(2)+p(3)))); 

   end 

% change the equation in the line above to fit a different kinetics model 

% the parameters that are passed to this function will also have to modified accordingly 

ideal = 10.^(-temp); %converts OD into intensity so that it can be convolved with the  

   %resp function 

convolved = convolver2(interp_resp, ideal, 5*t_0_resp); % convolves interp_resp and  

       % ideal 

f = sum(abs(convolved'-interp)); % function returns the sum of the absolute differences  

     % between the model (convolved) and the data (interp) 

     % this sum is what is minimized by fmimsearch  
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This function, convolver2.m, convolves one vector with another, in this case, the 

response function with the model.   

 

function f = convolver(a,b,za)           % a is short vector, b is long one 

n = length(b);                           % za is the zero point of a 

flip = rot90(a);          % flip = the resp. funct. run in reverse; row vector 

m = length(a); 

shift = -(m-za):1:(za-1);                % shifts t_0 to t_0 of resp. funct. 

f = b;          % initially set conv product=obj (takes care of end effects) 

for i = (m-(za-1)):(n-za)                % with t=0 at t_0_resp 

        chunk = b(i + shift);      % define chunk of obj to be conv. w/resp  

        int = flip.*chunk;               % define the integrand 

        f(i) = trapz(int);                       % point-wise convolution 

end 

 

% This function convolves two vectors.  Beware of the conv. function  

% built into Matlab, which is another thing entirely.  Both a and b should 

% be column vectors 
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This function, rutmim_out.m, produces a column vector containing the kinetics model. 

 

function f = rutmim(p) 

global time 

global t_0_data 

global interp 

global t_0_resp 

global interp_resp 

global kr 

w = length(time); 

temp = zeros(w,1); 

for i = 0 : (w-(5*t_0_data)) 

   temp(i+(5*t_0_data)) = (p(1)/(p(2)+p(3)-kr))*((1-(p(3)/kr))*exp(-kr*i) - (1 - 

(p(3)/(p(2)+p(3))))*exp(-(p(2)+p(3))*i) + (p(3)/kr) - (p(3)/(p(2)+p(3)))); 

   end 

f = 10.^(-temp); 

 

% this function returns the kinetics of an A->B->C process, 

% given the parameters c, ka, kb, and the time vector t 

% note in this version it is assumed that the decay rate of Ru* (kr) is known 
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