
 209

Appendix C

Matlab deconvolution scripts

 210

Introduction

 The optical absorption kinetics discussed in Chapter 2 occur on the same

timescale as the instrument response. Thus, it was necessary to deconvolute the

instrument response from the observed kinetics. This appendix presents the Matlab

scripts used for this purpose. While they were developed specifically for the kinetics

observed in Chapter 2, these scripts can be easily modified to accomodate a wide variety

of kinetics equations.

 The process used is one of deconvolution by iterative reconvolution. A model of

the kinetics is convolved with the response function, and the resulting convolved model is

compared to the data. The model is then modified, and the process repeated until the fit

between the data and the convolved model cannot be improved. This method has the

advantage of working with an arbitrary response function. It is, however, slow compared

to methods that assume a Gaussian response function.

Time and space limitations make a full discussion of deconvolution algorithms

impractical. For an excellent discussion of deconvolution as related to time-resolved

spectroscopy, see Excited State Lifetime Measurements by Demas.1

 211

This is the main module, optical_decon4.m

% fits OD data by first converting it into intensity and then deconvoluting the response

% function by iterative reconvolution. Data are loaded as .txt single columns. The file

% names are then converted over to the internal names resp (response) and int (intensity)

global time

global t_r

global interp

global interp_resp

global t_0_data

global t_0_resp

global kr

load bt_420_long.txt; %CHANGE name of the raw OD data file

load bt_resp.txt; %CHANGE name of the response function

%(intensity)

resp = bt_resp; % CHANGE

int = 10.^(-(bt_420_long)); %CHANGE converts OD input into intensity

t = 5*(1:(length(int))); %define a time axis 'time' with 5 ns spacing

time_resp = 5*(1:(length(resp))); %define a time axis for response function

%'time_resp'

time = 1:(5*length(int)); %define time a axis t with 1 ns spacing

t_r = 1:(5*length(resp)); %define a time axis t_r with 1 ns spacing

interp = spline(t, int, time); %interpolate data to 1 ns spacing using cubic spline

interp_resp = spline(time_resp, resp, t_r); %interpolate resp function

m = trapz(interp_resp);

interp_resp = interp_resp/m; %normalizes the interpolated response function

%__

%input guesses at parameters

% note: this version is for when the decay rate of the excited Ru* is known

c = -0.014; %CHANGE input guess for preexponential

 212

kr = 0.037; %CHANGE input measured Ru* decay exponential

kb = 0.19; %CHANGE input guess for 2nd exponential

ksep = 0.0154; %CHANGE input guess for rate of charge separation

t_0_data = 41 ; % CHANGE input time 0 of data function 41

t_0_resp = 7.4 ; % CHANGE input time 0 of response function 6

%___

parameters = [c, kb, ksep];

[x,fval]= fminsearch('rutmim2',parameters) % rutmim2 is a function that contains the

% kinetics equation specific to this system

% fminsearch minimizes rutmim2 with

% respect to the parameters in �parameters�

out = rutmim_out2(x); % out is the non-convolved kinetics model

con_out = convolver2(interp_resp, out, 5*t_0_resp); %con_out is the convolved

%kinetics model

resid = interp'-con_out; % calculates residual

 213

This function, rutmim.m, contains the specific model to be fit.

function f = rutmim(p)

% this function returns the kinetics of an A->B->C process,

% given the parameters c, ka, kb, and the time vector t

% note in this version it is assumed that the decay rate of Ru* (kr) is known

global time

global t_0_data

global interp

global t_0_resp

global interp_resp

global kr

w = length(time);

temp = zeros(w,1);

for i = 0 : (w-(5*t_0_data))

 temp(i+(5*t_0_data)) = (p(1)/(p(2)+p(3)-kr))*((1-(p(3)/kr))*exp(-kr*i) - (1 -

(p(3)/(p(2)+p(3))))*exp(-(p(2)+p(3))*i) + (p(3)/kr) - (p(3)/(p(2)+p(3))));

 end

% change the equation in the line above to fit a different kinetics model

% the parameters that are passed to this function will also have to modified accordingly

ideal = 10.^(-temp); %converts OD into intensity so that it can be convolved with the

 %resp function

convolved = convolver2(interp_resp, ideal, 5*t_0_resp); % convolves interp_resp and

 % ideal

f = sum(abs(convolved'-interp)); % function returns the sum of the absolute differences

 % between the model (convolved) and the data (interp)

 % this sum is what is minimized by fmimsearch

 214

This function, convolver2.m, convolves one vector with another, in this case, the

response function with the model.

function f = convolver(a,b,za) % a is short vector, b is long one

n = length(b); % za is the zero point of a

flip = rot90(a); % flip = the resp. funct. run in reverse; row vector

m = length(a);

shift = -(m-za):1:(za-1); % shifts t_0 to t_0 of resp. funct.

f = b; % initially set conv product=obj (takes care of end effects)

for i = (m-(za-1)):(n-za) % with t=0 at t_0_resp

 chunk = b(i + shift); % define chunk of obj to be conv. w/resp

 int = flip.*chunk; % define the integrand

 f(i) = trapz(int); % point-wise convolution

end

% This function convolves two vectors. Beware of the conv. function

% built into Matlab, which is another thing entirely. Both a and b should

% be column vectors

 215

This function, rutmim_out.m, produces a column vector containing the kinetics model.

function f = rutmim(p)

global time

global t_0_data

global interp

global t_0_resp

global interp_resp

global kr

w = length(time);

temp = zeros(w,1);

for i = 0 : (w-(5*t_0_data))

 temp(i+(5*t_0_data)) = (p(1)/(p(2)+p(3)-kr))*((1-(p(3)/kr))*exp(-kr*i) - (1 -

(p(3)/(p(2)+p(3))))*exp(-(p(2)+p(3))*i) + (p(3)/kr) - (p(3)/(p(2)+p(3))));

 end

f = 10.^(-temp);

% this function returns the kinetics of an A->B->C process,

% given the parameters c, ka, kb, and the time vector t

% note in this version it is assumed that the decay rate of Ru* (kr) is known

 216

REFERENCES

1. Demas, J. N. Excited State Lifetime Measurements; Academic Press: New York,
1983.

